Science.gov

Sample records for increased dj-1 expression

  1. A Physical Interaction between the Dopamine Transporter and DJ-1 Facilitates Increased Dopamine Reuptake

    PubMed Central

    Luk, Beryl; Mohammed, Mohinuddin; Liu, Fang; Lee, Frank J. S.

    2015-01-01

    The regulation of the dopamine transporter (DAT) impacts extracellular dopamine levels after release from dopaminergic neurons. Furthermore, a variety of protein partners have been identified that can interact with and modulate DAT function. In this study we show that DJ-1 can potentially modulate DAT function. Co-expression of DAT and DJ-1 in HEK-293T cells leads to an increase in [3H] dopamine uptake that does not appear to be mediated by increased total DAT expression but rather through an increase in DAT cell surface localization. In addition, through a series of GST affinity purifications and co-immunoprecipitations, we provide evidence that the DAT can be found in a complex with DJ-1, which involve distinct regions within both DAT and DJ-1. Using in vitro binding experiments we also show that this complex can be formed in part by a direct interaction between DAT and DJ-1. Co-expression of a mini-gene that can disrupt the DAT/DJ-1 complex appears to block the increase in [3H] dopamine uptake by DJ-1. Mutations in DJ-1 have been linked to familial forms of Parkinson’s disease, yet the normal physiological function of DJ-1 remains unclear. Our study suggests that DJ-1 may also play a role in regulating dopamine levels by modifying DAT activity. PMID:26305376

  2. DJ-1 Expression in Cervical Carcinoma and its Effects on Cell Viability and Apoptosis

    PubMed Central

    Wang, Han; Gao, Weiwei

    2016-01-01

    Background This study aimed to investigate the expression of DJ-1 in cervical carcinoma and its effects on cell viability and apoptosis. Material/Methods Cervical carcinoma cell line Hela and 85 tissue samples, including 45 primary tumor biopsies, 30 para-carcinoma tissues, and 10 normal cervical tissues samples were used in this study. The expressions of DJ-1 in cervical carcinoma tissue, para-carcinoma tissue, and normal tissue samples were investigated by immunohistochemistry. DJ-1 expression in Hela cells was also investigated by quantitative reverse transcription-polymerase chain reaction (RT-PCR) and Western blot. DJ-1 was interfered and transfected with siRNA, then cell viability and apoptosis were assayed by MTT and flow cytometry, respectively. Additionally, the expressions of phosphatase and tensin homolog (PTEN), AKT, and phospho-AKT (P-AKT) were detected. Results Immunohistochemistry results showed that DJ-1 was highly expressed in cervical carcinoma tissues. In Hela cells, the expression of DJ-1 was significantly higher than that in normal controls (P<0.05). When cells were treated with DJ-1 siRNA, the cell viability decreased significantly (P<0.05), and the percentage of apoptosis cells increased significantly (P<0.05). In addition, the expressions of PTEN and AKT were significantly higher in the DJ-1 siRNA treatment group than those in the control group (P<0.05). The expression of p-AKT was significantly lower in the DJ-1 siRNA treatment group than in the control group and the DJ-1 over-expression group (P<0.05). Conclusions The aberrant up-regulation of DJ-1 expression might be an important step in the pathogenesis of cervical carcinoma. PMID:27544688

  3. DJ-1 Expression in Cervical Carcinoma and its Effects on Cell Viability and Apoptosis.

    PubMed

    Wang, Han; Gao, Weiwei

    2016-01-01

    BACKGROUND This study aimed to investigate the expression of DJ-1 in cervical carcinoma and its effects on cell viability and apoptosis. MATERIAL AND METHODS Cervical carcinoma cell line Hela and 85 tissue samples, including 45 primary tumor biopsies, 30 para-carcinoma tissues, and 10 normal cervical tissues samples were used in this study. The expressions of DJ-1 in cervical carcinoma tissue, para-carcinoma tissue, and normal tissue samples were investigated by immunohistochemistry. DJ-1 expression in Hela cells was also investigated by quantitative reverse transcription-polymerase chain reaction (RT-PCR) and Western blot. DJ-1 was interfered and transfected with siRNA, then cell viability and apoptosis were assayed by MTT and flow cytometry, respectively. Additionally, the expressions of phosphatase and tensin homolog (PTEN), AKT, and phospho-AKT (P-AKT) were detected. RESULTS Immunohistochemistry results showed that DJ-1 was highly expressed in cervical carcinoma tissues. In Hela cells, the expression of DJ-1 was significantly higher than that in normal controls (P<0.05). When cells were treated with DJ-1 siRNA, the cell viability decreased significantly (P<0.05), and the percentage of apoptosis cells increased significantly (P<0.05). In addition, the expressions of PTEN and AKT were significantly higher in the DJ-1 siRNA treatment group than those in the control group (P<0.05). The expression of p-AKT was significantly lower in the DJ-1 siRNA treatment group than in the control group and the DJ-1 over-expression group (P<0.05). CONCLUSIONS The aberrant up-regulation of DJ-1 expression might be an important step in the pathogenesis of cervical carcinoma. PMID:27544688

  4. Expression and role of DJ-1 in leukemia

    SciTech Connect

    Liu Hang; Wang Min Li Min; Wang Donghai; Rao Qing; Wang Yang; Xu Zhifang; Wang Jianxiang

    2008-10-24

    DJ-1 is a multifunctional protein that has been implicated in pathogenesis of some solid tumors. In this study, we found that DJ-1 was overexpressed in acute leukemia (AL) patient samples and leukemia cell lines, which gave the first clue that DJ-1 overexpression might be involved in leukemogenesis and/or disease progression of AL. Inactivation of DJ-1 by RNA-mediated interference (RNAi) in leukemia cell lines K562 and HL60 resulted in inhibition of the proliferation potential and enhancement of the sensitivity of leukemia cells to chemotherapeutic drug etoposide. Further investigation of DJ-1 activity revealed that phosphatase and tensin homolog (PTEN), as well as some proliferation and apoptosis-related genes, was regulated by DJ-1. Thus, DJ-1 might be involved in leukemogesis through regulating cell growth, proliferation, and apoptosis. It could be a potential therapeutic target for leukemia.

  5. Changes in the expression of neurotransmitter receptors in Parkin and DJ-1 knockout mice--A quantitative multireceptor study.

    PubMed

    Cremer, J N; Amunts, K; Schleicher, A; Palomero-Gallagher, N; Piel, M; Rösch, F; Zilles, K

    2015-12-17

    Parkinson's disease (PD) is a well-characterized neurological disorder with regard to its neuropathological and symptomatic appearance. At the genetic level, mutations of particular genes, e.g. Parkin and DJ-1, were found in human hereditary PD with early onset. Neurotransmitter receptors constitute decisive elements in neural signal transduction. Furthermore, since they are often altered in neurological and psychiatric diseases, receptors have been successful targets for pharmacological agents. However, the consequences of PD-associated gene mutations on the expression of transmitter receptors are largely unknown. Therefore, we studied the expression of 16 different receptor binding sites of the neurotransmitters glutamate, GABA, acetylcholine, adrenaline, serotonin, dopamine and adenosine by means of quantitative receptor autoradiography in Parkin and DJ-1 knockout mice. These knockout mice exhibit electrophysiological and behavioral deficits, but do not show the typical dopaminergic cell loss. We demonstrated differential changes of binding site densities in eleven brain regions. Most prominently, we found an up-regulation of GABA(B) and kainate receptor densities in numerous cortical areas of Parkin and DJ-1 knockout mice, as well as increased NMDA but decreased AMPA receptor densities in different brain regions of the Parkin knockout mice. The alterations of three different glutamate receptor types may indicate the potential relevance of the glutamatergic system in the pathogenesis of PD. Furthermore, the cholinergic M1, M2 and nicotinic receptors as well as the adrenergic α2 and the adenosine A(2A) receptors showed differentially increased densities in Parkin and DJ-1 knockout mice. Taken together, knockout of the PD-associated genes Parkin or DJ-1 results in differential changes of neurotransmitter receptor densities, highlighting a possible role of altered non-dopaminergic, and in particular of glutamatergic neurotransmission in PD pathogenesis. PMID

  6. DJ-1 deficiency impairs glutamate uptake into astrocytes via the regulation of flotillin-1 and caveolin-1 expression

    PubMed Central

    Kim, Jin-Mo; Cha, Seon-Heui; Choi, Yu Ree; Jou, Ilo; Joe, Eun-Hye; Park, Sang Myun

    2016-01-01

    Parkinson’s disease (PD) is a common chronic and progressive neurodegenerative disorder. Although the cause of PD is still poorly understood, mutations in many genes including SNCA, parkin, PINK1, LRRK2, and DJ-1 have been identified in the familial forms of PD. It was recently proposed that alterations in lipid rafts may cause the neurodegeneration shown in PD. Here, we observe that DJ-1 deficiency decreased the expression of flotillin-1 (flot-1) and caveolin-1 (cav-1), the main protein components of lipid rafts, in primary astrocytes and MEF cells. As a mechanism, DJ-1 regulated flot-1 stability by direct interaction, however, decreased cav-1 expression may not be a direct effect of DJ-1, but rather as a result of decreased flot-1 expression. Dysregulation of flot-1 and cav-1 by DJ-1 deficiency caused an alteration in the cellular cholesterol level, membrane fluidity, and alteration in lipid rafts-dependent endocytosis. Moreover, DJ-1 deficiency impaired glutamate uptake into astrocytes, a major function of astrocytes in the maintenance of CNS homeostasis, by altering EAAT2 expression. This study will be helpful to understand the role of DJ-1 in the pathogenesis of PD, and the modulation of lipid rafts through the regulation of flot-1 or cav-1 may be a novel therapeutic target for PD. PMID:27346864

  7. The Expression of DJ-1 (PARK7) in Normal Human CNS and Idiopathic Parkinson's Disease

    ERIC Educational Resources Information Center

    Bandopadhyay, Rina; Kingsbury, Ann E.; Cookson, Mark R.; Reid, Andrew R.; Evans, Ian M.; Hope, Andrew D.; Pittman, Alan M.; Lashley, Tammaryn; Canet-Aviles, Rosa; Miller, David W.; McLendon, Chris; Strand, Catherine; Leonard, Andrew J.; Abou-Sleiman, Patrick M.; Healy, Daniel G.; Ariga, Hiroyashi; Wood, Nicholas W.; de Silva, Rohan; Revesz, Tamas; Hardy, John A.; Lees, Andrew J.

    2004-01-01

    Two mutations in the DJ-1 gene on chromosome1p36 have been identified recently to cause early-onset, autosomal recessive Parkinson's disease. As no information is available regarding the distribution of DJ-1 protein in the human brain, in this study we used a monoclonal antibody for DJ-1 to map its distribution in frontal cortex and substantia…

  8. The protective role of DJ-1 in ultraviolet-induced damage of human skin: DJ-1 levels in the stratum corneum as an indicator of antioxidative defense.

    PubMed

    Ishiwatari, Shioji; Takahashi, Minako; Yasuda, Chie; Nakagawa, Maho; Saito, Yoshiro; Noguchi, Noriko; Matsukuma, Shoko

    2015-12-01

    DJ-1 is a multifunctional protein associated with Parkinson's disease and plays a significant role in protecting nerve cells from oxidative stress. DJ-1 is expressed in the skin, although its function there is unknown. In this study, we investigated DJ-1 function in keratinocytes. DJ-1 was induced by H2O2 exposure and UV irradiation in keratinocytes. DJ-1 knockdown with small interfering RNA (siRNA) increased reactive oxygen species (ROS) and lactate dehydrogenase (LDH) release after UVB irradiation, suggesting that DJ-1 reduces ROS and might protect skin cells from UV damage in vitro. To investigate the in vivo role of DJ-1 in the skin, we determined DJ-1 levels in human stratum corneum samples obtained by the tape-stripping method. DJ-1 levels in the stratum corneum (scDJ-1) correlated with total antioxidant capacity. We also examined the effect of scDJ-1 on changes in skin after UVB irradiation. DJ-1 was elevated in SC from the upper arm 1 to 2 weeks after UVB irradiation. One day after UVB irradiation, L* (brightness) and a* (redness) values, indicators of skin color, were altered regardless of scDJ-1 expression. However, these values recovered more quickly in subjects with high scDJ-1 expression than in those with low scDJ-1 expression. These data suggest that DJ-1 in skin plays a significant role in protection against UV radiation and oxidative stress, and that DJ-1 levels in the SC might be an indicator of antioxidative defense against UV-induced damage. PMID:26498291

  9. Life-time expression of the proteins peroxiredoxin, beta-synuclein, PARK7/DJ-1, and stathmin in the primary visual and primary somatosensory cortices in rats

    PubMed Central

    Böhm, Michael R. R.; Melkonyan, Harutyun; Thanos, Solon

    2015-01-01

    Four distinct proteins are regulated in the aging neuroretina and may be regulated in the cerebral cortex, too: peroxiredoxin, beta-synuclein, PARK[Parkinson disease(autosomal recessive, early onset)]7/DJ-1, and Stathmin. Thus, we performed a comparative analysis of these proteins in the the primary somatosensory cortex (S1) and primary visual cortex (V1) in rats, in order to detect putative common development-, maturation- and age-related changes. The expressions of peroxiredoxin, beta-synuclein, PARK[Parkinson disease (autosomal recessive, early onset)]7/DJ-1, and Stathmin were compared in the newborn, juvenile, adult, and aged S1 and V1. Western blot (WB), quantitative reverse-transcription polymerase chain reaction (qRT-PCR), and immunohistochemistry (IHC) analyses were employed to determine whether the changes identified by proteomics were verifiable at the cellular and molecular levels. All of the proteins were detected in both of the investigated cortical areas. Changes in the expressions of the four proteins were found throughout the life-time of the rats. Peroxiredoxin expression remained unchanged over life-time. Beta-Synuclein expression was massively increased up to the adult stage of life in both the S1 and V1. PARK[Parkinson disease (autosomal recessive, early onset)]7/DJ-1 exhibited a massive up-regulation in both the S1 and V1 at all ages. Stathmin expression was massively down regulated after the neonatal period in both the S1 and V1. The detected protein alterations were analogous to their retinal profiles. This study is the first to provide evidence that peroxiredoxin, beta-synuclein, PARK[Parkinson disease (autosomal recessive, early onset)]7/DJ-1, and Stathmin are associated with postnatal maturation and aging in both the S1 and V1 of rats. These changes may indicate their involvement in key functional pathways and may account for the onset or progression of age-related pathologies. PMID:25788877

  10. DJ-1 protects the heart against ischemia-reperfusion injury by regulating mitochondrial fission.

    PubMed

    Shimizu, Yuuki; Lambert, Jonathan P; Nicholson, Chad K; Kim, Joshua J; Wolfson, David W; Cho, Hee Cheol; Husain, Ahsan; Naqvi, Nawazish; Chin, Li-Shen; Li, Lian; Calvert, John W

    2016-08-01

    Recent data indicates that DJ-1 plays a role in the cellular response to stress. Here, we aimed to examine the underlying molecular mechanisms mediating the actions of DJ-1 in the heart following myocardial ischemia-reperfusion (I/R) injury. In response to I/R injury, DJ-1 KO mice displayed increased areas of infarction and worsened left ventricular function when compared to WT mice, confirming a protective role for DJ-1 in the heart. In an effort to evaluate the potential mechanism(s) responsible for the increased injury in DJ-1 KO mice, we focused on SUMOylation, a post-translational modification process that regulates various aspects of protein function. DJ-1 KO hearts after I/R injury were found to display enhanced accumulation of SUMO-1 modified proteins and reduced SUMO-2/3 modified proteins. Further analysis, revealed that the protein expression of the de-SUMOylation enzyme SENP1 was reduced, whereas the expression of SENP5 was enhanced in DJ-1 KO hearts after I/R injury. Finally, DJ-1 KO hearts were found to display enhanced SUMO-1 modification of dynamin-related protein 1, excessive mitochondrial fission, and dysfunctional mitochondria. Our data demonstrates that the activation of DJ-1 in response to myocardial I/R injury protects the heart by regulating the SUMOylation status of Drp1 and attenuating excessive mitochondrial fission. PMID:27108530

  11. DJ-1 protects against cell death following acute cardiac ischemia–reperfusion injury

    PubMed Central

    Dongworth, R K; Mukherjee, U A; Hall, A R; Astin, R; Ong, S-B; Yao, Z; Dyson, A; Szabadkai, G; Davidson, S M; Yellon, D M; Hausenloy, D J

    2014-01-01

    Novel therapeutic targets are required to protect the heart against cell death from acute ischemia–reperfusion injury (IRI). Mutations in the DJ-1 (PARK7) gene in dopaminergic neurons induce mitochondrial dysfunction and a genetic form of Parkinson's disease. Genetic ablation of DJ-1 renders the brain more susceptible to cell death following ischemia–reperfusion in a model of stroke. Although DJ-1 is present in the heart, its role there is currently unclear. We sought to investigate whether mitochondrial DJ-1 may protect the heart against cell death from acute IRI by preventing mitochondrial dysfunction. Overexpression of DJ-1 in HL-1 cardiac cells conferred the following beneficial effects: reduced cell death following simulated IRI (30.4±4.7% with DJ-1 versus 52.9±4.7% in control; n=5, P<0.05); delayed mitochondrial permeability transition pore (MPTP) opening (a critical mediator of cell death) (260±33 s with DJ-1 versus 121±12 s in control; n=6, P<0.05); and induction of mitochondrial elongation (81.3±2.5% with DJ-1 versus 62.0±2.8% in control; n=6 cells, P<0.05). These beneficial effects of DJ-1 were absent in cells expressing the non-functional DJ-1L166P and DJ-1Cys106A mutants. Adult mice devoid of DJ-1 (KO) were found to be more susceptible to cell death from in vivo IRI with larger myocardial infarct sizes (50.9±3.5% DJ-1 KO versus 41.1±2.5% in DJ-1 WT; n≥7, P<0.05) and resistant to cardioprotection by ischemic preconditioning. DJ-1 KO hearts showed increased mitochondrial fragmentation on electron microscopy, although there were no differences in calcium-induced MPTP opening, mitochondrial respiratory function or myocardial ATP levels. We demonstrate that loss of DJ-1 protects the heart from acute IRI cell death by preventing mitochondrial dysfunction. We propose that DJ-1 may represent a novel therapeutic target for cardioprotection. PMID:24577080

  12. DJ-1 Knockout Augments Disease Severity and Shortens Survival in a Mouse Model of ALS

    PubMed Central

    Lev, Nirit; Barhum, Yael; Lotan, Itay; Steiner, Israel; Offen, Daniel

    2015-01-01

    Amyotrophic lateral sclerosis (ALS) is a progressive, lethal, neurodegenerative disorder, characterized by the degeneration of motor neurons. Oxidative stress plays a central role in the disease progression, in concert with an enhanced glutamate excitotoxicity and neuroinflammation. DJ-1 mutations, leading to the loss of functional protein, cause familial Parkinson’s disease and motor neuron disease in several patients. DJ-1 responds to oxidative stress and plays an important role in the cellular defense mechanisms. We aimed to investigate whether loss of functional DJ-1 alters the disease course and severity in an ALS mouse model. To this end we used mice that express the human SOD1G93A mutation, the commonly used model of ALS and knockout of DJ-1 mice to generate SOD1 DJ-1 KO mice. We found that knocking out DJ-1in the ALS model led to an accelerated disease course and shortened survival time. DJ-1 deficiency was found to increase neuronal loss in the spinal cord associated with increased gliosis in the spinal cord and reduced antioxidant response that was regulated by the Nrf2 mechanism.The importance of DJ-1 in ALS was also illustrated in a motor neuron cell line that was exposed to glutamate toxicity and oxidative stress. Addition of the DJ-1 derived peptide, ND-13, enhanced the resistance to glutamate and SIN-1 induced toxicity. Thus, our results maintain that DJ-1 plays a role in the disease process and promotes the necessity of further investigation of DJ-1 as a therapeutic target for ALS. PMID:25822630

  13. ROLE OF NRF2 IN THE OXIDATIVE STRESS-DEPENDENT HYPERTENSION ASSOCIATED WITH THE DEPLETION OF DJ-1

    PubMed Central

    Cuevas, Santiago; Yang, Yu; Konkalmatt, Prasad; Asico, Laureano; Feranil, Jun; Jones, John; Villar, Van Anthony; Armando, Ines; Jose, Pedro A.

    2015-01-01

    Renal dopamine 2 receptor dysfunction is associated with oxidative stress and high blood pressure. We have reported that DJ-1, an oxidative stress response protein, is positively regulated by dopamine 2 receptor in the kidney. The transcription factor Nrf2 regulates the expression of several antioxidant genes. We tested the hypothesis that Nrf2 is involved in the renal DJ-1-mediated inhibition of reactive oxygen species production. We have reported that silencing dopamine 2 receptor in mouse renal proximal tubule cells decreases the expression of DJ-1. We now report that silencing DJ-1 or dopamine 2 receptor in mouse proximal tubule cells and mouse kidneys, decreases Nrf2 expression and activity and increases reactive oxygen species production; blood pressure is also increased in mice in which renal DJ-1 or dopamine 2 receptor is silenced. DJ-1−/− mice have decreased renal Nrf2 expression and activity, and increased nitro-tyrosine levels an dopamine 2 receptor d blood pressure. Silencing Nrf2 in mouse proximal tubule cells does not alter the expression of DJ-1 or dopamine 2 receptor, indicating that Nrf2 is downstream of dopamine 2 receptor and DJ-1. A Nrf2 inducer, bardoxolone, normalizes the systolic blood pressure and renal malondialdehyde levels in DJ-1−/− mice without affecting them in their wild-type littermates. Because Nrf2 ubiquitination is increased in DJ-1−/− mice, we conclude that the protective effect of DJ-1 on renal oxidative stress is mediated, in part, by preventing Nrf2 degradation. Moreover, renal dopamine 2 receptor and DJ-1 are necessary for normal Nrf2 activity to keep a normal redox balance and blood pressure. PMID:25895590

  14. DJ-1 Is Upregulated in Oral Squamous Cell Carcinoma and Promotes Oral Cancer Cell Proliferation and Invasion

    PubMed Central

    Xu, Shuaimei; Ma, Dandan; Zhuang, Rui; Sun, Wenjuan; Liu, Ying; Wen, Jun; Cui, Li

    2016-01-01

    Background: The development of oral squamous cell carcinoma (OSCC) is a multistep process that involves in both genetic alterations and epigenetic modifications. DJ-1, a negative regulator of tumor suppressor PTEN, functions as an oncogene in many types of cancers. However, its role in OSCC is poorly known. Methods: Immunohistochemical staining and Western blotting were performed to evaluate the expression level of DJ-1 in oral leukoplakia (OLK) and OSCC tissues respectively. Then lentiviral mediated DJ-1 shRNA was constructed and used to infect the OSCC cell lines (Tca8113 and CAL-27). MTT, cell counting, and Matrigel invasion assay were utilized to examine the effects of DJ-1 down-regulation on proliferation and invasion capacity of oral cancer cells. Results: The immunoreactivity and expression level of DJ-1 protein was significantly increased in OLK and OSCC tissues compared with the controls. Lentiviral-delivered shRNA targeting DJ-1 could effectively knock down DJ-1 at mRNA and protein level (P<0.01). The proliferative and invasion ability of OSCC cell lines was significantly suppressed following DJ-1 inhibition (P<0.01). Conclusions: Our study indicated that DJ-1 is over-expressed in both oral precancer and cancer tissues and shRNA inhibition of DJ-1 expression led to decreased proliferation and invasion capability of oral cancer cells. These findings suggest that DJ-1 might be actively involved in the development of OSCC. Future studies will investigate the potential of DJ-1 as a biomarker for early detection of OSCC. PMID:27313793

  15. Keap1-Nrf2 Activation in the Presence and Absence of DJ-1

    PubMed Central

    Gan, Li; Johnson, Delinda A.; Johnson, Jeffrey A.

    2012-01-01

    The molecular mechanisms leading to neurodegeneration in Parkinson’s disease remain elusive. Deletion and mutations of DJ-1 (PARK7) have been reported to cause autosomal recessive familial Parkinson’s disease. Wildtype DJ-1 scavenges H2O2 by cysteine oxidation in response to oxidative stress, and thus confers neuroprotection. Activation of the transcription factor NF-E2 related factor-2 (Nrf2) has also been shown to be important for protection against oxidative stress in many models of neurodegenerative diseases. Previous data indicate that DJ-1 affects the transcriptional functions and stability of Nrf2. However, this observation has not been confirmed. In the current study, the role of DJ-1 in the regulation of Nrf2 is examined in primary cultured neurons, astrocytes and in vivo. The prototypical Nrf2 activator, tBHQ, protected primary cortical neurons derived from DJ-1 knockout (KO) as well as DJ-1 wildtype mice by activation of Nrf2-ARE pathway. Nrf2 nuclear translocation, robust increases of canonical Nrf2-driven genes and proteins, and dramatic activation of the ARE reporter gene, hPAP, were observed after tBHQ treatment. These results were further confirmed by siRNA mediated DJ-1 knockdown in primary cortical astrocytes from ARE-hPAP mice and tBHQ administration into the striatum of mouse brain. In addition, over-expression of Nrf2 with adenovirus preferentially in astrocytes from DJ-1 KO mice enhanced survival of neurons under oxidative insults. These findings indicate that activation of the Nrf2-ARE pathway is independent of DJ-1, and Nrf2 activation is a potential therapeutic target to prevent neurodegeneration in sporadic and DJ-1 familial Parkinson’s disease. PMID:20377612

  16. Sodium Benzoate, a Metabolite of Cinnamon and a Food Additive, Upregulates Neuroprotective Parkinson Disease Protein DJ-1 in Astrocytes and Neurons

    PubMed Central

    Khasnavis, Saurabh

    2011-01-01

    DJ-1 (PARK7) is a neuroprotective protein that protects cells from oxidative stress. Accordingly, loss-of-function DJ-1 mutations have been linked with a familial form of early onset Parkinson disease. Mechanisms by which DJ-1 level could be enriched in the CNS are poorly understood. Recently we have discovered anti-inflammatory activity of sodium benzoate (NaB), a metabolite of cinnamon and a widely-used food additive. Here we delineate that NaB is also capable of increasing the level of DJ-1 in primary mouse and human astrocytes and human neurons highlighting another novel neuroprotective effect of this compound. Reversal of DJ-1-inducing effect of NaB by mevalonate, farnesyl phosphate, but not cholesterol and ubiquinone, suggests that depletion of intermediates, but not end products, of the mevalonate pathway is involved in the induction of DJ-1 by NaB. Accordingly, either an inhibitor of p21ras farnesyl protein transferase (FPTI) or a dominant-negative mutant of p21ras alone was also able to increase the expression of DJ-1 in astrocytes suggesting an involvement of p21ras in DJ-1 expression. However, an inhibitor of geranyl geranyl transferase (GGTI) and a dominant-negative mutant of p21rac had no effect on the expression of DJ-1, indicating the specificity of the effect. Similarly lipopolysaccharide (LPS), an activator of small G proteins, also inhibited the expression of DJ-1, and NaB and FPTI, but not GGTI, abrogated LPS-mediated inhibition. Together, these results suggest that NaB upregulates DJ-1 via modulation of mevalonate metabolites and that p21ras, but not p21rac, is involved in the regulation of DJ-1. PMID:21701815

  17. DJ-1 linked parkinsonism (PARK7) is associated with Lewy body pathology.

    PubMed

    Taipa, Ricardo; Pereira, Conceição; Reis, Inês; Alonso, Isabel; Bastos-Lima, António; Melo-Pires, Manuel; Magalhães, Marina

    2016-06-01

    Mutations in DJ-1 (encoded by PARK7) are a very rare cause of early-onset recessive Parkinson's disease. We describe a patient with early-onset parkinsonism, starting at the age of 22, with poor response to levodopa and additional features in progression (dystonia, pyramidal signs and dementia), who died when he was 49 years old. The neuropathological study showed severe substantia nigra and locus coeruleus neuronal loss, with diffuse Lewy body pathology (Lewy bodies, aberrant neurites, grain-like structures, spheroids and scattered glial pathology). Genetic analysis revealed a novel c.515T > A; p.L172Q mutation in the PARK7 gene. To evaluate the pathogenicity of this new mutation we explored DJ-1 expression levels in vitro showing a massive reduction in DJ-1 protein levels due to a highly unstable and rapidly degraded L172Q mutant. DJ-1 immunohistochemistry of brain tissue revealed no staining in our case. This is the first neuropathological report of a brain from DJ-1-linked parkinsonism that, although based on a single case study, suggests that DJ-1 mutations are causative of α-synucleinopathy. These results can help in the understanding of Parkinson's disease pathophysiology, promote research studies to increase the knowledge on the pathways involved in the neurodegeneration process, and pave the way for new therapeutic interventions. PMID:27085187

  18. Mechanistic Nanotherapeutic Approach Based on siRNA-Mediated DJ-1 Protein Suppression for Platinum-Resistant Ovarian Cancer.

    PubMed

    Schumann, Canan; Chan, Stephanie; Khalimonchuk, Oleh; Khal, Shannon; Moskal, Vitaliya; Shah, Vidhi; Alani, Adam W G; Taratula, Olena; Taratula, Oleh

    2016-06-01

    We report an efficient therapeutic modality for platinum resistant ovarian cancer based on siRNA-mediated suppression of a multifunctional DJ-1 protein that is responsible for the proliferation, growth, invasion, oxidative stress, and overall survival of various cancers. The developed therapeutic strategy can work alone or in concert with a low dose of the first line chemotherapeutic agent cisplatin, to elicit a maximal therapeutic response. To achieve an efficient DJ-1 knockdown, we constructed the polypropylenimine dendrimer-based nanoplatform targeted to LHRH receptors overexpressed on ovarian cancer cells. The quantitative PCR and Western immunoblotting analysis revealed that the delivered DJ-1 siRNA downregulated the expression of targeted mRNA and corresponding protein by more than 80% in various ovarian cancer cells. It was further demonstrated that siRNA-mediated DJ-1 suppression dramatically impaired proliferation, viability, and migration of the employed ovarian cancer cells. Finally, the combinatorial approach led to the most pronounced therapeutic response in all the studied cell lines, outperforming both siRNA-mediated DJ-1 knockdown and cisplatin treatment alone. It is noteworthy that the platinum-resistant cancer cells (A2780/CDDP) with the highest basal level of DJ-1 protein are most susceptible to the developed therapy and this susceptibility declines with decreasing basal levels of DJ-1. Finally, we interrogate the molecular underpinnings of the DJ-1 knockdown effects in the treatment of the ovarian cancer cells. By using various experimental techniques, it was revealed that DJ-1 depletion (1) decreases the activity of the Akt pathway, thereby reducing cellular proliferation and migration and increasing the antiproliferative effect of cisplatin on ovarian cancer cells; (2) enhances the activity of p53 tumor suppressor protein therefore restoring cell cycle arrest functionality and upregulating the Bax-caspase pathway, triggering cell death; and (3

  19. Reactive oxygen species-mediated DJ-1 monomerization modulates intracellular trafficking involving karyopherin β2.

    PubMed

    Björkblom, Benny; Maple-Grødem, Jodi; Puno, Marc Rhyan; Odell, Mark; Larsen, Jan Petter; Møller, Simon Geir

    2014-08-01

    Mutations in DJ-1 are a cause of recessive, early-onset Parkinson's disease (PD). Although oxidative stress and mitochondrial integrity have been implicated in PD, it is largely unknown why neurons degenerate. DJ-1 is involved in oxidative stress-mediated responses and in mitochondrial maintenance; however, its specific function remains vague. Here we show that DJ-1 exhibits neuronal dynamic intracellular trafficking, with dimeric/monomeric cycling modulated by the oxidative environment. We demonstrate that oxidative stress enhances monomerization of wild-type cytosolic DJ-1, leading to nuclear recruitment. The pathogenic DJ-1/E163K variant is unable to homodimerize but is retained in the cytosol upon wild-type DJ-1 heterodimerization. We found that this wild-type/pathogenic heterodimer is disrupted by oxidative stress, leading to DJ-1/E163K mitochondrial translocation. We further demonstrated that endogenously expressed wild-type DJ-1 is imported into neuronal nuclei as a monomer and that nucleo-cytoplasmic transport is oxidative stress mediated. We identified a novel proline-tyrosine nuclear localization signal (PY-NLS) in DJ-1, and we found that nuclear monomeric DJ-1 import is mediated by an oxidative stress-dependent interaction with karyopherin β2. Our study provides evidence that oxidative stress-mediated intracellular trafficking of DJ-1, mediated by dynamic DJ-1 dimeric/monomeric cycling, is implicated in PD pathogenesis. PMID:24912681

  20. Transcriptional Activation of the Cholecystokinin Gene by DJ-1 through Interaction of DJ-1 with RREB1 and the Effect of DJ-1 on the Cholecystokinin Level in Mice

    PubMed Central

    Yamane, Takuya; Suzui, Sayaka; Kitaura, Hirotake; Takahashi-Niki, Kazuko; Iguchi-Ariga, Sanae M. M.; Ariga, Hiroyoshi

    2013-01-01

    DJ-1 is an oncogene and also causative gene for familial Parkinson’s disease. DJ-1 has multiple functions, including transcriptional regulation. DJ-1 acts as a coactivator that binds to various transcription factors, resulting in stimulation or repression of the expression of their target genes. In this study, we found that the cholecystokinin (CCK) gene is a transcriptional target gene for DJ-1. CCK is a peptide hormone and plays roles in contraction of the gallbladder and in promotion of secretion of pancreatic fluid. CCK is co-localized with dopamine in the substantia nigra to regulate release of dopamine. Reduced expression of CCK mRNA was observed in DJ-1-knockdown cells. The Ras-responsive element (RRE) and Sp1 site were essential for promoter activity, and DJ-1 stimulated promoter activity by binding to RRE-binding protein 1 (RREBP1). The complex of DJ-1 with RREB1 but not with Sp1 bound to the RRE. Furthermore, the reduced CCK level in the serum from DJ-1-knockout mice compared to that from wild-type mice was observed. This is the first report showing that DJ-1 participates in peptide hormone synthesis. PMID:24348900

  1. Protein DJ-1 and its anti-oxidative stress function play an important role in renal cell mediated response to profibrotic agents.

    PubMed

    Eltoweissy, Marwa; Dihazi, Gry H; Müller, Gerhard A; Asif, Abdul R; Dihazi, Hassan

    2016-05-24

    In the pathogenesis of renal fibrosis, oxidative stress (OS) enhances the production of reactive oxygen species (ROS) leading to sustained cell growth, inflammation, excessive tissue remodelling and accumulation, which results in the development and acceleration of renal damage. In our previous work (Eltoweissy et al., 2011) we established protein DJ-1 (PARK7) as an important ROS scavenger and key player in renal cell response to OS. In the present study we investigated the impact of profibrogenic agonists on DJ-1 and shed light on the role of this protein in renal fibrosis. Treatment of renal fibroblasts and epithelial cells with the profibrogenic agonist ANG II or PDGF resulted in a significant up-regulation of DJ-1 expression parallel to an increase in the expression of fibrosis markers. Monitoring of DJ-1 expression in kidney extract and tissue sections from a renal fibrosis mouse model (Col4a3-deficient) revealed a disease grade dependent regulation of the protein. Overexpression of DJ-1 prompted cell resistance to OS in both fibroblasts and epithelial cells. Furthermore overexpression of DJ-1, involved in ROS scavenging, in which glutamic acid 18 (E18) is mutated to either to aspartic acid (D) or glutamine (Q) resulted in a significant increase in cell death under OS in the case of E18D mutation, whereas E18Q mutation did not impact significantly the cell response to OS, revealing the importance of the acidic group for the ROS scavenging activity of the DJ-1 protein more than the nature of the amino acid itself. Affinity precipitation of interaction partners of DJ-1 and its mutants revealed an important role of annexin A1 and A5 in the mechanism of action of DJ-1 in anti-oxidative stress response. PMID:27109140

  2. DJ-1 deficiency attenuates expansion of liver progenitor cells through modulating the inflammatory and fibrogenic niches.

    PubMed

    Chen, L; Luo, M; Sun, X; Qin, J; Yu, C; Wen, Y; Zhang, Q; Gu, J; Xia, Q; Kong, X

    2016-01-01

    Our previous study suggested that DJ-1 has a critical role in initiating an inflammatory response, but its role in the liver progenitor cell (LPC) expansion, a process highly dependent on the inflammatory niche, remains elusive. The objective of this study is to determine the role of DJ-1 in LPC expansion. The correlation of DJ-1 expression with LPC markers was examined in the liver of patients with hepatitis B or hepatitis C virus (HBV and HCV, respectively) infection, primary biliary cirrhosis (PBC), primary sclerosing cholangitis (PSC), nonalcoholic fatty liver disease (NAFLD), cirrhosis or hepatocellular carcinoma (HCC), respectively. The role of DJ-1 in LPC expansion and the formation of LPC-associated fibrosis and inflammation was examined in a 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet-induced liver injury murine model. We also determined the ability of hepatic stellate cells (HSCs) in recruiting macrophages in DJ-1 knockout (KO) mice. The expression levels of DJ-1 were upregulated in the liver of HBV, HCV, PBC and PSC patients and DDC-fed mice. Additionally, DJ-1 expression was positively correlated with LPC proliferation in patients with liver injury and mice with DDC exposure. DJ-1 has no direct effect on LPC proliferation. Reduced activation of HSCs and collagen deposition were observed in DJ-1 KO mice. Furthermore, infiltrated CD11b(+)Gr-1(low) macrophages and pro-inflammatory factors (IL-6, TNF-α) were attenuated in DJ-1 KO mice. Mechanistically, we found that HSCs isolated from DJ-1 KO mice had decreased secretion of macrophage-mobilizing chemokines, such as CCL2 and CX3CL1, resulting in impaired macrophage infiltration. DJ-1 positively correlates with LPC expansion during liver injury. DJ-1 deficiency negatively regulates LPC proliferation by impairing the formation of LPC-associated fibrosis and inflammatory niches. PMID:27277679

  3. Transduced Tat-DJ-1 protein inhibits cytokines-induced pancreatic RINm5F cell death.

    PubMed

    Jo, Hyo Sang; Yeo, Hyeon Ji; Cha, Hyun Ju; Kim, Sang Jin; Cho, Su Bin; Park, Jung Hwan; Lee, Chi Hern; Yeo, Eun Ji; Choi, Yeon Joo; Eum, Won Sik; Choi, Soo Young

    2016-05-01

    Loss of pancreatic β-cells by oxidative stress or cytokines is associated with diabetes mellitus (DM). DJ-1 is known to as a multifunctional protein, which plays an important role in cell survival. We prepared cell permeable wild type (WT) and mutant type (M26I) Tat-DJ-1 proteins to investigate the effects of DJ-1 against combined cytokines (IL-1β, IFN-γ and TNF-α)-induced RINm5F cell death. Both Tat-DJ-1 proteins were transduced into RINm5F cells. WT Tat-DJ-1 proteins significantly protected against cell death from cytokines by reducing intracellular toxicities. Also, WT Tat-DJ-1 proteins markedly regulated cytokines-induced pro- and anti-apoptosis proteins. However, M26I Tat-DJ-1 protein showed relatively low protective effects, as compared to WT Tat-DJ-1 protein. Our experiments demonstrated that WT Tat-DJ-1 protein protects against cytokine-induced RINm5F cell death by suppressing intracellular toxicities and regulating apoptosisrelated protein expression. Thus, WT Tat-DJ-1 protein could potentially serve as a therapeutic agent for DM and cytokine related diseases. [BMB Reports 2016; 49(5): 297-302]. PMID:26996344

  4. Overexpression of DJ-1 reduces oxidative stress and attenuates hypoxia/reoxygenation injury in NRK-52E cells exposed to high glucose

    PubMed Central

    Shen, Zi-Ying; Sun, Qian; Xia, Zhong-Yuan; Meng, Qing-Tao; Lei, Shao-Qing; Zhao, Bo; Tang, Ling-Hua; Xue, Rui; Chen, Rong

    2016-01-01

    Patients with diabetes are more vulnerable to renal ischemia/reperfusion (I/R) injury, which is implicated in hyperglycemia-induced oxidative stress. We previously reported that the hyperglycemia-induced inhibition of DJ-1, a novel oncogene that exhibits potent antioxidant activity, is implicated in the severity of myocardial I/R injury. In the present study, we aimed to explore the role of DJ-1 in hypoxia/reoxygenation (H/R) injury in renal cells exposed to high glucose (HG). For this purpose, NRK-52E cells were exposed to HG (30 mM) for 48 h and then exposed to hypoxia for 4 h and reoxygenation for 2 h, which significantly decreased cell viability and superoxide dismutase (SOD) activity, and increased the malondialdehyde (MDA) content, accompanied by a decrease in DJ-1 protein expression. The overexpression of DJ-1 by transfection with a DJ-1 overexpression plasmid exerted protective effects against HG-induced H/R injury, as evidenced by increased CCK-8 levels and SOD activity, the decreased release of lactate dehydrogenase (LDH) and the decreased MDA content, and increased nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and heme oxygenase-1 (HO-1) expression. Similar effects were observed following treatment with the antioxidant, N-acetylcysteine. These results suggest that the overexpression of DJ-1 reduces oxidative stress and attenuates H/R injury in NRK-52E cells exposed to HG. PMID:27430285

  5. Cinnamon Treatment Upregulates Neuroprotective Proteins Parkin and DJ-1 and Protects Dopaminergic Neurons in a Mouse Model of Parkinson’s Disease

    PubMed Central

    Khasnavis, Saurabh

    2014-01-01

    Upregulation and/or maintenance of Parkinson’s disease (PD)-related beneficial proteins such as Parkin and DJ-1 in astrocytes during neurodegenerative insults may have therapeutic efficacy in PD. Cinnamon is a commonly used natural spice and flavoring material throughout the world. Here we have explored a novel use of cinnamon in upregulating Parkin and DJ-1 and protecting dopaminergic neurons in MPTP mouse model of PD. Recently we have delineated that oral feeding of cinnamon (Cinnamonum verum) powder produces sodium benzoate (NaB) in blood and brain of mice. Proinflammatory cytokine IL-1β decreased the level of Parkin/DJ-1 in mouse astrocytes. However, cinnamon metabolite NaB abrogated IL-1β-induced loss of these proteins. Inability of TNF-α to produce nitric oxide (NO) and decrease the level of Parkin/DJ-1 in wild type (WT) astrocytes, failure of IL-1β to reduce Parkin/DJ-1 in astrocytes isolated from iNOS (−/−) mice, and decrease in Parkin/DJ-1 in WT astrocytes by NO donor DETA-NONOate suggest that NO is a negative regulator of Parkin/DJ-1. Furthermore, suppression of IL-1β-induced expression of iNOS in astrocytes by NaB and reversal of NaB-mediated protection of Parkin/DJ-1 by DETA-NONOate in astrocytes indicate that NaB protects Parkin/DJ-1 in activated astrocytes via suppressing iNOS. Similarly MPTP intoxication also increased the level of iNOS and decreased the level of Parkin/DJ-1 in vivo in the nigra. However, oral treatment of MPTP-intoxicated mice with cinnamon powder and NaB reduced the expression of iNOS and protected Parkin/DJ-1 in the nigra. These findings paralleled dopaminergic neuronal protection, normalized striatal neurotransmitters, and improved motor functions by cinnamon in MPTP-intoxicated mice. These results suggest that cinnamon may be beneficial for PD patients. PMID:24946862

  6. Identification of novel proteins associated with both alpha-synuclein and DJ-1.

    PubMed

    Jin, Jinghua; Li, G Jane; Davis, Jeanne; Zhu, David; Wang, Yan; Pan, Catherine; Zhang, Jing

    2007-05-01

    The molecular mechanisms leading to neurodegeneration in Parkinson disease (PD) remain elusive, although many lines of evidence have indicated that alpha-synuclein and DJ-1, two critical proteins in PD pathogenesis, interact with each other functionally. The investigation on whether alpha-synuclein directly interacts with DJ-1 has been controversial. In the current study, we analyzed proteins associated with alpha-synuclein and/or DJ-1 with a robust proteomics technique called stable isotope labeling by amino acids in cell culture (SILAC) in dopaminergic MES cells exposed to rotenone versus controls. We identified 324 and 306 proteins in the alpha-synuclein- and DJ-1-associated protein complexes, respectively. Among alpha-synuclein-associated proteins, 141 proteins displayed significant changes in the relative abundance (increase or decrease) after rotenone treatment; among DJ-1-associated proteins, 119 proteins displayed significant changes in the relative abundance after rotenone treatment. Although no direct interaction was observed between alpha-synuclein and DJ-1, whether analyzed by affinity purification followed by mass spectrometry or subsequent direct co-immunoprecipitation, 144 proteins were seen in association with both alpha-synuclein and DJ-1. Of those, 114 proteins displayed significant changes in the relative abundance in the complexes associated with alpha-synuclein, DJ-1, or both after rotenone treatment. A subset of these proteins (mortalin, nucleolin, grp94, calnexin, and clathrin) was further validated for their association with both alpha-synuclein and DJ-1 using confocal microscopy, Western blot, and/or immunoprecipitation. Thus, we not only confirmed that there was no direct interaction between alpha-synuclein and DJ-1 but also, for the first time, report these five novel proteins to be associating with both alpha-synuclein and DJ-1. Further characterization of these docking proteins will likely shed more light on the mechanisms by which DJ-1

  7. Oxidative stress induction of DJ-1 protein in reactive astrocytes scavenges free radicals and reduces cell injury

    PubMed Central

    Yanagida, Takashi; Tsushima, Jun; Yanagisawa, Daijiro; Takata, Kazuyuki; Shibaike, Tomonori; Yamamoto, Atsuko; Taniguchi, Takashi; Yasui, Hiroyuki; Taira, Takahiro; Morikawa, Shigehiro; Inubushi, Toshihiro; Tooyama, Ikuo

    2009-01-01

    Astrocytes, one of the predominant types of glial cells, function as both supportive and metabolic cells for the brain. Under cerebral ischemia/reperfusion-induced oxidative conditions, astrocytes accumulate and activate in the ischemic region. DJ-1 has recently been shown to be a sensor of oxidative stress in living cells. However, the function of astrocytic DJ-1 is still unknown. In the present study, to clarify the effect of astrocytic DJ-1 protein under massive oxidative insult, we used a focal ischemic rat model that had been subjected to middle cerebral artery occlusion (MCAO) and reperfusion. We then investigated changes in the distribution of DJ-1 in astrocytes, DJ-1 release from cultured astrocytes, and the effects of recombinant DJ-1 protein on hydrogen peroxide (H2O2)-induced death in normal and DJ-1-knockdown SH-SY5Y cells and on in vitro scavenging of hydroxyl radicals (•OH) by electron spin resonance spectrometry. At 24 h after 2-h MCAO and reperfusion, an infarct lesion was markedly observed using magnetic resonance imaging and 2,3,5-triphenyltetrazolium chloride staining. In addition, reactive astrocytes enhanced DJ-1 expression in the penumbral zone of the ischemic core and that DJ-1 protein was extracellularly released from astrocytes by H2O2 in in vitro primary cultures. Although DJ-1-knockdown SH-SY5Y cells were markedly vulnerable to oxidative stress, treatment with glutathione S-transferase-tagged recombinant human DJ-1 protein (GST-DJ-1) significantly inhibited H2O2-induced cell death. In addition, GST-DJ-1 protein directly scavenged •OH. These results suggest that oxidative stress induces the release of astrocytic DJ-1 protein, which may contribute to astrocyte-mediated neuroprotection. PMID:20046643

  8. The Parkinsonism-associated protein DJ-1/Park7 prevents glycation damage in human keratinocyte.

    PubMed

    Advedissian, Tamara; Deshayes, Frédérique; Poirier, Françoise; Viguier, Mireille; Richarme, Gilbert

    2016-04-22

    Reducing sugars and dicarbonyls form covalent adducts with proteins through a nonenzymatic process known as glycation, which inactivates proteins, is increased in diabetic patients and is associated with diabetic complications, including retinopathy, cataracts, nephropathy, neuropathy, cardiomyopathy and skin defects. We recently characterized DJ-1/Park7 as a protein deglycase that repairs proteins from glycation by glyoxal and methylglyoxal, two major glycating agents which are responsible for up to 65% of glycation events. In this study, we investigated the ability of DJ-1 to prevent protein glycation in keratinocytes. Glycation of collagen and keratinocyte proteins was tested by measuring ultraviolet absorption and fluorescence emission. Protein glycation in HaCaT keratinocytes was investigated by immunodetection with anti-advanced glycation endproduct antibodies, after DJ-1 depletion or overexpression. In vitro, DJ-1 prevented glycation of collagen and keratinocyte protein extracts. In cell culture, DJ-1 depletion by small interfering RNAs resulted in a 3-fold increase in protein glycation levels. Moreover, protein glycation levels were decreased several-fold in cells overexpressing DJ-1 after addition of the Nrf2 inducer sulforaphane or after transfection with a DJ-1 plasmid. Thus, the DJ-1 deglycase plays a major role in preventing protein glycation in eukaryotic cells and might be important for preventing skin glycation. PMID:26995087

  9. Parkin, PINK1, and DJ-1 form a ubiquitin E3 ligase complex promoting unfolded protein degradation

    PubMed Central

    Xiong, Hui; Wang, Danling; Chen, Linan; Choo, Yeun Su; Ma, Hong; Tang, Chengyuan; Xia, Kun; Jiang, Wei; Ronai, Ze’ev; Zhuang, Xiaoxi; Zhang, Zhuohua

    2009-01-01

    Mutations in PARKIN, pten-induced putative kinase 1 (PINK1), and DJ-1 are individually linked to autosomal recessive early-onset familial forms of Parkinson disease (PD). Although mutations in these genes lead to the same disease state, the functional relationships between them and how their respective disease-associated mutations cause PD are largely unknown. Here, we show that Parkin, PINK1, and DJ-1 formed a complex (termed PPD complex) to promote ubiquitination and degradation of Parkin substrates, including Parkin itself and Synphilin-1 in neuroblastoma cells and human brain lysates. Genetic ablation of either Pink1 or Dj-1 resulted in reduced ubiquitination of endogenous Parkin as well as decreased degradation and increased accumulation of aberrantly expressed Parkin substrates. Expression of PINK1 enhanced Parkin-mediated degradation of heat shock–induced misfolded protein. In contrast, PD-pathogenic Parkin and PINK1 mutations showed reduced ability to promote degradation of Parkin substrates. This study identified a functional ubiquitin E3 ligase complex consisting of PD-associated Parkin, PINK1, and DJ-1 to promote degradation of un-/misfolded proteins and suggests that their PD-pathogenic mutations impair E3 ligase activity of the complex, which may constitute a mechanism underlying PD pathogenesis. PMID:19229105

  10. Regulation of Reactive Oxygen Species and the Antioxidant Protein DJ-1 in Mastocytosis.

    PubMed

    Kim, Do-Kyun; Beaven, Michael A; Kulinski, Joseph M; Desai, Avanti; Bandara, Geethani; Bai, Yun; Prussin, Calman; Schwartz, Lawrence B; Komarow, Hirsh; Metcalfe, Dean D; Olivera, Ana

    2016-01-01

    Neoplastic accumulation of mast cells in systemic mastocytosis (SM) associates with activating mutations in the receptor tyrosine kinase KIT. Constitutive activation of tyrosine kinase oncogenes has been linked to imbalances in oxidant/antioxidant mechanisms in other myeloproliferative disorders. However, the impact of KIT mutations on the redox status in SM and the potential therapeutic implications are not well understood. Here, we examined the regulation of reactive oxygen species (ROS) and of the antioxidant protein DJ-1 (PARK-7), which increases with cancer progression and acts to lessen oxidative damage to malignant cells, in relationship with SM severity. ROS levels were increased in both indolent (ISM) and aggressive variants of the disease (ASM). However, while DJ-1 levels were reduced in ISM with lower mast cell burden, they rose in ISM with higher mast cell burden and were significantly elevated in patients with ASM. Studies on mast cell lines revealed that activating KIT mutations induced constant ROS production and consequent DJ-1 oxidation and degradation that could explain the reduced levels of DJ-1 in the ISM population, while IL-6, a cytokine that increases with disease severity, caused a counteracting transcriptional induction of DJ-1 which would protect malignant mast cells from oxidative damage. A mouse model of mastocytosis recapitulated the biphasic changes in DJ-1 and the escalating IL-6, ROS and DJ-1 levels as mast cells accumulate, findings which were reversed with anti-IL-6 receptor blocking antibody. Our findings provide evidence of increased ROS and a biphasic regulation of the antioxidant DJ-1 in variants of SM and implicate IL-6 in DJ-1 induction and expansion of mast cells with KIT mutations. We propose consideration of IL-6 blockade as a potential adjunctive therapy in the treatment of patients with advanced mastocytosis, as it would reduce DJ-1 levels making mutation-positive mast cells vulnerable to oxidative damage. PMID:27611333

  11. Oxidant-induced Interprotein Disulfide Formation in Cardiac Protein DJ-1 Occurs via an Interaction with Peroxiredoxin 2.

    PubMed

    Fernandez-Caggiano, Mariana; Schröder, Ewald; Cho, Hyun-Ju; Burgoyne, Joseph; Barallobre-Barreiro, Javier; Mayr, Manuel; Eaton, Philip

    2016-05-01

    The role and responses of the dimeric DJ-1 protein to cardiac oxidative stress is incompletely understood. H2O2 induces a 50-kDa DJ-1 interprotein homodimer disulfide, known to form between Cys-53 on each subunit. A trimeric 75-kDa DJ-1 complex that mass spectrometry shows contained 2-Cys peroxiredoxin also formed and precedes the appearance of the disulfide dimer. These observations may represent peroxiredoxin sensing and transducing the oxidant signal to DJ-1. The dimeric disulfide DJ-1 complex was stabilized by auranofin, suggesting that thioredoxin recycles it in cells. Higher concentrations of H2O2 concomitantly induce DJ-1 Cys-106 hyperoxidation (sulfination or sulfonation) in myocytes, perfused heart, or HEK cells. An oxidation-resistant C53A DJ-1 shows potentiated H2O2-induced Cys-106 hyperoxidation. DJ-1 also forms multiple disulfides with unknown target proteins during H2O2 treatment, the formation of which is also potentiated in cells expressing the C53A mutant. This suggests that the intersubunit disulfide induces a conformational change that limits Cys-106 forming heterodisulfide protein complexes or from hyperoxidizing. High concentrations of H2O2 also induce cell death, with DJ-1 Cys-106 sulfonation appearing causal in these events, as expressionof C53A DJ-1 enhanced both Cys-106 sulfonation and cell death. Nonetheless, expression of the DJ-1 C106A mutant, which fully prevents hyperoxidation, also showed exacerbated cell death responses to H2O2 A rational explanation for these findings is that DJ-1 Cys-106 forms disulfides with target proteins to limit oxidant-induced cell death. However, when Cys-106 is hyperoxidized, formation of these potentially protective heterodimeric disulfide complexes is limited, and so cell death is exacerbated. PMID:26945066

  12. Differences in strength-duration curves of electrical diagnosis by physiotherapists between DJ-1 homozygous knockout and wild-type mice: a randomized controlled pilot trial.

    PubMed

    Kim, Ju-Hyun; Lee, Won-Deok; Kim, Mee-Young; Lee, Lim-Kyu; Park, Byoung-Sun; Yang, Seung-Min; Noh, Ji-Woong; Shin, Yong-Sub; Lee, Jeong-Uk; Kwak, Taek-Yong; Lee, Tae-Hyun; Park, Jaehong; Kim, Bokyung; Kim, Junghwan

    2016-05-01

    [Purpose] Strength-duration (SD) curves are used in electrical diagnosis by physiotherapists to confirm muscle degeneration. However, the usefulness of SD curves in comparing muscle degeneration in DJ-1 homozygous knockout (DJ-1(-/-)) and wild-type mice (DJ-1(+/+)) is not yet fully understood. The electrical properties of the gastrocnemius muscles of DJ-1(-/-) and DJ-1(+/+) mice were compared in the current study. [Subjects and Methods] The electrode of an electrical stimulator was applied to the gastrocnemius muscle to measure the rheobase until the response of contractive muscle to electrical stimulation became visible in mice. [Results] The rheobase of DJ-1(-/-) mice showed a significant increase in a time-dependent manner, compared to that of DJ-1(+/+) mice. [Conclusion] These results demonstrate that the DJ-1 protein may be implicated in the regulation of neuromuscular activity of gastrocnemius muscles of mice. PMID:27313379

  13. Differences in strength-duration curves of electrical diagnosis by physiotherapists between DJ-1 homozygous knockout and wild-type mice: a randomized controlled pilot trial

    PubMed Central

    Kim, Ju-Hyun; Lee, Won-Deok; Kim, Mee-Young; Lee, Lim-Kyu; Park, Byoung-Sun; Yang, Seung-Min; Noh, Ji-Woong; Shin, Yong-Sub; Lee, Jeong-Uk; Kwak, Taek-Yong; Lee, Tae-Hyun; Park, Jaehong; Kim, Bokyung; Kim, Junghwan

    2016-01-01

    [Purpose] Strength-duration (SD) curves are used in electrical diagnosis by physiotherapists to confirm muscle degeneration. However, the usefulness of SD curves in comparing muscle degeneration in DJ-1 homozygous knockout (DJ-1−/−) and wild-type mice (DJ-1+/+) is not yet fully understood. The electrical properties of the gastrocnemius muscles of DJ-1−/− and DJ-1+/+ mice were compared in the current study. [Subjects and Methods] The electrode of an electrical stimulator was applied to the gastrocnemius muscle to measure the rheobase until the response of contractive muscle to electrical stimulation became visible in mice. [Results] The rheobase of DJ-1−/− mice showed a significant increase in a time-dependent manner, compared to that of DJ-1+/+ mice. [Conclusion] These results demonstrate that the DJ-1 protein may be implicated in the regulation of neuromuscular activity of gastrocnemius muscles of mice. PMID:27313379

  14. Loss of DJ-1 impairs antioxidant response by altered glutamine and serine metabolism.

    PubMed

    Meiser, J; Delcambre, S; Wegner, A; Jäger, C; Ghelfi, J; d'Herouel, A Fouquier; Dong, X; Weindl, D; Stautner, C; Nonnenmacher, Y; Michelucci, A; Popp, O; Giesert, F; Schildknecht, S; Krämer, L; Schneider, J G; Woitalla, D; Wurst, W; Skupin, A; Weisenhorn, D M Vogt; Krüger, R; Leist, M; Hiller, K

    2016-05-01

    The oncogene DJ-1 has been originally identified as a suppressor of PTEN. Further on, loss-of-function mutations have been described as a causative factor in Parkinson's disease (PD). DJ-1 has an important function in cellular antioxidant responses, but its role in central metabolism of neurons is still elusive. We applied stable isotope assisted metabolic profiling to investigate the effect of a functional loss of DJ-1 and show that DJ-1 deficient neuronal cells exhibit decreased glutamine influx and reduced serine biosynthesis. By providing precursors for GSH synthesis, these two metabolic pathways are important contributors to cellular antioxidant response. Down-regulation of these pathways, as a result of loss of DJ-1 leads to an impaired antioxidant response. Furthermore, DJ-1 deficient mouse microglia showed a weak but constitutive pro-inflammatory activation. The combined effects of altered central metabolism and constitutive activation of glia cells raise the susceptibility of dopaminergic neurons towards degeneration in patients harboring mutated DJ-1. Our work reveals metabolic alterations leading to increased cellular instability and identifies potential new intervention points that can further be studied in the light of novel translational medicine approaches. PMID:26836693

  15. DJ-1 interactions with α-synuclein attenuate aggregation and cellular toxicity in models of Parkinson's disease

    PubMed Central

    Zondler, L; Miller-Fleming, L; Repici, M; Gonçalves, S; Tenreiro, S; Rosado-Ramos, R; Betzer, C; Straatman, K R; Jensen, P H; Giorgini, F; Outeiro, T F

    2014-01-01

    Parkinson's disease (PD) is a devastating neurodegenerative disorder characterized by the loss of neurons in the substantia nigra pars compacta and the presence of Lewy bodies in surviving neurons. These intracellular protein inclusions are primarily composed of misfolded α-synuclein (aSyn), which has also been genetically linked to familial and sporadic forms of PD. DJ-1 is a small ubiquitously expressed protein implicated in several pathways associated with PD pathogenesis. Although mutations in the gene encoding DJ-1 lead to familial early-onset PD, the exact mechanisms responsible for its role in PD pathogenesis are still elusive. Previous work has found that DJ-1 – which has protein chaperone-like activity – modulates aSyn aggregation. Here, we investigated possible physical interactions between aSyn and DJ-1 and any consequent functional and pathological relevance. We found that DJ-1 interacts directly with aSyn monomers and oligomers in vitro, and that this also occurs in living cells. Notably, several PD-causing mutations in DJ-1 constrain this interaction. In addition, we found that overexpression of DJ-1 reduces aSyn dimerization, whereas mutant forms of DJ-1 impair this process. Finally, we found that human DJ-1 as well as yeast orthologs of DJ-1 reversed aSyn-dependent cellular toxicity in Saccharomyces cerevisiae. Taken together, these data suggest that direct interactions between DJ-1 and aSyn constitute the basis for a neuroprotective mechanism and that familial mutations in DJ-1 may contribute to PD by disrupting these interactions. PMID:25058424

  16. Destabilization of DJ-1 by familial substitution and oxidative modifications: implications for Parkinson's disease.

    PubMed

    Hulleman, John D; Mirzaei, Hamid; Guigard, Emmanuel; Taylor, Kellie L; Ray, Soumya S; Kay, Cyril M; Regnier, Fred E; Rochet, Jean-Christophe

    2007-05-15

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by oxidative stress and protein aggregation. Both toxic phenomena are mitigated by DJ-1, a homodimeric protein with proposed antioxidant and chaperone activities. The neuroprotective function of DJ-1 is modulated by oxidation of cysteine 106, a residue that may act as an oxidative stress sensor. Loss-of-function mutations in the DJ-1 gene have been linked to early onset PD, and age-dependent over-oxidation of DJ-1 is thought to contribute to sporadic PD. The familial mutant L166P fails to dimerize and is rapidly degraded, suggesting that protein destabilization accounts for the dysfunction of this mutant. In this study, we investigated how the structure and stability of DJ-1 are impacted by two other pathogenic substitutions (M26I and E64D) and by over-oxidation with H2O2. Whereas the recombinant wild-type protein and E64D both adopted a stable dimeric structure, M26I showed an increased propensity to aggregate and decreased secondary structure. Similar to M26I, over-oxidized wild-type DJ-1 exhibited reduced secondary structure, and this property correlated with destabilization of the dimer. The engineered mutant C106A had a greater thermodynamic stability and was more resistant to oxidation-induced destabilization than the wild-type protein. These results suggest that (i) the M26I substitution and over-oxidation destabilize dimeric DJ-1, and (ii) the oxidation of cysteine 106 contributes to DJ-1 destabilization. Our findings provide a structural basis for DJ-1 dysfunction in familial and sporadic PD, and they suggest that dimer stabilization is a reasonable therapeutic strategy to treat both forms of this disorder. PMID:17451229

  17. Mitochondrial localization of DJ-1 leads to enhanced neuroprotection.

    PubMed

    Junn, Eunsung; Jang, Won Hee; Zhao, Xin; Jeong, Byeong Seon; Mouradian, M Maral

    2009-01-01

    Mutations in DJ-1 (PARK7) cause recessively inherited Parkinson's disease. DJ-1 is a multifunctional protein with antioxidant and transcription modulatory activity. Its localization in cytoplasm, mitochondria, and nucleus is recognized, but the relevance of this subcellular compartmentalization to its cytoprotective activity is not fully understood. Here we report that under basal conditions DJ-1 is present mostly in the cytoplasm and to a lesser extent in mitochondria and nucleus of dopaminergic neuroblastoma SK-N-BE(2)C cells. Upon oxidant challenge, more DJ-1 translocates to mitochondria within 3 hr and subsequently to the nucleus by 12 hr. The predominant DJ-1 species in both mitochondria and nucleus is a dimer believed to be the functional form. Mutating cysteine 106, 53, or 46 had no impact on the translocation of DJ-1 to mitochondria. To study the relative neuroprotective activity of DJ-1 in mitochondria and nucleus, DJ-1 cDNA constructs fused to the appropriate localization signal were transfected into cells. Compared with 30% protection against oxidant-induced cell death in wild-type DJ-1-transfected cells, mitochondrial targeting of DJ-1 provided a significantly stronger (55%) cytoprotection based on lactate dehydrogenase release. Nuclear targeting of DJ-1 preserved cells equally as well as the wild-type protein. These observations suggest that the time frame for the translocation of DJ-1 from the cytoplasm to mitochondria and to the nucleus following oxidative stress is quite different and that dimerized DJ-1 in mitochondria is functional as an antioxidant not related to cysteine modification. These findings further highlight the multifaceted functions of DJ-1 as a cytoprotector in different cellular compartments. PMID:18711745

  18. Monomer DJ-1 and its N-terminal sequence are necessary for mitochondrial localization of DJ-1 mutants.

    PubMed

    Maita, Chinatsu; Maita, Hiroshi; Iguchi-Ariga, Sanae M M; Ariga, Hiroyoshi

    2013-01-01

    DJ-1 is a novel oncogene and also a causative gene for familial Parkinson's disease (park7). DJ-1 has multiple functions that include transcriptional regulation, anti-oxidative reaction and chaperone and mitochondrial regulation. Mitochondrial dysfunction is observed in DJ-1-knockout mice and fry, and mitochondrial DJ-1 is more protective against oxidative stress-induced cell death. Although translocation of DJ-1 into mitochondria is enhanced by oxidative stress that leads to oxidation of cysteine 106 (C106) of DJ-1, the characteristics of mitochondrial DJ-1 and the mechanism by which DJ-1 is translocated into mitochondria are poorly understood. In this study, immunostaining, co-immunoprecipitation, cell fractionation and pull-down experiments showed that mutants of glutamine 18 (E18) DJ-1 are localized in mitochondria and do not make homodimers. Likewise, DJ-1 with mutations of two cysteines located in the dimer interface, C46S and C53A, and pathogenic mutants, M26I and L166P DJ-1, were found to be localized in mitochondria and not to make homodimers. Mutant DJ-1 harboring both E18A and C106S, in which C106 is not oxidized, was also localized in mitochondria, indicating that oxidation of C106 is important but not essential for mitochondrial localization of DJ-1. It should be noted that E18A DJ-1 was translocated from mitochondria to the cytoplasm when mitochondrial membrane potential was reduced by treatment of cells with CCCP, an uncoupler of the oxidative phosphorylation system in mitochondria. Furthermore, deletion or substitution of the N-terminal 12 amino acids in DJ-1 resulted in re-localization of E18A, M26I and L166P DJ-1 from mitochondria into the cytoplasm. These findings suggest that a monomer and the N-terminal 12 amino acids are necessary for mitochondrial localization of DJ-1 mutants and that conformation change induced by C106 oxidation or by E18 mutation leads to translocation of DJ-1 into mitochondria. PMID:23326576

  19. Unexpected mitochondrial matrix localization of Parkinson's disease-related DJ-1 mutants but not wild-type DJ-1.

    PubMed

    Kojima, Waka; Kujuro, Yuki; Okatsu, Kei; Bruno, Queliconi; Koyano, Fumika; Kimura, Mayumi; Yamano, Koji; Tanaka, Keiji; Matsuda, Noriyuki

    2016-07-01

    DJ-1 has been identified as a gene responsible for recessive familial Parkinson's disease (familial Parkinsonism), which is caused by a mutation in the PARK7 locus. Consistent with the inferred correlation between Parkinson's disease and mitochondrial impairment, mitochondrial localization of DJ-1 and its implied role in mitochondrial quality control have been reported. However, the mechanism by which DJ-1 affects mitochondrial function remains poorly defined, and the mitochondrial localization of DJ-1 is still controversial. Here, we show the mitochondrial matrix localization of various pathogenic and artificial DJ-1 mutants by multiple independent experimental approaches including cellular fractionation, proteinase K protection assays, and specific immunocytochemistry. Localization of various DJ-1 mutants to the matrix is dependent on the membrane potential and translocase activity in both the outer and the inner membranes. Nevertheless, DJ-1 possesses neither an amino-terminal alpha-helix nor a predictable matrix-targeting signal, and a post-translocation processing-derived molecular weight change is not observed. In fact, wild-type DJ-1 does not show any evidence of mitochondrial localization at all. Such a mode of matrix localization of DJ-1 is difficult to explain by conventional mechanisms and implies a unique matrix import mechanism for DJ-1 mutants. PMID:27270837

  20. Dissection of the Dimerization Modes in the DJ-1 Superfamily

    PubMed Central

    Jung, Hoi Jong; Kim, Sangok; Kim, Yun Jae; Kim, Min-Kyu; Kang, Sung Gyun; Lee, Jung-Hyun; Kim, Wankyu; Cha, Sun-Shin

    2012-01-01

    The DJ-1 superfamily (DJ-1/ThiJ/PfpI superfamily) is distributed across all three kingdoms of life. These proteins are involved in a highly diverse range of cellular functions, including chaperone and protease activity. DJ-1 proteins usually form dimers or hexamers in vivo and show at least four different binding orientations via distinct interface patches. Abnormal oligomerization of human DJ-1 is related to neurodegenerative disorders including Parkinson’s disease, suggesting important functional roles of quaternary structures. However, the quaternary structures of the DJ-1 superfamily have not been extensively studied. Here, we focus on the diverse oligomerization modes among the DJ-1 superfamily proteins and investigate the functional roles of quaternary structures both computationally and experimentally. The oligomerization modes are classified into 4 types (DJ-1, YhbO, Hsp, and YDR types) depending on the distinct interface patches (I–IV) upon dimerization. A unique, rotated interface via patch I is reported, which may potentially be related to higher order oligomerization. In general, the groups based on sequence similarity are consistent with the quaternary structural classes, but their biochemical functions cannot be directly inferred using sequence information alone. The observed phyletic pattern suggests the dynamic nature of quaternary structures in the course of evolution. The amino acid residues at the interfaces tend to show lower mutation rates than those of non-interfacial surfaces. PMID:22228183

  1. PRKN, DJ-1, and PINK1 screening identifies novel splice site mutation in PRKN and two novel DJ-1 mutations.

    PubMed

    Ghazavi, Farzaneh; Fazlali, Zeinab; Banihosseini, Setareh Sadat; Hosseini, Sayed-Rzgar; Kazemi, Mohammad Hossein; Shojaee, Seyedmehdi; Parsa, Khosro; Sadeghi, Homa; Sina, Farzad; Rohani, Mohammad; Shahidi, Gholam-Ali; Ghaemi, Nasser; Ronaghi, Mostafa; Elahi, Elahe

    2011-01-01

    We present results of mutation screening of PRKN gene in 93 Iranian Parkinson's disease (PD) patients with average age at onset (AAO) of 42.2 years. The gene was screened by direct sequencing and by a semi-quantitative PCR protocol for detection of sequence rearrangements. Heterozygous rearrangements were tested by reverse transcription-polymerase chain reaction (RT-PCR). Nine different PRKN mutations were found. One of these, IVS9+1G>A, affects splicing and is novel. Two mutated PRKN alleles were observed in each of 6 patients whose average AAO was 25.7 years. Only 1 patient carried a single mutated allele and his AAO was 41 years. Among patients with AAO of <30 years, 31.3% had two mutated alleles, while only 2.6% with AAO of >30 years carried a PRKN mutation. Analysis of PRKN by RT-PCR led to identification of a novel exon expressed in leukocytes of control and PD individuals. The alternatively spliced transcript if translated would code a protein without a RING Finger 2 domain. Its functional relevance remains to be shown. DJ-I and PINK1 were also screened. Two novel DJ-1 mutations, c.91-2A>G affecting splicing and c.319G>C causing Ala107Pro, were observed among patients with AAO of <31 years, suggesting that PD in a high fraction (>12%) of this group of Iranian patients may be due to mutations in DJ-1. Mutations in PINK1 were not observed. Our results complement previous findings on LRRK2 mutations among Iranian PD patients. PMID:21322020

  2. SG2NA enhances cancer cell survival by stabilizing DJ-1 and thus activating Akt

    SciTech Connect

    Tanti, Goutam Kumar Pandey, Shweta; Goswami, Shyamal K.

    2015-08-07

    SG2NA in association with striatin and zinedin forms a striatin family of WD-40 repeat proteins. This family of proteins functions as scaffold in different signal transduction pathways. They also act as a regulatory subunit of protein phosphatase 2A. We have shown that SG2NA which evolved first in the metazoan evolution among the striatin family members expresses different isoforms generated out of alternative splicing. We have also shown that SG2NA protects cells from oxidative stress by recruiting DJ-1 and Akt to mitochondria and membrane in the post-mitotic neuronal cells. DJ-1 is both cancer and Parkinson's disease related protein. In the present study we have shown that SG2NA protects DJ-1 from proteasomal degradation in cancer cells. Hence, downregulation of SG2NA reduces DJ-1/Akt colocalization in cancer cells resulting in the reduction of anchorage dependent and independent growth. Thus SG2NA enhances cancer cell survival. Reactive oxygen species enhances SG2NA, DJ-1 and Akt trimerization. Removal of the reactive oxygen species by N-acetyl-cysteine thus reduces cancer cell growth. - Highlights: • Reactive oxygen species (ROS) play potential role in cancer cell proliferation. • It enhances the association between DJ-1 and Akt mediated by SG2NA. • In cancer cells SG2NA stabilizes DJ-1 by inhibiting it from proteosomal degradation. • DJ-1 then activates Akt and cancer cells get their property of enhanced proliferation by sustained activation of Akt. • Further study on this field could lead to new target for cancer therapy.

  3. Conservation of Oxidative Protein Stabilization in an Insect Homologue of Parkinsonism-Associated Protein DJ-1

    SciTech Connect

    Lin, Jiusheng; Prahlad, Janani; Wilson, Mark A.

    2012-08-21

    DJ-1 is a conserved, disease-associated protein that protects against oxidative stress and mitochondrial damage in multiple organisms. Human DJ-1 contains a functionally essential cysteine residue (Cys106) whose oxidation is important for regulating protein function by an unknown mechanism. This residue is well-conserved in other DJ-1 homologues, including two (DJ-1{alpha} and DJ-1{beta}) in Drosophila melanogaster. Because D. melanogaster is a powerful model system for studying DJ-1 function, we have determined the crystal structure and impact of cysteine oxidation on Drosophila DJ-1{beta}. The structure of D. melanogaster DJ-1{beta} is similar to that of human DJ-1, although two important residues in the human protein, Met26 and His126, are not conserved in DJ-1{beta}. His126 in human DJ-1 is substituted with a tyrosine in DJ-1{beta}, and this residue is not able to compose a putative catalytic dyad with Cys106 that was proposed to be important in the human protein. The reactive cysteine in DJ-1 is oxidized readily to the cysteine-sulfinic acid in both flies and humans, and this may regulate the cytoprotective function of the protein. We show that the oxidation of this conserved cysteine residue to its sulfinate form (Cys-SO{sub 2{sup -}}) results in considerable thermal stabilization of both Drosophila DJ-1{beta} and human DJ-1. Therefore, protein stabilization is one potential mechanism by which cysteine oxidation may regulate DJ-1 function in vivo. More generally, most close DJ-1 homologues are likely stabilized by cysteine-sulfinic acid formation but destabilized by further oxidation, suggesting that they are biphasically regulated by oxidative modification.

  4. Microglia-Derived Cytokines/Chemokines Are Involved in the Enhancement of LPS-Induced Loss of Nigrostriatal Dopaminergic Neurons in DJ-1 Knockout Mice

    PubMed Central

    Chien, Chia-Hung; Lee, Ming-Jen; Liou, Houng-Chi; Liou, Horng-Huei; Fu, Wen-Mei

    2016-01-01

    Mutation of DJ-1 (PARK7) has been linked to the development of early-onset Parkinson’s disease (PD). However, the underlying molecular mechanism is still unclear. This study is aimed to compare the sensitivity of nigrostriatal dopaminergic neurons to lipopolysaccharide (LPS) challenge between DJ-1 knockout (KO) and wild-type (WT) mice, and explore the underlying cellular and molecular mechanisms. Our results found that the basal levels of interferon (IFN)-γ (the hub cytokine) and interferon-inducible T-cell alpha chemoattractant (I-TAC) (a downstream mediator) were elevated in the substantia nigra of DJ-1 KO mice and in microglia cells with DJ-1 deficiency, and the release of cytokine/chemokine was greatly enhanced following LPS administration in the DJ-1 deficient conditions. In addition, direct intranigral LPS challenge caused a greater loss of nigrostriatal dopaminergic neurons and striatal dopamine content in DJ-1 KO mice than in WT mice. Furthermore, the sensitization of microglia cells to LPS challenge to release IFN-γ and I-TAC was via the enhancement of NF-κB signaling, which was antagonized by NF-κB inhibitors. LPS-induced increase in neuronal death in the neuron-glia co-culture was enhanced by DJ-1 deficiency in microglia, which was antagonized by the neutralizing antibodies against IFN-γ or I-TAC. These results indicate that DJ-1 deficiency sensitizes microglia cells to release IFN-γ and I-TAC and causes inflammatory damage to dopaminergic neurons. The interaction between the genetic defect (i.e. DJ-1) and inflammatory factors (e.g. LPS) may contribute to the development of PD. PMID:26982707

  5. Age- and manganese-dependent modulation of dopaminergic phenotypes in a C. elegans DJ-1 genetic model of Parkinson’s disease

    PubMed Central

    Chen, Pan; DeWitt, Margaret R.; Bornhost, Julia; Soares, Felix A.; Mukhopadhyay, Somshuvra; Bowman, Aaron B.; Aschner, Michael

    2015-01-01

    Parkinson’s Disease (PD) is the second most common neurodegenerative disease, yet its etiology and pathogenesis are poorly understood. PD is characterized by selective dopaminergic (DAergic) degeneration and progressive hypokinetic motor impairment. Mutations in dj-1 cause autosomal recessive early-onset PD. DJ-1 is thought to protect DAergic neurons via an antioxidant mechanism, but the precise basis of this protection has not yet been resolved. Aging and manganese (Mn) exposure are significant non-genetic risk factors for PD. Caenorhabditis elegans (C. elegans) is an optimal model for PD and aging studies because of its simple nervous system, conserved DAergic machinery, and short 20-day lifespan. Here we tested the hypothesis that C. elegans DJ-1 homologues were protective against Mn-induced DAergic toxicity in an age-dependent manner. We showed that the deletion of C. elegans DJ-1 related (djr) genes, djr-1.2, decreased survival after Mn exposure. djr-1.2, the DJ-1 homologue was expressed in DAergic neurons and its deletion decreased lifespan and dopamine (DA)-dependent dauer movement behavior after Mn exposure. We also tested the role of DAF-16 as a regulator of dj-1.2 interaction with Mn toxicity. Lifespan defects resulting from djr-1.2 deletion could be restored to normal by overexpression of either DJR-1.2 or DAF-16. Furthermore, dauer movement alterations after djr-1.2 deletion were abolished by constitutive activation of DAF-16 through mutation of its inhibitor, DAF-2 insulin receptor. Taken together, our results reveal PD-relevant interactions between aging, the PD environmental risk factor manganese, and homologues of the established PD genetic risk factor DJ-1. Our data demonstrate a novel role for the DJ-1 homologue, djr-1.2, in mitigating Mn-dependent lifespan reduction and DA signaling alterations, involving DAF-2/DAF-16 signaling. PMID:25531510

  6. Melatonin rescues zebrafish embryos from the parkinsonian phenotype restoring the parkin/PINK1/DJ-1/MUL1 network.

    PubMed

    Díaz-Casado, María E; Lima, Elena; García, José A; Doerrier, Carolina; Aranda, Paula; Sayed, Ramy Ka; Guerra-Librero, Ana; Escames, Germaine; López, Luis C; Acuña-Castroviejo, Darío

    2016-08-01

    Multiple studies reporting mitochondrial impairment in Parkinson's disease (PD) involve knockout or knockdown models to inhibit the expression of mitochondrial-related genes, including parkin, PINK1, and DJ-1 ones. Melatonin has significant neuroprotective properties, which have been related to its ability to boost mitochondrial bioenergetics. The meaning and molecular targets of melatonin in PD are yet unclear. Zebrafish are an outstanding model of PD because they are vertebrates, their dopaminergic system is comparable to the nigrostriatal system of humans, and their brains express the same genes as mammals. The exposure of 24 hpf zebrafish embryos to MPTP leads to a significant inhibition of the mitochondrial complex I and the induction of sncga gene, responsible for enhancing γ-synuclein accumulation, which is related to mitochondrial dysfunction. Moreover, MPTP inhibited the parkin/PINK1/DJ-1 expression, impeding the normal function of the parkin/PINK1/DJ-1/MUL1 network to remove the damaged mitochondria. This situation remains over time, and removing MPTP from the treatment did not stop the neurodegenerative process. On the contrary, mitochondria become worse during the next 2 days without MPTP, and the embryos developed a severe motor impairment that cannot be rescued because the mitochondrial-related gene expression remained inhibited. Melatonin, added together with MPTP or added once MPTP was removed, prevented and recovered, respectively, the parkinsonian phenotype once it was established, restoring gene expression and normal function of the parkin/PINK1/DJ-1/MUL1 loop and also the normal motor activity of the embryos. The results show, for the first time, that melatonin restores brain function in zebrafish suffering with Parkinson-like disease. PMID:27064726

  7. DJ-1 isoforms in whole blood as potential biomarkers of Parkinson disease

    NASA Astrophysics Data System (ADS)

    Lin, Xiangmin; Cook, Travis J.; Zabetian, Cyrus P.; Leverenz, James B.; Peskind, Elaine R.; Hu, Shu-Ching; Cain, Kevin C.; Pan, Catherine; Edgar, John Scott; Goodlett, David R.; Racette, Brad A.; Checkoway, Harvey; Montine, Thomas J.; Shi, Min; Zhang, Jing

    2012-12-01

    DJ-1 is a multifunctional protein that plays an important role in oxidative stress, cell death, and synucleinopathies, including Parkinson disease. Previous studies have demonstrated that total DJ-1 levels decrease in the cerebrospinal fluid, but do not change significantly in human plasma from patients with Parkinson disease when compared with controls. In this study, we measured total DJ-1 and its isoforms in whole blood of patients with Parkinson disease at various stages, Alzheimer disease, and healthy controls to identify potential peripheral biomarkers of PD. In an initial discovery study of 119 subjects, 7 DJ-1 isoforms were reliably detected, and blood levels of those with 4-hydroxy-2-nonenal modifications were discovered to be altered in late-stage Parkinson disease. This result was further confirmed in a validation study of another 114 participants, suggesting that, unlike total DJ-1 levels, post-translationally modified isoforms of DJ-1 from whole blood are candidate biomarkers of late-stage Parkinson disease.

  8. DJ-1 links muscle ROS production with metabolic reprogramming and systemic energy homeostasis in mice.

    PubMed

    Shi, Sally Yu; Lu, Shun-Yan; Sivasubramaniyam, Tharini; Revelo, Xavier S; Cai, Erica P; Luk, Cynthia T; Schroer, Stephanie A; Patel, Prital; Kim, Raymond H; Bombardier, Eric; Quadrilatero, Joe; Tupling, A Russell; Mak, Tak W; Winer, Daniel A; Woo, Minna

    2015-01-01

    Reactive oxygen species (ROS) have been linked to a wide variety of pathologies, including obesity and diabetes, but ROS also act as endogenous signalling molecules, regulating numerous biological processes. DJ-1 is one of the most evolutionarily conserved proteins across species, and mutations in DJ-1 have been linked to some cases of Parkinson's disease. Here we show that DJ-1 maintains cellular metabolic homeostasis via modulating ROS levels in murine skeletal muscles, revealing a role of DJ-1 in maintaining efficient fuel utilization. We demonstrate that, in the absence of DJ-1, ROS uncouple mitochondrial respiration and activate AMP-activated protein kinase, which triggers Warburg-like metabolic reprogramming in muscle cells. Accordingly, DJ-1 knockout mice exhibit higher energy expenditure and are protected from obesity, insulin resistance and diabetes in the setting of fuel surplus. Our data suggest that promoting mitochondrial uncoupling may be a potential strategy for the treatment of obesity-associated metabolic disorders. PMID:26077864

  9. DJ-1 binds to mitochondrial complex I and maintains its activity

    SciTech Connect

    Hayashi, Takuya; Ishimori, Chikako; Takahashi-Niki, Kazuko; Taira, Takahiro; Kim, Yun-chul; Maita, Hiroshi; Maita, Chinatsu; Ariga, Hiroyoshi; Iguchi-Ariga, Sanae M.M.

    2009-12-18

    Parkinson's disease (PD) is caused by neuronal cell death, and oxidative stress and mitochondrial dysfunction are thought to be responsible for onset of PD. DJ-1, a causative gene product of a familial form of Parkinson's disease, PARK7, plays roles in transcriptional regulation and anti-oxidative stress. The possible mitochondrial function of DJ-1 has been proposed, but its exact function remains unclear. In this study, we found that DJ-1 directly bound to NDUFA4 and ND1, nuclear and mitochondrial DNA-encoding subunits of mitochondrial complex I, respectively, and was colocalized with complex I and that complex I activity was reduced in DJ-1-knockdown NIH3T3 and HEK293 cells. These findings suggest that DJ-1 is an integral mitochondrial protein and that DJ-1 plays a role in maintenance of mitochondrial complex I activity.

  10. DJ-1 links muscle ROS production with metabolic reprogramming and systemic energy homeostasis in mice

    PubMed Central

    Shi, Sally Yu; Lu, Shun-Yan; Sivasubramaniyam, Tharini; Revelo, Xavier S.; Cai, Erica P.; Luk, Cynthia T.; Schroer, Stephanie A.; Patel, Prital; Kim, Raymond H.; Bombardier, Eric; Quadrilatero, Joe; Tupling, A. Russell; Mak, Tak W.; Winer, Daniel A.; Woo, Minna

    2015-01-01

    Reactive oxygen species (ROS) have been linked to a wide variety of pathologies, including obesity and diabetes, but ROS also act as endogenous signalling molecules, regulating numerous biological processes. DJ-1 is one of the most evolutionarily conserved proteins across species, and mutations in DJ-1 have been linked to some cases of Parkinson's disease. Here we show that DJ-1 maintains cellular metabolic homeostasis via modulating ROS levels in murine skeletal muscles, revealing a role of DJ-1 in maintaining efficient fuel utilization. We demonstrate that, in the absence of DJ-1, ROS uncouple mitochondrial respiration and activate AMP-activated protein kinase, which triggers Warburg-like metabolic reprogramming in muscle cells. Accordingly, DJ-1 knockout mice exhibit higher energy expenditure and are protected from obesity, insulin resistance and diabetes in the setting of fuel surplus. Our data suggest that promoting mitochondrial uncoupling may be a potential strategy for the treatment of obesity-associated metabolic disorders. PMID:26077864

  11. Structural Characterization of Missense Mutations Using High Resolution Mass Spectrometry: A Case Study of the Parkinson's-Related Protein, DJ-1

    NASA Astrophysics Data System (ADS)

    Ben-Nissan, Gili; Chotiner, Almog; Tarnavsky, Mark; Sharon, Michal

    2016-06-01

    Missense mutations that lead to the expression of mutant proteins carrying single amino acid substitutions are the cause of numerous diseases. Unlike gene lesions, insertions, deletions, nonsense mutations, or modified RNA splicing, which affect the length of a polypeptide, or determine whether a polypeptide is translated at all, missense mutations exert more subtle effects on protein structure, which are often difficult to evaluate. Here, we took advantage of the spectral resolution afforded by the EMR Orbitrap platform, to generate a mass spectrometry-based approach relying on simultaneous measurements of the wild-type protein and the missense variants. This approach not only considerably shortens the analysis time due to the concurrent acquisition but, more importantly, enables direct comparisons between the wild-type protein and the variants, allowing identification of even subtle structural changes. We demonstrate our approach using the Parkinson's-associated protein, DJ-1. Together with the wild-type protein, we examined two missense mutants, DJ-1A104T and DJ-1D149A, which lead to early-onset familial Parkinson's disease. Gas-phase, thermal, and chemical stability assays indicate clear alterations in the conformational stability of the two mutants: the structural stability of DJ-1D149A is reduced, whereas that of DJ-1A104T is enhanced. Overall, we anticipate that the methodology presented here will be applicable to numerous other missense mutants, promoting the structural investigations of multiple variants of the same protein.

  12. Structural Characterization of Missense Mutations Using High Resolution Mass Spectrometry: A Case Study of the Parkinson's-Related Protein, DJ-1

    NASA Astrophysics Data System (ADS)

    Ben-Nissan, Gili; Chotiner, Almog; Tarnavsky, Mark; Sharon, Michal

    2016-04-01

    Missense mutations that lead to the expression of mutant proteins carrying single amino acid substitutions are the cause of numerous diseases. Unlike gene lesions, insertions, deletions, nonsense mutations, or modified RNA splicing, which affect the length of a polypeptide, or determine whether a polypeptide is translated at all, missense mutations exert more subtle effects on protein structure, which are often difficult to evaluate. Here, we took advantage of the spectral resolution afforded by the EMR Orbitrap platform, to generate a mass spectrometry-based approach relying on simultaneous measurements of the wild-type protein and the missense variants. This approach not only considerably shortens the analysis time due to the concurrent acquisition but, more importantly, enables direct comparisons between the wild-type protein and the variants, allowing identification of even subtle structural changes. We demonstrate our approach using the Parkinson's-associated protein, DJ-1. Together with the wild-type protein, we examined two missense mutants, DJ-1A104T and DJ-1D149A, which lead to early-onset familial Parkinson's disease. Gas-phase, thermal, and chemical stability assays indicate clear alterations in the conformational stability of the two mutants: the structural stability of DJ-1D149A is reduced, whereas that of DJ-1A104T is enhanced. Overall, we anticipate that the methodology presented here will be applicable to numerous other missense mutants, promoting the structural investigations of multiple variants of the same protein.

  13. Transnitrosylation from DJ-1 to PTEN Attenuates Neuronal Cell Death in Parkinson's Disease Models

    PubMed Central

    Choi, Min Sik; Nakamura, Tomohiro; Cho, Seung-Je; Han, Xuemei; Holland, Emily A.; Qu, Jing; Petsko, Gregory A.; Yates, John R.; Liddington, Robert C.

    2014-01-01

    Emerging evidence suggests that oxidative/nitrosative stress, as occurs during aging, contributes to the pathogenesis of Parkinson's disease (PD). In contrast, detoxification of reactive oxygen species and reactive nitrogen species can protect neurons. DJ-1 has been identified as one of several recessively inherited genes whose mutation can cause familial PD, and inactivation of DJ-1 renders neurons more susceptible to oxidative stress and cell death. DJ-1 is also known to regulate the activity of the phosphatase and tensin homolog (PTEN), which plays a critical role in neuronal cell death in response to various insults. However, mechanistic details delineating how DJ-1 regulates PTEN activity remain unknown. Here, we report that PTEN phosphatase activity is inhibited via a transnitrosylation reaction [i.e., transfer of a nitric oxide (NO) group from the cysteine residue of one protein to another]. Specifically, we show that DJ-1 is S-nitrosylated (forming SNO-DJ-1); subsequently, the NO group is transferred from DJ-1 to PTEN by transnitrosylation. Moreover, we detect SNO-PTEN in human brains with sporadic PD. Using x-ray crystallography and site-directed mutagenesis, we find that Cys106 is the site of S-nitrosylation on DJ-1 and that mutation of this site inhibits transnitrosylation to PTEN. Importantly, S-nitrosylation of PTEN decreases its phosphatase activity, thus promoting cell survival. These findings provide mechanistic insight into the neuroprotective role of SNO-DJ-1 by elucidating how DJ-1 detoxifies NO via transnitrosylation to PTEN. Dysfunctional DJ-1, which lacks this transnitrosylation activity due to mutation or prior oxidation (e.g., sulfonation) of the critical cysteine thiol, could thus contribute to neurodegenerative disorders like PD. PMID:25378175

  14. Regulation of DJ-1 by Glutaredoxin 1 in Vivo: Implications for Parkinson's Disease.

    PubMed

    Johnson, William M; Golczak, Marcin; Choe, Kyonghwan; Curran, Pierce L; Miller, Olga Gorelenkova; Yao, Chen; Wang, Wenzhang; Lin, Jiusheng; Milkovic, Nicole M; Ray, Ajit; Ravindranath, Vijayalakshmi; Zhu, Xiongwei; Wilson, Mark A; Wilson-Delfosse, Amy L; Chen, Shu G; Mieyal, John J

    2016-08-16

    Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide, caused by the degeneration of the dopaminergic neurons in the substantia nigra. Mutations in PARK7 (DJ-1) result in early onset autosomal recessive PD, and oxidative modification of DJ-1 has been reported to regulate the protective activity of DJ-1 in vitro. Glutathionylation is a prevalent redox modification of proteins resulting from the disulfide adduction of the glutathione moiety to a reactive cysteine-SH, and glutathionylation of specific proteins has been implicated in regulation of cell viability. Glutaredoxin 1 (Grx1) is the principal deglutathionylating enzyme within cells, and it has been reported to mediate protection of dopaminergic neurons in Caenorhabditis elegans; however many of the functional downstream targets of Grx1 in vivo remain unknown. Previously, DJ-1 protein content was shown to decrease concomitantly with diminution of Grx1 protein content in cell culture of model neurons (SH-SY5Y and Neuro-2A lines). In the current study we aimed to investigate the regulation of DJ-1 by Grx1 in vivo and characterize its glutathionylation in vitro. Here, with Grx(-/-) mice we provide show that Grx1 regulates protein levels of DJ-1 in vivo. Furthermore, with model neuronal cells (SH-SY5Y) we observed decreased DJ-1 protein content in response to treatment with known glutathionylating agents, and with isolated DJ-1 we identified two distinct sites of glutathionylation. Finally, we found that overexpression of DJ-1 in the dopaminergic neurons partly compensates for the loss of the Grx1 homologue in a C. elegans in vivo model of PD. Therefore, our results reveal a novel redox modification of DJ-1 and suggest a novel regulatory mechanism for DJ-1 content in vivo. PMID:26894491

  15. Overexpression of DJ-1 reduces oxidative stress and attenuates hypoxia/reoxygenation injury in NRK-52E cells exposed to high glucose.

    PubMed

    Shen, Zi-Ying; Sun, Qian; Xia, Zhong-Yuan; Meng, Qing-Tao; Lei, Shao-Qing; Zhao, Bo; Tang, Ling-Hua; Xue, Rui; Chen, Rong

    2016-09-01

    Patients with diabetes are more vulnerable to renal ischemia/reperfusion (I/R) injury, which is implicated in hyperglycemia-induced oxidative stress. We previously reported that the hyperglycemia-induced inhibition of DJ-1, a novel oncogene that exhibits potent antioxidant activity, is implicated in the severity of myocardial I/R injury. In the present study, we aimed to explore the role of DJ-1 in hypoxia/reoxygenation (H/R) injury in renal cells exposed to high glucose (HG). For this purpose, NRK-52E cells were exposed to HG (30 mM) for 48 h and then exposed to hypoxia for 4 h and reoxygenation for 2 h, which significantly decreased cell viability and superoxide dismutase (SOD) activity, and increased the malondialdehyde (MDA) content, accompanied by a decrease in DJ‑1 protein expression. The overexpression of DJ‑1 by transfection with a DJ‑1 overexpression plasmid exerted protective effects against HG-induced H/R injury, as evidenced by increased CCK-8 levels and SOD activity, the decreased release of lactate dehydrogenase (LDH) and the decreased MDA content, and increased nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and heme oxygenase-1 (HO‑1) expression. Similar effects were observed following treatment with the antioxidant, N-acetylcysteine. These results suggest that the overexpression of DJ‑1 reduces oxidative stress and attenuates H/R injury in NRK-52E cells exposed to HG. PMID:27430285

  16. DJ-1 Is a Redox-Dependent Molecular Chaperone That Inhibits α-Synuclein Aggregate Formation

    PubMed Central

    2004-01-01

    Parkinson's disease (PD) pathology is characterized by the degeneration of midbrain dopamine neurons (DNs) ultimately leading to a progressive movement disorder in patients. The etiology of DN loss in sporadic PD is unknown, although it is hypothesized that aberrant protein aggregation and cellular oxidative stress may promote DN degeneration. Homozygous mutations in DJ-1 were recently described in two families with autosomal recessive inherited PD (Bonifati et al. 2003). In a companion article (Martinat et al. 2004), we show that mutations in DJ-1 alter the cellular response to oxidative stress and proteasomal inhibition. Here we show that DJ-1 functions as a redox-sensitive molecular chaperone that is activated in an oxidative cytoplasmic environment. We further demonstrate that DJ-1 chaperone activity in vivo extends to α-synuclein, a protein implicated in PD pathogenesis. PMID:15502874

  17. High-fat diet induced isoform changes of the Parkinson's disease protein DJ-1.

    PubMed

    Poschmann, Gereon; Seyfarth, Katrin; Besong Agbo, Daniela; Klafki, Hans-Wolfgang; Rozman, Jan; Wurst, Wolfgang; Wiltfang, Jens; Meyer, Helmut E; Klingenspor, Martin; Stühler, Kai

    2014-05-01

    Genetic and environmental factors mediate via different physiological and molecular processes a shifted energy balance leading to overweight and obesity. To get insights into the underlying processes involved in energy intake and weight gain, we compared hypothalamic tissue of mice kept on a high-fat or control diet for 10 days by a proteomic approach. Using two-dimensional difference gel electrophoresis in combination with LC-MS/MS, we observed significant abundance changes in 15 protein spots. One isoform of the protein DJ-1 was elevated in the high-fat diet group in three different mouse strains SWR/J, C57BL/6N, and AKR/J analyzed. Large-scale validation of DJ-1 isoforms in individual samples and tissues confirmed a shift in the pattern of DJ-1 isoforms toward more acidic isoforms in several brain and peripheral tissues after feeding a high-fat diet for 10 days. The identification of oxidation of cysteine 106 as well as 2-succinyl modification of the same residue by mass spectrometry not only explains the isoelectric shift of DJ-1 but also links our results to similar shifts of DJ-1 observed in neurodegenerative disease states under oxidative stress. We hypothesize that DJ-1 is a common physiological sensor involved in both nutrition-induced effects and neurodegenerative disease states. PMID:24646099

  18. Novel Redox-Dependent Esterase Activity (EC 3.1.1.2) for DJ-1: Implications for Parkinson's Disease.

    PubMed

    Vázquez-Mayorga, Emmanuel; Díaz-Sánchez, Ángel G; Dagda, Ruben K; Domínguez-Solís, Carlos A; Dagda, Raul Y; Coronado-Ramírez, Cynthia K; Martínez-Martínez, Alejandro

    2016-01-01

    Mutations the in human DJ-1 (hDJ-1) gene are associated with early-onset autosomal recessive forms of Parkinson's disease (PD). hDJ-1/parkinsonism associated deglycase (PARK7) is a cytoprotective multi-functional protein that contains a conserved cysteine-protease domain. Given that cysteine-proteases can act on both amide and ester substrates, we surmised that hDJ-1 possessed cysteine-mediated esterase activity. To test this hypothesis, hDJ-1 was overexpressed, purified and tested for activity towards 4-nitrophenyl acetate (pNPA) as µmol of pNPA hydrolyzed/min/mg·protein (U/mg protein). hDJ-1 showed maximum reaction velocity esterase activity (Vmax = 235.10 ± 12.00 U/mg protein), with a sigmoidal fit (S0.5 = 0.55 ± 0.040 mM) and apparent positive cooperativity (Hill coefficient of 2.05 ± 0.28). A PD-associated mutant of DJ-1 (M26I) lacked activity. Unlike its protease activity which is inactivated by reactive oxygen species (ROS), esterase activity of hDJ-1 is enhanced upon exposure to low concentrations of hydrogen peroxide (<10 µM) and plateaus at elevated concentrations (>100 µM) suggesting that its activity is resistant to oxidative stress. Esterase activity of DJ-1 requires oxidation of catalytic cysteines, as chemically protecting cysteines blocked its activity whereas an oxido-mimetic mutant of DJ-1 (C106D) exhibited robust esterase activity. Molecular docking studies suggest that C106 and L126 within its catalytic site interact with esterase substrates. Overall, our data show that hDJ-1 contains intrinsic redox-sensitive esterase activity that is abolished in a PD-associated mutant form of the hDJ-1 protein. PMID:27556455

  19. Engineered disulfide bonds restores chaperone like function of DJ-1 mutants linked to familial Parkinson’s disease

    PubMed Central

    Logan, Todd; Clark, Lindsay; Ray, Soumya S.

    2010-01-01

    Loss-of-function mutations such as L166P, A104T and M26I in the DJ-1 gene (PARK7) have been linked to autosomal-recessive early onset Parkinson’s disease (PD). Cellular and structural studies of the familial mutants suggest that these mutations may destabilize the dimeric structure. In order to look for common dynamical signatures among the DJ-1 mutants, short MD simulations up to 1000ps were carried out to identify the weakest region of the protein (residues 38–70). In an attempt at stabilizing the protein, we mutated residue Val 51 to cysteine (V51C) to make a symmetry-related disulfide bridge with the pre-existing Cys 53 on the opposite subunit. We found that the introduction of this disulfide linkage stabilized the mutants A104T and M26I against thermal denaturation, showed increased ability to scavenge reactive oxygen species (ROS) and restored a chaperone-like function of blocking α-synuclein aggregation. The L166P mutant was far too unstable to be rescued by introduction of V51C. The results presented here points towards the possible development of pharmacological chaperones, which may eventually lead to PD therapeutics. PMID:20527929

  20. Choice of Biological Source Material Supersedes Oxidative Stress in Its Influence on DJ-1 in Vivo Interactions with Hsp90

    PubMed Central

    Knobbe, Christiane B.; Revett, Timothy J.; Bai, Yu; Chow, Vinca; Jeon, Amy Hye Won; Böhm, Christopher; Ehsani, Sepehr; Kislinger, Thomas; Mount, Howard T.; Mak, Tak W.; St. George-Hyslop, Peter; Schmitt-Ulms, Gerold

    2016-01-01

    DJ-1 is a small but relatively abundant protein of unknown function that may undergo stress-dependent cellular translocation and has been implicated in both neurodegenerative diseases and cancer. As such, DJ-1 may be an excellent study object to elucidate the relative influence of the cellular context on its interactome and for exploring whether acute exposure to oxidative stressors alters its molecular environment. Using quantitative mass spectrometry, we conducted comparative DJ-1 interactome analyses from in vivo cross-linked brains or livers and from hydrogen peroxide-treated or naïve embryonic stem cells. The analysis identified a subset of glycolytic enzymes, heat shock proteins 70 and 90, and peroxiredoxins as interactors of DJ-1. Consistent with a role of DJ-1 in Hsp90 chaperone biology, we document destabilization of Hsp90 clients in DJ-1 knockout cells. We further demonstrate the existence of a C106 sulfinic acid modification within DJ-1 and thereby establish that this previously inferred modification also exists in vivo. Our data suggest that caution has to be exerted in interpreting interactome data obtained from a single biological source material and identify a role of DJ-1 as an oxidative stress sensor and partner of a molecular machinery notorious for its involvement in cell fate decisions. PMID:21819105

  1. The Polg Mutator Phenotype Does Not Cause Dopaminergic Neurodegeneration in DJ-1-Deficient Mice1,2,3

    PubMed Central

    Hauser, David N.; Primiani, Christopher T.; Langston, Rebekah G.; Kumaran, Ravindran

    2015-01-01

    Abstract Mutations in the DJ-1 gene cause autosomal recessive parkinsonism in humans. Several mouse models of DJ-1 deficiency have been developed, but they do not have dopaminergic neuron cell death in the substantia nigra pars compacta (SNpc). Mitochondrial DNA (mtDNA) damage occurs frequently in the aged human SNpc but not in the mouse SNpc. We hypothesized that the reason DJ-1-deficient mice do not have dopaminergic cell death is due to an absence of mtDNA damage. We tested this hypothesis by crossing DJ-1-deficient mice with mice that have similar amounts of mtDNA damage in their SNpc as aged humans (Polg mutator mice). At 1 year of age, we counted the amount of SNpc dopaminergic neurons in the mouse brains using both colorimetric and fluorescent staining followed by unbiased stereology. No evidence of dopaminergic cell death was observed in DJ-1-deficient mice with the Polg mutator mutation. Furthermore, we did not observe any difference in dopaminergic terminal immunostaining in the striatum of these mice. Finally, we did not observe any changes in the amount of GFAP-positive astrocytes in the SNpc of these mice, indicative of a lack of astrogliosis. Altogether, our findings demonstrate the DJ-1-deficient mice, Polg mutator mice, and DJ-1-deficient Polg mutator mice have intact nigrastriatal pathways. Thus, the lack of mtDNA damage in the mouse SNpc does not underlie the absence of dopaminergic cell death in DJ-1-deficient mice. PMID:26464968

  2. Oxidation and interaction of DJ-1 with 20S proteasome in the erythrocytes of early stage Parkinson's disease patients.

    PubMed

    Saito, Yoshiro; Akazawa-Ogawa, Yoko; Matsumura, Akihiro; Saigoh, Kazumasa; Itoh, Sayoko; Sutou, Kenta; Kobayashi, Mayuka; Mita, Yuichiro; Shichiri, Mototada; Hisahara, Shin; Hara, Yasuo; Fujimura, Harutoshi; Takamatsu, Hiroyuki; Hagihara, Yoshihisa; Yoshida, Yasukazu; Hamakubo, Takao; Kusunoki, Susumu; Shimohama, Shun; Noguchi, Noriko

    2016-01-01

    Parkinson's disease (PD) is a progressive, age-related, neurodegenerative disorder, and oxidative stress is an important mediator in its pathogenesis. DJ-1, the product of the causative gene of a familial form of PD, plays a significant role in anti-oxidative defence to protect cells from oxidative stress. DJ-1 undergoes preferential oxidation at the cysteine residue at position 106 (Cys-106) under oxidative stress. Here, using specific antibodies against Cys-106-oxidized DJ-1 (oxDJ-1), it was found that the levels of oxDJ-1 in the erythrocytes of unmedicated PD patients (n = 88) were higher than in those of medicated PD patients (n = 62) and healthy control subjects (n = 33). Elevated oxDJ-1 levels were also observed in a non-human primate PD model. Biochemical analysis of oxDJ-1 in erythrocyte lysates showed that oxDJ-1 formed dimer and polymer forms, and that the latter interacts with 20S proteasome. These results clearly indicate a biochemical alteration in the blood of PD patients, which could be utilized as an early diagnosis marker for PD. PMID:27470541

  3. The DJ-1 superfamily members YhbO and YajL from Escherichia coli repair proteins from glycation by methylglyoxal and glyoxal.

    PubMed

    Abdallah, Jad; Mihoub, Mouadh; Gautier, Valérie; Richarme, Gilbert

    2016-02-01

    YhbO and YajL belong to the PfpI/Hsp31/DJ-1 superfamily. Both proteins are involved in protection against environmental stresses. Here, we show that, like DJ-1 and Hsp31, they repair glyoxal- and methylglyoxal-glycated proteins. YhbO and YajL repair glycated serum albumin, collagen, glyceraldehyde-3-phosphate dehydrogenase, and fructose biphosphate aldolase. Bacterial extracts from deglycase mutants display increased glycation levels, whereas deglycase overexpression decreases protein glycation. Moreover, yhbO and yajL mutants display decreased viability in methylglyoxal- or glucose-containing media. Finally, the apparent glyoxalase activities of YhbO and YajL reflect their deglycase activities. PMID:26774339

  4. Hsp31, a member of the DJ-1 superfamily, is a multitasking stress responder with chaperone activity

    PubMed Central

    Aslam, Kiran; Hazbun, Tony R.

    2016-01-01

    ABSTRACT Among different types of protein aggregation, amyloids are a biochemically well characterized state of protein aggregation that are associated with a large number of neurodegenerative diseases including Parkinson's disease, Alzheimer and Creutzfeldt-Jakob disease. Yeast, Saccharomyces cerevisiae is an insightful model to understand the underlying mechanism of protein aggregation. Many yeast molecular chaperones can modulate aggregation and misfolding of proteins including α-Syn and the Sup35 prion. Hsp31 is a homodimeric protein structurally similar to human DJ-1, a Parkinson's disease-linked protein, and both are members of the DJ-1/ThiJ/PfpI superfamily. An emerging view is that Hsp31 and its associated superfamily members each have divergent multitasking functions that have the common theme of responding and managing various types of cellular stress. Hsp31 has several biochemical activities including chaperone and detoxifying enzyme activities that modulate at various points of a stress pathway such as toxicity associated with protein misfolding. However, we have shown the protective role of Hsp31's chaperone activity can operate independent of detoxifying enzyme activities in preventing the early stages of protein aggregate formation and associated cellular toxicities. We provide additional data that collectively supports the multiple functional roles that can be accomplished independent of each other. We present data indicating Hsp31 purified from yeast is more active compared to expression and purification from E. coli suggesting that posttranslational modifications could be important for Hsp31 to be fully active. We also compare the similarities and differences in activities among paralogs of Hsp31 supporting a model in which this protein family has overlapping but diverging roles in responding to various sources of cellular stresses. PMID:27097320

  5. Hsp31, a member of the DJ-1 superfamily, is a multitasking stress responder with chaperone activity.

    PubMed

    Aslam, Kiran; Hazbun, Tony R

    2016-03-01

    Among different types of protein aggregation, amyloids are a biochemically well characterized state of protein aggregation that are associated with a large number of neurodegenerative diseases including Parkinson's disease, Alzheimer and Creutzfeldt-Jakob disease. Yeast, Saccharomyces cerevisiae is an insightful model to understand the underlying mechanism of protein aggregation. Many yeast molecular chaperones can modulate aggregation and misfolding of proteins including α-Syn and the Sup35 prion. Hsp31 is a homodimeric protein structurally similar to human DJ-1, a Parkinson's disease-linked protein, and both are members of the DJ-1/ThiJ/PfpI superfamily. An emerging view is that Hsp31 and its associated superfamily members each have divergent multitasking functions that have the common theme of responding and managing various types of cellular stress. Hsp31 has several biochemical activities including chaperone and detoxifying enzyme activities that modulate at various points of a stress pathway such as toxicity associated with protein misfolding. However, we have shown the protective role of Hsp31's chaperone activity can operate independent of detoxifying enzyme activities in preventing the early stages of protein aggregate formation and associated cellular toxicities. We provide additional data that collectively supports the multiple functional roles that can be accomplished independent of each other. We present data indicating Hsp31 purified from yeast is more active compared to expression and purification from E. coli suggesting that posttranslational modifications could be important for Hsp31 to be fully active. We also compare the similarities and differences in activities among paralogs of Hsp31 supporting a model in which this protein family has overlapping but diverging roles in responding to various sources of cellular stresses. PMID:27097320

  6. Structure and Function of Parkin, PINK1, and DJ-1, the Three Musketeers of Neuroprotection

    PubMed Central

    Trempe, Jean-François; Fon, Edward A.

    2013-01-01

    Autosomal recessive forms of Parkinson’s disease are caused by mutations in three genes: Parkin, PINK1, and DJ-1. These genes encode for proteins with distinct enzymatic activities that may work together to confer neuroprotection. Parkin is an E3 ubiquitin ligase that has been shown to ubiquitinate substrates and to trigger proteasome-dependent degradation or autophagy, two crucial homeostatic processes in neurons. PINK1 is a mitochondrial protein kinase whose activity is required for Parkin-dependent mitophagy, a process that has been linked to neurodegeneration. Finally, DJ-1 is a protein homologous to a broad class of bacterial enzymes that may function as a sensor and modulator of reactive oxygen species, which have been implicated in neurodegenerative diseases. Here, we review the literature on the structure and biochemical functions of these three proteins. PMID:23626584

  7. Effect of single amino acid substitution on oxidative modifications of the Parkinson's disease-related protein, DJ-1.

    PubMed

    Madian, Ashraf G; Hindupur, Jagadish; Hulleman, John D; Diaz-Maldonado, Naomi; Mishra, Vartika R; Guigard, Emmanuel; Kay, Cyril M; Rochet, Jean-Christophe; Regnier, Fred E

    2012-02-01

    Mutations in the gene encoding DJ-1 have been identified in patients with familial Parkinson's disease (PD) and are thought to inactivate a neuroprotective function. Oxidation of the sulfhydryl group to a sulfinic acid on cysteine residue C106 of DJ-1 yields the "2O " form, a variant of the protein with enhanced neuroprotective function. We hypothesized that some familial mutations disrupt DJ-1 activity by interfering with conversion of the protein to the 2O form. To address this hypothesis, we developed a novel quantitative mass spectrometry approach to measure relative changes in oxidation at specific sites in mutant DJ-1 as compared with the wild-type protein. Treatment of recombinant wild-type DJ-1 with a 10-fold molar excess of H(2)O(2) resulted in a robust oxidation of C106 to the sulfinic acid, whereas this modification was not detected in a sample of the familial PD mutant M26I exposed to identical conditions. Methionine oxidized isoforms of wild-type DJ-1 were depleted, presumably as a result of misfolding and aggregation, under conditions that normally promote conversion of the protein to the 2O form. These data suggest that the M26I familial substitution and methionine oxidation characteristic of sporadic PD may disrupt DJ-1 function by disfavoring a site-specific modification required for optimal neuroprotective activity. Our findings indicate that a single amino acid substitution can markedly alter a protein's ability to undergo oxidative modification, and they imply that stimulating the conversion of DJ-1 to the 2O form may be therapeutically beneficial in familial or sporadic PD. PMID:22104028

  8. Parkinsonism-associated Protein DJ-1/Park7 Is a Major Protein Deglycase That Repairs Methylglyoxal- and Glyoxal-glycated Cysteine, Arginine, and Lysine Residues

    PubMed Central

    Richarme, Gilbert; Mihoub, Mouadh; Dairou, Julien; Bui, Linh Chi; Leger, Thibaut; Lamouri, Aazdine

    2015-01-01

    Glycation is an inevitable nonenzymatic covalent reaction between proteins and endogenous reducing sugars or dicarbonyls (methylglyoxal, glyoxal) that results in protein inactivation. DJ-1 was reported to be a multifunctional oxidative stress response protein with poorly defined function. Here, we show that human DJ-1 is a protein deglycase that repairs methylglyoxal- and glyoxal-glycated amino acids and proteins by acting on early glycation intermediates and releases repaired proteins and lactate or glycolate, respectively. DJ-1 deglycates cysteines, arginines, and lysines (the three major glycated amino acids) of serum albumin, glyceraldehyde-3-phosphate dehydrogenase, aldolase, and aspartate aminotransferase and thus reactivates these proteins. DJ-1 prevented protein glycation in an Escherichia coli mutant deficient in the DJ-1 homolog YajL and restored cell viability in glucose-containing media. These results suggest that DJ-1-associated Parkinsonism results from excessive protein glycation and establishes DJ-1 as a major anti-glycation and anti-aging protein. PMID:25416785

  9. Parkinsonism-associated protein DJ-1/Park7 is a major protein deglycase that repairs methylglyoxal- and glyoxal-glycated cysteine, arginine, and lysine residues.

    PubMed

    Richarme, Gilbert; Mihoub, Mouadh; Dairou, Julien; Bui, Linh Chi; Leger, Thibaut; Lamouri, Aazdine

    2015-01-16

    Glycation is an inevitable nonenzymatic covalent reaction between proteins and endogenous reducing sugars or dicarbonyls (methylglyoxal, glyoxal) that results in protein inactivation. DJ-1 was reported to be a multifunctional oxidative stress response protein with poorly defined function. Here, we show that human DJ-1 is a protein deglycase that repairs methylglyoxal- and glyoxal-glycated amino acids and proteins by acting on early glycation intermediates and releases repaired proteins and lactate or glycolate, respectively. DJ-1 deglycates cysteines, arginines, and lysines (the three major glycated amino acids) of serum albumin, glyceraldehyde-3-phosphate dehydrogenase, aldolase, and aspartate aminotransferase and thus reactivates these proteins. DJ-1 prevented protein glycation in an Escherichia coli mutant deficient in the DJ-1 homolog YajL and restored cell viability in glucose-containing media. These results suggest that DJ-1-associated Parkinsonism results from excessive protein glycation and establishes DJ-1 as a major anti-glycation and anti-aging protein. PMID:25416785

  10. Cysteine pK[subscript a] Depression by a Protonated Glutamic Acid in Human DJ-1

    SciTech Connect

    Witt, Anna C.; Lakshminarasimhan, Mahadevan; Remington, Benjamin C.; Hasim, Sahar; Pozharski, Edwin; Wilson, Mark A.

    2008-07-09

    Human DJ-1, a disease-associated protein that protects cells from oxidative stress, contains an oxidation-sensitive cysteine (C106) that is essential for its cytoprotective activity. The origin of C106 reactivity is obscure, due in part to the absence of an experimentally determined pK{sub a} value for this residue. We have used atomic-resolution X-ray crystallography and UV spectroscopy to show that C106 has a depressed pK{sub a} of 5.4 {+-} 0.1 and that the C106 thiolate accepts a hydrogen bond from a protonated glutamic acid side chain (E18). X-ray crystal structures and cysteine pK{sub a} analysis of several site-directed substitutions at residue 18 demonstrate that the protonated carboxylic acid side chain of E18 is required for the maximal stabilization of the C106 thiolate. A nearby arginine residue (R48) participates in a guanidinium stacking interaction with R28 from the other monomer in the DJ-1 dimer and elevates the pK{sub a} of C106 by binding an anion that electrostatically suppresses thiol ionization. Our results show that the ionizable residues (E18, R48, and R28) surrounding C106 affect its pK{sub a} in a way that is contrary to expectations based on the typical ionization behavior of glutamic acid and arginine. Lastly, a search of the Protein Data Bank (PDB) produces several candidate hydrogen-bonded aspartic/glutamic acid-cysteine interactions, which we propose are particularly common in the DJ-1 superfamily.

  11. Lack of mutations in DJ-1 in a cohort of Taiwanese ethnic Chinese with early-onset parkinsonism.

    PubMed

    Lockhart, Paul J; Bounds, Rebecca; Hulihan, Mary; Kachergus, Jennifer; Lincoln, Sarah; Lin, Chin-Hsien; Wu, Ruey-Meei; Farrer, Matthew J

    2004-09-01

    Recently, mutations in DJ-1 (PARK7) were described as a novel cause of early-onset parkinsonism. We analysed the DJ-1 gene in a cohort of patients originating from Taiwan with early-onset Parkinson's disease; 41 subjects were clinically and genetically examined. These patients were evaluated previously for the presence of parkin mutations (PARK2) and were found to be negative. The entire DJ-1 open-reading frame was amplified from cDNA, analysed for size alterations indicative of mutations affecting splice motifs, and sequenced to identify coding variants. In addition, we developed quantitative polymerase chain reaction assays to examine the genomic copy number of DJ-1 exons. No potential splice site mutations, coding sequence alterations, or exon deletion/duplications were detected. Our results and previous studies suggest that alterations to DJ-1 are not a common cause of early-onset Parkinson's disease and other causes, genetic and/or environmental, remain to be identified. PMID:15372597

  12. Novel Redox-Dependent Esterase Activity (EC 3.1.1.2) for DJ-1: Implications for Parkinson’s Disease

    PubMed Central

    Vázquez-Mayorga, Emmanuel; Díaz-Sánchez, Ángel G.; Dagda, Ruben K.; Domínguez-Solís, Carlos A.; Dagda, Raul Y.; Coronado-Ramírez, Cynthia K.; Martínez-Martínez, Alejandro

    2016-01-01

    Mutations the in human DJ-1 (hDJ-1) gene are associated with early-onset autosomal recessive forms of Parkinson’s disease (PD). hDJ-1/parkinsonism associated deglycase (PARK7) is a cytoprotective multi-functional protein that contains a conserved cysteine-protease domain. Given that cysteine-proteases can act on both amide and ester substrates, we surmised that hDJ-1 possessed cysteine-mediated esterase activity. To test this hypothesis, hDJ-1 was overexpressed, purified and tested for activity towards 4-nitrophenyl acetate (pNPA) as µmol of pNPA hydrolyzed/min/mg·protein (U/mg protein). hDJ-1 showed maximum reaction velocity esterase activity (Vmax = 235.10 ± 12.00 U/mg protein), with a sigmoidal fit (S0.5 = 0.55 ± 0.040 mM) and apparent positive cooperativity (Hill coefficient of 2.05 ± 0.28). A PD-associated mutant of DJ-1 (M26I) lacked activity. Unlike its protease activity which is inactivated by reactive oxygen species (ROS), esterase activity of hDJ-1 is enhanced upon exposure to low concentrations of hydrogen peroxide (<10 µM) and plateaus at elevated concentrations (>100 µM) suggesting that its activity is resistant to oxidative stress. Esterase activity of DJ-1 requires oxidation of catalytic cysteines, as chemically protecting cysteines blocked its activity whereas an oxido-mimetic mutant of DJ-1 (C106D) exhibited robust esterase activity. Molecular docking studies suggest that C106 and L126 within its catalytic site interact with esterase substrates. Overall, our data show that hDJ-1 contains intrinsic redox-sensitive esterase activity that is abolished in a PD-associated mutant form of the hDJ-1 protein. PMID:27556455

  13. Formation of a Stabilized Cysteine Sulfinic Acid Is Critical for the Mitochondrial Function of the Parkinsonism Protein DJ-1

    SciTech Connect

    Blackinton, Jeff; Lakshminarasimhan, Mahadevan; Thomas, Kelly J.; Ahmad, Rili; Greggio, Elisa; Raza, Ashraf S.; Cookson, Mark R.; Wilson, Mark A.

    2009-03-02

    The formation of cysteine-sulfinic acid has recently become appreciated as a modification that links protein function to cellular oxidative status. Human DJ-1, a protein associated with inherited parkinsonism, readily forms cysteine-sulfinic acid at a conserved cysteine residue (Cys{sup 106} in human DJ-1). Mutation of Cys{sup 106} causes the protein to lose its normal protective function in cell culture and model organisms. However, it is unknown whether the loss of DJ-1 protective function in these mutants is due to the absence of Cys{sup 106} oxidation or the absence of the cysteine residue itself. To address this question, we designed a series of substitutions at a proximal glutamic acid residue (Glu{sup 18}) in human DJ-1 that alter the oxidative propensity of Cys{sup 106} through changes in hydrogen bonding. We show that two mutations, E18N and E18Q, allow Cys{sup 106} to be oxidized to Cys{sup 106}-sulfinic acid under mild conditions. In contrast, the E18D mutation stabilizes a cysteine-sulfenic acid that is readily reduced to the thiol in solution and in vivo. We show that E18N and E18Q can both partially substitute for wild-type DJ-1 using mitochondrial fission and cell viability assays. In contrast, the oxidatively impaired E18D mutant behaves as an inactive C106A mutant and fails to protect cells. We therefore conclude that formation of Cys{sup 106}-sulfinic acid is a key modification that regulates the protective function of DJ-1.

  14. Neuroprotective effect of a new DJ-1-binding compound against neurodegeneration in Parkinson's disease and stroke model rats

    PubMed Central

    2011-01-01

    Background Parkinson's disease (PD) and cerebral ischemia are chronic and acute neurodegenerative diseases, respectively, and onsets of these diseases are thought to be induced at least by oxidative stress. PD is caused by decreased dopamine levels in the substantia nigra and striatum, and cerebral ischemia occurs as a result of local reduction or arrest of blood supply. Although a precursor of dopamine and inhibitors of dopamine degradation have been used for PD therapy and an anti-oxidant have been used for cerebral ischemia therapy, cell death progresses during treatment. Reagents that prevent oxidative stress-induced cell death are therefore necessary for fundamental therapies for PD and cerebral ischemia. DJ-1, a causative gene product of a familial form of PD, PARK7, plays roles in transcriptional regulation and anti-oxidative stress, and loss of its function is thought to result in the onset of PD. Superfluous oxidation of cysteine at amino acid 106 (C106) of DJ-1 renders DJ-1 inactive, and such oxidized DJ-1 has been observed in patients with the sporadic form of PD. Results In this study, a compound, comp-23, that binds to DJ-1 was isolated by virtual screening. Comp-23 prevented oxidative stress-induced death of SH-SY5Y cells and primary neuronal cells of the ventral mesencephalon but not that of DJ-1-knockdown SH-SY5Y cells, indicating that the effect of the compound is specific to DJ-1. Comp-23 inhibited the production of reactive oxygen species (ROS) induced by oxidative stress and prevented excess oxidation of DJ-1. Furthermore, comp-23 prevented dopaminergic cell death in the substantia nigra and restored movement abnormality in 6-hydroxyldopamine-injected and rotenone-treated PD model rats and mice. Comp-23 also reduced infarct size of cerebral ischemia in rats that had been induced by middle cerebral artery occlusion. Protective activity of comp-23 seemed to be stronger than that of previously identified compound B. Conclusions The results indicate

  15. L166P MUTANT DJ-1, CAUSATIVE FOR RECESSIVE PARKINSON'S DISEASE IS DEGRADED THROUGH THE UBIQUITIN-PROTEASOME SYSTEM

    EPA Science Inventory

    Abstract

    Mutations in a gene on chromosome 1, DJ-1, have been reported recently to be associated with recessive, early-onset Parkinson's disease. Whilst one mutation is a large deletion that is predicted to produce an effective knockout of the gene, the second is a point ...

  16. DJ-1 upregulates anti-oxidant enzymes and attenuates hypoxia/re-oxygenation-induced oxidative stress by activation of the nuclear factor erythroid 2-like 2 signaling pathway.

    PubMed

    Yan, Yu-Feng; Yang, Wen-Jie; Xu, Qiang; Chen, He-Ping; Huang, Xiao-Shan; Qiu, Ling-Yu; Liao, Zhang-Ping; Huang, Qi-Ren

    2015-09-01

    DJ-1 protein, as a multifunctional intracellular protein, has an important role in transcriptional regulation and anti-oxidant stress. A recent study by our group showed that DJ-1 can regulate the expression of certain anti‑oxidant enzymes and attenuate hypoxia/re‑oxygenation (H/R)‑induced oxidative stress in the cardiomyocyte cell line H9c2; however, the detailed molecular mechanisms have remained to be elucidated. Nuclear factor erythroid 2‑like 2 (Nrf2) is an essential transcription factor that regulates the expression of several anti‑oxidant genes via binding to the anti‑oxidant response element (ARE). The present study investigated whether activation of the Nrf2 pathway is responsible for the induction of anti‑oxidative enzymes by DJ‑1 and contributes to the protective functions of DJ‑1 against H/R‑induced oxidative stress in H9c2 cells. The results demonstrated that DJ‑1‑overexpressing H9c2 cells exhibited anti‑oxidant enzymes, including manganese superoxide dismutase, catalase and glutathione peroxidase, to a greater extent and were more resistant to H/R‑induced oxidative stress compared with native cells, whereas DJ‑1 knockdown suppressed the induction of these enzymes and further augmented the oxidative stress injury. Determination of the importance of Nrf2 in DJ‑1‑mediated anti‑oxidant enzymes induction and cytoprotection against oxidative stress induced by H/R showed that overexpression of DJ‑1 promoted the dissociation of Nrf2 from its cytoplasmic inhibitor Keap1, resulting in enhanced levels of nuclear translocation, ARE‑binding and transcriptional activity of Nrf2. Of note, Nrf2 knockdown abolished the DJ‑1‑mediated induction of anti‑oxidant enzymes and cytoprotection against oxidative stress induced by H/R. In conclusion, these findings indicated that activation of the Nrf2 pathway is a critical mechanism by which DJ-1 upregulates anti-oxidative enzymes and attenuates H/R-induced oxidative stress in H9c2

  17. Oxidation and interaction of DJ-1 with 20S proteasome in the erythrocytes of early stage Parkinson’s disease patients

    PubMed Central

    Saito, Yoshiro; Akazawa-Ogawa, Yoko; Matsumura, Akihiro; Saigoh, Kazumasa; Itoh, Sayoko; Sutou, Kenta; Kobayashi, Mayuka; Mita, Yuichiro; Shichiri, Mototada; Hisahara, Shin; Hara, Yasuo; Fujimura, Harutoshi; Takamatsu, Hiroyuki; Hagihara, Yoshihisa; Yoshida, Yasukazu; Hamakubo, Takao; Kusunoki, Susumu; Shimohama, Shun; Noguchi, Noriko

    2016-01-01

    Parkinson’s disease (PD) is a progressive, age-related, neurodegenerative disorder, and oxidative stress is an important mediator in its pathogenesis. DJ-1, the product of the causative gene of a familial form of PD, plays a significant role in anti-oxidative defence to protect cells from oxidative stress. DJ-1 undergoes preferential oxidation at the cysteine residue at position 106 (Cys-106) under oxidative stress. Here, using specific antibodies against Cys-106-oxidized DJ-1 (oxDJ-1), it was found that the levels of oxDJ-1 in the erythrocytes of unmedicated PD patients (n = 88) were higher than in those of medicated PD patients (n = 62) and healthy control subjects (n = 33). Elevated oxDJ-1 levels were also observed in a non-human primate PD model. Biochemical analysis of oxDJ-1 in erythrocyte lysates showed that oxDJ-1 formed dimer and polymer forms, and that the latter interacts with 20S proteasome. These results clearly indicate a biochemical alteration in the blood of PD patients, which could be utilized as an early diagnosis marker for PD. PMID:27470541

  18. Increasing Originality in Written Expression.

    ERIC Educational Resources Information Center

    Belasco, Jack Thomas

    This study partially replicated Moss's "A Study of the Effect of Selected Methods of Instruction Designed to Increase Originality in Written Expression," except for the fact that this investigator taught a 5th grade and an 11th grade class for most of a school year. Some of the conclusions of the study were: no particular teaching technique was…

  19. Neuroprotective Effect of a DJ-1 Based Peptide in a Toxin Induced Mouse Model of Multiple System Atrophy

    PubMed Central

    Glat, Micaela Johanna; Ben-Zur, Tali; Barhum, Yael; Offen, Daniel

    2016-01-01

    Multiple System Atrophy (MSA) is a sporadic neurodegenerative disorder characterized by parkinsonism, cerebellar ataxia and dysautonomia, in various combinations. In MSA with parkinsonism (MSA-P), the degeneration is mainly restricted to the substantia nigra pars compacta and putamen. Studies have identified alterations in DJ-1 (PARK7), a key component of the anti-oxidative stress response, in Parkinson’s disease (PD) and MSA patients. Previously we have shown that a short DJ-1-based peptide named ND-13, protected cultured cells against neurotoxic insults and improved behavioral outcome in animal models of Parkinson’s disease (PD). In this study, we used the 3-Nitropropionic acid (3-NP)-induced mouse model of MSA and treated the animals with ND-13 in order to evaluate its therapeutic effects. Our results show that ND-13 protects cultured cells against oxidative stress generated by the mitochondrial inhibitor, 3-NP. Moreover, we show that ND-13 attenuates nigrostriatal degeneration and improves performance in motor-related behavioral tasks in 3-NP-treated mice. Our findings suggest a rationale for using ND-13 as a promising therapeutic approach for treatment of MSA. PMID:26901405

  20. Fermentation and alternative respiration compensate for NADH dehydrogenase deficiency in a prokaryotic model of DJ-1-associated Parkinsonism.

    PubMed

    Messaoudi, Nadia; Gautier, Valérie; Dairou, Julien; Mihoub, Mouhad; Lelandais, Gaëlle; Bouloc, Philippe; Landoulsi, Ahmed; Richarme, Gilbert

    2015-11-01

    YajL is the closest prokaryotic homologue of Parkinson's disease-associated DJ-1, a protein of undefined function involved in the oxidative stress response. We reported recently that YajL and DJ-1 protect cells against oxidative stress-induced protein aggregation by acting as covalent chaperones for the thiol proteome, including the NuoG subunit of NADH dehydrogenase 1, and that NADH dehydrogenase 1 activity is negligible in the yajL mutant. We report here that this mutant compensates for low NADH dehydrogenase activity by utilizing NADH-independent alternative dehydrogenases, including pyruvate oxidase PoxB and d-amino acid dehydrogenase DadA, and mixed acid aerobic fermentations characterized by acetate, lactate, succinate and ethanol excretion. The yajL mutant has a low adenylate energy charge favouring glycolytic flux, and a high NADH/NAD ratio favouring fermentations over pyruvate dehydrogenase and the Krebs cycle. DNA array analysis showed upregulation of genes involved in glycolytic and pentose phosphate pathways and alternative respiratory pathways. Moreover, the yajL mutant preferentially catabolized pyruvate-forming amino acids over Krebs cycle-related amino acids, and thus the yajL mutant utilizes pyruvate-centred respiro-fermentative metabolism to compensate for the NADH dehydrogenase 1 defect and constitutes an interesting model for studying eukaryotic respiratory complex I deficiencies, especially those associated with Alzheimer's and Parkinson's diseases. PMID:26377309

  1. Use of cysteine-reactive crosslinkers to probe conformational flexibility of human DJ-1 demonstrates that Glu18 mutations are dimers

    PubMed Central

    Prahlad, Janani; Hauser, David N.; Milkovic, Nicole M.; Cookson, Mark R.; Wilson, Mark A.

    2014-01-01

    The oxidation of a key cysteine residue (Cys106) in the parkinsonism-associated protein DJ-1 regulates its ability to protect against oxidative stress and mitochondrial damage. Cys106 interacts with a neighboring protonated Glu18 residue, stabilizing the Cys106-SO2− (sulfinic acid) form of DJ-1. To study this important post-translational modification, we previously designed several Glu18 mutations (E18N, E18D, E18Q) that alter the oxidative propensity of Cys106. However, recent results suggest these Glu18 mutations cause loss of DJ-1 dimerization, which would severely compromise the protein’s function. The purpose of this study was to conclusively determine the oligomerization state of these mutants using X-ray crystallography, NMR spectroscopy, thermal stability analysis, CD spectroscopy, sedimentation equilibrium ultracentrifugation, and crosslinking. We found that all of the Glu18 DJ-1 mutants were dimeric. Thiol crosslinking indicates that these mutant dimers are more flexible than the wild-type protein and can form multiple crosslinked dimeric species due to the transient exposure of cysteine residues that are inaccessible in the wild-type protein. The enhanced flexibility of Glu18 DJ-1 mutants provides a parsimonious explanation for their lower observed crosslinking efficiency in cells. In addition, thiol crosslinkers may have an underappreciated value as qualitative probes of protein conformational flexibility. PMID:24832775

  2. Aminoglycoside uptake increased by tet gene expression.

    PubMed Central

    Merlin, T L; Davis, G E; Anderson, W L; Moyzis, R K; Griffith, J K

    1989-01-01

    The expression of extrachromosomal tet genes not only confers tetracycline resistance but also increases the susceptibilities of gram-negative bacteria to commonly used aminoglycoside antibiotics. We investigated the possibility that tet expression increases aminoglycoside susceptibility by increasing bacterial uptake of aminoglycoside. Studies of [3H]gentamicin uptake in paired sets of Escherichia coli HB101 and Salmonella typhimurium LT2 expressing and not expressing tet showed that tet expression accelerates energy-dependent [3H]gentamicin uptake. Increased [3H]gentamicin uptake was accompanied by decreased bacterial protein synthesis and bacterial growth. Increased aminoglycoside uptake occurred whether tet expression was constitutive or induced, whether the tet gene was class B or C, and whether the tet gene was plasmid borne or integrated into the bacterial chromosome. tet expression produced no measurable change in membrane potential, suggesting that tet expression increases aminoglycoside uptake either by increasing the availability of specific carriers or by lowering the minimum membrane potential that is necessary for uptake. PMID:2684011

  3. Absence of the Yeast Hsp31 Chaperones of the DJ-1 Superfamily Perturbs Cytoplasmic Protein Quality Control in Late Growth Phase

    PubMed Central

    Amm, Ingo; Norell, Derrick; Wolf, Dieter H.

    2015-01-01

    The Saccharomyces cerevisiae heat shock proteins Hsp31, Hsp32, Hsp33 and Hsp34 belong to the DJ-1/ThiJ/PfpI superfamily which includes the human protein DJ-1 (PARK7) as the most prominent member. Mutations in the DJ-1 gene are directly linked to autosomal recessive, early-onset Parkinson’s disease. DJ-1 acts as an oxidative stress-induced chaperone preventing aggregation and fibrillation of α-synuclein, a critical factor in the development of the disease. In vivo assays in Saccharomyces cerevisiae using the model substrate ΔssCPY*Leu2myc (ΔssCL*myc) as an aggregation-prone misfolded cytoplasmic protein revealed an influence of the Hsp31 chaperone family on the steady state level of this substrate. In contrast to the ubiquitin ligase of the N-end rule pathway Ubr1, which is known to be prominently involved in the degradation process of misfolded cytoplasmic proteins, the absence of the Hsp31 chaperone family does not impair the degradation of newly synthesized misfolded substrate. Also degradation of substrates with strong affinity to Ubr1 like those containing the type 1 N-degron arginine is not affected by the absence of the Hsp31 chaperone family. Epistasis analysis indicates that one function of the Hsp31 chaperone family resides in a pathway overlapping with the Ubr1-dependent degradation of misfolded cytoplasmic proteins. This pathway gains relevance in late growth phase under conditions of nutrient limitation. Additionally, the Hsp31 chaperones seem to be important for maintaining the cellular Ssa Hsp70 activity which is important for Ubr1-dependent degradation. PMID:26466368

  4. A First Tetraplex Assay for the Simultaneous Quantification of Total α-Synuclein, Tau, β-Amyloid42 and DJ-1 in Human Cerebrospinal Fluid.

    PubMed

    Kruse, Niels; Schlossmacher, Michael G; Schulz-Schaeffer, Walter J; Vanmechelen, Eugeen; Vanderstichele, Hugo; El-Agnaf, Omar M; Mollenhauer, Brit

    2016-01-01

    The quantification of four distinct proteins (α-synuclein, β-amyloid1-42, DJ-1, and total tau) in cerebrospinal fluid (CSF) has been proposed as a laboratory-based platform for the diagnosis of Parkinson's disease (PD) and Alzheimer's disease (AD). While there is some clinical utility in measuring these markers individually, their usage in routine clinical testing remains challenging, in part due to substantial overlap of concentrations between healthy controls and diseased subjects. In contrast, measurement of different analytes in a single sample from individual patients in parallel appears to considerably improve the accuracy of AD or PD diagnosis. Here, we report the development and initial characterization of a first, electrochemiluminescence-based multiplex immunoassay for the simultaneous quantification of all four proteins ('tetraplex') in as little as 50 μl of CSF. In analytical performance experiments, we assessed its sensitivity, spike-recovery rate, parallelism and dilution linearity as well as the intra- and inter-assay variability. Using our in-house calibrators, we recorded a lower limit of detection for α-synuclein, β-amyloid42, DJ-1, and t-tau of 1.95, 1.24, 5.63, and 4.05 pg/ml, respectively. The corresponding, linear concentration range covered >3 orders of magnitude. In diluted CSF samples (up to 1:4), spike-recovery rates ranged from a low of 55% for β-amyloid42 to a high of 98% for DJ-1. Hillslopes ranged from 1.03 to 1.30, and inter-assay variability demonstrated very high reproducibility. Our newly established tetraplex assay represents a significant technical advance for fluid-based biomarker studies in neurodegenerative disorders allowing the simultaneous measurement of four pivotal makers in single CSF specimens. It provides exceptional sensitivity, accuracy and speed. PMID:27116005

  5. A First Tetraplex Assay for the Simultaneous Quantification of Total α-Synuclein, Tau, β-Amyloid42 and DJ-1 in Human Cerebrospinal Fluid

    PubMed Central

    Kruse, Niels; Schlossmacher, Michael G.; Schulz-Schaeffer, Walter J.; Vanmechelen, Eugeen; Vanderstichele, Hugo; El-Agnaf, Omar M.; Mollenhauer, Brit

    2016-01-01

    The quantification of four distinct proteins (α-synuclein, β-amyloid1-42, DJ-1, and total tau) in cerebrospinal fluid (CSF) has been proposed as a laboratory-based platform for the diagnosis of Parkinson’s disease (PD) and Alzheimer’s disease (AD). While there is some clinical utility in measuring these markers individually, their usage in routine clinical testing remains challenging, in part due to substantial overlap of concentrations between healthy controls and diseased subjects. In contrast, measurement of different analytes in a single sample from individual patients in parallel appears to considerably improve the accuracy of AD or PD diagnosis. Here, we report the development and initial characterization of a first, electrochemiluminescence-based multiplex immunoassay for the simultaneous quantification of all four proteins (‘tetraplex’) in as little as 50 μl of CSF. In analytical performance experiments, we assessed its sensitivity, spike-recovery rate, parallelism and dilution linearity as well as the intra- and inter-assay variability. Using our in-house calibrators, we recorded a lower limit of detection for α-synuclein, β-amyloid42, DJ-1, and t-tau of 1.95, 1.24, 5.63, and 4.05 pg/ml, respectively. The corresponding, linear concentration range covered >3 orders of magnitude. In diluted CSF samples (up to 1:4), spike-recovery rates ranged from a low of 55% for β-amyloid42 to a high of 98% for DJ-1. Hillslopes ranged from 1.03 to 1.30, and inter-assay variability demonstrated very high reproducibility. Our newly established tetraplex assay represents a significant technical advance for fluid-based biomarker studies in neurodegenerative disorders allowing the simultaneous measurement of four pivotal makers in single CSF specimens. It provides exceptional sensitivity, accuracy and speed. PMID:27116005

  6. Exon Dosage Variations in Brazilian Patients with Parkinson’s Disease: Analysis of SNCA, PARKIN, PINK1 and DJ-1 Genes

    PubMed Central

    Moura, Karla Cristina Vasconcelos; Junior, Mário Campos; de Rosso, Ana Lúcia Zuma; Nicaretta, Denise Hack; Pereira, João Santos; Silva, Delson José; Santos-Rebouças, Cíntia Barros; Pimentel, Márcia Mattos Gonçalves

    2012-01-01

    Parkinson’s disease is one of the most common neurodegenerative disorders associated with aging, reaching ∼ 2% of individuals over 65 years. Knowledge achieved in the last decade about the genetic basis of Parkinson’s disease clearly shows that genetic factors play an important role in the etiology of this disorder. Exon dosage variations account for a high proportion of Parkinson’s disease mutations, mainly for PARKIN gene. In the present study, we screened genomic rearrangements in SNCA, PARKIN, PINK1 and DJ-1 genes in 102 Brazilian Parkinson’s disease patients with early onset (age of onset ≤ 50 years), using the multiplex ligation-dependent probe amplification method. Family history was reported by 24 patients, while 78 were sporadic cases. Screening of exon dosage revealed PARKIN and PINK1 copy number variations, but no dosage alteration was found in SNCA and DJ-1 genes. Most of the carriers harbor heterozygous deletions or duplications in the PARKIN gene and only one patient was found to have a deletion in PINK1 exon 1. Data about dosage changes are scarce in the Brazilian population, which stresses the importance of including exon dosage analysis in Parkinson’s disease genetic studies. PMID:22377733

  7. Increased monocyte tissue factor expression in coronary disease.

    PubMed Central

    Leatham, E. W.; Bath, P. M.; Tooze, J. A.; Camm, A. J.

    1995-01-01

    OBJECTIVE--To investigate whether monocyte expression of tissue factor is increased in patients with acute coronary syndromes and chronic stable angina. DESIGN--Cross sectional study of monocyte tissue factor expression in patients with ischaemic heart disease and control subjects. BACKGROUND--Unstable angina and myocardial infarction are associated with enhanced mononuclear cell procoagulant activity. Procoagulant activity of blood monocytes is principally mediated by tissue factor expression. Tissue factor initiates the coagulation cascade and monocyte tissue factor expression may therefore be increased in these syndromes. METHODS--Monocyte tissue factor expression was measured cytometrically in whole blood flow using a polyclonal rabbit antihuman tissue factor antibody. PATIENTS--30 patients with acute myocardial infarction, 17 with unstable angina, 13 with chronic stable angina, and 11 normal control subjects. RESULTS--Increased proportions of monocytes expressing tissue factor (> 2.5%) were found in none of 11 (0%) normal subjects, five 13 (38%) patients with stable angina, 11 of 17 (64%) patients with unstable angina, and 16 of 30 (53%) patients with myocardial infarction (2P = 0.006). Blood from all subjects showed similar monocyte tissue factor expression similar monocyte tissue factor expression (46.1 (15.1)%) after lipopolysaccharide stimulation. CONCLUSION--Hypercoagulability associated with acute myocardial infarction, unstable angina, and chronic stable angina may be induced by tissue factor expressed on circulating monocytes. PMID:7888247

  8. Characterization of genes with increased expression in human glioblastomas.

    PubMed

    Kavsan, V; Shostak, K; Dmitrenko, V; Zozulya, Yu; Rozumenko, V; Demotes-Mainard, J

    2005-01-01

    In the present study, we have used the gene expression data available in the SAGE database in an attempt to identify glioblastoma molecular markers. Of 129 genes with more than 5-fold difference found by comparison of nine glioblastoma with five normal brain SAGE libraries, 44 increased their expression in glioblastomas. Most corresponding proteins were involved in angiogenesis, host-tumor immune interplay, multidrug resistance, extracellular matrix (ECM) formation, IGF-signalling, or MAP-kinase pathway. Among them, 16 genes had a high expression both in glioblastomas and in glioblastoma cell lines suggesting their expression in transformed cells. Other 28 genes had an increased expression only in glioblastomas, not in glioblastoma cell lines suggesting an expression possibly originated from host cells. Many of these genes are among the top transcripts in activated macrophages, and involved in immune response and angiogenesis. This altered pattern of gene expression in both host and tumor cells, can be viewed as a molecular marker in the analysis of malignant progression of astrocytic tumors, and as possible clues for the mechanism of disease. Moreover, several genes overexpressed in glioblastomas produce extracellular proteins, thereby providing possible therapeutic targets. Further characterization of these genes will thus allow them to be exploited in molecular classification of glial tumors, diagnosis, prognosis, and anticancer therapy. PMID:16396319

  9. Whirlin increases TRPV1 channel expression and cellular stability.

    PubMed

    Ciardo, Maria Grazia; Andrés-Bordería, Amparo; Cuesta, Natalia; Valente, Pierluigi; Camprubí-Robles, María; Yang, Jun; Planells-Cases, Rosa; Ferrer-Montiel, Antonio

    2016-01-01

    The expression and function of TRPV1 are influenced by its interaction with cellular proteins. Here, we identify Whirlin, a cytoskeletal PDZ-scaffold protein implicated in hearing, vision and mechanosensory transduction, as an interacting partner of TRPV1. Whirlin associates with TRPV1 in cell lines and in primary cultures of rat nociceptors. Whirlin is expressed in 55% of mouse sensory C-fibers, including peptidergic and non-peptidergic nociceptors, and co-localizes with TRPV1 in 70% of them. Heterologous expression of Whirlin increased TRPV1 protein expression and trafficking to the plasma membrane, and promoted receptor clustering. Silencing Whirlin expression with siRNA or blocking protein translation resulted in a concomitant degradation of TRPV1 that could be prevented by inhibiting the proteasome. The degradation kinetics of TRPV1 upon arresting protein translation mirrored that of Whirlin in cells co-expressing both proteins, suggesting a parallel degradation mechanism. Noteworthy, Whirlin expression significantly reduced TRPV1 degradation induced by prolonged exposure to capsaicin. Thus, our findings indicate that Whirlin and TRPV1 are associated in a subset of nociceptors and that TRPV1 protein stability is increased through the interaction with the cytoskeletal scaffold protein. Our results suggest that the Whirlin–TRPV1 complex may represent a novel molecular target and its pharmacological disruption might be a therapeutic strategy for the treatment of peripheral TRPV1-mediated disorders. PMID:26516054

  10. Increased stathmin expression strengthens fear conditioning in epileptic rats.

    PubMed

    Zhang, Linna; Feng, Danni; Tao, Hong; DE, Xiangyan; Chang, Qing; Hu, Qikuan

    2015-01-01

    Patients with temporal lobe epilepsy have inexplicable fear attack as the aura. However, the underlying neural mechanisms of seizure-modulated fear are not clarified. Recent studies identified stathmin as one of the key controlling molecules in learning and innate fear. Stathmin binds to tubulin, inhibits microtubule assembly and promotes microtubule catastrophes. Therefore, stathmin is predicted to play a crucial role in the association of epilepsy seizures with fear conditioning. Firstly, a pilocarpine model of epilepsy in rats was established, and subsequently the fear condition training was performed. The epileptic rats with fear conditioning (epilepsy + fear) had a much longer freezing time compared to each single stimulus. The increased freezing levels revealed a significantly strengthened effect of the epileptic seizures on the learned fear of the tone-shock contextual. Subsequently, the stathmin expression was compared in the hippocampus, the amygdale, the insular cortex and the temporal lobe. The significant change of stathmin expression occurred in the insular and the hippocampus, but not in the amygdale. Stathmin expression and dendritic microtubule stability were compared between fear and epilepsy in rats. Epilepsy was found to strengthen the fear conditioning with increased expression of stathmin and a decrease in microtubule stability. Fear conditioning slightly increased the expression of stathmin, whereas epilepsy with fear conditioning increased it significantly in the hippocampus, insular cortex and hypothalamus. The phosphorylated stathmin slightly increased in the epilepsy with fear conditioning. The increased expression of stathmin was contrary to the decrease of the stathmin microtubule-associated protein (MAP2) and α-tubulin in the epileptic rats with fear conditioning in all three areas of the brain. The most significant change of the ratio of MAP2 and α-tubulin/stathmin occurred in the insular cortex and hippocampus. In conclusion

  11. Expressivity tag: a novel tool for increased expression in Escherichia coli.

    PubMed

    Hansted, Jon Gade; Pietikäinen, Laura; Hög, Friederike; Sperling-Petersen, Hans Uffe; Mortensen, Kim Kusk

    2011-09-20

    Protein expression in Escherichia coli is rarely trivial as low expression and insolubility are common problems. In this work we define a fusion partner, which increases expression levels similarly to the distinct function of solubility and affinity tags. This type of fusion tag we term an expressivity tag. Our work is based on earlier observations where 3' deletions of the InfB gene displays strongly increased expression levels. We have constructed progressively shortened fragments of the InfB(1-471) gene and fused gene fragments to a gfp reporter gene. A 5-fold increase in GFP expression was seen for an optimal 21 nucleotide InfB(1-21) sequence compared to gfp independently. We defined the InfB(1-21) sequence as an expressivity tag. The tag was tested for improved expression of two biotechnological important proteins streptavidin and a single chain antibody (scFv). Expression of both streptavidin and scFv(L32) was improved as evaluated by SDS-PAGE. Calculation of folding energies in the translation initiation region gave higher free energies for gfp, L32 and streptavidin when linked to InfB(1-21) than independently. InfB(1-21) did however not improve the codon usage or codon adaptation index. The expressivity tag is an important addition to the box of tools available for optimizing heterologous protein expression. PMID:21801766

  12. Increased intra- and extracellular granzyme expression in patients with tuberculosis.

    PubMed

    Garcia-Laorden, M Isabel; Blok, Dana C; Kager, Liesbeth M; Hoogendijk, Arie J; van Mierlo, Gerard J; Lede, Ivar O; Rahman, Wahid; Afroz, Rumana; Ghose, Aniruddha; Visser, Caroline E; Md Zahed, Abu Shahed; Husain, Md Anwar; Alam, Khan Mashrequl; Chandra Barua, Pravat; Hassan, Mahtabuddin; Hossain, Ahmed; Tayab, Md Abu; Day, Nick; Dondorp, Arjen M; de Vos, Alex F; van der Poll, Tom

    2015-09-01

    Tuberculosis (TB) is an important cause of morbidity and mortality worldwide. Granzymes (gzms) are proteases mainly found in cytotoxic lymphocytes, but also extracellularly. While the role of gzms in target cell death has been widely characterized, considerable evidence points towards broader roles related to infectious and inflammatory responses. To investigate the expression of the gzms in TB, intracellular gzms A, B and K were measured by flow cytometry in lymphocyte populations from peripheral blood mononuclear cells from 18 TB patients and 12 healthy donors from Bangladesh, and extracellular levels of gzmA and B were measured in serum from 58 TB patients and 31 healthy controls. TB patients showed increased expression of gzmA in CD8(+) T, CD4(+) T and CD56(+) T, but not NK, cells, and of gzmB in CD8(+) T cells, when compared to controls. GzmK expression was not altered in TB patients in any lymphocyte subset. The extracellular levels of gzmA and, to a lesser extent, of gzmB, were increased in TB patients, but did not correlate with intracellular gzm expression in lymphocyte subsets. Our results reveal enhanced intra- and extracellular expression of gzmA and B in patients with pulmonary TB, suggesting that gzms are part of the host response to tuberculosis. PMID:26156785

  13. Thyroid hormone increases bulk histones expression by enhancing translational efficiency.

    PubMed

    Zambrano, Alberto; García-Carpizo, Verónica; Villamuera, Raquel; Aranda, Ana

    2015-01-01

    The expression of canonical histones is normally coupled to DNA synthesis during the S phase of the cell cycle. Replication-dependent histone mRNAs do not contain a poly(A) tail at their 3' terminus, but instead possess a stem-loop motif, the binding site for the stem-loop binding protein (SLBP), which regulates mRNA processing, stability, and relocation to polysomes. Here we show that the thyroid hormone can increase the levels of canonical histones independent of DNA replication. Incubation of mouse embryonic fibroblasts with T3 increases the total levels of histones, and expression of the thyroid hormone receptor β induces a further increase. This is not restricted to mouse embryonic fibroblasts, because T3 also raises histone expression in other cell lines. T3 does not increase histone mRNA or SLBP levels, suggesting that T3 regulates histone expression by a posttranscriptional mechanism. Indeed, T3 enhanced translational efficiency, inducing relocation of histone mRNA to heavy polysomes. Increased translation was associated with augmented transcription of the eukaryotic translation initiation factor 4 γ2 (EIF4G2). T3 induced EIF4G2 protein and mRNA levels and the thyroid hormone receptor bound to the promoter region of the Eif4g2 gene. Induction of EIF4G2 was essential for T3-dependent histone induction, because depletion of this factor abolished histone increase. These results point out the importance of the thyroid hormones on the posttranscriptional regulation of histone biosynthesis in a cell cycle-independent manner and also suggest the potential regulation of eukaryotic translation by the modulation of the initiation factor EIF4G2, which also operates in the translation of canonical mRNAs. PMID:25422881

  14. GABA selectively increases mucin-1 expression in isolated pig jejunum.

    PubMed

    Braun, Hannah-Sophie; Sponder, Gerhard; Pieper, Robert; Aschenbach, Jörg R; Deiner, Carolin

    2015-11-01

    The inhibitory neurotransmitter GABA (γ-aminobutyric acid) is synthesized by glutamic acid decarboxylase, which is expressed in the central nervous system and in various other tissues including the intestine. Moreover, GABA can be ingested in vegetarian diets or produced by bacterial commensals in the gastrointestinal tract. As previous studies in lung have suggested a link between locally increased GABA availability and mucin 5AC production, the present study sought to test whether the presence or lack of GABA (and its precursor glutamine) has an effect on intestinal mucin expression. Porcine jejunum epithelial preparations were incubated with two different amounts of GABA or glutamine on the mucosal side for 4 h, and changes in the relative gene expression of seven different mucins, enzymes involved in mucin shedding, GABA B receptor, enzymes involved in glutamine/GABA metabolism, glutathione peroxidase 2, and interleukin 10 were examined by quantitative PCR (TaqMan(®) assays). Protein expression of mucin-1 (MUC1) was analyzed by Western blot. On the RNA level, only MUC1 was significantly up-regulated by both GABA concentrations compared with the control. Glutamine-treated groups showed the same trend. On the protein level, all treatment groups showed a significantly higher MUC1 expression than the control group. We conclude that GABA selectively increases the expression of MUC1, a cell surface mucin that prevents the adhesion of microorganisms, because of its size and negative charge, and therefore propose that the well-described positive effects of glutamine on enterocytes and intestinal integrity are partly attributable to effects of its metabolite GABA. PMID:26471792

  15. TPD52 expression increases neutral lipid storage within cultured cells.

    PubMed

    Kamili, Alvin; Roslan, Nuruliza; Frost, Sarah; Cantrill, Laurence C; Wang, Dongwei; Della-Franca, Austin; Bright, Robert K; Groblewski, Guy E; Straub, Beate K; Hoy, Andrew J; Chen, Yuyan; Byrne, Jennifer A

    2015-09-01

    Tumor protein D52 (TPD52) is amplified and/or overexpressed in cancers of diverse cellular origins. Altered cellular metabolism (including lipogenesis) is a hallmark of cancer development, and protein-protein associations between TPD52 and known regulators of lipid storage, and differential TPD52 expression in obese versus non-obese adipose tissue, suggest that TPD52 might regulate cellular lipid metabolism. We found increased lipid droplet numbers in BALB/c 3T3 cell lines stably expressing TPD52, compared with control and TPD52L1-expressing cell lines. TPD52-expressing 3T3 cells showed increased fatty acid storage in triglyceride (from both de novo synthesis and uptake) and formed greater numbers of lipid droplets upon oleic acid supplementation than control cells. TPD52 colocalised with Golgi, but not endoplasmic reticulum (ER), markers and also showed partial colocalisation with lipid droplets coated with ADRP (also known as PLIN2), with a proportion of TPD52 being detected in the lipid droplet fraction. Direct interactions between ADRP and TPD52, but not TPD52L1, were demonstrated using the yeast two-hybrid system, with ADRP-TPD52 interactions confirmed using GST pulldown assays. Our findings uncover a new isoform-specific role for TPD52 in promoting intracellular lipid storage, which might be relevant to TPD52 overexpression in cancer. PMID:26183179

  16. Increased expression of β-glucosidase A in Clostridium thermocellum 27405 significantly increases cellulase activity

    PubMed Central

    Maki, Miranda L.; Armstrong, Lachlan; Leung, Kam Tin; Qin, Wensheng

    2013-01-01

    β-glucosidase A (bglA) in Clostridium thermocellum 27405 was increased by expression from shuttle vector pIBglA in attempts to increase cellulase activity and ethanol titer by lowering the end product inhibition of cellulase. Through a modified electrotransformation protocol C. thermocellum transformant (+MCbglA) harbouring pIBglA was produced. The β-glucosidase activity of +MCbglA was 2.3- and 1.6-fold greater than wild-type (WT) during late log and stationary phases of growth. Similarly, total cellulase activity of +MCbglA was shown to be 1.7-, 2.3- and 1.6-fold greater than WT during, log, late log and stationary phases of growth. However, there was no significant correlation found between increased cellulase activity and increased ethanol titers for +MCbglA compared with the WT. C. thermocellum has industrial potential for consolidated bioprocessing (CBP) to make a more cost effective production of biofuels; however, the hydrolysis rate of the strain is still hindered by end product inhibition. We successfully increased total cellulase activity by increased expression of bglA and thereby increased the productivity of C. thermocellum during the hydrolysis stage in CBP. Our work also lends insights into the complex metabolism of C. thermocellum for future improvement of this strain. PMID:22922214

  17. Increased functional protein expression using nucleotide sequence features enriched in highly expressed genes in zebrafish

    PubMed Central

    Horstick, Eric J.; Jordan, Diana C.; Bergeron, Sadie A.; Tabor, Kathryn M.; Serpe, Mihaela; Feldman, Benjamin; Burgess, Harold A.

    2015-01-01

    Many genetic manipulations are limited by difficulty in obtaining adequate levels of protein expression. Bioinformatic and experimental studies have identified nucleotide sequence features that may increase expression, however it is difficult to assess the relative influence of these features. Zebrafish embryos are rapidly injected with calibrated doses of mRNA, enabling the effects of multiple sequence changes to be compared in vivo. Using RNAseq and microarray data, we identified a set of genes that are highly expressed in zebrafish embryos and systematically analyzed for enrichment of sequence features correlated with levels of protein expression. We then tested enriched features by embryo microinjection and functional tests of multiple protein reporters. Codon selection, releasing factor recognition sequence and specific introns and 3′ untranslated regions each increased protein expression between 1.5- and 3-fold. These results suggested principles for increasing protein yield in zebrafish through biomolecular engineering. We implemented these principles for rational gene design in software for codon selection (CodonZ) and plasmid vectors incorporating the most active non-coding elements. Rational gene design thus significantly boosts expression in zebrafish, and a similar approach will likely elevate expression in other animal models. PMID:25628360

  18. Controversy surrounding the increased expression of TGFβ1 in asthma

    PubMed Central

    Bossé, Ynuk; Rola-Pleszczynski, Marek

    2007-01-01

    Asthma is a waxing and waning disease that leads to structural changes in the airways, such as subepithelial fibrosis, increased mass of airway smooth muscle and epithelial metaplasia. Such a remodeling of the airways futher amplifies asthma symptoms, but its etiology is unknown. Transforming growth factor β1 is a pleiotropic cytokine involved in many fibrotic, oncologic and immunologic diseases and is believed to play an essential role in airway remodeling that occurs in asthmatic patients. Since it is secreted in an inactive form, the overall activity of this cytokine is not exclusively determined by its level of expression, but also by extensive and complex post-translational mechanisms, which are all importanin modulating the magnitude of the TGFβ1 response. Even if TGFβ1 upregulation in asthma is considered as a dogma by certain investigators in the field, the overall picture of the published litterature is not that clear and the cellular origin of this cytokine in the airways of asthmatics is still a contemporaneous debate. On the other hand, it is becoming clear that TGFβ1 signaling is increased in the lungs of asthmatics, which testifies the increased activity of this cytokine in asthma pathogenesis. The current work is an impartial and exhaustive compilation of the reported papers regarding the expression of TGFβ1 in human asthmatics. For the sake of comparison, several studies performed in animal models of the disease are also included. Inconsistencies observed in human studies are discussed and conclusions as well as trends from the current state of the litterature on the matter are proposed. Finally, the different points of regulation that can affect the amplitude of the TGFβ1 response are briefly revised and the possibility that TGFβ1 is disregulated at another level in asthma, rather than simply in its expression, is highlighted. PMID:17892594

  19. Reduced expression of MYC increases longevity and enhances healthspan.

    PubMed

    Hofmann, Jeffrey W; Zhao, Xiaoai; De Cecco, Marco; Peterson, Abigail L; Pagliaroli, Luca; Manivannan, Jayameenakshi; Hubbard, Gene B; Ikeno, Yuji; Zhang, Yongqing; Feng, Bin; Li, Xiaxi; Serre, Thomas; Qi, Wenbo; Van Remmen, Holly; Miller, Richard A; Bath, Kevin G; de Cabo, Rafael; Xu, Haiyan; Neretti, Nicola; Sedivy, John M

    2015-01-29

    MYC is a highly pleiotropic transcription factor whose deregulation promotes cancer. In contrast, we find that Myc haploinsufficient (Myc(+/-)) mice exhibit increased lifespan. They show resistance to several age-associated pathologies, including osteoporosis, cardiac fibrosis, and immunosenescence. They also appear to be more active, with a higher metabolic rate and healthier lipid metabolism. Transcriptomic analysis reveals a gene expression signature enriched for metabolic and immune processes. The ancestral role of MYC as a regulator of ribosome biogenesis is reflected in reduced protein translation, which is inversely correlated with longevity. We also observe changes in nutrient and energy sensing pathways, including reduced serum IGF-1, increased AMPK activity, and decreased AKT, TOR, and S6K activities. In contrast to observations in other longevity models, Myc(+/-) mice do not show improvements in stress management pathways. Our findings indicate that MYC activity has a significant impact on longevity and multiple aspects of mammalian healthspan. PMID:25619689

  20. Reduced Expression of MYC Increases Longevity and Enhances Healthspan

    PubMed Central

    Hofmann, Jeffrey W.; Zhao, Xiaoai; De Cecco, Marco; Peterson, Abigail L.; Pagliaroli, Luca; Manivannan, Jayameenakshi; Hubbard, Gene B.; Ikeno, Yuji; Zhang, Yongqing; Feng, Bin; Li, Xiaxi; Serre, Thomas; Qi, Wenbo; Van Remmen, Holly; Miller, Richard A.; Bath, Kevin G.; de Cabo, Rafael; Xu, Haiyan; Neretti, Nicola; Sedivy, John M.

    2015-01-01

    SUMMARY MYC is a highly pleiotropic transcription factor whose deregulation promotes cancer. In contrast, we find that Myc haploinsufficient (Myc+/−) mice exhibit increased lifespan. They show resistance to several age-associated pathologies, including osteoporosis, cardiac fibrosis and immunosenescence. They also appear to be more active, with a higher metabolic rate and healthier lipid metabolism. Transcriptomic analysis reveals a gene expression signature enriched for metabolic and immune processes. The ancestral role of MYC as a regulator of ribosome biogenesis is reflected in reduced protein translation, which is inversely correlated with longevity. We also observe changes in nutrient and energy sensing pathways, including reduced serum IGF-1, increased AMPK activity, and decreased AKT, TOR and S6K activities. In contrast to observations in other longevity models, Myc+/− mice do not show improvements in stress management pathways. Our findings indicate that MYC activity has a significant impact on longevity and multiple aspects of mammalian healthspan. PMID:25619689

  1. Chronic intermittent mechanical stress increases MUC5AC protein expression.

    PubMed

    Park, Jin-Ah; Tschumperlin, Daniel J

    2009-10-01

    Increased abundance of mucin secretory cells is a characteristic feature of the epithelium in asthma and other chronic airway diseases. We showed previously that the mechanical stresses of airway constriction, both in the intact mouse lung and a cell culture model, activate the epidermal growth factor receptor (EGFR), a known modulator of mucin expression in airway epithelial cells. Here we tested whether chronic, intermittent, short-duration compressive stress (30 cm H(2)O) is sufficient to increase the abundance of MUC5AC-positive cells and intracellular mucin levels in human bronchial epithelial cells cultured at an air-liquid interface. Compressive stress applied for 1 hour per day for 14 days significantly increased the percentage of cells staining positively for MUC5AC protein (22.0 +/- 3.8%, mean +/- SD) relative to unstimulated controls (8.6 +/- 2.6%), and similarly changed intracellular MUC5AC protein levels measured by Western and slot blotting. The effect of compressive stress was gradual, with significant changes in MUC5AC-positive cell numbers evident by Day 7, but required as little as 10 minutes of compressive stress daily. Daily treatment of cells with an EGFR kinase inhibitor (AG1478, 1 muM) significantly but incompletely attenuated the response to compressive stress. Complete attenuation could be accomplished by simultaneous treatment with the combination of AG1478 and a transforming growth factor (TGF)-beta(2) (1 microg/ml)-neutralizing antibody, or with anti-TGF-beta(2) alone. Our findings demonstrate that short duration episodes of mechanical stress, representative of those occurring during bronchoconstriction, are sufficient to increase goblet cell number and MUC5AC protein expression in bronchial epithelial cells in vitro. We propose that the mechanical environment present in asthma may fundamentally bias the composition of airway epithelial lining in favor of mucin secretory cells. PMID:19168703

  2. Expression of PARK7 is increased in celiac disease.

    PubMed

    Vörös, Péter; Sziksz, Erna; Himer, Leonóra; Onody, Anna; Pap, Domonkos; Frivolt, Klára; Szebeni, Beáta; Lippai, Rita; Győrffy, Hajnalka; Fekete, Andrea; Brandt, Ferenc; Molnár, Kriszta; Veres, Gábor; Arató, András; Tulassay, Tivadar; Vannay, Adám

    2013-09-01

    Recently, it has been suggested that the gene called Parkinson's disease 7 (PARK7) might be an upstream activator of hypoxia-inducible factor (HIF)-1α, which plays a major role in sustaining intestinal barrier integrity. Furthermore, PARK7 has been proposed to participate in the Toll-like receptor (TLR)-dependent regulation of the innate immune system. Our aim was to investigate the involvement of PARK7 in the pathogenesis of coeliac disease (CD). Duodenal biopsy specimens were collected from 19 children with untreated CD, five children with treated CD (maintained on gluten-free diet), and ten children with histologically normal duodenal biopsies. PARK7 mRNA expression and protein level were determined by real-time polymerase chain reaction (PCR) and Western blot, respectively. Localization of PARK7 was visualized by immunofluorescence staining. Protein level of PARK7 increased in the duodenal mucosa of children with untreated CD compared to children with treated CD or to control biopsies (p <0.03). We detected intensive PARK7 staining in the epithelial cells and lamina propria of the duodenal mucosa of children with untreated CD compared with that in control biopsies. Our finding that mucosal expression of PARK7 is increased suggests that PARK7 is involved in the pathogenesis of gastrointestinal diseases, notably CD. Our results suggest that PARK7 may alter processes mediated by HIF-1α and TLR4, which supports a role for PARK7 in the maintenance of epithelial barrier integrity, immune homeostasis, or apoptosis. PMID:23832581

  3. Increased expression of the nicotinic acetylcholine receptor in stimulated muscle.

    PubMed

    O'Reilly, Clare; Pette, Dirk; Ohlendieck, Kay

    2003-01-10

    Chronic low-frequency stimulation has been used as a model for investigating responses of skeletal muscle fibres to enhanced neuromuscular activity under conditions of maximum activation. Fast-to-slow isoform shifting of markers of the sarcoplasmic reticulum and the contractile apparatus demonstrated successful fibre transitions prior to studying the effect of chronic electro-stimulation on the expression of the nicotinic acetylcholine receptor. Comparative immunoblotting revealed that the alpha- and delta-subunits of the receptor were increased in 10-78 day stimulated specimens, while an associated component of the surface utrophin-glycoprotein complex, beta-dystroglycan, was not drastically changed in stimulated fast skeletal muscle. Previous studies have shown that electro-stimulation induces degeneration of fast glycolytic fibres, trans-differentiation leading to fast-to-slow fibre transitions and activation of muscle precursor cells. In analogy, our results indicate a molecular modification of the central functional unit of the post-synaptic muscle surface within existing neuromuscular junctions and/or during remodelling of nerve-muscle contacts. PMID:12504123

  4. p53 increases caspase-6 expression and activation in muscle tissue expressing mutant huntingtin.

    PubMed

    Ehrnhoefer, Dagmar E; Skotte, Niels H; Ladha, Safia; Nguyen, Yen T N; Qiu, Xiaofan; Deng, Yu; Huynh, Khuong T; Engemann, Sabine; Nielsen, Signe M; Becanovic, Kristina; Leavitt, Blair R; Hasholt, Lis; Hayden, Michael R

    2014-02-01

    Activation of caspase-6 in the striatum of both presymptomatic and affected persons with Huntington's disease (HD) is an early event in the disease pathogenesis. However, little is known about the role of caspase-6 outside the central nervous system (CNS) and whether caspase activation might play a role in the peripheral phenotypes, such as muscle wasting observed in HD. We assessed skeletal muscle tissue from HD patients and well-characterized mouse models of HD. Cleavage of the caspase-6 specific substrate lamin A is significantly increased in skeletal muscle obtained from HD patients as well as in muscle tissues from two different HD mouse models. p53, a transcriptional activator of caspase-6, is upregulated in neuronal cells and tissues expressing mutant huntingtin. Activation of p53 leads to a dramatic increase in levels of caspase-6 mRNA, caspase-6 activity and cleavage of lamin A. Using mouse embryonic fibroblasts (MEFs) from YAC128 mice, we show that this increase in caspase-6 activity can be mitigated by pifithrin-α (pifα), an inhibitor of p53 transcriptional activity, but not through the inhibition of p53's mitochondrial pro-apoptotic function. Remarkably, the p53-mediated increase in caspase-6 expression and activation is exacerbated in cells and tissues of both neuronal and peripheral origin expressing mutant huntingtin (Htt). These findings suggest that the presence of the mutant Htt protein enhances p53 activity and lowers the apoptotic threshold, which activates caspase-6. Furthermore, these results suggest that this pathway is activated both within and outside the CNS in HD and may contribute to both loss of CNS neurons and muscle atrophy. PMID:24070868

  5. Increased Expression of PHGDH and Prognostic Significance in Colorectal Cancer.

    PubMed

    Jia, Xiao-Qin; Zhang, Shu; Zhu, Hui-Jun; Wang, Wei; Zhu, Jin-Hong; Wang, Xu-Dong; Qiang, Jian-Feng

    2016-06-01

    Phosphoglycerate dehydrogenase (PHGDH) plays an essential role in cancer-specific metabolic reprogramming. It has been reported as a putative metabolic oncogene in several types of human malignant tumors, such as breast cancer and melanoma. To date, PHGDH expression in colorectal cancer (CRC) as well as its association with clinicopathological characteristics and prognostic implication remain undetermined. In this study, we determined the PHGDH protein expression using tissue microarray immunohistochemistry (TMA-IHC) on 193 pairs of formalin-fixed, paraffin-embedded specimens of CRC and adjacent tissues, 25 chronic colitis, 41 low-, and 19 high-grade intraepithelial neoplasia specimens, and we also determined PHGDH mRNA level using quantitative reverse transcription PCR (qRT-PCR) on additional 23 pairs of fresh CRC tissues and adjacent tissues. We found that both PHGDH mRNA and protein was highly expressed in tumor tissues in comparison with matched adjacent non-tumor tissues, and high PHGDH protein expression was correlated with advanced TNM stage (P = .038) and larger tumor (P = .001). Multivariate Cox regression analysis showed that PHGDH protein expression (HR = 2.285, 95% CI = 1.18 to 4.41, P = .014), tumor differentiation (HR = .307, 95% CI = .154 to 0.609, P = .001), and TNM stage (HR = 1.791, 95% CI = 1.125 to 2.85, P = .014) were independent prognostic factors in CRC. Kaplan-Meier survival curves and log rank test showed that high PHGDH protein expression contributed to poor outcome in CRC patients (P < .001). In conclusion, these results suggest that assessment of PHGDH expression could be useful in identifying a high-risk subgroup of CRC. PMID:27267836

  6. Increased hepcidin in transferrin-treated thalassemic mice correlates with increased liver BMP2 expression and decreased hepatocyte ERK activation

    PubMed Central

    Chen, Huiyong; Choesang, Tenzin; Li, Huihui; Sun, Shuming; Pham, Petra; Bao, Weili; Feola, Maria; Westerman, Mark; Li, Guiyuan; Follenzi, Antonia; Blanc, Lionel; Rivella, Stefano; Fleming, Robert E.; Ginzburg, Yelena Z.

    2016-01-01

    Iron overload results in significant morbidity and mortality in β-thalassemic patients. Insufficient hepcidin is implicated in parenchymal iron overload in β-thalassemia and approaches to increase hepcidin have therapeutic potential. We have previously shown that exogenous apo-transferrin markedly ameliorates ineffective erythropoiesis and increases hepcidin expression in Hbbth1/th1 (thalassemic) mice. We utilize in vivo and in vitro systems to investigate effects of exogenous apo-transferrin on Smad and ERK1/2 signaling, pathways that participate in hepcidin regulation. Our results demonstrate that apo-transferrin increases hepcidin expression in vivo despite decreased circulating and parenchymal iron concentrations and unchanged liver Bmp6 mRNA expression in thalassemic mice. Hepatocytes from apo-transferrin-treated mice demonstrate decreased ERK1/2 pathway and increased serum BMP2 concentration and hepatocyte BMP2 expression. Furthermore, hepatocyte ERK1/2 phosphorylation is enhanced by neutralizing anti-BMP2/4 antibodies and suppressed in vitro in a dose-dependent manner by BMP2, resulting in converse effects on hepcidin expression, and hepatocytes treated with MEK/ERK1/2 inhibitor U0126 in combination with BMP2 exhibit an additive increase in hepcidin expression. Lastly, bone marrow erythroferrone expression is normalized in apo-transferrin treated thalassemic mice but increased in apo-transferrin injected wild-type mice. These findings suggest that increased hepcidin expression after exogenous apo-transferrin is in part independent of erythroferrone and support a model in which apo-transferrin treatment in thalassemic mice increases BMP2 expression in the liver and other organs, decreases hepatocellular ERK1/2 activation, and increases nuclear Smad to increase hepcidin expression in hepatocytes. PMID:26635037

  7. Regret Expression and Social Learning Increases Delay to Sexual Gratification

    PubMed Central

    Quisenberry, Amanda J.; Eddy, Celia R.; Patterson, David L.; Franck, Christopher T.; Bickel, Warren K.

    2015-01-01

    Objective Modification and prevention of risky sexual behavior is important to individuals’ health and public health policy. This study employed a novel sexual discounting task to elucidate the effects of social learning and regret expression on delay to sexual gratification in a behavioral task. Methods Amazon Mechanical Turk Workers were assigned to hear one of three scenarios about a friend who engages in similar sexual behavior. The scenarios included a positive health consequence, a negative health consequence or a negative health consequence with the expression of regret. After reading one scenario, participants were asked to select from 60 images, those with whom they would have casual sex. Of the selected images, participants chose one image each for the person they most and least want to have sex with and person most and least likely to have a sexually transmitted infection. They then answered questions about engaging in unprotected sex now or waiting some delay for condom-protected sex in each partner condition. Results Results indicate that the negative health outcome scenario with regret expression resulted in delayed sexual gratification in the most attractive and least STI partner conditions, whereas in the least attractive and most STI partner conditions the negative health outcome with and without regret resulted in delayed sexual gratification. Conclusions Results suggest that the sexual discounting task is a relevant laboratory measure and the framing of information to include regret expression may be relevant for prevention of risky sexual behavior. PMID:26280349

  8. Increased fibroblast telomerase expression precedes myofibroblast α-smooth muscle actin expression in idiopathic pulmonary fibrosis

    PubMed Central

    Waisberg, Daniel Reis; Parra, Edwin Roger; Barbas-Filho, João Valente; Fernezlian, Sandra; Capelozzi, Vera Luiza

    2012-01-01

    OBJECTIVE: This study sought to identify the relationship between fibroblast telomerase expression, myofibroblasts, and telomerase-mediated regulatory signals in idiopathic pulmonary fibrosis. METHODS: Thirty-four surgical lung biopsies, which had been obtained from patients with idiopathic pulmonary fibrosis and histologically classified as usual interstitial pneumonia, were examined. Immunohistochemistry was used to evaluate fibroblast telomerase expression, myofibroblast α-smooth muscle actin expression and the tissue expression of interleukin-4, transforming growth factor-β, and basic fibroblast growth factor. The point-counting technique was used to quantify the expression of these markers in unaffected, collapsed, mural fibrosis, and honeycombing areas. The results were correlated to patient survival. RESULTS: Fibroblast telomerase expression and basic fibroblast growth factor tissue expression were higher in collapsed areas, whereas myofibroblast expression and interleukine-4 tissue expression were higher in areas of mural fibrosis. Transforming growth factor-β expression was higher in collapsed, mural fibrosis and honeycombing areas in comparison to unaffected areas. Positive correlations were found between basic fibroblast growth factor tissue expression and fibroblast telomerase expression and between interleukin-4 tissue expression and myofibroblast α-smooth muscle actin expression. Negative correlations were observed between interleukin-4 expression and basic fibroblast growth factor tissue expression in areas of mural fibrosis. Myofibroblast α-smooth muscle actin expression and interleukin-4 tissue expression in areas of mural fibrosis were negatively associated with patient survival. CONCLUSION: Fibroblast telomerase expression is higher in areas of early remodeling in lung tissues demonstrating typical interstitial pneumonia, whereas myofibroblast α-smooth muscle actin expression predominates in areas of late remodeling. These events seem to be

  9. Increased RUNX1 expression in patients with immune thrombocytopenia.

    PubMed

    Zhong, Xiaomin; Wu, Yulu; Liu, Yun; Zhu, Feng; Li, Xiaoqian; Li, Depeng; Li, Zhenyu; Zeng, Lingyu; Qiao, Jianlin; Chen, Xiaofei; Xu, Kailin

    2016-08-01

    Immune thrombocytopenia (ITP) is a heterogeneous autoimmune disease, characterized by dysregulation of cellular immunity. Th17 and associated IL-17 were involved in the pathogenesis of ITP. Runt-related transcription factor 1 (RUNX1), a member of the runt domain-containing family of transcription factors, is required for Th17 differentiation. Whether RUNX1 was involved in the pathogenesis of ITP remains poorly understood. In this study, 30 active ITP patients, 20 ITP in remission and 20 age and gender matched healthy controls were included. Peripheral blood mononuclear cells (PBMCs) were isolated to measure mRNA level of RUNX1 and retinoic acid receptor-related orphan receptor-γt (RORγt) by quantitative real-time PCR and Th17 cells by flow cytometry. Meanwhile, plasma was extracted for measurement of IL-17 level by ELISA. Our results showed a significantly higher expression of RUNX1, RORγt, Th17 cells and plasma level of IL-17 in active ITP patients than that in healthy controls. No differences of expression of RUNX1, RORγt and Th17 cells were observed between remission patients and controls. Furthermore, a significantly positive correlation of RUNX1 with RORγt was found in active ITP patients. In conclusion, RUNX1 was associated with the pathogenesis of ITP possibly through regulation of Th17 cell differentiation and therapeutically targeting it might be a novel approach in ITP treatment. PMID:27288310

  10. Increased hydrophobicity in Malassezia species correlates with increased proinflammatory cytokine expression in human keratinocytes.

    PubMed

    Akaza, Narifumi; Akamatsu, Hirohiko; Takeoka, Shiori; Mizutani, Hiroshi; Nakata, Satoru; Matsunaga, Kayoko

    2012-11-01

    Malassezia cells stimulate cytokine production by keratinocytes, although this ability differs among Malassezia species for unknown reasons. The aim of this study was to clarify the factors determining the ability to induce cytokine production by human keratinocytes in response to Malassezia species. M. furfur NBRC 0656, M. sympodialis CBS 7222, M. dermatis JCM 11348, M. globosa CBS 7966, M. restricta CBS 7877, and three strains each of M. globosa, M. restricta, M. dermatis, M. sympodialis, and M. furfur maintained under various culture conditions were used. Normal human epidermal keratinocytes (NHEKs) (1 × 10(5) cells) and the Malassezia species (1 × 10(6) cells) were co-cultured, and IL-1α, IL-6, and IL-8 mRNA levels were determined. Moreover, the hydrophobicity and β-1,3-glucan expression at the surface of Malassezia cells were analyzed. The ability of Malassezia cells to trigger the mRNA expression of proinflammatory cytokines in NHEKs differed with the species and conditions and was dependent upon the hydrophobicity of Malassezia cells not β-1,3-glucan expression. PMID:22548238

  11. Hyperoxia increases hepatic arginase expression and ornithine production in mice

    SciTech Connect

    Malleske, Daniel T.; Rogers, Lynette K.; Velluci, Sean M.; Young, Tamara L.; Park, Min S.; Long, Donald W.; Welty, Stephen E.; Smith, Charles V.; Nelin, Leif D. . E-mail: NelinL@pediatrics.ohio-state.edu

    2006-08-15

    Hyperoxic exposure affects the levels and activities of some hepatic proteins. We tested the hypothesis that hyperoxic exposure would result in greater hepatic .NO concentrations. C3H/HeN mice were exposed to >95% O{sub 2} for 72 or 96 h and compared to room air-breathing controls. In contrast to our working hypothesis, exposure to >95% O{sub 2} for 96 h decreased hepatic nitrite/nitrate NO {sub X} concentrations (10.9 {+-} 2.2 nmol/g liver versus 19.3 {+-} 2.4 nmol/g liver in room air, P < 0.05). The hepatic levels of endothelial NO synthase (eNOS) and inducible NOS (iNOS) proteins were not different among the groups. The arginases, which convert L-arginine to urea and L-ornithine, may affect hepatic NOS activities by decreasing L-arginine bioavailability. Hepatic ornithine concentrations were greater in hyperoxic animals than in controls (318 {+-} 18 nmol/g liver in room air, and 539 {+-} 64, and 475 {+-} 40 at 72 and 96 h of hyperoxia, respectively, P < 0.01). Hepatic arginase I protein levels were greater in hyperoxic animals than in controls. Hepatic carbamoyl phosphate synthetase (CPS) protein levels and activities were not different among groups. These results indicate that increases in hepatic levels of arginase I in mice exposed to hyperoxia may diminish .NO production, as reflected by lower liver levels of NO {sub X}. The resultant greater hepatic ornithine concentrations may represent a mechanism to facilitate tissue repair, by favoring the production of polyamines and/or proline.

  12. CTGF increases vascular endothelial growth factor-dependent angiogenesis in human synovial fibroblasts by increasing miR-210 expression

    PubMed Central

    Liu, S-C; Chuang, S-M; Hsu, C-J; Tsai, C-H; Wang, S-W; Tang, C-H

    2014-01-01

    Connective tissue growth factor (CTGF, a.k.a. CCN2) is inflammatory mediator and abundantly expressed in osteoarthritis (OA). Angiogenesis is essential for OA progression. Here, we investigated the role of CTGF in vascular endothelial growth factor (VEGF) production and angiogenesis in OA synovial fibroblasts (OASFs). We showed that expression of CTGF and VEGF in synovial fluid were higher in OA patients than in controls. Directly applying CTGF to OASFs increased VEGF production then promoted endothelial progenitor cells tube formation and migration. CTGF induced VEGF by raising miR-210 expression via PI3K, AKT, ERK, and nuclear factor-κB (NF-κB)/ELK1 pathways. CTGF-mediating miR-210 upregulation repressed glycerol-3-phosphate dehydrogenase 1-like (GPD1L) expression and PHD activity and subsequently promoted hypoxia-inducible factor (HIF)-1α-dependent VEGF expression. Knockdown of CTGF decreased VEGF expression and abolished OASF-conditional medium-mediated angiogenesis in vitro as well as angiogenesis in chick chorioallantoic membrane and Matrigel-plug nude mice model in vivo. Taken together, our results suggest CTGF activates PI3K, AKT, ERK, and NF-κB/ELK1 pathway, leading to the upregulation of miR-210, contributing to inhibit GPD1L expression and prolyl hydroxylases 2 activity, promoting HIF-1α-dependent VEGF expression and angiogenesis in human synovial fibroblasts. PMID:25341039

  13. Expression of Nemo-like kinase was increased and negatively correlated with the expression of TCF4 in lung cancers

    PubMed Central

    Zhang, Xiu-Wei; Chen, Song-Yan; Xue, Dong-Wei; Xu, Hui-Hui; Yang, Lian-He; Xu, Hong-Tao; Wang, En-Hua

    2015-01-01

    Nemo-like kinase (NLK), as a mitogen activated protein kinase (MAPK)-like kinase, is involved in the development of several human cancers. In this study, we explored the expression of NLK in lung squamous cell carcinoma (SCC) and adenocarcinoma tissues, and investigated the associations among NLK, β-catenin, T-cell factor 4 (TCF4), and the clinicopathological factors of lung cancers. The expressions of NLK, β-catenin, TCF4 were examined in 109 cases of lung cancers using immunohistochemistry method. The expression of NLK was observed in the nuclei of lung cancer tissues, and was significantly higher in lung cancer tissues than that in corresponding normal lung tissues (t = 21.636, n = 109, P < 0.001). The high expression of NLK was found in 45 cases of lung SCCs (45/49, 91.84%), which was much more than that in adenocarcinomas (38/60, 63.33%) (P = 0.001). Furthermore, the high expression of NLK was negatively correlated with TCF4 expression and positively correlated with the membranous expression of β-catenin. In conclusion, the present study demonstrated that the expression of NLK was localized in nucleus and significantly increased in lung cancers. The expression of NLK was negatively correlated with TCF4 expression and positively correlated with β-catenin membranous expression in lung cancers. PMID:26823848

  14. A cautionary note on cosmetics containing ingredients that increase aquaporin-3 expression.

    PubMed

    Verkman, A S

    2008-10-01

    Aquaporin-3 (AQP3) is a membrane transport protein that facilitates water and glycerol transport across cell plasma membranes in the basal layer of keratinocytes in normal skin. Motivated by a relation between AQP3 expression and skin water content, several companies have marketed cosmetics containing ingredients that increase AQP3 expression. However, caution seems warranted in targeting AQP3 to increase skin moisturization based on a recently discovered association in mice between epidermal AQP3 expression and skin tumor formation. PMID:18312385

  15. Suppression of lipin-1 expression increases monocyte chemoattractant protein-1 expression in 3T3-L1 adipocytes

    SciTech Connect

    Takahashi, Nobuhiko; Hiranaka, Natsumi; Suzuki, Takeshi; Yui, Tomoo; Akanuma, Masayasu; Oka, Kazuya; Kanazawa, Kaoru; Yoshida, Mika; Naito, Sumiyoshi; Fujiya, Mikihiro; Kohgo, Yutaka

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer Lipin-1 affects lipid metabolism, adipocyte differentiation, and transcription. Black-Right-Pointing-Pointer Adipose lipin-1 expression is reduced in obesity. Black-Right-Pointing-Pointer Lipin-1 depletion using siRNA in 3T3-L1 adipocytes increased MCP-1 expression. Black-Right-Pointing-Pointer Lipin-1 is involved in adipose inflammation. -- Abstract: Lipin-1 plays a crucial role in the regulation of lipid metabolism and cell differentiation in adipocytes. Expression of adipose lipin-1 is reduced in obesity, and metabolic syndrome. However, the significance of this reduction remains unclear. This study investigated if and how reduced lipin-1 expression affected metabolism. We assessed mRNA expression levels of various genes related to adipocyte metabolism in lipin-1-depleted 3T3-L1 adipocytes by introducing its specific small interfering RNA. In lipin-1-depleted adipocytes, mRNA and protein expression levels of monocyte chemoattractant protein-1 (MCP-1) were significantly increased, although the other genes tested were not altered. The conditioned media from the cells promoted monocyte chemotaxis. The increase in MCP-1 expression was prevented by treatment with quinazoline or salicylate, inhibitors of nuclear factor-{kappa}B activation. Because MCP-1 is related to adipose inflammation and systemic insulin resistance, these results suggest that a reduction in adipose lipin-1 in obesity may exacerbate adipose inflammation and metabolism.

  16. Late-Postnatal Cannabinoid Exposure Persistently Increases FoxP2 Expression within Zebra Finch Striatum

    PubMed Central

    Soderstrom, Ken; Luo, Bin

    2010-01-01

    Prior work has shown that cannabinoid exposure of zebra finches during sensorimotor stages of vocal development alters song patterns produced in adulthood. We are currently working to identify physiological substrates for this altered song learning. FoxP2 is a transcription factor associated with altered vocal development in both zebra finches and humans. This protein shows a distinct pattern of expression within Area X of striatum that coincides with peak expression of CB1 cannabinoid receptors during sensorimotor learning. Coincident expression in a brain region essential for song learning led us to test for a potential signaling interaction. We have found that cannabinoid agonists acutely increase expression of FoxP2 throughout striatum. When administered during sensorimotor song learning, cannabinoids increase basal levels of striatal FoxP2 expression in adulthood. Thus, song-altering cannabinoid treatments are associated with persistent increases in basal expression of FoxP2 in zebra finch striatum. PMID:20017118

  17. Ethanol increases osteoclastogenesis associated with the increased expression of RANK, PU.1 and MITF in vitro and in vivo.

    PubMed

    Iitsuka, Natsumi; Hie, Mamiko; Nakanishi, Atsuko; Tsukamoto, Ikuyo

    2012-07-01

    Ethanol has been known to induce osteopenia. However, the cellular and molecular mechanisms responsible for its effect have not been well characterized. This study investigated the effects of ethanol on bone metabolism and osteoclastogenesis using rats fed an ethanol-containing liquid diet (35% of calories from ethanol) for 3 weeks. Ethanol increased the activities of bone tartrate-resistant acid phosphatase (TRAP) and cathepsin K, without affecting the levels of serum osteocalcin or bone alkaline phosphatase activity. Histological analysis showed an increased number of osteoclasts in the proximal tibia, but no significant change in the number of osteoblasts. The mRNA levels of receptor for activation of NF-κB (RANK), c-fos, c-jun, TRAP and cathepsin K were significantly increased, although those of macrophage colony-stimulating factor and c-fms were unaltered. The mRNA and protein levels of PU.1 and microphthalmia-associated trascription factor (MITF) also increased. Further, the osteoclastic differentiation of bone marrow-derived macrophage/monocyte precursor cells (BMMs) in vitro was stimulated by ethanol. The increased osteoclastogenesis of BMMs was associated with increased levels of RANK, PU.1 and MITF expression, activated extracellular signal-regulated kinase (ERK), and reactive oxygen species (ROS). Higher lipid peroxide levels and lower glutathione levels were also observed in the serum of the ethanol-fed rats. These results suggested that ethanol promoted osteoclastogenesis by increasing RANK expression through increases in the production of ROS, activation of ERK and expression of PU.1 and MITF. PMID:22576626

  18. Using probabilistic estimation of expression residuals (PEER) to obtain increased power and interpretability of gene expression analyses.

    PubMed

    Stegle, Oliver; Parts, Leopold; Piipari, Matias; Winn, John; Durbin, Richard

    2012-03-01

    We present PEER (probabilistic estimation of expression residuals), a software package implementing statistical models that improve the sensitivity and interpretability of genetic associations in population-scale expression data. This approach builds on factor analysis methods that infer broad variance components in the measurements. PEER takes as input transcript profiles and covariates from a set of individuals, and then outputs hidden factors that explain much of the expression variability. Optionally, these factors can be interpreted as pathway or transcription factor activations by providing prior information about which genes are involved in the pathway or targeted by the factor. The inferred factors are used in genetic association analyses. First, they are treated as additional covariates, and are included in the model to increase detection power for mapping expression traits. Second, they are analyzed as phenotypes themselves to understand the causes of global expression variability. PEER extends previous related surrogate variable models and can be implemented within hours on a desktop computer. PMID:22343431

  19. Construction of a novel expression cassette for increasing transgene expression in vivo in endothelial cells of large blood vessels

    PubMed Central

    Dronadula, Nagadhara; Du, Liang; Flynn, Rowan; Buckler, Joshua; Kho, Jordan; Jiang, Zhilong; Tanaka, Shinji; Dichek, David A.

    2010-01-01

    The success of gene therapy hinges on achievement of adequate transgene expression. To ensure high transgene expression, many gene-therapy vectors include highly active virus-derived transcriptional elements. Other vectors include tissue-specific eukaryotic transcriptional elements, intended to limit transgene expression to specific cell types, avoid toxicity, and prevent immune responses. Unfortunately, tissue specificity is often accompanied by lower transgene expression. Here we use eukaryotic (murine) transcriptional elements and a virus-derived posttranscriptional element to build cassettes designed to express a potentially therapeutic gene (interleukin-10) in large vessel endothelial cells (EC) at levels as high as obtained with the CMV immediate-early promoter, while retaining EC-specificity. The cassettes were tested by incorporation into helper-dependent adenoviral vectors, and transduction into bovine aortic EC in vitro and rabbit carotid EC in vivo. The murine endothelin-1 promoter showed EC-specificity, but expressed only 3% as much IL-10 mRNA as CMV. Inclusion of precisely 4 copies of an EC-specific enhancer and a posttranscriptional regulatory element increased IL-10 expression to a level at or above the CMV promoter in vivo, while retaining—and possibly enhancing—EC specificity, as measured in vitro. The cassette reported here will likely be useful for maximizing transgene expression in large vessel EC, while minimizing systemic effects. PMID:21179172

  20. [Four-week simulated weightlessness increases the expression of atrial natriuretic peptide in the myocardium].

    PubMed

    Zhang, Wen-Cheng; Lu, Yuan-Ming; Yang, Huai-Zhang; Xu, Peng-Tao; Chang, Hui; Yu, Zhi-Bin

    2013-04-25

    One of the major circulatory changes that occur in human during space flight and simulated weightlessness is a cerebral redistribution of body fluids, which is accompanied by an increase of blood volume in the upper body. Therefore, atrial myocardium should increase the secretion of atrial natriuretic peptide (ANP), but the researches lack common conclusion until now. The present study was to investigate the expression level of ANP in simulated weightlessness rats, and to confirm the changes of ANP by observing the associated proteins of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). The tail-suspended rat model was used to simulate weightlessness. Western blots were carried out to examine the expression levels of ANP and SNARE proteins in atrial and left ventricular myocardium. The results showed that ANP expression in atrial myocardium showed an increase in 4-week tail-suspended rats (SUS) compared with that in the synchronous control rats (CON). We only detected a trace amount of ANP in the left ventricular myocardium of the CON, but found an enhanced expression of ANP in left ventricular myocardium of the SUS. Expression of VAMP-1/2 (vesicle associated SNARE) increased significantly in both atrial and left ventricular myocardium in the SUS compared with that in the CON. There was no difference of the expression of syntaxin-4 (target compartment associated SNARE) between the CON and SUS, but the expression of SNAP-23 showed an increase in atrial myocardium of the SUS compared with that in the CON. Synip and Munc-18c as regulators of SNAREs did not show significant difference between the CON and SUS. These results suggest that the expression of ANP shows an increase in atrial and left ventricular myocardium of 4-week tail-suspended rats. Enhanced expression of VAMP-1/2 associated with ANP vesicles confirms the increased expression of ANP in atrial and left ventricular myocardium. PMID:23598869

  1. Increased GADD gene expression in human colon epithelial cells exposed to deoxycholate.

    PubMed

    Scott, David W; Mutamba, Sophia; Hopkins, Robin G; Loo, George

    2005-01-01

    The colonic epithelium is often exposed to high concentrations of secondary bile acids, which stresses the epithelial cells, leading potentially to activation of stress-response genes. To examine this possibility in vitro, the purpose of this study was to determine if expression of certain growth arrest and DNA damage-inducible genes (GADD) is upregulated in human colonic epithelial cells exposed to deoxycholate (DOC). DNA macroarray screening of a small cluster of stress/apoptosis-related genes in DOC-treated HCT-116 colonocytes revealed clearly higher expression of only GADD45, which was confirmed by gene-specific relative RT-PCR analysis. Subsequently, it was found that DOC also increased GADD34 mRNA expression. However, mRNA expression of GADD153 was increased most markedly in DOC-treated HCT-116 colonocytes, which express wild-type p53. However, the upregulation of GADD34, GADD45, and GADD153 mRNA expression apparently did not require p53, based on the finding that DOC increased expression of all three GADD genes in HCT-15 colonocytes, which express mutant p53. In further studying GADD153 in particular, the effect of DOC on GADD153 mRNA was prevented by actinomycin-D (Act-D), but not by antioxidants or MAPK inhibitors. DOC also caused GADD153 protein to be expressed in close parallel with increased GADD153 mRNA expression. Induction of GADD153 protein by DOC was prevented by either anisomycin or cycloheximide. These findings suggest that DOC-induced upregulation of GADD153 mRNA expression occurred at the level of transcription without involving reactive oxygen species and MAPK signaling, and that the expression of GADD153 protein was due also to translation of pre-existing, and not just newly synthesized, mRNA. PMID:15316935

  2. Strategies for increasing heterologous expression of a thermostable esterase from Archaeoglobus fulgidus in Escherichia coli.

    PubMed

    Kim, Jinyeong; Kim, Seul I; Hong, Eunsoo; Ryu, Yeonwoo

    2016-11-01

    Heterologous proteins expressed in bacteria are used for numerous biotechnological applications. Escherichia coli is the most commonly used host for heterologous protein expression because of its many advantages. Researchers have been studying proteins from extremophiles heterologously expressed in E. coli because the proteins of extremophiles are strongly resistant to extreme conditions. In a previous study, a thermostable esterase Est-AF was isolated from Archaeoglobus fulgidus and expressed in E. coli. However, further studies of Est-AF were difficult owing to its low expression levels in E. coli. In this study, we used various strategies, such as changing the expression vector and host strain, codon optimization, and optimization of induction conditions, to increase the expression of Est-AF. Through codon optimization and by changing the vector and host strain, Est-AF expression was increased from 31.50 ± 0.35 mg/L to 61.75 ± 0.28 mg/L. The optimized expression system consisted of a codon-optimized Est-AF gene in a pET28a(+)-based expression plasmid in E. coli Rosetta cells. The expression level was further increased by optimizing the induction conditions. The optimized conditions were induction with 0.4 mM isopropyl-b-d-1-thiogalactoside (IPTG) at 37 °C for 5 h. Under these conditions, the expression level of Est-AF was increased from 31.5 ± 0.35 mg/L to 119.52 ± 0.34 mg/L. PMID:27449918

  3. Calpain activity and expression are increased in splenic inflammatory cells associated with experimental allergic encephalomyelitis.

    PubMed

    Shields, D C; Schaecher, K E; Goust, J M; Banik, N L

    1999-09-01

    Since calcium-activated neutral proteinase (calpain) activity and expression are significantly increased in activated glial/inflammatory cells in the central nervous system of animals with autoimmune demyelinating diseases, this enzyme may also play a role in peripheral organ systems in these diseases. In this study, the activity and expression of calpain and the endogenous inhibitor, calpastatin, were evaluated at transcriptional and translational levels in spleens of Lewis rats with acute experimental allergic encephalomyelitis (EAE) prior to the onset of clinical symptoms. Calpain activity and translational expression were increased by 475.5% and 44.3% respectively, on day 4 post-induction in adjuvant controls and animals with EAE. These levels remained elevated compared to normal controls on days 8 and 12. Calpastatin translational expression was similarly increased at these time points although transcriptional expression was not significantly altered at any time following induction of EAE. Likewise, transcriptional expression of mu-calpain was unchanged following induction, while small increases in m-calpain transcriptional expression were observed on days 2 and 8. Most calpain expression was observed in activated splenic macrophages at day 8 post-induction even though activated T cells were also calpain positive. In spinal cords of animals with EAE, calpain expression was significantly increased in rats with severe disease compared to those exhibiting only mild symptoms at day 12 post-induction. Thus, prior to symptomatic EAE, increased calpain activity and expression in peripheral lymphoid organs may play an important role in T cell migration and subsequent disease progression. PMID:10496171

  4. Neurotensin Decreases the Proinflammatory Status of Human Skin Fibroblasts and Increases Epidermal Growth Factor Expression

    PubMed Central

    Miguel Neves, Bruno; Cruz, Maria Teresa; Carvalho, Eugénia

    2014-01-01

    Fibroblasts colonization into injured areas during wound healing (WH) is responsible for skin remodelling and is also involved in the modulation of inflammation, as fibroblasts are immunologically active. Herein, we aimed to determine neurotensin effect on the immunomodulatory profile of fibroblasts, both in homeostatic and inflammatory conditions. Neurotensin mediated responses occurred through NTR1 or NTR3 receptors, while under inflammatory conditions NTR1 expression increase seemed to modulate neurotensin responses. Among different immunomodulatory genes, CCL11, IL-8, and IL-6 were the most expressed genes, while CCL4 and EGF were the less expressed genes. After neurotensin exposure, IL-8 mRNA expression was increased while CCL11 was decreased, suggesting a proinflammatory upregulation and chemoattractant ability downregulation of fibroblasts. Under inflammatory conditions, gene expression was significantly increased. After neurotensin exposure, CCL4 and IL-6 mRNA expression were decreased while CCL11 was increased, suggesting again a decrease in the chemoattractant capacity of fibroblasts and in their proinflammatory status. Furthermore, the expression of EGF, a crucial growth factor for skin cells proliferation and WH, was increased in all conditions. Overall, neurotensin, released by nerve fibers or skin cells, may be involved in the decrease of the chemotaxis and the proinflammatory status in the proliferation and remodelling phases of WH. PMID:25180119

  5. Reduced tissue osmolarity increases TRPV4 expression and pro-inflammatory cytokines in intervertebral disc cells.

    PubMed

    Walter, B A; Purmessur, D; Moon, A; Occhiogrosso, J; Laudier, D M; Hecht, A C; Iatridis, J C

    2016-01-01

    The mechanical behaviour and cellular metabolism of intervertebral discs (IVDs) and articular cartilage are strongly influenced by their proteoglycan content and associated osmotic properties. This osmotic environment is a biophysical signal that changes with disease and may contribute to the elevated matrix breakdown and altered biologic response to loading observed in IVD degeneration and osteoarthritis. This study tested the hypothesis that changes in osmo-sensation by the transient receptor potential vallinoid-4 (TRPV4) ion channel occur with disease and contribute to the inflammatory environment found during degeneration. Immunohistochemistry on bovine IVDs from an inflammatory organ culture model were used to investigate if TRPV4 is expressed in the IVD and how expression changes with degeneration. Western blot, live-cell calcium imaging, and qRT-PCR were used to investigate whether osmolarity changes or tumour necrosis factor α (TNFα) regulate TRPV4 expression, and how altered TRPV4 expression influences calcium signalling and pro-inflammatory cytokine expression. TRPV4 expression correlated with TNFα expression, and was increased when cultured in reduced medium osmolarity and unaltered with TNFα-stimulation. Increased TRPV4 expression increased the calcium flux following TRPV4 activation and increased interleukin-1β (IL-1β) and IL-6 gene expression in IVD cells. TRPV4 expression was qualitatively elevated in regions of aggrecan depletion in degenerated human IVDs. Collectively, results suggest that reduced tissue osmolarity, likely following proteoglycan degradation, can increase TRPV4 signalling and enhance pro-inflammatory cytokine production, suggesting changes in TRPV4 mediated osmo-sensation may contribute to the progressive matrix breakdown in disease. PMID:27434269

  6. TNF-α increases endothelial progenitor cell adhesion to the endothelium by increasing bond expression and affinity

    PubMed Central

    Prisco, Anthony R.; Prisco, Michael R.; Carlson, Brian E.

    2014-01-01

    Endothelial progenitor cells (EPCs) are a rare population of cells that participate in angiogenesis. To effectively use EPCs for regenerative therapy, the mechanisms by which they participate in tissue repair must be elucidated. This study focused on the process by which activated EPCs bind to a target tissue. It has been demonstrated that EPCs can bind to endothelial cells (ECs) through the tumore necrosis factor-α (TNF-α)-regulated vascular cell adhesion molecule 1/very-late antigen 4 (VLA4) interaction. VLA4 can bind in a high or low affinity state, a process that is difficult to experimentally isolate from bond expression upregulation. To separate these processes, a new parallel plate flow chamber was built, a detachment assay was developed, and a mathematical model was created that was designed to analyze the detachment assay results. The mathematical model was developed to predict the relative expression of EPC/EC bonds made for a given bond affinity distribution. EPCs treated with TNF-α/vehicle were allowed to bind to TNF-α/vehicle-treated ECs in vitro. Bound cells were subjected to laminar flow, and the cellular adherence was quantified as a function of shear stress. Experimental data were fit to the mathematical model using changes in bond expression or affinity as the only free parameter. It was found that TNF-α treatment of ECs increased adhesion through bond upregulation, whereas TNF-α treatment of EPCs increased adhesion by increasing bond affinity. These data suggest that injured tissue could potentially increase recruitment of EPCs for tissue regeneration via the secretion of TNF-α. PMID:25539711

  7. Epidermal growth factor increases LRF/Pokemon expression in human prostate cancer cells.

    PubMed

    Aggarwal, Himanshu; Aggarwal, Anshu; Agrawal, Devendra K

    2011-10-01

    Leukemia/lymphoma related factor/POK erythroid myeloid ontogenic factor (LRF/Pokemon) is a member of the POK family of proteins that promotes oncogenesis in several forms of cancer. Recently, we found higher LRF expression in human breast and prostate carcinomas compared to the corresponding normal tissues. The aim of this study was to examine the regulation of LRF expression in human prostate cells. Epidermal growth factor (EGF) and its receptors mediate several tumorigenic cascades that regulate cell differentiation, proliferation, migration and survival of prostate cancer cells. There was significantly higher level of LRF expression in the nucleus of LNCaP and PC-3 cells than RWPE-1 cells. A significant increase in LRF expression was observed with increasing doses of EGF in more aggressive and androgen-sensitive prostate cancer cells suggesting that EGF signaling pathway is critical in upregulating the expression of LRF/Pokemon to promote oncogenesis. PMID:21640721

  8. Ethanol increases matrix metalloproteinase-12 expression via NADPH oxidase-dependent ROS production in macrophages.

    PubMed

    Kim, Mi Jin; Nepal, Saroj; Lee, Eung-Seok; Jeong, Tae Cheon; Kim, Sang-Hyun; Park, Pil-Hoon

    2013-11-15

    Matrix metalloproteinase-12 (MMP-12), an enzyme responsible for degradation of extracellular matrix, plays an important role in the progression of various diseases, including inflammation and fibrosis. Although most of those are pathogenic conditions induced by ethanol ingestion, the effect of ethanol on MMP-12 has not been explored. In the present study, we investigated the effect of ethanol on MMP-12 expression and its potential mechanisms in macrophages. Here, we demonstrated that ethanol treatment increased MMP-12 expression in primary murine peritoneal macrophages and RAW 264.7 macrophages at both mRNA and protein levels. Ethanol treatment also significantly increased the activity of nicotinamide adenine dinucleotide (NADPH) oxidase and the expression of NADPH oxidase-2 (Nox2). Pretreatment with an anti-oxidant (N-acetyl cysteine) or a selective inhibitor of NADPH oxidase (diphenyleneiodonium chloride (DPI)) prevented ethanol-induced MMP-12 expression. Furthermore, knockdown of Nox2 by small interfering RNA (siRNA) prevented ethanol-induced ROS production and MMP-12 expression in RAW 264.7 macrophages, indicating a critical role for Nox2 in ethanol-induced intracellular ROS production and MMP-12 expression in macrophages. We also showed that ethanol-induced Nox2 expression was suppressed by transient transfection with dominant negative IκB-α plasmid or pretreatment with Bay 11-7082, a selective inhibitor of NF-κB, in RAW 264.7 macrophages. In addition, ethanol-induced Nox2 expression was also attenuated by treatment with a selective inhibitor of p38 MAPK, suggesting involvement of p38 MAPK/NF-κB pathway in ethanol-induced Nox2 expression. Taken together, these results demonstrate that ethanol treatment elicited increase in MMP-12 expression via increase in ROS production derived from Nox2 in macrophages. PMID:23978445

  9. Gene expression analysis of tuberous sclerosis complex cortical tubers reveals increased expression of adhesion and inflammatory factors

    PubMed Central

    Boer, Karin; Crino, Peter B.; Gorter, Jan A.; Nellist, Mark; Jansen, Floor E.; Spliet, Wim G.M.; van Rijen, Peter C.; Wittink, Floyd R.A.; Breit, Timo M.; Troost, Dirk; Wadman, Wytse J.; Aronica, Eleonora

    2009-01-01

    Cortical tubers in patients with tuberous sclerosis complex are associated with disabling neurological manifestations, including intractable epilepsy. While these malformations are believed to result from the effects of TSC1 or TSC2 gene mutations, the molecular mechanisms leading to tuber formation, as well as the onset of seizures remain largely unknown. We used the Affymetrix Gene Chip platform to provide the first genome wide investigation of gene expression in surgically resected tubers, compared with histological normal perituberal tissue from the same patients or autopsy control tissue. We identified 2501 differentially expressed genes in cortical tubers compared with autopsy controls. Expression of genes associated with cell adhesion e.g., VCAM1, integrins and CD44, or with the inflammatory response, including complement factors, serpinA3, CCL2 and several cytokines, was increased in cortical tubers, whereas genes related to synaptic transmission e.g., the glial glutamate transporter GLT-1, and voltage-gated channel activity, exhibited lower expression. Gene expression in perituberal cortex was distinct from autopsy control cortex suggesting that even in the absence of tissue pathology the transcriptome is altered in TSC. Changes in gene expression yield insights into new candidate genes that may contribute to tuber formation or seizure onset, representing new targets for potential therapeutic development. PMID:19912235

  10. Prenatal stress decreases Bdnf expression and increases methylation of Bdnf exon IV in rats

    PubMed Central

    Boersma, Gretha J; Lee, Richard S; Cordner, Zachary A; Ewald, Erin R; Purcell, Ryan H; Moghadam, Alexander A; Tamashiro, Kellie L

    2014-01-01

    There is ample evidence that exposure to stress during gestation increases the risk of the offspring to develop mood disorders. Brain-derived neurotrophic factor (Bdnf) plays a critical role during neuronal development and is therefore a prime candidate to modulate neuronal signaling in adult offspring of rat dams that were stressed during gestation. In the current study, we tested the hypothesis that alterations in Bdnf expression in prenatally stressed (PNS) offspring are mediated by changes in DNA methylation in exons IV and VI of the Bdnf gene. We observed decreased Bdnf expression in the amygdala and hippocampus of prenatally stressed rats both at weaning and in adulthood. This decrease in Bdnf expression was accompanied by increased DNA methylation in Bdnf exon IV in the amygdala and hippocampus, suggesting that PNS-induced reduction in Bdnf expression may, at least in part, be mediated by increased DNA methylation of Bdnf exon IV. Expression of DNA methyltransferases (Dnmt) 1 and 3a was increased in PNS rats in the amygdala and hippocampus. Our data suggest that PNS induces decreases in Bdnf expression that may at least in part be mediated by increased DNA methylation of Bdnf exon IV. PMID:24365909

  11. Increased expression of dermatopontin and its implications for testicular dysfunction in mice

    PubMed Central

    CAI, JUN; LIU, WEIJIA; HAO, JIE; CHEN, MAOXIN; LI, GANG

    2016-01-01

    An array of specific and non-specific molecules, which are expressed in the testis, have been demonstrated to be responsible for testicular function. Our previous study revealed that dermatopontin (DPT) is expressed in Sertoli cells of the testis, however, its roles in testicular function remains somewhat elusive. In the present study, CdCl2- and busulfan-induced testicular dysfunction models were used to investigate the implications of DPT expression for testicular function. The mRNA and protein expression levels of DPT were detected using reverse transcription-quantitative polymerase chain reaction and western blotting, respectively. A negative correlation was observed between testicular damage and the expression of DPT, which suggested that an increase in DPT expression may be a marker for testicular dysfunction. This result was corroborated by the finding that transgenic mice exhibiting Sertoli cell-specific overexpression of DPT exhibited damage to their testicular morphology. Additionally, DPT overexpression in the testis affected the expression levels of claudin-11 and zonula occludens-1, which indicated that DPT may affect testicular function by affecting the integrity of the blood-testis barrier (BTB). In conclusion, the present study provided evidence to suggest that DPT may be indicative of mouse testicular dysfunction, since increased expression may be associated with damage to the BTB. PMID:26861869

  12. Increased NY-ESO-1 expression and reduced infiltrating CD3+ T cells in cutaneous melanoma.

    PubMed

    Giavina-Bianchi, Mara; Giavina-Bianchi, Pedro; Sotto, Mirian Nacagami; Muzikansky, Alona; Kalil, Jorge; Festa-Neto, Cyro; Duncan, Lyn M

    2015-01-01

    NY-ESO-1 is a cancer-testis antigen aberrantly expressed in melanomas, which may serve as a robust and specific target in immunotherapy. NY-ESO-1 antigen expression, tumor features, and the immune profile of tumor infiltrating lymphocytes were assessed in primary cutaneous melanoma. NY-ESO-1 protein was detected in 20% of invasive melanomas (16/79), rarely in in situ melanoma (1/10) and not in benign nevi (0/20). Marked intratumoral heterogeneity of NY-ESO-1 protein expression was observed. NY-ESO-1 expression was associated with increased primary tumor thickness (P = 0.007) and inversely correlated with superficial spreading melanoma (P < 0.02). NY-ESO-1 expression was also associated with reduced numbers and density of CD3+ tumor infiltrating lymphocytes (P = 0.017). When NY-ESO-1 protein was expressed, CD3+ T cells were less diffusely infiltrating the tumor and were more often arranged in small clusters (P = 0.010) or as isolated cells (P = 0.002) than in large clusters of more than five lymphocytes. No correlation of NY-ESO-1 expression with gender, age, tumor site, ulceration, lymph node sentinel status, or survival was observed. NY-ESO-1 expression in melanoma was associated with tumor progression, including increased tumor thickness, and with reduced tumor infiltrating lymphocytes. PMID:25954764

  13. PD-L1 Expression Is Increased in a Subset of Basal Type Breast Cancer Cells

    PubMed Central

    Soliman, Hatem; Khalil, Farah; Antonia, Scott

    2014-01-01

    Background Tumor cells express programmed death ligand 1 (PD-L1) and is a key immune evasion mechanism. PD-L1 expression in multiple breast cancer cell lines was evaluated to identify intrinsic differences that affect their potential for immune evasion. Methods PD-L1 expression was analyzed in six breast cancer cell lines: AU565&MCF7 (luminal), BT20&HCC1143 (basal A), MDA231&HCC38 (basal B). Surface and intracellular PD-L1 expression +/− interferon γ for 48 hours was measured by flow cytometry. PD-L1 gene expression data for all breast cancer cell lines in the Comprehensive Cell Line Encyclopedia (CCLE) was analyzed. Correlation between PD-L1 levels and clinicopathologic parameters was analyzed within Oncomine datasets. A tissue microarray containing 61 invasive breast cancer primary tumor cores was stained for PD-L1 expression and analyzed. Results Basal breast cancer cells constitutively express the highest levels of PD-L1. All cell lines increased PD-L1 expression with interferon γ, but basal B cells (MDA-231 and HCC38) demonstrated the largest increases. There were no differences in protein localization between cell lines. In the CCLE data, basal cell lines demonstrated higher mean PD-L1 expression compared to luminal cell lines. High PD-L1 expressing basal cell lines over-express genes involved in invasion, proliferation, and chemoresistance compared to low PD-L1 basal cell lines. High PD-L1 basal cell lines had lower expression of IRF2BP2 and higher STAT1 levels compared to low PD-L1 expressing cell lines. Within Oncomine datasets PDL1 mRNA levels were higher in basal type tumors. The TMA analysis demonstrated that lymph node positive cases had higher levels of PD-L1 protein expression compared to lymph node negative cases. Conclusions Basal type breast cancer (especially basal B) express greater levels of PD-L1 constitutively and with IFN γ. High PD-L1 basal cells over-express genes involved in invasion, motility, and chemoresistance. Targeting PD-L1

  14. Oral Administration of Recombinant Lactococcus lactis Expressing the Cellulase Gene Increases Digestibility of Fiber in Geese.

    PubMed

    Zhou, Haizhu; Gao, Yunhang; Gao, Guang; Lou, Yujie

    2015-12-01

    Enhancing cellulose digestibility in animals is important for improving the utilization of forage, which can decrease the amount of food used in animal production. The aim of the present study was to achieve recombinant expression of the cellulase gene in Lactococcus lactis and evaluate the effects of oral administration of the recombinant L. lactis on fiber digestibility in geese. Cellulase (Cell) and green fluorescent protein (GFP) genes were cloned into a L. lactis expression vector (pNZ8149) to construct the recombinant expression plasmid (pNZ8149-GFP-Cell). Then, the recombinant expression plasmid was transformed into L. lactis (NZ3900) competent cells by electroporation to obtain recombinant L. lactis (pNZ8149-GFP-Cell/NZ3900) in which protein expression was induced by Nisin. Expression of GFP and Cell by the recombinant L. lactis was confirmed using SDS-PAGE, fluorescence detection, and Congo red assays. A feeding experiment showed that oral administration of pNZ8149-GFP-Cell/NZ3900 significantly increased the digestibility of dietary fiber in geese fed either a maize stalk diet or a rice chaff diet. Therefore, oral administration of recombinant L. lactis cells expressing the cellulase gene increases fiber digestibility in geese, offering a way to increase the utilization of dietary fiber in geese. PMID:26341925

  15. Increased expression of the diabetes gene SOX4 reduces insulin secretion by impaired fusion pore expansion

    PubMed Central

    Collins, Stephan C.; Do, Hyun Woong; Hastoy, Benoit; Hugill, Alison; Adam, Julie; Chibalina, Margarita V.; Galvanovskis, Juris; Godazgar, Mahdieh; Lee, Sheena; Goldsworthy, Michelle; Salehi, Albert; Tarasov, Andrei I.; Rosengren, Anders H.; Cox, Roger; Rorsman, Patrik

    2016-01-01

    The transcription factor Sox4 has been proposed to underlie the increased type-2 diabetes risk linked to an intronic SNP in CDKAL1. In a mouse model expressing a mutant form of Sox4, glucose-induced insulin secretion is reduced by 40% despite normal intracellular Ca2+ signalling and depolarization-evoked exocytosis. This paradox is explained by a 4-fold increase in kiss-and-run exocytosis (as determined by single-granule exocytosis measurements), in which the fusion pore connecting the granule lumen to the exterior only expands to a diameter of 2 nm that does not allow the exit of insulin. Microarray analysis indicated that this correlated with an increased expression of the exocytosis-regulating protein Stxbp6. In a large collection of human islet preparations (n=63), STXBP6 expression and GIIS correlated positively and negatively with SOX4 expression, respectively. Overexpression of SOX4 in the human insulin-secreting cell EndoC-βH2 interfered with granule emptying and inhibited hormone release, the latter effect was reversed by silencing of STXBP6. These data suggest that increased SOX4 expression inhibits insulin secretion and increased diabetes risk by upregulation of STXBP6 and an increase in kiss-and-run exocytosis at the expense of full fusion. We propose that pharmacological interventions promoting fusion pore expansion may be effective in diabetes therapy. PMID:26993066

  16. Tetracyclines increase lipid phosphate phosphatase expression on plasma membranes and turnover of plasma lysophosphatidate.

    PubMed

    Tang, Xiaoyun; Zhao, Yuan Y; Dewald, Jay; Curtis, Jonathan M; Brindley, David N

    2016-04-01

    Extracellular lysophosphatidate and sphingosine 1-phosphate (S1P) are important bioactive lipids, which signal through G-protein-coupled receptors to stimulate cell growth and survival. The lysophosphatidate and S1P signals are terminated partly by degradation through three broad-specificity lipid phosphate phosphatases (LPPs) on the cell surface. Significantly, the expression of LPP1 and LPP3 is decreased in many cancers, and this increases the impact of lysophosphatidate and S1P signaling. However, relatively little is known about the physiological or pharmacological regulation of the expression of the different LPPs. We now show that treating several malignant and nonmalignant cell lines with 1 μg/ml tetracycline, doxycycline, or minocycline significantly increased the extracellular degradation of lysophosphatidate. S1P degradation was also increased in cells that expressed high LPP3 activity. These results depended on an increase in the stabilities of the three LPPs and increased expression on the plasma membrane. We tested the physiological significance of these results and showed that treating rats with doxycycline accelerated the clearance of lysophosphatidate, but not S1P, from the circulation. However, administering 100 mg/kg/day doxycycline to mice decreased plasma concentrations of lysophosphatidate and S1P. This study demonstrates a completely new property of tetracyclines in increasing the plasma membrane expression of the LPPs. PMID:26884614

  17. Increased Expression of the Diabetes Gene SOX4 Reduces Insulin Secretion by Impaired Fusion Pore Expansion.

    PubMed

    Collins, Stephan C; Do, Hyun Woong; Hastoy, Benoit; Hugill, Alison; Adam, Julie; Chibalina, Margarita V; Galvanovskis, Juris; Godazgar, Mahdieh; Lee, Sheena; Goldsworthy, Michelle; Salehi, Albert; Tarasov, Andrei I; Rosengren, Anders H; Cox, Roger; Rorsman, Patrik

    2016-07-01

    The transcription factor Sox4 has been proposed to underlie the increased type 2 diabetes risk linked to an intronic single nucleotide polymorphism in CDKAL1 In a mouse model expressing a mutant form of Sox4, glucose-induced insulin secretion is reduced by 40% despite normal intracellular Ca(2+) signaling and depolarization-evoked exocytosis. This paradox is explained by a fourfold increase in kiss-and-run exocytosis (as determined by single-granule exocytosis measurements) in which the fusion pore connecting the granule lumen to the exterior expands to a diameter of only 2 nm, which does not allow the exit of insulin. Microarray analysis indicated that this correlated with an increased expression of the exocytosis-regulating protein Stxbp6. In a large collection of human islet preparations (n = 63), STXBP6 expression and glucose-induced insulin secretion correlated positively and negatively with SOX4 expression, respectively. Overexpression of SOX4 in the human insulin-secreting cell EndoC-βH2 interfered with granule emptying and inhibited hormone release, the latter effect reversed by silencing STXBP6 These data suggest that increased SOX4 expression inhibits insulin secretion and increased diabetes risk by the upregulation of STXBP6 and an increase in kiss-and-run exocytosis at the expense of full fusion. We propose that pharmacological interventions promoting fusion pore expansion may be effective in diabetes therapy. PMID:26993066

  18. Cyclic strain increases protease-activated receptor-1 expression in vascular smooth muscle cells

    NASA Technical Reports Server (NTRS)

    Nguyen, K. T.; Frye, S. R.; Eskin, S. G.; Patterson, C.; Runge, M. S.; McIntire, L. V.

    2001-01-01

    Cyclic strain regulates many vascular smooth muscle cell (VSMC) functions through changing gene expression. This study investigated the effects of cyclic strain on protease-activated receptor-1 (PAR-1) expression in VSMCs and the possible signaling pathways involved, on the basis of the hypothesis that cyclic strain would enhance PAR-1 expression, reflecting increased thrombin activity. Uniaxial cyclic strain (1 Hz, 20%) of cells cultured on elastic membranes induced a 2-fold increase in both PAR-1 mRNA and protein levels. Functional activity of PAR-1, as assessed by cell proliferation in response to thrombin, was also increased by cyclic strain. In addition, treatment of cells with antioxidants or an NADPH oxidase inhibitor blocked strain-induced PAR-1 expression. Preincubation of cells with protein kinase inhibitors (staurosporine or Ro 31-8220) enhanced strain-increased PAR-1 expression, whereas inhibitors of NO synthase, tyrosine kinase, and mitogen-activated protein kinases had no effect. Cyclic strain in the presence of basic fibroblast growth factor induced PAR-1 mRNA levels beyond the effect of cyclic strain alone, whereas no additive effect was observed between cyclic strain and platelet-derived growth factor-AB. Our findings that cyclic strain upregulates PAR-1 mRNA expression but that shear stress downregulates this gene in VSMCs provide an opportunity to elucidate signaling differences by which VSMCs respond to different mechanical forces.

  19. Increased FasL expression correlates with apoptotic changes in granulocytes cultured with oxidized clozapine

    SciTech Connect

    Husain, Zaheed; Almeciga, Ingrid; Delgado, Julio C.; Clavijo, Olga P.; Castro, Januario E.; Belalcazar, Viviana; Pinto, Clara; Zuniga, Joaquin; Romero, Viviana; Yunis, Edmond J. . E-mail: edmond_yunis@dfci.harvard.edu

    2006-08-01

    Clozapine has been associated with a 1% incidence of agranulocytosis. The formation of an oxidized intermediate clozapine metabolite has been implicated in direct polymorphonuclear (PMN) toxicity. We utilized two separate systems to analyze the role of oxidized clozapine in inducing apoptosis in treated cells. Human PMN cells incubated with clozapine (0-10 {mu}M) in the presence of 0.1 mM H{sub 2}O{sub 2} demonstrated a progressive decrease of surface CD16 expression along with increased apoptosis. RT-PCR analysis showed decreased CD16 but increased FasL gene expression in clozapine-treated PMN cells. No change in constitutive Fas expression was observed in treated cells. In HL-60 cells induced to differentiate with retinoic acid (RA), a similar increase in FasL expression, but no associated changes in CD16 gene expression, was observed following clozapine treatments. Our results demonstrate increased FasL gene expression in oxidized clozapine-induced apoptotic neutrophils suggesting that apoptosis in granulocytes treated with clozapine involves Fas/FasL interaction that initiates a cascade of events leading to clozapine-induced agranulocytosis.

  20. ELMO1 increases expression of extracellular matrix proteins and inhibits cell adhesion to ECMs.

    PubMed

    Shimazaki, A; Tanaka, Y; Shinosaki, T; Ikeda, M; Watada, H; Hirose, T; Kawamori, R; Maeda, S

    2006-11-01

    We have previously identified the engulfment and cell motility 1 (ELMO1) as a susceptibility gene for diabetic nephropathy. To elucidate the role of ELMO1 in the pathogenesis of chronic renal injury, we examined the expression of Elmo1 in the kidney of a rat model for chronic glomerulonephritis (uninephrectomy plus anti-Thy1.1 antibody [E30] injection). We found that the expression of the Elmo1 was significantly increased in the renal cortex and glomeruli of uninephrectomized rats injected with E30 compared to controls. By in situ hybridization, the expression of Elmo1 was shown to be elevated in the diseased kidney, especially in glomerular epithelial cells. In COS cells, the overexpression of ELMO1 resulted in a substantial increase in fibronectin expression, whereas the depletion of the ELMO1 by small interfering RNA (siRNA) targeting ELMO1 significantly suppressed the fibronectin expression in ELMO1 overexpressing and control cells. We also found that the expression of integrin-linked kinase (ILK) was significantly increased in ELMO1 overexpressing cells, and the ELMO1-induced increase in fibronectin was partially, but significantly, inhibited by siRNA targeting ILK. Furthermore, we identified that the cell adhesion to ECMs was considerably inhibited in cells overexpressing ELMO1. These results suggest that the ELMO1 contributes to the development and progression of chronic glomerular injury through the dysregulation of ECM metabolism and the reduction in cell adhesive properties to ECMs. PMID:17021600

  1. Ethanol increases matrix metalloproteinase-12 expression via NADPH oxidase-dependent ROS production in macrophages

    SciTech Connect

    Kim, Mi Jin; Nepal, Saroj; Lee, Eung-Seok; Jeong, Tae Cheon; Kim, Sang-Hyun; Park, Pil-Hoon

    2013-11-15

    Matrix metalloproteinase-12 (MMP-12), an enzyme responsible for degradation of extracellular matrix, plays an important role in the progression of various diseases, including inflammation and fibrosis. Although most of those are pathogenic conditions induced by ethanol ingestion, the effect of ethanol on MMP-12 has not been explored. In the present study, we investigated the effect of ethanol on MMP-12 expression and its potential mechanisms in macrophages. Here, we demonstrated that ethanol treatment increased MMP-12 expression in primary murine peritoneal macrophages and RAW 264.7 macrophages at both mRNA and protein levels. Ethanol treatment also significantly increased the activity of nicotinamide adenine dinucleotide (NADPH) oxidase and the expression of NADPH oxidase-2 (Nox2). Pretreatment with an anti-oxidant (N-acetyl cysteine) or a selective inhibitor of NADPH oxidase (diphenyleneiodonium chloride (DPI)) prevented ethanol-induced MMP-12 expression. Furthermore, knockdown of Nox2 by small interfering RNA (siRNA) prevented ethanol-induced ROS production and MMP-12 expression in RAW 264.7 macrophages, indicating a critical role for Nox2 in ethanol-induced intracellular ROS production and MMP-12 expression in macrophages. We also showed that ethanol-induced Nox2 expression was suppressed by transient transfection with dominant negative IκB-α plasmid or pretreatment with Bay 11-7082, a selective inhibitor of NF-κB, in RAW 264.7 macrophages. In addition, ethanol-induced Nox2 expression was also attenuated by treatment with a selective inhibitor of p38 MAPK, suggesting involvement of p38 MAPK/NF-κB pathway in ethanol-induced Nox2 expression. Taken together, these results demonstrate that ethanol treatment elicited increase in MMP-12 expression via increase in ROS production derived from Nox2 in macrophages. - Highlights: • Ethanol increases ROS production through up-regulation of Nox2 in macrophages. • Enhanced oxidative stress contributes to ethanol

  2. MiR-224 expression increases radiation sensitivity of glioblastoma cells

    SciTech Connect

    Upraity, Shailendra; Kazi, Sadaf; Padul, Vijay; Shirsat, Neelam Vishwanath

    2014-05-30

    Highlights: • MiR-224 expression in established glioblastoma cell lines and sporadic tumor tissues is low. • Exogenous miR-224 expression was found to increase radiation sensitivity of glioblastoma cells. • MiR-224 expression brought about 55–60% reduction in API5 expression levels. • Transfection with API5 siRNA increased radiation sensitivity of glioblastoma cells. • Low miR-224 and high API5 expression correlated with worse survival of GBM patients. - Abstract: Glioblastoma (GBM) is the most common and highly aggressive primary malignant brain tumor. The intrinsic resistance of this brain tumor limits the efficacy of administered treatment like radiation therapy. In the present study, effect of miR-224 expression on growth characteristics of established GBM cell lines was analyzed. MiR-224 expression in the cell lines as well as in primary GBM tumor tissues was found to be low. Exogenous transient expression of miR-224 using either synthetic mimics or stable inducible expression using doxycycline inducible lentiviral vector carrying miR-224 gene, was found to bring about 30–55% reduction in clonogenic potential of U87 MG cells. MiR-224 expression reduced clonogenic potential of U87 MG cells by 85–90% on irradiation at a dose of 6 Gy, a dose that brought about 50% reduction in clonogenic potential in the absence of miR-224 expression. MiR-224 expression in glioblastoma cells resulted in 55–65% reduction in the expression levels of API5 gene, a known target of miR-224. Further, siRNA mediated down-regulation of API5 was also found to have radiation sensitizing effect on glioblastoma cell lines. Analysis of the Cancer Genome Atlas data showed lower miR-224 expression levels in male GBM patients to correlate with poorer survival. Higher expression levels of miR-224 target API5 also showed significant correlation with poorer survival of GBM patients. Up-regulation of miR-224 or down-regulation of its target API5 in combination with radiation therapy

  3. Increased Expression of miR-23a Mediates a Loss of Expression in the RAF Kinase Inhibitor Protein RKIP

    PubMed Central

    Hatzl, Stefan; Geiger, Olivia; Kuepper, Maja Kim; Caraffini, Veronica; Seime, Till; Furlan, Tobias; Nussbaumer, Erika; Wieser, Rotraud; Pichler, Martin; Scheideler, Marcel; Nowek, Katarzyna; Jongen-Lavrencic, Mojca; Quehenberger, Franz; Wölfler, Albert; Troppmair, Jakob; Sill, Heinz; Zebisch, Armin

    2016-01-01

    RAF kinase inhibitor protein (RKIP) is a seminal regulator of intracellular signaling and exhibits both antimetastatic and antitumorigenic properties. Decreased expression of RKIP has been described in several human malignancies, including acute myelogenous leukemia (AML). As the mechanisms leading to RKIP loss in AML are still unclear, we aimed to analyze the potential involvement of miRNAs within this study. miRNA microarray and qPCR data of more than 400 AML patient specimens revealed correlation between decreased expression of RKIP and increased expression of miR-23a, a member of the miR-23a/27a/24-2 cluster. In functional experiments, overexpression of miR-23a decreased RKIP mRNA and protein expression, whereas miR-23a inhibition caused the opposite effect. By using an RKIP 3′-untranslated region luciferase reporter construct with and without mutation or deletion of the putative miR-23a–binding site, we could show that RKIP modulation by miR-23a is mediated via direct binding to this region. Importantly, miR-23a overexpression induced a significant increase of proliferation in hematopoietic cells. Simultaneous transfection of an RKIP expression construct lacking the miR-23a–binding sites reversed this phenotype, indicating that this effect is truly mediated via downregulation of RKIP. Finally, by analyzing more than 4,300 primary patient specimens via database retrieval from The Cancer Genome Atlas, we could highlight the importance of the miR-23a/RKIP axis in a broad range of human cancer entities. In conclusion, we have identified miR-23a as a negative regulator of RKIP expression in AML and have provided data that suggest the importance of our observation beyond this tumor entity. PMID:27197200

  4. Increased Expression of miR-23a Mediates a Loss of Expression in the RAF Kinase Inhibitor Protein RKIP.

    PubMed

    Hatzl, Stefan; Geiger, Olivia; Kuepper, Maja Kim; Caraffini, Veronica; Seime, Till; Furlan, Tobias; Nussbaumer, Erika; Wieser, Rotraud; Pichler, Martin; Scheideler, Marcel; Nowek, Katarzyna; Jongen-Lavrencic, Mojca; Quehenberger, Franz; Wölfler, Albert; Troppmair, Jakob; Sill, Heinz; Zebisch, Armin

    2016-06-15

    RAF kinase inhibitor protein (RKIP) is a seminal regulator of intracellular signaling and exhibits both antimetastatic and antitumorigenic properties. Decreased expression of RKIP has been described in several human malignancies, including acute myelogenous leukemia (AML). As the mechanisms leading to RKIP loss in AML are still unclear, we aimed to analyze the potential involvement of miRNAs within this study. miRNA microarray and qPCR data of more than 400 AML patient specimens revealed correlation between decreased expression of RKIP and increased expression of miR-23a, a member of the miR-23a/27a/24-2 cluster. In functional experiments, overexpression of miR-23a decreased RKIP mRNA and protein expression, whereas miR-23a inhibition caused the opposite effect. By using an RKIP 3'-untranslated region luciferase reporter construct with and without mutation or deletion of the putative miR-23a-binding site, we could show that RKIP modulation by miR-23a is mediated via direct binding to this region. Importantly, miR-23a overexpression induced a significant increase of proliferation in hematopoietic cells. Simultaneous transfection of an RKIP expression construct lacking the miR-23a-binding sites reversed this phenotype, indicating that this effect is truly mediated via downregulation of RKIP. Finally, by analyzing more than 4,300 primary patient specimens via database retrieval from The Cancer Genome Atlas, we could highlight the importance of the miR-23a/RKIP axis in a broad range of human cancer entities. In conclusion, we have identified miR-23a as a negative regulator of RKIP expression in AML and have provided data that suggest the importance of our observation beyond this tumor entity. Cancer Res; 76(12); 3644-54. ©2016 AACR. PMID:27197200

  5. Increased caspase-3 expression and activity contribute to reduced CD3zeta expression in systemic lupus erythematosus T cells.

    PubMed

    Krishnan, Sandeep; Kiang, Juliann G; Fisher, Carolyn U; Nambiar, Madhusoodana P; Nguyen, Hang T; Kyttaris, Vasileios C; Chowdhury, Bhabadeb; Rus, Violeta; Tsokos, George C

    2005-09-01

    T cells isolated from patients with systemic lupus erythematosus (SLE) express low levels of CD3zeta-chain, a critical molecule involved in TCR-mediated signaling, but the involved mechanisms are not fully understood. In this study we examined caspase-3 as a candidate for cleaving CD3zeta in SLE T cells. We demonstrate that SLE T cells display increased expression and activity of caspase-3. Treatment of SLE T cells with the caspase-3 inhibitor Z-Asp-Glu-Val-Asp-FMK reduced proteolysis of CD3zeta and enhanced its expression. In addition, Z-Asp-Glu-Val-Asp-FMK treatment increased the association of CD3zeta with lipid rafts and simultaneously reversed the abnormal lipid raft preclustering, heightened TCR-induced calcium responses, and reduced the expression of FcRgamma-chain exclusively in SLE T cells. We conclude that caspase-3 inhibitors can normalize SLE T cell function by limiting the excessive digestion of CD3zeta-chain and suggest that such molecules can be considered in the treatment of this disease. PMID:16116236

  6. Increased aquaporin 1 and 5 membrane expression in the lens epithelium of cataract patients.

    PubMed

    Barandika, Olatz; Ezquerra-Inchausti, Maitane; Anasagasti, Ander; Vallejo-Illarramendi, Ainara; Llarena, Irantzu; Bascaran, Lucia; Alberdi, Txomin; De Benedetti, Giacomo; Mendicute, Javier; Ruiz-Ederra, Javier

    2016-10-01

    In this work we have analyzed the expression levels of the main aquaporins (AQPs) expressed in human lens epithelial cells (HLECs) using 112 samples from patients treated with cataract surgery and 36 samples from individuals treated with refractive surgery, with transparent lenses as controls. Aquaporin-1 (AQP1) is the main AQP, representing 64.1% of total AQPs in HLECs, with aquaporin-5 (AQP5) representing 35.9% in controls. A similar proportion of each AQP in cataract was found. Although no differences were found at the mRNA level compared to controls, a significant 1.65-fold increase (p=0.001) in AQP1protein expression was observed in HLECs from cataract patients, with the highest differences being found for nuclear cataracts (2.1-fold increase; p<0.001). A similar trend was found for AQP5 (1.47-fold increase), although the difference was not significant (p=0.161). Moreover we have shown increased membrane AQP5 protein expression in HLECs of patients with cataracts. No association of AQP1 or AQP5 expression levels with age or sex was observed in either group. Our results suggest regulation of AQP1 and AQP5 at the post-translational level and support previous observations on the implication of AQP1 and 5 in maintenance of lens transparency in animal models. Our results likely reflect a compensatory response of the crystalline lens to delay cataract formation by increasing the water removal rate. PMID:27497833

  7. OCT4 increases BIRC5 and CCND1 expression and promotes cancer progression in hepatocellular carcinoma

    PubMed Central

    2013-01-01

    Background OCT4 and BIRC5 are preferentially expressed in human cancer cells and mediate cancer cell survival and tumor maintenance. However, the molecular mechanism that regulates OCT4 and BIRC5 expression is not well characterized. Methods By manipulating OCT4 and BIRC5 expression in hepatocellular carcinoma (HCC) cell lines, the regulatory mechanism of OCT4 on BIRC5 and CCND1 were investigated. Results Increasing or decreasing OCT4 expression could enhance or suppress BIRC5 expression, respectively, by regulating the activity of BIRC5 promoter. Because there is no binding site for OCT4 within BIRC5 promoter, the effect of OCT4 on BIRC5 promoter is indirect. An octamer motif for OCT4 in the CCND1 promoter has directly and partly participated in the regulation of CCND1 promoter activity, suggesting that OCT4 also could upregulated the expression of CCND1. Co-suppression of OCT4 and BIRC5 induced cancer cell apoptosis and cell cycle arrest, thereby efficiently inhibiting the proliferative activity of cancer cells and suppressing the growth of HCC xenogrfts in nude mice. Conclusion OCT4 can upregulate BIRC5 and CCND1 expression by increasing their promoter activity. These factors collusively promotes HCC cell proliferation, and co-suppression of OCT4 and BIRC5 is potentially beneficial for HCC treatment. PMID:23433354

  8. Increased Expression of Several Collagen Genes is Associated with Drug Resistance in Ovarian Cancer Cell Lines

    PubMed Central

    Januchowski, Radosław; Świerczewska, Monika; Sterzyńska, Karolina; Wojtowicz, Karolina; Nowicki, Michał; Zabel, Maciej

    2016-01-01

    Ovarian cancer is the most lethal gynaecological cancer. The main reason for the high mortality among ovarian cancer patients is the development of drug resistance. The expression of collagen genes by cancer cells can increase drug resistance by inhibiting the penetration of the drug into the cancer tissue as well as increase apoptosis resistance. In this study, we present data that shows differential expression levels of collagen genes and proteins in cisplatin- (CIS), paclitaxel- (PAC), doxorubicin- (DOX), topotecan- (TOP), vincristine- (VIN) and methotrexate- (MTX) resistant ovarian cancer cell lines. Quantitative real-time polymerase chain reactions were performed to determine the mRNA levels. Protein expression was detected using Western blot and immunocytochemistry assays. In the drug resistant cell lines, we observed the upregulation of eight collagen genes at the mRNA level and based on these expression levels, we divided the collagen genes into the following three groups: 1. Genes with less than a 50-fold increase in expression: COL1A1, COL5A2, COL12A1 and COL17A1. 2. Genes with greater than a 50-fold increase in expression: COL1A2, COL15A1 and COL21A1. 3. Gene with a very high level of expression: COL3A1. Expression of collagen (COL) proteins from groups 2 and 3 were also confirmed using immunocytochemistry. Western blot analysis showed very high expression levels of COL3A1 protein, and immunocytochemistry analysis showed the presence of extracellular COL3A1 in the W1TR cell line. The cells mainly responsible for the extracellular COL3A1 production are aldehyde dehydrogenase-1A1 (ALDH1A1) positive cells. All correlations between the types of cytostatic drugs and the expression levels of different COL genes were studied, and our results suggest that the expression of fibrillar collagens may be involved in the TOP and PAC resistance of the ovarian cancer cells. The expression pattern of COL genes provide a preliminary view into the role of these proteins in

  9. Increased Expression of Several Collagen Genes is Associated with Drug Resistance in Ovarian Cancer Cell Lines.

    PubMed

    Januchowski, Radosław; Świerczewska, Monika; Sterzyńska, Karolina; Wojtowicz, Karolina; Nowicki, Michał; Zabel, Maciej

    2016-01-01

    Ovarian cancer is the most lethal gynaecological cancer. The main reason for the high mortality among ovarian cancer patients is the development of drug resistance. The expression of collagen genes by cancer cells can increase drug resistance by inhibiting the penetration of the drug into the cancer tissue as well as increase apoptosis resistance. In this study, we present data that shows differential expression levels of collagen genes and proteins in cisplatin- (CIS), paclitaxel- (PAC), doxorubicin- (DOX), topotecan- (TOP), vincristine- (VIN) and methotrexate- (MTX) resistant ovarian cancer cell lines. Quantitative real-time polymerase chain reactions were performed to determine the mRNA levels. Protein expression was detected using Western blot and immunocytochemistry assays. In the drug resistant cell lines, we observed the upregulation of eight collagen genes at the mRNA level and based on these expression levels, we divided the collagen genes into the following three groups: 1. Genes with less than a 50-fold increase in expression: COL1A1, COL5A2, COL12A1 and COL17A1. 2. Genes with greater than a 50-fold increase in expression: COL1A2, COL15A1 and COL21A1. 3. Gene with a very high level of expression: COL3A1. Expression of collagen (COL) proteins from groups 2 and 3 were also confirmed using immunocytochemistry. Western blot analysis showed very high expression levels of COL3A1 protein, and immunocytochemistry analysis showed the presence of extracellular COL3A1 in the W1TR cell line. The cells mainly responsible for the extracellular COL3A1 production are aldehyde dehydrogenase-1A1 (ALDH1A1) positive cells. All correlations between the types of cytostatic drugs and the expression levels of different COL genes were studied, and our results suggest that the expression of fibrillar collagens may be involved in the TOP and PAC resistance of the ovarian cancer cells. The expression pattern of COL genes provide a preliminary view into the role of these proteins in

  10. Geranylgeranylacetone attenuates hepatic fibrosis by increasing the expression of heat shock protein 70.

    PubMed

    He, Wei; Zhuang, Yun; Wang, Liangzhi; Qi, Lei; Chen, Binfang; Wang, Mei; Shao, Dong; Chen, Jianping

    2015-10-01

    Increasing evidence has demonstrated that the heat shock protein 70 (HSP70) gene may be closely associated with tissue fibrosis; however, the association between HSP70 and liver fibrosis remains to be fully elucidated. The present study hypothesized that geranylgeranylacetone (GGA) exerts beneficial effects on liver fibrosis though upregulation of the expression of HSP70. Liver fibrosis was induced in rats using carbon tetrachloride (CCl4). The rats were subsequently divided into three groups: Control group, CCl4 model group and CCl4 model + GGA group. Liver fibrosis in the rats was evaluated using hematoxylin and eosin staining, Masson's trichrome staining and Sirius red staining. The levels of serum alanine aminotransferase, aspartate aminotransferase and total bilirubin were determined using an automated biochemistry analyzer. The levels of total hepatic hydroxyproline were also determined. The expression levels of α‑smooth muscle actin (α‑SMA) and transforming growth factor‑β1 (TGF‑β1) were determined using immunofluorescence staining and western blotting, and the protein expression levels of HSP70 were determined using western blotting. The CCl4‑induced rats exhibited liver fibrosis, increased hydroxyproline content, impaired liver function, upregulated expression levels of the α‑SMA and TGF‑β1 pro‑fibrogenic proteins, and increased expression of HSP70, compared with the control group. These changes were attenuated by treatment with GGA. These results demonstrated that GGA exerted beneficial effects in CCl4‑induced liver fibrosis via upregulating the expression of HSP70. PMID:26165998

  11. High glucose and palmitate increases bone morphogenic protein 4 expression in human endothelial cells

    PubMed Central

    Hong, Oak-Kee; Yoo, Soon-Jib; Son, Jang-Won; Kim, Mee-Kyoung; Baek, Ki-Hyun; Song, Ki-Ho; Cha, Bong-Yun; Jo, Hanjoong

    2016-01-01

    Here, we investigated whether hyperglycemia and/or free fatty acids (palmitate, PAL) aff ect the expression level of bone morphogenic protein 4 (BMP4), a proatherogenic marker, in endothelial cells and the potential role of BMP4 in diabetic vascular complications. To measure BMP4 expression, human umbilical vein endothelial cells (HUVECs) were exposed to high glucose concentrations and/or PAL for 24 or 72 h, and the effects of these treatments on the expression levels of adhesion molecules and reactive oxygen species (ROS) were examined. BMP4 loss-of-function status was achieved via transfection of a BMP4-specific siRNA. High glucose levels increased BMP4 expression in HUVECs in a dose-dependent manner. PAL potentiated such expression. The levels of adhesion molecules and ROS production increased upon treatment with high glucose and/or PAL, but this eff ect was negated when BMP4 was knocked down via siRNA. Signaling of BMP4, a proinflammatory and pro-atherogenic cytokine marker, was increased by hyperglycemia and PAL. BMP4 induced the expression of infl ammatory adhesion molecules and ROS production. Our work suggests that BMP4 plays a role in atherogenesis induced by high glucose levels and/or PAL. PMID:26937213

  12. Oxytocin Increases Neurite Length and Expression of Cytoskeletal Proteins Associated with Neuronal Growth.

    PubMed

    Lestanova, Z; Bacova, Z; Kiss, A; Havranek, T; Strbak, V; Bakos, J

    2016-06-01

    Neuropeptide oxytocin acts as a growth and differentiation factor; however, its effects on neurite growth are poorly understood. The aims of the present study were (1) to evaluate time effects of oxytocin on expression of nestin and MAP2; (2) to measure the effect of oxytocin on gene expression of β-actin, vimentin, cofilin, and drebrin; and (3) to measure changes in neurite length and number in response to oxytocin/oxytocin receptor antagonist L-371,257. Exposure of SH-SY5Y cells to 1 μM oxytocin resulted in a significant increase in gene expression and protein levels of nestin after 12, 24, and 48 h. Oxytocin treatment induced no changes in gene expression of MAP2; however, a decrease of protein levels was observed in all time intervals. Gene expression of β-actin, vimentin, and drebrin increased in response to oxytocin. Oxytocin induced significant elongation of neurites after 12, 24, and 48 h. No change in neurite length was observed in the presence of the combination of retinoic acid and oxytocin receptor antagonist L-371,257. Oxytocin treatment for 12 h increased the number of neurites. Overall, the present data suggest that oxytocin contributes to the regulation of expression of cytoskeletal proteins associated with growth of neuronal cones and induces neurite elongation mediated by oxytocin receptors at least in certain types of neuronal cells. PMID:26474566

  13. UDP-glucuronosyltransferase expression in mouse liver is increased in obesity- and fasting-induced steatosis.

    PubMed

    Xu, Jialin; Kulkarni, Supriya R; Li, Liya; Slitt, Angela L

    2012-02-01

    UDP-glucuronosyltransferases (Ugt) catalyze phase II conjugation reactions with glucuronic acid, which enhances chemical polarity and the elimination from the body. Few studies have addressed whether Ugt expression and activity are affected by liver disease, such as steatosis. The purpose of this study was to determine whether steatosis induced by obesity or fasting could affect liver Ugt mRNA expression and activity. Male C57BL/6J and Lep(ob/ob) (ob/ob) mice were fed ad libitum or food was withheld for 24 h. In steatotic livers of ob/ob mice, Ugt1a1, -1a6, -1a9, -2a3, -3a1, and -3a2 mRNA expression increased. Fasting, which also induced steatosis, increased hepatic Ugt1a1, -1a6, -1a7, -1a9, -2b1, -2b5, -2a3, -3a1, and -3a2 mRNA expression in mouse liver. Likewise, acetaminophen glucuronidation increased by 47% in hepatic microsomes from ob/ob mice compared with that in C57BL/6J mice, but not after fasting. In both steatosis models, Ugt induction was accompanied by increased aryl hydrocarbon receptor, constitutive androstane receptor (CAR), peroxisome proliferator-activated receptor (PPAR)-α, pregnane X receptor, nuclear factor (erythroid-derived 2)-like 2 (Nrf2), and peroxisome proliferator-activated receptor-γ coactivator-1α mRNA expression. In addition, fasting increased CAR, PPAR, and Nrf2 binding activity. The work points to hepatic triglyceride concentrations corresponding with nuclear receptor and Ugt expression. The findings indicate that steatosis significantly alters hepatic Ugt expression and activity, which could have a significant impact on determining circulating hormone levels, drug efficacy, and environmental chemical clearance. PMID:22031624

  14. NFX1-123 and Human Papillomavirus 16E6 Increase Notch Expression in Keratinocytes

    PubMed Central

    Vliet-Gregg, Portia A.; Hamilton, Jennifer R.

    2013-01-01

    The high-risk human papillomavirus (HR HPV) E6 oncoprotein binds host cell proteins to dysregulate multiple regulatory pathways, including apoptosis and senescence. HR HPV16 E6 (16E6) interacts with the cellular protein NFX1-123, and together they posttranscriptionally increase hTERT expression, the catalytic subunit of telomerase. NFX1-123 interacts with hTERT mRNA and stabilizes it, leading to greater telomerase activity and the avoidance of cellular senescence. Little is known regarding what other transcripts are dependent on or augmented by the association of NFX1-123 with 16E6. Microarray analysis revealed enhanced expression of Notch1 mRNA in 16E6-expressing keratinocytes when NFX1-123 was overexpressed. A moderate increase in Notch1 mRNA was seen with overexpression of NFX1-123 alone, but with 16E6 coexpression the increase in Notch1 was enhanced. The PAM2 motif and R3H protein domains in NFX1-123, which were important for increased hTERT expression, were also important in the augmentation of Notch1 expression by 16E6. These findings identify a second gene coregulated by 16E6 and NFX1-123 and the protein motifs in NFX1-123 that are important for this effect. PMID:24109236

  15. Increased vitamin D receptor expression in dorsal root ganglia neurons of diabetic rats.

    PubMed

    Filipović, Natalija; Ferhatović, Lejla; Marelja, Ivana; Puljak, Livia; Grković, Ivica

    2013-08-01

    The effects of vitamin D on the nervous system have been studied extensively. In spite of accumulating data about the substantial changes in the vitamin D receptor (VDR) signaling system, during different types of neuroinflammatory diseases, its role in diabetic neuropathy has not been investigated in detail. To assess the role of VDR signaling in diabetic neuropathy, we examined expression of VDRs in dorsal root ganglia (DRG) neurons in a rat model of streptozotocin-induced diabetes mellitus type 1. Diabetes mellitus (DM) type 1 was induced with streptozotocin in male Sprague-Dawley rats. After two months, expression of VDRs was analyzed immunohistochemically in the cytoplasm of L4 and L5 DRG neurons of diabetic rats. Semi-quantitative analysis for the determination of staining in nuclei and plasma-membranes of DRG neurons was performed. A significant increase in VDR expression was observed in DRG neurons of diabetic rats. Expression of VDRs was increased in the cytoplasm, nuclei and in cell membranes of neurons. An increase in VDR expression occurred in all neurons, but the greatest increase of fluorescence intensity in cytoplasm was observed in neurons of small diameter. Results of the present study indicate that the VDR signaling system could be a potential therapeutic target for diabetic neuropathy. PMID:23684983

  16. NOD1 expression is increased in the adipose tissue of women with gestational diabetes.

    PubMed

    Lappas, Martha

    2014-07-01

    Maternal peripheral insulin resistance and increased inflammation are two features of pregnancies, complicated by gestational diabetes mellitus (GDM). The nucleotide-binding oligomerisation domain (NOD) intracellular molecules recognise a wide range of microbial products, as well as other intracellular danger signals, thereby initiating inflammation through activation of nuclear factor κB (NFκB). The aim of this study was to determine whether levels of NOD1 and NOD2 are increased in adipose tissue of women with GDM. The effect of NOD1 and NOD2 activation on inflammation and the insulin signalling pathway was also assessed. NOD1, but not NOD2, expression was higher in omental and subcutaneous adipose tissues obtained from women with GDM when compared with those from women with normal glucose tolerance (NGT). In both omental and subcutaneous adipose tissues from NGT and GDM women, the NOD1 ligand g-d-glutamyl-meso-diaminopimelic acid (iE-DAP) significantly induced the expression and secretion of the pro-inflammatory cytokine interleukin 6 (IL6) and chemokine IL8; COX2 (PTGS2) gene expression and subsequent prostaglandin production; the expression and secretion of the extracellular matrix remodelling enzyme matrix metalloproteinase 9 (MMP9) and the gene expression and secretion of the adhesion molecules ICAM1 and VCAM1. There was no effect of the NOD2 ligand muramyl dipeptide on any of the endpoints tested. The effects of the NOD1 ligand iE-DAP were mediated via NFκB, as the NFκB inhibitor BAY 11-7082 significantly attenuated iE-DAP-induced expression and secretion of pro-inflammatory cytokines, COX2 gene expression and subsequent prostaglandin production, MMP9 expression and secretion and ICAM1 and VCAM1 gene expression and secretion. In conclusion, the present findings describe an important role for NOD1 in the development of insulin resistance and inflammation in pregnancies complicated by GDM. PMID:24829218

  17. Effect of ploidy increase on transgene expression: example from Citrus diploid cybrid and allotetraploid somatic hybrid expressing the EGFP gene.

    PubMed

    Xu, Shi-Xiao; Cai, Xiao-Dong; Tan, Bin; Li, Ding-Li; Guo, Wen-Wu

    2011-07-01

    Polyploidization is an important speciation mechanism for all eukaryotes, and it has profound impacts on biodiversity dynamics and ecosystem functioning. Green fluorescent protein (GFP) has been used as an effective marker to visually screen somatic hybrids at an early stage in protoplast fusion. We have previously reported that the intensity of GFP fluorescence of regenerated embryoids was also an early indicator of ploidy level. However, little is known concerning the effects of ploidy increase on the GFP expression in citrus somatic hybrids at the plant level. Herein, allotetraploid and diploid cybrid plants with enhanced GFP (EGFP) expression were regenerated from the fusion of embryogenic callus protoplasts from 'Murcott' tangor (Citrus reticulata Blanco × Citrus sinensis (L.) Osbeck) and mesophyll protoplasts from transgenic 'Valencia' orange (C. sinensis (L.) Osbeck) expressing the EGFP gene, via electrofusion. Subsequent simple sequence repeat (SSR), chloroplast simple sequence repeat and cleaved amplified polymorphic sequence analysis revealed that the two regenerated tetraploid plants were true allotetraploid somatic hybrids possessing nuclear genomic DNA of both parents and cytoplasmic DNA from the callus parent, while the five regenerated diploid plants were cybrids containing nuclear DNA of the leaf parent and with complex segregation of cytoplasmic DNA. Furthermore, EGFP expression was compared in cells and protoplasts from mature leaves of these diploid cybrids and allotetraploid somatic hybrids. Results showed that the intensity of GFP fluorescence per cell or protoplast in diploid was generally brighter than in allotetraploid. Moreover, same hybridization signal was detected on allotetraploid and diploid plants by Southern blot analysis. By real-time RT-PCR and Western blot analysis, GFP expression level of the diploid cybrid was revealed significantly higher than that of the allotetraploid somatic hybrid. These results suggest that ploidy

  18. TMPRSS2- Driven ERG Expression In Vivo Increases Self-Renewal and Maintains Expression in a Castration Resistant Subpopulation

    PubMed Central

    Abou-Kheir, Wassim G.; Martin, Philip L.; Tillman, Heather S.; Petrovics, Gyorgy; Awwad, Hibah O.; Ward, Yvona; Lake, Ross; Zhang, Luhua; Kelly, Kathleen

    2012-01-01

    Genomic rearrangements commonly occur in many types of cancers and often initiate or alter the progression of disease. Here we describe an in vivo mouse model that recapitulates the most frequent rearrangement in prostate cancer, the fusion of the promoter region of TMPRSS2 with the coding region of the transcription factor, ERG. A recombinant bacterial artificial chromosome including an extended TMPRSS2 promoter driving genomic ERG was constructed and used for transgenesis in mice. TMPRSS2-ERG expression was evaluated in tissue sections and FACS-fractionated prostate cell populations. In addition to the anticipated expression in luminal cells, TMPRSS2-ERG was similarly expressed in the Sca-1hi/EpCAM+ basal/progenitor fraction, where expanded numbers of clonogenic self-renewing progenitors were found, as assayed by in vitro sphere formation. These clonogenic cells increased intrinsic self renewal in subsequent generations. In addition, ERG dependent self-renewal and invasion in vitro was demonstrated in prostate cell lines derived from the model. Clinical studies have suggested that the TMPRSS2-ERG translocation occurs early in prostate cancer development. In the model described here, the presence of the TMPRSS2-ERG fusion alone was not transforming but synergized with heterozygous Pten deletion to promote PIN. Taken together, these data suggest that one function of TMPRSS2-ERG is the expansion of self-renewing cells, which may serve as targets for subsequent mutations. Primary prostate epithelial cells demonstrated increased post transcriptional turnover of ERG compared to the TMPRSS2-ERG positive VCaP cell line, originally isolated from a prostate cancer metastasis. Finally, we determined that TMPRSS2-ERG expression occurred in both castration-sensitive and resistant prostate epithelial subpopulations, suggesting the existence of androgen-independent mechanisms of TMPRSS2 expression in prostate epithelium. PMID:22860005

  19. 5-HT7 receptor activation promotes an increase in TrkB receptor expression and phosphorylation

    PubMed Central

    Samarajeewa, Anshula; Goldemann, Lolita; Vasefi, Maryam S.; Ahmed, Nawaz; Gondora, Nyasha; Khanderia, Chandni; Mielke, John G.; Beazely, Michael A.

    2014-01-01

    The serotonin (5-HT) type 7 receptor is expressed throughout the CNS including the cortex and hippocampus. We have previously demonstrated that the application of 5-HT7 receptor agonists to primary hippocampal neurons and SH-SY5Y cells increases platelet-derived growth factor (PDGF) receptor expression and promotes neuroprotection against N-methyl-D-aspartate-(NMDA)-induced toxicity. The tropomyosin-related kinase B (TrkB) receptor is one of the receptors for brain-derived neurotrophic factor (BDNF) and is associated with neurodevelopmental and neuroprotective effects. Application of LP 12 to primary cerebral cortical cultures, SH-SY5Y cells, as well as the retinal ganglion cell line, RGC-5, increased both the expression of full length TrkB as well as its basal phosphorylation state at tyrosine 816. The increase in TrkB expression and phosphorylation was observed as early as 30 min after 5-HT7 receptor activation. In addition to full-length TrkB, kinase domain-deficient forms may be expressed and act as dominant-negative proteins toward the full length receptor. We have identified distinct patterns of TrkB isoform expression across our cell lines and cortical cultures. Although TrkB receptor expression is regulated by cyclic AMP and Gαs-coupled GPCRs in several systems, we demonstrate that, depending on the model system, pathways downstream of both Gαs and Gα12 are involved in the regulation of TrkB expression by 5-HT7 receptors. Given the number of psychiatric and degenerative diseases associated with TrkB/BDNF deficiency and the current interest in developing 5-HT7 receptor ligands as pharmaceuticals, identifying signaling relationships between these two receptors will aid in our understanding of the potential therapeutic effects of 5-HT7 receptor ligands. PMID:25426041

  20. SPARCL1 Expression Increases With Preoperative Radiation Therapy and Predicts Better Survival in Rectal Cancer Patients

    SciTech Connect

    Kotti, Angeliki Holmqvist, Annica; Albertsson, Maria; Sun, Xiao-Feng

    2014-04-01

    Purpose: The secreted protein acidic and rich in cysteine-like 1 (SPARCL1) is expressed in various normal tissues and many types of cancers. The function of SPARCL1 and its relationship to a patient's prognosis have been studied, whereas its relationship to radiation therapy (RT) is not known. Our aim was to investigate the expression of SPARCL1 in rectal cancer patients who participated in a clinical trial of preoperative RT. Methods and Materials: The study included 136 rectal cancer patients who were randomized to undergo preoperative RT and surgery (n=63) or surgery alone (n=73). The expression levels of SPARCL1 in normal mucosa (n=29), primary tumor (n=136), and lymph node metastasis (n=35) were determined by immunohistochemistry. Results: Tumors with RT had stronger SPARCL1 expression than tumors without RT (P=.003). In the RT group, strong SPARCL1 expression was related to better survival than weak expression in patients with stage III tumors, independent of sex, age, differentiation, and margin status (P=.022; RR = 18.128; 95% confidence interval, 1.512-217.413). No such relationship was found in the non-RT group (P=.224). Further analysis of interactions among SPARCL1 expression, RT, and survival showed statistical significance (P=.024). In patients with metastases who received RT, strong SPARCL1 expression was related to better survival compared to weak expression (P=.041) but not in the non-RT group (P=.569). Conclusions: SPARCL1 expression increases with RT and is related to better prognosis in rectal cancer patients with RT but not in patients without RT. This result may help us to select the patients best suited for preoperative RT.

  1. Expression of bactericidal/permeability-increasing protein requires C/EBP epsilon.

    PubMed

    Tanaka, Miyuki; Gombart, Adrian F; Koeffler, H Phillip; Shiohara, Masaaki

    2007-05-01

    Bactericidal/permeability-increasing protein (BPI) is a 55-kd cationic protein found mainly in neutrophil primary granules. BPI shows cytotoxicity against Gram-negative bacteria. In this study, we studied the role of a myeloid-specific transcription factor, CCAAT/enhancer binding protein epsilon (C/EBP epsilon), in the regulation of BPI gene expression. A patient with neutrophil-specific granule deficiency with a homozygous inactivating mutation in the CEBP epsilon gene showed severely impaired expression of both BPI messenger RNA (mRNA) and BPI protein. Both U937 and NB4 cells treated with 10-7 M all-trans retinoic acid (ATRA) for 6 days displayed increased levels of BPI protein and accompanying up-regulated C/EBP epsilon expression. Chromatin-immunoprecipitation analysis and electrophoretic mobility shift assays revealed binding of the C/EBP epsilon protein to the C/EBP-binding site in the BPI gene promoter. U937 cells stably transfected with a zinc-inducible C/EBP epsilon expression vector showed a 30-fold increase in BPI mRNA levels compared with cells transfected with control empty vector after culturing for 48 hours with 100 microM ZnSO4. BPI mRNA expression was severely reduced in the bone marrow of C/EBP epsilon-deficient mice compared with wild-type mice. Expression of BPI in human cord blood cells was increased by incubation with 10-7 MATRA for 48 hours. These results demonstrate the requirement for C/EBP epsilon in mediating BPI gene expression in myeloid cells in vitro and in vivo. PMID:17483073

  2. Absence of functional TolC protein causes increased stress response gene expression in Sinorhizobium meliloti

    PubMed Central

    2010-01-01

    Background The TolC protein from Sinorhizobium meliloti has previously been demonstrated to be required for establishing successful biological nitrogen fixation symbiosis with Medicago sativa. It is also needed in protein and exopolysaccharide secretion and for protection against osmotic and oxidative stresses. Here, the transcriptional profile of free-living S. meliloti 1021 tolC mutant is described as a step toward understanding its role in the physiology of the cell. Results Comparison of tolC mutant and wild-type strains transcriptomes showed 1177 genes with significantly increased expression while 325 had significantly decreased expression levels. The genes with an increased expression suggest the activation of a cytoplasmic and extracytoplasmic stress responses possibly mediated by the sigma factor RpoH1 and protein homologues of the CpxRA two-component regulatory system of Enterobacteria, respectively. Stress conditions are probably caused by perturbation of the cell envelope. Consistent with gene expression data, biochemical analysis indicates that the tolC mutant suffers from oxidative stress. This is illustrated by the elevated enzyme activity levels detected for catalase, superoxide dismutase and glutathione reductase. The observed increase in the expression of genes encoding products involved in central metabolism and transporters for nutrient uptake suggests a higher metabolic rate of the tolC mutant. We also demonstrated increased swarming motility in the tolC mutant strain. Absence of functional TolC caused decreased expression mainly of genes encoding products involved in nitrogen metabolism and transport. Conclusion This work shows how a mutation in the outer membrane protein TolC, common to many bacterial transport systems, affects expression of a large number of genes that act in concert to restore cell homeostasis. This finding further underlines the fundamental role of this protein in Sinorhizobium meliloti biology. PMID:20573193

  3. Increase of Calcium Sensing Receptor Expression Is Related to Compensatory Insulin Secretion during Aging in Mice

    PubMed Central

    Oh, Yoon Sin; Seo, Eun-Hui; Lee, Young-Sun; Cho, Sung Chun; Jung, Hye Seung; Park, Sang Chul; Jun, Hee-Sook

    2016-01-01

    Type 2 diabetes is caused by both insulin resistance and relative insulin deficiency. To investigate age-related changes in glucose metabolism and development of type 2 diabetes, we compared glucose homeostasis in different groups of C57BL/6J mice ranging in age from 4 months to 20 months (4, 8, 12, 16 and 20 months). Interestingly, we observed that non-fasting glucose levels were not significantly changed, but glucose tolerance gradually increased by 20 months of age, whereas insulin sensitivity declined with age. We found that the size of islets and glucose-stimulated insulin secretion increased with aging. However, mRNA expression of pancreatic and duodenal homeobox 1 and granuphilin was decreased in islets of older mice compared with that of 4-month-old mice. Serum calcium (Ca2+) levels were significantly decreased at 12, 20 and 28 months of age compared with 4 months and calcium sensing receptor (CaSR) mRNA expression in the islets significantly increased with age. An extracellular calcium depletion agent upregulated CaSR mRNA expression and consequently enhanced insulin secretion in INS-1 cells and mouse islets. In conclusion, we suggest that decreased Ca2+ levels and increased CaSR expression might be involved in increased insulin secretion to compensate for insulin resistance in aged mice. PMID:27441644

  4. Tributyltin increases the expression of apoptosis- and adipogenesis-related genes in rat ovaries

    PubMed Central

    Lee, Hyojin; Lim, Sojeong; Yun, Sujin; Yoon, Ayoung; Park, Gayoung

    2012-01-01

    Objective Tributyltin (TBT), an endocrine disrupting chemical, has been reported to decrease ovarian function by causing apoptosis in the ovary, but the mechanism is not fully understood. Therefore, we examined whether TBT increases the expression of adipogenesis-related genes in the ovary and the increased expression of these genes is associated with apoptosis induction. Methods Three-week-old Sprague-Dawley rats were orally administered TBT (1 or 10 mg/kg body weight) or sesame oil as a control for 7 days. The ovaries were obtained and weighed on day 8, and then they were fixed for terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) or frozen for RNA extraction. Using the total RNA of the ovaries, adipogenesis- and apoptosis-related genes were analyzed by real-time polymerase chain reaction (PCR). Results The ovarian weight was significantly decreased in rats administered 10 mg/kg TBT compared to that in control rats. As determined by the TUNEL assay, the number of apoptotic follicles in ovary was significantly increased in rats administered 10 mg/kg TBT. The real-time PCR results showed that the expression of adipogenesis-related genes such as PPARγ, aP2, CD36, and PEPCK was increased after TBT administration. In addition, apoptosis-related genes such as TNFα and TNFR1 were expressed more in the TBT-administered rats compared with the control rats. Conclusion The present study demonstrates that TBT induces the expression of adipogenesis- and apoptosis-related genes in the ovary leading to apoptosis in the ovarian follicles. These results suggest that the increased expression of adipogenesis-related genes in the ovary by TBT exposure might induce apoptosis resulting in a loss of ovarian function. PMID:22563546

  5. Role of membrane depolarization and extracellular calcium in increased complement receptor expression during neutrophil (PMN) activation

    SciTech Connect

    Berger, M.; Wetzler, E.; Birx, D.L.

    1986-03-05

    During PMN activation the surface expression of receptors (R) for C3b and C3bi increases rapidly. This is necessary for optimal cell adhesion, migration, and phagocytosis. Following stimulation with fMLP or LTB-4, the increased expression of C3bR depends only on the Ca/sup + +/ released from intracellular stores and is not inhibited by 5mM EDTA, while the increase in C3biR also requires extracellular Ca/sup + +/. CR expression also increases when the PMN are depolarized with 140 mM K/sup +/, but with this stimulus, EDTA inhibits C3bR by 67% and C3biR 100%, suggesting that intracellular Ca/sup + +/ stores may not be released. Pertussis toxin caused dose-dependent inhibition of both CR responses to fMLP and also inhibited the increases in both CR induced by K/sup +/. Membrane depolarization (monitored by di-O-C5 fluorescence) due to fMLP was similarly inhibited by toxin but the depolarization due to K/sup +/ was not. The dose of phorbol myristate acetate that maximally increased CR expression, 0.1 ng/ml, did not depolarize the membrane. These results suggest that membrane depolarization is neither necessary nor sufficient for increased CR expression. A Ca/sup + +/ and GTP binding protein-dependent enzyme such as phospholipase C is necessary to the amplify initial signals generated either by release of Ca/sup + +/ stores or by opening voltage dependent Ca/sup + +/ channels following membrane depolarization.

  6. Chemoresistance of CD133{sup +} colon cancer may be related with increased survivin expression

    SciTech Connect

    Lee, Mi-Ra; Ji, Sun-Young; Mia-Jan, Khalilullah; Cho, Mee-Yon

    2015-07-31

    CD133, putative cancer stem cell marker, deemed to aid chemoresistance. However, this claim has been challenged recently and we previously reported that patients with CD133{sup +} colon cancer have benefit from 5-fluorouracil (5-FU) chemotherapy incontrast to no benefit in patients with CD133{sup −} cancer. To elucidate the role of CD133 expression in chemoresistance, we silenced the CD133 expression in a colon cancer cell line and determined its effect on the biological characteristics downstream. We comparatively analyzed the sequential changes of MDR1, ABCG2, AKT1 and survivin expression and the result of proliferation assay (WST-1 assay) with 5-FU treatment in CD133{sup +} and siRNA-induced CD133{sup −} cells, derived from Caco-2 colon cancer cell line. 5-FU treatment induced significantly increase of the mRNA expression of MDR1, ABCG2 and AKT1genes, but not protein level. CD133 had little to no effect on the mRNA and protein expression of these genes. However, survivin expression at mRNA and protein level were significantly increased in CD133{sup +} cells compared with siRNA-induced CD133-cells and Mock (not sorted CD133{sup +} cells) at 96 h after siRNA transfection. The cytotoxicity assay demonstrated notable increase of chemoresistance to 5-FU treatment (10 μM) in CD133{sup +} cells at 96 h after siRNA transfection. From this study, we conclude that CD133{sup +} cells may have chemoresistance to 5-FU through the mechanism which is related with survivin expression, instead of MDR1, ABCG2 and AKT1 expression. Therefore a survivin inhibitor can be a new target for effective treatment of CD133{sup +} colon cancer. - Highlights: • We evaluate the role of CD133 in chemoresistance of colon cancer. • We compared the chemoresistance of CD133{sup +} cells and siRNA-induced CD133{sup −} cells. • CD133 had little to no effect on MDR1, ABCG2 and AKT1 expression. • Survivin expression and chemoresistance were increased in CD133{sup +} colon cancer cells.

  7. Adipocyte-derived lipids increase angiotensin-converting enzyme (ACE) expression and modulate macrophage phenotype.

    PubMed

    Kohlstedt, Karin; Trouvain, Caroline; Namgaladze, Dmitry; Fleming, Ingrid

    2011-03-01

    Human monocytes/macrophages express the angiotensin-converting enzyme (ACE) but nothing is known about its role under physiological conditions. As adipose tissue contains resident macrophages that have been implicated in the generation of insulin resistance in expanding fat mass, we determined whether adipocytes release factors that affect ACE expression and function in monocytes. Incubation of human monocyte-derived macrophages with conditioned medium from freshly isolated human adipocytes (BMI = 25.4 ± 0.96) resulted in a 4-fold increase in ACE expression. The effect was insensitive to denaturation and different proteases but abolished after lipid extraction. mRNA levels of the major histocompatibility complex class II protein increased in parallel with ACE, whereas the expression of tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1 (MCP-1), interleukin (IL)-6, and cyclooxygenase-2 decreased. As a consequence of the reduction in MCP-1, monocyte recruitment was also attenuated. Moreover, adipocyte-conditioned medium prevented the interferon (IFN)-γ induced formation of TNF-α, IL-6, and MCP-1, all markers of classically-activated (M1 type) macrophages. The decrease in cytokine expression in adipocyte-conditioned medium-treated macrophages was sensitive to ACE silencing by small interfering RNA (siRNA). Accordingly, ACE overexpression in THP-1 cells mimicked the effect of adipocyte-conditioned medium. In both cell types, ACE inhibition failed to affect the changes induced by adipocyte conditioned-medium treatment and ACE overexpression. Thus, the modulation of macrophage polarization by ACE appears to be mediated independently of enzyme activity, probably via intracellular signaling. Interestingly, human macrophage ACE expression was also upregulated by IL-4 and IL-13, which promote the "alternative" activation of macrophages and decreased by LPS and IFN-γ. Mechanistically, adipocyte-conditioned medium stimulated the phosphorylation of

  8. Heterologous viral expression systems in fosmid vectors increase the functional analysis potential of metagenomic libraries

    PubMed Central

    Terrón-González, L.; Medina, C.; Limón-Mortés, M. C.; Santero, E.

    2013-01-01

    The extraordinary potential of metagenomic functional analyses to identify activities of interest present in uncultured microorganisms has been limited by reduced gene expression in surrogate hosts. We have developed vectors and specialized E. coli strains as improved metagenomic DNA heterologous expression systems, taking advantage of viral components that prevent transcription termination at metagenomic terminators. One of the systems uses the phage T7 RNA-polymerase to drive metagenomic gene expression, while the other approach uses the lambda phage transcription anti-termination protein N to limit transcription termination. A metagenomic library was constructed and functionally screened to identify genes conferring carbenicillin resistance to E. coli. The use of these enhanced expression systems resulted in a 6-fold increase in the frequency of carbenicillin resistant clones. Subcloning and sequence analysis showed that, besides β-lactamases, efflux pumps are not only able contribute to carbenicillin resistance but may in fact be sufficient by themselves to convey carbenicillin resistance. PMID:23346364

  9. Expression of Arabidopsis CAX1 in tobacco: altered calcium homeostasis and increased stress sensitivity.

    PubMed Central

    Hirschi, K D

    1999-01-01

    Calcium (Ca(2)+) efflux from the cytosol modulates Ca(2+) concentrations in the cytosol, loads Ca(2+) into intracellular compartments, and supplies Ca(2+) to organelles to support biochemical functions. The Ca(2+)/H(+) antiporter CAX1 (for CALCIUM EXCHANGER 1) of Arabidopsis is thought to be a key mediator of these processes. To clarify the regulation of CAX1, we examined CAX1 RNA expression in response to various stimuli. CAX1 was highly expressed in response to exogenous Ca(2+). Transgenic tobacco plants expressing CAX1 displayed symptoms of Ca(2+) deficiencies, including hypersensitivity to ion imbalances, such as increased magnesium and potassium concentrations, and to cold shock, but increasing the Ca(2+) in the media abrogated these sensitivities. Tobacco plants expressing CAX1 also demonstrated increased Ca(2+) accumulation and altered activity of the tonoplast-enriched Ca(2+)/H(+) antiporter. These results emphasize that regulated expression of Ca(2+)/H(+) antiport activity is critical for normal growth and adaptation to certain stresses. PMID:10559438

  10. Exercise-Mediated Increase in Nigral Tyrosine Hydroxylase Is Accompanied by Increased Nigral GFR-α1 and EAAC1 Expression in Aging Rats

    PubMed Central

    Arnold, Jennifer C.; Salvatore, Michael F.

    2016-01-01

    Exercise may alleviate locomotor impairment in Parkinson's disease (PD) or aging. Identifying molecular responses immediately engaged by exercise in the nigrostriatal pathway and allied tissue may reveal critical targets associated with its long-term benefits. In aging, there is loss of tyrosine hydroxylase (TH) and the glial cell line-derived neurotrophic factor (GDNF) receptor, GFR-α1, in the substantia nigra (SN). Exercise can increase GDNF expression, but its effect on GFR-α1 expression is unknown. Infusion of GDNF into striatum or GFR-α1 in SN, respectively, can increase locomotor activity and TH function in SN but not striatum in aged rats. GDNF may also increase glutamate transporter expression, which attenuates TH loss in PD models. We utilized a footshock-free treadmill exercise regimen to determine the immediate impact of short-term exercise on GFR-α1 expression, dopamine regulation, glutamate transporter expression, and glutamate uptake in 18 month old male Brown-Norway/Fischer 344 F1 hybrid rats. GFR-α1 and TH expression significantly increased in SN but not striatum. This exercise regimen did not affect glutamate uptake or glutamate transporter expression in striatum. However, EAAC1 expression increased in SN. These results indicate that nigral GFR-α1 and EAAC1 expression increased in conjunction with increased nigral TH expression following short-term exercise. PMID:26599339

  11. Myotonic Dystrophy: Increased expression of the normal allele in CDM infants muscle

    SciTech Connect

    Radvanyi, H.H.; Gourdon, G.; Junien, C. |

    1994-09-01

    Myotonic dystrophy (DM) is an autosomal dominant multisystemic disorder characterized by a highly variable clinical phenotype. The mutation has been identified as an unstable trinucleotide CTG repeat in the 3{prime} untranslated region of the myotonin-protein kinase (MT-PK) gene. Congenital myotonic dystrophy (CDM), which represents the most severe phenotype, is exclusively maternally inherited. Recent studies, analysis by Northern blots and RT-PCR provided apparently conflicting results on the mutated allele expression in samples from congenitally affected children. The level of expression of the mutant allele depends on the extent of the repeat in the adult form and is no longer expressed when over 800-1300 repeats, whether in adult forms or in CDM. Could this decrease account for the late onset forms? However, the differences between the two phenotypes cannot be explained by the same mechanism. Alternatively, these differences could be due to differences in expression of the normal allele. We analyzed by quantitative RT-PCR the expression of the MT-PK gene in muscle samples from four CDM infants and two aged-matched normal controls. In two of these, the mutant allele (3.3 and 8 kb) was undetectable on Northern blots. We observed an increased expression of the MT-PK gene (10- to 20-fold) in tissues of severely affected congenital patients which can be attributed to the normal allele. Since expression of the normal allele is either normal or slightly decreased in the adult form, the dramatic increase in the congenital form could reflect a disturbance in muscle differentiation. Expression studies of MT-PK at different stages of development and, especially after the 20th week, are therefore required.

  12. Expression of the peptide hormone hepcidin increases in cardiomyocytes under myocarditis and myocardial infarction.

    PubMed

    Isoda, Manabu; Hanawa, Haruo; Watanabe, Ritsuo; Yoshida, Tsuyoshi; Toba, Ken; Yoshida, Kaori; Kojima, Mayuko; Otaki, Keita; Hao, Kazuhisa; Ding, Limin; Tanaka, Komei; Takayama, Tsugumi; Kato, Kiminori; Okura, Yuji; Kodama, Makoto; Ota, Yoshimi; Hayashi, Junichi; Aizawa, Yoshifusa

    2010-08-01

    The micronutrient iron is an essential component that plays a role in many crucial metabolic reactions. The peptide hormone hepcidin is thought to play a central role in iron homeostasis and its expression is induced by iron overloading and inflammation. Recently, hepcidin has been reported to be expressed also in the heart; however, the kinetics of altered hepcidin expression in diseases of the heart remain unknown. In this study, we examined cardiac expression of hepcidin in rat experimental autoimmune myocarditis (EAM), human myocarditis and rat acute myocardial infarction (AMI). In rat EAM and AMI hearts, hepcidin was expressed in cardiomyocytes; ferroportin, which is a cellular iron exporter bound by hepcidin, was also expressed in various cells. Analysis of the time course of the hepcidin to cytochrome oxidase subunit 6a (Cox6a)2 expression ratio showed that it abruptly increased more than 100-fold in hearts in the very early phase of EAM and in infarcted areas 1 day after MI. The hepcidin/Cox6a2 expression ratio correlated significantly with that of interleukin-6/gamma-actin in both EAM and AMI hearts (r=0.781, P<.0001 and r=0.563, P=.0003). In human hearts with histological myocarditis, the ratio was significantly higher than in those without myocarditis (0.0400+/-0.0195 versus 0.0032+/-0.0017, P=.0045). Hepcidin is strongly induced in cardiomyocytes under myocarditis and MI, conditions in which inflammatory cytokine levels increase and may play an important role in iron homeostasis and free radical generation. PMID:19615879

  13. Increased Expression of Intranuclear Matrix Metalloproteinase 9 in Atrophic Renal Tubules Is Associated with Renal Fibrosis

    PubMed Central

    Tsai, Jen-Pi; Liou, Jia-Hung; Kao, Wei-Tse; Wang, Shao-Chung; Lian, Jong-Da; Chang, Horng-Rong

    2012-01-01

    Background Reduced turnover of extracellular matrix has a role in renal fibrosis. Matrix metalloproteinases (MMPs) is associated with many glomerular diseases, but the histological association of MMPs and human renal fibrosis is unclear. Methods This is a retrospective study. Institutional Review Board approval was obtained for the review of patients’ medical records, data analysis and pathological specimens staining with waiver of informed consents. Specimens of forty-six patients were examined by immunohistochemical stain of MMP-9 in nephrectomized kidneys, and the association of renal expression of MMP-9 and renal fibrosis was determined. MMP-9 expression in individual renal components and fibrosis was graded as high or low based on MMP-9 staining and fibrotic scores. Results Patients with high interstitial fibrosis scores (IFS) and glomerular fibrosis scores (GFS) had significantly higher serum creatinine, lower estimated glomerular filtration rate (eGFR), and were more likely to have chronic kidney disease (CKD) and urothelial cell carcinoma. Univariate analysis showed that IFS and GFS were negatively associated with normal and atrophic tubular cytoplasmic MMP-9 expression and IFS was positively correlated with atrophic tubular nuclear MMP-9 expression. Multivariate stepwise regression indicated that MMP-9 expression in atrophic tubular nuclei (r = 0.4, p = 0.002) was an independent predictor of IFS, and that MMP-9 expression in normal tubular cytoplasm (r = −0.465, p<0.001) was an independent predictor of GFS. Conclusions Interstitial fibrosis correlated with MMP-9 expression in the atrophic tubular nuclei. Our results indicate that renal fibrosis is associated with a decline of MMP-9 expression in the cytoplasm of normal tubular cells and increased expression of MMP-9 in the nuclei of tubular atrophic renal tubules. PMID:23110201

  14. Increased expression of the antiapoptotic protein MCL1 in canine mast cell tumors.

    PubMed

    Amagai, Yosuke; Tanaka, Akane; Matsuda, Akira; Oida, Kumiko; Jung, Kyungsook; Nishikawa, Sho; Jang, Hyosun; Ishizaka, Saori; Matsuda, Hiroshi

    2013-07-31

    Myeloid cell leukemia sequence 1 (MCL1) is a potent antiapoptotic protein that plays a critical role in cell survival and drug resistance in various cancers. However, to the best of our knowledge, the role of MCL1 in mast cell tumors (MCTs) has not been investigated in dogs. Here, we detected increased MCL1 expression in MCT cell lines, regardless of the presence of a c-kit mutation. MCL1 expression increased when the cells were exposed to specific inhibitors of mitogen-activated protein kinase or Janus kinase-signaling pathways, thus protecting the cells from apoptosis, but not when KIT or phosphatidylinositol-3 kinase signaling cascades were inhibited. These results indicate that MCL1 expression may contribute to MCT survival and confer drug resistance. PMID:23428776

  15. Increased IMP dehydrogenase gene expression in solid tumor tissues and tumor cell lines

    SciTech Connect

    Collart, F.R.; Chubb, C.B.; Mirkin, B.L.; Huberman, E.

    1992-07-10

    IMP dehydrogenase, a regulatory enzyme of guanine nucleotide biosynthesis, may play a role in cell proliferation and malignancy. To assess this possibility, we examined IMP dehydrogenase expression in a series of human solid tumor tissues and tumor cell lines in comparison with their normal counterparts. Increased IMP dehydrogenase gene expression was observed in brain tumors relative to normal brain tissue and in sarcoma cells relative to normal fibroblasts. Similarly, in several B- and T-lymphoid leukemia cell lines, elevated levels of IMP dehydrogenase mRNA and cellular enzyme were observed in comparison with the levels in peripheral blood lymphocytes. These results are consistent with an association between increased IMP dehydrogenase expression and either enhanced cell proliferation or malignant transformation.

  16. Nandrolone reduces activation of Notch signaling in denervated muscle associated with increased Numb expression.

    PubMed

    Liu, Xin-Hua; Yao, Shen; Qiao, Rui-Fang; Levine, Alice C; Kirschenbaum, Alexander; Pan, Jiangping; Wu, Yong; Qin, Weiping; Bauman, William A; Cardozo, Christopher P

    2011-10-14

    Nandrolone, an anabolic steroid, slows denervation-atrophy in rat muscle. The molecular mechanisms responsible for this effect are not well understood. Androgens and anabolic steroids activate Notch signaling in animal models of aging and thereby mitigate sarcopenia. To explore the molecular mechanisms by which nandrolone prevents denervation-atrophy, we investigated the effects of nandrolone on Notch signaling in denervated rat gastrocnemius muscle. Denervation significantly increased Notch activity reflected by elevated levels of nuclear Notch intracellular domain (NICD) and expression of Hey1 (a Notch target gene). Activation was greatest at 7 and 35 days after denervation but remained present at 56 days after denervation. Activation of Notch in denervated muscle was prevented by nandrolone associated with upregulated expression of Numb mRNA and protein. These data demonstrate that denervation activates Notch signaling, and that nandrolone abrogates this response associated with increased expression of Numb, suggesting a potential mechanism by which nandrolone reduces denervation-atrophy. PMID:21945932

  17. Cholesteryl ester hydroperoxides increase macrophage CD36 gene expression via PPAR{alpha}

    SciTech Connect

    Jedidi, Iness; Couturier, Martine; Therond, Patrice; Gardes-Albert, Monique; Legrand, Alain; Barouki, Robert; Bonnefont-Rousselot, Dominique; Aggerbeck, Martine . E-mail: Martine.Aggerbeck@univ-paris5.fr

    2006-12-22

    The uptake of oxidized LDL by macrophages is a key event in the development of atherosclerosis. The scavenger receptor CD36 is one major receptor that internalizes oxidized LDL. In differentiated human macrophages, we compared the regulation of CD36 expression by copper-oxidized LDL or their products. Only oxidized derivatives of cholesteryl ester (CEOOH) increased the amount of CD36 mRNA (2.5-fold). Both oxidized LDL and CEOOH treatment increased two to fourfold the transcription of promoters containing peroxisome-proliferator-activated-receptor responsive elements (PPRE) in the presence of PPAR{alpha} or {gamma}. Electrophoretic-mobility-shift-assays with nuclear extracts prepared from macrophages treated by either oxidized LDL or CEOOH showed increased binding of PPAR{alpha} to the CD36 gene promoter PPRE. In conclusion, CEOOH present in oxidized LDL increase CD36 gene expression in a pathway involving PPAR{alpha}.

  18. Tumor Necrosis Factor B (TNFB) Genetic Variants and Its Increased Expression Are Associated with Vitiligo Susceptibility

    PubMed Central

    Laddha, Naresh C.; Dwivedi, Mitesh; Gani, Amina R.; Mansuri, Mohmmad Shoab; Begum, Rasheedunnisa

    2013-01-01

    Genetic polymorphisms in TNFB are involved in the regulation of its expression and are found to be associated with various autoimmune diseases. The aim of the present study was to determine whether TNFB +252A/G (rs909253) and exon 3 C/A (rs1041981) polymorphisms are associated with vitiligo susceptibility, and expression of TNFB and ICAM1 affects the disease onset and progression. We have earlier reported the role of TNFA in autoimmune pathogenesis of vitiligo, and we now show the involvement of TNFB in vitiligo pathogenesis. The two polymorphisms investigated in the TNFB were in strong linkage disequilibrium and significantly associated with vitiligo. TNFB and ICAM1 transcripts were significantly increased in patients compared to controls. Active vitiligo patients showed significant increase in TNFB transcripts compared to stable vitiligo. The genotype-phenotype analysis revealed that TNFB expression levels were higher in patients with GG and AA genotypes as compared to controls. Patients with the early age of onset and female patients showed higher TNFB and ICAM1 expression. Overall, our findings suggest that the increased TNFB transcript levels in vitiligo patients could result, at least in part, from variations at the genetic level which in turn leads to increased ICAM1 expression. For the first time, we show that TNFB +252A/G and exon 3 C/A polymorphisms are associated with vitiligo susceptibility and influence the TNFB and ICAM1 expression. Moreover, the study also emphasizes influence of TNFB and ICAM1 on the disease progression, onset and gender bias for developing vitiligo. PMID:24312346

  19. Nav1.7 expression is increased in painful human dental pulp

    PubMed Central

    Luo, Songjiang; Perry, Griffin M; Levinson, S Rock; Henry, Michael A

    2008-01-01

    Background Animal studies and a few human studies have shown a change in sodium channel (NaCh) expression after inflammatory lesions, and this change is implicated in the generation of pain states. We are using the extracted human tooth as a model system to study peripheral pain mechanisms and here examine the expression of the Nav1.7 NaCh isoform in normal and painful samples. Pulpal sections were labeled with antibodies against: 1) Nav1.7, N52 and PGP9.5, and 2) Nav1.7, caspr (a paranodal protein used to identify nodes of Ranvier), and myelin basic protein (MBP), and a z-series of optically-sectioned images were obtained with the confocal microscope. Nav1.7-immunofluorescence was quantified in N52/PGP9.5-identified nerve fibers with NIH ImageJ software, while Nav1.7 expression in myelinated fibers at caspr-identified nodal sites was evaluated and further characterized as either typical or atypical as based on caspr-relationships. Results Results show a significant increase in nerve area with Nav1.7 expression within coronal and radicular fiber bundles and increased expression at typical and atypical caspr-identified nodal sites in painful samples. Painful samples also showed an augmentation of Nav1.7 within localized areas that lacked MBP, including those associated with atypical caspr-identified sites, thus identifying NaCh remodeling within demyelinating axons as the basis for a possible pulpal pain mechanism. Conclusion This study identifies the increased axonal expression and augmentation of Nav1.7 at intact and remodeling/demyelinating nodes within the painful human dental pulp where these changes may contribute to constant, increased evoked and spontaneous pain responses that characterize the pain associated with toothache. PMID:18426592

  20. Increased expression of estrogen-related receptor β during adaptation of adult cardiomyocytes to sustained hypoxia

    PubMed Central

    Cunningham, Kathryn F; Beeson, Gyda C; Beeson, Craig C; McDermott, Paul J

    2016-01-01

    Estrogen-related Receptors (ERR) are members of the steroid hormone receptor superfamily of transcription factors that regulate expression of genes required for energy metabolism including mitochondrial biogenesis, fatty acid oxidation and oxidative phosphorylation. While ERRα and EPPγ isoforms are known to share a wide array of target genes in the adult myocardium, the function of ERRβ has not been characterized in cardiomyocytes. The purpose of this study was to determine the role of ERRβ in regulating energy metabolism in adult cardiomyocytes in primary culture. Adult feline cardiomyocytes were electrically stimulated to contract in either hypoxia (0.5% O2) or normoxia (21% O2). As compared to baseline values measured in normoxia, ERRβ mRNA levels increased significantly after 8 hours of hypoxia and remained elevated over 24 h. Conversely, ERRβ mRNA decreased to normoxic levels after 4 hours of reoxygenation. Hypoxia increased expression of the α and β isoforms of Peroxisome Proliferator-Activated Receptor γ Coactivator-1 (PGC-1) mRNA by 6-fold and 3-fold, respectively. Knockdown of ERRβ expression via adenoviral-mediated delivery of ERRβ shRNA blocked hypoxia-induced increases in PGC-1β mRNA, but not PGC-1α mRNA. Loss of ERRβ had no effect on mtDNA content as measured after 24 h of hypoxia. To determine whether loss of ERRβ affected mitochondrial function, oxygen consumption rates (OCR) were measured in contracting versus quiescent cardiomyocytes in normoxia. OCR was significantly lower in contracting cardiomyocytes expressing ERRβ shRNA than scrambled shRNA controls. Maximal OCR also was reduced by ERRβ knockdown. In conclusion: 1) hypoxia increases in ERRβ mRNA expression in contracting cardiomyocytes; 2) ERRβ is required for induction of the PGC-1β isoform in response to hypoxia; 3) ERRβ expression is required to sustain OCR in normoxic conditions. PMID:27335690

  1. Increased Cx32 expression in spinal cord TrkB oligodendrocytes following peripheral axon injury.

    PubMed

    Coulibaly, Aminata P; Isaacson, Lori G

    2016-08-01

    Following injury to motor axons in the periphery, retrograde influences from the injury site lead to glial cell plasticity in the vicinity of the injured neurons. Following the transection of peripherally located preganglionic axons of the cervical sympathetic trunk (CST), a population of oligodendrocyte (OL) lineage cells expressing full length TrkB, the cognate receptor for brain derived neurotrophic factor (BDNF), is significantly increased in number in the spinal cord. Such robust plasticity in OL lineage cells in the spinal cord following peripheral axon transection led to the hypothesis that the gap junction communication protein connexin 32 (Cx32), which is specific to OL lineage cells, was influenced by the injury. Following CST transection, Cx32 expression in the spinal cord intermediolateral cell column (IML), the location of the parent cell bodies, was significantly increased. The increased Cx32 expression was localized specifically to TrkB OLs in the IML, rather than other cell types in the OL cell lineage, with the population of Cx32/TrkB cells increased by 59%. Cx32 expression in association with OPCs was significantly decreased at one week following the injury. The results of this study provide evidence that peripheral axon injury can differentially affect the gap junction protein expression in OL lineage cells in the adult rat spinal cord. We conclude that the retrograde influences originating from the peripheral injury site elicit dramatic changes in the CNS expression of Cx32, which in turn may mediate the plasticity of OL lineage cells observed in the spinal cord following peripheral axon injury. PMID:27246301

  2. Calpain expression in lymphoid cells. Increased mRNA and protein levels after cell activation.

    PubMed

    Deshpande, R V; Goust, J M; Chakrabarti, A K; Barbosa, E; Hogan, E L; Banik, N L

    1995-02-10

    Although calpain is ubiquitously present in human tissues and is thought to play a role in demyelination, its activity is very low in resting normal lymphocytes. To determine the nature of calpain expression at the mRNA and protein levels in human lymphoid cells, we studied human T lymphocytic, B lymphocytic, and monocytic lines as well as peripheral blood mononuclear cells. Stimulation of cells with the phorbol ester phorbol myristate acetate and the calcium ionophore A23187 resulted in increased calpain mRNA and protein expression. Calpain mRNA expression is also increased in human T cells stimulated with anti-CD3. A dissociation between the increases of RNA and protein suggested that calpain could be released from the cells; the subsequent experiments showed its presence in the extracellular environment. 5,6-Dichloro-1b-D-ribofuranosylbenzimidazole, a reversible inhibitor of mRNA synthesis, reduced calpain mRNA levels by 50-67% and protein levels by 72-91%. Its removal resulted in resumption of both calpain mRNA and protein synthesis. Cycloheximide, a translational inhibitor, reduced calpain protein levels by 77-81% and calpain mRNA levels by 96% in activated THP-1 cells. Interferon-gamma induced calpain mRNA and protein in U-937 and THP-1 cells. Dexamethasone increased mRNA expression in THP-1 cells. Our results indicate that activation of lymphoid cells results in de novo synthesis and secretion of calpain. PMID:7852311

  3. An Analysis of Naturalistic Interventions for Increasing Spontaneous Expressive Language in Children with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Lane, Justin D.; Lieberman-Betz, Rebecca; Gast, David L.

    2016-01-01

    The purpose of this review was to identify naturalistic language interventions for increasing spontaneous expressive language (defined in this review as absence of verbal prompt or other verbalization from adults or peers) in young children with autism spectrum disorder. Also, the methodological rigor and effectiveness of each study were evaluated…

  4. Use of CYP52A2A promoter to increase gene expression in yeast

    DOEpatents

    Craft, David L.; Wilson, C. Ron; Eirich, Dudley; Zhang, Yeyan

    2004-01-06

    A nucleic acid sequence including a CYP promoter operably linked to nucleic acid encoding a heterologous protein is provided to increase transcription of the nucleic acid. Expression vectors and host cells containing the nucleic acid sequence are also provided. The methods and compositions described herein are especially useful in the production of polycarboxylic acids by yeast cells.

  5. Increased hepatic CD36 expression contributes to dyslipidemia associated with diet-induced obesity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The etiology of type 2 diabetes often involves diet-induced obesity (DIO), which is associated with elevated plasma fatty acids and lipoprotein associated triglycerides. Since aberrant hepatic fatty acid uptake may contribute to this, we investigated whether increased expression of a fatty acid tran...

  6. Methotrexate increases skeletal muscle GLUT4 expression and improves metabolic control in experimental diabetes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long-term administration of 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) mimics the effects of endurance exercise by activating AMP kinase and by increasing skeletal muscle expression of GLUT4 glucose transporter. AICAR is an intermediate in the purine de novo synthesis, and its tissue conc...

  7. Carnitine Palmitoyltransferase 1 Increases Lipolysis, UCP1 Protein Expression and Mitochondrial Activity in Brown Adipocytes

    PubMed Central

    Calderon-Dominguez, María; Sebastián, David; Fucho, Raquel; Weber, Minéia; Mir, Joan F.; García-Casarrubios, Ester; Obregón, María Jesús; Zorzano, Antonio; Valverde, Ángela M.; Serra, Dolors

    2016-01-01

    The discovery of active brown adipose tissue (BAT) in adult humans and the fact that it is reduced in obese and diabetic patients have put a spotlight on this tissue as a key player in obesity-induced metabolic disorders. BAT regulates energy expenditure through thermogenesis; therefore, harnessing its thermogenic fat-burning power is an attractive therapeutic approach. We aimed to enhance BAT thermogenesis by increasing its fatty acid oxidation (FAO) rate. Thus, we expressed carnitine palmitoyltransferase 1AM (CPT1AM), a permanently active mutant form of CPT1A (the rate-limiting enzyme in FAO), in a rat brown adipocyte (rBA) cell line through adenoviral infection. We found that CPT1AM-expressing rBA have increased FAO, lipolysis, UCP1 protein levels and mitochondrial activity. Additionally, enhanced FAO reduced the palmitate-induced increase in triglyceride content and the expression of obese and inflammatory markers. Thus, CPT1AM-expressing rBA had enhanced fat-burning capacity and improved lipid-induced derangements. This indicates that CPT1AM-mediated increase in brown adipocytes FAO may be a new approach to the treatment of obesity-induced disorders. PMID:27438137

  8. Dexamethasone increases aquaporin-2 protein expression in ex vivo inner medullary collecting duct suspensions

    PubMed Central

    Chen, Minguang; Cai, Hui; Klein, Janet D.; Laur, Oskar; Chen, Guangping

    2015-01-01

    Aquaporin-2 (AQP2) is the vasopressin-regulated water channel that controls renal water reabsorption and plays an important role in the maintenance of body water homeostasis. Excessive glucocorticoid as often seen in Cushing's syndrome causes water retention. However, whether and how glucocorticoid regulates AQP2 remains unclear. In this study, we examined the direct effect of dexamethasone on AQP2 protein expression and activity. Dexamethasone increased AQP2 protein abundance in rat inner medullary collecting duct (IMCD) suspensions. This was confirmed in HEK293 cells transfected with AQP2 cDNA. Cell surface protein biotinylation showed an increase of dexamethasone-induced cell membrane AQP2 expression and this effect was blocked by glucocorticoid receptor antagonist RU486. Functionally, dexamethasone treatment of oocytes injected with an AQP2 cRNA increased water transport activity as judged by cell rupture time in a hypo-osmotic solution (66 ± 13 s in dexamethasone vs. 101 ± 11 s in control, n = 15). We further found that dexamethasone treatment reduced AQP2 protein degradation, which could result in an increase of AQP2 protein. Interestingly, dexamethasone promoted cell membrane AQP2 moving to less buoyant lipid raft submicrodomains. Taken together, our data demonstrate that dexamethasone promotes AQP2 protein expression and increases water permeability mainly via inhibition of AQP2 protein degradation. The increase in AQP2 activity promotes water reabsorption, which may contribute to glucocorticoid-induced water retention and hypertension. PMID:26578982

  9. Dexamethasone increases aquaporin-2 protein expression in ex vivo inner medullary collecting duct suspensions.

    PubMed

    Chen, Minguang; Cai, Hui; Klein, Janet D; Laur, Oskar; Chen, Guangping

    2015-01-01

    Aquaporin-2 (AQP2) is the vasopressin-regulated water channel that controls renal water reabsorption and plays an important role in the maintenance of body water homeostasis. Excessive glucocorticoid as often seen in Cushing's syndrome causes water retention. However, whether and how glucocorticoid regulates AQP2 remains unclear. In this study, we examined the direct effect of dexamethasone on AQP2 protein expression and activity. Dexamethasone increased AQP2 protein abundance in rat inner medullary collecting duct (IMCD) suspensions. This was confirmed in HEK293 cells transfected with AQP2 cDNA. Cell surface protein biotinylation showed an increase of dexamethasone-induced cell membrane AQP2 expression and this effect was blocked by glucocorticoid receptor antagonist RU486. Functionally, dexamethasone treatment of oocytes injected with an AQP2 cRNA increased water transport activity as judged by cell rupture time in a hypo-osmotic solution (66 ± 13 s in dexamethasone vs. 101 ± 11 s in control, n = 15). We further found that dexamethasone treatment reduced AQP2 protein degradation, which could result in an increase of AQP2 protein. Interestingly, dexamethasone promoted cell membrane AQP2 moving to less buoyant lipid raft submicrodomains. Taken together, our data demonstrate that dexamethasone promotes AQP2 protein expression and increases water permeability mainly via inhibition of AQP2 protein degradation. The increase in AQP2 activity promotes water reabsorption, which may contribute to glucocorticoid-induced water retention and hypertension. PMID:26578982

  10. Increased expression of the prolactin receptor is associated with malignant laryngeal tumors

    PubMed Central

    GONZÁLEZ-LUCANO, LUIS R.; MUÑOZ-VALLE, JOSÉ F.; ASCENCIO-CEDILLO, RAFAEL; DOMÍNGUEZ-ROSALES, JOSÉ A.; LÓPEZ-RINCÓN, GONZALO; DEL TORO-ARREOLA, SUSANA; BUENO-TOPETE, MIRIAM; DANERI-NAVARRO, ADRIÁN; ESTRADA-CHÁVEZ, CIRO; PEREIRA-SUÁREZ, ANA L.

    2012-01-01

    The altered expression of the prolactin receptor (PRLR) has been associated with the development of various types of cancer, particularly breast, prostate and endometrial cancer. However, in laryngeal tumors, the expression of PRLR has not yet been documented. The aim of this study was to determine the expression and localization of PRLR in laryngeal cancer (LC) in comparison with recurrent respiratory papillomatosis (RRP). PRLR expression was analyzed in 48 paraffin-embedded tissues (18 RRP and 30 laryngeal cancer tissues) by immunoperoxidase staining. Furthermore, PRLR expression was evaluated in ten samples from each group by Western blot analysis and quantitative real-time PCR. PRLR was observed in all laryngeal tumors at different intensities. PRLR overexpression was significantly associated (P<0.005) with LC. The staining pattern was homogeneous, mainly cytoplasmic, and confined to the tumor area. We found increased expression of different isoforms in LC in comparison with RRP. Our results suggest a possible role of PRL/PRLR in the development of LC. PRLR may be useful as a target for further investigations in laryngeal tissues. PMID:22969936

  11. Lhx4 Deficiency: Increased Cyclin-Dependent Kinase Inhibitor Expression and Pituitary Hypoplasia

    PubMed Central

    Gergics, Peter; Brinkmeier, Michelle L.

    2015-01-01

    Defects in the Lhx4, Lhx3, and Pitx2 genes can cause combined pituitary hormone deficiency and pituitary hypoplasia in both humans and mice. Not much is known about the mechanism underlying hypoplasia in these mutants beyond generally increased cell death and poorly maintained proliferation. We identified both common and unique abnormalities in developmental regulation of key cell cycle regulator gene expression in each of these three mutants. All three mutants exhibit reduced expression of the proliferative marker Ki67 and the transitional marker p57. We discovered that expression of the cyclin-dependent kinase inhibitor 1a (Cdkn1a or p21) is expanded dorsally in the pituitary primordium of both Lhx3 and Lhx4 mutants. Uniquely, Lhx4 mutants exhibit reduced cyclin D1 expression and have auxiliary pouch-like structures. We show evidence for indirect and direct effects of LHX4 on p21 expression in αT3-1 pituitary cells. In summary, Lhx4 is necessary for efficient pituitary progenitor cell proliferation and restriction of p21 expression. PMID:25668206

  12. Deletion of Rictor in brain and fat alters peripheral clock gene expression and increases blood pressure.

    PubMed

    Drägert, Katja; Bhattacharya, Indranil; Pellegrini, Giovanni; Seebeck, Petra; Azzi, Abdelhalim; Brown, Steven A; Georgiopoulou, Stavroula; Held, Ulrike; Blyszczuk, Przemyslaw; Arras, Margarete; Humar, Rok; Hall, Michael N; Battegay, Edouard; Haas, Elvira

    2015-08-01

    The mammalian target of rapamycin complex 2 (mTORC2) contains the essential protein RICTOR and is activated by growth factors. mTORC2 in adipose tissue contributes to the regulation of glucose and lipid metabolism. In the perivascular adipose tissue, mTORC2 ensures normal vascular reactivity by controlling expression of inflammatory molecules. To assess whether RICTOR/mTORC2 contributes to blood pressure regulation, we applied a radiotelemetry approach in control and Rictor knockout (Rictor(aP2KO)) mice generated using adipocyte protein-2 gene promoter-driven CRE recombinase expression to delete Rictor. The 24-hour mean arterial pressure was increased in Rictor(aP2KO) mice, and the physiological decline in mean arterial pressure during the dark period was impaired. In parallel, heart rate and locomotor activity were elevated during the dark period with a pattern similar to blood pressure changes. This phenotype was associated with mild cardiomyocyte hypertrophy, decreased cardiac natriuretic peptides, and their receptor expression in adipocytes. Moreover, clock gene expression was reduced or phase-shifted in perivascular adipose tissue. No differences in clock gene expression were observed in the master clock suprachiasmatic nucleus, although Rictor gene expression was also lower in brain of Rictor(aP2KO) mice. Thus, this study highlights the importance of RICTOR/mTORC2 for interactions between vasculature, adipocytes, and brain to tune physiological outcomes, such as blood pressure and locomotor activity. PMID:26101345

  13. Brain SERT Expression of Male Rats Is Reduced by Aging and Increased by Testosterone Restitution

    PubMed Central

    Herrera-Pérez, José Jaime; Fernández-Guasti, Alonso; Martínez-Mota, Lucía

    2013-01-01

    In preclinical and clinical studies aging has been associated with a deteriorated response to antidepressant treatment. We hypothesize that such impairment is explained by an age-related decrease in brain serotonin transporter (SERT) expression associated with low testosterone (T) levels. The objectives of this study were to establish (1) if brain SERT expression is reduced by aging and (2) if the SERT expression in middle-aged rats is increased by T-restitution. Intact young rats (3–5 months) and gonad-intact middle-aged rats with or without T-restitution were used. The identification of the brain SERT expression was done by immunofluorescence in prefrontal cortex, lateral septum, hippocampus, and raphe nuclei. An age-dependent reduction of SERT expression was observed in all brain regions examined, while T-restitution recovered the SERT expression only in the dorsal raphe of middle-aged rats. This last action seems relevant since dorsal raphe plays an important role in the antidepressant action of selective serotonin reuptake inhibitors. All data suggest that this mechanism accounts for the T-replacement usefulness to improve the response to antidepressants in the aged population. PMID:26317087

  14. Age-related increase of VGF-expression in T lymphocytes

    PubMed Central

    Micheel, Justus; Dobrowolny, Henrik; Mawrin, Christian; Krause, Tim J.; Adamaszek, Michael; Bogerts, Bernhard; Bommhardt, Ursula; Hartig, Roland; Busse, Mandy

    2014-01-01

    VGF is a protein expressed by neurons and processed into several peptides. It plays a role in energy homeostasis and promotes growth and survival. Recently, VGF mRNA was detected in peripheral leukocytes. Since it is known that aging is associated with a decrease in the development and function of neuronal as well as immune cells, we addressed the question whether a peripheral expression of VGF by CD3+ T cells and CD56+ NK cells is correlated with age. Therefore, the frequency of VGF+CD3+ and VGF+CD56+ cells was determined in mentally healthy volunteers aged between 22 and 88. We found an age-dependent increase in the number of VGF+CD3+ T cells that correlated with HbA1c and the body mass index (BMI). VGF-expression by NK cells was age-independent. Blockade of VGF reduced proliferation and secretion of cytokines such as IL-2, IL-17A, IL-1β, IL-10 and TNF by CD3+ T cells and PBMCs. Rapamycin-mediated T cell blockade significantly reduced the frequency of VGF-expressing T cells. We conclude that VGF contributes to survival and function of peripheral T cells. The age-dependent increase in VGF-expression could serve as mechanism that counterregulates the decrease in functionality of T lymphocytes. PMID:25013207

  15. AP-1-mediated invasion requires increased expression of the hyaluronan receptor CD44.

    PubMed Central

    Lamb, R F; Hennigan, R F; Turnbull, K; Katsanakis, K D; MacKenzie, E D; Birnie, G D; Ozanne, B W

    1997-01-01

    Fibroblasts transformed by Fos oncogenes display increased expression of a number of genes implicated in tumor cell invasion and metastasis. In contrast to normal 208F rat fibroblasts, Fos-transformed 208F fibroblasts are growth factor independent for invasion. We demonstrate that invasion of v-Fos- or epidermal growth factor (EGF)-transformed cells requires AP-1 activity. v-Fos-transformed cell invasion is inhibited by c-jun antisense oligonucleotides and by expression of a c-jun dominant negative mutant, TAM-67. EGF-induced invasion is inhibited by both c-fos and c-jun antisense oligonucleotides. CD44s, the standard form of a transmembrane receptor for hyaluronan, is implicated in tumor cell invasion and metastasis. We demonstrate that increased expression of CD44 in Fos- and EGF-transformed cells is dependent upon AP-1. CD44 antisense oligonucleotides reduce expression of CD44 in v-Fos- or EGF-transformed cells and inhibit invasion but not migration. Expression of a fusion protein between human CD44s and Aequorea victoria green fluorescent protein (GFP) in 208F cells complements the inhibition of invasion by the rat-specific CD44 antisense oligonucleotide. We further show that both v-Fos and EGF transformations result in a concentration of endogenous CD44 or exogenous CD44-GFP at the ends of pseudopodial cell extensions. These results support the hypothesis that one role of AP-1 in transformation is to activate a multigenic invasion program. PMID:9001250

  16. Increased expression of Talin1 in the eutopic and ectopic endometria of women with adenomyosis.

    PubMed

    Jiang, Jianfa; Sun, Aijun; Wang, Yanfang; Deng, Yan

    2016-06-01

    Adenomyosis is a prevalent gynecologic benign disease in women. Despite its significance, there is only a limited understanding of its pathological mechanisms. Talin1, a cytoskeletal protein, plays an important role in cell survival, proliferation, invasion and migration. The objective of this study was to investigate the mRNA and protein expression of talin1 in both the eutopic and ectopic endometria of women with adenomyosis. Higher talin1 mRNA levels were observed in both ectopic and eutopic endometria from the adenomyosis subjects compared with the eutopic endometria from women without adenomyosis. Immunohistochemistry revealed increased epithelial expression of talin1 in the ectopic and eutopic endometria from patients with adenomyosis compared with those without adenomyosis. When tests were performed on matched samples of eutopic and ectopic endometria of adenomyosis subjects, the mRNA and protein expression of talin1 was much higher in the ectopic endometria than in the eutopic endometria. The results reveal that the expression pattern of talin1 in the eutopic and ectopic endometria is enhanced in women with adenomyosis. Increased talin1 expression may play a role in the pathogenesis and development of adenomyosis. PMID:26759065

  17. The expression of marker for endometrial stem cell and fibrosis was increased in intrauterine adhesious

    PubMed Central

    Hu, Jianguo; Zeng, Biao; Jiang, Xingwei; Hu, lina; Meng, Ying; Zhu, Yi; Mao, Min

    2015-01-01

    Objectives: The objective of the present study was to evaluate whether fibrotic markers and endometrial stem cell markers were abnormal expressed in endometrium of intrauterine adhesions and a female mouse model for intrauterine adhesions. Methods: We revaluated endometrial fibrosis using Masson’s stain. We detected the expression of endometrium stem cell markers (CD146 and CD140b) and fibrosis markers (TGF-Beta, CTGF, collagen protein I and collagen protein III) in endometrial tissue with intrauterine adhesions using real-time PCR and S-P (Streptavidin-Peroxidase) immunohistochemistry. We create a female mouse model for intrauterine adhesions using mechanical injury, and then revalue the expression of endometrial stem cell markers and fibrosis markers in endometrial tissue of mouse model for intrauterine adhesions. Results: The ratio of the area with endometrial fibrosis to total endometrial area in intrauterine adhesious significantly increased compared with the normal endometrial tissue (P < 0.05); The expression levels of fibrotic markers and endometrial stem cell markers were higher in the endometrial tissue with intrauterine adhesious compared to normal endometrial tissue (P < 0.05). The animal experiments showed that the ratio of the area with endometrial fibrosis to total endometrial area significantly increased compared with the control group (P < 0.05); The expression levels of fibrotic markers and endometrial stem cell markers were higher in the endometrial tissue compared to the control group (P < 0.05). Conclusion: Aberrant activation of fibrosis may be involved in the pathology of intrauterine adhesious. PMID:25973037

  18. Increased expressions of ADAMTS-13 and apoptosis contribute to neuropathology during Toxoplasma gondii encephalitis in mice.

    PubMed

    Dincel, Gungor Cagdas; Atmaca, Hasan Tarik

    2016-06-01

    Toxoplasma gondii (T. gondii) is a protozoan parasite with the potential of causing severe encephalitis among immunocompromised humans and animals. Our previous study showed that T. gondii induces high nitric oxide (NO) production, high glial activation (GFAP) and neurofilament expressions, leading to severe neurodegeneration in toxoplasma encephalitis (TE) in the central nervous system (CNS). The aim of this experimental study was to investigate ADAMTS-13 expression and apoptosis in CNS and to identify whether they have any correlation with toxoplasmosis neuropathology and neurodegeneration. Mice were infected with ME49 strain T. gondii and the levels of ADAMTS-13, caspase 3, caspase 8, caspase 9, TNFR1 and Bcl-xL expressions were examined in brain tissues by immunohistochemistry, during the development and establishment of chronic infections at 10, 30 and 60 days post-infection. Results of the study revealed that the levels of ADAMTS-13 (P < 0.005), caspase 3 (P < 0.05), caspase 8 (P < 0.05), caspase 9 (P < 0.005) and TNFR1 (P < 0.05) expressions in the brain markedly increased while Bcl-xL expression decreased (P < 0.005). The most prominent finding from our study was that 10, 30 and 60 days post-infection ADAMTS-13 increased significantly and this may play an important role in the regulation and protection of the blood-brain barrier integrity and CNS microenvironment in TE. These results also suggest that T. gondii-mediated apoptosis might play a pivotal role and a different type of role in the mechanism of neurodegeneration and neuropathology in the process of TE. Furthermore, expression of ADAMTS-13 might give an idea of the progress and is critical for diagnosis of this disease. To the best of the authors' knowledge, this is the first report on ADAMTS-13 expression in the CNS of T. gondii-infected mice. PMID:26542631

  19. Activation of calcium-sensing receptor increases TRPC3 expression in rat cardiomyocytes

    SciTech Connect

    Feng, Shan-Li; Sun, Ming-Rui; Li, Ting-Ting; Yin, Xin; Xu, Chang-Qing; Sun, Yi-Hua

    2011-03-11

    Research highlights: {yields} Calcium-sensing receptor (CaR) activation stimulates TRP channels. {yields} CaR promoted transient receptor potential C3 (TRPC3) expression. {yields} Adult rat ventricular myocytes display capacitative calcium entry (CCE), which was operated by TRPCs. {yields} TRPC channels activation induced by CaR activator sustained the increased [Ca{sup 2+}]{sub i} to evoke cardiomyocytes apoptosis. -- Abstract: Transient receptor potential (TRP) channels are expressed in cardiomyocytes, which gate a type of influx of extracellular calcium, the capacitative calcium entry. TRP channels play a role in mediating Ca{sup 2+} overload in the heart. Calcium-sensing receptors (CaR) are also expressed in rat cardiac tissue and promote the apoptosis of cardiomyocytes by Ca{sup 2+} overload. However, data about the link between CaR and TRP channels in rat heart are few. In this study, reverse transcriptase polymerase chain reaction (RT-PCR) and Western blotting were used to examine the expression of the TRP canonical proteins TRPC1 and TRPC3 in adult and neonatal rat cardiomyocytes. Laser scan confocal microscopy was used to detect intracellular [Ca{sup 2+}]{sub i} levels in isolated adult rat ventricular myocytes. The results showed that, in adult rat cardiomyocytes, the depletion of Ca{sup 2+} stores in the endoplasmic/sarcoplasmic reticulum (ER/SR) by thapsigargin induced a transient increase in [Ca{sup 2+}]{sub i} in the absence of [Ca{sup 2+}]{sub o} and the subsequent restoration of [Ca{sup 2+}]{sub o} sustained the increased [Ca{sup 2+}]{sub i} for a few minutes, whereas, the persisting elevation of [Ca{sup 2+}]{sub i} was reduced in the presence of the TRPC inhibitor SKF96365. The stimulation of CaR by its activator gadolinium chloride (GdCl{sub 3}) or spermine also resulted in the same effect and the duration of [Ca{sup 2+}]{sub i} increase was also shortened in the absence of [Ca{sup 2+}]{sub o}. In adult and neonatal rat cardiomyocytes, GdCl{sub 3

  20. Aqueous Tear Deficiency Increases Conjunctival Interferon-γ (IFN-γ) Expression and Goblet Cell Loss

    PubMed Central

    Pflugfelder, Stephen C.; De Paiva, Cintia S.; Moore, Quianta L.; Volpe, Eugene A.; Li, De-Quan; Gumus, Koray; Zaheer, Mahira L.; Corrales, Rosa M.

    2015-01-01

    Purpose To investigate the hypothesis that increased interferon-γ (IFN-γ) expression is associated with conjunctival goblet cell loss in subjects with tear dysfunction. Methods Goblet cell density (GCD) was measured in impression cytology from the temporal bulbar conjunctiva, and gene expression was measured in cytology samples from the nasal bulbar conjunctiva obtained from 68 subjects, including normal control, meibomian gland disease (MGD), non-Sjögren syndrome (non-SSATD)-, and Sjögren syndrome (SSATD)-associated aqueous tear deficiency. Gene expression was evaluated by real-time PCR. Tear meniscus height (TMH) was measured by optical coherence tomography. Fluorescein and lissamine green dye staining evaluated corneal and conjunctival disease, respectively. Between-group mean differences and correlation coefficients were calculated. Results Compared to control, IFN-γ expression was significantly higher in both ATD groups, and its receptor was higher in SSATD. Expression of IL-13 and its receptor was similar in all groups. Goblet cell density was lower in the SSATD group; expression of MUC5AC mucin was lower and cornified envelope precursor small proline-rich region (SPRR)-2G higher in both ATD groups. Interferon-γ transcript number was inversely correlated with GCD (r = −0.37, P < 0.04) and TMH (r = −0.37, P = 0.02), and directly correlated with lissamine green staining (r = 0.51, P < 0.001) and SPRR-2G expression (r = 0.32, P < 0.05). Conclusions Interferon-γ expression in the conjunctiva was higher in aqueous deficiency and correlated with goblet cell loss and severity of conjunctival disease. These results support findings of animal and culture studies showing that IFN-γ reduces conjunctival goblet cell number and mucin production. PMID:26618646

  1. Increased oxidative stress and antioxidant expression in mouse keratinocytes following exposure to paraquat

    SciTech Connect

    Black, Adrienne T.; Gray, Joshua P.; Shakarjian, Michael P.; Laskin, Debra L. Heck, Diane E.; Laskin, Jeffrey D.

    2008-09-15

    Paraquat (1,1'-dimethyl-4,4'-bipyridinium) is a widely used herbicide known to induce skin toxicity. This is thought to be due to oxidative stress resulting from the generation of cytotoxic reactive oxygen intermediates (ROI) during paraquat redox cycling. The skin contains a diverse array of antioxidant enzymes which protect against oxidative stress including superoxide dismutase (SOD), catalase, glutathione peroxidase-1 (GPx-1), heme oxygenase-1 (HO-1), metallothionein-2 (MT-2), and glutathione-S-transferases (GST). In the present studies we compared paraquat redox cycling in primary cultures of undifferentiated and differentiated mouse keratinocytes and determined if this was associated with oxidative stress and altered expression of antioxidant enzymes. We found that paraquat readily undergoes redox cycling in both undifferentiated and differentiated keratinocytes, generating superoxide anion and hydrogen peroxide as well as increased protein oxidation which was greater in differentiated cells. Paraquat treatment also resulted in increased expression of HO-1, Cu,Zn-SOD, catalase, GSTP1, GSTA3 and GSTA4. However, no major differences in expression of these enzymes were evident between undifferentiated and differentiated cells. In contrast, expression of GSTA1-2 was significantly greater in differentiated relative to undifferentiated cells after paraquat treatment. No changes in expression of MT-2, Mn-SOD, GPx-1, GSTM1 or the microsomal GST's mGST1, mGST2 and mGST3, were observed in response to paraquat. These data demonstrate that paraquat induces oxidative stress in keratinocytes leading to increased expression of antioxidant genes. These intracellular proteins may be important in protecting the skin from paraquat-mediated cytotoxicity.

  2. Prominin-2 expression increases protrusions, decreases caveolae and inhibits Cdc42 dependent fluid phase endocytosis

    SciTech Connect

    Singh, Raman Deep Schroeder, Andreas S.; Scheffer, Luana; Holicky, Eileen L.; Wheatley, Christine L.; Marks, David L. Pagano, Richard E.

    2013-05-10

    Highlights: •Prominin-2 expression induced protrusions that co-localized with lipid raft markers. •Prominin-2 expression decreased caveolae, caveolar endocytosis and increased pCav1. •Prominin-2 expression inhibited fluid phase endocytosis by inactivation of Cdc42. •These endocytic effects can be reversed by adding exogenous cholesterol. •Caveolin1 knockdown restored fluid phase endocytosis in Prominin2 expressing cells. -- Abstract: Background: Membrane protrusions play important roles in biological processes such as cell adhesion, wound healing, migration, and sensing of the external environment. Cell protrusions are a subtype of membrane microdomains composed of cholesterol and sphingolipids, and can be disrupted by cholesterol depletion. Prominins are pentaspan membrane proteins that bind cholesterol and localize to plasma membrane (PM) protrusions. Prominin-1 is of great interest as a marker for stem and cancer cells, while Prominin-2 (Prom2) is reportedly restricted to epithelial cells. Aim: To characterize the effects of Prom-2 expression on PM microdomain organization. Methods: Prom2-fluorescent protein was transfected in human skin fibroblasts (HSF) and Chinese hamster ovary (CHO) cells for PM raft and endocytic studies. Caveolae at PM were visualized using transmission electron microscopy. Cdc42 activation was measured and caveolin-1 knockdown was performed using siRNAs. Results: Prom2 expression in HSF and CHO cells caused extensive Prom2-positive protrusions that co-localized with lipid raft markers. Prom2 expression significantly decreased caveolae at the PM, reduced caveolar endocytosis and increased caveolin-1 phosphorylation. Prom2 expression also inhibited Cdc42-dependent fluid phase endocytosis via decreased Cdc42 activation. Effects on endocytosis were reversed by addition of cholesterol. Knockdown of caveolin-1 by siRNA restored Cdc42 dependent fluid phase endocytosis in Prom2-expressing cells. Conclusions: Prom2 protrusions primarily

  3. Increased expression of CYP4Z1 promotes tumor angiogenesis and growth in human breast cancer

    SciTech Connect

    Yu, Wei; Chai, Hongyan; Li, Ying; Zhao, Haixia; Xie, Xianfei; Zheng, Hao; Wang, Chenlong; Wang, Xue; Yang, Guifang; Cai, Xiaojun; Falck, John R.; Yang, Jing

    2012-10-01

    Cytochrome P450 (CYP) 4Z1, a novel CYP4 family member, is over-expressed in human mammary carcinoma and associated with high-grade tumors and poor prognosis. However, the precise role of CYP4Z1 in tumor progression is unknown. Here, we demonstrate that CYP4Z1 overexpression promotes tumor angiogenesis and growth in breast cancer. Stable expression of CYP4Z1 in T47D and BT-474 human breast cancer cells significantly increased mRNA expression and production of vascular endothelial growth factor (VEGF)-A, and decreased mRNA levels and secretion of tissue inhibitor of metalloproteinase-2 (TIMP-2), without affecting cell proliferation and anchorage-independent cell growth in vitro. Notably, the conditioned medium from CYP4Z1-expressing cells enhanced proliferation, migration and tube formation of human umbilical vein endothelial cells, and promoted angiogenesis in the zebrafish embryo and chorioallantoic membrane of the chick embryo. In addition, there were lower levels of myristic acid and lauric acid, and higher contents of 20-hydroxyeicosatetraenoic acid (20-HETE) in CYP4Z1-expressing T47D cells compared with vector control. CYP4Z1 overexpression significantly increased tumor weight and microvessel density by 2.6-fold and 1.9-fold in human tumor xenograft models, respectively. Moreover, CYP4Z1 transfection increased the phosphorylation of ERK1/2 and PI3K/Akt, while PI3K or ERK inhibitors and siRNA silencing reversed CYP4Z1-mediated changes in VEGF-A and TIMP-2 expression. Conversely, HET0016, an inhibitor of the CYP4 family, potently inhibited the tumor-induced angiogenesis with associated changes in the intracellular levels of myristic acid, lauric acid and 20-HETE. Collectively, these data suggest that increased CYP4Z1 expression promotes tumor angiogenesis and growth in breast cancer partly via PI3K/Akt and ERK1/2 activation. -- Highlights: ► CYP4Z1 overexpression promotes human breast cancer growth and angiogenesis. ► The pro-angiogenic effects of CYP4Z1 have

  4. Twisting integrin receptors increases endothelin-1 gene expression in endothelial cells

    NASA Technical Reports Server (NTRS)

    Chen, J.; Fabry, B.; Schiffrin, E. L.; Wang, N.; Ingber, D. E. (Principal Investigator)

    2001-01-01

    A magnetic twisting stimulator was developed based on the previously published technique of magnetic twisting cytometry. Using ligand-coated ferromagnetic microbeads, this device can apply mechanical stresses with varying amplitudes, duration, frequencies, and waveforms to specific cell surface receptors. Biochemical and biological responses of the cells to the mechanical stimulation can be assayed. Twisting integrin receptors with RGD (Arg-Gly-Asp)-containing peptide-coated beads increased endothelin-1 (ET-1) gene expression by >100%. In contrast, twisting scavenger receptors with acetylated low-density lipoprotein-coated beads or twisting HLA antigen with anti-HLA antibody-coated beads did not lead to alterations in ET-1 gene expression. In situ hybridization showed that the increase in ET-1 mRNA was localized in the cells that were stressed with the RGD-coated beads. Blocking stretch-activated ion channels with gadolinium, chelating Ca2+ with EGTA, or inhibiting tyrosine phosphorylation with genistein abolished twist-induced ET-1 mRNA elevation. Abolishing cytoskeletal tension with an inhibitor of the myosin ATPase, with an inhibitor of myosin light chain kinase, or with an actin microfilament disrupter blocked twisted-induced increases in ET-1 expression. Our results are consistent with the hypothesis that the molecular structural linkage of integrin-cytoskeleton is an important pathway for stress-induced ET-1 gene expression.

  5. Acrolein increases 5-lipoxygenase expression in murine macrophages through activation of ERK pathway

    SciTech Connect

    Kim, Chae E.; Lee, Seung J.; Seo, Kyo W.; Park, Hye M.; Yun, Jung W.; Bae, Jin U.; Bae, Sun S.; Kim, Chi D.

    2010-05-15

    Episodic exposure to acrolein-rich pollutants has been linked to acute myocardial infarction, and 5-lipoxygenase (5-LO) is involved in the production of matrix metalloproteinase-9 (MMP-9), which destabilizes atherosclerotic plaques. Thus, the present study determined the effect of acrolein on 5-LO/leukotriene B{sub 4} (LTB{sub 4}) production in murine macrophages. Stimulation of J774A.1 cells with acrolein led to increased LTB{sub 4} production in association with increased 5-LO expression. Acrolein-evoked 5-LO expression was blocked by pharmacological inhibition of the ERK pathway, but not by inhibitors for JNK and p38 MAPK pathways. In line with these results, acrolein exclusively increased the phosphorylation of ERK among these MAPK, suggesting a role for the ERK pathway in acrolein-induced 5-LO expression with subsequent production of LTB{sub 4}. Among the receptor tyrosine kinases including epidermal growth factor receptor (EGFR) and platelet derived growth factor receptor (PDGFR), acrolein-evoked ERK phosphorylation was attenuated by AG1478, an EGFR inhibitor, but not by AG1295, a PDGFR inhibitor. In addition, acrolein-evoked 5-LO expression was also inhibited by inhibition of EGFR pathway, but not by inhibition of PDGFR pathway. These observations suggest that acrolein has a profound effect on the 5-LO pathway via an EGFR-mediated activation of ERK pathway, leading to acute ischemic syndromes through the generation of LTB{sub 4}, subsequent MMP-9 production and plaque rupture.

  6. Nandrolone reduces activation of Notch signaling in denervated muscle associated with increased Numb expression

    SciTech Connect

    Liu, Xin-Hua; Yao, Shen; Qiao, Rui-Fang; Levine, Alice C.; Kirschenbaum, Alexander; Pan, Jiangping; Wu, Yong; Qin, Weiping; Bauman, William A.; Cardozo, Christopher P.

    2011-10-14

    Highlights: {yields} Nerve transection increased Notch signaling in paralyzed muscle. {yields} Nandrolone prevented denervation-induced Notch signaling. {yields} Nandrolone induced the expression of an inhibitor of the Notch signaling, Numb. {yields} Reduction of denervation-induced Notch signaling by nandrolone is likely through upregulation of Numb. -- Abstract: Nandrolone, an anabolic steroid, slows denervation-atrophy in rat muscle. The molecular mechanisms responsible for this effect are not well understood. Androgens and anabolic steroids activate Notch signaling in animal models of aging and thereby mitigate sarcopenia. To explore the molecular mechanisms by which nandrolone prevents denervation-atrophy, we investigated the effects of nandrolone on Notch signaling in denervated rat gastrocnemius muscle. Denervation significantly increased Notch activity reflected by elevated levels of nuclear Notch intracellular domain (NICD) and expression of Hey1 (a Notch target gene). Activation was greatest at 7 and 35 days after denervation but remained present at 56 days after denervation. Activation of Notch in denervated muscle was prevented by nandrolone associated with upregulated expression of Numb mRNA and protein. These data demonstrate that denervation activates Notch signaling, and that nandrolone abrogates this response associated with increased expression of Numb, suggesting a potential mechanism by which nandrolone reduces denervation-atrophy.

  7. Trimetazidine protects against hypoxia-reperfusion-induced cardiomyocyte apoptosis by increasing microRNA-21 expression

    PubMed Central

    Yang, Qiong; Yang, Kan; Li, An-Ying

    2015-01-01

    Myocardial tissue injury caused by ischemia and hypoxia is a major cause of fatal diseases, including coronary atherosclerosis resulting from myocardial infarction and stroke. Trimetazidine (TMZ), as an anti-ischemic and antioxidant agent, has been demonstrated to preventing ischemia/reperfusion-induced cardiomyocyte apoptosis. However, the anti-apoptosis mechanism of TMZ has not been fully elucidated. The present study demonstrated that miR-21 involved trimetazidine-induced anti-apoptosis during H/R injury in H9C2 cell. In this study, TMZ increased miR-21 expression which further upregulated the Akt signaling activity via suppressing the expression of phosphatase and tensin homolog (PTEN) in H/R H9C2 cell. The increased activity of Akt signaling decreased the ratio of Bax/Bcl-2 and the expression of caspase-3 and inhibited H/R induced apoptosis. In conclusion, this study revealed the mechanism that TMZ up-regulated miR-21 expression, then miR-21 targeted PTEN increasing the PI3K pathway and finally the activation of this pathway counteracted the apoptotic effect of hypoxia/reperfusion. PMID:26097555

  8. Trimetazidine protects against hypoxia-reperfusion-induced cardiomyocyte apoptosis by increasing microRNA-21 expression.

    PubMed

    Yang, Qiong; Yang, Kan; Li, An-Ying

    2015-01-01

    Myocardial tissue injury caused by ischemia and hypoxia is a major cause of fatal diseases, including coronary atherosclerosis resulting from myocardial infarction and stroke. Trimetazidine (TMZ), as an anti-ischemic and antioxidant agent, has been demonstrated to preventing ischemia/reperfusion-induced cardiomyocyte apoptosis. However, the anti-apoptosis mechanism of TMZ has not been fully elucidated. The present study demonstrated that miR-21 involved trimetazidine-induced anti-apoptosis during H/R injury in H9C2 cell. In this study, TMZ increased miR-21 expression which further upregulated the Akt signaling activity via suppressing the expression of phosphatase and tensin homolog (PTEN) in H/R H9C2 cell. The increased activity of Akt signaling decreased the ratio of Bax/Bcl-2 and the expression of caspase-3 and inhibited H/R induced apoptosis. In conclusion, this study revealed the mechanism that TMZ up-regulated miR-21 expression, then miR-21 targeted PTEN increasing the PI3K pathway and finally the activation of this pathway counteracted the apoptotic effect of hypoxia/reperfusion. PMID:26097555

  9. Vacuum-assisted closure increases ICAM-1, MIF, VEGF and collagen I expression in wound therapy

    PubMed Central

    WANG, WEIYANG; PAN, ZHENYU; HU, XIANG; LI, ZONGHUAN; ZHAO, YONG; YU, AI-XI

    2014-01-01

    Severe traumatic wounds are challenging to manage during surgery. The introduction of vacuum-assisted closure (VAC) is a breakthrough in wound management. The aim of the present study was to investigate the effect of VAC on cytokines in wounds during the management of severe traumatic wounds following initial debridement. VAC and conventional wound care (CWC) were independently applied to severe traumatic wounds on pigs. The expression levels of intercellular adhesion molecule-1 (ICAM-1), migration inhibitory factor (MIF), vascular endothelial growth factor (VEGF), basic fibroblast growth factor, collagen I and human fibroblast collagenase 1 were detected by quantitative polymerase chain reaction and western blotting. VAC significantly increased the expression of ICAM-1, MIF, VEGF and collagen I compared with that induced by CWC at the protein and mRNA levels. Therefore, the results of the present study indicate that VAC therapy is an effective method for treating severe traumatic wounds, as it increases the expression of cytokines in wounds. VAC significantly increases the expression of ICAM-1, MIF, VEGF and collagen I to manage severe traumatic wounds. PMID:24940415

  10. Trichostatin A increases SMN expression and survival in a mouse model of spinal muscular atrophy

    PubMed Central

    Avila, Amy M.; Burnett, Barrington G.; Taye, Addis A.; Gabanella, Francesca; Knight, Melanie A.; Hartenstein, Parvana; Cizman, Ziga; Di Prospero, Nicholas A.; Pellizzoni, Livio; Fischbeck, Kenneth H.; Sumner, Charlotte J.

    2007-01-01

    The inherited motor neuron disease spinal muscular atrophy (SMA) is caused by mutation of the telomeric survival motor neuron 1 (SMN1) gene with retention of the centromeric SMN2 gene. We sought to establish whether the potent and specific hydroxamic acid class of histone deacetylase (HDAC) inhibitors activates SMN2 gene expression in vivo and modulates the SMA disease phenotype when delivered after disease onset. Single intraperitoneal doses of 10 mg/kg trichostatin A (TSA) in nontransgenic and SMA model mice resulted in increased levels of acetylated H3 and H4 histones and modest increases in SMN gene expression. Repeated daily doses of TSA caused increases in both SMN2-derived transcript and SMN protein levels in neural tissues and muscle, which were associated with an improvement in small nuclear ribonucleoprotein (snRNP) assembly. When TSA was delivered daily beginning on P5, after the onset of weight loss and motor deficit, there was improved survival, attenuated weight loss, and enhanced motor behavior. Pathological analysis showed increased myofiber size and number and increased anterior horn cell size. These results indicate that the hydroxamic acid class of HDAC inhibitors activates SMN2 gene expression in vivo and has an ameliorating effect on the SMA disease phenotype when administered after disease onset. PMID:17318264

  11. Adenovirus expressing β2-microglobulin recovers HLA class I expression and antitumor immunity by increasing T-cell recognition.

    PubMed

    Del Campo, A B; Carretero, J; Muñoz, J A; Zinchenko, S; Ruiz-Cabello, F; González-Aseguinolaza, G; Garrido, F; Aptsiauri, N

    2014-08-01

    Optimal tumor cell surface expression of human leukocyte antigen (HLA) class I molecules is essential for the presentation of tumor-associated peptides to T-lymphocytes. However, a hallmark of many types of tumor is the loss or downregulation of HLA class I expression associated with ineffective tumor antigen presentation to T cells. Frequently, HLA loss can be caused by structural alterations in genes coding for HLA class I complex, including the light chain of the complex, β2-microglobulin (β2m). Its best-characterized function is to interact with HLA heavy chain and stabilize the complex leading to a formation of antigen-binding cleft recognized by T-cell receptor on CD8+ T cells. Our previous study demonstrated that alterations in the β2m gene are frequently associated with cancer immune escape leading to metastatic progression and resistance to immunotherapy. These types of defects require genetic transfer strategies to recover normal expression of HLA genes. Here we characterize a replication-deficient adenoviral vector carrying human β2m gene, which is efficient in recovering proper tumor cell surface HLA class I expression in β2m-negative tumor cells without compromising the antigen presentation machinery. Tumor cells transduced with β2m induced strong activation of T cells in a peptide-specific HLA-restricted manner. Gene therapy using recombinant adenoviral vectors encoding HLA genes increases tumor antigen presentation and represents a powerful tool for modulation of tumor cell immunogenicity by restoration of missing or altered HLA genes. It should be considered as part of cancer treatment in combination with immunotherapy. PMID:24971583

  12. ALX1 promotes migration and invasion of lung cancer cells through increasing snail expression

    PubMed Central

    Yao, Wei; Liu, Yong; Zhang, Zhuo; Li, Guoquan; Xu, Xiaoying; Zou, Kun; Xu, Yinghui; Zou, Lijuan

    2015-01-01

    Lung cancer is one of the main causes in cancer-related death. Here we reported a novel functional role of Aristaless-like homeobox1 (ALX1) in lung carcinogenesis. Analysis of ALX1 in lung cancer specimens confirms upregulation of ALX1 in lung cancer, especially these with distant metastasis. Moreover, higher level of ALX1 expression is associated with poorer prognosis of lung cancer patients. Ectopic expression of ALX1 significantly promotes lung cancer cell proliferation, migration and invasion, while ALX1 silencing by siRNA significantly inhibits these abilities of lung cancer cells. The functional role of ALX1 is dependent on increasing Snail expression and knockdown of Snail could restrain the role of ALX1. Collectively, we identify critical roles of ALX1 in lung cancer development and progression. These findings may serve as a framework for future investigations designed to more comprehensive determination of ALX1 as a potential therapeutic target. PMID:26722397

  13. GNMT expression increases hepatic folate contents and folate-dependent methionine synthase-mediated homocysteine remethylation.

    PubMed

    Wang, Yi-Cheng; Chen, Yi-Ming; Lin, Yan-Jun; Liu, Shih-Ping; Chiang, En-Pei Isabel

    2011-01-01

    Glycine N-methyltransferase (GNMT) is a major hepatic enzyme that converts S-adenosylmethionine to S-adenosylhomocysteine while generating sarcosine from glycine, hence it can regulate mediating methyl group availability in mammalian cells. GNMT is also a major hepatic folate binding protein that binds to, and, subsequently, may be inhibited by 5-methyltetrafolate. GNMT is commonly diminished in human hepatoma; yet its role in cellular folate metabolism, in tumorigenesis and antifolate therapies, is not understood completely. In the present study, we investigated the impacts of GNMT expression on cell growth, folate status, methylfolate-dependent reactions and antifolate cytotoxicity. GNMT-diminished hepatoma cell lines transfected with GNMT were cultured under folate abundance or restriction. Folate-dependent homocysteine remethylation fluxes were investigated using stable isotopic tracers and gas chromatography/mass spectrometry. Folate status was compared between wild-type (WT), GNMT transgenic (GNMT(tg)) and GNMT knockout (GNMT(ko)) mice. In the cell model, GNMT expression increased folate concentration, induced folate-dependent homocysteine remethylation, and reduced antifolate methotrexate cytotoxicity. In the mouse models, GNMT(tg) had increased hepatic folate significantly, whereas GNMT(ko) had reduced folate. Liver folate levels correlated well with GNMT expressions (r = 0.53, P = 0.002); and methionine synthase expression was reduced significantly in GNMT(ko), demonstrating impaired methylfolate-dependent metabolism by GNMT deletion. In conclusion, we demonstrated novel findings that restoring GNMT assists methylfolate-dependent reactions and ameliorates the consequences of folate depletion. GNMT expression in vivo improves folate retention and bioavailability in the liver. Studies on how GNMT expression impacts the distribution of different folate cofactors and the regulation of specific folate dependent reactions are underway. PMID:21210071

  14. Increased atypical PKC expression and activity in the phrenic motor nucleus following cervical spinal injury

    PubMed Central

    Guenther, C.H.; Windelborn, J.A.; Tubon, T.C.; Yin, J.C.P.; Mitchell, G.S.

    2012-01-01

    Atypical protein kinase C (aPKC) isoforms are expressed in phrenic motor neurons, a group of motor neurons critical for breathing. Following C2 cervical hemisection (C2HS), spontaneous plasticity occurs in crossed-spinal synaptic pathways to phrenic motor neurons, at least partially restoring inspiratory phrenic activity below the injury. Since aPKCs are necessary for synaptic plasticity in other systems, we tested the hypothesis that C2HS increases aPKC expression and activity in spinal regions associated with the phrenic motor nucleus. C2 laminectomy (sham) or C2HS was performed on adult, male Lewis rats. Ventral spinal segments C3–5 were harvested 1, 3 or 28 days post-surgery, and prepared for aPKC enzyme activity assays and immunoblots. Ventral cervical aPKC activity was elevated 1 and 28, but not 3, days post-C2HS (1 day: 63% vs sham ipsilateral to injury; p<0.05; 28 day: 426% vs sham; p<0.05; no difference in ipsilateral vs contralateral response). Total PKCζ/ι protein expression was unchanged by C2HS, but total and phosphorylated PKMζ (constitutively active PKCζ isoform) increased ipsilateral to injury 28 days post-C2HS (p<0.05). Ipsilateral aPKC activity and expression were strongly correlated (r2=0.675, p<0.001). In a distinct group of rats, immunohistochemistry confirmed that aPKCs are expressed in neurons 28 days post-C2HS, including large, presumptive phrenic motor neurons; aPKCs were not detected in adjacent microglia (OX-42 positive cells) or astrocytes (GFAP positive cells). Changes in aPKC expression in the phrenic motor nucleus following C2HS suggests that aPKCs may contribute to functional recovery following cervical spinal injury. PMID:22329943

  15. Over-Expression of the LH Receptor Increases Distant Metastases in an Endometrial Cancer Mouse Model

    PubMed Central

    Pillozzi, Serena; Fortunato, Angelo; De Lorenzo, Emanuele; Borrani, Elena; Giachi, Massimo; Scarselli, Gianfranco; Arcangeli, Annarosa; Noci, Ivo

    2013-01-01

    Objective: The aim of the present study was to define the role of luteinizing hormone receptor (LH-R) expression in endometrial cancer (EC), using preclinical mouse models, to further transfer these data to the clinical setting. Materials and Methods: The role of LH-R over-expression was studied using EC cells (Hec1A, e.g., cells with low endogenous LH-R expression) transfected with the LH-R (Hec1A-LH-R). In vitro cell proliferation was measured through the WST-1 assay, whereas cell invasion was measured trough the matrigel assay. The effects of LH-R over-expression in vivo were analyzed in an appropriately developed preclinical mouse model of EC, which mimicked postmenopausal conditions. The model consisted in an orthotopic xenograft of Hec1A cells into immunodeficient mice treated daily with recombinant LH, to assure high levels of LH. Results: In vitro data indicated that LH-R over-expression increased Hec1A invasiveness. In vivo results showed that tumors arising from Hec1A-LH-R cells injection displayed a higher local invasion and a higher number of distant metastases, mainly in the lung, compared to tumors obtained from the injection of Hec1A cells. LH withdrawal strongly inhibited local and distant metastatic spread of tumors, especially those arising from Hec1A-LH-R cells. Conclusion: The over-expression of the LH-R increases the ability of EC cells to undergo local invasion and metastatic spread. This occurs in the presence of high LH serum concentrations. PMID:24312898

  16. GW8510 Increases Insulin Expression in Pancreatic Alpha Cells through Activation of p53 Transcriptional Activity

    PubMed Central

    Fomina-Yadlin, Dina; Kubicek, Stefan; Vetere, Amedeo; He, Kaihui Hu; Schreiber, Stuart L.; Wagner, Bridget K.

    2012-01-01

    Background Expression of insulin in terminally differentiated non-beta cell types in the pancreas could be important to treating type-1 diabetes. Previous findings led us to hypothesize involvement of kinase inhibition in induction of insulin expression in pancreatic alpha cells. Methodology/Principal Findings Alpha (αTC1.6) cells and human islets were treated with GW8510 and other small-molecule inhibitors for up to 5 days. Alpha cells were assessed for gene- and protein-expression levels, cell-cycle status, promoter occupancy status by chromatin immunoprecipitation (ChIP), and p53-dependent transcriptional activity. GW8510, a putative CDK2 inhibitor, up-regulated insulin expression in mouse alpha cells and enhanced insulin secretion in dissociated human islets. Gene-expression profiling and gene-set enrichment analysis of GW8510-treated alpha cells suggested up-regulation of the p53 pathway. Accordingly, the compound increased p53 transcriptional activity and expression levels of p53 transcriptional targets. A predicted p53 response element in the promoter region of the mouse Ins2 gene was verified by chromatin immunoprecipitation (ChIP). Further, inhibition of Jun N-terminal kinase (JNK) and p38 kinase activities suppressed insulin induction by GW8510. Conclusions/Significance The induction of Ins2 by GW8510 occurred through p53 in a JNK- and p38-dependent manner. These results implicate p53 activity in modulation of Ins2 expression levels in pancreatic alpha cells, and point to a potential approach toward using small molecules to generate insulin in an alternative cell type. PMID:22242153

  17. IDO expression in brain tumors increases the recruitment of regulatory T cells and negatively impacts survival

    PubMed Central

    Wainwright, Derek A.; Balyasnikova, Irina V.; Chang, Alan L.; Ahmed, Atique U.; Moon, Kyung-Sub; Auffinger, Brenda; Tobias, Alex L.; Han, Yu; Lesniak, Maciej S.

    2012-01-01

    Purpose Glioblastoma multiforme (GBM) is an aggressive adult brain tumor with a poor prognosis. One hallmark of GBM is the accumulation of immunosuppressive and tumor-promoting CD4+FoxP3+GITR+ regulatory T cells (Tregs). Here, we investigated the role of indoleamine 2,3 dioxygenase (IDO) in brain tumors and the impact on Treg recruitment. Experimental Design To determine the clinical relevance of IDO expression in brain tumors, we first correlated patient survival to the level of IDO expression from resected glioma specimens. We also used novel orthotopic and transgenic models of glioma to study how IDO affects Tregs. The impact of tumor-derived and peripheral IDO expression on Treg recruitment, GITR expression and long-term survival was determined. Results Downregulated IDO expression in glioma predicted a significantly better prognosis in patients. Co-incidently, both IDO -competent and -deficient mice showed a survival advantage bearing IDO-deficient brain tumors, when compared to IDO-competent brain tumors. Moreover, IDO-deficiency was associated with a significant decrease in brain-resident Tregs, both in orthotopic and transgenic mouse glioma models. IDO-deficiency was also associated with lower GITR expression levels on Tregs. Interestingly, the long-term survival advantage conferred by IDO-deficiency was lost in T cell-deficient mice. Conclusions These clinical and pre-clinical data confirm that IDO expression increases the recruitment of immunosuppressive Tregs which leads to tumor outgrowth. In contrast, IDO deficiency decreases Treg recruitment and enhances T cell-mediated tumor rejection. Thus, the data suggest a critical role for IDO-mediated immunosuppression in glioma and supports the continued investigation of IDO-Treg interactions in the context of brain tumors. PMID:22932670

  18. Interleukin-6-driven progranulin expression increases cholangiocarcinoma growth by an Akt-dependent mechanism

    PubMed Central

    Frampton, Gabriel; Invernizzi, Pietro; Bernuzzi, Francesca; Pae, Hae Yong; Quinn, Matthew; Horvat, Darijana; Galindo, Cheryl; Huang, Li; McMillin, Matthew; Cooper, Brandon; Rimassa, Lorenza; DeMorrow, Sharon

    2015-01-01

    Background and objectives Cholangiocarcinoma is a devastating cancer of biliary origin with limited treatment options. The growth factor, progranulin, is overexpressed in a number of tumours. The study aims were to assess the expression of progranulin in cholangiocarcinoma and to determine its effects on tumour growth. Methods The expression and secretion of progranulin were evaluated in multiple cholangiocarcinoma cell lines and in clinical samples from patients with cholangiocarcinoma. The role of interleukin 6 (IL-6)-mediated signalling in the expression of progranulin was assessed using a combination of specific inhibitors and shRNA knockdown techniques. The effect of progranulin on proliferation and Akt activation and subsequent effects of FOXO1 phosphorylation were assessed in vitro. Progranulin knockdown cell lines were established, and the effects on cholangiocarcinoma growth were determined. Results Progranulin expression and secretion were upregulated in cholangiocarcinoma cell lines and tissue, which were in part via IL-6-mediated activation of the ERK1/2/RSK1/C/EBPβ pathway. Blocking any of these signalling molecules, by either pharmacological inhibitors or shRNA, prevented the IL-6-dependent activation of progranulin expression. Treatment of cholangiocarcinoma cells with recombinant progranulin increased cell proliferation in vitro by a mechanism involving Akt phosphorylation leading to phosphorylation and nuclear extrusion of FOXO1. Knockdown of progranulin expression in cholangiocarcinoma cells decreased the expression of proliferating cellular nuclear antigen, a marker of proliferative capacity, and slowed tumour growth in vivo. Conclusions Evidence is presented for a role for progranulin as a novel growth factor regulating cholangiocarcinoma growth. Specific targeting of progranulin may represent an alternative for the development of therapeutic strategies. PMID:22068162

  19. Increased expression of formin-like 3 contributes to metastasis and poor prognosis in colorectal carcinoma.

    PubMed

    Zeng, Yuan-Feng; Xiao, Yi-Sheng; Lu, Ming-Zhi; Luo, Xiao-Jiang; Hu, Guo-Zhu; Deng, Ke-Yu; Wu, Xiao-Mu; Xin, Hong-Bo

    2015-04-01

    Formin-like 3 (FMNL3), a member of diaphanous-related formins subfamily, plays an important role in cytoskeleton reorganization, cell adhesion and cancer cell invasion in vitro. This study aimed to explore the expression of FMNL3 in colorectal carcinoma (CRC) cell-lines and tissues, and further evaluate its prognostic value and correlation with the clinicopathological parameters, and also investigate the effects of FMNL3 gene silencing on the growth and metastasis of CRC in vivo. Immunohistochemical analysis showed that FMNL3 protein was distributed in a punctuate aggregation pattern and located mainly in the cytoplasm of glandular cavity side, close to the nucleus of CRC cells. The positive rate of FMNL3 expression was 87.5% (84/96) in CRC, which was significantly higher than that in adjacent normal mucosa (30%, 9/30). Moreover, FMNL3 protein expressed far more in primary CRC with metastasis and corresponding lymph nodes metastatic CRC than in primary CRC without metastasis. Increased expression of FMNL3 was closely correlated with tumor size, differentiation, serosal invasion, and both lymph node metastasis and distant metastasis. However, it was not correlated with patients' age and gender. According to Kaplan-Meier survival analyses, patients with FMNL3 high expression level had lower overall survival rate than that with FMNL3 low expression level. Univariate and multivariate analyses revealed that high FMNL3 expression was a significant and independent prognostic predictor of patients with CRC. In addition, FMNL3 mRNA and protein levels were substantially up-regulated in CRC-metastasis-derived cell lines, as compared to those in primary-CRC-derived ones. FMNL3 gene silencing suppressed the growth and metastasis of CRC in vivo. In conclusion, FMNL3 plays an important role in the progression and metastasis of CRC and may be a novel potential prognostic predictor and therapeutic target for patients with CRC. PMID:25758200

  20. FGF23 is elevated in multiple myeloma and increases heparanase expression by tumor cells.

    PubMed

    Suvannasankha, Attaya; Tompkins, Douglas R; Edwards, Daniel F; Petyaykina, Katarina V; Crean, Colin D; Fournier, Pierrick G; Parker, Jamie M; Sandusky, George E; Ichikawa, Shoji; Imel, Erik A; Chirgwin, John M

    2015-08-14

    Multiply myeloma (MM) grows in and destroys bone, where osteocytes secrete FGF23, a hormone which affects phosphate homeostasis and aging. We report that multiple myeloma (MM) cells express receptors for and respond to FGF23. FGF23 increased mRNA for EGR1 and its target heparanase, a pro-osteolytic factor in MM. FGF23 signals through a complex of klotho and a classical FGF receptor (FGFR); both were expressed by MM cell lines and patient samples. Bone marrow plasma cells from 42 MM patients stained positively for klotho, while plasma cells from 8 patients with monoclonal gammopathy of undetermined significance (MGUS) and 6 controls were negative. Intact, active FGF23 was increased 2.9X in sera of MM patients compared to controls. FGF23 was not expressed by human MM cells, but co-culture with mouse bone increased its mRNA. The FGFR inhibitor NVP-BGJ398 blocked the heparanase response to FGF23. NVP-BGJ398 did not inhibit 8226 growth in vitro but significantly suppressed growth in bone and induction of the osteoclast regulator RANK ligand, while decreasing heparanase mRNA. The bone microenvironment provides resistance to some anti-tumor drugs but increased the activity of NVP-BGJ398 against 8226 cells. The FGF23/klotho/heparanase signaling axis may offer targets for treatment of MM in bone. PMID:25944690

  1. FGF23 is elevated in multiple myeloma and increases heparanase expression by tumor cells

    PubMed Central

    Suvannasankha, Attaya; Tompkins, Douglas R.; Edwards, Daniel F.; Petyaykina, Katarina V.; Crean, Colin D.; Fournier, Pierrick G.; Parker, Jamie M.; Sandusky, George E.; Ichikawa, Shoji; Imel, Erik A.; Chirgwin, John M.

    2015-01-01

    Multiply myeloma (MM) grows in and destroys bone, where osteocytes secrete FGF23, a hormone which affects phosphate homeostasis and aging. We report that multiple myeloma (MM) cells express receptors for and respond to FGF23. FGF23 increased mRNA for EGR1 and its target heparanase, a pro-osteolytic factor in MM. FGF23 signals through a complex of klotho and a classical FGF receptor (FGFR); both were expressed by MM cell lines and patient samples. Bone marrow plasma cells from 42 MM patients stained positively for klotho, while plasma cells from 8 patients with monoclonal gammopathy of undetermined significance (MGUS) and 6 controls were negative. Intact, active FGF23 was increased 2.9X in sera of MM patients compared to controls. FGF23 was not expressed by human MM cells, but co-culture with mouse bone increased its mRNA. The FGFR inhibitor NVP-BGJ398 blocked the heparanase response to FGF23. NVP-BGJ398 did not inhibit 8226 growth in vitro but significantly suppressed growth in bone and induction of the osteoclast regulator RANK ligand, while decreasing heparanase mRNA. The bone microenvironment provides resistance to some anti-tumor drugs but increased the activity of NVP-BGJ398 against 8226 cells. The FGF23/klotho/heparanase signaling axis may offer targets for treatment of MM in bone. PMID:25944690

  2. Ovarian Steroids Increase PSD-95 Expression and Dendritic Spines in the Dorsal Raphe of Ovariectomized Macaques

    PubMed Central

    Rivera, Heidi M.; Bethea, Cynthia L.

    2014-01-01

    Estradiol (E) and progesterone (P) promote spinogenesis in several brain areas. Intracellular signaling cascades that promote spinogenesis involve RhoGTPases, glutamate signaling and synapse assembly. We found that in serotonin neurons, E±P administration increases (a) gene and protein expression of RhoGTPases, (b) gene expression of glutamate receptors (c) gene expression of pivotal synapse assembly proteins. Therefore, in this study we determined whether structural changes in dendritic spines in the dorsal raphe follow the observed changes in gene and protein expression. Dendritic spines were examined with immunogold silver staining of a spine marker protein, postsynaptic density-95 (PSD-95) and with Golgi staining. In the PSD-95 study, adult Ovx monkeys received placebo, E, P, or E+P for 1 month (n=3/group). Sections were immunostained for PSD-95 and the number of PSD-95-positive puncta was determined with stereology. E, P and E+P treatment significantly increased the total number of PSD-95-positive puncta (ANOVA, P=0.04). In the Golgi study, adult Ovx monkeys received placebo, E or E+P for 1 month (n=3–4) and the midbrain was Golgi-stained. A total of 80 neurons were analyzed with Neurolucida software. There was a significant difference in spine density that depended on branch order (two-way ANOVA). E+P treatment significantly increased spine density in higher-order (3–5°) dendritic branches relative to Ovx group (Bonferroni, P<0.05). In summary, E+P leads to the elaboration of dendritic spines on dorsal raphe neurons. The ability of E to induce PSD-95, but not actual spines, suggests either a sampling or time lag issue. Increased spinogenesis on serotonin dendrites would facilitate excitatory glutamatergic input and, in turn, increase serotonin neurotransmission throughout the brain. PMID:23959764

  3. Different Resistance-Training Regimens Evoked a Similar Increase in Myostatin Inhibitors Expression.

    PubMed

    Santos, A R; Lamas, L; Ugrinowitsch, C; Tricoli, V; Miyabara, E H; Soares, A G; Aoki, M S

    2015-08-01

    The aim of the present study was to investigate the effect of different resistance-training regimens (S or P) on the expression of genes related to the MSTN signaling pathway in physically-active men. 29 male subjects with at least 2 years of experience in strength training were assigned to either a strength-training group (S; n=11) or a power-training group (P; n=11). The control group (C; n=7) was composed of healthy physically-active males. The S and the P groups performed high- and low-intensity squats, respectively, 3 times per week, for 8 weeks. Muscle biopsies from the vastus lateralis muscle were collected before and after the training period. No change was observed in MSTN, ACTIIB, GASP-1 and FOXO-3 A gene expression after the training period. A similar increase in the gene expression of the inhibitory proteins of the MSTN signaling pathway, FLST (S: 4.2 fold induction and P: 3.7 fold induction, p<0.01) and FL-3 (S: 5.6 fold induction and P: 5.6 fold induction, p<0.01), was detected after the training period. SMAD-7 gene expression was similarly augmented after both training protocols (S: 2.5 fold induction; P: 2.8 fold induction; p<0.05). In conclusion, the resistance-training regimens (S and P) activated the expression of inhibitors of the MSTN signaling pathway in a similar manner. PMID:25822941

  4. Epstein-Barr Virus MicroRNA Expression Increases Aggressiveness of Solid Malignancies

    PubMed Central

    Pandya, Deep; Mariani, Marisa; He, Shiquan; Andreoli, Mirko; Spennato, Manuela; Dowell-Martino, Candice; Fiedler, Paul; Ferlini, Cristiano

    2015-01-01

    The Cancer Genome Atlas (TCGA) microRNA (miRNA) initiative has revealed a pivotal role for miRNAs in cancer. Utilizing the TCGA raw data, we performed the first mapping of viral miRNA sequences within cancer and adjacent normal tissues. Results were integrated with TCGA RNA-seq to link the expression of viral miRNAs to the phenotype. Using clinical data and viral miRNA mapping results we also performed outcome analysis. Three lines of evidence lend credence to an active role of viral miRNAs in solid malignancies. First, expression of viral miRNA is consistently higher in cancerous compared to adjacent noncancerous tissues. Second, viral miRNA expression is associated with significantly worse clinical outcome among patients with early stage malignancy. These patients are also featured by increased expression of PD1/PD-L1, a pathway implicated in tumors escaping immune destruction. Finally, a particular cluster of EBV-miRNA (miR-BART2, miR-BART4, miR-BART5, miR-BART18, and miR-BART22) is associated with expression of cytokines known to inhibit host response to cancer. Quantification of specific viral miRNAs may help identify patients who are at risk of poor outcome. These patients may be candidates for novel therapeutic strategies incorporating antiviral agents and/or inhibitors of the PD-1/PD-L1 pathway. PMID:26375401

  5. Increased endometrial expression of CC-chemokine receptor-1 in women with adenomyosis.

    PubMed

    Xu, Hong; Yang, Yanfeng; Zhou, Caiyun; Huang, Xiufeng; Lin, Jun; Zhang, Xinmei

    2014-09-01

    Abnormal endometrial expression of CC-chemokine receptor-1 (CCR1) may play a role in the pathogenesis of endometriosis. Adenomyosis, also called endometriosis interna, occurs when the endometrium invades the myometrium. The objective of this study was to determine CCR1 expression in endometrium in women with adenomyosis as compared to women without adenomyosis. We evaluated endometrial mRNA and protein expression in women with and without adenomyosis using quantitative polymerase chain reaction (PCR), immunohistochemical staining and western blot analysis, respectively. We detected CCR1-immunoreactive expression in endometrium in all women with and without adenomyosis. CCR1-immunoreactive staining in endometrial cells was significantly higher in women with adenomyosis (4.89±1.06) compared to those without adenomyosis (2.21±1.16, P<0.001). Women with adenomyosis had higher levels of CCR1 mRNA in endometrium compared to women without adenomyosis (P<0.05). CCR1 protein levels in endometrium were significantly higher in women with adenomyosis (1.66±0.79) compared to women without adenomyosis (0.56±0.13, P<0.001), and positively correlated with the severity of dysmenorrhea (r=0.87, P<0.001). These results suggest that increased CC-chemokine receptor expression may play a role in the pathogenesis of adenomyosis. PMID:24599574

  6. Ectopic expression of new alternative splice variant of Smac/DIABLO increases mammospheres formation

    PubMed Central

    Martinez-Ruiz, Gustavo U; Victoria-Acosta, Georgina; Vazquez-Santillan, Karla I; Jimenez-Hernandez, Luis; Muñoz-Galindo, Laura; Ceballos-Cancino, Gisela; Maldonado, Vilma; Melendez-Zajgla, Jorge

    2014-01-01

    Smac-α is a mitochondrial protein that, during apoptosis, is translocated to the cytoplasm, where it negatively regulates members of the inhibitor of apoptosis (IAP) family via the IAP-binding motif (IBM) contained within its amino-terminus. Here, we describe a new alternative splice variant from Smac gene, which we have named Smac-ε. Smac-ε lacks both an IBM and a mitochondrial-targeting signal (MTS) element. Smac-ε mRNA exhibits a tissue-specific expression pattern in healthy human tissues as well as in several cancer cell lines. The steady-state levels of endogenous Smac-ε protein is regulated by the proteasomal pathway. When ectopically expressed, this isoform presents a cytosolic localization and is unable to associate with or to regulate the expression of X-linked Inhibitor of apoptosis protein, the best-studied member of IAP family. Nevertheless, over-expression of Smac-ε increases mammosphere formation. Whole genome expression analyses from these mammospheres show activation of several pro-survival and growth pathways, including Estrogen-Receptor signaling. In conclusion, our results support the functionality of this new Smac isoform. PMID:25337193

  7. Increased expression of CSP and CYP genes in adult silkworm females exposed to avermectins.

    PubMed

    Xuan, Ning; Guo, Xia; Xie, Hong-Yan; Lou, Qi-Nian; Lu, Xing-Bo; Liu, Guo-Xia; Picimbon, Jean-François

    2015-04-01

    We analyzed 20 chemosensory protein (CSP) genes of the silkworm Bombyx mori. We found a high number of retrotransposons inserted in introns. We then analyzed expression of the 20 BmorCSP genes across tissues using quantitative real-time polymerase chain reaction (PCR). Relatively low expression levels of BmorCSPs were found in the gut and fat body tissues. We thus tested the effects of endectocyte insecticide abamectin (B1a and B1b avermectins) on BmorCSP gene expression. Quantitative real-time PCR experiments showed that a single brief exposure to insecticide abamectin increased dramatically CSP expression not only in the antennae but in most tissues, including gut and fat body. Furthermore, our study showed coordinate expression of CSPs and metabolic cytochrome P450 enzymes in a tissue-dependent manner in response to the insecticide. The function of CSPs remains unknown. Based on our results, we suggest a role in detecting xenobiotics that are then detoxified by cytochrome P450 anti-xenobiotic enzymes. PMID:24677614

  8. Increased extrasynaptic GluN2B expression is involved in cognitive impairment after isoflurane anesthesia

    PubMed Central

    LI, LUNXU; LI, ZHENGQIAN; CAO, YIYUN; FAN, DONGSHENG; CHUI, DEHUA; GUO, XIANGYANG

    2016-01-01

    There is increasing concern regarding the postoperative cognitive dysfunction (POCD) in the aging population, and general anesthetics are believed to be involved. Isoflurane exposure induced increased N-methyl-D-aspartic acid receptor (NMDAR) GluN2B subunit expression following anesthesia, which was accompanied by alteration of the cognitive function. However, whether isoflurane affects this expression in different subcellular compartments, and is involved in the development of POCD remains to be elucidated. The aims of the study were to investigate the effects of isoflurane on the expression of the synaptic and extrasynaptic NMDAR subunits, GluN2A and GluN2B, as well as the associated alteration of cognitive function in aged rats. The GluN2B antagonist, Ro25–6981, was given to rats exposed to isoflurane to determine the role of GluN2B in the isoflurane-induced alteration of cognitive function. The results showed that spatial learning and memory tested in the Morris water maze (MWM) was impaired at least 7 days after isoflurane exposure, and was returned to control levels 30 days thereafter. Ro25-6981 treatment can alleviate this impairment. Extrasynaptic GluN2B protein expression, but not synaptic GluN2B or GluN2A, increased significantly after isoflurane exposure compared to non-isoflurane exposure, and returned to control levels approximately 30 days thereafter. The results of the present study indicated that isoflurane induced the prolonged upregulation of extrasynaptic GluN2B expression after anesthesia and is involved in reversible cognitive impairment. PMID:27347033

  9. Increased liver pathology in hepatitis C virus transgenic mice expressing the hepatitis B virus X protein

    SciTech Connect

    Keasler, Victor V.; Lerat, Herve; Madden, Charles R.; Finegold, Milton J.; McGarvey, Michael J.; Mohammed, Essam M.A.; Forbes, Stuart J.; Lemon, Stanley M.; Hadsell, Darryl L.; Grona, Shala J.; Hollinger, F. Blaine; Slagle, Betty L. . E-mail: bslagle@bcm.edu

    2006-04-10

    Transgenic mice expressing the full-length HCV coding sequence were crossed with mice that express the HBV X gene-encoded regulatory protein HBx (ATX mice) to test the hypothesis that HBx expression accelerates HCV-induced liver pathogenesis. At 16 months (mo) of age, hepatocellular carcinoma was identified in 21% of HCV/ATX mice, but in none of the single transgenic animals. Analysis of 8-mo animals revealed that, relative to HCV/WT mice, HCV/ATX mice had more severe steatosis, greater liver-to-body weight ratios, and a significant increase in the percentage of hepatocytes staining for proliferating cell nuclear antigen. Furthermore, primary hepatocytes from HCV, ATX, and HCV/ATX transgenic mice were more resistant to fas-mediated apoptosis than hepatocytes from nontransgenic littermates. These results indicate that HBx expression contributes to increased liver pathogenesis in HCV transgenic mice by a mechanism that involves an imbalance in hepatocyte death and regeneration within the context of severe steatosis.

  10. Increased G Protein-Coupled Receptor Kinase (GRK) Expression in the Anterior Cingulate Cortex in Schizophrenia

    PubMed Central

    Funk, Adam J.; Haroutunian, Vahram; Meador-Woodruff, James H.; McCullumsmith, Robert E.

    2014-01-01

    Background Current pharmacological treatments for schizophrenia target G protein-coupled receptors (GPCRs), including dopamine receptors. Ligand bound GPCRs are regulated by a family of G protein-coupled receptor kinases (GRKs), members of which uncouple the receptor from heterotrimeric G proteins, desensitize the receptor, and induce receptor internalization via the arrestin family of scaffolding and signaling molecules. GRKs initiate the activation of downstream signaling pathways, can regulate receptors and signaling molecules independent of GPCR phosphorylation, and modulate epigenetic regulators like histone deacetylases (HDACs). We hypothesize that expression of GRK proteins are altered in schizophrenia, consistent with previous findings of alterations up and downstream from this family of molecules that facilitate intracellular signaling processes. Methods In this study we measured protein expression via Western blot analysis for GRKs 2, 3, 5, and 6 in the anterior cingulate cortex of patients with schizophrenia (N = 36) and a comparison group (N = 33). To control for antipsychotic treatment we measured these same targets in haloperidol treated vs. untreated rats (N = 10 for both). Results We found increased levels of GRK5 in schizophrenia. No changes were detected in GRK protein expression in rats treated with haloperidol decanoate for 9 months. Conclusion These data suggest that increased GRK5 expression may contribute the the pathophysiology of schizophrenia via abnormal regulation of the cytoskeleton, endocytosis, signaling, GPCRs, and histone modification. PMID:25153362

  11. Interleukin-18 Increases TLR4 and Mannose Receptor Expression and Modulates Cytokine Production in Human Monocytes

    PubMed Central

    Dias-Melicio, Luciane Alarcão; Fernandes, Reginaldo Keller; Rodrigues, Daniela Ramos; Golim, Marjorie Assis; Soares, Angela Maria Victoriano Campos

    2015-01-01

    Interleukin-18 is a proinflammatory cytokine belonging to the interleukin-1 family of cytokines. This cytokine exerts many unique biological and immunological effects. To explore the role of IL-18 in inflammatory innate immune responses, we investigated its impact on expression of two toll-like receptors (TLR2 and TLR4) and mannose receptor (MR) by human peripheral blood monocytes and its effect on TNF-α, IL-12, IL-15, and IL-10 production. Monocytes from healthy donors were stimulated or not with IL-18 for 18 h, and then the TLR2, TLR4, and MR expression and intracellular TNF-α, IL-12, and IL-10 production were assessed by flow cytometry and the levels of TNF-α, IL-12, IL-15, and IL-10 in culture supernatants were measured by ELISA. IL-18 treatment was able to increase TLR4 and MR expression by monocytes. The production of TNF-α and IL-10 was also increased by cytokine treatment. However, IL-18 was unable to induce neither IL-12 nor IL-15 production by these cells. Taken together, these results show an important role of IL-18 on the early phase of inflammatory response by promoting the expression of some pattern recognition receptors (PRRs) that are important during the microbe recognition phase and by inducing some important cytokines such as TNF-α and IL-10. PMID:25873755

  12. Skeletal muscle amino acid transporter expression is increased in young and older adults following resistance exercise

    PubMed Central

    Fry, Christopher S.; Glynn, Erin L.; Timmerman, Kyle L.; Dickinson, Jared M.; Walker, Dillon K.; Gundermann, David M.; Volpi, Elena; Rasmussen, Blake B.

    2011-01-01

    Amino acid transporters and mammalian target of rapamycin complex 1 (mTORC1) signaling are important contributors to muscle protein anabolism. Aging is associated with reduced mTORC1 signaling following resistance exercise, but the role of amino acid transporters is unknown. Young (n = 13; 28 ± 2 yr) and older (n = 13; 68 ± 2 yr) subjects performed a bout of resistance exercise. Skeletal muscle biopsies (vastus lateralis) were obtained at basal and 3, 6, and 24 h postexercise and were analyzed for amino acid transporter mRNA and protein expression and regulators of amino acid transporter transcription utilizing real-time PCR and Western blotting. We found that basal amino acid transporter expression was similar in young and older adults (P > 0.05). Exercise increased L-type amino acid transporter 1/solute-linked carrier (SLC) 7A5, CD98/SLC3A2, sodium-coupled neutral amino acid transporter 2/SLC38A2, proton-assisted amino acid transporter 1/SLC36A1, and cationic amino acid transporter 1/SLC7A1 mRNA expression in both young and older adults (P < 0.05). L-type amino acid transporter 1 and CD98 protein increased only in younger adults (P < 0.05). eukaryotic initiation factor 2 α-subunit (S52) increased similarly in young and older adults postexercise (P < 0.05). Ribosomal protein S6 (S240/244) and activating transcription factor 4 nuclear protein expression tended to be higher in the young, while nuclear signal transducer and activator of transcription 3 (STAT3) (Y705) was higher in the older subjects postexercise (P < 0.05). These results suggest that the rapid upregulation of amino acid transporter expression following resistance exercise may be regulated differently between the age groups, but involves a combination of mTORC1, activating transcription factor 4, eukaryotic initiation factor 2 α-subunit, and STAT3. We propose an increase in amino acid transporter expression may contribute to enhanced amino acid sensitivity following exercise in young and older

  13. Lung CD8+ T cells in COPD have increased expression of bacterial TLRs

    PubMed Central

    2013-01-01

    Background Toll-like receptors (TLRs) on T cells can modulate their responses, however, the extent and significance of TLR expression by lung T cells, NK cells, or NKT cells in chronic obstructive pulmonary disease (COPD) is unknown. Methods Lung tissue collected from clinically-indicated resections (n = 34) was used either: (a) to compare the expression of TLR1, TLR2, TLR2/1, TLR3, TLR4, TLR5, TLR6 and TLR9 on lung CD8+ T cells, CD4+ T cells, NK cells and NKT cells from smokers with or without COPD; or (b) to isolate CD8+ T cells for culture with anti-CD3ε without or with various TLR ligands. We measured protein expression of IFN-γ, TNF-α, IL-13, perforin, granzyme A, granzyme B, soluble FasL, CCL2, CCL3, CCL4, CCL5, CCL11, and CXCL9 in supernatants. Results All the lung subsets analyzed demonstrated low levels of specific TLR expression, but the percentage of CD8+ T cells expressing TLR1, TLR2, TLR4, TLR6 and TLR2/1 was significantly increased in COPD subjects relative to those without COPD. In contrast, from the same subjects, only TLR2/1 and TLR2 on lung CD4+ T cells and CD8+ NKT cells, respectively, showed a significant increase in COPD and there was no difference in TLR expression on lung CD56+ NK cells. Production of the Tc1 cytokines IFN-γ and TNF-α by lung CD8+ T cells were significantly increased via co-stimulation by Pam3CSK4, a specific TLR2/1 ligand, but not by other agonists. Furthermore, this increase in cytokine production was specific to lung CD8+ T cells from patients with COPD as compared to lung CD8+ T cells from smokers without COPD. Conclusions These data suggest that as lung function worsens in COPD, the auto-aggressive behavior of lung CD8+ T cells could increase in response to microbial TLR ligands, specifically ligands against TLR2/1. PMID:23374856

  14. Shuganjieyu capsule increases neurotrophic factor expression in a rat model of depression

    PubMed Central

    Fu, Jinhua; Zhang, Yingjin; Wu, Renrong; Zheng, Yingjun; Zhang, Xianghui; Yang, Mei; Zhao, Jingping; Liu, Yong

    2014-01-01

    Shuganjieyu capsule has been approved for clinical treatment by the State Food and Drug Ad-ministration of China since 2008. In the clinic, Shuganjieyu capsule is often used to treat mild to moderate depression. In the rat model of depression established in this study, Shuganjieyu capsule was administered intragastrically daily before stress. Behavioral results confirmed that depressive symptoms lessened after treatment with high-dose (150 mg/kg) Shuganjieyu capsule. Immunohistochemistry results showed that high-dose Shuganjieyu capsule significantly increased phosphorylation levels of phosphorylation cyclic adenosine monophosphate response element binding protein and brain-derived neurotrophic factor expression in the medial prefrontal cortex and hippocampal CA3 area. Overall, our results suggest that in rats, Shuganjieyu capsule effec-tively reverses depressive-like behaviors by increasing expression levels of neurotrophic factors in the brain. PMID:25206843

  15. Pseudomonas pyocyanin increases interleukin-8 expression by human airway epithelial cells.

    PubMed

    Denning, G M; Wollenweber, L A; Railsback, M A; Cox, C D; Stoll, L L; Britigan, B E

    1998-12-01

    Pseudomonas aeruginosa, an opportunistic human pathogen, causes acute pneumonia in patients with hospital-acquired infections and is commonly associated with chronic lung disease in individuals with cystic fibrosis (CF). Evidence suggests that the pathophysiological effects of P. aeruginosa are mediated in part by virulence factors secreted by the bacterium. Among these factors is pyocyanin, a redox active compound that increases intracellular oxidant stress. We find that pyocyanin increases release of interleukin-8 (IL-8) by both normal and CF airway epithelial cell lines and by primary airway epithelial cells. Moreover, pyocyanin synergizes with the inflammatory cytokines tumor necrosis factor alpha and IL-1alpha. RNase protection assays indicate that increased IL-8 release is accompanied by increased levels of IL-8 mRNA. The antioxidant n-acetyl cysteine, general inhibitors of protein tyrosine kinases, and specific inhibitors of mitogen-activated protein kinases diminish pyocyanin-dependent increases in IL-8 release. Conversely, inhibitors of protein kinases C (PKC) and PKA have no effect. In contrast to its effects on IL-8 expression, pyocyanin inhibits cytokine-dependent expression of the monocyte/macrophage/T-cell chemokine RANTES. Increased release of IL-8, a potent neutrophil chemoattractant, in response to pyocyanin could contribute to the marked infiltration of neutrophils and subsequent neutrophil-mediated tissue damage that are observed in Pseudomonas-associated lung disease. PMID:9826354

  16. Pseudomonas Pyocyanin Increases Interleukin-8 Expression by Human Airway Epithelial Cells

    PubMed Central

    Denning, Gerene M.; Wollenweber, Laura A.; Railsback, Michelle A.; Cox, Charles D.; Stoll, Lynn L.; Britigan, Bradley E.

    1998-01-01

    Pseudomonas aeruginosa, an opportunistic human pathogen, causes acute pneumonia in patients with hospital-acquired infections and is commonly associated with chronic lung disease in individuals with cystic fibrosis (CF). Evidence suggests that the pathophysiological effects of P. aeruginosa are mediated in part by virulence factors secreted by the bacterium. Among these factors is pyocyanin, a redox active compound that increases intracellular oxidant stress. We find that pyocyanin increases release of interleukin-8 (IL-8) by both normal and CF airway epithelial cell lines and by primary airway epithelial cells. Moreover, pyocyanin synergizes with the inflammatory cytokines tumor necrosis factor alpha and IL-1α. RNase protection assays indicate that increased IL-8 release is accompanied by increased levels of IL-8 mRNA. The antioxidant n-acetyl cysteine, general inhibitors of protein tyrosine kinases, and specific inhibitors of mitogen-activated protein kinases diminish pyocyanin-dependent increases in IL-8 release. Conversely, inhibitors of protein kinases C (PKC) and PKA have no effect. In contrast to its effects on IL-8 expression, pyocyanin inhibits cytokine-dependent expression of the monocyte/macrophage/T-cell chemokine RANTES. Increased release of IL-8, a potent neutrophil chemoattractant, in response to pyocyanin could contribute to the marked infiltration of neutrophils and subsequent neutrophil-mediated tissue damage that are observed in Pseudomonas-associated lung disease. PMID:9826354

  17. Increased PADI4 expression in blood and tissues of patients with malignant tumors

    PubMed Central

    2009-01-01

    Background Peptidylarginine deiminase type 4 (PAD4/PADI4) post-translationally converts peptidylarginine to citrulline. Recent studies suggest that PADI4 represses expression of p53-regulated genes via citrullination of histones at gene promoters. Methods Expression of PADI4 was investigated in various tumors and non-tumor tissues (n = 1673) as well as in A549, SKOV3 and U937 tumor cell lines by immunohistochemistry, real-time PCR, and western blot. Levels of PADI4 and citrullinated antithrombin (cAT) were investigated in the blood of patients with various tumors by ELISA (n = 1121). Results Immunohistochemistry detected significant PADI4 expression in various malignancies including breast carcinomas, lung adenocarcinomas, hepatocellular carcinomas, esophageal squamous cancer cells, colorectal adenocarcinomas, renal cancer cells, ovarian adenocarcinomas, endometrial carcinomas, uterine adenocarcinomas, bladder carcinomas, chondromas, as well as other metastatic carcinomas. However, PADI4 expression was not observed in benign leiomyomas of stomach, uterine myomas, endometrial hyperplasias, cervical polyps, teratomas, hydatidiform moles, trophoblastic cell hyperplasias, hyroid adenomas, hemangiomas, lymph hyperplasias, schwannomas, neurofibromas, lipomas, and cavernous hemangiomas of the liver. Additionally, PADI4 expression was not detected in non-tumor tissues including cholecystitis, cervicitis and synovitis of osteoarthritis, except in certain acutely inflamed tissues such as in gastritis and appendicitis. Quantitative PCR and western blot analysis showed higher PADI4 expression in gastric adenocarcinomas, lung adenocarcinomas, hepatocellular carcinomas, esophageal squamous cell cancers and breast cancers (n = 5 for each disease) than in the surrounding healthy tissues. Furthermore, western blot analysis detected PADI4 expression in cultured tumor cell lines. ELISA detected increased PADI4 and cAT levels in the blood of patients with various malignant tumors

  18. Role of Increased Guanosine Triphosphate Cyclohydrolase-1 Expression and Tetrahydrobiopterin Levels upon T Cell Activation

    PubMed Central

    Chen, Wei; Li, Li; Brod, Torben; Saeed, Omar; Thabet, Salim; Jansen, Thomas; Dikalov, Sergey; Weyand, Cornelia; Goronzy, Jorg; Harrison, David G.

    2011-01-01

    Tetrahydrobiopterin (BH4) is an essential co-factor for the nitric-oxide (NO) synthases, and in its absence these enzymes produce superoxide (O2˙̄) rather than NO. The rate-limiting enzyme for BH4 production is guanosine triphosphate cyclohydrolase-1 (GTPCH-1). Because endogenously produced NO affects T cell function, we sought to determine whether antigen stimulation affected T cell GTPCH-1 expression and ultimately BH4 levels. Resting T cells had minimal expression of inducible NOS (NOS2), endothelial NOS (NOS3), and GTPCH-1 protein and nearly undetectable levels of BH4. Anti-CD3 stimulation of T cells robustly stimulated the coordinated expression of NOS2, NOS3, and GTPCH-1 and markedly increased both GTPCH-1 activity and T cell BH4 levels. The newly expressed GTPCH-1 was phosphorylated on serine 72 and pharmacological inhibition of casein kinase II reduced GTPCH-1 phosphorylation and blunted the increase in T cell BH4. Inhibition of GTPCH-1 with diaminohydroxypyrimidine (1 mmol/liter) prevented T cell BH4 accumulation, reduced NO production, and increased T cell O2˙̄ production, due to both NOS2 and NOS3 uncoupling. GTPCH-1 inhibition also promoted TH2 polarization in memory CD4 cells. Ovalbumin immunization of mice transgenic for an ovalbumin receptor (OT-II mice) confirmed a marked increase in T cell BH4 in vivo. These studies identify a previously unidentified consequence of T cell activation, promoting BH4 levels, NO production, and modulating T cell cytokine production. PMID:21343293

  19. Prebiotic consumption in pregnant and lactating women increases IL-27 expression in human milk.

    PubMed

    Kubota, Takayuki; Shimojo, Naoki; Nonaka, Ken; Yamashita, Masakatsu; Ohara, Osamu; Igoshi, Yuka; Ozawa, Naoko; Nakano, Taiji; Morita, Yoshinori; Inoue, Yuzaburo; Arima, Takayasu; Chiba, Kohki; Nakamura, Yoshitaka; Ikegami, Shuji; Masuda, Kentaro; Suzuki, Shuichi; Kohno, Yoichi

    2014-02-01

    The consumption of probiotics by pregnant and lactating women may prevent the onset of allergic disorders in their children by increasing the concentrations of immunoactive agents such as cytokines in breast milk. Prebiotics such as fructo-oligosaccharides (FOS) increase the number of beneficial organisms such as bifidobacteria. Thus, prebiotics may have an effect similar to that of probiotics. The objective of the present study was to carry out a comprehensive analysis of mRNA expression in human milk cells to identify changes in the concentrations of cytokines in breast milk after the consumption of FOS (4 g × 2 times/d) by pregnant and lactating women. The microarray analysis of human milk cells demonstrated that the expression levels of five genes in colostrum samples and fourteen genes in 1-month breast milk samples differed more than 3-fold between the FOS and control groups (sucrose group). The mRNA expression level of IL-27, a cytokine associated with immunoregulatory function, was significantly higher in 1-month breast milk samples obtained from the FOS group than in those obtained from the control group. In addition, the protein concentrations of IL-27 in colostrum and 1-month breast milk samples were significantly higher in the FOS group than in the control group. In conclusion, the consumption of FOS by pregnant and lactating women increases the production of IL-27 in breast milk. Future studies will address the association of this phenomenon with the onset of allergic disorders in children. PMID:24073873

  20. Nerve Demyelination Increases Metabotropic Glutamate Receptor Subtype 5 Expression in Peripheral Painful Mononeuropathy

    PubMed Central

    Ko, Miau-Hwa; Hsieh, Yu-Lin; Hsieh, Sung-Tsang; Tseng, To-Jung

    2015-01-01

    Wallerian degeneration or nerve demyelination, arising from spinal nerve compression, is thought to bring on chronic neuropathic pain. The widely distributed metabotropic glutamate receptor subtype 5 (mGluR5) is involved in modulating nociceptive transmission. The purpose of this study was to investigate the potential effects of mGluR5 on peripheral hypersensitivities after chronic constriction injury (CCI). Sprague-Dawley rats were operated on with four loose ligatures around the sciatic nerve to induce thermal hyperalgesia and mechanical allodynia. Primary afferents in dermis after CCI exhibited progressive decreases, defined as partial cutaneous denervation; importantly, mGluR5 expressions in primary afferents were statistically increased. CCI-induced neuropathic pain behaviors through the intraplantar injections of 2-methyl-6-(phenylethynyl)-pyridine (MPEP), a selective mGluR5 antagonist, were dose-dependently attenuated. Furthermore, the most increased mGluR5 expressions in primary afferents surrounded by reactive Schwann cells were observed at the distal CCI stumps of sciatic nerves. In conclusion, these results suggest that nerve demyelination results in the increases of mGluR5 expression in injured primary afferents after CCI; and further suggest that mGluR5 represents a main therapeutic target in developing pharmacological strategies to prevent peripheral hypersensitivities. PMID:25739080

  1. High-glucose environment increased thrombospondin-1 expression in keratinocytes via DNA hypomethylation.

    PubMed

    Lan, Cheng-Che E; Huang, Shu-Mei; Wu, Ching-Shuang; Wu, Chin-Han; Chen, Gwo-Shing

    2016-03-01

    Diabetes is an important health issue because of its increasing prevalence and association with impaired wound healing. Epidermal keratinocytes with overexpressed antiangiogenic molecule thrombospondin-1 (TSP1) have been shown to impair proper wound healing. This study examined the potential involvement of keratinocyte-derived TSP1 on diabetic wound healing. Cultured human keratinocytes and diabetic rat model were used to evaluate the effect of high-glucose environment on TSP1 expression in epidermal keratinocytes, and the molecular mechanisms involved in the process were also studied. We demonstrated that high-glucose environment increased TSP1 expression in keratinocytes. In addition, increased oxidative stress induced DNA hypomethylation at the TSP1 promoter region in keratinocytes exposed to high-glucose environment. Similar findings were found in our diabetic rat model. Early antioxidant administration normalized TSP1 expression and global DNA methylation status in diabetic rat skin and improved wound healing in vivo. Because oxidative stress contributed to TSP1 DNA hypomethylation, early recognition of diabetic condition and timely administration of antioxidant are logical approaches to reduce complications associated with diabetes as alterations in epigenome may not be reversible by controlling glucose levels during the later stages of disease course. PMID:26678678

  2. The Increased Expression of Connexin and VEGF in Mouse Ovarian Tissue Vitrification by Follicle Stimulating Hormone

    PubMed Central

    Yang, Yanzhou; Chen, Jie; Wu, Hao; Pei, Xiuying; Chang, Qing; Ma, Wenzhi; Ma, Huiming; Hei, Changchun; Zheng, Xiaomin; Cai, Yufang; Zhao, Chengjun; Yu, Jia; Wang, Yanrong

    2015-01-01

    Ovarian follicular damages were caused by cryoinjury during the process of ovarian vitrification and ischemia/reperfusion during the process of ovarian transplantation. And appropriate FSH plays an important role in antiapoptosis during ovarian follicle development. Therefore, in this study, 0.3 IU/mL FSH was administered into medium during mouse ovarian cryopreservation by vitrification to ascertain the function of FSH on ovarian vitrification and avascular transplantation. The results suggested that the expressions of Cx37, Cx43, apoptotic molecular caspase-3, and angiogenesis molecular VEGF were confirmed using immunohistochemistry, western blotting, and real-time PCR, and the results suggested that the treatment with FSH remarkably increased the number of morphologically normal follicles in vitrified/warmed ovaries by upregulating the expression of Cx37, Cx43, VEGF, and VEGF receptor 2, but downregulating the expression of caspase-3. In addition, the vitrified/warmed ovaries were transplanted, and the related fertility was analyzed, and the results suggested that the fertility, neoangiogenesis, and follicle reserve were remarkably increased in the FSH administrated group. Taken together, administration of 0.3 IU/mL FSH during ovarian cryopreservation by vitrification can maintain ovarian survival during ovarian vitrification and increases the blood supply with avascular transplantation via upregulation of Cx43, Cx37, and VEGF/VEGFR2, as well as through its antiapoptotic effects. PMID:26539488

  3. Melatonin overcomes resistance to clofarabine in two leukemic cell lines by increased expression of deoxycytidine kinase.

    PubMed

    Yamanishi, Miho; Narazaki, Hidehiko; Asano, Takeshi

    2015-03-01

    Drug resistance remains a serious problem in leukemia therapy. Among newly developed nucleoside antimetabolites, clofarabine has broad cytotoxic activity showing therapeutic promise and is currently approved for relapsed acute lymphoblastic leukemia. To investigate the mechanisms responsible for clofarabine resistance, we established two clofarabine-resistant lymphoblastic leukemia cell lines from parental lines. To elucidate the mechanisms against clofarabine resistance in two newly established clofarabine-resistant cell lines, we measured the expression of export pumps multidrug resistance protein 1, multidrug resistance-associated protein 1, and ATP-binding cassette subfamily G member 2. There were no differences in the expression between clofarabine-sensitive and -resistant cell lines. Next, we determined expression of deoxycytidine kinase (dCK), which phosphorylates clofarabine to exert cytotoxicity, in clofarabine-sensitive and -resistant cells. Clofarabine-resistant cells showed significantly decreased expression of dCK RNA when compared with sensitive cells. To elucidate the mechanisms of decreased dCK expression in clofarabine-resistant cells, we analyzed the methylation status of CpG islands of the dCK promoter and found no differences in methylation status between clofarabine-sensitive and -resistant cells. Next, we measured the acetylation status of histone and found that total histone acetylation, and histone H3 and H4 acetylation on chromatin immunoprecipitation assay were significantly decreased in resistant cells. Melatonin is an indolamine that functions in the regulation of chronobiological rhythms to exert cytotoxic effects. We examined the effects of melatonin in clofarabine-resistant cells and found that melatonin treatment led to significantly increased cytotoxicity with clofarabine in resistant cells via increased acetylation. Melatonin may be a useful candidate for overcoming clofarabine resistance in two newly established clofarabine

  4. Cotinine Exposure Increases Fallopian Tube PROKR1 Expression via Nicotinic AChRα-7

    PubMed Central

    Shaw, Julie L.V.; Oliver, Elizabeth; Lee, Kai-Fai; Entrican, Gary; Jabbour, Henry N.; Critchley, Hilary O.D.; Horne, Andrew W.

    2010-01-01

    Tubal ectopic pregnancy (EP) is the most common cause of maternal mortality in the first trimester of pregnancy; however, its etiology is uncertain. In EP, embryo retention within the Fallopian tube (FT) is thought to be due to impaired smooth muscle contractility (SMC) and alterations in the tubal microenvironment. Smoking is a major risk factor for EP. FTs from women with EP exhibit altered prokineticin receptor-1 (PROKR1) expression, the receptor for prokineticins (PROK). PROK1 is angiogenic, regulates SMC, and is involved in intrauterine implantation. We hypothesized that smoking predisposes women to EP by altering tubal PROKR1 expression. Sera/FT were collected at hysterectomy (n = 21). Serum levels of the smoking metabolite, cotinine, were measured by enzyme-linked immunosorbent assay. FTs were analyzed by q-RT-PCR, immunohistochemistry, and Western blotting for expression of PROKR1 and the predicted cotinine receptor, nicotinic acetylcholine receptor α-7 (AChRα−7). FT explants (n = 4) and oviductal epithelial cells (cell line OE-E6/E7) were treated with cotinine and an nAChRα−7 antagonist. PROKR1 transcription was higher in FTs from smokers (P < 0.01). nAChRα−7 expression was demonstrated in FT epithelium. Cotinine treatment of FT explants and OE-E6/E7 cells increased PROKR1 expression (P < 0.05), which was negated by cotreatment with nAChRα−7 antagonist. Smoking targets human FTs via nAChRα−7 to increase tubal PROKR1, leading to alterations in the tubal microenvironment that could predispose to EP. PMID:20864676

  5. ZBTB2 increases PDK4 expression by transcriptional repression of RelA/p65

    PubMed Central

    Kim, Min-Young; Koh, Dong-In; Choi, Won-Il; Jeon, Bu-Nam; Jeong, Deok-yoon; Kim, Kyung-Sup; Kim, Kunhong; Kim, Se-Hoon; Hur, Man-Wook

    2015-01-01

    The NF-κB is found in almost all animal cell types and is involved in a myriad of cellular responses. Aberrant expression of NF-κB has been linked to cancer, inflammatory diseases and improper development. Little is known about transcriptional regulation of the NF-κB family member gene RelA/p65. Sp1 plays a key role in the expression of the RelA/p65 gene. ZBTB2 represses transcription of the gene by inhibiting Sp1 binding to a Sp1-binding GC-box in the RelA/p65 proximal promoter (bp, −31 to −21). Moreover, recent studies revealed that RelA/p65 directly binds to the peroxisome proliferator-activated receptor-γ coactivator1α (PGC1α) to decrease transcriptional activation of the PGC1α target gene PDK4, whose gene product inhibits pyruvate dehydrogenase (PDH), a key regulator of TCA cycle flux. Accordingly, we observed that RelA/p65 repression by ZBTB2 indirectly results in increased PDK4 expression, which inhibits PDH. Consequently, in cells with ectopic ZBTB2, the concentrations of pyruvate and lactate were higher than those in normal cells, indicating changes in glucose metabolism flux favoring glycolysis over the TCA cycle. Knockdown of ZBTB2 in mouse xenografts decreased tumor growth. ZBTB2 may increase cell proliferation by reprogramming glucose metabolic pathways to favor glycolysis by upregulating PDK4 expression via repression of RelA/p65 expression. PMID:25609694

  6. Mechanical stretch increases CCN2/CTGF expression in anterior cruciate ligament-derived cells

    SciTech Connect

    Miyake, Yoshiaki; Furumatsu, Takayuki; Kubota, Satoshi; Kawata, Kazumi; Ozaki, Toshifumi; Takigawa, Masaharu

    2011-06-03

    Highlights: {yields} CCN2/CTGF localizes to the ligament-to-bone interface, but is not to the midsubstance region of human anterior cruciate ligament (ACL). {yields} Mechanical stretch induces higher increase of CCN2/CTGF gene expression and protein secretion in ACL interface cells compared with ACL midsubstance cells. {yields} CCN2/CTGF treatment stimulates the proliferation of ACL interface cells. -- Abstract: Anterior cruciate ligament (ACL)-to-bone interface serves to minimize the stress concentrations that would arise between two different tissues. Mechanical stretch plays an important role in maintaining cell-specific features by inducing CCN family 2/connective tissue growth factor (CCN2/CTGF). We previously reported that cyclic tensile strain (CTS) stimulates {alpha}1(I) collagen (COL1A1) expression in human ACL-derived cells. However, the biological function and stress-related response of CCN2/CTGF were still unclear in ACL fibroblasts. In the present study, CCN2/CTGF was observed in ACL-to-bone interface, but was not in the midsubstance region by immunohistochemical analyses. CTS treatments induced higher increase of CCN2/CTGF expression and secretion in interface cells compared with midsubstance cells. COL1A1 expression was not influenced by CCN2/CTGF treatment in interface cells despite CCN2/CTGF stimulated COL1A1 expression in midsubstance cells. However, CCN2/CTGF stimulated the proliferation of interface cells. Our results suggest that distinct biological function of stretch-induced CCN2/CTGF might regulate region-specific phenotypes of ACL-derived cells.

  7. Effects of increased milking frequency on gene expression in the bovine mammary gland

    PubMed Central

    Connor, Erin E; Siferd, Stephen; Elsasser, Theodore H; Evock-Clover, Christina M; Van Tassell, Curtis P; Sonstegard, Tad S; Fernandes, Violet M; Capuco, Anthony V

    2008-01-01

    Background Previous research has demonstrated that increased milking frequency of dairy cattle during the first few weeks of lactation enhances milk yield, and that the effect persists throughout the entire lactation period. The specific mechanisms controlling this increase in milk production are unknown, but suggested pathways include increased mammary epithelial cell number, secretory capacity, and sensitivity to lactogenic hormones. We used serial analysis of gene expression (SAGE) and microarray analysis to identify changes in gene expression in the bovine mammary gland in response to 4× daily milking beginning at d 4 of lactation (IMF4) relative to glands milked 2× daily (Control) to gain insight into physiological changes occurring within the gland during more frequent milking. Results Results indicated changes in gene expression related to cell proliferation and differentiation, extracellular matrix (ECM) remodeling, metabolism, nutrient transport, and immune function in IMF4 versus Control cows. In addition, pathways expected to promote neovascularization within the gland appeared to be up regulated in IMF4 cows. To validate this finding, immunolocalization of Von Willebrandt's factor (VWF), an endothelial cell marker, and its co-localization with the nuclear proliferation antigen Ki67 were evaluated in mammary tissue sections at approximately d 7 and d 14 of lactation in cows milked 4× daily versus Controls to estimate endothelial cell abundance and proliferation within the gland. Consistent with expression of genes related to neovascularization, both abundance of VWF and its co-localization with Ki67 appeared to be elevated in cows milked 4× daily, suggesting persistent increased milk yield in response to increased milking frequency may be mediated or complemented by enhanced mammary ECM remodeling and neovascularization within the gland. Conclusion Additional study is needed to determine whether changes in ECM remodeling and neovascularization of the

  8. Copper-GHK increases integrin expression and p63 positivity by keratinocytes.

    PubMed

    Kang, Youn-A; Choi, Hye-Ryung; Na, Jung-Im; Huh, Chang-Hun; Kim, Min-Ji; Youn, Sang-Woong; Kim, Kyu-Han; Park, Kyoung-Chan

    2009-04-01

    Glycyl-L-histidyl-L-lysyl (GHK) possesses a high affinity for copper(II) ions, with which it spontaneously forms a complex (copper-GHK). It is well known that copper-GHK plays a physiological role in the process of wound healing and tissue repair by stimulating collagen synthesis in fibroblasts. This study was conducted to investigate the effects of copper-GHK on keratinocytes. Proliferative effects were analyzed and hematoxylin and eosin staining and immunohistochemistry were conducted to evaluate the effects of copper-GHK in skin equivalent (SE) models. In addition, western blotting was performed. In monolayer cultured keratinocytes, copper-GHK increased the proliferation of keratinocytes. When the SE models were evaluated, basal cells became cuboidal when copper-GHK was added. Immunohistochemical analysis revealed that copper-GHK increased proliferating cell nuclear antigen (PCNA) and p63 positivity. Furthermore, the expression of integrin alpha6 and beta1 increased in SE models, and these results were confirmed by Western blotting. The results of this study indicate that treatment with copper-GHK may increase the proliferative potential of basal keratinocytes by modulating the expression of integrins, p63 and PCNA. In addition, increased levels of p63, a putative stem cell marker of the skin, suggests that copper-GHK promotes the survival of basal stem cells in the skin. PMID:19319546

  9. Hypertension produced by placental ischemia in pregnant rats is associated with increased soluble endoglin expression.

    PubMed

    Gilbert, Jeffrey S; Gilbert, Sara A B; Arany, Marietta; Granger, Joey P

    2009-02-01

    Recent clinical studies indicate that an excess of angiostatic factors, such as soluble endoglin (sEng), is related to the occurrence of preeclampsia. Although recent clinical studies report that sEng is increased in preeclamptic women, the mechanisms underlying its overexpression remain unclear. Evidence suggests that hypoxia and induction of heme oxygenase-1 have opposing effects on sEng expression, the former stimulatory and the latter inhibitory. Hence, we hypothesized that placental ischemia because of reduced uterine perfusion pressure (RUPP) in the pregnant rat would increase sEng expression and decrease heme oxygenase-1. Mean arterial pressure was obtained via arterial catheter, and serum and placental proteins were measured by Western blot. Mean arterial pressure was increased (132+/-3 mm Hg versus 102+/-2 mm Hg; P<0.001), and fetal (2.35+/-0.05 g versus 1.76+/-0.08 g; P<0.001) and placental weight were decreased (0.47+/-0.04 g versus 0.58+/-0.03 g; P<0.01) in the RUPP compared with normal pregnant controls. Serum sEng (0.10+/-0.02 arbitrary pixel units [apu] versus 0.05+/-0.01 apu; P<0.05) and placental endoglin (4.7+/-2.3 apu versus 1.45+/-0.42 apu; P<0.05) were increased along with placental hypoxia inducible factor-1 alpha (1.42+/-0.25 apu versus 0.68+/-0.09 apu; P<0.05) expression in the RUPP versus the normal pregnant dams. Placental HO-1 (1.4+/-0.3 apu versus 2.5+/-0.1 apu; P<0.05) expression decreased in the RUPP compared with normal pregnant dams. The present findings support our hypothesis that placental ischemia because of RUPP increases the expression of sEng and shifts the balance of angiogenic factors in the maternal circulation toward an angiostatic state. The present study provides further evidence that placental ischemia is a strong in vivo stimulus of angiostatic factors during pregnancy. PMID:19075097

  10. Cell- and isoform-specific increases in arginase expression in acute silica-induced pulmonary inflammation.

    PubMed

    Poljakovic, Mirjana; Porter, Dale W; Millecchia, Lyndell; Kepka-Lenhart, Diane; Beighley, Christopher; Wolfarth, Michael G; Castranova, Vincent; Morris, Sidney M

    2007-01-15

    Arginase induction was reported in several inflammatory lung diseases, suggesting that this may be a common feature underlying the pathophysiology of such diseases. As little is known regarding arginase expression in silicosis, the induction and cellular localization of arginase were elucidated in lungs of Sprague-Dawley rats 24 h following exposure to varying doses of silica by intratracheal instillation. Arginase expression was evaluated by activity assay, quantification of arginase I and arginase II mRNA levels using real-time polymerase chain reaction (PCR), and immunohistochemistry. Analyses of cells and fluid obtained by bronchoalveolar lavage (BAL) showed that markers of pulmonary inflammation, tissue damage, activation of alveolar macrophages (AM) and NO production were significantly increased by all silica doses. Arginase activity was increased also in AMs isolated from BAL fluid of silica-treated rats. Silica produced two- and three-fold increases in arginase activity of whole lung at doses of 1 and 5 mg/100 g body weight, respectively. Levels of arginase I mRNA, but not of arginase II mRNA, were similarly elevated. In control lungs, arginase I immunoreactivity was observed only in AMs sparsely dispersed throughout the lung; no inducible nitric oxide synthase (iNOS) immunoreactivity was detected. In silica-treated lungs, arginase I and iNOS were co-expressed in most AMs that were abundantly clustered at inflammatory foci. The rapid induction of arginase I expression in inflammatory lung cells, similar to induction of arginase in other inflammatory lung diseases, implicates elevated arginase activity as a factor in the development of lung damage following exposure to silica. PMID:17365572