Sample records for increased chemokine signaling

  1. Chemokine Signaling in Allergic Contact Dermatitis: Toward Targeted Therapies.

    PubMed

    Smith, Jeffrey S; Rajagopal, Sudarshan; Atwater, Amber Reck

    2018-06-22

    Allergic contact dermatitis (ACD) is a common skin disease that results in significant cost and morbidity. Despite its high prevalence, therapeutic options are limited. Allergic contact dermatitis is regulated primarily by T cells within the adaptive immune system, but also by natural killer and innate lymphoid cells within the innate immune system. The chemokine receptor system, consisting of chemokine peptides and chemokine G protein-coupled receptors, is a critical regulator of inflammatory processes such as ACD. Specific chemokine signaling pathways are selectively up-regulated in ACD, most prominently CXCR3 and its endogenous chemokines CXCL9, CXCL10, and CXCL11. Recent research demonstrates that these 3 chemokines are not redundant and indeed activate distinct intracellular signaling profiles such as those activated by heterotrimeric G proteins and β-arrestin adapter proteins. Such differential signaling provides an attractive therapeutic target for novel ACD therapies and other inflammatory diseases.

  2. Dual-Color Luciferase Complementation for Chemokine Receptor Signaling.

    PubMed

    Luker, Kathryn E; Luker, Gary D

    2016-01-01

    Chemokine receptors may share common ligands, setting up potential competition for ligand binding, and association of activated receptors with downstream signaling molecules such as β-arrestin. Determining the "winner" of competition for shared effector molecules is essential for understanding integrated functions of chemokine receptor signaling in normal physiology, disease, and response to therapy. We describe a dual-color click beetle luciferase complementation assay for cell-based analysis of interactions of two different chemokine receptors, CXCR4 and ACKR3, with the intracellular scaffolding protein β-arrestin 2. This assay provides real-time quantification of receptor activation and signaling in response to chemokine CXCL12. More broadly, this general imaging strategy can be applied to quantify interactions of any set of two proteins that interact with a common binding partner. © 2016 Elsevier Inc. All rights reserved.

  3. New paradigms in chemokine receptor signal transduction: Moving beyond the two-site model.

    PubMed

    Kleist, Andrew B; Getschman, Anthony E; Ziarek, Joshua J; Nevins, Amanda M; Gauthier, Pierre-Arnaud; Chevigné, Andy; Szpakowska, Martyna; Volkman, Brian F

    2016-08-15

    Chemokine receptor (CKR) signaling forms the basis of essential immune cellular functions, and dysregulated CKR signaling underpins numerous disease processes of the immune system and beyond. CKRs, which belong to the seven transmembrane domain receptor (7TMR) superfamily, initiate signaling upon binding of endogenous, secreted chemokine ligands. Chemokine-CKR interactions are traditionally described by a two-step/two-site mechanism, in which the CKR N-terminus recognizes the chemokine globular core (i.e. site 1 interaction), followed by activation when the unstructured chemokine N-terminus is inserted into the receptor TM bundle (i.e. site 2 interaction). Several recent studies challenge the structural independence of sites 1 and 2 by demonstrating physical and allosteric links between these supposedly separate sites. Others contest the functional independence of these sites, identifying nuanced roles for site 1 and other interactions in CKR activation. These developments emerge within a rapidly changing landscape in which CKR signaling is influenced by receptor PTMs, chemokine and CKR dimerization, and endogenous non-chemokine ligands. Simultaneous advances in the structural and functional characterization of 7TMR biased signaling have altered how we understand promiscuous chemokine-CKR interactions. In this review, we explore new paradigms in CKR signal transduction by considering studies that depict a more intricate architecture governing the consequences of chemokine-CKR interactions. Published by Elsevier Inc.

  4. Selectins and chemokines use shared and distinct signals to activate β2 integrins in neutrophils

    PubMed Central

    Yago, Tadayuki; Zhang, Nan; Zhao, Liang; Abrams, Charles S.

    2018-01-01

    Rolling neutrophils receive signals while engaging P- and E-selectin and chemokines on inflamed endothelium. Selectin signaling activates β2 integrins to slow rolling velocities. Chemokine signaling activates β2 integrins to cause arrest. Despite extensive study, key aspects of these signaling cascades remain unresolved. Using complementary in vitro and in vivo assays, we found that selectin and chemokine signals in neutrophils triggered Rap1a-dependent and phosphatidylinositol-4-phosphate 5-kinase γ (PIP5Kγ90)–dependent pathways that induce integrin-dependent slow rolling and arrest. Interruption of both pathways, but not either pathway alone, blocked talin-1 recruitment to and activation of integrins. An isoform of PIP5Kγ90 lacking the talin-binding domain (PIP5Kγ87) could not activate integrins. Chemokines, but not selectins, used phosphatidylinositol-4,5-bisphosphate 3-kinase γ (PI3Kγ) in cooperation with Rap1a to mediate integrin-dependent slow rolling (at low chemokine concentrations), as well as arrest (at high chemokine concentrations). High levels of chemokines activated β2 integrins without selectin signals. When chemokines were limiting, they synergized with selectins to activate β2 integrins. PMID:29592875

  5. Selectins and chemokines use shared and distinct signals to activate β2 integrins in neutrophils.

    PubMed

    Yago, Tadayuki; Zhang, Nan; Zhao, Liang; Abrams, Charles S; McEver, Rodger P

    2018-04-10

    Rolling neutrophils receive signals while engaging P- and E-selectin and chemokines on inflamed endothelium. Selectin signaling activates β2 integrins to slow rolling velocities. Chemokine signaling activates β2 integrins to cause arrest. Despite extensive study, key aspects of these signaling cascades remain unresolved. Using complementary in vitro and in vivo assays, we found that selectin and chemokine signals in neutrophils triggered Rap1a-dependent and phosphatidylinositol-4-phosphate 5-kinase γ (PIP5Kγ90)-dependent pathways that induce integrin-dependent slow rolling and arrest. Interruption of both pathways, but not either pathway alone, blocked talin-1 recruitment to and activation of integrins. An isoform of PIP5Kγ90 lacking the talin-binding domain (PIP5Kγ87) could not activate integrins. Chemokines, but not selectins, used phosphatidylinositol-4,5-bisphosphate 3-kinase γ (PI3Kγ) in cooperation with Rap1a to mediate integrin-dependent slow rolling (at low chemokine concentrations), as well as arrest (at high chemokine concentrations). High levels of chemokines activated β2 integrins without selectin signals. When chemokines were limiting, they synergized with selectins to activate β2 integrins. © 2018 by The American Society of Hematology.

  6. The Chemokine Receptor CXCR6 Evokes Reverse Signaling via the Transmembrane Chemokine CXCL16

    PubMed Central

    Adamski, Vivian; Mentlein, Rolf; Lucius, Ralph; Synowitz, Michael; Held-Feindt, Janka; Hattermann, Kirsten

    2017-01-01

    Reverse signaling is a signaling mechanism where transmembrane or membrane-bound ligands transduce signals and exert biological effects upon binding of their specific receptors, enabling a bidirectional signaling between ligand and receptor-expressing cells. In this study, we address the question of whether the transmembrane chemokine (C-X-C motif) ligand 16, CXCL16 is able to transduce reverse signaling and investigate the biological consequences. For this, we used human glioblastoma cell lines and a melanoma cell line as in vitro models to show that stimulation with recombinant C-X-C chemokine receptor 6 (CXCR6) or CXCR6-containing membrane preparations induces intracellular (reverse) signaling. Specificity was verified by RNAi experiments and by transfection with expression vectors for the intact CXCL16 and an intracellularly-truncated form of CXCL16. We showed that reverse signaling via CXCL16 promotes migration in CXCL16-expressing melanoma and glioblastoma cells, but does not affect proliferation or protection from chemically-induced apoptosis. Additionally, fast migrating cells isolated from freshly surgically-resected gliomas show a differential expression pattern for CXCL16 in comparison to slowly-migrating cells, enabling a possible functional role of the reverse signaling of the CXCL16/CXCR6 pair in human brain tumor progression in vivo. PMID:28698473

  7. The Chemokine Receptor CXCR6 Evokes Reverse Signaling via the Transmembrane Chemokine CXCL16.

    PubMed

    Adamski, Vivian; Mentlein, Rolf; Lucius, Ralph; Synowitz, Michael; Held-Feindt, Janka; Hattermann, Kirsten

    2017-07-08

    Reverse signaling is a signaling mechanism where transmembrane or membrane-bound ligands transduce signals and exert biological effects upon binding of their specific receptors, enabling a bidirectional signaling between ligand and receptor-expressing cells. In this study, we address the question of whether the transmembrane chemokine (C-X-C motif) ligand 16, CXCL16 is able to transduce reverse signaling and investigate the biological consequences. For this, we used human glioblastoma cell lines and a melanoma cell line as in vitro models to show that stimulation with recombinant C-X-C chemokine receptor 6 (CXCR6) or CXCR6-containing membrane preparations induces intracellular (reverse) signaling. Specificity was verified by RNAi experiments and by transfection with expression vectors for the intact CXCL16 and an intracellularly-truncated form of CXCL16. We showed that reverse signaling via CXCL16 promotes migration in CXCL16-expressing melanoma and glioblastoma cells, but does not affect proliferation or protection from chemically-induced apoptosis. Additionally, fast migrating cells isolated from freshly surgically-resected gliomas show a differential expression pattern for CXCL16 in comparison to slowly-migrating cells, enabling a possible functional role of the reverse signaling of the CXCL16/CXCR6 pair in human brain tumor progression in vivo.

  8. Chemokine receptor binding and signal transduction in native cells of the central nervous system.

    PubMed

    Davis, Christopher N; Chen, Shuzhen; Boehme, Stefen A; Bacon, Kevin B; Harrison, Jeffrey K

    2003-04-01

    Chemokine receptors belong to the superfamily of seven-transmembrane-spanning, G-protein-coupled receptors, and their expression by central nervous system cells is clearly documented. As this gene family has become the target of novel therapeutic development, the analysis of these receptors requires radioligand binding techniques as well as methods that entail assessing receptor stimulation of signal transduction pathways. Herein, we describe specific protocols for measuring radiolabeled chemokine binding to their cognate receptors on cultured glial cells as well as to receptors expressed in heterologous cell systems. Multiple downstream signaling pathways, including intracellular calcium influx and receptor-dependent kinase activation, are associated with chemokine receptor stimulation. Protocols for measuring these signaling events in chemokine-receptor-expressing cells are also presented.

  9. Defective chemokine signal integration in leukocytes lacking activator of G protein signaling 3 (AGS3).

    PubMed

    Branham-O'Connor, Melissa; Robichaux, William G; Zhang, Xian-Kui; Cho, Hyeseon; Kehrl, John H; Lanier, Stephen M; Blumer, Joe B

    2014-04-11

    Activator of G-protein signaling 3 (AGS3, gene name G-protein signaling modulator-1, Gpsm1), an accessory protein for G-protein signaling, has functional roles in the kidney and CNS. Here we show that AGS3 is expressed in spleen, thymus, and bone marrow-derived dendritic cells, and is up-regulated upon leukocyte activation. We explored the role of AGS3 in immune cell function by characterizing chemokine receptor signaling in leukocytes from mice lacking AGS3. No obvious differences in lymphocyte subsets were observed. Interestingly, however, AGS3-null B and T lymphocytes and bone marrow-derived dendritic cells exhibited significant chemotactic defects as well as reductions in chemokine-stimulated calcium mobilization and altered ERK and Akt activation. These studies indicate a role for AGS3 in the regulation of G-protein signaling in the immune system, providing unexpected venues for the potential development of therapeutic agents that modulate immune function by targeting these regulatory mechanisms.

  10. CXCR4 chemokine receptor signaling mediates pain in diabetic neuropathy

    PubMed Central

    2014-01-01

    Background Painful Diabetic Neuropathy (PDN) is a debilitating syndrome present in a quarter of diabetic patients that has a substantial impact on their quality of life. Despite this significant prevalence and impact, current therapies for PDN are only partially effective. Moreover, the cellular mechanisms underlying PDN are not well understood. Neuropathic pain is caused by a variety of phenomena including sustained excitability in sensory neurons that reduces the pain threshold so that pain is produced in the absence of appropriate stimuli. Chemokine signaling has been implicated in the pathogenesis of neuropathic pain in a variety of animal models. We therefore tested the hypothesis that chemokine signaling mediates DRG neuronal hyperexcitability in association with PDN. Results We demonstrated that intraperitoneal administration of the specific CXCR4 antagonist AMD3100 reversed PDN in two animal models of type II diabetes. Furthermore DRG sensory neurons acutely isolated from diabetic mice displayed enhanced SDF-1 induced calcium responses. Moreover, we demonstrated that CXCR4 receptors are expressed by a subset of DRG sensory neurons. Finally, we observed numerous CXCR4 expressing inflammatory cells infiltrating into the DRG of diabetic mice. Conclusions These data suggest that CXCR4/SDF-1 signaling mediates enhanced calcium influx and excitability in DRG neurons responsible for PDN. Simultaneously, CXCR4/SDF-1 signaling may coordinate inflammation in diabetic DRG that could contribute to the development of pain in diabetes. Therefore, targeting CXCR4 chemokine receptors may represent a novel intervention for treating PDN. PMID:24961298

  11. Neuronal apoptotic signaling pathways probed and intervened by synthetically and modularly modified (SMM) chemokines.

    PubMed

    Choi, Won-Tak; Kaul, Marcus; Kumar, Santosh; Wang, Jun; Kumar, I M Krishna; Dong, Chang-Zhi; An, Jing; Lipton, Stuart A; Huang, Ziwei

    2007-03-09

    As the main coreceptors for human immunodeficiency virus type 1 (HIV-1) entry, CXCR4 and CCR5 play important roles in HIV-associated dementia (HAD). HIV-1 glycoprotein gp120 contributes to HAD by causing neuronal damage and death, either directly by triggering apoptotic pathways or indirectly by stimulating glial cells to release neurotoxins. Here, to understand the mechanism of CXCR4 or CCR5 signaling in neuronal apoptosis associated with HAD, we have applied synthetically and modularly modified (SMM)-chemokine analogs derived from natural stromal cell-derived factor-1alpha or viral macrophage inflammatory protein-II as chemical probes of the mechanism(s) whereby these SMM-chemokines prevent or promote neuronal apoptosis. We show that inherently neurotoxic natural ligands of CXCR4, such as stromal cell-derived factor-1alpha or viral macrophage inflammatory protein-II, can be modified to protect neurons from apoptosis induced by CXCR4-preferring gp120(IIIB), and that the inhibition of CCR5 by antagonist SMM-chemokines, unlike neuroprotective CCR5 natural ligands, leads to neurotoxicity by activating a p38 mitogen-activated protein kinase (MAPK)-dependent pathway. Furthermore, we discover distinct signaling pathways activated by different chemokine ligands that are either natural agonists or synthetic antagonists, thus demonstrating a chemical biology strategy of using chemically engineered inhibitors of chemokine receptors to study the signaling mechanism of neuronal apoptosis and survival.

  12. Differential Modulation of Retinal Degeneration by Ccl2 and Cx3cr1 Chemokine Signalling

    PubMed Central

    Luhmann, Ulrich F. O.; Lange, Clemens A.; Robbie, Scott; Munro, Peter M. G.; Cowing, Jill A.; Armer, Hannah E. J.; Luong, Vy; Carvalho, Livia S.; MacLaren, Robert E.; Fitzke, Frederick W.; Bainbridge, James W. B.; Ali, Robin R.

    2012-01-01

    Microglia and macrophages are recruited to sites of retinal degeneration where local cytokines and chemokines determine protective or neurotoxic microglia responses. Defining the role of Ccl2-Ccr2 and Cx3cl1-Cx3cr1 signalling for retinal pathology is of particular interest because of its potential role in age-related macular degeneration (AMD). Ccl2, Ccr2, and Cx3cr1 signalling defects impair macrophage trafficking, but have, in several conflicting studies, been reported to show different degrees of age-related retinal degeneration. Ccl2/Cx3cr1 double knockout (CCDKO) mice show an early onset retinal degeneration and have been suggested as a model for AMD. In order to understand phenotypic discrepancies in different chemokine knockout lines and to study how defects in Ccl2 and/or Cx3cr1 signalling contribute to the described early onset retinal degeneration, we defined primary and secondary pathological events in CCDKO mice. To control for genetic background variability, we compared the original phenotype with that of single Ccl2, Cx3cr1 and Ccl2/Cx3cr1 double knockout mice obtained from backcrosses of CCDKO with C57Bl/6 mice. We found that the primary pathological event in CCDKO mice develops in the inferior outer nuclear layer independently of light around postnatal day P14. RPE and vascular lesions develop secondarily with increasing penetrance with age and are clinically similar to retinal telangiectasia not to choroidal neovascularisation. Furthermore, we provide evidence that a third autosomal recessive gene causes the degeneration in CCDKO mice and in all affected re-derived lines and subsequently demonstrated co-segregation of the naturally occurring RD8 mutation in the Crb1 gene. By comparing CCDKO mice with re-derived CCl2−/−/Crb1Rd8/RD8, Cx3cr1−/−/Crb1Rd8/RD8 and CCl2−/−/Cx3cr1−/−/Crb1Rd8/RD8 mice, we observed a differential modulation of the retinal phenotype by genetic background and both chemokine signalling pathways. These findings

  13. T cell costimulation by chemokine receptors.

    PubMed

    Molon, Barbara; Gri, Giorgia; Bettella, Monica; Gómez-Moutón, Concepción; Lanzavecchia, Antonio; Martínez-A, Carlos; Mañes, Santos; Viola, Antonella

    2005-05-01

    Signals mediated by chemokine receptors may compete with T cell receptor stop signals and determine the duration of T cell-antigen-presenting cell interactions. Here we show that during T cell stimulation by antigen-presenting cells, T cell chemokine receptors coupled to G(q) and/or G(11) protein were recruited to the immunological synapse by a G(i)-independent mechanism. When chemokine receptors were sequestered at the immunological synapse, T cells became insensitive to chemotactic gradients, formed more stable conjugates and finally responded with enhanced proliferation and cytokine production. We suggest that chemokine receptor trapping at the immunological synapse enhances T cell activation by improving T cell-antigen-presenting cell attraction and impeding the 'distraction' of successfully engaged T cells by other chemokine sources.

  14. Atypical chemokine receptors in cancer: friends or foes?

    PubMed

    Massara, Matteo; Bonavita, Ornella; Mantovani, Alberto; Locati, Massimo; Bonecchi, Raffaella

    2016-06-01

    The chemokine system is a fundamental component of cancer-related inflammation involved in all stages of cancer development. It controls not only leukocyte infiltration in primary tumors but also angiogenesis, cancer cell proliferation, and migration to metastatic sites. Atypical chemokine receptors are a new, emerging class of regulators of the chemokine system. They control chemokine bioavailability by scavenging, transporting, or storing chemokines. They can also regulate the activity of canonical chemokine receptors with which they share the ligands by forming heterodimers or by modulating their expression levels or signaling activity. Here, we summarize recent results about the role of these receptors (atypical chemokine receptor 1/Duffy antigen receptor for chemokine, atypical chemokine receptor 2/D6, atypical chemokine receptor 3/CXC-chemokine receptor 7, and atypical chemokine receptor 4/CC-chemokine receptor-like 1) on the tumorigenesis process, indicating that their effects are strictly dependent on the cell type on which they are expressed and on their coexpression with other chemokine receptors. Indeed, atypical chemokine receptors inhibit tumor growth and progression through their activity as negative regulators of chemokine bioavailability, whereas, on the contrary, they can promote tumorigenesis when they regulate the signaling of other chemokine receptors, such as CXC-chemokine receptor 4. Thus, atypical chemokine receptors are key components of the regulatory network of inflammation and immunity in cancer and may have a major effect on anti-inflammatory and immunotherapeutic strategies. © Society for Leukocyte Biology.

  15. Chemokines in tumor progression and metastasis

    PubMed Central

    Sarvaiya, Purvaba J.; Guo, Donna; Ulasov, Ilya; Gabikian, Patrik; Lesniak, Maciej S.

    2013-01-01

    Chemokines play a vital role in tumor progression and metastasis. Chemokines are involved in the growth of many cancers including breast cancer, ovarian cancer, pancreatic cancer, melanoma, lung cancer, gastric cancer, acute lymphoblastic leukemia, colon cancer, non-small lung cancer and non-hodgkin's lymphoma among many others. The expression of chemokines and their receptors is altered in many malignancies and leads to aberrant chemokine receptor signaling. This review focuses on the role of chemokines in key processes that facilitate tumor progression including proliferation, senescence, angiogenesis, epithelial mesenchymal transition, immune evasion and metastasis. PMID:24259307

  16. Chemokines and chemokine receptors: new insights into cancer-related inflammation

    PubMed Central

    Lazennec, Gwendal; Richmond, Ann

    2010-01-01

    Chemokines are involved in cellular interactions and tropism in situations frequently associated with inflammation. Recently, the importance of chemokines and chemokine receptors in inflammation associated with carcinogenesis has been highlighted. Increasing evidence suggests that chemokines are produced by tumor cells and also by cells of the tumor microenvironment including cancer-associated fibroblasts, mesenchymal stem cells, endothelial cells, tumor-associated macrophages and more recently tumor-associated neutrophils. In addition to having effects on tumor cell proliferation, angiogenesis and metastasis, chemokines also appear to modulate senescence and cell survival. Here, we review recent progress on the roles of chemokines and chemokine receptors in cancer-related inflammation, and we discuss the mechanisms underlying chemokine action in cancer that might facilitate the development of novel therapies in the future. PMID:20163989

  17. Chemokines and chemokine receptors: new insights into cancer-related inflammation.

    PubMed

    Lazennec, Gwendal; Richmond, Ann

    2010-03-01

    Chemokines are involved in cellular interactions and tropism in situations frequently associated with inflammation. Recently, the importance of chemokines and chemokine receptors in inflammation associated with carcinogenesis has been highlighted. Increasing evidence suggests that chemokines are produced by tumor cells as well as by cells of the tumor microenvironment including cancer-associated fibroblasts (CAFs), mesenchymal stem cells (MSCs), endothelial cells, tumor-associated macrophages (TAMs) and more recently tumor-associated neutrophils (TANs). In addition to affecting tumor cell proliferation, angiogenesis and metastasis, chemokines also seem to modulate senescence and cell survival. Here, we review recent progress on the roles of chemokines and chemokine receptors in cancer-related inflammation, and discuss the mechanisms underlying chemokine action in cancer that might facilitate the development of novel therapies in the future. Copyright 2010 Elsevier Ltd. All rights reserved.

  18. Increased cytokine/chemokines in serum from asthmatic and non-asthmatic patients with viral respiratory infection

    PubMed Central

    Giuffrida, María J; Valero, Nereida; Mosquera, Jesús; Alvarez de Mon, Melchor; Chacín, Betulio; Espina, Luz Marina; Gotera, Jennifer; Bermudez, John; Mavarez, Alibeth

    2014-01-01

    Background Respiratory viral infections can induce different cytokine/chemokine profiles in lung tissues and have a significant influence on patients with asthma. There is little information about the systemic cytokine status in viral respiratory-infected asthmatic patients compared with non-asthmatic patients. Objectives The aim of this study was to determine changes in circulating cytokines (IL-1β, TNF-α, IL-4, IL-5) and chemokines (MCP1: monocyte chemoattractant protein-1 and RANTES: regulated on activation normal T cell expressed and secreted) in patients with an asthmatic versus a non-asthmatic background with respiratory syncytial virus, parainfluenza virus or adenovirus respiratory infection. In addition, human monocyte cultures were incubated with respiratory viruses to determine the cytokine/chemokine profiles. Patients/Methods Patients with asthmatic (n = 34) and non-asthmatic (n = 18) history and respiratory infections with respiratory syncytial virus, parainfluenza, and adenovirus were studied. Healthy individuals with similar age and sex (n = 10) were used as controls. Cytokine/chemokine content in blood and culture supernatants was determined by ELISA. Monocytes were isolated by Hystopaque gradient and cocultured with each of the above-mentioned viruses. Results Similar increased cytokine concentrations were observed in asthmatic and non-asthmatic patients. However, higher concentrations of chemokines were observed in asthmatic patients. Virus-infected monocyte cultures showed similar cytokine/chemokine profiles to those observed in the patients. Conclusions Circulating cytokine profiles induced by acute viral lung infection were not related to asthmatic status, except for chemokines that were already increased in the asthmatic status. Monocytes could play an important role in the increased circulating concentration of cytokines found during respiratory viral infections. PMID:23962134

  19. Chemokines in neuron-glial cell interaction and pathogenesis of neuropathic pain.

    PubMed

    Zhang, Zhi-Jun; Jiang, Bao-Chun; Gao, Yong-Jing

    2017-09-01

    Neuropathic pain resulting from damage or dysfunction of the nervous system is a highly debilitating chronic pain state and is often resistant to currently available treatments. It has become clear that neuroinflammation, mainly mediated by proinflammatory cytokines and chemokines, plays an important role in the establishment and maintenance of neuropathic pain. Chemokines were originally identified as regulators of peripheral immune cell trafficking and were also expressed in neurons and glial cells in the central nervous system. In recent years, accumulating studies have revealed the expression, distribution and function of chemokines in the spinal cord under chronic pain conditions. In this review, we provide evidence showing that several chemokines are upregulated after peripheral nerve injury and contribute to the pathogenesis of neuropathic pain via different forms of neuron-glia interaction in the spinal cord. First, chemokine CX3CL1 is expressed in primary afferents and spinal neurons and induces microglial activation via its microglial receptor CX3CR1 (neuron-to-microglia signaling). Second, CCL2 and CXCL1 are expressed in spinal astrocytes and act on CCR2 and CXCR2 in spinal neurons to increase excitatory synaptic transmission (astrocyte-to-neuron signaling). Third, we recently identified that CXCL13 is highly upregulated in spinal neurons after spinal nerve ligation and induces spinal astrocyte activation via receptor CXCR5 (neuron-to-astrocyte signaling). Strategies that target chemokine-mediated neuron-glia interactions may lead to novel therapies for the treatment of neuropathic pain.

  20. CXCL16/CXCR6 chemokine signaling mediates breast cancer progression by pERK1/2-dependent mechanisms.

    PubMed

    Xiao, Gang; Wang, Xiumin; Wang, Jinglong; Zu, Lidong; Cheng, Guangcun; Hao, Mingang; Sun, Xueqing; Xue, Yunjing; Lu, Jinsong; Wang, Jianhua

    2015-06-10

    Our previous studies demonstrate that CXCL6/CXCR6 chemokine axis induces prostate cancer progression by the AKT/mTOR signaling pathway; however, its role and mechanisms underlying invasiveness and metastasis of breast cancer are yet to be elucidated. In this investigation, CXCR6 protein expression was examined using high-density tissue microarrays and immunohistochemistry. Expression of CXCR6 shows a higher epithelial staining in breast cancer nest site and metastatic lymph node than the normal breast tissue, suggesting that CXCR6 may be involved in breast cancer (BC) development. In vitro and in vivo experiments indicate that overexpression of CXCR6 in BC cells has a marked effect on increasing cell migration, invasion and metastasis. In contrast, reduction of CXCR6 expression by shRNAs in these cells greatly reduce its invasion and metastasis ability. Mechanistic analyses show that CXCL16/CXCR6 chemokine axis is capable of modulating activation of RhoA through activating ERK1/2 signaling pathway, which then inhibits the activity of cofilin, thereby enhancing the stability of F-actin, responsible for invasiveness and metastasis of BC. Taken together, our data shows for the first time that the CXCR6 / ERK1/2/ RhoA / cofilin /F-actin pathway plays a central role in the development of BC. Targeting the signaling pathway may prove beneficial to prevent metastasis and provide a more effective therapeutic strategy for BC.

  1. CXCL16/CXCR6 chemokine signaling mediates breast cancer progression by pERK1/2-dependent mechanisms

    PubMed Central

    Xiao, Gang; Wang, Xiumin; Wang, Jinglong; Zu, Lidong; Cheng, Guangcun; Hao, Mingang; Sun, Xueqing; Xue, Yunjing; Lu, Jinsong; Wang, Jianhua

    2015-01-01

    Our previous studies demonstrate that CXCL6/CXCR6 chemokine axis induces prostate cancer progression by the AKT/mTOR signaling pathway; however, its role and mechanisms underlying invasiveness and metastasis of breast cancer are yet to be elucidated. In this investigation, CXCR6 protein expression was examined using high-density tissue microarrays and immunohistochemistry. Expression of CXCR6 shows a higher epithelial staining in breast cancer nest site and metastatic lymph node than the normal breast tissue, suggesting that CXCR6 may be involved in breast cancer (BC) development. In vitro and in vivo experiments indicate that overexpression of CXCR6 in BC cells has a marked effect on increasing cell migration, invasion and metastasis. In contrast, reduction of CXCR6 expression by shRNAs in these cells greatly reduce its invasion and metastasis ability. Mechanistic analyses show that CXCL16/CXCR6 chemokine axis is capable of modulating activation of RhoA through activating ERK1/2 signaling pathway, which then inhibits the activity of cofilin, thereby enhancing the stability of F-actin, responsible for invasiveness and metastasis of BC. Taken together, our data shows for the first time that the CXCR6 / ERK1/2/ RhoA / cofilin /F-actin pathway plays a central role in the development of BC. Targeting the signaling pathway may prove beneficial to prevent metastasis and provide a more effective therapeutic strategy for BC. PMID:25909173

  2. Chemokines and chemokine receptors in chronic lymphocytic leukemia (CLL): from understanding the basics towards therapeutic targeting.

    PubMed

    Burger, Jan A

    2010-12-01

    Chemokines and their receptors organize the recruitment and positioning of cells at each stage of the immune response, a system critically dependent upon coordination to get the right cells to the right place at the right time. Chemokine receptors expressed on CLL B cells are thought to function in a similar fashion, regulating the trafficking of the leukemia cells between blood, lymphoid organs, and the bone marrow, and within sub compartments within these tissues, in concert with adhesion molecules and other guidance cues. CLL cells not only respond to chemokines secreted in the microenvironment, the leukemia cells also secrete chemokines in response to external signals, such as B cell receptor engagement. These CLL cell-derived chemokines facilitate interactions between CLL cells, T cells, and other immune cells that shape the CLL microenvironment. CXCR4, the most prominent chemokine receptor in CLL, is now targeted in a first clinical trial, emphasizing that chemokines and their receptors have become a highly dynamic translational research field. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Th2-like chemokine levels are increased in allergic children and influenced by maternal immunity during pregnancy.

    PubMed

    Abelius, Martina S; Lempinen, Esma; Lindblad, Karin; Ernerudh, Jan; Berg, Göran; Matthiesen, Leif; Nilsson, Lennart J; Jenmalm, Maria C

    2014-06-01

    The influence of the intra-uterine environment on the immunity and allergy development in the offspring is unclear. We aimed to investigate (i) whether the pregnancy magnifies the Th2 immunity in allergic and non-allergic women, (ii) whether the maternal chemokine levels during pregnancy influenced the offspring's chemokine levels during childhood and (iii) the relationship between circulating Th1/Th2-associated chemokines and allergy in mothers and children. The Th1-associated chemokines CXCL9, CXCL10, CXCL11, and the Th2-associated chemokines CCL17, CCL18 and CCL22 were quantified by Luminex and ELISA in 20 women with and 36 women without allergic symptoms at gestational week (gw) 10-12, 15-16, 25, 35, 39 and 2 and 12 months post-partum and in their children at birth, 6, 12, 24 months and 6 years of age. Total IgE levels were measured using ImmunoCAP Technology. The levels of the Th2-like chemokines were not magnified by pregnancy. Instead decreased levels were shown during pregnancy (irrespectively of maternal allergy status) as compared to post-partum. In the whole group, the Th1-like chemokine levels were higher at gw 39 than during the first and second trimester and post-partum. Maternal CXCL11, CCL18 and CCL22 levels during and after pregnancy correlated with the corresponding chemokines in the offspring during childhood. Increased CCL22 and decreased CXCL10 levels in the children were associated with sensitisation and increased CCL17 levels with allergic symptoms during childhood. Maternal chemokine levels were not associated with maternal allergic disease. Allergic symptoms and sensitisation were associated with decreased Th1- and increased Th2-associated chemokine levels during childhood, indicating a Th2 shift in the allergic children, possibly influenced by the maternal immunity during pregnancy. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Scleroderma dermal microvascular endothelial cells exhibit defective response to pro-angiogenic chemokines

    PubMed Central

    Rabquer, Bradley J.; Ohara, Ray A.; Stinson, William A.; Campbell, Phillip L.; Amin, M. Asif; Balogh, Beatrix; Zakhem, George; Renauer, Paul A.; Lozier, Ann; Arasu, Eshwar; Haines, G. Kenneth; Kahaleh, Bashar; Schiopu, Elena; Khanna, Dinesh; Koch, Alisa E.

    2016-01-01

    Objectives. Angiogenesis plays a critical role in SSc (scleroderma). The aim of this study was to examine the expression of growth-regulated protein-γ (Gro-γ/CXCL3), granulocyte chemotactic protein 2 (GCP-2/CXCL6) and their receptor CXCR2 in endothelial cells (ECs) isolated from SSc skin and determine whether these cells mount an angiogenic response towards pro-angiogenic chemokines. The downstream signalling pathways as well as the pro-angiogenic transcription factor inhibitor of DNA-binding protein 1 (Id-1) were also examined. Methods. Skin biopsies were obtained from patients with dcSSc. ECs were isolated via magnetic positive selection. Angiogenesis was measured by EC chemotaxis assay. Results. Gro-γ/CXCL3 and GCP-2/CXCL6 were minimally expressed in both skin types but elevated in SSc serum. Pro-angiogenic chemokine mRNA was greater in SSc ECs than in normal ECs. SSc ECs did not migrate to vascular endothelial growth factor (VEGF), Gro-γ/CXCL3, GCP-2/CXCL6 or CXCL16. The signalling pathways stimulated by these chemokines were also dysregulated. Id-1 mRNA in SSc ECs was lower compared with normal ECs, and overexpression of Id-1 in SSc ECs increased their ability to migrate towards VEGF and CXCL16. Conclusion. Our results show that SSc ECs are unable to respond to pro-angiogenic chemokines despite their increased expression in serum and ECs. This might be due to the differences in the signalling pathways activated by these chemokines in normal vs SSc ECs. In addition, the lower expression of Id-1 also decreases the angiogenic response. The inability of pro-angiogenic chemokines to promote EC migration provides an additional mechanism for the impaired angiogenesis that characterizes SSc. PMID:26705326

  5. Chemokines: novel targets for breast cancer metastasis

    PubMed Central

    Ali, Simi; Lazennec, Gwendal

    2007-01-01

    Recent studies have highlighted the possible involvement of chemokines and their receptors in breast cancer progression and metastasis. Chemokines and their receptors constitute a superfamily of signalling factors whose prognosis value in breast cancer progression remains unclear. We will examine here the expression pattern of chemokines and their receptors in mammary gland physiology and carcinogenesis. The nature of the cells producing chemokines or harboring chemokine receptors appears to be crucial in certain conditions for example, the infiltration of the primary tumor by leukocytes and angiogenesis. In addition, chemokines, their receptors and the interaction with glycosaminoglycan (GAGs) are key players in the homing of cancer cells to distant metastasis sites. Several lines of evidence, including in vitro and in vivo models, suggest that the mechanism of action of chemokines in cancer development involves the modulation of proliferation, apoptosis, invasion, leukocyte recruitment or angiogenesis. Furthermore, we will discuss the regulation of chemokine network in tumor neovascularity by decoy receptors. The reasons accounting for the deregulation of chemokines and chemokine receptors expression in breast cancer are certainly crucial for the comprehension of chemokine role in breast cancer and are in several cases linked to estrogen receptor status. The targeting of chemokines and chemokine receptors by antibodies, small molecule antagonists, viral chemokine binding proteins and heparins appears as promising tracks to develop therapeutic strategies. Thus there is significant interest in developing strategies to antagonize the chemokine function, and an opportunity to interfere with metastasis, the leading cause of death in most patients. PMID:17717637

  6. Increased Systemic Cytokine/Chemokine Expression in Asthmatic and Non-asthmatic Patients with Bacterial, Viral or Mixed Lung Infection.

    PubMed

    Giuffrida, M J; Valero, N; Mosquera, J; Duran, A; Arocha, F; Chacín, B; Espina, L M; Gotera, J; Bermudez, J; Mavarez, A; Alvarez-Mon, M

    2017-04-01

    This study was aimed to determine the profiles of serum cytokines (IL-1β, TNF-α, IL-4, IL-5) and chemokines (MCP-1: monocyte chemoattract protein-1 and RANTES: regulated on activation normal T cell expressed and secreted) in individuals with an asthmatic versus a non-asthmatic background with bacterial, viral or mixed acute respiratory infection. Asthmatic (n = 14) and non-asthmatic (n = 29) patients with acute viral, bacterial or mixed (bacterial and viruses) respiratory infection were studied. Patients were also analysed as individuals with pneumonia or bronchitis. Healthy individuals with similar age and sex (n = 10) were used as controls. Cytokine/chemokine content in serum was determined by ELISA. Increased cytokine/chemokine concentration in asthmatic and non-asthmatic patients was observed. However, higher concentrations of chemokines (MCP-1 and RANTES) in asthmatic patients infected by viruses, bacteria or bacteria and viruses (mixed) than in non-asthmatic patients were observed. In general, viral and mixed infections were better cytokine/chemokine inducers than bacterial infection. Cytokine/chemokine expression was similarly increased in both asthmatic and non-asthmatic patients with pneumonia or bronchitis, except that RANTES remained at normal levels in bronchitis. Circulating cytokine profiles induced by acute viral, bacterial or mixed lung infection were not related to asthmatic background, except for chemokines that were increased in asthmatic status. © 2017 The Foundation for the Scandinavian Journal of Immunology.

  7. SMM-chemokines: a class of unnatural synthetic molecules as chemical probes of chemokine receptor biology and leads for therapeutic development.

    PubMed

    Kumar, Santosh; Choi, Won-Tak; Dong, Chang-Zhi; Madani, Navid; Tian, Shaomin; Liu, Dongxiang; Wang, Youli; Pesavento, James; Wang, Jun; Fan, Xuejun; Yuan, Jian; Fritzsche, Wayne R; An, Jing; Sodroski, Joseph G; Richman, Douglas D; Huang, Ziwei

    2006-01-01

    Chemokines and their receptors play important roles in numerous physiological and pathological processes. To develop natural chemokines into receptor probes and inhibitors of pathological processes, the lack of chemokine-receptor selectivity must be overcome. Here, we apply chemical synthesis and the concept of modular modifications to generate unnatural synthetically and modularly modified (SMM)-chemokines that have high receptor selectivity and affinity, and reduced toxicity. A proof of the concept was shown by transforming the nonselective viral macrophage inflammatory protein-II into new analogs with enhanced selectivity and potency for CXCR4 or CCR5, two principal coreceptors for human immunodeficiency virus (HIV)-1 entry. These new analogs provided insights into receptor binding and signaling mechanisms and acted as potent HIV-1 inhibitors. These results support the concept of SMM-chemokines for studying and controlling the function of other chemokine receptors.

  8. Suppressor of cytokine signalling (SOCS) 1 and 3 enhance cell adhesion and inhibit migration towards the chemokine eotaxin/CCL11.

    PubMed

    Stevenson, Nigel J; McFarlane, Cheryl; Ong, Seow Theng; Nahlik, Krystyna; Kelvin, Alyson; Addley, Mark R; Long, Aideen; Greaves, David R; O'Farrelly, Cliona; Johnston, James A

    2010-11-05

    Suppressors of cytokine signalling (SOCS) proteins regulate signal transduction, but their role in responses to chemokines remains poorly understood. We report that cells expressing SOCS1 and 3 exhibit enhanced adhesion and reduced migration towards the chemokine CCL11. Focal adhesion kinase (FAK) and the GTPase RhoA, control cell adhesion and migration and we show the presence of SOCS1 or 3 regulates expression and tyrosine phosphorylation of FAK, while also enhancing activation of RhoA. Our novel findings suggest that SOCS1 and 3 may control chemotaxis and adhesion by significantly enhancing both FAK and RhoA activity, thus localizing immune cells to the site of allergic inflammation. Copyright © 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  9. International Union of Pharmacology. LXXXIX. Update on the Extended Family of Chemokine Receptors and Introducing a New Nomenclature for Atypical Chemokine Receptors

    PubMed Central

    Bachelerie, Francoise; Ben-Baruch, Adit; Burkhardt, Amanda M.; Combadiere, Christophe; Farber, Joshua M.; Graham, Gerard J.; Horuk, Richard; Sparre-Ulrich, Alexander Hovard; Locati, Massimo; Luster, Andrew D.; Mantovani, Alberto; Matsushima, Kouji; Nibbs, Robert; Nomiyama, Hisayuki; Power, Christine A.; Proudfoot, Amanda E. I.; Rosenkilde, Mette M.; Rot, Antal; Sozzani, Silvano; Thelen, Marcus; Yoshie, Osamu; Zlotnik, Albert

    2014-01-01

    Sixteen years ago, the Nomenclature Committee of the International Union of Pharmacology approved a system for naming human seven-transmembrane (7TM) G protein-coupled chemokine receptors, the large family of leukocyte chemoattractant receptors that regulates immune system development and function, in large part by mediating leukocyte trafficking. This was announced in Pharmacological Reviews in a major overview of the first decade of research in this field [Murphy PM, Baggiolini M, Charo IF, Hébert CA, Horuk R, Matsushima K, Miller LH, Oppenheim JJ, and Power CA (2000) Pharmacol Rev 52:145–176]. Since then, several new receptors have been discovered, and major advances have been made for the others in many areas, including structural biology, signal transduction mechanisms, biology, and pharmacology. New and diverse roles have been identified in infection, immunity, inflammation, development, cancer, and other areas. The first two drugs acting at chemokine receptors have been approved by the U.S. Food and Drug Administration (FDA), maraviroc targeting CCR5 in human immunodeficiency virus (HIV)/AIDS, and plerixafor targeting CXCR4 for stem cell mobilization for transplantation in cancer, and other candidates are now undergoing pivotal clinical trials for diverse disease indications. In addition, a subfamily of atypical chemokine receptors has emerged that may signal through arrestins instead of G proteins to act as chemokine scavengers, and many microbial and invertebrate G protein-coupled chemokine receptors and soluble chemokine-binding proteins have been described. Here, we review this extended family of chemokine receptors and chemokine-binding proteins at the basic, translational, and clinical levels, including an update on drug development. We also introduce a new nomenclature for atypical chemokine receptors with the stem ACKR (atypical chemokine receptor) approved by the Nomenclature Committee of the International Union of Pharmacology and the Human

  10. Structural basis of ligand interaction with atypical chemokine receptor 3

    NASA Astrophysics Data System (ADS)

    Gustavsson, Martin; Wang, Liwen; van Gils, Noortje; Stephens, Bryan S.; Zhang, Penglie; Schall, Thomas J.; Yang, Sichun; Abagyan, Ruben; Chance, Mark R.; Kufareva, Irina; Handel, Tracy M.

    2017-01-01

    Chemokines drive cell migration through their interactions with seven-transmembrane (7TM) chemokine receptors on cell surfaces. The atypical chemokine receptor 3 (ACKR3) binds chemokines CXCL11 and CXCL12 and signals exclusively through β-arrestin-mediated pathways, without activating canonical G-protein signalling. This receptor is upregulated in numerous cancers making it a potential drug target. Here we collected over 100 distinct structural probes from radiolytic footprinting, disulfide trapping, and mutagenesis to map the structures of ACKR3:CXCL12 and ACKR3:small-molecule complexes, including dynamic regions that proved unresolvable by X-ray crystallography in homologous receptors. The data are integrated with molecular modelling to produce complete and cohesive experimentally driven models that confirm and expand on the existing knowledge of the architecture of receptor:chemokine and receptor:small-molecule complexes. Additionally, we detected and characterized ligand-induced conformational changes in the transmembrane and intracellular regions of ACKR3 that elucidate fundamental structural elements of agonism in this atypical receptor.

  11. Chemokine Signaling during Midline Epithelial Seam Disintegration Facilitates Palatal Fusion

    PubMed Central

    Suttorp, Christiaan M.; Cremers, Niels A.; van Rheden, René; Regan, Raymond F.; Helmich, Pia; van Kempen, Sven; Kuijpers-Jagtman, Anne M.; Wagener, Frank A.D.T.G.

    2017-01-01

    Disintegration of the midline epithelial seam (MES) is crucial for palatal fusion, and failure results in cleft palate. Palatal fusion and wound repair share many common signaling pathways related to epithelial-mesenchymal cross-talk. We postulate that chemokine CXCL11, its receptor CXCR3, and the cytoprotective enzyme heme oxygenase (HO), which are crucial during wound repair, also play a decisive role in MES disintegration. Fetal growth restriction and craniofacial abnormalities were present in HO-2 knockout (KO) mice without effects on palatal fusion. CXCL11 and CXCR3 were highly expressed in the disintegrating MES in both wild-type and HO-2 KO animals. Multiple apoptotic DNA fragments were present within the disintegrating MES and phagocytized by recruited CXCR3-positive wt and HO-2 KO macrophages. Macrophages located near the MES were HO-1-positive, and more HO-1-positive cells were present in HO-2 KO mice compared to wild-type. This study of embryonic and palatal development provided evidence that supports the hypothesis that the MES itself plays a prominent role in palatal fusion by orchestrating epithelial apoptosis and macrophage recruitment via CXCL11-CXCR3 signaling. PMID:29164113

  12. Induction of CXC chemokines in human mesenchymal stem cells by stimulation with secreted frizzled-related proteins through non-canonical Wnt signaling.

    PubMed

    Bischoff, David S; Zhu, Jian-Hua; Makhijani, Nalini S; Yamaguchi, Dean T

    2015-12-26

    To investigate the effect of secreted frizzled-related proteins (sFRPs) on CXC chemokine expression in human mesenchymal stem cells (hMSCs). CXC chemokines such as CXCL5 and CXCL8 are induced in hMSCs during differentiation with osteogenic differentiation medium (OGM) and may be involved in angiogenic stimulation during bone repair. hMSCs were treated with conditioned medium (CM) from L-cells expressing non-canonical Wnt5a protein, or with control CM from wild type L-cells, or directly with sFRPs for up to 10 d in culture. mRNA expression levels of both CXCL5 and CXCL8 were quantitated by real-time reverse transcriptase-polymerase chain reaction and secreted protein levels of these proteins determined by ELISA. Dose- (0-500 ng/mL) and time-response curves were generated for treatment with sFRP1. Signal transduction pathways were explored by western blot analysis with pan- or phosphorylation-specific antibodies, through use of specific pathway inhibitors, and through use of siRNAs targeting specific frizzled receptors (Fzd)-2 and 5 or the receptor tyrosine kinase-like orphan receptor-2 (RoR2) prior to treatment with sFRPs. CM from L-cells expressing Wnt5a, a non-canonical Wnt, stimulated an increase in CXCL5 mRNA expression and protein secretion in comparison to control L-cell CM. sFRP1, which should inhibit both canonical and non-canonical Wnt signaling, surprisingly enhanced the expression of CXCL5 at 7 and 10 d. Dickkopf1, an inhibitor of canonical Wnt signaling prevented the sFRP-stimulated induction of CXCL5 and actually inhibited basal levels of CXCL5 expression at 7 but not at 10 d post treatment. In addition, all four sFRPs isoforms induced CXCL8 expression in a dose- and time-dependent manner with maximum expression at 7 d with treatment at 150 ng/mL. The largest increases in CXCL5 expression were seen from stimulation with sFRP1 or sFRP2. Analysis of mitogen-activated protein kinase signaling pathways in the presence of OGM showed sFRP1-induced

  13. Induction of CXC chemokines in human mesenchymal stem cells by stimulation with secreted frizzled-related proteins through non-canonical Wnt signaling

    PubMed Central

    Bischoff, David S; Zhu, Jian-Hua; Makhijani, Nalini S; Yamaguchi, Dean T

    2015-01-01

    AIM: To investigate the effect of secreted frizzled-related proteins (sFRPs) on CXC chemokine expression in human mesenchymal stem cells (hMSCs). METHODS: CXC chemokines such as CXCL5 and CXCL8 are induced in hMSCs during differentiation with osteogenic differentiation medium (OGM) and may be involved in angiogenic stimulation during bone repair. hMSCs were treated with conditioned medium (CM) from L-cells expressing non-canonical Wnt5a protein, or with control CM from wild type L-cells, or directly with sFRPs for up to 10 d in culture. mRNA expression levels of both CXCL5 and CXCL8 were quantitated by real-time reverse transcriptase-polymerase chain reaction and secreted protein levels of these proteins determined by ELISA. Dose- (0-500 ng/mL) and time-response curves were generated for treatment with sFRP1. Signal transduction pathways were explored by western blot analysis with pan- or phosphorylation-specific antibodies, through use of specific pathway inhibitors, and through use of siRNAs targeting specific frizzled receptors (Fzd)-2 and 5 or the receptor tyrosine kinase-like orphan receptor-2 (RoR2) prior to treatment with sFRPs. RESULTS: CM from L-cells expressing Wnt5a, a non-canonical Wnt, stimulated an increase in CXCL5 mRNA expression and protein secretion in comparison to control L-cell CM. sFRP1, which should inhibit both canonical and non-canonical Wnt signaling, surprisingly enhanced the expression of CXCL5 at 7 and 10 d. Dickkopf1, an inhibitor of canonical Wnt signaling prevented the sFRP-stimulated induction of CXCL5 and actually inhibited basal levels of CXCL5 expression at 7 but not at 10 d post treatment. In addition, all four sFRPs isoforms induced CXCL8 expression in a dose- and time-dependent manner with maximum expression at 7 d with treatment at 150 ng/mL. The largest increases in CXCL5 expression were seen from stimulation with sFRP1 or sFRP2. Analysis of mitogen-activated protein kinase signaling pathways in the presence of OGM showed s

  14. Human Mas-Related G Protein-Coupled Receptors-X1 Induce Chemokine Receptor 2 Expression in Rat Dorsal Root Ganglia Neurons and Release of Chemokine Ligand 2 from the Human LAD-2 Mast Cell Line

    PubMed Central

    Solinski, Hans Jürgen; Petermann, Franziska; Rothe, Kathrin; Boekhoff, Ingrid; Gudermann, Thomas; Breit, Andreas

    2013-01-01

    Primate-specific Mas-related G protein-coupled receptors-X1 (MRGPR-X1) are highly enriched in dorsal root ganglia (DRG) neurons and induce acute pain. Herein, we analyzed effects of MRGPR-X1 on serum response factors (SRF) or nuclear factors of activated T cells (NFAT), which control expression of various markers of chronic pain. Using HEK293, DRG neuron-derived F11 cells and cultured rat DRG neurons recombinantly expressing human MRGPR-X1, we found activation of a SRF reporter gene construct and induction of the early growth response protein-1 via extracellular signal-regulated kinases-1/2 known to play a significant role in the development of inflammatory pain. Furthermore, we observed MRGPR-X1-induced up-regulation of the chemokine receptor 2 (CCR2) via NFAT, which is considered as a key event in the onset of neuropathic pain and, so far, has not yet been described for any endogenous neuropeptide. Up-regulation of CCR2 is often associated with increased release of its endogenous agonist chemokine ligand 2 (CCL2). We also found MRGPR-X1-promoted release of CCL2 in a human connective tissue mast cell line endogenously expressing MRGPR-X1. Thus, we provide first evidence to suggest that MRGPR-X1 induce expression of chronic pain markers in DRG neurons and propose a so far unidentified signaling circuit that enhances chemokine signaling by acting on two distinct yet functionally co-operating cell types. Given the important role of chemokine signaling in pain chronification, we propose that interruption of this signaling circuit might be a promising new strategy to alleviate chemokine-promoted pain. PMID:23505557

  15. Increased plasma chemokine levels in children with Prader-Willi syndrome.

    PubMed

    Butler, Merlin G; Hossain, Waheeda; Sulsona, Carlos; Driscoll, Daniel J; Manzardo, Ann M

    2015-03-01

    Prader-Willi syndrome (PWS) is caused by loss of paternally expressed genes from the 15q11-q13 region and reportedly rearranged as a cause of autism. Additionally, increased inflammatory markers and features of autism are reported in PWS. Cytokines encoded by genes involved with inflammation, cell proliferation, migration, and adhesion play a role in neurodevelopment and could be disturbed in PWS as abnormal plasma cytokine levels are reported in autism. We analyzed 41 plasma cytokines in a cohort of well-characterized children with PWS between 5 and 11 years of age and unaffected unrelated siblings using multiplex sandwich immunoassays with the Luminex magnetic-bead based platform. Data were analyzed using ANOVA testing for effects of diagnosis, gender, body mass index (BMI) and age on the 24 cytokines meeting laboratory criteria for inclusion. No significant effects were observed for age, gender or BMI. The log-transformed levels of the 24 analyzable cytokines were examined simultaneously using MANOVA adjusting for age and gender and a main effect of diagnosis was found (P-value <0.03). Four of 24 plasma cytokine levels (MCP1, MDC, Eotaxin, RANTES) were significantly higher in children with PWS compared with controls and classified as bioinflammatory chemokines supporting a disturbed immune response unrelated to obesity status. BMI was not statistically different in the two subject groups (PWS or unaffected unrelated siblings) and chemokine levels were not correlated with percentage of total body fat. Additional studies are required to identify whether possible early immunological disturbances and chemokine inflammatory processes found in PWS may contribute to neurodevelopment and behavioral features. © 2015 Wiley Periodicals, Inc.

  16. Structural basis of ligand interaction with atypical chemokine receptor 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustavsson, Martin; Wang, Liwen; van Gils, Noortje

    2017-01-18

    Chemokines drive cell migration through their interactions with seven-transmembrane (7TM) chemokine receptors on cell surfaces. The atypical chemokine receptor 3 (ACKR3) binds chemokines CXCL11 and CXCL12 and signals exclusively through β-arrestin-mediated pathways, without activating canonical G-protein signalling. This receptor is upregulated in numerous cancers making it a potential drug target. Here we collected over 100 distinct structural probes from radiolytic footprinting, disulfide trapping, and mutagenesis to map the structures of ACKR3:CXCL12 and ACKR3:small-molecule complexes, including dynamic regions that proved unresolvable by X-ray crystallography in homologous receptors. The data are integrated with molecular modelling to produce complete and cohesive experimentally drivenmore » models that confirm and expand on the existing knowledge of the architecture of receptor:chemokine and receptor:small-molecule complexes. Additionally, we detected and characterized ligand-induced conformational changes in the transmembrane and intracellular regions of ACKR3 that elucidate fundamental structural elements of agonism in this atypical receptor.« less

  17. A role for chemokine signaling in neural crest cell migration and craniofacial development

    PubMed Central

    Killian, Eugenia C. Olesnicky; Birkholz, Denise A.; Artinger, Kristin Bruk

    2009-01-01

    Neural crest cells (NCCs) are a unique population of multipotent cells that migrate along defined pathways throughout the embryo and give rise to many diverse cell types including pigment cells, craniofacial cartilage and the peripheral nervous system (PNS). Aberrant migration of NCCs results in a wide variety of congenital birth defects including craniofacial abnormalities. The chemokine Sdf1 and its receptors, Cxcr4 and Cxcr7, have been identified as key components in the regulation of cell migration in a variety of tissues. Here we describe a novel role for the zebrafish chemokine receptor Cxcr4a in the development and migration of cranial NCCs (CNCCs). We find that loss of Cxcr4a, but not Cxcr7b results in aberrant CNCC migration, defects in the neurocranium, as well as cranial ganglia dismorphogenesis. Moreover, overexpression of either Sdf1b or Cxcr4a causes aberrant CNCC migration and results in ectopic craniofacial cartilages. We propose a model in which Sdf1b signaling from the pharyngeal arch endoderm and optic stalk to Cxcr4a expressing CNCCs is important for both the proper condensation of the CNCCs into pharyngeal arches and the subsequent patterning and morphogenesis of the neural crest derived tissues. PMID:19576198

  18. Mutational analysis of the extracellular disulphide bridges of the atypical chemokine receptor ACKR3/CXCR7 uncovers multiple binding and activation modes for its chemokine and endogenous non-chemokine agonists.

    PubMed

    Szpakowska, Martyna; Meyrath, Max; Reynders, Nathan; Counson, Manuel; Hanson, Julien; Steyaert, Jan; Chevigné, Andy

    2018-07-01

    The atypical chemokine receptor ACKR3/CXCR7 plays crucial roles in numerous physiological processes but also in viral infection and cancer. ACKR3 shows strong propensity for activation and, unlike classical chemokine receptors, can respond to chemokines from both the CXC and CC families as well as to the endogenous peptides BAM22 and adrenomedullin. Moreover, despite belonging to the G protein coupled receptor family, its function appears to be mainly dependent on β-arrestin. ACKR3 has also been shown to continuously cycle between the plasma membrane and the endosomal compartments, suggesting a possible role as a scavenging receptor. So far, the molecular basis accounting for these atypical binding and signalling properties remains elusive. Noteworthy, ACKR3 extracellular domains bear three disulphide bridges. Two of them lie on top of the two main binding subpockets and are conserved among chemokine receptors, and one, specific to ACKR3, forms an intra-N terminus four-residue-loop of so far unknown function. Here, by mutational and functional studies, we examined the impact of the different disulphide bridges for ACKR3 folding, ligand binding and activation. We showed that, in contrast to most classical chemokine receptors, none of the extracellular disulphide bridges was essential for ACKR3 function. However, the disruption of the unique ACKR3 N-terminal loop drastically reduced the binding of CC chemokines whereas it only had a mild impact on CXC chemokine binding. Mutagenesis also uncovered that chemokine and endogenous non-chemokine ligands interact and activate ACKR3 according to distinct binding modes characterized by different transmembrane domain subpocket occupancy and N-terminal loop contribution, with BAM22 mimicking the binding mode of CC chemokine N terminus. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Virus-encoded chemokine receptors--putative novel antiviral drug targets.

    PubMed

    Rosenkilde, Mette M

    2005-01-01

    Large DNA viruses, in particular herpes- and poxviruses, have evolved proteins that serve as mimics or decoys for endogenous proteins in the host. The chemokines and their receptors serve key functions in both innate and adaptive immunity through control of leukocyte trafficking, and have as such a paramount role in the antiviral immune responses. It is therefore not surprising that viruses have found ways to exploit and subvert the chemokine system by means of molecular mimicry. By ancient acts of molecular piracy and by induction and suppression of endogenous genes, viruses have utilized chemokines and their receptors to serve a variety of roles in viral life-cycle. This review focuses on the pharmacology of virus-encoded chemokine receptors, yet also the family of virus-encoded chemokines and chemokine-binding proteins will be touched upon. Key properties of the virus-encoded receptors, compared to their closest endogenous homologs, are interactions with a wider range of chemokines, which can act as agonists, antagonists and inverse agonists, and the exploitation of many signal transduction pathways. High constitutive activity is another key property of some--but not all--of these receptors. The chemokine receptors belong to the superfamily of G-protein coupled 7TM receptors that per se are excellent drug targets. At present, non-peptide antagonists have been developed against many chemokine receptors. The potentials of the virus-encoded chemokine receptors as drug targets--ie. as novel antiviral strategies--will be highlighted here together with the potentials of the virus-encoded chemokines and chemokine-binding proteins as novel anti-inflammatory biopharmaceutical strategies.

  20. Chemokine Involvement in Fetal and Adult Wound Healing

    PubMed Central

    Balaji, Swathi; Watson, Carey L.; Ranjan, Rajeev; King, Alice; Bollyky, Paul L.; Keswani, Sundeep G.

    2015-01-01

    Significance: Fetal wounds heal with a regenerative phenotype that is indistinguishable from surrounding skin with restored skin integrity. Compared to this benchmark, all postnatal wound healing is impaired and characterized by scar formation. The biologic basis of the fetal regenerative phenotype can serve as a roadmap to recapitulating regenerative repair in adult wounds. Reduced leukocyte infiltration, likely mediated, in part, through changes in the chemokine milieu, is a fundamental feature of fetal wound healing. Recent Advances: The contributions of chemokines to wound healing are a topic of active investigation. Recent discoveries have opened the possibility of targeting chemokines therapeutically to treat disease processes and improve healing capability, including the possibility of achieving a scarless phenotype in postnatal wounds. Critical Issues: Successful wound healing is a complex process, in which there is a significant interplay between multiple cell types, signaling molecules, growth factors, and extracellular matrix. Chemokines play a crucial role in this interplay and have been shown to have different effects in various stages of the healing process. Understanding how these chemokines are locally produced and regulated during wound healing and how the chemokine milieu differs in fetal versus postnatal wounds may help us identify ways in which we can target chemokine pathways. Future Directions: Further studies on the role of chemokines and their role in the healing process will greatly advance the potential for using these molecules as therapeutic targets. PMID:26543680

  1. Biology and clinical relevance of chemokines and chemokine receptors CXCR4 and CCR5 in human diseases

    PubMed Central

    Choi, Won-Tak; An, Jing

    2014-01-01

    Chemokines and their receptors are implicated in a wide range of human diseases, including acquired immune deficiency syndrome (AIDS). The entry of human immunodeficiency virus type 1 (HIV-1) into a cell is initiated by the interaction of the virus’s surface envelope proteins with two cell surface components of the target cell, namely CD4 and a chemokine co-receptor, usually CXCR4 or CCR5. Typical anti-HIV-1 agents include protease and reverse transcriptase inhibitors, but the targets of these agents tend to show rapid mutation rates. As such, strategies based on HIV-1 co-receptors have appeal because they target invariant host determinants. Chemokines and their receptors are also of general interest since they play important roles in numerous physiological and pathological processes in addition to AIDS. Therefore, intensive basic and translational research is ongoing for the dissection of their structure – function relationships in an effort to understand the molecular mechanism of chemokine – receptor interactions and signal transductions across cellular membranes. This paper reviews and discusses recent advances and the translation of new knowledge and discoveries into novel interventional strategies for clinical application. PMID:21565895

  2. Cysteine Cathepsins Activate ELR Chemokines and Inactivate Non-ELR Chemokines*

    PubMed Central

    Repnik, Urska; Starr, Amanda E.; Overall, Christopher M.; Turk, Boris

    2015-01-01

    Cysteine cathepsins are primarily lysosomal proteases involved in general protein turnover, but they also have specific proteolytic functions in antigen presentation and bone remodeling. Cathepsins are most stable at acidic pH, although growing evidence indicates that they have physiologically relevant activity also at neutral pH. Post-translational proteolytic processing of mature chemokines is a key, yet underappreciated, level of chemokine regulation. Although the role of selected serine proteases and matrix metalloproteases in chemokine processing has long been known, little has been reported about the role of cysteine cathepsins. Here we evaluated cleavage of CXC ELR (CXCL1, -2, -3, -5, and -8) and non-ELR (CXCL9–12) chemokines by cysteine cathepsins B, K, L, and S at neutral pH by high resolution Tris-Tricine SDS-PAGE and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Whereas cathepsin B cleaved chemokines especially in the C-terminal region, cathepsins K, L, and S cleaved chemokines at the N terminus with glycosaminoglycans modulating cathepsin processing of chemokines. The functional consequences of the cleavages were determined by Ca2+ mobilization and chemotaxis assays. We show that cysteine cathepsins inactivate and in some cases degrade non-ELR CXC chemokines CXCL9–12. In contrast, cathepsins specifically process ELR CXC chemokines CXCL1, -2, -3, -5, and -8 N-terminally to the ELR motif, thereby generating agonist forms. This study suggests that cysteine cathepsins regulate chemokine activity and thereby leukocyte recruitment during protective or pathological inflammation. PMID:25833952

  3. Lactobacillus acidophilus Induces Cytokine and Chemokine Production via NF-κB and p38 Mitogen-Activated Protein Kinase Signaling Pathways in Intestinal Epithelial Cells

    PubMed Central

    Lü, Xuena; Man, Chaoxin; Han, Linlin; Shan, Yi; Qu, Xingguang; Liu, Ying; Yang, Shiqin; Xue, Yuqing; Zhang, Yinghua

    2012-01-01

    Intestinal epithelial cells can respond to certain bacteria by producing an array of cytokines and chemokines which are associated with host immune responses. Lactobacillus acidophilus NCFM is a characterized probiotic, originally isolated from human feces. This study aimed to test the ability of L. acidophilus NCFM to stimulate cytokine and chemokine production in intestinal epithelial cells and to elucidate the mechanisms involved in their upregulation. In experiments using intestinal epithelial cell lines and mouse models, we observed that L. acidophilus NCFM could rapidly but transiently upregulate a number of effector genes encoding cytokines and chemokines such as interleukin 1α (IL-1α), IL-1β, CCL2, and CCL20 and that cytokines showed lower expression levels with L. acidophilus NCFM treatment than chemokines. Moreover, L. acidophilus NCFM could activate a pathogen-associated molecular pattern receptor, Toll-like receptor 2 (TLR2), in intestinal epithelial cell lines. The phosphorylation of NF-κB p65 and p38 mitogen-activated protein kinase (MAPK) in intestinal epithelial cell lines was also enhanced by L. acidophilus NCFM. Furthermore, inhibitors of NF-κB (pyrrolidine dithiocarbamate [PDTC]) and p38 MAPK (SB203580) significantly reduced cytokine and chemokine production in the intestinal epithelial cell lines stimulated by L. acidophilus NCFM, suggesting that both NF-κB and p38 MAPK signaling pathways were important for the production of cytokines and chemokines induced by L. acidophilus NCFM. PMID:22357649

  4. Chemokines and chemokine receptors: new actors in neuroendocrine regulations.

    PubMed

    Rostène, William; Guyon, Alice; Kular, Lara; Godefroy, David; Barbieri, Federica; Bajetto, Adriana; Banisadr, Ghazal; Callewaere, Céline; Conductier, Gregory; Rovère, Carole; Mélik-Parsadaniantz, Stéphane; Florio, Tullio

    2011-01-01

    Chemokines are small secreted proteins that chemoattract and activate immune and non-immune cells. Their role in the immune system is well-known, and it has recently been suggested that they may also play a role in the central nervous system (CNS). Indeed, they do not only act as immunoinflammatory mediators in the brain but they also act as potential modulators in neurotransmission. Although we are only beginning to be aware of the implication of chemokines in neuroendocrine functions, this review aims at summarizing what is known in that booming field of research. First we describe the expression of chemokines and their receptors in the CNS with a focus on the hypothalamo-pituitary system. Secondly, we present what is known on some chemokines in the regulation of neuroendocrine functions such as cell migration, stress, thermoregulation, drinking and feeding as well as anterior pituitary functions. We suggest that chemokines provide a fine modulatory tuning system of neuroendocrine regulations. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Inflammatory cytokines and chemokines, skeletal muscle and polycystic ovary syndrome: effects of pioglitazone and metformin treatment.

    PubMed

    Ciaraldi, Theodore P; Aroda, Vanita; Mudaliar, Sunder R; Henry, Robert R

    2013-11-01

    Chronic low-grade inflammation is a common feature of insulin resistant states, including obesity and type 2 diabetes. Less is known about inflammation in Polycystic Ovary Syndrome (PCOS). Thus we evaluated the impact of PCOS on circulating cytokine levels and the effects of anti-diabetic therapies on insulin action, cytokine and chemokine levels and inflammatory signaling in skeletal muscle. Twenty subjects with PCOS and 12 healthy normal cycling (NC) subjects of similar body mass index were studied. PCOS subjects received oral placebo or pioglitazone, 45 mg/d, for 6 months. All PCOS subjects then had metformin, 2 g/day, added to their treatment. Circulating levels of cytokines, chemokines, and adiponectin, skeletal muscle markers of inflammation and phosphorylation of signaling proteins, insulin action evaluated by the hyperinsulinemic/euglycemic clamp procedure and Homeostasis Model Assessment of Insulin Resistance were measured. Circulating levels of a number of cytokines and chemokines were generally similar between PCOS and NC subjects. Levels in PCOS subjects were not altered by pioglitazone or metformin treatment, even though whole body insulin action and adiponectin levels increased with pioglitazone. In spite of the lack of change in levels of cytokines and chemokines, several markers of inflammation in skeletal muscle were improved with Pio treatment. PCOS may represent a state of elevated sensitivity of inflammatory cells in skeletal muscle to cytokines and chemokines, a property that could be reversed by pioglitazone treatment together with improved insulin action. © 2013.

  6. Elevated expression of CXC chemokines in pediatric osteosarcoma patients.

    PubMed

    Li, Yiting; Flores, Ricardo; Yu, Alexander; Okcu, M Fatih; Murray, Jeffrey; Chintagumpala, Murali; Hicks, John; Lau, Ching C; Man, Tsz-Kwong

    2011-01-01

    Osteosarcoma is the most common malignant bone tumor in children. Despite the advent of chemotherapy, the survival of osteosarcoma patients has not been significantly improved recently. Chemokines are a group of signaling molecules that have been implicated in tumorigenesis and metastasis. The authors used an antibody microarray to identify chemokines that were elevated in the plasma samples of osteosarcoma patients. The results were validated using enzyme-linked immunosorbent assays on an independent set of samples. The tumor expressions of 3 chemokines were examined in 2 sets of osteosarcoma tissue arrays. The authors also evaluated the proliferative effect of the chemokines in 4 osteosarcoma cell lines. The authors found that the plasma levels of CXCL4, CXCL6, and CXCL12 in the osteosarcoma patients were significantly higher than those in the controls, and the results were validated by an independent osteosarcoma cohort (P < .05). However, CXCL4 (100%) and CXCL6 (91%) were frequently expressed in osteosarcoma, whereas CXCL12 was only expressed in 4%. Survival analysis further showed that higher circulating levels of CXCL4 and CXCL6, but not CXCL12, were associated with a poorer outcome of osteosarcoma patients. Addition of exogenous chemokines significantly promoted the growth of different osteosarcoma cells (P < .05). The results demonstrate that CXCL4 and CXCL6 are frequently expressed in osteosarcoma, and that the plasma levels of these 2 chemokines are associated with patient outcomes. Further study of these circulating chemokines may provide a promising approach for prognostication of osteosarcoma. Targeting these chemokines or their receptors may also lead to a novel therapeutic invention. © 2010 American Cancer Society.

  7. Differential chemokine, chemokine receptor and cytokine expression in Epstein-Barr virus-associated lymphoproliferative diseases.

    PubMed

    Ohshima, Koichi; Karube, Kennosuke; Hamasaki, Makoto; Tutiya, Takeshi; Yamaguchi, Takahiro; Suefuji, Hiroaki; Suzuki, Keiko; Suzumiya, Junji; Ohga, Shouichi; Kikuchi, Masahiro

    2003-08-01

    T cell immunity plays an important role in the clinicopathology of Epstein-Barr virus (EBV)-associated diseases. Acute EBV-induced infectious mononucleosis (IM) is a common self-limiting disease, however, other EBV-associated diseases, including chronic active EBV infection (CAEBV), NK cell lymphoma (NKL), and Hodgkin's lymphoma (HL), exhibit distinct clinical features. Chemokines are members of a family of small-secreted proteins. The relationships between chemokines and the chemokine receptor (R) are thought to be important for selectivity of local immunity. Some chemokines, chemokine R and cytokines closely associate with the T cell subtypes, Th1 and Th2 T cells and cytotoxic cells. To clarify the role of T cell immunity in EBV-associated diseases, we conducted gene expression profiling, using chemokine, chemokine R and cytokine DNA chips. Compared to EBV negative non-specific lymphadenitis, CAEBV and NKL exhibited diffuse down- and up-regulation, respectively, of these gene profiles. IM had a predominantly Th1-type profile, whereas HL had a mixed Th1/Th2-type profile. Reduction of the Th1-type cytokine interferon gamma (IFN-gamma) in CAEBV was confirmed by Reverse transcriptase-polymerase chain reaction, whereas IFN-gamma expression was markedly enhanced in NKL, and moderately enhanced in IM. Compared to IM, CAEBV showed slight elevation of "regulated upon activation, normal T expressed and secreted" (RANTES), but almost all other genes assayed were down-regulated. NKL exhibited elevated expression of numerous genes, particularly IFN-gamma-inducible-10 (IP-10) and monokine induced by IFN-gamma (MIG). HL showed variable elevated and reduced expression of various genes, with increased expression of IL-13 receptor and MIG. Our study demonstrated the enormous potential of gene expression profiling for clarifying the pathogenesis of EBV-associated diseases.

  8. Chemokine scavenger D6 is expressed by trophoblasts and aids the survival of mouse embryos transferred into allogeneic recipients.

    PubMed

    Madigan, Judith; Freeman, Dilys J; Menzies, Fiona; Forrow, Steve; Nelson, Scott M; Young, Anne; Sharkey, Andrew; Moffett, Ashley; Graham, Gerard J; Greer, Ian A; Rot, Antal; Nibbs, Robert J B

    2010-03-15

    Proinflammatory CC chemokines are thought to drive recruitment of maternal leukocytes into gestational tissues and regulate extravillous trophoblast migration. The atypical chemokine receptor D6 binds many of these chemokines and is highly expressed by the human placenta. D6 is thought to act as a chemokine scavenger because, when ectopically expressed in cell lines in vitro, it efficiently internalizes proinflammatory CC chemokines and targets them for destruction in the absence of detectable chemokine-induced signaling. Moreover, D6 suppresses inflammation in many mouse tissues, and notably, D6-deficient fetuses in D6-deficient female mice show increased susceptibility to inflammation-driven resorption. In this paper, we report strong anti-D6 immunoreactivity, with specific intracellular distribution patterns, in trophoblast-derived cells in human placenta, decidua, and gestational membranes throughout pregnancy and in trophoblast disease states of hydatidiform mole and choriocarcinoma. We show, for the first time, that endogenous D6 in a human choriocarcinoma-derived cell line can mediate progressive chemokine scavenging and that the D6 ligand CCL2 can specifically associate with human syncytiotrophoblasts in term placenta in situ. Moreover, despite strong chemokine production by gestational tissues, levels of D6-binding chemokines in maternal plasma decrease during pregnancy, even in women with pre-eclampsia, a disease associated with increased maternal inflammation. In mice, D6 is not required for syngeneic or semiallogeneic fetal survival in unchallenged mice, but interestingly, it does suppress fetal resorption after embryo transfer into fully allogeneic recipients. These data support the view that trophoblast D6 scavenges maternal chemokines at the fetomaternal interface and that, in some circumstances, this can help to ensure fetal survival.

  9. The DRF motif of CXCR6 as chemokine receptor adaptation to adhesion.

    PubMed

    Koenen, Andrea; Babendreyer, Aaron; Schumacher, Julian; Pasqualon, Tobias; Schwarz, Nicole; Seifert, Anke; Deupi, Xavier; Ludwig, Andreas; Dreymueller, Daniela

    2017-01-01

    The CXC-chemokine receptor 6 (CXCR6) is a class A GTP-binding protein-coupled receptor (GPCRs) that mediates adhesion of leukocytes by interacting with the transmembrane cell surface-expressed chemokine ligand 16 (CXCL16), and also regulates leukocyte migration by interacting with the soluble shed variant of CXCL16. In contrast to virtually all other chemokine receptors with chemotactic activity, CXCR6 carries a DRF motif instead of the typical DRY motif as a key element in receptor activation and G protein coupling. In this work, modeling analyses revealed that the phenylalanine F3.51 in CXCR6 might have impact on intramolecular interactions including hydrogen bonds by this possibly changing receptor function. Initial investigations with embryonic kidney HEK293 cells and further studies with monocytic THP-1 cells showed that mutation of DRF into DRY does not influence ligand binding, receptor internalization, receptor recycling, and protein kinase B (AKT) signaling. Adhesion was slightly decreased in a time-dependent manner. However, CXCL16-induced calcium signaling and migration were increased. Vice versa, when the DRY motif of the related receptor CX3CR1 was mutated into DRF the migratory response towards CX3CL1 was diminished, indicating that the presence of a DRF motif generally impairs chemotaxis in chemokine receptors. Transmembrane and soluble CXCL16 play divergent roles in homeostasis, inflammation, and cancer, which can be beneficial or detrimental. Therefore, the DRF motif of CXCR6 may display a receptor adaptation allowing adhesion and cell retention by transmembrane CXCL16 but reducing the chemotactic response to soluble CXCL16. This adaptation may avoid permanent or uncontrolled recruitment of inflammatory cells as well as cancer metastasis.

  10. Mapping Interaction Sites on Human Chemokine Receptors by Deep Mutational Scanning.

    PubMed

    Heredia, Jeremiah D; Park, Jihye; Brubaker, Riley J; Szymanski, Steven K; Gill, Kevin S; Procko, Erik

    2018-06-01

    Chemokine receptors CXCR4 and CCR5 regulate WBC trafficking and are engaged by the HIV-1 envelope glycoprotein gp120 during infection. We combine a selection of human CXCR4 and CCR5 libraries comprising nearly all of ∼7000 single amino acid substitutions with deep sequencing to define sequence-activity landscapes for surface expression and ligand interactions. After consideration of sequence constraints for surface expression, known interaction sites with HIV-1-blocking Abs were appropriately identified as conserved residues following library sorting for Ab binding, validating the use of deep mutational scanning to map functional interaction sites in G protein-coupled receptors. Chemokine CXCL12 was found to interact with residues extending asymmetrically into the CXCR4 ligand-binding cavity, similar to the binding surface of CXCR4 recognized by an antagonistic viral chemokine previously observed crystallographically. CXCR4 mutations distal from the chemokine binding site were identified that enhance chemokine recognition. This included disruptive mutations in the G protein-coupling site that diminished calcium mobilization, as well as conservative mutations to a membrane-exposed site (CXCR4 residues H79 2.45 and W161 4.50 ) that increased ligand binding without loss of signaling. Compared with CXCR4-CXCL12 interactions, CCR5 residues conserved for gp120 (HIV-1 BaL strain) interactions map to a more expansive surface, mimicking how the cognate chemokine CCL5 makes contacts across the entire CCR5 binding cavity. Acidic substitutions in the CCR5 N terminus and extracellular loops enhanced gp120 binding. This study demonstrates how comprehensive mutational scanning can define functional interaction sites on receptors, and novel mutations that enhance receptor activities can be found simultaneously. Copyright © 2018 by The American Association of Immunologists, Inc.

  11. Chemokine and Chemokine Receptor Profiles in Metastatic Salivary Adenoid Cystic Carcinoma.

    PubMed

    Mays, Ashley C; Feng, Xin; Browne, James D; Sullivan, Christopher A

    2016-08-01

    To characterize the chemokine pattern in metastatic salivary adenoid cystic carcinoma (SACC). Real-time polymerase chain reaction (RT-PCR) was used to compare chemokine and chemokine receptor gene expression in two SACC cell lines: SACC-83 and SACC-LM (lung metastasis). Chemokines and receptor genes were then screened and their expression pattern characterized in human tissue samples of non-recurrent SACC and recurrent SACC with perineural invasion. Expression of chemokine receptors C5AR1, CCR1, CCR3, CCR6, CCR7, CCR9, CCR10, CXCR4, CXCR6, CXCR7, CCRL1 and CCRL2 were higher in SACC-83 compared to SACC-LM. CCRL1, CCBP2, CMKLR1, XCR1 and CXCR2 and 6 chemokine genes (CCL13, CCL27, CXCL14, CMTM1, CMTM2, CKLF) were more highly expressed in tissues of patients without tumor recurrence/perineural invasion compared to those with tumor recurrence. CCRL1 (receptor), CCL27, CMTM1, CMTM2, and CKLF (chemokine) genes were more highly expressed in SACC-83 and human tissues of patients without tumor recurrence/perineural invasion. CCRL1, CCL27, CMTM1, CMTM2 and CKLF may play important roles in the development of tumor metastases in SACC. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  12. Membrane interaction of the N-terminal domain of chemokine receptor CXCR1.

    PubMed

    Haldar, Sourav; Raghuraman, H; Namani, Trishool; Rajarathnam, Krishna; Chattopadhyay, Amitabha

    2010-06-01

    The N-terminal domain of chemokine receptors constitutes one of the two critical ligand binding sites, and plays important roles by mediating binding affinity, receptor selectivity, and regulating function. In this work, we monitored the organization and dynamics of a 34-mer peptide of the CXC chemokine receptor 1 (CXCR1) N-terminal domain and its interaction with membranes by utilizing a combination of fluorescence-based approaches and surface pressure measurements. Our results show that the CXCR1 N-domain 34-mer peptide binds vesicles of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and upon binding, the tryptophan residues of the peptide experience motional restriction and exhibit red edge excitation shift (REES) of 19nm. These results are further supported by increase in fluorescence anisotropy and mean fluorescence lifetime upon membrane binding. These results constitute one of the first reports demonstrating membrane interaction of the N-terminal domain of CXCR1 and gain relevance in the context of the emerging role of cellular membranes in chemokine signaling.

  13. CXC chemokine ligand 16 is increased in gestational diabetes mellitus and preeclampsia and associated with lipoproteins in gestational diabetes mellitus at 5 years follow-up.

    PubMed

    Lekva, Tove; Michelsen, Annika E; Aukrust, Pål; Paasche Roland, Marie Cecilie; Henriksen, Tore; Bollerslev, Jens; Ueland, Thor

    2017-11-01

    Women with a history of gestational diabetes mellitus and preeclampsia are at increased risk of cardiovascular disease later in life, but the mechanism remains unclear. The aim of the study was to evaluate the association between CXC chemokine ligand 16 and indices of glucose metabolism, dyslipidemia and systemic inflammation in gestational diabetes mellitus and preeclampsia. This sub-study of the population-based prospective cohort included 310 women. Oral glucose tolerance test was performed during pregnancy and 5 years later along with lipid analysis. CXC chemokine ligand 16 was measured in plasma (protein) and peripheral blood mononuclear cells (messenger RNA) during pregnancy and at follow-up. Circulating CXC chemokine ligand 16 was higher in gestational diabetes mellitus women early in pregnancy and at follow-up, while higher in preeclampsia women late in pregnancy compared to control women. Messenger RNA of CXC chemokine ligand 16 in peripheral blood mononuclear cells were lower in gestational diabetes mellitus and preeclampsia women compared to control women. Increased circulating CXC chemokine ligand 16 level was associated with a higher apolipoprotein B and low-density lipoprotein cholesterol in gestational diabetes mellitus women but not in normal pregnancy at follow-up. Our study shows that women with gestational diabetes mellitus and preeclampsia had a dysregulated CXC chemokine ligand 16 during pregnancy, and in gestational diabetes mellitus, the increase in CXC chemokine ligand 16 early in pregnancy and after 5 years was strongly associated with their lipid profile.

  14. Roles of the Chemokine System in Development of Obesity, Insulin Resistance, and Cardiovascular Disease

    PubMed Central

    Yao, Longbiao; Herlea-Pana, Oana; Heuser-Baker, Janet; Chen, Yitong; Barlic-Dicen, Jana

    2014-01-01

    The escalating epidemic of obesity has increased the incidence of obesity-induced complications to historically high levels. Adipose tissue is a dynamic energy depot, which stores energy and mobilizes it during nutrient deficiency. Excess nutrient intake resulting in adipose tissue expansion triggers lipid release and aberrant adipokine, cytokine and chemokine production, and signaling that ultimately lead to adipose tissue inflammation, a hallmark of obesity. This low-grade chronic inflammation is thought to link obesity to insulin resistance and the associated comorbidities of metabolic syndrome such as dyslipidemia and hypertension, which increase risk of type 2 diabetes and cardiovascular disease. In this review, we focus on and discuss members of the chemokine system for which there is clear evidence of participation in the development of obesity and obesity-induced pathologies. PMID:24741577

  15. Interstitial Fluid Flow Increases Hepatocellular Carcinoma Cell Invasion through CXCR4/CXCL12 and MEK/ERK Signaling

    PubMed Central

    2015-01-01

    Hepatocellular carcinoma (HCC) is the most common form of liver cancer (~80%), and it is one of the few cancer types with rising incidence in the United States. This highly invasive cancer is very difficult to detect until its later stages, resulting in limited treatment options and low survival rates. There is a dearth of knowledge regarding the mechanisms associated with the effects of biomechanical forces such as interstitial fluid flow (IFF) on hepatocellular carcinoma invasion. We hypothesized that interstitial fluid flow enhanced hepatocellular carcinoma cell invasion through chemokine-mediated autologous chemotaxis. Utilizing a 3D in vitro invasion assay, we demonstrated that interstitial fluid flow promoted invasion of hepatocellular carcinoma derived cell lines. Furthermore, we showed that autologous chemotaxis influences this interstitial fluid flow-induced invasion of hepatocellular carcinoma derived cell lines via the C-X-C chemokine receptor type 4 (CXCR4)/C-X-C motif chemokine 12 (CXCL12) signaling axis. We also demonstrated that mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling affects interstitial fluid flow-induced invasion; however, this pathway was separate from CXCR4/CXCL12 signaling. This study demonstrates, for the first time, the potential role of interstitial fluid flow in hepatocellular carcinoma invasion. Uncovering the mechanisms that control hepatocellular carcinoma invasion will aid in enhancing current liver cancer therapies and provide better treatment options for patients. PMID:26560447

  16. Chemokine interactome mapping enables tailored intervention in acute and chronic inflammation.

    PubMed

    von Hundelshausen, Philipp; Agten, Stijn M; Eckardt, Veit; Blanchet, Xavier; Schmitt, Martin M; Ippel, Hans; Neideck, Carlos; Bidzhekov, Kiril; Leberzammer, Julian; Wichapong, Kanin; Faussner, Alexander; Drechsler, Maik; Grommes, Jochen; van Geffen, Johanna P; Li, He; Ortega-Gomez, Almudena; Megens, Remco T A; Naumann, Ronald; Dijkgraaf, Ingrid; Nicolaes, Gerry A F; Döring, Yvonne; Soehnlein, Oliver; Lutgens, Esther; Heemskerk, Johan W M; Koenen, Rory R; Mayo, Kevin H; Hackeng, Tilman M; Weber, Christian

    2017-04-05

    Chemokines orchestrate leukocyte trafficking and function in health and disease. Heterophilic interactions between chemokines in a given microenvironment may amplify, inhibit, or modulate their activity; however, a systematic evaluation of the chemokine interactome has not been performed. We used immunoligand blotting and surface plasmon resonance to obtain a comprehensive map of chemokine-chemokine interactions and to confirm their specificity. Structure-function analyses revealed that chemokine activity can be enhanced by CC-type heterodimers but inhibited by CXC-type heterodimers. Functional synergism was achieved through receptor heteromerization induced by CCL5-CCL17 or receptor retention at the cell surface via auxiliary proteoglycan binding of CCL5-CXCL4. In contrast, inhibitory activity relied on conformational changes (in CXCL12), affecting receptor signaling. Obligate CC-type heterodimers showed high efficacy and potency and drove acute lung injury and atherosclerosis, processes abrogated by specific CCL5-derived peptide inhibitors or knock-in of an interaction-deficient CXCL4 variant. Atheroprotective effects of CCL17 deficiency were phenocopied by a CCL5-derived peptide disrupting CCL5-CCL17 heterodimers, whereas a CCL5 α-helix peptide mimicked inhibitory effects on CXCL12-driven platelet aggregation. Thus, formation of specific chemokine heterodimers differentially dictates functional activity and can be exploited for therapeutic targeting. Copyright © 2017, American Association for the Advancement of Science.

  17. The DRF motif of CXCR6 as chemokine receptor adaptation to adhesion

    PubMed Central

    Koenen, Andrea; Babendreyer, Aaron; Schumacher, Julian; Pasqualon, Tobias; Schwarz, Nicole; Seifert, Anke; Deupi, Xavier

    2017-01-01

    The CXC-chemokine receptor 6 (CXCR6) is a class A GTP-binding protein-coupled receptor (GPCRs) that mediates adhesion of leukocytes by interacting with the transmembrane cell surface-expressed chemokine ligand 16 (CXCL16), and also regulates leukocyte migration by interacting with the soluble shed variant of CXCL16. In contrast to virtually all other chemokine receptors with chemotactic activity, CXCR6 carries a DRF motif instead of the typical DRY motif as a key element in receptor activation and G protein coupling. In this work, modeling analyses revealed that the phenylalanine F3.51 in CXCR6 might have impact on intramolecular interactions including hydrogen bonds by this possibly changing receptor function. Initial investigations with embryonic kidney HEK293 cells and further studies with monocytic THP-1 cells showed that mutation of DRF into DRY does not influence ligand binding, receptor internalization, receptor recycling, and protein kinase B (AKT) signaling. Adhesion was slightly decreased in a time-dependent manner. However, CXCL16-induced calcium signaling and migration were increased. Vice versa, when the DRY motif of the related receptor CX3CR1 was mutated into DRF the migratory response towards CX3CL1 was diminished, indicating that the presence of a DRF motif generally impairs chemotaxis in chemokine receptors. Transmembrane and soluble CXCL16 play divergent roles in homeostasis, inflammation, and cancer, which can be beneficial or detrimental. Therefore, the DRF motif of CXCR6 may display a receptor adaptation allowing adhesion and cell retention by transmembrane CXCL16 but reducing the chemotactic response to soluble CXCL16. This adaptation may avoid permanent or uncontrolled recruitment of inflammatory cells as well as cancer metastasis. PMID:28267793

  18. Environmental Factors Impacting Bone-Relevant Chemokines

    PubMed Central

    Smith, Justin T.; Schneider, Andrew D.; Katchko, Karina M.; Yun, Chawon; Hsu, Erin L.

    2017-01-01

    Chemokines play an important role in normal bone physiology and the pathophysiology of many bone diseases. The recent increased focus on the individual roles of this class of proteins in the context of bone has shown that members of the two major chemokine subfamilies—CC and CXC—support or promote the formation of new bone and the remodeling of existing bone in response to a myriad of stimuli. These chemotactic molecules are crucial in orchestrating appropriate cellular homing, osteoblastogenesis, and osteoclastogenesis during normal bone repair. Bone healing is a complex cascade of carefully regulated processes, including inflammation, progenitor cell recruitment, differentiation, and remodeling. The extensive role of chemokines in these processes and the known links between environmental contaminants and chemokine expression/activity leaves ample opportunity for disruption of bone healing by environmental factors. However, despite increased clinical awareness, the potential impact of many of these environmental factors on bone-related chemokines is still ill defined. A great deal of focus has been placed on environmental exposure to various endocrine disruptors (bisphenol A, phthalate esters, etc.), volatile organic compounds, dioxins, and heavy metals, though mainly in other tissues. Awareness of the impact of other less well-studied bone toxicants, such as fluoride, mold and fungal toxins, asbestos, and chlorine, is also reviewed. In many cases, the literature on these toxins in osteogenic models is lacking. However, research focused on their effects in other tissues and cell lines provides clues for where future resources could be best utilized. This review aims to serve as a current and exhaustive resource detailing the known links between several classes of high-interest environmental pollutants and their interaction with the chemokines relevant to bone healing. PMID:28261155

  19. Regulation of inflammatory chemokine receptors on blood T cells associated to the circulating versus liver chemokines in dengue fever.

    PubMed

    de-Oliveira-Pinto, Luzia Maria; Marinho, Cíntia Ferreira; Povoa, Tiago Fajardo; de Azeredo, Elzinandes Leal; de Souza, Luiza Assed; Barbosa, Luiza Damian Ribeiro; Motta-Castro, Ana Rita C; Alves, Ada M B; Ávila, Carlos André Lins; de Souza, Luiz José; da Cunha, Rivaldo Venâncio; Damasco, Paulo Vieira; Paes, Marciano Viana; Kubelka, Claire Fernandes

    2012-01-01

    Little is known about the role of chemokines/chemokines receptors on T cells in natural DENV infection. Patients from DENV-2 and -3- outbreaks were studied prospectively during the acute or convalescent phases. Expression of chemokine receptor and activation markers on lymphocyte subpopulations were determined by flow cytometry analysis, plasma chemokine ligands concentrations were measured by ELISA and quantification of CCL5/RANTES(+) cells in liver tissues from fatal dengue cases was performed by immunochemistry. In the acute DENV-infection, T-helper/T-cytotoxic type-1 cell (Th1/Tc1)-related CCR5 is significantly higher expressed on both CD4 and CD8 T cells. The Th1-related CXCR3 is up-regulated among CD4 T cells and Tc2-related CCR4 is up-regulated among CD8 T cells. In the convalescent phase, all chemokine receptor or chemokine ligand expression tends to reestablish control healthy levels. Increased CCL2/MCP-1 and CCL4/MIP-1β but decreased CCL5/RANTES levels were observed in DENV-patients during acute infection. Moreover, we showed an increased CD107a expression on CCR5 or CXCR3-expressing T cells and higher expression of CD29, CD44(HIGH) and CD127(LOW) markers on CCR4-expressing CD8 T cells in DENV-patients when compared to controls. Finally, liver from dengue fatal patients showed increased number of cells expressing CCL5/RANTES in three out of four cases compared to three death from a non-dengue patient. In conclusion, both Th1-related CCR5 and CXCR3 among CD4 T cells have a potential ability to exert cytotoxicity function. Moreover, Tc1-related CCR5 and Tc2-related CCR4 among CD8 T cells have a potential ability to exert effector function and migration based on cell markers evaluated. The CCR5 expression would be promoting an enhanced T cell recruitment into liver, a hypothesis that is corroborated by the CCL5/RANTES increase detected in hepatic tissue from dengue fatal cases. The balance between protective and pathogenic immune response mediated by

  20. Regulation of Inflammatory Chemokine Receptors on Blood T Cells Associated to the Circulating Versus Liver Chemokines in Dengue Fever

    PubMed Central

    Povoa, Tiago Fajardo; de Azeredo, Elzinandes Leal; de Souza, Luiza Assed; Barbosa, Luiza Damian Ribeiro; Motta-Castro, Ana Rita C.; Alves, Ada M. B.; Ávila, Carlos André Lins; de Souza, Luiz José; da Cunha, Rivaldo Venâncio; Damasco, Paulo Vieira; Paes, Marciano Viana; Kubelka, Claire Fernandes

    2012-01-01

    Little is known about the role of chemokines/chemokines receptors on T cells in natural DENV infection. Patients from DENV-2 and -3- outbreaks were studied prospectively during the acute or convalescent phases. Expression of chemokine receptor and activation markers on lymphocyte subpopulations were determined by flow cytometry analysis, plasma chemokine ligands concentrations were measured by ELISA and quantification of CCL5/RANTES+ cells in liver tissues from fatal dengue cases was performed by immunochemistry. In the acute DENV-infection, T-helper/T-cytotoxic type-1 cell (Th1/Tc1)-related CCR5 is significantly higher expressed on both CD4 and CD8 T cells. The Th1-related CXCR3 is up-regulated among CD4 T cells and Tc2-related CCR4 is up-regulated among CD8 T cells. In the convalescent phase, all chemokine receptor or chemokine ligand expression tends to reestablish control healthy levels. Increased CCL2/MCP-1 and CCL4/MIP-1β but decreased CCL5/RANTES levels were observed in DENV-patients during acute infection. Moreover, we showed an increased CD107a expression on CCR5 or CXCR3-expressing T cells and higher expression of CD29, CD44HIGH and CD127LOW markers on CCR4-expressing CD8 T cells in DENV-patients when compared to controls. Finally, liver from dengue fatal patients showed increased number of cells expressing CCL5/RANTES in three out of four cases compared to three death from a non-dengue patient. In conclusion, both Th1-related CCR5 and CXCR3 among CD4 T cells have a potential ability to exert cytotoxicity function. Moreover, Tc1-related CCR5 and Tc2-related CCR4 among CD8 T cells have a potential ability to exert effector function and migration based on cell markers evaluated. The CCR5 expression would be promoting an enhanced T cell recruitment into liver, a hypothesis that is corroborated by the CCL5/RANTES increase detected in hepatic tissue from dengue fatal cases. The balance between protective and pathogenic immune response mediated by chemokines

  1. Effect of mitogen-activated protein kinases on chemokine synthesis induced by substance P in mouse pancreatic acinar cells

    PubMed Central

    Ramnath, Raina Devi; Sun, Jia; Adhikari, Sharmila; Bhatia, Madhav

    2007-01-01

    Abstract Substance P, acting via its neurokinin 1 receptor (NK1 R), plays an important role in mediating a variety of inflammatory processes. Its interaction with chemokines is known to play a crucial role in the pathogenesis of acute pancreatitis. In pancreatic acinar cells, substance P stimulates the release of NFκB-driven chemokines. However, the signal transduction pathways by which substance P-NK1 R interaction induces chemokine production are still unclear. To that end, we went on to examine the participation of mitogen-activated protein kinases (MAPKs) in substance P-induced synthesis of pro-inflammatory chemokines, monocyte chemoanractant protein-1 (MCP-I), macrophage inflammatory protein-lα (MIP-lα) and macrophage inflammatory protein-2 (MIP-2), in pancreatic acini. In this study, we observed a time-dependent activation of ERK1/2, c-Jun N-terminal kinase (JNK), NFκB and activator protein-1 (AP-1) when pancreatic acini were stimulated with substance P. Moreover, substance P-induced ERK 1/2, JNK, NFκB and AP-1 activation as well as chemokine synthesis were blocked by pre-treatment with either extracellular signal-regulated protein kinase kinase 1 (MEK1) inhibitor or JNK inhibitor. In addition, substance P-induced activation of ERK 112, JNK, NFκB and AP-1-driven chemokine production were attenuated by CP96345, a selective NK1 R antagonist, in pancreatic acinar cells. Taken together, these results suggest that substance P-NK1 R induced chemokine production depends on the activation of MAPKs-mediated NFκB and AP-1 signalling pathways in mouse pancreatic acini. PMID:18205703

  2. Androgen receptor and chemokine receptors 4 and 7 form a signaling axis to regulate CXCL12-dependent cellular motility.

    PubMed

    Hsiao, Jordy J; Ng, Brandon H; Smits, Melinda M; Wang, Jiahui; Jasavala, Rohini J; Martinez, Harryl D; Lee, Jinhee; Alston, Jhullian J; Misonou, Hiroaki; Trimmer, James S; Wright, Michael E

    2015-03-31

    Identifying cellular signaling pathways that become corrupted in the presence of androgens that increase the metastatic potential of organ-confined tumor cells is critical to devising strategies capable of attenuating the metastatic progression of hormone-naïve, organ-confined tumors. In localized prostate cancers, gene fusions that place ETS-family transcription factors under the control of androgens drive gene expression programs that increase the invasiveness of organ-confined tumor cells. C-X-C chemokine receptor type 4 (CXCR4) is a downstream target of ERG, whose upregulation in prostate-tumor cells contributes to their migration from the prostate gland. Recent evidence suggests that CXCR4-mediated proliferation and metastasis of tumor cells is regulated by CXCR7 through its scavenging of chemokine CXCL12. However, the role of androgens in regulating CXCR4-mediated motility with respect to CXCR7 function in prostate-cancer cells remains unclear. Immunocytochemistry, western blot, and affinity-purification analyses were used to study how androgens influenced the expression, subcellular localization, and function of CXCR7, CXCR4, and androgen receptor (AR) in LNCaP prostate-tumor cells. Moreover, luciferase assays and quantitative polymerase chain reaction (qPCR) were used to study how chemokines CXCL11 and CXCL12 regulate androgen-regulated genes (ARGs) in LNCaP prostate-tumor cells. Lastly, cell motility assays were carried out to determine how androgens influenced CXCR4-dependent motility through CXCL12. Here we show that, in the LNCaP prostate-tumor cell line, androgens coordinate the expression of CXCR4 and CXCR7, thereby promoting CXCL12/CXCR4-mediated cell motility. RNA interference experiments revealed functional interactions between AR and CXCR7 in these cells. Co-localization and affinity-purification experiments support a physical interaction between AR and CXCR7 in LNCaP cells. Unexpectedly, CXCR7 resided in the nuclear compartment and modulated AR

  3. CXC chemokine ligand 4 (CXCL4) down-regulates CC chemokine receptor expression on human monocytes.

    PubMed

    Schwartzkopff, Franziska; Petersen, Frank; Grimm, Tobias Alexander; Brandt, Ernst

    2012-02-01

    During acute inflammation, monocytes are essential in abolishing invading micro-organisms and encouraging wound healing. Recruitment by CC chemokines is an important step in targeting monocytes to the inflamed tissue. However, cell surface expression of the corresponding chemokine receptors is subject to regulation by various endogenous stimuli which so far have not been comprehensively identified. We report that the platelet-derived CXC chemokine ligand 4 (CXCL4), a known activator of human monocytes, induces down-regulation of CC chemokine receptors (CCR) 1, -2, and -5, resulting in drastic impairment of monocyte chemotactic migration towards cognate CC chemokine ligands (CCL) for these receptors. Interestingly, CXCL4-mediated down-regulation of CCR1, CCR2 and CCR5 was strongly dependent on the chemokine's ability to stimulate autocrine/paracrine release of TNF-α. In turn, TNF-α induced the secretion CCL3 and CCL4, two chemokines selective for CCR1 and CCR5, while the secretion of CCR2-ligand CCL2 was TNF-α-independent. Culture supernatants of CXCL4-stimulated monocytes as well as chemokine-enriched preparations thereof reproduced CXCL4-induced CCR down-regulation. In conclusion, CXCL4 may act as a selective regulator of monocyte migration by stimulating the release of autocrine, receptor-desensitizing chemokine ligands. Our results stress a co-ordinating role for CXCL4 in the cross-talk between platelets and monocytes during early inflammation.

  4. Chemokine GPCR Signaling Inhibits β-Catenin during Zebrafish Axis Formation

    PubMed Central

    Wu, Shu-Yu; Shin, Jimann; Sepich, Diane S.; Solnica-Krezel, Lilianna

    2012-01-01

    Embryonic axis formation in vertebrates is initiated by the establishment of the dorsal Nieuwkoop blastula organizer, marked by the nuclear accumulation of maternal β-catenin, a transcriptional effector of canonical Wnt signaling. Known regulators of axis specification include the canonical Wnt pathway components that positively or negatively affect β-catenin. An involvement of G-protein coupled receptors (GPCRs) was hypothesized from experiments implicating G proteins and intracellular calcium in axis formation, but such GPCRs have not been identified. Mobilization of intracellular Ca2+ stores generates Ca2+ transients in the superficial blastomeres of zebrafish blastulae when the nuclear accumulation of maternal β-catenin marks the formation of the Nieuwkoop organizer. Moreover, intracellular Ca2+ downstream of non-canonical Wnt ligands was proposed to inhibit β-catenin and axis formation, but mechanisms remain unclear. Here we report a novel function of Ccr7 GPCR and its chemokine ligand Ccl19.1, previously implicated in chemotaxis and other responses of dendritic cells in mammals, as negative regulators of β-catenin and axis formation in zebrafish. We show that interference with the maternally and ubiquitously expressed zebrafish Ccr7 or Ccl19.1 expands the blastula organizer and the dorsoanterior tissues at the expense of the ventroposterior ones. Conversely, Ccr7 or Ccl19.1 overexpression limits axis formation. Epistatic analyses demonstrate that Ccr7 acts downstream of Ccl19.1 ligand and upstream of β-catenin transcriptional targets. Moreover, Ccl19/Ccr7 signaling reduces the level and nuclear accumulation of maternal β-catenin and its axis-inducing activity and can also inhibit the Gsk3β -insensitive form of β-catenin. Mutational and pharmacologic experiments reveal that Ccr7 functions during axis formation as a GPCR to inhibit β-catenin, likely by promoting Ca2+ transients throughout the blastula. Our study delineates a novel negative, Gsk3

  5. Angiodrastic Chemokines in Colorectal Cancer: Clinicopathological Correlations.

    PubMed

    Emmanouil, George; Ayiomamitis, George; Zizi-Sermpetzoglou, Adamantia; Tzardi, Maria; Moursellas, Andrew; Voumvouraki, Argyro; Kouroumalis, Elias

    2018-01-01

    To study the expression of angiodrastic chemokines in colorectal tumors and correlate findings with clinicopathological parameters and survival. The proangiogenic factor VEGF, the angiogenic chemokines CXCL8 and CXCL6, and the angiostatic chemokine CXCL4 were measured by ELISA in tumor and normal tissue of 35 stage II and III patients and correlated with the histopathology markers Ki67, p53, p21, bcl2, EGFR, and MLH1 and 5-year survival. The Wilcoxon and chi-square tests were used for statistical comparisons. There was a significant increase of CXCL6 ( p = 0.005) and VEGF ( p = 0.003) in cancerous tissue compared to normal. Patients with lower levels of CXCL8 and CXCL4 lived significantly longer. Patients with loss of EGFR expression had higher levels of CXCL8 while p21 loss was associated with higher levels of CXCL6. Chemokine levels were not correlated with TNM or Dukes classification. Strong expression of p53 was accompanied by decreased survival. (1) The angiogenic factors CXCL6 and VEGF are increased in colorectal cancer tissue with no association with the clinical stage of the disease or survival. (2) However, increased levels of tissue CXCL8 and CXCL4 are associated with poor survival. (3) Strong expression of p53 is found in patients with poor survival.

  6. Active Shaping of Chemokine Gradients by Atypical Chemokine Receptors: A 4D Live-Cell Imaging Migration Assay.

    PubMed

    Werth, Kathrin; Förster, Reinhold

    2016-01-01

    Diffusion of chemokines away from their site of production results in the passive formation of chemokine gradients. We have recently shown that chemokine gradients can also be formed in an active manner, namely by atypical chemokine receptors (ACKRs) that scavenge chemokines locally. Here, we describe an advanced method that allows the visualization of leukocyte migration in a three-dimensional environment along a chemokine gradient that is actively established by cells expressing an ACKR. Initially developed to visualize the migration of dendritic cells along gradients of CCL19 or CCL21 that were actively shaped by an ACKR4-expressing cell line, we expect that this chamber system can be exploited to study many other combinations of atypical and conventional chemokine receptor-expressing cells. © 2016 Elsevier Inc. All rights reserved.

  7. Structural Analysis of Chemokine Receptor–Ligand Interactions

    PubMed Central

    2017-01-01

    This review focuses on the construction and application of structural chemokine receptor models for the elucidation of molecular determinants of chemokine receptor modulation and the structure-based discovery and design of chemokine receptor ligands. A comparative analysis of ligand binding pockets in chemokine receptors is presented, including a detailed description of the CXCR4, CCR2, CCR5, CCR9, and US28 X-ray structures, and their implication for modeling molecular interactions of chemokine receptors with small-molecule ligands, peptide ligands, and large antibodies and chemokines. These studies demonstrate how the integration of new structural information on chemokine receptors with extensive structure–activity relationship and site-directed mutagenesis data facilitates the prediction of the structure of chemokine receptor–ligand complexes that have not been crystallized. Finally, a review of structure-based ligand discovery and design studies based on chemokine receptor crystal structures and homology models illustrates the possibilities and challenges to find novel ligands for chemokine receptors. PMID:28165741

  8. Dynamic conformational switching in the chemokine ligand is essential for G-protein-coupled receptor activation

    PubMed Central

    Joseph, Prem Raj B.; Sawant, Kirti V.; Isley, Angela; Pedroza, Mesias; Garofalo, Roberto P.; Richardson, Ricardo M.; Rajarathnam, Krishna

    2014-01-01

    Chemokines mediate diverse functions from organogenesis to mobilizing leucocytes, and are unusual agonists for class-A GPCRs (G-protein-coupled receptors) because of their large size and multi-domain structure. The current model for receptor activation, which involves interactions between chemokine N-loop and receptor N-terminal residues (Site-I) and between chemokine N-terminal and receptor extracellular loop/transmembrane residues (Site-II), fails to describe differences in ligand/receptor selectivity and the activation of multiple signalling pathways. In the present study, we show in neutrophil-activating chemokine CXCL8 that the highly conserved GP (glycine-proline) motif located distal to both N-terminal and N-loop residues couples Site-I and Site-II interactions. Mutations in the GP motif caused various differences from native-like function to complete loss of activity that could not be correlated with the specific mutation, receptor affinity or subtype, or a specific signalling pathway. NMR studies indicated that the GP motif does not influence Site-I interactions, but molecular dynamics simulations suggested that this motif dictates substates of the CXCL8 conformational ensemble. We conclude that the GP motif enables diverse receptor functions by controlling cross-talk between Site-I and Site-II, and further propose that the repertoire of chemokine functions is best described by a conformational ensemble model in which a network of long-range coupled indirect interactions mediate receptor activity. PMID:24032673

  9. Elevated CXC chemokines in urine noninvasively discriminate OAB from UTI.

    PubMed

    Tyagi, Pradeep; Tyagi, Vikas; Qu, Xianggui; Chuang, Yao Chi; Kuo, Hann-Chorng; Chancellor, Michael

    2016-09-01

    Overlapping symptoms of overactive bladder (OAB) and urinary tract infection (UTI) often complicate the diagnosis and contribute to overprescription of antibiotics. Inflammatory response is a shared characteristic of both UTI and OAB and here we hypothesized that molecular differences in inflammatory response seen in urine can help discriminate OAB from UTI. Subjects in the age range of (20-88 yr) of either sex were recruited for this urine analysis study. Urine specimens were available from 62 UTI patients with positive dipstick test before antibiotic treatment. Six of these patients also provided urine after completion of antibiotic treatment. Subjects in cohorts of OAB (n = 59) and asymptomatic controls (n = 26) were negative for dipstick test. Urinary chemokines were measured by MILLIPLEX MAP Human Cytokine/Chemokine Immunoassay and their association with UTI and OAB was determined by univariate and multivariate statistics. Significant elevation of CXCL-1, CXCL-8 (IL-8), and CXCL-10 together with reduced levels for a receptor antagonist of IL-1A (sIL-1RA) were seen in UTI relative to OAB and asymptomatic controls. Elevated CXCL-1 urine levels predicted UTI with odds ratio of 1.018 and showed a specificity of 80.77% and sensitivity of 59.68%. Postantibiotic treatment, reduction was seen in all CXC chemokines with a significant reduction for CXCL-10. Strong association of CXCL-1 and CXCL-10 for UTI over OAB indicates mechanistic differences in signaling pathways driving inflammation secondary of infection in UTI compared with a lack of infection in OAB. Urinary chemokines highlight molecular differences in the paracrine signaling driving the overlapping symptoms of UTI and OAB. Copyright © 2016 the American Physiological Society.

  10. Silibinin, a novel chemokine receptor type 4 antagonist, inhibits chemokine ligand 12-induced migration in breast cancer cells.

    PubMed

    Wang, Yan; Liang, Wei-Cheng; Pan, Wen-Liang; Law, Wai-Kit; Hu, Jian-Shu; Ip, Denis Tsz-Ming; Waye, Mary Miu-Yee; Ng, Tzi-Bun; Wan, David Chi-Cheong

    2014-09-25

    C-X-C chemokine receptor type 4 (CXCR4) signaling has been demonstrated to be involved in cancer invasion and migration; therefore, CXCR4 antagonist can serve as an anti-cancer drug by preventing tumor metastasis. This study aimed to identify the CXCR4 antagonists that could reduce and/or inhibit tumor metastasis from natural products. According to the molecular docking screening, we reported here silibinin as a novel CXCR4 antagonist. Biochemical characterization showed that silibinin blocked chemokine ligand 12 (CXCL12)-induced CXCR4 internalization by competitive binding to CXCR4, therefore inhibiting downstream intracellular signaling. In human breast cancer cells MDA-MB-231, which expresses high levels of CXCR4, inhibition of CXCL12-induced chemomigration can be found under silibinin treatment. Overexpression of CXCL12 sensitized MDA-MB-231 cells to the inhibition of silibinin, which was abolished by CXCR4 knockdown. The inhibition of silibinin was also observed in MCF-7/CXCR4 cells rather than MCF-7 cells that express low level of CXCR4. Our work demonstrated that silibinin is a novel CXCR4 antagonist that may have potential therapeutic use for prevention of tumor metastasis. Copyright © 2014 Elsevier GmbH. All rights reserved.

  11. Involvement of chemokine receptors in breast cancer metastasis

    NASA Astrophysics Data System (ADS)

    Müller, Anja; Homey, Bernhard; Soto, Hortensia; Ge, Nianfeng; Catron, Daniel; Buchanan, Matthew E.; McClanahan, Terri; Murphy, Erin; Yuan, Wei; Wagner, Stephan N.; Barrera, Jose Luis; Mohar, Alejandro; Verástegui, Emma; Zlotnik, Albert

    2001-03-01

    Breast cancer is characterized by a distinct metastatic pattern involving the regional lymph nodes, bone marrow, lung and liver. Tumour cell migration and metastasis share many similarities with leukocyte trafficking, which is critically regulated by chemokines and their receptors. Here we report that the chemokine receptors CXCR4 and CCR7 are highly expressed in human breast cancer cells, malignant breast tumours and metastases. Their respective ligands CXCL12/SDF-1α and CCL21/6Ckine exhibit peak levels of expression in organs representing the first destinations of breast cancer metastasis. In breast cancer cells, signalling through CXCR4 or CCR7 mediates actin polymerization and pseudopodia formation, and subsequently induces chemotactic and invasive responses. In vivo, neutralizing the interactions of CXCL12/CXCR4 significantly impairs metastasis of breast cancer cells to regional lymph nodes and lung. Malignant melanoma, which has a similar metastatic pattern as breast cancer but also a high incidence of skin metastases, shows high expression levels of CCR10 in addition to CXCR4 and CCR7. Our findings indicate that chemokines and their receptors have a critical role in determining the metastatic destination of tumour cells.

  12. [Evaluation of chemokines in tears of patients with infectious keratitis].

    PubMed

    Hori, Shinsuke; Shoji, Jun; Inada, Noriko; Sawa, Mitsuru

    2013-02-01

    To investigate the chemokine profile in tears of patients with infectious keratitis. Subjects were 32 eyes of 16 patients with infectious keratitis and 5 eyes of 5 healthy volunteers as a control. The patients with infectious keratitis were classified into two groups of eyes: 10 with bacterial keratitis and 6 with Acanthamoeba keratitis. Tear fluid was obtained from both eyes of the patients with infectious keratitis and from the right eyes of the control subjects using filter paper. Chemokine concentration (unit: Odu/mm2) and its profile in tears was analyzed using an antibody-array. In terms of chemokine profile in the bacterial keratitis group, the expression volume of interleukin-8 (IL-8) and monocyte chemoattractant protein-1 (MCP-1) in the diseased eyes was significantly higher than in the healthy eyes (p < 0.05). The expression volume of mucosae-associated epithelial chemokines (MECs) in the diseased eyes of the bacterial keratitis group was significantly lower than in the healthy eyes of that group (p < 0.05). In the Acanthamoeba keratitis group, chemokines were not significantly increased in the diseased eyes compared with those in the healthy eyes. However, MCP-1 was increased in tears of the Acanthamoeba keratitis group. Regarding the chemokine ratio, the IL-8/MEC ratio in the diseased eyes of the Pseudomonas keratitis group and the MCP-1/IL-8 in the diseased eyes of the Acanthamoeba keratitis group showed a significantly high level (p < 0.05). We concluded that the analyses of the chemokine profile and chemokine ratio in the tears of infectious keratitis patients is useful as a clinical tear laboratory test to interpret the pathologic condition of infectious keratitis

  13. Different actions of endothelin-1 on chemokine production in rat cultured astrocytes: reduction of CX3CL1/fractalkine and an increase in CCL2/MCP-1 and CXCL1/CINC-1

    PubMed Central

    2013-01-01

    Background Chemokines are involved in many pathological responses of the brain. Astrocytes produce various chemokines in brain disorders, but little is known about the factors that regulate astrocytic chemokine production. Endothelins (ETs) have been shown to regulate astrocytic functions through ETB receptors. In this study, the effects of ETs on chemokine production were examined in rat cerebral cultured astrocytes. Methods Astrocytes were prepared from the cerebra of one- to two-day-old Wistar rats and cultured in serum-containing medium. After serum-starvation for 48 hours, astrocytes were treated with ETs. Total RNA was extracted using an acid-phenol method and expression of chemokine mRNAs was determined by quantitative RT-PCR. The release of chemokines was measured by ELISA. Results Treatment of cultured astrocytes with ET-1 and Ala1,3,11,15-ET-1, an ETB agonist, increased mRNA levels of CCL2/MCP1 and CXCL1/CINC-1. In contrast, CX3CL1/fractalkine mRNA expression decreased in the presence of ET-1 and Ala1,3,11,15-ET-1. The effect of ET-1 on chemokine mRNA expression was inhibited by BQ788, an ETB antagonist. ET-1 increased CCL2 and CXCL1 release from cultured astrocytes, but decreased that of CX3CL1. The increase in CCL2 and CXCL1 expression by ET-1 was inhibited by actinomycin D, pyrrolidine dithiocarbamate, SN50, mithramycin, SB203580 and SP600125. The decrease in CX3CL1 expression by ET-1 was inhibited by cycloheximide, Ca2+ chelation and staurosporine. Conclusion These findings suggest that ETs are one of the factors regulating astrocytic chemokine production. Astrocyte-derived chemokines are involved in pathophysiological responses of neurons and microglia. Therefore, the ET-induced alterations of astrocytic chemokine production are of pathophysiological significance in damaged brains. PMID:23627909

  14. Chemokines and skin diseases.

    PubMed

    Sugaya, Makoto

    2015-04-01

    Chemokines are small molecules that induce chemotaxis and activation of certain subsets of leukocytes. The expression patterns of chemokines and chemokine receptors are specific to certain organs and cells. Therefore, chemokines are important to elucidate the mechanism of organ-specific human diseases. CCL17 expressed by Langerhans cells, blood endothelial cells, and fibroblasts plays a key role in attracting Th2 cells and tumor cells of adult T-cell leukemia/lymphoma and mycosis fungoides/Sézary syndrome into the skin, developing various Th2-type inflammatory skin diseases as well as cutaneous lymphoma. CCL11 and CCL26 expressed by skin-resident cells, such as fibroblasts, blood endothelial cells, and keratinocytes, induce infiltration of CCR3-expressing cells such as Th2 cells and eosinophils. CCL11 may also serve as an autocrine as well as a paracrine in anaplastic large cell lymphoma. CX3CL1 expressed on blood endothelial cells leads to infiltration of CX3CR1(+) immune cells, such as mast cells, neutrophils, and macrophages, playing important roles in wound healing, tumor immunity, and vasculitis. Biologics targeting chemokines and their receptors are promising strategies for various skin diseases that are resistant to the current therapy.

  15. Social defeat promotes a reactive endothelium in a brain region-dependent manner with increased expression of key adhesion molecules, selectins and chemokines associated with the recruitment of myeloid cells to the brain.

    PubMed

    Sawicki, C M; McKim, D B; Wohleb, E S; Jarrett, B L; Reader, B F; Norden, D M; Godbout, J P; Sheridan, J F

    2015-08-27

    Repeated social defeat (RSD) in mice causes myeloid cell trafficking to the brain that contributes to the development of prolonged anxiety-like behavior. Myeloid cell recruitment following RSD occurs in regions where neuronal and microglia activation is observed. Thus, we hypothesized that crosstalk between neurons, microglia, and endothelial cells contributes to brain myeloid cell trafficking via chemokine signaling and vascular adhesion molecules. Here we show that social defeat caused an exposure- and brain region-dependent increase in several key adhesion molecules and chemokines involved in the recruitment of myeloid cells. For example, RSD induced distinct patterns of adhesion molecule expression that may explain brain region-dependent myeloid cell trafficking. VCAM-1 and ICAM-1 mRNA expression were increased in an exposure-dependent manner. Furthermore, RSD-induced VCAM-1 and ICAM-1 protein expression were localized to the vasculature of brain regions implicated in fear and anxiety responses, which spatially corresponded to previously reported patterns of myeloid cell trafficking. Next, mRNA expression of additional adhesion molecules (E- and P-selectin, PECAM-1) and chemokines (CXCL1, CXCL2, CXCL12, CCL2) were determined in the brain. Social defeat induced an exposure-dependent increase in mRNA levels of E-selectin, CXCL1, and CXCL2 that increased with additional days of social defeat. While CXCL12 was unaffected by RSD, CCL2 expression was increased by six days of social defeat. Last, comparison between enriched CD11b(+) cells (microglia/macrophages) and enriched GLAST-1(+)/CD11b(-) cells (astrocytes) revealed RSD increased mRNA expression of IL-1β, CCL2, and CXCL2 in microglia/macrophages but not in astrocytes. Collectively, these data indicate that key mediators of leukocyte recruitment were increased in the brain vasculature following RSD in an exposure- and brain region-dependent manner. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights

  16. Social defeat promotes a reactive endothelium in a brain region-dependent manner with increased expression of key adhesion molecules, selectins and chemokines associated with the recruitment of myeloid cells to the brain

    PubMed Central

    Sawicki, Caroline M.; McKim, Daniel B.; Wohleb, Eric S.; Jarrett, Brant L.; Reader, Brenda F.; Norden, Diana M.; Godbout, Jonathan P.; Sheridan, John F.

    2014-01-01

    Repeated social defeat (RSD) in mice causes myeloid cell trafficking to the brain that contributes to the development of prolonged anxiety-like behavior. Myeloid cell recruitment following RSD occurs in regions where neuronal and microglia activation is observed. Thus, we hypothesized that crosstalk between neurons, microglia, and endothelial cells contributes to brain-myeloid cell trafficking via chemokine signaling and vascular adhesion molecules. Here we show that social defeat caused an exposure- and brain region-dependent increase in several key adhesion molecules and chemokines involved in the recruitment of myeloid cells. For example, RSD induced distinct patterns of adhesion molecule expression that may explain brain region-dependent myeloid cell trafficking. VCAM-1 and ICAM-1 mRNA expression were increased in an exposure-dependent manner. Furthermore, RSD-induced VCAM-1 and ICAM-1 protein expression were localized to the vasculature of brain regions implicated in fear and anxiety responses, which spatially corresponded to previously reported patterns of myeloid cell trafficking. Next, mRNA expression of additional adhesion molecules (E- and P-selectin, PECAM-1) and chemokines (CXCL1, CXCL2, CXCL12, CCL2) were determined in the brain. Social defeat induced an exposure-dependent increase in mRNA levels of E-selectin, CXCL1, and CXCL2 that increased with additional days of social defeat. While CXCL12 was unaffected by RSD, CCL2 expression was increased by six days of social defeat. Last, comparison between enriched CD11b+ cells (microglia/macrophages) and enriched GLAST-1+/CD11b− cells (astrocytes) revealed RSD increased mRNA expression of IL-1β, CCL2, and CXCL2 in microglia/macrophages but not in astrocytes. Collectively, these data indicate that key mediators of leukocyte recruitment were increased in the brain vasculature following RSD in an exposure- and brain-region dependent manner. PMID:25445193

  17. Profiling Heparin-Chemokine Interactions Using Synthetic Tools

    PubMed Central

    de Paz, Jose L.; Moseman, E. Ashley; Noti, Christian; Polito, Laura; von Andrian, Ulrich H.; Seeberger, Peter H.

    2009-01-01

    Glycosaminoglycans (GAGs), such as heparin or heparan sulfate, are required for the in vivo function of chemokines. Chemokines play a crucial role in the recruitment of leukocyte subsets to sites of inflammation and lymphocytes trafficking. GAG-chemokine interactions mediate cell migration and determine which leukocyte subsets enter tissues. Identifying the exact GAC sequences that bind to particular chemokines is key to understand chemokine function at the molecular level and develop strategies to interfere with chemokine-mediated processes. Here, we characterize the heparin binding profiles of eight chemokines (CCL21, IL-8, CXCL12, CXCL13, CCL19, CCL25, CCL28, and CXCL16) by employing heparin microarrays containing a small library of synthetic heparin oligosaccharides. The chemokines differ significantly in their interactions with heparin oligosaccharides: While some chemokines, (e.g., CCL21) strongly bind to a hexasaccharide containing the GlcNSO3(6-OSO3)-IdoA(2-OSO3) repeating unit, CCL19 does not bind and CXCL12 binds only weakly. The carbohydrate microarray binding results were validated by surface plasmon resonance experiments. In vitro chemotaxis assays revealed that dendrimers coated with the fully sulfated heparin hexasaccharide inhibit lymphocyte migration toward CCL21. Migration toward CXCL12 or CCL19 was not affected. These in vitro homing assays indicate that multivalent synthetic heparin dendrimers inhibit the migration of lymphocytes toward certain chemokine gradients by blocking the formation of a chemokine concentration gradient on GAG endothelial chains. These findings are in agreement with preliminary in vivo measurements of circulating lymphocytes. The results presented here contribute to the understanding of GAG-chemokine interactions, a first step toward the design of novel drugs that modulate chemokine activity. PMID:18030990

  18. Disruption of mTORC1 in Macrophages Decreases Chemokine Gene Expression and Atherosclerosis

    PubMed Central

    Ai, Ding; Jiang, Hongfeng; Westerterp, Marit; Murphy, Andrew J.; Wang, Mi; Ganda, Anjali; Abramowicz, Sandra; Welch, Carrie; Almazan, Felicidad; Zhu, Yi; Miller, Yury I; Tall, Alan R.

    2014-01-01

    Rationale The mammalian target of rapamycin complex 1 (mTORC1) inhibitor, rapamycin, has been shown to decrease atherosclerosis, even while increasing plasma LDL levels. This suggests an anti-atherogenic effect possibly mediated by modulation of inflammatory responses in atherosclerotic plaques. Objective To assess the role of macrophage mTORC1 in atherogenesis. Methods and Results We transplanted bone marrow from mice in which a key mTORC1 adaptor, Raptor, was deleted in macrophages by Cre/loxP recombination (Mac-RapKO mice) into Ldlr-/- mice and then fed them the Western-type diet (WTD). Atherosclerotic lesions from Mac-RapKO mice showed decreased infiltration of macrophages, lesion size and chemokine gene expression compared with control mice. Treatment of macrophages with minimally modified LDL (mmLDL) resulted in increased levels of chemokine mRNAs and STAT3 phosphorylation; these effects were reduced in Mac-RapKO macrophages. While wild-type and Mac-RapKO macrophages showed similar STAT3 phosphorylation on Tyr705, Mac-RapKO macrophages showed decreased STAT3 Ser727 phosphorylation in response to mmLDL treatment and decreased Ccl2 promoter binding of STAT3. Conclusions The results demonstrate cross-talk between nutritionally-induced mTORC1 signaling and mmLDL-mediated inflammatory signaling via combinatorial phosphorylation of STAT3 in macrophages, leading to increased STAT3 activity on the CCL2 (MCP-1)promoter with pro-atherogenic consequences. PMID:24687132

  19. Chemokines in teleost fish species.

    PubMed

    Alejo, Alí; Tafalla, Carolina

    2011-12-01

    Chemokines are chemoattractant cytokines defined by the presence of four conserved cysteine residues which in mammals can be divided into four subfamilies depending on the arrangement of the first two conserved cysteines in their sequence: CXC (α), CC (β), C and CX(3)C classes. Evolutionarily, fish can be considered as an intermediate step between species which possess only innate immunity (invertebrates) and species with a fully developed acquired immune network such as mammals. Therefore, the functionality of their different immune cell types and molecules is sometimes also intermediate between innate and acquired responses. The first chemokine gene identified in a teleost was a rainbow trout (Oncorhynchus mykiss) chemokine designated as CK1 in 1998. Since then, many different chemokine genes have been identified in several fish species, but their role in homeostasis and immune response remains largely unknown. Extensive genomic duplication events and the fact that chemokines evolve more quickly than other immune genes, make it very difficult to establish true orthologues between fish and mammalian chemokines that would help us with the ascription of immune roles. In this review, we describe the current state of knowledge of chemokine biology in teleost fish, focusing mainly on which genes have been identified so far and highlighting the most important aspects of their expression regulation, due to the great lack of functional information available for them. As the number of chemokine genes begins to close down for some teleost species, there is an important need for functional assays that may elucidate the role of each of these molecules within the fish immune response. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Citrullinated Chemokines in Rheumatoid Arthritis

    DTIC Science & Technology

    2016-12-01

    immunosorbent assay ( ELISA ) in RA and normal (NL) sera and in RA, osteoarthritis (OA), and other inflammatory rheumatic disease (OD) synovial fluids (SFs... ELISA ) Epithelial Neutrophil Chemoattractant Peptide-78 (ENA-78/CXCL5) Monocyte Chemoattractant Protein-1 (MCP-1/CCL2) Macrophage Inflammatory...Citrullinated chemokines are highly expressed in RA sera and SFs. Citrullinated chemokines were measured using an ELISA in which chemokines were captured on

  1. Structure of the CCR5 Chemokine Receptor-HIV Entry Inhibitor Maraviroc Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Qiuxiang; Zhu, Ya; Li, Jian

    2013-10-21

    The CCR5 chemokine receptor acts as a co-receptor for HIV-1 viral entry. Here we report the 2.7 angstrom–resolution crystal structure of human CCR5 bound to the marketed HIV drug maraviroc. The structure reveals a ligand-binding site that is distinct from the proposed major recognition sites for chemokines and the viral glycoprotein gp120, providing insights into the mechanism of allosteric inhibition of chemokine signaling and viral entry. A comparison between CCR5 and CXCR4 crystal structures, along with models of co-receptor–gp120-V3 complexes, suggests that different charge distributions and steric hindrances caused by residue substitutions may be major determinants of HIV-1 co-receptor selectivity.more » These high-resolution insights into CCR5 can enable structure-based drug discovery for the treatment of HIV-1 infection.« less

  2. AhR and Arnt differentially regulate NF-κB signaling and chemokine responses in human bronchial epithelial cells

    PubMed Central

    2014-01-01

    Background The aryl hydrocarbon receptor (AhR) has gradually emerged as a regulator of inflammation in the lung and other tissues. AhR may interact with the p65-subunit of the nuclear factor (NF)-κB transcription factors, but reported outcomes of AhR/NF-κB-interactions are conflicting. Some studies suggest that AhR possess pro-inflammatory activities while others suggest that AhR may be anti-inflammatory. The present study explored the impact of AhR and its binding partner AhR nuclear translocator (Arnt) on p65-activation and two differentially regulated chemokines, CXCL8 (IL-8) and CCL5 (RANTES), in human bronchial epithelial cells (BEAS-2B). Results Cells were exposed to CXCL8- and CCL5-inducing chemicals, 1-nitropyrene (1-NP) and 1-aminopyrene (1-AP) respectively, or the synthetic double-stranded RNA analogue, polyinosinic-polycytidylic acid (Poly I:C) which induced both chemokines. Only CXCL8, and not CCL5, appeared to be p65-dependent. Yet, constitutively active unligated AhR suppressed both CXCL8 and CCL5, as shown by siRNA knock-down and the AhR antagonist α-naphthoflavone. Moreover, AhR suppressed activation of p65 by TNF-α and Poly I:C as assessed by luciferase-assay and p65-phosphorylation at serine 536, without affecting basal p65-activity. In contrast, Arnt suppressed only CXCL8, but did not prevent the p65-activation directly. However, Arnt suppressed expression of the NF-κB-subunit RelB which is under transcriptional regulation by p65. Furthermore, AhR-ligands alone at high concentrations induced a moderate CXCL8-response, without affecting CCL5, but suppressed both CXCL8 and CCL5-responses by Poly I:C. Conclusion AhR and Arnt may differentially and independently regulate chemokine-responses induced by both inhaled pollutants and pulmonary infections. Constitutively active, unligated AhR suppressed the activation of p65, while Arnt may possibly interfere with the action of activated p65. Moreover, ligand-activated AhR suppressed CXCL8 and CCL5

  3. The heterodimerization of platelet-derived chemokines.

    PubMed

    Carlson, James; Baxter, Sarah A; Dréau, Didier; Nesmelova, Irina V

    2013-01-01

    Chemokines encompass a large family of proteins that act as chemoattractants and are involved in many biological processes. In particular, chemokines guide the migration of leukocytes during normal and inflammatory conditions. Recent studies reveal that the heterophilic interactions between chemokines significantly affect their biological activity, possibly representing a novel regulatory mechanism of the chemokine activities. The co-localization of platelet-derived chemokines in vivo allows them to interact. Here, we used nano-spray ionization mass spectrometry to screen eleven different CXC and CC platelet-derived chemokines for possible interactions with the two most abundant chemokines present in platelets, CXCL4 and CXCL7. Results indicate that many screened chemokines, although not all of them, form heterodimers with CXCL4 and/or CXCL7. In particular, a strong heterodimerization was observed between CXCL12 and CXCL4 or CXCL7. Compared to other chemokines, the main structural difference of CXCL12 is in the orientation and packing of the C-terminal alpha-helix in relation to the beta-sheet. The analysis of one possible structure of the CXCL4/CXCL12 heterodimer, CXC-type structure, using molecular dynamics (MD) trajectory reveals that CXCL4 may undergo a conformational transition to alter the alpha helix orientation. In this new orientation, the alpha-helix of CXCL4 aligns in parallel with the CXCL12 alpha-helix, an energetically more favorable conformation. Further, we determined that CXCL4 and CXCL12 physically interact to form heterodimers by co-immunoprecipitations from human platelets. Overall, our results highlight that many platelet-derived chemokines are capable of heterophilic interactions and strongly support future studies of the biological impact of these interactions. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Potentiation of Inflammatory CXCL8 Signalling Sustains Cell Survival in PTEN-deficient Prostate Carcinoma

    PubMed Central

    Maxwell, Pamela J.; Coulter, Jonathan; Walker, Steven M.; McKechnie, Melanie; Neisen, Jessica; McCabe, Nuala; Kennedy, Richard D.; Salto-Tellez, Manuel; Albanese, Chris; Waugh, David J.J.

    2014-01-01

    Background: Inflammation and genetic instability are enabling characteristics of prostate carcinoma (PCa). Inactivation of the tumour suppressor gene phosphatase and tensin homolog (PTEN) is prevalent in early PCa. The relationship of PTEN deficiency to inflammatory signalling remains to be characterised. Objective: To determine how loss of PTEN functionality modulates expression and efficacy of clinically relevant, proinflammatory chemokines in PCa. Design, setting, and participants: Experiments were performed in established cell-based PCa models, supported by pathologic analysis of chemokine expression in prostate tissue harvested from PTEN heterozygous (Pten+/−) mice harbouring inactivation of one PTEN allele. Interventions: Small interfering RNA (siRNA)–or small hairpin RNA (shRNA)–directed strategies were used to repress PTEN expression and resultant interleukin-8 (CXCL8) signalling, determined under normal and hypoxic culture conditions. Outcome measurements and statistical analysis: Changes in chemokine expression in PCa cells and tissue were analysed by real-time polymerase chain reaction (PCR), immunoblotting, enzyme-linked immunosorbent assay (ELISA), and immunohistochemistry; effects of chemokine signalling on cell function were assessed by cell cycle analysis, apoptosis, and survival assays. Results and limitations: Transient (siRNA) or prolonged (shRNA) PTEN repression increased expression of CXCL8 and its receptors, chemokine (C-X-C motif) receptor (CXCR) 1 and CXCR2, in PCa cells. Hypoxia-induced increases in CXCL8, CXCR1, and CXCR2 expression were greater in magnitude and duration in PTEN-depleted cells. Autocrine CXCL8 signalling was more efficacious in PTEN-depleted cells, inducing hypoxia-inducible factor-1 (HIF-1) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) transcription and regulating genes involved in survival and angiogenesis. Increased expression of the orthologous chemokine KC was observed in regions

  5. Low intensity shear stress increases endothelial ELR+ CXC chemokine production via a focal adhesion kinase-p38{beta} MAPK-NF-{kappa}B pathway.

    PubMed

    Shaik, Sadiq S; Soltau, Thomas D; Chaturvedi, Gaurav; Totapally, Balagangadhar; Hagood, James S; Andrews, William W; Athar, Mohammad; Voitenok, Nikolai N; Killingsworth, Cheryl R; Patel, Rakesh P; Fallon, Michael B; Maheshwari, Akhil

    2009-02-27

    CXC chemokines with a glutamate-leucine-arginine (ELR) tripeptide motif (ELR(+) CXC chemokines) play an important role in leukocyte trafficking into the tissues. For reasons that are not well elucidated, circulating leukocytes are recruited into the tissues mainly in small vessels such as capillaries and venules. Because ELR(+) CXC chemokines are important mediators of endothelial-leukocyte interaction, we compared chemokine expression by microvascular and aortic endothelium to investigate whether differences in chemokine expression by various endothelial types could, at least partially, explain the microvascular localization of endothelial-leukocyte interaction. Both in vitro and in vivo models indicate that ELR(+) CXC chemokine expression is higher in microvascular endothelium than in aortic endothelial cells. These differences can be explained on the basis of the preferential activation of endothelial chemokine production by low intensity shear stress. Low shear activated endothelial ELR(+) CXC chemokine production via cell surface heparan sulfates, beta(3)-integrins, focal adhesion kinase, the mitogen-activated protein kinase p38beta, mitogen- and stress-associated protein kinase-1, and the transcription factor.

  6. Single cells from human primary colorectal tumors exhibit polyfunctional heterogeneity in secretions of ELR+ CXC chemokines.

    PubMed

    Adalsteinsson, Viktor A; Tahirova, Narmin; Tallapragada, Naren; Yao, Xiaosai; Campion, Liam; Angelini, Alessandro; Douce, Thomas B; Huang, Cindy; Bowman, Brittany; Williamson, Christina A; Kwon, Douglas S; Wittrup, K Dane; Love, J Christopher

    2013-10-01

    Cancer is an inflammatory disease of tissue that is largely influenced by the interactions between multiple cell types, secreted factors, and signal transduction pathways. While single-cell sequencing continues to refine our understanding of the clonotypic heterogeneity within tumors, the complex interplay between genetic variations and non-genetic factors ultimately affects therapeutic outcome. Much has been learned through bulk studies of secreted factors in the tumor microenvironment, but the secretory behavior of single cells has been largely uncharacterized. Here we directly profiled the secretions of ELR+ CXC chemokines from thousands of single colorectal tumor and stromal cells, using an array of subnanoliter wells and a technique called microengraving to characterize both the rates of secretion of several factors at once and the numbers of cells secreting each chemokine. The ELR+ CXC chemokines are highly redundant, pro-angiogenic cytokines that signal via the CXCR1 and CXCR2 receptors, influencing tumor growth and progression. We find that human primary colorectal tumor and stromal cells exhibit polyfunctional heterogeneity in the combinations and magnitudes of secretions for these chemokines. In cell lines, we observe similar variance: phenotypes observed in bulk can be largely absent among the majority of single cells, and discordances exist between secretory states measured and gene expression for these chemokines among single cells. Together, these measures suggest secretory states among tumor cells are complex and can evolve dynamically. Most importantly, this study reveals new insight into the intratumoral phenotypic heterogeneity of human primary tumors.

  7. Structure of CC Chemokine Receptor 5 with a Potent Chemokine Antagonist Reveals Mechanisms of Chemokine Recognition and Molecular Mimicry by HIV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Yi; Han, Gye Won; Abagyan, Ruben

    CCR5 is the primary chemokine receptor utilized by HIV to infect leukocytes, whereas CCR5 ligands inhibit infection by blocking CCR5 engagement with HIV gp120. To guide the design of improved therapeutics, we solved the structure of CCR5 in complex with chemokine antagonist [5P7]CCL5. Several structural features appeared to contribute to the anti-HIV potency of [5P7]CCL5, including the distinct chemokine orientation relative to the receptor, the near-complete occupancy of the receptor binding pocket, the dense network of intermolecular hydrogen bonds, and the similarity of binding determinants with the FDA-approved HIV inhibitor Maraviroc. Molecular modeling indicated that HIV gp120 mimicked the chemokinemore » interaction with CCR5, providing an explanation for the ability of CCR5 to recognize diverse ligands and gp120 variants. Our findings reveal that structural plasticity facilitates receptor-chemokine specificity and enables exploitation by HIV, and provide insight into the design of small molecule and protein inhibitors for HIV and other CCR5-mediated diseases.« less

  8. Impact of periodontitis on chemokines in smokers.

    PubMed

    Haytural, O; Yaman, D; Ural, E C; Kantarci, A; Demirel, Korkud

    2015-06-01

    The aim of this study was to investigate the chemokine expression profiles in gingival crevicular fluid (GCF) and serum in patients with advanced chronic periodontitis and to assess the impact of smoking on local and systemic levels of chemokines. Thirty patients with chronic periodontitis (CP; 20 smokers and 10 non-smokers) and 20 periodontally healthy subjects (10 smokers and 10 non-smokers) were recruited. Clinical parameters included the plaque index (PI), gingival index (GI), and bleeding on probing (BOP). Macrophage inflammatory protein-1 alpha (MIP-1α), macrophage inflammatory protein-1 beta (MIP-1β), monocyte chemoattractant protein-1 (MCP-1), and regulated on activation normal T cell expressed and secreted chemokine (RANTES) were measured in gingival crevicular fluid (GCF) and serum using a multiplex immunoassay. MIP-1α levels were significantly lower (10.15 ± 1.48; p = 0.039) while MIP-1β levels were significantly higher (42.05 ± 8.21; p = 0.005) in sera from non-smoker patients with CP compared to non-smoker healthy subjects. MCP-1 concentration in sera was significantly higher in smoker periodontitis patients (8.89 ± 1.65) compared to non-smoker patients with periodontitis (8.14 ± 0.97; p = 0.004). MIP-1α and RANTES were significantly higher in GCF of the patients with CP (p = 0.001) while there were no statistically significant correlations between the GCF levels of these analytes and the smoking status. Periodontal inflammation increases the chemokine concentrations in the GCF while smoking suppresses chemokine levels in serum suggesting that different local and systemic mechanisms are involved during the response to periodontitis in smokers. Understanding the local and systemic chemokine responses in smokers will enable the development of biologically-based treatment methods for chronic periodontitis.

  9. Angiogenic CXC chemokine expression during differentiation of human mesenchymal stem cells towards the osteoblastic lineage.

    PubMed

    Bischoff, D S; Zhu, J H; Makhijani, N S; Kumar, A; Yamaguchi, D T

    2008-02-15

    The potential role of ELR(+) CXC chemokines in early events in bone repair was studied using human mesenchymal stem cells (hMSCs). Inflammation, which occurs in the initial phase of tissue healing in general, is critical to bone repair. Release of cytokines from infiltrating immune cells and injured bone can lead to recruitment of MSCs to the region of repair. CXC chemokines bearing the Glu-Leu-Arg (ELR) motif are also released by inflammatory cells and serve as angiogenic factors stimulating chemotaxis and proliferation of endothelial cells. hMSCs, induced to differentiate with osteogenic medium (OGM) containing ascorbate, beta-glycerophosphate (beta-GP), and dexamethasone (DEX), showed an increase in mRNA and protein secretion of the ELR(+) CXC chemokines CXCL8 and CXCL1. CXCL8 mRNA half-life studies reveal an increase in mRNA stability upon OGM stimulation. Increased expression and secretion is a result of DEX in OGM and is dose-dependent. Inhibition of the glucocorticoid receptor with mifepristone only partially inhibits DEX-stimulated CXCL8 expression indicating both glucocorticoid receptor dependent and independent pathways. Treatment with signal transduction inhibitors demonstrate that this expression is due to activation of the ERK and p38 mitogen-activated protein kinase (MAPK) pathways and is mediated through the G(alphai)-coupled receptors. Angiogenesis assays demonstrate that OGM-stimulated conditioned media containing secreted CXCL8 and CXCL1 can induce angiogenesis of human microvascular endothelial cells in an in vitro Matrigel assay. Copyright 2007 Wiley-Liss, Inc.

  10. Molecular Basis of Chemokine CXCL5-Glycosaminoglycan Interactions*

    PubMed Central

    2016-01-01

    Chemokines, a large family of highly versatile small soluble proteins, play crucial roles in defining innate and adaptive immune responses by regulating the trafficking of leukocytes, and also play a key role in various aspects of human physiology. Chemokines share the characteristic feature of reversibly existing as monomers and dimers, and their functional response is intimately coupled to interaction with glycosaminoglycans (GAGs). Currently, nothing is known regarding the structural basis or molecular mechanisms underlying CXCL5-GAG interactions. To address this missing knowledge, we characterized the interaction of a panel of heparin oligosaccharides to CXCL5 using solution NMR, isothermal titration calorimetry, and molecular dynamics simulations. NMR studies indicated that the dimer is the high-affinity GAG binding ligand and that lysine residues from the N-loop, 40s turn, β3 strand, and C-terminal helix mediate binding. Isothermal titration calorimetry indicated a stoichiometry of two oligosaccharides per CXCL5 dimer. NMR-based structural models reveal that these residues form a contiguous surface within a monomer and, interestingly, that the GAG-binding domain overlaps with the receptor-binding domain, indicating that a GAG-bound chemokine cannot activate the receptor. Molecular dynamics simulations indicate that the roles of the individual lysines are not equivalent and that helical lysines play a more prominent role in determining binding geometry and affinity. Further, binding interactions and GAG geometry in CXCL5 are novel and distinctly different compared with the related chemokines CXCL1 and CXCL8. We conclude that a finely tuned balance between the GAG-bound dimer and free soluble monomer regulates CXCL5-mediated receptor signaling and function. PMID:27471273

  11. Tumor-derived CXCL8 signaling augments stroma-derived CCL2-promoted proliferation and CXCL12-mediated invasion of PTEN-deficient prostate cancer cells

    PubMed Central

    Maxwell, Pamela J.; Neisen, Jessica; Messenger, Johanna; Waugh, David J.J.

    2014-01-01

    Impaired PTEN function is a genetic hallmark of aggressive prostate cancers (CaP) and is associated with increased CXCL8 expression and signaling. The current aim was to further characterize biological responses and mechanisms underpinning CXCL8-promoted progression of PTEN-depleted prostate cancer, focusing on characterizing the potential interplay between CXCL8 and other disease-promoting chemokines resident within the prostate tumor microenvironment. Autocrine CXCL8-stimulation (i) increased expression of CXCR1 and CXCR2 in PTEN-deficient CaP cells suggesting a self-potentiating signaling axis and (ii) induced expression of CXCR4 and CCR2 in PTEN-wild-type and PTEN-depleted CaP cells. In contrast, paracrine CXCL8 signaling induced expression and secretion of the chemokines CCL2 and CXCL12 from prostate stromal WPMY-1 fibroblasts and monocytic macrophage-like THP-1 cells. In vitro studies demonstrated functional co-operation of tumor-derived CXCL8 with stromal-derived chemokines. CXCL12-induced migration of PC3 cells and CCL2-induced proliferation of prostate cancer cells were dependent upon intrinsic CXCL8 signaling within the prostate cancer cells. For example, in co-culture experiments, CXCL12/CXCR4 signaling but not CCL2/CCR2 signaling supported fibroblast-mediated migration of PC3 cells while CXCL12/CXCR4 and CCL2/CCR2 signaling underpinned monocyte-enhanced migration of PC3 cells. Combined inhibition of both CXCL8 and CXCL12 signaling was more effective in inhibiting fibroblast-promoted cell motility while repression of CXCL8 attenuated CCL2-promoted proliferation of prostate cancer cells. We conclude that tumor-derived CXCL8 signaling from PTEN-deficient tumor cells increases the sensitivity and responsiveness of CaP cells to stromal chemokines by concurrently upregulating receptor expression in cancer cells and inducing stromal chemokine synthesis. Combined chemokine targeting may be required to inhibit their multi-faceted actions in promoting the

  12. The Atypical Chemokine Receptor ACKR2 is Protective Against Sepsis.

    PubMed

    Castanheira, Fernanda V E Silva; Borges, Vanessa; Sônego, Fabiane; Kanashiro, Alexandre; Donate, Paula B; Melo, Paulo H; Pallas, Kenneth; Russo, Remo C; Amaral, Flávio A; Teixeira, Mauro M; Ramalho, Fernando S; Cunha, Thiago M; Liew, Foo Y; Alves-Filho, José C; Graham, Gerard J; Cunha, Fernando Q

    2018-06-01

    Sepsis is a systemic inflammatory response as a result of uncontrolled infections. Neutrophils are the first cells to reach the primary sites of infection, and chemokines play a key role in recruiting neutrophils. However, in sepsis chemokines could also contribute to neutrophil infiltration to vital organs leading to multiple organ failure. ACKR2 is an atypical chemokine receptor, which can remove and degrade inflammatory CC chemokines. The role of ACK2 in sepsis is unknown. Using a model of cecal ligation and puncture (CLP), we demonstrate here that ACKR2 deficient () mice exhibited a significant reduction in the survival rate compared with similarly treated wild-type (WT) mice. However, neutrophil migration to the peritoneal cavity and bacterial load were similar between WT and ACKR2 mice during CLP. In contrast, ACKR2 mice showed increased neutrophil infiltration and elevated CC chemokine levels in the lung, kidney, and heart compared with the WT mice. In addition, ACKR2 mice also showed more severe lesions in the lung and kidney than those in the WT mice. Consistent with these results, WT mice under nonsevere sepsis (90% survival) had higher expression of ACKR2 in these organs than mice under severe sepsis (no survival). Finally, the lungs from septic patients showed increased number of ACKR2 cells compared with those of nonseptic patients. Our data indicate that ACKR2 may have a protective role during sepsis, and the absence of ACKR2 leads to exacerbated chemokine accumulation, neutrophil infiltration, and damage to vital organs.

  13. Platelet chemokines in vascular disease

    PubMed Central

    Gleissner, Christian A.; von Hundelshausen, Philipp; Ley, Klaus

    2009-01-01

    Platelets are a rich source of different chemokines and express chemokine receptors. CXCL4 is highly abundant in platelets and involved in promoting monocyte arrest from rolling and monocyte differentiation to macrophages. CXCL4 can also associate with CCL5 and amplify its effect on monocytes. The megakaryocyte CXCL7 gene product is proteolytically cleaved into the strong neutrophil chemoattractant, NAP-2, which has also been implicated in repair cell homing to vascular lesions. Platelet adhesion can induce release of CCL2 and CXCL8 from endothelial cells. Conversely, the chemokines CCL17, CCL22 and CXCL12 made by other cells amplify platelet activation. Platelet chemokines enhance recruitment of various hematopoietic cells to the vascular wall, fostering processes such as neointima formation, atherosclerosis, and thrombosis but also vessel repair and regeneration after vascular injury. PMID:18723831

  14. The Modulatory Properties of Chronic Antidepressant Drugs Treatment on the Brain Chemokine - Chemokine Receptor Network: A Molecular Study in an Animal Model of Depression.

    PubMed

    Trojan, Ewa; Ślusarczyk, Joanna; Chamera, Katarzyna; Kotarska, Katarzyna; Głombik, Katarzyna; Kubera, Marta; Basta-Kaim, Agnieszka

    2017-01-01

    An increasing number of studies indicate that the chemokine system may be the third major communication system of the brain. Therefore, the role of the chemokine system in the development of brain disorders, including depression, has been recently proposed. However, little is known about the impact of the administration of various antidepressant drugs on the brain chemokine - chemokine receptor axis. In the present study, we used an animal model of depression based on the prenatal stress procedure. We determined whether chronic treatment with tianeptine, venlafaxine, or fluoxetine influenced the evoked by prenatal stress procedure changes in the mRNA and protein levels of the homeostatic chemokines, CXCL12 (SDF-1α), CX3CL1 (fractalkine) and their receptors, in the hippocampus and frontal cortex. Moreover, the impact of mentioned antidepressants on the TGF-β, a molecular pathway related to fractalkine receptor (CX3CR1), was explored. We found that prenatal stress caused anxiety and depressive-like disturbances in adult offspring rats, which were normalized by chronic antidepressant treatment. Furthermore, we showed the stress-evoked CXCL12 upregulation while CXCR4 downregulation in hippocampus and frontal cortex. CXCR7 expression was enhanced in frontal cortex but not hippocampus. Furthermore, the levels of CX3CL1 and CX3CR1 were diminished by prenatal stress in the both examined brain areas. The mentioned changes were normalized with various potency by chronic administration of tested antidepressants. All drugs in hippocampus, while tianeptine and venlafaxine in frontal cortex normalized the CXCL12 level in prenatally stressed offspring. Moreover, in hippocampus only fluoxetine enhanced CXCR4 level, while fluoxetine and tianeptine diminished CXCR7 level in frontal cortex. Additionally, the diminished by prenatal stress levels of CX3CL1 and CX3CR1 in the both examined brain areas were normalized by chronic tianeptine and partially fluoxetine administration

  15. Secreted adenosine triphosphate from Aggregatibacter actinomycetemcomitans triggers chemokine response.

    PubMed

    Ding, Q; Quah, S Y; Tan, K S

    2016-10-01

    Extracellular ATP (eATP) is an important intercellular signaling molecule secreted by activated immune cells or released by damaged cells. In mammalian cells, a rapid increase of ATP concentration in the extracellular space sends a danger signal, which alerts the immune system of an impending danger, resulting in recruitment and priming of phagocytes. Recent studies show that bacteria also release ATP into the extracellular milieu, suggesting a potential role for eATP in host-microbe interactions. It is currently unknown if any oral bacteria release eATP. As eATP triggers and amplifies innate immunity and inflammation, we hypothesized that eATP secreted from periodontal bacteria may contribute to inflammation in periodontitis. The aims of this study were to determine if periodontal bacteria secrete ATP, and to determine the function of bacterially derived eATP as an inducer of inflammation. Our results showed that Aggregatibacter actinomycetemcomitans, but not Porphyromonas gingivalis, Prevotella intermedia, or Fusobacterium nucleatum, secreted ATP into the culture supernatant. Exposure of periodontal fibroblasts to filter sterilized culture supernatant of A. actinomycetemcomitans induced chemokine expression in an eATP-dependent manner. This occurred independently of cyclic adenosine monophosphate and phospholipase C, suggesting that ionotrophic P2X receptor is involved in sensing of bacterial eATP. Silencing of P2X7 receptor in periodontal fibroblasts led to a significant reduction in bacterial eATP-induced chemokine response. Furthermore, bacterial eATP served as a potent chemoattractant for neutrophils and monocytes. Collectively, our findings provide evidence for secreted ATP of A. actinomycetemcomitans as a novel virulence factor contributing to inflammation during periodontal disease. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Rat astrocytes during anoxia: Secretome profile of cytokines and chemokines.

    PubMed

    Samy, Zeinab Adel; Al-Abdullah, Lulwa; Turcani, Marian; Craik, James; Redzic, Zoran

    2018-06-04

    The precise mechanisms of the inflammatory responses after cerebral ischemia in vivo are difficult to elucidate because of the complex nature of multiple series of interactions between cells and molecules. This study explored temporal patterns of secretion of 30 cytokines and chemokines from Sprague Dawley rat astrocytes in primary culture in order to elucidate signaling pathways that are triggered by astrocytes during anoxia. Primary cultures of rat brain astrocytes were incubated for periods of 2-24 hr in the absence of oxygen (anoxia) or under normal partial pressure of oxygen (controls). Simultaneous detection of 29 cytokines and chemokines in the samples was performed using a rat cytokine array panel, while the temporal pattern of angiopoietin-1 (Ang-1) secretion was determined separately using ELISA. Wilcoxon-Mann-Whitney test was used to compare normoxic and anoxic samples and the Hodge-Lehman estimator with exact 95% confidence intervals was computed to assess the size of differences in cytokine secretion. The obtained data were imported into the Core Analysis tool of Ingenuity Pathways Analysis software in order to relate changes in secretion of cytokines and chemokines from astrocytes during anoxia to potential molecular signal networks. With the exception of Ang-1, concentrations of all cytokines/chemokines in samples collected after anoxia exposure were either the same, or higher, than in control groups. No clear pattern of changes could be established for groups of cytokines with similar effects (i.e., pro- or anti-inflammatory cytokines). The pattern of changes in cytokine secretion during anoxia was associated with the HIF-1α-mediated response, as well as cytokines IL-1β and cathepsin S pathways, which are related to initiation of inflammation and antigen presentation, respectively, and to ciliary neurotrophic factor. These in vitro findings suggest that astrocytes may play a role in triggering inflammation during anoxia/ischemia of the brain.

  17. A study of chemokines, chemokine receptors and interleukin-6 in patients with panic disorder, personality disorders and their co-morbidity.

    PubMed

    Ogłodek, Ewa A; Szota, Anna M; Just, Marek J; Szromek, Adam R; Araszkiewicz, Aleksander

    2016-08-01

    Stress may induce inflammatory changes in the immune system and activate pro-inflammatory cytokines and their receptors by activating the hypothalamic-pituitary-adrenal axis. 460 hospitalized patients with panic disorders (PD) and/or personality disorders (P) were studied. The study group comprised subjects with PD, avoidant personality disorder (APD), borderline personality disorder (BPD), obsessive-compulsive personality disorder (OCPD), and concomitant (PD+APD; PD+BPD; PD+OCPD). Each study group consisted of 60 subjects (30 females and 30 males). The control group included 20 females and 20 males without any history of mental disorder. ELISA was used to assess the levels of chemokines: CCL-5/RANTES (regulated on activation, normal T-cell expressed and secreted), CXCL-12/SDF-1 (stromal derived factor), their receptors CXCR-5 (C-C chemokine receptor type-5), CXCR-4 (chemokine C-X-C motif receptor-4), and IL-6. Statistically significant differences in the levels of CCL-5 and CCR-5 were revealed between all study groups. The greatest differences were found between the groups with PD+OCPD and PD+APD. Moreover, concomitance of PD with P significantly increased the level of chemokines and their receptors in all study groups versus the subjects with P alone. The results of the study show differences between the groups. To be specific, inflammatory markers were more elevated in the study groups than the controls. Therefore, chemokines and chemokine receptors may be used as inflammatory markers in patients with PD co-existent with P to indicate disease severity. PD was found to be a factor in maintaining inflammatory activity in the immune system in patients with P. Copyright © 2016 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  18. Agonist-induced Endocytosis of CC Chemokine Receptor 5 Is Clathrin Dependent

    PubMed Central

    Signoret, Nathalie; Hewlett, Lindsay; Wavre, Silène; Pelchen-Matthews, Annegret; Oppermann, Martin; Marsh, Mark

    2005-01-01

    The signaling activity of several chemokine receptors, including CC chemokine receptor 5 (CCR5), is in part controlled by their internalization, recycling, and/or degradation. For CCR5, agonists such as the chemokine CCL5 induce internalization into early endosomes containing the transferrin receptor, a marker for clathrin-dependent endocytosis, but it has been suggested that CCR5 may also follow clathrin-independent routes of internalization. Here, we present a detailed analysis of the role of clathrin in chemokine-induced CCR5 internalization. Using CCR5-transfected cell lines, immunofluorescence, and electron microscopy, we demonstrate that CCL5 causes the rapid redistribution of scattered cell surface CCR5 into large clusters that are associated with flat clathrin lattices. Invaginated clathrin-coated pits could be seen at the edge of these lattices and, in CCL5-treated cells, these pits contain CCR5. Receptors internalized via clathrin-coated vesicles follow the clathrin-mediated endocytic pathway, and depletion of clathrin with small interfering RNAs inhibits CCL5-induced CCR5 internalization. We found no evidence for CCR5 association with caveolae during agonist-induced internalization. However, sequestration of cholesterol with filipin interferes with agonist binding to CCR5, suggesting that cholesterol and/or lipid raft domains play some role in the events required for CCR5 activation before internalization. PMID:15591129

  19. Structural basis of receptor sulfotyrosine recognition by a CC chemokine: the N-terminal region of CCR3 bound to CCL11/eotaxin-1.

    PubMed

    Millard, Christopher J; Ludeman, Justin P; Canals, Meritxell; Bridgford, Jessica L; Hinds, Mark G; Clayton, Daniel J; Christopoulos, Arthur; Payne, Richard J; Stone, Martin J

    2014-11-04

    Trafficking of leukocytes in immune surveillance and inflammatory responses is activated by chemokines engaging their receptors. Sulfation of tyrosine residues in peptides derived from the eosinophil chemokine receptor CCR3 dramatically enhances binding to cognate chemokines. We report the structural basis of this recognition and affinity enhancement. We describe the structure of a CC chemokine (CCL11/eotaxin-1) bound to a fragment of a chemokine receptor: residues 8–23 of CCR3, including two sulfotyrosine residues. We also show that intact CCR3 is sulfated and sulfation enhances receptor activity. The CCR3 sulfotyrosine residues form hydrophobic, salt bridge and cation-p interactions with residues that are highly conserved in CC chemokines. However, the orientation of the chemokine relative to the receptor N terminus differs substantially from those observed for two CXC chemokines, suggesting that initial binding of the receptor sulfotyrosine residues guides subsequent steps in receptor activation, thereby influencing the receptor conformational changes and signaling.

  20. Prostaglandin F2alpha-F-prostanoid receptor signaling promotes neutrophil chemotaxis via chemokine (C-X-C motif) ligand 1 in endometrial adenocarcinoma.

    PubMed

    Wallace, Alison E; Sales, Kurt J; Catalano, Roberto D; Anderson, Richard A; Williams, Alistair R W; Wilson, Martin R; Schwarze, Jurgen; Wang, Hongwei; Rossi, Adriano G; Jabbour, Henry N

    2009-07-15

    The prostaglandin F(2alpha) (PGF(2alpha)) receptor (FP) is elevated in endometrial adenocarcinoma. This study found that PGF(2alpha) signaling via FP regulates expression of chemokine (C-X-C motif) ligand 1 (CXCL1) in endometrial adenocarcinoma cells. Expression of CXCL1 and its receptor, CXCR2, are elevated in cancer tissue compared with normal endometrium and localized to glandular epithelium, endothelium, and stroma. Treatment of Ishikawa cells stably transfected with the FP receptor (FPS cells) with 100 nmol/L PGF(2alpha) increased CXCL1 promoter activity, mRNA, and protein expression, and these effects were abolished by cotreatment of cells with FP antagonist or chemical inhibitors of Gq, epidermal growth factor receptor, and extracellular signal-regulated kinase. Similarly, CXCL1 was elevated in response to 100 nmol/L PGF(2alpha) in endometrial adenocarcinoma explant tissue. CXCL1 is a potent neutrophil chemoattractant. The expression of CXCR2 colocalized to neutrophils in endometrial adenocarcinoma and increased neutrophils were present in endometrial adenocarcinoma compared with normal endometrium. Conditioned media from PGF(2alpha)-treated FPS cells stimulated neutrophil chemotaxis, which could be abolished by CXCL1 protein immunoneutralization of the conditioned media or antagonism of CXCR2. Finally, xenograft tumors in nude mice arising from inoculation with FPS cells showed increased neutrophil infiltration compared with tumors arising from wild-type cells or following treatment of mice bearing FPS tumors with CXCL1-neutralizing antibody. In conclusion, our results show a novel PGF(2alpha)-FP pathway that may regulate the inflammatory microenvironment in endometrial adenocarcinoma via neutrophil chemotaxis.

  1. An initial investigation into endothelial CC chemokine expression in the human rheumatoid synovium.

    PubMed

    Rump, Lisa; Mattey, Derek L; Kehoe, Oksana; Middleton, Jim

    2017-09-01

    Rheumatoid arthritis (RA) is a destructive and chronic autoimmune inflammatory disease. Synovial inflammation is a major feature of RA and is associated with leukocyte recruitment. Leukocytes cross the endothelial cells (ECs) into the synovial tissue and fluid and this migration is mediated via a range of chemokines and adhesion molecules on the ECs. As important mediators of leukocyte extravasation, a number of chemokines from each of the chemokine families have been established as expressed in the RA joint. However, as little information is available on which chemokines are expressed/presented by the ECs themselves, the purpose of the study was to ascertain which of the CC chemokines were localised in RA ECs. Immunofluoresence was used to assess the presence of the CC-family chemokines in RA synovial ECs using von-Willebrand factor (VWF) as a pan-endothelial marker and a range of human chemokine antibodies. The percentage of VWF positive vessels which were positive for the chemokines was determined. The presence of the four most highly expressed novel chemokines were further investigated in non-RA synovial ECs and the sera and synovial fluid (SF) from patients with RA and osteoarthritis (OA). Statistical analysis of immunofluorescence data was carried out by Student's t-test. For analysis of ELISA data, Kruskal-Wallis ANOVA followed by Dunn's multiple comparison test was utilised to analyse differences in sera and SF levels for each chemokine between RA and OA. Spearman rank correlations of sera and SF chemokine levels with a range of clinical variables were also performed. Chemokine detection varied, the least abundant being CCL27 which was present in 8.3% of RA blood vessels and the most abundant being CCL19 which was present in 80%. Of the 26 chemokines studied, 19 have not been previously observed in RA ECs. Four of these novel chemokines, namely CCL7, CCL14, CCL16 and CCL22 were present on ≥60% of vessels. CCL14 and CCL22 were shown to be increased in RA

  2. The Chemokine Receptor CCR1 Is Constitutively Active, Which Leads to G Protein-independent, β-Arrestin-mediated Internalization*

    PubMed Central

    Gilliland, C. Taylor; Salanga, Catherina L.; Kawamura, Tetsuya; Trejo, JoAnn; Handel, Tracy M.

    2013-01-01

    Activation of G protein-coupled receptors by their associated ligands has been extensively studied, and increasing structural information about the molecular mechanisms underlying ligand-dependent receptor activation is beginning to emerge with the recent expansion in GPCR crystal structures. However, some GPCRs are also able to adopt active conformations in the absence of agonist binding that result in the initiation of signal transduction and receptor down-modulation. In this report, we show that the CC-type chemokine receptor 1 (CCR1) exhibits significant constitutive activity leading to a variety of cellular responses. CCR1 expression is sufficient to induce inhibition of cAMP formation, increased F-actin content, and basal migration of human and murine leukocytes. The constitutive activity leads to basal phosphorylation of the receptor, recruitment of β-arrestin-2, and subsequent receptor internalization. CCR1 concurrently engages Gαi and β-arrestin-2 in a multiprotein complex, which may be accommodated by homo-oligomerization or receptor clustering. The data suggest the presence of two functional states for CCR1; whereas receptor coupled to Gαi functions as a canonical GPCR, albeit with high constitutive activity, the CCR1·β-arrestin-2 complex is required for G protein-independent constitutive receptor internalization. The pertussis toxin-insensitive uptake of chemokine by the receptor suggests that the CCR1·β-arrestin-2 complex may be related to a potential scavenging function of the receptor, which may be important for maintenance of chemokine gradients and receptor responsiveness in complex fields of chemokines during inflammation. PMID:24056371

  3. LPS-induced chemokine expression in both MyD88-dependent and -independent manners is regulated by Cot/Tpl2-ERK axis in macrophages.

    PubMed

    Bandow, Kenjiro; Kusuyama, Joji; Shamoto, Mitsuo; Kakimoto, Kyoko; Ohnishi, Tomokazu; Matsuguchi, Tetsuya

    2012-05-21

    LPS signaling is mediated through MyD88-dependent and -independent pathways, activating NF-?B, MAP kinases and IRF3. Cot/Tpl2 is an essential upstream kinase in LPS-mediated activation of ERKs. Here we explore the roles of MyD88 and Cot/Tpl2 in LPS-induced chemokine expression by studying myd88(-/-) and cot/tpl2(-/-) macrophages. Among the nine LPS-responsive chemokines examined, mRNA induction of ccl5, cxcl10, and cxcl13 is mediated through the MyD88-independent pathway. Notably, Cot/Tpl2-ERK signaling axis exerts negative effects on the expression of these three chemokines. In contrast, LPS-induced gene expression of ccl2, ccl7, cxcl2, cxcl3, ccl8, and cxcl9 is mediated in the MyD88-dependent manner. The Cot/Tpl2-ERK axis promotes the expression of the first four and inhibits the expression of the latter two. Thus, LPS induces expression of multiple chemokines through various signaling pathways in macrophages. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  4. Differential activity of pro-angiogenic CXC chemokines

    PubMed Central

    Moldobaeva, Aigul; Baek, Amy; Eldridge, Lindsey; Wagner, Elizabeth M.

    2010-01-01

    We showed previously in a mouse model of lung ischemia-induced angiogenesis, enhanced expression of the three ELR+ CXC chemokines (KC, LIX, and MIP-2 ) and that blockade of the ligand receptor CXCR2 limited neovascularization. The present study was undertaken to determine the relative abundance and angiogenic potential of the three CXC chemokines and whether RhoA activation explained the measured differences in potencies. We found that LIX showed the greatest absolute amount in the in vivo model 4 hrs after left pulmonary artery obstruction (LIX>KC>MIP-2; p<0.05). In vitro, LIX induced the greatest degree of arterial endothelial cell chemotaxis and KC was without effect. A significant increase (~40%) in active RhoA was observed with both LIX and MIP-2 compared with vehicle control (p<0.05). On average, LIX induced the greatest amount of tube formation within pleural tissue in culture. Thus, the results of the present study suggest that among the three ELR+ CXC chemokines, LIX predominates in eliciting a pro-angiogenic phenotype. PMID:20144627

  5. Gambogic acid inhibits multiple myeloma mediated osteoclastogenesis through suppression of chemokine receptor CXCR4 signaling pathways.

    PubMed

    Pandey, Manoj K; Kale, Vijay P; Song, Chunhua; Sung, Shen-shu; Sharma, Arun K; Talamo, Giampaolo; Dovat, Sinisa; Amin, Shantu G

    2014-10-01

    Bone disease, characterized by the presence of lytic lesions and osteoporosis is the hallmark of multiple myeloma (MM). Stromal cell-derived factor 1α (SDF-1α) and its receptor, CXC chemokine receptor 4 (CXCR4), has been implicated as a regulator of bone resorption, suggesting that agents that can suppress SDF1α/CXCR4 signaling might inhibit osteoclastogenesis, a process closely linked to bone resorption. We, therefore, investigated whether gambogic acid (GA), a xanthone, could inhibit CXCR4 signaling and suppress osteoclastogenesis induced by MM cells. Through docking studies we predicted that GA directly interacts with CXCR4. This xanthone down-regulates the expression of CXCR4 on MM cells in a dose- and time-dependent manner. The down-regulation of CXCR4 was not due to proteolytic degradation, but rather GA suppresses CXCR4 mRNA expression by inhibiting nuclear factor-kappa B (NF-κB) DNA binding. This was further confirmed by quantitative chromatin immunoprecipitation assay, as GA inhibits p65 binding at the CXCR4 promoter. GA suppressed SDF-1α-induced chemotaxis of MM cells and downstream signaling of CXCR4 by inhibiting phosphorylation of Akt, p38, and Erk1/2 in MM cells. GA abrogated the RANKL-induced differentiation of macrophages to osteoclasts in a dose- and time-dependent manner. In addition, we found that MM cells induced differentiation of macrophages to osteoclasts, and that GA suppressed this process. Importantly, suppression of osteoclastogenesis by GA was mediated through IL-6 inhibition. Overall, our results show that GA is a novel inhibitor of CXCR4 expression and has a strong potential to suppress osteoclastogenesis mediated by MM cells. Published by Elsevier Inc.

  6. IL-27 Modulates Chemokine Production in TNF-α -Stimulated Human Oral Epithelial Cells.

    PubMed

    Hosokawa, Yoshitaka; Hosokawa, Ikuko; Ozaki, Kazumi; Matsuo, Takashi

    2017-01-01

    Interleukin-27 (IL-27) is a cytokine which belongs to the IL-12 family. However, the role of IL-27 in the pathogenesis of periodontal disease is uncertain. The aim of this study was to examine the effect of IL-27 on chemokine production in TNF-α-stimulated human oral epithelial cells (TR146). We measured chemokine production in TR146 by ELISA. We used western blot analysis to detect the phosphorylation levels of signal transduction molecules, including STAT1 and STAT3 in TR146. We used inhibitors to examine the role of STAT1 and STAT3 activation. IL-27 increased CXCR3 ligands production in TNF-α-stimulated TR146. Meanwhile, IL-27 suppressed IL-8 and CCL20 production induced by TNF-α. STAT1 phosphorylation level in IL-27 and TNF-α-stimulated TR146 was enhanced in comparison to TNF-α-stimulated TR146. STAT3 phosphorylation level in IL-27-treated TR146 did not change by TNF-α. Both STAT1 inhibitor and STAT3 inhibitor decreased CXCR3 ligands production. STAT1 inhibitor overrode the inhibitory effect of IL-27 on IL-8 and CCL20 production in TNF-α-stimulated TR146. Meanwhile, STAT3 inhibitor did not modulate IL-8 and CCL20 production. IL-27 might control leukocyte migration in periodontal lesion by modulating chemokine production from epithelial cells. © 2017 The Author(s). Published by S. Karger AG, Basel.

  7. CC-chemokine class inhibition attenuates pathological angiogenesis while preserving physiological angiogenesis.

    PubMed

    Ridiandries, Anisyah; Tan, Joanne T M; Ravindran, Dhanya; Williams, Helen; Medbury, Heather J; Lindsay, Laura; Hawkins, Clare; Prosser, Hamish C G; Bursill, Christina A

    2017-03-01

    Increasing evidence shows that CC-chemokines promote inflammatory-driven angiogenesis, with little to no effect on hypoxia-mediated angiogenesis. Inhibition of the CC-chemokine class may therefore affect angiogenesis differently depending on the pathophysiological context. We compared the effect of CC-chemokine inhibition in inflammatory and physiological conditions. In vitro , the broad-spectrum CC-chemokine inhibitor "35K" inhibited inflammatory-induced endothelial cell proliferation, migration, and tubulogenesis, with more modest effects in hypoxia. In vivo , adenoviruses were used to overexpress 35K (Ad35K) and GFP (AdGFP, control virus). Plasma chemokine activity was suppressed by Ad35K in both models. In the periarterial femoral cuff model of inflammatory-driven angiogenesis, overexpression of 35K inhibited adventitial neovessel formation compared with control AdGFP-infused mice. In contrast, 35K preserved neovascularization in the hindlimb ischemia model and had no effect on physiological neovascularization in the chick chorioallantoic membrane assay. Mechanistically, 2 key angiogenic proteins (VEGF and hypoxia-inducible factor-1α) were conditionally regulated by 35K, such that expression was inhibited in inflammation but was unchanged in hypoxia. In conclusion, CC-chemokine inhibition by 35K suppresses inflammatory-driven angiogenesis while preserving physiological ischemia-mediated angiogenesis via conditional regulation of VEGF and hypoxia-inducible factor-1α. CC-chemokine inhibition may be an alternative therapeutic strategy for suppressing diseases associated with inflammatory angiogenesis without inducing the side effects caused by global inhibition.- Ridiandries, A., Tan, J. T. M., Ravindran, D., Williams, H., Medbury, H. J., Lindsay, L., Hawkins, C., Prosser, H. C. G., Bursill, C. A. CC-chemokine class inhibition attenuates pathological angiogenesis while preserving physiological angiogenesis. © FASEB.

  8. The group VIA calcium-independent phospholipase A2 and NFATc4 pathway mediates IL-1β-induced expression of chemokines CCL2 and CXCL10 in rat fibroblasts.

    PubMed

    Kuwata, Hiroshi; Yuzurihara, Chihiro; Kinoshita, Natsumi; Taki, Yuki; Ikegami, Yuki; Washio, Sana; Hirakawa, Yushi; Yoda, Emiko; Aiuchi, Toshihiro; Itabe, Hiroyuki; Nakatani, Yoshihito; Hara, Shuntaro

    2018-06-01

    Chemokines are secreted proteins that regulate cell migration and are involved in inflammatory and immune responses. Here, we sought to define the functional crosstalk between the lipid signaling and chemokine signaling. We obtained evidence that the induction of some chemokines is regulated by group VIA calcium-independent phospholipase A 2 β (iPLA 2 β) in IL-1β-stimulated rat fibroblastic 3Y1 cells. Treatment of 3Y1 cells with IL-1β elicited an increased release of chemotactic factor(s) for monocytic THP-1 cells into culture medium in a time-dependent manner. Inhibitor studies revealed that an intracellular PLA 2 inhibitor, arachidonoyl trifluoromethyl ketone (AACOCF 3 ), but not the cyclooxygenase inhibitor indomethacin, attenuated the release of chemotactic factor(s). The chemotactic activity was inactivated by treatment with either heat or proteinase K, suggesting this chemotactic factor(s) is a proteinaceous factor(s). We purified the chemotactic factor(s) from the conditioned medium of IL-1β-stimulated 3Y1 cells using a heparin column and identified several chemokines, including CCL2 and CXCL10. The inducible expressions of CCL2 and CXCL10 were significantly attenuated by pretreatment with AACOCF 3 . Gene silencing using siRNA revealed that the inductions of CCL2 and CXCL10 were attenuated by iPLA 2 β knockdown. Additionally, the transcriptional activation of nuclear factor of activated T-cell proteins (NFATs), but not nuclear factor-κB, by IL-1β stimulation was markedly attenuated by the iPLA 2 inhibitor bromoenol lactone, and NFATc4 knockdown markedly attenuated the IL-1β-induced expression of both CCL2 and CXCL10. Collectively, these results indicated that iPLA 2 β plays roles in IL-1β-induced chemokine expression, in part via NFATc4 signaling. © 2018 Federation of European Biochemical Societies.

  9. Chemokine RANTES in atopic dermatitis.

    PubMed

    Glück, J; Rogala, B

    1999-01-01

    Chemokines play a key role in inflammatory diseases. The aim of this study was to estimate chemokine RANTES in the sera of patients with atopic dermatitis (AD) and to analyze the correlation between RANTES serum level and the immunological and clinical parameters of the disease. Serum levels of RANTES (ELISA; R&D Systems), total IgE and specific IgE (FEIA; Pharmacia CAP System) were estimated in 24 patients with AD, 28 patients with pollinosis (PL) and 22 healthy nonatopic subjects (HC). The division of the AD group into a pure AD (pAD) subgroup, without a coexisting respiratory allergy, and a subgroup of patients with AD and a respiratory allergy (AD+AO) was done according to Wütrich. Levels of RANTES were higher in the AD group than in the HC group and the PL group. RANTES levels did not differ among subgroups with various clinical scores and between the pAD and AD+AO subgroups. There were no correlations between levels of RANTES and total IgE. Significant positive correlations between serum levels of RANTES and Dermatophagoides farinae and cat dander-specific IgE were found in the AD group. We conclude that the serum level of chemokine RANTES differs patients with AD from patients with PL. The increase of RANTES concentration in the serum of patients with AD depends neither on a clinical picture nor an IgE system.

  10. Dogs infected with the blood trypomastigote form of Trypanosoma cruzi display an increase expression of cytokines and chemokines plus an intense cardiac parasitism during acute infection.

    PubMed

    de Souza, Sheler Martins; Vieira, Paula Melo de Abreu; Roatt, Bruno Mendes; Reis, Levi Eduardo Soares; da Silva Fonseca, Kátia; Nogueira, Nívia Carolina; Reis, Alexandre Barbosa; Tafuri, Washington Luiz; Carneiro, Cláudia Martins

    2014-03-01

    The recent increase in immigration of people from areas endemic for Chagas disease (Trypanosoma cruzi) to the United States and Europe has raised concerns about the transmission via blood transfusion and organ transplants in these countries. Infection by these pathways occurs through blood trypomastigotes (BT), and these forms of T. cruzi are completely distinct of metacyclic trypomastigotes (MT), released by triatomine vector, in relation to parasite-host interaction. Thus, research comparing infection with these different infective forms is important for explaining the potential impacts on the disease course. Here, we investigated tissue parasitism and relative mRNA expression of cytokines, chemokines, and chemokine receptors in the heart during acute infection by MT or BT forms in dogs. BT-infected dogs presented a higher cardiac parasitism, increased relative mRNA expression of pro-inflammatory and immunomodulatory cytokines and of the chemokines CCL3/MIP-1α, CCL5/RANTES, and the chemokine receptor CCR5 during the acute phase of infection, as compared to MT-infected dogs. These results suggest that infection with BT forms may lead to an increased immune response, as revealed by the cytokines ratio, but this kind of immune response was not able to control the cardiac parasitism. Infection with the MT form presented an increase in the relative mRNA expression of IL-12p40 as compared to that of IL-10 or TGF-β1. Correlation analysis showed increased relative mRNA expression of IFN-γ as well as IL-10, which may be an immunomodulatory response, as well as an increase in the correlation of CCL5/RANTES and its CCR5 receptor. Our findings revealed a difference between inoculum sources of T. cruzi, as vectorial or transfusional routes of T. cruzi infection may trigger distinct parasite-host interactions during the acute phase, which may influence immunopathological aspects of Chagas disease. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Citrullinated Chemokines in Rheumatoid Arthritis

    DTIC Science & Technology

    2014-10-01

    fluids (SFs) compared to osteoarthritis (OA) and other inflammatory rheumatic diseases (OD) SFs, and its concentration correlates with RA disease ...osteoarthritis (OA), and other inflammatory rheumatic disease (OD) synovial fluids (SFs). The correlation between the citrullinated chemokine levels and...Objectives: Specific Aim 1: To determine how citrullinated chemokines compare in RA, vs. OA, vs. other rheumatic diseases (OD), vs. NLs. Major Task 1

  12. Murine lung eosinophil activation and chemokine production in allergic airway inflammation

    PubMed Central

    Rose, C Edward; Lannigan, Joanne A; Kim, Paul; Lee, James J; Fu, Shu Man; Sung, Sun-sang J

    2010-01-01

    Eosinophils play important roles in asthma and lung infections. Murine models are widely used for assessing the functional significance and mechanistic basis for eosinophil involvements in these diseases. However, little is known about tissue eosinophils in homeostasis. In addition, little data on eosinophil chemokine production during allergic airway inflammation are available. In this study, the properties and functions of homeostatic and activated eosinophils were compared. Eosinophils from normal tissues expressed costimulation and adhesion molecules B7-1, B7-2 and ICAM-1 for Ag presentation but little major histocompatibility complex (MHC) class II, and were found to be poor stimulators of T-cell proliferation. However, these eosinophils expressed high levels of chemokine mRNA including C10, macrophage inflammatory protein (MIP)-1α, MIP-1γ, MIP-2, eotaxin and monocyte chemoattractant protein-5 (MCP-5), and produced chemokine proteins. Eosinophil intracellular chemokines decreased rapidly with concomitant surface marker downregulation upon in vitro culturing consistent with piecemeal degranulation. Lung eosinophils from mice with induced allergic airway inflammation exhibited increased chemokines mRNA expression and chemokines protein production and upregulated MHC class II and CD11c expression. They were also found to be the predominant producers of the CCR1 ligands CCL6/C10 and CCL9/MIP-1γ in inflamed lungs. Eosinophil production of C10 and MIP-1γ correlated with the marked influx of CD11bhigh lung dendritic cells during allergic airway inflammation and the high expression of CCR1 on these dendritic cells (DCs). The study provided baseline information on tissue eosinophils, documented the upregulation of activation markers and chemokine production in activated eosinophils, and indicated that eosinophils were a key chemokine-producing cell type in allergic lung inflammation. PMID:20622891

  13. The dependence of chemokine–glycosaminoglycan interactions on chemokine oligomerization

    PubMed Central

    Dyer, Douglas P; Salanga, Catherina L; Volkman, Brian F; Kawamura, Tetsuya; Handel, Tracy M

    2016-01-01

    Both chemokine oligomerization and binding to glycosaminoglycans (GAGs) are required for their function in cell recruitment. Interactions with GAGs facilitate the formation of chemokine gradients, which provide directional cues for migrating cells. In contrast, chemokine oligomerization is thought to contribute to the affinity of GAG interactions by providing a more extensive binding surface than single subunits alone. However, the importance of chemokine oligomerization to GAG binding has not been extensively quantified. Additionally, the ability of chemokines to form different oligomers has been suggested to impart specificity to GAG interactions, but most studies have been limited to heparin. In this study, several differentially oligomerizing chemokines (CCL2, CCL3, CCL5, CCL7, CXCL4, CXCL8, CXCL11 and CXCL12) and select oligomerization-deficient mutants were systematically characterized by surface plasmon resonance to determine their relative affinities for heparin, heparan sulfate (HS) and chondroitin sulfate-A (CS-A). Wild-type chemokines demonstrated a hierarchy of binding affinities for heparin and HS that was markedly dependent on oligomerization. These results were corroborated by their relative propensity to accumulate on cells and the critical role of oligomerization in cell presentation. CS-A was found to exhibit greater chemokine selectivity than heparin or HS, as it only bound a subset of chemokines; moreover, binding to CS-A was ablated with oligomerization-deficient mutants. Overall, this study definitively demonstrates the importance of oligomerization for chemokine–GAG interactions, and demonstrates diversity in the affinity and specificity of different chemokines for GAGs. These data support the idea that GAG interactions provide a mechanism for fine-tuning chemokine function. PMID:26582609

  14. Signaling through three chemokine receptors triggers the migration of transplanted neural precursor cells in a model of multiple sclerosis.

    PubMed

    Cohen, Mikhal E; Fainstein, Nina; Lavon, Iris; Ben-Hur, Tamir

    2014-09-01

    Multiple sclerosis (MS) is a multifocal disease, and precursor cells need to migrate into the multiple lesions in order to exert their therapeutic effects. Therefore, cell migration is a crucial element in regenerative processes in MS, dictating the route of delivery, when cell transplantation is considered. We have previously shown that inflammation triggers migration of multi-potential neural precursor cells (NPCs) into the white matter of experimental autoimmune encephalomyelitis (EAE) rodents, a widely used model of MS. Here we investigated the molecular basis of this attraction. NPCs were grown from E13 embryonic mouse brains and transplanted into the lateral cerebral ventricles of EAE mice. Transplanted NPC migration was directed by three tissue-derived chemokines. Stromal cell-derived factor-1α, monocyte chemo-attractant protein-1 and hepatocyte growth factor were expressed in the EAE brain and specifically in microglia and astrocytes. Their cognate receptors, CXCR4, CCR2 or c-Met were constitutively expressed on NPCs. Selective blockage of CXCR4, CCR2 or c-Met partially inhibited NPC migration in EAE brains. Blocking all three receptors had an additive effect and resulted in profound inhibition of NPC migration, as compared to extensive migration of control NPCs. The inflammation-triggered NPC migration into white matter tracts was dependent on a motile NPC phenotype. Specifically, depriving NPCs from epidermal growth factor (EGF) prevented the induction of glial commitment and a motile phenotype (as indicated by an in vitro motility assay), hampering their response to neuroinflammation. In conclusion, signaling via three chemokine systems accounts for most of the inflammation-induced, tissue-derived attraction of transplanted NPCs into white matter tracts during EAE. Copyright © 2014. Published by Elsevier B.V.

  15. Citrullinated Chemokines in Rheumatoid Arthritis

    DTIC Science & Technology

    2015-10-01

    1 AWARD NUMBER: W81XWH-13-1-0210 TITLE: Citrullinated Chemokines in Rheumatoid Arthritis PRINCIPAL INVESTIGATOR: David A. Fox CONTRACTING...CONTRACT NUMBER Citrullinated Chemokines in Rheumatoid Arthritis 5b. GRANT NUMBER W81XWH-13-1-0210 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) David A. Fox...citrulline, which contributes to the pathogenesis of rheumatoid arthritis (RA). We show that citrullinated epithelial- derived neutrophil-activating peptide 78

  16. The chemokine decoy receptor D6 prevents excessive inflammation and adverse ventricular remodeling after myocardial infarction.

    PubMed

    Cochain, Clément; Auvynet, Constance; Poupel, Lucie; Vilar, José; Dumeau, Edouard; Richart, Adèle; Récalde, Alice; Zouggari, Yasmine; Yin, Kiave Yune Ho Wang; Bruneval, Patrick; Renault, Gilles; Marchiol, Carmen; Bonnin, Philippe; Lévy, Bernard; Bonecchi, Raffaella; Locati, Massimo; Combadière, Christophe; Silvestre, Jean-Sébastien

    2012-09-01

    Leukocyte infiltration in ischemic areas is a hallmark of myocardial infarction, and overwhelming infiltration of innate immune cells has been shown to promote adverse remodeling and cardiac rupture. Recruitment of inflammatory cells in the ischemic heart depends highly on the family of CC-chemokines and their receptors. Here, we hypothesized that the chemokine decoy receptor D6, which specifically binds and scavenges inflammatory CC-chemokines, might limit inflammation and adverse cardiac remodeling after infarction. D6 was expressed in human and murine infarcted myocardium. In a murine model of myocardial infarction, D6 deficiency led to increased chemokine (C-C motif) ligand 2 and chemokine (C-C motif) ligand 3 levels in the ischemic heart. D6-deficient (D6(-/-)) infarcts displayed increased infiltration of pathogenic neutrophils and Ly6Chi monocytes, associated with strong matrix metalloproteinase-9 and matrix metalloproteinase-2 activities in the ischemic heart. D6(-/-) mice were cardiac rupture prone after myocardial infarction, and functional analysis revealed that D6(-/-) hearts had features of adverse remodeling with left ventricle dilation and reduced ejection fraction. Bone marrow chimera experiments showed that leukocyte-borne D6 had no role in this setting, and that leukocyte-specific chemokine (C-C motif) receptor 2 deficiency rescued the adverse phenotype observed in D6(-/-) mice. We show for the first time that the chemokine decoy receptor D6 limits CC-chemokine-dependent pathogenic inflammation and is required for adequate cardiac remodeling after myocardial infarction.

  17. Chemokine guided angiogenesis directs coronary vasculature formation in zebrafish

    PubMed Central

    Harrison, Michael R.M.; Bussmann, Jeroen; Huang, Ying; Zhao, Long; Osorio, Arthela; Burns, C. Geoffrey; Burns, Caroline E.; Sucov, Henry M.; Siekmann, Arndt F.; Lien, Ching-Ling

    2015-01-01

    SUMMARY Interruption of coronary blood supply severely impairs heart function with often-fatal consequences for heart disease patients. However the formation and maturation of these coronary vessels is not fully understood. Here we provide a detailed analysis of coronary vessel development in zebrafish. We observe that coronary vessels form in zebrafish by angiogenic sprouting of arterial cells derived from the endocardium at the atrioventricular canal. Endothelial cells express the CXC-motif chemokine receptor Cxcr4a and migrate to vascularize the ventricle under the guidance of the myocardium-expressed ligand Cxcl12b. cxcr4a mutant zebrafish fail to form a vascular network, whereas ectopic expression of Cxcl12b ligand induces coronary vessel formation. Importantly, cxcr4a mutant zebrafish fail to undergo heart regeneration following injury. Our results suggest that chemokine-signaling has an essential role in coronary vessel formation by directing migration of endocardium-derived endothelial cells. Poorly developed vasculature in cxcr4a mutants likely underlies decreased regenerative potential in adults. PMID:26017769

  18. Chemokine Function in Periodontal Disease and Oral Cavity Cancer

    PubMed Central

    Sahingur, Sinem Esra; Yeudall, W. Andrew

    2015-01-01

    The chemotactic cytokines, or chemokines, comprise a superfamily of polypeptides with a wide range of activities that include recruitment of immune cells to sites of infection and inflammation, as well as stimulation of cell proliferation. As such, they function as antimicrobial molecules and play a central role in host defenses against pathogen challenge. However, their ability to recruit leukocytes and potentiate or prolong the inflammatory response may have profound implications for the progression of oral diseases such as chronic periodontitis, where tissue destruction may be widespread. Moreover, it is increasingly recognized that chronic inflammation is a key component of tumor progression. Interaction between cancer cells and their microenvironment is mediated in large part by secreted factors such as chemokines, and serves to enhance the malignant phenotype in oral and other cancers. In this article, we will outline the biological and biochemical mechanisms of chemokine action in host–microbiome interactions in periodontal disease and in oral cancer, and how these may overlap and contribute to pathogenesis. PMID:25999952

  19. Antimycotics suppress the Malassezia extract-induced production of CXC chemokine ligand 10 in human keratinocytes.

    PubMed

    Hau, Carren S; Kanda, Naoko; Makimura, Koichi; Watanabe, Shinichi

    2014-02-01

    Malassezia, a lipophilic yeast, exacerbates atopic dermatitis. Malassezia products can penetrate the disintegrated stratum corneum and encounter subcorneal keratinocytes in the skin of atopic dermatitis patients. Type 1 helper T (Th1) cells infiltrate chronic lesions with atopic dermatitis, and antimycotic agents improve its symptoms. We aimed to identify Malassezia-induced chemokines in keratinocytes and examine whether antimycotics suppressed this induction. Normal human keratinocytes were incubated with a Malassezia restricta extract and antimycotics. Chemokine expression was analyzed by enzyme-linked immunosorbent assays and real-time polymerase chain reaction. Signal transducer and activator of transcription (STAT)1 activity was examined by luciferase assays. The tyrosine-phosphorylation of STAT1 was analyzed by western blotting. The M. restricta extract increased the mRNA and protein expression of Th1-attracting CXC chemokine ligand (CXCL)10 and STAT1 activity and phosphorylation in keratinocytes, which was suppressed by a Janus kinase inhibitor. The antimycotics itraconazole, ketoconazole, luliconazole, terbinafine, butenafine and amorolfine suppressed M. restricta extract-induced CXCL10 mRNA and protein expression and STAT1 activity and phosphorylation. These effects were similarly induced by 15-deoxy-Δ-(12,14) -prostaglandin J2 (15d-PGJ2 ), a prostaglandin D2 metabolite. Antimycotics increased the release of 15d-PGJ2 from keratinocytes. The antimycotic-induced suppression of CXCL10 production and STAT1 activity was counteracted by a lipocalin-type prostaglandin D synthase inhibitor. The antimycotics itraconazole, ketoconazole, luliconazole, terbinafine, butenafine and amorolfine may suppress the M. restricta-induced production of CXCL10 by inhibiting STAT1 through an increase in 15d-PGJ2 production in keratinocytes. These antimycotics may block the Th1-mediated inflammation triggered by Malassezia in the chronic phase of atopic dermatitis. © 2014

  20. Mechanisms and Implications of Air Pollution Particle Associations with Chemokines

    PubMed Central

    Seagrave, JeanClare

    2008-01-01

    Inflammation induced by inhalation of air pollutant particles has been implicated as a mechanism for the adverse health effects associated with exposure to air pollution. The inflammatory response is associated with upregulation of various pro-inflammatory cytokines and chemokines. We have previously shown that diesel exhaust particles (DEP), a significant constituent of air pollution particulate matter in many urban areas, bind and concentrate IL-8, an important human neutrophil-attracting chemokine, and that the chemokine remains biologically active. In this report, we examine possible mechanisms of this association and the effects on clearance of the chemokine. The binding appears to be the result of ionic interactions between negatively charged particles and positively charged chemokine molecules, possibly combined with intercalation into small pores in the particles. The association is not limited to diesel exhaust particles and IL-8: several other particle types also adsorb the chemokine and several other cytokines are adsorbed onto the diesel particles. However, there are wide ranges in the effectiveness of various particle types and various cytokines. Finally, male Fisher 344 rats were intratracheally instilled with chemokine alone or combined with diesel exhaust or silica particles under isofluorane anesthesia. In contrast to silica particles, which do not bind the chemokine, the presence of diesel exhaust particles, which bind the chemokine, prolonged the retention of the chemokine. PMID:18755206

  1. Systemic Chemokine Levels with "Gut-Specific" Vedolizumab in Patients with Inflammatory Bowel Disease-A Pilot Study.

    PubMed

    Zwicker, Stephanie; Lira-Junior, Ronaldo; Höög, Charlotte; Almer, Sven; Boström, Elisabeth A

    2017-08-22

    Vedolizumab, a gut-specific biological treatment for inflammatory bowel disease (IBD), is an antibody that binds to the α₄β₇ integrin and blocks T-cell migration into intestinal mucosa. We aimed to investigate chemokine levels in serum of IBD-patients treated with vedolizumab. In this pilot study, we included 11 IBD patients (8 Crohn's disease, 3 ulcerative colitis) previously non-respondent to anti-tumor necrosis factor (TNF)-agents. Patients received vedolizumab at week 0, 2 and 6 and were evaluated for clinical efficacy at week 10. Clinical characteristics and routine laboratory parameters were obtained and patients were classified as responders or non-responders. Expression of 21 chemokines in serum was measured using Proximity Extension Assay and related to clinical outcome. At week 10, 6 out of 11 patients had clinically responded. Overall expression of CCL13 increased after treatment. In non-responders, expression of CCL13 and CXCL8 increased after treatment, and CCL20 and CXCL1 expressions were higher compared to responders. In responders, CCL28 decreased after treatment. C-reactive protein (CRP) correlated negatively with 6 chemokines before therapy, but not after therapy. Systemic CCL13 expression increases in IBD-patients after vedolizumab therapy and several chemokine levels differ between responders and non-responders. An increased CCL13-level when starting vedolizumab treatment, might indicate potential prognostic value of measuring chemokine levels when starting therapy with vedolizumab. This study provides new information on modulation of systemic chemokine levels after vedolizumab treatment.

  2. Role of CXC group chemokines in lung cancer development and progression.

    PubMed

    Spaks, Artjoms

    2017-04-01

    Clinical and translational research on lung cancer patients undergoing surgical treatment can provide valuable scientific data and unique opportunity to study tumor microenvironment. CXC chemokines, which are members of a big family of cytokines, are undoubtedly involved in tumor growth regulation and metastasizing pathways. For better understanding of CXC chemokine involvement in the process of carcinogenesis we have studied the cohort of early stage non-small cell lung cancer patients undergoing surgery with curative intent. Our aim was to assess CXC chemokine ligand (CXCL) levels in patient blood samples representing systemic circulation and tumor microenvironment; assess CXC chemokine receptor (CXCR) expression in tumor tissue; and measure tumor infiltrating immune cell subpopulations. A total of 54 patients with NSCLC had radical lung resection were enrolled in a single center prospective study and were followed-up annually for up to six years. During surgical procedure peripheral and tumor draining blood samples were taken. CXCL1, CXCL4, CXCL5, CXCL6, CXCL7, CXCL8, CXCL9, CXCL10, CXCL11 and CXCL12 levels were determined by ELISA, and chemokine concentration gradient was calculated. Tumor infiltrating immune cells (T helper cells, T cytotoxic cells, macrophages, B cells, plasma cells) and expression of CXCR1, CXCR2, CXCR3 and CXCR4 in tumor tissue were assessed by immunohistochemistry. Statistically significant decrease in chemokine concentration was found for CXCL4 (P=0.002) and CXCL5 (P=0.011), and statistically significant concentration increase was found for CXCL7 (P=0.001) in total cohort. We have found statistically significant CXC chemokine concentration change for majority of chemokines-CXCL1 (P=0.002), CXCL4 (P=0.001), CXCL5 (P=0.013), CXCL7 (P=0.036), CXCL8 (P=0.026), CXCL9 (P=0.034) and CXCL10 (P=0.032) in a group of patients who had good clinical result after surgery with no evidence of relapse, on the other hand patients with cancer recurrence

  3. Atypical chemokine receptor ACKR2 controls branching morphogenesis in the developing mammary gland

    PubMed Central

    Hewit, Kay D.; Pallas, Kenneth J.; Cairney, Claire J.; Lee, Kit M.; Hansell, Christopher A.; Stein, Torsten

    2017-01-01

    Macrophages are important regulators of branching morphogenesis during development and postnatally in the mammary gland. Regulation of macrophage dynamics during these processes can therefore have a profound impact on development. We demonstrate here that the developing mammary gland expresses high levels of inflammatory CC-chemokines, which are essential in vivo regulators of macrophage migration. We further demonstrate that the atypical chemokine receptor ACKR2, which scavenges inflammatory CC-chemokines, is differentially expressed during mammary gland development. We have previously shown that ACKR2 regulates macrophage dynamics during lymphatic vessel development. Here, we extend these observations to reveal a novel role for ACKR2 in regulating the postnatal development of the mammary gland. Specifically, we show that Ackr2−/− mice display precocious mammary gland development. This is associated with increased macrophage recruitment to the developing gland and increased density of the ductal epithelial network. These data demonstrate that ACKR2 is an important regulator of branching morphogenesis in diverse biological contexts and provide the first evidence of a role for chemokines and their receptors in postnatal development processes. PMID:27888192

  4. Role of atypical chemokine receptor ACKR2 in experimental oral squamous cell carcinogenesis.

    PubMed

    da Silva, Janine Mayra; Dos Santos, Tálita Pollyanna Moreira; Saraiva, Adriana Machado; Fernandes de Oliveira, Ana Laura; Garlet, Gustavo Pompermaier; Batista, Aline Carvalho; de Mesquita, Ricardo Alves; Russo, Remo Castro; da Silva, Tarcília Aparecida

    2018-03-14

    Chemokines and chemokine receptors are critical in oral tumourigenesis. The atypical chemokine receptor ACKR2 is a scavenger of CC chemokines controlling the availability of these molecules at tumour sites, but the role of ACKR2 in the context of oral carcinogenesis is unexplored. In this study, wild-type (WT) and ACKR2 deficient mice (ACKR2 -/- ) were treated with chemical carcinogen 4-nitroquinoline-1-oxide (4NQO) for induction of oral carcinogenesis. Tongues were collected for macro and microscopic analysis and to evaluate the expression of ACKRs, CC chemokines and its receptors, inflammatory cytokines, angiogenic factors, adhesion molecules and extracellular matrix components. An increased expression of ACKR2 in squamous cell carcinoma (SCC) lesions of 4NQO-treated WT mice was observed. No significant differences were seen in the ACKR1, ACKR3 and ACKR4 mRNA expression comparing SCC lesions from WT and ACKR2 -/- treated mice. Significantly higher expression of CCL2, IL-6 and IL-17 was detected in ACKR2 -/- treated mice. In contrast, the expression of other CC-chemokines, and receptors, angiogenic factors, adhesion molecules and extracellular matrix components were similarly increased in SCC lesions of both groups. Clinical and histopathological analysis revealed no differences in inflammatory cell recruitment and in the SCC incidence comparing WT and ACKR2 -/- treated mice. The results suggest that ACKR2 expression regulates inflammation in tumour-microenvironment but the absence of ACKR2 does not impact chemically-induced oral carcinogenesis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Cytokine and chemokine expression in the skin from patients with maculopapular exanthema to drugs.

    PubMed

    Fernandez, T D; Mayorga, C; Torres, M J; Cornejo-Garcia, J A; López, S; Chaves, P; Rondon, C; Blanca, M

    2008-06-01

    Maculopapular exanthema (MPE) is the most frequent clinical manifestation of nonimmediate allergic reactions to drugs and T helper 1 (Th1) cytokines and CD4(+) T cells have been shown to play an important role in its pathogenesis. We assessed the role of cytokines and chemokines and their receptors in the pathogenesis of MPE. We evaluated skin biopsies and peripheral CD4(+) and CD8(+) T cells from 27 patients during the acute phase of the reaction and 26 exposed controls. Semiquantitative real-time PCR was performed to determine the expression of cytokines and chemokines and their receptors and immunohistochemistry was used to determine the same chemokines and their receptor proteins in skin. There was a high expression of the Th1 cytokines interferon-gamma (P = 0.006) and tumor necrosis factor-alpha (P = 0.022) in skin and CD4(+) T cells (P = 0.007 and P = 0.005, respectively); and of the Th1 chemokines CXCL9 (P = 0.005) and CXCL10 (P = 0.028) in the skin, while their receptor CXCR3 was increased in skin (P = 0.006) and CD4(+) T cells (P = 0.03). Homing chemokine receptors were also increased: CCR6 in skin (P = 0.026) and CD4(+) T cells (P = 0.016), and CCR10 only in CD4(+) T cells (P = 0.016), as well as their ligands, CCL20 and CCL27, in skin alone. Immunohistochemistry confirmed these results. These data show significant differences in the expression of chemokines and chemokine receptors, related with a Th1 profile, in both skin biopsies and peripheral CD4(+) T cells in patients with drug-induced MPE.

  6. Synergistic inhibition in vivo of bone marrow myeloid progenitors by myelosuppressive chemokines and chemokine-accelerated recovery of progenitors after treatment of mice with Ara-C.

    PubMed

    Broxmeyer, Hal E; Pelus, Louis M; Kim, Chang H; Hangoc, Giao; Cooper, Scott; Hromas, Robert

    2006-08-01

    Selected chemokines suppress proliferation of hematopoietic progenitor cells (HPCs) in vitro; some of these have demonstrated inhibition of myelopoiesis in vivo. Because myelosuppressive chemokines synergize in vitro with other myelosuppressive chemokines, we sought to determine whether additional chemokines active in vitro were myelosuppressive in vivo and whether combinations of myelosuppressive chemokines synergized in vivo to dampen myelopoiesis. We also evaluated three chemokines in vivo for myeloprotection against Ara-C-induced decreases in HPCs. C3H/HeJ mice were used for analysis of in vivo influence of chemokines, with the end points being effects on absolute numbers and cycling status of HPCs. When used alone, CCL2, CCL3, CCL19, CCL20, CXCL4, CXCL5, CXCL8, CXCL9, and XCL1 caused dose-dependent significant decreases in absolute numbers and cycling status of HPCs in vivo. The following combinations of two chemokines resulted in in vivo myelosuppression at concentrations much lower than that induced by each chemokine alone: CCL3 plus either CXCL8 or CXCL4, CXCL8 plus CXCL4, CCL2 plus either CCL20 or CXCL9, CCL20 plus CXCL9, CXCL5 plus either XCL1 or CCL19, XCL1 plus CCL19, and CCL3 plus CCL19. Also, mice injected with CXCL8, CXCL4, or the chimeric CXCL8/CXCL4 protein CXCL8M1 manifested accelerated recovery of absolute numbers of HPCs in response to the toxic effects of Ara-C administration. A number of chemokines shown previously to manifest inhibitory effects in vitro for proliferation of HPCs are now demonstrated to also induce myelosuppression in vivo. Moreover, combinations of low dosages of two myelosuppressive chemokines when administered together demonstrate synergistic suppression in vivo. Additionally, chemokines, including a CXCL8M1 chimeric protein previously shown to manifest enhanced suppression of HPC proliferation in vitro and in vivo, accelerate HPC recovery after treatment of mice with Ara-C. These results may be of use for future clinical

  7. Altered expression of glial markers, chemokines, and opioid receptors in the spinal cord of type 2 diabetic monkeys.

    PubMed

    Kiguchi, Norikazu; Ding, Huiping; Peters, Christopher M; Kock, Nancy D; Kishioka, Shiroh; Cline, J Mark; Wagner, Janice D; Ko, Mei-Chuan

    2017-01-01

    Neuroinflammation is a pathological condition that underlies diabetes and affects sensory processing. Given the high prevalence of pain in diabetic patients and crosstalk between chemokines and opioids, it is pivotal to know whether neuroinflammation-associated mediators are dysregulated in the central nervous system of diabetic primates. Therefore, the aim of this study was to investigate whether mRNA expression levels of glial markers, chemokines, and opioid receptors are altered in the spinal cord and thalamus of naturally occurring type 2 diabetic monkeys (n=7) compared with age-matched non-diabetic monkeys (n=6). By using RT-qPCR, we found that mRNA expression levels of both GFAP and IBA1 were up-regulated in the spinal dorsal horn (SDH) of diabetic monkeys compared with non-diabetic monkeys. Among all chemokines, expression levels of three chemokine ligand-receptor systems, i.e., CCL2-CCR2, CCL3-CCR1/5, and CCL4-CCR5, were up-regulated in the SDH of diabetic monkeys. Moreover, in the SDH, seven additional chemokine receptors, i.e., CCR4, CCR6, CCR8, CCR10, CXCR3, CXCR5, and CXCR6, were also up-regulated in diabetic monkeys. In contrast, expression levels of MOP, KOP, and DOP, but not NOP receptors, were down-regulated in the SDH of diabetic monkeys, and the thalamus had fewer changes in the glial markers, chemokines and opioids. These findings indicate that neuroinflammation, manifested as glial activation and simultaneous up-regulation of multiple chemokine ligands and receptors, seems to be permanent in type 2 diabetic monkeys. As chemokines and opioids are important pain modulators, this first-in-primate study provides a translational bridge for determining the functional efficacy of spinal drugs targeting their signaling cascades. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Repeated measurement of nasal lavage fluid chemokines in school-age children with asthma.

    PubMed

    Noah, Terry L; Tudor, Gail E; Ivins, Sally S; Murphy, Paula C; Peden, David B; Henderson, Frederick W

    2006-02-01

    Inflammatory processes at the mucosal surface may play a role in maintenance of asthma pathophysiology. Cross-sectional studies in asthmatic patients suggest that chemokines such as interleukin 8 (IL-8) are overproduced by respiratory epithelium. To test the hypothesis that chemokine levels are persistently elevated in the respiratory secretions of asthmatic children at a stable baseline. We measured nasal lavage fluid (NLF) levels of chemokines and other mediators at 3- to 4-month intervals in a longitudinal study of asthmatic children, with nonasthmatic siblings as controls. In a linear mixed-model analysis, both family and day of visit had significant effects on nasal mediators. Thus, data for 12 asthmatic-nonasthmatic sibling pairs who had 3 or more same-day visits were analyzed separately. For sibling pairs, median eosinophil cationic protein levels derived from serial measurements in NLF were elevated in asthmatic patients compared with nonasthmatic patients, with a near-significant tendency for elevation of total protein and eotaxin levels as well. However, no significant differences were found for IL-8 or several other chemokines. Ratios of IL-13 or IL-5 to interferon-gamma released by house dust mite antigen-stimulated peripheral blood mononuclear cells, tested on a single occasion, were significantly increased for asthmatic patients. Substantial temporal and family-related variability exists in nasal inflammation in asthmatic children. Although higher levels of eosinophil cationic protein are usually present in NLF of patients with stable asthma compared with patients without asthma, chemokines other than eotaxin are not consistently increased. Eosinophil activation at the mucosal surface is a more consistent predictor of asthmatic symptoms than nonspecific elevation of epithelium-derived inflammatory chemokine levels.

  9. Inflammatory signaling pathways induced by Helicobacter pylori in primary human gastric epithelial cells.

    PubMed

    Tran, Cong Tri; Garcia, Magali; Garnier, Martine; Burucoa, Christophe; Bodet, Charles

    2017-02-01

    Inflammatory signaling pathways induced by Helicobacter pylori remain unclear, having been studied mostly on cell-line models derived from gastric adenocarcinoma with potentially altered signaling pathways and nonfunctional receptors. Here, H. pylori-induced signaling pathways were investigated in primary human gastric epithelial cells. Inflammatory response was analyzed on chemokine mRNA expression and production after infection of gastric epithelial cells by H. pylori strains, B128 and B128Δ cagM, a cag type IV secretion system defective strain. Signaling pathway involvement was investigated using inhibitors of epidermal growth factor receptor (EGFR), MAPK, JAK and blocking Abs against TLR2 and TLR4. Inhibitors of EGFR, MAPK and JAK significantly reduced the chemokine mRNA expression and production induced by both H. pylori strains at 3 h and 24 h post-infection. JNK inhibitor reduced chemokine production at 24 h post-infection. Blocking Abs against TLR2 but not TLR4 showed significant reduction of chemokine secretion. Using primary culture of human gastric epithelial cells, our data suggest that H. pylori can be recognized by TLR2, leading to chemokine induction, and that EGFR, MAPK and the JAK/STAT signaling pathways play a key role in the H. pylori-induced CXCL1, CXCL5 and CXCL8 response in a cag pathogenicity island-independent manner.

  10. TLR4 signaling shapes B cell dynamics via MyD88-dependent pathways and Rac GTPases.

    PubMed

    Barrio, Laura; Saez de Guinoa, Julia; Carrasco, Yolanda R

    2013-10-01

    B cells use a plethora of TLR to recognize pathogen-derived ligands. These innate signals have an important function in the B cell adaptive immune response and modify their trafficking and tissue location. The direct role of TLR signaling on B cell dynamics nonetheless remains almost entirely unknown. In this study, we used a state-of-the-art two-dimensional model combined with real-time microscopy to study the effect of TLR4 stimulation on mouse B cell motility in response to chemokines. We show that a minimum stimulation period is necessary for TLR4 modification of B cell behavior. TLR4 stimulation increased B cell polarization, migration, and directionality; these increases were dependent on the MyD88 signaling pathway and did not require ERK or p38 MAPK activity downstream of TLR4. In addition, TLR4 stimulation enhanced Rac GTPase activity and promoted sustained Rac activation in response to chemokines. These results increase our understanding of the regulation of B cell dynamics by innate signals and the underlying molecular mechanisms.

  11. Immune response CC chemokines CCL2 and CCL5 are associated with pulmonary sarcoidosis

    PubMed Central

    2011-01-01

    Background Pulmonary sarcoidosis involves an intense leukocyte infiltration of the lung with the formation of non-necrotizing granulomas. CC chemokines (chemokine (C-C motif) ligand 2 (CCL2)-CCL5) are chemoattractants of mononuclear cells and act through seven transmembrane G-coupled receptors. Previous studies have demonstrated conflicting results with regard to the associations of these chemokines with sarcoidosis. In an effort to clarify previous discrepancies, we performed the largest observational study to date of CC chemokines in bronchoalveolar lavage fluid (BALF) from patients with pulmonary sarcoidosis. Results BALF chemokine levels from 72 patients affected by pulmonary sarcoidosis were analyzed by enzyme-linked immunosorbent assay (ELISA) and compared to 8 healthy volunteers. BALF CCL3 and CCL4 levels from pulmonary sarcoidosis patients were not increased compared to controls. However, CCL2 and CCL5 levels were elevated, and subgroup analysis showed higher levels of both chemokines in all stages of pulmonary sarcoidosis. CCL2, CCL5, CC chemokine receptor type 1 (CCR1), CCR2 and CCR3 were expressed from mononuclear cells forming the lung granulomas, while CCR5 was only found on mast cells. Conclusions These data suggest that CCL2 and CCL5 are important mediators in recruiting CCR1, CCR2, and CCR3 expressing mononuclear cells as well as CCR5-expressing mast cells during all stages of pulmonary sarcoidosis. PMID:21463523

  12. Immune response CC chemokines CCL2 and CCL5 are associated with pulmonary sarcoidosis.

    PubMed

    Palchevskiy, Vyacheslav; Hashemi, Nastran; Weigt, Stephen S; Xue, Ying Ying; Derhovanessian, Ariss; Keane, Michael P; Strieter, Robert M; Fishbein, Michael C; Deng, Jane C; Lynch, Joseph P; Elashoff, Robert; Belperio, John A

    2011-04-04

    Pulmonary sarcoidosis involves an intense leukocyte infiltration of the lung with the formation of non-necrotizing granulomas. CC chemokines (chemokine (C-C motif) ligand 2 (CCL2)-CCL5) are chemoattractants of mononuclear cells and act through seven transmembrane G-coupled receptors. Previous studies have demonstrated conflicting results with regard to the associations of these chemokines with sarcoidosis. In an effort to clarify previous discrepancies, we performed the largest observational study to date of CC chemokines in bronchoalveolar lavage fluid (BALF) from patients with pulmonary sarcoidosis. BALF chemokine levels from 72 patients affected by pulmonary sarcoidosis were analyzed by enzyme-linked immunosorbent assay (ELISA) and compared to 8 healthy volunteers. BALF CCL3 and CCL4 levels from pulmonary sarcoidosis patients were not increased compared to controls. However, CCL2 and CCL5 levels were elevated, and subgroup analysis showed higher levels of both chemokines in all stages of pulmonary sarcoidosis. CCL2, CCL5, CC chemokine receptor type 1 (CCR1), CCR2 and CCR3 were expressed from mononuclear cells forming the lung granulomas, while CCR5 was only found on mast cells. These data suggest that CCL2 and CCL5 are important mediators in recruiting CCR1, CCR2, and CCR3 expressing mononuclear cells as well as CCR5-expressing mast cells during all stages of pulmonary sarcoidosis.

  13. A Central Role for Heme Oxygenase-1 in the Control of Intestinal Epithelial Chemokine Expression.

    PubMed

    Onyiah, Joseph C; Schaefer, Rachel E M; Colgan, Sean P

    2018-05-23

    In mucosal inflammatory disorders, the protective influence of heme oxygenase-1 (HO-1) and its metabolic byproducts, carbon monoxide (CO) and biliverdin, is a topic of significant interest. Mechanisms under investigation include the regulation of macrophage function and mucosal cytokine expression. While there is an increasing recognition of the importance of epithelial-derived factors in the maintenance of intestinal mucosal homeostasis, the contribution of intestinal epithelial cell (IEC) HO-1 on inflammatory responses has not previously been investigated. We examined the influence of modulating HO-1 expression on the inflammatory response of human IECs. Engineered deficiency of HO-1 in Caco-2 and T84 IECs led to increased proinflammatory chemokine expression in response to pathogenic bacteria and inflammatory cytokine stimulation. Crosstalk with activated leukocytes also led to increased chemokine expression in HO-1-deficient cells in an IL-1β dependent manner. Treatment of Caco-2 cells with a pharmacological inducer of HO-1 led to the inhibition of chemokine expression. Mechanistic studies suggest that HO-1 and HO-1-related transcription factors, but not HO-1 metabolic products, are partly responsible for the influence of HO-1 on chemokine expression. In conclusion, our data identify HO-1 as a central regulator of IEC chemokine expression that may contribute to homeo-stasis in the intestinal mucosa. © 2018 S. Karger AG, Basel.

  14. CC chemokine ligand 2 and CXC chemokine ligand 8 as neutrophil chemoattractant factors in canine idiopathic polyarthritis.

    PubMed

    Murakami, Kohei; Maeda, Shingo; Yonezawa, Tomohiro; Matsuki, Naoaki

    2016-12-01

    Canine idiopathic polyarthritis (IPA) is characterized by increased numbers of polymorphonuclear leukocytes (PMNs) in the synovial fluid (SF). In humans, CC chemokine ligand 2 (CCL2) and CXC chemokine ligand 8 (CXCL8) recruit monocytes and neutrophils, respectively, and are involved in various inflammatory disorders. The aim of this study was to assess the roles of these chemokines in driving PMNs infiltration into the joints of dogs with IPA. SF samples were collected from dogs with IPA (n=19) and healthy controls (n=8), and the concentrations of SF CCL2 and CXCL8 were determined by ELISA. Dogs with IPA had significantly higher concentrations of CCL2 (3316±2452pg/ml, mean±SD) and CXCL8 (3668±3879pg/ml) compared with the healthy controls (235±45pg/ml and <15.6pg/ml, respectively). Then, an in vitro chemotaxis assay was performed using a modified Boyden chamber (pore size: 3μm). SF from IPA dogs had a chemoattractant activity for PMNs that purified from the peripheral blood of a healthy dog. We subsequently found that combination treatment with MK-0812 (an antagonist of CCL2 receptor) and repertaxin (an antagonist of CXCL8 receptors) significantly inhibited the migration of PMNs to SF from IPA dogs. Thus, expression of the CCL2 receptor (chemokine (CC motif) receptor 2 (CCR2)) was examined using polymerase chain reaction and immunocytochemistry. Canine peripheral blood PMNs exhibited significantly higher CCR2 mRNA expression levels than those in monocytes. In addition, we observed strong CCR2 expression on PMNs obtained from healthy controls and IPA dogs, although mononuclear cells did not express CCR2. Taken together, the data suggest that CCL2 acts as a canine PMNs chemotactic factor as well as CXCL8 and both CCL2 and CXCL8 facilitate the infiltration of PMNs into the joints of dogs with IPA. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. CXCR3 chemokine ligands during respiratory viral infections predict lung allograft dysfunction.

    PubMed

    Weigt, S S; Derhovanessian, A; Liao, E; Hu, S; Gregson, A L; Kubak, B M; Saggar, R; Saggar, R; Plachevskiy, V; Fishbein, M C; Lynch, J P; Ardehali, A; Ross, D J; Wang, H-J; Elashoff, R M; Belperio, J A

    2012-02-01

    Community-acquired respiratory viruses (CARV) can accelerate the development of lung allograft dysfunction, but the immunologic mechanisms are poorly understood. The chemokine receptor CXCR3 and its chemokine ligands, CXCL9, CXCL10 and CXCL11 have roles in the immune response to viruses and in the pathogenesis of bronchiolitis obliterans syndrome, the predominant manifestation of chronic lung allograft rejection. We explored the impact of CARV infection on CXCR3/ligand biology and explored the use of CXCR3 chemokines as biomarkers for subsequent lung allograft dysfunction. Seventeen lung transplant recipients with CARV infection had bronchoalveolar lavage fluid (BALF) available for analysis. For comparison, we included 34 BALF specimens (2 for each CARV case) that were negative for infection and collected at a duration posttransplant similar to a CARV case. The concentration of each CXCR3 chemokine was increased during CARV infection. Among CARV infected patients, a high BALF concentration of either CXCL10 or CXCL11 was predictive of a greater decline in forced expiratory volume in 1 s, 6 months later. CXCR3 chemokine concentrations provide prognostic information and this may have important implications for the development of novel treatment strategies to modify outcomes after CARV infection. © 2011 American Society of Transplantation and the American Society of Transplant Surgeons.

  16. Chemokines and their receptors: insights from molecular modeling and crystallography.

    PubMed

    Kufareva, Irina

    2016-10-01

    Chemokines are small secreted proteins that direct cell migration in development, immunity, inflammation, and cancer. They do so by binding and activating specific G protein coupled receptors on the surface of migrating cells. Despite the importance of receptor:chemokine interactions, their structural basis remained unclear for a long time. In 2015, the first atomic resolution insights were obtained with the publication of X-ray structures for two distantly related receptors bound to chemokines. In conjunction with experiment-guided molecular modeling, the structures suggest a conserved receptor:chemokine complex architecture, while highlighting the diverse details and functional roles of individual interaction epitopes. Novel findings promote the development and detailed structural interpretation of the canonical two-site hypothesis of receptor:chemokine recognition, and suggest new avenues for pharmacological modulation of chemokine receptors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Suppressive effects of metformin on T-helper 1-related chemokines expression in the human monocytic leukemia cell line THP-1.

    PubMed

    Chen, Yen-Chun; Kuo, Chang-Hung; Tsai, Ying-Ming; Lin, Yi-Ching; Hsiao, Hui-Pin; Chen, Bai-Hsiun; Chen, Yi-Ting; Wang, Shih-Ling; Hung, Chih-Hsing

    2018-04-09

    Type 1 and type 2 diabetes mellitus (DM) are chronic T-cell-mediated inflammatory diseases. Metformin is a widely used drug for type 2 DM that reduces the need for insulin in type 1 DM. However, whether metformin has an anti-inflammatory effect for treating DM is unknown. We investigated the anti-inflammatory mechanism of metformin in the human monocytic leukemia cell line THP-1. The human monocytic leukemia cell line THP-1 was pretreated with metformin and stimulated with lipopolysaccharide (LPS). The production of T-helper (Th)-1-related chemokines including interferon-γ-induced protein-10 (IP-10) and monocyte chemoattractant protein-1 (MCP-1), Th2-related chemokine macrophage-derived chemokine, and the proinflammatory chemokine tumor necrosis factor-α was measured using enzyme-linked immunosorbent assay. Intracellular signaling pathways were investigated using Western blot analysis and chromatin immunoprecipitation assay. Metformin suppressed LPS-induced IP-10 and MCP-1 production as well as LPS-induced phosphorylation of c-Jun N-terminal kinase (JNK), p38, extracellular signal-regulated kinase (ERK), and nuclear factor-kappa B (NF-κB). Moreover, metformin suppressed LPS-induced acetylation of histones H3 and H4 at the IP-10 promoter. Metformin suppressed the production of Th1-related chemokines IP-10 and MCP-1 in THP-1 cells. Suppressive effects of metformin on IP-10 production might be attributed at least partially to the JNK, p38, ERK, and NF-κB pathways as well as to epigenetic regulation through the acetylation of histones H3 and H4. These results indicated the therapeutic anti-inflammatory potential of metformin.

  18. Chemokine Ligand 20: A Signal for Leukocyte Recruitment During Human Ovulation?

    PubMed

    Al-Alem, Linah; Puttabyatappa, Muraly; Rosewell, Kathy; Brännström, Mats; Akin, James; Boldt, Jeffrey; Muse, Ken; Curry, Thomas E

    2015-09-01

    Ovulation is one of the cornerstones of female fertility. Disruption of the ovulatory process results in infertility, which affects approximately 10% of couples. Using a unique model in which the dominant follicle is collected across the periovulatory period in women, we have identified a leukocyte chemoattractant, chemokine ligand 20 (CCL20), in the human ovary. CCL20 mRNA is massively induced after an in vivo human chorionic gonadotropin (hCG) stimulus in granulosa (>10 000-fold) and theca (>4000-fold) cells collected during the early ovulatory (12-18 h) and late ovulatory (18-34 h) periods after hCG administration. Because the LH surge sets in motion an inflammatory reaction characterized by an influx of leukocytes and CCL20 is known to recruit leukocytes in other systems, the composition of ovarian leukocytes (CD45+) containing the CCL20 receptor CCR6 was determined immediately prior to ovulation. CD45+/CCR6+ cells were primarily natural killer cells (41%) along with B cells (12%), T cells (11%), neutrophils (10%), and monocytes (9%). Importantly, exogenous CCL20 stimulated ovarian leukocyte migration 59% within 90 minutes. Due to the difficulties in obtaining human follicles, an in vitro model was developed using granulosa-lutein cells to explore CCL20 regulation. CCL20 expression increased 40-fold within 6 hours after hCG, was regulated partially by the epithelial growth factor pathway, and was positively correlated with progesterone production. These results demonstrate that hCG dramatically increases CCL20 expression in the human ovary, that ovarian leukocytes contain the CCL20 receptor, and that CCL20 stimulates leukocyte migration. Our findings raise the prospect that CCL20 may aid in the final ovulatory events and contribute to fertility in women.

  19. Chemokine Ligand 20: A Signal for Leukocyte Recruitment During Human Ovulation?

    PubMed Central

    Al-Alem, Linah; Puttabyatappa, Muraly; Rosewell, Kathy; Brännström, Mats; Akin, James; Boldt, Jeffrey; Muse, Ken

    2015-01-01

    Ovulation is one of the cornerstones of female fertility. Disruption of the ovulatory process results in infertility, which affects approximately 10% of couples. Using a unique model in which the dominant follicle is collected across the periovulatory period in women, we have identified a leukocyte chemoattractant, chemokine ligand 20 (CCL20), in the human ovary. CCL20 mRNA is massively induced after an in vivo human chorionic gonadotropin (hCG) stimulus in granulosa (>10 000-fold) and theca (>4000-fold) cells collected during the early ovulatory (12–18 h) and late ovulatory (18–34 h) periods after hCG administration. Because the LH surge sets in motion an inflammatory reaction characterized by an influx of leukocytes and CCL20 is known to recruit leukocytes in other systems, the composition of ovarian leukocytes (CD45+) containing the CCL20 receptor CCR6 was determined immediately prior to ovulation. CD45+/CCR6+ cells were primarily natural killer cells (41%) along with B cells (12%), T cells (11%), neutrophils (10%), and monocytes (9%). Importantly, exogenous CCL20 stimulated ovarian leukocyte migration 59% within 90 minutes. Due to the difficulties in obtaining human follicles, an in vitro model was developed using granulosa-lutein cells to explore CCL20 regulation. CCL20 expression increased 40-fold within 6 hours after hCG, was regulated partially by the epithelial growth factor pathway, and was positively correlated with progesterone production. These results demonstrate that hCG dramatically increases CCL20 expression in the human ovary, that ovarian leukocytes contain the CCL20 receptor, and that CCL20 stimulates leukocyte migration. Our findings raise the prospect that CCL20 may aid in the final ovulatory events and contribute to fertility in women. PMID:26125463

  20. Borrelia burgdorferi basic membrane protein A could induce chemokine production in murine microglia cell line BV2.

    PubMed

    Zhao, Hua; Liu, Aihua; Cui, Yuhui; Liang, Zhang; Li, Bingxue; Bao, Fukai

    2017-10-01

    Lyme neuroborreliosis is a nervous system infectious disease caused by Borrelia burgdorferi (B. burgdorferi). It has been demonstrated that cytokines induced by B. burgdorferi are related to Lyme neuroborreliosis. Microglia is known as a key player in the immune responses that occur within the central nervous system. In response to inflammation, it will be activated and generate cytokines and chemokines. Experiments in vitro cells have showed that B. Burgdorferi membrane protein A (BmpA), a major immunogen of B. Burgdorferi, could induce Lyme arthritis and stimulate human and murine lymphocytes to produce inflammatory cytokines. In our study, the murine microglia BV2 cell line was used as a cell model to explore the stimulating effects of recombinant BmpA (rBmpA); Chemokine chip, ELISA and QPCR technology were used to measure the production of chemokines from microglial cells stimulated by rBmpA. Compared with the negative control group, CXCL2, CCL22, and CCL5 concentrations in the cell supernatant increased significantly after the rBmpA stimulation; the concentration of these chemokines increased with rBmpA concentration increasing; the mRNA expression levels of chemokines (CXCL2, CCL22, and CCL5) in murine BV2 cells increased significantly with 10 μg/mL and 20 μg/mL rBmpA stimulation; CXCL13 was not change after the rBmpA stimulation. Our study shows that chemokines, such as CXCL2, CCL22, and CCL5 were up-regulated by the rBmpA in the BV2 cells. The production of chemokines in Lyme neuroborreliosis may be mainly from microglia cells and the rBmpA may be closely related with the development of Lyme neuroborreliosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Prostaglandin F2α–F-Prostanoid Receptor Signalling Promotes Neutrophil Chemotaxis via Chemokine (CXC motif) Ligand-1 in Endometrial Adenocarcinoma

    PubMed Central

    Wallace, Alison E; Sales, Kurt J; Catalano, Roberto D; Anderson, Richard A; Williams, Alistair RW; Wilson, Martin R; Schwarze, Jurgen; Wang, Hongwei; Rossi, Adriano G; Jabbour, Henry N

    2009-01-01

    The prostaglandin F2α (PGF2α) receptor (FP) is elevated in endometrial adenocarcinoma. This study found that PGF2α signalling via FP regulates expression of chemokine (C-X-C motif) ligand 1 (CXCL1) in endometrial adenocarcinoma cells. Expression of CXCL1 and its receptor, CXCR2, are elevated in cancer tissue as compared to normal endometrium and localised to glandular epithelium, endothelium and stroma. Treatment of Ishikawa cells stably transfected with the FP receptor (FPS cells) with 100nM PGF2α increased CXCL1 promoter activity, mRNA and protein expression, and these effects were abolished by co-treatment of cells with FP antagonist or chemical inhibitors of Gq, EGFR and ERK. Similarly, CXCL1 was elevated in response to 100 nM PGF2α in endometrial adenocarcinoma explant tissue. CXCL1 is a potent neutrophil chemoattractant. The expression of CXCR2 colocalised to neutrophils in endometrial adenocarcinoma and increased neutrophils were present in endometrial adenocarcinoma compared with normal endometrium. Conditioned media from PGF2α-treated FPS cells stimulated neutrophil chemotaxis which could be abolished by CXCL1 protein immunoneutralisation of the conditioned media or antagonism of CXCR2. Finally, xenograft tumours in nude mice arising from inoculation with FPS cells showed increased neutrophil infiltration compared to tumours arising from wild-type cells or following treatment of mice bearing FPS tumours with CXCL1-neutralising antibody. In conclusion, our results demonstrate a novel PGF2α-FP pathway that may regulate the inflammatory microenvironment in endometrial adenocarcinoma via neutrophil chemotaxis. PMID:19549892

  2. IL-1β produced by aggressive breast cancer cells is one of the factors that dictate their interactions with mesenchymal stem cells through chemokine production.

    PubMed

    Escobar, Pauline; Bouclier, Céline; Serret, Julien; Bièche, Ivan; Brigitte, Madly; Caicedo, Andres; Sanchez, Elodie; Vacher, Sophie; Vignais, Marie-Luce; Bourin, Philippe; Geneviève, David; Molina, Franck; Jorgensen, Christian; Lazennec, Gwendal

    2015-10-06

    The aim of this work was to understand whether the nature of breast cancer cells could modify the nature of the dialog of mesenchymal stem cells (MSCs) with cancer cells. By treating MSCs with the conditioned medium of metastatic Estrogen-receptor (ER)-negative MDA-MB-231, or non-metastatic ER-positive MCF-7 breast cancer cells, we observed that a number of chemokines were produced at higher levels by MSCs treated with MDA-MB-231 conditioned medium (CM). MDA-MB-231 cells were able to induce NF-κB signaling in MSC cells. This was shown by the use of a NF-kB chemical inhibitor or an IκB dominant negative mutant, nuclear translocation of p65 and induction of NF-κB signature. Our results suggest that MDA-MB-231 cells exert their effects on MSCs through the secretion of IL-1β, that activates MSCs and induces the same chemokines as the MDA-MB-231CM. In addition, inhibition of IL-1β secretion in the MDA-MB-231 cells reduces the induced production of a panel of chemokines by MSCs, as well the motility of MDA-MB-231 cells. Our data suggest that aggressive breast cancer cells secrete IL-1β, which increases the production of chemokines by MSCs.

  3. IL-1β produced by aggressive breast cancer cells is one of the factors that dictate their interactions with mesenchymal stem cells through chemokine production

    PubMed Central

    Serret, Julien; Bièche, Ivan; Brigitte, Madly; Caicedo, Andres; Sanchez, Elodie; Vacher, Sophie; Vignais, Marie-Luce; Bourin, Philippe; Geneviève, David; Molina, Franck; Jorgensen, Christian; Lazennec, Gwendal

    2015-01-01

    The aim of this work was to understand whether the nature of breast cancer cells could modify the nature of the dialog of mesenchymal stem cells (MSCs) with cancer cells. By treating MSCs with the conditioned medium of metastatic Estrogen-receptor (ER)-negative MDA-MB-231, or non-metastatic ER-positive MCF-7 breast cancer cells, we observed that a number of chemokines were produced at higher levels by MSCs treated with MDA-MB-231 conditioned medium (CM). MDA-MB-231 cells were able to induce NF-κB signaling in MSC cells. This was shown by the use of a NF-kB chemical inhibitor or an IκB dominant negative mutant, nuclear translocation of p65 and induction of NF-κB signature. Our results suggest that MDA-MB-231 cells exert their effects on MSCs through the secretion of IL-1β, that activates MSCs and induces the same chemokines as the MDA-MB-231CM. In addition, inhibition of IL-1β secretion in the MDA-MB-231 cells reduces the induced production of a panel of chemokines by MSCs, as well the motility of MDA-MB-231 cells. Our data suggest that aggressive breast cancer cells secrete IL-1β, which increases the production of chemokines by MSCs. PMID:26362269

  4. Systemic Chemokine Levels with “Gut-Specific” Vedolizumab in Patients with Inflammatory Bowel Disease—A Pilot Study

    PubMed Central

    Zwicker, Stephanie; Lira-Junior, Ronaldo; Höög, Charlotte

    2017-01-01

    Vedolizumab, a gut-specific biological treatment for inflammatory bowel disease (IBD), is an antibody that binds to the α4β7 integrin and blocks T-cell migration into intestinal mucosa. We aimed to investigate chemokine levels in serum of IBD-patients treated with vedolizumab. In this pilot study, we included 11 IBD patients (8 Crohn’s disease, 3 ulcerative colitis) previously non-respondent to anti-tumor necrosis factor (TNF)-agents. Patients received vedolizumab at week 0, 2 and 6 and were evaluated for clinical efficacy at week 10. Clinical characteristics and routine laboratory parameters were obtained and patients were classified as responders or non-responders. Expression of 21 chemokines in serum was measured using Proximity Extension Assay and related to clinical outcome. At week 10, 6 out of 11 patients had clinically responded. Overall expression of CCL13 increased after treatment. In non-responders, expression of CCL13 and CXCL8 increased after treatment, and CCL20 and CXCL1 expressions were higher compared to responders. In responders, CCL28 decreased after treatment. C-reactive protein (CRP) correlated negatively with 6 chemokines before therapy, but not after therapy. Systemic CCL13 expression increases in IBD-patients after vedolizumab therapy and several chemokine levels differ between responders and non-responders. An increased CCL13-level when starting vedolizumab treatment, might indicate potential prognostic value of measuring chemokine levels when starting therapy with vedolizumab. This study provides new information on modulation of systemic chemokine levels after vedolizumab treatment. PMID:28829369

  5. Critical role in CXCR4 signaling and internalization of the polypeptide main chain in the amino terminus of SDF-1α probed by novel N-methylated synthetically and modularly modified chemokine analogues.

    PubMed

    Dong, Chang-Zhi; Tian, Shaomin; Choi, Won-Tak; Kumar, Santhosh; Liu, Dongxiang; Xu, Yan; Han, Xiaofeng; Huang, Ziwei; An, Jing

    2012-07-31

    The replication of human immunodeficiency virus type 1 (HIV-1) can be profoundly inhibited by the natural ligands of two major HIV-1 coreceptors, CXCR4 and CCR5. Stromal cell-derived factor-1α (SDF-1α) is a natural ligand of CXCR4. We have recently developed a synthetic biology approach of using synthetically and modularly modified (SMM)-chemokines to dissect various aspects of the structure-function relationship of chemokines and their receptors. Here, we used this approach to design novel SMM-SDF-1α analogues containing unnatural N-methylated residues in the amino terminus to investigate whether the polypeptide main chain amide bonds in the N-terminus of SDF-1α play a role in SDF-1α signaling via CXCR4 and/or receptor internalization. The results show that SDF-1α analogues with a modified N-methylated main chain at position 2, 3, or 5 retain significant CXCR4 binding and yet completely lose signaling activities. Furthermore, a representative N-methylated analogue has been shown to be incapable of causing CXCR4 internalization. These results suggest that the ability of SDF-1α to activate CXCR4 signaling and internalization is dependent upon the main chain amide bonds in the N-terminus of SDF-1α. This study demonstrates the feasibility and value of applying a synthetic biology approach to chemically engineer natural proteins and peptide ligands as probes of important biological functions that are not addressed by other biological techniques.

  6. Alternative C-Terminal Helix Orientation Alters Chemokine Function

    PubMed Central

    Kuo, Je-Hung; Chen, Ya-Ping; Liu, Jai-Shin; Dubrac, Alexandre; Quemener, Cathy; Prats, Hervé; Bikfalvi, Andreas; Wu, Wen-guey; Sue, Shih-Che

    2013-01-01

    Chemokines, a subfamily of cytokines, are small, secreted proteins that mediate a variety of biological processes. Various chemokines adopt remarkable conserved tertiary structure comprising an anti-parallel β-sheet core domain followed by a C-terminal helix that packs onto the β-sheet. The conserved structural feature has been considered critical for chemokine function, including binding to cell surface receptor. The recently isolated variant, CXCL4L1, is a homologue of CXCL4 chemokine (or platelet factor 4) with potent anti-angiogenic activity and differed only in three amino acid residues of P58L, K66E, and L67H. In this study we show by x-ray structural determination that CXCL4L1 adopts a previously unrecognized structure at its C terminus. The orientation of the C-terminal helix protrudes into the aqueous space to expose the entire helix. The alternative helix orientation modifies the overall chemokine shape and surface properties. The L67H mutation is mainly responsible for the swing-out effect of the helix, whereas mutations of P58L and K66E only act secondarily. This is the first observation that reports an open conformation of the C-terminal helix in a chemokine. This change leads to a decrease of its glycosaminoglycan binding properties and to an enhancement of its anti-angiogenic and anti-tumor effects. This unique structure is recent in evolution and has allowed CXCL4L1 to gain novel functional properties. PMID:23536183

  7. Role of CXC group chemokines in lung cancer development and progression

    PubMed Central

    2017-01-01

    Background Clinical and translational research on lung cancer patients undergoing surgical treatment can provide valuable scientific data and unique opportunity to study tumor microenvironment. CXC chemokines, which are members of a big family of cytokines, are undoubtedly involved in tumor growth regulation and metastasizing pathways. For better understanding of CXC chemokine involvement in the process of carcinogenesis we have studied the cohort of early stage non-small cell lung cancer patients undergoing surgery with curative intent. Our aim was to assess CXC chemokine ligand (CXCL) levels in patient blood samples representing systemic circulation and tumor microenvironment; assess CXC chemokine receptor (CXCR) expression in tumor tissue; and measure tumor infiltrating immune cell subpopulations. Methods A total of 54 patients with NSCLC had radical lung resection were enrolled in a single center prospective study and were followed-up annually for up to six years. During surgical procedure peripheral and tumor draining blood samples were taken. CXCL1, CXCL4, CXCL5, CXCL6, CXCL7, CXCL8, CXCL9, CXCL10, CXCL11 and CXCL12 levels were determined by ELISA, and chemokine concentration gradient was calculated. Tumor infiltrating immune cells (T helper cells, T cytotoxic cells, macrophages, B cells, plasma cells) and expression of CXCR1, CXCR2, CXCR3 and CXCR4 in tumor tissue were assessed by immunohistochemistry. Results Statistically significant decrease in chemokine concentration was found for CXCL4 (P=0.002) and CXCL5 (P=0.011), and statistically significant concentration increase was found for CXCL7 (P=0.001) in total cohort. We have found statistically significant CXC chemokine concentration change for majority of chemokines—CXCL1 (P=0.002), CXCL4 (P=0.001), CXCL5 (P=0.013), CXCL7 (P=0.036), CXCL8 (P=0.026), CXCL9 (P=0.034) and CXCL10 (P=0.032) in a group of patients who had good clinical result after surgery with no evidence of relapse, on the other hand

  8. Chemokine Ligand 5 (CCL5) and chemokine receptor (CCR5) genetic variants and prostate cancer risk among men of African Descent: a case-control study

    PubMed Central

    2012-01-01

    Background Chemokine and chemokine receptors play an essential role in tumorigenesis. Although chemokine-associated single nucleotide polymorphisms (SNPs) are associated with various cancers, their impact on prostate cancer (PCA) among men of African descent is unknown. Consequently, this study evaluated 43 chemokine-associated SNPs in relation to PCA risk. We hypothesized inheritance of variant chemokine-associated alleles may lead to alterations in PCA susceptibility, presumably due to variations in antitumor immune responses. Methods Sequence variants were evaluated in germ-line DNA samples from 814 African-American and Jamaican men (279 PCA cases and 535 controls) using Illumina’s Goldengate genotyping system. Results Inheritance of CCL5 rs2107538 (AA, GA+AA) and rs3817655 (AA, AG, AG+AA) genotypes were linked with a 34-48% reduction in PCA risk. Additionally, the recessive and dominant models for CCR5 rs1799988 and CCR7 rs3136685 were associated with a 1.52-1.73 fold increase in PCA risk. Upon stratification, only CCL5 rs3817655 and CCR7 rs3136685 remained significant for the Jamaican and U.S. subgroups, respectively. Conclusions In summary, CCL5 (rs2107538, rs3817655) and CCR5 (rs1799988) sequence variants significantly modified PCA susceptibility among men of African descent, even after adjusting for age and multiple comparisons. Our findings are only suggestive and require further evaluation and validation in relation to prostate cancer risk and ultimately disease progression, biochemical/disease recurrence and mortality in larger high-risk subgroups. Such efforts will help to identify genetic markers capable of explaining disproportionately high prostate cancer incidence, mortality, and morbidity rates among men of African descent. PMID:23168091

  9. Dual GPCR and GAG mimicry by the M3 chemokine decoy receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexander-Brett, Jennifer M.; Fremont, Daved H.

    2008-09-23

    Viruses have evolved a myriad of evasion strategies focused on undermining chemokine-mediated immune surveillance, exemplified by the mouse {gamma}-herpesvirus 68 M3 decoy receptor. Crystal structures of M3 in complex with C chemokine ligand 1/lymphotactin and CC chemokine ligand 2/monocyte chemoattractant protein 1 reveal that invariant chemokine features associated with G protein-coupled receptor binding are primarily recognized by the decoy C-terminal domain, whereas the N-terminal domain (NTD) reconfigures to engage divergent basic residue clusters on the surface of chemokines. Favorable electrostatic forces dramatically enhance the association kinetics of chemokine binding by M3, with a primary role ascribed to acidic NTD regionsmore » that effectively mimic glycosaminoglycan interactions. Thus, M3 employs two distinct mechanisms of chemical imitation to potently sequester chemokines, thereby inhibiting chemokine receptor binding events as well as the formation of chemotactic gradients necessary for directed leukocyte trafficking.« less

  10. Chemokines, their receptors, and transplant outcome.

    PubMed

    Colvin, Bridget L; Thomson, Angus W

    2002-07-27

    Organ transplant rejection is mediated largely by circulating peripheral leukocytes induced to infiltrate the graft by various inflammatory stimuli. Of these, chemotactic cytokines called chemokines, expressed by inflamed graft tissues, as well as by early innate-responding leukocytes that infiltrate the graft, are responsible for the recruitment of alloreactive leukocytes. This report discusses the impact of these leukocyte-directing proteins on transplant outcome and novel therapeutic approaches for antirejection therapy based on targeting of chemokines and/or their receptors.

  11. Probing Functional Heteromeric Chemokine Protein–Protein Interactions through Conformation‐Assisted Oxime Ligation

    PubMed Central

    Agten, Stijn M.; Koenen, Rory R.; Ippel, Hans; Eckardt, Veit; von Hundelshausen, Philipp; Mayo, Kevin H.; Weber, Christian

    2016-01-01

    Abstract Protein–protein interactions (PPIs) govern most processes in living cells. Current drug development strategies are aimed at disrupting or stabilizing PPIs, which require a thorough understanding of PPI mechanisms. Examples of such PPIs are heteromeric chemokine interactions that are potentially involved in pathological disorders such as cancer, atherosclerosis, and HIV. It remains unclear whether this functional modulation is mediated by heterodimer formation or by the additive effects of mixed chemokines on their respective receptors. To address this issue, we report the synthesis of a covalent RANTES‐PF4 heterodimer (termed OPRAH) by total chemical synthesis and oxime ligation, with an acceleration of the final ligation step driven by PPIs between RANTES and PF4. Compared to mixed separate chemokines, OPRAH exhibited increased biological activity, thus providing evidence that physical formation of the heterodimer indeed mediates enhanced function. PMID:27785869

  12. Urine chemokines indicate pathogenic association of obesity with BPH/LUTS.

    PubMed

    Tyagi, Pradeep; Motley, Saundra S; Kashyap, Mahendra; Pore, Subrata; Gingrich, Jeffrey; Wang, Zhou; Yoshimura, Naoki; Fowke, Jay H

    2015-07-01

    High prevalence of lower urinary tract symptoms (LUTS) consistent with benign prostate hyperplasia (BPH) is associated with obesity and prostatic inflammation. Here, we investigated whether chemokines associated with obesity and prostatic inflammation can be measured in normally voided urine of BPH/LUTS patients to demonstrate the mechanistic association between obesity and BPH/LUTS. Frozen urine specimens of BPH/LUTS patients enrolled in the Nashville Men's Health Study were sent for blinded analysis to University of Pittsburgh. Thirty patients were blocked by their AUA-SI (>7 or ≤7) and prostatic enlargement (<40, 40-60, >60 cc). Clinical parameters including age, prostate size, and medications were derived from chart review. CXC chemokines (CXCL-1, CXCL-8, and CXCL-10), CC chemokines (CCL2 and CCL3), and sIL-1ra were measured in thawed urine using Luminex™ xMAP(®) technology and ELISA for NGF. Urinary CCL2 levels were several fold higher compared with the other six proteins, of which CCL3 was detectable in less than one-fourth of patients. Urine levels of sIL-1ra and CXCL-8 were significantly associated with increasing BMI and waist circumference in BPH patients. CXCL-8 showed a marginal association with overall AUA-SI scores, as well as obstructive (p = 0.08) symptom subscores. Prostate volume was inversely and marginally associated with urinary CXCL-10 (p = 0.09). Urine levels of CXCL-8, CXCL-10, and sIL-1ra were associated with varying degrees with LUTS severity, prostate size, and obesity, respectively. These findings in urine are consistent with past studies of chemokine levels from expressed prostatic secretions and demonstrate the potential of noninvasively measured chemokine in urine to objectively classify BPH/LUTS patients.

  13. The effect of aliskiren on urinary cytokine/chemokine responses to clamped hyperglycaemia in type 1 diabetes.

    PubMed

    Cherney, David Z I; Reich, Heather N; Scholey, James W; Daneman, Denis; Mahmud, Farid H; Har, Ronnie L H; Sochett, Etienne B

    2013-10-01

    Acute clamped hyperglycaemia activates the renin-angiotensin-aldosterone system (RAAS) and increases the urinary excretion of inflammatory cytokines/chemokines in patients with uncomplicated type 1 diabetes mellitus. Our objective was to determine whether blockade of the RAAS would blunt the effect of acute hyperglycaemia on urinary cytokine/chemokine excretion, thereby giving insights into potentially protective effects of these agents prior to the onset of clinical nephropathy. Blood pressure, renal haemodynamic function (inulin and para-aminohippurate clearances) and urinary cytokines/chemokines were measured after 6 h of clamped euglycaemia (4-6 mmol/l) and hyperglycaemia (9-11 mmol/l) on two consecutive days in patients with type 1 diabetes mellitus (n = 27) without overt nephropathy. Measurements were repeated after treatment with aliskiren (300 mg daily) for 30 days. Before aliskiren, clamped hyperglycaemia increased filtration fraction (from 0.188 ± 0.007 to 0.206 ± 0.007, p = 0.003) and urinary fibroblast growth factor-2 (FGF2), IFN-α2 and macrophage-derived chemokine (MDC) (p < 0.005). After aliskiren, the filtration fraction response to hyperglycaemia was abolished, resulting in a lower filtration fraction after aliskiren under clamped hyperglycaemic conditions (p = 0.004), and none of the biomarkers increased in response to hyperglycaemia. Aliskiren therapy also reduced levels of urinary eotaxin, FGF2, IFN-α2, IL-2 and MDC during clamped hyperglycaemia (p < 0.005). The increased urinary excretion of inflammatory cytokines/chemokines in response to acute hyperglycaemia is blunted by RAAS blockade in humans with uncomplicated type 1 diabetes mellitus.

  14. Cell recruiting chemokine-loaded sprayable gelatin hydrogel dressings for diabetic wound healing.

    PubMed

    Yoon, Dong Suk; Lee, Yunki; Ryu, Hyun Aae; Jang, Yeonsue; Lee, Kyoung-Mi; Choi, Yoorim; Choi, Woo Jin; Lee, Moses; Park, Kyung Min; Park, Ki Dong; Lee, Jin Woo

    2016-07-01

    In this study, we developed horseradish peroxidase (HRP)-catalyzed sprayable gelatin hydrogels (GH) as a bioactive wound dressing that can deliver cell-attracting chemotactic cytokines to the injured tissues for diabetic wound healing. We hypothesized that topical administration of chemokines using GH hydrogels might improve wound healing by inducing recruitment of the endogenous cells. Two types of chemokines (interleukin-8; IL-8, macrophage inflammatory protein-3α; MIP-3α) were simply loaded into GH hydrogels during in situ cross-linking, and then their wound-healing effects were evaluated in streptozotocin-induced diabetic mice. The incorporation of chemokines did not affect hydrogels properties including swelling ratio and mechanical stiffness, and the bioactivities of IL-8 and MIP-3α released from hydrogel matrices were stably maintained. In vivo transplantation of chemokine-loaded GH hydrogels facilitated cell infiltration into the wound area, and promoted wound healing with enhanced re-epithelialization/neovascularization and increased collagen deposition, compared with no treatment or the GH hydrogel alone. Based on our results, we suggest that cell-recruiting chemokine-loaded GH hydrogel dressing can serve as a delivery platform of various therapeutic proteins for wound healing applications. Despite development of materials combined with therapeutic agents for diabetic wound treatment, impaired wound healing by insufficient chemotactic responses still remain as a significant problem. In this study, we have developed enzyme-catalyzed gelatin (GH) hydrogels as a sprayable dressing material that can deliver cell-attracting chemokines for diabetic wound healing. The chemotactic cytokines (IL-8 and MIP-3α) were simply loaded within hydrogel during in situ gelling, and wound healing efficacy of chemokine-loaded GH hydrogels was investigated in STZ-induced diabetic mouse model. These hydrogels significantly promoted wound-healing efficacy with faster wound

  15. Chemokine receptor antagonists: part 2.

    PubMed

    Pease, James E; Horuk, Richard

    2009-02-01

    The first part of this two-part review discussed approaches to generating antagonists for some of the CC chemokine receptors, including CCR1, CCR2, CCR3, and CCR4. This second part of the series concludes the review by describing antagonists for CCR5, CCR8, CCR9, CXCR3, CXCR4, and promiscuous antagonists. Chemokine receptor antagonists have found mixed success as therapeutics. Although one antagonist--maraviroc, a CCR5 inhibitor to treat AIDS--has been registered as an approved drug, this is the only success so far. There have been many failures in the clinic and we discuss the idea of promiscuous receptor antagonists as an alternative approach.

  16. Structural insights into the interaction between a potent anti-inflammatory protein, viral CC chemokine inhibitor (vCCI), and the human CC chemokine, Eotaxin-1.

    PubMed

    Kuo, Nai-Wei; Gao, Yong-Guang; Schill, Megan S; Isern, Nancy; Dupureur, Cynthia M; Liwang, Patricia J

    2014-03-07

    Chemokines play important roles in the immune system, not only recruiting leukocytes to the site of infection and inflammation but also guiding cell homing and cell development. The soluble poxvirus-encoded protein viral CC chemokine inhibitor (vCCI), a CC chemokine inhibitor, can bind to human CC chemokines tightly to impair the host immune defense. This protein has no known homologs in eukaryotes and may represent a potent method to stop inflammation. Previously, our structure of the vCCI·MIP-1β (macrophage inflammatory protein-1β) complex indicated that vCCI uses negatively charged residues in β-sheet II to interact with positively charged residues in the MIP-1β N terminus, 20s region and 40s loop. However, the interactions between vCCI and other CC chemokines have not yet been fully explored. Here, we used NMR and fluorescence anisotropy to study the interaction between vCCI and eotaxin-1 (CCL11), a CC chemokine that is an important factor in the asthma response. NMR results reveal that the binding pattern is very similar to the vCCI·MIP-1β complex and suggest that electrostatic interactions provide a major contribution to binding. Fluorescence anisotropy results on variants of eotaxin-1 further confirm the critical roles of the charged residues in eotaxin-1. In addition, the binding affinity between vCCI and other wild type CC chemokines, MCP-1 (monocyte chemoattractant protein-1), MIP-1β, and RANTES (regulated on activation normal T cell expressed and secreted), were determined as 1.1, 1.2, and 0.22 nm, respectively. To our knowledge, this is the first work quantitatively measuring the binding affinity between vCCI and multiple CC chemokines.

  17. Structural Insights into the Interaction between a Potent Anti-inflammatory Protein, Viral CC Chemokine Inhibitor (vCCI), and the Human CC Chemokine, Eotaxin-1*

    PubMed Central

    Kuo, Nai-Wei; Gao, Yong-Guang; Schill, Megan S.; Isern, Nancy; Dupureur, Cynthia M.; LiWang, Patricia J.

    2014-01-01

    Chemokines play important roles in the immune system, not only recruiting leukocytes to the site of infection and inflammation but also guiding cell homing and cell development. The soluble poxvirus-encoded protein viral CC chemokine inhibitor (vCCI), a CC chemokine inhibitor, can bind to human CC chemokines tightly to impair the host immune defense. This protein has no known homologs in eukaryotes and may represent a potent method to stop inflammation. Previously, our structure of the vCCI·MIP-1β (macrophage inflammatory protein-1β) complex indicated that vCCI uses negatively charged residues in β-sheet II to interact with positively charged residues in the MIP-1β N terminus, 20s region and 40s loop. However, the interactions between vCCI and other CC chemokines have not yet been fully explored. Here, we used NMR and fluorescence anisotropy to study the interaction between vCCI and eotaxin-1 (CCL11), a CC chemokine that is an important factor in the asthma response. NMR results reveal that the binding pattern is very similar to the vCCI·MIP-1β complex and suggest that electrostatic interactions provide a major contribution to binding. Fluorescence anisotropy results on variants of eotaxin-1 further confirm the critical roles of the charged residues in eotaxin-1. In addition, the binding affinity between vCCI and other wild type CC chemokines, MCP-1 (monocyte chemoattractant protein-1), MIP-1β, and RANTES (regulated on activation normal T cell expressed and secreted), were determined as 1.1, 1.2, and 0.22 nm, respectively. To our knowledge, this is the first work quantitatively measuring the binding affinity between vCCI and multiple CC chemokines. PMID:24482230

  18. Targeted knockout of a chemokine-like gene increases anxiety and fear responses.

    PubMed

    Choi, Jung-Hwa; Jeong, Yun-Mi; Kim, Sujin; Lee, Boyoung; Ariyasiri, Krishan; Kim, Hyun-Taek; Jung, Seung-Hyun; Hwang, Kyu-Seok; Choi, Tae-Ik; Park, Chul O; Huh, Won-Ki; Carl, Matthias; Rosenfeld, Jill A; Raskin, Salmo; Ma, Alan; Gecz, Jozef; Kim, Hyung-Goo; Kim, Jin-Soo; Shin, Ho-Chul; Park, Doo-Sang; Gerlai, Robert; Jamieson, Bradley B; Kim, Joon S; Iremonger, Karl J; Lee, Sang H; Shin, Hee-Sup; Kim, Cheol-Hee

    2018-01-30

    Emotional responses, such as fear and anxiety, are fundamentally important behavioral phenomena with strong fitness components in most animal species. Anxiety-related disorders continue to represent a major unmet medical need in our society, mostly because we still do not fully understand the mechanisms of these diseases. Animal models may speed up discovery of these mechanisms. The zebrafish is a highly promising model organism in this field. Here, we report the identification of a chemokine-like gene family, samdori ( sam ), and present functional characterization of one of its members, sam2 We show exclusive mRNA expression of s am2 in the CNS, predominantly in the dorsal habenula, telencephalon, and hypothalamus. We found knockout (KO) zebrafish to exhibit altered anxiety-related responses in the tank, scototaxis and shoaling assays, and increased crh mRNA expression in their hypothalamus compared with wild-type fish. To investigate generalizability of our findings to mammals, we developed a Sam2 KO mouse and compared it to wild-type littermates. Consistent with zebrafish findings, homozygous KO mice exhibited signs of elevated anxiety. We also found bath application of purified SAM2 protein to increase inhibitory postsynaptic transmission onto CRH neurons of the paraventricular nucleus. Finally, we identified a human homolog of SAM2 , and were able to refine a candidate gene region encompassing SAM2 , among 21 annotated genes, which is associated with intellectual disability and autism spectrum disorder in the 12q14.1 deletion syndrome. Taken together, these results suggest a crucial and evolutionarily conserved role of sam2 in regulating mechanisms associated with anxiety. Copyright © 2018 the Author(s). Published by PNAS.

  19. Probing Functional Heteromeric Chemokine Protein-Protein Interactions through Conformation-Assisted Oxime Ligation.

    PubMed

    Agten, Stijn M; Koenen, Rory R; Ippel, Hans; Eckardt, Veit; von Hundelshausen, Philipp; Mayo, Kevin H; Weber, Christian; Hackeng, Tilman M

    2016-11-21

    Protein-protein interactions (PPIs) govern most processes in living cells. Current drug development strategies are aimed at disrupting or stabilizing PPIs, which require a thorough understanding of PPI mechanisms. Examples of such PPIs are heteromeric chemokine interactions that are potentially involved in pathological disorders such as cancer, atherosclerosis, and HIV. It remains unclear whether this functional modulation is mediated by heterodimer formation or by the additive effects of mixed chemokines on their respective receptors. To address this issue, we report the synthesis of a covalent RANTES-PF4 heterodimer (termed OPRAH) by total chemical synthesis and oxime ligation, with an acceleration of the final ligation step driven by PPIs between RANTES and PF4. Compared to mixed separate chemokines, OPRAH exhibited increased biological activity, thus providing evidence that physical formation of the heterodimer indeed mediates enhanced function. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  20. Antigen-Specific Immune Modulation Targets mTORC1 Function To Drive Chemokine Receptor-Mediated T Cell Tolerance.

    PubMed

    Chen, Weirong; Wan, Xiaoxiao; Ukah, Tobechukwu K; Miller, Mindy M; Barik, Subhasis; Cattin-Roy, Alexis N; Zaghouani, Habib

    2016-11-01

    To contain autoimmunity, pathogenic T cells must be eliminated or diverted from reaching the target organ. Recently, we defined a novel form of T cell tolerance whereby treatment with Ag downregulates expression of the chemokine receptor CXCR3 and prevents diabetogenic Th1 cells from reaching the pancreas, leading to suppression of type 1 diabetes (T1D). This report defines the signaling events underlying Ag-induced chemokine receptor-mediated tolerance. Specifically, we show that the mammalian target of rapamycin complex 1 (mTORC1) is a major target for induction of CXCR3 downregulation and crippling of Th1 cells. Indeed, Ag administration induces upregulation of programmed death-ligand 1 on dendritic cells in a T cell-dependent manner. In return, programmed death-ligand 1 interacts with the constitutively expressed programmed death-1 on the target T cells and stimulates docking of Src homology 2 domain-containing tyrosine phosphatase 2 phosphatase to the cytoplasmic tail of programmed death-1. Active Src homology 2 domain-containing tyrosine phosphatase 2 impairs the signaling function of the PI3K/protein kinase B (AKT) pathway, leading to functional defect of mTORC1, downregulation of CXCR3 expression, and suppression of T1D. Thus, mTORC1 component of the metabolic pathway serves as a target for chemokine receptor-mediated T cell tolerance and suppression of T1D. Copyright © 2016 by The American Association of Immunologists, Inc.

  1. CREB- and NF-κB-Regulated CXC Chemokine Gene Expression in Lung Carcinogenesis

    PubMed Central

    Sun, Hongxia; Chung, Wen-Cheng; Ryu, Seung-Hee; Ju, Zhenlin; Tran, Hai T.; Kim, Edward; Kurie, Jonathan M.; Koo, Ja Seok

    2009-01-01

    The recognition of the importance of angiogenesis in tumor progression has led to the development of antiangiogenesis as a new strategy for cancer treatment and prevention. By modulating tumor microenvironment and inducing angiogenesis, the proinflammatory cytokine interleukine (IL)-1 β has been reported to promote tumor development. However, the factors mediating IL-1β-induced angiogenesis in non-small cell lung cancer (NSCLC) and the regulation of these angiogenic factors by IL-1β are less clear. Here, we report that IL-1β upregulated an array of proangiogenic CXC chemokine genes in NSCLC cell line A549 and in normal human tracheobronchial epithelium (NHTBE) cells, as determined by microarray analysis. Further analysis revealed that IL-1β induced much higher protein levels of CXC chemokines in NSCLC cells than in NHTBE cells. Conditioned medium from IL-1β treated A549 cells markedly increased endothelial cell migration, which was suppressed by neutralizing antibodies against CXCL5 and CXCR2. We also found that IL-1β-induced CXC chemokine gene overexpression in NSCLC cells was abrogated with the knockdown of CREB or NF-κB. Moreover, the expression of the CXC chemokine genes as well as CREB and NF-κB activities were greatly increased in tumorigenic NSCLC cell line compared with normal, premalignant immortalized or non-tumorigenic cell lines. A disruptor of the interaction between CREB-binding protein (CBP) and transcription factors such as CREB and NF-κB, 2-naphthol-AS-E-phosphate (KG-501), inhibited IL-1β-induced CXC chemokine gene expression and angiogenic activity in NSCLC. We propose that targeting CREB or NF-κB using small molecule inhibitors, such as KG-501, holds promise as a preventive and/or therapeutic approach for NSCLC. PMID:19138976

  2. Structure-function analysis of the extracellular domains of the Duffy antigen/receptor for chemokines: characterization of antibody and chemokine binding sites.

    PubMed

    Tournamille, Christophe; Filipe, Anne; Wasniowska, Kazimiera; Gane, Pierre; Lisowska, Elwira; Cartron, Jean-Pierre; Colin, Yves; Le Van Kim, Caroline

    2003-09-01

    The Duffy antigen/receptor for chemokines (DARC), a seven-transmembrane glycoprotein carrying the Duffy (Fy) blood group, acts as a widely expressed promiscuous chemokine receptor. In a structure-function study, we analysed the binding of chemokines and anti-Fy monoclonal antibodies (mAbs) to K562 cells expressing 39 mutant forms of DARC with alanine substitutions spread out on the four extracellular domains (ECDs). Using synthetic peptides, we defined previously the Fy6 epitope (22-FEDVW-26), and we characterized the Fya epitope as the linear sequence 41-YGANLE-46. In agreement with these results, mutations of F22-E23, V25 and Y41, G42, N44, L45 on ECD1 abolished the binding of anti-Fy6 and anti-Fya mAbs to K562 cells respectively, Anti-Fy3 binding was abolished by D58-D59 (ECD1), R124 (ECD2), D263 and D283 (ECD4) substitutions. Mutations of C51 (ECD1), C129 (ECD2), C195 (ECD3) and C276 (ECD4 severely reduced anti-Fy3 and CXC-chemokine ligand 8 (CXCL-8) binding. CXCL-8 binding was also abrogated by mutations of F22-E23, P50 (ECD1) and D263, R267, D283 (ECD4). These results defined the Fya epitope and suggested that (1) two disulphide bridges are involved in the creation of an active chemokine binding pocket; (2) a limited number of amino acids in ECDs 1-4 participate in CXCL-8 binding; and (3) Fy3 is a conformation-dependent epitope involving all ECDs. We also showed that N-glycosylation of DARC occurred on N16SS and did not influence antibody and chemokine binding.

  3. Defining the chemokine basis for leukocyte recruitment during viral encephalitis.

    PubMed

    Michlmayr, Daniela; McKimmie, Clive S; Pingen, Marieke; Haxton, Ben; Mansfield, Karen; Johnson, Nicholas; Fooks, Anthony R; Graham, Gerard J

    2014-09-01

    The encephalitic response to viral infection requires local chemokine production and the ensuing recruitment of immune and inflammatory leukocytes. Accordingly, chemokine receptors present themselves as plausible therapeutic targets for drugs aimed at limiting encephalitic responses. However, it remains unclear which chemokines are central to this process and whether leukocyte recruitment is important for limiting viral proliferation and survival in the brain or whether it is predominantly a driver of coincident inflammatory pathogenesis. Here we examine chemokine expression and leukocyte recruitment in the context of avirulent and virulent Semliki Forest virus (SFV) as well as West Nile virus infection and demonstrate rapid and robust expression of a variety of inflammatory CC and CXC chemokines in all models. On this basis, we define a chemokine axis involved in leukocyte recruitment to the encephalitic brain during SFV infection. CXCR3 is the most active; CCR2 is also active but less so, and CCR5 plays only a modest role in leukocyte recruitment. Importantly, inhibition of each of these receptors individually and the resulting suppression of leukocyte recruitment to the infected brain have no effect on viral titer or survival following infection with a virulent SFV strain. In contrast, simultaneous blockade of CXCR3 and CCR2 results in significantly reduced mortality in response to virulent SFV infection. In summary, therefore, our data provide an unprecedented level of insight into chemokine orchestration of leukocyte recruitment in viral encephalitis. Our data also highlight CXCR3 and CCR2 as possible therapeutic targets for limiting inflammatory damage in response to viral infection of the brain. Brain inflammation (encephalitis) in response to viral infection can lead to severe illness and even death. This therefore represents an important clinical problem and one that requires the development of new therapeutic approaches. Central to the pathogenesis of

  4. Enhanced Chronic Pain Management Utilizing Chemokine Receptor Antagonists

    DTIC Science & Technology

    2016-08-01

    approximately halfway into the solution. All animals were tested at 60, 15 and 0 min before drug injection. For each animal , the first reading was discarded...approval (December 31, 2015), hiring new personnel, conducting baseline testing for procedures not involving animals , testing equipment, developing...treatment; Analgesia; Nociception; Antinociception; Inflammation; Chemokines; Chemokine receptor antagonists; Opioid analgesics; Animal models of pain

  5. MicroRNA-17-92 cluster promotes the proliferation and the chemokine production of keratinocytes: implication for the pathogenesis of psoriasis.

    PubMed

    Zhang, Weigang; Yi, Xiuli; An, Yawen; Guo, Sen; Li, Shuli; Song, Pu; Chang, Yuqian; Zhang, Shaolong; Gao, Tianwen; Wang, Gang; Li, Chunying

    2018-05-11

    Keratinocytes are the main epidermal cell type that constitutes the skin barrier against environmental damages, which emphasizes the balance between the growth and the death of keratinocytes in maintaining skin homeostasis. Aberrant proliferation of keratinocytes and the secretion of inflammatory factors from keratinocytes are related to the formation of chronic inflammatory skin diseases like psoriasis. MicroRNA-17-92 (miRNA-17-92 or miR-17-92) is a miRNA cluster that regulates cell growth and immunity, but the role of miR-17-92 cluster in keratinocytes and its relation to skin diseases have not been well investigated. In the present study, we initially found that miR-17-92 cluster promoted the proliferation and the cell-cycle progression of keratinocytes via suppressing cyclin-dependent kinase inhibitor 2B (CDKN2B). Furthermore, miR-17-92 cluster facilitated the secretion of C-X-C motif chemokine ligand 9 (CXCL9) and C-X-C motif chemokine ligand 10 (CXCL10) from keratinocytes by inhibiting suppressor of cytokine signaling 1 (SOCS1), which enhanced the chemotaxis for T lymphocytes formed by keratinocytes. In addition, we detected increased expression of miR-17-92 cluster in psoriatic lesions and the level of lesional miR-17-92 cluster was positively correlated with the disease severity in psoriasis patients. At last, miR-17-92 cluster was increased in keratinocytes by cytokines through the activation of signal transducers and activators of transcription 1 (STAT1) signaling pathway. Our findings demonstrate that cytokine-induced overexpression of miR-17-92 cluster can promote the proliferation and the immune function of keratinocytes, and thus may contribute to the development of inflammatory skin diseases like psoriasis, which implicates miR-17-92 cluster as a potential therapeutic target for psoriasis and other skin diseases with similar inflammatory pathogenesis.

  6. The chemokine CXCL12 generates costimulatory signals in T cells to enhance phosphorylation and clustering of the adaptor protein SLP-76.

    PubMed

    Smith, Xin; Schneider, Helga; Köhler, Karsten; Liu, Hebin; Lu, Yuning; Rudd, Christopher E

    2013-07-30

    The CXC chemokine CXCL12 mediates the chemoattraction of T cells and enhances the stimulation of T cells through the T cell receptor (TCR). The adaptor SLP-76 [Src homology 2 (SH2) domain-containing leukocyte protein of 76 kD] has two key tyrosine residues, Tyr(113) and Tyr(128), that mediate signaling downstream of the TCR. We investigated the effect of CXCL12 on SLP-76 phosphorylation and the TCR-dependent formation of SLP-76 microclusters. Although CXCL12 alone failed to induce SLP-76 cluster formation, it enhanced the number, stability, and phosphorylation of SLP-76 microclusters formed in response to stimulation of the TCR by an activating antibody against CD3, a component of the TCR complex. Addition of CXCL12 to anti-CD3-stimulated cells resulted in F-actin polymerization that stabilized SLP-76 microclusters in the cells' periphery at the interface with antibody-coated coverslips and increased the interaction between SLP-76 clusters and those containing ZAP-70, the TCR-associated kinase that phosphorylates SLP-76, as well as increased TCR-dependent gene expression. Costimulation with CXCL12 and anti-CD3 increased the extent of phosphorylation of SLP-76 at Tyr(113) and Tyr(128), but not that of other TCR-proximal components, and mutation of either one of these residues impaired the CXCL12-dependent effect on SLP-76 microcluster formation, F-actin polymerization, and TCR-dependent gene expression. The effects of CXCL12 on SLP-76 microcluster formation were dependent on the coupling of its receptor CXCR4 to G(i)-family G proteins (heterotrimeric guanine nucleotide-binding proteins). Thus, we identified a costimulatory mechanism by which CXCL12 and antigen converge at SLP-76 microcluster formation to enhance T cell responses.

  7. Identification of the pharmacophore of the CC chemokine-binding proteins Evasin-1 and -4 using phage display.

    PubMed

    Bonvin, Pauline; Dunn, Steven M; Rousseau, François; Dyer, Douglas P; Shaw, Jeffrey; Power, Christine A; Handel, Tracy M; Proudfoot, Amanda E I

    2014-11-14

    To elucidate the ligand-binding surface of the CC chemokine-binding proteins Evasin-1 and Evasin-4, produced by the tick Rhipicephalus sanguineus, we sought to identify the key determinants responsible for their different chemokine selectivities by expressing Evasin mutants using phage display. We first designed alanine mutants based on the Evasin-1·CCL3 complex structure and an in silico model of Evasin-4 bound to CCL3. The mutants were displayed on M13 phage particles, and binding to chemokine was assessed by ELISA. Selected variants were then produced as purified proteins and characterized by surface plasmon resonance analysis and inhibition of chemotaxis. The method was validated by confirming the importance of Phe-14 and Trp-89 to the inhibitory properties of Evasin-1 and led to the identification of a third crucial residue, Asn-88. Two amino acids, Glu-16 and Tyr-19, were identified as key residues for binding and inhibition of Evasin-4. In a parallel approach, we identified one clone (Y28Q/N60D) that showed a clear reduction in binding to CCL3, CCL5, and CCL8. It therefore appears that Evasin-1 and -4 use different pharmacophores to bind CC chemokines, with the principal binding occurring through the C terminus of Evasin-1, but through the N-terminal region of Evasin-4. However, both proteins appear to target chemokine N termini, presumably because these domains are key to receptor signaling. The results also suggest that phage display may offer a useful approach for rapid investigation of the pharmacophores of small inhibitory binding proteins. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. S100 chemokines mediate bookmarking of premetastatic niches

    PubMed Central

    Rafii, Shahin; Lyden, David

    2010-01-01

    Primary tumours release soluble factors, including VEGF-A, TGFβ and TNFα, which induce expression of the chemokines S100A8 and S100A9 in the myeloid and endothelial cells within the lung before tumour metastasis. These chemokine-activated premetastatic niches support adhesion and invasion of disseminating malignant cells, thereby establishing a fertile habitat for metastatic tumours. PMID:17139281

  9. Phloretin ameliorates chemokines and ICAM-1 expression via blocking of the NF-κB pathway in the TNF-α-induced HaCaT human keratinocytes.

    PubMed

    Huang, Wen-Chung; Dai, Yi-Wen; Peng, Hui-Ling; Kang, Chiao-Wei; Kuo, Chun-Yu; Liou, Chian-Jiun

    2015-07-01

    Previous studies found that phloretin had anti-oxidant, anti-inflammatory, and anti-tumor properties. In this study, we investigated whether phloretin could suppress the production of the intercellular adhesion molecule (ICAM)-1 and chemokines through downregulation of the nuclear transcription factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways in TNF-α-stimulated HaCaT human keratinocytes. HaCaT cells were treated with phloretin and then the cells were stimulated by TNF-α. Phloretin treatment decreased the production of IL-6, IL-8, CCL5, MDC, and TARC. Phloretin decreased ICAM-1 protein and mRNA expression, and also suppressed the adhesion of monocyte THP-1 cells to inflammatory HaCaT cells. Phloretin inhibited NF-κB translocation into the nucleus and also suppressed the phosphorylation of Akt and MAPK signal. In addition, phloretin increased heme oxygenase-1 production in a concentration-dependent manner. These results demonstrated that phloretin has anti-inflammatory effects to inhibit chemokines and ICAM-1 expressions through suppression of the NF-κB and MAPK pathways in human keratinocytes. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Comparative study of CXC chemokines modulation in brown trout (Salmo trutta) following infection with a bacterial or viral pathogen.

    PubMed

    Gorgoglione, Bartolomeo; Zahran, Eman; Taylor, Nick G H; Feist, Stephen W; Zou, Jun; Secombes, Christopher J

    2016-03-01

    Chemokine modulation in response to pathogens still needs to be fully characterised in fish, in view of the recently described novel chemokines present. This paper reports the first comparative study of CXC chemokine genes transcription in salmonids (brown trout), with a particular focus on the fish specific CXC chemokines (CXCL_F). Adopting new primer sets, optimised to specifically target mRNA, a RT-qPCR gene screening was carried out. Constitutive gene expression was assessed first in six tissues from SPF brown trout. Transcription modulation was next investigated in kidney and spleen during septicaemic infection induced by a RNA virus (Viral Haemorrhagic Septicaemia virus, genotype Ia) or by a Gram negative bacterium (Yersinia ruckeri, ser. O1/biot. 2). From each target organ specific pathogen burden, measured detecting VHSV-glycoprotein or Y. ruckeri 16S rRNA, and IFN-γ gene expression were analysed for their correlation to chemokine transcription. Both pathogens modulated CXC chemokine gene transcript levels, with marked up-regulation seen in some cases, and with both temporal and tissue specific effects apparent. For example, Y. ruckeri strongly induced chemokine transcription in spleen within 24h, whilst VHS generally induced the largest increases at 3d.p.i. in both tissues. This study gives clues to the role of the novel CXC chemokines, in comparison to the other known CXC chemokines in salmonids. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. The ectoenzyme-side of matrix metalloproteinases (MMPs) makes inflammation by serum amyloid A (SAA) and chemokines go round.

    PubMed

    De Buck, Mieke; Gouwy, Mieke; Struyf, Sofie; Opdenakker, Ghislain; Van Damme, Jo

    2018-06-02

    During an inflammatory response, a large number of distinct mediators appears in the affected tissues or in the blood circulation. These include acute phase proteins such as serum amyloid A (SAA), cytokines and chemokines and proteolytic enzymes. Although these molecules are generated within a cascade sequence in specific body compartments allowing for independent action, their co-appearance in space and time during acute or chronic inflammation points toward important mutual interactions. Pathogen-associated molecular patterns lead to fast induction of the pro-inflammatory endogenous pyrogens, which are evoking the acute phase response. Interleukin-1, tumor necrosis factor-α and interferons simultaneously trigger different cell types, including leukocytes, endothelial cells and fibroblasts for tissue-specific or systemic production of chemokines and matrix metalloproteinases (MMPs). In addition, SAA induces chemokines and both stimulate secretion of MMPs from multiple cell types. As a consequence, these mediators may cooperate to enhance the inflammatory response. Indeed, SAA synergizes with chemokines to increase chemoattraction of monocytes and granulocytes. On the other hand, MMPs post-translationally modify chemokines and SAA to reduce their activity. Indeed, MMPs internally cleave SAA with loss of its cytokine-inducing and direct chemotactic potential whilst retaining its capacity to synergize with chemokines in leukocyte migration. Finally, MMPs truncate chemokines at their NH 2 - or COOH-terminal end, resulting in reduced or enhanced chemotactic activity. Therefore, the complex interactions between chemokines, SAA and MMPs either maintain or dampen the inflammatory response. Copyright © 2018. Published by Elsevier B.V.

  12. Increase in chemokines CXCL10 and CCL2 in blood from pigs infected with high compared to low virulence African swine fever virus isolates.

    PubMed

    Fishbourne, Emma; Hutet, Evelyne; Abrams, Charles; Cariolet, Roland; Le Potier, Marie-Frédérique; Takamatsu, Haru-H; Dixon, Linda K

    2013-10-01

    Modulation of the expression of chemokines and chemokine receptors in whole blood was compared following infection of pigs with high and low virulence isolates of African swine fever virus. Levels of mRNAs for CCL2, CCL3L1, CCL4, CXCL10, CCR1 and CCR5 were significantly increased in at least one time point following infection in two experiments and CCL5, CCR9 and CXCR4 mRNA were significantly increased in one of the experiments. The results showed that greatest fold increases in mRNAs for CXCL10 and CCL2 were observed following infection of pigs. CXCL10 mRNA was increased by up to 15 fold in infected compared to uninfected pigs. CXCL10 protein was also detected in serum from pigs infected with the high virulence Benin 97/1 isolate. Levels of CCL2 mRNA were increased in pigs infected with high virulence Benin 97/1 isolate compared to low virulence OURT88/3 isolate and this correlated with an increase of greater than 30 fold in levels of CCL2 protein detected in serum from pigs infected with this isolate. An increase in overall chemotaxis active compounds in defibrinated plasma samples from Benin 97/1 infected pigs was observed at 3 days post-infection (dpi) and a decrease by 7 dpi as measured by chemotaxis assay using normal pig leucocytes in vitro. Increased levels of CXCL10 may either contribute to the activation of lymphocyte priming toward the Th1 phenotype or induction of T lymphocyte apoptosis. Increased levels of CCL2, a chemoattractant for macrophages, may result in increased recruitment of monocytes from bone marrow thus increasing the pool of cells susceptible to infection.

  13. [Peptide fragments of chemokine domain of fractalkine: effect on human monocyte migration].

    PubMed

    Kukhtina, N B; Aref'eva, T I; Ruleva, N Iu; Sidorova, M V; Az'muko, A A; Bespalova, Zh D; Krasnikova, T L

    2012-01-01

    Leukocyte chemotaxis to the area of tissue damage is mediated by chemokines. According to the primary structure, chemokines are divided into four families, fractalkine (CX3CL1) is the only one member of CX3C family and the only membrane-bound chemokine. Fractalkine molecule includes the extracellular N-terminal chemokine domain, mucin-like rod, the transmembrane and the intracellular domains. In membrane-bound state fractalkine has the properties of an adhesion molecule. Chemokine domain of fractalkine (CDF) is released from cell membrane by proteolysis, and this soluble form acts as a chemoattractant for leukocytes expressing fractalkine receptor CX3CR1. Fractalkine is involved in development of a number of pathological processes caused by inflammation, and therefore a search for fractalkine inhibitors is very important. For this purpose we identified several antigenic determinants--the fragments of CDF, and the following peptides were synthesized--P41-52 H-Leu-Glu-Thr-Arg-Gln-His-Arg-Leu-Phe-Cys-Ala-Asp-NH2, P53-60 H-Pro-Lys-Glu-Gln-Trp-Val-Lys-Asp-NH2 and P60-71 H-Asp-Ala-Met-Gln-His-Leu-Asp-Arg-Gln-Ala-Ala-Ala-NH2. The peptide effects on adhesion and migration of human peripheral blood monocytes expressing fractalkine receptors were investigated. In the presence of CDF and P41-52 we observed the increased adhesion and migration of monocytes compared with spontaneous values. Peptides P53-60 and P60-71 significantly inhibited monocyte adhesion and migration stimulated by CDF. Since the chemotactic activity of chemokines was shown to be dependent on their binding to glycosaminoglycans of the cell surface and extracellular matrix, the effect ofpeptides on the interaction of CDF with heparin was analyzed by ELISA. Peptide P41-52 competed with CDF for heparin binding, while peptides P53-60 and P60-71 had no significant activity.

  14. Evidence for chemokine synergy during neutrophil migration in ARDS

    PubMed Central

    Williams, Andrew E; José, Ricardo J; Mercer, Paul F; Brealey, David; Parekh, Dhruv; Thickett, David R; O'Kane, Cecelia; McAuley, Danny F; Chambers, Rachel C

    2017-01-01

    Background Acute respiratory distress syndrome (ARDS) is a life-threatening condition characterised by pulmonary oedema, respiratory failure and severe inflammation. ARDS is further characterised by the recruitment of neutrophils into the lung interstitium and alveolar space. Objectives The factors that regulate neutrophil infiltration into the inflamed lung and our understanding of the pathomechanisms in ARDS remain incomplete. This study aimed at determining the role of the chemokine (C-C motif) ligand (CCL)2 and CCL7 in ARDS. Methods CCL2 and CCL7 protein levels were measured in bronchoalveolar lavage (BAL) fluid obtained from lipopolysaccharide(LPS)-challenged human volunteers and two separate cohorts of patients with ARDS. Neutrophil chemotaxis to ARDS BAL fluid was evaluated and the contribution of each was assessed and compared with chemokine (C-X-C motif) ligand 8 (CXCL8). Chemokine receptor expression on neutrophils from blood or BAL fluid of patients with ARDS was analysed by flow cytometry. Results CCL2 and CCL7 were significantly elevated in BAL fluid recovered from LPS-challenged volunteers and patients with ARDS. BAL fluid from patients with ARDS was highly chemotactic for human neutrophils and neutralising either CCL2 or CCL7 attenuated the neutrophil chemotactic response. Moreover, CCL2 and CCL7 synergised with CXCL8 to promote neutrophil migration. Furthermore, neutrophils isolated from the blood or BAL fluid differentially regulated the cell surface expression of chemokine (C-X-C motif) receptor 1 and C-C chemokine receptor type 2 during ARDS. Conclusion This study highlights important inflammatory chemokines involved in regulating neutrophil migration, which may have potential value as therapeutic targets for the treatment of ARDS. PMID:27496101

  15. (+)-Nootkatone inhibits tumor necrosis factor α/interferon γ-induced production of chemokines in HaCaT cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Hyeon-Jae; Lee, Jin-Hwee; Jung, Yi-Sook, E-mail: yisjung@ajou.ac.kr

    Highlights: • (+)-Nootkatone inhibits TNF-α/IFN-γ-induced TARC and MDC expression in HaCaT cells. • PKCζ, p38 MAPK, or NF-κB mediate TNF-α/IFN-γ-induced TARC and MDC expression. • (+)-Nootkatone inhibits TNF-α/IFN-γ-induced activation of PKCζ, p38 MAPK, or NF-κB. • (+)-Nootkatone suppresses chemokine expression by inhibiting of PKCζ and p38 pathways. - Abstract: Chemokines are important mediators of cell migration, and thymus and activation-regulated chemokine (TARC/CCL17) and macrophage-derived chemokine (MDC/CCL22) are well-known typical inflammatory chemokines involved in atopic dermatitis (AD). (+)-Nootkatone is the major component of Cyperus rotundus. (+)-Nootkatone has antiallergic, anti-inflammatory, and antiplatelet activities. The purpose of this study was to investigate themore » effect of (+)-nootkatone on tumor necrosis factor α (TNF-α)/interferon γ (IFN-γ)-induced expression of Th2 chemokines in HaCaT cells. We found that (+)-nootkatone inhibited the TNF-α/IFN-γ-induced expression of TARC/CCL17 and MDC/CCL22 mRNA in HaCaT cells. It also significantly inhibited TNF-α/IFN-γ-induced activation of nuclear factor kappa B (NF-κB), p38 mitogen-activated protein kinase (MAPK), and protein kinase Cζ (PKCζ). Furthermore, we showed that PKCζ and p38 MAPK contributed to the inhibition of TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression by blocking IκBα degradation in HaCaT cells. Taken together, these results suggest that (+)-nootkatone may suppress TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression in HaCaT cells by inhibiting of PKCζ and p38 MAPK signaling pathways that lead to activation of NF-κB. We propose that (+)-nootkatone may be a useful therapeutic candidate for inflammatory skin diseases such as AD.« less

  16. Airway epithelial cell PPARγ modulates cigarette smoke-induced chemokine expression and emphysema susceptibility in mice.

    PubMed

    Solleti, Siva Kumar; Simon, Dawn M; Srisuma, Sorachai; Arikan, Meltem C; Bhattacharya, Soumyaroop; Rangasamy, Tirumalai; Bijli, Kaiser M; Rahman, Arshad; Crossno, Joseph T; Shapiro, Steven D; Mariani, Thomas J

    2015-08-01

    Chronic obstructive pulmonary disease (COPD) is a highly prevalent, chronic inflammatory lung disease with limited existing therapeutic options. While modulation of peroxisome proliferator-activating receptor (PPAR)-γ activity can modify inflammatory responses in several models of lung injury, the relevance of the PPARG pathway in COPD pathogenesis has not been previously explored. Mice lacking Pparg specifically in airway epithelial cells displayed increased susceptibility to chronic cigarette smoke (CS)-induced emphysema, with excessive macrophage accumulation associated with increased expression of chemokines, Ccl5, Cxcl10, and Cxcl15. Conversely, treatment of mice with a pharmacological PPARγ activator attenuated Cxcl10 and Cxcl15 expression and macrophage accumulation in response to CS. In vitro, CS increased lung epithelial cell chemokine expression in a PPARγ activation-dependent fashion. The ability of PPARγ to regulate CS-induced chemokine expression in vitro was not specifically associated with peroxisome proliferator response element (PPRE)-mediated transactivation activity but was correlated with PPARγ-mediated transrepression of NF-κB activity. Pharmacological or genetic activation of PPARγ activity abrogated CS-dependent induction of NF-κB activity. Regulation of NF-κB activity involved direct PPARγ-NF-κB interaction and PPARγ-mediated effects on IKK activation, IκBα degradation, and nuclear translocation of p65. Our data indicate that PPARG represents a disease-relevant pathophysiological and pharmacological target in COPD. Its activation state likely contributes to NF-κB-dependent, CS-induced chemokine-mediated regulation of inflammatory cell accumulation.

  17. Radiation results in IL-8 mediated intercellular signaling that increases adhesion between monocytic cells and aortic endothelium

    NASA Astrophysics Data System (ADS)

    Kucik, Dennis; Babitz, Stephen; Dunaway, Chad; Steele, Chad

    cells (HAECs) in vitro under conditions that mimic the shear stress in the bloodstream. For both heavy ions and x-rays, these adhesiveness changes are independent of adhesion molecule expression levels, but are chemokine dependent. Here we identify the specific endothelial chemokine responsible for this radiation-induced adhesiveness. X-irradiation increased IL-8 secretion almost 5-fold, while having little or no effect on expression of 15 other chemokines. Adhesiveness was then assayed under physiological shear stress using a flow chamber adhesion assay. Radiation significantly increased endothelial adhesiveness. The radiation-induced adhesiveness was specifically blocked by anti-IL-8 antibody, with no effect on baseline, radiation-independent adhesion. Addition of recombinant human IL-8 to un-irradiated HAECs was sufficient to increase adhesion to the same level as x-rays. Therefore, radiation-induced IL-8 signaling is both necessary and sufficient for radiation effects on aortic endothelial adhesiveness. This IL-8 induced adhesiveness may explain, at least in part, the mechanism by which radiation accelerates development of atherosclerosis. A better understanding of this mechanism can provide the basis for future countermeasure development.

  18. Overexpression of chemokine receptor CXCR2 and ligand CXCL7 in liver metastases from colon cancer is correlated to shorter disease-free and overall survival

    PubMed Central

    Desurmont, Thibault; Skrypek, Nicolas; Duhamel, Alain; Jonckheere, Nicolas; Millet, Guillaume; Leteurtre, Emmanuelle; Gosset, Pierre; Duchene, Belinda; Ramdane, Nassima; Hebbar, Mohamed; Van Seuningen, Isabelle; Pruvot, François-René; Huet, Guillemette; Truant, Stéphanie

    2015-01-01

    Our aim was to analyze the potential role of chemokine receptors CXCR2 and CXCR4 signalling pathways in liver metastatic colorectal cancer (CRC) relapse. CXCR2, CXCR4, and their chemokine ligands were evaluated in liver metastases of colorectal cancer in order to study their correlation with overall and disease-free survival of patients having received, or not received, a neoadjuvant chemotherapy regimen. Quantitative RT-PCR and CXCR2 immunohistochemical staining were carried out using CRC liver metastasis samples. Expression levels of CXCR2, CXCR4, and their ligands were statistically analyzed according to treatment with neoadjuvant chemotherapy and patients’ outcome. CXCR2 and CXCL7 overexpression are correlated to shorter overall and disease-free survival. By multivariate analysis, CXCR2 and CXCL7 expressions are independent factors of overall and disease-free survival. Neoadjuvant chemotherapy increases significantly the expression of CXCR2: treated group 1.89 (0.02–50.92) vs 0.55 (0.07–3.22), P = 0.016. CXCL7 was overexpressed close to significance, 0.40 (0.00–7.85) vs 0.15 (0.01–7.88), P = 0.12. We show the involvement of CXCL7/CXCR2 signalling pathways as a predictive factor of poor outcome in metastatic CRC. 5-Fluorouracil-based chemotherapy regimens increase the expression of these genes in liver metastasis, providing one explanation for aggressiveness of relapsed drug-resistant tumors. Selective blockage of CXCR2/CXCL7 signalling pathways could provide new potential therapeutic opportunities. PMID:25580640

  19. Identification of residues of CXCR4 critical for human immunodeficiency virus coreceptor and chemokine receptor activities.

    PubMed

    Brelot, A; Heveker, N; Montes, M; Alizon, M

    2000-08-04

    CXCR4 is a G-coupled receptor for the stromal cell-derived factor (SDF-1) chemokine, and a CD4-associated human immunodeficiency virus type 1 (HIV-1) coreceptor. These functions were studied in a panel of CXCR4 mutants bearing deletions in the NH(2)-terminal extracellular domain (NT) or substitutions in the NT, the extracellular loops (ECL), or the transmembrane domains (TMs). The coreceptor activity of CXCR4 was markedly impaired by mutations of two Tyr residues in NT (Y7A/Y12A) or at a single Asp residue in ECL2 (D193A), ECL3 (D262A), or TMII (D97N). These acidic residues could engage electrostatical interactions with basic residues of the HIV-1 envelope protein gp120, known to contribute to the selectivity for CXCR4. The ability of CXCR4 mutants to bind SDF-1 and mediate cell signal was consistent with the two-site model of chemokine-receptor interaction. Site I involved in SDF-1 binding but not signaling was located in NT with particular importance of Glu(14) and/or Glu(15) and Tyr(21). Residues required for both SDF-1 binding and signaling, and thus probably part of site II, were identified in ECL2 (Asp(187)), TMII (Asp(97)), and TMVII (Glu(288)). The first residues () of NT also seem required for SDF-1 binding and signaling. A deletion in the third intracellular loop abolished signaling, probably by disrupting the coupling with G proteins. The identification of CXCR4 residues involved in the interaction with both SDF-1 and HIV-1 may account for the signaling activity of gp120 and has implications for the development of antiviral compounds.

  20. Differential chemokine responses in the murine brain following lyssavirus infection.

    PubMed

    Hicks, D J; Núñez, A; Banyard, A C; Williams, A; Ortiz-Pelaez, A; Fooks, A R; Johnson, N

    2013-11-01

    The hallmark of lyssavirus infection is lethal encephalomyelitis. Previous studies have reported distinct lyssavirus isolate-related differences in severity of cellular recruitment into the encephalon in a murine model of infection following peripheral inoculation with rabies virus (RABV) and European bat lyssavirus (EBLV)-1 and -2. In order to understand the role of chemokines in this process, comparative studies of the chemokine pattern, distribution and production in response to infection with these lyssaviruses were undertaken. Expression of CCL2, CCL5 and CXCL10 was observed throughout the murine brain with a distinct caudal bias in distribution, similar to both inflammatory changes and virus antigen distribution. CCL2 immunolabelling was localized to neuronal and astroglial populations. CCL5 immunolabelling was only detected in the astroglia, while CXCL10 labelling, although present in the astroglia, was more prominent in neurons. Isolate-dependent differences in the amount of chemokine immunolabelling in specific brain regions and chemokine production by neurons in vitro were observed, with a greater expression of CCL5 in vivo and CXCL10 production in vitro after EBLV infection. Additionally, strong positive associations between chemokine immunolabelling and perivascular cuffing and, to a lesser extent, virus antigen score were also observed. These differences in chemokine expression may explain the variation in severity of encephalitic changes observed in animals infected with different lyssavirus isolates. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  1. The Anti-Atherosclerotic Effect of Naringin Is Associated with Reduced Expressions of Cell Adhesion Molecules and Chemokines through NF-κB Pathway.

    PubMed

    Hsueh, Tun-Pin; Sheen, Jer-Ming; Pang, Jong-Hwei S; Bi, Kuo-Wei; Huang, Chao-Chun; Wu, Hsiao-Ting; Huang, Sheng-Teng

    2016-02-05

    Naringin has been reported to have an anti-atherosclerosis effect but the underlying mechanism is not fully understood. The aim of this study is to investigate the impact of naringin on the TNF-α-induced expressions of cell adhesion molecules, chemokines and NF-κB signaling pathway in human umbilical vein endothelial cells (HUVECs). The experiments revealed that naringin, at concentrations without cytotoxicity, dose-dependently inhibited the adhesion of THP-1 monocytes to the TNF-α-stimulated HUVECs. The TNF-α-induced expressions of cell adhesion molecules, including VCAM-1, ICAM-1 and E-selectin, at both the mRNA and protein levels, were significantly suppressed by naringin in a dose dependent manner. In addition, the TNF-α-induced mRNA and protein levels of chemokines, including fractalkine/CX3CL1, MCP-1 and RANTES, were also reduced by naringin. Naringin significantly inhibited TNF-α-induced nuclear translocation of NF-κB, which resulted from the inhibited phosphorylation of IKKα/β, IκB-α and NF-κB. Altogether, we proposed that naringin modulated TNF-α-induced expressions of cell adhesion molecules and chemokines through the inhibition of TNF-α-induced activation of IKK/NF-κB signaling pathway to exert the anti-atherosclerotic effect.

  2. Regulation of MMP-3 expression and secretion by the chemokine eotaxin-1 in human chondrocytes

    PubMed Central

    2011-01-01

    Background Osteoarthritis (OA) is characterized by the degradation of articular cartilage, marked by the breakdown of matrix proteins. Studies demonstrated the involvement of chemokines in this process, and some may potentially serve as diagnostic markers and therapeutic targets; however, the underlying signal transductions are not well understood. Methods We investigated the effects of the CC chemokine eotaxin-1 (CCL11) on the matrix metalloproteinase (MMP) expression and secretion in the human chondrocyte cell line SW1353 and primary chondrocytes. Results Eotaxin-1 significantly induced MMP-3 mRNA expression in a dose-dependent manner. Inhibitors of extracellular signal-regulated kinase (ERK) and p38 kinase were able to repress eotaxin-1-induced MMP-3 expression. On the contrary, Rp-adenosine-3',5'-cyclic monophosphorothioate (Rp-cAMPs), a competitive cAMP antagonist for cAMP receptors, and H-89, a protein kinase A (PKA) inhibitor, markedly enhanced eotaxin-1-induced MMP-3 expression. These results suggest that MMP-3 expression is specifically mediated by the G protein-coupled eotaxin-1 receptor activities. Interestingly, little amount of MMP-3 protein was detected in the cell lysates of eotaxin-1-treated SW1353 cells, and most of MMP-3 protein was in the culture media. Furthermore we found that the eotaxin-1-dependent MMP-3 protein secretion was regulated by phospholipase C (PLC)-protein kinase C (PKC) cascade and c-Jun N-terminal kinase (JNK)/mitogen-activated protein (MAP) kinase pathways. These data indicate a specific regulation of MMP-3 secretion also by eotaxin-1 receptor activities. Conclusions Eotaxin-1 not only induces MMP-3 gene expression but also promotes MMP-3 protein secretion through G protein-coupled eotaxin-1 receptor activities. Chemokines, such as eotaxin-1, could be a potential candidate in the diagnosis and treatment of arthritis. PMID:22114952

  3. Regulation of MMP-3 expression and secretion by the chemokine eotaxin-1 in human chondrocytes.

    PubMed

    Chao, Pin-Zhir; Hsieh, Ming-Shium; Cheng, Chao-Wen; Lin, Yung-Feng; Chen, Chien-Ho

    2011-11-25

    Osteoarthritis (OA) is characterized by the degradation of articular cartilage, marked by the breakdown of matrix proteins. Studies demonstrated the involvement of chemokines in this process, and some may potentially serve as diagnostic markers and therapeutic targets; however, the underlying signal transductions are not well understood. We investigated the effects of the CC chemokine eotaxin-1 (CCL11) on the matrix metalloproteinase (MMP) expression and secretion in the human chondrocyte cell line SW1353 and primary chondrocytes. Eotaxin-1 significantly induced MMP-3 mRNA expression in a dose-dependent manner. Inhibitors of extracellular signal-regulated kinase (ERK) and p38 kinase were able to repress eotaxin-1-induced MMP-3 expression. On the contrary, Rp-adenosine-3',5'-cyclic monophosphorothioate (Rp-cAMPs), a competitive cAMP antagonist for cAMP receptors, and H-89, a protein kinase A (PKA) inhibitor, markedly enhanced eotaxin-1-induced MMP-3 expression. These results suggest that MMP-3 expression is specifically mediated by the G protein-coupled eotaxin-1 receptor activities. Interestingly, little amount of MMP-3 protein was detected in the cell lysates of eotaxin-1-treated SW1353 cells, and most of MMP-3 protein was in the culture media. Furthermore we found that the eotaxin-1-dependent MMP-3 protein secretion was regulated by phospholipase C (PLC)-protein kinase C (PKC) cascade and c-Jun N-terminal kinase (JNK)/mitogen-activated protein (MAP) kinase pathways. These data indicate a specific regulation of MMP-3 secretion also by eotaxin-1 receptor activities. Eotaxin-1 not only induces MMP-3 gene expression but also promotes MMP-3 protein secretion through G protein-coupled eotaxin-1 receptor activities. Chemokines, such as eotaxin-1, could be a potential candidate in the diagnosis and treatment of arthritis.

  4. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy

    PubMed Central

    Nagarsheth, Nisha; Wicha, Max S.; Zou, Weiping

    2017-01-01

    The tumour microenvironment is the primary location in which tumour cells and the host immune system interact. Different immune cell subsets are recruited into the tumour microenvironment via interactions between chemokines and chemokine receptors, and these populations have distinct effects on tumour progression and therapeutic outcomes. In this Review, we focus on the main chemokines that are found in the human tumour microenvironment; we elaborate on their patterns of expression, their regulation and their roles in immune cell recruitment and in cancer and stromal cell biology, and we consider how they affect cancer immunity and tumorigenesis. We also discuss the potential of targeting chemokine networks, in combination with other immunotherapies, for the treatment of cancer. PMID:28555670

  5. Evidence for chemokine synergy during neutrophil migration in ARDS.

    PubMed

    Williams, Andrew E; José, Ricardo J; Mercer, Paul F; Brealey, David; Parekh, Dhruv; Thickett, David R; O'Kane, Cecelia; McAuley, Danny F; Chambers, Rachel C

    2017-01-01

    Acute respiratory distress syndrome (ARDS) is a life-threatening condition characterised by pulmonary oedema, respiratory failure and severe inflammation. ARDS is further characterised by the recruitment of neutrophils into the lung interstitium and alveolar space. The factors that regulate neutrophil infiltration into the inflamed lung and our understanding of the pathomechanisms in ARDS remain incomplete. This study aimed at determining the role of the chemokine (C-C motif) ligand (CCL)2 and CCL7 in ARDS. CCL2 and CCL7 protein levels were measured in bronchoalveolar lavage (BAL) fluid obtained from lipopolysaccharide(LPS)-challenged human volunteers and two separate cohorts of patients with ARDS. Neutrophil chemotaxis to ARDS BAL fluid was evaluated and the contribution of each was assessed and compared with chemokine (C-X-C motif) ligand 8 (CXCL8). Chemokine receptor expression on neutrophils from blood or BAL fluid of patients with ARDS was analysed by flow cytometry. CCL2 and CCL7 were significantly elevated in BAL fluid recovered from LPS-challenged volunteers and patients with ARDS. BAL fluid from patients with ARDS was highly chemotactic for human neutrophils and neutralising either CCL2 or CCL7 attenuated the neutrophil chemotactic response. Moreover, CCL2 and CCL7 synergised with CXCL8 to promote neutrophil migration. Furthermore, neutrophils isolated from the blood or BAL fluid differentially regulated the cell surface expression of chemokine (C-X-C motif) receptor 1 and C-C chemokine receptor type 2 during ARDS. This study highlights important inflammatory chemokines involved in regulating neutrophil migration, which may have potential value as therapeutic targets for the treatment of ARDS. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  6. A Potential Contribution of Chemokine Network Dysfunction to the Depressive Disorders

    PubMed Central

    Ślusarczyk, Joanna; Trojan, Ewa; Chwastek, Jakub; Głombik, Katarzyna; Basta-Kaim, Agnieszka

    2016-01-01

    In spite of many years of research, the pathomechanism of depression has not yet been elucidated. Among many hypotheses, the immune theory has generated a substantial interest. Up till now, it has been thought that depression is accompanied by the activation of inflammatory response and increase in pro-inflammatory cytokine levels. However, recently this view has become controversial, mainly due to the family of small proteins called chemokines. They play a key role in the modulation of peripheral function of the immune system by controlling immune reactions, mediating immune cell communication, and regulating chemotaxis and cell adhesion. Last studies underline significance of chemokines in the central nervous system, not only in the neuromodulation but also in the regulation of neurodevelopmental processes, neuroendocrine functions and in mediating the action of classical neurotransmitters. Moreover, it was demonstrated that these proteins are responsible for maintaining interactions between neuronal and glial cells both in the developing and adult brain also in the course of diseases. This review outlines the role of chemokine in the central nervous system under physiological and pathological conditions and their involvement in processes underlying depressive disorder. It summarizes the most important data from experimental and clinical studies. PMID:26893168

  7. The CC chemokine receptor 5 regulates olfactory and social recognition in mice.

    PubMed

    Kalkonde, Y V; Shelton, R; Villarreal, M; Sigala, J; Mishra, P K; Ahuja, S S; Barea-Rodriguez, E; Moretti, P; Ahuja, S K

    2011-12-01

    Chemokines are chemotactic cytokines that regulate cell migration and are thought to play an important role in a broad range of inflammatory diseases. The availability of chemokine receptor blockers makes them an important therapeutic target. In vitro, chemokines are shown to modulate neurotransmission. However, it is not very clear if chemokines play a role in behavior and cognition. Here we evaluated the role of CC chemokine receptor 5 (CCR5) in various behavioral tasks in mice using Wt (Ccr5⁺/⁺) and Ccr5-null (Ccr5⁻/⁻)mice. Ccr5⁻/⁻ mice showed enhanced social recognition. Administration of CC chemokine ligand 3 (CCL3), one of the CCR5-ligands, impaired social recognition. Since the social recognition task is dependent on the sense of olfaction, we tested olfactory recognition for social and non-social scents in these mice. Ccr5⁻/⁻ mice had enhanced olfactory recognition for both these scents indicating that enhanced performance in social recognition task could be due to enhanced olfactory recognition in these mice. Spatial memory and aversive memory were comparable in Wt and Ccr5⁻/⁻ mice. Collectively, these results suggest that chemokines/chemokine receptors might play an important role in olfactory recognition tasks in mice and to our knowledge represents the first direct demonstration of an in vivo role of CCR5 in modulating social behavior in mice. These studies are important as CCR5 blockers are undergoing clinical trials and can potentially modulate behavior. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Expression of CXCR-1 and CXCR-2 chemokine receptors on synovial neutrophils in inflammatory arthritides: does persistent or increasing expression of CXCR-2 contribute to the chronic inflammation or erosive changes?

    PubMed

    Pay, Salih; Musabak, Ugur; Simşek, Ismail; Pekel, Aysel; Erdem, Hakan; Dinç, Ayhan; Sengül, Ali

    2006-12-01

    To analyze the CXCR-1 and CXCR-2 chemokine receptor expression on peripheral blood neutrophils (PBN) and synovial fluid neutrophils (SFN) of patients with rheumatoid arthritis (RA) and Behçet's disease (BD) (characterized by erosive and non-erosive arthritis, respectively), and to compare them with those of patients with osteoarthritis (OA). We used flow cytometry to investigate the expression of CXCR-1 and CXCR-2 chemokine receptors on PBN and SFN of fifty-five (22 RA, 22 BD and 11 OA) age and sex-matched patients. In respect to chemokine receptor expression on neutrophils isolated from patients with RA, mean fluorescein intensity (MFI) of CXCR-1 chemokine receptors on PBN from active and inactive RA patients, and SFN from patients with RA were 151 (90-395), 129 (81-539) and 136 (64-220), respectively, and there were not statistically significant difference each other. But MFI of CXCR-2 chemokine receptors on SFN of patients with RA was 18 (10-32), and significantly higher than PBN of active and inactive RA patients (MFI: 10 (6-15) and 12 (7-16), P=0.002 and 0.037, respectively). In respect to chemokine receptor expression on neutrophils isolated from patients with BD, MFI of CXCR-1 chemokine receptors on PBN of active BD patients was 245 (97-844), and higher than PBN of active RA patients and SFN of BD patients (MFI: 151 (90-395) and 134 (61-231), P=0.047 and 0.017, respectively). MFI of CXCR-2 chemokine receptors on PBN of active and inactive BD patients, and SFN of patients BD were 10 (6-14), 10 (2-16), and 12 (8-24), respectively, there were not statistically significant difference each other. MFI of CXCR-1 chemokine receptors on SFN from patients with RA, BD, and OA were 136 (64-220), 134 (61-231), and 114 (60-180), respectively, and there was no difference between the study groups. MFI of CXCR-2 chemokine receptors on SFN of patients with RA was 18 (10-32), and higher than patients with BD and OA (MFI: 12 (8-24) and 11 (9-18), P=0.037 and 0

  9. Structural Basis of Chemokine Sequestration by CrmD, a Poxvirus-Encoded Tumor Necrosis Factor Receptor

    PubMed Central

    Wang, Dongli; Chen, Dongwei; He, Guangjun; Huang, Li; Wang, Hanzhong; Wang, Xinquan

    2011-01-01

    Pathogens have evolved sophisticated mechanisms to evade detection and destruction by the host immune system. Large DNA viruses encode homologues of chemokines and their receptors, as well as chemokine-binding proteins (CKBPs) to modulate the chemokine network in host response. The SECRET domain (smallpox virus-encoded chemokine receptor) represents a new family of viral CKBPs that binds a subset of chemokines from different classes to inhibit their activities, either independently or fused with viral tumor necrosis factor receptors (vTNFRs). Here we present the crystal structures of the SECRET domain of vTNFR CrmD encoded by ectromelia virus and its complex with chemokine CX3CL1. The SECRET domain adopts a β-sandwich fold and utilizes its β-sheet I surface to interact with CX3CL1, representing a new chemokine-binding manner of viral CKBPs. Structure-based mutagenesis and biochemical analysis identified important basic residues in the 40s loop of CX3CL1 for the interaction. Mutation of corresponding acidic residues in the SECRET domain also affected the binding for other chemokines, indicating that the SECRET domain binds different chemokines in a similar manner. We further showed that heparin inhibited the binding of CX3CL1 by the SECRET domain and the SECRET domain inhibited RAW264.7 cell migration induced by CX3CL1. These results together shed light on the structural basis for the SECRET domain to inhibit chemokine activities by interfering with both chemokine-GAG and chemokine-receptor interactions. PMID:21829356

  10. Inhibition of oncogene-induced inflammatory chemokines using a farnesyltransferase inhibitor

    PubMed Central

    DeGeorge, Katharine C; DeGeorge, Brent R; Testa, James S; Rothstein, Jay L

    2008-01-01

    Background Farnesyltransferase inhibitors (FTI) are small molecule agents originally formulated to inhibit the oncogenic functions of Ras. Although subsequent analysis of FTI activity revealed wider effects on other pathways, the drug has been demonstrated to reduce Ras signaling by direct measurements. The purpose of the current study was to determine if FTI could be used to inhibit the inflammatory activities of a known Ras-activating human oncoprotein, RET/PTC3. RET/PTC3 is a fusion oncoprotein expressed in the thyroid epithelium of patients afflicted with thyroid autoimmune disease and/or differentiated thyroid carcinoma. Previous studies have demonstrated that RET/PTC3 signals through Ras and can provoke nuclear translocation of NFκB and the downstream release of pro-inflammatory mediators from thyroid follicular cells in vitro and in vivo, making it an ideal target for studies using FTI. Methods For the studies described here, an in vitro assay was developed to measure FTI inhibition of RET/PTC3 pro-inflammatory effects. Rat thyrocytes transfected with RET/PTC3 or vector control cDNA were co-cultured with FTI and examined for inhibition of chemokine expression and secretion measured by RT-PCR and ELISA. Immunoblot analysis was used to confirm the level at which FTI acts on RET/PTC3-expressing cells, and Annexin V/PI staining of cells was used to assess cell death in RET/PTC3-expressing cells co-cultured with FTI. Results These analyses revealed significant mRNA and protein inhibition of chemokines Ccl2 and Cxcl1 with nanomolar doses of FTI. Neither RET/PTC3 protein expression nor apoptosis were affected at any dose of FTI investigated. Conclusion These data suggest that FTI may be applied as an effective inhibitor for RET/PTC3-oncogene induced pro-inflammatory mediators. PMID:18304343

  11. Lymphotropic Virions Affect Chemokine Receptor-Mediated Neural Signaling and Apoptosis: Implications for Human Immunodeficiency Virus Type 1-Associated Dementia

    PubMed Central

    Zheng, Jialin; Ghorpade, Anuja; Niemann, Douglas; Cotter, Robin L.; Thylin, Michael R.; Epstein, Leon; Swartz, Jennifer M.; Shepard, Robin B.; Liu, Xiaojuan; Nukuna, Adeline; Gendelman, Howard E.

    1999-01-01

    Chemokine receptors pivotal for human immunodeficiency virus type 1 (HIV-1) infection in lymphocytes and macrophages (CCR3, CCR5, and CXCR4) are expressed on neural cells (microglia, astrocytes, and/or neurons). It is these cells which are damaged during progressive HIV-1 infection of the central nervous system. We theorize that viral coreceptors could effect neural cell damage during HIV-1-associated dementia (HAD) without simultaneously affecting viral replication. To these ends, we studied the ability of diverse viral strains to affect intracellular signaling and apoptosis of neurons, astrocytes, and monocyte-derived macrophages. Inhibition of cyclic AMP, activation of inositol 1,4,5-trisphosphate, and apoptosis were induced by diverse HIV-1 strains, principally in neurons. Virions from T-cell-tropic (T-tropic) strains (MN, IIIB, and Lai) produced the most significant alterations in signaling of neurons and astrocytes. The HIV-1 envelope glycoprotein, gp120, induced markedly less neural damage than purified virions. Macrophage-tropic (M-tropic) strains (ADA, JR-FL, Bal, MS-CSF, and DJV) produced the least neural damage, while 89.6, a dual-tropic HIV-1 strain, elicited intermediate neural cell damage. All T-tropic strain-mediated neuronal impairments were blocked by the CXCR4 antibody, 12G5. In contrast, the M-tropic strains were only partially blocked by 12G5. CXCR4-mediated neuronal apoptosis was confirmed in pure populations of rat cerebellar granule neurons and was blocked by HA1004, an inhibitor of calcium/calmodulin-dependent protein kinase II, protein kinase A, and protein kinase C. Taken together, these results suggest that progeny HIV-1 virions can influence neuronal signal transduction and apoptosis. This process occurs, in part, through CXCR4 and is independent of CD4 binding. T-tropic viruses that traffic in and out of the brain during progressive HIV-1 disease may play an important role in HAD neuropathogenesis. PMID:10482576

  12. Solution structure of CXCL5--a novel chemokine and adipokine implicated in inflammation and obesity.

    PubMed

    Sepuru, Krishna Mohan; Poluri, Krishna Mohan; Rajarathnam, Krishna

    2014-01-01

    The chemokine CXCL5 is selectively expressed in highly specialized cells such as epithelial type II cells in the lung and white adipose tissue macrophages in muscle, where it mediates diverse functions from combating microbial infections by regulating neutrophil trafficking to promoting obesity by inhibiting insulin signaling. Currently very little is known regarding the structural basis of how CXCL5 mediates its novel functions. Towards this missing knowledge, we have solved the solution structure of the CXCL5 dimer by NMR spectroscopy. CXCL5 is a member of a subset of seven CXCR2-activating chemokines (CAC) that are characterized by the highly conserved ELR motif in the N-terminal tail. The structure shows that CXCL5 adopts the typical chemokine fold, but also reveals several distinct differences in the 30 s loop and N-terminal residues; not surprisingly, crosstalk between N-terminal and 30 s loop residues have been implicated as a major determinant of receptor activity. CAC function also involves binding to highly sulfated glycosaminoglycans (GAG), and the CXCL5 structure reveals a distinct distribution of positively charged residues, suggesting that differences in GAG interactions also influence function. The availability of the structure should now facilitate the design of experiments to better understand the molecular basis of various CXCL5 functions, and also serve as a template for the design of inhibitors for use in a clinical setting.

  13. The Chemokine MIP-1α/CCL3 impairs mouse hippocampal synaptic transmission, plasticity and memory.

    PubMed

    Marciniak, Elodie; Faivre, Emilie; Dutar, Patrick; Alves Pires, Claire; Demeyer, Dominique; Caillierez, Raphaëlle; Laloux, Charlotte; Buée, Luc; Blum, David; Humez, Sandrine

    2015-10-29

    Chemokines are signaling molecules playing an important role in immune regulations. They are also thought to regulate brain development, neurogenesis and neuroendocrine functions. While chemokine upsurge has been associated with conditions characterized with cognitive impairments, their ability to modulate synaptic plasticity remains ill-defined. In the present study, we specifically evaluated the effects of MIP1-α/CCL3 towards hippocampal synaptic transmission, plasticity and spatial memory. We found that CCL3 (50 ng/ml) significantly reduced basal synaptic transmission at the Schaffer collateral-CA1 synapse without affecting NMDAR-mediated field potentials. This effect was ascribed to post-synaptic regulations, as CCL3 did not impact paired-pulse facilitation. While CCL3 did not modulate long-term depression (LTD), it significantly impaired long-term potentiation (LTP), an effect abolished by Maraviroc, a CCR5 specific antagonist. In addition, sub-chronic intracerebroventricular (icv) injections of CCL3 also impair LTP. In accordance with these electrophysiological findings, we demonstrated that the icv injection of CCL3 in mouse significantly impaired spatial memory abilities and long-term memory measured using the two-step Y-maze and passive avoidance tasks. These effects of CCL3 on memory were inhibited by Maraviroc. Altogether, these data suggest that the chemokine CCL3 is an hippocampal neuromodulator able to regulate synaptic plasticity mechanisms involved in learning and memory functions.

  14. Platelet-derived chemokines in atherogenesis: what's new?

    PubMed

    Gleissner, Christian A

    2012-09-01

    Over the past decade, platelets have been demonstrated to have various functions beyond their role in hemostasis. Platelets possess a rich repertoire of chemokines that are stored in their alpha granules and can be released upon activation. The pro-atherogenic effects of activated platelets are most likely mediated by release of these pro-inflammatory mediators that promote recruitment, activation or differentiation of other cell types including endothelial cells and leukocytes. These effects have been excellently reviewed in the past by various authors. The current review will therefore focus on novel findings. A specific focus will be put on CXCL4, on which a lot of new data have been published since 2008. Thus, the effects of CXCL4 on macrophage differentiation have been studied in detail revealing that CXCL4 induces a specific macrophage phenotype. Furthermore, novel data on CXCL4L1, a protein similar to CXCL4 that is probably transcribed from a duplication of the PF4 gene coding for CXCL4, will be discussed. A very interesting study has recently demonstrated that the inhibition of heterophilic chemokine interactions using a specifically designed small molecule can inhibit atherogenesis in Apoe-/- mice, thereby demonstrating the clinical potential of tackling platelet chemokines as therapeutic targets in atherosclerosis. Finally, novel data on CXCL1 and CCL5 will be discussed. Overall, while our understanding of the role of platelet chemokines in atherogenesis has significantly improved over the past years, it seems that there may still be many buried treasures in this field that could improve disease prevention or lead to novel clinical therapies.

  15. Glutamine deprivation stimulates mTOR-JNK-dependent chemokine secretion

    PubMed Central

    Shanware, Naval P.; Bray, Kevin; Eng, Christina H.; Wang, Fang; Follettie, Maximillian; Myers, Jeremy; Fantin, Valeria R.; Abraham, Robert T.

    2014-01-01

    The non-essential amino acid, glutamine, exerts pleiotropic effects on cell metabolism, signalling and stress resistance. Here we demonstrate that short-term glutamine restriction triggers an endoplasmic reticulum (ER) stress response that leads to production of the pro-inflammatory chemokine, interleukin-8 (IL-8). Glutamine deprivation-induced ER stress triggers colocalization of autophagosomes, lysosomes and the Golgi into a subcellular structure whose integrity is essential for IL-8 secretion. The stimulatory effect of glutamine restriction on IL-8 production is attributable to depletion of tricarboxylic acid cycle intermediates. The protein kinase, mTOR, is also colocalized with the lysosomal membrane clusters induced by glutamine deprivation, and inhibition of mTORC1 activity abolishes both endomembrane reorganization and IL-8 secretion. Activated mTORC1 elicits IL8 gene expression via the activation of an IRE1-JNK signalling cascade. Treatment of cells with a glutaminase inhibitor phenocopies glutamine restriction, suggesting that these results will be relevant to the clinical development of glutamine metabolism inhibitors as anticancer agents. PMID:25254627

  16. Preparation and Analysis of N-Terminal Chemokine Receptor Sulfopeptides Using Tyrosylprotein Sulfotransferase Enzymes.

    PubMed

    Seibert, Christoph; Sanfiz, Anthony; Sakmar, Thomas P; Veldkamp, Christopher T

    2016-01-01

    In most chemokine receptors, one or multiple tyrosine residues have been identified within the receptor N-terminal domain that are, at least partially, modified by posttranslational tyrosine sulfation. For example, tyrosine sulfation has been demonstrated for Tyr-3, -10, -14, and -15 of CCR5, for Tyr-3, -14, and -15 of CCR8, and for Tyr-7, -12, and -21 of CXCR4. While there is evidence for several chemokine receptors that tyrosine sulfation is required for optimal interaction with the chemokine ligands, the precise role of tyrosine sulfation for chemokine receptor function remains unclear. Furthermore, the function of the chemokine receptor N-terminal domain in chemokine binding and receptor activation is also not well understood. Sulfotyrosine peptides corresponding to the chemokine receptor N-termini are valuable tools to address these important questions both in structural and functional studies. However, due to the lability of the sulfotyrosine modification, these peptides are difficult to obtain using standard peptide chemistry methods. In this chapter, we provide methods to prepare sulfotyrosine peptides by enzymatic in vitro sulfation of peptides using purified recombinant tyrosylprotein sulfotransferase (TPST) enzymes. In addition, we also discuss alternative approaches for the generation of sulfotyrosine peptides and methods for sulfopeptide analysis. © 2016 Elsevier Inc. All rights reserved.

  17. Preparation and analysis of N-terminal chemokine receptor sulfopeptides using tyrosylprotein sulfotransferase enzymes

    PubMed Central

    Seibert, Christoph; Sanfiz, Anthony; Sakmar, Thomas P.; Veldkamp, Christopher T.

    2016-01-01

    In most chemokine receptors, one or multiple tyrosine residues have been identified within the receptor N-terminal domain that are, at least partially, modified by post-translational tyrosine sulfation. For example, tyrosine sulfation has been demonstrated for Tyr-3, -10, -14, and -15 of CCR5, for Tyr-3, -14, and -15 of CCR8 and for Tyr-7, -12, and -21 of CXCR4. While there is evidence for several chemokine receptors that tyrosine sulfation is required for optimal interaction with the chemokine ligands, the precise role of tyrosine sulfation for chemokine receptor function remains unclear. Furthermore, the function of the chemokine receptor N-terminal domain in chemokine binding and receptor activation is also not well understood. Sulfotyrosine peptides corresponding to the chemokine receptor N-termini are valuable tools to address these important questions both in structural and functional studies. However, due to the liability of the sulfotyrosine modification, these peptides are difficult to obtain using standard peptide chemistry methods. In this chapter, we provide methods to prepare sulfotyrosine peptides by enzymatic in vitro sulfation of peptides using purified recombinant tyrosylprotein sulfotransferase (TPST) enzymes. In addition, we also discuss alternative approaches for the generation of sulfotyrosine peptides and methods from sulfopeptide analysis. PMID:26921955

  18. Closely related, yet unique: Distinct homo- and heterodimerization patterns of G protein coupled chemokine receptors and their fine-tuning by cholesterol

    PubMed Central

    Gahbauer, Stefan; Pluhackova, Kristyna

    2018-01-01

    Chemokine receptors, a subclass of G protein coupled receptors (GPCRs), play essential roles in the human immune system, they are involved in cancer metastasis as well as in HIV-infection. A plethora of studies show that homo- and heterodimers or even higher order oligomers of the chemokine receptors CXCR4, CCR5, and CCR2 modulate receptor function. In addition, membrane cholesterol affects chemokine receptor activity. However, structural information about homo- and heterodimers formed by chemokine receptors and their interplay with cholesterol is limited. Here, we report homo- and heterodimer configurations of the chemokine receptors CXCR4, CCR5, and CCR2 at atomistic detail, as obtained from thousands of molecular dynamics simulations. The observed homodimerization patterns were similar for the closely related CC chemokine receptors, yet they differed significantly between the CC receptors and CXCR4. Despite their high sequence identity, cholesterol modulated the CC homodimer interfaces in a subtype-specific manner. Chemokine receptor heterodimers display distinct dimerization patterns for CXCR4/CCR5 and CXCR4/CCR2. Furthermore, associations between CXCR4 and CCR5 reveal an increased cholesterol-sensitivity as compared to CXCR4/CCR2 heterodimerization patterns. This work provides a first comprehensive structural overview over the complex interaction network between chemokine receptors and indicates how heterodimerization and the interaction with the membrane environment diversifies the function of closely related GPCRs. PMID:29529028

  19. Overexpression of chemokine receptor CXCR2 and ligand CXCL7 in liver metastases from colon cancer is correlated to shorter disease-free and overall survival.

    PubMed

    Desurmont, Thibault; Skrypek, Nicolas; Duhamel, Alain; Jonckheere, Nicolas; Millet, Guillaume; Leteurtre, Emmanuelle; Gosset, Pierre; Duchene, Belinda; Ramdane, Nassima; Hebbar, Mohamed; Van Seuningen, Isabelle; Pruvot, François-René; Huet, Guillemette; Truant, Stéphanie

    2015-03-01

    Our aim was to analyze the potential role of chemokine receptors CXCR2 and CXCR4 signalling pathways in liver metastatic colorectal cancer (CRC) relapse. CXCR2, CXCR4, and their chemokine ligands were evaluated in liver metastases of colorectal cancer in order to study their correlation with overall and disease-free survival of patients having received, or not received, a neoadjuvant chemotherapy regimen. Quantitative RT-PCR and CXCR2 immunohistochemical staining were carried out using CRC liver metastasis samples. Expression levels of CXCR2, CXCR4, and their ligands were statistically analyzed according to treatment with neoadjuvant chemotherapy and patients' outcome. CXCR2 and CXCL7 overexpression are correlated to shorter overall and disease-free survival. By multivariate analysis, CXCR2 and CXCL7 expressions are independent factors of overall and disease-free survival. Neoadjuvant chemotherapy increases significantly the expression of CXCR2: treated group 1.89 (0.02-50.92) vs 0.55 (0.07-3.22), P = 0.016. CXCL7 was overexpressed close to significance, 0.40 (0.00-7.85) vs 0.15 (0.01-7.88), P = 0.12. We show the involvement of CXCL7/CXCR2 signalling pathways as a predictive factor of poor outcome in metastatic CRC. 5-Fluorouracil-based chemotherapy regimens increase the expression of these genes in liver metastasis, providing one explanation for aggressiveness of relapsed drug-resistant tumors. Selective blockage of CXCR2/CXCL7 signalling pathways could provide new potential therapeutic opportunities. © 2015 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  20. A Secreted Chemokine Binding Protein Encoded by Murine Gammaherpesvirus-68 Is Necessary for the Establishment of a Normal Latent Load

    PubMed Central

    Bridgeman, Anne; Stevenson, Philip G.; Simas, J. Pedro; Efstathiou, Stacey

    2001-01-01

    Herpesviruses encode a variety of proteins with the potential to disrupt chemokine signaling, and hence immune organization. However, little is known of how these might function in vivo. The B cell–tropic murine gammaherpesvirus-68 (MHV-68) is related to the Kaposi's sarcoma–associated herpesvirus (KSHV), but whereas KSHV expresses small chemokine homologues, MHV-68 encodes a broad spectrum chemokine binding protein (M3). Here we have analyzed the effect on viral pathogenesis of a targeted disruption of the M3 gene. After intranasal infection, an M3 deficiency had surprisingly little effect on lytic cycle replication in the respiratory tract or the initial spread of virus to lymphoid tissues. However, the amplification of latently infected B cells in the spleen that normally drives MHV-68–induced infectious mononucleosis failed to occur. Thus, there was a marked reduction in latent virus recoverable by in vitro reactivation, latency-associated viral tRNA transcripts detectable by in situ hybridization, total viral DNA load, and virus-driven B cell activation. In vivo CD8+ T cell depletion largely reversed this deficiency, suggesting that the chemokine neutralization afforded by M3 may function to block effective CD8+ T cell recruitment into lymphoid tissue during the expansion of latently infected B cell numbers. In the absence of M3, MHV-68 was unable to establish a normal latent load. PMID:11489949

  1. Effector CD8^+ T cells migrate via chemokine-enhanced generalized L'evy walks

    NASA Astrophysics Data System (ADS)

    Banigan, Edward; Harris, Tajie; Christian, David; Liu, Andrea; Hunter, Christopher

    2012-02-01

    Chemokines play a central role in regulating processes essential to the immune function of T cells, such as their migration within lymphoid tissues and targeting of pathogens in sites of inflammation. In order to understand the role of the chemokine CXCL10 during chronic infection by the parasite T. gondii, we analyze tracks of migrating CD8^+ T cells in brain tissue. Surprisingly, we find that T cell motility is not described by a Brownian walk, but instead is consistent with a generalized L'evy walk consisting of L'evy-distributed runs alternating with pauses of L'evy-distributed durations. According to our model, this enables T cells to find rare targets more than an order of magnitude more efficiently than Brownian random walkers. The chemokine CXCL10 increases the migration speed without changing the character of the walk statistics. Thus, CD8^+ T cells use an efficient search strategy to facilitate an effective immune response, and CXCL10 aids them in shortening the average time to find rare targets.

  2. Coengagement of CD16 and CD94 receptors mediates secretion of chemokines and induces apoptotic death of naive natural killer cells.

    PubMed

    Jewett, Anahid; Cacalano, Nicholas A; Head, Christian; Teruel, Antonia

    2006-04-01

    Down-modulation of CD16 (FcgammaRIII) receptors and loss of natural killer (NK) cell function have been observed in oral cancer patients. However, neither the mechanisms nor the significance of the decrease in CD16 receptors have been fully understood. The cytotoxic activity and survival of NK cells are negatively regulated by antibodies directed against CD16 surface receptor. The addition of anti-CD94 antibody in combination with either F(ab')(2) fragment or intact anti-CD16 antibody to NK cells resulted in significant inhibition of NK cell cytotoxic function and induction of apoptosis in resting human peripheral blood NK cells. Addition of interleukin-2 to anti-CD16 and/or anti-CD94 antibody-treated NK cells significantly inhibited apoptosis and increased the function of NK cells. There was a significant increase in tumor necrosis factor-alpha (TNF-alpha) but not IFN-gamma secretion in NK cells treated either with anti-CD16 antibody alone or in combination with anti-CD94 antibodies. Consequently, the addition of anti-TNF-alpha antibody partially inhibited apoptosis of NK cells mediated by the combination of anti-CD94 and anti-CD16 antibodies. Increase in apoptotic death of NK cells also correlated with an increase in type 2 inflammatory cytokines and in the induction of chemokines. Thus, we conclude that binding of antibodies to CD16 and CD94 NK cell receptors induces death of the NK cells and signals for the release of chemokines.

  3. Interaction of chemokine receptor CXCR4 in monomeric and dimeric state with its endogenous ligand CXCL12: coarse-grained simulations identify differences.

    PubMed

    Cutolo, Pasquale; Basdevant, Nathalie; Bernadat, Guillaume; Bachelerie, Françoise; Ha-Duong, Tâp

    2017-02-01

    Despite the recent resolutions of the crystal structure of the chemokine receptor CXCR4 in complex with small antagonists or viral chemokine, a description at the molecular level of the interactions between the full-length CXCR4 and its endogenous ligand, the chemokine CXCL12, in relationship with the receptor recognition and activation, is not yet completely elucidated. Moreover, since CXCR4 is able to form dimers, the question of whether the CXCR4-CXCL12 complex has a 1:1 or 2:1 preferential stoichiometry is still an open question. We present here results of coarse-grained protein-protein docking and molecular dynamics simulations of CXCL12 in association with CXCR4 in monomeric and dimeric states. Our proposed models for the 1:1 and 2:1 CXCR4-CXCL12 quaternary structures are consistent with recognition and activation motifs of both partners provided by the available site-directed mutagenesis data. Notably, we observed that in the 2:1 complex, the chemokine N-terminus makes more steady contacts with the receptor residues critical for binding and activation than in the 1:1 structure, suggesting that the 2:1 stoichiometry would favor the receptor signaling activity with respect to the 1:1 association.

  4. Dienogest inhibits C-C motif chemokine ligand 20 expression in human endometriotic epithelial cells.

    PubMed

    Mita, Shizuka; Nakakuki, Masanori; Ichioka, Masayuki; Shimizu, Yutaka; Hashiba, Masamichi; Miyazaki, Hiroyasu; Kyo, Satoru

    2017-07-01

    C-C motif chemokine ligand 20 is thought to contribute to the development of endometriosis by recruiting Th17 lymphocytes into endometriotic foci. The present study investigated the effects of dienogest, a progesterone receptor agonist used to treat endometriosis, on C-C motif chemokine ligand 20 expression by endometriotic cells. Effects of dienogest on mRNA expression and protein secretion of C-C motif chemokine ligand 20 induced by interleukin 1β were assessed in three immortalized endometriotic epithelial cell lines, parental cells (EMosis-CC/TERT1), and stably expressing human progesterone receptor isoform A (EMosis-CC/TERT1/PRA+) or isoform B (EMosis-CC/TERT1/PRA-/PRB+). Dienogest markedly inhibited interleukin 1β-stimulated C-C motif chemokine ligand 20 mRNA expression and protein secretion in EMosis-CC/TERT1/PRA-/PRB+, which was abrogated by the progesterone receptor antagonist RU486. In EMosis-CC/TERT1/PRA+, dienogest slightly inhibited C-C motif chemokine ligand 20 mRNA and protein. In EMosis-CC/TERT1, dienogest slightly inhibited C-C motif chemokine ligand 20 mRNA, but had no effect on C-C motif chemokine ligand 20 protein. Dienogest inhibited interleukin 1β-induced up-regulation of C-C motif chemokine ligand 20 in endometriotic epithelial cells, mainly mediated by progesterone receptor B. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Chemokine gene polymorphisms associate with gender in patients with uveitis.

    PubMed

    Chen, Y; Vaughan, R W; Kondeatis, E; Fortune, F; Graham, E M; Stanford, M R; Wallace, G R

    2004-01-01

    Uveitis is an inflammatory condition of ocular tissue characterized by leukocyte infiltration, tissue damage, and decreased visual acuity. Chemokines have been implicated in the pathogenesis of uveitis. Polymorphisms in the genes encoding chemokines have been described as affecting chemokine production or function. We analyzed the frequency of single-nucleotide polymorphisms (SNPs) in genes encoding CCL2 (-2518 and -2076) and CCL5 (-403 and -28) in patients with Behçet's disease (BD), a systemic form of uveitis, and patients with retinal vasculitis (RV), an organ-specific form of disease. We report that there was no association between any SNP and disease. However, when segregated on the basis of gender the CCR5 -403 AA genotype was only found in male patients with BD. Similarly, CCL2 genotypes 1/2 were predominant in males, while genotype 4 was significantly associated with disease in female patients with BD. Differences in disease symptoms and severity between males and females have been described in BD and gender-specific genetic differences in chemokine gene function may be involved.

  6. IL-8 signaling is up regulated in alcoholic hepatitis and DDC fed mice with Mallory Denk Bodies (MDBs) present

    PubMed Central

    Liu, Hui; French, Barbara A.; Nelson, Tyler J.; Li, Jun; Tillman, Brittany; French, Samuel W.

    2015-01-01

    Chemokines and their receptors are involved in oncogenesis and in tumor progression, invasion, and metastasis. Various chemokines also promote cell proliferation and resistance to apoptosis of stressed cells. The chemokine CXCL8, also known as interleukin-8 (IL-8), is a proinflammatory molecule that has functions within the tumor microenvironment. Deregulation of IL-8 signaling is shown to play pivotal roles in tumorigenesis and progression. Mallory-Denk Bodies (MDBs) are prevalent in various liver diseases including alcoholic hepatitis (AH) and are formed in mice livers by feeding DDC. By comparing AH livers where MDBs had formed with normal livers, there were significant changes of IL-8 signaling by RNA sequencing (RNA-Seq) analyses. Real-time PCR analysis of CXCR2 further shows a 6-fold up regulation in AH livers and a 26-fold up regulation in the livers of DDC re-fed mice. IL-8 mRNA was also significantly up regulated in AH livers and DDC re-fed mice livers. This indicates that CXCR2 and IL-8 may be crucial for liver MDB formation. MDB containing balloon hepatocytes in AH livers had increased intensity of staining of the cytoplasm for both CXCR2 and IL-8. Over expression of IL-8 leads to an increase of the mitogen activated protein kinase (MAPK) cascade and exacerbates the inflammatory cycle. These observations constitute a demonstration of the altered regulation of IL-8 signaling in the livers of AH and mice fed DDC where MDBs formed, providing further insight into the mechanism of MDB formation mediated by IL-8 signaling in AH. PMID:26260904

  7. IL-8 signaling is up-regulated in alcoholic hepatitis and DDC fed mice with Mallory Denk Bodies (MDBs) present.

    PubMed

    Liu, Hui; French, Barbara A; Nelson, Tyler J; Li, Jun; Tillman, Brittany; French, Samuel W

    2015-10-01

    Chemokines and their receptors are involved in oncogenesis and in tumor progression, invasion, and metastasis. Various chemokines also promote cell proliferation and resistance to apoptosis of stressed cells. The chemokine CXCL8, also known as interleukin-8 (IL-8), is a proinflammatory molecule that has functions within the tumor microenvironment. Deregulation of IL-8 signaling is shown to play pivotal roles in tumorigenesis and progression. Mallory-Denk Bodies (MDBs) are prevalent in various liver diseases including alcoholic hepatitis (AH) and are formed in mice livers by feeding DDC. By comparing AH livers where MDBs had formed with normal livers, there were significant changes of IL-8 signaling by RNA sequencing (RNA-Seq) analyses. Real-time PCR analysis of CXCR2 further shows a 6-fold up-regulation in AH livers and a 26-fold up-regulation in the livers of DDC re-fed mice. IL-8 mRNA was also significantly up-regulated in AH livers and DDC re-fed mice livers. This indicates that CXCR2 and IL-8 may be crucial for liver MDB formation. MDB containing balloon hepatocytes in AH livers had increased intensity of staining of the cytoplasm for both CXCR2 and IL-8. Overexpression of IL-8 leads to an increase of the mitogen activated protein kinase (MAPK) cascade and exacerbates the inflammatory cycle. These observations constitute a demonstration of the altered regulation of IL-8 signaling in the livers of AH and mice fed DDC where MDBs formed, providing further insight into the mechanism of MDB formation mediated by IL-8 signaling in AH. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Interferon-regulated chemokine score associated with improvement in disease activity in refractory myositis patients treated with rituximab.

    PubMed

    López De Padilla, Consuelo M; Crowson, Cynthia S; Hein, Molly S; Strausbauch, Michael A; Aggarwal, Rohit; Levesque, Marc C; Ascherman, Dana P; Oddis, Chester V; Reed, Ann M

    2015-01-01

    The purpose of this study was to investigate whether serum interferon (IFN)-regulated chemokine and distinct cytokine response profiles are associated with clinical improvement in patients with refractory inflammatory myopathy treated with rituximab. In a randomised, placebo-phase trial Rituximab in Myositis Trial (RIM), 200 refractory adult and paediatric myositis subjects received rituximab. Following rituximab, clinical response and disease activity were assessed. Serum samples and clinical data were collected at baseline and several time-points after rituximab treatment. Multiplexed sandwich immunoassays quantified serum levels of IFN-regulated chemokines and other pro-inflammatory cytokines. Composite IFN-regulated chemokine and Th1, Th2, Th17 and regulatory cytokine scores were computed. Baseline IFN-regulated chemokine, Th1, Th2, Th17 and regulatory cytokine scores correlated with baseline physician global VAS, whereas the baseline Th1, Th2 and Th17 cytokine scores correlated with baseline muscle VAS. We also found baseline IFN-regulated chemokine scores correlated with specific non-muscular targets such as baseline cutaneous (r=0.29; p=0.002) and pulmonary (r=0.18; p=0.02) VAS scores. Among all cytokine/chemokines examined, the baseline score of IFN-regulated chemokines demonstrated the best correlation with changes in muscle VAS at 8 (r=-0.19; p=0.01) and 16 weeks (r=-0.17; p=0.03) following rituximab and physician global VAS at 16 weeks (r=-0.16; p=0.04). In vitro experiments showed increased levels of IL-8 (p=0.04), MCP-1 (p=0.04), IL-6 (p=0.03), IL-1β (p=0.04), IL-13 (p=0.04), IL-10 (p=0.02), IL-2 (p=0.04) and IFN-γ (p=0.02) in supernatants of TLR-3 stimulated PBMCs from non-responder compared to patients responders to rituximab. IFN-regulated chemokines before treatment is associated with improvement in disease activity measures in refractory myositis patients treated with rituximab.

  9. SDF-1 signaling via the CXCR4-TCR heterodimer requires PLC-β3 and PLC-γ1 for distinct cellular responses 1

    PubMed Central

    Kremer, Kimberly N.; Clift, Ian C.; Miamen, Alexander G.; Bamidele, Adebowale O.; Qian, Nan-Xin; Humphreys, Troy D.; Hedin, Karen E.

    2011-01-01

    The CXCR4 chemokine receptor is a G protein-coupled receptor (GPCR) that signals in T lymphocytes by forming a heterodimer with the T cell antigen receptor (TCR). CXCR4 and TCR functions are consequently highly cross-regulated, affecting T cell immune activation, cytokine secretion, and T cell migration. The CXCR4-TCR heterodimer stimulates T cell migration and activation of the ERK MAP kinase and downstream AP-1-dependent cytokine transcription in response to SDF-1, the sole chemokine ligand of CXCR4. These responses require Gi-type G proteins as well as TCR ITAM domains and the ZAP-70 tyrosine kinase, thus indicating that the CXCR4-TCR heterodimer signals to integrate GPCR-associated and TCR-associated signaling molecules in response to SDF-1. Yet, the phospholipase C (PLC) isozymes responsible for coupling the CXCR4-TCR heterodimer to distinct downstream cellular responses are incompletely characterized. Here, we demonstrate that PLC activity is required for SDF-1 to induce ERK activation, migration, and CXCR4 endocytosis in human T cells. SDF-1 signaling via the CXCR4-TCR heterodimer uses PLC-β3 to activate the Ras-ERK pathway and increase intracellular Ca2+ concentrations, while PLC-γ1 is dispensable for these outcomes. In contrast, PLC-γ1, but not PLC-β3, is required for SDF-1-mediated migration, via a mechanism independent of LAT. These results increase understanding of the signaling mechanisms employed by the CXCR4-TCR heterodimer, characterize new roles for PLC-β3 and PLC-γ1 in T cells, and suggest that multiple PLCs may also be activated downstream of other chemokine receptors in order to distinctly regulate migration versus other signaling functions. PMID:21705626

  10. Lidocaine reduces neutrophil recruitment by abolishing chemokine-induced arrest and transendothelial migration in septic patients.

    PubMed

    Berger, Christian; Rossaint, Jan; Van Aken, Hugo; Westphal, Martin; Hahnenkamp, Klaus; Zarbock, Alexander

    2014-01-01

    The inappropriate activation, positioning, and recruitment of leukocytes are implicated in the pathogenesis of multiple organ failure in sepsis. Although the local anesthetic lidocaine modulates inflammatory processes, the effects of lidocaine in sepsis are still unknown. This double-blinded, prospective, randomized clinical trial was conducted to investigate the effect of lidocaine on leukocyte recruitment in septic patients. Fourteen septic patients were randomized to receive either a placebo (n = 7) or a lidocaine (n = 7) bolus (1.5 mg/kg), followed by continuous infusion (100 mg/h for patients >70 kg or 70 mg/h for patients <70 kg) over a period of 48 h. Selectin-mediated slow rolling, chemokine-induced arrest, and transmigration were investigated by using flow chamber and transmigration assays. Lidocaine treatment abrogated chemokine-induced neutrophil arrest and significantly impaired neutrophil transmigration through endothelial cells by inhibition of the protein kinase C-θ while not affecting the selectin-mediated slow leukocyte rolling. The observed results were not attributable to changes in surface expression of adhesion molecules or selectin-mediated capturing capacity, indicating a direct effect of lidocaine on signal transduction in neutrophils. These data suggest that lidocaine selectively inhibits chemokine-induced arrest and transmigration of neutrophils by inhibition of protein kinase C-θ while not affecting selectin-mediated slow rolling. These findings may implicate a possible therapeutic role for lidocaine in decreasing the inappropriate activation, positioning, and recruitment of leukocytes during sepsis.

  11. Altered plasma levels of chemokines in autism and their association with social behaviors.

    PubMed

    Shen, Yidong; Ou, JInajun; Liu, Mengmeng; Shi, Lijuan; Li, Yamin; Xiao, Lu; Dong, Huixi; Zhang, Fengyu; Xia, Kun; Zhao, Jingping

    2016-10-30

    Autism Spectrum Disorder (ASD) is a group of neurodevelopment disorders with an unclear etiology. Chemokines have been implicated in the etiology and pathogenesis of ASD. The current study investigated the plasma levels of seven chemokines (RANTES, Eotaxin, MIP-1 α, MIP-1 β, MCP-1, IP-10, and MIG) in 42 young autistic patients and 35 age-matched typically developing (TD) children. The study also tested the association between these chemokine levels and social behaviors, as measured by the Social Responsiveness Scale (SRS). Compared to the TD children, RANTES, MIP-1α, and MIP-1β were higher, while IP-10 and MIG were lower in the autistic patients, after correcting for multiple comparisons. Among these seven chemokines, MIP-1α, MIP-1β and IP-10 levels were found to be associated with social behaviors in all the participants. Moreover, MIP-1α and IP-10 were found to be independent predictors of social behaviors. The results of our study support the hypothesis that altered chemokine levels are involved in the pathophysiology of ASD and they indicate that chemokines plasma levels could be potential biomarkers for ASD. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. CXCL1 inhibits airway smooth muscle cell migration through the decoy receptor Duffy antigen receptor for chemokines.

    PubMed

    Al-Alwan, Laila A; Chang, Ying; Rousseau, Simon; Martin, James G; Eidelman, David H; Hamid, Qutayba

    2014-08-01

    Airway smooth muscle cell (ASMC) migration is an important mechanism postulated to play a role in airway remodeling in asthma. CXCL1 chemokine has been linked to tissue growth and metastasis. In this study, we present a detailed examination of the inhibitory effect of CXCL1 on human primary ASMC migration and the role of the decoy receptor, Duffy AgR for chemokines (DARC), in this inhibition. Western blots and pathway inhibitors showed that this phenomenon was mediated by activation of the ERK-1/2 MAPK pathway, but not p38 MAPK or PI3K, suggesting a biased selection in the signaling mechanism. Despite being known as a nonsignaling receptor, small interference RNA knockdown of DARC showed that ERK-1/2 MAPK activation was significantly dependent on DARC functionality, which, in turn, was dependent on the presence of heat shock protein 90 subunit α. Interestingly, DARC- or heat shock protein 90 subunit α-deficient ASMCs responded to CXCL1 stimulation by enhancing p38 MAPK activation and ASMC migration through the CXCR2 receptor. In conclusion, we demonstrated DARC's ability to facilitate CXCL1 inhibition of ASMC migration through modulation of the ERK-1/2 MAPK-signaling pathway. Copyright © 2014 by The American Association of Immunologists, Inc.

  13. Disrupting functional interactions between platelet chemokines inhibits atherosclerosis in hyperlipidemic mice.

    PubMed

    Koenen, Rory R; von Hundelshausen, Philipp; Nesmelova, Irina V; Zernecke, Alma; Liehn, Elisa A; Sarabi, Alisina; Kramp, Birgit K; Piccinini, Anna M; Paludan, Søren R; Kowalska, M Anna; Kungl, Andreas J; Hackeng, Tilman M; Mayo, Kevin H; Weber, Christian

    2009-01-01

    Atherosclerosis is characterized by chronic inflammation of the arterial wall due to chemokine-driven mononuclear cell recruitment. Activated platelets can synergize with chemokines to exacerbate atherogenesis; for example, by deposition of the chemokines platelet factor-4 (PF4, also known as CXCL4) and RANTES (CCL5), triggering monocyte arrest on inflamed endothelium. Homo-oligomerization is required for the recruitment functions of CCL5, and chemokine heteromerization has more recently emerged as an additional regulatory mechanism, as evidenced by a mutual modulation of CXCL8 and CXCL4 activities and by enhanced monocyte arrest resulting from CCL5-CXCL4 interactions. The CCL5 antagonist Met-RANTES reduces diet-induced atherosclerosis; however, CCL5 antagonism may not be therapeutically feasible, as suggested by studies using Ccl5-deficient mice which imply that direct CCL5 blockade would severely compromise systemic immune responses, delay macrophage-mediated viral clearance and impair normal T cell functions. Here we determined structural features of CCL5-CXCL4 heteromers and designed stable peptide inhibitors that specifically disrupt proinflammatory CCL5-CXCL4 interactions, thereby attenuating monocyte recruitment and reducing atherosclerosis without the aforementioned side effects. These results establish the in vivo relevance of chemokine heteromers and show the potential of targeting heteromer formation to achieve therapeutic effects.

  14. Glycosaminoglycan-Mediated Downstream Signaling of CXCL8 Binding to Endothelial Cells

    PubMed Central

    Derler, Rupert; Weber, Corinna; Strutzmann, Elisabeth; Miller, Ingrid; Kungl, Andreas

    2017-01-01

    The recruitment of leukocytes, mediated by endothelium bound chemokine gradients, is a vital process in inflammation. The highly negatively charged, unbranched polysaccharide family of glycosaminoglycans (GAGs), such as heparan sulfate and chondroitin sulfate mediate chemokine immobilization. Specifically the binding of CXCL8 (interleukin 8) to GAGs on endothelial cell surfaces is known to regulate neutrophil recruitment. Currently, it is not clear if binding of CXCL8 to GAGs leads to endothelial downstream signaling in addition to the typical CXCR1/CXCR2 (C-X-C motif chemokine receptor 1 and 2)-mediated signaling which activates neutrophils. Here we have investigated the changes in protein expression of human microvascular endothelial cells induced by CXCL8. Tumor necrosis factor alpha (TNFα) stimulation was used to mimic an inflammatory state which allowed us to identify syndecan-4 (SDC4) as the potential proteoglycan co-receptor of CXCL8 by gene array, real-time PCR and flow cytometry experiments. Enzymatic GAG depolymerization via heparinase III and chondroitinase ABC was used to emulate the effect of glycocalyx remodeling on CXCL8-induced endothelial downstream signaling. Proteomic analyses showed changes in the expression pattern of a number of endothelial proteins such as Zyxin and Caldesmon involved in cytoskeletal organization, cell adhesion and cell mobility. These results demonstrate for the first time a potential role of GAG-mediated endothelial downstream signaling in addition to the well-known CXCL8-CXCR1/CXCR2 signaling pathways in neutrophils. PMID:29207576

  15. Mitogen-Activated Protein Kinase 2 Signaling Shapes Macrophage Plasticity in Aggregatibacter actinomycetemcomitans-Induced Bone Loss

    PubMed Central

    Herbert, Bethany A.; Steinkamp, Heidi M.; Gaestel, Matthias

    2016-01-01

    ABSTRACT Aggregatibacter actinomycetemcomitans is associated with aggressive periodontal disease, which is characterized by inflammation-driven alveolar bone loss. A. actinomycetemcomitans activates the p38 mitogen-activated protein kinase (MAPK) and MAPK-activated protein kinase 2 (MK2) stress pathways in macrophages that are involved in host responses. During the inflammatory process in periodontal disease, chemokines are upregulated to promote recruitment of inflammatory cells. The objective of this study was to determine the role of MK2 signaling in chemokine regulation during A. actinomycetemcomitans pathogenesis. Utilizing a murine calvarial model, Mk2+/+ and Mk2−/− mice were treated with live A. actinomycetemcomitans bacteria at the midsagittal suture. MK2 positively regulated the following macrophage RNA: Emr1 (F4/80), Itgam (CD11b), Csf1r (M-CSF Receptor), Itgal (CD11a), Tnf, and Nos2. Additionally, RNA analysis revealed that MK2 signaling regulated chemokines CCL3 and CCL4 in murine calvarial tissue. Utilizing the chimeric murine air pouch model, MK2 signaling differentially regulated CCL3 and CCL4 in the hematopoietic and nonhematopoietic compartments. Bone resorption pits in calvaria, observed by micro-computed tomography, and osteoclast formation were decreased in Mk2−/− mice compared to Mk2+/+ mice after A. actinomycetemcomitans treatment. In conclusion, these data suggest that MK2 in macrophages contributes to regulation of chemokine signaling during A. actinomycetemcomitans-induced inflammation and bone loss. PMID:27795356

  16. Impact of genetic variations in C-C chemokine receptors and ligands on infectious diseases.

    PubMed

    Qidwai, Tabish; Khan, M Y

    2016-10-01

    Chemokine receptors and ligands are crucial for extensive immune response against infectious diseases such as malaria, leishmaniasis, HIV and tuberculosis and a wide variety of other diseases. Role of chemokines are evidenced in the activation and regulation of immune cell migration which is important for immune response against diseases. Outcome of disease is determined by complex interaction among pathogen, host genetic variability and surrounding milieu. Variation in expression or function of chemokines caused by genetic polymorphisms could be associated with attenuated immune responses. Exploration of chemokine genetic polymorphisms in therapeutic response, gene regulation and disease outcome is important. Infectious agents in human host alter the expression of chemokines via epigenetic alterations and thus contribute to disease pathogenesis. Although some fragmentary data are available on chemokine genetic variations and their contribution in diseases, no unequivocal conclusion has been arrived as yet. We therefore, aim to investigate the association of CCR5-CCL5 and CCR2-CCL2 genetic polymorphisms with different infectious diseases, transcriptional regulation of gene, disease severity and response to therapy. Furthermore, the role of epigenetics in genes related to chemokines and infectious disease are also discussed. Copyright © 2016 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  17. Serum macrophage-derived chemokine (MDC) levels are closely related with the disease activity of atopic dermatitis

    PubMed Central

    KAKINUMA, T; NAKAMURA, K; WAKUGAWA, M; MITSUI, H; TADA, Y; SAEKI, H; TORII, H; KOMINE, M; ASAHINA, A; TAMAKI, K

    2002-01-01

    Atopic dermatitis (AD) is a chronic and relapsing inflammatory skin disease characterized by the predominant infiltration of T cells, eosinophils and macrophages in lesional skin. Recently, macrophage-derived chemokine (MDC)/CCL22, a CC chemokine, was identified as a selective chemoattractant for CC chemokine receptor 4 (CCR4)-expressing cells, in addition to thymus and activation-regulated chemokine (TARC). We have previously reported that serum TARC levels correlate with the severity of AD. In this report, we investigated the participation of MDC in AD. First, we measured serum MDC levels in 45 patients with AD, 25 patients with psoriasis vulgaris and 25 healthy controls. Serum MDC levels in AD patients were significantly higher than those in healthy controls and psoriasis patients. Furthermore, the increases in serum MDC levels in AD patients were greater in the severely affected group than in the moderate or mild groups. We compared serum MDC levels in 11 AD patients, before and after treatment, and observed a significant decrease after treatment. Moreover, the serum MDC levels significantly correlated with the Scoring AD (SCORAD) index, serum soluble (s) E-selectin levels, serum soluble interleukin-2 receptor (sIL-2R) levels, serum TARC levels and eosinophil numbers in peripheral blood. Our study strongly suggests that serum MDC levels have a notable correlation with disease activity and that MDC, as well as the CC chemokine TARC, may be involved in the pathogenesis of AD. PMID:11876749

  18. Cytokine and chemokine levels in tears from healthy subjects.

    PubMed

    Carreño, Ester; Enríquez-de-Salamanca, Amalia; Tesón, Marisa; García-Vázquez, Carmen; Stern, Michael E; Whitcup, Scott M; Calonge, Margarita

    2010-11-01

    There is growing evidence for the existence of an 'immune tone' in normal tears. The aim of this study was to determine the levels of a large panel of cytokines and chemokines in tears obtained from healthy subjects. These levels can then serve as baseline values for comparison with patients suffering from ocular surface diseases. Nine healthy subjects participated in this study, and normal ocular surface health was documented by the results of a dry eye questionnaire, Schirmer strip wetting, and vital staining of the cornea. Four microliters of tears were collected from each eye and analysed separately with multiplex bead-based assays for the concentration of 30 cytokines and chemokines. Twenty-five cytokines/chemokines were detected. CCL11/Eotaxin1, GM-CSF, G-CSF, IFN-γ, IL-2, IL-3, IL-4, IL-5, IL-10, IL-13, IL-12p70, IL-15, CX3CL1/Fractalkine, TNF-α, epidermal growth factor, and CCL4/MIP-1β were present at 5-100 pg/ml. IL-1β, IL-6, IL-7A, CXCL8/IL-8, and CCL2/MCP-1 were present at 100-400 pg/ml. IL-1Ra, CXCL10/IP-10 and vascular endothelial growth factor were present at more than 1000 pg/ml. Multiplex bead-based assays are convenient for cytokine/chemokine detection in tears. Fracktalkine has been detected in human healthy tears for the first time. The knowledge of cytokine/chemokine concentrations in tears from normal subjects is an important reference for further comparison with patients suffering from ocular surface diseases. Variability in their levels can reflect a phenomenon of potential importance for the understanding of the ocular surface cytokine pattern. © 2010 The Authors. Journal compilation © 2010 Acta Ophthalmol.

  19. Heterologous Quaternary Structure of CXCL12 and its Relationship to the CC Chemokine Family

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, J.; Yuan, H; Kong, Y

    2010-01-01

    X-ray crystallographic studies reveal that CXCL12 is able to form multiple dimer types, a traditional CXC dimer and a 'CC-like' form. Phylogenetic analysis of all known human chemokines demonstrates CXCL12 is more closely related to the CC chemokine class than other CXC chemokines. These observations indicate that CXCL12 contains genomic and structural elements characteristic of both CXC and CC chemokines.Chemokines are members of a superfamily of proteins involved in the migration of cells to the proper anatomical position during embryonic development or in response to infection or stress during an immune response. There are two major (CC and CXC) andmore » two minor (CX3C and XC) families based on the sequence around the first conserved cysteine. The topology of all structures is essentially identical with a flexible N-terminal region of 3-8 amino acids, a 10-20 residue N-terminal loop, a short 3{sub 10}-helix, three {beta}-strands, and a {alpha}-helix. The major consequence of the subtle difference between the families occurs at the oligomeric level. Monomers of the CC, CXC, and CX3C families form dimers in a family-specific manner. The XCL1 chemokine is a monomer that can interconvert between two folded states. All chemokines activate GPCRs according to family-specificity, however there are a few examples of chemokines crossing the family boundary to function as antagonists. A two-stage mechanism for chemokine activation of GPCRs has been proposed. The N-terminal region of the receptor interacts with the chemokine, followed by receptor activation by the chemokine N-terminal region. Monomeric chemokines have been demonstrated to be the active form for receptor function. There are numerous examples of both chemokines and their receptors forming dimers. While family-specific dimerization may be an attractive explanation for why specific chemokines only activate GPCRs within their own family, the role of dimers in the function of chemokines has not been resolved

  20. Structure of CC Chemokine Receptor 2 with Orthosteric and Allosteric Antagonists

    PubMed Central

    Zheng, Yi; Qin, Ling; Ortiz Zacarías, Natalia V.; de Vries, Henk; Han, Gye Won; Gustavsson, Martin; Dabros, Marta; Zhao, Chunxia; Cherney, Robert J.; Carter, Percy; Stamos, Dean; Abagyan, Ruben; Cherezov, Vadim; Stevens, Raymond C.; IJzerman, Adriaan P.; Heitman, Laura H.; Tebben, Andrew; Kufareva, Irina; Handel, Tracy M.

    2016-01-01

    Summary CC chemokine receptor 2 (CCR2) is one of 19 members of the chemokine receptor subfamily of human Class A G protein-coupled receptors (GPCRs). CCR2 is expressed on monocytes, immature dendritic cells and T cell subpopulations, and mediates their migration towards endogenous CC chemokine ligands such as CCL21. CCR2 and its ligands are implicated in numerous inflammatory and neurodegenerative diseases2 including atherosclerosis, multiple sclerosis, asthma, neuropathic pain, and diabetic nephropathy, as well as cancer3. These disease associations have motivated numerous preclinical studies and clinical trials4 (see ClinicalTrials.gov) in search of therapies that target the CCR2:chemokine axis. To aid drug discovery efforts5, we solved a structure of CCR2 in a ternary complex with an orthosteric (BMS-6816) and allosteric (CCR2-RA-[R]7) antagonist. BMS-681 inhibits chemokine binding by occupying the orthosteric pocket of the receptor in a previously unseen binding mode. CCR2-RA-[R] binds in a novel, highly druggable pocket that is the most intracellular allosteric site observed in Class A GPCRs to date; this site spatially overlaps the G protein-binding site in homologous receptors. CCR2-RA-[R] inhibits CCR2 non-competitively by blocking activation-associated conformational changes and formation of the G protein-binding interface. The conformational signature of the conserved microswitch residues observed in double-antagonist-bound CCR2 resembles the most inactive GPCR structures solved to date. Like other protein:protein interactions, receptor:chemokine complexes are considered challenging therapeutic targets for small molecules, and the present structure suggests diverse pocket epitopes that can be exploited to overcome drug design obstacles. PMID:27926736

  1. WHIM syndrome caused by a single amino acid substitution in the carboxy-tail of chemokine receptor CXCR4

    PubMed Central

    Liu, Qian; Chen, Haoqian; Ojode, Teresa; Gao, Xiangxi; Anaya-O'Brien, Sandra; Turner, Nicholas A.; Ulrick, Jean; DeCastro, Rosamma; Kelly, Corin; Cardones, Adela R.; Gold, Stuart H.; Hwang, Eugene I.; Wechsler, Daniel S.; Malech, Harry L.; Murphy, Philip M.

    2012-01-01

    WHIM syndrome is a rare, autosomal dominant, immunodeficiency disorder so-named because it is characterized by warts, hypogammaglobulinemia, infections, and myelokathexis (defective neutrophil egress from the BM). Gain-of-function mutations that truncate the C-terminus of the chemokine receptor CXCR4 by 10-19 amino acids cause WHIM syndrome. We have identified a family with autosomal dominant inheritance of WHIM syndrome that is caused by a missense mutation in CXCR4, E343K (1027G → A). This mutation is also located in the C-terminal domain, a region responsible for negative regulation of the receptor. Accordingly, like CXCR4R334X, the most common truncation mutation in WHIM syndrome, CXCR4E343K mediated approximately 2-fold increased signaling in calcium flux and chemotaxis assays relative to wild-type CXCR4; however, CXCR4E343K had a reduced effect on blocking normal receptor down-regulation from the cell surface. Therefore, in addition to truncating mutations in the C-terminal domain of CXCR4, WHIM syndrome may be caused by a single charge-changing amino acid substitution in this domain, E343K, that results in increased receptor signaling. PMID:22596258

  2. Synovial angiostatic non-ELR CXC chemokines in inflammatory arthritides: does CXCL4 designate chronicity of synovitis?

    PubMed

    Erdem, Hakan; Pay, Salih; Musabak, Ugur; Simsek, Ismail; Dinc, Ayhan; Pekel, Aysel; Sengul, Ali

    2007-08-01

    In our previous studies, we found higher synovial fluid (SF) levels of angiogenic ELR(+) CXC chemokines such as CXCL1, CXCL5, CXCL6 and CXCL8, which play an important role in neutrophil migration and angiogenesis, and more abundant synovial CXCR2 chemokine receptor expression in patients with rheumatoid arthritis (RA) than those with Behçet's disease (BD), familial Mediterranean fever and osteoarthritis (OA). As a continuation of our previous studies, we investigated synovial levels of angiostatic non-ELR CXC chemokines (CXCL4, CXCL9 and CXCL10) in patients with RA, BD, spondyloarthritis (SpA), and OA. Seventy (17 RA, 15 BD, 19 SpA, and 19 OA) patients were enrolled in the study. The levels of CXCL4, CXCL9, and CXCL10 were measured by ELISA. The SF levels of CXCL4 in patients with RA were higher than those of the patients with BD, SpA, and OA (P = 0.007, P = 0.022, and P = 0.017, respectively). No difference was found with respect to CXCL4 levels among the BD, SpA, and OA patients. The synovial CXCL9 levels of patients with RA and SpA were found to be higher than those of the patients with OA (P = 0.002 and P = 0.005, respectively), while no statistically significant difference was detected among the other groups. With regard to SF CXCL10 levels, patients with RA had higher levels as compared to patients with OA (P = 0.002), but no significant difference was found among the other groups. CXCL9 correlated with CXCL4 and CXCL10 (P < 0.05 for both) in patients with RA. No correlation was found in other parameters. The angiostatic non-ELR CXC chemokines were expressed in synovial inflammation. We proposed that angiostatic non-ELR CXC chemokines may increase to balance angiogenic ELR (+) CXC chemokines in which increased levels were shown in patients with inflammatory arthritides and CXCL4 may contribute to designate the chronicity of synovitis in patients with RA. In addition, as CXCL-9 and CXCL-10 play crucial role in inflammation characterized by Th1 polarization

  3. Critical roles of chemokine receptor CCR5 in regulating glioblastoma proliferation and invasion.

    PubMed

    Zhao, Lanfu; Wang, Yuan; Xue, Yafei; Lv, Wenhai; Zhang, Yufu; He, Shiming

    2015-11-01

    Glioblastoma (GBM) is the most prevalent malignant primary brain tumor in adults and exhibits a spectrum of aberrantly aggressive phenotype. Tumor cell proliferation and invasion are critically regulated by chemokines and their receptors. Recent studies have shown that the chemokine CCL5 and its receptor CCR5 play important roles in tumor invasion and metastasis. Nonetheless, the roles of the CCR5 in GBM still remain unclear. The present study provides the evidence that the chemokine receptor CCR5 is highly expressed and associated with poor prognosis in human GBM. Mechanistically, CCL5-CCR5 mediates activation of Akt, and subsequently induces proliferation and invasive responses in U87 and U251 cells. Moreover, down-regulation of CCR5 significantly inhibited the growth of glioma in U87 tumor xenograft mouse model. Finally, high CCR5 expression in GBM is correlated with increased p-Akt expression in patient samples. Together, these findings suggest that the CCR5 is a critical molecular event associated with gliomagenesis. © The Author 2015. Published by ABBS Editorial Office in association with Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.

  4. Stress-induced neuroinflammation is mediated by GSK3-dependent TLR4 signaling that promotes susceptibility to depression-like behavior

    PubMed Central

    Cheng, Yuyan; Pardo, Marta; de Souza Armini, Rubia; Martinez, Ana; Mouhsine, Hadley; Zagury, Jean-Francois; Jope, Richard S.; Beurel, Eleonore

    2016-01-01

    Most psychiatric and neurological diseases are exacerbated by stress. Because this may partially result from stress-induced inflammation, we examined factors involved in this stress response. After a paradigm of inescapable foot shock stress that causes learned helplessness depression-like behavior, eighteen cytokines and chemokines increased in mouse hippocampus, peaking 6 to 12 hr after stress. A 24 hr prior pre-conditioning stress accelerated the rate of stress-induced hippocampal cytokine and chemokine increases, with most reaching peak levels after 1 to 3 hr, often without altering the maximal levels. Toll-like receptor 4 (TLR4) was involved in this response because most stress-induced hippocampal cytokines and chemokines were attenuated in TLR4 knockout mice. Stress activated glycogen synthase kinase-3 (GSK3) in wild-type mouse hippocampus, but not in TLR4 knockout mice. Administration of the antidepressant fluoxetine or the GSK3 inhibitor TDZD-8 reduced the stress-induced increases of most hippocampal cytokines and chemokines. Stress increased hippocampal levels of the danger-associated molecular pattern (DAMP) protein high mobility group box 1 (HMGB1), activated the inflammatory transcription factor NF-κB, and the NLRP3 inflammasome. Knockdown of HMGB1 blocked the acceleration of cytokine and chemokine increases in the hippocampus caused by two successive stresses. Fluoxetine treatment blocked stress-induced up-regulation of HMGB1 and subsequent NF-κB activation, whereas TDZD-8 administration attenuated NF-κB activation downstream of HMGB1. To test if stress-induced cytokines and chemokines contribute to depression-like behavior, the learned helplessness model was assessed. Antagonism of TNFα modestly reduced susceptibility to learned helplessness induction, whereas TLR4 knockout mice were resistant to learned helplessness. Thus, stress-induces a broad inflammatory response in mouse hippocampus that involves TLR4, GSK3, and downstream inflammatory

  5. Stress-induced neuroinflammation is mediated by GSK3-dependent TLR4 signaling that promotes susceptibility to depression-like behavior.

    PubMed

    Cheng, Yuyan; Pardo, Marta; Armini, Rubia de Souza; Martinez, Ana; Mouhsine, Hadley; Zagury, Jean-Francois; Jope, Richard S; Beurel, Eleonore

    2016-03-01

    Most psychiatric and neurological diseases are exacerbated by stress. Because this may partially result from stress-induced inflammation, we examined factors involved in this stress response. After a paradigm of inescapable foot shock stress that causes learned helplessness depression-like behavior, eighteen cytokines and chemokines increased in mouse hippocampus, peaking 6-12h after stress. A 24h prior pre-conditioning stress accelerated the rate of stress-induced hippocampal cytokine and chemokine increases, with most reaching peak levels after 1-3h, often without altering the maximal levels. Toll-like receptor 4 (TLR4) was involved in this response because most stress-induced hippocampal cytokines and chemokines were attenuated in TLR4 knockout mice. Stress activated glycogen synthase kinase-3 (GSK3) in wild-type mouse hippocampus, but not in TLR4 knockout mice. Administration of the antidepressant fluoxetine or the GSK3 inhibitor TDZD-8 reduced the stress-induced increases of most hippocampal cytokines and chemokines. Stress increased hippocampal levels of the danger-associated molecular pattern (DAMP) protein high mobility group box 1 (HMGB1), activated the inflammatory transcription factor NF-κB, and the NLRP3 inflammasome. Knockdown of HMGB1 blocked the acceleration of cytokine and chemokine increases in the hippocampus caused by two successive stresses. Fluoxetine treatment blocked stress-induced up-regulation of HMGB1 and subsequent NF-κB activation, whereas TDZD-8 administration attenuated NF-κB activation downstream of HMGB1. To test if stress-induced cytokines and chemokines contribute to depression-like behavior, the learned helplessness model was assessed. Antagonism of TNFα modestly reduced susceptibility to learned helplessness induction, whereas TLR4 knockout mice were resistant to learned helplessness. Thus, stress-induces a broad inflammatory response in mouse hippocampus that involves TLR4, GSK3, and downstream inflammatory signaling, and

  6. Chemokine Receptor Ccr6 Deficiency Alters Hepatic Inflammatory Cell Recruitment and Promotes Liver Inflammation and Fibrosis

    PubMed Central

    Blaya, Delia; Morales-Ibanez, Oriol; Coll, Mar; Millán, Cristina; Altamirano, José; Arroyo, Vicente; Caballería, Joan; Bataller, Ramón; Ginès, Pere; Sancho-Bru, Pau

    2015-01-01

    Chronic liver diseases are characterized by a sustained inflammatory response in which chemokines and chemokine-receptors orchestrate inflammatory cell recruitment. In this study we investigated the role of the chemokine receptor CCR6 in acute and chronic liver injury. In the absence of liver injury Ccr6 -/- mice presented a higher number of hepatic macrophages and increased expression of pro-inflammatory cytokines and M1 markers Tnf-α, Il6 and Mcp1. Inflammation and cell recruitment were increased after carbon tetrachloride-induced acute liver injury in Ccr6 -/- mice. Moreover, chronic liver injury by carbon tetrachloride in Ccr6 -/- mice was associated with enhanced inflammation and fibrosis, altered macrophage recruitment, enhanced CD4+ cells and a reduction in Th17 (CD4+IL17+) and mature dendritic (MHCII+CD11c+) cells recruitment. Clodronate depletion of macrophages in Ccr6 -/- mice resulted in a reduction of hepatic pro-inflammatory and pro-fibrogenic markers in the absence and after liver injury. Finally, increased CCR6 hepatic expression in patients with alcoholic hepatitis was found to correlate with liver expression of CCL20 and severity of liver disease. In conclusion, CCR6 deficiency affects hepatic inflammatory cell recruitment resulting in the promotion of hepatic inflammation and fibrosis. PMID:26691857

  7. A YAC contig of the human CC chemokine genes clustered on chromosome 17q11.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naruse, Kuniko; Nomiyama, Hisayuki; Miura, Retsu

    1996-06-01

    CC chemokines are cytokines that attract and activate leukocytes. The human genes for the CC chemokines are clustered on chromosome 17. To elucidate the genomic organization of the CC chemokine genes, we constructed a YAC contig comprising 34 clones. The contig was shown to contain all 10 CC chemokine genes reported so far, except for one gene whose nucleotide sequence is not available. The contig also contains 4 CC chemokine-like genes, which were deposited in GenBank as ESTs and are here referred to as NCC-1, NCC-2, NCC-3, and NCC-4. Within the contig, the CC chemokine genes were localized in twomore » regions. In addition, the CC chemokine genes were localized in two regions. In addition, the CC chemokine genes were more precisely mapped on chromosome 17q11.2 using a somatic cell hybrid cell DNA panel containing various portions of human chromosome 17. Interestingly, a reciprocal translocation t(Y;17) breakpoint, contained in the hybrid cell line Y1741, lay between the two chromosome 17 chemokine gene regions covered by our YAC contig. From these results, the order and the orientation of CC chemokine genes on chromosome 17 were determined as follows: centromere-neurofibromatosis 1-(MCP-3, MCP-1, NCC-1, I-309)-Y1741 breakpoint-RANTES-(LD78{gamma}, AT744.2, LD78{beta})-(NCC-3, NCC-2, AT744.1, LD78{alpha})-NCC-4-retinoic acid receptor {alpha}-telomere. 22 refs., 1 fig., 2 tabs.« less

  8. Molecular and functional roles of 6C CC chemokine 19 in defense system of striped murrel Channa striatus.

    PubMed

    Arockiaraj, Jesu; Bhatt, Prasanth; Harikrishnan, Ramasamy; Arasu, Mariadhas Valan; Al-Dhabi, Naif Abdullah

    2015-08-01

    In this study, we have reported the molecular information of chemokine-19 (Chem19) from striped murrel Channa striatus (Cs). CsCC-Chem19 cDNA sequence was 555 base pair (bp) in length which is 68bp 5' untranslated region (UTR), 339bp translated region and 149bp 3' UTR. The translated region is encoded for a polypeptide of 112 amino acids. CsCC-Chem19 peptide contains a signal sequence between 1 and 26 and an interleukin (IL) 8 like domain between 24 and 89. The multiple sequence alignment showed a 'DCCL' motif, an indispensable motif present in all CC chemokines which was conserved throughout the evolution. Phylogenetic tree showed that CsCC-Chem19 formed a cluster with chemokine 19 from fishes. Secondary structure of CsCC-Chem19 revealed that the peptide contains maximum amount of coils (61.6%) compared to α-helices (25.9%%) and β-sheet (12.5%). Further, 3D analysis indicated that the cysteine residues at 33, 34, 59 and 75 making the disulfide bridges as 33 = 59 and 34 = 75. Significantly (P < 0.05) highest CsCC-Chem19 mRNA expression was observed in blood and it was up-regulated upon fungus and bacterial infection. Utilizing the coding region of CsCC-Chem19, recombinant CsCC-Chem19 protein was produced. The recombinant CsCC-Chem19 protein induced the cellular proliferation and respiratory burst activity of C. striatus peripheral blood leukocytes (PBL) in a concentration dependent manner. Moreover, the chemotactic activity showed that the recombinant CsCC-Chem19 significantly (P < 0.05) enhanced the movement of PBL of C. striatus. Conclusively, CsCC-Chem19 is a 6C CC chemokine having an ability to perform both inflammatory and homeostatic functions. However, further research is necessary to understand the potential of 6C CC chemokine 19 of C. striatus, particularly their regulatory ability on different cellular components in the defense system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Rat coronaviruses infect rat alveolar type I epithelial cells and induce expression of CXC chemokines

    PubMed Central

    Miura, Tanya A.; Wang, Jieru; Holmes, Kathryn V.; Mason, Robert J.

    2007-01-01

    We analyzed the ability of two rat coronavirus (RCoV) strains, sialodacryoadenitis virus (SDAV) and Parker’s RCoV (RCoV-P), to infect rat alveolar type I cells and induce chemokine expression. Primary rat alveolar type II cells were transdifferentiated into the type I cell phenotype. Type I cells were productively infected with SDAV and RCoV-P, and both live virus and UV-inactivated virus induced mRNA and protein expression of three CXC chemokines: CINC-2, CINC-3, and LIX, which are neutrophil chemoattractants. Dual immunolabeling of type I cells for viral antigen and CXC chemokines showed that chemokines were expressed primarily by uninfected cells. Virus-induced chemokine expression was reduced by the IL-1 receptor antagonist, suggesting that IL-1 produced by infected cells induces uninfected cells to express chemokines. Primary cultures of alveolar epithelial cells are an important model for the early events in viral infection that lead to pulmonary inflammation. PMID:17804032

  10. Structure of CC chemokine receptor 2 with orthosteric and allosteric antagonists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Yi; Qin, Ling; Zacarías, Natalia V. Ortiz

    CC chemokine receptor 2 (CCR2) is one of 19 members of the chemokine receptor subfamily of human class A G-protein-coupled receptors. CCR2 is expressed on monocytes, immature dendritic cells, and T-cell subpopulations, and mediates their migration towards endogenous CC chemokine ligands such as CCL2 (ref. 1). CCR2 and its ligands are implicated in numerous inflammatory and neurodegenerative diseases2 including atherosclerosis, multiple sclerosis, asthma, neuropathic pain, and diabetic nephropathy, as well as cancer3. These disease associations have motivated numerous preclinical studies and clinical trials4 (see http://www.clinicaltrials.gov) in search of therapies that target the CCR2–chemokine axis. To aid drug discovery efforts5, heremore » we solve a structure of CCR2 in a ternary complex with an orthosteric (BMS-681 (ref. 6)) and allosteric (CCR2-RA-[R]7) antagonist. BMS-681 inhibits chemokine binding by occupying the orthosteric pocket of the receptor in a previously unseen binding mode. CCR2-RA-[R] binds in a novel, highly druggable pocket that is the most intracellular allosteric site observed in class A G-protein-coupled receptors so far; this site spatially overlaps the G-protein-binding site in homologous receptors. CCR2-RA-[R] inhibits CCR2 non-competitively by blocking activation-associated conformational changes and formation of the G-protein-binding interface. The conformational signature of the conserved microswitch residues observed in double-antagonist-bound CCR2 resembles the most inactive G-protein-coupled receptor structures solved so far. Like other protein–protein interactions, receptor–chemokine complexes are considered challenging therapeutic targets for small molecules, and the present structure suggests diverse pocket epitopes that can be exploited to overcome obstacles in drug design.« less

  11. Roles of hepatocyte and myeloid CXC chemokine receptor-2 in liver recovery and regeneration after ischemia/reperfusion in mice.

    PubMed

    Van Sweringen, Heather L; Sakai, Nozomu; Quillin, Ralph C; Bailey, Jeff; Schuster, Rebecca; Blanchard, John; Goetzman, Holly; Caldwell, Charles C; Edwards, Michael J; Lentsch, Alex B

    2013-01-01

    Previous studies have demonstrated the significance of signaling through the CXC chemokine receptor-2 (CXCR2) receptor in the process of recovery and regeneration of functional liver mass after hepatic ischemia/reperfusion (I/R). CXCR2 is constitutively expressed on both neutrophils and hepatocytes; however, the cell-specific roles of this receptor are unknown. In the present study, chimeric mice were created through bone marrow transplantation (BMT) using wild-type and CXCR2-knockout mice, yielding selective expression of CXCR2 on hepatocytes (Hep) and/or myeloid cells (My) in the following combinations: Hep+/My+; Hep-/My+; Hep+/My-; and Hep-/My-. These tools allowed us to assess the contributions of myeloid and hepatocyte CXCR2 in the recovery of the liver after I/R injury. Flow cytometry confirmed the adoption of the donor phenotype in neutrophils. Interestingly, Kupffer cells from all chimeras lacked CXCR2 expression. Recovery/regeneration of hepatic parenchyma was assessed by histologic assessment and measurement of hepatocyte proliferation. CXCR2(Hep+/My+) mice showed the least amount of liver recovery and hepatocyte proliferation, whereas CXCR2(Hep-/My-) mice had the greatest liver recovery and hepatocyte proliferation. CXCR2(Hep+/My-) mice had enhanced liver recovery, with hepatocyte proliferation similar to CXCR2(Hep-/My-) mice. Myeloid expression of CXCR2 directly regulated CXC chemokine expression levels after hepatic I/R, such that mice lacking myeloid CXCR2 had markedly increased chemokine expression, compared with mice expressing CXCR2 on myeloid cells. The data suggest that CXCR2 on myeloid cells is the predominant regulator of liver recovery and regeneration after I/R injury, whereas hepatocyte CXCR2 plays a minor, secondary role. These findings suggest that myeloid cell-directed therapy may significantly affect liver regeneration after liver resection or transplantation. Copyright © 2012 American Association for the Study of Liver Diseases.

  12. Chemokine CCL2–CCR2 Signaling Induces Neuronal Cell Death via STAT3 Activation and IL-1β Production after Status Epilepticus

    PubMed Central

    Tian, Dai-Shi; Feng, Li-Jie; Liu, Jun-Li

    2017-01-01

    Elevated levels of chemokine C-C motif ligand 2 (CCL2) and its receptor CCR2 have been reported in patients with temporal lobe epilepsy and in experimental seizures. However, the functional significance and molecular mechanism underlying CCL2–CCR2 signaling in epileptic brain remains largely unknown. In this study, we found that the upregulated CCL2 was mainly expressed in hippocampal neurons and activated microglia from mice 1 d after kainic acid (KA)-induced seizures. Taking advantage of CX3CR1GFP/+:CCR2RFP/+ double-transgenic mice, we demonstrated that CCL2–CCR2 signaling has a role in resident microglial activation and blood-derived monocyte infiltration. Moreover, seizure-induced degeneration of neurons in the hippocampal CA3 region was attenuated in mice lacking CCL2 or CCR2. We further showed that CCR2 activation induced STAT3 (signal transducer and activator of transcription 3) phosphorylation and IL-1β production, which are critical for promoting neuronal cell death after status epilepticus. Consistently, pharmacological inhibition of STAT3 by WP1066 reduced seizure-induced IL-1β production and subsequent neuronal death. Two weeks after KA-induced seizures, CCR2 deficiency not only reduced neuronal loss, but also attenuated seizure-induced behavioral impairments, including anxiety, memory decline, and recurrent seizure severity. Together, we demonstrated that CCL2–CCR2 signaling contributes to neurodegeneration via STAT3 activation and IL-1β production after status epilepticus, providing potential therapeutic targets for the treatment of epilepsy. SIGNIFICANCE STATEMENT Epilepsy is a global concern and epileptic seizures occur in many neurological conditions. Neuroinflammation associated with microglial activation and monocyte infiltration are characteristic of epileptic brains. However, molecular mechanisms underlying neuroinflammation in neuronal death following epilepsy remain to be elucidated. Here we demonstrate that CCL2–CCR2 signaling is

  13. Neutrophil-derived chemokines on the road to immunity.

    PubMed

    Tecchio, Cristina; Cassatella, Marco A

    2016-04-01

    During recent years, it has become clear that polymorphonuclear neutrophils are remarkably versatile cells, whose functions go far beyond phagocytosis and killing. In fact, besides being involved in primary defense against infections-mainly through phagocytosis, generation of toxic molecules, release of toxic enzymes and formation of extracellular traps-neutrophils have been shown to play a role in finely regulating the development and the evolution of inflammatory and immune responses. These latter neutrophil-mediated functions occur by a variety of mechanisms, including the production of newly manufactured cytokines. Herein, we provide a general overview of the chemotactic cytokines/chemokines that neutrophils can potentially produce, either under inflammatory/immune reactions or during their activation in more prolonged processes, such as in tumors. We highlight recent observations generated from studying human or rodent neutrophils in vitro and in vivo models. We also discuss the biological significance of neutrophil-derived chemokines in the context of infectious, neoplastic and immune-mediated diseases. The picture that is emerging is that, given their capacity to produce and release chemokines, neutrophils exert essential functions in recruiting, activating and modulating the activities of different leukocyte populations. Copyright © 2016. Published by Elsevier Ltd.

  14. Involvement of the nuclear factor-κB signaling pathway in the regulation of CXC chemokine receptor-4 expression in neuroblastoma cells induced by tumor necrosis factor-α.

    PubMed

    Zhi, Yunlai; Lu, Hongting; Duan, Yuhe; Sun, Weisheng; Guan, Ge; Dong, Qian; Yang, Chuanmin

    2015-02-01

    Metastasis is a hallmark of malignant neuroblastoma and is the main reason for therapeutic failure and recurrence of the tumor. The CXC chemokine receptor-4 (CXCR4), a Gi protein-coupled receptor for the ligand CXCL12/stromal cell-derived factor-1α (SDF-1α), is expressed in various types of tumor. This receptor mediates the homing of tumor cells to specific organs that express the ligand, CXCL12, for this receptor and plays an important role in tumor growth, invasion, metastasis and angiogenesis. In the present study, the inflammatory cytokine, tumor necrosis factor‑α (TNF‑α) upregulated CXCR4 expression in neuroblastoma cells and increased migration to the CXCR4 ligand SDF‑1α. In addition, this effect was dependent upon NF-κB transcriptional activity, as blocking the NF-κB pathway with pyrrolidinedithiocarbamic acid ammonium salt suppressed TNF-α‑induced upregulation of CXCR4 expression and reduced the migration towards the CXCR4 ligand, SDF-1α. Treating neuroblastoma cells with TNF-α resulted in the activation of nuclear factor-kappa B (NF-κB) and subsequently, the translocation of NF-κB from the cytoplasm to the nucleus. Using immunohistochemistry, NF‑κB and CXCR4 were significantly correlated with each other (P=0.0052, Fisher's exact test) in a cohort of neuroblastoma samples (n=80). The present study indicates that the inflammatory cytokine, TNF-α, partially functions through the NF‑κB signaling pathway to upregulate CXCR4 expression to foster neuroblastoma cell metastasis. These findings indicate that effective inhibition of neuroblastoma metastasis should be directed against the inflammatory cytokine-induced NF‑κB/CXCR4/SDF‑1α signaling pathway.

  15. Esophageal Squamous Cell Carcinoma Cells Modulate Chemokine Expression and Hyaluronan Synthesis in Fibroblasts*

    PubMed Central

    Kretschmer, Inga; Freudenberger, Till; Twarock, Sören; Yamaguchi, Yu; Grandoch, Maria; Fischer, Jens W.

    2016-01-01

    The aim of this study was to characterize the interaction of KYSE-410, an esophageal squamous cell carcinoma cell line, and fibroblasts with respect to the extracellular matrix component hyaluronan (HA) and chemokine expression. KYSE-410 cells induced the mRNA expression of HA synthase 2 (Has2) in normal skin fibroblasts (SF) only in direct co-cultures. Parallel to Has2 mRNA, Has2 antisense RNA (Has2os2) was up-regulated in co-cultures. Knockdown of LEF1, a downstream target of Wnt signaling, abrogated Has2 and Has2os2 induction. After knockdown of Has2 in SF, significantly less α-smooth muscle actin expression was detected in co-cultures. Moreover, it was investigated whether the phenotype of KYSE-410 was affected in co-culture with SF and whether Has2 knockdown in SF had an impact on KYSE-410 cells in co-culture. However, no effects on epithelial-mesenchymal transition markers, proliferation, and migration were detected. In addition to Has2 mRNA, the chemokine CCL5 was up-regulated and CCL11 was down-regulated in SF in co-culture. Furthermore, co-cultures of KYSE-410 cells and cancer-associated fibroblasts (CAF) were investigated. Similar to SF, Has2 and Ccl5 were up-regulated and Ccl11 was down-regulated in CAF in co-culture. Importantly and in contrast to SF, inhibiting HA synthesis by 4-methylumbelliferone abrogated the effect of co-culture on Ccl5 in CAF. Moreover, HA was found to promote adhesion of CD4+ but not CD8+ cells to xenogaft tumor tissues. In conclusion, direct co-culture of esophageal squamous cell carcinoma and fibroblasts induced stromal HA synthesis via Wnt/LEF1 and altered the chemokine profile of stromal fibroblasts, which in turn may affect the tumor immune response. PMID:26699196

  16. AZD-4818, a chemokine CCR1 antagonist: WO2008103126 and WO2009011653.

    PubMed

    Norman, Peter

    2009-11-01

    The applications WO2008103126 and WO2009011653, respectively, claim: i) Combinations of a spirocyclic piperidine chemokine CCR1 antagonist with a corticosteroid, and their use for the treatment of asthma and chronic obstructive pulmonary disease. ii) Processes for the preparation of a spirocyclic piperidine derivative, a chemokine CCR1 antagonist. These applications point to the preferred compound being a development compound. The evidence for this compound being AZD-4818, a chemokine CCR1 antagonist that was in Phase II development for the treatment of chronic obstructive pulmonary disease, is reviewed in the light of these and earlier patents relating to it.

  17. Chemokine (c-c motif) receptor 2 mediates mechanical and cold hypersensitivity in sickle cell disease mice.

    PubMed

    Sadler, Katelyn E; Zappia, Katherine J; O'Hara, Crystal L; Langer, Sarah N; Weyer, Andy D; Hillery, Cheryl A; Stucky, Cheryl L

    2018-04-23

    Approximately one third of individuals with sickle cell disease (SCD) develop chronic pain. This debilitating pain is inadequately treated because the underlying mechanisms driving the pain are poorly understood. In addition to persistent pain, SCD patients are also in a tonically pro-inflammatory state. Previous studies have revealed that there are elevated plasma levels of many inflammatory mediators including chemokine (c-c motif) ligand 2 (CCL2) in individuals with SCD. Using a transgenic mouse model of SCD, we investigated the contributions of CCL2 signaling to SCD-related pain. Inhibition of the chemokine receptor 2 (CCR2), but not CCR4, alleviated the behavioral mechanical and cold hypersensitivity in SCD. Further, acute CCR2 blockade reversed both the behavioral and the in vitro responsiveness of sensory neurons to an agonist of TRPV1, a neuronal ion channel previously implicated in SCD pain. These results provide insight into the immune-mediated regulation of hypersensitivity in SCD and could inform future development of analgesics or therapeutic measures to prevent chronic pain.

  18. Platelet-derived chemokines CXC chemokine ligand (CXCL)7, connective tissue-activating peptide III, and CXCL4 differentially affect and cross-regulate neutrophil adhesion and transendothelial migration.

    PubMed

    Schenk, Birgit I; Petersen, Frank; Flad, Hans-Dieter; Brandt, Ernst

    2002-09-01

    In this study, we have examined the major platelet-derived CXC chemokines connective tissue-activating peptide III (CTAP-III), its truncation product neutrophil-activating peptide 2 (CXC chemokine ligand 7 (CXCL7)), as well as the structurally related platelet factor 4 (CXCL4) for their impact on neutrophil adhesion to and transmigration through unstimulated vascular endothelium. Using monolayers of cultured HUVEC, we found all three chemokines to promote neutrophil adhesion, while only CXCL7 induced transmigration. Induction of cell adhesion following exposure to CTAP-III, a molecule to date described to lack neutrophil-stimulating capacity, depended on proteolytical conversion of the inactive chemokine into CXCL7 by neutrophils. This was evident from experiments in which inhibition of the CTAP-III-processing protease and simultaneous blockade of the CXCL7 high affinity receptor CXCR-2 led to complete abrogation of CTAP-III-mediated neutrophil adhesion. CXCL4 at substimulatory dosages modulated CTAP-III- as well as CXCL7-induced adhesion. Although cell adhesion following exposure to CTAP-III was drastically reduced, CXCL7-mediated adhesion underwent significant enhancement. Transendothelial migration of neutrophils in response to CXCL7 or IL-8 (CXCL8) was subject to modulation by CTAP-III, but not CXCL4, as seen by drastic desensitization of the migratory response of neutrophils pre-exposed to CTAP-III, which was paralleled by selective down-modulation of CXCR-2. Altogether our results demonstrate that there exist multiple interactions between platelet-derived chemokines in the regulation of neutrophil adhesion and transendothelial migration.

  19. A chemokine-binding domain in the tumor necrosis factor receptor from variola (smallpox) virus

    PubMed Central

    Alejo, Alí; Ruiz-Argüello, M. Begoña; Ho, Yin; Smith, Vincent P.; Saraiva, Margarida; Alcami, Antonio

    2006-01-01

    Variola virus (VaV) is the causative agent of smallpox, one of the most devastating diseases encountered by man, that was eradicated in 1980. The deliberate release of VaV would have catastrophic consequences on global public health. However, the mechanisms that contribute to smallpox pathogenesis are poorly understood at the molecular level. The ability of viruses to evade the host defense mechanisms is an important determinant of viral pathogenesis. Here we show that the tumor necrosis factor receptor (TNFR) homologue CrmB encoded by VaV functions not only as a soluble decoy TNFR but also as a highly specific binding protein for several chemokines that mediate recruitment of immune cells to mucosal surfaces and the skin, sites of virus entry and viral replication at late stages of smallpox. CrmB binds chemokines through its C-terminal domain, which is unrelated to TNFRs, was named smallpox virus-encoded chemokine receptor (SECRET) domain and uncovers a family of poxvirus chemokine inhibitors. An active SECRET domain was found in another viral TNFR (CrmD) and three secreted proteins encoded by orthopoxviruses. These findings identify a previously undescribed chemokine-binding and inhibitory domain unrelated to host chemokine receptors and a mechanism of immune modulation in VaV that may influence smallpox pathogenesis. PMID:16581912

  20. A chemokine-binding domain in the tumor necrosis factor receptor from variola (smallpox) virus.

    PubMed

    Alejo, Alí; Ruiz-Argüello, M Begoña; Ho, Yin; Smith, Vincent P; Saraiva, Margarida; Alcami, Antonio

    2006-04-11

    Variola virus (VaV) is the causative agent of smallpox, one of the most devastating diseases encountered by man, that was eradicated in 1980. The deliberate release of VaV would have catastrophic consequences on global public health. However, the mechanisms that contribute to smallpox pathogenesis are poorly understood at the molecular level. The ability of viruses to evade the host defense mechanisms is an important determinant of viral pathogenesis. Here we show that the tumor necrosis factor receptor (TNFR) homologue CrmB encoded by VaV functions not only as a soluble decoy TNFR but also as a highly specific binding protein for several chemokines that mediate recruitment of immune cells to mucosal surfaces and the skin, sites of virus entry and viral replication at late stages of smallpox. CrmB binds chemokines through its C-terminal domain, which is unrelated to TNFRs, was named smallpox virus-encoded chemokine receptor (SECRET) domain and uncovers a family of poxvirus chemokine inhibitors. An active SECRET domain was found in another viral TNFR (CrmD) and three secreted proteins encoded by orthopoxviruses. These findings identify a previously undescribed chemokine-binding and inhibitory domain unrelated to host chemokine receptors and a mechanism of immune modulation in VaV that may influence smallpox pathogenesis.

  1. Increase in chemokine CXCL1 by ERβ ligand treatment is a key mediator in promoting axon myelination.

    PubMed

    Karim, Hawra; Kim, Sung Hoon; Lapato, Andrew S; Yasui, Norio; Katzenellenbogen, John A; Tiwari-Woodruff, Seema K

    2018-06-12

    Estrogen receptor β (ERβ) ligands promote remyelination in mouse models of multiple sclerosis. Recent work using experimental autoimmune encephalomyelitis (EAE) has shown that ERβ ligands induce axon remyelination, but impact peripheral inflammation to varying degrees. To identify if ERβ ligands initiate a common immune mechanism in remyelination, central and peripheral immunity and pathology in mice given ERβ ligands at peak EAE were assessed. All ERβ ligands induced differential expression of cytokines and chemokines, but increased levels of CXCL1 in the periphery and in astrocytes. Oligodendrocyte CXCR2 binds CXCL1 and has been implicated in normal myelination. In addition, despite extensive immune cell accumulation in the CNS, all ERβ ligands promoted extensive remyelination in mice at peak EAE. This finding highlights a component of the mechanism by which ERβ ligands mediate remyelination. Hence, interplay between the immune system and central nervous system may be responsible for the remyelinating effects of ERβ ligands. Our findings of potential neuroprotective benefits arising from the presence of CXCL1 could have implications for improved therapies for multiple sclerosis. Copyright © 2018 the Author(s). Published by PNAS.

  2. Focus on the role of the CXCL12/CXCR4 chemokine axis in head and neck squamous cell carcinoma.

    PubMed

    Albert, Sébastien; Riveiro, Maria Eugenia; Halimi, Caroline; Hourseau, Muriel; Couvelard, Anne; Serova, Maria; Barry, Béatrix; Raymond, Eric; Faivre, Sandrine

    2013-12-01

    The human chemokine system includes approximately 48 chemokines and 19 chemokine receptors. The CXCL12/CXCR4 system is one of the most frequently studied that is also found overexpressed in a large variety of tumors. The CXCL12/CXCR4 axis has been increasingly identified as an important target in cancer growth, metastasis, relapse, and resistance to therapy. In this review, we highlight current knowledge of the molecular mechanisms involving chemokines CXCL12/CXCR4 and their consequences in head and neck squamous cell carcinoma (HNSCC). Overexpression of CXCL12/CXCR4 in HNSCC appears to activate cellular functions, including motility, invasion, and metastatic processes. Current findings suggest that CXCR4 and epithelial-mesenchymal transition markers are associated with tumor aggressiveness and a poor prognosis, and may be suitable biomarkers for head and neck tumors with high metastatic potential. Furthermore, knowledge of the role of CXCR4 in HNSCC could influence the development of new targeted therapies for treatment, aimed at improving the prognosis of this disease. Copyright © 2013 Wiley Periodicals, Inc., A Wiley Company.

  3. Chemokine programming dendritic cell antigen response: part II - programming antigen presentation to T lymphocytes by partially maintaining immature dendritic cell phenotype.

    PubMed

    Park, Jaehyung; Bryers, James D

    2013-05-01

    In a companion article to this study,(1) the successful programming of a JAWSII dendritic cell (DC) line's antigen uptake and processing was demonstrated based on pre-treatment of DCs with a specific 'cocktail' of select chemokines. Chemokine pre-treatment modulated cytokine production before and after DC maturation [by lipopolysaccharide (LPS)]. After DC maturation, it induced an antigen uptake and processing capacity at levels 36% and 82% higher than in immature DCs, respectively. Such programming proffers a potential new approach to enhance vaccine efficiency. Unfortunately, simply enhancing antigen uptake does not guarantee the desired activation and proliferation of lymphocytes, e.g. CD4(+) T cells. In this study, phenotype changes and antigen presentation capacity of chemokine pre-treated murine bone marrow-derived DCs were examined in long-term co-culture with antigen-specific CD4(+) T cells to quantify how chemokine pre-treatment may impact the adaptive immune response. When a model antigen, ovalbumin (OVA), was added after intentional LPS maturation of chemokine-treated DCs, OVA-biased CD4(+) T-cell proliferation was initiated from ~ 100% more undivided naive T cells as compared to DCs treated only with LPS. Secretion of the cytokines interferon-γ, interleukin-1β, interleukin-2 and interleukin-10 in the CD4(+) T cell : DC co-culture (with or without chemokine pre-treatment) were essentially the same. Chemokine programming of DCs with a 7 : 3 ratio of CCL3 : CCL19 followed by LPS treatment maintained partial immature phenotypes of DCs, as indicated by surface marker (CD80 and CD86) expression over time. Results here and in our companion paper suggest that chemokine programming of DCs may provide a novel immunotherapy strategy to obviate the natural endocytosis limit of DC antigen uptake, thus potentially increasing DC-based vaccine efficiency. © 2012 Blackwell Publishing Ltd.

  4. The CXCR4/SDF-1 chemokine receptor axis: a new target therapeutic for non-small cell lung cancer.

    PubMed

    Otsuka, Shannon; Bebb, Gwyn

    2008-12-01

    Chemokines are proinflammatory chemoattractant cytokines that regulate cell trafficking and adhesion. The CXCR4 chemokine receptor and its ligand, stromal cell derived factor (SDF-1), constitute a chemokine/receptor axis that has attracted great interest because of an increasing understanding of its role in cancer, including lung cancer. The CXCR4/SDF-1 complex activates several pathways that mediate chemotaxis, migration and secretion of angiopoietic factors. Neutralization of SDF-1 by anti-SDF-1 or anti-CXCR4 monoclonal antibody in preclinical in vivo studies results in a significant decrease of non-small cell lung cancer metastases. Since anti-SDF-1/CXCR4 strategies have already been developed for use in combating human immunodeficiency virus infections, it is likely that these approaches will be used in clinical trials in non-small cell lung cancer in the very near future.

  5. Plasma Chemokines in Patients with Alcohol Use Disorders: Association of CCL11 (Eotaxin-1) with Psychiatric Comorbidity

    PubMed Central

    García-Marchena, Nuria; Araos, Pedro Fernando; Barrios, Vicente; Sánchez-Marín, Laura; Chowen, Julie A.; Pedraz, María; Castilla-Ortega, Estela; Romero-Sanchiz, Pablo; Ponce, Guillermo; Gavito, Ana L.; Decara, Juan; Silva, Daniel; Torrens, Marta; Argente, Jesús; Rubio, Gabriel; Serrano, Antonia; de Fonseca, Fernando Rodríguez; Pavón, Francisco Javier

    2017-01-01

    Recent studies have linked changes in peripheral chemokine concentrations to the presence of both addictive behaviors and psychiatric disorders. The present study further explore this link by analyzing the potential association of psychiatry comorbidity with alterations in the concentrations of circulating plasma chemokine in patients of both sexes diagnosed with alcohol use disorders (AUD). To this end, 85 abstinent subjects with AUD from an outpatient setting and 55 healthy subjects were evaluated for substance and mental disorders. Plasma samples were obtained to quantify chemokine concentrations [C–C motif (CC), C–X–C motif (CXC), and C–X3–C motif (CX3C) chemokines]. Abstinent AUD patients displayed a high prevalence of comorbid mental disorders (72%) and other substance use disorders (45%). Plasma concentrations of chemokines CXCL12/stromal cell-derived factor-1 (p < 0.001) and CX3CL1/fractalkine (p < 0.05) were lower in AUD patients compared to controls, whereas CCL11/eotaxin-1 concentrations were strongly decreased in female AUD patients (p < 0.001). In the alcohol group, CXCL8 concentrations were increased in patients with liver and pancreas diseases and there was a significant correlation to aspartate transaminase (r = +0.456, p < 0.001) and gamma-glutamyltransferase (r = +0.647, p < 0.001). Focusing on comorbid psychiatric disorders, we distinguish between patients with additional mental disorders (N = 61) and other substance use disorders (N = 38). Only CCL11 concentrations were found to be altered in AUD patients diagnosed with mental disorders (p < 0.01) with a strong main effect of sex. Thus, patients with mood disorders (N = 42) and/or anxiety (N = 16) had lower CCL11 concentrations than non-comorbid patients being more evident in women. The alcohol-induced alterations in circulating chemokines were also explored in preclinical models of alcohol use with male Wistar rats. Rats exposed to

  6. Robust Cytokine and Chemokine Response in Nasopharyngeal Secretions: Association With Decreased Severity in Children With Physician Diagnosed Bronchiolitis

    PubMed Central

    Nicholson, Erin G.; Schlegel, Chelsea; Garofalo, Roberto P.; Mehta, Reena; Scheffler, Margaret; Mei, Minghua; Piedra, Pedro A.

    2016-01-01

    Background. Bronchiolitis causes substantial disease in young children. Previous findings had indicated that a robust innate immune response was not associated with a poor clinical outcome in bronchiolitis. This study tested the hypothesis that increased concentrations of cytokines and chemokines in nasal wash specimens were associated with decreased severity in bronchiolitis. Methods. Children <24 months old who presented to the emergency department with signs and symptoms of bronchiolitis were eligible for enrollment. Nasal wash specimens were analyzed for viral pathogens and cytokine/chemokine concentrations. These results were evaluated with regard to disposition. Results. One hundred eleven children with bronchiolitis were enrolled. A viral pathogen was identified in 91.9% of patients (respiratory syncytial virus in 51.4%, human rhinovirus in 11.7%). Higher levels of cytokines and chemokines (interferon [IFN] γ; interleukin [IL] 4, 15, and 17; CXCL10; and eotaxin) were significantly associated with a decreased risk of hospitalization. IL-17, IL-4, IFN-γ, and IFN-γ–inducible protein 10 (CXCL10 or IP-10) remained statistically significant in the multivariate analyses. Conclusions. The cytokines and chemokines significantly associated with decreased bronchiolitis severity are classified in a wide range of functional groups (T-helper 1 and 2, regulatory, and chemoattractant). The involvement of these functional groups suggest that a broadly overlapping cytokine/chemokine response is required for control of virus-mediated respiratory disease in young children. PMID:27190183

  7. Inhibition by rebamipide of cytokine-induced or lipopolysaccharide-induced chemokine synthesis in human corneal fibroblasts.

    PubMed

    Fukuda, Ken; Ishida, Waka; Tanaka, Hiroshi; Harada, Yosuke; Fukushima, Atsuki

    2014-12-01

    The dry-eye drug rebamipide has mucin secretagogue activity in and anti-inflammatory effects on corneal epithelial cells. Corneal stromal fibroblasts (transdifferentiated keratocytes) function as immune modulators in the pathogenesis of chronic ocular allergic inflammation and in innate immune responses at the ocular surface. The possible anti-inflammatory effects of rebamipide on human corneal stromal fibroblasts were examined. Serum-deprived cells were incubated for 1 h with rebamipide and then for various times in the additional absence or presence of cytokines or bacterial lipopolysaccharide (LPS). The release of chemokines into culture supernatants was determined with ELISAs. The intracellular abundance of chemokine mRNAs was quantitated by reverse transcription and real-time PCR analysis. Degradation of the nuclear factor κB (NFκB) inhibitor IκBα was detected by immunoblot analysis. Rebamipide suppressed the release of interleukin (IL)-8 and the upregulation of IL-8 mRNA induced by tumour necrosis factor α (TNF-α) or LPS in corneal fibroblasts. It also inhibited eotaxin-1 (CCL-11) expression at the protein and mRNA levels induced by the combination of TNF-α and IL-4. In addition, rebamipide attenuated the degradation of IκBα induced by TNF-α or LPS. Rebamipide inhibited the synthesis of chemokines by corneal fibroblasts in association with suppression of NFκB signalling. Rebamipide may therefore prove effective for the treatment of corneal stromal inflammation associated with allergy or bacterial infection. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  8. Dynamic Cholesterol-Conditioned Dimerization of the G Protein Coupled Chemokine Receptor Type 4

    PubMed Central

    Kranz, Franziska

    2016-01-01

    G protein coupled receptors (GPCRs) allow for the transmission of signals across biological membranes. For a number of GPCRs, this signaling was shown to be coupled to prior dimerization of the receptor. The chemokine receptor type 4 (CXCR4) was reported before to form dimers and their functionality was shown to depend on membrane cholesterol. Here, we address the dimerization pattern of CXCR4 in pure phospholipid bilayers and in cholesterol-rich membranes. Using ensembles of molecular dynamics simulations, we show that CXCR4 dimerizes promiscuously in phospholipid membranes. Addition of cholesterol dramatically affects the dimerization pattern: cholesterol binding largely abolishes the preferred dimer motif observed for pure phospholipid bilayers formed mainly by transmembrane helices 1 and 7 (TM1/TM5-7) at the dimer interface. In turn, the symmetric TM3,4/TM3,4 interface is enabled first by intercalating cholesterol molecules. These data provide a molecular basis for the modulation of GPCR activity by its lipid environment. PMID:27812115

  9. Molecular mechanisms of pancreatic cancer dissemination: the role of the chemokine system.

    PubMed

    Marchesi, Federica; Grizzi, Fabio; Laghi, Luigi; Mantovani, Alberto; Allavena, Paola

    2012-01-01

    Over the last decade it has been established that cancer-associated inflammation affects many aspects of malignancy and in particular endorses tumor cell survival, proliferation and distant spread. Chemokines and their receptors are major players of the cancerrelated inflammation. Our understanding of the chemokine role in tumor biology now ranges from their ability to recruit blood leukocytes within tumors, to direct effects on cancer cell survival, metastatization and regulation of angiogenesis. Chemokines and their receptors are expressed in human pancreatic adenocarcinoma and are involved in its malignant behavior. Notably, the receptor CX3CR1 favors tumor perineural tropism which is typical of this neoplasm and is associated with early recurrence after surgery and with poor patient prognosis.

  10. Processing of natural and recombinant CXCR3-targeting chemokines and implications for biological activity.

    PubMed

    Hensbergen, P J; van der Raaij-Helmer, E M; Dijkman, R; van der Schors, R C; Werner-Felmayer, G; Boorsma, D M; Scheper, R J; Willemze, R; Tensen, C P

    2001-09-01

    Chemokines comprise a class of peptides with chemotactic activity towards leukocytes. The potency of different chemokines for the same receptor often varies as a result of differences in primary structure. In addition, post-translational modifications have been shown to affect the effectiveness of chemokines. Although in several studies, natural CXCR3-targeting chemokines have been isolated, detailed information about the proteins and their possible modifications is lacking. Using a combination of liquid chromatography and mass spectrometry we studied the protein profile of CXCR3-targeting chemokines expressed by interferon-gamma-stimulated human keratinocytes. The biological implications of one of the identified modifications was studied in more detail using calcium mobilization and chemotaxis assays. We found that the primary structure of human CXCL10 is different from the generally accepted sequence. In addition we identified a C-terminally truncated CXCL10, lacking the last four amino acids. Native CXCL11 was primarily found in its intact mature form but we also found a mass corresponding to an N-terminally truncated human CXCL11, lacking the first two amino acids FP, indicating that this chemokine is a substrate for dipeptidylpeptidase IV. Interestingly, this same truncation was found when we expressed human CXCL11 in Drosophila S2 cells. The biological activity of this truncated form of CXCL11 was greatly reduced, both in calcium mobilization (using CXCR3 expressing CHO cells) as well as its chemotactic activity for CXCR3-expressing T-cells. It is concluded that detailed information on chemokines at the protein level is important to characterize the exact profile of these chemotactic peptides as modifications can severely alter their biological activity.

  11. NF-κB Mediates the Stimulation of Cytokine and Chemokine Expression by Human Articular Chondrocytes in Response to Fibronectin Fragments1

    PubMed Central

    Pulai, Judit I.; Chen, Hong; Im, Hee-Jeong; Kumar, Sanjay; Hanning, Charles; Hegde, Priti S.; Loeser, Richard F.

    2010-01-01

    Fibronectin fragments (FN-f) that bind to the α5β1 integrin stimulate chondrocyte-mediated cartilage destruction and could play an important role in the progression of arthritis. The objective of this study was to identify potential cytokine mediators of cartilage inflammation and destruction induced by FN-f and to investigate the mechanism of their stimulation. Human articular chondrocytes, isolated from normal ankle cartilage obtained from tissue donors, were treated with a 110-kDa FN-f in serum-free culture, and expression of various cytokine genes was analyzed by cDNA microarray and by a cytokine protein array. Compared with untreated control cultures, stimulation by FN-f resulted in a >2-fold increase in IL-6, IL-8, MCP-1, and growth-related oncogene β (GRO-β). Constitutive and FN-f-inducible expression of GRO-α and GRO-γ were also noted by RT-PCR and confirmed by immunoblotting. Previous reports of IL-1β expression induced by FN-f were also confirmed, while TNF expression was found to be very low. Inhibitor studies revealed that FN-f-induced stimulation of chondrocyte chemokine expression was dependent on NF-κB activity, but independent of IL-1 autocrine signaling. The ability of FN-f to stimulate chondrocyte expression of multiple proinflammatory cytokines and chemokines suggests that damage to the cartilage matrix is capable of inducing a proinflammatory state responsible for further progressive matrix destruction, which also includes the chemoattraction of inflammatory cells. Targeting the signaling pathways activated by FN-f may be an effective means of inhibiting production of multiple mediators of cartilage destruction. PMID:15843581

  12. Distinct Transcript Isoforms of the Atypical Chemokine Receptor 1 (ACKR1) / Duffy Antigen Receptor for Chemokines (DARC) Gene Are Expressed in Lymphoblasts and Altered Isoform Levels Are Associated with Genetic Ancestry and the Duffy-Null Allele

    PubMed Central

    Davis, Melissa B.; Walens, Andrea; Hire, Rupali; Mumin, Kauthar; Brown, Andrea M.; Ford, DeJuana; Howerth, Elizabeth W.; Monteil, Michele

    2015-01-01

    The Atypical ChemoKine Receptor 1 (ACKR1) gene, better known as Duffy Antigen Receptor for Chemokines (DARC or Duffy), is responsible for the Duffy Blood Group and plays a major role in regulating the circulating homeostatic levels of pro-inflammatory chemokines. Previous studies have shown that one common variant, the Duffy Null (Fy-) allele that is specific to African Ancestry groups, completely removes expression of the gene on erythrocytes; however, these individuals retain endothelial expression. Additional alleles are associated with a myriad of clinical outcomes related to immune responses and inflammation. In addition to allele variants, there are two distinct transcript isoforms of DARC which are expressed from separate promoters, and very little is known about the distinct transcriptional regulation or the distinct functionality of these protein isoforms. Our objective was to determine if the African specific Fy- allele alters the expression pattern of DARC isoforms and therefore could potentially result in a unique signature of the gene products, commonly referred to as antigens. Our work is the first to establish that there is expression of DARC on lymphoblasts. Our data indicates that people of African ancestry have distinct relative levels of DARC isoforms expressed in these cells. We conclude that the expression of both isoforms in combination with alternate alleles yields multiple Duffy antigens in ancestry groups, depending upon the haplotypes across the gene. Importantly, we hypothesize that DARC isoform expression patterns will translate into ancestry-specific inflammatory responses that are correlated with the axis of pro-inflammatory chemokine levels and distinct isoform-specific interactions with these chemokines. Ultimately, this work will increase knowledge of biological mechanisms underlying disparate clinical outcomes of inflammatory-related diseases among ethnic and geographic ancestry groups. PMID:26473357

  13. E-cadherin Is Critical for Collective Sheet Migration and Is Regulated by the Chemokine CXCL12 Protein During Restitution*

    PubMed Central

    Hwang, Soonyean; Zimmerman, Noah P.; Agle, Kimberle A.; Turner, Jerrold R.; Kumar, Suresh N.; Dwinell, Michael B.

    2012-01-01

    Chemokines and other immune mediators enhance epithelial barrier repair. The intestinal barrier is established by highly regulated cell-cell contacts between epithelial cells. The goal of these studies was to define the role for the chemokine CXCL12 in regulating E-cadherin during collective sheet migration during epithelial restitution. Mechanisms regulating E-cadherin were investigated using Caco2BBE and IEC-6 model epithelia. Genetic knockdown confirmed a critical role for E-cadherin in in vitro restitution and in vivo wound repair. During restitution, both CXCL12 and TGF-β1 tightened the monolayer by decreasing the paracellular space between migrating epithelial cells. However, CXCL12 differed from TGF-β1 by stimulating the significant increase in E-cadherin membrane localization during restitution. Chemokine-stimulated relocalization of E-cadherin was paralleled by an increase in barrier integrity of polarized epithelium during restitution. CXCL12 activation of its cognate receptor CXCR4 stimulated E-cadherin localization and monolayer tightening through Rho-associated protein kinase activation and F-actin reorganization. These data demonstrate a key role for E-cadherin in intestinal epithelial restitution. PMID:22549778

  14. Furin is a chemokine-modifying enzyme: in vitro and in vivo processing of CXCL10 generates a C-terminally truncated chemokine retaining full activity.

    PubMed

    Hensbergen, Paul J; Verzijl, Dennis; Balog, Crina I A; Dijkman, Remco; van der Schors, Roel C; van der Raaij-Helmer, Elizabeth M H; van der Plas, Mariena J A; Leurs, Rob; Deelder, André M; Smit, Martine J; Tensen, Cornelis P

    2004-04-02

    Chemokines comprise a class of structurally related proteins that are involved in many aspects of leukocyte migration under basal and inflammatory conditions. In addition to the large number of genes, limited processing of these proteins by a variety of enzymes enhances the complexity of the total spectrum of chemokine variants. We have recently shown that the native chemokine CXCL10 is processed at the C terminus, thereby shedding the last four amino acids. The present study was performed to elucidate the mechanism in vivo and in vitro and to study the biological activity of this novel isoform of CXCL10. Using a combination of protein purification and mass spectrometric techniques, we show that the production of C-terminally truncated CXCL10 by primary keratinocytes is inhibited in vivo by a specific inhibitor of pro-protein convertases (e.g. furin) but not by inhibition of matrix metalloproteinases. Moreover, CXCL10 is processed by furin in vitro, which is abrogated by a mutation in the furin recognition site. Using GTPgammaS binding, Ca(2+) mobilization, and chemotaxis assays, we demonstrate that the C-terminally truncated CXCL10 variant is a potent ligand for CXCR3. Moreover, the inverse agonist activity on the virally encoded receptor ORF74 and the direct antibacterial activity of CXCL10 are fully retained. Hence, we have identified furin as a novel chemokine-modifying enzyme in vitro and most probably also in vivo, generating a C-terminally truncated CXCL10, which fully retains its (inverse) agonistic properties.

  15. CDIP-2, a synthetic peptide derived from chemokine (C-C motif) ligand 13 (CCL13), ameliorates allergic airway inflammation

    PubMed Central

    Mendez-Enriquez, E; Melendez, Y; Martinez, F; Baay, G; Huerta-Yepez, S; Gonzalez-Bonilla, C; Fortoul, T I; Soldevila, G; García-Zepeda, E A

    2008-01-01

    Airway inflammation is characterized by selective recruitment of mononuclear and granulocytic cells. This recruitment is mediated by the action of chemotactic cytokines, such as chemokines. A number of chemokines and their receptors have been identified and proposed as potential therapeutic agents in allergic airway inflammation. One of these chemokines is chemokine (C-C motif) ligand 13 (CCL13), a CC chemokine that has been associated with allergic inflammatory diseases such as asthma and allergic rhinitis. To investigate alternative therapeutic agents to alleviate allergic inflammatory diseases, a number of chemokine-derived synthetic peptides were designed and tested for their ability to modulate in vitro and in vivo chemokine-mediated functions. Our results show that one of these peptides, CDIP-2, displayed antagonist functions in in vitro chemotaxis assays using monocytic cell lines. In addition, we found that CDIP-2 significantly reduced peribronchial, perivascular infiltrate and mucus overproduction in an ovalbumin-induced allergic lung inflammation murine model. Thus, CDIP-2 may be considered as part of a novel group of anti-inflammatory agents based on chemokine-derived synthetic peptides. PMID:18336592

  16. CDIP-2, a synthetic peptide derived from chemokine (C-C motif) ligand 13 (CCL13), ameliorates allergic airway inflammation.

    PubMed

    Mendez-Enriquez, E; Melendez, Y; Martinez, F; Baay, G; Huerta-Yepez, S; Gonzalez-Bonilla, C; Fortoul, T I; Soldevila, G; García-Zepeda, E A

    2008-05-01

    Airway inflammation is characterized by selective recruitment of mononuclear and granulocytic cells. This recruitment is mediated by the action of chemotactic cytokines, such as chemokines. A number of chemokines and their receptors have been identified and proposed as potential therapeutic agents in allergic airway inflammation. One of these chemokines is chemokine (C-C motif) ligand 13 (CCL13), a CC chemokine that has been associated with allergic inflammatory diseases such as asthma and allergic rhinitis. To investigate alternative therapeutic agents to alleviate allergic inflammatory diseases, a number of chemokine-derived synthetic peptides were designed and tested for their ability to modulate in vitro and in vivo chemokine-mediated functions. Our results show that one of these peptides, CDIP-2, displayed antagonist functions in in vitro chemotaxis assays using monocytic cell lines. In addition, we found that CDIP-2 significantly reduced peribronchial, perivascular infiltrate and mucus overproduction in an ovalbumin-induced allergic lung inflammation murine model. Thus, CDIP-2 may be considered as part of a novel group of anti-inflammatory agents based on chemokine-derived synthetic peptides.

  17. Robust Cytokine and Chemokine Response in Nasopharyngeal Secretions: Association With Decreased Severity in Children With Physician Diagnosed Bronchiolitis.

    PubMed

    Nicholson, Erin G; Schlegel, Chelsea; Garofalo, Roberto P; Mehta, Reena; Scheffler, Margaret; Mei, Minghua; Piedra, Pedro A

    2016-08-15

    Bronchiolitis causes substantial disease in young children. Previous findings had indicated that a robust innate immune response was not associated with a poor clinical outcome in bronchiolitis. This study tested the hypothesis that increased concentrations of cytokines and chemokines in nasal wash specimens were associated with decreased severity in bronchiolitis. Children <24 months old who presented to the emergency department with signs and symptoms of bronchiolitis were eligible for enrollment. Nasal wash specimens were analyzed for viral pathogens and cytokine/chemokine concentrations. These results were evaluated with regard to disposition. One hundred eleven children with bronchiolitis were enrolled. A viral pathogen was identified in 91.9% of patients (respiratory syncytial virus in 51.4%, human rhinovirus in 11.7%). Higher levels of cytokines and chemokines (interferon [IFN] γ; interleukin [IL] 4, 15, and 17; CXCL10; and eotaxin) were significantly associated with a decreased risk of hospitalization. IL-17, IL-4, IFN-γ, and IFN-γ-inducible protein 10 (CXCL10 or IP-10) remained statistically significant in the multivariate analyses. The cytokines and chemokines significantly associated with decreased bronchiolitis severity are classified in a wide range of functional groups (T-helper 1 and 2, regulatory, and chemoattractant). The involvement of these functional groups suggest that a broadly overlapping cytokine/chemokine response is required for control of virus-mediated respiratory disease in young children. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  18. Environmental Mold and Mycotoxin Exposures Elicit Specific Cytokine and Chemokine Responses

    PubMed Central

    Rosenblum Lichtenstein, Jamie H.; Hsu, Yi-Hsiang; Gavin, Igor M.; Donaghey, Thomas C.; Molina, Ramon M.; Thompson, Khristy J.; Chi, Chih-Lin; Gillis, Bruce S.; Brain, Joseph D.

    2015-01-01

    Background Molds can cause respiratory symptoms and asthma. We sought to use isolated peripheral blood mononuclear cells (PBMCs) to understand changes in cytokine and chemokine levels in response to mold and mycotoxin exposures and to link these levels with respiratory symptoms in humans. We did this by utilizing an ex vivo assay approach to differentiate mold-exposed patients and unexposed controls. While circulating plasma chemokine and cytokine levels from these two groups might be similar, we hypothesized that by challenging their isolated white blood cells with mold or mold extracts, we would see a differential chemokine and cytokine release. Methods and Findings Peripheral blood mononuclear cells (PBMCs) were isolated from blood from 33 patients with a history of mold exposures and from 17 controls. Cultured PBMCs were incubated with the most prominent Stachybotrys chartarum mycotoxin, satratoxin G, or with aqueous mold extract, ionomycin, or media, each with or without PMA. Additional PBMCs were exposed to spores of Aspergillus niger, Cladosporium herbarum and Penicillium chrysogenum. After 18 hours, cytokines and chemokines released into the culture medium were measured by multiplex assay. Clinical histories, physical examinations and pulmonary function tests were also conducted. After ex vivo PBMC exposures to molds or mycotoxins, the chemokine and cytokine profiles from patients with a history of mold exposure were significantly different from those of unexposed controls. In contrast, biomarker profiles from cells exposed to media alone showed no difference between the patients and controls. Conclusions These findings demonstrate that chronic mold exposures induced changes in inflammatory and immune system responses to specific mold and mycotoxin challenges. These responses can differentiate mold-exposed patients from unexposed controls. This strategy may be a powerful approach to document immune system responsiveness to molds and other inflammation

  19. Plasma Chemokines in Patients with Alcohol Use Disorders: Association of CCL11 (Eotaxin-1) with Psychiatric Comorbidity.

    PubMed

    García-Marchena, Nuria; Araos, Pedro Fernando; Barrios, Vicente; Sánchez-Marín, Laura; Chowen, Julie A; Pedraz, María; Castilla-Ortega, Estela; Romero-Sanchiz, Pablo; Ponce, Guillermo; Gavito, Ana L; Decara, Juan; Silva, Daniel; Torrens, Marta; Argente, Jesús; Rubio, Gabriel; Serrano, Antonia; de Fonseca, Fernando Rodríguez; Pavón, Francisco Javier

    2016-01-01

    Recent studies have linked changes in peripheral chemokine concentrations to the presence of both addictive behaviors and psychiatric disorders. The present study further explore this link by analyzing the potential association of psychiatry comorbidity with alterations in the concentrations of circulating plasma chemokine in patients of both sexes diagnosed with alcohol use disorders (AUD). To this end, 85 abstinent subjects with AUD from an outpatient setting and 55 healthy subjects were evaluated for substance and mental disorders. Plasma samples were obtained to quantify chemokine concentrations [C-C motif (CC), C-X-C motif (CXC), and C-X 3 -C motif (CX 3 C) chemokines]. Abstinent AUD patients displayed a high prevalence of comorbid mental disorders (72%) and other substance use disorders (45%). Plasma concentrations of chemokines CXCL12/stromal cell-derived factor-1 ( p  < 0.001) and CX 3 CL1/fractalkine ( p  < 0.05) were lower in AUD patients compared to controls, whereas CCL11/eotaxin-1 concentrations were strongly decreased in female AUD patients ( p  < 0.001). In the alcohol group, CXCL8 concentrations were increased in patients with liver and pancreas diseases and there was a significant correlation to aspartate transaminase ( r  = +0.456, p  < 0.001) and gamma-glutamyltransferase ( r  = +0.647, p  < 0.001). Focusing on comorbid psychiatric disorders, we distinguish between patients with additional mental disorders ( N  = 61) and other substance use disorders ( N  = 38). Only CCL11 concentrations were found to be altered in AUD patients diagnosed with mental disorders ( p  < 0.01) with a strong main effect of sex. Thus, patients with mood disorders ( N  = 42) and/or anxiety ( N  = 16) had lower CCL11 concentrations than non-comorbid patients being more evident in women. The alcohol-induced alterations in circulating chemokines were also explored in preclinical models of alcohol use with male Wistar rats

  20. Esophageal Squamous Cell Carcinoma Cells Modulate Chemokine Expression and Hyaluronan Synthesis in Fibroblasts.

    PubMed

    Kretschmer, Inga; Freudenberger, Till; Twarock, Sören; Yamaguchi, Yu; Grandoch, Maria; Fischer, Jens W

    2016-02-19

    The aim of this study was to characterize the interaction of KYSE-410, an esophageal squamous cell carcinoma cell line, and fibroblasts with respect to the extracellular matrix component hyaluronan (HA) and chemokine expression. KYSE-410 cells induced the mRNA expression of HA synthase 2 (Has2) in normal skin fibroblasts (SF) only in direct co-cultures. Parallel to Has2 mRNA, Has2 antisense RNA (Has2os2) was up-regulated in co-cultures. Knockdown of LEF1, a downstream target of Wnt signaling, abrogated Has2 and Has2os2 induction. After knockdown of Has2 in SF, significantly less α-smooth muscle actin expression was detected in co-cultures. Moreover, it was investigated whether the phenotype of KYSE-410 was affected in co-culture with SF and whether Has2 knockdown in SF had an impact on KYSE-410 cells in co-culture. However, no effects on epithelial-mesenchymal transition markers, proliferation, and migration were detected. In addition to Has2 mRNA, the chemokine CCL5 was up-regulated and CCL11 was down-regulated in SF in co-culture. Furthermore, co-cultures of KYSE-410 cells and cancer-associated fibroblasts (CAF) were investigated. Similar to SF, Has2 and Ccl5 were up-regulated and Ccl11 was down-regulated in CAF in co-culture. Importantly and in contrast to SF, inhibiting HA synthesis by 4-methylumbelliferone abrogated the effect of co-culture on Ccl5 in CAF. Moreover, HA was found to promote adhesion of CD4(+) but not CD8(+) cells to xenogaft tumor tissues. In conclusion, direct co-culture of esophageal squamous cell carcinoma and fibroblasts induced stromal HA synthesis via Wnt/LEF1 and altered the chemokine profile of stromal fibroblasts, which in turn may affect the tumor immune response. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. HIV-1 shedding from the female genital tract is associated with increased Th1 cytokines/chemokines that maintain tissue homeostasis and proportions of CD8+FOXP3+ T cells.

    PubMed

    Bull, Marta E; Legard, Jillian; Tapia, Kenneth; Sorensen, Bess; Cohn, Susan E; Garcia, Rochelle; Holte, Sarah E; Coombs, Robert W; Hitti, Jane E

    2014-12-01

    HIV-1 shedding from the female genital tract is associated with increased sexual and perinatal transmission and has been broadly evaluated in cross-sectional studies. However, few longitudinal studies have evaluated how the immune microenvironment effects shedding. Thirty-nine HIV-1-infected women had blood, cervicovaginal lavage, and biopsies of the uterine cervix taken quarterly for up to 5 years. Cytokines/chemokines were quantified by Luminex assay in cervicovaginal lavage, and cellular phenotypes were characterized using immunohistochemistry in cervical biopsies. Comparisons of cytokine/chemokine concentrations and the percent of tissue staining positive for T cells were compared using generalized estimating equations between non-shedding and shedding visits across all women and within a subgroup of women who intermittently shed HIV-1. Genital HIV-1 shedding was more common when plasma HIV-1 was detected. Cytokines associated with cell growth (interleukin-7), Th1 cells/inflammation (interleukin-12p70), and fractalkine were significantly increased at shedding visits compared with non-shedding visits within intermittent shedders and across all subjects. Within intermittent shedders and across all subjects, FOXP3 T cells were significantly decreased at shedding visits. However, there were significant increases in CD8 cells and proportions of CD8FOXP3 T cells associated with HIV-1 shedding. Within intermittent HIV-1 shedders, decreases in FOXP3 T cells at the shedding visit suggests that local HIV-1 replication leads to CD4 T-cell depletion, with increases in the proportion of CD8FOXP3 cells. HIV-1-infected cell loss may promote a cytokine milieu that maintains cellular homeostasis and increases immune suppressor cells in response to HIV-1 replication in the cervical tissues.

  2. Prenatal exposure to ethanol stimulates hypothalamic CCR2 chemokine receptor system: Possible relation to increased density of orexigenic peptide neurons and ethanol drinking in adolescent offspring

    PubMed Central

    Chang, G.-Q.; Karatayev, O.; Leibowitz, S. F.

    2015-01-01

    Clinical and animal studies indicate that maternal consumption of ethanol during pregnancy increases alcohol drinking in the offspring. Possible underlying mechanisms may involve orexigenic peptides, which are stimulated by prenatal ethanol exposure and themselves promote drinking. Building on evidence that ethanol stimulates neuroimmune factors such as the chemokine CCL2 that in adult rats is shown to colocalize with the orexigenic peptide, melanin-concentrating hormone (MCH) in the lateral hypothalamus (LH), the present study sought to investigate the possibility that CCL2 or its receptor CCR2 in LH are stimulated by prenatal ethanol exposure, perhaps specifically within MCH neurons. Our paradigm of intraoral administration of ethanol to pregnant rats, at low-to-moderate doses (1 or 3 g/kg/day) during peak hypothalamic neurogenesis, caused in adolescent male offspring two-fold increase in drinking of and preference for ethanol and reinstatement of ethanol drinking in a two-bottle choice paradigm under an intermittent access schedule. This effect of prenatal ethanol exposure was associated with an increased expression of MCH and density of MCH+ neurons in LH of preadolescent offspring. Whereas CCL2+ cells at this age were low in density and unaffected by ethanol, CCR2+ cells were dense in LH and increased by prenatal ethanol, with a large percentage (83–87%) identified as neurons and found to colocalize MCH. Prenatal ethanol also stimulated the genesis of CCR2+ and MCH+ neurons in the embryo, which co-labeled the proliferation marker, BrdU. Ethanol also increased the genesis and density of neurons that co-expressed CCR2 and MCH in LH, with triple-labeled CCR2+/MCH+/BrdU+ neurons that were absent in control rats accounting for 35% of newly generated neurons in ethanol-exposed rats. With both the chemokine and MCH systems believed to promote ethanol consumption, this greater density of CCR2+/MCH+ neurons in the LH of preadolescent rats suggests that these systems

  3. Vascular endothelial growth factor c/vascular endothelial growth factor receptor 3 signaling regulates chemokine gradients and lymphocyte migration from tissues to lymphatics.

    PubMed

    Iwami, Daiki; Brinkman, C Colin; Bromberg, Jonathan S

    2015-04-01

    Circulation of leukocytes via blood, tissue and lymph is integral to adaptive immunity. Afferent lymphatics form CCL21 gradients to guide dendritic cells and T cells to lymphatics and then to draining lymph nodes (dLN). Vascular endothelial growth factor C and vascular endothelial growth factor receptor 3 (VEGFR-3) are the major lymphatic growth factor and receptor. We hypothesized these molecules also regulate chemokine gradients and lymphatic migration. CD4 T cells were injected into the foot pad or ear pinnae, and migration to afferent lymphatics and dLN quantified by flow cytometry or whole mount immunohistochemistry. Vascular endothelial growth factor receptor 3 or its signaling or downstream actions were modified with blocking monoclonal antibodies (mAbs) or other reagents. Anti-VEGFR-3 prevented migration of CD4 T cells into lymphatic lumen and significantly decreased the number that migrated to dLN. Anti-VEGFR-3 abolished CCL21 gradients around lymphatics, although CCL21 production was not inhibited. Heparan sulfate (HS), critical to establish CCL21 gradients, was down-regulated around lymphatics by anti-VEGFR-3 and this was dependent on heparanase-mediated degradation. Moreover, a Phosphoinositide 3-kinase (PI3K)α inhibitor disrupted HS and CCL21 gradients, whereas a PI3K activator prevented the effects of anti-VEGFR-3. During contact hypersensitivity, VEGFR-3, CCL21, and HS expression were all attenuated, and anti-heparanase or PI3K activator reversed these effects. Vascular endothelial growth factor C/VEGFR-3 signaling through PI3Kα regulates the activity of heparanase, which modifies HS and CCL21 gradients around lymphatics. The functional and physical linkages of these molecules regulate lymphatic migration from tissues to dLN. These represent new therapeutic targets to influence immunity and inflammation.

  4. Peripheral blood cytokine and chemokine profiles in juvenile localized scleroderma

    PubMed Central

    Torok, Kathryn S.; Kurzinski, Katherine; Kelsey, Christina; Yabes, Jonathan; Magee, Kelsey; Vallejo, Abbe N.; Medsger, Thomas; Feghali-Bostwick, Carol A.

    2015-01-01

    Objective To evaluate peripheral blood T-helper (TH) cell associated cytokine and chemokine profiles in localized scleroderma (LS), and correlate them with clinical disease features, including disease activity parameters. Methods A 29-plex Luminex platform was used to analyze the humoral profile of plasma samples from 69 pediatric LS patients and 71 healthy pediatric controls. Cytokine/chemokine levels were compared between these two groups and within LS patients, focusing on validated clinical outcome measures of disease activity and damage in LS. Results Plasma levels of IP-10, MCP-1, IL-17a, IL-12p70, GM-CSF, PDGF-bb, IFN-α2, and IFN-γ were significantly higher in LS compared to healthy controls. Analysis within the LS group demonstrated IP-10, TNF-α and GM-CSF correlated with clinical measures of disease activity. Several cytokines/chemokines correlated with anti-histone antibody, while only a few correlated with positive ANA and single-stranded DNA antibody. Conclusion This is the first time that multiple cytokines and chemokines have been examined simultaneously LS. In general, a TH-1 (IFN-γ) and TH-17 (IL-17a) predominance was demonstrated in LS compared to healthy controls. There is also an IFN–γ signature with elevated IP-10, MCP-1 and IFN-γ, which has been previously demonstrated in systemic sclerosis, suggesting a shared pathophysiology. Within the LS patients, those with active disease demonstrated IP-10, TNF-α and GM-CSF, which may potentially serve as biomarkers of disease activity in the clinical setting. PMID:26254121

  5. Treatment with the CC chemokine-binding protein Evasin-4 improves post-infarction myocardial injury and survival in mice.

    PubMed

    Braunersreuther, Vincent; Montecucco, Fabrizio; Pelli, Graziano; Galan, Katia; Proudfoot, Amanda E; Belin, Alexandre; Vuilleumier, Nicolas; Burger, Fabienne; Lenglet, Sébastien; Caffa, Irene; Soncini, Debora; Nencioni, Alessio; Vallée, Jean-Paul; Mach, François

    2013-10-01

    Chemokines trigger leukocyte trafficking and are implicated in cardiovascular disease pathophysiology. Chemokine-binding proteins, called "Evasins" have been shown to inhibit both CC and CXC chemokine-mediated bioactivities. Here, we investigated whether treatment with Evasin-3 (CXC chemokine inhibitor) and Evasin-4 (CC chemokine inhibitor) could influence post-infarction myocardial injury and remodelling. C57Bl/6 mice were submitted in vivo to left coronary artery permanent ligature and followed up for different times (up to 21 days). After coronary occlusion, three intraperitoneal injections of 10 μg Evasin-3, 1 μg Evasin-4 or equal volume of vehicle (PBS) were performed at 5 minutes, 24 hours (h) and 48 h after ischaemia onset. Both anti-chemokine treatments were associated with the beneficial reduction in infarct size as compared to controls. This effect was accompanied by a decrease in post-infarction myocardial leukocyte infiltration, reactive oxygen species release, and circulating levels of CXCL1 and CCL2. Treatment with Evasin-4 induced a more potent effect, abrogating the inflammation already at one day after ischaemia onset. At days 1 and 21 after ischaemia onset, both anti-chemokine treatments failed to significantly improve cardiac function, remodelling and scar formation. At 21-day follow-up, mouse survival was exclusively improved by Evasin-4 treatment when compared to control vehicle. In conclusion, we showed that the selective inhibition of CC chemokines (i.e. CCL5) with Evasin-4 reduced cardiac injury/inflammation and improved survival. Despite the inhibition of CXC chemokine bioactivities, Evasin-3 did not affect mouse survival. Therefore, early inhibition of CC chemokines might represent a promising therapeutic approach to reduce the development of post-infarction heart failure in mice.

  6. Structural biology. Structural basis for chemokine recognition and activation of a viral G protein-coupled receptor.

    PubMed

    Burg, John S; Ingram, Jessica R; Venkatakrishnan, A J; Jude, Kevin M; Dukkipati, Abhiram; Feinberg, Evan N; Angelini, Alessandro; Waghray, Deepa; Dror, Ron O; Ploegh, Hidde L; Garcia, K Christopher

    2015-03-06

    Chemokines are small proteins that function as immune modulators through activation of chemokine G protein-coupled receptors (GPCRs). Several viruses also encode chemokines and chemokine receptors to subvert the host immune response. How protein ligands activate GPCRs remains unknown. We report the crystal structure at 2.9 angstrom resolution of the human cytomegalovirus GPCR US28 in complex with the chemokine domain of human CX3CL1 (fractalkine). The globular body of CX3CL1 is perched on top of the US28 extracellular vestibule, whereas its amino terminus projects into the central core of US28. The transmembrane helices of US28 adopt an active-state-like conformation. Atomic-level simulations suggest that the agonist-independent activity of US28 may be due to an amino acid network evolved in the viral GPCR to destabilize the receptor's inactive state. Copyright © 2015, American Association for the Advancement of Science.

  7. Structural Evidence for the Tetrameric Assembly of Chemokine CCL11 and the Glycosaminoglycan Arixtra™

    PubMed Central

    Dykstra, Andrew B.; Sweeney, Matt D.; Leary, Julie A.

    2013-01-01

    Understanding chemokine interactions with glycosaminoglycans (GAG) is critical as these interactions have been linked to a number of inflammatory medical conditions, such as arthritis and asthma. To better characterize in vivo protein function, comprehensive knowledge of multimeric species, formed by chemokines under native conditions, is necessary. Herein is the first report of a tetrameric assembly of the human chemokine CCL11, which was shown bound to the GAG Arixtra™. Isothermal titration calorimetry data indicated that CCL11 interacts with Arixtra, and ion mobility mass spectrometry (IM-MS) was used to identify ions corresponding to the CCL11 tetrameric species bound to Arixtra. Collisional cross sections (CCS) of the CCL11 tetramer-Arixtra noncovalent complex were compared to theoretical CCS values calculated using a preliminary structure of the complex deduced using X-ray crystallography. Experimental CCS values were in agreement with theoretical values, strengthening the IM-MS evidence for the formation of the noncovalent complex. Tandem mass spectrometry data of the complex indicated that the tetramer-GAG complex dissociates into a monomer and a trimer-GAG species, suggesting that two CC-like dimers are bridged by Arixtra. As development of chemokine inhibitors is of utmost importance to treatment of medical inflammatory conditions, these results provide vital insights into chemokine-GAG interactions. PMID:24970196

  8. Structural Evidence for the Tetrameric Assembly of Chemokine CCL11 and the Glycosaminoglycan Arixtra™.

    PubMed

    Dykstra, Andrew B; Sweeney, Matt D; Leary, Julie A

    2013-11-06

    Understanding chemokine interactions with glycosaminoglycans (GAG) is critical as these interactions have been linked to a number of inflammatory medical conditions, such as arthritis and asthma. To better characterize in vivo protein function, comprehensive knowledge of multimeric species, formed by chemokines under native conditions, is necessary. Herein is the first report of a tetrameric assembly of the human chemokine CCL11, which was shown bound to the GAG Arixtra™. Isothermal titration calorimetry data indicated that CCL11 interacts with Arixtra, and ion mobility mass spectrometry (IM-MS) was used to identify ions corresponding to the CCL11 tetrameric species bound to Arixtra. Collisional cross sections (CCS) of the CCL11 tetramer-Arixtra noncovalent complex were compared to theoretical CCS values calculated using a preliminary structure of the complex deduced using X-ray crystallography. Experimental CCS values were in agreement with theoretical values, strengthening the IM-MS evidence for the formation of the noncovalent complex. Tandem mass spectrometry data of the complex indicated that the tetramer-GAG complex dissociates into a monomer and a trimer-GAG species, suggesting that two CC-like dimers are bridged by Arixtra. As development of chemokine inhibitors is of utmost importance to treatment of medical inflammatory conditions, these results provide vital insights into chemokine-GAG interactions.

  9. Platelets and their chemokines in atherosclerosis—clinical applications

    PubMed Central

    von Hundelshausen, Philipp; Schmitt, Martin M. N.

    2014-01-01

    The concept of platelets as important players in the process of atherogenesis has become increasingly accepted due to accumulating experimental and clinical evidence. Despite the progress in understanding the molecular details of atherosclerosis, particularly by using animal models, the inflammatory and thrombotic roles of activated platelet s especially in the human system remain difficult to dissect, as often only the complications of atherosclerosis, i.e., stroke and myocardial infarction are definable but not the plaque burden. Platelet indices including platelet count and mean platelet volume (MPV) and soluble mediators released by activated platelets are associated with atherosclerosis. The chemokine CXCL4 has multiple atherogenic activities, e.g., altering the differentiation of T cells and macrophages by inhibiting neutrophil and monocyte apoptosis and by increasing the uptake of oxLDL and synergizing with CCL5. CCL5 is released and deposited on endothelium by activated platelets thereby triggering atherogenic monocyte recruitment, which can be attenuated by blocking the corresponding chemokine receptor CCR5. Atheroprotective and plaque stabilizing properties are attributed to CXCL12, which plays an important role in regenerative processes by attracting progenitor cells. Its release from luminal attached platelets accelerates endothelial healing after injury. Platelet surface molecules GPIIb/IIIa, GP1bα, P-selectin, JAM-A and the CD40/CD40L dyade are crucially involved in the interaction with endothelial cells, leukocytes and matrix molecules affecting atherogenesis. Beyond the effects on the arterial inflammatory infiltrate, platelets affect cholesterol metabolism by binding, modifying and endocytosing LDL particles via their scavenger receptors and contribute to the formation of lipid laden macrophages. Current medical therapies for the prevention of atherosclerotic therapies enable the elucidation of mechanisms linking platelets to inflammation and

  10. Increased expression of chemokine receptor CCR3 and its ligands in ulcerative colitis: the role of colonic epithelial cells in in vitro studies.

    PubMed

    Manousou, P; Kolios, G; Valatas, V; Drygiannakis, I; Bourikas, L; Pyrovolaki, K; Koutroubakis, I; Papadaki, H A; Kouroumalis, E

    2010-11-01

    Human colonic epithelial cells express T helper type 1 (Th1)-associated chemoattractants, yet little is known about the production of Th2-associated chemoattractants. CCL11/eotaxin-1, CCL24/eotaxin-2 and CCL26/eotaxin-3 are known to attract CCR3-expressing, Th2-polarized lymphocytes. We studied constitutive and inflammation-induced expression and production of CCR3 together with its ligands in the colon and peripheral blood of patients with inflammatory bowel disease (IBD) by flow cytometry, reverse transcription–polymerase chain reaction (RT–PCR) and enzyme-linked immunosorbent assay (ELISA). We further defined the regulated expression of these chemokines by RT–PCR and ELISA using cultured human epithelial cell lines. A higher fraction of peripheral T lymphocytes were found to be positive for CCR3 in patients with ulcerative colitis (UC) compared to Crohn’s disease (CD), while almost no CCR3(+) T cells were found in normal controls (NC). Similarly, higher and more frequent expression of CCR3 was observed in colonic biopsies from patients with UC, regardless of the disease activity, when compared to CD or NCs. Serum CCL11/eotaxin-1 was increased significantly in UC (306 ± 87 pg/ml) and less so in CD (257 ± 43 pg/ml), whereas CCL24/eotaxin-2, and CCL26/eotaxin-3 were increased only in UC. Colonic expression of the three chemokines was minimal in NCs but high in inflammatory bowel diseases (especially UC) and was independent of disease activity. Th2, and to a lesser extent Th1, cytokines were able to induce expression and production of all three eotaxins from colonic epithelial cells in culture. CCR3 and ligands over-expression would appear to be a characteristic of UC. The production of CCR3 ligands by human colonic epithelial cells suggests further that epithelium can play a role in modulating pathological T cell-mediated mucosal inflammation.

  11. Chemokines cooperate with TNF to provide protective anti-viral immunity and to enhance inflammation.

    PubMed

    Alejo, Alí; Ruiz-Argüello, M Begoña; Pontejo, Sergio M; Fernández de Marco, María Del Mar; Saraiva, Margarida; Hernáez, Bruno; Alcamí, Antonio

    2018-05-03

    The role of cytokines and chemokines in anti-viral defense has been demonstrated, but their relative contribution to protective anti-viral responses in vivo is not fully understood. Cytokine response modifier D (CrmD) is a secreted receptor for TNF and lymphotoxin containing the smallpox virus-encoded chemokine receptor (SECRET) domain and is expressed by ectromelia virus, the causative agent of the smallpox-like disease mousepox. Here we show that CrmD is an essential virulence factor that controls natural killer cell activation and allows progression of fatal mousepox, and demonstrate that both SECRET and TNF binding domains are required for full CrmD activity. Vaccination with recombinant CrmD protects animals from lethal mousepox. These results indicate that a specific set of chemokines enhance the inflammatory and protective anti-viral responses mediated by TNF and lymphotoxin, and illustrate how viruses optimize anti-TNF strategies with the addition of a chemokine binding domain as soluble decoy receptors.

  12. The gene expression of cytokines and chemokines induced by tourniquet shock in mice.

    PubMed

    Tanaka, Jin; Ishida, Yuko; Ohshima, Tohru; Kondo, Toshikazu

    2003-09-01

    Traumatic shock is one of the major fields in forensic pathology, but its mechanism remains elusive from the pathophysiological aspects. Tourniquet shock has been established as one of the animal models of traumatic shock, and we examined the gene expression of cytokines and chemokines in the lung and liver in tourniquet shock using mice. Tourniquet was conducted by the application of elastic bands with five turns at both the thighs as high as possible for 2 h, followed by reperfusion. In this procedure, more than 90% mice died within 48 h after reperfusion. Serum hepatic transaminase and hematocrit values significantly increased at 2 h after reperfusion, and their elevation was still evident after 10 h. Histopathologically, hemorrhages, congestion and leukocyte recruitment were observed in the lung and liver specimens after 6 h of reperfusion. Immunohistochemical analysis with anti-myeloperoxidase antibody demonstrated a massive neutrophil infiltration in the lung and liver at 2 h or more after reperfusion. RT-PCR analyses demonstrated that the gene expression of interleukin-1beta, tumor necrosis factor-alpha, monocytes chemoattractant protein-1, macrophage inflammatory protein (MIP)-1alpha, MIP-2, KC and vascular endothelial adhesion molecule-1 was most enhanced in the lung and liver at 2 h after reperfusion. Thus, the gene expression of cytokines and chemokines is presumed to be closely related with the onset of tourniquet shock. From the forensic aspects, these cytokines and chemokines are considered to be useful markers for the early diagnosis of tourniquet shock.

  13. Consequences of ChemR23 Heteromerization with the Chemokine Receptors CXCR4 and CCR7

    PubMed Central

    de Poorter, Cédric; Baertsoen, Kevin; Lannoy, Vincent; Parmentier, Marc; Springael, Jean-Yves

    2013-01-01

    Recent studies have shown that heteromerization of the chemokine receptors CCR2, CCR5 and CXCR4 is associated to negative binding cooperativity. In the present study, we build on these previous results, and investigate the consequences of chemokine receptor heteromerization with ChemR23, the receptor of chemerin, a leukocyte chemoattractant protein structurally unrelated to chemokines. We show, using BRET and HTRF assays, that ChemR23 forms homomers, and provide data suggesting that ChemR23 also forms heteromers with the chemokine receptors CCR7 and CXCR4. As previously described for other chemokine receptor heteromers, negative binding cooperativity was detected between ChemR23 and chemokine receptors, i.e. the ligands of one receptor competed for the binding of a specific tracer of the other. We also showed, using mouse bone marrow-derived dendritic cells prepared from wild-type and ChemR23 knockout mice, that ChemR23-specific ligands cross-inhibited CXCL12 binding on CXCR4 in a ChemR23-dependent manner, supporting the relevance of the ChemR23/CXCR4 interaction in native leukocytes. Finally, and in contrast to the situation encountered for other previously characterized CXCR4 heteromers, we showed that the CXCR4-specific antagonist AMD3100 did not cross-inhibit chemerin binding in cells co-expressing ChemR23 and CXCR4, demonstrating that cross-regulation by AMD3100 depends on the nature of receptor partners with which CXCR4 is co-expressed. PMID:23469143

  14. Consequences of ChemR23 heteromerization with the chemokine receptors CXCR4 and CCR7.

    PubMed

    de Poorter, Cédric; Baertsoen, Kevin; Lannoy, Vincent; Parmentier, Marc; Springael, Jean-Yves

    2013-01-01

    Recent studies have shown that heteromerization of the chemokine receptors CCR2, CCR5 and CXCR4 is associated to negative binding cooperativity. In the present study, we build on these previous results, and investigate the consequences of chemokine receptor heteromerization with ChemR23, the receptor of chemerin, a leukocyte chemoattractant protein structurally unrelated to chemokines. We show, using BRET and HTRF assays, that ChemR23 forms homomers, and provide data suggesting that ChemR23 also forms heteromers with the chemokine receptors CCR7 and CXCR4. As previously described for other chemokine receptor heteromers, negative binding cooperativity was detected between ChemR23 and chemokine receptors, i.e. the ligands of one receptor competed for the binding of a specific tracer of the other. We also showed, using mouse bone marrow-derived dendritic cells prepared from wild-type and ChemR23 knockout mice, that ChemR23-specific ligands cross-inhibited CXCL12 binding on CXCR4 in a ChemR23-dependent manner, supporting the relevance of the ChemR23/CXCR4 interaction in native leukocytes. Finally, and in contrast to the situation encountered for other previously characterized CXCR4 heteromers, we showed that the CXCR4-specific antagonist AMD3100 did not cross-inhibit chemerin binding in cells co-expressing ChemR23 and CXCR4, demonstrating that cross-regulation by AMD3100 depends on the nature of receptor partners with which CXCR4 is co-expressed.

  15. Increased lymphocyte trafficking to colonic microvessels is dependent on MAdCAM-1 and C-C chemokine mLARC/CCL20 in DSS-induced mice colitis.

    PubMed

    Teramoto, K; Miura, S; Tsuzuki, Y; Hokari, R; Watanabe, C; Inamura, T; Ogawa, T; Hosoe, N; Nagata, H; Ishii, H; Hibi, T

    2005-03-01

    Although enhanced lymphocyte trafficking is associated with colitis formation, little information about its regulation is available. The aim of this study was to examine how the murine liver and activation-regulated chemokine (mLARC/CCL20) contributes to lymphocyte recruitment in concert with vascular adhesion molecules in murine chronic experimental colitis. T and B lymphocytes isolated from the spleen were fluorescence-labelled and administered to recipient mice. Lymphocyte adhesion to microvessels of the colonic mucosa and submucosa was observed with an intravital microscope. To induce colitis, the mice received two cycles of treatment with 2% dextran sodium sulphate (DSS). In some of the experiments antibodies against the adhesion molecules or anti-mLARC/CCL20 were administered, or CC chemokine receptor 6 (CCR6) of the lymphocytes was desensitized with excess amounts of mLARC/CCL20. Significant increases in T and B cell adhesion to the microvessels of the DSS-treated mucosa and submucosa were observed. In chronic colitis, the accumulation of lymphocytes was significantly inhibited by anti-mucosal addressin cell adhesion molecule (MAdCAM)-1 mAb, but not by anti-vascular cell adhesion molecule-1. In DSS-treated colonic tissue, the expression of mLARC/CCL20 was significantly increased, the blocking of mLARC/CCL20 by monoclonal antibody or the desensitization of CCR6 with mLARC/CCL20 significantly attenuated the DSS-induced T and B cell accumulation. However, the combination of blocking CCR6 with MAdCAM-1 did not further inhibit these accumulations. These results suggest that in chronic DSS-induced colitis, both MAdCAM-1 and mLARC/CCL20 may play important roles in T and B lymphocyte adhesion in the inflamed colon under flow conditions.

  16. Chemokines and Heart Disease: A Network Connecting Cardiovascular Biology to Immune and Autonomic Nervous Systems

    PubMed Central

    Dusi, Veronica; Ghidoni, Alice; Ravera, Alice; De Ferrari, Gaetano M.; Calvillo, Laura

    2016-01-01

    Among the chemokines discovered to date, nineteen are presently considered to be relevant in heart disease and are involved in all stages of cardiovascular response to injury. Chemokines are interesting as biomarkers to predict risk of cardiovascular events in apparently healthy people and as possible therapeutic targets. Moreover, they could have a role as mediators of crosstalk between immune and cardiovascular system, since they seem to act as a “working-network” in deep linkage with the autonomic nervous system. In this paper we will describe the single chemokines more involved in heart diseases; then we will present a comprehensive perspective of them as a complex network connecting the cardiovascular system to both the immune and the autonomic nervous systems. Finally, some recent evidences indicating chemokines as a possible new tool to predict cardiovascular risk will be described. PMID:27242392

  17. Sex Hormones Coordinate Neutrophil Immunity in the Vagina by Controlling Chemokine Gradients.

    PubMed

    Lasarte, Sandra; Samaniego, Rafael; Salinas-Muñoz, Laura; Guia-Gonzalez, Mauriel A; Weiss, Linnea A; Mercader, Enrique; Ceballos-García, Elena; Navarro-González, Teresa; Moreno-Ochoa, Laura; Perez-Millan, Federico; Pion, Marjorie; Sanchez-Mateos, Paloma; Hidalgo, Andres; Muñoz-Fernandez, Maria A; Relloso, Miguel

    2016-02-01

    Estradiol-based contraceptives and hormonal replacement therapy predispose women to Candida albicans infections. Moreover, during the ovulatory phase (high estradiol), neutrophil numbers decrease in the vaginal lumen and increase during the luteal phase (high progesterone). Vaginal secretions contain chemokines that drive neutrophil migration into the lumen. However, their expression during the ovarian cycle or in response to hormonal treatments are controversial and their role in vaginal defense remains unknown.To investigate the transepithelial migration of neutrophils, we used adoptive transfer of Cxcr2(-/-) neutrophils and chemokine immunofluorescence quantitative analysis in response to C. albicans vaginal infection in the presence of hormones.Our data show that the Cxcl1/Cxcr2 axis drives neutrophil transepithelial migration into the vagina. Progesterone promotes the Cxcl1 gradient to favor neutrophil migration. Estradiol disrupts the Cxcl1 gradient and favors neutrophil arrest in the vaginal stroma; as a result, the vagina becomes more vulnerable to pathogens. © The Author 2015. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  18. Differential subnetwork of chemokines/cytokines in human, mouse, and rat brain cells after oxygen-glucose deprivation.

    PubMed

    Du, Yang; Deng, Wenjun; Wang, Zixing; Ning, MingMing; Zhang, Wei; Zhou, Yiming; Lo, Eng H; Xing, Changhong

    2017-04-01

    Mice and rats are the most commonly used animals for preclinical stroke studies, but it is unclear whether targets and mechanisms are always the same across different species. Here, we mapped the baseline expression of a chemokine/cytokine subnetwork and compared responses after oxygen-glucose deprivation in primary neurons, astrocytes, and microglia from mouse, rat, and human. Baseline profiles of chemokines (CX3CL1, CXCL12, CCL2, CCL3, and CXCL10) and cytokines (IL-1α, IL-1β, IL-6, IL-10, and TNFα) showed significant differences between human and rodents. The response of chemokines/cytokines to oxygen-glucose deprivation was also significantly different between species. After 4 h oxygen-glucose deprivation and 4 h reoxygenation, human and rat neurons showed similar changes with a downregulation in many chemokines, whereas mouse neurons showed a mixed response with up- and down-regulated genes. For astrocytes, subnetwork response patterns were more similar in rats and mice compared to humans. For microglia, rat cells showed an upregulation in all chemokines/cytokines, mouse cells had many down-regulated genes, and human cells showed a mixed response with up- and down-regulated genes. This study provides proof-of-concept that species differences exist in chemokine/cytokine subnetworks in brain cells that may be relevant to stroke pathophysiology. Further investigation of differential gene pathways across species is warranted.

  19. Loss of Ranbp2 in motoneurons causes disruption of nucleocytoplasmic and chemokine signaling, proteostasis of hnRNPH3 and Mmp28, and development of amyotrophic lateral sclerosis-like syndromes.

    PubMed

    Cho, Kyoung-In; Yoon, Dosuk; Qiu, Sunny; Danziger, Zachary; Grill, Warren M; Wetsel, William C; Ferreira, Paulo A

    2017-05-01

    The pathogenic drivers of sporadic and familial motor neuron disease (MND), such amyotrophic lateral sclerosis (ALS), are unknown. MND impairs the Ran GTPase cycle, which controls nucleocytoplasmic transport, ribostasis and proteostasis; however, cause-effect mechanisms of Ran GTPase modulators in motoneuron pathobiology have remained elusive. The cytosolic and peripheral nucleoporin Ranbp2 is a crucial regulator of the Ran GTPase cycle and of the proteostasis of neurological disease-prone substrates, but the roles of Ranbp2 in motoneuron biology and disease remain unknown. This study shows that conditional ablation of Ranbp2 in mouse Thy1 motoneurons causes ALS syndromes with hypoactivity followed by hindlimb paralysis, respiratory distress and, ultimately, death. These phenotypes are accompanied by: a decline in the nerve conduction velocity, free fatty acids and phophatidylcholine of the sciatic nerve; a reduction in the g-ratios of sciatic and phrenic nerves; and hypertrophy of motoneurons. Furthermore, Ranbp2 loss disrupts the nucleocytoplasmic partitioning of the import and export nuclear receptors importin β and exportin 1, respectively, Ran GTPase and histone deacetylase 4. Whole-transcriptome, proteomic and cellular analyses uncovered that the chemokine receptor Cxcr4, its antagonizing ligands Cxcl12 and Cxcl14, and effector, latent and activated Stat3 all undergo early autocrine and proteostatic deregulation, and intracellular sequestration and aggregation as a result of Ranbp2 loss in motoneurons. These effects were accompanied by paracrine and autocrine neuroglial deregulation of hnRNPH3 proteostasis in sciatic nerve and motoneurons, respectively, and post-transcriptional downregulation of metalloproteinase 28 in the sciatic nerve. Mechanistically, our results demonstrate that Ranbp2 controls nucleocytoplasmic, chemokine and metalloproteinase 28 signaling, and proteostasis of substrates that are crucial to motoneuronal homeostasis and whose impairments

  20. Differentiation of patients with leprosy from non-infected individuals by the chemokine eotaxin/CCL11.

    PubMed

    Mendonça, Vanessa A; Malaquias, Luiz C; Brito-Melo, Gustavo E; Castelo-Branco, Alexandre; Antunes, Carlos M; Ribeiro, Antonio L; Teixeira, Mauro M; Teixeira, Antonio L

    2007-09-01

    Diagnosis of leprosy is usually made clinically and there are no tests available for the routine laboratory diagnosis of the disease. The aim of this study was to investigate the potential role of chemokines as biologic markers of disease activity. We used an enzyme-linked immunosorbent assay to measure chemokines in plasma of patients with leprosy (LE) and non-infected (NI) individuals. There were significantly greater concentrations of the chemokines CCL3 and CCL11 in plasma of LE patients than in NI individuals. When the use of CCL11 to differentiate LE patients versus NI individuals was evaluated, the area under the receiver-operator-characteristic curve was 0.95 +/- 0.03 (P < 0.0001). In a group of selected individuals, CCL11 was useful in diagnosis of leprosy, thereby suggesting that measurement of this chemokine may be useful as an aid in diagnosing leprosis.

  1. 12-Chemokine Gene Signature Identifies Lymph Node-like Structures in Melanoma: Potential for Patient Selection for Immunotherapy?

    NASA Astrophysics Data System (ADS)

    Messina, Jane L.; Fenstermacher, David A.; Eschrich, Steven; Qu, Xiaotao; Berglund, Anders E.; Lloyd, Mark C.; Schell, Michael J.; Sondak, Vernon K.; Weber, Jeffrey S.; Mulé, James J.

    2012-10-01

    We have interrogated a 12-chemokine gene expression signature (GES) on genomic arrays of 14,492 distinct solid tumors and show broad distribution across different histologies. We hypothesized that this 12-chemokine GES might accurately predict a unique intratumoral immune reaction in stage IV (non-locoregional) melanoma metastases. The 12-chemokine GES predicted the presence of unique, lymph node-like structures, containing CD20+ B cell follicles with prominent areas of CD3+ T cells (both CD4+ and CD8+ subsets). CD86+, but not FoxP3+, cells were present within these unique structures as well. The direct correlation between the 12-chemokine GES score and the presence of unique, lymph nodal structures was also associated with better overall survival of the subset of melanoma patients. The use of this novel 12-chemokine GES may reveal basic information on in situ mechanisms of the anti-tumor immune response, potentially leading to improvements in the identification and selection of melanoma patients most suitable for immunotherapy.

  2. Neuropeptides activate human mast cell degranulation and chemokine production

    PubMed Central

    Kulka, Marianna; Sheen, Cecilia H; Tancowny, Brian P; Grammer, Leslie C; Schleimer, Robert P

    2008-01-01

    During neuronal-induced inflammation, mast cells may respond to stimuli such as neuropeptides in an FcεRI-independent manner. In this study, we characterized human mast cell responses to substance P (SP), nerve growth factor (NGF), calcitonin gene-related peptide (CGRP) and vasoactive intestinal polypeptide (VIP) and compared these responses to human mast cell responses to immunoglobulin E (IgE)/anti-IgE and compound 48/80. Primary cultured mast cells, generated from CD34+ progenitors in the presence of stem cell factor and interleukin-6 (IL-6), and human cultured mast cells (LAD2) were stimulated with these and other stimuli (gastrin, concanavalin A, radiocontrast media, and mannitol) and their degranulation and chemokine production was assessed. VIP and SP stimulated primary human mast cells and LAD cells to degranulate; gastrin, concanavalin A, radiocontrast media, mannitol, CGRP and NGF did not activate degranulation. While anti-IgE stimulation did not induce significant production of chemokines, stimulation with VIP, SP or compound 48/80 potently induced production of monocyte chemoattractant protein-1, inducible protein-10, monokine induced by interferon-γ (MIG), RANTES (regulated on activation, normal, T-cell expressed, and secreted) and IL-8. VIP, SP and compound 48/80 also activated release of tumour necrosis factor, IL-3 and granulocyte–macrophage colony-stimulating factor, but not IL-4, interferon-γ or eotaxin. Human mast cells expressed surface neurokinin 1 receptor (NK1R), NK2R, NK3R and VIP receptor type 2 (VPAC2) but not VPAC1 and activation of human mast cells by IgE/anti-IgE up-regulated expression of VPAC2, NK2R, and NK3R. These studies demonstrate the pattern of receptor expression and activation of mast cell by a host of G-protein coupled receptor ligands and suggest that SP and VIP activate a unique signalling pathway in human mast cells. These results are likely to have direct relevance to neuronally induced inflammatory diseases. PMID

  3. Chemokine Receptor Signatures in Allogeneic Stem Cell Transplantation

    DTIC Science & Technology

    2014-08-01

    versus-host disease (GHVD). We use T-cell receptor deep sequencing to characterize the repertoire of effector T-cells in allogeneic hematopoietic stem ... cell transplant (HSCT) recipients and identify the role of chemokine receptors in effector cell infiltration of target organs. In the recent funding

  4. Burkholderia Diffusible Signal Factor Signals to Francisella novicida To Disperse Biofilm and Increase Siderophore Production

    PubMed Central

    Dean, Scott N.; Chung, Myung-Chul

    2015-01-01

    In many bacteria, the ability to modulate biofilm production relies on specific signaling molecules that are either self-produced or made by neighboring microbes within the ecological niche. We analyzed the potential interspecies signaling effect of the Burkholderia diffusible signal factor (BDSF) on Francisella novicida, a model organism for Francisella tularensis, and demonstrated that BDSF both inhibits the formation and causes the dispersion of Francisella biofilm. Specificity was demonstrated for the cis versus the trans form of BDSF. Using transcriptome sequencing, quantitative reverse transcription-PCR, and activity assays, we found that BDSF altered the expression of many F. novicida genes, including genes involved in biofilm formation, such as chitinases. Using a chitinase inhibitor, the antibiofilm activity of BDSF was also shown to be chitinase dependent. In addition, BDSF caused an increase in RelA expression and increased levels of (p)ppGpp, leading to decreased biofilm production. These results support our observation that exposure of F. novicida to BDSF causes biofilm dispersal. Furthermore, BDSF upregulated the genes involved in iron acquisition (figABCD), increasing siderophore production. Thus, this study provides evidence for a potential role and mechanism of diffusible signal factor (DSF) signaling in the genus Francisella and suggests the possibility of interspecies signaling between Francisella and other bacteria. Overall, this study suggests that in response to the interspecies DSF signal, F. novicida can alter its gene expression and regulate its biofilm formation. PMID:26231649

  5. The atypical chemokine receptor ACKR2 drives pulmonary fibrosis by tuning influx of CCR2+ and CCR5+ IFNγ-producing γδT cells in mice.

    PubMed

    Russo, Remo Castro; Savino, Benedetta; Mirolo, Massimiliano; Buracchi, Chiara; Germano, Giovanni; Anselmo, Achille; Zammataro, Luca; Pasqualini, Fabio; Mantovani, Alberto; Locati, Massimo; Teixeira, Mauro M

    2018-02-22

    Chemokines coordinate lung inflammation and fibrosis by acting on chemokine receptors expressed on leukocytes and other cell types. Atypical chemokine receptors (ACKRs) bind, internalize and degrade chemokines, tuning homeostasis and immune responses. ACKR2 recognizes and decreases levels of inflammatory CC chemokines. The role of ACKR2 in fibrogenesis is unknown. Investigate the role of ACKR2 in the context of pulmonary fibrosis. The effects of ACKR2 expression and deficiency during inflammation and fibrosis were analyzed using a bleomycin-model of fibrosis, ACKR2-deficient mice, bone marrow chimeras and antibody-mediated leukocyte depletion. ACKR2 was up-regulated acutely in response to bleomycin and normalized over time. ACKR2-/- mice showed reduced lethality and lung fibrosis. Bone marrow chimeras showed that lethality and fibrosis depended on ACKR2 expression in pulmonary resident (non-hematopoietic) cells but not on leukocytes. ACKR2-/- mice exhibited decreased expression of tissue remodeling genes, reduced leukocyte influx, pulmonary injury, and dysfunction. ACKR2-/- mice had early-increased levels of CCL5, CCL12, CCL17 and IFNγ, and increased number of CCR2+ and CCR5+ IFNγ-producing γδT cells in the airways counterbalanced by low Th17 lymphocyte influx. There was reduced accumulation of IFNγ-producing γδT cells in CCR2-/- and CCR5-/- mice. Moreover, depletion of γδT cells worsened the clinical symptoms induced by bleomycin and reversed the phenotype of ACKR2-/- mice exposed to bleomycin. ACKR2 controls the CC chemokine expression that drives the influx of CCR2+ and CCR5+ IFNγ-producing γδT cells tuning the Th17 response that mediate pulmonary fibrosis triggered by bleomycin instillation.

  6. Polymorphisms in chemokine and chemokine receptor genes and the development of coal workers' pneumoconiosis

    PubMed Central

    Nadif, Rachel; Mintz, Margaret; Rivas-Fuentes, Selma; Jedlicka, Anne; Lavergne, Elise; Rodero, Mathieu; Kauffmann, Francine; Combadière, Christophe; Kleeberger, Steven R.

    2006-01-01

    Chemokines and their receptors are key regulators of inflammation and may participate in the lung fibrotic process. Associations of polymorphisms in CCL5 (G-403A) and its receptor CCR5 (Δ32), CCL2 (A-2578G) and CCR2 (V64I), and CX3CR1 V249I and T280M with Coal Worker’s Pneumoconiosis (CWP) were investigated in 209 miners examined in 1990, 1994 and 1999. Coal dust exposure was assessed by job history and ambient measures. The main health outcome was lung computed tomography (CT) score in 1990. Internal coherence was assessed by studying CT score in 1994, 4-year change in CT score, and CWP prevalence in 1999. CCR5 Δ32 carriers had significantly higher CT score in 1990 and 1994 (2.15 vs. 1.28, p=0.01; 3.04 vs. 1.80, p=0.04). The CX3CR1 1249 allele was significantly associated with lower 1990 CT score and lower progression in 4-year change in CT score in CCR5 Δ32 carriers only (p for interaction=0.03 and 0.02). CX3CR1 V249I was associated with lower 1999 CWP prevalence (16.7%, 13.2%, 0.0% for VV, VI and II); the effect was most evident in miners with high dust exposure (31.6%, 21.7%, 0.0%). Our findings indicate that chemokine receptors CCR5 and CX3CR1 may be involved in the development of pneumoconiosis. PMID:16524739

  7. Identification of the platelet-derived chemokine CXCL4/PF-4 as a broad-spectrum HIV-1 inhibitor

    PubMed Central

    Auerbach, David J.; Lin, Yin; Miao, Huiyi; Cimbro, Raffaello; DiFiore, Michelle J.; Gianolini, Monica E.; Furci, Lucinda; Biswas, Priscilla; Fauci, Anthony S.; Lusso, Paolo

    2012-01-01

    The natural history of HIV-1 infection is highly variable in different individuals, spanning from a rapidly progressive course to a long-term asymptomatic infection. A major determinant of the pace of disease progression is the in vivo level of HIV-1 replication, which is regulated by a complex network of cytokines and chemokines expressed by immune and inflammatory cells. The chemokine system is critically involved in the control of HIV-1 replication by virtue of the role played by specific chemokine receptors, most notably CCR5 and CXCR4, as cell-surface coreceptors for HIV-1 entry; hence, the chemokines that naturally bind such coreceptors act as endogenous inhibitors of HIV-1. Here, we show that the CXC chemokine CXCL4 (PF-4), the most abundant protein contained within the α-granules of platelets, is a broad-spectrum inhibitor of HIV-1 infection. Unlike other known HIV-suppressive chemokines, CXCL4 inhibits infection by the majority of primary HIV-1 isolates regardless of their coreceptor-usage phenotype or genetic subtype. Consistent with the lack of viral phenotype specificity, blockade of HIV-1 infection occurs at the level of virus attachment and entry via a unique mechanism that involves direct interaction of CXCL4 with the major viral envelope glycoprotein, gp120. The binding site for CXCL4 was mapped to a region of the gp120 outer domain proximal to the CD4-binding site. The identification of a platelet-derived chemokine as an endogenous antiviral factor may have relevance for the pathogenesis and treatment of HIV-1 infection. PMID:22645343

  8. Identification of the platelet-derived chemokine CXCL4/PF-4 as a broad-spectrum HIV-1 inhibitor.

    PubMed

    Auerbach, David J; Lin, Yin; Miao, Huiyi; Cimbro, Raffaello; Difiore, Michelle J; Gianolini, Monica E; Furci, Lucinda; Biswas, Priscilla; Fauci, Anthony S; Lusso, Paolo

    2012-06-12

    The natural history of HIV-1 infection is highly variable in different individuals, spanning from a rapidly progressive course to a long-term asymptomatic infection. A major determinant of the pace of disease progression is the in vivo level of HIV-1 replication, which is regulated by a complex network of cytokines and chemokines expressed by immune and inflammatory cells. The chemokine system is critically involved in the control of HIV-1 replication by virtue of the role played by specific chemokine receptors, most notably CCR5 and CXCR4, as cell-surface coreceptors for HIV-1 entry; hence, the chemokines that naturally bind such coreceptors act as endogenous inhibitors of HIV-1. Here, we show that the CXC chemokine CXCL4 (PF-4), the most abundant protein contained within the α-granules of platelets, is a broad-spectrum inhibitor of HIV-1 infection. Unlike other known HIV-suppressive chemokines, CXCL4 inhibits infection by the majority of primary HIV-1 isolates regardless of their coreceptor-usage phenotype or genetic subtype. Consistent with the lack of viral phenotype specificity, blockade of HIV-1 infection occurs at the level of virus attachment and entry via a unique mechanism that involves direct interaction of CXCL4 with the major viral envelope glycoprotein, gp120. The binding site for CXCL4 was mapped to a region of the gp120 outer domain proximal to the CD4-binding site. The identification of a platelet-derived chemokine as an endogenous antiviral factor may have relevance for the pathogenesis and treatment of HIV-1 infection.

  9. Synthesis and structure-activity relationship of the first nonpeptidergic inverse agonists for the human cytomegalovirus encoded chemokine receptor US28.

    PubMed

    Hulshof, Janneke W; Casarosa, Paola; Menge, Wiro M P B; Kuusisto, Leena M S; van der Goot, Henk; Smit, Martine J; de Esch, Iwan J P; Leurs, Rob

    2005-10-06

    US28 is a human cytomegalovirus (HCMV) encoded G-protein-coupled receptor that signals in a constitutively active manner. Recently, we identified 1 [5-(4-(4-chlorophenyl)-4-hydroxypiperidin-1-yl)-2,2-diphenylpentanenitrile] as the first reported nonpeptidergic inverse agonist for a viral-encoded chemokine receptor. Interestingly, this compound is able to partially inhibit the viral entry of HIV-1. In this study we describe the synthesis of 1 and several of its analogues and unique structure-activity relationships for this first class of small-molecule ligands for the chemokine receptor US28. Moreover, the compounds have been pharmacologically characterized as inverse agonists on US28. By modification of lead structure 1, it is shown that a 4-phenylpiperidine moiety is essential for affinity and activity. Other structural features of 1 are shown to be of less importance. These compounds define the first SAR of ligands on a viral GPCR (US28) and may therefore serve as important tools to investigate the significance of US28-mediated constitutive activity during viral infection.

  10. Broad-Spectrum Inhibition of the CC-Chemokine Class Improves Wound Healing and Wound Angiogenesis.

    PubMed

    Ridiandries, Anisyah; Bursill, Christina; Tan, Joanne

    2017-01-13

    Angiogenesis is involved in the inflammation and proliferation stages of wound healing, to bring inflammatory cells to the wound and provide a microvascular network to maintain new tissue formation. An excess of inflammation, however, leads to prolonged wound healing and scar formation, often resulting in unfavourable outcomes such as amputation. CC-chemokines play key roles in the promotion of inflammation and inflammatory-driven angiogenesis. Therefore, inhibition of the CC-chemokine class may improve wound healing. We aimed to determine if the broad-spectrum CC-chemokine inhibitor "35K" could accelerate wound healing in vivo in mice. In a murine wound healing model, 35K protein or phosphate buffered saline (PBS, control) were added topically daily to wounds. Cohorts of mice were assessed in the early stages (four days post-wounding) and in the later stages of wound repair (10 and 21 days post-wounding). Topical application of the 35K protein inhibited CC-chemokine expression (CCL5, CCL2) in wounds and caused enhanced blood flow recovery and wound closure in early-mid stage wounds. In addition, 35K promoted neovascularisation in the early stages of wound repair. Furthermore, 35K treated wounds had significantly lower expression of the p65 subunit of NF-κB, a key inflammatory transcription factor, and augmented wound expression of the pro-angiogenic and pro-repair cytokine TGF-β. These findings show that broad-spectrum CC-chemokine inhibition may be beneficial for the promotion of wound healing.

  11. Effects of peritoneal fluid from endometriosis patients on the release of monocyte-specific chemokines by leukocytes.

    PubMed

    Na, Yong-Jin; Lee, Dong-Hyung; Kim, Seung-Chul; Joo, Jong-Kil; Wang, Ji-Won; Jin, Jun-O; Kwak, Jong-Young; Lee, Kyu-Sup

    2011-06-01

    Chemokines have been implicated in the pathological process of endometriosis. We compared the effects of peritoneal fluid obtained from patients with endometriosis (ePF) and controls without endometriosis (cPF) on the release of monocyte-specific CC chemokines such as monocyte chemotactic protein-1 (MCP-1), regulated upon activation normal T cell expressed and secreted (RANTES), and macrophage inflammatory protein-1α (MIP-1α) by neutrophils, monocytes, and T cells. Moreover, we evaluated the correlation between the levels of chemokines in ePF and their release by these cells. Cells were obtained from healthy young volunteers and cultured with ePF (n = 12) or cPF (n = 8). The chemokine levels in the ePF and the supernatants of cultured cells with ePF were then measured by ELISA. There was a positive correlation between the levels of MCP-1 and MIP-1α in ePF. The addition of ePF to the cell cultures failed to increase the release of MCP-1, RANTES, and MIP-1α when compared to cPF, but the levels of RANTES in ePF were positively correlated with the release of RANTES by ePF-treated monocytes and T cells. Moreover, there was a positive correlation between the levels of RANTES and MIP-1α released by neutrophils and between the levels of MCP-1 and MIP-1α released by T cells. Finally, the levels of RANTES released by monocyte-derived macrophages and monocytes cultured with ePF were positively correlated. These findings suggest that monocytes, neutrophils, and T cells release differential levels of MCP-1, RANTES, and MIP-1α in response to stimulation with ePF.

  12. Inhibition of pulmonary fibrosis by the chemokine IP-10/CXCL10.

    PubMed

    Tager, Andrew M; Kradin, Richard L; LaCamera, Peter; Bercury, Scott D; Campanella, Gabriele S V; Leary, Carol P; Polosukhin, Vasiliy; Zhao, Long-Hai; Sakamoto, Hideo; Blackwell, Timothy S; Luster, Andrew D

    2004-10-01

    Pulmonary fibrosis is an enigmatic and devastating disease with few treatment options, now thought to result from abnormal wound healing in the lung in response to injury. We have previously noted a role for the chemokine interferon gamma-inducible protein of 10 kD (IP-10)/CXC chemokine ligand 10 in the regulation of cutaneous wound healing, and consequently investigated whether IP-10 regulates pulmonary fibrosis. We found that IP-10 is highly expressed in a mouse model of pulmonary fibrosis induced by bleomycin. IP-10-deficient mice exhibited increased pulmonary fibrosis after administration of bleomycin, suggesting that IP-10 limits the development of fibrosis in this model. Substantial fibroblast chemoattractant and proliferative activities were generated in the lung after bleomycin exposure. IP-10 significantly inhibited fibroblast responses to the chemotactic, but not the proliferative activity generated, suggesting that IP-10 may attenuate fibroblast accumulation in bleomycin-induced pulmonary fibrosis by limiting fibroblast migration. Consistent with this inhibitory activity of IP-10 on fibroblast migration, fibroblast accumulation in the lung after bleomycin exposure was dramatically increased in IP-10-deficient mice compared with wild-type mice. Conversely, transgenic mice overexpressing IP-10 were protected from mortality after bleomycin exposure, and demonstrated decreased fibroblast accumulation in the lung after challenge compared with wild-type mice. Our findings suggest that interruption of fibroblast recruitment may represent a novel therapeutic strategy for pulmonary fibrosis, which could have applicability to a wide range of fibrotic illnesses.

  13. A mini review on immune role of chemokines and its receptors in snakehead murrel Channa striatus.

    PubMed

    Bhatt, Prasanth; Kumaresan, Venkatesh; Palanisamy, Rajesh; Ravichandran, Gayathri; Mala, Kanchana; Amin, S M Nurul; Arshad, Aziz; Yusoff, Fatimah Md; Arockiaraj, Jesu

    2018-01-01

    Chemokines are ubiquitous cytokine molecules involved in migration of cells during inflammation and normal physiological processes. Though the study on chemokines in mammalian species like humans have been extensively studied, characterization of chemokines in teleost fishes is still in the early stage. The present review provides an overview of chemokines and its receptors in a teleost fish, Channa striatus. C. striatus is an air breathing freshwater carnivore, which has enormous economic importance. This species is affected by an oomycete fungus, Aphanomyces invadans and a Gram negative bacteria Aeromonas hydrophila is known to cause secondary infection. These pathogens impose immune changes in the host organism, which in turn mounts several immune responses. Of these, the role of cytokines in the immune response is immense, due to their involvement in several activities of inflammation such as cell trafficking to the site of inflammation and antigen presentation. Given that importance, chemokines in fishes do have significant role in the immunological and other physiological functions of the organism, hence there is a need to understand the characteristics, activities and performace of these small molecules in details. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Changes in cytokine and chemokine expression distinguish dysthymic disorder from major depression and healthy controls.

    PubMed

    Ho, Pei-Shen; Yen, Che-Hung; Chen, Chun-Yen; Huang, San-Yuan; Liang, Chih-Sung

    2017-02-01

    An important area of uncertainty is the inflammatory degree to which depression occurring as part of dysthymic disorder may differ from major depression. Using a 27-plex cytokine assay, we analyzed the serum of 12 patients with dysthymic disorder, 12 with major depression, and an age-, sex-, and body mass index-matched control group of 20 healthy volunteers. We observed that patients with dysthymic disorder exhibited aberrant cytokine and chemokine expression compared with healthy controls and patients with major depression. The levels of interferon-γ-induced protein 10 highly predicted dysthymic disorder. Network analyses revealed that in patients with dysthymic disorder, the vertices were more sparsely connected and adopted a more hub-like architecture, and the connections from neighboring vertices of interleukin 2 and eotaxin-1 increased. After treatment with the same antidepressant, there was no difference between dysthymic disorder and major depression regarding any of the cytokines or chemokines analyzed. For dysthymic disorder, changes in the levels of interferon-γ-induced protein 10 and macrophage inflammatory protein-1α correlated with depression improvement. The findings suggest that the cytokine milieu in dysthymic disorder differs either at the level of individual expression or in network patterns. Moreover, chemokines play an important role in driving the pathophysiology of dysthymic disorder. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Functional divergence between 2 chemokines is conferred by single amino acid change.

    PubMed

    Dubrac, Alexandre; Quemener, Cathy; Lacazette, Eric; Lopez, Fréderic; Zanibellato, Catherine; Wu, Wen-Guey; Bikfalvi, Andréas; Prats, Hervé

    2010-11-25

    CXCL4 and CXCL4L1 are 2 closely related CXC chemokines that exhibit potent antiangiogenic activity. Because interactions with glycosaminoglycans play a crucial role in chemokines activity, we determined the binding parameters of CXCL4 and CXCL4L1 for heparin, heparan sulfate, and chondroitin sulfate B. We further demonstrated that the Leu67/His67 substitution is critical for the decrease in glycan binding of CXCL4L1 but also for the increase of its angiostatic activities. Using a set of mutants, we show that glycan affinity and angiostatic properties are not completely related. These data are reinforced using a monoclonal antibody that specifically recognizes structural modifications in CXCL4L1 due to the presence of His67 and that blocks its biologic activity. In vivo, half-life and diffusibility of CXCL4L1 compared with CXCL4 is strongly increased. As opposed to CXCL4L1, CXCL4 is preferentially retained at its site of expression. These findings establish that, despite small differences in the primary structure, CXCL4L1 is highly distinct from CXCL4. These observations are not only of great significance for the antiangiogenic activity of CXCL4L1 and for its potential use in clinical development but also for other biologic processes such as inflammation, thrombosis or tissue repair.

  16. A CCL chemokine-derived peptide (CDIP-2) exerts anti-inflammatory activity via CCR1, CCR2 and CCR3 chemokine receptors: Implications as a potential therapeutic treatment of asthma.

    PubMed

    Méndez-Enríquez, E; Medina-Tamayo, J; Soldevila, G; Fortoul, T I; Anton, B; Flores-Romo, L; García-Zepeda, E A

    2014-05-01

    Allergic asthma is a chronic inflammatory disease characterized by the accumulation of eosinophils, Th2 cells and mononuclear cells in the airways, leading to changes in lung architecture and subsequently reduced respiratory function. We have previously demonstrated that CDIP-2, a chemokine derived peptide, reduced in vitro chemotaxis and decreased cellular infiltration in a murine model of allergic airway inflammation. However, the mechanisms involved in this process have not been identified yet. Now, we found that CDIP-2 reduces chemokine-mediated functions via interactions with CCR1, CCR2 and CCR3. Moreover, using bone marrow-derived eosinophils, we demonstrated that CDIP-2 modifies the calcium fluxes induced by CCL11 and down-modulated CCR3 expression. Finally, CDIP-2 treatment in a murine model of OVA-induced allergic airway inflammation reduced leukocyte recruitment and decreases production of cytokines. These data suggest that chemokine-derived peptides represent new therapeutic tools to generate more effective antiinflammatory drugs. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. In vivo evolution of HIV-1 co-receptor usage and sensitivity to chemokine-mediated suppression.

    PubMed

    Scarlatti, G; Tresoldi, E; Björndal, A; Fredriksson, R; Colognesi, C; Deng, H K; Malnati, M S; Plebani, A; Siccardi, A G; Littman, D R; Fenyö, E M; Lusso, P

    1997-11-01

    Following the identification of the C-C chemokines RANTES, MIP-1alpha and MIP-1beta as major human immunodeficiency virus (HIV)-suppressive factors produced by CD8+ T cells, several chemokine receptors were found to serve as membrane co-receptors for primate immunodeficiency lentiretroviruses. The two most widely used co-receptors thus far recognized, CCR5 and CXCR4, are expressed by both activated T lymphocytes and mononuclear phagocytes. CCR5, a specific RANTES, MIP-1alpha and MIP-1 receptor, is used preferentially by non-MT2-tropic HIV-1 and HIV-2 strains and by simian immunodeficiency virus (SIV), whereas CXCR4, a receptor for the C-X-C chemokine SDF-1, is used by MT2-tropic HIV-1 and HIV-2, but not by SIV. Other receptors with a more restricted cellular distribution, such as CCR2b, CCR3 and STRL33, can also function as co-receptors for selected viral isolates. The third variable region (V3) of the gp120 envelope glycoprotein of HIV-1 has been fingered as a critical determinant of the co-receptor choice. Here, we document a consistent pattern of evolution of viral co-receptor usage and sensitivity to chemokine-mediated suppression in a longitudinal follow-up of children with progressive HIV-1 infection. Viral isolates obtained during the asymptomatic stages generally used only CCR5 as a co-receptor and were inhibited by RANTES, MIP-1alpha and MIP-1beta, but not by SDF-1. By contrast, the majority of the isolates derived after the progression of the disease were resistant to C-C chemokines, having acquired the ability to use CXCR4 and, in some cases, CCR3, while gradually losing CCR5 usage. Surprisingly, most of these isolates were also insensitive to SDF-1, even when used in combination with RANTES. An early acquisition of CXCR4 usage predicted a poor prognosis. In children who progressed to AIDS without a shift to CXCR4 usage, all the sequential isolates were CCR5-dependent but showed a reduced sensitivity to C-C chemokines. Discrete changes in the V3 domain

  18. Molecular pathways of platelet factor 4/CXCL4 signaling.

    PubMed

    Kasper, Brigitte; Petersen, Frank

    2011-01-01

    The platelet-derived chemokine CXCL4 takes a specific and unique position within the family of chemotactic cytokines. Today, much attention is directed to CXCL4's capacity to inhibit angiogenesis and to promote innate immune responses, which makes this chemokine an interesting tool and target for potential intervention in tumor growth and inflammation. However, such attempts demand a comprehensive knowledge on the molecular mechanisms and pathways underlying the corresponding cellular functions. At least two structurally different receptors, CXCR3-B and a chondroitin sulfate proteoglycan, are capable of binding CXCL4 and to induce a specific intracellular signaling machinery. While signaling mediated by CXCR3-B involves Gs proteins, elevated cAMP levels, and p38 MAP kinase, signaling via proteoglycans appears to be more complicated and varies strongly between the cell types analyzed. In CXCL4-activated neutrophils and monocytes, tyrosine kinases of the Src family and Syk as well as monomeric GTPases and members of the MAP kinase family have been identified as essential intracellular signals. Most intriguingly, signaling does not proceed in a linear sequence of events but in a repeated activation of certain transducing elements like Rac2 or sphingosine kinase 1. Depending on the downstream targets, such biphasic kinetics either leads to a redundant and prolonged activation of a single pathway or to a timely separated initiation of disparate signals and functions. Results of the studies reviewed here help to understand the molecular basis of CXCL4's functional diversity and provide insights into integrated signaling processes in general. Copyright © 2011 Elsevier GmbH. All rights reserved.

  19. Fractalkine is a "find-me" signal released by neurons undergoing ethanol-induced apoptosis.

    PubMed

    Sokolowski, Jennifer D; Chabanon-Hicks, Chloe N; Han, Claudia Z; Heffron, Daniel S; Mandell, James W

    2014-01-01

    Apoptotic neurons generated during normal brain development or secondary to pathologic insults are efficiently cleared from the central nervous system. Several soluble factors, including nucleotides, cytokines, and chemokines are released from injured neurons, signaling microglia to find and clear debris. One such chemokine that serves as a neuronal-microglial communication factor is fractalkine, with roles demonstrated in several models of adult neurological disorders. Lacking, however, are studies investigating roles for fractalkine in perinatal brain injury, an important clinical problem with no effective therapies. We used a well-characterized mouse model of ethanol-induced apoptosis to assess the role of fractalkine in neuronal-microglial signaling. Quantification of apoptotic debris in fractalkine-knockout (KO) and CX3CR1-KO mice following ethanol treatment revealed increased apoptotic bodies compared to wild type mice. Ethanol-induced injury led to release of soluble, extracellular fractalkine. The extracellular media harvested from apoptotic brains induces microglial migration in a fractalkine-dependent manner that is prevented by neutralization of fractalkine with a blocking antibody or by deficiency in the receptor, CX3CR1. This suggests fractalkine acts as a "find-me" signal, recruiting microglial processes toward apoptotic cells to promote their clearance. Next, we aimed to determine whether there are downstream alterations in cytokine gene expression due to fractalkine signaling. We examined mRNA expression in fractalkine-KO and CX3CR1-KO mice after alcohol-induced apoptosis and found differences in cytokine production in the brains of these KOs by 6 h after ethanol treatment. Collectively, this suggests that fractalkine acts as a "find me" signal released by apoptotic neurons, and subsequently plays a critical role in modulating both clearance and inflammatory cytokine gene expression after ethanol-induced apoptosis.

  20. Chemokines, macrophage inflammatory protein-2 and stromal cell-derived factor-1{alpha}, suppress amyloid {beta}-induced neurotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raman, Dayanidhi; Milatovic, Snjezana-Zaja; Milatovic, Dejan

    2011-11-15

    Alzheimer's disease (AD) is characterized by a progressive cognitive decline and accumulation of neurotoxic oligomeric peptides amyloid-{beta} (A{beta}). Although the molecular events are not entirely known, it has become evident that inflammation, environmental and other risk factors may play a causal, disruptive and/or protective role in the development of AD. The present study investigated the ability of the chemokines, macrophage inflammatory protein-2 (MIP-2) and stromal cell-derived factor-1{alpha} (SDF-1{alpha}), the respective ligands for chemokine receptors CXCR2 and CXCR4, to suppress A{beta}-induced neurotoxicity in vitro and in vivo. Pretreatment with MIP-2 or SDF-1{alpha} significantly protected neurons from A{beta}-induced dendritic regression and apoptosismore » in vitro through activation of Akt, ERK1/2 and maintenance of metalloproteinase ADAM17 especially with SDF-1{alpha}. Intra-cerebroventricular (ICV) injection of A{beta} led to reduction in dendritic length and spine density of pyramidal neurons in the CA1 area of the hippocampus and increased oxidative damage 24 h following the exposure. The A{beta}-induced morphometric changes of neurons and increase in biomarkers of oxidative damage, F{sub 2}-isoprostanes, were significantly inhibited by pretreatment with the chemokines MIP-2 or SDF-1{alpha}. Additionally, MIP-2 or SDF-1{alpha} was able to suppress the aberrant mislocalization of p21-activated kinase (PAK), one of the proteins involved in the maintenance of dendritic spines. Furthermore, MIP-2 also protected neurons against A{beta} neurotoxicity in CXCR2-/- mice, potentially through observed up regulation of CXCR1 mRNA. Understanding the neuroprotective potential of chemokines is crucial in defining the role for their employment during the early stages of neurodegeneration. -- Research highlights: Black-Right-Pointing-Pointer Neuroprotective ability of the chemokines MIP2 and CXCL12 against A{beta} toxicity. Black

  1. Chemokines, costimulatory molecules and fusion proteins for the immunotherapy of solid tumors.

    PubMed

    Lechner, Melissa G; Russell, Sarah M; Bass, Rikki S; Epstein, Alan L

    2011-11-01

    In this article, the role of chemokines and costimulatory molecules in the immunotherapy of experimental murine solid tumors and immunotherapy used in ongoing clinical trials are presented. Chemokine networks regulate physiologic cell migration that may be disrupted to inhibit antitumor immune responses or co-opted to promote tumor growth and metastasis in cancer. Recent studies highlight the potential use of chemokines in cancer immunotherapy to improve innate and adaptive cell interactions and to recruit immune effector cells into the tumor microenvironment. Another critical component of antitumor immune responses is antigen priming and activation of effector cells. Reciprocal expression and binding of costimulatory molecules and their ligands by antigen-presenting cells and naive lymphocytes ensures robust expansion, activity and survival of tumor-specific effector cells in vivo. Immunotherapy approaches using agonist antibodies or fusion proteins of immunomodulatory molecules significantly inhibit tumor growth and boost cell-mediated immunity. To localize immune stimulation to the tumor site, a series of fusion proteins consisting of a tumor-targeting monoclonal antibody directed against tumor necrosis and chemokines or costimulatory molecules were generated and tested in tumor-bearing mice. While several of these reagents were initially shown to have therapeutic value, combination therapies with methods to delete suppressor cells had the greatest effect on tumor growth. In conclusion, a key conclusion that has emerged from these studies is that successful immunotherapy will require both advanced methods of immunostimulation and the removal of immunosuppression in the host.

  2. Chemokines, costimulatory molecules and fusion proteins for the immunotherapy of solid tumors

    PubMed Central

    Lechner, Melissa G; Russell, Sarah M; Bass, Rikki S; Epstein, Alan L

    2011-01-01

    In this article, the role of chemokines and costimulatory molecules in the immunotherapy of experimental murine solid tumors and immunotherapy used in ongoing clinical trials are presented. Chemokine networks regulate physiologic cell migration that may be disrupted to inhibit antitumor immune responses or coopted to promote tumor growth and metastasis in cancer. Recent studies highlight the potential use of chemokines in cancer immunotherapy to improve innate and adaptive cell interactions and to recruit immune effector cells into the tumor microenvironment. Another critical component of antitumor immune responses is antigen priming and activation of effector cells. Reciprocal expression and binding of costimulatory molecules and their ligands by antigen-presenting cells and naive lymphocytes ensures robust expansion, activity and survival of tumor-specific effector cells in vivo. Immunotherapy approaches using agonist antibodies or fusion proteins of immunomodulatory molecules significantly inhibit tumor growth and boost cell-mediated immunity. To localize immune stimulation to the tumor site, a series of fusion proteins consisting of a tumor-targeting monoclonal antibody directed against tumor necrosis and chemokines or costimulatory molecules were generated and tested in tumor-bearing mice. While several of these reagents were initially shown to have therapeutic value, combination therapies with methods to delete suppressor cells had the greatest effect on tumor growth. In conclusion, a key conclusion that has emerged from these studies is that successful immunotherapy will require both advanced methods of immunostimulation and the removal of immunosuppression in the host. PMID:22053884

  3. Peroxisome proliferator-activated receptor agonists modulate neuropathic pain: a link to chemokines?

    PubMed Central

    Freitag, Caroline M.; Miller, Richard J.

    2014-01-01

    Chronic pain presents a widespread and intractable medical problem. While numerous pharmaceuticals are used to treat chronic pain, drugs that are safe for extended use and highly effective at treating the most severe pain do not yet exist. Chronic pain resulting from nervous system injury (neuropathic pain) is common in conditions ranging from multiple sclerosis to HIV-1 infection to type II diabetes. Inflammation caused by neuropathy is believed to contribute to the generation and maintenance of neuropathic pain. Chemokines are key inflammatory mediators, several of which (MCP-1, RANTES, MIP-1α, fractalkine, SDF-1 among others) have been linked to chronic, neuropathic pain in both human conditions and animal models. The important roles chemokines play in inflammation and pain make them an attractive therapeutic target. Peroxisome proliferator-activated receptors (PPARs) are a family of nuclear receptors known for their roles in metabolism. Recent research has revealed that PPARs also play a role in inflammatory gene repression. PPAR agonists have wide-ranging effects including inhibition of chemokine expression and pain behavior reduction in animal models. Experimental evidence suggests a connection between the pain ameliorating effects of PPAR agonists and suppression of inflammatory gene expression, including chemokines. In early clinical research, one PPARα agonist, palmitoylethanolamide (PEA), shows promise in relieving chronic pain. If this link can be better established, PPAR agonists may represent a new drug therapy for neuropathic pain. PMID:25191225

  4. Expression and Function of Chemokines CXCL9-11 in Micturition Pathways in Cyclophosphamide (CYP)-Induced Cystitis and Somatic Sensitivity in Mice

    PubMed Central

    Guo, Michael; Chang, Phat; Hauke, Eric; Girard, Beatrice M.; Tooke, Katharine; Ojala, Jacqueline; Malley, Susan M.; Hsiang, Harrison; Vizzard, Margaret A.

    2018-01-01

    Changes in urinary bladder function and somatic sensation may be mediated, in part, by inflammatory changes in the urinary bladder including the expression of chemokines. Male and female C57BL/6 mice were treated with cyclophosphamide (CYP; 75 mg/kg, 200 mg/kg, i.p.) to induce bladder inflammation (4 h, 48 h, chronic). We characterized the expression of CXC chemokines (CXCL9, CXCL10 and CXCL11) in the urinary bladder and determined the effects of blockade of their common receptor, CXCR3, at the level urinary bladder on bladder function and somatic (hindpaw and pelvic) sensation. qRT-PCR and Enzyme-Linked Immunoassays (ELISAs) were used to determine mRNA and protein expression of CXCL9, CXCL10 and CXCL11 in urothelium and detrusor. In urothelium of female mice treated with CYP, CXCL9 and CXCL10 mRNA significantly (p ≤ 0.01) increased with CYP treatment whereas CXC mRNA expression in the detrusor exhibited both increases and decreases in expression with CYP treatment. CXC mRNA expression urothelium and detrusor of male mice was more variable with both significant (p ≤ 0.01) increases and decreases in expression depending on the specific CXC chemokine and CYP treatment. CXCL9 and CXCL10 protein expression was significantly (p ≤ 0.01) increased in the urinary bladder with 4 h CYP treatment in female mice whereas CXC protein expression in the urinary bladder of male mice did not exhibit an overall change in expression. CXCR3 blockade with intravesical instillation of AMG487 (5 mg/kg) significantly (p ≤ 0.01) increased bladder capacity, reduced voiding frequency and reduced non-voiding contractions in female mice treated with CYP (4 h, 48 h). CXCR3 blockade also reduced (p ≤ 0.01) hindpaw and pelvic sensitivity in female mice treated with CYP (4 h, 48 h). CXC chemokines may be novel targets for treating urinary bladder dysfunction and somatic sensitization resulting from urinary bladder inflammation. PMID:29681802

  5. CXCL4-induced migration of activated T lymphocytes is mediated by the chemokine receptor CXCR3.

    PubMed

    Mueller, Anja; Meiser, Andrea; McDonagh, Ellen M; Fox, James M; Petit, Sarah J; Xanthou, Georgina; Williams, Timothy J; Pease, James E

    2008-04-01

    The chemokine CXCL4/platelet factor-4 is released by activated platelets in micromolar concentrations and is a chemoattractant for leukocytes via an unidentified receptor. Recently, a variant of the human chemokine receptor CXCR3 (CXCR3-B) was described, which transduced apoptotic but not chemotactic signals in microvascular endothelial cells following exposure to high concentrations of CXCL4. Here, we show that CXCL4 can induce intracellular calcium release and the migration of activated human T lymphocytes. CXCL4-induced chemotaxis of T lymphocytes was inhibited by a CXCR3 antagonist and pretreatment of cells with pertussis toxin (PTX), suggestive of CXCR3-mediated G-protein signaling via Galphai-sensitive subunits. Specific binding by T lymphocytes of the CXCR3 ligand CXCL10 was not effectively competed by CXCL4, suggesting that the two are allotopic ligands. We subsequently used expression systems to dissect the potential roles of each CXCR3 isoform in mediating CXCL4 function. Transient expression of the CXCR3-A and CXCR3-B isoforms in the murine pre-B cell L1.2 produced cells that migrated in response to CXCL4 in a manner sensitive to PTX and a CXCR3 antagonist. Binding of radiolabeled CXCL4 to L1.2 CXCR3 transfectants was of low affinity and appeared to be mediated chiefly by glycosaminoglycans (GAGs), as no specific CXCL4 binding was observed in GAG-deficient 745-Chinese hamster ovary cells stably expressing CXCR3. We suggest that following platelet activation, the CXCR3/CXCL4 axis may play a role in T lymphocyte recruitment and the subsequent amplification of inflammation observed in diseases such as atherosclerosis. In such a setting, antagonism of the CXCR3/CXCL4 axis may represent a useful, therapeutic intervention.

  6. The chemokine CCL2 protects against methylmercury neurotoxicity.

    PubMed

    Godefroy, David; Gosselin, Romain-Daniel; Yasutake, Akira; Fujimura, Masatake; Combadière, Christophe; Maury-Brachet, Régine; Laclau, Muriel; Rakwal, Randeep; Melik-Parsadaniantz, Stéphane; Bourdineaud, Jean-Paul; Rostène, William

    2012-01-01

    Industrial pollution due to heavy metals such as mercury is a major concern for the environment and public health. Mercury, in particular methylmercury (MeHg), primarily affects brain development and neuronal activity, resulting in neurotoxic effects. Because chemokines can modulate brain functions and are involved in neuroinflammatory and neurodegenerative diseases, we tested the possibility that the neurotoxic effect of MeHg may interfere with the chemokine CCL2. We have used an original protocol in young mice using a MeHg-contaminated fish-based diet for 3 months relevant to human MeHg contamination. We observed that MeHg induced in the mice cortex a decrease in CCL2 concentrations, neuronal cell death, and microglial activation. Knock-out (KO) CCL2 mice fed with a vegetal control food already presented a decrease in cortical neuronal cell density in comparison with wild-type animals under similar diet conditions, suggesting that the presence of CCL2 is required for normal neuronal survival. Moreover, KO CCL2 mice showed a pronounced neuronal cell death in response to MeHg. Using in vitro experiments on pure rat cortical neurons in culture, we observed by blockade of the CCL2/CCR2 neurotransmission an increased neuronal cell death in response to MeHg neurotoxicity. Furthermore, we showed that sod genes are upregulated in brain of wild-type mice fed with MeHg in contrast to KO CCL2 mice and that CCL2 can blunt in vitro the decrease in glutathione levels induced by MeHg. These original findings demonstrate that CCL2 may act as a neuroprotective alarm system in brain deficits due to MeHg intoxication.

  7. Disulfide Trapping for Modeling and Structure Determination of Receptor: Chemokine Complexes.

    PubMed

    Kufareva, Irina; Gustavsson, Martin; Holden, Lauren G; Qin, Ling; Zheng, Yi; Handel, Tracy M

    2016-01-01

    Despite the recent breakthrough advances in GPCR crystallography, structure determination of protein-protein complexes involving chemokine receptors and their endogenous chemokine ligands remains challenging. Here, we describe disulfide trapping, a methodology for generating irreversible covalent binary protein complexes from unbound protein partners by introducing two cysteine residues, one per interaction partner, at selected positions within their interaction interface. Disulfide trapping can serve at least two distinct purposes: (i) stabilization of the complex to assist structural studies and/or (ii) determination of pairwise residue proximities to guide molecular modeling. Methods for characterization of disulfide-trapped complexes are described and evaluated in terms of throughput, sensitivity, and specificity toward the most energetically favorable crosslinks. Due to abundance of native disulfide bonds at receptor:chemokine interfaces, disulfide trapping of their complexes can be associated with intramolecular disulfide shuffling and result in misfolding of the component proteins; because of this, evidence from several experiments is typically needed to firmly establish a positive disulfide crosslink. An optimal pipeline that maximizes throughput and minimizes time and costs by early triage of unsuccessful candidate constructs is proposed. © 2016 Elsevier Inc. All rights reserved.

  8. The CXCL16-CXCR6 chemokine axis in glial tumors.

    PubMed

    Hattermann, Kirsten; Held-Feindt, Janka; Ludwig, Andreas; Mentlein, Rolf

    2013-07-15

    Since chemokines and their receptors play a pivotal role in tumors, we investigated the CXCL16-CXCR6-axis in human astroglial tumors. The transmembrane chemokine CXCL16 is heavily expressed by tumor, microglial and endothelial cells in situ and in vitro. In contrast, the receptor CXCR6 is restricted in glioblastomas to a small subset of proliferating cells positive for the stem-cell markers Musashi, Nanog, Sox2 and Oct4. In particular, the vast majority (about 90%) of Musashi-positive cells stained also for CXCR6. Thus, CXCL16 is highly expressed by glial tumor and stroma cells whereas CXCR6 defines a subset of cells with stem cell character. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Role of the chemokine decoy receptor D6 in balancing inflammation, immune activation, and antimicrobial resistance in Mycobacterium tuberculosis infection

    PubMed Central

    Di Liberto, Diana; Locati, Massimo; Caccamo, Nadia; Vecchi, Annunciata; Meraviglia, Serena; Salerno, Alfredo; Sireci, Guido; Nebuloni, Manuela; Caceres, Neus; Cardona, Pere-Joan; Dieli, Francesco; Mantovani, Alberto

    2008-01-01

    D6 is a decoy and scavenger receptor for inflammatory CC chemokines. D6-deficient mice were rapidly killed by intranasal administration of low doses of Mycobacterium tuberculosis. The death of D6−/− mice was associated with a dramatic local and systemic inflammatory response with levels of M. tuberculosis colony-forming units similar to control D6-proficient mice. D6-deficient mice showed an increased numbers of mononuclear cells (macrophages, dendritic cells, and CD4 and CD8 T lymphocytes) infiltrating inflamed tissues and lymph nodes, as well as abnormal increased concentrations of CC chemokines (CCL2, CCL3, CCL4, and CCL5) and proinflammatory cytokines (tumor necrosis factor α, interleukin 1β, and interferon γ) in bronchoalveolar lavage and serum. High levels of inflammatory cytokines in D6−/− infected mice were associated with liver and kidney damage, resulting in both liver and renal failure. Blocking inflammatory CC chemokines with a cocktail of antibodies reversed the inflammatory phenotype of D6−/− mice but led to less controlled growth of M. tuberculosis. Thus, the D6 decoy receptor plays a key role in setting the balance between antimicrobial resistance, immune activation, and inflammation in M. tuberculosis infection. PMID:18695004

  10. Elevated cytokine and chemokine levels in the placenta are associated with in-utero HIV-1 mother-to-child transmission.

    PubMed

    Kumar, Surender B; Rice, Cara E; Milner, Danny A; Ramirez, Nilsa C; Ackerman, William E; Mwapasa, Victor; Turner, Abigail Norris; Kwiek, Jesse J

    2012-03-27

    To determine whether there is an association between cytokine and chemokine levels in plasma isolated from the placenta and HIV-1 mother-to-child transmission (MTCT). We designed a case-control study of HIV-infected, pregnant women enrolled in the Malaria and HIV in Pregnancy cohort. Participants were recruited in Blantyre, Malawi, from 2000 to 2004. Patients were women whose children were HIV-1 DNA-positive at birth (in-utero MTCT) or HIV-1 DNA-negative at birth and HIV-1 DNA-positive at 6 weeks postpartum (intrapartum MTCT); controls were women whose children were HIV-1 DNA-negative both at birth and 6 weeks postpartum. After delivery, blood was isolated from an incision on the basal plate of the placenta. We used a Bio-Plex human cytokine assay (Bio-Rad, Hercules, California USA) to simultaneously quantify 27 cytokines, chemokines and growth factors in placental plasma. HIV-1 RNA copies were quantified with the Roche Amplicor kit. Levels of interleukin (IL) 4, IL-5, IL-6, IL-7, IL-9, eotaxin, IL-1Ra and interferon gamma-induced protein 10 (IP-10) were significantly elevated in placental plasma isolated from cases of in-utero HIV-1 MTCT. In contrast, only granulocyte colony-stimulating factor was elevated in placental plasma isolated from cases of intrapartum MTCT. After adjusting for maternal age, gestational age and peripheral CD4(+) T-cell count, every log(10) increase in placental IP-10 was associated with a three-fold increase in the prevalence of in-utero HIV-1 MTCT. Elevated cytokine and chemokine levels in placental plasma were associated with in-utero and not intrapartum MTCT. IP-10, which is both a T-cell chemokine and potentiator of HIV-replication, was robustly and independently associated with prevalent, in-utero MTCT.

  11. Plasma levels of cytokines and chemokines and the risk of mortality in HIV-infected individuals: a case-control analysis nested in a large clinical trial

    PubMed Central

    French, MA; Cozzi-Lepri, A; Arduino, RC; Johnson, M; Achhra, AC; Landay, A

    2015-01-01

    Background All-cause mortality and serious non-AIDS events (SNAEs) in individuals with HIV-1 infection receiving antiretroviral therapy are associated with increased production of interleukin (IL)-6, which appears to be driven by monocyte/macrophage activation. Plasma levels of other cytokines or chemokines associated with immune activation might also be biomarkers of an increased risk of mortality and/or SNAEs. Methods Baseline plasma samples from 142 participants enrolled into the SMART study who subsequently died, and 284 matched controls, were assayedfor levels of 15 cytokines and chemokines. Cytokine and chemokine levels were analysed individually and when grouped according to function (innate/pro-inflammatory response, cell trafficking and cell activation/proliferation) for their association with the risk of subsequent death. Results Higher plasma levels of pro-inflammatory cytokines (IL-6 and tumour necrosis factor-alpha) were associated with an increased risk of all-cause mortality but in analyses adjusted for potential confounders, only the association with IL-6 persisted. Increased plasma levels of the chemokine CXCL8 were also associated with all-cause mortality independently of HCV status but not when analyses were adjusted for all confounders. In contrast, higher plasma levels of cytokines mediating cell activation/proliferation were not associated with a higher mortality risk and exhibited a weak protective effect when analysed as a group. Conclusions While plasma levels of IL-6 are the most informative biomarker of cytokine dysregulation associated with all-cause mortality in individuals with HIV-1 infection, assessment of plasma levels of CXCL8 might provide information about causes of mortality and possibly SNAEs. PMID:25695873

  12. Viral mimicry of cytokines, chemokines and their receptors.

    PubMed

    Alcami, Antonio

    2003-01-01

    Viruses have evolved elegant mechanisms to evade detection and destruction by the host immune system. One of the evasion strategies that have been adopted by large DNA viruses is to encode homologues of cytokines, chemokines and their receptors--molecules that have a crucial role in control of the immune response. Viruses have captured host genes or evolved genes to target specific immune pathways, and so viral genomes can be regarded as repositories of important information about immune processes, offering us a viral view of the host immune system. The study of viral immunomodulatory proteins might help us to uncover new human genes that control immunity, and their characterization will increase our understanding of not only viral pathogenesis, but also normal immune mechanisms. Moreover, viral proteins indicate strategies of immune modulation that might have therapeutic potential.

  13. Compaction of rolling circle amplification products increases signal integrity and signal-to-noise ratio

    PubMed Central

    Clausson, Carl-Magnus; Arngården, Linda; Ishaq, Omer; Klaesson, Axel; Kühnemund, Malte; Grannas, Karin; Koos, Björn; Qian, Xiaoyan; Ranefall, Petter; Krzywkowski, Tomasz; Brismar, Hjalmar; Nilsson, Mats; Wählby, Carolina; Söderberg, Ola

    2015-01-01

    Rolling circle amplification (RCA) for generation of distinct fluorescent signals in situ relies upon the self-collapsing properties of single-stranded DNA in commonly used RCA-based methods. By introducing a cross-hybridizing DNA oligonucleotide during rolling circle amplification, we demonstrate that the fluorophore-labeled RCA products (RCPs) become smaller. The reduced size of RCPs increases the local concentration of fluorophores and as a result, the signal intensity increases together with the signal-to-noise ratio. Furthermore, we have found that RCPs sometimes tend to disintegrate and may be recorded as several RCPs, a trait that is prevented with our cross-hybridizing DNA oligonucleotide. These effects generated by compaction of RCPs improve accuracy of visual as well as automated in situ analysis for RCA based methods, such as proximity ligation assays (PLA) and padlock probes. PMID:26202090

  14. NFκB signaling regulates embryonic and adult neurogenesis

    PubMed Central

    ZHANG, Yonggang; HU, Wenhui

    2013-01-01

    Both embryonic and adult neurogenesis involves the self-renewal/proliferation, survival, migration and lineage differentiation of neural stem/progenitor cells. Such dynamic process is tightly regulated by intrinsic and extrinsic factors and complex signaling pathways. Misregulated neurogenesis contributes much to a large range of neurodevelopmental defects and neurodegenerative diseases. The signaling of NFκB regulates many genes important in inflammation, immunity, cell survival and neural plasticity. During neurogenesis, NFκB signaling mediates the effect of numerous niche factors such as cytokines, chemokines, growth factors, extracellular matrix molecules, but also crosstalks with other signaling pathways such as Notch, Shh, Wnt/β-catenin. This review summarizes current progress on the NFκB signaling in all aspects of neurogenesis, focusing on the novel role of NFκB signaling in initiating early neural differentiation of neural stem cells and embryonic stem cells. PMID:24324484

  15. Role of chemokine network in the development and progression of ovarian cancer: a potential novel pharmacological target.

    PubMed

    Barbieri, Federica; Bajetto, Adriana; Florio, Tullio

    2010-01-01

    Ovarian cancer is the most common type of gynecologic malignancy. Despite advances in surgery and chemotherapy, the survival rate is still low since most ovarian cancers relapse and become drug-resistant. Chemokines are small chemoattractant peptides mainly involved in the immune responses. More recently, chemokines were also demonstrated to regulate extra-immunological functions. It was shown that the chemokine network plays crucial functions in the tumorigenesis in several tissues. In particular the imbalanced or aberrant expression of CXCL12 and its receptor CXCR4 strongly affects cancer cell proliferation, recruitment of immunosuppressive cells, neovascularization, and metastasization. In the last years, several molecules able to target CXCR4 or CXCL12 have been developed to interfere with tumor growth, including pharmacological inhibitors, antagonists, and specific antibodies. This chemokine ligand/receptor pair was also proposed to represent an innovative therapeutic target for the treatment of ovarian cancer. Thus, a thorough understanding of ovarian cancer biology, and how chemokines may control these different biological activities might lead to the development of more effective therapies. This paper will focus on the current biology of CXCL12/CXCR4 axis in the context of understanding their potential role in ovarian cancer development.

  16. Role of Chemokine Network in the Development and Progression of Ovarian Cancer: A Potential Novel Pharmacological Target

    PubMed Central

    Barbieri, Federica; Bajetto, Adriana; Florio, Tullio

    2010-01-01

    Ovarian cancer is the most common type of gynecologic malignancy. Despite advances in surgery and chemotherapy, the survival rate is still low since most ovarian cancers relapse and become drug-resistant. Chemokines are small chemoattractant peptides mainly involved in the immune responses. More recently, chemokines were also demonstrated to regulate extra-immunological functions. It was shown that the chemokine network plays crucial functions in the tumorigenesis in several tissues. In particular the imbalanced or aberrant expression of CXCL12 and its receptor CXCR4 strongly affects cancer cell proliferation, recruitment of immunosuppressive cells, neovascularization, and metastasization. In the last years, several molecules able to target CXCR4 or CXCL12 have been developed to interfere with tumor growth, including pharmacological inhibitors, antagonists, and specific antibodies. This chemokine ligand/receptor pair was also proposed to represent an innovative therapeutic target for the treatment of ovarian cancer. Thus, a thorough understanding of ovarian cancer biology, and how chemokines may control these different biological activities might lead to the development of more effective therapies. This paper will focus on the current biology of CXCL12/CXCR4 axis in the context of understanding their potential role in ovarian cancer development. PMID:20049170

  17. 15-deoxy-Delta12,14-prostaglandin J2 inhibits INF-gamma-induced JAK/STAT1 signalling pathway activation and IP-10/CXCL10 expression in mesangial cells.

    PubMed

    Panzer, Ulf; Zahner, Gunther; Wienberg, Ulrike; Steinmetz, Oliver M; Peters, Anett; Turner, Jan-Eric; Paust, Hans-Joachim; Wolf, Gunter; Stahl, Rolf A K; Schneider, André

    2008-12-01

    Activators of the peroxisome proliferator-activated receptor gamma (PPARgamma), originally found to be implicated in lipid metabolism and glucose homeostasis, have been shown to modulate inflammatory responses through interference with cytokine and chemokine production. Given the central role of mesangial cell-derived chemokines in glomerular leukocyte recruitment in human and experimental glomerulonephritis, we studied the influence of natural and synthetic PPARgamma activators on INF-gamma-induced expression of the T cell-attracting chemokines IP-10/CXCL10, Mig/CXCL9 and I-TAC/CXCL11 in mouse mesangial cells. INF-gamma-treated mesangial cells were cultured in the presence or absence of either the naturally occurring PPARgamma ligand 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)) or synthetic PPARgamma activators of the glitazone group. Chemokine mRNA and protein expression and activation of the JAK/STAT signalling pathway were analysed. The 15d-PGJ(2), but not synthetic PPARgamma ligands, dose-dependently inhibited INF-gamma-induced chemokine gene (mRNA and protein) expression. Combined results from EMSA and western blot analysis revealed the inhibitory ability of 15d-PGJ(2), but not of synthetic PPARgamma ligands, on IFN-gamma-induced tyrosine phosphorylation of JAK1, JAK2, STAT1 and nuclear STAT1 translocation and DNA binding. Our results demonstrate that 15d-PGJ(2) inhibits INF-gamma-induced chemokine expression in mesangial cells by targeting the JAK/STAT signalling pathway. This effect is independent of an interference with PPARgamma.

  18. Regulation of B1 cell migration by signals through Toll-like receptors

    PubMed Central

    Ha, Seon-ah; Tsuji, Masayuki; Suzuki, Keiichiro; Meek, Bob; Yasuda, Nobutaka; Kaisho, Tsuneyasu; Fagarasan, Sidonia

    2006-01-01

    Peritoneal B1 cells are known to generate large amounts of antibodies outside their residential site. These antibodies play an important role in the early defense against bacteria and viruses, before the establishment of adaptive immune responses. Although many stimuli, including antigen, lipopolysaccharide, or cytokines, have been shown to activate B1 cells and induce their differentiation into plasma cells, the molecular signals required for their egress from the peritoneal cavity are not understood. We demonstrate here that direct signals through Toll-like receptors (TLRs) induce specific, rapid, and transient down-regulation of integrins and CD9 on B1 cells, which is required for detachment from local matrix and a high velocity movement of cells in response to chemokines. Thus, we revealed an unexpected role for TLRs in governing the interplay between integrins, tetraspanins, and chemokine receptors required for B1 cell egress and, as such, in facilitating appropriate transition from innate to adaptive immune responses. PMID:17060475

  19. Differential and directional estrogenic signaling pathways induced by enterolignans and their precursors

    PubMed Central

    Zhu, Yun; Kawaguchi, Kayoko; Kiyama, Ryoiti

    2017-01-01

    Mammalian lignans or enterolignans are metabolites of plant lignans, an important category of phytochemicals. Although they are known to be associated with estrogenic activity, cell signaling pathways leading to specific cell functions, and especially the differences among lignans, have not been explored. We examined the estrogenic activity of enterolignans and their precursor plant lignans and cell signaling pathways for some cell functions, cell cycle and chemokine secretion. We used DNA microarray-based gene expression profiling in human breast cancer MCF-7 cells to examine the similarities, as well as the differences, among enterolignans, enterolactone and enterodiol, and their precursors, matairesinol, pinoresinol and sesamin. The profiles showed moderate to high levels of correlation (R values: 0.44 to 0.81) with that of estrogen (17β-estradiol or E2). Significant correlations were observed among lignans (R values: 0.77 to 0.97), and the correlations were higher for cell functions related to enzymes, signaling, proliferation and transport. All the enterolignans/precursors examined showed activation of the Erk1/2 and PI3K/Akt pathways, indicating the involvement of rapid signaling through the non-genomic estrogen signaling pathway. However, when their effects on specific cell functions, cell cycle progression and chemokine (MCP-1) secretion were examined, positive effects were observed only for enterolactone, suggesting that signals are given in certain directions at a position closer to cell functions. We hypothesized that, while estrogen signaling is initiated by the enterolignans/precursors examined, their signals are differentially and directionally modulated later in the pathways, resulting in the differences at the cell function level. PMID:28152041

  20. The Role(s) of Cytokines/Chemokines in Urinary Bladder Inflammation and Dysfunction

    PubMed Central

    Gonzalez, Eric J.; Arms, Lauren; Vizzard, Margaret A.

    2014-01-01

    Bladder pain syndrome (BPS)/interstitial cystitis (IC) is a chronic pain syndrome characterized by pain, pressure, or discomfort perceived to be bladder related and with at least one urinary symptom. It was recently concluded that 3.3–7.9 million women (>18 years old) in the United States exhibit BPS/IC symptoms. The impact of BPS/IC on quality of life is enormous and the economic burden is significant. Although the etiology and pathogenesis of BPS/IC are unknown, numerous theories including infection, inflammation, autoimmune disorder, toxic urinary agents, urothelial dysfunction, and neurogenic causes have been proposed. Altered visceral sensations from the urinary bladder (i.e., pain at low or moderate bladder filling) that accompany BPS/IC may be mediated by many factors including changes in the properties of peripheral bladder afferent pathways such that bladder afferent neurons respond in an exaggerated manner to normally innocuous stimuli (allodynia). The goals for this review are to describe chemokine/receptor (CXCL12/CXCR4; CCL2/CCR2) signaling and cytokine/receptor (transforming growth factor (TGF-β)/TGF-β type 1 receptor) signaling that may be valuable LUT targets for pharmacologic therapy to improve urinary bladder function and reduce somatic sensitivity associated with urinary bladder inflammation. PMID:24738044

  1. Controlled intramyocardial release of engineered chemokines by biodegradable hydrogels as a treatment approach of myocardial infarction

    PubMed Central

    Projahn, Delia; Simsekyilmaz, Sakine; Singh, Smriti; Kanzler, Isabella; Kramp, Birgit K; Langer, Marcella; Burlacu, Alexandrina; Bernhagen, Jürgen; Klee, Doris; Zernecke, Alma; Hackeng, Tilman M; Groll, Jürgen; Weber, Christian; Liehn, Elisa A; Koenen, Rory R

    2014-01-01

    Myocardial infarction (MI) induces a complex inflammatory immune response, followed by the remodelling of the heart muscle and scar formation. The rapid regeneration of the blood vessel network system by the attraction of hematopoietic stem cells is beneficial for heart function. Despite the important role of chemokines in these processes, their use in clinical practice has so far been limited by their limited availability over a long time-span in vivo. Here, a method is presented to increase physiological availability of chemokines at the site of injury over a defined time-span and simultaneously control their release using biodegradable hydrogels. Two different biodegradable hydrogels were implemented, a fast degradable hydrogel (FDH) for delivering Met-CCL5 over 24 hrs and a slow degradable hydrogel (SDH) for a gradual release of protease-resistant CXCL12 (S4V) over 4 weeks. We demonstrate that the time-controlled release using Met-CCL5-FDH and CXCL12 (S4V)-SDH suppressed initial neutrophil infiltration, promoted neovascularization and reduced apoptosis in the infarcted myocardium. Thus, we were able to significantly preserve the cardiac function after MI. This study demonstrates that time-controlled, biopolymer-mediated delivery of chemokines represents a novel and feasible strategy to support the endogenous reparatory mechanisms after MI and may compliment cell-based therapies. PMID:24512349

  2. Atorvastatin therapy reduces interferon-regulated chemokine CXCL9 plasma levels in patients with systemic lupus erythematosus.

    PubMed

    Ferreira, G A; Teixeira, A L; Sato, E I

    2010-07-01

    A recent study showed transcriptional levels of interferon-inducible chemokines in peripheral blood cells were associated with disease activity and organ damage in systemic lupus erythematosus, and may be useful in monitoring disease activity and prognosis. Our objective was to evaluate the capacity of atorvastatin to reduce plasma levels of interferon-regulated chemokines (CCL2, CCL3 and CXCL9) and to study the correlation between these chemokines and disease activity in patients with systemic lupus erythematosus. Eighty-eight female patients with systemic lupus erythematosus were divided into two groups: 64 receiving 20 mg/day of atorvastatin (intervention group) and 24 without atorvastatin (control group). All patients were followed for 8 weeks. At baseline and after 8 weeks laboratory tests were performed for all patients. Plasma levels of chemokines were measured by ELISA using commercial kits (DuoSet, R&D Systems, Minneapolis, USA). In a univariate analysis we found correlation between CCL2, CCL3 and CXCL9 plasma levels and SLEDAI score. In the intervention group we observed a significant decrease in CXCL9 plasma levels comparing baseline and levels at the end of the study (p = 0.04); however, no differences were observed regarding CCL2 or CCL3 plasma levels in this study. No significant difference was observed in the plasma levels of these chemokines in the control group. We conclude that treatment with atorvastatin was associated with a significant decrease in the plasma levels of CXCL9 in patients with systemic lupus erythematosus. As the plasma levels of CXCL9 correlated with the SLEDAI score, we ask whether reducing levels of this chemokine could help to control systemic lupus erythematosus activity.

  3. Polymorphisms in chemokine and receptor genes and gastric cancer risk and survival in a high risk Polish population

    PubMed Central

    Gawron, Andrew J.; Fought, Angela J.; Lissowska, Jolanta; Ye, Weimin; Zhang, Xiao; Chow, Wong-Ho; Freeman, Laura E. Beane; Hou, Lifang

    2010-01-01

    Objective To examine if genetic variations in chemokine receptor and ligand genes are associated with gastric cancer risk and survival. Methods The study included 298 cases and 417 controls from a population-based study of gastric cancer conducted in Warsaw, Poland in 1994–1996. We investigated seven single nucleotide polymorphisms in a chemokine ligand (CXCL12) and chemokine receptor (CCR2, CCR5, CX3CR1) genes and one frameshift deletion (CCR5) in blood leukocyte DNA in relation to gastric cancer risk and survival. Genotyping was conducted at the NCI Core Genotyping Facility. Odds ratios and 95% confidence intervals were computed using univariate and multivariate logistic regression models. Survival analysis was performed using Cox proportional hazards models. Results Gastric cancer risk was not associated with single chemokine polymorphisms. A CCR5 haplotype that contained the common alleles of IVS1+151 G>T (rs2734648), IVS2+80 C>T (rs1800024) and minor allele of IVS1+246 A>G (rs1799987) was associated with a borderline significantly increased risk (OR = 1.5, 95% CI: 1.0–2.2). For gastric cancer cases, there was a greater risk of death for carriers of the minor alleles of CCR2 Ex2+241 G>A (rs1799864) (HR = 1.5, 95% CI: 1.1–2.1) and CCR5 IVS2+80 C>T (rs1800024) (HR = 1.5, 95% CI: 1.1–2.1). Carriers of the CCR5 minor allele of IVS1+151 G>T (rs2734648) had a decreased risk of death compared to homozygote carriers of the common allele (HR = 0.8, 95% CI: 0.6–1.0). Conclusions Our findings do not support an association between gastric cancer risk and single chemokine genetic variation. The observed associations between cancer risk and a CCR5 haplotype and between survival and polymorphisms in CCR2 and CCR5 need replication in future studies. PMID:21091093

  4. Polymorphisms in chemokine and receptor genes and gastric cancer risk and survival in a high risk Polish population.

    PubMed

    Gawron, Andrew J; Fought, Angela J; Lissowska, Jolanta; Ye, Weimin; Zhang, Xiao; Chow, Wong-Ho; Beane Freeman, Laura E; Hou, Lifang

    2011-03-01

    To examine if genetic variations in chemokine receptor and ligand genes are associated with gastric cancer risk and survival. The study included 298 cases and 417 controls from a population-based study of gastric cancer conducted in Warsaw, Poland in 1994-1996. We investigated seven single nucleotide polymorphisms in a chemokine ligand (CXCL12) and chemokine receptor (CCR2, CCR5, CX3CR1) genes and one frameshift deletion (CCR5) in blood leukocyte DNA in relation to gastric cancer risk and survival. Genotyping was conducted at the NCI Core Genotyping Facility. Odds ratios and 95% confidence intervals were computed using univariate and multivariate logistic regression models. Survival analysis was performed using Cox proportional hazards models. Gastric cancer risk was not associated with single chemokine polymorphisms. A CCR5 haplotype that contained the common alleles of IVS1+151 G>T (rs2734648), IVS2+80 C>T (rs1800024) and minor allele of IVS1+246 A>G (rs1799987) was associated with a borderline significantly increased risk (OR = 1.5, 95% CI: 1.0?2.2). For gastric cancer cases, there was a greater risk of death for carriers of the minor alleles of CCR2 Ex2+241 G>A (rs1799864) (HR = 1.5, 95% CI: 1.1-2.1) and CCR5 IVS2+80 C>T (rs1800024) (HR = 1.5, 95% CI: 1.1-2.1). Carriers of the CCR5 minor allele of IVS1+151 G>T (rs2734648) had a decreased risk of death compared to homozygote carriers of the common allele (HR = 0.8, 95% CI: 0.6-1.0). Our findings do not support an association between gastric cancer risk and single chemokine genetic variation. The observed associations between cancer risk and a CCR5 haplotype and between survival and polymorphisms in CCR2 and CCR5 need replication in future studies.

  5. Chemokines beyond chemo-attraction: CXCL10 and its significant role in cancer and autoimmunity.

    PubMed

    Karin, Nathan; Razon, Hila

    2018-09-01

    Chemokines are mostly known for their chemotactic properties, and less for their ability to direct the biological function of target cells, including T cells. The current review focuses on a key chemokine named CXCL10 and its role in directing the migratory propertied and biological function of CD4+ and CD8+ T cells in the context of cancer and inflammatory autoimmunity. CXCR3 is a chemokine receptor that is abundant on CD4+ T cells, CD8+ T cells and NK cells. It has three known ligands: CXCL9, CXCL10 and CXCL11. Different studies, including those coming form our laboratory, indicated that aside of attracting CD8+ and CD4+ effector T cells to tumor sites and sites of inflammation CXCL10 directs the polarization and potentiates the biological function of these cells. This makes CXCL10 a "key driver chemokine" and a valid target for therapy of autoimmune diseases such as Inflammatory Bowl's Disease, Multiple Sclerosis, Rheumatoid arthritis and others. As for cancer this motivated different groups, including our group to develop CXCL10 based therapies for cancer due to its ability to enhance T-dependent anti cancer immunity. The current review summarizes these findings and their potential translational implication. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Transforming growth factor-β stimulates the expression of eotaxin/CC chemokine ligand 11 and its promoter activity through binding site for nuclear factor-κB in airway smooth muscle cells

    PubMed Central

    Matsukura, S.; Odaka, M.; Kurokawa, M.; Kuga, H.; Homma, T.; Takeuchi, H.; Notomi, K.; Kokubu, F.; Kawaguchi, M.; Schleimer, R. P.; Johnson, M. W.; Adachi, M.

    2013-01-01

    Summary Background Chemokines ligands of CCR3 including eotaxin/CC chemokine ligand 11 (CCL11) may contribute to the pathogenesis of asthma. These chemokines and a growth factor (TGF-β) may be involved in the process of airway remodelling. Objective We analysed the effects of TGF-β on the expression of CCR3 ligands in human airway smooth muscle (HASM) cells and investigated the mechanisms. Methods HASM cells were cultured and treated with TGF-β and Th2 cytokines IL-4 or IL-13. Expression of mRNA was analysed by real-time PCR. Secretion of CCL11 into the culture medium was analysed by ELISA. Transcriptional regulation of CCL11 was analysed by luciferase assay using CCL11 promoter-luciferase reporter plasmids. Results IL-4 or IL-13 significantly up-regulated the expression of mRNAs for CCL11 and CCL26. TGF-β alone did not increase the expression of chemokine mRNAs, but enhanced the induction of only CCL11 by IL-4 or IL-13 among CCR3 ligands. Activity of the CCL11 promoter was stimulated by IL-4, and this activity was enhanced by TGF-β. Activation by IL-4 or IL-4 plus TGF-β was lost by mutation of the binding site for signal transducers and activators of transcription-6 (STAT6) in the promoter. Cooperative activation by IL-4 and TGF-β was inhibited by mutation of the binding site for nuclear factor-κB (NF-κB) in the promoter. Pretreatment with an inhibitor of NF-κB and glucocorticoid fluticasone propionate significantly inhibited the expression of CCL11 mRNA induced by IL-4 plus TGF-β, indicating the importance of NF-κB in the cooperative activation of CCL11 transcription by TGF-β and IL-4. Conclusion These results indicate that Th2 cytokines and TGF-β may contribute to the pathogenesis of asthma by stimulating expression of CCL11. The transcription factors STAT6 and NF-κB may play pivotal roles in this process. PMID:20214667

  7. Transforming growth factor-β stimulates the expression of eotaxin/CC chemokine ligand 11 and its promoter activity through binding site for nuclear factor-κβ in airway smooth muscle cells.

    PubMed

    Matsukura, S; Odaka, M; Kurokawa, M; Kuga, H; Homma, T; Takeuchi, H; Notomi, K; Kokubu, F; Kawaguchi, M; Schleimer, R P; Johnson, M W; Adachi, M

    2010-05-01

    Chemokines ligands of CCR3 including eotaxin/CC chemokine ligand 11 (CCL11) may contribute to the pathogenesis of asthma. These chemokines and a growth factor (TGF-beta) may be involved in the process of airway remodelling. We analysed the effects of TGF-beta on the expression of CCR3 ligands in human airway smooth muscle (HASM) cells and investigated the mechanisms. HASM cells were cultured and treated with TGF-beta and Th2 cytokines IL-4 or IL-13. Expression of mRNA was analysed by real-time PCR. Secretion of CCL11 into the culture medium was analysed by ELISA. Transcriptional regulation of CCL11 was analysed by luciferase assay using CCL11 promoter-luciferase reporter plasmids. IL-4 or IL-13 significantly up-regulated the expression of mRNAs for CCL11 and CCL26. TGF-beta alone did not increase the expression of chemokine mRNAs, but enhanced the induction of only CCL11 by IL-4 or IL-13 among CCR3 ligands. Activity of the CCL11 promoter was stimulated by IL-4, and this activity was enhanced by TGF-beta. Activation by IL-4 or IL-4 plus TGF-beta was lost by mutation of the binding site for signal transducers and activators of transcription-6 (STAT6) in the promoter. Cooperative activation by IL-4 and TGF-beta was inhibited by mutation of the binding site for nuclear factor-kappaB (NF-kappaB) in the promoter. Pretreatment with an inhibitor of NF-kappaB and glucocorticoid fluticasone propionate significantly inhibited the expression of CCL11 mRNA induced by IL-4 plus TGF-beta, indicating the importance of NF-kappaB in the cooperative activation of CCL11 transcription by TGF-beta and IL-4. These results indicate that Th2 cytokines and TGF-beta may contribute to the pathogenesis of asthma by stimulating expression of CCL11. The transcription factors STAT6 and NF-kappaB may play pivotal roles in this process.

  8. Characterization of the "CCR5" Chemokine Receptor Gene

    ERIC Educational Resources Information Center

    Thomas, John C.

    2004-01-01

    The life cycle of retroviruses is an essential topic of modern cell biology instruction. Furthermore, the process of HIV viral entry into the cell is a question of great interest in basic and clinical biology. This paper describes how students can easily recover their own DNA, amplify a portion of the "CCR5" chemokine receptor gene, characterize…

  9. Chemokine Receptor Signatures in Allogeneic Stem Cell Transplantation

    DTIC Science & Technology

    2015-08-01

    T - cells in allogeneic hematopoietic stem - cell transplant (HSCT) recipients and identify the role of chemokine receptors in...immune responses after allogeneic hematopoietic stem - cell transplantation (HSCT) in humans. Control of donor T - cells recruitment into target organs...effector T - cells after allogeneic stem - cell transplantation (Aim 1). To characterize the clonal diversity that correlates with

  10. Enhanced Chemokine Receptor Expression on Leukocytes of Patients with Alzheimer's Disease.

    PubMed

    Goldeck, David; Larbi, Anis; Pellicanó, Mariavaleria; Alam, Iftikhar; Zerr, Inga; Schmidt, Christian; Fulop, Tamas; Pawelec, Graham

    2013-01-01

    Although primarily a neurological complaint, systemic inflammation is present in Alzheimer's Disease, with higher than normal levels of proinflammatory cytokines and chemokines in the periphery as well as the brain. A gradient of these factors may enhance recruitment of activated immune cells into the brain via chemotaxis. Here, we investigated the phenotypes of circulating immune cells in AD patients with multi-colour flow cytometry to determine whether their expression of chemokine receptors is consistent with this hypothesis. In this study, we confirmed our previously reported data on the shift of early- to late-differentiated CD4+ T-cells in AD patients. The percentage of cells expressing CD25, a marker of acute T-cell activation, was higher in patients than in age-matched controls, and percentages of CCR6+ cells were elevated. This chemokine receptor is primarily expressed on pro-inflammatory memory cells and Th17 cells. The proportion of cells expressing CCR4 (expressed on Th2 cells) and CCR5 (Th1 cells and dendritic cells) was also greater in patients, and was more pronounced on CD4+ than CD8+ T-cells. These findings allow a more detailed insight into the systemic immune status of patients with Alzheimer's disease and suggest possible novel targets for immune therapy.

  11. SECRET domain of variola virus CrmB protein can be a member of poxviral type II chemokine-binding proteins family.

    PubMed

    Antonets, Denis V; Nepomnyashchikh, Tatyana S; Shchelkunov, Sergei N

    2010-10-27

    Variola virus (VARV) the causative agent of smallpox, eradicated in 1980, have wide spectrum of immunomodulatory proteins to evade host immunity. Recently additional biological activity was discovered for VARV CrmB protein, known to bind and inhibit tumour necrosis factor (TNF) through its N-terminal domain homologous to cellular TNF receptors. Besides binding TNF, this protein was also shown to bind with high affinity several chemokines which recruit B- and T-lymphocytes and dendritic cells to sites of viral entry and replication. Ability to bind chemokines was shown to be associated with unique C-terminal domain of CrmB protein. This domain named SECRET (Smallpox virus-Encoded Chemokine Receptor) is unrelated to the host proteins and lacks significant homology with other known viral chemokine-binding proteins or any other known protein. De novo modelling of VARV-CrmB SECRET domain spatial structure revealed its apparent structural homology with cowpox virus CC-chemokine binding protein (vCCI) and vaccinia virus A41 protein, despite low sequence identity between these three proteins. Potential ligand-binding surface of modelled VARV-CrmB SECRET domain was also predicted to bear prominent electronegative charge which is characteristic to known orthopoxviral chemokine-binding proteins. Our results suggest that SECRET should be included into the family of poxviral type II chemokine-binding proteins and that it might have been evolved from the vCCI-like predecessor protein.

  12. PDGFRβ signaling regulates local inflammation and synergizes with hypercholesterolemia to promote atherosclerosis

    PubMed Central

    He, Chaoyong; Medley, Shayna C.; Hu, Taishan; Hinsdale, Myron E.; Lupu, Florea; Virmani, Renu; Olson, Lorin E.

    2015-01-01

    Platelet-derived growth factor (PDGF) is a mitogen and chemoattractant for vascular smooth muscle cells (VSMCs). However, the direct effects of PDGF receptor β (PDGFRβ) activation on VSMCs have not been studied in the context of atherosclerosis. Here, we present a new mouse model of atherosclerosis with an activating mutation in PDGFRβ. Increased PDGFRβ signaling induces chemokine secretion and leads to leukocyte accumulation in the adventitia and media of the aorta. Furthermore, PDGFRβD849V amplifies and accelerates atherosclerosis in hypercholesterolemic ApoE−/− or Ldlr−/− mice. Intriguingly, increased PDGFRβ signaling promotes advanced plaque formation at novel sites in the thoracic aorta and coronary arteries. However, deletion of the PDGFRβ-activated transcription factor STAT1 in VSMCs alleviates inflammation of the arterial wall and reduces plaque burden. These results demonstrate that PDGFRβ pathway activation has a profound effect on vascular disease and support the conclusion that inflammation in the outer arterial layers is a driving process for atherosclerosis. PMID:26183159

  13. Expression and regulation of the chemokine CXCL16 in Crohn’s disease and models of intestinal inflammation

    PubMed Central

    Diegelmann, Julia; Seiderer, Julia; Niess, Jan-Hendrik; Haller, Dirk; Göke, Burkhard; Reinecker, Hans-Christian; Brand, Stephan

    2010-01-01

    Background/Aims CXCL16 mediates adhesion and phagocytosis of both Gram-negative and Gram-positive bacteria and is a strong chemoattractant for CXCR6+ T cells. In this study, we determined the so far unknown expression and signal transduction of the novel CXCL16-CXCR6 chemokine-ligand receptor system in intestinal inflammation in vivo and in vitro. Methods CXCL16 mRNA was measured by quantitative PCR in human colonic biopsies of patients with Crohn’s disease (CD) as well as in the TNFΔARE mouse model of ileitis and in murine cytomegalovirus (MCMV)-induced colitis. CXCL16 serum levels were analyzed by ELISA. CXCL16-induced signal transduction was analyzed in IEC with phospho-specific antibodies for MAP kinases and Akt. Results We found an inverse expression pattern of CXCL16 and CXCR6 with highest CXCL16 mRNA levels in the proximal murine small intestine and highest CXCR6 mRNA expression in the distal colon. CXCL16 and CXCR6 mRNA were expressed in colorectal cancer (CRC)-derived IEC lines. CRC-expressed CXCR6 was functional as demonstrated by CXCL16-induced MAP kinase and Akt activation. Intestinal CXCL16 expression was elevated in the TNFΔARE mouse model of ileitis and in MCMV-induced colitis (p<0.05) and in the sera and colons of patients with CD (p<0.05), where its expression correlated highly with CXCR6 and IL-8 levels (r=0.85 and 0.89, respectively). Conclusion CRC-derived IEC express the functional CXCL16 receptor CXCR6. CXCL16 mRNA and protein expression is up-regulated in intestinal inflammation in vitro and in CD patients, suggesting an important role for this chemokine in intestinal inflammation. PMID:20848509

  14. Multi-Inhibitory Effects of A2A Adenosine Receptor Signaling on Neutrophil Adhesion Under Flow.

    PubMed

    Yago, Tadayuki; Tsukamoto, Hiroki; Liu, Zhenghui; Wang, Ying; Thompson, Linda F; McEver, Rodger P

    2015-10-15

    A2A adenosine receptor (A2AAR) signaling negatively regulates inflammatory responses in many disease models, but the detailed mechanisms remain unclear. We used the selective A2AAR agonist, ATL313, to examine how A2AAR signaling affects human and murine neutrophil adhesion under flow. Treating neutrophils with ATL313 inhibited selectin-induced, β2 integrin-dependent slow rolling and chemokine-induced, β2 integrin-dependent arrest on ICAM-1. ATL313 inhibited selectin-induced β2 integrin extension, which supports slow rolling, and chemokine-induced hybrid domain "swing-out," which supports arrest. Furthermore, ATL313 inhibited integrin outside-in signaling as revealed by reduced neutrophil superoxide production and spreading on immobilized anti-β2 integrin Ab. ATL313 suppressed selectin-triggered activation of Src family kinases (SFKs) and p38 MAPK, chemokine-triggered activation of Ras-related protein 1, and β2 integrin-triggered activation of SFKs and Vav cytoskeletal regulatory proteins. ATL313 activated protein kinase A and its substrate C-terminal Src kinase, an inhibitor of SFKs. Treating neutrophils with a protein kinase A inhibitor blocked the actions of ATL313. In vivo, ATL313-treated neutrophils rolled faster and arrested much less frequently in postcapillary venules of the murine cremaster muscle after TNF-α challenge. Furthermore, ATL313 markedly suppressed neutrophil migration into the peritoneum challenged with thioglycollate. ATL313 did not affect A2AAR-deficient neutrophils, confirming its specificity. Our findings provide new insights into the anti-inflammatory mechanisms of A2AAR signaling and the potential utility of A2AAR agonists in inflammatory diseases. Copyright © 2015 by The American Association of Immunologists, Inc.

  15. Multi-inhibitory effects of A2A adenosine receptor signaling on neutrophil adhesion under flow**

    PubMed Central

    Yago, Tadayuki; Tsukamoto, Hiroki; Liu, Zhenghui; Wang, Ying; Thompson, Linda F.; McEver, Rodger P.

    2015-01-01

    A2A adenosine receptor (A2AAR) signaling negatively regulates inflammatory responses in many disease models, but the detailed mechanisms remain unclear. We used the selective A2AAR agonist, ATL313, to examine how A2AAR signaling affects human and murine neutrophil adhesion under flow. Treating neutrophils with ATL313 inhibited selectin-induced, β2 integrin-dependent slow rolling and chemokine-induced, β2 integrin-dependent arrest on ICAM-1. ATL313 inhibited selectin-induced β2 integrin extension, which supports slow rolling, and chemokine-induced hybrid domain “swing-out”, which supports arrest. Furthermore, ATL313 inhibited integrin outside-in signaling as revealed by reduced neutrophil superoxide production and spreading on immobilized anti-β2 integrin antibody. ATL313 suppressed selectin-triggered activation of Src family kinases (SFKs) and p38 MAPK, chemokine-triggered activation of Ras-related protein 1 (Rap1), and β2 integrin-triggered activation of SFKs and Vav cytoskeletal regulatory proteins. ATL313 activated protein kinase A (PKA) and its substrate C-terminal Src kinase (Csk), an inhibitor of SFKs. Treating neutrophils with a PKA inhibitor blocked the actions of ATL313. In vivo, ATL313-treated neutrophils rolled faster and arrested much less frequently in postcapillary venules of the murine cremaster muscle after TNF-α challenge. Furthermore, ATL313 markedly suppressed neutrophil migration into the peritoneum challenged with thioglycollate. ATL313 did not affect A2AAR-deficient neutrophils, confirming its specificity. Our findings provide new insights into the anti-inflammatory mechanisms of A2AAR signaling and the potential utility of A2AAR agonists in inflammatory diseases. PMID:26355151

  16. Comprehensive analysis of chemokine-induced cAMP-inhibitory responses using a real-time luminescent biosensor.

    PubMed

    Felouzis, Virginia; Hermand, Patricia; de Laissardière, Guy Trambly; Combadière, Christophe; Deterre, Philippe

    2016-01-01

    Chemokine receptors are members of the G-protein-coupled receptor (GPCR) family coupled to members of the Gi class, whose primary function is to inhibit the cellular adenylate cyclase. We used a cAMP-related and PKA-based luminescent biosensor (GloSensor™ F-22) to monitor the real-time downstream response of chemokine receptors, especially CX3CR1 and CXCR4, after activation with their cognate ligands CX3CL1 and CXCL12. We found that the amplitudes and kinetic profiles of the chemokine responses were conserved in various cell types and were independent of the nature and concentration of the molecules used for cAMP prestimulation, including either the adenylate cyclase activator forskolin or ligands mediating Gs-mediated responses like prostaglandin E2 or beta-adrenergic agonist. We conclude that the cAMP chemokine response is robustly conserved in various inflammatory conditions. Moreover, the cAMP-related luminescent biosensor appears as a valuable tool to analyze the details of Gi-mediated cAMP-inhibitory cellular responses, even in native conditions and could help to decipher their precise role in cell function. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Akt-mTORC1 signaling regulates Acly to integrate metabolic input to control of macrophage activation

    PubMed Central

    Covarrubias, Anthony J; Aksoylar, Halil Ibrahim; Yu, Jiujiu; Snyder, Nathaniel W; Worth, Andrew J; Iyer, Shankar S; Wang, Jiawei; Ben-Sahra, Issam; Byles, Vanessa; Polynne-Stapornkul, Tiffany; Espinosa, Erika C; Lamming, Dudley; Manning, Brendan D; Zhang, Yijing; Blair, Ian A; Horng, Tiffany

    2016-01-01

    Macrophage activation/polarization to distinct functional states is critically supported by metabolic shifts. How polarizing signals coordinate metabolic and functional reprogramming, and the potential implications for control of macrophage activation, remains poorly understood. Here we show that IL-4 signaling co-opts the Akt-mTORC1 pathway to regulate Acly, a key enzyme in Ac-CoA synthesis, leading to increased histone acetylation and M2 gene induction. Only a subset of M2 genes is controlled in this way, including those regulating cellular proliferation and chemokine production. Moreover, metabolic signals impinge on the Akt-mTORC1 axis for such control of M2 activation. We propose that Akt-mTORC1 signaling calibrates metabolic state to energetically demanding aspects of M2 activation, which may define a new role for metabolism in supporting macrophage activation. DOI: http://dx.doi.org/10.7554/eLife.11612.001 PMID:26894960

  18. Aberrant in Vivo T Helper Type 2 Cell Response and Impaired Eosinophil Recruitment in Cc Chemokine Receptor 8 Knockout Mice

    PubMed Central

    Chensue, Stephen W.; Lukacs, Nicholas W.; Yang, Tong-Yuan; Shang, Xiaozhou; Frait, Kirsten A.; Kunkel, Steven L.; Kung, Ted; Wiekowski, Maria T.; Hedrick, Joseph A.; Cook, Donald N.; Zingoni, Alessandra; Narula, Satwant K.; Zlotnik, Albert; Barrat, Franck J.; O'Garra, Anne; Napolitano, Monica; Lira, Sergio A.

    2001-01-01

    Chemokine receptors transduce signals important for the function and trafficking of leukocytes. Recently, it has been shown that CC chemokine receptor (CCR)8 is selectively expressed by Th2 subsets, but its functional relevance is unclear. To address the biological role of CCR8, we generated CCR8 deficient (−/−) mice. Here we report defective T helper type 2 (Th2) immune responses in vivo in CCR8−/− mice in models of Schistosoma mansoni soluble egg antigen (SEA)-induced granuloma formation as well as ovalbumin (OVA)- and cockroach antigen (CRA)-induced allergic airway inflammation. In these mice, the response to SEA, OVA, and CRA showed impaired Th2 cytokine production that was associated with aberrant type 2 inflammation displaying a 50 to 80% reduction in eosinophils. In contrast, a prototypical Th1 immune response, elicited by Mycobacteria bovis purified protein derivative (PPD) was unaffected by CCR8 deficiency. Mechanistic analyses indicated that Th2 cells developed normally and that the reduction in eosinophil recruitment was likely due to systemic reduction in interleukin 5. These results indicate an important role for CCR8 in Th2 functional responses in vivo. PMID:11238588

  19. Flavonoids from Engineered Tomatoes Inhibit Gut Barrier Pro-inflammatory Cytokines and Chemokines, via SAPK/JNK and p38 MAPK Pathways

    PubMed Central

    Tomlinson, Matthew L.; Butelli, Eugenio; Martin, Cathie; Carding, Simon R.

    2017-01-01

    Flavonoids are a diverse group of plant secondary metabolites, known to reduce inflammatory bowel disease symptoms. How they achieve this is largely unknown. Our study focuses on the gut epithelium as it receives high topological doses of dietary constituents, maintains gut homeostasis, and orchestrates gut immunity. Dysregulation leads to chronic gut inflammation, via dendritic cell (DC)-driven immune responses. Tomatoes engineered for enriched sets of flavonoids (anthocyanins or flavonols) provided a unique and complex naturally consumed food matrix to study the effect of diet on chronic inflammation. Primary murine colonic epithelial cell-based inflammation assays consist of chemokine induction, apoptosis and proliferation, and effects on kinase pathways. Primary murine leukocytes and DCs were used to assay effects on transmigration. A murine intestinal cell line was used to assay wound healing. Engineered tomato extracts (enriched in anthocyanins or flavonols) showed strong and specific inhibitory effects on a set of key epithelial pro-inflammatory cytokines and chemokines. Chemotaxis assays showed a resulting reduction in the migration of primary leukocytes and DCs. Activation of epithelial cell SAPK/JNK and p38 MAPK signaling pathways were specifically inhibited. The epithelial wound healing-associated STAT3 pathway was unaffected. Cellular migration, proliferation, and apoptosis assays confirmed that wound healing processes were not affected by flavonoids. We show flavonoids target epithelial pro-inflammatory kinase pathways, inhibiting chemotactic signals resulting in reduced leukocyte and DC chemotaxis. Thus, both anthocyanins and flavonols modulate epithelial cells to become hyporesponsive to bacterial stimulation. Our results identify a viable mechanism to explain the in vivo anti-inflammatory effects of flavonoids. PMID:29326940

  20. Flavonoids from Engineered Tomatoes Inhibit Gut Barrier Pro-inflammatory Cytokines and Chemokines, via SAPK/JNK and p38 MAPK Pathways.

    PubMed

    Tomlinson, Matthew L; Butelli, Eugenio; Martin, Cathie; Carding, Simon R

    2017-01-01

    Flavonoids are a diverse group of plant secondary metabolites, known to reduce inflammatory bowel disease symptoms. How they achieve this is largely unknown. Our study focuses on the gut epithelium as it receives high topological doses of dietary constituents, maintains gut homeostasis, and orchestrates gut immunity. Dysregulation leads to chronic gut inflammation, via dendritic cell (DC)-driven immune responses. Tomatoes engineered for enriched sets of flavonoids (anthocyanins or flavonols) provided a unique and complex naturally consumed food matrix to study the effect of diet on chronic inflammation. Primary murine colonic epithelial cell-based inflammation assays consist of chemokine induction, apoptosis and proliferation, and effects on kinase pathways. Primary murine leukocytes and DCs were used to assay effects on transmigration. A murine intestinal cell line was used to assay wound healing. Engineered tomato extracts (enriched in anthocyanins or flavonols) showed strong and specific inhibitory effects on a set of key epithelial pro-inflammatory cytokines and chemokines. Chemotaxis assays showed a resulting reduction in the migration of primary leukocytes and DCs. Activation of epithelial cell SAPK/JNK and p38 MAPK signaling pathways were specifically inhibited. The epithelial wound healing-associated STAT3 pathway was unaffected. Cellular migration, proliferation, and apoptosis assays confirmed that wound healing processes were not affected by flavonoids. We show flavonoids target epithelial pro-inflammatory kinase pathways, inhibiting chemotactic signals resulting in reduced leukocyte and DC chemotaxis. Thus, both anthocyanins and flavonols modulate epithelial cells to become hyporesponsive to bacterial stimulation. Our results identify a viable mechanism to explain the in vivo anti-inflammatory effects of flavonoids.

  1. Desloratadine citrate disodium injection, a potent histamine H(1) receptor antagonist, inhibits chemokine production in ovalbumin-induced allergic rhinitis guinea pig model and histamine-induced human nasal epithelial cells via inhibiting the ERK1/2 and NF-kappa B signal cascades.

    PubMed

    Chen, Meiling; Xu, Shuhong; Zhou, Peipei; He, Guangwei; Jie, Qiong; Wu, Yulin

    2015-11-15

    Chemokines have chemotactic properties on leukocyte subsets whose modulation plays a pivotal role in allergic inflammatory processes. Our present study was designed to investigate the anti-allergic and anti-inflammatory properties of desloratadine citrate disodium injection (DLC) and elucidate the molecular mechanisms of its anti-inflammatory properties. The anti-allergic effects of DLC were evaluated based on allergic symptoms, serological marker production and histological changes of the nasal mucosa in guinea pigs model of allergic rhinitis. The anti-inflammatory properties and molecular mechanisms of DLC were explored by studying the regulation of a set of chemokines and extracellular signal-regulated kinase (ERK)1/2 and nuclear factor-kappa B (NF-κB) pathways, after DLC treatment in guinea pigs model of allergic rhinitis in vivo and histamine-activated human nasal epithelial cells (HNECs) in vitro. In vivo model in guinea pigs, DLC alleviated the rhinitis symptoms, inhibited inflammatory cells infiltration in nasal lavage fluid (NLF) and histamine, monocyte chemotactic protein (MCP)-1, regulated on activation normal T cell expressed, and presumably secreted (RANTEs) and interleukin (IL)-8 release in sera and P-ERK1/2 and NF-κB activation in nasal mucosa. In vitro, DLC markedly inhibited histamine-induced production of MCP-1, RANTEs and IL-8 and suppressed c-Raf, mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK) and ERK1/2 activation in HNECs. These results provide evidence that DLC possesses potent anti-allergic and anti-inflammatory properties. The mechanism of action underlying DLC in allergic inflammation appears to be inhibition of the phosphorylation of ERK1/2, in addition to blocking of the NF-κB pathway. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Identification of a cobia (Rachycentron canadum) CC chemokine gene and its involvement in the inflammatory response.

    PubMed

    Su, Youlu; Guo, Zhixun; Xu, Liwen; Jiang, Jingzhe; Wang, Jiangyong; Feng, Juan

    2012-01-01

    The chemokines regulate immune cell migration under inflammatory and physiological conditions. We investigated a CC chemokine gene (RcCC1) from cobia (Rachycentron canadum). The full-length RcCC1 cDNA is comprised 673 nucleotides and encodes a four-cysteine arrangement 99-amino-acid protein typical of known CC chemokines. The genomic DNA of RcCC1 consists of three exons and two introns. Phylogenetic analysis showed that RcCC1 was closest to the MIP group of CC chemokines. Quantitative real-time RT-PCR (qRT-PCR) analysis revealed RcCC1 was constitutively expressed in all tissues examined, with relative strong expression in gill, blood, kidney, spleen, and head kidney. The RcCC1 transcripts in the head kidney, spleen, and liver were quickly up-regulated after stimulation with formalin-inactivated Vibrio carchariae (bacterial vaccine) or polyriboinosinic polyribocytidylic acid (poly I:C). These results indicate RcCC1 not only plays a role in homeostasis, but also may be involved in inflammatory responses to bacterial and viral infection. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. C-X-C Chemokine Receptor Type 4 Plays a Crucial Role in Mediating Oxidative Stress-Induced Podocyte Injury.

    PubMed

    Mo, Hongyan; Wu, Qinyu; Miao, Jinhua; Luo, Congwei; Hong, Xue; Wang, Yongping; Tang, Lan; Hou, Fan Fan; Liu, Youhua; Zhou, Lili

    2017-08-20

    Oxidative stress plays a role in mediating podocyte injury and proteinuria. However, the underlying mechanism remains poorly understood. In this study, we investigated the potential role of C-X-C chemokine receptor type 4 (CXCR4), the receptor for stromal cell-derived factor 1α (SDF-1α), in mediating oxidative stress-induced podocyte injury. In mouse model of adriamycin nephropathy (ADR), CXCR4 expression was significantly induced in podocytes as early as 3 days. This was accompanied by an increased upregulation of oxidative stress in podocyte, as demonstrated by malondialdehyde assay, nitrotyrosine staining and secretion of 8-hydroxy-2'-deoxyguanosine in urine, and induction of NOX2 and NOX4, major subunits of NADPH oxidase. CXCR4 was also induced in human kidney biopsies with proteinuric kidney diseases and colocalized with advanced oxidation protein products (AOPPs), an established oxidative stress trigger. Using cultured podocytes and mouse model, we found that AOPPs induced significant loss of podocyte marker Wilms tumor 1 (WT1), nephrin, and podocalyxin, accompanied by upregulation of desmin both in vitro and in vivo. Furthermore, AOPPs worsened proteinuria and aggravated glomerulosclerosis in ADR. These effects were associated with marked activation of SDF-1α/CXCR4 axis in podocytes. Administration of AMD3100, a specific inhibitor of CXCR4, reduced proteinuria and ameliorated podocyte dysfunction and renal fibrosis triggered by AOPPs in mice. In glomerular miniorgan culture, AOPPs also induced CXCR4 expression and downregulated nephrin and WT1. Innovation and Conclusion: These results suggest that chemokine receptor CXCR4 plays a crucial role in mediating oxidative stress-induced podocyte injury, proteinuria, and renal fibrosis. CXCR4 could be a new target for mitigating podocyte injury, proteinuria, and glomerular sclerosis in proteinuric chronic kidney disease. Antioxid. Redox Signal. 27, 345-362.

  4. Impact of Parturition on Chemokine Homing Factor Expression in the Vaginal Distention Model of Stress Urinary Incontinence

    PubMed Central

    Lenis, Andrew T.; Kuang, Mei; Woo, Lynn L.; Hijaz, Adonis; Penn, Marc S.; Butler, Robert S.; Rackley, Raymond; Damaser, Margot S.; Wood, Hadley M.

    2015-01-01

    Purpose Human childbirth simulated by vaginal distention is known to increase the expression of chemokines and receptors involved in stem cell homing and tissue repair. We hypothesized that pregnancy and parturition in rats contributes to the expression of chemokines and receptors after vaginal distention. Materials and Methods We used 72 age matched female Lewis rats, including virgin rats with and without vaginal distention, and delivered rats with and without vaginal distention. Each rat was sacrificed immediately, or 3 or 7 days after vaginal distention and/or parturition, and the urethra was harvested. Relative expression of chemokines and receptors was determined by real-time polymerase chain reaction. Mixed models were used with the Bonferroni correction for multiple comparisons. Results Vaginal distention up-regulated urethral expression of CCL7 immediately after injury in virgin and postpartum rats. Hypoxia inducible factor-1α and vascular endothelial growth factor were up-regulated only in virgin rats immediately after vaginal distention. CD191 expression was immediately up-regulated in postpartum rats without vaginal distention compared to virgin rats without vaginal distention. CD195 was up-regulated in virgin rats 3 days after vaginal distention compared to virgin rats without vaginal distention. CD193 and CXCR4 showed delayed up-regulation in virgin rats 7 days after vaginal distention. CXCL12 was up-regulated in virgin rats 3 days after vaginal distention compared to immediately after vaginal distention. Interleukin-8 and CD192 showed no differential expression. Conclusions Vaginal distention results in up-regulation of the chemokines and receptors expressed during tissue injury, which may facilitate the spontaneous functional recovery previously noted. Pregnancy and delivery up-regulated CD191 and attenuated the expression of hypoxia inducible factor-1α and vascular endothelial growth factor in the setting of vaginal distention, likely by

  5. Characterization of Structure, Dynamics, and Detergent Interactions of the Anti-HIV Chemokine Variant 5P12-RANTES

    PubMed Central

    Wiktor, Maciej; Hartley, Oliver; Grzesiek, Stephan

    2013-01-01

    RANTES (CCL5) is a chemokine that recruits immune cells to inflammatory sites by interacting with the G-protein coupled receptor CCR5, which is also the primary coreceptor used together with CD4 by HIV to enter and infect target cells. Ligands of CCR5, including chemokines and chemokine analogs, are capable of blocking HIV entry, and studies of their structures and interactions with CCR5 will be key to understanding and optimizing HIV inhibition. The RANTES derivative 5P12-RANTES is a highly potent HIV entry inhibitor that is being developed as a topical HIV prevention agent (microbicide). We have characterized the structure and dynamics of 5P12-RANTES by solution NMR. With the exception of the nine flexible N-terminal residues, 5P12-RANTES has the same structure as wild-type RANTES but unlike the wild-type, does not dimerize via its N-terminus. To prepare the ground for interaction studies with detergent-solubilized CCR5, we have also investigated the interaction of RANTES and 5P12-RANTES with various commonly used detergents. Both RANTES variants are stable in Cymal-5, DHPC, Anzergent-3-12, dodecyltrimethylammonium chloride, and a DDM/CHAPS/CHS mixture. Fos-Cholines, dodecyldimethylglycine, and sodium dodecyl-sulfate denature both RANTES variants at low pH, whereas at neutral pH the stability is considerably higher. The onset of Fos-Choline-12-induced denaturation and the denatured state were characterized by circular dichroism and NMR. The detergent interaction starts below the critical micelle concentration at a well-defined mixed hydrophobic/positive surface region of the chemokine, which overlaps with the dimer interface. An increase of Fos-Choline-12 concentration above the critical micelle concentration causes a transition to a denatured state with a high α-helical content. PMID:24314089

  6. Heme oxygenase-1 induction alters chemokine regulation and ameliorates human immunodeficiency virus-type-1 infection in lipopolysaccharide-stimulated macrophages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Zhao-Hua; Kumari, Namita; Nekhai, Sergei

    2013-06-07

    Highlights: •Lipopolysaccharide stimulation of heme oxygenase-1 (HO-1) ameliorated HIV-1 infection of primary human macrophages. •The partial protection by HO-1 against HIV infection was associated with induction of chemokines such as MIP1α and MIP1β. •This mechanism explains lipopolysaccharide-stimulated HO-1-mediated inhibition of HIV-1 infection of macrophages. -- Abstract: We have elucidated a putative mechanism for the host resistance against HIV-1 infection of primary human monocyte-derived macrophages (MDM) stimulated with lipopolysaccharide (LPS). We show that LPS-activated MDM both inhibited HIV-1 entry into the cells and were refractory to post-entry productive viral replication. LPS-treated cells were virtually negative for mature virions as revealed bymore » transmission electron microscopy. LPS activation of MDM markedly enhanced the expression of heme oxygenase-1 (HO-1), a potent inducible cytoprotective enzyme. Increased HO-1 expression was accompanied by elevated production of macrophage inflammatory chemokines (MIP1α and MIP1β) by LPS-activated MDM, significantly decreased surface chemokine receptor-5 (CCR-5) expression, and substantially reduced virus replication. Treatment of cells with HO-1 inhibitor SnPP IX (tin protoporphyrin IX) attenuated the LPS-mediated responses, HIV-1 replication and secretion of MIP1α, MIP1β, and LD78β chemokines with little change in surface CCR-5 expression. These results identify a novel role for HO-1 in the modulation of host immune response against HIV infection of MDM.« less

  7. Suppression of lipopolysaccharide-stimulated cytokine/chemokine production in skin cells by sandalwood oils and purified α-santalol and β-santalol.

    PubMed

    Sharma, M; Levenson, C; Bell, R H; Anderson, S A; Hudson, J B; Collins, C C; Cox, M E

    2014-06-01

    Medicinally, sandalwood oil (SO) has been attributed with antiinflammatory properties; however, mechanism(s) for this activity have not been elucidated. To examine how SOs affect inflammation, cytokine antibody arrays and enzyme-linked immunosorbent assays were used to assess changes in production of cytokines and chemokines by co-cultured human dermal fibroblasts and neo-epidermal keratinocytes exposed to lipopolysaccharides and SOs from Western Australian and East Indian sandalwood trees or to the primary SO components, α-santalol and β-santalol. Lipopolysaccharides stimulated the release of 26 cytokines and chemokines, 20 of which were substantially suppressed by simultaneous exposure to either of the two sandalwood essential oils and to ibuprofen. The increased activity of East Indian SO correlated with increased santalol concentrations. Purified α-santalol and β-santalol equivalently suppressed production of five indicator cytokines/chemokines at concentrations proportional to the santalol concentrations of the oils. Purified α-santalol and β-santalol also suppressed lipopolysaccharide-induced production of the arachidonic acid metabolites, prostaglandin E2, and thromboxane B2, by the skin cell co-cultures. The ability of SOs to mimic ibuprofen non-steroidal antiinflammatory drugs that act by inhibiting cyclooxygenases suggests a possible mechanism for the observed antiinflammatory properties of topically applied SOs and provides a rationale for use in products requiring antiinflammatory effects. Copyright © 2013 John Wiley & Sons, Ltd.

  8. The Role of TLR and Chemokine in Wear Particle-Induced Aseptic Loosening

    PubMed Central

    Gu, Qiaoli; Shi, Qin; Yang, Huilin

    2012-01-01

    Wear particle-induced periprosthetic osteolysis remains the principal cause of aseptic loosening of orthopaedic implants. Monocytes/macrophages phagocytose wear particles and release cytokines that induce inflammatory response. This response promotes osteoclast differentiation and osteolysis. The precise mechanisms by which wear particles are recognized and induce the accumulation of inflammatory cells in the periprosthetic tissue have not been fully elucidated. Recent studies have shown that toll-like receptors (TLRs) contribute to the cellular interaction with wear particles. Wear particles are recognized by monocytes/macrophages through TLRs coupled with the adaptor protein MyD88. After the initial interaction, wear particles induce both local and systemic migration of monocytes/macrophages to the periprosthetic region. The cellular migration is mediated through chemokines including interleukin-8, macrophage chemotactic protein-1, and macrophage inhibitory protein-1 in the periprosthetic tissues. Interfering with chemokine-receptor axis can inhibit cellular migration and inflammatory response. This paper highlights recent advances in TLR, and chemokine participated in the pathogenesis of aseptic loosening. A comprehensive understanding of the recognition and migration mechanism is critical to the development of measures that prevent wear particle-induced aseptic loosening of orthopaedic implants. PMID:23193363

  9. Altered chemokine Th1/Th2 balance in Addison's disease: relationship with hydrocortisone dosing and quality of life.

    PubMed

    Ekman, B; Alstrand, N; Bachrach-Lindström, M; Jenmalm, M C; Wahlberg, J

    2014-01-01

    The adrenalitis found in autoimmune Addison's disease (AAD) is considered having a Th1-driven pathogenesis. Circulating Th1- and Th2-associated chemokines responsible for the trafficking of leukocytes to inflammatory sites are markers for the Th1/Th2 balance. The aim of the study was to assess if the same daily hydrocortisone dose of 30 mg given in either 2 or 4 doses to patients with AAD could affect the Th1/Th2 balance of circulating chemokines.Fifteen patients (6 women) with AAD were included in this randomised, placebo controlled, double blind cross-over study. Samples for chemokines, Th1-associated (CXCL10, CXCL11) and Th2-associated (CCL17, CCL22), were drawn 5 times during a 24-h period at the end of each treatment period and analysed with Luminex. Seven control subjects did the same diurnal blood sampling once. Subjects with AAD had higher median diurnal levels of the Th1-associated chemokines than controls, CXCL10 [43 (33-56) pg/ml vs. 22 (19-34) pg/ml, p<0.01] and CXCL11 [37 (29-48) pg/ml vs. 16 (9-24) pg/ml, p<0.001], whereas no significant difference was found regarding the Th2-related chemokines. Similar chemokine levels were found when the same hydrocortisone dose of 30 mg was divided in 2 or 4 doses. Levels of CXCL11 correlated negatively with scores of SF-36 domains (high score indicate better health) of General Health (GH) and total score for Physical Component Summary (PCS), and these negative correlations were most pronounced at 04:00 h on the 2-dose regimen. Patients with AAD have a dominant Th1 chemokine profile that partially correlates to reduced quality of life. © Georg Thieme Verlag KG Stuttgart · New York.

  10. Serum CXCL10, CXCL11, CXCL12, and CXCL14 chemokine patterns in patients with acute liver injury.

    PubMed

    Chalin, Arnaud; Lefevre, Benjamin; Devisme, Christelle; Pronier, Charlotte; Carrière, Virginie; Thibault, Vincent; Amiot, Laurence; Samson, Michel

    2018-06-04

    The chemokines CXCL10 (interferon ϒ-inducible protein 10 [IP-10]), CXCL11 (Human interferon inducible T cell alpha chemokine [I-TAC]), CXCL12 (stromal cell derived factor 1 [SDF-1]), and CXCL14 (breast and kidney-expressed chemokine [BRAK]) are involved in cell recruitment, migration, activation, and homing in liver diseases and have been shown to be upregulated during acute liver injury in animal models. However, their expression in patients with acute liver injury is unknown. Here, we aimed to provide evidence of the presence of circulating CXCL10, CXCL11, CXCL12, and CXCL14 during human acute liver injury to propose new inflammation biomarkers for acute liver injury. We analyzed the serum concentration of the studied chemokines in healthy donors (n = 36) and patients (n = 163) with acute liver injuries of various etiologies. Serum CXCL10, CXCL11 and CXCL12 levels were elevated in all the studied groups except biliary diseases for CXCL11. CXCL14 was associated with only acute viral infection and vascular etiologies. The strongest correlation was found between the IFN-inducible studied chemokines (CXCL10 and CXCL11) in all patients and more specifically in the acute viral infection group. These data provide evidence for the presence of circulating CXCL10, CXCL11, CXCL12, and CXCL14 during acute liver injury and are consistent with data obtained in animal models. CXCL10, CXCL11 and CXCL12 were the most highly represented and CXCL14 the least represented chemokines. Differential expression patterns were obtained depending on acute liver injury etiology, suggesting the potential use of these chemokines as acute liver injury biomarkers. Copyright © 2018. Published by Elsevier Ltd.

  11. Altered circulating leukocytes and their chemokines in a clinical trial of therapeutic hypothermia for neonatal hypoxic ischemic encephalopathy*.

    PubMed

    Jenkins, Dorothea D; Lee, Timothy; Chiuzan, Cody; Perkel, Jessica K; Rollins, Laura Grace; Wagner, Carol L; Katikaneni, Lakshmi P; Bass, W Thomas; Kaufman, David A; Horgan, Michael J; Laungani, Sheela; Givelichian, Laurence M; Sankaran, Koravangatta; Yager, Jerome Y; Martin, Renee

    2013-10-01

    To determine systemic hypothermia's effect on circulating immune cells and their corresponding chemokines after hypoxic ischemic encephalopathy in neonates. In our randomized, controlled, multicenter trial of systemic hypothermia in neonatal hypoxic ischemic encephalopathy, we measured total and leukocyte subset and serum chemokine levels over time in both hypothermia and normothermia groups, as primary outcomes for safety. Neonatal ICUs participating in a Neurological Disorders and Stroke sponsored clinical trial of therapeutic hypothermia. Sixty-five neonates with moderate to severe hypoxic ischemic encephalopathy within 6 hours after birth. Patients were randomized to normothermia of 37°C or systemic hypothermia of 33°C for 48 hours. Complete and differential leukocyte counts and serum chemokines were measured every 12 hours for 72 hours. The hypothermia group had significantly lower median circulating total WBC and leukocyte subclasses than the normothermia group before rewarming, with a nadir at 36 hours. Only the absolute neutrophil count rebounded after rewarming in the hypothermia group. Chemokines, monocyte chemotactic protein-1 and interleukin-8, which mediate leukocyte chemotaxis as well as bone marrow suppression, were negatively correlated with their target leukocytes in the hypothermia group, suggesting active chemokine and leukocyte modulation by hypothermia. Relative leukopenia at 60-72 hours correlated with an adverse outcome in the hypothermia group. Our data are consistent with chemokine-associated systemic immunosuppression with hypothermia treatment. In hypothermic neonates, persistence of lower leukocyte counts after rewarming is observed in infants with more severe CNS injury.

  12. Genetic characterization of the chemokine receptor CXCR4 gene in lagomorphs: comparison between the families Ochotonidae and Leporidae.

    PubMed

    Abrantes, J; Esteves, P J; Carmo, C R; Müller, A; Thompson, G; van der Loo, W

    2008-04-01

    Chemokines receptors are transmembrane proteins that bind chemokines. Chemokines and their receptors are known to play a crucial role in the immune system and in pathogen entry. There is evidence that myxoma virus, the causative agent of myxomatosis, can use the chemokine receptor CXCR4 to infect cells. This virus causes a benign disease in its natural host, Sylvilagus, but in the European rabbit (Oryctolagus cuniculus) it causes a highly fatal and infectious disease known as myxomatosis. We have characterized the chemokine receptor CXCR4 gene in five genera of the order Lagomorpha, Ochotona (Ochotonidae), and Oryctolagus, Lepus, Bunolagus and Sylvilagus (Leporidae). In lagomorphs, the CXCR4 is highly conserved, with most of the protein diversity found at surface regions. Five amino acid replacements were observed, two in the intracellular loops, one in the transmembrane domain and two in the extracellular loops. Oryctolagus features unique amino acid changes at the intracellular domains, putting this genus apart of all other lagomorphs. Furthermore, in the 37 European rabbits analysed, which included healthy rabbits and rabbits with clinical symptoms of myxomatosis, 14 nucleotide substitutions were obtained but no amino acid differences were observed.

  13. Myocardial Chemokine Expression and Intensity of Myocarditis in Chagas Cardiomyopathy Are Controlled by Polymorphisms in CXCL9 and CXCL10

    PubMed Central

    Nogueira, Luciana Gabriel; Santos, Ronaldo Honorato Barros; Ianni, Barbara Maria; Fiorelli, Alfredo Inácio; Mairena, Eliane Conti; Benvenuti, Luiz Alberto; Frade, Amanda; Donadi, Eduardo; Dias, Fabrício; Saba, Bruno; Wang, Hui-Tzu Lin; Fragata, Abilio; Sampaio, Marcelo; Hirata, Mario Hiroyuki; Buck, Paula; Mady, Charles; Bocchi, Edimar Alcides; Stolf, Noedir Antonio; Kalil, Jorge; Cunha-Neto, Edecio

    2012-01-01

    Background Chronic Chagas cardiomyopathy (CCC), a life-threatening inflammatory dilated cardiomyopathy, affects 30% of the approximately 8 million patients infected by Trypanosoma cruzi. Even though the Th1 T cell-rich myocarditis plays a pivotal role in CCC pathogenesis, little is known about the factors controlling inflammatory cell migration to CCC myocardium. Methods and Results Using confocal immunofluorescence and quantitative PCR, we studied cell surface staining and gene expression of the CXCR3, CCR4, CCR5, CCR7, CCR8 receptors and their chemokine ligands in myocardial samples from end-stage CCC patients. CCR5+, CXCR3+, CCR4+, CCL5+ and CXCL9+ mononuclear cells were observed in CCC myocardium. mRNA expression of the chemokines CCL5, CXCL9, CXCL10, CCL17, CCL19 and their receptors was upregulated in CCC myocardium. CXCL9 mRNA expression directly correlated with the intensity of myocarditis, as well as with mRNA expression of CXCR3, CCR4, CCR5, CCR7, CCR8 and their ligands. We also analyzed single-nucleotide polymorphisms for genes encoding the most highly expressed chemokines and receptors in a cohort of Chagas disease patients. CCC patients with ventricular dysfunction displayed reduced genotypic frequencies of CXCL9 rs10336 CC, CXCL10 rs3921 GG, and increased CCR5 rs1799988CC as compared to those without dysfunction. Significantly, myocardial samples from CCC patients carrying the CXCL9/CXCL10 genotypes associated to a lower risk displayed a 2–6 fold reduction in mRNA expression of CXCL9, CXCL10, and other chemokines and receptors, along with reduced intensity of myocarditis, as compared to those with other CXCL9/CXCL10 genotypes. Conclusions Results may indicate that genotypes associated to reduced risk in closely linked CXCL9 and CXCL10 genes may modulate local expression of the chemokines themselves, and simultaneously affect myocardial expression of other key chemokines as well as intensity of myocarditis. Taken together our results may suggest that

  14. SECRET domain of variola virus CrmB protein can be a member of poxviral type II chemokine-binding proteins family

    PubMed Central

    2010-01-01

    Background Variola virus (VARV) the causative agent of smallpox, eradicated in 1980, have wide spectrum of immunomodulatory proteins to evade host immunity. Recently additional biological activity was discovered for VARV CrmB protein, known to bind and inhibit tumour necrosis factor (TNF) through its N-terminal domain homologous to cellular TNF receptors. Besides binding TNF, this protein was also shown to bind with high affinity several chemokines which recruit B- and T-lymphocytes and dendritic cells to sites of viral entry and replication. Ability to bind chemokines was shown to be associated with unique C-terminal domain of CrmB protein. This domain named SECRET (Smallpox virus-Encoded Chemokine Receptor) is unrelated to the host proteins and lacks significant homology with other known viral chemokine-binding proteins or any other known protein. Findings De novo modelling of VARV-CrmB SECRET domain spatial structure revealed its apparent structural homology with cowpox virus CC-chemokine binding protein (vCCI) and vaccinia virus A41 protein, despite low sequence identity between these three proteins. Potential ligand-binding surface of modelled VARV-CrmB SECRET domain was also predicted to bear prominent electronegative charge which is characteristic to known orthopoxviral chemokine-binding proteins. Conclusions Our results suggest that SECRET should be included into the family of poxviral type II chemokine-binding proteins and that it might have been evolved from the vCCI-like predecessor protein. PMID:20979600

  15. Dengue virus requires the CC-chemokine receptor CCR5 for replication and infection development.

    PubMed

    Marques, Rafael E; Guabiraba, Rodrigo; Del Sarto, Juliana L; Rocha, Rebeca F; Queiroz, Ana Luiza; Cisalpino, Daniel; Marques, Pedro E; Pacca, Carolina C; Fagundes, Caio T; Menezes, Gustavo B; Nogueira, Maurício L; Souza, Danielle G; Teixeira, Mauro M

    2015-08-01

    Dengue is a mosquito-borne disease that affects millions of people worldwide yearly. Currently, there is no vaccine or specific treatment available. Further investigation on dengue pathogenesis is required to better understand the disease and to identify potential therapeutic targets. The chemokine system has been implicated in dengue pathogenesis, although the specific role of chemokines and their receptors remains elusive. Here we describe the role of the CC-chemokine receptor CCR5 in Dengue virus (DENV-2) infection. In vitro experiments showed that CCR5 is a host factor required for DENV-2 replication in human and mouse macrophages. DENV-2 infection induces the expression of CCR5 ligands. Incubation with an antagonist prevents CCR5 activation and reduces DENV-2 positive-stranded (+) RNA inside macrophages. Using an immunocompetent mouse model of DENV-2 infection we found that CCR5(-/-) mice were resistant to lethal infection, presenting at least 100-fold reduction of viral load in target organs and significant reduction in disease severity. This phenotype was reproduced in wild-type mice treated with CCR5-blocking compounds. Therefore, CCR5 is a host factor required for DENV-2 replication and disease development. Targeting CCR5 might represent a therapeutic strategy for dengue fever. These data bring new insights on the association between viral infections and the chemokine receptor CCR5. © 2015 John Wiley & Sons Ltd.

  16. Signal integration and cross-talk during thymocyte migration and emigration

    PubMed Central

    Love, Paul E.; Bhandoola, Avinash

    2013-01-01

    The thymus produces self-tolerant functionally competent T cells. This occurs by the import of multipotent hematopoietic progenitors that are signalled to adopt the T cell fate. Expression of T cell specific genes, including those encoding the T cell receptor (TCR), is followed by positive and negative selection and the eventual export of mature T cells. Significant progress has been made in elucidating the signals that direct progenitor cell trafficking to, within and out of the thymus. These advances are the subject of this Review, with a particular focus on the role of reciprocal cooperative and regulatory interactions between TCR and chemokine receptor-mediated signalling. PMID:21701522

  17. Proinflammatory chemokines are major mediators of exuberant immune response associated with Influenza A (H1N1) pdm09 virus infection.

    PubMed

    Thomas, Maria; Mani, Reeta Subramaniam; Philip, Mariamma; Adhikary, Ranjeeta; Joshi, Sangeeta; Revadi, Srigiri S; Buggi, Shashidhar; Desai, Anita; Vasanthapuram, Ravi

    2017-08-01

    In India, the case fatality ratio of the pandemic A (H1N1) pdm09 influenza was relatively higher when compared to seasonal Influenza A infection. Hypercytokinemia or "cytokine storm" has been previously implicated in the pathogenesis of other influenza viruses. The present study was undertaken to compare the cytokine profiles of A (H1N1) pdm09 influenza and seasonal H3 infection in Indian population and to correlate the findings with disease severity. Plasma levels of 18 cytokines/chemokines were measured by flow-cytometry using a bead based assay in patients infected with A (H1N1) pdm09 virus (n = 96) and Influenza A seasonal H3 virus (n = 30) categorised into mild, moderate, and severe groups along with healthy controls (n = 36). There was an overall trend indicating an exuberant cytokine/chemokine response in A (H1N1) pdm09 as compared to seasonal H3 influenza, which was more evident in severe cases, suggesting a role for these cytokines/chemokines in the pathogenesis of A(H1N1) pdm09. Increased levels of CXCL-8/IL-8, IL-10, IL-6, and IL-17A were seen in both A(H1N1) pdm09 influenza and seasonal H3 cases when compared to healthy controls. However, dysregulated production of proinflammatory chemokines was seen more pronounced in A (H1N1) pdm09 influenza cases as compared to seasonal H3 cases. This study has brought forth the potential role of chemokines as prognostic indicators of disease severity and outcome. Further research on modulating the host immune response to limit severity of the disease could help in the treatment and management of influenza. © 2017 Wiley Periodicals, Inc.

  18. TGFβ signaling in the brain increases with aging and signals to astrocytes and innate immune cells in the weeks after stroke.

    PubMed

    Doyle, Kristian P; Cekanaviciute, Egle; Mamer, Lauren E; Buckwalter, Marion S

    2010-10-11

    TGFβ is both neuroprotective and a key immune system modulator and is likely to be an important target for future stroke therapy. The precise function of increased TGF-β1 after stroke is unknown and its pleiotropic nature means that it may convey a neuroprotective signal, orchestrate glial scarring or function as an important immune system regulator. We therefore investigated the time course and cell-specificity of TGFβ signaling after stroke, and whether its signaling pattern is altered by gender and aging. We performed distal middle cerebral artery occlusion strokes on 5 and 18 month old TGFβ reporter mice to get a readout of TGFβ responses after stroke in real time. To determine which cell type is the source of increased TGFβ production after stroke, brain sections were stained with an anti-TGFβ antibody, colocalized with markers for reactive astrocytes, neurons, and activated microglia. To determine which cells are responding to TGFβ after stroke, brain sections were double-labelled with anti-pSmad2, a marker of TGFβ signaling, and markers of neurons, oligodendrocytes, endothelial cells, astrocytes and microglia. TGFβ signaling increased 2 fold after stroke, beginning on day 1 and peaking on day 7. This pattern of increase was preserved in old animals and absolute TGFβ signaling in the brain increased with age. Activated microglia and macrophages were the predominant source of increased TGFβ after stroke and astrocytes and activated microglia and macrophages demonstrated dramatic upregulation of TGFβ signaling after stroke. TGFβ signaling in neurons and oligodendrocytes did not undergo marked changes. We found that TGFβ signaling increases with age and that astrocytes and activated microglia and macrophages are the main cell types that undergo increased TGFβ signaling in response to post-stroke increases in TGFβ. Therefore increased TGFβ after stroke likely regulates glial scar formation and the immune response to stroke.

  19. Treatment with a Novel Chemokine-Binding Protein or Eosinophil Lineage-Ablation Protects Mice from Experimental Colitis

    PubMed Central

    Vieira, Angélica T.; Fagundes, Caio T.; Alessandri, Ana Leticia; Castor, Marina G.M.; Guabiraba, Rodrigo; Borges, Valdinéria O.; Silveira, Kátia Daniella; Vieira, Erica L.M.; Gonçalves, Juliana L.; Silva, Tarcilia A.; Deruaz, Maud; Proudfoot, Amanda E.I.; Sousa, Lirlândia P.; Teixeira, Mauro M.

    2009-01-01

    Eosinophils are multifunctional leukocytes implicated in numerous inflammatory diseases. The present study was conducted to clarify the precise role of eosinophils in the development of colitis by using eosinophil-depleted mice and a novel chemokine-binding protein that neutralizes CCL11 action. Colitis was induced by administration of dextran sodium sulfate (DSS) to wild-type and eosinophil-deficient ΔdblGATA-1 mice. Accumulation of eosinophils in the gut of mice given DSS paralleled worsening of clinical score and weight loss. In response to DSS, ΔdblGATA-1 mice showed virtual absence of eosinophil recruitment, amelioration of clinical score, weight loss, and tissue destruction, and no lethality. There was a decrease in CXCL1 and CCL3 production and decreased neutrophil influx in the intestine of ΔdblGATA-1 mice. Transfer of bone marrow cells from wild-type mice reconstituted disease manifestation in DSS-treated ΔdblGATA-1 mice, and levels of CCL11 were increased after DSS treatment and localized to inflammatory cells. Treatment with the chemokine-binding protein evasin-4 at a dose that prevented the function of CCL11 greatly ameliorated clinical score, weight loss, overall tissue destruction, and death rates. In conclusion, the influx of eosinophils is critical for the induction of colitis by DSS. Treatment with a novel chemokine-binding protein decreased eosinophil influx and greatly ameliorated colitis, suggesting that strategies that interfere with the recruitment of eosinophils may be useful as therapy for colitis. PMID:19893035

  20. Increased plasma and endothelial cell expression of chemokines and adhesion molecules in chronic kidney disease.

    PubMed

    Stinghen, A E M; Gonçalves, S M; Martines, E G; Nakao, L S; Riella, M C; Aita, C A; Pecoits-Filho, R

    2009-01-01

    Chemokines and adhesion molecules are involved in early events of atherogenesis. In the present study, we investigated the effects of the uremic milieu on the expression of monocyte chemoattractant protein-1 (MCP-1), interleukin-8 (IL-8), soluble vascular adhesion molecule-1 (sVCAM-1) and soluble intercellular adhesion molecule-1 (sICAM-1) and their relationship to cardiovascular status. Plasma samples were obtained from patients in different stages of chronic kidney disease (CKD). Cardiovascular status was evaluated by intima-media thickness and endothelial dysfunction by flow mediation dilatation and proteinuria. In vitro studies were performed using human umbilical endothelial cells exposed to uremic plasma or plasma from healthy subjects. MCP-1, IL-8, sVCAM-1 and sICAM-1 levels in plasma and in supernatant were analyzed by enzyme-linked immunosorbent assay. The population consisted of 73 (mean age 57 years; 48% males) CKD patients with glomerular filtration rate (GFR) of 37 +/- 2 ml/min. MCP-1 and sVCAM-1 plasma levels were negatively correlated with GFR (rho = -0.40, p < 0.0005 and rho = -0.42, p < 0.0005, respectively). Fibrinogen was positively correlated with MCP-1, sICAM-1 and sVCAM-1 (rho = 0.33, p < 0.005, rho = 0.32, p < 0.05 and rho = 0.25, p < 0.05, respectively) and ultra-high-sensitivity C-reactive protein was positively correlated with sICAM-1 (rho = 0.25, p < 0.0005). Plasma IL-8 had a significant positive correlation with proteinuria (rho = 0.31, p < 0.01). There was a time- and CKD-stage-dependent MCP-1, IL-8 and sVCAM-1 endothelial expression (p < 0.05). In summary, plasma levels of markers of endothelial cell activation (MCP-1 and sVCAM-1) are increased in more advanced CKD. Exposure of endothelial cells to uremic plasma results in a time- and CKD-stage-dependent increased expression of MCP-1, IL-8 and sVCAM-1, suggesting a link between vascular activation, systemic inflammation and uremic toxicity. Future studies are necessary to investigate

  1. CXCL12 Chemokine Expression Suppresses Human Pancreatic Cancer Growth and Metastasis

    PubMed Central

    Roy, Ishan; Zimmerman, Noah P.; Mackinnon, A. Craig; Tsai, Susan; Evans, Douglas B.; Dwinell, Michael B.

    2014-01-01

    Pancreatic ductal adenocarcinoma is an unsolved health problem with nearly 75% of patients diagnosed with advanced disease and an overall 5-year survival rate near 5%. Despite the strong link between mortality and malignancy, the mechanisms behind pancreatic cancer dissemination and metastasis are poorly understood. Correlative pathological and cell culture analyses suggest the chemokine receptor CXCR4 plays a biological role in pancreatic cancer progression. In vivo roles for the CXCR4 ligand CXCL12 in pancreatic cancer malignancy were investigated. CXCR4 and CXCR7 were consistently expressed in normal and cancerous pancreatic ductal epithelium, established cell lines, and patient-derived primary cancer cells. Relative to healthy exocrine ducts, CXCL12 expression was pathologically repressed in pancreatic cancer tissue specimens and patient-derived cell lines. To test the functional consequences of CXCL12 silencing, pancreatic cancer cell lines stably expressingthe chemokine were engineered. Consistent with a role for CXCL12 as a tumor suppressor, cells producing the chemokine wereincreasingly adherent and migration deficient in vitro and poorly metastatic in vivo, compared to control cells. Further, CXCL12 reintroduction significantly reduced tumor growth in vitro, with significantly smaller tumors in vivo, leading to a pronounced survival advantage in a preclinical model. Together, these data demonstrate a functional tumor suppressive role for the normal expression of CXCL12 in pancreatic ducts, regulating both tumor growth andcellulardissemination to metastatic sites. PMID:24594697

  2. Role of circulating soluble chemokines in septic shock.

    PubMed

    de Pablo, R; Monserrat, J; Prieto, A; Alvarez-Mon, M

    2013-11-01

    Chemokines are a large superfamily of small proteins that function not only in leukocyte trafficking, but are also necessary for linkage between innate and adaptive immunity. Little is known about their role in septic shock. We hypothesized that serum levels of the most important chemokines are related to organ failure, disease severity and outcome. A prospective observational study was carried out. Surgical-clinical Intensive Care Unit. Ninety-two patients diagnosed with septic shock using international criteria. Forty patients were excluded due to acquired immunity disturbances. Samples from 36 healthy controls were also analyzed. None. In 46% of the patients who suffered acute respiratory distress syndrome (ARDS), IL-8 levels were higher than in patients without ARDS (499.9±194.1 vs. 190.8±91.7 pg/ml; P=.039). This molecule was also higher in 36% of the patients with sepsis-induced acute renal failure (ARF) (453.3±181.6 vs. 201.3±95.9 pg/ml; P=.049). Coagulopathy was found in 19% of the septic shock patients with elevated serum IL-8 levels (635.8±292.3 vs. 218.7±87.0 pg/ml; P=.010), elevated MIP-1α (91.4±27.3 vs. 58.8±11.1 pg/ml; P=.044), and low circulating RANTES levels (8162.2±6321.0 vs. 18781.8±11.1 pg/ml; P=.027). No significant differences were found between survivors and non-survivors at any time of follow-up. Upon admission to the ICU, IL-8 is a reliable biomarker of sepsis-induced AFR, ARDS and coagulopathy. Altered circulating MIP-1α and RANTES levels are also found in patients with septic shock and coagulopathy. However, chemokines do not appear to be good biomarkers of mortality in septic shock. Copyright © 2012 Elsevier España, S.L. and SEMICYUC. All rights reserved.

  3. mTOR signaling promotes foam cell formation and inhibits foam cell egress through suppressing the SIRT1 signaling pathway.

    PubMed

    Zheng, Haixiang; Fu, Yucai; Huang, Yusheng; Zheng, Xinde; Yu, Wei; Wang, Wei

    2017-09-01

    Atherosclerosis (AS) is a chronic immuno‑inflammatory disease accompanied by dyslipidemia. The authors previously demonstrated that sirtuin 1 (SIRT1) may prevent atherogenesis through influencing the liver X receptor/C‑C chemokine receptor type 7/nuclear factor‑κB (LXR‑CCR7/NF‑κB) signaling pathway. Previous studies have suggested a role for mammalian target of rapamycin (mTOR) signaling in the pathogenesis of cardiovascular diseases. The present study investigated the potential association between mTOR signaling and SIRT1‑LXR‑CCR7/NF‑κB signaling (SIRT1 signaling) in AS pathogenesis. To induce foam cell formation, U937 cells were differentiated into macrophages by exposure to phorbol 12‑myristate 13‑acetate (PMA) for 24 h, followed by treatment with palmitate and oxidized low density lipoprotein for a further 24 h. Oil red O staining revealed a large accumulation of lipid droplets present in foam cells. Western blot analysis demonstrated increased protein levels of phosphorylated (p)‑mTOR and its downstream factor p‑ribosomal protein S6 kinase (p70S6K). Reverse transcription‑quantitative polymerase chain reaction and western blot analyses additionally revealed decreased expression of SIRT1, LXRα and CCR7 and increased expression of NF‑κB and its downstream factor tumor necrosis factor‑α (TNF‑α) in an atherogenetic condition induced by lysophosphatidic acid (LPA). In addition, abundant lipid droplets accumulated in U937‑LPA‑treated foam cells. Rapamycin, an mTOR inhibitor, suppressed the expression and activity of mTOR and p70S6K, however enhanced expression of SIRT1, LXRα, and CCR7. Conversely, rapamycin deceased TNF‑α and NF‑κB activity, the latter of which was further confirmed by immunofluorescence analysis demonstrating increased levels of NF‑κB present in the cytoplasm compared with the nucleus. The findings of the present study suggest that mTOR signaling promotes foam cell formation and inhibits foam

  4. In a murine tuberculosis model, the absence of homeostatic chemokines delay granuloma formation and protective immunity

    PubMed Central

    Khader, Shabaana A.; Rangel-Moreno, Javier; Fountain, Jeffrey J.; Martino, Cynthia A; Reiley, William W; Pearl, John E.; Winslow, Gary M; Woodland, David L; Randall, Troy D; Cooper, Andrea M.

    2009-01-01

    Mycobacterium tuberculosis infection results in the generation of protective cellular immunity and formation of granulomatous structures in the lung. CXC chemokine ligand (CXCL)-13, CC chemokine ligand (CCL)-21 and CCL19 are constitutively expressed in the secondary lymphoid organs and play a dominant role in the homing of lymphocytes and dendritic cells. Although it is known that dendritic cell transport of M. tuberculosis from the lung to the draining lymph node is dependent on CCL19/CCL21, we show here that CCL19/CCL21 is also important for the accumulation of antigen-specific IFNγ-producing T cells in the lung, development of the granuloma, and control of mycobacteria. Importantly, we also show that CXCL13 is not required for generation of IFNγ responses, but is essential for the spatial arrangement of lymphocytes within granulomas, optimal activation of phagocytes and subsequent control of mycobacterial growth. Further, we show that these chemokines are also induced in the lung during the early immune responses following pulmonary M. tuberculosis infection. These results demonstrate that homeostatic chemokines perform distinct functions that cooperate to mediate effective expression of immunity against M. tuberculosis infection. PMID:19933855

  5. Transcriptomic Analysis Reveals Wound Healing of Morus alba Root Extract by Up-Regulating Keratin Filament and CXCL12/CXCR4 Signaling.

    PubMed

    Kim, Kang-Hoon; Chung, Won-Seok; Kim, Yoomi; Kim, Ki-Suk; Lee, In-Seung; Park, Ji Young; Jeong, Hyeon-Soo; Na, Yun-Cheol; Lee, Chang-Hun; Jang, Hyeung-Jin

    2015-08-01

    Facilitation of the wound healing process is important because a prolonged wound site increases pain and the risk of infection. In oriental medicine, an extract of Morus alba root (MA) has usually been prescribed as traditional treatment for accelerating wound healing, and it has been proven to be safe for centuries. To study the molecular mechanism of MA-mediated skin wound healing, we performed a primary cell culture and a skin explant culture and observed significant difference between the groups with and without MA extract. In the cellular system, a real-time cell analysis and real-time quantitative PCR were performed. It was found that MA extract enhanced proliferation in a dose-dependent manner on Kera-308 cell line, and up-regulated keratin expression including wound-induced Krt6a. In skin explant culture, the mRNA level derived from cell outgrowth displayed a tendency toward more up-regulated mRNA associated keratin filaments and toward a more up-regulated mRNA level of C-X-C motif chemokine 12 (CXCL12) and a chemokine receptor 4 (CXCR4) axis signaling pathway downstream. In this process, we concluded that MA extract had a scientific possibility of wound repair by increasing intracellular and extracellular supports and by inducing a CXCL12/CXCR4 signaling pathway. Copyright © 2015 John Wiley & Sons, Ltd.

  6. CXCR3 chemokine receptor-induced chemotaxis in human airway epithelial cells: role of p38 MAPK and PI3K signaling pathways.

    PubMed

    Shahabuddin, Syed; Ji, Rong; Wang, Ping; Brailoiu, Eugene; Dun, Na; Yang, Yi; Aksoy, Mark O; Kelsen, Steven G

    2006-07-01

    Human airway epithelial cells (HAEC) constitutively express the CXC chemokine receptor CXCR3, which regulates epithelial cell movement. In diseases such as chronic obstructive pulmonary disease and asthma, characterized by denudation of the epithelial lining, epithelial cell migration may contribute to airway repair and reconstitution. This study compared the potency and efficacy of three CXCR3 ligands, I-TAC/CXCL11, IP-10/CXCL10, and Mig/CXCL9, as inducers of chemotaxis in HAEC and examined the underlying signaling pathways involved. Studies were performed in cultured HAEC from normal subjects and the 16-HBE cell line. In normal HAEC, the efficacy of I-TAC-induced chemotaxis was 349 +/- 88% (mean +/- SE) of the medium control and approximately one-half the response to epidermal growth factor, a highly potent chemoattractant. In normal HAEC, Mig, IP-10, and I-TAC induced chemotaxis with similar potency and a rank order of efficacy of I-TAC = IP-10 > Mig. Preincubation with pertussis toxin completely blocked CXCR3-induced migration. Of interest, intracellular [Ca(2+)] did not rise in response to I-TAC, IP-10, or Mig. I-TAC induced a rapid phosphorylation (5-10 min) of two of the three MAPKs, i.e., p38 and ERK1/2. Pretreatment of HAEC with the p38 inhibitor SB 20358 or the PI3K inhibitor wortmannin dose-dependently inhibited the chemotactic response to I-TAC. In contrast, the ERK1/2 inhibitor U0126 had no effect on chemotaxis. These data indicate that in HAEC, CXCR3-mediated chemotaxis involves a G protein, which activates both the p38 MAPK and PI3K pathways in a calcium-independent fashion.

  7. Development of specific cytokine and Chemokine ELISAs for Bottlenose Dolphins

    USDA-ARS?s Scientific Manuscript database

    Earlier detection of changes in the health status of bottlenose dolphins (Tursiops truncatus) is expected to further improve their medical care. Cytokines and chemokines are critical mediators of the cellular immune response, and studies have suggested that these molecules may serve as important bio...

  8. Shiga Toxin 2 and Lipopolysaccharide Induce Human Microvascular Endothelial Cells To Release Chemokines and Factors That Stimulate Platelet Function

    PubMed Central

    Guessous, Fadila; Marcinkiewicz, Marek; Polanowska-Grabowska, Renata; Kongkhum, Sudawadee; Heatherly, Daniel; Obrig, Tom; Gear, Adrian R. L.

    2005-01-01

    Shiga toxins (Stxs) produced by Shigella dysenteriae type 1 and enterohemorrhagic Escherichia coli are the most common cause of hemolytic-uremic syndrome (HUS). It is well established that vascular endothelial cells, mainly those located in the renal microvasculature, are targets for Stxs. The aim of the present research was to evaluate whether E. coli-derived Shiga toxin 2 (Stx2) incubated with human microvascular endothelial cells (HMEC-1) induces release of chemokines and other factors that might stimulate platelet function. HMEC-1 were exposed for 24 h in vitro to Stx2, lipopolysaccharide (LPS), or the Stx2-LPS combination, and chemokine production was assessed by immunoassay. More interleukin-8 was released than stromal cell-derived factor 1α (SDF-1α) or SDF-1β and RANTES. The Stx2-LPS combination potentiated chemokine release, but Stx2 alone caused more release of SDF-1α at 24 h than LPS or Stx2-LPS did. In the presence of low ADP levels, HMEC-1 supernatants activated platelet function assessed by classical aggregometry, single-particle counting, granule secretion, P-selectin exposure, and the formation of platelet-monocyte aggregates. Supernatants from HMEC-1 exposed only to Stx2 exhibited enhanced exposure of platelet P-selectin and platelet-THP-1 cell interactions. Blockade of platelet cyclooxygenase by indomethacin prevented functional activation. The chemokine RANTES enhanced platelet aggregation induced by SDF-1α, macrophage-derived chemokine, or thymus and activation-regulated chemokine in the presence of very low ADP levels. These data support the hypothesis that microvascular endothelial cells exposed to E. coli O157:H7-derived Stx2 and LPS release chemokines and other factors, which when combined with low levels of primary agonists, such as ADP, cause platelet activation and promote the renal thrombosis associated with HUS. PMID:16299328

  9. Oligomerization State of CXCL4 Chemokines Regulates G Protein-Coupled Receptor Activation.

    PubMed

    Chen, Ya-Ping; Wu, Hsin-Li; Boyé, Kevin; Pan, Chen-Ya; Chen, Yi-Chen; Pujol, Nadège; Lin, Chun-Wei; Chiu, Liang-Yuan; Billottet, Clotilde; Alves, Isabel D; Bikfalvi, Andreas; Sue, Shih-Che

    2017-11-17

    CXCL4 chemokines have antiangiogenic properties, mediated by different mechanisms, including CXCR3 receptor activation. Chemokines have distinct oligomerization states that are correlated with their biological functions. CXCL4 exists as a stable tetramer under physiological conditions. It is unclear whether the oligomerization state impacts CXCL4-receptor interaction. We found that the CXCL4 tetramer is sensitive to pH and salt concentration. Residues Glu28 and Lys50 were important for tetramer formation, and the first β-strand and the C-terminal helix are critical for dimerization. By mutating the critical residues responsible for oligomerization, we generated CXCL4 mutants that behave as dimers or monomers under neutral/physiological conditions. The CXCL4 monomer acts as the minimal active unit for interacting CXCR3A, and sulfation of N-terminal tyrosine residues on the receptor is important for binding. Noticeably, CXCL4L1, a CXCL4 variant that differs by three residues in the C-terminal helix, could activate CXCR3A. CXCL4L1 showed a higher tendency to dissociate into monomers, but native CXCL4 did not. This result indicates that monomeric CXCL4 behaves like CXCL4L1. Thus, in this chemokine family, being in the monomeric state seems critical for interaction with CXCR3A.

  10. Mycobacterium tuberculosis strains induce strain-specific cytokine and chemokine response in pulmonary epithelial cells.

    PubMed

    Mvubu, Nontobeko E; Pillay, Balakrishna; McKinnon, Lyle R; Pillay, Manormoney

    2018-04-01

    M. tuberculosis F15/LAM4/KZN has been associated with high transmission rates of drug resistant tuberculosis in the KwaZulu-Natal province of South Africa. The current study elucidated the cytokine/chemokine responses induced by representatives of the F15/LAM4/KZN and other dominant strain families in pulmonary epithelial cells. Multiplex cytokine analyses were performed at 24, 48 and 72h post infection of the A549 pulmonary epithelial cell line with the F15/LAM4/KZN, F28, F11, Beijing, Unique and H37Rv strains at an MOI of ∼10:1. Twenty-three anti- and pro-inflammatory cytokines/chemokines were detected at all-time intervals. Significantly high concentrations of IL-6, IFN-γ, TNF-α and G-CSF at 48h, and IL-8, IFN-γ, TNF-α, G-CSF and GM-CSF at 72h, were induced by the F28 and F15/LAM4/KZN strains, respectively. Lower levels of cytokines/chemokines were induced by either the Beijing or Unique strains at all three time intervals. All strains induced up-regulation of pathogen recognition receptors (PRRs) (TLR3 and TLR5) while only the F15/LAM4/KZN, F11 and F28 strains induced significant differential expression of TLR2 compared to the Beijing, Unique and H37Rv strains. The low induction of cytokines in epithelial cells by the Beijing strain correlates with its previously reported hypervirulent properties. High concentrations of cytokines and chemokines required for early protection against M. tuberculosis infections induced by the F15/LAM4/KZN and F28 strains suggests a lower virulence of these genotypes compared to the Beijing strain. These findings demonstrate the high diversity in host cytokine/chemokine response to early infection of pulmonary epithelial cells by different strains of M. tuberculosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. EXPRESSION, PURIFICATION AND IN VITRO FUNCTIONAL RECONSTITUTION OF THE CHEMOKINE RECEPTOR CCR1

    PubMed Central

    Allen, Samantha J.; Ribeiro, Sofia; Horuk, Richard; Handel, Tracy M.

    2009-01-01

    Chemokine receptors are a specific class of G protein-coupled receptors (GPCRs) that control cell migration associated with routine immune surveillance, inflammation and development. In addition to their roles in normal physiology, these receptors and their ligands are involved in a large number of inflammatory diseases, cancer and AIDS, making them prime therapeutic targets in the pharmaceutical industry. Like other GPCRs, a significant obstacle in determining structures and characterizing mechanisms of activation has been the difficulty in obtaining high levels of pure, functional receptor. Here we describe a systematic effort to express the chemokine receptor CCR1 in mammalian cells, and to purify and reconstitute it in functional form. The highest expression levels were obtained using an inducible HEK293 system. The receptor was purified using a combination of N- (StrepII or Hemagglutinin) and C-terminal (His8) affinity tags. Function was assessed by ligand binding using a novel fluorescence polarization assay with fluorescein-labeled chemokine. A strict dependence of function on the detergent composition was observed, as solubilization of CCR1 in n-dodecyl-β-D-maltopyranoside/cholesteryl hemisuccinate yielded functional receptor with a Kd of 21 nM for the chemokine CCL14, whereas it was non-functional in phosphocholine detergents. Differences in function were observed despite the fact that both these detergent types maintained the receptor in a state characterized by monomers and small oligomers, but not large aggregates. While optimization is still warranted, yields of ~ 0.1–0.2mgs of pure functional receptor per 109 cells will permit biophysical studies of this medically important receptor. PMID:19275940

  12. Platelet-Specific Chemokines Contribute to the Pathogenesis of Acute Lung Injury.

    PubMed

    Bdeir, Khalil; Gollomp, Kandace; Stasiak, Marta; Mei, Junjie; Papiewska-Pajak, Izabela; Zhao, Guohua; Worthen, G Scott; Cines, Douglas B; Poncz, Mortimer; Kowalska, M Anna

    2017-02-01

    Platelets and neutrophils contribute to the development of acute lung injury (ALI). However, the mechanism by which platelets make this contribution is incompletely understood. We investigated whether the two most abundant platelet chemokines, CXCL7, which induces neutrophil chemotaxis and activation, and CXCL4, which does neither, mediate ALI through complementary pathogenic pathways. To examine the role of platelet-derived chemokines in the pathogenesis of ALI using Cxcl7 -/- and Cxcl4 -/- knockout mice and mice that express human CXCL7 or CXCL4, we measured levels of chemokines in these mice. ALI was then induced by acid aspiration, and the severity of injury was evaluated by histology and by the presence of neutrophils and protein in the bronchoalveolar lavage fluid. Pulmonary vascular permeability was studied in vivo by measuring extravasation of fluorescently labeled dextran. Murine CXCL7, both recombinant and native protein released from platelets, can be N-terminally processed by cathepsin G to yield a biologically active CXCL7 fragment. Although Cxcl7 -/- mice are protected from lung injury through the preservation of endothelial/epithelial barrier function combined with impaired neutrophils transmigration, Cxcl4 -/- mice are protected through improved barrier function without affecting neutrophils transmigration to the airways. Sensitivity to ALI is restored by transgenic expression of CXCL7 or CXCL4. Platelet-derived CXCL7 and CXCL4 contribute to the pathogenesis of ALI through complementary effects on neutrophil chemotaxis and through activation and vascular permeability.

  13. Therapeutic activities of intravenous immunoglobulins in multiple sclerosis involve modulation of chemokine expression.

    PubMed

    Pigard, Nadine; Elovaara, Irina; Kuusisto, Hanna; Paalavuo, Raija; Dastidar, Prasun; Zimmermann, Klaus; Schwarz, Hans-Peter; Reipert, Birgit

    2009-04-30

    The objective of this study was to identify genes that are differentially expressed in peripheral T cells of patients with MS exacerbation receiving treatment with IVIG. Using microarray analysis, we identified 360 genes that were at least two-fold up- or down-regulated. The expression of four representative genes (PTGER4, CXCL5, IL11 and CASP2) was confirmed by quantitative PCR. Four of the differentially expressed genes encode chemokines (CXCL3, CXCL5, CCL13 and XCL2) that are involved in directing leukocyte migration. We suggest that the modulation of chemokine expression in peripheral T cells contributes to the beneficial activity of IVIG in patients with MS exacerbation.

  14. Cytokine and chemokine expression in the central nervous system associated with protective cell-mediated immunity against Cryptococcus neoformans.

    PubMed

    Uicker, William C; Doyle, Hester A; McCracken, James P; Langlois, Mary; Buchanan, Kent L

    2005-02-01

    Cryptococcus neoformans is a yeast that causes cryptococcosis, a life-threatening disease that develops following inhalation and dissemination of the organisms. C. neoformans has a predilection for the central nervous system (CNS) and mortality is most frequently associated with meningoencephalitis. Susceptibility to cryptococcosis is increased in patients with deficiencies in cell-mediated immunity (CMI). Because cryptococcal CNS infections are associated with mortality and diagnosis of cryptococcosis is often not made until after dissemination to the CNS, a better understanding of host defense mechanisms against C. neoformans in the CNS is needed to design improved therapies for immunocompromised individuals suffering from cryptococcosis. Using a mouse model, we previously described a protective cell-mediated immune response induced in the periphery that limited the growth of C. neoformans in the CNS. In the current investigation, we examined cytokine and chemokine expression in the CNS to identify factors important in achieving protective immunity. We observed increased expression of IL-1beta, TNF-alpha, IFN-gamma, MCP-1, RANTES, and IP-10 in C. neoformans-infected brains of immune mice compared to control mice suggesting that these cytokines and chemokines are associated with the protective immune response. Furthermore, the Th1-type cytokines TNF-alpha and IFN-gamma, but not the Th2 cytokines IL-4 and IL-5, were secreted at significantly higher levels in C. neoformans-infected brains of immune mice compared to control mice. Our results demonstrate that cytokines and chemokines associated with CMI are produced following infection in the CNS of immunized mice, and the expression of these factors correlates with protection against C. neoformans in the CNS.

  15. Chemokine Prostate Cancer Biomarkers — EDRN Public Portal

    Cancer.gov

    STUDY DESIGN 1. The need for pre-validation studies. Preliminary data from our laboratory demonstrates a potential utility for CXCL5 and CXCL12 as biomarkers to distinguish between patients at high-risk versus low-risk for harboring prostate malignancies. However, this pilot and feasibility study utilized a very small sample size of 51 patients, which limited the ability of this study to adequately assess certain technical aspects of the ELISA technique and statistical aspects of we propose studies designed assess the robustness (Specific Aim 1) and predictive value (Specific Aim 2) of these markers in a larger study population. 2. ELISA Assays. Serum, plasma, or urine chemokine levels are assessed using 50 ul frozen specimen per sandwich ELISA in duplicate using the appropriate commercially-available capture antibodies, detection antibodies, and standard ELISA reagents (R&D; Systems), as we have described previously (15, 17, 18). Measures within each patient group are regarded as biological replicates and permit statistical comparisons between groups. For all ELISAs, a standard curve is generated with the provided standards and utilized to calculate the quantity of chemokine in the sample tested. These assays provide measures of protein concentration with excellent reproducibility, with replicate measures characterized by standard deviations from the mean on the order of <3%.

  16. Podocyte-specific chemokine (C-C motif) receptor 2 overexpression mediates diabetic renal injury in mice

    PubMed Central

    You, Hanning; Gao, Ting; Raup-Konsavage, Wesley M.; Cooper, Timothy K.; Bronson, Sarah K.; Reeves, W. Brian; Awad, Alaa S.

    2016-01-01

    Inflammation is a central pathophysiologic mechanism that contributes to diabetes mellitus and diabetic nephropathy. Recently, we showed that macrophages directly contribute to diabetic renal injury, and that pharmacological blockade or genetic deficiency of chemokine (C-C motif) receptor 2 (CCR2) confers kidney protection in diabetic nephropathy. However, the direct role of CCR2 in kidney-derived cells such as podocytes in diabetic nephropathy remains unclear. To study this, we developed a transgenic mouse model expressing CCR2 specifically in podocytes (Tg(NPHS2-Ccr2)) on a nephropathy prone (DBA/2J) and CCR2 deficient (Ccr2−/−) background with heterozygous Ccr2+/− littermate controls. Diabetes was induced by streptozotocin. As expected, absence of CCR2 conferred kidney protection after nine weeks of diabetes. In contrast, transgenic CCR2 over expression in the podocytes of Ccr2−/− mice resulted in significantly increased albuminuria, blood urea nitrogen, histopathologic changes, kidney fibronectin and type-1 collagen expression, podocyte loss, and glomerular apoptosis after nine weeks of streptozotocin-induced diabetes. Interestingly, there was no concurrent increase in kidney macrophage recruitment or inflammatory cytokine levels in the mice. These findings support a direct role for CCR2 expression in podocytes to mediate diabetic renal injury, independent of monocyte/macrophage recruitment. Thus, targeting the CCR2 signaling cascade in podocytes could be a novel therapeutic approach for treatment of diabetic nephropathy. PMID:27914709

  17. Understanding the Role of Chemokines and Cytokines in Experimental Models of Herpes Simplex Keratitis

    PubMed Central

    Azher, Tayaba N.; Yin, Xiao-Tang

    2017-01-01

    Herpes simplex keratitis is a disease of the cornea caused by HSV-1. It is a leading cause of corneal blindness in the world. Underlying molecular mechanism is still unknown, but experimental models have helped give a better understanding of the underlying molecular pathology. Cytokines and chemokines are small proteins released by cells that play an important proinflammatory or anti-inflammatory role in modulating the disease process. Cytokines such as IL-17, IL-6, IL-1α, and IFN-γ and chemokines such as MIP-2, MCP-1, MIP-1α, and MIP-1β have proinflammatory role in the destruction caused by HSV including neutrophil infiltration and corneal inflammation, and other chemokines and cytokines such as IL-10 and CCL3 can have a protective role. Most of the damage results from neutrophil infiltration and neovascularization. While many more studies are needed to better understand the role of these molecules in both experimental models and human corneas, current studies indicate that these molecules hold potential to be targets of future therapy. PMID:28491875

  18. Understanding the Role of Chemokines and Cytokines in Experimental Models of Herpes Simplex Keratitis.

    PubMed

    Azher, Tayaba N; Yin, Xiao-Tang; Stuart, Patrick M

    2017-01-01

    Herpes simplex keratitis is a disease of the cornea caused by HSV-1. It is a leading cause of corneal blindness in the world. Underlying molecular mechanism is still unknown, but experimental models have helped give a better understanding of the underlying molecular pathology. Cytokines and chemokines are small proteins released by cells that play an important proinflammatory or anti-inflammatory role in modulating the disease process. Cytokines such as IL-17, IL-6, IL-1 α , and IFN- γ and chemokines such as MIP-2, MCP-1, MIP-1 α , and MIP-1 β have proinflammatory role in the destruction caused by HSV including neutrophil infiltration and corneal inflammation, and other chemokines and cytokines such as IL-10 and CCL3 can have a protective role. Most of the damage results from neutrophil infiltration and neovascularization. While many more studies are needed to better understand the role of these molecules in both experimental models and human corneas, current studies indicate that these molecules hold potential to be targets of future therapy.

  19. Chemical intervention in plant sugar signalling increases yield and resilience

    NASA Astrophysics Data System (ADS)

    Griffiths, Cara A.; Sagar, Ram; Geng, Yiqun; Primavesi, Lucia F.; Patel, Mitul K.; Passarelli, Melissa K.; Gilmore, Ian S.; Steven, Rory T.; Bunch, Josephine; Paul, Matthew J.; Davis, Benjamin G.

    2016-12-01

    The pressing global issue of food insecurity due to population growth, diminishing land and variable climate can only be addressed in agriculture by improving both maximum crop yield potential and resilience. Genetic modification is one potential solution, but has yet to achieve worldwide acceptance, particularly for crops such as wheat. Trehalose-6-phosphate (T6P), a central sugar signal in plants, regulates sucrose use and allocation, underpinning crop growth and development. Here we show that application of a chemical intervention strategy directly modulates T6P levels in planta. Plant-permeable analogues of T6P were designed and constructed based on a ‘signalling-precursor’ concept for permeability, ready uptake and sunlight-triggered release of T6P in planta. We show that chemical intervention in a potent sugar signal increases grain yield, whereas application to vegetative tissue improves recovery and resurrection from drought. This technology offers a means to combine increases in yield with crop stress resilience. Given the generality of the T6P pathway in plants and other small-molecule signals in biology, these studies suggest that suitable synthetic exogenous small-molecule signal precursors can be used to directly enhance plant performance and perhaps other organism function.

  20. C-Terminal Clipping of Chemokine CCL1/I-309 Enhances CCR8-Mediated Intracellular Calcium Release and Anti-Apoptotic Activity

    PubMed Central

    Denis, Catherine; Deiteren, Kathleen; Mortier, Anneleen; Tounsi, Amel; Fransen, Erik; Proost, Paul; Renauld, Jean-Christophe; Lambeir, Anne-Marie

    2012-01-01

    Carboxypeptidase M (CPM) targets the basic amino acids arginine and lysine present at the C-terminus of peptides or proteins. CPM is thought to be involved in inflammatory processes. This is corroborated by CPM-mediated trimming and modulation of inflammatory factors, and expression of the protease in inflammatory environments. Since the function of CPM in and beyond inflammation remains mainly undefined, the identification of natural substrates can aid in discovering the (patho)physiological role of CPM. CCL1/I-309, with its three C-terminal basic amino acids, forms a potential natural substrate for CPM. CCL1 plays a role not only in inflammation but also in apoptosis, angiogenesis and tumor biology. Enzymatic processing differently impacts the biological activity of chemokines thereby contributing to the complex regulation of the chemokine system. The aim of the present study was to investigate whether (i) CCL1/I-309 is prone to trimming by CPM, and (ii) the biological activity of CCL1 is altered after C-terminal proteolytic processing. CCL1 was identified as a novel substrate for CPM in vitro using mass spectrometry. C-terminal clipping of CCL1 augmented intracellular calcium release mediated by CCR8 but reduced the binding of CCL1 to CCR8. In line with the higher intracellular calcium release, a pronounced increase of the anti-apoptotic activity of CCL1 was observed in the BW5147 cellular model. CCR8 signaling, CCR8 binding and anti-apoptotic activity were unaffected when CPM was exposed to the carboxypeptidase inhibitor DL-2-mercaptomethyl-3-guanidino-ethylthiopropanoic acid. The results of this study suggest that CPM is a likely candidate for the regulation of biological processes relying on the CCL1-CCR8 system. PMID:22479563

  1. Chemokine axes CXCL12/CXCR4 and CXCL16/CXCR6 correlate with lymph node metastasis in epithelial ovarian carcinoma

    PubMed Central

    Guo, Li; Cui, Zhu-Mei; Zhang, Jia; Huang, Yu

    2011-01-01

    Recent evidence suggests that the chemokine axis of CXC chemokine ligand-12 and its receptor CXC chemokine receptor-4 (CXCL12/CXCR4) is highly expressed in gynecological tumors and the axis of CXC chemokine ligand-16 and CXC chemokine receptor-6 (CXCL16/CXCR6) is overexpressed in inflammation-associated tumors. This study aimed to determine the relationship between CXCL12/CXCR4, CXCL16/CXCR6 and ovarian carcinoma's clinicopathologic features and prognosis. Accordingly, the expression of these proteins in ovarian tissues was detected by tissue microarray and immunohistochemistry. The expressions of CXCL12/CXCR4 and CXCL16/CXCR6 were significantly higher in epithelial ovarian carcinomas than in normal epithelial ovarian tissues or benign epithelial ovarian tumors. The expression of chemokines CXCL12 and CXCL16 were positively correlated with their receptors CXCR4 and CXCR6 in ovarian carcinoma, respectively (r = 0.300, P < 0.05; r = 0.395, P < 0.05). Moreover, the expression of CXCL12 was related to the occurrence of ascites (χ2 = 4.76, P < 0.05), the expression of CXCR4 was significantly related to lymph node metastasis (χ2 = 4.37, P < 0.05), the expression of CXCR6 was significantly related to lymph node metastasis (χ2 = 7.43, P < 0.05) and histological type (χ2 = 33.48, P < 0.05). In univariate analysis, the expression of CXCR4 and CXCL16 significantly correlated with reduced median survival (χ2 = 4.67, P < 0.05; χ2 = 4.48, P < 0.05). Therefore, we conclude that the chemokine axes CXCL12/CXCR4 and CXCL16/CXCR6 may play important roles in the growth, proliferation, invasion, and metastasis of epithelial ovarian carcinoma. PMID:21527066

  2. Chemokine axes CXCL12/CXCR4 and CXCL16/CXCR6 correlate with lymph node metastasis in epithelial ovarian carcinoma.

    PubMed

    Guo, Li; Cui, Zhu-Mei; Zhang, Jia; Huang, Yu

    2011-05-01

    Recent evidence suggests that the chemokine axis of CXC chemokine ligand-12 and its receptor CXC chemokine receptor-4 (CXCL12/CXCR4) is highly expressed in gynecological tumors and the axis of CXC chemokine ligand-16 and CXC chemokine receptor-6 (CXCL16/CXCR6) is overexpressed in inflammation-associated tumors. This study aimed to determine the relationship between CXCL12/CXCR4, CXCL16/CXCR6 and ovarian carcinoma's clinicopathologic features and prognosis. Accordingly, the expression of these proteins in ovarian tissues was detected by tissue microarray and immunohistochemistry. The expressions of CXCL12/CXCR4 and CXCL16/CXCR6 were significantly higher in epithelial ovarian carcinomas than in normal epithelial ovarian tissues or benign epithelial ovarian tumors. The expression of chemokines CXCL12 and CXCL16 were positively correlated with their receptors CXCR4 and CXCR6 in ovarian carcinoma, respectively (r = 0.300, P < 0.05; r = 0.395, P < 0.05). Moreover, the expression of CXCL12 was related to the occurrence of ascites (Χ² = 4.76, P < 0.05), the expression of CXCR4 was significantly related to lymph node metastasis (Χ(2) = 4.37, P < 0.05), the expression of CXCR6 was significantly related to lymph node metastasis (Χ² = 7.43, P < 0.05) and histological type (Χ² = 33.48, P < 0.05). In univariate analysis, the expression of CXCR4 and CXCL16 significantly correlated with reduced median survival (Χ² = 4.67, P < 0.05; Χ² = 4.48, P < 0.05). Therefore, we conclude that the chemokine axes CXCL12/CXCR4 and CXCL16/CXCR6 may play important roles in the growth, proliferation, invasion, and metastasis of epithelial ovarian carcinoma.

  3. Chemokines and their receptors in whiplash injury: elevated RANTES and CCR-5.

    PubMed

    Kivioja, J; Rinaldi, L; Ozenci, V; Kouwenhoven, M; Kostulas, N; Lindgren, U; Link, H

    2001-07-01

    The human sufferings and socioeconomic burden due to whip-lash-associated disorders (WAD) are obvious but the pathogenesis of WAD is obscure. The possible involvement of the immune system during the disease process in WAD is not known. Effector molecules including chemokines and their receptors could play a role in WAD. In a prospective study using flow cytometry, we examined percentages of blood mononuclear cells (MNC) expressing the chemokines RANTES, MCP-1, MIP-1alpha, MIP-1beta, and IL-8, the chemokine receptor CCR-5, the T cell activation marker CD25, and the T cell chemoattractant IL-16 in patients with WAD and, for reference, in healthy controls. Higher percentages of RANTES-expressing blood MNC and T cells were observed in patients with WAD examined within 3 days compared to 14 days after the whiplash injury and, likewise, compared with healthy controls. The patients with WAD examined within 3 days after the accident also had higher percentages of CCR-5-expressing blood MNC, T cells, and CD45RO+ T cells compared to healthy controls. In contrast, there were no differences for any of these variables between patients with WAD examined 14 days after injury and healthy controls. In conclusion, WAD is associated with a systemic but transient dysregulation in percentages of RANTES and CCR-5 expressing MNC and T cells.

  4. Reduced locomotor activity and exploratory behavior in CC chemokine receptor 4 deficient mice.

    PubMed

    Ambrée, Oliver; Klassen, Irene; Förster, Irmgard; Arolt, Volker; Scheu, Stefanie; Alferink, Judith

    2016-11-01

    Chemokines and their receptors are key regulators of immune cell trafficking and activation. Recent findings suggest that they may also play pathophysiological roles in psychiatric diseases like depression and anxiety disorders. The CC chemokine receptor 4 (CCR4) and its two ligands, CCL17 and CCL22, are functionally involved in neuroinflammation as well as anti-infectious and autoimmune responses. However, their influence on behavior remains unknown. Here we characterized the functional role of the CCR4-CCL17 chemokine-receptor axis in the modulation of anxiety-related behavior, locomotor activity, and object exploration and recognition. Additionally, we investigated social exploration of CCR4 and CCL17 knockout mice and wild type (WT) controls. CCR4 knockout (CCR4(-/-)) mice exhibited fewer anxiety-related behaviors in the elevated plus-maze, diminished locomotor activity, exploratory behavior, and social exploration, while their recognition memory was not affected. In contrast, CCL17 deficient mice did not show an altered behavior compared to WT mice regarding locomotor activity, anxiety-related behavior, social exploration, and object recognition memory. In the dark-light and object recognition tests, CCL17(-/-) mice even covered longer distances than WT mice. These data demonstrate a mechanistic or developmental role of CCR4 in the regulation of locomotor and exploratory behaviors, whereas the ligand CCL17 appears not to be involved in the behaviors measured here. Thus, either CCL17 and the alternative ligand CCL22 may be redundant, or CCL22 is the main activator of CCR4 in these processes. Taken together, these findings contribute to the growing evidence regarding the involvement of chemokines and their receptors in the regulation of behavior. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Inflammatory cytokine and chemokine profiles are associated with patient outcome and the hyperadrenergic state following acute brain injury.

    PubMed

    Di Battista, Alex P; Rhind, Shawn G; Hutchison, Michael G; Hassan, Syed; Shiu, Maria Y; Inaba, Kenji; Topolovec-Vranic, Jane; Neto, Antonio Capone; Rizoli, Sandro B; Baker, Andrew J

    2016-02-16

    Traumatic brain injury (TBI) elicits intense sympathetic nervous system (SNS) activation with profuse catecholamine secretion. The resultant hyperadrenergic state is linked to immunomodulation both within the brain and systemically. Dysregulated inflammation post-TBI exacerbates secondary brain injury and contributes to unfavorable patient outcomes including death. The aim of this study was to characterize the early dynamic profile of circulating inflammatory cytokines/chemokines in patients admitted for moderate-to-severe TBI, to examine interrelationships between these mediators and catecholamines, as well as clinical indices of injury severity and neurological outcome. Blood was sampled from 166 isolated TBI patients (aged 45 ± 20.3 years; 74.7 % male) on admission, 6-, 12-, and 24-h post-injury and from healthy controls (N = 21). Plasma cytokine [interleukin (IL)-1β, -2, -4, -5, -10, -12p70, -13, tumor necrosis factor (TNF)-α, interferon (IFN)-γ] and chemokine [IL-8, eotaxin, eotaxin-3, IFN-γ-induced protein (IP)-10, monocyte chemoattractant protein (MCP)-1, -4, macrophage-derived chemokine (MDC), macrophage inflammatory protein (MIP)-1β, thymus activation regulated chemokine (TARC)] concentrations were analyzed using high-sensitivity electrochemiluminescence multiplex immunoassays. Plasma catecholamines [epinephrine (Epi), norepinephrine (NE)] were measured by immunoassay. Neurological outcome at 6 months was assessed using the extended Glasgow outcome scale (GOSE) dichotomized as good (>4) or poor (≤4) outcomes. Patients showed altered levels of IL-10 and all chemokines assayed relative to controls. Significant differences in a number of markers were evident between moderate and severe TBI cohorts. Elevated IL-8, IL-10, and TNF-α, as well as alterations in 8 of 9 chemokines, were associated with poor outcome at 6 months. Notably, a positive association was found between Epi and IL-1β, IL-10, Eotaxin, IL-8, and MCP-1. NE was positively associated

  6. CXCR6/CXCL16 functions as a regulator in metastasis and progression of cancer.

    PubMed

    Deng, Ling; Chen, Nianyong; Li, Yan; Zheng, Hong; Lei, Qianqian

    2010-08-01

    Metastasis is considered the obvious mark for most aggressive cancers. However, little is known about the molecular mechanism of the regulation of cancer metastasis. Recent evidence increasingly suggests that the interaction between chemokines and chemokine receptors is pivotal in the process of metastasis. The chemokine receptor CXCR4 and its ligand CXCL12, for example, have been reported to play a vital role in cancer metastasis. Another chemokine and chemokine receptor pair, the CXCL16/CXCR6 axis, has been studied by several independent research groups. Here, we summarize recent advances in our knowledge of the function of CXC chemokine receptor CXCR6 and its ligand CXCL16 in regulating metastasis and invasion of cancer. CXCR6 and CXCL16 are up-regulated in multiple cancer tissue types and cancer cell lines relative to normal tissues and cell lines. In addition, both CXCR6 and CXCL16 levels increase as tumor malignancy increases. Trans-membranous CXCL16 chemokine reduces proliferation while soluble CXCL16 chemokine enhances proliferation and migration. TM-CXCL16 functions as an inducer for lymphocyte build-up around tumor sites. High trans-membranous CXCL16 expression correlates with a good prognosis. Moreover, the Akt/mTOR signal pathway is involved in activating the CXCR6/CXCL16 axis. These findings suggest multiple opportunities for blocking the CXCR6/CXCL16 axis and the Akt/mTOR signal pathway in novel cancer therapies. Copyright 2010 Elsevier B.V. All rights reserved.

  7. COX-2 and Prostaglandin EP3/EP4 Signaling Regulate the Tumor Stromal Proangiogenic Microenvironment via CXCL12-CXCR4 Chemokine Systems

    PubMed Central

    Katoh, Hiroshi; Hosono, Kanako; Ito, Yoshiya; Suzuki, Tatsunori; Ogawa, Yasufumi; Kubo, Hidefumi; Kamata, Hiroki; Mishima, Toshiaki; Tamaki, Hideaki; Sakagami, Hiroyuki; Sugimoto, Yukihiko; Narumiya, Shuh; Watanabe, Masahiko; Majima, Masataka

    2010-01-01

    Bone marrow (BM)–derived hematopoietic cells, which are major components of tumor stroma, determine the tumor microenvironment and regulate tumor phenotypes. Cyclooxygenase (COX)−2 and endogenous prostaglandins are important determinants for tumor growth and tumor-associated angiogenesis; however, their contributions to stromal formation and angiogenesis remain unclear. In this study, we observed that Lewis lung carcinoma cells implanted in wild-type mice formed a tumor mass with extensive stromal formation that was markedly suppressed by COX-2 inhibition, which reduced the recruitment of BM cells. Notably, COX-2 inhibition attenuated CXCL12/CXCR4 expression as well as expression of several other chemokines. Indeed, in a Matrigel model, prostaglandin (PG) E2 enhanced stromal formation and CXCL12/CXCR4 expression. In addition, a COX-2 inhibitor suppressed stromal formation and reduced expression of CXCL12/CXCR4 and a fibroblast marker (S100A4) in a micropore chamber model. Moreover, stromal formation after tumor implantation was suppressed in EP3−/− mice and EP4−/− mice, in which stromal expression of CXCL12/CXCR4 and S100A4 was reduced. The EP3 or EP4 knockout suppressed S100A4+ fibroblasts, CXCL12+, and/or CXCR4+ stromal cells as well. Immunofluorescent analyses revealed that CXCL12+CXCR4+S100A4+ fibroblasts mainly comprised stromal cells and most of these were recruited from the BM. Additionally, either EP3- or EP4-specific agonists stimulated CXCL12 expression by fibroblasts in vitro. The present results address the novel activities of COX-2/PGE2-EP3/EP4 signaling that modulate tumor biology and show that CXCL12/CXCR4 axis may play a crucial role in tumor stromal formation and angiogenesis under the control of prostaglandins. PMID:20110411

  8. Platelet-Derived CCL5 Regulates CXC Chemokine Formation and Neutrophil Recruitment in Acute Experimental Colitis.

    PubMed

    Yu, Changhui; Zhang, Songen; Wang, Yongzhi; Zhang, Su; Luo, Lingtao; Thorlacius, Henrik

    2016-02-01

    Accumulating data suggest that platelets not only regulate thrombosis and haemostasis but also inflammatory processes. Platelets contain numerous potent pro-inflammatory compounds, including the chemokines CCL5 and CXCL4, although their role in acute colitis remains elusive. The aim of this study is to examine the role of platelets and platelet-derived chemokines in acute colitis. Acute colitis is induced in female Balb/c mice by administration of 5% dextran sodium sulfate (DSS) for 5 days. Animals receive a platelet-depleting, anti-CCL5, anti-CXCL4, or a control antibody prior to DSS challenge. Colonic tissue is collected for quantification of myeloperoxidase (MPO) activity, CXCL5, CXCL2, interleukin-6 (IL-6), and CCL5 levels as well as morphological analyses. Platelet depletion reduce tissue damage and clinical disease activity index in DSS-exposed animals. Platelet depletion not only reduces levels of CXCL2 and CXCL5 but also levels of CCL5 in the inflamed colon. Immunoneutralization of CCL5 but not CXCL4 reduces tissue damage, CXC chemokine expression, and neutrophil recruitment in DSS-treated animals. These findings show that platelets play a key role in acute colitis by regulating CXC chemokine generation, neutrophil infiltration, and tissue damage in the colon. Moreover, our results suggest that platelet-derived CCL5 is an important link between platelet activation and neutrophil recruitment in acute colitis. © 2015 Wiley Periodicals, Inc.

  9. Deficiency of FAM3D (Family With Sequence Similarity 3, Member D), A Novel Chemokine, Attenuates Neutrophil Recruitment and Ameliorates Abdominal Aortic Aneurysm Development.

    PubMed

    He, Li; Fu, Yi; Deng, Jingna; Shen, Yicong; Wang, Yingbao; Yu, Fang; Xie, Nan; Chen, Zhongjiang; Hong, Tianpei; Peng, Xinjian; Li, Qingqing; Zhou, Jing; Han, Jingyan; Wang, Ying; Xi, Jianzhong; Kong, Wei

    2018-07-01

    Chemokine-mediated neutrophil recruitment contributes to the pathogenesis of abdominal aortic aneurysm (AAA) and may serve as a promising therapeutic target. FAM3D (family with sequence similarity 3, member D) is a recently identified novel chemokine. Here, we aimed to explore the role of FAM3D in neutrophil recruitment and AAA development. FAM3D was markedly upregulated in human AAA tissues, as well as both elastase- and CaPO 4 -induced mouse aneurysmal aortas. FAM3D deficiency significantly attenuated the development of AAA in both mouse models. Flow cytometry analysis indicated that FAM3D -/- mice exhibited decreased neutrophil infiltration in the aorta during the early stage of AAA formation compared with their wild-type littermates. Moreover, application of FAM3D-neutralizing antibody 6D7 through intraperitoneal injection markedly ameliorated elastase-induced AAA formation and neutrophil infiltration. Further, in vitro coculture experiments with FAM3D-neutralizing antibody 6D7 and in vivo intravital microscopic analysis indicated that endothelial cell-derived FAM3D induced neutrophil recruitment. Mechanistically, FAM3D upregulated and activated Mac-1 (macrophage-1 antigen) in neutrophils, whereas inhibition of FPR1 (formyl peptide receptor 1) or FPR2 significantly blocked FAM3D-induced Mac-1 activation, indicating that the effect of FAM3D was dependent on both FPRs. Moreover, specific inhibitors of FPR signaling related to Gi protein or β-arrestin inhibited FAM3D-activated Mac-1 in vitro, whereas FAM3D deficiency decreased the activation of both FPR-Gi protein and β-arrestin signaling in neutrophils in vivo. FAM3D, as a dual agonist of FPR1 and FPR2, induced Mac-1-mediated neutrophil recruitment and aggravated AAA development through FPR-related Gi protein and β-arrestin signaling. © 2018 American Heart Association, Inc.

  10. Platelet-Specific Chemokines Contribute to the Pathogenesis of Acute Lung Injury

    PubMed Central

    Bdeir, Khalil; Gollomp, Kandace; Stasiak, Marta; Mei, Junjie; Papiewska-Pajak, Izabela; Zhao, Guohua; Worthen, G. Scott; Cines, Douglas B.; Poncz, Mortimer

    2017-01-01

    Platelets and neutrophils contribute to the development of acute lung injury (ALI). However, the mechanism by which platelets make this contribution is incompletely understood. We investigated whether the two most abundant platelet chemokines, CXCL7, which induces neutrophil chemotaxis and activation, and CXCL4, which does neither, mediate ALI through complementary pathogenic pathways. To examine the role of platelet-derived chemokines in the pathogenesis of ALI using Cxcl7−/− and Cxcl4−/− knockout mice and mice that express human CXCL7 or CXCL4, we measured levels of chemokines in these mice. ALI was then induced by acid aspiration, and the severity of injury was evaluated by histology and by the presence of neutrophils and protein in the bronchoalveolar lavage fluid. Pulmonary vascular permeability was studied in vivo by measuring extravasation of fluorescently labeled dextran. Murine CXCL7, both recombinant and native protein released from platelets, can be N-terminally processed by cathepsin G to yield a biologically active CXCL7 fragment. Although Cxcl7−/− mice are protected from lung injury through the preservation of endothelial/epithelial barrier function combined with impaired neutrophils transmigration, Cxcl4−/− mice are protected through improved barrier function without affecting neutrophils transmigration to the airways. Sensitivity to ALI is restored by transgenic expression of CXCL7 or CXCL4. Platelet-derived CXCL7 and CXCL4 contribute to the pathogenesis of ALI through complementary effects on neutrophil chemotaxis and through activation and vascular permeability. PMID:27755915

  11. Atorvastatin Reduces Plasma Levels of Chemokine (CXCL10) in Patients with Crohn's Disease

    PubMed Central

    Grip, Olof; Janciauskiene, Sabina

    2009-01-01

    Background In Crohn's disease high tissue expression and serum levels of chemokines and their receptors are known to correlate with disease activity. Because statins can reduce chemokine expression in patients with coronary diseases, we wanted to test whether this can be achieved in patients with Crohn's disease. Methodology/Principal Findings We investigated plasma levels of chemokines (CCL2, CCL4, CCL11, CCL13, CCL17, CCL22, CCL26, CXCL8, CXCL10) and endothelial cytokines (sP-selectin, sE-selectin, sICAM-3, thrombomodulin) in ten Crohn's disease patients before and after thirteen weeks' daily treatment with 80 mg atorvastatin. Of the 13 substances investigated, only CXCL10 was found to be significantly reduced (by 34%, p = 0.026) in all of the treated patients. Levels of CXCL10 correlated with C-reactive protein (r = 0.82, p<0.01). Conclusions/Significance CXCL10 is a ligand for the CXCR3 receptor, the activation of which results in the recruitment of T lymphocytes and the perpetuation of mucosal inflammation. Hence the reduction of plasma CXCL10 levels by atorvastatin may represent a candidate for an approach to the treatment of Crohns disease in the future. Trial Registration ClinicalTrials.gov NCT00454545 PMID:19421322

  12. Elevation of macrophage-derived chemokine in eosinophilic pneumonia: a role of alveolar macrophages.

    PubMed

    Manabe, Kazuyoshi; Nishioka, Yasuhiko; Kishi, Jun; Inayama, Mami; Aono, Yoshinori; Nakamura, Yoichi; Ogushi, Fumitaka; Bando, Hiroyasu; Tani, Kenji; Sone, Saburo

    2005-02-01

    Macrophage-derived chemokine (MDC/CCL22) and thymus-and activation-regulated chemokine (TARC/CCL17) are ligands for CC chemokine receptor 4. Recently, TARC has been reported to play a role in the pathogenesis of idiopathic eosinophilic pneumonia (IEP). The purpose of this study was to evaluate the role of MDC in IEP and other interstitial lung diseases (ILDs). MDC and TARC in the bronchoalveolar lavage fluid (BALF) were measured by enzyme-linked immunosorbent assay in patients with ILDs and healthy volunteers (HV). We also examined the expression of MDC mRNA in alveolar macrophages (AM) by real-time quantitative reverse transcriptase-polymerase chain reaction. Both MDC and TARC were detected only in BALF obtained from IEP patients. The concentration of MDC was higher than that of TARC in all cases. The level of MDC in IEP correlated with that of TARC. AM from IEP patients expressed a significantly higher amount of MDC than that from HV at the levels of protein and mRNA. MDC in BALF from IEP dramatically decreased when patients achieved remission. These findings suggest that MDC, in addition to TARC, might be involved in the pathogenesis of IEP, and AM play a role in the elevation of MDC in IEP.

  13. Intrapulmonary Human Cytomegalovirus Replication in Lung Transplant Recipients Is Associated With a Rise of CCL-18 and CCL-20 Chemokine Levels.

    PubMed

    Weseslindtner, Lukas; Görzer, Irene; Roedl, Kevin; Küng, Erik; Jaksch, Peter; Klepetko, Walter; Puchhammer-Stöckl, Elisabeth

    2017-01-01

    In lung transplant recipients (LTRs), human cytomegalovirus (HCMV) DNA detection in the bronchoalveolar lavage fluid (BALF) indicates HCMV replication in the pulmonary compartment. Such local HCMV replication episodes may remain asymptomatic or may lead to symptomatic HCMV disease. Here, we investigated LTRs with intrapulmonary HCMV replication for the chemokines CCL-18 and CCL-20. In particular, we analyzed whether these chemokines rise in the allograft and/or the blood and are associated with HCMV disease. CCL-18 and CCL-20 levels were quantitated by ELISA in BALF and serum samples from 60 LTRs. During the posttransplant follow-up, these LTRs displayed HCMV DNA detection in the BALF by PCR, whereas other infectious agents were undetectable. Furthermore, we investigated samples from 10 controls who did not display any HCMV replication episode during the follow-up. HCMV replication in the allograft was associated with a significant increase of CCL-18 and CCL-20 BALF levels (P < 0.001, Wilcoxon signed-rank test) and a significant rise of CCL-20 (P < 0.0001, Wilcoxon signed-rank test) but not of CCL-18 in the blood. In controls, no such chemokine increase was observed. Furthermore, CCL-18 BALF levels were significantly higher in 8 LTRs who additionally developed HCMV disease, as compared with the other 52 patients in whom HCMV replication remained asymptomatic (P < 0.001, Mann-Whitney U test). HCMV replication in the allograft causes an intrapulmonary increase of CCL-18 and CCL-20 and a systemic rise of CCL-20 serum levels. Strong intrapulmonary CCL-18 responses are associated with symptomatic HCMV disease, proposing that CCL-18 BALF levels could serve as a marker.

  14. The chemokines CCR1 and CCRL2 have a role in colorectal cancer liver metastasis.

    PubMed

    Akram, Israa G; Georges, Rania; Hielscher, Thomas; Adwan, Hassan; Berger, Martin R

    2016-02-01

    C-C chemokine receptor type 1 (CCR1) and chemokine C-C motif receptor-like 2 (CCRL2) have not yet been sufficiently investigated for their role in colorectal cancer (CRC). Here, we investigated their expression in rat and human CRC samples, their modulation of expression in a rat liver metastasis model, as well as the effects on cellular properties resulting from their knockdown. One rat and five human colorectal cancer cell lines were used. CC531 rat colorectal cells were injected via the portal vein into rats and re-isolated from rat livers after defined periods. Following mRNA isolation, the gene expression was investigated by microarray. In addition, all cell lines were screened for mRNA expression of CCR1 and CCRL2 by reverse transcription polymerase chain reaction (RT-PCR). Cell lines with detectable expression were used for knockdown experiments; and the respective influence was determined on the cells' proliferation, scratch closure, and colony formation. Finally, specimens from the primaries of 50 patients with CRC were monitored by quantitative RT-PCR for CCR1 and CCRL2 expression levels. The microarray studies showed peak increases of CCR1 and CCRL2 in the early phase of liver colonization. Knockdown was sufficient at mRNA but only moderate at protein levels and resulted in modest but significant inhibition of proliferation (p < 0.05), scratch closure, and colony formation (p < 0.05). All human CRC samples were positive for CCR1 and CCRL2 and showed a significant pairwise correlation (p < 0.0004), but there was no correlation with tumor stage or age of patients. In summary, the data point to an important role of CCR1 and CCRL2 under conditions of organ colonization and both chemokine receptors qualify as targets of treatment during early colorectal cancer liver metastasis.

  15. CXCL4L1 and CXCL4 signaling in human lymphatic and microvascular endothelial cells and activated lymphocytes: involvement of mitogen-activated protein (MAP) kinases, Src and p70S6 kinase.

    PubMed

    Van Raemdonck, Katrien; Gouwy, Mieke; Lepers, Stefanie Antoinette; Van Damme, Jo; Struyf, Sofie

    2014-07-01

    CXC chemokines influence a variety of biological processes, such as angiogenesis, both in a physiological and pathological context. Platelet factor-4 (PF-4)/CXCL4 and its variant PF-4var/CXCL4L1 are known to favor angiostasis by inhibiting endothelial cell proliferation and chemotaxis. CXCL4L1 in particular is a potent inhibitor of angiogenesis with anti-tumoral characteristics, both through regulation of neovascularization and through attraction of activated lymphocytes. However, its underlying signaling pathways remain to be elucidated. Here, we have identified various intracellular pathways activated by CXCL4L1 in comparison with other CXCR3 ligands, including CXCL4 and interferon-γ-induced protein 10/CXCL10. Signaling experiments show involvement of the mitogen-activated protein kinase (MAPK) family in CXCR3A-transfected cells, activated lymphocytes and human microvascular endothelial cells (HMVEC). In CXCR3A transfectants, CXCL4 and CXCL4L1 activated p38 MAPK, as well as Src kinase within 30 and 5 min, respectively. Extracellular signal-regulated kinase (ERK) phosphorylation occurred in activated lymphocytes, yet was inhibited in microvascular and lymphatic endothelial cells. CXCL4L1 and CXCL4 counterbalanced the angiogenic chemokine stromal cell-derived factor-1/CXCL12 in both endothelial cell types. Notably, inhibition of ERK signaling by CXCL4L1 and CXCL4 in lymphatic endothelial cells implies that these chemokines might also regulate lymphangiogenesis. Furthermore, CXCL4, CXCL4L1 and CXCL10 slightly enhanced forskolin-stimulated cAMP production in HMVEC. Finally, CXCL4, but not CXCL4L1, induced activation of p70S6 kinase within 5 min in HMVEC. Our findings confirm that the angiostatic chemokines CXCL4L1 and CXCL4 activate both CXCR3A and CXCR3B and bring new insights into the complexity of their signaling cascades.

  16. The effect of storage on ammonia, cytokine, and chemokine concentrations in feline whole blood.

    PubMed

    Cummings, Katherine A; Abelson, Amanda L; Rozanski, Elizabeth A; Sharp, Claire R

    2016-09-01

    To determine if the concentrations of ammonia and inflammatory mediators in feline stored whole blood (SWB) increase with duration of storage. Prospective ex vivo study. University Teaching Hospital. Thirteen cats, recruited from the hospital feline donor pool, deemed healthy based on the predonation donor screening process. One unit (30 mL) of whole blood was collected from 13 unique blood donor cats, anticoagulated with citrate-phosphate-dextrose, and stored at 4°C. Concentrations of ammonia, interleukin (IL) 6, and IL-10 were measured in 5 units weekly for 4 weeks. Presence of chemokine ligand (CXCL) 8 was measured weekly in 8 other units in the same manner. The ammonia concentration increased nonlinearly with duration of storage, from a median of 48 μmol/L (range 25-74 μmol/L) on day 0 and 417 μmol/L (324-457 μmol/L) on day 28. IL-6 and IL-10 concentrations were below the lower limits of detection of the assay used (IL-6 < 31.2 pg/mL and IL-10 < 125 pg/mL). CXCL-8 was detected in 4 of 8 SWB units at all time points. Ammonia concentration increases with storage time in feline SWB. The clinical significance of this finding is yet to be determined. The presence of the proinflammatory chemokine CXCL-8 in feline SWB warrants further research to determine whether it can incite an inflammatory response in the recipient. Further research evaluating the epidemiology of transfusion reactions in cats should evaluate the effect of unit age, and should include the possible impact of the presence of CXCL-8. © Veterinary Emergency and Critical Care Society 2016.

  17. CXCR4/CXCL12/CXCR7 axis is functional in neuroendocrine tumors and signals on mTOR

    PubMed Central

    Guadagno, Elia; Tafuto, Salvatore; del Basso de Caro, Marialaura; Botti, Giovanni; Pezzullo, Luciano; Aria, Massimo; Ramundo, Valeria; Tatangelo, Fabiana; Losito, Nunzia Simona; Ieranò, Caterina; D'Alterio, Crescenzo; Izzo, Francesco; Ciliberto, Gennaro; Colao, Annamaria; Faggiano, Antongiulio; Scala, Stefania

    2016-01-01

    Objective To evaluate the possible crosstalk between C-X-C chemokine receptor 4 (CXCR4)/C-X-C motif chemokine 12 (CXCL12)/C-X-C chemokine receptor 7 (CXCR7) axis with the mammalian target of rapamycin (mTOR) pathway in neuroendocrine tumors (NETs). Methods Sixty-one human NETs were included into the study. CXCR4/CXCL12/CXCR7 axis and mTOR pathway were assessed by qRT-PCR and immunohistochemistry (IHC). The effect of mTOR inhibitor, RAD001, was evaluated on CXCR4 pathway through proliferation and p-Erk and p-AKT induction. Results: CXCR4/CXCL12/CXCR7 axis and p-mTOR were found to be active and correlated with grading, Ki67 index and tumor stage. mTOR pathway activation significantly correlated with poor prognosis. In human NET cells, CXCL12 induced mTOR signalling while AMD3100 (CXCR4-antagonist) impaired it. The mTOR-antagonist, RAD001, impaired the CXCL12-dependent induction of CXCR4 downstream effectors. Combination of AMD3100 and RAD001 potentiate cell growth inhibition. Conclusions CXCR4/CXCL12/CXCR7 axis is active in NETs and signals on mTOR. CXCR4 might be considered a prognostic factor in NETs. Combined treatment with AMD3100 and RAD001 may provide clinical benefits in NET patients with drug-resistant. PMID:26934559

  18. CXCR4/CXCL12/CXCR7 axis is functional in neuroendocrine tumors and signals on mTOR.

    PubMed

    Circelli, Luisa; Sciammarella, Concetta; Guadagno, Elia; Tafuto, Salvatore; del Basso de Caro, Marialaura; Botti, Giovanni; Pezzullo, Luciano; Aria, Massimo; Ramundo, Valeria; Tatangelo, Fabiana; Losito, Nunzia Simona; Ieranò, Caterina; D'Alterio, Crescenzo; Izzo, Francesco; Ciliberto, Gennaro; Colao, Annamaria; Faggiano, Antongiulio; Scala, Stefania

    2016-04-05

    To evaluate the possible crosstalk between C-X-C chemokine receptor 4 (CXCR4)/C-X-C motif chemokine 12 (CXCL12)/C-X-C chemokine receptor 7 (CXCR7) axis with the mammalian target of rapamycin (mTOR) pathway in neuroendocrine tumors (NETs). Sixty-one human NETs were included into the study. CXCR4/CXCL12/CXCR7 axis and mTOR pathway were assessed by qRT-PCR and immunohistochemistry (IHC). The effect of mTOR inhibitor, RAD001, was evaluated on CXCR4 pathway through proliferation and p-Erk and p-AKT induction. CXCR4/CXCL12/CXCR7 axis and p-mTOR were found to be active and correlated with grading, Ki67 index and tumor stage. mTOR pathway activation significantly correlated with poor prognosis. In human NET cells, CXCL12 induced mTOR signalling while AMD3100 (CXCR4-antagonist) impaired it. The mTOR-antagonist, RAD001, impaired the CXCL12-dependent induction of CXCR4 downstream effectors. Combination of AMD3100 and RAD001 potentiate cell growth inhibition. CXCR4/CXCL12/CXCR7 axis is active in NETs and signals on mTOR. CXCR4 might be considered a prognostic factor in NETs. Combined treatment with AMD3100 and RAD001 may provide clinical benefits in NET patients with drug-resistant.

  19. A Role for the Chemokine Receptor CCR6 in Mammalian Sperm Motility and Chemotaxis

    PubMed Central

    Caballero-Campo, Pedro; Buffone, Mariano G.; Benencia, Fabian; Conejo-García, José R.; Rinaudo, Paolo F.; Gerton, George L.

    2013-01-01

    Although recent evidence indicates that several chemokines and defensins, well-known as inflammatory mediators, are expressed in the male and female reproductive tracts, the location and functional significance of chemokine networks in sperm physiology and sperm reproductive tract interactions are poorly understood. To address this deficiency in our knowledge, we examined the expression and function in sperm of CCR6, a receptor common to several chemoattractant peptides, and screened several reproductive tract fluids for the presence of specific ligands. CCR6 protein is present in mouse and human sperm and mainly localized in the sperm tail with other minor patterns in sperm from mice (neck and acrosomal region) and men (neck and midpiece regions). As expected from the protein immunoblotting and immunofluorescence results, mouse Ccr6 mRNA is expressed in the testis. Furthermore, the Defb29 mRNA encoding the CCR6 ligand, β-defensin DEFB29, is expressed at high levels in the epididymis. As determined by protein chip analysis, several chemokines (including some that act through CCR6, such as CCL20/MIP-3α (formerly Macrophage Inflammatory Protein 3α) and protein hormones were present in human follicular fluid, endometrial secretions, and seminal plasma. In functional chemotaxis assays, capacitated human sperm exhibited a directional movement towards CCL20, and displayed modifications in motility parameters. Our data indicate that chemokine ligand/receptor interactions in the male and female genital tracts promote sperm motility and chemotaxis under non-inflammatory conditions. Therefore, some of the physiological reactions mediated by CCR6 ligands in male reproduction extend beyond a pro-inflammatory response and might find application in clinical reproduction and/or contraception. PMID:23765988

  20. Chemokines expression during Leptospira interrogans serovar Copenhageni infection in resistant BALB/c and susceptible C3H/HeJ mice.

    PubMed

    da Silva, Josefa B; Ramos, Tatiane M V; de Franco, Marcelo; Paiva, Delhi; Ho, Paulo Lee; Martins, Elizabeth A L; Pereira, Martha M

    2009-08-01

    The role of innate immune responses in protection against leptospirosis remains unclear. We examined the expression of the chemokines CCL2/JE (MCP-1), CCL3/MIP-1 alpha (MIP-1 alpha) and CXCL1/KC (IL-8) regarding resistance and susceptibility to leptospirosis in experimental mice models BALB/c and C3H/HeJ, respectively. A virulent strain of Leptospira interrogans serovar Copenhageni was used in this study. Twenty-five animals of each mouse strain of C3H/HeJ and BALB/c, were infected intraperitoneally with 10(6) cells. Five un-infected animals of each strain were kept as control. Mortality of C3H/HeJ mouse was observed while BALB/c mice were asymptomatic. The presence of leptospire DNA in tissues of infected animals was demonstrated by PCR. Chemokines were measured in serum, spleen, liver, kidney and lung of both strains of animals using immunoenzymatic assay (ELISA). Elevations in the levels of chemokines MCP-1 and IL-8 occurred in all organs and sera of C3H/HeJ and BALB/c infected mice. The levels of MIP-1 alpha were lower when compared to MCP-1 and IL-8 in all analyzed organs, with a slight increase in liver and kidney. Our results indicate that the expression of inflammatory mediators can vary greatly, depending on the tissue and mouse strains. It is possible that the resistance to Leptospira can be partially correlated to the increase of MIP-1 alpha observed in BALB/c mice, while an increasing and a sustained expression of MCP-1 and IL-8 in the lungs of C3H/HeJ mice can be correlated to the severity and progression of leptospirosis.

  1. A simulation-based approach to evaluate safety impacts of increased traffic signal density.

    DOT National Transportation Integrated Search

    2002-01-01

    One of the most controversial access management techniques practitioners face is also one of the most common: restricting signal density. Increased signal density can improve access for minor approaches to a corridor; however, it can also increase de...

  2. The chemokine receptor CXCR6 contributes to recruitment of bone marrow-derived fibroblast precursors in renal fibrosis.

    PubMed

    Xia, Yunfeng; Yan, Jingyin; Jin, Xiaogao; Entman, Mark L; Wang, Yanlin

    2014-08-01

    Bone marrow-derived fibroblasts in circulation are of hematopoietic origin, and they proliferate, differentiate into myofibroblasts, and express the chemokine receptor CXCR6. As chemokines mediate the trafficking of circulating cells to sites of injury, we studied the role of CXCR6 in mouse models of renal injury. Significantly, the kidney of CXCR6 knockout mice accumulated fewer bone marrow-derived fibroblasts in response to injury, expressed less profibrotic chemokines and cytokines, displayed fewer myofibroblasts, and expressed less α-smooth muscle actin in the obstructed kidneys compared with wild-type (WT) mice. CXCR6 deficiency inhibited total collagen deposition and suppressed the expression of collagen I and fibronectin in the obstructed kidneys. Furthermore, WT mice engrafted with CXCR6(-/-) bone marrow cells displayed fewer bone marrow-derived fibroblasts in the kidneys with obstructive injury and showed less severe renal fibrosis compared with WT mice engrafted with CXCR6(+/+) bone marrow cells. Transplant of WT bone marrow into CXCR6(-/-) recipients restored recruitment of myeloid fibroblasts and susceptibility to fibrosis. Hematopoietic fibroblasts migrate into injured kidney and proliferate and differentiate into myofibroblasts. Thus, CXCR6, together with other chemokines and their receptors, may have important roles in the recruitment of bone marrow-derived fibroblast precursors into the kidney and contribute to the pathogenesis of renal fibrosis.

  3. Elevated expression of platelet-derived chemokines in patients with antiphospholipid syndrome.

    PubMed

    Patsouras, Markos D; Sikara, Marina P; Grika, Eleftheria P; Moutsopoulos, Haralampos M; Tzioufas, Athanasios G; Vlachoyiannopoulos, Panayiotis G

    2015-12-01

    Platelet factor 4 tetramers (CXCL4 chemokine) form complexes with β2glycoprotein I (β2GPI), recognized by anti-β2GPI antibodies leading to platelet activation in antiphospholipid syndrome (APS), either primary (PAPS) or secondary (SAPS). Increased plasma levels of CXCL4 may favor this process; therefore we measured plasma levels of CXCL4, a CXCL4 variant (CXCL4L1) and as controls, platelet-derived chemokines CXCL7 (NAP-2) and CCL5 (RANTES), in APS, and disease controls such as patients with systemic lupus erythematosus (SLE) coronary artery disease (CAD) and healthy donors (HDs). Plasma samples and platelets were isolated from patients with APS (n = 87), SLE (n = 29), CAD (n = 14) and 54 HDs. Plasma levels of CXCL4, CXCL4L1, CXCL7 and CCL5 as well as intracellular platelet CXCL4 and CXCL4L1 were measured using ELISA. Platelet CXCL4 and CXCL4L1 RNA levels were determined by RT-PCR. CXCL4, CXCL7 (NAP-2) and CCL5 (RANTES) plasma levels were significantly higher in patients with APS compared to both control groups (SLE, CAD) and HDs. CXCL4L1 plasma levels were also significantly higher in APS than in SLE and HDs, but lower from that of CAD patients. Statistically significant concordance was detected between CXCL4 and CXCL7 (p < 0.0001) or CCL5 (p < 0.0001) plasma levels in patients with APS, either PAPS or SAPS. CXCL4L1 plasma levels were inversely correlated with CXCL4 (P = 0.0027), CXCL7 (p = 0.012) and CCL5 (p = 0.023) in PAPS and positively with CXCL4 (p = 0.0191), CCL5 (p < 0.0001) and CXCL7 (P < 0.0001), in SAPS. Levels of CXCL4, CXCL4L1, CXCL7 and CCL5 were divided in "high" (exceeding a level defined as the mean of HDs and 3 SD) and "low" (below this level); The "CXCL4L1 high" group was characterized by increased IgG aCL, (p = 0.0215), double antibody positivity (either aCL or anti-β2GPI plus LA), (p = 0.0277), triple antibody positivity (aCL plus anti-β2GPI plus LA), (p = 0.0073) and thrombocytopenia (p = 0.0061), as well as with at least 1 thrombotic

  4. G-CSF suppresses allergic pulmonary inflammation, downmodulating cytokine, chemokine and eosinophil production.

    PubMed

    Queto, Túlio; Vasconcelos, Zilton F M; Luz, Ricardo Alves; Anselmo, Carina; Guiné, Ana Amélia A; e Silva, Patricia Machado R; Farache, Júlia; Cunha, José Marcos T; Bonomo, Adriana C; Gaspar-Elsas, Maria Ignez C; Xavier-Elsas, Pedro

    2011-05-09

    Granulocyte Colony-Stimulating Factor (G-CSF), which mobilizes hemopoietic stem cells (HSC), is believed to protect HSC graft recipients from graft-versus-host disease by enhancing Th2 cytokine secretion. Accordingly, G-CSF should aggravate Th2-dependent allergic pulmonary inflammation and the associated eosinophilia. We evaluated the effects of G-CSF in a model of allergic pulmonary inflammation. Allergic pulmonary inflammation was induced by repeated aerosol allergen challenge in ovalbumin-sensitized C57BL/6J mice. The effects of allergen challenge and of G-CSF pretreatment were evaluated by monitoring: a) eosinophilia and cytokine/chemokine content of bronchoalveolar lavage fluid, pulmonary interstitium, and blood; b) changes in airway resistance; and c) changes in bone-marrow eosinophil production. Contrary to expectations, G-CSF pretreatment neither induced nor enhanced allergic pulmonary inflammation. Instead, G-CSF: a) suppressed accumulation of infiltrating eosinophils in bronchoalveolar, peribronchial and perivascular spaces of challenged lungs; and b) prevented ovalbumin challenge-induced rises in airway resistance. G-CSF had multiple regulatory effects on cytokine and chemokine production: in bronchoalveolar lavage fluid, levels of IL-1 and IL-12 (p40), eotaxin and MIP-1a were decreased; in plasma, KC, a neutrophil chemoattractant, was increased, while IL-5 was decreased and eotaxin was unaffected. In bone-marrow, G-CSF: a) prevented the increase in bone-marrow eosinophil production induced by ovalbumin challenge of sensitized mice; and b) selectively stimulated neutrophil colony formation. These observations challenge the view that G-CSF deviates cytokine production towards a Th2 profile in vivo, and suggest that this neutrophil-selective hemopoietin affects eosinophilic inflammation by a combination of effects on lung cytokine production and bone-marrow hemopoiesis. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Chemokines are secreted by monocytes following OK-432 (lyophilized Streptococcus pyogenes) stimulation

    PubMed Central

    Olsnes, Carla; Stavang, Helen; Brokstad, Karl; Olofsson, Jan; Aarstad, Hans J

    2009-01-01

    Background OK-432, penicillin-killed Streptococcus pyogenes, is used in treating lymphangiomas and carcinomas. We have studied in vitro the role of mononuclear phagocytes (MNPs), including purified monocytes (MOs), in the immune response to OK-432. MIP-1α/β and MCP-1 secretions were assessed in whole blood (WB), peripheral blood mononuclear cells (PBMCs) and purified MOs, after in vitro stimulation with OK-432 with or without adherence for 24 hours. Results OK-432 stimulated MNPs to secrete MCP-1 and MIP-1α/β in healthy individuals and in head and neck squamous cell carcinoma (HNSCC) patients, except for OK-432 stimulation of WB giving a minimal MIP-1α/β response. Upon culture on low-attachment wells, a spontaneous chemokine secretion was observed, with an unchanged secretion following OK-432 stimulation. Inhibition of Syk kinase and/or PI-3 kinase did not significantly change the chemokine response to OK-432, except for MIP-1α production being increased upon Syk inhibitor addition and an increased MCP-1 response upon addition of both inhibitors. Adhesion may possibly involve β1 and/or β3 integrins, not β2, whereas β1–3 integrins may act as co-stimulatory receptors for OK-432. Based on direct blockage of CD36 or CD18 by antibodies, MCP-1 production may be mediated by CD18 while MIP-1β and MCP-1 production may occur upon binding to CD36. Conclusion Adherent human MOs produce MCP-1 and MIP-1α/β upon stimulation with OK-432. CD36 modulates MIP-1β and MCP-1 response. Thus, to some extent OK-432 acts as a substance whereby only MOs adhered to surfaces secrete MCP-1 and MIP-1α/β, in part explaining why OK-432 is suited as a biological response modifying drug. PMID:19175917

  6. Cerebrospinal fluid cyto-/chemokine profile during acute herpes simplex virus induced anti-N-methyl-d-aspartate receptor encephalitis and in chronic neurological sequelae.

    PubMed

    Kothur, Kavitha; Gill, Deepak; Wong, Melanie; Mohammad, Shekeeb S; Bandodkar, Sushil; Arbunckle, Susan; Wienholt, Louise; Dale, Russell C

    2017-08-01

    To examine the cytokine/chemokine profile of cerebrospinal fluid (CSF) during acute herpes simplex virus-induced N-methyl-d-aspartate receptor (NMDAR) autoimmunity and in chronic/relapsing post-herpes simplex virus encephalitis (HSE) neurological syndromes. We measured longitudinal serial CSF cyto-/chemokines (n=34) and a glial marker (calcium-binding astroglial protein, S100B) in one patient during acute HSE and subsequent anti-NMDAR encephalitis, and compared the results with those from two patients with anti-NMDAR encephalitis without preceding HSE. We also compared cyto-/chemokines in cross-sectional CSF samples from three children with previous HSE who had ongoing chronic or relapsing neurological symptoms (2yr 9 mo-16y after HSE) with those in a group of children having non-inflammatory neurological conditions (n=20). Acute HSE showed elevation of a broad range of all T-helper-subset-related cyto-/chemokines and S100B whereas the post-HSE anti-NMDAR encephalitis phase showed persistent elevation of two of five T-helper-1 (chemokine [C-X-C motif] ligand 9 [CXCL9], CXCL10), three of five predominantly B-cell (CXCL13, CCL19, a proliferation-inducing ligand [APRIL])-mediated cyto-/chemokines, and interferon-α. The post-HSE anti-NMDAR encephalitis inflammatory response was more pronounced than anti-NMDAR encephalitis. All three chronic post-HSE cases showed persistent elevation of CXCL9, CXCL10, and interferon-α, and there was histopathological evidence of chronic lymphocytic inflammation in one biopsied case 7 years after HSE. Two of three chronic cases showed a modest response to immune therapy. HSE-induced anti-NMDAR encephalitis is a complex and pronounced inflammatory syndrome. There is persistent CSF upregulation of cyto-/chemokines in chronic or relapsing post-HSE neurological symptoms, which may be modifiable with immune therapy. The elevated cyto-/chemokines may be targets of monoclonal therapies. © 2017 Mac Keith Press.

  7. MET signalling in primary colon epithelial cells leads to increased transformation irrespective of aberrant Wnt signalling

    PubMed Central

    Boon, E M J; Kovarikova, M; Derksen, P W B; van der Neut, R

    2005-01-01

    It has been shown that in hereditary and most sporadic colon tumours, components of the Wnt pathway are mutated. The Wnt target MET has been implicated in the development of colon cancer. Here, we show that overexpression of wild-type or a constitutively activated form of MET in colon epithelial cells leads to increased transformation irrespective of Wnt signalling. Fetal human colon epithelial cells without aberrant Wnt signalling were transfected with wild-type or mutated MET constructs. Expression of these constructs leads to increased phosphorylation of MET and its downstream targets PKB and MAPK. Upon stimulation with HGF, the expression of E-cadherin is downregulated in wild-type MET-transfected cells, whereas cells expressing mutated MET show low E-cadherin levels independent of stimulation with ligand. This implies a higher migratory propensity of these cells. Furthermore, fetal human colon epithelial cells expressing the mutated form of MET have colony-forming capacity in soft agar, while cells expressing wild-type MET show an intermediate phenotype. Subcutaneous injection of mutated MET-transfected cells in nude mice leads to the formation of tumours within 12 days in all mice injected. At this time point, mock-transfected cells do not form tumours, while wild-type MET-transfected cells form subcutaneous tumours in one out of five mice. We thus show that MET signalling can lead to increased transformation of colon epithelial cells independent of Wnt signalling and in this way could play an essential role in the onset and progression of colorectal cancer. PMID:15785735

  8. The chemokine CXCL16 induces migration and invasion of glial precursor cells via its receptor CXCR6.

    PubMed

    Hattermann, Kirsten; Ludwig, Andreas; Gieselmann, Volkmar; Held-Feindt, Janka; Mentlein, Rolf

    2008-09-01

    Chemokines are implicated in developmental and inflammatory processes in the brain. The transmembrane chemokine CXCL16 is produced in brain endothelial and reactive astroglial cells and released by shedding. Its receptor CXCR6 is detected during brain development highest at postnatal day 6, found in glial precursor cells differentiated from neural stem cells and in an A2B5-positive glial precursor cell line. Their stimulation by soluble CXCL16 induces the PI3-kinase/Akt and Erk pathways resulting in the activation of the transcription factor AP-1. As biological responses, soluble CXCL16 upregulates its own receptor, increases cell proliferation, stimulates cell migration in wound-healing and in spheroid confrontation assays. Invasion of CXCR6-positive glial cells into CXCL16-expressing spheroids can be blocked by sheddase inhibitors and CXCL16-antibody. Since CXCL16 is induced by cytokines at sites of inflammation, neurodegeneration, ischemia and malignant transformation, it should attract CXCR6-positive glial precursor cells, enhance their invasion and proliferation and thus favor astrogliosis.

  9. Emerging role of chemokine CC motif ligand 4 related mechanisms in diabetes mellitus and cardiovascular disease: friends or foes?

    PubMed

    Chang, Ting-Ting; Chen, Jaw-Wen

    2016-08-24

    Chemokines are critical components in pathology. The roles of chemokine CC motif ligand 4 (CCL4) and its receptor are associated with diabetes mellitus (DM) and atherosclerosis cardiovascular diseases. However, due to the complexity of these diseases, the specific effects of CCL4 remain unclear, although recent reports have suggested that multiple pathways are related to CCL4. In this review, we provide an overview of the role and potential mechanisms of CCL4 and one of its major receptors, fifth CC chemokine receptor (CCR5), in DM and cardiovascular diseases. CCL4-related mechanisms, including CCL4 and CCR5, might provide potential therapeutic targets in DM and/or atherosclerosis cardiovascular diseases.

  10. Elevated levels of CXC chemokine connective tissue activating peptide (CTAP)-III in lung cancer patients.

    PubMed

    Lee, Gina; Gardner, Brian K; Elashoff, David A; Purcell, Colleen M; Sandha, Harpavan S; Mao, Jenny T; Krysan, Kostyantyn; Lee, Jay M; Dubinett, Steven M

    2011-05-15

    Despite advances in treatments, lung cancer has been the leading cause of cancer-related deaths in the United States for the past several decades. Recent findings from the National Lung Screening Trial reveal that low-dose helical computed tomography (CT) scan screening of high-risk individuals reduces lung cancer mortality. This suggests that early detection is of key importance to improving patient outcome. However, of those screened with CT scans, 25% had positive scans that require further follow-up studies which often involve more radiation exposure and invasive tests to reduce false positive results. The purpose of this study was to identify candidate plasma biomarkers to aid in diagnosis of lung cancer in at-risk individuals. We found increased expression of the CXC chemokine connective tissue-activating peptide (CTAP)-III from plasma specimens of lung cancer patients compared to at-risk control subjects. Identification of the peptide was confirmed by the addition of an anti-NAP-2 antibody that recognizes CTAP-III and NAP-2. We also quantified and verified the increased levels of plasma CTAP-III with ELISA in patients with lung cancer (mean ± SD, 1859 ± 1219 ng/mL) compared to controls (698 ± 434 ng/mL; P<0.001). Our findings demonstrate elevated plasma levels of CTAP-III occur in lung cancer patients. Further studies are required to determine if this chemokine could be utilized in a blood-based biomarker panel for the diagnosis of lung cancer.

  11. Increased signaling entropy in cancer requires the scale-free property of protein interaction networks.

    PubMed

    Teschendorff, Andrew E; Banerji, Christopher R S; Severini, Simone; Kuehn, Reimer; Sollich, Peter

    2015-04-28

    One of the key characteristics of cancer cells is an increased phenotypic plasticity, driven by underlying genetic and epigenetic perturbations. However, at a systems-level it is unclear how these perturbations give rise to the observed increased plasticity. Elucidating such systems-level principles is key for an improved understanding of cancer. Recently, it has been shown that signaling entropy, an overall measure of signaling pathway promiscuity, and computable from integrating a sample's gene expression profile with a protein interaction network, correlates with phenotypic plasticity and is increased in cancer compared to normal tissue. Here we develop a computational framework for studying the effects of network perturbations on signaling entropy. We demonstrate that the increased signaling entropy of cancer is driven by two factors: (i) the scale-free (or near scale-free) topology of the interaction network, and (ii) a subtle positive correlation between differential gene expression and node connectivity. Indeed, we show that if protein interaction networks were random graphs, described by Poisson degree distributions, that cancer would generally not exhibit an increased signaling entropy. In summary, this work exposes a deep connection between cancer, signaling entropy and interaction network topology.

  12. Increased signaling entropy in cancer requires the scale-free property of protein interaction networks

    PubMed Central

    Teschendorff, Andrew E.; Banerji, Christopher R. S.; Severini, Simone; Kuehn, Reimer; Sollich, Peter

    2015-01-01

    One of the key characteristics of cancer cells is an increased phenotypic plasticity, driven by underlying genetic and epigenetic perturbations. However, at a systems-level it is unclear how these perturbations give rise to the observed increased plasticity. Elucidating such systems-level principles is key for an improved understanding of cancer. Recently, it has been shown that signaling entropy, an overall measure of signaling pathway promiscuity, and computable from integrating a sample's gene expression profile with a protein interaction network, correlates with phenotypic plasticity and is increased in cancer compared to normal tissue. Here we develop a computational framework for studying the effects of network perturbations on signaling entropy. We demonstrate that the increased signaling entropy of cancer is driven by two factors: (i) the scale-free (or near scale-free) topology of the interaction network, and (ii) a subtle positive correlation between differential gene expression and node connectivity. Indeed, we show that if protein interaction networks were random graphs, described by Poisson degree distributions, that cancer would generally not exhibit an increased signaling entropy. In summary, this work exposes a deep connection between cancer, signaling entropy and interaction network topology. PMID:25919796

  13. Monocyte-derived dendritic cells exposed to Der p 1 allergen enhance the recruitment of Th2 cells: major involvement of the chemokines TARC/CCL17 and MDC/CCL22.

    PubMed

    Hammad, Hamida; Smits, Hermelijn H; Ratajczak, Céline; Nithiananthan, Asokananthan; Wierenga, Eddy A; Stewart, Geoffrey A; Jacquet, Alain; Tonnel, Andre-Bernard; Pestel, Joël

    2003-01-01

    Dendritic cells (DC) are potent antigen - presenting cells that can orientate the immune response towards a Th1 or a Th2 type. DC produce chemokines that are involved in the recruitment of either Th1 cells, such as IP10 (CXCL10), Th2 cells such as TARC (CCL17) and MDC (CCL22), or non-polarized T cells such as RANTES (CCL5) and MIP-lalpha (CCL3). We investigated whether monocyte-derived DC (MD-DC) generated from healthy donors or from patients sensitive to Dermatophagoides pteronyssinus (Dpt) and exposed to the cysteine-protease Der p 1(allergen of Dpt), could upregulate the expression of chemokines involved in type 1 or type 2 T cell recruitment. MD-DC were pulsed with either Der p 1 or with LPS as the control and the chemokines produced were evaluated using ELISA and chemotaxis assays. Der p 1-pulsed DC from allergic patients showed increased TARC (CCL17) and MDC (CCL22) production without modifying IP-10 (CXCL10) release. Der p 1-pulsed DC from healthy donors showed only increased IP-10 (CXCL10) secretion. RANTES (CCL5) and MIP-lalpha (CCL3) production were similarly increased when DC were from healthy or allergic donors. The selective Th2 clone recruitment activity of supernatants from Der p 1-pulsed DC of allergic patients was inhibited by anti-TARC (CCL17) and anti-MDC (CCL22) neutralizing Abs. By using anti-IP10 (CXCL10) blocking Abs, supernatants of Der p 1-pulsed DC from healthy donors were shown to be involved in the recruitment of Th1 cells. These results suggest that in allergic patients exposed to house dust mites, DC may favour the exacerbation of the Th2 response via the increase in type 2 chemokine production. Copyright John Libbey Eurotext 2003.

  14. Utility of CSF Cytokine/Chemokines as Markers of Active Intrathecal Inflammation: Comparison of Demyelinating, Anti-NMDAR and Enteroviral Encephalitis

    PubMed Central

    Kothur, Kavitha; Wienholt, Louise; Mohammad, Shekeeb S.; Tantsis, Esther M.; Pillai, Sekhar; Britton, Philip N.; Jones, Cheryl A.; Angiti, Rajeshwar R.; Barnes, Elizabeth H.; Schlub, Timothy; Bandodkar, Sushil; Brilot, Fabienne; Dale, Russell C.

    2016-01-01

    Background Despite the discovery of CSF and serum diagnostic autoantibodies in autoimmune encephalitis, there are still very limited CSF biomarkers for diagnostic and monitoring purposes in children with inflammatory or autoimmune brain disease. The cause of encephalitis is unknown in up to a third of encephalitis cohorts, and it is important to differentiate infective from autoimmune encephalitis given the therapeutic implications. Aim To study CSF cytokines and chemokines as diagnostic biomarkers of active neuroinflammation, and assess their role in differentiating demyelinating, autoimmune, and viral encephalitis. Methods We measured and compared 32 cytokine/chemokines using multiplex immunoassay and APRIL and BAFF using ELISA in CSF collected prior to commencing treatment from paediatric patients with confirmed acute disseminated encephalomyelitis (ADEM, n = 16), anti-NMDAR encephalitis (anti-NMDAR E, n = 11), and enteroviral encephalitis (EVE, n = 16). We generated normative data using CSF from 20 non-inflammatory neurological controls. The sensitivity of CSF cytokine/chemokines to diagnose encephalitis cases was calculated using 95th centile of control values as cut off. We correlated CSF cytokine/chemokines with disease severity and follow up outcome based on modified Rankin scale. One-way hierarchical correlational cluster analysis of molecules was performed in different encephalitis and outcome groups. Results In descending order, CSF TNF-α, IL-10, IFN-α, IL-6, CXCL13 and CXCL10 had the best sensitivity (>79.1%) when all encephalitis patients were included. The combination of IL-6 and IFN-α was most predictive of inflammation on multiple logistic regression with area under the ROC curve 0.99 (CI 0.97–1.00). There were no differences in CSF cytokine concentrations between EVE and anti-NMDAR E, whereas ADEM showed more pronounced elevation of Th17 related (IL-17, IL-21) and Th2 (IL-4, CCL17) related cytokine/chemokines. Unlike EVE, heat map analysis

  15. Resistance exercise increases intramuscular NF-κb signaling in untrained males.

    PubMed

    Townsend, Jeremy R; Stout, Jeffrey R; Jajtner, Adam R; Church, David D; Beyer, Kyle S; Oliveira, Leonardo P; La Monica, Michael B; Riffe, Joshua J; Muddle, Tyler W D; Baker, Kayla M; Fukuda, David H; Roberts, Michael D; Hoffman, Jay R

    2016-12-01

    The NF-κB signaling pathway regulates multiple cellular processes following exercise stress. This study aims to examine the effects of an acute lower-body resistance exercise protocol and subsequent recovery on intramuscular NF-κB signaling. Twenty-eight untrained males were assigned to either a control (CON; n = 11) or exercise group (EX; n = 17) and completed a lower-body resistance exercise protocol consisting of the back squat, leg press, and leg extension exercises. Skeletal muscle microbiopsies were obtained from the vastus lateralis pre-exercise (PRE), 1-hour (1H), 5-hours (5H), and 48-hours (48H) post-resistance exercise. Multiplex signaling assay kits (EMD Millipore, Billerica, MA, USA) were used to quantify the total protein (TNFR1, c-Myc) or phosphorylation status of proteins belonging to the NF-κB signaling pathway (IKKa/b, IkBα, NF-κB) using multiplex protein assay. Repeated measures ANOVA analysis was used to determine the effects of the exercise bout on intramuscular signaling at each time point. Additionally, change scores were analyzed by magnitude based inferences to determine a mechanistic interpretation. Repeated measures ANOVA indicated a trend for a two-way interaction between the EX and CON Group (p = 0.064) for c-Myc post resistance exercise. Magnitude based inference analysis suggest a "Very Likely" increase in total c-Myc from PRE-5H and a "Likely" increase in IkBα phosphorylation from PRE-5H post-resistance exercise. Results indicated that c-Myc transcription factor is elevated following acute intense resistance exercise in untrained males. Future studies should examine the role that post-resistance exercise NF-κβ signaling plays in c-Myc induction, ribosome biogenesis and skeletal muscle regeneration.

  16. Macrophage Transactivation for Chemokine Production Identified as a Negative Regulator of Granulomatous Inflammation Using Agent-Based Modeling.

    PubMed

    Moyo, Daniel; Beattie, Lynette; Andrews, Paul S; Moore, John W J; Timmis, Jon; Sawtell, Amy; Hoehme, Stefan; Sampson, Adam T; Kaye, Paul M

    2018-01-01

    Cellular activation in trans by interferons, cytokines, and chemokines is a commonly recognized mechanism to amplify immune effector function and limit pathogen spread. However, an optimal host response also requires that collateral damage associated with inflammation is limited. This may be particularly so in the case of granulomatous inflammation, where an excessive number and/or excessively florid granulomas can have significant pathological consequences. Here, we have combined transcriptomics, agent-based modeling, and in vivo experimental approaches to study constraints on hepatic granuloma formation in a murine model of experimental leishmaniasis. We demonstrate that chemokine production by non-infected Kupffer cells in the Leishmania donovani -infected liver promotes competition with infected KCs for available iNKT cells, ultimately inhibiting the extent of granulomatous inflammation. We propose trans-activation for chemokine production as a novel broadly applicable mechanism that may operate early in infection to limit excessive focal inflammation.

  17. IQGAP1 promotes CXCR4 chemokine receptor function and trafficking via EEA-1+ endosomes

    PubMed Central

    Bamidele, Adebowale O.; Kremer, Kimberly N.; Hirsova, Petra; Clift, Ian C.; Gores, Gregory J.; Billadeau, Daniel D.

    2015-01-01

    IQ motif–containing GTPase-activating protein 1 (IQGAP1) is a cytoskeleton-interacting scaffold protein. CXCR4 is a chemokine receptor that binds stromal cell–derived factor-1 (SDF-1; also known as CXCL12). Both IQGAP1 and CXCR4 are overexpressed in cancer cell types, yet it was unclear whether these molecules functionally interact. Here, we show that depleting IQGAP1 in Jurkat T leukemic cells reduced CXCR4 expression, disrupted trafficking of endocytosed CXCR4 via EEA-1+ endosomes, and decreased efficiency of CXCR4 recycling. SDF-1–induced cell migration and activation of extracellular signal-regulated kinases 1 and 2 (ERK) MAPK were strongly inhibited, even when forced overexpression restored CXCR4 levels. Similar results were seen in KMBC and HEK293 cells. Exploring the mechanism, we found that SDF-1 treatment induced IQGAP1 binding to α-tubulin and localization to CXCR4-containing endosomes and that CXCR4-containing EEA-1+ endosomes were abnormally located distal from the microtubule (MT)-organizing center (MTOC) in IQGAP1-deficient cells. Thus, IQGAP1 critically mediates CXCR4 cell surface expression and signaling, evidently by regulating EEA-1+ endosome interactions with MTs during CXCR4 trafficking and recycling. IQGAP1 may similarly promote CXCR4 functions in other cancer cell types. PMID:26195666

  18. Leprosy Reactions Show Increased Th17 Cell Activity and Reduced FOXP3+ Tregs with Concomitant Decrease in TGF-β and Increase in IL-6

    PubMed Central

    Saini, Chaman; Siddiqui, Anisuddin; Ramesh, Venkatesh; Nath, Indira

    2016-01-01

    Background 50% of leprosy patients suffer from episodes of Type 1/ reversal reactions (RR) and Type 2/ Erythema Nodosum Leprosum (ENL) reactions which lead to morbidity and nerve damage. CD4+ subsets of Th17 cells and CD25+FOXP3+ regulatory T cells (Tregs) have been shown to play a major role in disease associated immunopathology and in stable leprosy as reported by us and others. The aim of our study was to analyze their role in leprosy reactions. Methodology and Principle Findings Quantitative reverse transcribed PCR (qPCR), flowcytometry and ELISA were used to respectively investigate gene expression, cell phenotypes and supernatant levels of cytokines in antigen stimulated PBMC cultures in patients with stable disease and those undergoing leprosy reactions. Both types of reactions are associated with significant increase of Th17 cells and associated cytokines IL-17A, IL-17F, IL-21, IL-23 and chemokines CCL20, CCL22 as compared to matching stable forms of leprosy. Concurrently patients in reactions show reduction in FOXP3+ Treg cells as well as reduction in TGF-β and increase in IL-6. Moreover, expression of many T cell markers, cytokines, chemokines and signaling factors were observed to be increased in RR as compared to ENL reaction patients. Conclusions Patients with leprosy reactions show an imbalance in Th17 and Treg populations. The reduction in Treg suppressor activity is associated withhigherTh17cell activity. The combined effect of reduced TGF-β and enhanced IL-6, IL-21 cytokines influence the balance between Th17 or Treg cells in leprosy reactions as reported in the murine models and autoimmune diseases. The increase in Th17 cell associated cytokines may contribute to lesional inflammation. PMID:27035913

  19. Mitomycin C upregulates IL-8 and MCP-1 chemokine expression via mitogen-activated protein kinases in corneal fibroblasts.

    PubMed

    Chou, San-Fang; Chang, Shu-Wen; Chuang, Jia-Ling

    2007-05-01

    To investigate the expression of chemokines and their signaling pathways after application of mitomycin C (MMC) to corneal fibroblasts. Primary porcine and human corneal fibroblasts from passages 3 to 6 were treated with MMC at concentrations of 0.05, 0.1, or 0.2 mg/mL for 1, 2, 5, or 10 minutes. The relative expression of interleukin-8 (IL-8) and monocyte chemoattractant protein-1 (MCP-1) were investigated with reverse transcription, and quantitative real-time polymerase chain reaction (qRT-PCR), and enzyme-linked immunosorbent assay (ELISA). The effects of MMC on the activation of kinases were analyzed by Western blot analysis with specific antiphosphokinase antibodies. The signaling pathways by which MMC regulates the expression of IL-8 and MCP-1 were evaluated by pharmacological kinase-specific inhibitors. The expression of IL-8 and MCP-1 were upregulated after MMC treatment in a time- and concentration-dependent manner. Furthermore, the upregulated expression of IL-8 and MCP-1 increased with longer incubation time. MMC treatment enhanced the phosphorylation of p38, JNK, and ERK at different time points. The MMC-related IL-8 and MCP-1 expression was inhibited by both a p38 inhibitor (SB203580) and an ERK inhibitor (PD98059). A JNK inhibitor (SP600125) reduced the expression of MMC-induced MCP-1 but not of IL-8. MMC treatment upregulated the expression of IL-8 and MCP-1 mRNA and protein secretion by the activation of mitogen-activated protein kinases (MAPKs) in corneal fibroblasts.

  20. Regulation of EGF receptor signaling by the MARVEL domain-containing protein CKLFSF8.

    PubMed

    Jin, Caining; Ding, Peiguo; Wang, Ying; Ma, Dalong

    2005-11-21

    It is known that chemokine-like factor superfamily 8 (CKLFSF8), a member of the CKLF superfamily, has four putative transmembrane regions and a MARVEL domain. Its structure is similar to TM4SF11 (plasmolipin) and widely distributed in normal tissue. However, its function is not yet known. We show here that CKLFSF8 is associated with the epidermal growth factor receptor (EGFR) and that ectopic expression of CKLFSF8 in several cell lines suppresses EGF-induced cell proliferation, whereas knockdown of CKLFSF8 by siRNA promotes cell proliferation. In cells overexpressing CKLFSF8, the initial activation of EGFR was not affected, but subsequent desensitization of EGF-induced signaling occurred rapidly. This attenuation was correlated with an increased rate of receptor endocytosis. In contrast, knockdown of CKLFSF8 by siCKLFSF8 delayed EGFR endocytosis. These results identify CKLFSF8 as a novel regulator of EGF-induced signaling and indicate that the association of EGFR with four transmembrane proteins is critical for EGFR desensitization.

  1. The chemokine receptor CXCR6 contributes to recruitment of bone marrow-derived fibroblast precursors in renal fibrosis

    PubMed Central

    Xia, Yunfeng; Yan, Jingyin; Jin, Xiaogao; Entman, Mark L.; Wang, Yanlin

    2014-01-01

    Bone marrow-derived fibroblasts in circulation are of hematopoietic origin, proliferate, differentiate into myofibroblasts, and express the chemokine receptor CXCR6. Since chemokines mediate the trafficking of circulating cells to sites of injury, we studied the role of CXCR6 in mouse models of renal injury. Significantly fewer bone marrow-derived fibroblasts accumulated in the kidney of CXCR6 knockout mice in response to injury, expressed less profibrotic chemokines and cytokines, displayed fewer myofibroblasts, and expressed less α-smooth muscle actin in the obstructed kidneys compared with wild-type mice. CXCR6 deficiency inhibited total collagen deposition and suppressed expression of collagen I and fibronectin in the obstructed kidneys. Furthermore, wild type mice engrafted with CXCR6−/− bone marrow cells displayed fewer bone marrow-derived fibroblasts in the kidneys with obstructive injury and showed less severe renal fibrosis compared with wild-type mice engrafted with CXCR6+/+ bone marrow cells. Transplant of wild type bone marrow into CXCR6−/− recipients restored recruitment of myeloid fibroblasts and susceptibility to fibrosis. Hematopoietic fibroblasts migrate into injured kidney and proliferate and differentiate into myofibroblasts. Thus, CXCR6, together with other chemokines and their receptors, may play important roles in the recruitment of bone marrow-derived fibroblast precursors into the kidney and contribute to the pathogenesis of renal fibrosis. PMID:24646857

  2. Acidic pH stimulates the production of the angiogenic CXC chemokine, CXCL8 (interleukin-8), in human adult mesenchymal stem cells via the extracellular signal-regulated kinase, p38 mitogen-activated protein kinase, and NF-kappaB pathways.

    PubMed

    Bischoff, David S; Zhu, Jian-Hua; Makhijani, Nalini S; Yamaguchi, Dean T

    2008-07-01

    Blood vessel injury results in limited oxygen tension and diffusion leading to hypoxia, increased anaerobic metabolism, and elevated production of acidic metabolites that cannot be easily removed due to the reduced blood flow. Therefore, an acidic extracellular pH occurs in the local microenvironment of disrupted bone. The potential role of acidic pH and glu-leu-arg (ELR(+)) CXC chemokines in early events in bone repair was studied in human mesenchymal stem cells (hMSCs) treated with medium of decreasing pH (7.4, 7.0, 6.7, and 6.4). The cells showed a reciprocal increase in CXCL8 (interleukin-8, IL-8) mRNA levels as extracellular pH decreased. At pH 6.4, CXCL8 mRNA was induced >60x in comparison to levels at pH 7.4. hMSCs treated with osteogenic medium (OGM) also showed an increase in CXCL8 mRNA with decreasing pH; although, at a lower level than that seen in cells grown in non-OGM. CXCL8 protein was secreted into the medium at all pHs with maximal induction at pH 6.7. Inhibition of the G-protein-coupled receptor alpha, G(alphai), suppressed CXCL8 levels in response to acidic pH; whereas phospholipase C inhibition had no effect on CXCL8. The use of specific mitogen-activated protein kinase (MAPK) signal transduction inhibitors indicated that the pH-dependent increase in CXCL8 mRNA is due to activation of ERK and p38 pathways. The JNK pathway was not involved. NF-kappaB inhibition resulted in a decrease in CXCL8 levels in hMSCs grown in non-OGM. However, OGM-differentiated hMSCs showed an increase in CXCL8 levels when treated with the NF-kappaB inhibitor PDTC, a pyrrolidine derivative of dithiocarbamate. 2008 Wiley-Liss, Inc.

  3. Ureaplasma isolates stimulate pro-inflammatory CC chemokines and matrix metalloproteinase-9 in neonatal and adult monocytes

    PubMed Central

    Silwedel, Christine; Fehrholz, Markus; Henrich, Birgit; Waaga-Gasser, Ana Maria; Claus, Heike; Speer, Christian P.

    2018-01-01

    Being generally regarded as commensal bacteria, the pro-inflammatory capacity of Ureaplasma species has long been debated. Recently, we confirmed Ureaplasma–driven pro-inflammatory cytokine responses and a disturbance of cytokine equilibrium in primary human monocytes in vitro. The present study addressed the expression of CC chemokines and matrix metalloproteinase-9 (MMP-9) in purified term neonatal and adult monocytes stimulated with serovar 8 of Ureaplasma urealyticum (Uu) and serovar 3 of U. parvum (Up). Using qRT-PCR and multi-analyte immunoassay, we assessed mRNA and protein expression of the monocyte chemotactic proteins 1 and 3 (MCP-1/3), the macrophage inflammatory proteins 1α and 1β (MIP-1α/β) as well as MMP-9. For the most part, both isolates stimulated mRNA expression of all given chemokines and MMP-9 in cord blood and adult monocytes (p<0.05 and p<0.01). These results were paralleled by Uu and Up-induced secretion of MCP-1 protein in both cells (neonatal: p<0.01, adult: p<0.05 and p<0.01). Release of MCP-3, MIP-1α, MIP-1β and MMP-9 was enhanced upon exposure to Up (neonatal: p<0.05, p<0.01 and p<0.001, respectively; adult: p<0.05). Co-stimulation of LPS-primed monocytes with Up increased LPS-induced MCP-1 release in neonatal cells (p<0.05) and aggravated LPS-induced MMP-9 mRNA in both cell subsets (neonatal: p<0.05, adult: p<0.01). Our results document considerable expression of pro-inflammatory CC chemokines and MMP-9 in human monocytes in response to Ureaplasma isolates in vitro, adding to our previous data. Findings from co-stimulated cells indicate that Ureaplasma may modulate monocyte immune responses to a second stimulus. PMID:29558521

  4. Interferon-γ regulates chemokine expression and release in the human mast cell line HMC1: role of nitric oxide

    PubMed Central

    Gilchrist, M; Befus, A D

    2008-01-01

    Mast cells (MCs) are critical immune effector cells that release cytokines and chemokines involved in both homeostasis and disease. Interferon-γ (IFN-γ) is a pleiotropic cytokine that regulates multiple cellular activities. IFN-γ modulates rodent MC responsiveness via production of nitric oxide (NO), although the effects in human MC populations is unknown. We sought to investigate the effects of IFN-γ on expression of the chemokines interleukin-8 (IL-8) and CCL1 (I-309) in a human mast cell line (HMC1) and to determine the underlying regulatory mechanism. Nitric oxide synthase (NOS), IL-8 and CCL1 expression was determined using real-time polymerase chain reaction (PCR). NOS protein expression was analysed using western blot. NOS activity was determined using the citrulline assay. IL-8 and CCL1 release was measured by specific enzyme-linked immunosorbent assay (ELISA). IFN-γ inhibited phorbol 12-myristate 13-acetate (PMA)-induced release of IL-8 and CCL1 (by 47 and 38%). Real-time PCR analysis of IFN-γ-treated HMC1 showed a significant (P < 0·05) time-dependent increase in NOS1 and NOS3 mRNA. NOS3 protein was significantly increased at 18 hr, which correlated with a significant (P < 0·05) increase in constitutive NOS (cNOS) activity. IFN-γ-induced inhibition of chemokine expression and release was NO dependent, as treatment with the NOS inhibitor NG-nitro-l-arginine methyl ester (l-NAME) reduced the IFN-γ inhibitory effect on IL-8 and CCL1 mRNA expression. NO donors mimicked the IFN-γ effect. IFN-γ inhibited PMA-induced cAMP response element binding protein (CREB) phosphorylation and DNA-binding activity. Our observations indicate for the first time that IFN-γ enhances endogenous NO formation through NOS3 activity, and that NO regulates the transcription and release of IL-8 and CCL1 in a human MC line. PMID:17662042

  5. Endothelial Notch signalling limits angiogenesis via control of artery formation

    PubMed Central

    Hasan, Sana S.; Tsaryk, Roman; Lange, Martin; Wisniewski, Laura; Moore, John C.; Lawson, Nathan D.; Wojciechowska, Karolina; Schnittler, Hans; Siekmann, Arndt F.

    2017-01-01

    Angiogenic sprouting needs to be tightly controlled. It has been suggested that the Notch ligand dll4 expressed in leading tip cells restricts angiogenesis by activating Notch signalling in trailing stalk cells. Here, we show using live imaging in zebrafish that activation of Notch signalling is rather required in tip cells. Notch activation initially triggers expression of the chemokine receptor cxcr4a. This allows for proper tip cell migration and connection to the pre-existing arterial circulation, ultimately establishing functional arterial-venous blood flow patterns. Subsequently, Notch signalling reduces cxcr4a expression, thereby preventing excessive blood vessel growth. Finally, we find that Notch signalling is dispensable for limiting blood vessel growth during venous plexus formation that does not generate arteries. Together, these findings link the role of Notch signalling in limiting angiogenesis to its role during artery formation and provide a framework for our understanding of the mechanisms underlying blood vessel network expansion and maturation. PMID:28714969

  6. Curcumin modulates the effect of histone modification on the expression of chemokines by type II alveolar epithelial cells in a rat COPD model.

    PubMed

    Gan, Lixing; Li, Chengye; Wang, Jian; Guo, Xuejun

    2016-01-01

    Studies have suggested that histone modification has a positive impact on various aspects associated with the progression of COPD. Histone deacetylase 2 (HDAC2) suppresses proinflammatory gene expression through deacetylation of core histones. To investigate the effect of histone modification on the expression of chemokines in type II alveolar epithelial cells (AEC II) in a rat COPD model and regulation of HDAC2 expression by curcumin in comparison with corticosteroid. The rat COPD model was established by cigarette smoke exposure and confirmed by histology and pathophysioloy. AEC II were isolated and cultured in vitro from the COPD models and control animals. The cells were treated with curcumin, corticosteroid, or trichostatin A, and messenger RNA (mRNA) expression of interleukin-8 (IL-8), monocyte chemoattractant protein-1 (MCP-1), and macrophage inflammatory protein-2α (MIP-2α) was assessed by quantitative real-time polymerase chain reaction (RT-PCR). The expression of HDAC2 was measured by Western blot. Chromatin immunoprecipitation was used to detect H3/H4 acetylation and H3K9 methylation in the promoter region of three kinds of chemokine genes (IL-8, MCP-1, and MIP-2α). Compared to the control group, the mRNAs of MCP-1, IL-8, and MIP-2α were upregulated 4.48-fold, 3.14-fold, and 2.83-fold, respectively, in the AEC II from COPD model. The protein expression of HDAC2 in the AEC II from COPD model was significantly lower than from the control group ( P <0.05). The decreased expression of HDAC2 was negatively correlated with the increased expression of IL-8, MCP-1, and MIP-2α mRNAs (all P <0.05). The level of H3/H4 acetylation was higher but H3K9 methylation in the promoter region of chemokine genes was lower in the cells from COPD model than from the control group (all P <0.05). Curcumin downregulated the expression of MCP-1, IL-8, and MIP-2α, and the expression was further enhanced in the presence of corticosteroid. Moreover, curcumin restored HDAC2

  7. Maximal Unbiased Benchmarking Data Sets for Human Chemokine Receptors and Comparative Analysis.

    PubMed

    Xia, Jie; Reid, Terry-Elinor; Wu, Song; Zhang, Liangren; Wang, Xiang Simon

    2018-05-29

    Chemokine receptors (CRs) have long been druggable targets for the treatment of inflammatory diseases and HIV-1 infection. As a powerful technique, virtual screening (VS) has been widely applied to identifying small molecule leads for modern drug targets including CRs. For rational selection of a wide variety of VS approaches, ligand enrichment assessment based on a benchmarking data set has become an indispensable practice. However, the lack of versatile benchmarking sets for the whole CRs family that are able to unbiasedly evaluate every single approach including both structure- and ligand-based VS somewhat hinders modern drug discovery efforts. To address this issue, we constructed Maximal Unbiased Benchmarking Data sets for human Chemokine Receptors (MUBD-hCRs) using our recently developed tools of MUBD-DecoyMaker. The MUBD-hCRs encompasses 13 subtypes out of 20 chemokine receptors, composed of 404 ligands and 15756 decoys so far and is readily expandable in the future. It had been thoroughly validated that MUBD-hCRs ligands are chemically diverse while its decoys are maximal unbiased in terms of "artificial enrichment", "analogue bias". In addition, we studied the performance of MUBD-hCRs, in particular CXCR4 and CCR5 data sets, in ligand enrichment assessments of both structure- and ligand-based VS approaches in comparison with other benchmarking data sets available in the public domain and demonstrated that MUBD-hCRs is very capable of designating the optimal VS approach. MUBD-hCRs is a unique and maximal unbiased benchmarking set that covers major CRs subtypes so far.

  8. Effect of interleukin-8 and RANTES on the Gardos channel activity in sickle human red blood cells: role of the Duffy antigen receptor for chemokines.

    PubMed

    Durpès, Marie-Claude; Nebor, Danitza; du Mesnil, Pierre Couespel; Mougenel, Danièle; Decastel, Monique; Elion, Jacques; Hardy-Dessources, Marie-Dominique

    2010-04-15

    We investigated the effects of the chemokines IL-8 and RANTES on the activity of the Gardos channel (GC) of sickle red blood cells (SSRBCs). SSRBCs expressing the Duffy antigen receptor for chemokines (DARC) incubated under oxygenated conditions exhibit GC activation. The deoxygenation-stimulated K(+) loss via the GC is activated by the chemokines in the Duffy-positive SSRBCs. The percentage of cells with high density is 17 times higher in the Duffy-positive group. These findings are consistent with a greater susceptibility of Duffy-positive SSRBCs to inflammatory chemokines leading to GC activation and cellular dehydration and suggest a coupling, promoted by the sickling process, between DARC and the GC.

  9. CC Chemokine Receptor 5: The Interface of Host Immunity and Cancer

    PubMed Central

    de Oliveira, Carlos Eduardo Coral; Oda, Julie Massayo Maeda; Losi Guembarovski, Roberta; de Oliveira, Karen Brajão; Ariza, Carolina Batista; Neto, Jamil Soni; Banin Hirata, Bruna Karina; Watanabe, Maria Angelica Ehara

    2014-01-01

    Solid tumors are embedded in a stromal microenvironment consisting of immune cells, such as macrophages and lymphocytes, as well as nonimmune cells, such as endothelial cells and fibroblasts. Chemokines are a type of small secreted chemotactic cytokine and together with their receptors play key roles in the immune defense. Critically, they regulate cancer cellular migration and also contribute to their proliferation and survival. The CCR5 chemokine receptor is involved in leucocytes chemotaxis to sites of inflammation and plays an important role in the macrophages, T cells, and monocytes recruitment. Additionally, CCR5 may have an indirect effect on cancer progression by controlling the antitumor immune response, since it has been demonstrated that its expression could promote tumor growth and contribute to tumor metastasis, in different types of malignant tumors. Furthermore, it was demonstrated that a CCR5 antagonist may inhibit tumor growth, consisting of a possible therapeutic target. In this context, the present review focuses on the establishment of CCR5 within the interface of host immunity, tumor microenvironment, and its potential as a targeting to immunotherapy. PMID:24591756

  10. Tailored chemokine receptor modification improves homing of adoptive therapy T cells in a spontaneous tumor model.

    PubMed

    Garetto, Stefano; Sardi, Claudia; Martini, Elisa; Roselli, Giuliana; Morone, Diego; Angioni, Roberta; Cianciotti, Beatrice Claudia; Trovato, Anna Elisa; Franchina, Davide Giuseppe; Castino, Giovanni Francesco; Vignali, Debora; Erreni, Marco; Marchesi, Federica; Rumio, Cristiano; Kallikourdis, Marinos

    2016-07-12

    In recent years, tumor Adoptive Cell Therapy (ACT), using administration of ex vivo-enhanced T cells from the cancer patient, has become a promising therapeutic strategy. However, efficient homing of the anti-tumoral T cells to the tumor or metastatic site still remains a substantial hurdle. Yet the tumor site itself attracts both tumor-promoting and anti-tumoral immune cell populations through the secretion of chemokines. We attempted to identify these chemokines in a model of spontaneous metastasis, in order to "hijack" their function by expressing matching chemokine receptors on the cytotoxic T cells used in ACT, thus allowing us to enhance the recruitment of these therapeutic cells. Here we show that this enabled the modified T cells to preferentially home into spontaneous lymph node metastases in the TRAMP model, as well as in an inducible tumor model, E.G7-OVA. Due to the improved homing, the modified CD8+ T cells displayed an enhanced in vivo protective effect, as seen by a significant delay in E.G7-OVA tumor growth. These results offer a proof of principle for the tailored application of chemokine receptor modification as a means of improving T cell homing to the target tumor, thus enhancing ACT efficacy. Surprisingly, we also uncover that the formation of the peri-tumoral fibrotic capsule, which has been shown to impede T cell access to tumor, is partially dependent on host T cell presence. This finding, which would be impossible to observe in immunodeficient model studies, highlights possible conflicting roles that T cells may play in a therapeutic context.

  11. Peripheral blood cytokine and chemokine profiles in juvenile localized scleroderma: T-helper cell-associated cytokine profiles.

    PubMed

    Torok, Kathryn S; Kurzinski, Katherine; Kelsey, Christina; Yabes, Jonathan; Magee, Kelsey; Vallejo, Abbe N; Medsger, Thomas; Feghali-Bostwick, Carol A

    2015-12-01

    To evaluate peripheral blood T-helper (TH) cell-associated cytokine and chemokine profiles in localized scleroderma (LS), and correlate them with clinical disease features, including disease activity parameters. A 29-plex Luminex platform was used to analyze the humoral profile of plasma samples from 69 pediatric LS patients and 71 healthy pediatric controls. Cytokine/chemokine levels were compared between these two groups and within LS patients, focusing on validated clinical outcome measures of disease activity and damage in LS. Plasma levels of IP-10, MCP-1, IL-17a, IL-12p70, GM-CSF, PDGF-bb, IFN-α2, and IFN-γ were significantly higher in LS subjects compared to healthy controls. Analysis within the LS group demonstrated IP-10, TNF-α, and GM-CSF correlated with clinical measures of disease activity. Several cytokines/chemokines correlated with anti-histone antibody, while only a few correlated with positive ANA and single-stranded DNA antibody. This is the first time that multiple cytokines and chemokines have been examined simultaneously in LS. In general, a TH1 (IFN-γ) and TH17 (IL-17a) predominance was demonstrated in LS compared to healthy controls. There is also an IFN-γ signature with elevated IP-10, MCP-1, and IFN-γ, which has been previously demonstrated in systemic sclerosis, suggesting a shared pathophysiology. Within the LS patients, those with active disease demonstrated IP-10, TNF-α, and GM-CSF, which may potentially serve as biomarkers of disease activity in the clinical setting. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Evolutionary Analysis of Functional Divergence among Chemokine Receptors, Decoy Receptors, and Viral Receptors

    PubMed Central

    Daiyasu, Hiromi; Nemoto, Wataru; Toh, Hiroyuki

    2012-01-01

    Chemokine receptors (CKRs) function in the inflammatory response and in vertebrate homeostasis. Decoy and viral receptors are two types of CKR homologs with modified functions from those of the typical CKRs. The decoy receptors are able to bind ligands without signaling. On the other hand, the viral receptors show constitutive signaling without ligands. We examined the sites related to the functional difference. At first, the decoy and viral receptors were each classified into five groups, based on the molecular phylogenetic analysis. A multiple amino acid sequence alignment between each group and the CKRs was then constructed. The difference in the amino acid composition between the group and the CKRs was evaluated as the Kullback–Leibler (KL) information value at each alignment site. The KL information value is considered to reflect the difference in the functional constraints at the site. The sites with the top 5% of KL information values were selected and mapped on the structure of a CKR. The comparisons with decoy receptor groups revealed that the detected sites were biased on the intracellular side. In contrast, the sites detected from the comparisons with viral receptor groups were found on both the extracellular and intracellular sides. More sites were found in the ligand binding pocket in the analyses of the viral receptor groups, as compared to the decoy receptor groups. Some of the detected sites were located in the GPCR motifs. For example, the DRY motif of the decoy receptors was often degraded, although the motif of the viral receptors was basically conserved. The observations for the viral receptor groups suggested that the constraints in the pocket region are loose and that the sites on the intracellular side are different from those for the decoy receptors, which may be related to the constitutive signaling activity of the viral receptors. PMID:22855685

  13. Evolutionary Analysis of Functional Divergence among Chemokine Receptors, Decoy Receptors, and Viral Receptors.

    PubMed

    Daiyasu, Hiromi; Nemoto, Wataru; Toh, Hiroyuki

    2012-01-01

    Chemokine receptors (CKRs) function in the inflammatory response and in vertebrate homeostasis. Decoy and viral receptors are two types of CKR homologs with modified functions from those of the typical CKRs. The decoy receptors are able to bind ligands without signaling. On the other hand, the viral receptors show constitutive signaling without ligands. We examined the sites related to the functional difference. At first, the decoy and viral receptors were each classified into five groups, based on the molecular phylogenetic analysis. A multiple amino acid sequence alignment between each group and the CKRs was then constructed. The difference in the amino acid composition between the group and the CKRs was evaluated as the Kullback-Leibler (KL) information value at each alignment site. The KL information value is considered to reflect the difference in the functional constraints at the site. The sites with the top 5% of KL information values were selected and mapped on the structure of a CKR. The comparisons with decoy receptor groups revealed that the detected sites were biased on the intracellular side. In contrast, the sites detected from the comparisons with viral receptor groups were found on both the extracellular and intracellular sides. More sites were found in the ligand binding pocket in the analyses of the viral receptor groups, as compared to the decoy receptor groups. Some of the detected sites were located in the GPCR motifs. For example, the DRY motif of the decoy receptors was often degraded, although the motif of the viral receptors was basically conserved. The observations for the viral receptor groups suggested that the constraints in the pocket region are loose and that the sites on the intracellular side are different from those for the decoy receptors, which may be related to the constitutive signaling activity of the viral receptors.

  14. Elevated expression of the chemokine CCL18 in chronic rhinosinusitis with nasal polyps

    PubMed Central

    Peterson, Sarah; Poposki, Julie A.; Nagarkar, Deepti R.; Chustz, Regina T.; Peters, Anju T.; Suh, Lydia A.; Carter, Roderick; Norton, James; Harris, Kathleen E.; Grammer, Leslie C.; Tan, Bruce K.; Chandra, Rakesh K.; Conley, David B.; Kern, Robert C.; Schleimer, Robert P.; Kato, Atsushi

    2011-01-01

    Background Chronic rhinosinusitis with nasal polyps (CRSwNP) is associated with Th2-dominant inflammation including eosinophilia, in contrast to non-polypoid CRS (CRSsNP). Chemokine CCL18/PARC (pulmonary and activation regulated chemokine) is known to recruit naïve T cells, B cells, and immature dendritic cells, as well as activate fibroblasts. CCL18is thought to be involved in Th2-related inflammatory diseases including asthma and atopic dermatitis. Objectives The objective of this study was to investigate the expression of CCL18 in patients with CRS. Methods Using nasal polyp tissue (NP) and uncinate tissue (UT) from controls and patients with CRS, we examined the expression of CCL18 mRNA by real-time PCR and measured CCL18 protein by ELISA, western blot and immunofluorescence. Results Compared to UT tissue in control subjects, CCL18 mRNA was significantly increased in NP (p<0.001) and UT (p<0.05) from patients with CRSwNP but not in UT from patients with CRSsNP. Similarly, CCL18 protein was elevated in NP and UT from CRSwNP and levels were even higher in Samter’s triad patients. Immunohistochemical analysis revealed CCL18 expression in inflammatory cells and CCL18+ cells were significantly increased in NP. Immunofluorescence data showed co-localization of CCL18 in CD68+/CD163+/macrophage mannose receptor+ M2 macrophages and tryptase+ mast cells in NP. Levels of CCL18 correlated with markers of M2 macrophages but not with tryptase, suggesting that M2 macrophages are a major CCL18-producing cells in NP. Conclusion Overproduction of CCL18 might contribute to the pathogenesis of CRSwNP through its known activities, which include recruitment of lymphocytes and dendritic cells, activation of fibroblasts, and initiation of local inflammation. PMID:21943944

  15. Increased Transendothelial Transport of CCL3 Is Insufficient to Drive Immune Cell Transmigration through the Blood-Brain Barrier under Inflammatory Conditions In Vitro.

    PubMed

    De Laere, Maxime; Sousa, Carmelita; Meena, Megha; Buckinx, Roeland; Timmermans, Jean-Pierre; Berneman, Zwi; Cools, Nathalie

    2017-01-01

    Many neuroinflammatory diseases are characterized by massive immune cell infiltration into the central nervous system. Identifying the underlying mechanisms could aid in the development of therapeutic strategies specifically interfering with inflammatory cell trafficking. To achieve this, we implemented and validated a blood-brain barrier (BBB) model to study chemokine secretion, chemokine transport, and leukocyte trafficking in vitro. In a coculture model consisting of a human cerebral microvascular endothelial cell line and human astrocytes, proinflammatory stimulation downregulated the expression of tight junction proteins, while the expression of adhesion molecules and chemokines was upregulated. Moreover, chemokine transport across BBB cocultures was upregulated, as evidenced by a significantly increased concentration of the inflammatory chemokine CCL3 at the luminal side following proinflammatory stimulation. CCL3 transport occurred independently of the chemokine receptors CCR1 and CCR5, albeit that migrated cells displayed increased expression of CCR1 and CCR5. However, overall leukocyte transmigration was reduced in inflammatory conditions, although higher numbers of leukocytes adhered to activated endothelial cells. Altogether, our findings demonstrate that prominent barrier activation following proinflammatory stimulation is insufficient to drive immune cell recruitment, suggesting that additional traffic cues are crucial to mediate the increased immune cell infiltration seen in vivo during neuroinflammation.

  16. Regulatory role of Cdx-2 and Taq I polymorphism of vitamin D receptor gene on chemokine expression in pulmonary tuberculosis.

    PubMed

    Harishankar, M; Selvaraj, P

    2016-06-01

    Vitamin D receptor (VDR) gene variants have been shown to be regulating the immune response in tuberculosis. We studied the regulatory role of VDR promoter Cdx-2 and 3'UTR TaqI gene variants on chemokine levels from culture filtrate antigen (CFA) stimulated with or without 1,25(OH)2D3 treated peripheral blood mononuclear cells of 50 pulmonary tuberculosis patients (PTB) and 51 normal healthy controls (HCs). In CFA with 1,25(OH)2D3 treated cultures, the MIP-1α, MIP-1β, RANTES levels were significantly decreased in Cdx-2 AA genotype compared to GG genotype, while a significantly increased MIG level was observed in Cdx-2 AA genotype (p<0.05). In TaqI polymorphism, tt genotype significantly decreased MIP-1β and RANTES levels compared to TT genotype. Moreover, a significantly increased level of IP-10 and MIG was observed in TaqI tt genotype compared with TT genotype (p<0.05). The results suggests that the 1,25(OH)2D3 may alter the chemokine response through the VDR polymorphic variants during infection. Copyright © 2016 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  17. Combined Effects of Substrate Topography and Stiffness on Endothelial Cytokine and Chemokine Secretion

    PubMed Central

    Lee, Justin H.; Park, Soojin; Mun, Kevin; Boo, Yong Chool; Kim, Deok-Ho

    2016-01-01

    Endothelial physiology is regulated not only by humoral factors but also by mechanical factors such as fluid shear stress and the underlying cellular matrix microenvironment. The purpose of the present study was to examine the effects of matrix topographical cues on the endothelial secretion of cytokines/chemokines in vitro. Human endothelial cells were cultured on nanopatterned polymeric substrates with different ratios of ridge to groove widths (1:1, 1:2, and 1:5) and with different stiffnesses (6.7 MPa and 2.5 GPa) in the presence and absence of 1.0 ng/mL TNF-α. The levels of cytokines/chemokines secreted into the conditioned media were analyzed with a multiplexed bead-based sandwich immunoassay. Of the nano-patterns tested, the 1:1 and 1:2 type-patterns were found to induce the greatest degree of endothelial cell elongation and directional alignment. The 1:2 type nanopatterns lowered the secretion of inflammatory cytokines such as IL-1β, IL-3 and MCP-1, compared to unpatterned substrates. Additionally, of the two polymers tested, it was found that the stiffer substrate resulted in significant decreases in the secretion of IL-3 and MCP-1. These results suggest that substrates with specific extracellular nanotopographical cues or stiffnesses may provide anti-atherogenic effects like those seen with laminar shear stresses by suppressing the endothelial secretion of cytokines and chemokines involved in vascular inflammation and remodeling. PMID:25658848

  18. Novel Chemokine-Based Immunotoxins for Potent and Selective Targeting of Cytomegalovirus Infected Cells

    PubMed Central

    Spiess, Katja; Jeppesen, Mads G.; Malmgaard-Clausen, Mikkel; Krzywkowski, Karen

    2017-01-01

    Immunotoxins as antiviral therapeutics are largely unexplored but have promising prospective due to their high selectivity potential and their unparalleled efficiency. One recent example targeted the virus-encoded G protein-coupled receptor US28 as a strategy for specific and efficient treatment of human cytomegalovirus (HCMV) infections. US28 is expressed on virus-infected cells and scavenge chemokines by rapid internalization. The chemokine-based fusion-toxin protein (FTP) consisted of a variant (F49A) of CX3CL1 specifically targeting US28 linked to the catalytic domain of Pseudomonas exotoxin A (PE). Here, we systematically seek to improve F49A-FTP by modifications in its three structural domains; we generated variants with (1) altered chemokine sequence (K14A, F49L, and F49E), (2) shortened and elongated linker region, and (3) modified toxin domain. Only F49L-FTP displayed higher selectivity in its binding to US28 versus CX3CR1, the endogenous receptor for CX3CL1, but this was not matched by a more selective killing of US28-expressing cells. A longer linker and different toxin variants decreased US28 affinity and selective killing. Thereby, F49A-FTP represents the best candidate for HCMV treatment. Many viruses encode internalizing receptors suggesting that not only HCMV but also, for instance, Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus may be targeted by FTPs. PMID:28251165

  19. Novel Chemokine-Based Immunotoxins for Potent and Selective Targeting of Cytomegalovirus Infected Cells.

    PubMed

    Spiess, Katja; Jeppesen, Mads G; Malmgaard-Clausen, Mikkel; Krzywkowski, Karen; Kledal, Thomas N; Rosenkilde, Mette M

    2017-01-01

    Immunotoxins as antiviral therapeutics are largely unexplored but have promising prospective due to their high selectivity potential and their unparalleled efficiency. One recent example targeted the virus-encoded G protein-coupled receptor US28 as a strategy for specific and efficient treatment of human cytomegalovirus (HCMV) infections. US28 is expressed on virus-infected cells and scavenge chemokines by rapid internalization. The chemokine-based fusion-toxin protein (FTP) consisted of a variant (F49A) of CX 3 CL1 specifically targeting US28 linked to the catalytic domain of Pseudomonas exotoxin A (PE). Here, we systematically seek to improve F49A-FTP by modifications in its three structural domains; we generated variants with (1) altered chemokine sequence (K14A, F49L, and F49E), (2) shortened and elongated linker region, and (3) modified toxin domain. Only F49L-FTP displayed higher selectivity in its binding to US28 versus CX 3 CR1, the endogenous receptor for CX 3 CL1, but this was not matched by a more selective killing of US28-expressing cells. A longer linker and different toxin variants decreased US28 affinity and selective killing. Thereby, F49A-FTP represents the best candidate for HCMV treatment. Many viruses encode internalizing receptors suggesting that not only HCMV but also, for instance, Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus may be targeted by FTPs.

  20. Chemokine-like factor 1 (CLFK1) is over-expressed in patients with atopic dermatitis.

    PubMed

    Yang, Gao-Yun; Chen, Xue; Sun, Ya-Chun; Ma, Chen-Li; Qian, Ge

    2013-01-01

    Human chemokine-like factor 1 (CKLF1), a recently discovered chemokine, has a broad spectrum of biological functions in immune-mediated diseases. It is highly expressed on Th2 lymphocytes and is a functional ligand for human CCR4. CKLF1 has a major role in the recruitment and activation of leucocytes, which plays an important role in the pathogenesis of allergic diseases. The present study was designed to determine the expression of CKLF1 in skin and serum in patients with atopic dermatitis (AD). The CKLF1 protein expression in skin lesion was analyzed by immunohistochemistry and ELISA. The mRNA expression of CKLF1 in skin lesion was detected by Real-time PCR. The serum levels of CKLF1, IgE, eotaxin, IL-4, IL-5, and IL-13 were measured by ELISA. Histopathological changes in the skin of AD patients showed local inflammation with epidermal thickening and significant inflammatory cellular infiltration. Immunohistochemistry results demonstrated that CKLF1-staining positive cells were located in the epidermal and dermis, and that the CKLF1 expression in AD patients was significantly higher than that in normal control. The CKLF1 mRNA expression in AD patients was significantly higher than that in healthy controls. Serum CKLF1 and IgE levels were significantly increased in AD patients, as were the serum levels of IL-4, IL-5, IL-13 and eotaxin. Both CKLF1 protien and mRNA levels are overexpressed in the skin lesion of AD patients, along with an increase in serum CKLF1 level, indicating that CKLF1 may play an important role in the development of atopic dermatitis.

  1. Intestinal ischemia/reperfusion injury triggers activation of innate toll-like receptor 4 and adaptive chemokine programs.

    PubMed

    Watson, M J; Ke, B; Shen, X-D; Gao, F; Busuttil, R W; Kupiec-Weglinski, J W; Farmer, D G

    2008-12-01

    Ischemia/reperfusion injury (IRI) is a major problem in intestinal transplantation. Toll-like receptor 4 (TLR4) has been implicated as a possible link between the innate and adaptive immune systems, however little data exists regarding TLR4 in intestinal IRI. The goal of this study is to evaluate the involvement of TLR4 in intestinal IRI and to assess the effect on T cell related chemokine programs. C57BL6 mice underwent 100 minutes of warm intestinal ischemia by SMA clamping. Control WT mice underwent laparotomy without vascular occlusion. Separate survival and analysis groups were performed, and intestinal tissue was harvested at 1 hour, 2 hours, 4 hours, and 24 hours post-reperfusion. Analysis included histology, CD3 immunostaining, myeloperoxidase activity, Western blot, and PCR. Survival was significantly worse in the IRI group vs control (50% vs. 100%). IRI caused severe histopathological injury including mucosal erosions and villous congestion and hemorrhage. Myeloperoxidase activity increased in a time-dependent manner after IRI (2.71 0.25 at 1 hour, 2.92 0.25 at 2 hours, 4 0.16 at 4 hours, 5.1 0.25 at 24 hours vs 0.47 0.11 controls, P < .05). Protein expression of TLR4 followed by NF-kappaB was increased after IRI. Additionally, mRNA production of IP-10, MIP-2, MCP-1, and RANTES was increased at all time-points, as was mRNA for ICAM-1 and E-selectin. This study is the first to demonstrate increased expression of TLR4 and NF-kappaB after warm intestinal IRI. This detrimental cascade may be initiated by TLR4 via NF-kappaB signaling pathways, implicating TLR4 as a potential therapeutic target for the prevention of intestinal IRI.

  2. Th1/Th17-Related Cytokines and Chemokines and Their Implications in the Pathogenesis of Pemphigus Vulgaris.

    PubMed

    Timoteo, Rodolfo Pessato; da Silva, Marcos Vinicius; Miguel, Camila Botelho; Silva, Djalma Alexandre Alves; Catarino, Jonatas Da Silva; Rodrigues Junior, Virmondes; Sales-Campos, Helioswilton; Freire Oliveira, Carlo Jose

    2017-01-01

    Pemphigus vulgaris (PV) is an autoimmune disease characterized by the presence of IgG autoantibodies against desmoglein-3. Despite the variety of findings, the chemokine and cytokine profiles that characterize the immune response in the disease are still poorly explored. Thus, 20 PV patients and 20 controls were grouped according to gender, ethnicity, place of residence, and clinical parameters of the disease. Then, the levels of chemokines and of Th1/Th2/Th17/Treg/Th9/Th22-related cytokines were assessed in the serum. PV patients had higher levels of inflammatory Th1/Th17 cytokines (IFN- γ , IL-17, and IL-23), as well as higher levels of CXCL8 and reduced levels of Th1/Th2-related chemokines (IP-10 and CCL11). However, no differences in the levels of IL-2, IL-6, TNF- α , IL-1 β , IL-4, IL-9, IL-12, TGF- β , IL-33, MCP-1, RANTES, and MIP-1 α were found between PV patients and their control counterparts. Furthermore, PV patients with skin lesions had higher serum levels of IL-6 and CXCL8 when compared to PV patients without lesions. Taken together, our findings describe the role of cytokines and chemokines associated with Th1/Th17 immune response in PV patients. Finally, these data are important for better understanding of the immune aspects that control disease outcome, and they may also provide important information about why patients develop autoantibodies against desmogleins.

  3. Deficiency in adipocyte chemokine receptor CXCR4 exacerbates obesity and compromises thermoregulatory responses of brown adipose tissue in a mouse model of diet-induced obesity

    PubMed Central

    Yao, Longbiao; Heuser-Baker, Janet; Herlea-Pana, Oana; Zhang, Nan; Szweda, Luke I.; Griffin, Timothy M.; Barlic-Dicen, Jana

    2014-01-01

    The chemokine receptor CXCR4 is expressed on adipocytes and macrophages in adipose tissue, but its role in this tissue remains unknown. We evaluated whether deficiency in either adipocyte or myeloid leukocyte CXCR4 affects body weight (BW) and adiposity in a mouse model of high-fat-diet (HFD)-induced obesity. We found that ablation of adipocyte, but not myeloid leukocyte, CXCR4 exacerbated obesity. The HFD-fed adipocyte-specific CXCR4-knockout (AdCXCR4ko) mice, compared to wild-type C57BL/6 control mice, had increased BW (average: 52.0 g vs. 35.5 g), adiposity (average: 49.3 vs. 21.0% of total BW), and inflammatory leukocyte content in white adipose tissue (WAT), despite comparable food intake. As previously reported, HFD feeding increased uncoupling protein 1 (UCP1) expression (fold increase: 3.5) in brown adipose tissue (BAT) of the C57BL/6 control mice. However, no HFD-induced increase in UCP1 expression was observed in the AdCXCR4ko mice, which were cold sensitive. Thus, our study suggests that adipocyte CXCR4 limits development of obesity by preventing excessive inflammatory cell recruitment into WAT and by supporting thermogenic activity of BAT. Since CXCR4 is conserved between mouse and human, the newfound role of CXCR4 in mouse adipose tissue may parallel the role of this chemokine receptor in human adipose tissue.—Yao, L., Heuser-Baker, J., Herlea-Pana, O., Zhang, N., Szweda, L. I., Griffin, T. M., Barlic-Dicen, J. Deficiency in adipocyte chemokine receptor CXCR4 exacerbates obesity and compromises thermoregulatory responses of brown adipose tissue in a mouse model of diet-induced obesity. PMID:25016030

  4. The MCP-1, CCL-5 and SDF-1 chemokines as pro-inflammatory markers in generalized anxiety disorder and personality disorders.

    PubMed

    Ogłodek, Ewa A; Szota, Anna M; Just, Marek J; Moś, Danuta M; Araszkiewicz, Aleksander

    2015-02-01

    The co-occurrence of generalized anxiety disorder and personality disorders suggests the existence of association between the neurobiological predispositions leading to the development of these disorders and activation of cytokine system. Pro-inflammatory chemokines such as CCL-5/RANTES (regulated upon activation normal T cell expressed and secreted) and CXCL12/SDF-1 (stromal derived factor) play an important role in immune response. A total of 160 participants were enrolled in the study, 120 of whom comprised the study group (people with the dual diagnosis of personality disorder and generalized anxiety disorder). The mean age was 41.4 ± 3.5 years (range: 20-44 years). The control group consisted of 40 healthy individuals in the mean age of 40.8 ± 3.1 years (range: 20-43 years). A blood sample was collected from each participant and the plasma levels of the CCL-2/MCP-1 (monocyte chemoattractant protein-1), RANTES and SDF-1 chemokines were determined by ELISA. Increased levels of MCP-1 and SDF-1 were found both in women and in men versus the control group for all types of personality disorders. The levels of CCL-5 in men were significantly increased versus the control group and significantly higher in women than in men. Neither women nor men with avoidant or obsessive-compulsive personality disorder showed any significant differences in MCP-1 or SFD-1 levels. In subjects with borderline personality disorder, the levels of the study chemokines were higher in women than in men. Our study has shown the need for determination of proinflammatory interleukins which are considered as biomarkers of personality disorders and generalized anxiety disorders. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  5. A Comprehensive Evaluation of Nasal and Bronchial Cytokines and Chemokines Following Experimental Rhinovirus Infection in Allergic Asthma: Increased Interferons (IFN-γ and IFN-λ) and Type 2 Inflammation (IL-5 and IL-13).

    PubMed

    Hansel, Trevor T; Tunstall, Tanushree; Trujillo-Torralbo, Maria-Belen; Shamji, Betty; Del-Rosario, Ajerico; Dhariwal, Jaideep; Kirk, Paul D W; Stumpf, Michael P H; Koopmann, Jens; Telcian, Aurica; Aniscenko, Julia; Gogsadze, Leila; Bakhsoliani, Eteri; Stanciu, Luminita; Bartlett, Nathan; Edwards, Michael; Walton, Ross; Mallia, Patrick; Hunt, Toby M; Hunt, Trevor L; Hunt, Duncan G; Westwick, John; Edwards, Matthew; Kon, Onn Min; Jackson, David J; Johnston, Sebastian L

    2017-05-01

    Rhinovirus infection is a major cause of asthma exacerbations. We studied nasal and bronchial mucosal inflammatory responses during experimental rhinovirus-induced asthma exacerbations. We used nasosorption on days 0, 2-5 and 7 and bronchosorption at baseline and day 4 to sample mucosal lining fluid to investigate airway mucosal responses to rhinovirus infection in patients with allergic asthma (n=28) and healthy non-atopic controls (n=11), by using a synthetic absorptive matrix and measuring levels of 34 cytokines and chemokines using a sensitive multiplex assay. Following rhinovirus infection asthmatics developed more upper and lower respiratory symptoms and lower peak expiratory flows compared to controls (all P<0.05). Asthmatics also developed higher nasal lining fluid levels of an anti-viral pathway (including IFN-γ, IFN-λ/IL-29, CXCL11/ITAC, CXCL10/IP10 and IL-15) and a type 2 inflammatory pathway (IL-4, IL-5, IL-13, CCL17/TARC, CCL11/eotaxin, CCL26/eotaxin-3) (area under curve day 0-7, all P<0.05). Nasal IL-5 and IL-13 were higher in asthmatics at day 0 (P<0.01) and levels increased by days 3 and 4 (P<0.01). A hierarchical correlation matrix of 24 nasal lining fluid cytokine and chemokine levels over 7days demonstrated expression of distinct interferon-related and type 2 pathways in asthmatics. In asthmatics IFN-γ, CXCL10/IP10, CXCL11/ITAC, IL-15 and IL-5 increased in bronchial lining fluid following viral infection (all P<0.05). Precision sampling of mucosal lining fluid identifies robust interferon and type 2 responses in the upper and lower airways of asthmatics during an asthma exacerbation. Nasosorption and bronchosorption have potential to define asthma endotypes in stable disease and at exacerbation. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Altered TGF-β endocytic trafficking contributes to the increased signaling in Marfan syndrome.

    PubMed

    Siegert, Anna-Maria; Serra-Peinado, Carla; Gutiérrez-Martínez, Enric; Rodríguez-Pascual, Fernando; Fabregat, Isabel; Egea, Gustavo

    2018-02-01

    The main cardiovascular alteration in Marfan syndrome (MFS) is the formation of aortic aneurysms in which augmented TGF-β signaling is reported. However, the primary role of TGF-β signaling as a molecular link between the genetic mutation of fibrillin-1 and disease onset is controversial. The compartmentalization of TGF-β endocytic trafficking has been shown to determine a signaling response in which clathrin-dependent internalization leads to TGF-β signal propagation, and caveolin-1 (CAV-1) associated internalization leads to signal abrogation. We here studied the contribution of endocytic trafficking compartmentalization to increased TGF-β signaling in vascular smooth muscle cells (VSMC) from MFS patients. We examined molecular components involved in clathrin- (SARA, SMAD2) and caveolin-1- (SMAD7, SMURF2) dependent endocytosis. Marfan VSMC showed higher recruitment of SARA and SMAD2 to membranes and their increased interaction with TGF-β receptor II, as well as higher colocalization of SARA with the early endosome marker EEA1. We assessed TGF-β internalization using a biotinylated ligand (b-TGF-β), which colocalized equally with either EEA1 or CAV-1 in VSMC from Marfan patients and controls. However, in Marfan cells, colocalization of b-TGF-β with SARA and EEA1 was increased and accompanied by decreased colocalization with CAV-1 at EEA1-positive endosomes. Moreover, Marfan VSMC showed higher transcriptional levels and membrane enrichment of RAB5. Our results indicate that increased RAB5-associated SARA localization to early endosomes facilitates its TGF-β receptor binding and phosphorylation of signaling mediator SMAD2 in Marfan VSMC. This is accompanied by a reduction of TGF-β sorting into multifunctional vesicles containing cargo from both internalization pathways. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Tumor cell apoptosis induces tumor-specific immunity in a CC chemokine receptor 1- and 5-dependent manner in mice.

    PubMed

    Iida, Noriho; Nakamoto, Yasunari; Baba, Tomohisa; Kakinoki, Kaheita; Li, Ying-Yi; Wu, Yu; Matsushima, Kouji; Kaneko, Shuichi; Mukaida, Naofumi

    2008-10-01

    The first step in the generation of tumor immunity is the migration of dendritic cells (DCs) to the apoptotic tumor, which is presumed to be mediated by various chemokines. To clarify the roles of chemokines, we induced apoptosis using suicide gene therapy and investigated the immune responses following tumor apoptosis. We injected mice with a murine hepatoma cell line, BNL 1ME A.7R.1 (BNL), transfected with HSV-thymidine kinase (tk) gene and then treated the animals with ganciclovir (GCV). GCV treatment induced massive tumor cell apoptosis accompanied with intratumoral DC infiltration. Tumor-infiltrating DCs expressed chemokine receptors CCR1 and CCR5, and T cells and macrophages expressed CCL3, a ligand for CCR1 and CCR5. Moreover, tumor apoptosis increased the numbers of DCs migrating into the draining lymph nodes and eventually generated a specific cytotoxic cell population against BNL cells. Although GCV completely eradicated HSV-tk-transfected BNL cells in CCR1-, CCR5-, or CCL3-deficient mice, intratumoral and intranodal DC infiltration and the subsequent cytotoxicity generation were attenuated in these mice. When parental cells were injected again after complete eradication of primary tumors by GCV treatment, the wild-type mice completely rejected the rechallenged cells, but the deficient mice exhibited impairment in rejection. Thus, we provide definitive evidence indicating that CCR1 and CCR5 and their ligand CCL3 play a crucial role in the regulation of intratumoral DC accumulation and the subsequent establishment of tumor immunity following induction of tumor apoptosis by suicide genes.

  8. Identification and expression analysis of a CC chemokine from cobia (Rachycentron canadum).

    PubMed

    Feng, Juan; Su, Youlu; Guo, Zhixun; Xu, Liwen; Sun, Xiuxiu; Wang, Yunxin

    2013-06-01

    Chemokines are small, secreted cytokine peptides known principally for their ability to induce migration and activation of leukocyte populations and regulate the immune response mechanisms. The cobia (Rachycentron canadum), a marine finfish species, has a great potential for net cage aquaculture in the South China Sea. We isolated and characterized a CC chemokine cDNA from cobia-designated RcCC2. Its cDNA is 783 bp in length and encodes a putative protein of 110 amino acids. Homology and phylogenetic analysis revealed that the RcCC2 gene, which contains four conserved cysteine residues, shares a high degree of similarity with other known CC chemokine sequences and is closest to the CCL19/21 clade. The mRNA of RcCC2 is expressed constitutively in all tested tissues, including gill, liver, muscle, spleen, kidney, head kidney, skin, brain, stomach, intestine and heart, but not blood, with the highest level of expression in gill and liver. The reverse transcription quantitative polymerase chain reaction was used to examine the expression of the RcCC2 gene in immune-related tissues, including head kidney, spleen and liver, following intraperitoneal injection of the viral mimic polyriboinosinic polyribocytidylic acid, formalin-killed Vibrio carchariae (bacterial vaccine) and phosphate-buffered saline as a control. RcCC2 gene expression was up-regulated differentially in head kidney, spleen and liver during 12 h after challenge. These results indicate that the RcCC2 gene is inducible and is involved in immune responses, suggesting RcCC2 has an important role in the early stage of viral and bacterial infections.

  9. Inflammatory role and prognostic value of platelet chemokines in acute coronary syndrome.

    PubMed

    Blanchet, X; Cesarek, K; Brandt, J; Herwald, H; Teupser, D; Küchenhoff, H; Karshovska, E; Mause, S F; Siess, W; Wasmuth, H; Soehnlein, O; Koenen, R R; Weber, C; von Hundelshausen, P

    2014-12-01

    Activated platelets and neutrophils exacerbate atherosclerosis. Platelets release the chemokines CXCL4, CXCL4L1 and CCL5, whereas myeloperoxidase (MPO) and azurocidin are neutrophil-derived. We investigated whether plasma levels of these platelet and neutrophil mediators are affected by the acute coronary syndrome (ACS), its medical treatment, concomitant clinical or laboratory parameters, and predictive for the progression of coronary artery disease (CAD). In an observational study, the association of various factors with plasma concentrations of platelet chemokines and neutrophil mediators in 204 patients, either upon admission with ACS and 6 hours later or without ACS or CAD, was determined by multiple linear regression. Mediator release was further analysed after activation of blood with ACS-associated triggers such as plaque material. CXCL4, CXCL4L1, CCL5, MPO and azurocidin levels were elevated in ACS. CXCL4 and CCL5 but not CXCL4L1 or MPO were associated with platelet counts and CRP. CXCL4 (in association with heparin treatment) and MPO declined over 6 hours during ACS. Elevated CCL5 was associated with a progression of CAD. Incubating blood with plaque material, PAR1 and PAR4 activation induced a marked release of CXCL4 and CCL5, whereas CXCL4L1 and MPO were hardly or not altered. Platelet chemokines and neutrophil products are concomitantly elevated in ACS and differentially modulated by heparin treatment. CCL5 levels during ACS predict a progression of preexisting CAD. Platelet-derived products appear to dominate the inflammatory response during ACS, adding to the emerging evidence that ACS per se may promote vascular inflammation.

  10. Autocrine CCL2, CXCL4, CXCL9 and CXCL10 signal in retinal endothelial cells and are enhanced in diabetic retinopathy.

    PubMed

    Nawaz, M I; Van Raemdonck, K; Mohammad, G; Kangave, D; Van Damme, J; Abu El-Asrar, A M; Struyf, S

    2013-04-01

    This study aimed at examining the presence and role of chemokines (angiogenic CCL2/MCP-1 and angiostatic CXCL4/PF-4, CXCL9/Mig, CXCL10/IP-10) in proliferative diabetic retinopathy (PDR). Regulated chemokine production in human retinal microvascular cells (HRMEC) and chemokine levels in vitreous samples from 40 PDR and 29 non-diabetic patients were analyzed. MCP-1, PF-4, Mig, IP-10 and VEGF levels in vitreous fluid from PDR patients were significantly higher than in controls. Except for IP-10, cytokine levels were significantly higher in PDR with active neovascularization and PDR without traction retinal detachment (TRD) than those in inactive PDR, PDR with TRD and control subjects. Exploratory regression analysis identified associations between higher levels of IP-10 and inactive PDR and PDR with TRD. VEGF levels correlated positively with MCP-1 and IP-10. Significant positive correlations were observed between MCP-1 and IP-10 levels. In line with these clinical findings Western blot analysis revealed increased PF-4 expression in diabetic rat retinas. HRMEC produced MCP-1, Mig and IP-10 after stimulation with IFN-γ, IL-1β or lipopolysaccharide. IFN-γ synergistically enhanced Mig and IP-10 production in response to IL-1β or lipopolysaccharide. MCP-1 was produced by HRMEC in response to VEGF treatment and activated HRMEC via the ERK and Akt/PKB pathway. On the other hand, phosphorylation of ERK induced by VEGF and MCP-1 was inhibited by PF-4, Mig and IP-10. In accordance with inhibition of angiogenic signal transduction pathways, PF-4 inhibited in vitro migration of HRMEC. Thus, regulatory roles for chemokines in PDR were demonstrated. In particular, IP-10 might be associated with the resolution of active PDR and the development of TRD. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Changing the threshold-Signals and mechanisms of mast cell priming.

    PubMed

    Halova, Ivana; Rönnberg, Elin; Draberova, Lubica; Vliagoftis, Harissios; Nilsson, Gunnar P; Draber, Petr

    2018-03-01

    Mast cells play a key role in allergy and other inflammatory diseases involving engagement of multivalent antigen with IgE bound to high-affinity IgE receptors (FcεRIs). Aggregation of FcεRIs on mast cells initiates a cascade of signaling events that eventually lead to degranulation, secretion of leukotrienes and prostaglandins, and cytokine and chemokine production contributing to the inflammatory response. Exposure to pro-inflammatory cytokines, chemokines, bacterial and viral products, as well as some other biological products and drugs, induces mast cell transition from the basal state into a primed one, which leads to enhanced response to IgE-antigen complexes. Mast cell priming changes the threshold for antigen-mediated activation by various mechanisms, depending on the priming agent used, which alone usually do not induce mast cell degranulation. In this review, we describe the priming processes induced in mast cells by various cytokines (stem cell factor, interleukins-4, -6 and -33), chemokines, other agents acting through G protein-coupled receptors (adenosine, prostaglandin E 2 , sphingosine-1-phosphate, and β-2-adrenergic receptor agonists), toll-like receptors, and various drugs affecting the cytoskeleton. We will review the current knowledge about the molecular mechanisms behind priming of mast cells leading to degranulation and cytokine production and discuss the biological effects of mast cell priming induced by several cytokines. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Dual Targeting of the Chemokine Receptors CXCR4 and ACKR3 with Novel Engineered Chemokines*

    PubMed Central

    Hanes, Melinda S.; Salanga, Catherina L.; Chowdry, Arnab B.; Comerford, Iain; McColl, Shaun R.; Kufareva, Irina; Handel, Tracy M.

    2015-01-01

    The chemokine CXCL12 and its G protein-coupled receptors CXCR4 and ACKR3 are implicated in cancer and inflammatory and autoimmune disorders and are targets of numerous antagonist discovery efforts. Here, we describe a series of novel, high affinity CXCL12-based modulators of CXCR4 and ACKR3 generated by selection of N-terminal CXCL12 phage libraries on live cells expressing the receptors. Twelve of 13 characterized CXCL12 variants are full CXCR4 antagonists, and four have Kd values <5 nm. The new variants also showed high affinity for ACKR3. The variant with the highest affinity for CXCR4, LGGG-CXCL12, showed efficacy in a murine model for multiple sclerosis, demonstrating translational potential. Molecular modeling was used to elucidate the structural basis of binding and antagonism of selected variants and to guide future designs. Together, this work represents an important step toward the development of therapeutics targeting CXCR4 and ACKR3. PMID:26216880

  13. The chemokine receptor CX3CR1 coordinates monocyte recruitment and endothelial regeneration after arterial injury.

    PubMed

    Getzin, Tobias; Krishnasamy, Kashyap; Gamrekelashvili, Jaba; Kapanadze, Tamar; Limbourg, Anne; Häger, Christine; Napp, L Christian; Bauersachs, Johann; Haller, Hermann; Limbourg, Florian P

    2018-02-01

    Regeneration of arterial endothelium after injury is critical for the maintenance of normal blood flow, cell trafficking, and vascular function. Using mouse models of carotid injury, we show that the transition from a static to a dynamic phase of endothelial regeneration is marked by a strong increase in endothelial proliferation, which is accompanied by induction of the chemokine CX 3 CL1 in endothelial cells near the wound edge, leading to progressive recruitment of Ly6C lo monocytes expressing high levels of the cognate CX 3 CR1 chemokine receptor. In Cx3cr1 -deficient mice recruitment of Ly6C lo monocytes, endothelial proliferation and regeneration of the endothelial monolayer after carotid injury are impaired, which is rescued by acute transfer of normal Ly6C lo monocytes. Furthermore, human non-classical monocytes induce proliferation of endothelial cells in co-culture experiments in a VEGFA-dependent manner, and monocyte transfer following carotid injury promotes endothelial wound closure in a hybrid mouse model in vivo Thus, CX 3 CR1 coordinates recruitment of specific monocyte subsets to sites of endothelial regeneration, which promote endothelial proliferation and arterial regeneration. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  14. Dysregulation of chemokine receptor expression and function in leukocytes from ALS patients.

    PubMed

    Perner, Caroline; Perner, Florian; Stubendorff, Beatrice; Förster, Martin; Witte, Otto W; Heidel, Florian H; Prell, Tino; Grosskreutz, Julian

    2018-03-28

    Amyotrophic lateral sclerosis (ALS) is rapidly progressive adult-onset motor neuron disease characterized by the neurodegeneration of both upper and lower motor neurons in the cortex and the spinal cord; the majority of patients succumb to respiratory failure. Although the etiology is not yet fully understood, there is compelling evidence that ALS is a multi-systemic disorder, with peripheral inflammation critically contributing to the disease process. However, the full extent and nature of this immunological dysregulation remains to be established, particularly within circulating blood cells. Therefore, the aim of the present study was to identify dysregulated inflammatory molecules in peripheral blood cells of ALS patients and analyze for functional consequences of the observed findings. To this end, we employed flow cytometry-based screening to quantify the surface expression of major chemokine receptors and integrins. A significantly increased expression of CXCR3, CXCR4, CCL2, and CCL5 was observed on T cells in ALS patients compared to healthy controls. Intriguingly, the expression was even more pronounced in patients with a slow progressive phenotype. To further investigate the functional consequences of this altered surface expression, we used a modified Boyden chamber assay to measure chemotaxis in ALS patient-derived lymphocytes. Interestingly, chemoattraction with the CXCR3-Ligand IP10 led to upregulated migratory behavior of ALS lymphocytes compared to healthy controls. Taken together, our data provides evidence for a functional dysregulation of IP10-directed chemotaxis in peripheral blood cells in ALS patients. However, whether the chemokine itself or its receptor CXCR3, or both, could serve as potential therapeutic targets in ALS requires further investigations.

  15. The Role of Chemokines in Fibrotic Wound Healing

    PubMed Central

    Ding, Jie; Tredget, Edward E.

    2015-01-01

    Significance: Main dermal forms of fibroproliferative disorders are hypertrophic scars (HTS) and keloids. They often occur after cutaneous wound healing after skin injury, or keloids even form spontaneously in the absence of any known injury. HTS and keloids are different in clinical performance, morphology, and histology, but they all lead to physical and psychological problems for survivors. Recent Advances: Although the mechanism of wound healing at cellular and tissue levels has been well described, the molecular pathways involved in wound healing, especially fibrotic healing, is incompletely understood. Critical Issues: Abnormal scars not only lead to increased health-care costs but also cause significant psychological problems for survivors. A plethora of therapeutic strategies have been used to prevent or attenuate excessive scar formation; however, most therapeutic approaches remain clinically unsatisfactory. Future Directions: Effective care depends on an improved understanding of the mechanisms that cause abnormal scars in patients. A thorough understanding of the roles of chemokines in cutaneous wound healing and abnormal scar formation will help provide more effective preventive and therapeutic strategies for dermal fibrosis as well as for other proliferative disorders. PMID:26543681

  16. Increased bone morphogenetic protein signaling contributes to age-related declines in neurogenesis and cognition.

    PubMed

    Meyers, Emily A; Gobeske, Kevin T; Bond, Allison M; Jarrett, Jennifer C; Peng, Chian-Yu; Kessler, John A

    2016-02-01

    Aging is associated with decreased neurogenesis in the hippocampus and diminished hippocampus-dependent cognitive functions. Expression of bone morphogenetic protein 4 (BMP4) increases with age by more than 10-fold in the mouse dentate gyrus while levels of the BMP inhibitor, noggin, decrease. This results in a profound 30-fold increase in phosphorylated-SMAD1/5/8, the effector of canonical BMP signaling. Just as observed in mice, a profound increase in expression of BMP4 is observed in the dentate gyrus of humans with no known cognitive abnormalities. Inhibition of BMP signaling either by overexpression of noggin or transgenic manipulation not only increases neurogenesis in aging mice, but remarkably, is associated with a rescue of cognitive deficits to levels comparable to young mice. Additive benefits are observed when combining inhibition of BMP signaling and environmental enrichment. These findings indicate that increased BMP signaling contributes significantly to impairments in neurogenesis and to cognitive decline associated with aging, and identify this pathway as a potential druggable target for reversing age-related changes in cognition. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Peroxisome proliferator-activated receptor {alpha} agonists modulate Th1 and Th2 chemokine secretion in normal thyrocytes and Graves' disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antonelli, Alessandro, E-mail: a.antonelli@med.unipi.it; Ferrari, Silvia Martina, E-mail: sm.ferrari@int.med.unipi.it; Frascerra, Silvia, E-mail: lafrasce@gmail.com

    2011-07-01

    Until now, no data are present about the effect of peroxisome proliferator-activated receptor (PPAR){alpha} activation on the prototype Th1 [chemokine (C-X-C motif) ligand (CXCL)10] (CXCL10) and Th2 [chemokine (C-C motif) ligand 2] (CCL2) chemokines secretion in thyroid cells. The role of PPAR{alpha} and PPAR{gamma} activation on CXCL10 and CCL2 secretion was tested in Graves' disease (GD) and control primary thyrocytes stimulated with interferon (IFN){gamma} and tumor necrosis factor (TNF){alpha}. IFN{gamma} stimulated both CXCL10 and CCL2 secretion in primary GD and control thyrocytes. TNF{alpha} alone stimulated CCL2 secretion, while had no effect on CXCL10. The combination of IFN{gamma} and TNF{alpha} hadmore » a synergistic effect both on CXCL10 and CCL2 chemokines in GD thyrocytes at levels comparable to those of controls. PPAR{alpha} activators inhibited the secretion of both chemokines (stimulated with IFN{gamma} and TNF{alpha}) at a level higher (for CXCL10, about 60-72%) than PPAR{gamma} agonists (about 25-35%), which were confirmed to inhibit CXCL10, but not CCL2. Our data show that CCL2 is modulated by IFN{gamma} and TNF{alpha} in GD and normal thyrocytes. Furthermore we first show that PPAR{alpha} activators inhibit the secretion of CXCL10 and CCL2 in thyrocytes, suggesting that PPAR{alpha} may be involved in the modulation of the immune response in the thyroid.« less

  18. Blockade of CXCR6 reduces invasive potential of gastric cancer cells through inhibition of AKT signaling.

    PubMed

    Li, Ya; Fu, Li-Xia; Zhu, Wan-Lin; Shi, Hua; Chen, Li-Jian; Ye, Bin

    2015-06-01

    Chemokines and their receptors have been implicated in cell migration and metastasis of multiple malignant tumors. But the function of CXCR6 signaling in gastric cancer is not comprehensively understood. In the present study, we hypothesized that CXCR6 signaling might play an essential role in the progression of gastric cancer. The expression of CXCR6 was examined by immunohistochemical assay in human gastric cancer, and lentivirus-mediated CXCR6 knockdown by shRNA (Lv-shCXCR6) was used for investigating cell migration and invasion indicated by Wound-healing and Transwell assays. Consequently, the expression level of CXCR6 was increased in gastric cancer compared with the adjacent non-tumor tissues (54.2% vs. 27.1%, P = 0.006), and was closely associated with the metastatic lymph node in gastric cancer (P = 0.021). Furthermore, blockade of the CXCR6 signaling reduced the migration and invasion of gastric cancer cells followed by decreased expression of AKT, MMP-2, and MMP-9. In conclusion, these findings demonstrate that CXCR6 may promote the development of gastric cancer cells through regulation of AKT signaling. © The Author(s) 2015.

  19. A Chemokine Receptor CXCR2 Macromolecular Complex Regulates Neutrophil Functions in Inflammatory Diseases*

    PubMed Central

    Wu, Yanning; Wang, Shuo; Farooq, Shukkur M.; Castelvetere, Marcello P.; Hou, Yuning; Gao, Ji-Liang; Navarro, Javier V.; Oupicky, David; Sun, Fei; Li, Chunying

    2012-01-01

    Inflammation plays an important role in a wide range of human diseases such as ischemia-reperfusion injury, arteriosclerosis, cystic fibrosis, inflammatory bowel disease, etc. Neutrophilic accumulation in the inflamed tissues is an essential component of normal host defense against infection, but uncontrolled neutrophilic infiltration can cause progressive damage to the tissue epithelium. The CXC chemokine receptor CXCR2 and its specific ligands have been reported to play critical roles in the pathophysiology of various inflammatory diseases. However, it is unclear how CXCR2 is coupled specifically to its downstream signaling molecules and modulates cellular functions of neutrophils. Here we show that the PDZ scaffold protein NHERF1 couples CXCR2 to its downstream effector phospholipase C (PLC)-β2, forming a macromolecular complex, through a PDZ-based interaction. We assembled a macromolecular complex of CXCR2·NHERF1·PLC-β2 in vitro, and we also detected such a complex in neutrophils by co-immunoprecipitation. We further observed that the CXCR2-containing macromolecular complex is critical for the CXCR2-mediated intracellular calcium mobilization and the resultant migration and infiltration of neutrophils, as disrupting the complex with a cell permeant CXCR2-specific peptide (containing the PDZ motif) inhibited intracellular calcium mobilization, chemotaxis, and transepithelial migration of neutrophils. Taken together, our data demonstrate a critical role of the PDZ-dependent CXCR2 macromolecular signaling complex in regulating neutrophil functions and suggest that targeting the CXCR2 multiprotein complex may represent a novel therapeutic strategy for certain inflammatory diseases. PMID:22203670

  20. A Novel Computational Model Predicts Key Regulators of Chemokine Gradient Formation in Lymph Nodes and Site-Specific Roles for CCL19 and ACKR4

    PubMed Central

    Brook, Bindi S.

    2017-01-01

    The chemokine receptor CCR7 drives leukocyte migration into and within lymph nodes (LNs). It is activated by chemokines CCL19 and CCL21, which are scavenged by the atypical chemokine receptor ACKR4. CCR7-dependent navigation is determined by the distribution of extracellular CCL19 and CCL21, which form concentration gradients at specific microanatomical locations. The mechanisms underpinning the establishment and regulation of these gradients are poorly understood. In this article, we have incorporated multiple biochemical processes describing the CCL19–CCL21–CCR7–ACKR4 network into our model of LN fluid flow to establish a computational model to investigate intranodal chemokine gradients. Importantly, the model recapitulates CCL21 gradients observed experimentally in B cell follicles and interfollicular regions, building confidence in its ability to accurately predict intranodal chemokine distribution. Parameter variation analysis indicates that the directionality of these gradients is robust, but their magnitude is sensitive to these key parameters: chemokine production, diffusivity, matrix binding site availability, and CCR7 abundance. The model indicates that lymph flow shapes intranodal CCL21 gradients, and that CCL19 is functionally important at the boundary between B cell follicles and the T cell area. It also predicts that ACKR4 in LNs prevents CCL19/CCL21 accumulation in efferent lymph, but does not control intranodal gradients. Instead, it attributes the disrupted interfollicular CCL21 gradients observed in Ackr4-deficient LNs to ACKR4 loss upstream. Our novel approach has therefore generated new testable hypotheses and alternative interpretations of experimental data. Moreover, it acts as a framework to investigate gradients at other locations, including those that cannot be visualized experimentally or involve other chemokines. PMID:28807994

  1. Th1/Th17-Related Cytokines and Chemokines and Their Implications in the Pathogenesis of Pemphigus Vulgaris

    PubMed Central

    Timoteo, Rodolfo Pessato; Silva, Djalma Alexandre Alves; Catarino, Jonatas Da Silva; Rodrigues Junior, Virmondes

    2017-01-01

    Pemphigus vulgaris (PV) is an autoimmune disease characterized by the presence of IgG autoantibodies against desmoglein-3. Despite the variety of findings, the chemokine and cytokine profiles that characterize the immune response in the disease are still poorly explored. Thus, 20 PV patients and 20 controls were grouped according to gender, ethnicity, place of residence, and clinical parameters of the disease. Then, the levels of chemokines and of Th1/Th2/Th17/Treg/Th9/Th22-related cytokines were assessed in the serum. PV patients had higher levels of inflammatory Th1/Th17 cytokines (IFN-γ, IL-17, and IL-23), as well as higher levels of CXCL8 and reduced levels of Th1/Th2-related chemokines (IP-10 and CCL11). However, no differences in the levels of IL-2, IL-6, TNF-α, IL-1β, IL-4, IL-9, IL-12, TGF-β, IL-33, MCP-1, RANTES, and MIP-1α were found between PV patients and their control counterparts. Furthermore, PV patients with skin lesions had higher serum levels of IL-6 and CXCL8 when compared to PV patients without lesions. Taken together, our findings describe the role of cytokines and chemokines associated with Th1/Th17 immune response in PV patients. Finally, these data are important for better understanding of the immune aspects that control disease outcome, and they may also provide important information about why patients develop autoantibodies against desmogleins. PMID:28321152

  2. Extramedullary Myelopoiesis in Malaria Depends on Mobilization of Myeloid-Restricted Progenitors by IFN-γ Induced Chemokines

    PubMed Central

    Belyaev, Nikolai N.; Biró, Judit; Langhorne, Jean; Potocnik, Alexandre J.

    2013-01-01

    Resolution of a variety of acute bacterial and parasitic infections critically relies on the stimulation of myelopoiesis leading in cases to extramedullary hematopoiesis. Here, we report the isolation of the earliest myeloid-restricted progenitors in acute infection with the rodent malaria parasite, Plasmodium chabaudi. The rapid disappearance of these infection-induced myeloid progenitors from the bone marrow (BM) equated with contraction of the functional myeloid potential in that organ. The loss of BM myelopoiesis was not affected by the complete genetic inactivation of toll-like receptor signaling. De-activation of IFN-γ signaling completely abrogated the contraction of BM myeloid progenitors. Radiation chimeras of Ifngr1-null and control BM revealed that IFN-γ signaling in an irradiation-resistant stromal compartment was crucial for the loss of early myeloid progenitors. Systemic IFN-γ triggered the secretion of C-C motif ligand chemokines CCL2 and CCL7 leading to the egress of early, myeloid-committed progenitors from the bone marrow mediated by their common receptor CCR2. The mobilization of myeloid progenitors initiated extramedullary myelopoiesis in the spleen in a CCR2-dependent manner resulting in augmented myelopoiesis during acute malaria. Consistent with the lack of splenic myelopoiesis in the absence of CCR2 we observed a significant persistence of parasitemia in malaria infected CCR2-deficient hosts. Our findings reveal how the activated immune system mobilizes early myeloid progenitors out of the BM thereby transiently establishing myelopoiesis in the spleen in order to contain and resolve the infection locally. PMID:23762028

  3. CCR5 Signal Transduction in Macrophages by Human Immunodeficiency Virus and Simian Immunodeficiency Virus Envelopes

    PubMed Central

    Arthos, James; Rubbert, Andrea; Rabin, Ronald L.; Cicala, Claudia; Machado, Elizabeth; Wildt, Kathryne; Hanbach, Meredith; Steenbeke, Tavis D.; Swofford, Ruth; Farber, Joshua M.; Fauci, Anthony S.

    2000-01-01

    The capacity of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) envelopes to transduce signals through chemokine coreceptors on macrophages was examined by measuring the ability of recombinant envelope proteins to mobilize intracellular calcium stores. Both HIV and SIV envelopes mobilized calcium via interactions with CCR5. The kinetics of these responses were similar to those observed when macrophages were treated with MIP-1β. Distinct differences in the capacity of envelopes to mediate calcium mobilization were observed. Envelopes derived from viruses capable of replicating in macrophages mobilized relatively high levels of calcium, while envelopes derived from viruses incapable of replicating in macrophages mobilized relatively low levels of calcium. The failure to efficiently mobilize calcium was not restricted to envelopes derived from CXCR4-utilizing isolates but also included envelopes derived from CCR5-utilizing isolates that fail to replicate in macrophages. We characterized one CCR5-utilizing isolate, 92MW959, which entered macrophages but failed to replicate. A recombinant envelope derived from this virus mobilized low levels of calcium. When macrophages were inoculated with 92MW959 in the presence of MIP-1α, viral replication was observed, indicating that a CC chemokine-mediated signal provided the necessary stimulus to allow the virus to complete its replication cycle. Although the role that envelope-CCR5 signal transduction plays in viral replication is not yet understood, it has been suggested that envelope-mediated signals facilitate early postfusion events in viral replication. The data presented here are consistent with this hypothesis and suggest that the differential capacity of viral envelopes to signal through CCR5 may influence their ability to replicate in macrophages. PMID:10864653

  4. CCR5 signal transduction in macrophages by human immunodeficiency virus and simian immunodeficiency virus envelopes.

    PubMed

    Arthos, J; Rubbert, A; Rabin, R L; Cicala, C; Machado, E; Wildt, K; Hanbach, M; Steenbeke, T D; Swofford, R; Farber, J M; Fauci, A S

    2000-07-01

    The capacity of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) envelopes to transduce signals through chemokine coreceptors on macrophages was examined by measuring the ability of recombinant envelope proteins to mobilize intracellular calcium stores. Both HIV and SIV envelopes mobilized calcium via interactions with CCR5. The kinetics of these responses were similar to those observed when macrophages were treated with MIP-1beta. Distinct differences in the capacity of envelopes to mediate calcium mobilization were observed. Envelopes derived from viruses capable of replicating in macrophages mobilized relatively high levels of calcium, while envelopes derived from viruses incapable of replicating in macrophages mobilized relatively low levels of calcium. The failure to efficiently mobilize calcium was not restricted to envelopes derived from CXCR4-utilizing isolates but also included envelopes derived from CCR5-utilizing isolates that fail to replicate in macrophages. We characterized one CCR5-utilizing isolate, 92MW959, which entered macrophages but failed to replicate. A recombinant envelope derived from this virus mobilized low levels of calcium. When macrophages were inoculated with 92MW959 in the presence of MIP-1alpha, viral replication was observed, indicating that a CC chemokine-mediated signal provided the necessary stimulus to allow the virus to complete its replication cycle. Although the role that envelope-CCR5 signal transduction plays in viral replication is not yet understood, it has been suggested that envelope-mediated signals facilitate early postfusion events in viral replication. The data presented here are consistent with this hypothesis and suggest that the differential capacity of viral envelopes to signal through CCR5 may influence their ability to replicate in macrophages.

  5. Nonproductive human immunodeficiency virus type 1 infection of human fetal astrocytes: independence from CD4 and major chemokine receptors.

    PubMed

    Sabri, F; Tresoldi, E; Di Stefano, M; Polo, S; Monaco, M C; Verani, A; Fiore, J R; Lusso, P; Major, E; Chiodi, F; Scarlatti, G

    1999-11-25

    Human immunodeficiency virus type 1 (HIV-1) infection of the brain is associated with neurological manifestations both in adults and in children. The primary target for HIV-1 infection in the brain is the microglia, but astrocytes can also be infected. We tested 26 primary HIV-1 isolates for their capacity to infect human fetal astrocytes in culture. Eight of these isolates, independent of their biological phenotype and chemokine receptor usage, were able to infect astrocytes. Although no sustained viral replication could be demonstrated, the virus was recovered by coculture with receptive cells such as macrophages or on stimulation with interleukin-1beta. To gain knowledge into the molecular events that regulate attachment and penetration of HIV-1 in astrocytes, we investigated the expression of several chemokine receptors. Fluorocytometry and calcium-mobilization assay did not provide evidence of expression of any of the major HIV-1 coreceptors, including CXCR4, CCR5, CCR3, and CCR2b, as well as the CD4 molecule on the cell surface of human fetal astrocytes. However, mRNA transcripts for CXCR4, CCR5, Bonzo/STRL33/TYMSTR, and APJ were detected by RT-PCR. Furthermore, infection of astrocytes by HIV-1 isolates with different chemokine receptor usage was not inhibited by the chemokines SDF-1beta, RANTES, MIP-1beta, or MCP-1 or by antibodies directed against the third variable region or the CD4 binding site of gp120. These data show that astrocytes can be infected by primary HIV-1 isolates via a mechanism independent of CD4 or major chemokine receptors. Furthermore, astrocytes are potential carriers of latent HIV-1 and on activation may be implicated in spreading the infection to other neighbouring cells, such as microglia or macrophages. Copyright 1999 Academic Press.

  6. The clinically active BTK inhibitor PCI-32765 targets B-cell receptor- and chemokine-controlled adhesion and migration in chronic lymphocytic leukemia.

    PubMed

    de Rooij, Martin F M; Kuil, Annemieke; Geest, Christian R; Eldering, Eric; Chang, Betty Y; Buggy, Joseph J; Pals, Steven T; Spaargaren, Marcel

    2012-03-15

    Small-molecule drugs that target the B-cell antigen receptor (BCR) signalosome show clinical efficacy in the treatment of B-cell non-Hodgkin lymphoma. These agents, including the Bruton tyrosine kinase (BTK) inhibitor PCI-32765, display an unexpected response in patients with chronic lymphocytic leukemia (CLL): a rapid and sustained reduction of lymphadenopathy accompanied by transient lymphocytosis, which is reversible upon temporary drug deprivation. We hypothesized that this clinical response reflects impaired integrin-mediated adhesion and/or migration. Here, we show that PCI-32765 strongly inhibits BCR-controlled signaling and integrin α(4)β(1)-mediated adhesion to fibronectin and VCAM-1 of lymphoma cell lines and primary CLL cells. Furthermore, PCI-32765 also inhibits CXCL12-, CXCL13-, and CCL19-induced signaling, adhesion, and migration of primary CLL cells. Our data indicate that inhibition of BTK by PCI-32765 overcomes BCR- and chemokine-controlled integrin-mediated retention and homing of malignant B cells in their growth- and survival-supporting lymph node and bone marrow microenvironment, which results in clinically evident CLL regression.

  7. Heterogeneity of macrophages in injured trigeminal nerves: cytokine/chemokine expressing vs. phagocytic macrophages.

    PubMed

    Lee, SeungHwan; Zhang, Ji

    2012-08-01

    increased afterwards, the head escape threshold maintained significantly lower than before injury until 3 months. We suggest that MAC1(+) macrophages contribute to the initiation of neuropathic pain by releasing cytokines/chemokines, and ED1(+) macrophages may contribute in maintaining the hypersensitivity under other mechanisms. Our results highlighted the heterogeneity and the plasticity of macrophages in response to the injury and provided further information on their potential involvement in neuropathic pain. Exploring the full spectrum of macrophage phenotypes in injured nerve is necessary. Individual macrophage population may be selectively targeted by cell-specific intervention for an effective treatment of neuropathic pain. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Nandrolone reduces activation of Notch signaling in denervated muscle associated with increased Numb expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xin-Hua; Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029; Yao, Shen

    2011-10-14

    Highlights: {yields} Nerve transection increased Notch signaling in paralyzed muscle. {yields} Nandrolone prevented denervation-induced Notch signaling. {yields} Nandrolone induced the expression of an inhibitor of the Notch signaling, Numb. {yields} Reduction of denervation-induced Notch signaling by nandrolone is likely through upregulation of Numb. -- Abstract: Nandrolone, an anabolic steroid, slows denervation-atrophy in rat muscle. The molecular mechanisms responsible for this effect are not well understood. Androgens and anabolic steroids activate Notch signaling in animal models of aging and thereby mitigate sarcopenia. To explore the molecular mechanisms by which nandrolone prevents denervation-atrophy, we investigated the effects of nandrolone on Notch signalingmore » in denervated rat gastrocnemius muscle. Denervation significantly increased Notch activity reflected by elevated levels of nuclear Notch intracellular domain (NICD) and expression of Hey1 (a Notch target gene). Activation was greatest at 7 and 35 days after denervation but remained present at 56 days after denervation. Activation of Notch in denervated muscle was prevented by nandrolone associated with upregulated expression of Numb mRNA and protein. These data demonstrate that denervation activates Notch signaling, and that nandrolone abrogates this response associated with increased expression of Numb, suggesting a potential mechanism by which nandrolone reduces denervation-atrophy.« less

  9. OK-432-stimulated chemokine secretion from human monocytes depends on MEK1/2, and involves p38 MAPK and NF-κB phosphorylation, in vitro.

    PubMed

    Olsnes, Carla; Bredholt, Therese; Olofsson, Jan; Aarstad, Hans J

    2013-04-01

    Interaction between the immune system and cancer cells allows for the use of biological response modifiers, like OK-432, in cancer therapy. We have studied the involvement of monocytes (MOs) in the immune response to OK-432 by examining MCP-1, MIP-1α and MIP-1β secretion, in vitro. OK-432-induced IL-6/TNF-α secretion has previously been shown to depend on mitogen-activated protein kinases (MAPKs) ERK1/2 and p38, and we therefore investigated the role of these MAPKs in OK-432-induced chemokine secretion. Here we demonstrate that pharmacological MEK1/2 kinase inhibition generally impaired chemokine secretion from MOs, whereas p38 MAPK inhibition in particular reduced MIP-1α production. Furthermore, simultaneous inhibition of MEK1/2 and Syk kinase was seen to have an additive impact on reduced MCP-1, MIP-1α and MIP-1β secretion. Based on single cell flow cytometry analyses, OK-432, lipoteichoic acid (LTA) and lipopolysaccharide (LPS) were seen to induce p38 MAPK and NF-κB phosphorylation in MOs with different time kinetics. LTA and LPS have been shown to induce ERK1/2 phosphorylation, whereas the levels of phosphorylated ERK1/2 remained constant following OK-432 treatment at the time points tested. Toll-like receptors (TLRs) recognize pathogen-associated molecular patterns, and we demonstrate increased TLR2 cell surface levels on the MO population, most profoundly following stimulation with LTA and OK-432. Together these results indicate that modulation of MEK1/2 and p38 MAPK signalling could affect the response to OK-432 treatment, having the potential to improve its therapeutic potential within cancer and lymphangioma treatment. © 2012 The Authors APMIS © 2012 APMIS.

  10. Viral kinetics are associated with changes in cytokines and chemokines in serum and target organs of SSM-CVB3-infected macaques.

    PubMed

    Han, Tiesuo; Zhao, Kui; Wu, Chenchen; Lu, Huijun; Song, Deguang; He, Wenqi; Gao, Feng

    2013-02-01

    To determine the relationship between viral kinetics and the expression patterns for different cytokines and chemokines in the serum and organs of coxsackievirus B3 (SSM-CVB3)-infected macaques over the course of infection. SSM-CVB3 levels in serum and organs were measured using the Spearman-Karber 50% tissue culture infectious dose (TCID(50)) method. Cytokine and chemokine levels in the serum and organs were measured by indirect-ELISA. Low viral titers were detected in the serum samples on the first day post-inoculation (p.i.) and peaked at 6 to 10 days p.i. in the serum samples from five macaques. Serum levels of IL-1β, IL-2, IL-6, IL-12p40, IL-17α, IFN-γ, TNF-α, MCP-1 and MIP-1β were detected each day and, similar to the viral titers, peaked at 6 to 10 days. IL-10 was only detected on days 10 to 14 p.i. Additionally, higher viral titers and relative viral mRNA levels were associated with higher cytokine and chemokine levels in selected tissues from infected macaques including heart, liver, spleen, lung, kidney and brain. The results indicate that patterns of cytokine and chemokine response are associated with viral kinetics in the serum and target organs of SSM-CVB3-infected macaques, suggesting that the changes in cytokines and chemokines could help further our understanding of the progress of CVB3 infections in clinical settings. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Fusion of antigen to a dendritic cell targeting chemokine combined with adjuvant yields a malaria DNA vaccine with enhanced protective capabilities.

    PubMed

    Luo, Kun; Zhang, Hong; Zavala, Fidel; Biragyn, Arya; Espinosa, Diego A; Markham, Richard B

    2014-01-01

    Although sterilizing immunity to malaria can be elicited by irradiated sporozoite vaccination, no clinically practical subunit vaccine has been shown to be capable of preventing the approximately 600,000 annual deaths attributed to this infection. DNA vaccines offer several potential advantages for a disease that primarily affects the developing world, but new approaches are needed to improve the immunogenicity of these vaccines. By using a novel, lipid-based adjuvant, Vaxfectin, to attract immune cells to the immunization site, in combination with an antigen-chemokine DNA construct designed to target antigen to immature dendritic cells, we elicited a humoral immune response that provided sterilizing immunity to malaria challenge in a mouse model system. The chemokine, MIP3αCCL20, did not significantly enhance the cellular infiltrate or levels of cytokine or chemokine expression at the immunization site but acted with Vaxfectin to reduce liver stage malaria infection by orders of magnitude compared to vaccine constructs lacking the chemokine component. The levels of protection achieved were equivalent to those observed with irradiated sporozoites, a candidate vaccine undergoing development for further large scale clinical trial. Only vaccination with the combined regimen of adjuvant and chemokine provided 80-100% protection against the development of bloodstream infection. Treating the immunization process as requiring the independent steps of 1) attracting antigen-presenting cells to the site of immunization and 2) specifically directing vaccine antigen to the immature dendritic cells that initiate the adaptive immune response may provide a rational strategy for the development of a clinically applicable malaria DNA vaccine.

  12. In Hyperthermia Increased ERK and WNT Signaling Suppress Colorectal Cancer Cell Growth

    PubMed Central

    Bordonaro, Michael; Shirasawa, Senji; Lazarova, Darina L.

    2016-01-01

    Although neoplastic cells exhibit relatively higher sensitivity to hyperthermia than normal cells, hyperthermia has had variable success as an anti-cancer therapy. This variable outcome might be due to the fact that cancer cells themselves have differential degrees of sensitivity to high temperature. We hypothesized that the varying sensitivity of colorectal cancer (CRC) cells to hyperthermia depends upon the differential induction of survival pathways. Screening of such pathways revealed that Extracellular Signal-Regulated Kinase (ERK) signaling is augmented by hyperthermia, and the extent of this modulation correlates with the mutation status of V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS). Through clonal growth assays, apoptotic analyses and transcription reporter assays of CRC cells that differ only in KRAS mutation status we established that mutant KRAS cells are more sensitive to hyperthermia, as they exhibit sustained ERK signaling hyperactivation and increased Wingless/Integrated (WNT)/beta-catenin signaling. We propose that whereas increased levels of WNT and ERK signaling and a positive feedback between the two pathways is a major obstacle in anti-cancer therapy today, under hyperthermia the hyperinduction of the pathways and their positive crosstalk contribute to CRC cell death. Ascertaining the causative association between types of mutations and hyperthermia sensitivity may allow for a mutation profile-guided application of hyperthermia as an anti-cancer therapy. Since KRAS and WNT signaling mutations are prevalent in CRC, our results suggest that hyperthermia-based therapy might benefit a significant number, but not all, CRC patients. PMID:27187477

  13. Production of CXC and CC chemokines by human antigen-presenting cells in response to Lassa virus or closely related immunogenic viruses, and in cynomolgus monkeys with lassa fever.

    PubMed

    Pannetier, Delphine; Reynard, Stéphanie; Russier, Marion; Carnec, Xavier; Baize, Sylvain

    2014-01-01

    The pathogenesis of Lassa fever (LF), a hemorrhagic fever endemic to West Africa, remains unclear. We previously compared Lassa virus (LASV) with its genetically close, but nonpathogenic homolog Mopeia virus (MOPV) and demonstrated that the strong activation of antigen-presenting cells (APC), including type I IFN production, observed in response to MOPV probably plays a crucial role in controlling infection. We show here that human macrophages (MP) produce large amounts of CC and CXC chemokines in response to MOPV infection, whereas dendritic cells (DC) release only moderate amounts of CXC chemokines. However, in the presence of autologous T cells, DCs produced CC and CXC chemokines. Chemokines were produced in response to type I IFN synthesis, as the levels of both mediators were strongly correlated and the neutralization of type I IFN resulted in an inhibition of chemokine production. By contrast, LASV induced only low levels of CXCL-10 and CXCL-11 production. These differences in chemokine production may profoundly affect the generation of virus-specific T-cell responses and may therefore contribute to the difference of pathogenicity between these two viruses. In addition, a recombinant LASV (rLASV) harboring the NP-D389A/G392A mutations, which abolish the inhibition of type I IFN response by nucleoprotein (NP), induced the massive synthesis of CC and CXC chemokines in both DC and MP, confirming the crucial role of arenavirus NP in immunosuppression and pathogenicity. Finally, we confirmed, using PBMC samples and lymph nodes obtained from LASV-infected cynomolgus monkeys, that LF was associated with high levels of CXC chemokine mRNA synthesis, suggesting that the very early synthesis of these mediators may be correlated with a favourable outcome.

  14. Relationship of Genetic Polymorphisms of the Chemokine, CCL5, and Its Receptor, CCR5, with Coronary Artery Disease in Taiwan

    PubMed Central

    Ting, Ke-Hsin; Ueng, Kwo-Chang; Chiang, Whei-Ling; Chou, Ying-Erh; Yang, Shun-Fa; Wang, Po-Hui

    2015-01-01

    The chemokine receptor CCR5 polymorphism, which confers resistance to HIV infection, has been associated with reduced risk of cardiovascular disease. However, the association of the chemokine, CCL5, and its receptor, CCR5, polymorphism and coronary artery disease (CAD) in the Taiwanese has not been studied. In this study, 483 subjects who received elective coronary angiography were recruited from Chung Shan Medical University Hospital. CCL5-403 and CCR5-59029 were determined by polymerase chain reaction-restriction fragment length polymorphism. We found that CCL5-403 with TT genotype frequencies was significantly associated with the risk of CAD group (odds ratio = 3.063 and p = 0.012). Moreover, the frequencies of CCR5-59029 with GG or GA genotype were higher than AA genotype in acute coronary syndrome individuals (odds ratio = 1.853, CI = 1.176–2.921, p = 0.008). In conclusion, we found that CCL5-403 polymorphism may increase genetic susceptibility of CAD. CCL5-403 or CCR5-59029 single nucleotide polymorphism may include genotype score and it may predict cardiovascular event. PMID:26688689

  15. The “window of susceptibility” for inflammation in the immature central nervous system is characterized by a leaky blood brain barrier and the local expression of inflammatory chemokines

    PubMed Central

    Schoderboeck, Lucia; Adzemovic, Milena; Nicolussi, Eva-Maria; Crupinschi, Claudia; Hochmeister, Sonja; Fischer, Marie-Therese; Lassmann, Hans; Bradl, Monika

    2013-01-01

    Early in postnatal development, the immature central nervous system (CNS) is more susceptible to inflammation than its adult counterpart. We show here that this “window of susceptibility” is characterized by the presence of leaky vessels in the CNS, and by a global chemokine expression profile which is clearly distinct from the one observed in the adult CNS and has three important characteristics. First, it contains chemokines with known roles in the differentiation and maturation of glia and neurons. Secondly, these chemokines have been described before in inflammatory lesions of the CNS, where they are important for the recruitment of monocytes and T cells. And last, the chemokine profile is shaped by pathological changes like oligodendrocyte stress and attempts of myelin repair. Changes in the chemokine expression profile along with a leaky blood brain barrier pave the ground for an accelerated development of CNS inflammation. PMID:19520164

  16. Genetic polymorphisms in the cytokine and chemokine system: their possible importance in allogeneic stem cell transplantation.

    PubMed

    Loeffler, Juergen; Ok, Michael; Morton, Oliver C; Mezger, Markus; Einsele, Hermann

    2010-01-01

    Chemokines represent central players of the innate and adaptive immunity and are involved in the regulation of inflammatory events occurring during infectious complications or during graft vs. host disease (GvHD). Patients after allogeneic stem cell transplantation (alloSCT) are at a high risk for the development of acute GvHD or to suffer from fungal infections. Susceptibility to fungal infections and the course of GvHD can be genetically influenced by single nucleotide polymorphisms (SNPs), which regulate expression or biological activity of chemokines, and therefore have an impact on the outcome of invasive aspergillosis and GvHD. High lightened studies of abetting factors for GvHD revealed SNPs in TNFA, IL-6, IL-10, INF-γ, CCL2, CCL5 (RANTES), IL-1Ra, IL-23R, IL-7Ralpha, IL-10RB, and CCR9 genes as prevalent considerable. Furthermore, additional SNPs were described to be significantly associated with fungal infections (Aspergillus fumigatus, Candida albicans), including markers in CCL3, CCL4, CCL20, CXCL2, CXCL8, CXCL10, CCR1, and CCR2. This review summarizes the current knowledge about the growing number of genetic markers in chemokine genes and their relevance for patients after alloSCT.

  17. The chemokine receptor CXCR6 and its ligand CXCL16 are expressed in carcinomas and inhibit proliferation.

    PubMed

    Meijer, Joost; Ogink, Janneke; Kreike, Bas; Nuyten, Dimitry; de Visser, Karin E; Roos, Ed

    2008-06-15

    The chemokine receptor CXCR6 and its ligand CXCL16 are involved in inflammation. Thus far, they were known to be expressed mainly by T cells and macrophages, respectively. However, we detected both in all of 170 human primary mammary carcinomas and at similar levels in all 8 human mammary carcinoma cell lines tested by microarray analysis. Expression was confirmed by reverse transcription-PCR and for the cell lines also by fluorescence-activated cell sorting analysis. CXCR6 and CXCL16 were also detected in several mouse and human mammary, colon, and pancreatic carcinoma cell lines. CXCL16 is a transmembrane protein from which the soluble chemokine can be cleaved off. The transmembrane form is present on the surface of the carcinoma cells. Surprisingly, suppression of either CXCR6 or CXCL16 led to greatly enhanced proliferation in vitro as well as in vivo, indicating that their interaction inhibits proliferation. This notion was verified using inhibitory antibodies and by introduction of CXCL16 into a rare CXCL16-negative cell line. The effect was mediated by the G protein-coupled receptor CXCR6 because it was blocked by the G(i) protein inhibitor pertussis toxin. In contrast, the soluble CXCL16 chemokine enhanced proliferation, and this was also mediated by CXCR6 but not via G(i) protein. It is remarkable that both CXCR6 and CXCL16 are expressed by all mammary carcinomas because cells that lose either acquire a growth advantage and should be selected during tumor progression. This suggests an unknown important role in tumor formation. Proteases, possibly macrophage derived, might convert inhibitory transmembrane CXCL16 into the stimulatory chemokine.

  18. The Chemokine CXCL16 and Its Receptor, CXCR6, as Markers and Promoters of Inflammation-Associated Cancers

    PubMed Central

    Darash-Yahana, Merav; Gillespie, John W.; Hewitt, Stephen M.; Chen, Yun-Yun K.; Maeda, Shin; Stein, Ilan; Singh, Satya P.; Bedolla, Roble B.; Peled, Amnon; Troyer, Dean A.; Pikarsky, Eli; Karin, Michael; Farber, Joshua M.

    2009-01-01

    Clinical observations and mouse models have suggested that inflammation can be pro-tumorigenic. Since chemokines are critical in leukocyte trafficking, we hypothesized that chemokines play essential roles in inflammation-associated cancers. Screening for 37 chemokines in prostate cancer cell lines and xenografts revealed CXCL16, the ligand for the receptor CXCR6, as the most consistently expressed chemokine. Immunohistochemistry and/or immunofluorescence and confocal imaging of 121 human prostate specimens showed that CXCL16 and CXCR6 were co-expressed, both on prostate cancer cells and adjacent T cells. Expression levels of CXCL16 and CXCR6 on cancer cells correlated with poor prognostic features including high-stage and high-grade, and expression also correlated with post-inflammatory changes in the cancer stroma as revealed by loss of alpha-smooth muscle actin. Moreover, CXCL16 enhanced the growth of CXCR6-expressing cancer and primary CD4 T cells. We studied expression of CXCL16 in an additional 461 specimens covering 12 tumor types, and found that CXCL16 was expressed in multiple human cancers associated with inflammation. Our study is the first to describe the expression of CXCL16/CXCR6 on both cancer cells and adjacent T cells in humans, and to demonstrate correlations between CXCL16 and CXCR6 vs. poor both prognostic features and reactive changes in cancer stoma. Taken together, our data suggest that CXCL16 and CXCR6 may mark cancers arising in an inflammatory milieu and mediate pro-tumorigenic effects of inflammation through direct effects on cancer cell growth and by inducing the migration and proliferation of tumor-associated leukocytes. PMID:19690611

  19. The chemokine CXCL16 and its receptor, CXCR6, as markers and promoters of inflammation-associated cancers.

    PubMed

    Darash-Yahana, Merav; Gillespie, John W; Hewitt, Stephen M; Chen, Yun-Yun K; Maeda, Shin; Stein, Ilan; Singh, Satya P; Bedolla, Roble B; Peled, Amnon; Troyer, Dean A; Pikarsky, Eli; Karin, Michael; Farber, Joshua M

    2009-08-19

    Clinical observations and mouse models have suggested that inflammation can be pro-tumorigenic. Since chemokines are critical in leukocyte trafficking, we hypothesized that chemokines play essential roles in inflammation-associated cancers. Screening for 37 chemokines in prostate cancer cell lines and xenografts revealed CXCL16, the ligand for the receptor CXCR6, as the most consistently expressed chemokine. Immunohistochemistry and/or immunofluorescence and confocal imaging of 121 human prostate specimens showed that CXCL16 and CXCR6 were co-expressed, both on prostate cancer cells and adjacent T cells. Expression levels of CXCL16 and CXCR6 on cancer cells correlated with poor prognostic features including high-stage and high-grade, and expression also correlated with post-inflammatory changes in the cancer stroma as revealed by loss of alpha-smooth muscle actin. Moreover, CXCL16 enhanced the growth of CXCR6-expressing cancer and primary CD4 T cells. We studied expression of CXCL16 in an additional 461 specimens covering 12 tumor types, and found that CXCL16 was expressed in multiple human cancers associated with inflammation. Our study is the first to describe the expression of CXCL16/CXCR6 on both cancer cells and adjacent T cells in humans, and to demonstrate correlations between CXCL16 and CXCR6 vs. poor both prognostic features and reactive changes in cancer stoma. Taken together, our data suggest that CXCL16 and CXCR6 may mark cancers arising in an inflammatory milieu and mediate pro-tumorigenic effects of inflammation through direct effects on cancer cell growth and by inducing the migration and proliferation of tumor-associated leukocytes.

  20. Synovial chemokine expression and relationship with knee symptoms in patients with meniscal tears

    PubMed Central

    Nair, Anjali; Gan, Justin; Bush-Joseph, Charles; Verma, Nikhil; Tetreault, Matthew W.; Saha, Kanta; Margulis, Arkady; Fogg, Louis; Scanzello, Carla R.

    2015-01-01

    Objective In patients with knee OA, synovitis is associated with knee pain and symptoms. We previously identified synovial mRNA expression of a set of chemokines (CCL19, IL-8, CCL5, XCL-1, CCR7) associated with synovitis in patients with meniscal tears but without radiographic OA. CCL19 and CCR7 were also associated with knee symptoms. This study sought to validate expression of these chemokines and association with knee symptoms in more typical patients presenting for meniscal arthroscopy, many who have pre-existing OA. Design Synovial biopsies and fluid (SF) were collected from patients undergoing meniscal arthroscopy. Synovial mRNA expression was measured using quantitative RT-PCR. The Knee Injury and Osteoarthritis Outcome Score (KOOS) was administered preoperatively. Regression analyses determined if associations between chemokine mRNA levels and KOOS scores were independent of other factors including radiographic OA. CCL19 in SF was measured by ELISA, and compared to patients with advanced knee OA and asymptomatic organ donors. Results 90% of patients had intra-operative evidence of early cartilage degeneration. CCL19, IL-8, CCL5, XCL1, CCR7 transcripts were detected in all patients. Synovial CCL19 mRNA levels independently correlated with KOOS Activities of Daily Living scores (95% CI [-8.071, -0.331], p= 0.036), indicating higher expression was associated with more knee-related dysfunction. SF CCL19 was detected in 7 of 10 patients, compared to 4 of 10 asymptomatic donors. Conclusion In typical patients presenting for meniscal arthroscopy, synovial CCL19 mRNA expression was associated with knee-related difficulty with activities of daily living, independent of other factors including presence of radiographic knee OA. PMID:25724256

  1. Asthmatic bronchial epithelium activated by the proteolytic allergen Der p 1 increases selective dendritic cell recruitment.

    PubMed

    Pichavant, Muriel; Charbonnier, Anne-Sophie; Taront, Solenne; Brichet, Anne; Wallaert, Benoît; Pestel, Joel; Tonnel, André-Bernard; Gosset, Philippe

    2005-04-01

    Airway dendritic cells (DCs) are crucial for allergen-induced sensitization and inflammation in allergic asthma. After allergen challenge, an increased number of DCs is observed in airway epithelium from patients with allergy. Because Der p 1, a cysteine protease allergen from Dermatophagoides pteronyssinus , induces chemokine production by bronchial epithelial cells (BECs), the purpose of this investigation was to evaluate the capacity of BEC exposed to Der p 1 to recruit DCs. Chemotactic activity of BEAS-2B, a bronchial epithelial cell line, and BECs from nonatopic controls and patients with allergic asthma was evaluated on the migration of precursors, immature and mature monocyte-derived DCs (MDDCs), and CD34 + -derived Langerhans cells (LCs). C-C chemokine ligand (CCL)-2, CCL5, and C-X-C chemokine ligand 10 production by BEAS-2B and BEC was increased after Der p 1 exposure, whereas the proenzyme proDer p 1 devoid of enzymatic activity had no effect. Der p 1 stimulation of BEAS-2B and BEC from both groups increased significantly the recruitment of MDDC precursors, depending on CCL2, CCL5, and C-X-C chemokine ligand 10 production. In a reconstituted polarized epithelium, apical application of Der p 1 enhanced MDDC precursor migration into the epithelial layer. Moreover, Der p 1 stimulation of BEC from patients with asthma but not from controls increased the migration of LC precursors, mainly dependent on CCL20 secretion. No migration of immature and mature DCs was observed. These data confirmed that BECs participate in the homeostasis of the DC network present within the bronchial epithelium through the secretion of chemokines. In allergic asthma, upregulation of CCL20 production induced LC recruitment, the role of which remains to be determined.

  2. The prognostic importance of CXCR3 chemokine during organizing pneumonia on the risk of chronic lung allograft dysfunction after lung transplantation

    PubMed Central

    Weigt, S. Samuel; Li, Ning; Palchevskiy, Vyacheslav; Derhovanessian, Ariss; Saggar, Rajan; Sayah, David M.; Huynh, Richard H.; Gregson, Aric L.; Fishbein, Michael C.; Ardehali, Abbas; Ross, David J.; Lynch, Joseph P.; Elashoff, Robert M.; Belperio, John A.

    2017-01-01

    Rationale Since the pathogenesis of chronic lung allograft dysfunction (CLAD) remains poorly defined with no known effective therapies, the identification and study of key events which increase CLAD risk is a critical step towards improving outcomes. We hypothesized that bronchoalveolar lavage fluid (BALF) CXCR3 ligand concentrations would be augmented during organizing pneumonia (OP) and that episodes of OP with marked chemokine elevations would be associated with significantly higher CLAD risk. Methods All transbronchial biopsies (TBBX) from patients who received lung transplantation between 2000 to 2010 were reviewed. BALF concentrations of the CXCR3 ligands (CXCL9, CXCL10 and CXCL11) were compared between episodes of OP and “healthy” biopsies using linear mixed-effects models. The association between CXCR3 ligand concentrations during OP and CLAD risk was evaluated using proportional hazards models with time-dependent covariates. Results There were 1894 bronchoscopies with TBBX evaluated from 441 lung transplant recipients with 169 (9%) episodes of OP and 907 (49%) non-OP histopathologic injuries. 62 (37%) episodes of OP were observed during routine surveillance bronchoscopy. Eight hundred thirty-eight (44%) TBBXs had no histopathology and were classified as “healthy” biopsies. There were marked elevations in BALF CXCR3 ligand concentrations during OP compared with “healthy” biopsies. In multivariable models adjusted for other injury patterns, OP did not significantly increase the risk of CLAD when BAL CXCR3 chemokine concentrations were not taken into account. However, OP with elevated CXCR3 ligands markedly increased CLAD risk in a dose-response manner. An episode of OP with CXCR3 concentrations greater than the 25th, 50th and 75th percentiles had HRs for CLAD of 1.5 (95% CI 1.0–2.3), 1.9 (95% CI 1.2–2.8) and 2.2 (95% CI 1.4–3.4), respectively. Conclusions This study identifies OP, a relatively uncommon histopathologic finding after lung

  3. The expression of cytokines and chemokines in the blood of patients with severe weight loss from anorexia nervosa: an exploratory study.

    PubMed

    Pisetsky, D S; Trace, S E; Brownley, K A; Hamer, R M; Zucker, N L; Roux-Lombard, P; Dayer, J-M; Bulik, C M

    2014-09-01

    Anorexia nervosa (AN) is a serious, potentially life-threatening disorder characterized by severe weight loss, dysregulated eating, and often excessive exercise. While psychiatric illnesses such as depression are associated with increased levels of pro-inflammatory mediators, evidence for such disturbances in patients with AN has been less clear. In an exploratory study of possible disturbances in immune responses in AN, we assayed a panel of cytokines and chemokines in the blood of patients undergoing inpatient treatment, testing the hypothesis that metabolic disturbances in this disease would lead to a pattern of immune disturbances distinct from that of other psychiatric diseases. For this purpose, we evaluated patients by the Beck Depression Inventory-II (BDI-II) and the Eating Disorders Examination-Questionnaire and assessed cytokines and chemokines by enzyme-linked immunosorbent assays. Patients reported a moderate level of depression (mean BDI-II = 22.6) but exhibited few immunologic abnormalities of the kind associated with major depressive disorder [e.g., increased interleukin (IL)-6]; RANTES showed the most frequent elevations and was increased in 4 of the patients studied. Together, these findings suggest that features of AN such as loss of adipose tissue and excessive exercise may attenuate cytokine production and thus modulate the experience of illness that impacts on core features of disease. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Technical note: Signal resolution increase and noise reduction in a CCD digitizer.

    PubMed

    González, A; Martínez, J A; Tobarra, B

    2004-03-01

    Increasing output resolution is assumed to improve noise characteristics of a CCD digitizer. In this work, however, we have found that as the quantization step becomes lower than the analog noise (present in the signal before its conversion to digital) the noise reduction becomes significantly lower than expected. That is the case for values of sigma(an)/delta larger than 0.6, where sigma(an) is the standard deviation of the analog noise and delta is the quantization step. The procedure is applied to a commercially available CCD digitizer, and noise reduction by means of signal resolution increase is compared to that obtained by low pass filtering.

  5. Reduction of protein tyrosine phosphatase 1B increases insulin-dependent signaling in ob/ob mice.

    PubMed

    Gum, Rebecca J; Gaede, Lori L; Koterski, Sandra L; Heindel, Matthew; Clampit, Jill E; Zinker, Bradley A; Trevillyan, James M; Ulrich, Roger G; Jirousek, Michael R; Rondinone, Cristina M

    2003-01-01

    Protein tyrosine phosphatase 1B (PTP1B) is a negative regulator of insulin receptor (IR) signal transduction and a drug target for treatment of type 2 diabetes. Using PTP1B antisense oligonucleotides (ASOs), effects of decreased PTP1B levels on insulin signaling in diabetic ob/ob mice were examined. Insulin stimulation, prior to sacrifice, resulted in no significant activation of insulin signaling pathways in livers from ob/ob mice. However, in PTP1B ASO-treated mice, in which PTP1B protein was decreased by 60% in liver, similar stimulation with insulin resulted in increased tyrosine phosphorylation of the IR and IR substrate (IRS)-1 and -2 by threefold, fourfold, and threefold, respectively. IRS-2-associated phosphatidylinositol 3-kinase activity was also increased threefold. Protein kinase B (PKB) serine phosphorylation was increased sevenfold in liver of PTP1B ASO-treated mice upon insulin stimulation, while phosphorylation of PKB substrates, glycogen synthase kinase (GSK)-3alpha and -3beta, was increased more than twofold. Peripheral insulin signaling was increased by PTP1B ASO, as evidenced by increased phosphorylation of PKB in muscle of insulin-stimulated PTP1B ASO-treated animals despite the lack of measurable effects on muscle PTP1B protein. These results indicate that reduction of PTP1B is sufficient to increase insulin-dependent metabolic signaling and improve insulin sensitivity in a diabetic animal model.

  6. Endothelial differentiation of bone marrow mesenchyme stem cells applicable to hypoxia and increased migration through Akt and NFκB signals.

    PubMed

    Liu, Cheng; Tsai, An-Ly; Li, Ping-Chia; Huang, Chia-Wei; Wu, Chia-Ching

    2017-02-07

    Bone marrow mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs) are used to repair hypoxic or ischemic tissue. However, the underlining mechanism of resistance in the hypoxic microenvironment and the efficacy of migration to the injured tissue are still unknown. The current study aims to understand the hypoxia resistance and migration ability of MSCs during differentiation toward endothelial lineages by biochemical and mechanical stimuli. MSCs were harvested from the bone marrow of 6-8-week-old Sprague-Dawley rats. The endothelial growth medium (EGM) was added to MSCs for 3 days to initiate endothelial differentiation. Laminar shear stress was used as the fluid mechanical stimulation. Application of EGM facilitated the early endothelial lineage cells (eELCs) to express EPC markers. When treating the hypoxic mimetic desferrioxamine, both MSCs and eELCs showed resistance to hypoxia as compared with the occurrence of apoptosis in rat fibroblasts. The eELCs under hypoxia increased the wound closure and C-X-C chemokine receptor type 4 (CXCR4) gene expression. Although the shear stress promoted eELC maturation and aligned cells parallel to the flow direction, their migration ability was not superior to that of eELCs either under normoxia or hypoxia. The eELCs showed higher protein expressions of CXCR4, phosphorylated Akt (pAkt), and endogenous NFκB and IκBα than MSCs under both normoxia and hypoxia conditions. The potential migratory signals were discovered by inhibiting either Akt or NFκB using specific inhibitors and revealed decreases of wound closure and transmigration ability in eELCs. The Akt and NFκB pathways are important to regulate the early endothelial differentiation and its migratory ability under a hypoxic microenvironment.

  7. Cytokines, chemokines and soluble adhesion molecules in aqueous humor of children with uveitis.

    PubMed

    Sijssens, Karen M; Rijkers, Ger T; Rothova, Aniki; Stilma, Jan S; Schellekens, Peter A W J F; de Boer, Joke H

    2007-10-01

    Uveitis in childhood is a visual threatening disease with a complication rate of more than 75%. Despite extensive research, the etiology of uveitis is still unclear although the general opinion is now that uveitis is a T-cell mediated disease. The purpose of this study was to investigate the profile of cytokines, chemotactic cytokines (chemokines) and soluble adhesion molecules in the aqueous humor (AqH) of children with uveitis in order to identify the factors that control the immune response in the eye. In this clinical laboratory investigation we analyzed, with a multiplex immunoassay, 16 immune mediators in the AqH of 25 children with uveitis and 6 children without uveitis. Increased levels of interleukin-2 (IL-2), IL-6, IL-10, IL-13, IL-18, interferon-gamma, tumor necrosis factor-alpha, soluble intercellular adhesion molecule-1, RANTES, IL-8 and interferon-inducible 10-kDa protein were found in the AqH of children with uveitis compared with controls. No significant differences were found for IL-1 beta, IL-4, IL-12 p-70, soluble vascular cell adhesion molecule 1 and Eotaxin. Lower levels of IL-10 and IL-8 were found in quiet stage uveitis (surgical) samples compared with active uveitis (diagnostic) samples and in samples of patients treated with methotrexate (MTX) compared with samples of patients not treated with MTX. Lower levels of IL-10 were as well found in samples taken during the first 3 months after the diagnosis of uveitis than samples taken later during the disease process. No significant differences were found between patients treated with or without topical or systemic (perioperative and long term) corticosteroids. In conclusion, in children with uveitis, multiple intraocular cytokines, chemokines and soluble adhesion molecules are increased in the AqH regardless of active or inactive inflammation. Whether the IL-8 and IL-10 levels in AqH of children with uveitis are correlated with uveitis activity, early or late phase of the course of the disease

  8. High-Frequency Neuromuscular Electrical Stimulation Increases Anabolic Signaling.

    PubMed

    Mettler, Joni A; Magee, Dillon M; Doucet, Barbara M

    2018-03-16

    Neuromuscular electrical stimulation (NMES) is commonly used in rehabilitation settings to increase muscle mass and strength. However, the effects of NMES on muscle growth are not clear and no human studies have compared anabolic signaling between low-frequency (LF-) and high-frequency (HF-) NMES. The purpose of this study was to determine the skeletal muscle anabolic signaling response to an acute bout of LF- and HF-NMES. Eleven young healthy volunteers (6 men; 5 women) received an acute bout of LF- (20 Hz) and HF- (60 Hz) NMES. Muscle biopsies were obtained from the vastus lateralis muscle prior to the first NMES treatment and 30-mins following each NMES treatment. Phosphorylation of the following key anabolic signaling proteins was measured by Western blot and proteins are expressed as a ratio of phosphorylated to total: mammalian target of rapamycin (mTOR), p70-S6 kinase 1 (S6K1), and eukaryotic initiation factor 4E binding protein 1 (4E-BP1). Compared to Pre-NMES, phosphorylation of mTOR was upregulated 40.2% for LF-NMES (P = 0.018) and 68.4% for HF-NMES (P < 0.0001) and HF-NMES was 29.3% greater than LF-NMES (P = 0.026). Phosphorylation of S6K1 after HF-NMES was 96.6% higher than Pre-NMES (P = 0.001), was not different between Pre-NMES and LF-NMES (although was 50.4% higher after LF-) or LF- and HF-NMES (P > 0.05). There were no differences between treatment conditions for 4E-BP1 phosphorylation (P > 0.05). An acute bout of LF- and HF-NMES upregulated anabolic signaling with HF-NMES producing a greater anabolic response compared to LF-NMES, suggesting that HF-stimulation may provide a stronger stimulus for processes that initiate muscle hypertrophy. Additionally, the stimulation frequency parameter should be considered by clinicians in the design of optimal NMES treatment protocols.

  9. Circulating Cytokine/Chemokine Concentrations Respond to Ionizing Radiation Doses but not Radiation Dose Rates: Granulocyte-Colony Stimulating Factor and Interleukin-18.

    PubMed

    Kiang, Juliann G; Smith, Joan T; Hegge, Sara R; Ossetrova, Natalia I

    2018-06-01

    Exposure to ionizing radiation is a crucial life-threatening factor in nuclear and radiological incidents. It is known that ionizing radiation affects cytokine/chemokine concentrations in the blood of B6D2F1 mice. It is not clear whether radiation dose rates would vary the physiological response. Therefore, in this study we utilized data from two experiments using B6D2F1 female mice exposed to six different dose rates ranging from low to high rates. In one experiment, mice received a total dose of 8 Gy (LD 0/30 ) of 60 Co gamma radiation at four dose rates: 0.04, 0.15, 0.30 and 0.47 Gy/min. Blood samples from mice were collected at 24 and 48 h postirradiation for cytokine/chemokine measurements, including interleukin (IL)-1β, IL-6, IL-10, keratinocyte cytokine (KC), IL-12p70, IL-15, IL-17A, IL-18, granulocyte-colony stimulating factor (G-CSF), granulocyte macrophage (GM)-CSF, macrophage (M)-CSF, monokine induced by gamma interferon (MIG), tumor necrosis factor (TNF)-α, fibroblast growth factor (FGF)-basic, vascular endothelial growth factor (VEGF) and platelet-derived growth factor basic (PDGF-bb). At 24 h after ionizing irradiation at dose rate of 0.04 Gy/min, significant increases were observed only in G-CSF and M-CSF ( P < 0.05). At 0.15 Gy/min, IL-10, IL-17A, G-CSF and GM-CSF concentrations were increased. At 0.3 Gy/min, IL-15, IL-18, G-CSF, GM-CSF, M-CSF, MCP-1, MIP-2, MIG, FGF-basic, VEGF and PDGF-bb were significantly elevated ( P < 0.05). At 0.47 Gy/min, IL-6, KC, IL-10, MCP-1, G-CSF, GM-CSF and M-CSF were significantly increased. At 48 h postirradiation, all cytokines/chemokines except MCP-1 returned to or were below their baselines, suggesting these increases are transient at LD 0/30 irradiation. Of note, there is a limitation on day 2 because cytokines/chemokines are either at or below their baselines. Other parameters such as fms-like tyrosine kinase receptor-3 ligand (Flt-3 ligand) concentrations and lymphocyte counts, which have proven to be

  10. HIF-2α-induced chemokines stimulate motility of fibroblast-like synoviocytes and chondrocytes into the cartilage-pannus interface in experimental rheumatoid arthritis mouse models.

    PubMed

    Huh, Yun Hyun; Lee, Gyuseok; Lee, Keun-Bae; Koh, Jeong-Tae; Chun, Jang-Soo; Ryu, Je-Hwang

    2015-10-29

    Pannus formation and resulting cartilage destruction during rheumatoid arthritis (RA) depends on the migration of synoviocytes to cartilage tissue. Here, we focused on the role of hypoxia-inducible factor (HIF)-2α-induced chemokines by chondrocytes in the regulation of fibroblast-like synoviocyte (FLS) migration into the cartilage-pannus interface and cartilage erosion. Collagen-induced arthritis (CIA), K/BxN serum transfer, and tumor necrosis factor-α transgenic mice were used as experimental RA models. Expression patterns of HIF-2α and chemokines were determined via immunostaining, Western blotting and RT-PCR. FLS motility was evaluated using transwell migration and invasion assays. The specific role of HIF-2α was determined via local deletion of HIF-2α in joint tissues or using conditional knockout (KO) mice. Cartilage destruction, synovitis and pannus formation were assessed via histological analysis. HIF-2α and various chemokines were markedly upregulated in degenerating cartilage and pannus of RA joints. HIF-2α induced chemokine expression by chondrocytes in both primary culture and cartilage tissue. HIF-2α -induced chemokines by chondrocytes regulated the migration and invasion of FLS. Local deletion of HIF-2α in joint tissues inhibited pannus formation adjacent to cartilage tissue and cartilage destruction caused by K/BxN serum transfer. Furthermore, conditional knockout of HIF-2α in cartilage blocked pannus formation in adjacent cartilage but not bone tissue, along with inhibition of cartilage erosion caused by K/BxN serum transfer. Our findings suggest that chemokines induced by IL-1β or HIF-2α in chondrocytes regulate pannus expansion by stimulating FLS migration and invasion, leading to cartilage erosion during RA pathogenesis.

  11. A computational study of the chemokine receptor CXCR1 bound with interleukin-8

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Severin Lupala, Cecylia; Wang, Ting; Li, Xuanxuan; Yun, Ji-Hye; Park, Jae-hyun; Jin, Zeyu; Lee, Weontae; Tan, Leihan; Liu, Haiguang

    2018-03-01

    CXCR1 is a G-protein coupled receptor, transducing signals from chemokines, in particular the interleukin-8 (IL8) molecules. This study combines homology modeling and molecular dynamics simulation methods to study the structure of CXCR1-IL8 complex. By using CXCR4-vMIP-II crystallography structure as the homologous template, CXCR1-IL8 complex structure was constructed, and then refined using all-atom molecular dynamics simulations. Through extensive simulations, CXCR1-IL8 binding poses were investigated in detail. Furthermore, the role of the N-terminal of CXCR1 receptor was studied by comparing four complex models differing in the N-terminal sequences. The results indicate that the receptor N-terminal affects the binding of IL8 significantly. With a shorter N-terminal domain, the binding of IL8 to CXCR1 becomes unstable. The homology modeling and simulations also reveal the key receptor-ligand residues involved in the electrostatic interactions known to be vital for complex formation. Project supported by the National Natural Science Foundation of China (Grant Nos. 11575021, U1530401, and U1430237) and the National Research Foundation of Korea (Grant Nos. NRF-2017R1A2B2008483 and NRF-2016R1A6A3A04010213).

  12. CXC chemokine ligand 4 (Cxcl4) is a platelet-derived mediator of experimental liver fibrosis.

    PubMed

    Zaldivar, Mirko Moreno; Pauels, Katrin; von Hundelshausen, Philipp; Berres, Marie-Luise; Schmitz, Petra; Bornemann, Jörg; Kowalska, M Anna; Gassler, Nikolaus; Streetz, Konrad L; Weiskirchen, Ralf; Trautwein, Christian; Weber, Christian; Wasmuth, Hermann E

    2010-04-01

    Liver fibrosis is a major cause of morbidity and mortality worldwide. Platelets are involved in liver damage, but the underlying molecular mechanisms remain elusive. Here, we investigate the platelet-derived chemokine (C-X-C motif) ligand 4 (CXCL4) as a molecular mediator of fibrotic liver damage. Serum concentrations and intrahepatic messenger RNA of CXCL4 were measured in patients with chronic liver diseases and mice after toxic liver injury. Platelet aggregation in early fibrosis was determined by electron microscopy in patients and by immunohistochemistry in mice. Cxcl4(-/-) and wild-type mice were subjected to two models of chronic liver injury (CCl(4) and thioacetamide). The fibrotic phenotype was analyzed by histological, biochemical, and molecular analyses. Intrahepatic infiltration of immune cells was investigated by fluorescence-activated cell sorting, and stellate cells were stimulated with recombinant Cxcl4 in vitro. The results showed that patients with advanced hepatitis C virus-induced fibrosis or nonalcoholic steatohepatitis had increased serum levels and intrahepatic CXCL4 messenger RNA concentrations. Platelets were found directly adjacent to collagen fibrils. The CCl(4) and thioacetamide treatment led to an increase of hepatic Cxcl4 levels, platelet activation, and aggregation in early fibrosis in mice. Accordingly, genetic deletion of Cxcl4 in mice significantly reduced histological and biochemical liver damage in vivo, which was accompanied by changes in the expression of fibrosis-related genes (Timp-1 [tissue inhibitor of matrix metalloproteinase 1], Mmp9 [matrix metalloproteinase 9], Tgf-beta [transforming growth factor beta], IL10 [interleukin 10]). Functionally, Cxcl4(-/-) mice showed a strongly decreased infiltration of neutrophils (Ly6G) and CD8(+) T cells into the liver. In vitro, recombinant murine Cxcl4 stimulated the proliferation, chemotaxis, and chemokine expression of hepatic stellate cells. The results underscore an important role

  13. Davallia bilabiata inhibits TNF-α-induced adhesion molecules and chemokines by suppressing IKK/NF-kappa B pathway in vascular endothelial cells.

    PubMed

    Yang, Rong-Chi; Chang, Cheng-Chieh; Sheen, Jer-Ming; Wu, Hsiao-Ting; Pang, Jong-Hwei S; Huang, Sheng-Teng

    2014-01-01

    Davallia bilabiata (D. bilabiata) is also called GuSuiBu in Taiwan and is used as a substitute for Drynaria fortunei J. Sm. It is often used for trauma and bone repair. The inhibitory effect of D. bilabiata on inflammatory activity has not been reported. In the present study, we aimed to study the mechanism of anti-inflammation of D. bilabiata on the adhesion of leukocytes to vascular endothelial cells. The results showed that D. bilabiata, at concentrations without cytotoxic effect, inhibited the adhesion of monocytes (THP-1) to the TNF-α-stimulated human umbilical vascular endothelial cells (HUVECs). D. bilabiata suppressed the expression of the adhesion molecules ICAM, VCAM, and E-selectin at both the mRNA and protein level. In addition, both of the TNF-α-induced mRNA and protein expression of chemokines including fractalkine/CX3CL1, MCP-1 and RANTES as well as the level of secreted soluble fractalkine were decreased by D. bilabiata. We also verified that D. bilabiata inhibited the TNF-α-induced nuclear translocation of NF-κB through the inhibitory process on the TNF-α-activated phosphorylation of IKKα, IKKβ, IκB and NF-κB. All together, we concluded that the D. bilabiata affected the canonical pathway of TNF-α-induced NF-κB activation and down-regulated cell adhesion molecules and chemokine expression through inhibition of the NF-κB/IκBα/IKK signaling pathway. These findings strongly indicated that D. bilabiata might be a promising alternative/adjunct treatment for inflammatory diseases, such as rheumatoid arthritis and osteoarthritis.

  14. Multiplane wave imaging increases signal-to-noise ratio in ultrafast ultrasound imaging.

    PubMed

    Tiran, Elodie; Deffieux, Thomas; Correia, Mafalda; Maresca, David; Osmanski, Bruno-Felix; Sieu, Lim-Anna; Bergel, Antoine; Cohen, Ivan; Pernot, Mathieu; Tanter, Mickael

    2015-11-07

    Ultrafast imaging using plane or diverging waves has recently enabled new ultrasound imaging modes with improved sensitivity and very high frame rates. Some of these new imaging modalities include shear wave elastography, ultrafast Doppler, ultrafast contrast-enhanced imaging and functional ultrasound imaging. Even though ultrafast imaging already encounters clinical success, increasing even more its penetration depth and signal-to-noise ratio for dedicated applications would be valuable. Ultrafast imaging relies on the coherent compounding of backscattered echoes resulting from successive tilted plane waves emissions; this produces high-resolution ultrasound images with a trade-off between final frame rate, contrast and resolution. In this work, we introduce multiplane wave imaging, a new method that strongly improves ultrafast images signal-to-noise ratio by virtually increasing the emission signal amplitude without compromising the frame rate. This method relies on the successive transmissions of multiple plane waves with differently coded amplitudes and emission angles in a single transmit event. Data from each single plane wave of increased amplitude can then be obtained, by recombining the received data of successive events with the proper coefficients. The benefits of multiplane wave for B-mode, shear wave elastography and ultrafast Doppler imaging are experimentally demonstrated. Multiplane wave with 4 plane waves emissions yields a 5.8  ±  0.5 dB increase in signal-to-noise ratio and approximately 10 mm in penetration in a calibrated ultrasound phantom (0.7 d MHz(-1) cm(-1)). In shear wave elastography, the same multiplane wave configuration yields a 2.07  ±  0.05 fold reduction of the particle velocity standard deviation and a two-fold reduction of the shear wave velocity maps standard deviation. In functional ultrasound imaging, the mapping of cerebral blood volume results in a 3 to 6 dB increase of the contrast-to-noise ratio in deep

  15. Expression of interferon-inducible chemokines and sleep/wake changes during early encephalitis in experimental African trypanosomiasis

    PubMed Central

    Seke-Etet, Paul F.; La Verde, Valentina; Colavito, Valeria; Grassi-Zucconi, Gigliola; Rodgers, Jean; Montague, Paul; Bentivoglio, Marina

    2017-01-01

    Background Human African trypanosomiasis or sleeping sickness, caused by the parasite Trypanosoma brucei, leads to neuroinflammation and characteristic sleep/wake alterations. The relationship between the onset of these alterations and the development of neuroinflammation is of high translational relevance, but remains unclear. This study investigates the expression of interferon (IFN)-γ and IFN-inducible chemokine genes in the brain, and the levels of CXCL10 in the serum and cerebrospinal fluid prior to and during the encephalitic stage of trypanosome infection, and correlates these with sleep/wake changes in a rat model of the disease. Methodology/Principal findings The expression of genes encoding IFN-γ, CXCL9, CXCL10, and CXCL11 was assessed in the brain of rats infected with Trypanosoma brucei brucei and matched controls using semi-quantitative end-point RT-PCR. Levels of CXCL10 in the serum and cerebrospinal fluid were determined using ELISA. Sleep/wake states were monitored by telemetric recording. Using immunohistochemistry, parasites were found in the brain parenchyma at 14 days post-infection (dpi), but not at 6 dpi. Ifn-γ, Cxcl9, Cxcl10 and Cxcl11 mRNA levels showed moderate upregulation by 14 dpi followed by further increase between 14 and 21 dpi. CXCL10 concentration in the cerebrospinal fluid increased between 14 and 21 dpi, preceded by a rise in the serum CXCL10 level between 6 and 14 dpi. Sleep/wake pattern fragmentation was evident at 14 dpi, especially in the phase of wake predominance, with intrusion of sleep episodes into wakefulness. Conclusions/Significance The results show a modest increase in Cxcl9 and Cxcl11 transcripts in the brain and the emergence of sleep/wake cycle fragmentation in the initial encephalitic stage, followed by increases in Ifn-γ and IFN-dependent chemokine transcripts in the brain and of CXCL10 in the cerebrospinal fluid. The latter parameter and sleep/wake alterations could provide combined humoral and functional

  16. Expression of interferon-inducible chemokines and sleep/wake changes during early encephalitis in experimental African trypanosomiasis.

    PubMed

    Laperchia, Claudia; Tesoriero, Chiara; Seke-Etet, Paul F; La Verde, Valentina; Colavito, Valeria; Grassi-Zucconi, Gigliola; Rodgers, Jean; Montague, Paul; Kennedy, Peter G E; Bentivoglio, Marina

    2017-08-01

    Human African trypanosomiasis or sleeping sickness, caused by the parasite Trypanosoma brucei, leads to neuroinflammation and characteristic sleep/wake alterations. The relationship between the onset of these alterations and the development of neuroinflammation is of high translational relevance, but remains unclear. This study investigates the expression of interferon (IFN)-γ and IFN-inducible chemokine genes in the brain, and the levels of CXCL10 in the serum and cerebrospinal fluid prior to and during the encephalitic stage of trypanosome infection, and correlates these with sleep/wake changes in a rat model of the disease. The expression of genes encoding IFN-γ, CXCL9, CXCL10, and CXCL11 was assessed in the brain of rats infected with Trypanosoma brucei brucei and matched controls using semi-quantitative end-point RT-PCR. Levels of CXCL10 in the serum and cerebrospinal fluid were determined using ELISA. Sleep/wake states were monitored by telemetric recording. Using immunohistochemistry, parasites were found in the brain parenchyma at 14 days post-infection (dpi), but not at 6 dpi. Ifn-γ, Cxcl9, Cxcl10 and Cxcl11 mRNA levels showed moderate upregulation by 14 dpi followed by further increase between 14 and 21 dpi. CXCL10 concentration in the cerebrospinal fluid increased between 14 and 21 dpi, preceded by a rise in the serum CXCL10 level between 6 and 14 dpi. Sleep/wake pattern fragmentation was evident at 14 dpi, especially in the phase of wake predominance, with intrusion of sleep episodes into wakefulness. The results show a modest increase in Cxcl9 and Cxcl11 transcripts in the brain and the emergence of sleep/wake cycle fragmentation in the initial encephalitic stage, followed by increases in Ifn-γ and IFN-dependent chemokine transcripts in the brain and of CXCL10 in the cerebrospinal fluid. The latter parameter and sleep/wake alterations could provide combined humoral and functional biomarkers of the early encephalitic stage in African trypanosomiasis.

  17. Signal-activated phospholipase regulation of leukocyte chemotaxis.

    PubMed

    Cathcart, Martha K

    2009-04-01

    Signal-activated phospholipases are a recent focus of the rapidly growing field of lipid signaling. The extent of their impact on the pathways regulating diverse cell functions is beginning to be appreciated. A critical step in inflammation is the attraction of leukocytes to injured or diseased tissue. Chemotaxis of leukocytes, a requisite process for monocyte and neutrophil extravasation from the blood into tissues, is a critical step for initiating and maintaining inflammation in both acute and chronic settings. Recent studies have identified new important and required roles for two signal-activated phospholipases A2 (PLA2) in regulating chemotaxis. The two intracellular phospholipases, cPLA2alpha (Group IVA) and iPLA2beta (Group VIA), act in parallel to provide distinct lipid mediators at different intracellular sites that are both required for leukocytes to migrate toward the chemokine monocyte chemoattractant protein-1. This review will summarize the separate roles of these phospholipases as well as what is currently known about the influence of two other classes of intracellular signal-activated phospholipases, phospholipase C and phospholipase D, in regulating chemotaxis in eukaryotic cells, but particularly in human monocytes. The contributions of these phospholipases to chemotaxis both in vitro and in vivo will be highlighted.

  18. Profibrogenic chemokines and viral evolution predict rapid progression of hepatitis C to cirrhosis

    PubMed Central

    Farci, Patrizia; Wollenberg, Kurt; Diaz, Giacomo; Engle, Ronald E.; Lai, Maria Eliana; Klenerman, Paul; Purcell, Robert H.; Pybus, Oliver G.; Alter, Harvey J.

    2012-01-01

    Chronic hepatitis C may follow a mild and stable disease course or progress rapidly to cirrhosis and liver-related death. The mechanisms underlying the different rates of disease progression are unknown. Using serial, prospectively collected samples from cases of transfusion-associated hepatitis C, we identified outcome-specific features that predict long-term disease severity. Slowly progressing disease correlated with an early alanine aminotransferase peak and antibody seroconversion, transient control of viremia, and significant induction of IFN-γ and MIP-1β, all indicative of an effective, albeit insufficient, adaptive immune response. By contrast, rapidly progressive disease correlated with persistent and significant elevations of alanine aminotransferase and the profibrogenic chemokine MCP-1 (CCL-2), greater viral diversity and divergence, and a higher rate of synonymous substitution. This study suggests that the long-term course of chronic hepatitis C is determined early in infection and that disease severity is predicted by the evolutionary dynamics of hepatitis C virus and the level of MCP-1, a chemokine that appears critical to the induction of progressive fibrogenesis and, ultimately, the ominous complications of cirrhosis. PMID:22829669

  19. Dynamic switching mechanisms of a CC chemokine, CCL5 (RANTES). A simulation study

    NASA Astrophysics Data System (ADS)

    Peter, Emanuel; Pivkin, Igor

    CCL5 (RANTES) belongs to the class of pro-inflammatory chemokines which are part of the human immune-response. It is known to activate leukocytes through its associated chemokine receptor 5 (CCR5) and plays a key role in several malignancies, including HIV-1 infections and cancer. In this talk, we present our results from enhanced sampling simulations of the CCL5 (RANTES) monomer. We find that this protein can adopt 2 different conformations : a globular form, with an orthogonal alignment of the N-terminal part, and a 'cis' form, in which the N-terminus is aligned parallel to the β-strand interface. A detailed analysis of the structure reveals that each of these states is stabilized by salt-bridges along the sequence, and corresponds to a defined dihedral-geometry of the 2 disulfide bridges Cys10-34 and Cys11-50. We derive a uniform distribution of transitions from the globular form of CCL5 (RANTES), and find that each of the main conformers adopts different electrostatic patterns.

  20. Profibrogenic chemokines and viral evolution predict rapid progression of hepatitis C to cirrhosis.

    PubMed

    Farci, Patrizia; Wollenberg, Kurt; Diaz, Giacomo; Engle, Ronald E; Lai, Maria Eliana; Klenerman, Paul; Purcell, Robert H; Pybus, Oliver G; Alter, Harvey J

    2012-09-04

    Chronic hepatitis C may follow a mild and stable disease course or progress rapidly to cirrhosis and liver-related death. The mechanisms underlying the different rates of disease progression are unknown. Using serial, prospectively collected samples from cases of transfusion-associated hepatitis C, we identified outcome-specific features that predict long-term disease severity. Slowly progressing disease correlated with an early alanine aminotransferase peak and antibody seroconversion, transient control of viremia, and significant induction of IFN-γ and MIP-1β, all indicative of an effective, albeit insufficient, adaptive immune response. By contrast, rapidly progressive disease correlated with persistent and significant elevations of alanine aminotransferase and the profibrogenic chemokine MCP-1 (CCL-2), greater viral diversity and divergence, and a higher rate of synonymous substitution. This study suggests that the long-term course of chronic hepatitis C is determined early in infection and that disease severity is predicted by the evolutionary dynamics of hepatitis C virus and the level of MCP-1, a chemokine that appears critical to the induction of progressive fibrogenesis and, ultimately, the ominous complications of cirrhosis.