Sample records for increased dj-1 expression

  1. Expression and role of DJ-1 in leukemia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Hang; Wang Min; Li Min

    2008-10-24

    DJ-1 is a multifunctional protein that has been implicated in pathogenesis of some solid tumors. In this study, we found that DJ-1 was overexpressed in acute leukemia (AL) patient samples and leukemia cell lines, which gave the first clue that DJ-1 overexpression might be involved in leukemogenesis and/or disease progression of AL. Inactivation of DJ-1 by RNA-mediated interference (RNAi) in leukemia cell lines K562 and HL60 resulted in inhibition of the proliferation potential and enhancement of the sensitivity of leukemia cells to chemotherapeutic drug etoposide. Further investigation of DJ-1 activity revealed that phosphatase and tensin homolog (PTEN), as well asmore » some proliferation and apoptosis-related genes, was regulated by DJ-1. Thus, DJ-1 might be involved in leukemogesis through regulating cell growth, proliferation, and apoptosis. It could be a potential therapeutic target for leukemia.« less

  2. A conserved human DJ1-subfamily motif (DJSM) is critical for anti-oxidative and deglycase activities of Plasmodium falciparum DJ1.

    PubMed

    Nair, Divya N; Prasad, Rajesh; Singhal, Neha; Bhattacharjee, Manish; Sudhakar, Renu; Singh, Pushpa; Thanumalayan, Subramonian; Kiran, Uday; Sharma, Yogendra; Sijwali, Puran Singh

    2018-06-01

    Plasmodium falciparum DJ1 (PfDJ1) belongs to the DJ-1/ThiJ/PfpI superfamily whose members are present in all the kingdoms of life and exhibit diverse cellular functions and biochemical activities. The common feature of the superfamily is the class I glutamine amidotransferase domain with a conserved redox-active cysteine residue, which mediates various activities of the superfamily members, including anti-oxidative activity in PfDJ1 and human DJ1 (hDJ1). As the superfamily members represent diverse functional classes, to investigate if there is any sequence feature unique to hDJ1-like proteins, sequences of the representative proteins of different functional classes were compared and analysed. A novel motif unique to PfDJ1 and several other hDJ1-like proteins, with the consensus sequence of TSXGPX5FXLX5L, was identified that we designated as the hDJ1-subfamily motif (DJSM). Several mutations that have been associated with Parkinson's disease are also present in DJSM, suggesting its functional importance in hDJ1-like proteins. Mutations of the conserved residues of DJSM of PfDJ1 did not significantly affect overall secondary structure, but caused both a significant loss (S151A and P154A) and gain (L168A) of anti-oxidative activity. We also report that PfDJ1 has deglycase activity, which was significantly decreased in its mutants of the catalytic cysteine (C106A) and DJSM (S151A and P154A). Episomal expression of the catalytic cysteine (C106A) or DJSM (P154A) mutant decreased growth rates of parasites as compared to that of wild type parasites or parasites expressing wild type PfDJ1. S151 appears to properly position the nucleophilic elbow containing C106 and P154 forms a hydrogen bond with C106, which could be a reason for the loss of activities of PfDJ1 upon their mutations. Taken together, DJSM delineates PfDJ1 and other hDJ1-subfamily proteins from the remaining superfamily, and is critical for anti-oxidative and deglycase activities of PfDJ1. Copyright © 2018

  3. ROLE OF NRF2 IN THE OXIDATIVE STRESS-DEPENDENT HYPERTENSION ASSOCIATED WITH THE DEPLETION OF DJ-1

    PubMed Central

    Cuevas, Santiago; Yang, Yu; Konkalmatt, Prasad; Asico, Laureano; Feranil, Jun; Jones, John; Villar, Van Anthony; Armando, Ines; Jose, Pedro A.

    2015-01-01

    Renal dopamine 2 receptor dysfunction is associated with oxidative stress and high blood pressure. We have reported that DJ-1, an oxidative stress response protein, is positively regulated by dopamine 2 receptor in the kidney. The transcription factor Nrf2 regulates the expression of several antioxidant genes. We tested the hypothesis that Nrf2 is involved in the renal DJ-1-mediated inhibition of reactive oxygen species production. We have reported that silencing dopamine 2 receptor in mouse renal proximal tubule cells decreases the expression of DJ-1. We now report that silencing DJ-1 or dopamine 2 receptor in mouse proximal tubule cells and mouse kidneys, decreases Nrf2 expression and activity and increases reactive oxygen species production; blood pressure is also increased in mice in which renal DJ-1 or dopamine 2 receptor is silenced. DJ-1−/− mice have decreased renal Nrf2 expression and activity, and increased nitro-tyrosine levels an dopamine 2 receptor d blood pressure. Silencing Nrf2 in mouse proximal tubule cells does not alter the expression of DJ-1 or dopamine 2 receptor, indicating that Nrf2 is downstream of dopamine 2 receptor and DJ-1. A Nrf2 inducer, bardoxolone, normalizes the systolic blood pressure and renal malondialdehyde levels in DJ-1−/− mice without affecting them in their wild-type littermates. Because Nrf2 ubiquitination is increased in DJ-1−/− mice, we conclude that the protective effect of DJ-1 on renal oxidative stress is mediated, in part, by preventing Nrf2 degradation. Moreover, renal dopamine 2 receptor and DJ-1 are necessary for normal Nrf2 activity to keep a normal redox balance and blood pressure. PMID:25895590

  4. Changes in the expression of neurotransmitter receptors in Parkin and DJ-1 knockout mice--A quantitative multireceptor study.

    PubMed

    Cremer, J N; Amunts, K; Schleicher, A; Palomero-Gallagher, N; Piel, M; Rösch, F; Zilles, K

    2015-12-17

    Parkinson's disease (PD) is a well-characterized neurological disorder with regard to its neuropathological and symptomatic appearance. At the genetic level, mutations of particular genes, e.g. Parkin and DJ-1, were found in human hereditary PD with early onset. Neurotransmitter receptors constitute decisive elements in neural signal transduction. Furthermore, since they are often altered in neurological and psychiatric diseases, receptors have been successful targets for pharmacological agents. However, the consequences of PD-associated gene mutations on the expression of transmitter receptors are largely unknown. Therefore, we studied the expression of 16 different receptor binding sites of the neurotransmitters glutamate, GABA, acetylcholine, adrenaline, serotonin, dopamine and adenosine by means of quantitative receptor autoradiography in Parkin and DJ-1 knockout mice. These knockout mice exhibit electrophysiological and behavioral deficits, but do not show the typical dopaminergic cell loss. We demonstrated differential changes of binding site densities in eleven brain regions. Most prominently, we found an up-regulation of GABA(B) and kainate receptor densities in numerous cortical areas of Parkin and DJ-1 knockout mice, as well as increased NMDA but decreased AMPA receptor densities in different brain regions of the Parkin knockout mice. The alterations of three different glutamate receptor types may indicate the potential relevance of the glutamatergic system in the pathogenesis of PD. Furthermore, the cholinergic M1, M2 and nicotinic receptors as well as the adrenergic α2 and the adenosine A(2A) receptors showed differentially increased densities in Parkin and DJ-1 knockout mice. Taken together, knockout of the PD-associated genes Parkin or DJ-1 results in differential changes of neurotransmitter receptor densities, highlighting a possible role of altered non-dopaminergic, and in particular of glutamatergic neurotransmission in PD pathogenesis. Copyright

  5. DJ-1/Park7 Sensitive Na+ /H+ Exchanger 1 (NHE1) in CD4+ T Cells.

    PubMed

    Zhou, Yuetao; Shi, Xiaolong; Chen, Hong; Zhang, Shaqiu; Salker, Madhuri S; Mack, Andreas F; Föller, Michael; Mak, Tak W; Singh, Yogesh; Lang, Florian

    2017-11-01

    DJ-1/Park7 is a redox-sensitive chaperone protein counteracting oxidation and presumably contributing to the control of oxidative stress responses and thus inflammation. DJ-1 gene deletion exacerbates the progression of Parkinson's disease presumably by augmenting oxidative stress. Formation of reactive oxygen species (ROS) is paralleled by activation of the Na + /H + exchanger 1 (NHE1). ROS formation in CD4 + T cells plays a decisive role in regulating inflammatory responses. In the present study, we explored whether DJ-1 is expressed in CD4 + T cells, and affects ROS production as well as NHE1 in those cells. To this end, DJ-1 and NHE1 transcript, and protein levels were quantified by qRT-PCR and Western blotting, respectively, intracellular pH (pH i ) utilizing bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF) fluorescence, NHE activity from realkalinization after an ammonium pulse, and ROS production utilizing 2',7' -dichlorofluorescin diacetate (DCFDA) fluorescence. As a result DJ-1 was expressed in CD4 + T cells. ROS formation, NHE1 transcript levels, NHE1 protein, and NHE activity were higher in CD4 + T cells from DJ-1 deficient mice than in CD4 + T cells from wild type mice. Antioxidant N-acetyl-cysteine (NAC) and protein tyrosine kinase (PTK) inhibitor staurosporine decreased the NHE activity in DJ-1 deficient CD4 + T cells, and blunted the difference between DJ-1 -/- and DJ-1 +/+ CD4 + T cells, an observation pointing to a role of ROS in the up-regulation of NHE1 in DJ-1 -/- CD4 + T cells. In conclusion, DJ-1 is a powerful regulator of ROS production as well as NHE1 expression and activity in CD4 + T cells. J. Cell. Physiol. 232: 3050-3059, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. DJ-1 KNOCK-DOWN IMPAIRS ASTROCYTE MITOCHONDRIAL FUNCTION

    PubMed Central

    LARSEN, N. J.; AMBROSI, G.; MULLETT, S. J.; BERMAN, S. B.; HINKLE, D. A.

    2012-01-01

    Mitochondrial dysfunction has long been implicated in the pathogenesis of Parkinson’s disease (PD). PD brain tissues show evidence for mitochondrial respiratory chain Complex I deficiency. Pharmacological inhibitors of Complex I, such as rotenone, cause experimental parkinsonism. The cytoprotective protein DJ-1, whose deletion is sufficient to cause genetic PD, is also known to have mitochondria-stabilizing properties. We have previously shown that DJ-1 is over-expressed in PD astrocytes, and that DJ-1 deficiency impairs the capacity of astrocytes to protect co-cultured neurons against rotenone. Since DJ-1 modulated, astrocyte-mediated neuroprotection against rotenone may depend upon proper astrocytic mitochondrial functioning, we hypothesized that DJ-1 deficiency would impair astrocyte mitochondrial motility, fission/fusion dynamics, membrane potential maintenance, and respiration, both at baseline and as an enhancement of rotenone-induced mitochondrial dysfunction. In astrocyte-enriched cultures, we observed that DJ-1 knock-down reduced mitochondrial motility primarily in the cellular processes of both untreated and rotenone treated cells. In these same cultures, DJ-1 knock-down did not appreciably affect mitochondrial fission, fusion, or respiration, but did enhance rotenone-induced reductions in the mitochondrial membrane potential. In neuron–astrocyte co-cultures, astrocytic DJ-1 knock-down reduced astrocyte process mitochondrial motility in untreated cells, but this effect was not maintained in the presence of rotenone. In the same co-cultures, astrocytic DJ-1 knock-down significantly reduced mitochondrial fusion in the astrocyte cell bodies, but not the processes, under the same conditions of rotenone treatment in which DJ-1 deficiency is known to impair astrocyte-mediated neuroprotection. Our studies therefore demonstrated the following new findings: (i) DJ-1 deficiency can impair astrocyte mitochondrial physiology at multiple levels, (ii) astrocyte

  7. DJ-1 Is a Copper Chaperone Acting on SOD1 Activation*

    PubMed Central

    Girotto, Stefania; Cendron, Laura; Bisaglia, Marco; Tessari, Isabella; Mammi, Stefano; Zanotti, Giuseppe; Bubacco, Luigi

    2014-01-01

    Lack of oxidative stress control is a common and often prime feature observed in many neurodegenerative diseases. Both DJ-1 and SOD1, proteins involved in familial Parkinson disease and amyotrophic lateral sclerosis, respectively, play a protective role against oxidative stress. Impaired activity and modified expression of both proteins have been observed in different neurodegenerative diseases. A potential cooperative action of DJ-1 and SOD1 in the same oxidative stress response pathway may be suggested based on a copper-mediated interaction between the two proteins reported here. To investigate the mechanisms underlying the antioxidative function of DJ-1 in relation to SOD1 activity, we investigated the ability of DJ-1 to bind copper ions. We structurally characterized a novel copper binding site involving Cys-106, and we investigated, using different techniques, the kinetics of DJ-1 binding to copper ions. The copper transfer between the two proteins was also examined using both fluorescence spectroscopy and specific biochemical assays for SOD1 activity. The structural and functional analysis of the novel DJ-1 copper binding site led us to identify a putative role for DJ-1 as a copper chaperone. Alteration of the coordination geometry of the copper ion in DJ-1 may be correlated to the physiological role of the protein, to a potential failure in metal transfer to SOD1, and to successive implications in neurodegenerative etiopathogenesis. PMID:24567322

  8. DJ-1 activates autophagy in the repression of cardiac hypertrophy.

    PubMed

    Xue, Ruicong; Jiang, Jingzhou; Dong, Bin; Tan, Weiping; Sun, Yu; Zhao, Jingjing; Chen, Yili; Dong, Yugang; Liu, Chen

    2017-11-01

    Cardiac hypertrophy is the risk factor of heart failure when the heart is confronted with pressure overload or neurohumoral stimuli. Autophagy, a conserved degradative pathway, is one of the important mechanisms involved in the regulation of cardiac hypertrophy. DJ-1 is a traditional anti-oxidative protein and emerging evidence suggested that DJ-1 might modulate autophagy. However, the regulation of autophagy by DJ-1 in the process of cardiac hypertrophy remains unknown. In our study, we firstly discovered that the expression of DJ-1declined in the process of pressure overload cardiac hypertrophy, and its alteration was parallel with the impairment of autophagy. Furthermore, we proved that DJ-1 knockout mice exhibited a more hypertrophied phenotype than wildtype mice in cardiac hypertrophy which indicated that DJ-1 is responsible for the repression of cardiac hypertrophy. Furthermore, DJ-1 knockout significantly exacerbated pulmonary edema due to cardiac hypertrophy. In the process of cardiac hypertrophy, DJ-1 knockout significantly impaired autophagy activation and enhanced mTORC1 and mTORC2 phosphorylation were found. Similarly, our in vitro study proved that DJ-1 overexpression ameliorated phenylephrine (PE)-induced cardiac hypertrophy and promoted autophagy activation. Taken together, DJ-1 might repress both pressure overload and PE-induced cardiac hypertrophy via the activation of autophagy. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Astrocyte-specific DJ-1 overexpression protects against rotenone-induced neurotoxicity in a rat model of Parkinson's disease.

    PubMed

    De Miranda, Briana R; Rocha, Emily M; Bai, Qing; El Ayadi, Amina; Hinkle, David; Burton, Edward A; Timothy Greenamyre, J

    2018-07-01

    DJ-1 is a redox-sensitive protein with several putative functions important in mitochondrial physiology, protein transcription, proteasome regulation, and chaperone activity. High levels of DJ-1 immunoreactivity are reported in astrocytes surrounding pathology associated with idiopathic Parkinson's disease, possibly reflecting the glial response to oxidative damage. Previous studies showed that astrocytic over-expression of DJ-1 in vitro prevented oxidative stress and mitochondrial dysfunction in primary neurons. Based on these observations, we developed a pseudotyped lentiviral gene transfer vector with specific tropism for CNS astrocytes in vivo to overexpress human DJ-1 protein in astroglial cells. Following vector delivery to the substantia nigra and striatum of adult Lewis rats, the DJ-1 transgene was expressed robustly and specifically within astrocytes. There was no observable transgene expression in neurons or other glial cell types. Three weeks after vector infusion, animals were exposed to rotenone to induce Parkinson's disease-like pathology, including loss of dopaminergic neurons, accumulation of endogenous α-synuclein, and neuroinflammation. Animals over-expressing hDJ-1 in astrocytes were protected from rotenone-induced neurodegeneration, and displayed a marked reduction in neuronal oxidative stress and microglial activation. In addition, α-synuclein accumulation and phosphorylation were decreased within substantia nigra dopaminergic neurons in DJ-1-transduced animals, and expression of LAMP-2A, a marker of chaperone mediated autophagy, was increased. Together, these data indicate that astrocyte-specific overexpression of hDJ-1 protects neighboring neurons against multiple pathologic features of Parkinson's disease and provides the first direct evidence in vivo of a cell non-autonomous neuroprotective function of astroglial DJ-1. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. BmDJ-1 Is a Key Regulator of Oxidative Modification in the Development of the Silkworm, Bombyx mori

    PubMed Central

    Tabunoki, Hiroko; Ode, Hiroaki; Banno, Yutaka; Katsuma, Susumu; Shimada, Toru; Mita, Kazuei; Yamamoto, Kimiko; Sato, Ryoichi; Ishii-Nozawa, Reiko; Satoh, Jun-ichi

    2011-01-01

    We cloned cDNA for the Bombyx mori DJ-1 protein (BmDJ-1) from the brains of larvae. BmDJ-1 is composed of 190 amino acids and encoded by 672 nucleotides. Northern blot analysis showed that BmDJ-1 is transcribed as a 756-bp mRNA and has one isoform. Reverse transcriptase (RT)-PCR experiments revealed that the BmDJ-1 was present in the brain, fatbody, Malpighian tubule, ovary and testis but present in only low amounts in the silkgland and hemocyte of day 4 fifth instar larvae. Immunological analysis demonstrated the presence of BmDJ-1 in the brain, midgut, fatbody, Malpighian tubule, testis and ovary from the larvae to the adult. We found that BmDJ-1 has a unique expression pattern through the fifth instar larval to adult developmental stage. We assessed the anti-oxidative function of BmDJ-1 using rotenone (ROT) in day 3 fifth instar larvae. Administration of ROT to day 3 fifth instar larvae, together with exogenous (BmNPV-BmDJ-1 infection for 4 days in advance) BmDJ-1, produced significantly lower 24-h mortality in BmDJ-1 groups than in the control. 2D-PAGE revealed an isoelectric point (pI) shift to an acidic form for BmDJ-1 in BmN4 cells upon ROT stimulus. Among the factors examined for their effects on expression level of BmDJ-1 in the hemolymph, nitric oxide (NO) concentration was identified based on dramatic developmental stage-dependent changes. Administration of isosorbide dinitrate (ISDN), which is an NO donor, to BmN4 cells produced increased expression of BmDJ-1 compared to the control. These results suggest that BmDJ-1 might control oxidative stress in the cell due to NO and serves as a development modulation factor in B. mori. PMID:21455296

  11. Low doses of Paclitaxel repress breast cancer invasion through DJ-1/KLF17 signalling pathway.

    PubMed

    Ismail, Ismail Ahmed; El-Sokkary, Gamal H; Saber, Saber H

    2018-04-27

    Paclitaxel (taxol) is an important agent against many tumours, including breast cancer. Ample data documents that paclitaxel inhibits breast cancer metastasis while others prove that paclitaxel enhances breast cancer metastasis. The mechanisms by which paclitaxel exerts its action are not well established. This study focuses on the effect of paclitaxel, particularly the low doses on breast cancer metastasis and the mechanisms that regulate it. Current results show that, paclitaxel exerts significant cytotoxicity even at low doses in both MCF-7 and MDA-MB-231 cells. Interestingly, paclitaxel significantly inhibits cell invasion and migration, decreases Snail and increases E-cadherin mRNA expression levels at the indicated low doses. Furthermore, paclitaxel-inhibiting breast cancer metastasis is associated with down-regulation of DJ-1 and ID-1 mRNA expression level with a concurrent increase in KLF17 expression. Under the same experimental conditions, paclitaxel induces KLF17 and concurrently represses ID-1 protein levels. Our results show for the first time that paclitaxel inhibits breast cancer metastasis through regulating DJ-1/KLF17/ID-1 signalling pathway; repressed DJ-1 and ID-1 and enhanced KLF17 expression. © 2018 John Wiley & Sons Australia, Ltd.

  12. DJ-1 deficiency attenuates expansion of liver progenitor cells through modulating the inflammatory and fibrogenic niches

    PubMed Central

    Chen, L; Luo, M; Sun, X; Qin, J; Yu, C; Wen, Y; Zhang, Q; Gu, J; Xia, Q; Kong, X

    2016-01-01

    Our previous study suggested that DJ-1 has a critical role in initiating an inflammatory response, but its role in the liver progenitor cell (LPC) expansion, a process highly dependent on the inflammatory niche, remains elusive. The objective of this study is to determine the role of DJ-1 in LPC expansion. The correlation of DJ-1 expression with LPC markers was examined in the liver of patients with hepatitis B or hepatitis C virus (HBV and HCV, respectively) infection, primary biliary cirrhosis (PBC), primary sclerosing cholangitis (PSC), nonalcoholic fatty liver disease (NAFLD), cirrhosis or hepatocellular carcinoma (HCC), respectively. The role of DJ-1 in LPC expansion and the formation of LPC-associated fibrosis and inflammation was examined in a 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet-induced liver injury murine model. We also determined the ability of hepatic stellate cells (HSCs) in recruiting macrophages in DJ-1 knockout (KO) mice. The expression levels of DJ-1 were upregulated in the liver of HBV, HCV, PBC and PSC patients and DDC-fed mice. Additionally, DJ-1 expression was positively correlated with LPC proliferation in patients with liver injury and mice with DDC exposure. DJ-1 has no direct effect on LPC proliferation. Reduced activation of HSCs and collagen deposition were observed in DJ-1 KO mice. Furthermore, infiltrated CD11b+Gr-1low macrophages and pro-inflammatory factors (IL-6, TNF-α) were attenuated in DJ-1 KO mice. Mechanistically, we found that HSCs isolated from DJ-1 KO mice had decreased secretion of macrophage-mobilizing chemokines, such as CCL2 and CX3CL1, resulting in impaired macrophage infiltration. DJ-1 positively correlates with LPC expansion during liver injury. DJ-1 deficiency negatively regulates LPC proliferation by impairing the formation of LPC-associated fibrosis and inflammatory niches. PMID:27277679

  13. The Expression of DJ-1 (PARK7) in Normal Human CNS and Idiopathic Parkinson's Disease

    ERIC Educational Resources Information Center

    Bandopadhyay, Rina; Kingsbury, Ann E.; Cookson, Mark R.; Reid, Andrew R.; Evans, Ian M.; Hope, Andrew D.; Pittman, Alan M.; Lashley, Tammaryn; Canet-Aviles, Rosa; Miller, David W.; McLendon, Chris; Strand, Catherine; Leonard, Andrew J.; Abou-Sleiman, Patrick M.; Healy, Daniel G.; Ariga, Hiroyashi; Wood, Nicholas W.; de Silva, Rohan; Revesz, Tamas; Hardy, John A.; Lees, Andrew J.

    2004-01-01

    Two mutations in the DJ-1 gene on chromosome1p36 have been identified recently to cause early-onset, autosomal recessive Parkinson's disease. As no information is available regarding the distribution of DJ-1 protein in the human brain, in this study we used a monoclonal antibody for DJ-1 to map its distribution in frontal cortex and substantia…

  14. Toxoplasma DJ-1 Regulates Organelle Secretion by a Direct Interaction with Calcium-Dependent Protein Kinase 1

    PubMed Central

    Child, Matthew A.; Garland, Megan; Foe, Ian; Madzelan, Peter; Treeck, Moritz; van der Linden, Wouter A.; Oresic Bender, Kristina; Weerapana, Eranthie; Wilson, Mark A.; Boothroyd, John C.; Reese, Michael L.

    2017-01-01

    ABSTRACT Human DJ-1 is a highly conserved and yet functionally enigmatic protein associated with a heritable form of Parkinson’s disease. It has been suggested to be a redox-dependent regulatory scaffold, binding to proteins to modulate their function. Here we present the X-ray crystal structure of the Toxoplasma orthologue Toxoplasma gondii DJ-1 (TgDJ-1) at 2.1-Å resolution and show that it directly associates with calcium-dependent protein kinase 1 (CDPK1). The TgDJ-1 structure identifies an orthologously conserved arginine dyad that acts as a phospho-gatekeeper motif to control complex formation. We determined that the binding of TgDJ-1 to CDPK1 is sensitive to oxidation and calcium, and that this interaction potentiates CDPK1 kinase activity. Finally, we show that genetic deletion of TgDJ-1 results in upregulation of CDPK1 expression and that disruption of the CDPK1/TgDJ-1 complex in vivo prevents normal exocytosis of parasite virulence-associated organelles called micronemes. Overall, our data suggest that TgDJ-1 functions as a noncanonical kinase-regulatory scaffold that integrates multiple intracellular signals to tune microneme exocytosis in T. gondii. PMID:28246362

  15. DJ-1 is a redox sensitive adapter protein for high molecular weight complexes involved in regulation of catecholamine homeostasis

    PubMed Central

    Piston, Dominik; Alvarez-Erviti, Lydia; Bansal, Vikas; Gargano, Daniela; Yao, Zhi; Szabadkai, Gyorgy; Odell, Mark; Puno, M Rhyan; Björkblom, Benny; Maple-Grødem, Jodi; Breuer, Peter; Kaut, Oliver; Larsen, Jan Petter; Bonn, Stefan; Møller, Simon Geir; Wüllner, Ullrich; Schapira, Anthony H V

    2017-01-01

    Abstract DJ-1 is an oxidation sensitive protein encoded by the PARK7 gene. Mutations in PARK7 are a rare cause of familial recessive Parkinson’s disease (PD), but growing evidence suggests involvement of DJ-1 in idiopathic PD. The key clinical features of PD, rigidity and bradykinesia, result from neurotransmitter imbalance, particularly the catecholamines dopamine (DA) and noradrenaline. We report in human brain and human SH-SY5Y neuroblastoma cell lines that DJ-1 predominantly forms high molecular weight (HMW) complexes that included RNA metabolism proteins hnRNPA1 and PABP1 and the glycolysis enzyme GAPDH. In cell culture models the oxidation status of DJ-1 determined the specific complex composition. RNA sequencing indicated that oxidative changes to DJ-1 were concomitant with changes in mRNA transcripts mainly involved in catecholamine metabolism. Importantly, loss of DJ-1 function upon knock down (KD) or expression of the PD associated form L166P resulted in the absence of HMW DJ-1 complexes. In the KD model, the absence of DJ-1 complexes was accompanied by impairment in catecholamine homeostasis, with significant increases in intracellular DA and noraderenaline levels. These changes in catecholamines could be rescued by re-expression of DJ-1. This catecholamine imbalance may contribute to the particular vulnerability of dopaminergic and noradrenergic neurons to neurodegeneration in PARK7-related PD. Notably, oxidised DJ-1 was significantly decreased in idiopathic PD brain, suggesting altered complex function may also play a role in the more common sporadic form of the disease. PMID:29016861

  16. Pleural effusion levels of DJ-1 are increased in elderly lung cancer patients with malignant pleural effusions.

    PubMed

    Vavougios, George; Kerenidi, Theodora; Tsilioni, Irene; Zarogiannis, Sotirios G; Gourgoulianis, Konstantinos I

    2015-01-01

    DJ-1 is a multifunctional protein implicated in redox dependent cell fate decisions. The aim of our study was to determine the pleural fluid (PF) levels of DJ-1 in malignant pleural effusions (MPEs) secondary to lung cancer. Additionally, we opted to assess potential correlations of DJ-1 PF levels with the PF levels of superoxide dismutase-1 (SOD1) and 8-isoprostane that are known antioxidant enzymes and have been previously reported in MPEs. Forty lung cancer patients with cytological proof of MPE were enrolled in this study. The PF levels of DJ-1, SOD1, and 8-isoprostane were measured by means of enzyme-linked immunosorbent assay. The median PF levels of DJ-1 were 826 ng/mL (interquartile range, IQR: 482-1010 ng/mL). DJ-1 PF levels significantly correlated with PF Cu/Zn-SOD1 and PF 8-isoprostane levels (Spearman's rho, r; r = -0.476, P = 0.002 and r = -0.264, P = 0.033, respectively), PF lactate dehydrogenase (r = -0.497, P = 0.001) and total PF cell counts (r = -0.325, P = 0.041). Finally, in patients aged over 65 the PF DJ-1 levels were significantly higher than patients aged less than 65 (875 ng/mL vs. 607 ng/mL, respectively, P = 0.037). To our knowledge, this is the first report to determine DJ-1's levels in MPEs due to lung cancer. The negative correlations between DJ-1, SOD1, and 8-isorpostane warrant further investigation regarding the altered redox regulation associated with MPEs.

  17. Distinct Mechanisms of Pathogenic DJ-1 Mutations in Mitochondrial Quality Control

    PubMed Central

    Strobbe, Daniela; Robinson, Alexis A.; Harvey, Kirsten; Rossi, Lara; Ferraina, Caterina; de Biase, Valerio; Rodolfo, Carlo; Harvey, Robert J.; Campanella, Michelangelo

    2018-01-01

    The deglycase and chaperone protein DJ-1 is pivotal for cellular oxidative stress responses and mitochondrial quality control. Mutations in PARK7, encoding DJ-1, are associated with early-onset familial Parkinson’s disease and lead to pathological oxidative stress and/or disrupted protein degradation by the proteasome. The aim of this study was to gain insights into the pathogenic mechanisms of selected DJ-1 missense mutations, by characterizing protein–protein interactions, core parameters of mitochondrial function, quality control regulation via autophagy, and cellular death following dopamine accumulation. We report that the DJ-1M26I mutant influences DJ-1 interactions with SUMO-1, in turn enhancing removal of mitochondria and conferring increased cellular susceptibility to dopamine toxicity. By contrast, the DJ-1D149A mutant does not influence mitophagy, but instead impairs Ca2+ dynamics and free radical homeostasis by disrupting DJ-1 interactions with a mitochondrial accessory protein known as DJ-1-binding protein (DJBP/EFCAB6). Thus, individual DJ-1 mutations have different effects on mitochondrial function and quality control, implying mutation-specific pathomechanisms converging on impaired mitochondrial homeostasis. PMID:29599708

  18. Life-time expression of the proteins peroxiredoxin, beta-synuclein, PARK7/DJ-1, and stathmin in the primary visual and primary somatosensory cortices in rats

    PubMed Central

    Böhm, Michael R. R.; Melkonyan, Harutyun; Thanos, Solon

    2015-01-01

    Four distinct proteins are regulated in the aging neuroretina and may be regulated in the cerebral cortex, too: peroxiredoxin, beta-synuclein, PARK[Parkinson disease(autosomal recessive, early onset)]7/DJ-1, and Stathmin. Thus, we performed a comparative analysis of these proteins in the the primary somatosensory cortex (S1) and primary visual cortex (V1) in rats, in order to detect putative common development-, maturation- and age-related changes. The expressions of peroxiredoxin, beta-synuclein, PARK[Parkinson disease (autosomal recessive, early onset)]7/DJ-1, and Stathmin were compared in the newborn, juvenile, adult, and aged S1 and V1. Western blot (WB), quantitative reverse-transcription polymerase chain reaction (qRT-PCR), and immunohistochemistry (IHC) analyses were employed to determine whether the changes identified by proteomics were verifiable at the cellular and molecular levels. All of the proteins were detected in both of the investigated cortical areas. Changes in the expressions of the four proteins were found throughout the life-time of the rats. Peroxiredoxin expression remained unchanged over life-time. Beta-Synuclein expression was massively increased up to the adult stage of life in both the S1 and V1. PARK[Parkinson disease (autosomal recessive, early onset)]7/DJ-1 exhibited a massive up-regulation in both the S1 and V1 at all ages. Stathmin expression was massively down regulated after the neonatal period in both the S1 and V1. The detected protein alterations were analogous to their retinal profiles. This study is the first to provide evidence that peroxiredoxin, beta-synuclein, PARK[Parkinson disease (autosomal recessive, early onset)]7/DJ-1, and Stathmin are associated with postnatal maturation and aging in both the S1 and V1 of rats. These changes may indicate their involvement in key functional pathways and may account for the onset or progression of age-related pathologies. PMID:25788877

  19. Phenylbutyrate Up-regulates the DJ-1 Protein and Protects Neurons in Cell Culture and in Animal Models of Parkinson Disease*

    PubMed Central

    Zhou, Wenbo; Bercury, Kathryn; Cummiskey, Jessica; Luong, Nancy; Lebin, Jacob; Freed, Curt R.

    2011-01-01

    Parkinson disease is caused by the death of midbrain dopamine neurons from oxidative stress, abnormal protein aggregation, and genetic predisposition. In 2003, Bonifati et al. (23) found that a single amino acid mutation in the DJ-1 protein was associated with early-onset, autosomal recessive Parkinson disease (PARK7). The mutation L166P prevents dimerization that is essential for the antioxidant and gene regulatory activity of the DJ-1 protein. Because low levels of DJ-1 cause Parkinson, we reasoned that overexpression might stop the disease. We found that overexpression of DJ-1 improved tolerance to oxidative stress by selectively up-regulating the rate-limiting step in glutathione synthesis. When we imposed a different metabolic insult, A53T mutant α-synuclein, we found that DJ-1 turned on production of the chaperone protein Hsp-70 without affecting glutathione synthesis. After screening a number of small molecules, we have found that the histone deacetylase inhibitor phenylbutyrate increases DJ-1 expression by 300% in the N27 dopamine cell line and rescues cells from oxidative stress and mutant α-synuclein toxicity. In mice, phenylbutyrate treatment leads to a 260% increase in brain DJ-1 levels and protects dopamine neurons against 1-methyl 4-phenyl 1,2,3,6-tetrahydropyridine (MPTP) toxicity. In a transgenic mouse model of diffuse Lewy body disease, long-term administration of phenylbutyrate reduces α-synuclein aggregation in brain and prevents age-related deterioration in motor and cognitive function. We conclude that drugs that up-regulate DJ-1 gene expression may slow the progression of Parkinson disease by moderating oxidative stress and protein aggregation. PMID:21372141

  20. Neuroprotective effect of resveratrol against brain ischemia reperfusion injury in rats entails reduction of DJ-1 protein expression and activation of PI3K/Akt/GSK3b survival pathway.

    PubMed

    Abdel-Aleem, Ghada A; Khaleel, Eman F; Mostafa, Dalia G; Elberier, Lydia K

    2016-10-01

    In the current study, we aimed to investigate the mechanistic role of DJ-1/PI3K/Akt survival pathway in ischemia/reperfusion (I/R) induced cerebral damage and to investigate if the resveratrol (RES) mediates its ischemic neuroptotection through this pathway. RES administration to Sham rats boosted glutathione level and superoxide dismutase activity and downregulated inducible nitric oxide synthase expression without affecting redox levels of DJ-1 forms or components of PI3K/Akt pathway including PTEN, p-Akt or p/p-GSK3b. However, RES pre-administration to I/R rats reduced infarction area, oxidative stress, inflammation and apoptosis. Concomitantly, RES ameliorated the decreased levels of oxidized forms of DJ-1 and enhancing its reduction, increased the nuclear protein expression of Nfr-2 and led to activation of PI3K/Akt survival pathway. In conclusion, overoxidation of DJ-1 is a major factor that contributes to post-I/R cerebral damage and its reduction by RES could explain the neuroprotection offered by RES.

  1. Effect of DJ-1 overexpression on the proliferation, apoptosis, invasion and migration of laryngeal squamous cell carcinoma SNU-46 cells through PI3K/AKT/mTOR.

    PubMed

    Wang, Bin; Qin, Hao; Wang, Yuejian; Chen, Weixiong; Luo, Jie; Zhu, Xiaolin; Wen, Weiping; Lei, Wenbin

    2014-09-01

    The aim of the present study was to explore the effect of DJ-1-mediated PI3K/AKT/mTOR pathway on the proliferation, apoptosis, invasion, migration and other tumor biological characteristics of laryngeal squamous cell SNU-46, through stable transfection and overexpression of the DJ-1 gene. Retrovirus carrying DJ-1 gene was used to stabilize transfected human laryngeal squamous carcinoma SNU-46 cell line, and monoclonal cell line of stably overexpressed DJ-1 protein was screened out by G418. DJ-1 protein expression was determined by western blotting, and changes of p-AKT, p-mTOR and PTEN protein content were detected, followed by the detection of changes in proliferation, apoptosis, invasion, migration and other tumor biological characteristics of laryngeal squamous carcinoma cell line with stably transfected DJ-1 protein overexpression by flow cytometry, CCK-8 method and Transwell. We successfully constructed a laryngeal squamous carcinoma cell line of stably overexpressed DJ-1 protein and termed it SNU-46-DJ-1. After overexpression of DJ-1 protein, the levels of PTEN expression in laryngeal squamous cell SNU-46 decreased and p-AKT and p-mTOR protein expression levels increased. Compared to the untreated SNU-46 cells, the proliferation rate of SNU-46-DJ-1 cells increased (0.834±0.336 vs. 0.676±0.112; p<0.001); invasiveness was enhanced (165.7±13.6 vs. 100.0±17.4; p=0.001), the migration ability was enhanced (207.3±13.1 vs. 175.3±13.3; p=0.036), and the apoptosis rate decreased (3.533±5.167 vs. 16.397±5.447%; p=0.019). The overexpression of DJ-1 protein in laryngeal squamous carcinoma SNU-46 cells can accelerate proliferation rate, increase the invasion and migration capacity, and reduce apoptosis, by activating the PI3K/AKT/mTOR pathway.

  2. [Effect of DJ-1 silencing by RNA interference on growth of xenografted human laryngeal squamous cell carcinoma Hep-2 cells in nude mice].

    PubMed

    Shen, Zhisen; Deng, Hongxia; Ye, Dong; Zhang, Jian; Qiu, Shijie; Li, Qun; Cui, Xiang

    2016-05-25

    Objective: To investigate the effect of silencing DJ-1 on xenografted human laryngeal squamous cell carcinoma (LSCC) Hep-2 cells in nude mice. Methods: Xenograft model of human LSCC was established by subcutaneous transplantation of Hep-2 cells in 24 nude mice. The LSCC-bearing nude mice were randomly divided into 3 groups ( n =8 in each):DJ-1 siRNA low dose group and DJ-1 siRNA high dose group were injected in tumors with 20 μg of DJ-1 siRNA or 40 μg of DJ-1 siRNA in 50 μL, respectively; control group was injected with 5% glucose solution in 50 μL, twice a week for 3 weeks. The weight and size of tumors were measured before injection. The animals were sacrificed 48 h after the final treatment, and the tumors were harvested and weighed. The apoptosis and proliferation of tumor cells were determined; the expressions of Caspase-3 and Ki-67 in tumor specimens were detected with immunohistochemistry. The expression of DJ-1, PTEN, survivin mRNA and protein in tumor tissues were detected by RT-PCR and Western blotting, respectively. Results: Tumor weight in low dose group[(0.66±0.15)g] and high dose group[(0.48±0.11)g] were significantly lower than that in control group[(0.83±0.16)g, all P <0.05]. The inhibition rates of low dose group and high dose group were (20.48±0.18)% and (42.16±0.13)%, respectively. Immunohistochemistry showed that the expression of Caspase-3 was increased and Ki-67 was reduced in tumor specimens, compared with the control group (all P <0.05). RT-PCR and Western blot results showed that in low dose group and high dose group the mRNA and protein expression of DJ-1 and survivin significantly decreased (all P <0.05), while PTEN mRNA and protein content increased (all P <0.05). Conclusion: High dose DJ-1 siRNA can inhibit the tumor growth in human LSCC xenograft nude mouse model, which indicates that down-regulating DJ-1 and survivin, and up-regulating PTEN expression may lead to blockage of PI3K-PKB/Akt signaling pathway and promoting tumor

  3. The J-protein AtDjB1 is required for mitochondrial complex I activity and regulates growth and development through ROS-mediated auxin signalling.

    PubMed

    Jia, Ning; Lv, Ting-Ting; Li, Mi-Xin; Wei, Shan-Shan; Li, Yan-Yi; Zhao, Chun-Lan; Li, Bing

    2016-05-01

    AtDjB1 is a mitochondria-located J-protein in Arabidopsis thaliana It is involved in the regulation of plant growth and development; however, the exact mechanisms remain to be determined. We performed comparison analyses of phenotypes, auxin signalling, redox status, mitochondrial structure and function using wild-type plants, AtDjB1 mutants, rescued AtDjB1 mutants by AtDjB1 or YUCCA2 (an auxin synthesis gene), and AtDjB1 overexpression plants. AtDjB1 mutants (atj1-1 or atj1-4) exhibited inhibition of growth and development and reductions in the level of IAA and the expression of YUCCA genes compared to wild-type plants. The introduction of AtDjB1 or YUCCA2 into atj1-1 largely rescued phenotypic defects and the IAA level, indicating that AtDjB1 probably regulates growth and development via auxin. Furthermore, atj1-1 plants displayed a significant reduction in amount/activity of mitochondrial complex I compared to wild-type plants; this resulted in the accumulation of reactive oxygen species (ROS). Moreover, exogenous H2O2 markedly inhibited the expression of YUCCA genes in wild-type plants. In contrast, the reducing agent ascorbate increased the expression of YUCCA genes and IAA level in atj1-1 plants, indicating that the low auxin level observed in atj1-1 was probably due to the high oxidation status. Overall, the data presented here suggest that AtDjB1 is required for mitochondrial complex I activity and regulates growth and development through ROS-mediated auxin signalling in Arabidopsis. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  4. Parkinson Disease Protein DJ-1 Binds Metals and Protects against Metal-induced Cytotoxicity*

    PubMed Central

    Björkblom, Benny; Adilbayeva, Altynai; Maple-Grødem, Jodi; Piston, Dominik; Ökvist, Mats; Xu, Xiang Ming; Brede, Cato; Larsen, Jan Petter; Møller, Simon Geir

    2013-01-01

    The progressive loss of motor control due to reduction of dopamine-producing neurons in the substantia nigra pars compacta and decreased striatal dopamine levels are the classically described features of Parkinson disease (PD). Neuronal damage also progresses to other regions of the brain, and additional non-motor dysfunctions are common. Accumulation of environmental toxins, such as pesticides and metals, are suggested risk factors for the development of typical late onset PD, although genetic factors seem to be substantial in early onset cases. Mutations of DJ-1 are known to cause a form of recessive early onset Parkinson disease, highlighting an important functional role for DJ-1 in early disease prevention. This study identifies human DJ-1 as a metal-binding protein able to evidently bind copper as well as toxic mercury ions in vitro. The study further characterizes the cytoprotective function of DJ-1 and PD-mutated variants of DJ-1 with respect to induced metal cytotoxicity. The results show that expression of DJ-1 enhances the cells' protective mechanisms against induced metal toxicity and that this protection is lost for DJ-1 PD mutations A104T and D149A. The study also shows that oxidation site-mutated DJ-1 C106A retains its ability to protect cells. We also show that concomitant addition of dopamine exposure sensitizes cells to metal-induced cytotoxicity. We also confirm that redox-active dopamine adducts enhance metal-catalyzed oxidation of intracellular proteins in vivo by use of live cell imaging of redox-sensitive S3roGFP. The study indicates that even a small genetic alteration can sensitize cells to metal-induced cell death, a finding that may revive the interest in exogenous factors in the etiology of PD. PMID:23792957

  5. Isocitrate protects DJ-1 null dopaminergic cells from oxidative stress through NADP+-dependent isocitrate dehydrogenase (IDH)

    PubMed Central

    Kim, Eun Young; Kim, Hyunjin; Lee, Yoonjeong; Min, Boram; Son, Jin H.; Park, Hwan Tae; Chung, Jongkyeong

    2017-01-01

    DJ-1 is one of the causative genes for early onset familiar Parkinson’s disease (PD) and is also considered to influence the pathogenesis of sporadic PD. DJ-1 has various physiological functions which converge on controlling intracellular reactive oxygen species (ROS) levels. In RNA-sequencing analyses searching for novel anti-oxidant genes downstream of DJ-1, a gene encoding NADP+-dependent isocitrate dehydrogenase (IDH), which converts isocitrate into α-ketoglutarate, was detected. Loss of IDH induced hyper-sensitivity to oxidative stress accompanying age-dependent mitochondrial defects and dopaminergic (DA) neuron degeneration in Drosophila, indicating its critical roles in maintaining mitochondrial integrity and DA neuron survival. Further genetic analysis suggested that DJ-1 controls IDH gene expression through nuclear factor-E2-related factor2 (Nrf2). Using Drosophila and mammalian DA models, we found that IDH suppresses intracellular and mitochondrial ROS level and subsequent DA neuron loss downstream of DJ-1. Consistently, trimethyl isocitrate (TIC), a cell permeable isocitrate, protected mammalian DJ-1 null DA cells from oxidative stress in an IDH-dependent manner. These results suggest that isocitrate and its derivatives are novel treatments for PD associated with DJ-1 dysfunction. PMID:28827794

  6. DJ-1 Modulates Nuclear Erythroid 2-Related Factor-2-Mediated Protection in Human Primary Alveolar Type II Cells in Smokers.

    PubMed

    Bahmed, Karim; Messier, Elise M; Zhou, Wenbo; Tuder, Rubin M; Freed, Curt R; Chu, Hong Wei; Kelsen, Steven G; Bowler, Russell P; Mason, Robert J; Kosmider, Beata

    2016-09-01

    Cigarette smoke (CS) is a main source of oxidative stress and a key risk factor for emphysema, which consists of alveolar wall destruction. Alveolar type (AT) II cells are in the gas exchange regions of the lung. We isolated primary ATII cells from deidentified organ donors whose lungs were not suitable for transplantation. We analyzed the cell injury obtained from nonsmokers, moderate smokers, and heavy smokers. DJ-1 protects cells from oxidative stress and induces nuclear erythroid 2-related factor-2 (Nrf2) expression, which activates the antioxidant defense system. In ATII cells isolated from moderate smokers, we found DJ-1 expression by RT-PCR, and Nrf2 and heme oxygenase (HO)-1 translocation by Western blotting and immunocytofluorescence. In ATII cells isolated from heavy smokers, we detected Nrf2 and HO-1 cytoplasmic localization. Moreover, we found high oxidative stress, as detected by 4-hydroxynonenal (4-HNE) (immunoblotting), inflammation by IL-8 and IL-6 levels by ELISA, and apoptosis by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay in ATII cells obtained from heavy smokers. Furthermore, we detected early DJ-1 and late Nrf2 expression after ATII cell treatment with CS extract. We also overexpressed DJ-1 by adenovirus construct and found that this restored Nrf2 and HO-1 expression and induced nuclear translocation in heavy smokers. Moreover, DJ-1 overexpression also decreased ATII cell apoptosis caused by CS extract in vitro. Our results indicate that DJ-1 activates the Nrf2-mediated antioxidant defense system. Furthermore, DJ-1 overexpression can restore the impaired Nrf2 pathway, leading to ATII cell protection in heavy smokers. This suggests a potential therapeutic strategy for targeting DJ-1 in CS-related lung diseases.

  7. Protective effects of transduced Tat-DJ-1 protein against oxidative stress and ischemic brain injury.

    PubMed

    Jeong, Hoon Jae; Kim, Dae Won; Kim, Mi Jin; Woo, Su Jung; Kim, Hye Ri; Kim, So Mi; Jo, Hyo Sang; Hwang, Hyun Sook; Kim, Duk Soo; Cho, Sung Woo; Won, Moo Ho; Han, Kyu Hyung; Park, Jin Seu; Eum, Won Sik; Choi, Soo Young

    2012-10-31

    Reactive oxygen species (ROS) contribute to the development of a number of neuronal diseases including ischemia. DJ-1, also known to PARK7, plays an important role in transcriptional regulation, acting as molecular chaperone and antioxidant. In the present study, we investigated whether DJ-1 protein shows a protective effect against oxidative stress-induced neuronal cell death in vitro and in ischemic animal models in vivo. To explore DJ-1 protein's potential role in protecting against ischemic cell death, we constructed cell permeable Tat-DJ-1 fusion proteins. Tat-DJ-1 protein efficiently transduced into neuronal cells in a doseand time-dependent manner. Transduced Tat-DJ-1 protein increased cell survival against hydrogen peroxide (H2O2) toxicity and also reduced intracellular ROS. In addition, Tat-DJ-1 protein inhibited DNA fragmentation induced by H2O2. Furthermore, in animal models, immunohistochemical analysis revealed that Tat-DJ-1 protein prevented neuronal cell death induced by transient forebrain ischemia in the CA1 region of the hippocampus. These results demonstrate that transduced Tat-DJ-1 protein protects against cell death in vitro and in vivo, suggesting that the transduction of Tat-DJ-1 may be useful as a therapeutic agent for ischemic injuries related to oxidative stress.

  8. Cross Talk between Two Antioxidant Systems, Thioredoxin and DJ-1: Consequences for Cancer

    PubMed Central

    Raninga, Prahlad V.; Trapani, Giovanna Di; Tonissen, Kathryn F.

    2014-01-01

    Oxidative stress, which is associated with an increased concentration of reactive oxygen species (ROS), is involved in the pathogenesis of numerous diseases including cancer. In response to increased ROS levels, cellular antioxidant molecules such as thioredoxin, peroxiredoxins, glutaredoxins, DJ-1, and superoxide dismutases are upregulated to counteract the detrimental effect of ROS. However, cancer cells take advantage of upregulated antioxidant molecules for protection against ROS-induced cell damage. This review focuses on two antioxidant systems, Thioredoxin and DJ-1, which are upregulated in many human cancer types, correlating with tumour proliferation, survival, and chemo-resistance. Thus, both of these antioxidant molecules serve as potential molecular targets to treat cancer. However, targeting one of these antioxidants alone may not be an effective anti-cancer therapy. Both of these antioxidant molecules are interlinked and act on similar downstream targets such as NF-κβ, PTEN, and Nrf2 to exert cytoprotection. Inhibiting either thioredoxin or DJ-1 alone may allow the other antioxidant to activate downstream signalling cascades leading to tumour cell survival and proliferation. Targeting both thioredoxin and DJ-1 in conjunction may completely shut down the antioxidant defence system regulated by these molecules. This review focuses on the cross-talk between thioredoxin and DJ-1 and highlights the importance and consequences of targeting thioredoxin and DJ-1 together to develop an effective anti-cancer therapeutic strategy. PMID:25593990

  9. DJ-1 deficiency in astrocytes selectively enhances mitochondrial Complex I inhibitor-induced neurotoxicity

    PubMed Central

    Mullett, Steven J.; Hinkle, David A.

    2011-01-01

    Parkinson’s disease (PD) brains show evidence of mitochondrial respiratory Complex I deficiency, oxidative stress, and neuronal death. Complex I-inhibiting neurotoxins, such as the pesticide rotenone, cause neuronal death and parkinsonism in animal models. We have previously shown that DJ-1 over-expression in astrocytes augments their capacity to protect neurons against rotenone, that DJ-1 knock-down impairs astrocyte-mediated neuroprotection against rotenone, and that each process involves astrocyte-released factors. To further investigate the mechanism behind these findings, we developed a high-throughput, plate-based bioassay that can be used to assess how genetic manipulations in astrocytes affect their ability to protect co-cultured neurons. We used this bioassay to show that DJ-1 deficiency-induced impairments in astrocyte-mediated neuroprotection occur solely in the presence of pesticides that inhibit Complex I (rotenone, pyridaben, fenazaquin, and fenpyroximate); not with agents that inhibit Complexes II-V, that primarily induce oxidative stress, or that inhibit the proteasome. This is a potentially PD-relevant finding because pesticide exposure is epidemiologically-linked with an increased risk for PD. Further investigations into our model suggested that astrocytic glutathione and heme oxygenase-1 anti-oxidant systems are not central to the neuroprotective mechanism. PMID:21219333

  10. Overexpression of DJ-1/PARK7, the Parkinson's disease-related protein, improves mitochondrial function via Akt phosphorylation on threonine 308 in dopaminergic neuron-like cells.

    PubMed

    Zhang, Yi; Gong, Xiao-Gang; Wang, Zhen-Zhen; Sun, Hong-Mei; Guo, Zhen-Yu; Hu, Jing-Hong; Ma, Ling; Li, Ping; Chen, Nai-Hong

    2016-05-01

    DJ-1/PARK7, the Parkinson's disease-related protein, plays an important role in mitochondrial function. However, the mechanisms by which DJ-1 affects mitochondrial function are not fully understood. Akt is a promoter of neuron survival and is partly involved in the neurodegenerative process. This research aimed at investigating a possible relationship between DJ-1 and Akt signalling in regulating mitochondrial function in the dopaminergic neuron-like cells SH-SY5Y and PC-12. Overexpression of DJ-1 was firstly validated at both the transcriptional and translational levels after transit transfection with plasmid pcDNA3-Flag-DJ-1. Confocal fluorescence microscopy demonstrated that overexpression of DJ-1 increased the mitochondrial mass, but did not disrupt the mitochondrial morphology. In addition, mitochondrial complex I activity was raised in DJ-1-overexpressing cells, and this rise occurred with an increase in cellular adenosine 5'-triphosphate content. Moreover, immunoblotting demonstrated that the levels of phosphoinositide 3-kinase and the total Akt were not altered in DJ-1-overexpressing cells, and nor was the Akt phosphorylation on serine 473 changed. By contrast, Akt phosphorylation on threonine 308 was significantly augmented by overexpression of DJ-1, and the expression of glycogen synthase kinase-3beta, a downstream effector of Akt, was suppressed. In summary, these results suggest that overexpression of DJ-1 improves the mitochondrial function, at least in part, through a mechanism involving Akt phosphorylation on threonine 308. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  11. DJ-1 Modulates Nuclear Erythroid 2–Related Factor-2–Mediated Protection in Human Primary Alveolar Type II Cells in Smokers

    PubMed Central

    Bahmed, Karim; Messier, Elise M.; Zhou, Wenbo; Tuder, Rubin M.; Freed, Curt R.; Chu, Hong Wei; Kelsen, Steven G.; Bowler, Russell P.; Mason, Robert J.

    2016-01-01

    Cigarette smoke (CS) is a main source of oxidative stress and a key risk factor for emphysema, which consists of alveolar wall destruction. Alveolar type (AT) II cells are in the gas exchange regions of the lung. We isolated primary ATII cells from deidentified organ donors whose lungs were not suitable for transplantation. We analyzed the cell injury obtained from nonsmokers, moderate smokers, and heavy smokers. DJ-1 protects cells from oxidative stress and induces nuclear erythroid 2–related factor-2 (Nrf2) expression, which activates the antioxidant defense system. In ATII cells isolated from moderate smokers, we found DJ-1 expression by RT-PCR, and Nrf2 and heme oxygenase (HO)-1 translocation by Western blotting and immunocytofluorescence. In ATII cells isolated from heavy smokers, we detected Nrf2 and HO-1 cytoplasmic localization. Moreover, we found high oxidative stress, as detected by 4-hydroxynonenal (4-HNE) (immunoblotting), inflammation by IL-8 and IL-6 levels by ELISA, and apoptosis by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay in ATII cells obtained from heavy smokers. Furthermore, we detected early DJ-1 and late Nrf2 expression after ATII cell treatment with CS extract. We also overexpressed DJ-1 by adenovirus construct and found that this restored Nrf2 and HO-1 expression and induced nuclear translocation in heavy smokers. Moreover, DJ-1 overexpression also decreased ATII cell apoptosis caused by CS extract in vitro. Our results indicate that DJ-1 activates the Nrf2-mediated antioxidant defense system. Furthermore, DJ-1 overexpression can restore the impaired Nrf2 pathway, leading to ATII cell protection in heavy smokers. This suggests a potential therapeutic strategy for targeting DJ-1 in CS-related lung diseases. PMID:27093578

  12. Oxidation of DJ-1 Induced by 6-Hydroxydopamine Decreasing Intracellular Glutathione

    PubMed Central

    Miyama, Akiko; Saito, Yoshiro; Yamanaka, Kazunori; Hayashi, Kojiro; Hamakubo, Takao; Noguchi, Noriko

    2011-01-01

    DJ-1, the causative gene of a familial form of Parkinson's disease (PD), has been reported to undergo preferential oxidation of the cysteine residue at position 106 (Cys-106) under oxidative stress; however, details of the molecular mechanisms are not well known. In the present study, mechanisms of DJ-1 oxidation induced by 6-hydroxydopamine (6-OHDA) were investigated by using SH-SY5Y cells. The treatment of these cells with 6-OHDA caused an obvious acidic spot sift of DJ-1 due to its oxidation. However, when catalase, which is an hydrogen peroxide (H2O2)-removing enzyme, was added during the treatment, it failed to prevent the oxidation induced by 6-OHDA, suggesting that electrophilic p-quinone formed from 6-OHDA, but not H2O2, was responsible for the DJ-1 oxidation. Benzoquinone, another electrophilic p-quinone, also induced DJ-1 oxidation. The intracellular glutathione (GSH) levels were significantly decreased by 6-OHDA, irrespective of the presence or absence of catalase. The inhibition of GSH synthesis by buthionine sulfoximine resulted in a decrease in GSH levels and enhancement of DJ-1 oxidation. The pretreatment of cells with N-acetyl-cysteine prevented the loss of intracellular GSH and subsequently DJ-1 oxidation induced by 6-OHDA. Collectively, these results suggest that electrophilic p-quinone formed from 6-OHDA induces DJ-1 oxidation by decreasing intracellular GSH. PMID:22132160

  13. SG2NA enhances cancer cell survival by stabilizing DJ-1 and thus activating Akt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanti, Goutam Kumar, E-mail: goutamjnu@hotmail.com; Pandey, Shweta; Goswami, Shyamal K.

    2015-08-07

    SG2NA in association with striatin and zinedin forms a striatin family of WD-40 repeat proteins. This family of proteins functions as scaffold in different signal transduction pathways. They also act as a regulatory subunit of protein phosphatase 2A. We have shown that SG2NA which evolved first in the metazoan evolution among the striatin family members expresses different isoforms generated out of alternative splicing. We have also shown that SG2NA protects cells from oxidative stress by recruiting DJ-1 and Akt to mitochondria and membrane in the post-mitotic neuronal cells. DJ-1 is both cancer and Parkinson's disease related protein. In the presentmore » study we have shown that SG2NA protects DJ-1 from proteasomal degradation in cancer cells. Hence, downregulation of SG2NA reduces DJ-1/Akt colocalization in cancer cells resulting in the reduction of anchorage dependent and independent growth. Thus SG2NA enhances cancer cell survival. Reactive oxygen species enhances SG2NA, DJ-1 and Akt trimerization. Removal of the reactive oxygen species by N-acetyl-cysteine thus reduces cancer cell growth. - Highlights: • Reactive oxygen species (ROS) play potential role in cancer cell proliferation. • It enhances the association between DJ-1 and Akt mediated by SG2NA. • In cancer cells SG2NA stabilizes DJ-1 by inhibiting it from proteosomal degradation. • DJ-1 then activates Akt and cancer cells get their property of enhanced proliferation by sustained activation of Akt. • Further study on this field could lead to new target for cancer therapy.« less

  14. Conservation of Oxidative Protein Stabilization in an Insect Homologue of Parkinsonism-Associated Protein DJ-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Jiusheng; Prahlad, Janani; Wilson, Mark A.

    2012-08-21

    DJ-1 is a conserved, disease-associated protein that protects against oxidative stress and mitochondrial damage in multiple organisms. Human DJ-1 contains a functionally essential cysteine residue (Cys106) whose oxidation is important for regulating protein function by an unknown mechanism. This residue is well-conserved in other DJ-1 homologues, including two (DJ-1{alpha} and DJ-1{beta}) in Drosophila melanogaster. Because D. melanogaster is a powerful model system for studying DJ-1 function, we have determined the crystal structure and impact of cysteine oxidation on Drosophila DJ-1{beta}. The structure of D. melanogaster DJ-1{beta} is similar to that of human DJ-1, although two important residues in the humanmore » protein, Met26 and His126, are not conserved in DJ-1{beta}. His126 in human DJ-1 is substituted with a tyrosine in DJ-1{beta}, and this residue is not able to compose a putative catalytic dyad with Cys106 that was proposed to be important in the human protein. The reactive cysteine in DJ-1 is oxidized readily to the cysteine-sulfinic acid in both flies and humans, and this may regulate the cytoprotective function of the protein. We show that the oxidation of this conserved cysteine residue to its sulfinate form (Cys-SO{sub 2{sup -}}) results in considerable thermal stabilization of both Drosophila DJ-1{beta} and human DJ-1. Therefore, protein stabilization is one potential mechanism by which cysteine oxidation may regulate DJ-1 function in vivo. More generally, most close DJ-1 homologues are likely stabilized by cysteine-sulfinic acid formation but destabilized by further oxidation, suggesting that they are biphasically regulated by oxidative modification.« less

  15. Structural Impact of Three Parkinsonism-Associated Missense Mutations on Human DJ-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lakshminarasimhan, M.; Maldonado, M.T.; Zhou, W.

    2009-05-20

    A number of missense mutations in the oxidative stress response protein DJ-1 are implicated in rare forms of familial Parkinsonism. The best-characterized Parkinsonian DJ-1 missense mutation, L166P, disrupts homodimerization and results in a poorly folded protein. The molecular basis by which the other Parkinsonism-associated mutations disrupt the function of DJ-1, however, is incompletely understood. In this study we show that three different Parkinsonism-associated DJ-1 missense mutations (A104T, E163K, and M26I) reduce the thermal stability of DJ-1 in solution by subtly perturbing the structure of DJ-1 without causing major folding defects or loss of dimerization. Atomic resolution X-ray crystallography shows thatmore » the A104T substitution introduces water and a discretely disordered residue into the core of the protein, E163K disrupts a key salt bridge with R145, and M26I causes packing defects in the core of the dimer. The deleterious effect of each Parkinsonism-associated mutation on DJ-1 is dissected by analysis of engineered substitutions (M26L, A104V, and E163K/R145E) that partially alleviate each of the defects introduced by the A104T, E163K and M26I mutations. In total, our results suggest that the protective function of DJ-1 can be compromised by diverse perturbations in its structural integrity, particularly near the junctions of secondary structural elements.« less

  16. Planarian homolog of puromycin-sensitive aminopeptidase DjPsa is required for brain regeneration.

    PubMed

    Wu, Suge; Liu, Bin; Yuan, Zuoqing; Zhang, Xiufang; Liu, Hong; Pang, Qiuxiang; Zhao, Bosheng

    2017-06-01

    Puromycin-sensitive aminopeptidase (PSA) belongs to the M1 zinc metallopeptidase family. PSA is the most abundant aminopeptidase in the brain and plays a role in the metabolism of neuropeptides including those involved in neurodegeneration. A cDNA DjPsa was identified from the planarian Dugesia japonica cDNA library. It contains a 639-bp open reading frame corresponding to a deduced protein of 212 amino acids. Whole mount in situ hybridization revealed that DjPsa is expressed in the brain and ventral nerve cords of intact and regenerating animals and demonstrates a tissue and stage-specific expression pattern of DjPsa in developing embryos and larvae. Knocking down DjPsa gene expression with RNA interference during planarian regeneration inhibits the brain reformation completely. The results suggest that DjPsa is required for planarian brain regeneration.

  17. The putative interplay between DJ-1/NRF2 and Dimethyl Fumarate: A potentially important pharmacological target.

    PubMed

    Vavougios, George; Zarogiannis, Sotirios G; Doskas, Triantafylos

    2018-04-01

    Recent research has outlined that Dimethyl Fumarate (DMF) functions as a gene regulator via multiple pathways, critical among which is the NRF2 cytoprotective cascade. PARK7/DJ-1 is a multifunctional protein that acts as a redox sensor and effector of multiple cytoprotective pathways, including NRF2. Specifically, it prevents the association of NRF2 with its inhibitor KEAP1, allowing NRF2 to enter the nucleus and mediate cytoprotective and antioxidant cascades. It is our hypothesis that while the NRF2-KEAP1 inhibitory complex is reported the main pharmacological target for DMF's NRF dependent functions, no study to date has explored the effects of DMF on DJ-1's expression, and vice-versa, the possibility of a regulatory inadequacy in the upstream, oxidant-responsive DJ-1 activator of the NRF2 cascade. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. PARK7/DJ-1 dysregulation by oxidative stress leads to magnesium deficiency: implications in degenerative and chronic diseases.

    PubMed

    Kolisek, Martin; Montezano, Augusto C; Sponder, Gerhard; Anagnostopoulou, Aikaterini; Vormann, Juergen; Touyz, Rhian M; Aschenbach, Joerg R

    2015-12-01

    Disturbed magnesium (Mg(2+)) homoeostasis and increased levels of OS (oxidative stress) are associated with poor clinical outcomes in patients suffering from neurodegenerative, cardiovascular and metabolic diseases. Data from clinical and animal studies suggest that MD (Mg(2+) deficiency) is correlated with increased production of ROS (reactive oxygen species) in cells, but a straightforward causal relationship (including molecular mechanisms) between the two conditions is lacking. The multifactorial protein PARK7/DJ-1 is a major antioxidant protein, playing a key role in cellular redox homoeostasis, and is a positive regulator of AR (androgen receptor)-dependent transcription. SLC41A1 (solute carrier family 41 member 1), the gene encoding a ubiquitous cellular Mg(2+)E (Mg(2+)efflux) system, has been shown to be regulated by activated AR. We hypothesize that overexpression/up-regulation of PARK7/DJ-1, attributable to OS and related activation of AR, is an important event regulating the expression of SLC41A1 and consequently, modulating the Mg(2+)E capacity. This would involve changes in the transcriptional activity of PARK7/DJ-1, AR and SLC41A1, which may serve as biomarkers of intracellular MD and may have clinical relevance. Imipramine, in use as an antidepressant, has been shown to reduce the Mg(2+)E activity of SLC41A1 and OS. We therefore hypothesize further that administration of imipramine or related drugs will be beneficial in MD- and OS-associated diseases, especially when combined with Mg(2+) supplementation. If proved true, the OS-responsive functional axis, PARK7/DJ-1-AR-SLC41A1, may be a putative mechanism underlying intracellular MD secondary to OS caused by pro-oxidative stimuli, including extracellular MD. Furthermore, it will advance our understanding of the link between OS and MD. © 2015 Authors; published by Portland Press Limited.

  19. Pretreatment with Sodium Phenylbutyrate Alleviates Cerebral Ischemia/Reperfusion Injury by Upregulating DJ-1 Protein.

    PubMed

    Yang, Rui-Xin; Lei, Jie; Wang, Bo-Dong; Feng, Da-Yun; Huang, Lu; Li, Yu-Qian; Li, Tao; Zhu, Gang; Li, Chen; Lu, Fang-Fang; Nie, Tie-Jian; Gao, Guo-Dong; Gao, Li

    2017-01-01

    Oxidative stress and mitochondrial dysfunction play critical roles in ischemia/reperfusion (I/R) injury. DJ-1 is an endogenous antioxidant that attenuates oxidative stress and maintains mitochondrial function, likely acting as a protector of I/R injury. In the present study, we explored the protective effect of a possible DJ-1 agonist, sodium phenylbutyrate (SPB), against I/R injury by protecting mitochondrial dysfunction via the upregulation of DJ-1 protein. Pretreatment with SPB upregulated the DJ-1 protein level and rescued the I/R injury-induced DJ-1 decrease about 50% both in vivo and in vitro . SPB also improved cellular viability and mitochondrial function and alleviated neuronal apoptosis both in cell and animal models; these effects of SPB were abolished by DJ-1 knockdown with siRNA. Furthermore, SPB improved the survival rate about 20% and neurological functions, as well as reduced about 50% of the infarct volume and brain edema, of middle cerebral artery occlusion mice 23 h after reperfusion. Therefore, our findings demonstrate that preconditioning of SPB possesses a neuroprotective effect against cerebral I/R injury by protecting mitochondrial function dependent on the DJ-1 upregulation, suggesting that DJ-1 is a potential therapeutic target for clinical ischemic stroke.

  20. Pretreatment with Sodium Phenylbutyrate Alleviates Cerebral Ischemia/Reperfusion Injury by Upregulating DJ-1 Protein

    PubMed Central

    Yang, Rui-Xin; Lei, Jie; Wang, Bo-Dong; Feng, Da-Yun; Huang, Lu; Li, Yu-Qian; Li, Tao; Zhu, Gang; Li, Chen; Lu, Fang-Fang; Nie, Tie-Jian; Gao, Guo-Dong; Gao, Li

    2017-01-01

    Oxidative stress and mitochondrial dysfunction play critical roles in ischemia/reperfusion (I/R) injury. DJ-1 is an endogenous antioxidant that attenuates oxidative stress and maintains mitochondrial function, likely acting as a protector of I/R injury. In the present study, we explored the protective effect of a possible DJ-1 agonist, sodium phenylbutyrate (SPB), against I/R injury by protecting mitochondrial dysfunction via the upregulation of DJ-1 protein. Pretreatment with SPB upregulated the DJ-1 protein level and rescued the I/R injury-induced DJ-1 decrease about 50% both in vivo and in vitro. SPB also improved cellular viability and mitochondrial function and alleviated neuronal apoptosis both in cell and animal models; these effects of SPB were abolished by DJ-1 knockdown with siRNA. Furthermore, SPB improved the survival rate about 20% and neurological functions, as well as reduced about 50% of the infarct volume and brain edema, of middle cerebral artery occlusion mice 23 h after reperfusion. Therefore, our findings demonstrate that preconditioning of SPB possesses a neuroprotective effect against cerebral I/R injury by protecting mitochondrial function dependent on the DJ-1 upregulation, suggesting that DJ-1 is a potential therapeutic target for clinical ischemic stroke. PMID:28649223

  1. The cytoprotective role of DJ-1 and p45 NFE2 against human primary alveolar type II cell injury and emphysema.

    PubMed

    Tan, Li Hui; Bahmed, Karim; Lin, Chih-Ru; Marchetti, Nathaniel; Bolla, Sudhir; Criner, Gerard J; Kelsen, Steven; Madesh, Muniswamy; Kosmider, Beata

    2018-02-23

    Emphysema is characterized by irreversibly enlarged airspaces and destruction of alveolar walls. One of the factors contributing to this disease pathogenesis is an elevation in extracellular matrix (ECM) degradation in the lung. Alveolar type II (ATII) cells produce and secrete pulmonary surfactants and proliferate to restore the epithelium after damage. We isolated ATII cells from control non-smokers, smokers and patients with emphysema to determine the role of NFE2 (nuclear factor, erythroid-derived 2). NFE2 is a heterodimer composed of two subunits, a 45 kDa (p45 NFE2) and 18 kDa (p18 NFE2) polypeptides. Low expression of p45 NFE2 in patients with emphysema correlated with a high ECM degradation. Moreover, we found that NFE2 knockdown increased cell death induced by cigarette smoke extract. We also studied the cross talk between p45 NFE2 and DJ-1. DJ-1 protein is a redox-sensitive chaperone that protects cells from oxidative stress. We detected that cigarette smoke significantly increased p45 NFE2 levels in DJ-1 KO mice compared to wild-type mice. Our results indicate that p45 NFE2 expression is induced by exposure to cigarette smoke, has a cytoprotective activity against cell injury, and its downregulation in human primary ATII cells may contribute to emphysema pathogenesis.

  2. Edaravone prevents neurotoxicity of mutant L166P DJ-1 in Parkinson's disease.

    PubMed

    Li, Bing; Yu, Dawei; Xu, Zhiying

    2013-10-01

    Parkinson's disease (PD), which is estimated to affect approximately 1 % of the population over the age of 65, is the second most common neurodegenerative disorder after Alzheimer's disease. It was reported that pathogenic mutations in DJ-1 lead to autosomal recessive early-onset familial Parkinsonism. The L166P mutant of DJ-1 is the most commonly studied loss-of-function mutation in early onset familial PD, but the underlying mechanisms are still unknown. Edaravone is a powerful free radical scavenger used in clinical treatment for cerebral ischemic stroke. In the present study, we investigated the effects of edaravone on the neurotoxicity in PD-induced isoforms of DJ-1 containing the mutation L166P. Our results indicated that edaravone was able to significantly attenuate oxidative stress and improve mitochondrial function. Furthermore, edaravone was found to reduce apoptosis in Neuro2a cells through modulation of mitochondria-dependent apoptosis pathways. Interestingly, our result also demonstrated that edaravone was able to up-regulate VMAT2 expression in N2a cells in a dose-dependent manner. Our findings enhance the understanding of the neuro-protective effects of edaravone in cell models and suggest that edaravone offers significant protection in a PD-related in vitro model.

  3. DJ-1 is a reliable serum biomarker for discriminating high-risk endometrial cancer.

    PubMed

    Di Cello, Annalisa; Di Sanzo, Maddalena; Perrone, Francesca Marta; Santamaria, Gianluca; Rania, Erika; Angotti, Elvira; Venturella, Roberta; Mancuso, Serafina; Zullo, Fulvio; Cuda, Giovanni; Costanzo, Francesco

    2017-06-01

    New reliable approaches to stratify patients with endometrial cancer into risk categories are highly needed. We have recently demonstrated that DJ-1 is overexpressed in endometrial cancer, showing significantly higher levels both in serum and tissue of patients with high-risk endometrial cancer compared with low-risk endometrial cancer. In this experimental study, we further extended our observation, evaluating the role of DJ-1 as an accurate serum biomarker for high-risk endometrial cancer. A total of 101 endometrial cancer patients and 44 healthy subjects were prospectively recruited. DJ-1 serum levels were evaluated comparing cases and controls and, among endometrial cancer patients, between high- and low-risk patients. The results demonstrate that DJ-1 levels are significantly higher in cases versus controls and in high- versus low-risk patients. The receiver operating characteristic curve analysis shows that DJ-1 has a very good diagnostic accuracy in discriminating endometrial cancer patients versus controls and an excellent accuracy in distinguishing, among endometrial cancer patients, low- from high-risk cases. DJ-1 sensitivity and specificity are the highest when high- and low-risk patients are compared, reaching the value of 95% and 99%, respectively. Moreover, DJ-1 serum levels seem to be correlated with worsening of the endometrial cancer grade and histotype, making it a reliable tool in the preoperative decision-making process.

  4. The Parkinson disease-related protein DJ-1 counteracts mitochondrial impairment induced by the tumour suppressor protein p53 by enhancing endoplasmic reticulum-mitochondria tethering.

    PubMed

    Ottolini, Denis; Calì, Tito; Negro, Alessandro; Brini, Marisa

    2013-06-01

    DJ-1 was first identified as an oncogene. More recently, mutations in its gene have been found causative for autosomal recessive familial Parkinson disease. Numerous studies support the DJ-1 role in the protection against oxidative stress and maintenance of mitochondria structure; however, the mechanism of its protective function remains largely unknown. We investigated whether mitochondrial Ca(2+) homeostasis, a key parameter in cell physiology, could be a target for DJ-1 action. Here, we show that DJ-1 modulates mitochondrial Ca(2+) transients induced upon cell stimulation with an 1,4,5-inositol-tris-phosphate agonist by favouring the endoplasmic reticulum (ER)-mitochondria tethering. A reduction of DJ-1 levels results in mitochondria fragmentation and decreased mitochondrial Ca(2+) uptake in stimulated cells. To functionally couple these effects with the well-recognized cytoprotective role of DJ-1, we investigated its action in respect to the tumour suppressor p53. p53 overexpression in HeLa cells impairs their ability to accumulate Ca(2+) in the mitochondrial matrix, causes alteration of the mitochondrial morphology and reduces ER-mitochondria contact sites. Mitochondrial impairments are independent from Drp1 activation, since the co-expression of the dominant negative mutant of Drp1 failed to abolish them. DJ-1 overexpression prevents these alterations by re-establishing the ER-mitochondria tethering. Similarly, the co-expression of the pro-fusion protein Mitofusin 2 blocks the effects induced by p53 on mitochondria, confirming that the modulation of the ER-mitochondria contact sites is critical to mitochondria integrity. Thus, the impairment of ER-mitochondria communication, as a consequence of DJ-1 loss-of-function, may be detrimental for mitochondria-related processes and be at the basis of mitochondrial dysfunction observed in Parkinson disease.

  5. Mutation analysis for DJ-1 in sporadic and familial parkinsonism: screening strategy in parkinsonism.

    PubMed

    Tomiyama, Hiroyuki; Li, Yuanzhe; Yoshino, Hiroyo; Mizuno, Yoshikuni; Kubo, Shin-Ichiro; Toda, Tatsushi; Hattori, Nobutaka

    2009-05-22

    DJ-1 mutations cause autosomal recessive parkinsonism (ARP). Although some reports of DJ-1 mutations have been published, there is lack of information on the prevalence of these mutations in large-scale studies of both familial and sporadic parkinsonism. In this genetic screening study, we analyzed the distribution and frequency of DJ-1 mutations by direct nucleotide sequencing of coding exons and exon-intron boundaries of DJ-1, in 386 parkin-negative parkinsonism patients (371 index cases: 67 probands of autosomal recessive parkinsonism families, 90 probands of autosomal dominant parkinsonism families, 201 patients with sporadic parkinsonism, and 13 with unknown family histories) from 12 countries (Japan 283, China 27, Taiwan 22, Korea 22, Israel 16, Turkey 5, Philippines 2, Bulgaria 2, Greece 2, Tunisia 1, USA 2, Ukraine 1, unknown 1). None had causative mutation in DJ-1, suggesting DJ-1 mutation is very rare among patients with familial and sporadic parkinsonism from Asian countries and those with other ethnic background. This is in contrast to the higher frequencies and worldwide distribution of parkin- and PINK1-related parkinsonism in ARP and sporadic parkinsonism. Thus, after obtaining clinical information, screening for mutations in (1) parkin, (2) PINK1, (3) DJ-1, (4) ATP13A2 should be conducted in that order, in ARP and sporadic parkinsonism, based on their reported frequencies. In addition, haplotype analysis should be employed to check for homozygosity of 1p36, which harbors a cluster of causative genes for ARP such as DJ-1, PINK1 and ATP13A2 in ARP and sporadic parkinsonism, especially in parkinsonism with consanguinity.

  6. The DJ-1 protein as a candidate biomarker in obstructive sleep apnea syndrome.

    PubMed

    Vavougios, George; Pastaka, Chaido; Tsilioni, Irene; Natsios, George; Seitanidis, George; Florou, Evangelia; Gourgoulianis, Konstandinos I

    2014-12-01

    Oxidative stress has a central role in the pathophysiology of obstructive sleep apnea syndrome (OSAS). The DJ-1 protein functions as a sensor of oxidative stress, acting both as a reactive oxygen species scavenger (ROS) and an antioxidative response regulator. The aim of our study is to determine the serum levels of DJ-1 in OSAS patients and assess possible correlations with their clinical, demographical, and biochemical characteristics. The study included 120 subjects from the Sleep Disorder Laboratory of the University Hospital of Thessaly (100 males vs 20 females, mean age 48±10, Apnea-Hypopnea Index (AHI)>5 episodes per hour of sleep). Subjects underwent full-night polysomnography (PSG) followed by morning blood sampling. Serum DJ-1 levels were determined via ELISA kits. Statistical analysis was performed using SPSS 19. The median DJ-1 levels were 56.7 ng/mL (IQR, 34.9-99.3 ng/mL). Statistically significant correlations were detected between DJ-1's levels and AHI (Spearman's rho=0.189, P=0.04), Desaturation Index (DI; Spearman's rho=0.239, P=0.012), and serum low-density lipoprotein (LDL) (Spearman's rho=-0.205, P=0.042). DJ-1 may be a useful biomarker in OSAS due to its correlations with AHI and DI. The correlation with serum LDL warrants further investigation regarding possible implications in OSAS patients' cardiovascular comorbidities.

  7. DJ-1 links muscle ROS production with metabolic reprogramming and systemic energy homeostasis in mice.

    PubMed

    Shi, Sally Yu; Lu, Shun-Yan; Sivasubramaniyam, Tharini; Revelo, Xavier S; Cai, Erica P; Luk, Cynthia T; Schroer, Stephanie A; Patel, Prital; Kim, Raymond H; Bombardier, Eric; Quadrilatero, Joe; Tupling, A Russell; Mak, Tak W; Winer, Daniel A; Woo, Minna

    2015-06-16

    Reactive oxygen species (ROS) have been linked to a wide variety of pathologies, including obesity and diabetes, but ROS also act as endogenous signalling molecules, regulating numerous biological processes. DJ-1 is one of the most evolutionarily conserved proteins across species, and mutations in DJ-1 have been linked to some cases of Parkinson's disease. Here we show that DJ-1 maintains cellular metabolic homeostasis via modulating ROS levels in murine skeletal muscles, revealing a role of DJ-1 in maintaining efficient fuel utilization. We demonstrate that, in the absence of DJ-1, ROS uncouple mitochondrial respiration and activate AMP-activated protein kinase, which triggers Warburg-like metabolic reprogramming in muscle cells. Accordingly, DJ-1 knockout mice exhibit higher energy expenditure and are protected from obesity, insulin resistance and diabetes in the setting of fuel surplus. Our data suggest that promoting mitochondrial uncoupling may be a potential strategy for the treatment of obesity-associated metabolic disorders.

  8. SOD1 and DJ-1 Converge at Nrf2 Pathway: A Clue for Antioxidant Therapeutic Potential in Neurodegeneration

    PubMed Central

    Milani, Pamela; Ambrosi, Giulia; Gammoh, Omar; Blandini, Fabio; Cereda, Cristina

    2013-01-01

    Neurodegenerative diseases share diverse pathological features and among these oxidative stress (OS) plays a leading role. Impaired activity and reduced expression of antioxidant proteins have been reported as common events in several aging-associated disorders. In this review paper, we first provide an overview of the involvement of reactive oxygen species- (ROS-) induced oxidative damage in Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS). Subsequently, we focus on DJ-1 and SOD1 proteins, which are involved in PD and ALS and also exert a prominent role in the interaction between redox homeostasis and neurodegeneration. Interestingly, recent studies demonstrated that DJ-1 and SOD1 are both tightly connected with Nrf2 protein, a transcriptional factor and master regulator of the expression of many antioxidant/detoxification genes. Nrf2 is emerging as a key neuroprotective protein in neurodegenerative diseases, since it helps neuronal cells to cope with toxic insults and OS. We herein summarize the recent literature providing a detailed picture of the promising therapeutic efficacy of Nrf2 natural and synthetic inducers as disease-modifying molecules for the treatment of neurodegenerative diseases. PMID:23983902

  9. When routine D-J implantation necessary during PNL?

    PubMed

    Bayrak, Omer; Seckiner, Ilker; Erturhan, Sakip M; Bulut, Ersan; Demirbag, Asaf; Erbagci, Asaf

    2015-03-01

    We investigated the characteristics of patients who underwent Double-J catheter (D-J) implantation, the risk factors for prolonged urine leakage (PUL), and prediction of patients who require medical treatment. The data of 535 adult patients who underwent PNL due to kidney stone disease between January 2005 and December 2011 in our clinic were analyzed retrospectively. Patients were divided into 2 groups: Group 1 (n=77) (14.39%) included patients with Double-J catheter due to prolonged (> 24 h) urinary leakage and Group 2 (n=458) (85.61%) patients without urinary leakage. The mean stone burden was 951.94 ± 539.09 mm2 in Group 1, and 676.35 ±296.65 mm2 in Group 2 (p<0.05). DJ catheter was implanted in 11.33% of the patients with stone burden below 1000 mm2 versus in 51.21% of the patients with stone burden above 1000 mm2. In Group 1, the number of patients with two or more accesses performed was 18.18, whereas in Group 2 it was 8.5% (p<0.05). Among all patients, DJ implantation was performed in 13.07% of patients with a single access versus 26.41% of patients with two or more accesses. Also, DJ catheter was implanted in 41.46%of patients with residual stones versus 12.14% of stone-free patients. Three patients with stone burden above 1000 mm2, two or more accesses, and residual stone, all of them required DJ implantation. DJ implantation due to PUL had approximately 5-fold increase stone burden above 1000 mm2, 2-fold increase in patients undergoing two or more access and 3-fold increase in patients with residual stones. Therefore, we think that the D-J implantation is highly advisable in case of a stone load above 1000 mm2, two or more accesses, and in patients with residual stones.

  10. DJ Sim: a virtual reality DJ simulation game

    NASA Astrophysics Data System (ADS)

    Tang, Ka Yin; Loke, Mei Hwan; Chin, Ching Ling; Chua, Gim Guan; Chong, Jyh Herng; Manders, Corey; Khan, Ishtiaq Rasool; Yuan, Miaolong; Farbiz, Farzam

    2009-02-01

    This work describes the process of developing a 3D Virtual Reality (VR) DJ simulation game intended to be displayed on a stereoscopic display. Using a DLP projector and shutter glasses, the user of the system plays a game in which he or she is a DJ in a night club. The night club's music is playing, and the DJ is "scratching" in correspondence to this music. Much in the flavor of Guitar Hero or Dance Dance Revolution, a virtual turntable is manipulated to project information about how the user should perform. The user only needs a small set of hand gestures, corresponding to the turntable scratch movements to play the game. As the music plays, a series of moving arrows approaching the DJ's turntable instruct the user as to when and how to perform the scratches.

  11. Leucine-Rich Repeat Kinase 2 interacts with Parkin, DJ-1 and PINK-1 in a Drosophila melanogaster model of Parkinson's disease.

    PubMed

    Venderova, Katerina; Kabbach, Ghassan; Abdel-Messih, Elizabeth; Zhang, Yi; Parks, Robin J; Imai, Yuzuru; Gehrke, Stephan; Ngsee, Johnny; Lavoie, Matthew J; Slack, Ruth S; Rao, Yong; Zhang, Zhuohua; Lu, Bingwei; Haque, M Emdadul; Park, David S

    2009-11-15

    Mutations in the LRRK2 gene are the most common genetic cause of familial Parkinson's disease (PD). However, its physiological and pathological functions are unknown. Therefore, we generated several independent Drosophila lines carrying WT or mutant human LRRK2 (mutations in kinase, COR or LRR domains, resp.). Ectopic expression of WT or mutant LRRK2 in dopaminergic neurons caused their significant loss accompanied by complex age-dependent changes in locomotor activity. Overall, the ubiquitous expression of LRRK2 increased lifespan and fertility of the flies. However, these flies were more sensitive to rotenone. LRRK2 expression in the eye exacerbated retinal degeneration. Importantly, in double transgenic flies, various indices of the eye and dopaminergic survival were modified in a complex fashion by a concomitant expression of PINK1, DJ-1 or Parkin. This evidence suggests a genetic interaction between these PD-relevant genes.

  12. α-Synuclein transgenic mice reveal compensatory increases in Parkinson's disease-associated proteins DJ-1 and parkin and have enhanced α-synuclein and PINK1 levels after rotenone treatment.

    PubMed

    George, Sonia; Mok, Su San; Nurjono, Milawaty; Ayton, Scott; Finkelstein, David I; Masters, Colin L; Li, Qiao-Xin; Culvenor, Janetta G

    2010-10-01

    Parkinson's disease (PD) is a severe neurodegenerative disorder characterised by loss of dopaminergic neurons of the substantia nigra. The pathological hallmarks are cytoplasmic inclusions termed Lewy bodies consisting primarily of aggregated alpha-synuclein (alphaSN). Different lines of transgenic mice have been developed to model PD but have failed to recapitulate the hallmarks of this disease. Since treatment of rodents with the pesticide rotenone can reproduce nigrostriatal cell loss and other features of PD, we aimed to test chronic oral administration of rotenone to transgenic mice over-expressing human alphaSN with the A53T mutation. Initial assessment of this transgenic line for compensatory molecular changes indicated decreased brain beta-synuclein expression and significantly increased levels of the PD-associated oxidative stress response protein, DJ-1, and the E3 ubiquitin ligase enzyme, Parkin. Rotenone treatment of 30 mg/kg for 25 doses over a 35-day period was tolerated in the transgenic mice and resulted in decreased spontaneous locomotor movement and increased cytoplasmic alphaSN expression. The mitochondrial Parkinson's-associated PTEN-induced kinase 1 protein levels were also increased in transgenic mouse brain after rotenone treatment; there was no change in brain dopamine levels or nigrostriatal cell loss. These hA53T alphaSN transgenic mice provide a useful model for presymptomatic Parkinson's features and are valuable for study of associated compensatory changes in early Parkinson's disease stages.

  13. Free radicals impair the anti-oxidative stress activity of DJ-1 through the formation of SDS-resistant dimer.

    PubMed

    Yasuda, Tatsuki; Niki, Takeshi; Ariga, Hiroyoshi; Iguchi-Ariga, Sanae M M

    2017-04-01

    DJ-1 is a causative gene for familial Parkinson's disease (PD). Loss-of-function of DJ-1 protein is suggested to contribute to the onset of PD, but the causes of DJ-1 dysfunction remain insufficiently elucidated. In this study, we found that the SDS-resistant irreversible dimer of DJ-1 protein was formed in human dopaminergic neuroblastoma SH-SY5Y cells when the cells were exposed to massive superoxide inducers such as paraquat and diquat. The dimer was also formed in vitro by superoxide in PQ redox cycling system and hydroxyl radical produced in Fenton reaction. We, thus, found a novel phenomenon that free radicals directly affect DJ-1 to form SDS-resistant dimers. Moreover, the formation of the SDS-resistant dimer impaired anti-oxidative stress activity of DJ-1 both in cell viability assay and H 2 O 2 -elimination assay in vitro. Similar SDS-resistant dimers were steadily formed with several mutants of DJ-1 found in familial PD patients. These findings suggest that DJ-1 is impaired due to the formation of SDS-resistant dimer when the protein is directly attacked by free radicals yielded by external and internal stresses and that the DJ-1 impairment is one of the causes of sporadic PD.

  14. Structural Characterization of Missense Mutations Using High Resolution Mass Spectrometry: A Case Study of the Parkinson's-Related Protein, DJ-1

    NASA Astrophysics Data System (ADS)

    Ben-Nissan, Gili; Chotiner, Almog; Tarnavsky, Mark; Sharon, Michal

    2016-06-01

    Missense mutations that lead to the expression of mutant proteins carrying single amino acid substitutions are the cause of numerous diseases. Unlike gene lesions, insertions, deletions, nonsense mutations, or modified RNA splicing, which affect the length of a polypeptide, or determine whether a polypeptide is translated at all, missense mutations exert more subtle effects on protein structure, which are often difficult to evaluate. Here, we took advantage of the spectral resolution afforded by the EMR Orbitrap platform, to generate a mass spectrometry-based approach relying on simultaneous measurements of the wild-type protein and the missense variants. This approach not only considerably shortens the analysis time due to the concurrent acquisition but, more importantly, enables direct comparisons between the wild-type protein and the variants, allowing identification of even subtle structural changes. We demonstrate our approach using the Parkinson's-associated protein, DJ-1. Together with the wild-type protein, we examined two missense mutants, DJ-1A104T and DJ-1D149A, which lead to early-onset familial Parkinson's disease. Gas-phase, thermal, and chemical stability assays indicate clear alterations in the conformational stability of the two mutants: the structural stability of DJ-1D149A is reduced, whereas that of DJ-1A104T is enhanced. Overall, we anticipate that the methodology presented here will be applicable to numerous other missense mutants, promoting the structural investigations of multiple variants of the same protein.

  15. Microglia-Derived Cytokines/Chemokines Are Involved in the Enhancement of LPS-Induced Loss of Nigrostriatal Dopaminergic Neurons in DJ-1 Knockout Mice

    PubMed Central

    Chien, Chia-Hung; Lee, Ming-Jen; Liou, Houng-Chi; Liou, Horng-Huei; Fu, Wen-Mei

    2016-01-01

    Mutation of DJ-1 (PARK7) has been linked to the development of early-onset Parkinson’s disease (PD). However, the underlying molecular mechanism is still unclear. This study is aimed to compare the sensitivity of nigrostriatal dopaminergic neurons to lipopolysaccharide (LPS) challenge between DJ-1 knockout (KO) and wild-type (WT) mice, and explore the underlying cellular and molecular mechanisms. Our results found that the basal levels of interferon (IFN)-γ (the hub cytokine) and interferon-inducible T-cell alpha chemoattractant (I-TAC) (a downstream mediator) were elevated in the substantia nigra of DJ-1 KO mice and in microglia cells with DJ-1 deficiency, and the release of cytokine/chemokine was greatly enhanced following LPS administration in the DJ-1 deficient conditions. In addition, direct intranigral LPS challenge caused a greater loss of nigrostriatal dopaminergic neurons and striatal dopamine content in DJ-1 KO mice than in WT mice. Furthermore, the sensitization of microglia cells to LPS challenge to release IFN-γ and I-TAC was via the enhancement of NF-κB signaling, which was antagonized by NF-κB inhibitors. LPS-induced increase in neuronal death in the neuron-glia co-culture was enhanced by DJ-1 deficiency in microglia, which was antagonized by the neutralizing antibodies against IFN-γ or I-TAC. These results indicate that DJ-1 deficiency sensitizes microglia cells to release IFN-γ and I-TAC and causes inflammatory damage to dopaminergic neurons. The interaction between the genetic defect (i.e. DJ-1) and inflammatory factors (e.g. LPS) may contribute to the development of PD. PMID:26982707

  16. Activation of endogenous antioxidants as a common therapeutic strategy against cancer, neurodegeneration and cardiovascular diseases: A lesson learnt from DJ-1.

    PubMed

    Chan, Julie Y H; Chan, Samuel H H

    2015-12-01

    This review aims at presenting a new concept pertaining to the development of antioxidants, namely, to evolve from disease-oriented therapy to mechanism-oriented therapy. Using as our illustrative example is DJ-1, a homodimeric protein that is ubiquitously expressed in a variety of mammalian tissues, including the brain, and is found in the matrix and the intermembrane space of the mitochondria. DJ-1 is known to be an endogenous antioxidant against cancer, neurodegeneration and cardiovascular diseases, of which oxidative stress plays a causal role. Interestingly, the mechanistic targets of DJ-1 as an antioxidant, including Daxx, Nrf2, thioredoxin, glutathione, α-synuclein, PTEN/PI3K/Akt, and Pink/Parkin are also associated with those oxidative stress-related diseases. Furthermore, activators of DJ-1 are available in the form of mortalin, phenylbutyrate and quinone oxidoreductase 1. It follows that activation of DJ-1 as a common endogenous antioxidant provides a new strategy against cancer, neurodegeneration and cardiovascular diseases. Since clinical trials on exogenous application of the known antioxidants have basically failed, an alternative approach would logically be to activate the endogenous antioxidants that are already present in the appropriate cellular locale where elevated oxidative stress is the culprit for the disease. At the same time, since oxidative stress is a common denominator among cancer, neurodegeneration and cardiovascular diseases, development of antioxidant therapy should target the reduction in reactive oxygen species. Instead of focusing on disease-oriented therapy, pharmaceutical companies should concentrate on developing agents and dosing schemes for effective activation of the endogenous antioxidants that are associated with a multitude of oxidative stress-related diseases (mechanism-oriented therapy). Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Oxidative inactivation of the endogenous antioxidant protein DJ-1 by the food contaminants 3-MCPD and 2-MCPD.

    PubMed

    Buhrke, Thorsten; Voss, Linn; Briese, Anja; Stephanowitz, Heike; Krause, Eberhard; Braeuning, Albert; Lampen, Alfonso

    2018-01-01

    3-Chloro-1,2-propanediol (3-MCPD) and 2-chloro-1,3-propanediol (2-MCPD) are heat-induced food contaminants being present either as free substances or as fatty acid esters in numerous foods. 3-MCPD was classified to be possibly carcinogenic to humans (category 2B) with kidney and testis being the primary target organs according to animal studies. A previous 28-day oral feeding study with rats revealed that the endogenous antioxidant protein DJ-1 was strongly deregulated at the protein level in kidney, liver, and testis of the experimental animals that had been treated either with 3-MCPD, 2-MCPD or their dipalmitate esters. Here we show that this deregulation is due to the oxidation of a conserved, redox-active cysteine residue (Cys106) of DJ-1 to a cysteine sulfonic acid which is equivalent to loss of function of DJ-1. Irreversible oxidation of DJ-1 is associated with a number of oxidative stress-related diseases such as Parkinson, cancer, and type II diabetes. It is assumed that 3-MCPD or 2-MCPD do not directly oxidize DJ-1, but that these substances induce the formation of reactive oxygen species (ROS) which in turn trigger DJ-1 oxidation. The implications of 3-MCPD/2-MCPD-mediated ROS formation in vivo for the ongoing risk assessment of these compounds as well as the potential of oxidized DJ-1 to serve as a novel effect biomarker for 3-MCPD/2-MCPD toxicity are being discussed.

  18. Efficient production of recombinant adeno-associated viral vector, serotype DJ/8, carrying the GFP gene.

    PubMed

    Hashimoto, Haruo; Mizushima, Tomoko; Chijiwa, Tsuyoshi; Nakamura, Masato; Suemizu, Hiroshi

    2017-06-15

    The purpose of this study was to establish an efficient method for the preparation of an adeno-associated viral (AAV), serotype DJ/8, carrying the GFP gene (AAV-DJ/8-GFP). We compared the yields of AAV-DJ/8 vector, which were produced by three different combination methods, consisting of two plasmid DNA transfection methods (lipofectamine and calcium phosphate co-precipitation; CaPi) and two virus DNA purification methods (iodixanol and cesium chloride; CsCl). The results showed that the highest yield of AAV-DJ/8-GFP vector was accomplished with the combination method of lipofectamine transfection and iodixanol purification. The viral protein expression levels and the transduction efficacy in HEK293 and CHO cells were not different among four different combination methods for AAV-DJ/8-GFP vectors. We confirmed that the AAV-DJ/8-GFP vector could transduce to human and murine hepatocyte-derived cell lines. These results show that AAV-DJ/8-GFP, purified by the combination of lipofectamine and iodixanol, produces an efficient yield without altering the characteristics of protein expression and AAV gene transduction. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Neuroprotective Effect of the Marine-Derived Compound 11-Dehydrosinulariolide through DJ-1-Related Pathway in In Vitro and In Vivo Models of Parkinson’s Disease

    PubMed Central

    Feng, Chien-Wei; Hung, Han-Chun; Huang, Shi-Ying; Chen, Chun-Hong; Chen, Yun-Ru; Chen, Chun-Yu; Yang, San-Nan; Wang, Hui-Min David; Sung, Ping-Jyun; Sheu, Jyh-Horng; Tsui, Kuan-Hao; Chen, Wu-Fu; Wen, Zhi-Hong

    2016-01-01

    Parkinson’s disease (PD) is a neurodegenerative disorder characterized by tremor, rigidity, bradykinesia, and gait impairment. In a previous study, we found that the marine-derived compound 11-dehydrosinulariolide (11-de) upregulates the Akt/PI3K pathway to protect cells against 6-hydroxydopamine (6-OHDA)-mediated damage. In the present study, SH-SY5Y, zebrafish and rats were used to examine the therapeutic effect of 11-de. The results revealed the mechanism by which 11-de exerts its therapeutic effect: the compound increases cytosolic or mitochondrial DJ-1 expression, and then activates the downstream Akt/PI3K, p-CREB, and Nrf2/HO-1 pathways. Additionally, we found that 11-de could reverse the 6-OHDA-induced downregulation of total swimming distance in a zebrafish model of PD. Using a rat model of PD, we showed that a 6-OHDA-induced increase in the number of turns, and increased time spent by rats on the beam, could be reversed by 11-de treatment. Lastly, we showed that 6-OHDA-induced attenuation in tyrosine hydroxylase (TH), a dopaminergic neuronal marker, in zebrafish and rat models of PD could also be reversed by treatment with 11-de. Moreover, the patterns of DJ-1 expression observed in this study in the zebrafish and rat models of PD corroborated the trend noted in previous in vitro studies. PMID:27763504

  20. Parkinsonism-associated Protein DJ-1/Park7 Is a Major Protein Deglycase That Repairs Methylglyoxal- and Glyoxal-glycated Cysteine, Arginine, and Lysine Residues

    PubMed Central

    Richarme, Gilbert; Mihoub, Mouadh; Dairou, Julien; Bui, Linh Chi; Leger, Thibaut; Lamouri, Aazdine

    2015-01-01

    Glycation is an inevitable nonenzymatic covalent reaction between proteins and endogenous reducing sugars or dicarbonyls (methylglyoxal, glyoxal) that results in protein inactivation. DJ-1 was reported to be a multifunctional oxidative stress response protein with poorly defined function. Here, we show that human DJ-1 is a protein deglycase that repairs methylglyoxal- and glyoxal-glycated amino acids and proteins by acting on early glycation intermediates and releases repaired proteins and lactate or glycolate, respectively. DJ-1 deglycates cysteines, arginines, and lysines (the three major glycated amino acids) of serum albumin, glyceraldehyde-3-phosphate dehydrogenase, aldolase, and aspartate aminotransferase and thus reactivates these proteins. DJ-1 prevented protein glycation in an Escherichia coli mutant deficient in the DJ-1 homolog YajL and restored cell viability in glucose-containing media. These results suggest that DJ-1-associated Parkinsonism results from excessive protein glycation and establishes DJ-1 as a major anti-glycation and anti-aging protein. PMID:25416785

  1. Supplementation of Spirulina (Arthrospira platensis) Improves Lifespan and Locomotor Activity in Paraquat-Sensitive DJ-1βΔ93 Flies, a Parkinson's Disease Model in Drosophila melanogaster.

    PubMed

    Kumar, Ajay; Christian, Pearl K; Panchal, Komal; Guruprasad, B R; Tiwari, Anand K

    2017-09-03

    Spirulina (Arthrospira platensis) is a cyanobacterium (blue-green alga) consumed by humans and other animals because of its nutritional values and pharmacological properties. Apart from high protein contents, it also contains high levels of antioxidant and anti-inflammatory compounds, such as carotenoids, β-carotene, phycocyanin, and phycocyanobilin, indicating its possible pharmaco-therapeutic utility. In the present study using DJ-1β Δ93 flies, a Parkinson's disease model in Drosophila, we have demonstrated the therapeutic effect of spirulina and its active component C-phycocyanin (C-PC) in the improvement of lifespan and locomotor behavior. Our findings indicate that dietary supplementation of spirulina significantly improves the lifespan and locomotor activity of paraquat-fed DJ-1β Δ93 flies. Furthermore, supplementation of spirulina and C-PC individually and independently reduced the cellular stress marked by deregulating the expression of heat shock protein 70 and Jun-N-terminal kinase signaling in DJ-1β Δ93 flies. A significant decrease in superoxide dismutase and catalase activities in spirulina-fed DJ-1β Δ93 flies tends to indicate the involvement of antioxidant properties associated with spirulina in the modulation of stress-induced signaling and improvement in lifespan and locomotor activity in Drosophila DJ-1β Δ93 flies. Our results suggest that antioxidant boosting properties of spirulina can be used as a nutritional supplement for improving the lifespan and locomotor behavior in Parkinson's disease.

  2. Effects of endurance training on hippocampus DJ-1, cannabinoid receptor type 2 and blood glucose concentration in diabetic rats.

    PubMed

    Kurd, Mohammad; Valipour Dehnou, Vahid; Tavakoli, Seyed A; Gahreman, Daniel E

    2018-05-23

    To investigate the effect of endurance training on hippocampus DJ-1 and cannabinoid receptor type 2 (CB 2 ) protein and blood glucose concentration in diabetic rats. A total of 32 rats were randomly divided into diabetic (D), diabetic and exercise (DE), exercise (E) and control (C) groups. The endurance training was carried out five times per week for 6 weeks. The hippocampus DJ-1 and CB 2 were measured using an enzyme-linked immunosorbent assay method. The level of DJ-1 in the D group was significantly higher than the other groups (P ≤ 0.01). However, the level of DJ-1 was not significantly different between the C, E and DE groups. In addition, the level of CB 2 was significantly lower in the D group compared with the other groups (P ≤ 0.01). Blood glucose was significantly higher in the D group compared with the DE group (P ≤ 0.05). Furthermore, a significant positive correlation between the level of DJ-1 and blood glucose was observed (r = 0.67, P ≤ 0.001). There was also a significant inverse correlation between the level of CB 2 and blood glucose (r = -0.77, P ≤ 0.001). The results of this study suggest that the level of DJ-1 and CB 2 might change in response to diabetes, and regular aerobic exercise could mediate the effect of DJ-1 and CB 2 on diabetes-induced neurodegenerative diseases. © 2018 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  3. Transduced Tat-DJ-1 Protein Protects against Oxidative Stress-Induced SH-SY5Y Cell Death and Parkinson Disease in a Mouse Model

    PubMed Central

    Jeong, Hoon Jae; Kim, Dae Won; Woo, Su Jung; Kim, Hye Ri; Kim, So Mi; Jo, Hyo Sang; Park, Meeyoung; Kim, Duk-Soo; Kwon, Oh-Shin; Hwang, In Koo; Han, Kyu Hyung; Park, Jinseu; Eum, Won Sik; Choi, Soo Young

    2012-01-01

    Parkinson’s disease (PD) is a well known neurodegenerative disorder characterized by selective loss of dopaminergic neurons in the substantia nigra pars compact (SN). Although the exact mechanism remains unclear, oxidative stress plays a critical role in the pathogenesis of PD. DJ-1 is a multifunctional protein, a potent antioxidant and chaperone, the loss of function of which is linked to the autosomal recessive early onset of PD. Therefore, we investigated the protective effects of DJ-1 protein against SH-SY5Y cells and in a PD mouse model using a cell permeable Tat-DJ-1 protein. Tat-DJ-1 protein rapidly transduced into the cells and showed a protective effect on 6-hydroxydopamine (6-OHDA)-induced neuronal cell death by reducing the reactive oxygen species (ROS). In addition, we found that Tat-DJ-1 protein protects against dopaminergic neuronal cell death in 1-methyl-4-phenyl-1,2,3,6,-tetrahydropyridine (MPTP)-induced PD mouse models. These results suggest that Tat-DJ-1 protein provides a potential therapeutic strategy for against ROS related human diseases including PD. PMID:22526393

  4. DJ-1/PARK7, But Not Its L166P Mutant Linked to Autosomal Recessive Parkinsonism, Modulates the Transcriptional Activity of the Orphan Nuclear Receptor Nurr1 In Vitro and In Vivo.

    PubMed

    Lu, Lingling; Zhao, Shasha; Gao, Ge; Sun, Xiaohong; Zhao, Huanying; Yang, Hui

    2016-12-01

    Although mutations of DJ-1 have been linked to autosomal recessive Parkinsonism for years, its physiological function and the pathological mechanism of its mutants are not well understood. We report for the first time that exogenous application of DJ-1, but not its L166P mutant, enhances the nuclear translocation and the transcriptional activity of Nurr1, a transcription factor essential for dopaminergic neuron development and maturation, both in vitro and in vivo. Knockdown of DJ-1 attenuates Nurr1 activity. Further investigation showed that signaling of Raf/MEK/ERK MAPKs is involved in this regulatory process and that activation induced by exogenous DJ-1 is antagonized by U0126, an ERK pathway inhibitor, indicating that DJ-1 modulates Nurr1 activity via the Raf/MEK/ERK pathway. Our findings shed light on the novel function of DJ-1 to enhance Nurr1 activity and provide the first insight into the molecular mechanism by which DJ-1 enhances Nurr1 activity.

  5. The involvement of J-protein AtDjC17 in root development in Arabidopsis

    PubMed Central

    Petti, Carloalberto; Nair, Meera; DeBolt, Seth

    2014-01-01

    In a screen for root hair morphogenesis mutants in Arabidopsis thaliana L. we identified a T-DNA insertion within a type III J-protein AtDjC17 caused altered root hair development and reduced hair length. Root hairs were observed to develop from trichoblast and atrichoblast cell files in both Atdjc17 and 35S::AtDJC17. Localization of gene expression in the root using transgenic plants expressing proAtDjC17::GUS revealed constitutive expression in stele cells. No AtDJC17 expression was observed in epidermal, endodermal, or cortical layers. To explore the contrast between gene expression in the stele and epidermal phenotype, hand cut transverse sections of Atdjc17 roots were examined showing that the endodermal and cortical cell layers displayed increased anticlinal cell divisions. Aberrant cortical cell division in Atdjc17 is proposed as causal in ectopic root hair formation via the positional cue requirement that exists between cortical and epidermal cell in hair cell fate determination. Results indicate a requirement for AtDJC17 in position-dependent cell fate determination and illustrate an intriguing requirement for molecular co-chaperone activity during root development. PMID:25339971

  6. Genotype-phenotype relations for the Parkinson's Disease genes Parkin, PINK1, DJ1: MDSGene Systematic Review.

    PubMed

    Kasten, Meike; Hartmann, Corinna; Hampf, Jennie; Schaake, Susen; Westenberger, Ana; Vollstedt, Eva-Juliane; Balck, Alexander; Domingo, Aloysius; Vulinovic, Franca; Dulovic, Marija; Zorn, Ingo; Madoev, Harutyun; Zehnle, Hanna; Lembeck, Christina M; Schawe, Leopold; Reginold, Jennifer; Huang, Jana; König, Inke R; Bertram, Lars; Marras, Connie; Lohmann, Katja; Lill, Christina M; Klein, Christine

    2018-04-11

    This first comprehensive MDSGene review is devoted to the 3 autosomal recessive Parkinson's disease forms: PARK-Parkin, PARK-PINK1, and PARK-DJ1. It followed MDSGene's standardized data extraction protocol and screened a total of 3652 citations and is based on fully curated phenotypic and genotypic data on >1100 patients with recessively inherited PD because of 221 different disease-causing mutations in Parkin, PINK1, or DJ1. All these data are also available in an easily searchable online database (www.mdsgene.org), which also provides descriptive summary statistics on phenotypic and genetic data. Despite the high degree of missingness of phenotypic features and unsystematic reporting of genotype data in the original literature, the present review recapitulates many of the previously described findings including early onset (median age at onset of ∼30 years for carriers of at least 2 mutations in any of the 3 genes) of an overall clinically typical form of PD with excellent treatment response, dystonia and dyskinesia being relatively common and cognitive decline relatively uncommon. However, when comparing actual data with common expert knowledge in previously published reviews, we detected several discrepancies. We conclude that systematic reporting of phenotypes is a pressing need in light of increasingly available molecular genetic testing and the emergence of first gene-specific therapies entering clinical trials. © 2018 International Parkinson and Movement Disorder Society. © 2018 International Parkinson and Movement Disorder Society.

  7. Genome-Edited, TH-expressing Neuroblastoma Cells as a Disease Model for Dopamine-Related Disorders: A Proof-of-Concept Study on DJ-1-deficient Parkinsonism

    PubMed Central

    Prasuhn, Jannik; Mårtensson, Christoph U.; Krajka, Victor; Klein, Christine; Rakovic, Aleksandar

    2018-01-01

    Impairment of the dopaminergic (DA) system is a common cause of several movement disorders including Parkinson’s disease (PD), however, little is known about the underlying disease mechanisms. The recent development of stem-cell-based protocols for the generation of DA neurons partially solved this issue, however, this technology is costly and time-consuming. Commonly used cell lines, i.e., neuroblastoma (SHSY5Y) and PC12 cells are still widely used to investigate PD and significantly contributed to our understanding of mechanisms involved in development of the disease. However, they either do not express DA at all or require additional, only partially efficient differentiations in order to produce DA. Here we generated and characterized transgenic SH-SY5Y cells, ectopically expressing tyrosine hydroxylase (SHTH+), that can be used as a homogenous, DA-producing model to study alterations in DA metabolism and oxidative stress. We demonstrated that SHTH+ produce high levels of DA, 3,4-dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA) making this model suitable to investigate not only alterations in DA synthesis but also its turnover. We also provide evidence for the presence of other enzymes involved in DA synthesis and its turnover in these cells. Finally, we showed that these cells can easily be genetically modified using CRISPR/Cas9 technology in order to study genetically defined forms of movement disorders using DJ1-linked PD as a model. PMID:29379417

  8. Hsp31, a member of the DJ-1 superfamily, is a multitasking stress responder with chaperone activity

    PubMed Central

    Aslam, Kiran; Hazbun, Tony R.

    2016-01-01

    ABSTRACT Among different types of protein aggregation, amyloids are a biochemically well characterized state of protein aggregation that are associated with a large number of neurodegenerative diseases including Parkinson's disease, Alzheimer and Creutzfeldt-Jakob disease. Yeast, Saccharomyces cerevisiae is an insightful model to understand the underlying mechanism of protein aggregation. Many yeast molecular chaperones can modulate aggregation and misfolding of proteins including α-Syn and the Sup35 prion. Hsp31 is a homodimeric protein structurally similar to human DJ-1, a Parkinson's disease-linked protein, and both are members of the DJ-1/ThiJ/PfpI superfamily. An emerging view is that Hsp31 and its associated superfamily members each have divergent multitasking functions that have the common theme of responding and managing various types of cellular stress. Hsp31 has several biochemical activities including chaperone and detoxifying enzyme activities that modulate at various points of a stress pathway such as toxicity associated with protein misfolding. However, we have shown the protective role of Hsp31's chaperone activity can operate independent of detoxifying enzyme activities in preventing the early stages of protein aggregate formation and associated cellular toxicities. We provide additional data that collectively supports the multiple functional roles that can be accomplished independent of each other. We present data indicating Hsp31 purified from yeast is more active compared to expression and purification from E. coli suggesting that posttranslational modifications could be important for Hsp31 to be fully active. We also compare the similarities and differences in activities among paralogs of Hsp31 supporting a model in which this protein family has overlapping but diverging roles in responding to various sources of cellular stresses. PMID:27097320

  9. L166P MUTANT DJ-1, CAUSATIVE FOR RECESSIVE PARKINSON'S DISEASE IS DEGRADED THROUGH THE UBIQUITIN-PROTEASOME SYSTEM

    EPA Science Inventory

    Abstract

    Mutations in a gene on chromosome 1, DJ-1, have been reported recently to be associated with recessive, early-onset Parkinson's disease. Whilst one mutation is a large deletion that is predicted to produce an effective knockout of the gene, the second is a point ...

  10. Repetitive ischemia increases myocardial dimethylarginine dimethylaminohydrolase 1 expression.

    PubMed

    Zhang, Ping; Fassett, John T; Zhu, Guangshuo; Li, Jingxin; Hu, Xinli; Xu, Xin; Chen, Yingjie; Bache, Robert J

    2017-06-01

    Pharmacologic inhibition of nitric oxide production inhibits growth of coronary collateral vessels. Dimethylarginine dimethylaminohydrolase 1 (DDAH1) is the major enzyme that degrades asymmetric dimethylarginine (ADMA), a potent inhibitor of nitric oxide synthase. Here we examined regulation of the ADMA-DDAH1 pathway in a canine model of recurrent myocardial ischemia during the time when coronary collateral growth is known to occur. Under basal conditions, DDAH1 expression was non-uniform across the left ventricular (LV) wall, with expression strongest in the subepicardium. In response to ischemia, DDAH1 expression was up-regulated in the midmyocardium of the ischemic zone, and this was associated with a significant reduction in myocardial interstitial fluid (MIF) ADMA. The decrease in MIF ADMA during ischemia was likely due to increased DDAH1 because myocardial protein arginine N-methyl transferase 1 (PRMT1) and the methylated arginine protein content (the source of ADMA) were unchanged or increased, respectively, at this time. The inflammatory mediators interleukin (IL-1β) and tumor necrosis factor (TNF-α) were also elevated in the midmyocardium where DDAH1 expression was increased. Both of these factors significantly up-regulated DDAH1 expression in cultured human coronary artery endothelial cells. Taken together, these results suggest that inflammatory factors expressed in response to myocardial ischemia contributed to up-regulation of DDAH1, which was responsible for the decrease in MIF ADMA.

  11. Strong decays of DJ(3000 ) and Ds J(3040 )

    NASA Astrophysics Data System (ADS)

    Li, Si-Chen; Wang, Tianhong; Jiang, Yue; Tan, Xiao-Ze; Li, Qiang; Wang, Guo-Li; Chang, Chao-Hsi

    2018-03-01

    In this paper, we systematically calculate two-body strong decays of newly observed DJ(3000 ) and Ds J(3040 ) with 2 P (1+) and 2 P (1+') assignments in an instantaneous approximation of the Bethe-Salpeter equation method. Our results show that both resonances can be explained as the 2 P (1+') with broad width via 3P1 and 1P1 mixing in D and Ds families. For DJ(3000 ), the total width is 229.6 MeV in our calculation, close to the upper limit of experimental data, and the dominant decay channels are D2*π , D*π , and D*(2600 )π . For Ds J(3040 ), the total width is 157.4 MeV in our calculation, close to the lower limit of experimental data, and the dominant channels are D*K and D*K*. These results are consistent with observed channels in experiments. Given the very little information that has been obtained from experiments and the large error bars of the total decay widths, we recommend the detection of dominant channels in our calculation.

  12. Engineered disulfide bonds restore chaperone-like function of DJ-1 mutants linked to familial Parkinson's disease.

    PubMed

    Logan, Todd; Clark, Lindsay; Ray, Soumya S

    2010-07-13

    Loss-of-function mutations such as L166P, A104T, and M26I in the DJ-1 gene (PARK7) have been linked to autosomal-recessive early onset Parkinson's disease (PD). Cellular and structural studies of the familial mutants suggest that these mutations may destabilize the dimeric structure. To look for common dynamical signatures among the DJ-1 mutants, short MD simulations of up to 1000 ps were conducted to identify the weakest region of the protein (residues 38-70). In an attempt to stabilize the protein, we mutated residue Val 51 to cysteine (V51C) to make a symmetry-related disulfide bridge with the preexisting Cys 53 on the opposite subunit. We found that the introduction of this disulfide linkage stabilized the mutants A104T and M26I against thermal denaturation, improved their ability to scavenge reactive oxygen species (ROS), and restored a chaperone-like function of blocking alpha-synuclein aggregation. The L166P mutant was far too unstable to be rescued by introduction of the V51C mutation. The results presented here point to the possible development of pharmacological chaperones, which may eventually lead to PD therapeutics.

  13. Degradation of Redox-Sensitive Proteins including Peroxiredoxins and DJ-1 is Promoted by Oxidation-induced Conformational Changes and Ubiquitination

    NASA Astrophysics Data System (ADS)

    Song, In-Kang; Lee, Jae-Jin; Cho, Jin-Hwan; Jeong, Jihye; Shin, Dong-Hae; Lee, Kong-Joo

    2016-10-01

    Reactive oxygen species (ROS) are key molecules regulating various cellular processes. However, what the cellular targets of ROS are and how their functions are regulated is unclear. This study explored the cellular proteomic changes in response to oxidative stress using H2O2 in dose- and recovery time-dependent ways. We found discernible changes in 76 proteins appearing as 103 spots on 2D-PAGE. Of these, Prxs, DJ-1, UCH-L3 and Rla0 are readily oxidized in response to mild H2O2 stress, and then degraded and active proteins are newly synthesized during recovery. In studies designed to understand the degradation process, multiple cellular modifications of redox-sensitive proteins were identified by peptide sequencing with nanoUPLC-ESI-q-TOF tandem mass spectrometry and the oxidative structural changes of Prx2 explored employing hydrogen/deuterium exchange-mass spectrometry (HDX-MS). We found that hydrogen/deuterium exchange rate increased in C-terminal region of oxidized Prx2, suggesting the exposure of this region to solvent under oxidation. We also found that Lys191 residue in this exposed C-terminal region of oxidized Prx2 is polyubiquitinated and the ubiquitinated Prx2 is readily degraded in proteasome and autophagy. These findings suggest that oxidation-induced ubiquitination and degradation can be a quality control mechanism of oxidized redox-sensitive proteins including Prxs and DJ-1.

  14. A positive circuit of VEGF increases Glut-1 expression by increasing HIF-1α gene expression in human retinal endothelial cells.

    PubMed

    Choi, Yoon Kyung

    2017-12-01

    Treatment of human retinal microvascular endothelial cells (HRMECs) with vascular endothelial growth factor 165 (VEGF 165 ) increased hypoxia-inducible factor 1α (HIF-1α), VEGF, and glucose transporter 1 (Glut-1) mRNA expression and Glut-1 protein localization to the membrane. In contrast, treatment of human retinal pigment epithelium cells with VEGF 165 did not induce HIF-1α, VEGF, and Glut-1 gene expression. Microvascular endothelial cells are surrounded by astrocytic end feet in the retina. Astrocyte-derived A-kinase anchor protein 12 overexpression during hypoxia downregulated VEGF secretion, and this conditioned medium reduced VEGF and Glut-1 expression in HRMECs, suggesting that communications between astrocytes and endothelial cells may be the determinants of the blood vessel network. In HRMECs, HIF-1α small interfering RNA transfection blocked the VEGF 165 -mediated increase in VEGF and Glut-1 gene expression. Inhibition of protein kinase C (PKC) with inhibitor GF109203X or with a small interfering RNA targeting PKCζ attenuated the VEGF 165 -induced Glut-1 protein expression and VEGF and Glut-1 mRNA expression. In addition, results of an immunoprecipitation assay imply an interaction between VEGF receptor 2 (VEGFR2) and PKCζ in HRMECs. Therefore, VEGF secretion by hypoxic astrocytes may upregulate HIF-1α gene expression, inducing VEGF and Glut-1 expression via the VEGFR2-PKCζ axis in HRMECs.

  15. Suppression of lipin-1 expression increases monocyte chemoattractant protein-1 expression in 3T3-L1 adipocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Nobuhiko, E-mail: ntkhs@hoku-iryo-u.ac.jp; Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510; Yoshizaki, Takayuki

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer Lipin-1 affects lipid metabolism, adipocyte differentiation, and transcription. Black-Right-Pointing-Pointer Adipose lipin-1 expression is reduced in obesity. Black-Right-Pointing-Pointer Lipin-1 depletion using siRNA in 3T3-L1 adipocytes increased MCP-1 expression. Black-Right-Pointing-Pointer Lipin-1 is involved in adipose inflammation. -- Abstract: Lipin-1 plays a crucial role in the regulation of lipid metabolism and cell differentiation in adipocytes. Expression of adipose lipin-1 is reduced in obesity, and metabolic syndrome. However, the significance of this reduction remains unclear. This study investigated if and how reduced lipin-1 expression affected metabolism. We assessed mRNA expression levels of various genes related to adipocyte metabolism in lipin-1-depleted 3T3-L1 adipocytesmore » by introducing its specific small interfering RNA. In lipin-1-depleted adipocytes, mRNA and protein expression levels of monocyte chemoattractant protein-1 (MCP-1) were significantly increased, although the other genes tested were not altered. The conditioned media from the cells promoted monocyte chemotaxis. The increase in MCP-1 expression was prevented by treatment with quinazoline or salicylate, inhibitors of nuclear factor-{kappa}B activation. Because MCP-1 is related to adipose inflammation and systemic insulin resistance, these results suggest that a reduction in adipose lipin-1 in obesity may exacerbate adipose inflammation and metabolism.« less

  16. Optimum Design of ARC-less InGaP/GaAs DJ Solar Cell with Hetero Tunnel Junction

    NASA Astrophysics Data System (ADS)

    Abbasian, Sobhan; Sabbaghi-Nadooshan, Reza

    2018-07-01

    The operation of hetero In0.49Ga0.51P-Al0.7Ga0.3As tunnel diodes has been evaluated, and an approach for optimizing the back surface field (BSF) layer of a InGaP/GaAs dual-junction (DJ) solar cell developed. The results show that the hetero In0.49Ga0.51P-Al0.7Ga0.3As tunnel diode transferred more electrons and holes and showed less recombination between the top and bottom cells with increased efficiency ( η) in the InGaP/GaAs DJ solar cell. To achieve higher open-circuit voltage ( V oc), GaAs semiconductor was investigated to match with Al0.52In0.48P with bandgap of 2.4 eV, and replacement of the bottom cell in the InGaP/GaAs DJ solar cell with such an Al0.52In0.48P-GaAs heterojunction increased the photogeneration in this region. In the next step, addition of a BSF layer to the top cell required two BSF layers in the bottom cell to optimize the short-circuit current ( J sc) and η. The thickness and doping of the BSF layers were increased to obtain the highest η for the cell. The proposed structure was then compared with previous works. The proposed structure yielded V oc = 2.46 V, J sc = 30 mA/cm2, fill factor (FF) = 88.61%, and η = 65.51% under AM1.5 (1 sun) illumination.

  17. WHIRLIN INCREASES TRPV1 CHANNEL EXPRESSION AND CELLULAR STABILITY

    PubMed Central

    Ciardo, Maria Grazia; Andrés-Bordería, Amparo; Cuesta, Natalia; Valente, Pierluigi; Camprubí-Robles, María; Yang, Jun; Planells-Cases, Rosa; Ferrer-Montiel, Antonio

    2017-01-01

    The expression and function of TRPV1 is influenced by its interaction with cellular proteins. Here, we identify whirlin, a cytoskeletal PDZ-scaffold protein implicated in hearing, vision and mechanosensory transduction, as an interacting partner of TRPV1. Whirlin associates with TRPV1 in cell lines and in primary cultures of rat nociceptors. Whirlin is expressed in 55% of mouse sensory C-fibers, including peptidergic and non-peptidergic nociceptors, and co-localizes with TRPV1 in 70% of them. Heterologous expression of Whirlin increased TRPV1 protein expression and trafficking to the plasma membrane, and promoted receptor clustering. Silencing Whirlin expression with siRNA or blocking protein translation resulted in a concomitant degradation of TRPV1 that could be prevented by inhibiting the proteasome. The degradation kinetics of TRPV1 upon arresting protein translation mirrored that of Whirlin in cells co-expressing both proteins, suggesting a parallel degradation mechanism. Noteworthy, Whirlin expression significantly reduced TRPV1 degradation induced by prolonged exposure to capsaicin. Thus, our findings indicate that Whirlin and TRPV1 are associated in a subset of nociceptors and that TRPV1 protein stability is increased through the interaction with the cytoskeletal scaffold protein. Our results suggest that the Whirlin-TRPV1 complex may represent a novel molecular target and its pharmacological disruption might be a therapeutic strategy for the treatment of peripheral TRPV1-mediated disorders. PMID:26516054

  18. A Glutathione-independent Glyoxalase of the DJ-1 Superfamily Plays an Important Role in Managing Metabolically Generated Methylglyoxal in Candida albicans*

    PubMed Central

    Hasim, Sahar; Hussin, Nur Ahmad; Alomar, Fadhel; Bidasee, Keshore R.; Nickerson, Kenneth W.; Wilson, Mark A.

    2014-01-01

    Methylglyoxal is a cytotoxic reactive carbonyl compound produced by central metabolism. Dedicated glyoxalases convert methylglyoxal to d-lactate using multiple catalytic strategies. In this study, the DJ-1 superfamily member ORF 19.251/GLX3 from Candida albicans is shown to possess glyoxalase activity, making this the first demonstrated glutathione-independent glyoxalase in fungi. The crystal structure of Glx3p indicates that the protein is a monomer containing the catalytic triad Cys136-His137-Glu168. Purified Glx3p has an in vitro methylglyoxalase activity (Km = 5.5 mm and kcat = 7.8 s−1) that is significantly greater than that of more distantly related members of the DJ-1 superfamily. A close Glx3p homolog from Saccharomyces cerevisiae (YDR533C/Hsp31) also has glyoxalase activity, suggesting that fungal members of the Hsp31 clade of the DJ-1 superfamily are all probable glutathione-independent glyoxalases. A homozygous glx3 null mutant in C. albicans strain SC5314 displays greater sensitivity to millimolar levels of exogenous methylglyoxal, elevated levels of intracellular methylglyoxal, and carbon source-dependent growth defects, especially when grown on glycerol. These phenotypic defects are complemented by restoration of the wild-type GLX3 locus. The growth defect of Glx3-deficient cells in glycerol is also partially complemented by added inorganic phosphate, which is not observed for wild-type or glucose-grown cells. Therefore, C. albicans Glx3 and its fungal homologs are physiologically relevant glutathione-independent glyoxalases that are not redundant with the previously characterized glutathione-dependent GLO1/GLO2 system. In addition to its role in detoxifying glyoxals, Glx3 and its close homologs may have other important roles in stress response. PMID:24302734

  19. SIMILAR PATTERNS OF MITOCHONDRIAL VULNERABILITY AND RESCUE INDUCED BY GENETIC MODIFICATION OF α-SYNUCLEIN, PARKIN AND DJ-1 IN C. ELEGANS*

    PubMed Central

    Westlund, Beth; Perier, Celine; Burnam, Lucinda; Sluder, Anne; Hoener, Marius; Rodrigues, Cecilia MP; Alfonso, Aixa; Steer, Clifford; Liu, Leo; Przedborski, Serge; Wolozin, Benjamin

    2014-01-01

    How genetic and environmental factors interact in Parkinson’s disease is poorly understood. We have now compared the patterns of vulnerability and rescue of C. elegans with genetic modifications of three different genetic factors implicated in PD. We observed that expressing α-synuclein, deleting parkin (K08E3.7) or knocking down DJ-1 (B0432.2) or parkin, produces similar patterns of pharmacological vulnerability and rescue. C. elegans lines with these genetic changes were more vulnerable than non-transgenic nematodes to mitochondrial complex I inhibitors, including rotenone, fenperoximate, pyridaben or stigmatellin. In contrast, the genetic manipulations did not increase sensitivity to paraquat, sodium azide, divalent metal ions (FeII or CuII) or etoposide compared to non-transgenic nematodes. Each of the PD-related lines was also partially rescued by the anti-oxidant probucol, the mitochondrial complex II activator, D-β-hydroxybutyrate (DβHB) or the anti-apoptotic bile acid tauroursodeoxycholic acid (TUDCA). Complete protection in all lines was achieved by combining DβHB with TUDCA but not with probucol. These results show that diverse PD-related genetic modifications disrupt mitochondrial function in C. elegans, and they raise the possibility that mitochondrial disruption is a pathway shared in common by many types of familial PD. PMID:16239214

  20. Primary Closure Following Laparoscopic Common Bile Duct Exploration Combined with Intraoperative Choledochoscopy and D-J Tube Drainage for Treating Choledocholithiasis.

    PubMed

    Yu, Miao; Xue, Huanzhou; Shen, Quan; Zhang, Xiao; Li, Ke; Jia, Meng; Jia, Jiangkun; Xu, Jian

    2017-09-19

    BACKGROUND This study aimed to assess the clinical short-term results of a primary closure following laparoscopic common bile duct exploration (LCBDE) combined with intraoperative choledochoscopy and D-J tube drainage for choledocholithiasis treatment. MATERIAL AND METHODS Twenty-five patients (14 women and 11 men) who underwent LCBDE with primary duct closure and D-J tube drainage for choledocholithiasis were retrospectively enrolled. The D-J tube (4.7F×14 cm) was removed using a duodenoscope if there was no bile leakage. Before discharge, patients were examined for blood amylase. After discharge or D-J tube removal, all patients were routinely assessed for complications. RESULTS Mean operating time was 135±46 min (range, 78-195 min). Mean intraoperative blood loss was 71±24 mL (range, 25-110 mL). Total hospital stay was 6-9 days (mean, 8.04±1.37 days). Two patients experienced intraoperative bile leakage, which was stopped with re-suturing. None of these patients experienced postoperative bile leaks. Three patients had slight elevation of serum amylase before discharge but without pancreatitis signs. The successful clearance rate of stones was 100%. During 1-year follow-up, no recurrence or severe complications occurred. CONCLUSIONS A primary closure following LCBDE combined with intraoperative choledochoscopy and D-J tube drainage is safe and feasible for choledocholithiasis treatment.

  1. Adeno-Associated Viral Vector Serotype DJ-Mediated Overexpression of N171-82Q-Mutant Huntingtin in the Striatum of Juvenile Mice Is a New Model for Huntington's Disease.

    PubMed

    Jang, Minhee; Lee, Seung Eun; Cho, Ik-Hyun

    2018-01-01

    Huntington's disease (HD) is an autosomal-dominant inherited neurodegenerative disorder characterized by motor, psychiatric and cognitive symptoms. HD is caused by an expansion of CAG repeats in the huntingtin ( HTT ) gene in various areas of the brain including striatum. There are few suitable animal models to study the pathogenesis of HD and validate therapeutic strategies. Recombinant adeno-associated viral (AAV) vectors successfully transfer foreign genes to the brain of adult mammalians. In this article, we report a novel mouse model of HD generated by bilateral intrastriatal injection of AAV vector serotype DJ (AAV-DJ) containing N171-82Q mutant HTT (82Q) and N171-18Q wild type HTT (18Q; sham). The AAV-DJ-82Q model displayed motor dysfunctions in pole and rotarod tests beginning 4 weeks after viral infection in juvenile mice (8 weeks after birth). They showed behaviors reflecting neurodegeneration. They also showed increased apoptosis, robust glial activation and upregulated representative inflammatory cytokines (tumor necrosis factor-alpha (TNF-α) and interleukin (IL)-6), mediators (cyclooxygenase-2 and inducible nitric oxide synthase) and signaling pathways (nuclear factor kappa B and signal transducer and activator of transcription 3 (STAT3)) in the striatum at 10 weeks after viral infection (14 weeks after birth) via successful transfection of mutant HTT into neurons, microglia, and astrocytes in the striatum. However, little evidence of any of these events was found in mice infected with the AAV-DJ-18Q expressing construct. Intrastriatal injection of AAV-DJ-82Q might be useful as a novel in vivo model to investigate the biology of truncated N-terminal fragment (N171) in the striatum and to explore the efficacy of therapeutic strategies for HD.

  2. Adeno-Associated Viral Vector Serotype DJ-Mediated Overexpression of N171-82Q-Mutant Huntingtin in the Striatum of Juvenile Mice Is a New Model for Huntington’s Disease

    PubMed Central

    Jang, Minhee; Lee, Seung Eun; Cho, Ik-Hyun

    2018-01-01

    Huntington’s disease (HD) is an autosomal-dominant inherited neurodegenerative disorder characterized by motor, psychiatric and cognitive symptoms. HD is caused by an expansion of CAG repeats in the huntingtin (HTT) gene in various areas of the brain including striatum. There are few suitable animal models to study the pathogenesis of HD and validate therapeutic strategies. Recombinant adeno-associated viral (AAV) vectors successfully transfer foreign genes to the brain of adult mammalians. In this article, we report a novel mouse model of HD generated by bilateral intrastriatal injection of AAV vector serotype DJ (AAV-DJ) containing N171-82Q mutant HTT (82Q) and N171-18Q wild type HTT (18Q; sham). The AAV-DJ-82Q model displayed motor dysfunctions in pole and rotarod tests beginning 4 weeks after viral infection in juvenile mice (8 weeks after birth). They showed behaviors reflecting neurodegeneration. They also showed increased apoptosis, robust glial activation and upregulated representative inflammatory cytokines (tumor necrosis factor-alpha (TNF-α) and interleukin (IL)-6), mediators (cyclooxygenase-2 and inducible nitric oxide synthase) and signaling pathways (nuclear factor kappa B and signal transducer and activator of transcription 3 (STAT3)) in the striatum at 10 weeks after viral infection (14 weeks after birth) via successful transfection of mutant HTT into neurons, microglia, and astrocytes in the striatum. However, little evidence of any of these events was found in mice infected with the AAV-DJ-18Q expressing construct. Intrastriatal injection of AAV-DJ-82Q might be useful as a novel in vivo model to investigate the biology of truncated N-terminal fragment (N171) in the striatum and to explore the efficacy of therapeutic strategies for HD. PMID:29946240

  3. "Makin' Somethin' Outta Little-to-Nufin'': Racism, Revision and Rotating Records--The Hip-Hop DJ in Composition Praxis

    ERIC Educational Resources Information Center

    Craig, Todd

    2015-01-01

    Prompted by a moment in the classroom in which the DJ becomes integral for the writing instructor, this article looks at how the hip-hop DJ and hip-hop DJ/Producer become the intrinsic examples for first-year college writing students to think about how they conduct revision in their writing. After a review of two seminal hip-hop books and other…

  4. Meconium increases type 1 angiotensin II receptor expression and alveolar cell death.

    PubMed

    Rosenfeld, Charles R; Zagariya, Alexander M; Liu, Xiao-Tie; Willis, Brigham C; Fluharty, Steven; Vidyasagar, Dharmapuri

    2008-03-01

    The pulmonary renin-angiotensin system (RAS) contributes to inflammation and epithelial apoptosis in meconium aspiration. It is unclear if both angiotensin II receptors (ATR) contribute, where they are expressed and if meconium modifies subtype expression. We examined ATR subtypes in 2 wk rabbit pup lungs before and after meconium exposure and with and without captopril pretreatment or type 1 receptor (AT1R) inhibition with losartan, determining expression and cellular localization with immunoblots, RT-PCR and immunohistochemistry, respectively. Responses of cultured rat alveolar type II pneumocytes were also examined. Type 2 ATR were undetected in newborn lung before and after meconium instillation. AT1R were expressed in pulmonary vascular and bronchial smooth muscle and alveolar and bronchial epithelium. Meconium increased total lung AT1R protein approximately 3-fold (p = 0.006), mRNA 29% (p = 0.006) and immunostaining in bronchial and alveolar epithelium and smooth muscle, which were unaffected by captopril and losartan. Meconium also increased AT1R expression >3-fold in cultured type II pneumocytes and caused concentration-dependent cell death inhibited by losartan. Meconium increases AT1R expression in newborn rabbit lung and cultured type II pneumocytes and induces AT1R-mediated cell death. The pulmonary RAS contributes to the pathogenesis of meconium aspiration through increased receptor expression.

  5. Nav1.7 expression is increased in painful human dental pulp.

    PubMed

    Luo, Songjiang; Perry, Griffin M; Levinson, S Rock; Henry, Michael A

    2008-04-21

    Animal studies and a few human studies have shown a change in sodium channel (NaCh) expression after inflammatory lesions, and this change is implicated in the generation of pain states. We are using the extracted human tooth as a model system to study peripheral pain mechanisms and here examine the expression of the Nav1.7 NaCh isoform in normal and painful samples. Pulpal sections were labeled with antibodies against: 1) Nav1.7, N52 and PGP9.5, and 2) Nav1.7, caspr (a paranodal protein used to identify nodes of Ranvier), and myelin basic protein (MBP), and a z-series of optically-sectioned images were obtained with the confocal microscope. Nav1.7-immunofluorescence was quantified in N52/PGP9.5-identified nerve fibers with NIH ImageJ software, while Nav1.7 expression in myelinated fibers at caspr-identified nodal sites was evaluated and further characterized as either typical or atypical as based on caspr-relationships. Results show a significant increase in nerve area with Nav1.7 expression within coronal and radicular fiber bundles and increased expression at typical and atypical caspr-identified nodal sites in painful samples. Painful samples also showed an augmentation of Nav1.7 within localized areas that lacked MBP, including those associated with atypical caspr-identified sites, thus identifying NaCh remodeling within demyelinating axons as the basis for a possible pulpal pain mechanism. This study identifies the increased axonal expression and augmentation of Nav1.7 at intact and remodeling/demyelinating nodes within the painful human dental pulp where these changes may contribute to constant, increased evoked and spontaneous pain responses that characterize the pain associated with toothache.

  6. Increased expression of both insulin receptor substrates 1 and 2 confers increased sensitivity to IGF-1 stimulated cell migration.

    PubMed

    de Blaquière, Gail E; May, Felicity E B; Westley, Bruce R

    2009-06-01

    Insulin-like growth factors (IGFs) are thought to promote tumour progression and metastasis in part by stimulating cell migration. Insulin receptor substrate-1 (IRS-1) and IRS-2 are multisite docking proteins positioned immediately downstream from the type I IGF and insulin receptors. IRS-2 but not IRS-1 has been reported to be involved in the migratory response of breast cancer cells to IGFs. The purpose of this investigation was to determine if IRS-1 is involved in, and to assess the contributions of IRS-1 and IRS-2 to, the migratory response of breast cancer cells to IGFs. The expression of IRS-1 and IRS-2 varied considerably between ten breast cancer cell lines. Oestrogen increases expression of the type I IGF receptor, IRS-1 and IRS-2 in MCF-7 and ZR-75 cells. Oestrogens may control the sensitivity of breast cancer cells to IGFs by regulating the expression of components of the IGF signal transduction pathway. The migratory response to a range of IGF-1 concentrations was measured in MCF-7 and MDA-MB-231 breast cancer cells in which IRS-1 and IRS-2 levels were modulated using a doxycycline-inducible expression system. Induction of both IRS-1 and IRS-2 expression increased the sensitivity of the migratory response to IGF-1 but did not increase the magnitude of the response stimulated at higher concentrations of IGF-1. Knockdown of IRS-1, IRS-2 and the type I IGF receptor in MCF-7 and MDA-MB-2231 cells decreased sensitivity to IGF-1. We conclude that both IRS-1 and IRS-2 control the migratory response of breast cancer cells to IGF-1 and may, therefore, be key molecules in determining breast cancer spread.

  7. Twisting integrin receptors increases endothelin-1 gene expression in endothelial cells

    NASA Technical Reports Server (NTRS)

    Chen, J.; Fabry, B.; Schiffrin, E. L.; Wang, N.; Ingber, D. E. (Principal Investigator)

    2001-01-01

    A magnetic twisting stimulator was developed based on the previously published technique of magnetic twisting cytometry. Using ligand-coated ferromagnetic microbeads, this device can apply mechanical stresses with varying amplitudes, duration, frequencies, and waveforms to specific cell surface receptors. Biochemical and biological responses of the cells to the mechanical stimulation can be assayed. Twisting integrin receptors with RGD (Arg-Gly-Asp)-containing peptide-coated beads increased endothelin-1 (ET-1) gene expression by >100%. In contrast, twisting scavenger receptors with acetylated low-density lipoprotein-coated beads or twisting HLA antigen with anti-HLA antibody-coated beads did not lead to alterations in ET-1 gene expression. In situ hybridization showed that the increase in ET-1 mRNA was localized in the cells that were stressed with the RGD-coated beads. Blocking stretch-activated ion channels with gadolinium, chelating Ca2+ with EGTA, or inhibiting tyrosine phosphorylation with genistein abolished twist-induced ET-1 mRNA elevation. Abolishing cytoskeletal tension with an inhibitor of the myosin ATPase, with an inhibitor of myosin light chain kinase, or with an actin microfilament disrupter blocked twisted-induced increases in ET-1 expression. Our results are consistent with the hypothesis that the molecular structural linkage of integrin-cytoskeleton is an important pathway for stress-induced ET-1 gene expression.

  8. Cyclic strain increases protease-activated receptor-1 expression in vascular smooth muscle cells

    NASA Technical Reports Server (NTRS)

    Nguyen, K. T.; Frye, S. R.; Eskin, S. G.; Patterson, C.; Runge, M. S.; McIntire, L. V.

    2001-01-01

    Cyclic strain regulates many vascular smooth muscle cell (VSMC) functions through changing gene expression. This study investigated the effects of cyclic strain on protease-activated receptor-1 (PAR-1) expression in VSMCs and the possible signaling pathways involved, on the basis of the hypothesis that cyclic strain would enhance PAR-1 expression, reflecting increased thrombin activity. Uniaxial cyclic strain (1 Hz, 20%) of cells cultured on elastic membranes induced a 2-fold increase in both PAR-1 mRNA and protein levels. Functional activity of PAR-1, as assessed by cell proliferation in response to thrombin, was also increased by cyclic strain. In addition, treatment of cells with antioxidants or an NADPH oxidase inhibitor blocked strain-induced PAR-1 expression. Preincubation of cells with protein kinase inhibitors (staurosporine or Ro 31-8220) enhanced strain-increased PAR-1 expression, whereas inhibitors of NO synthase, tyrosine kinase, and mitogen-activated protein kinases had no effect. Cyclic strain in the presence of basic fibroblast growth factor induced PAR-1 mRNA levels beyond the effect of cyclic strain alone, whereas no additive effect was observed between cyclic strain and platelet-derived growth factor-AB. Our findings that cyclic strain upregulates PAR-1 mRNA expression but that shear stress downregulates this gene in VSMCs provide an opportunity to elucidate signaling differences by which VSMCs respond to different mechanical forces.

  9. The budding yeast orthologue of Parkinson's disease-associated DJ-1 is a multi-stress response protein protecting cells against toxic glycolytic products.

    PubMed

    Natkańska, Urszula; Skoneczna, Adrianna; Sieńko, Marzena; Skoneczny, Marek

    2017-01-01

    Saccharomyces cerevisiae Hsp31p is a DJ-1/ThiJ/PfpI family protein that was previously shown to be important for survival in the stationary phase of growth and under oxidative stress. Recently, it was identified as a chaperone or as glutathione-independent glyoxalase. To elucidate the role played by this protein in budding yeast cells, we investigated its involvement in the protection against diverse environmental stresses. Our study revealed that HSP31 gene expression is controlled by multiple transcription factors, including Yap1p, Cad1p, Msn2p, Msn4p, Haa1p and Hsf1p. These transcription factors mediate the HSP31 promoter responses to oxidative, osmotic and thermal stresses, to potentially toxic products of glycolysis, such as methylglyoxal and acetic acid, and to the diauxic shift. We also demonstrated that the absence of the HSP31 gene sensitizes cells to these stressors. Overproduction of Hsp31p and its homologue Hsp32p rescued the sensitivity of glo1Δ cells to methylglyoxal. Hsp31p also reversed the increased sensitivity of the ald6Δ strain to acetic acid. Since Hsp31p glyoxalase III coexists in S. cerevisiae cells with thousand-fold more potent glyoxalase I/II system, its biological purpose requires substantiation. We postulate that S. cerevisiae Hsp31p may have broader substrate specificity than previously proposed and is able to eliminate various toxic products of glycolysis. Alternatively, Hsp31p might be effective under high concentration of exogenous methylglyoxal present in some natural environmental niches populated by budding yeast, when glyoxalase I/II system capacity is saturated. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Viral Infection of Human Lung Macrophages Increases PDL1 Expression via IFNβ

    PubMed Central

    Staples, Karl J.; Nicholas, Ben; McKendry, Richard T.; Spalluto, C. Mirella; Wallington, Joshua C.; Bragg, Craig W.; Robinson, Emily C.; Martin, Kirstin; Djukanović, Ratko; Wilkinson, Tom M. A.

    2015-01-01

    Lung macrophages are an important defence against respiratory viral infection and recent work has demonstrated that influenza-induced macrophage PDL1 expression in the murine lung leads to rapid modulation of CD8+ T cell responses via the PD1 receptor. This PD1/PDL1 pathway may downregulate acute inflammatory responses to prevent tissue damage. The aim of this study was to investigate the mechanisms of PDL1 regulation by human macrophages in response to viral infection. Ex-vivo viral infection models using influenza and RSV were established in human lung explants, isolated lung macrophages and monocyte-derived macrophages (MDM) and analysed by flow cytometry and RT-PCR. Incubation of lung explants, lung macrophages and MDM with X31 resulted in mean cellular infection rates of 18%, 18% and 29% respectively. Viral infection significantly increased cell surface expression of PDL1 on explant macrophages, lung macrophages and MDM but not explant epithelial cells. Infected MDM induced IFNγ release from autologous CD8+ T cells, an effect enhanced by PDL1 blockade. We observed increases in PDL1 mRNA and IFNβ mRNA and protein release by MDM in response to influenza infection. Knockdown of IFNβ by siRNA, resulted in a 37.5% reduction in IFNβ gene expression in response to infection, and a significant decrease in PDL1 mRNA. Furthermore, when MDM were incubated with IFNβ, this cytokine caused increased expression of PDL1 mRNA. These data indicate that human macrophage PDL1 expression modulates CD8+ cell IFNγ release in response to virus and that this expression is regulated by autologous IFNβ production. PMID:25775126

  11. Viral infection of human lung macrophages increases PDL1 expression via IFNβ.

    PubMed

    Staples, Karl J; Nicholas, Ben; McKendry, Richard T; Spalluto, C Mirella; Wallington, Joshua C; Bragg, Craig W; Robinson, Emily C; Martin, Kirstin; Djukanović, Ratko; Wilkinson, Tom M A

    2015-01-01

    Lung macrophages are an important defence against respiratory viral infection and recent work has demonstrated that influenza-induced macrophage PDL1 expression in the murine lung leads to rapid modulation of CD8+ T cell responses via the PD1 receptor. This PD1/PDL1 pathway may downregulate acute inflammatory responses to prevent tissue damage. The aim of this study was to investigate the mechanisms of PDL1 regulation by human macrophages in response to viral infection. Ex-vivo viral infection models using influenza and RSV were established in human lung explants, isolated lung macrophages and monocyte-derived macrophages (MDM) and analysed by flow cytometry and RT-PCR. Incubation of lung explants, lung macrophages and MDM with X31 resulted in mean cellular infection rates of 18%, 18% and 29% respectively. Viral infection significantly increased cell surface expression of PDL1 on explant macrophages, lung macrophages and MDM but not explant epithelial cells. Infected MDM induced IFNγ release from autologous CD8+ T cells, an effect enhanced by PDL1 blockade. We observed increases in PDL1 mRNA and IFNβ mRNA and protein release by MDM in response to influenza infection. Knockdown of IFNβ by siRNA, resulted in a 37.5% reduction in IFNβ gene expression in response to infection, and a significant decrease in PDL1 mRNA. Furthermore, when MDM were incubated with IFNβ, this cytokine caused increased expression of PDL1 mRNA. These data indicate that human macrophage PDL1 expression modulates CD8+ cell IFNγ release in response to virus and that this expression is regulated by autologous IFNβ production.

  12. Increased Expression of Stress Inducible Protein 1 in Glioma-Associated Microglia/Macrophages

    PubMed Central

    da Fonseca, Anna Carolina Carvalho; Wang, Huaqing; Fan, Haitao; Chen, Xuebo; Zhang, Ian; Zhang, Leying; Lima, Flavia Regina Souza; Badie, Behnam

    2014-01-01

    Factors released by glioma-associated microglia/macrophages (GAMs) play an important role in the growth and infiltration of tumors. We have previously demonstrated that the co-chaperone stress-inducible protein 1 (STI1) secreted by microglia promotes proliferation and migration of human glioblastoma (GBM) cell lines in vitro. In the present study, in order to investigate the role of STI1 in a physiological context, we used a glioma model to evaluate STI1 expression in vivo. Here, we demonstrate that STI1 expression in both the tumor and in the infiltrating GAMs and lymphocytes significantly increased with tumor progression. Interestingly, high expression of STI1 was observed in macrophages and lymphocytes that infiltrated brain tumors, whereas STI1 expression in the circulating blood monocytes and lymphocytes remained unchanged. Our results correlate, for the first time, the expression of STI1 and glioma progression, and suggest that STI1 expression in GAMs and infiltrating lymphocytes is modulated by the brain tumor microenvironment. PMID:25042352

  13. Cs 62 DJ Rydberg-atom macrodimers formed by long-range multipole interaction

    NASA Astrophysics Data System (ADS)

    Han, Xiaoxuan; Bai, Suying; Jiao, Yuechun; Hao, Liping; Xue, Yongmei; Zhao, Jianming; Jia, Suotang; Raithel, Georg

    2018-03-01

    Long-range macrodimers formed by D -state cesium Rydberg atoms are studied in experiments and calculations. Cesium [62DJ]2 Rydberg-atom macrodimers, bonded via long-range multipole interaction, are prepared by two-color photoassociation in a cesium atom trap. The first color (pulse A) resonantly excites seed Rydberg atoms, while the second (pulse B, detuned by the molecular binding energy) resonantly excites the Rydberg-atom macrodimers below the [62DJ]2 asymptotes. The molecules are measured by extraction of autoionization products and Rydberg-atom electric-field ionization, and ion detection. Molecular spectra are compared with calculations of adiabatic molecular potentials. From the dependence of the molecular signal on the detection delay time, the lifetime of the molecules is estimated to be 3 -6 μ s .

  14. Estradiol increases the expression of TNF-α and TNF receptor 1 in lactotropes.

    PubMed

    Zaldivar, Verónica; Magri, María Laura; Zárate, Sandra; Jaita, Gabriela; Eijo, Guadalupe; Radl, Daniela; Ferraris, Jimena; Pisera, Daniel; Seilicovich, Adriana

    2011-01-01

    Estrogens are recognized modulators of pituitary cell renewal, sensitizing cells to mitogenic and apoptotic signals. Tumor necrosis factor-α (TNF-α) is a proinflammatory cytokine that plays an important role in tissue homeostasis modulating cell proliferation, differentiation and death. We previously demonstrated that TNF-α-induced apoptosis of anterior pituitary cells from female rats is estrogen-dependent and predominant in cells from rats at proestrus when estradiol levels are the highest. Considering that one of the mechanisms involved in the apoptotic action of estrogens can result from increased expression of cytokines and/or their receptors, the aim of the present study was to evaluate the effect of estrogens on the expression of TNF-α and its receptor, TNF receptor 1 (TNFR1), in anterior pituitary cells. TNFR1 expression, determined by Western blot, was higher in anterior pituitary glands from rats at proestrus than at diestrus. Incubation of anterior pituitary cells from ovariectomized rats with 17β-estradiol enhanced TNFR1 protein expression. As determined by double immunocytochemistry, the expression of TNF-α and TNFR1 was detected in prolactin-, GH-, LH- and ACTH-bearing cells. 17β-estradiol increased the percentage of TNF-α and TNFR1-immunoreactive lactotropes but did not modify the number of GH-bearing cells expressing TNF-α or TNFR1. Our results demonstrate that estradiol increases the expression of TNF-α and TNFR1 in anterior pituitary cells, especially in lactotropes. The sensitizing action of estrogens to proapoptotic stimuli at proestrus in the anterior pituitary gland may involve changes in the expression of the TNF-α/TNFR1 system. Copyright © 2011 S. Karger AG, Basel.

  15. Repeated immobilization stress increases uncoupling protein 1 expression and activity in Wistar rats.

    PubMed

    Gao, Bihu; Kikuchi-Utsumi, Kazue; Ohinata, Hiroshi; Hashimoto, Masaaki; Kuroshima, Akihiro

    2003-06-01

    Repeat immobilization-stressed rats are leaner and have improved cold tolerance due to enhancement of brown adipose tissue (BAT) thermogenesis. This process likely involves stress-induced sympathetic nervous system activation and adrenocortical hormone release, which dynamically enhances and suppresses uncoupling protein 1 (UCP1) function, respectively. To investigate whether repeated immobilization influences UCP1 thermogenic properties, we assessed UCP1 mRNA, protein expression, and activity (GDP binding) in BAT from immobilization-naive or repeatedly immobilized rats (3 h daily for 4 weeks) and sham operated or adrenalectomized (ADX) rats. UCP1 properties were assessed before (basal) and after exposure to 3 h of acute immobilization. Basal levels of GDP binding and UCP1 expression was significantly increased (140 and 140%) in the repeated immobilized group. Acute immobilization increased GDP binding in both naive (180%) and repeated immobilized groups (220%) without changing UCP1 expression. In ADX rats, basal GDP binding and UCP1 gene expression significantly increased (140 and 110%), and acute immobilization induced further increase. These data demonstrate that repeated immobilization resulted in enhanced UCP1 function, suggesting that enhanced BAT thermogenesis contributes to lower body weight gain through excess energy loss and an improved ability to maintain body temperature during cold exposure.

  16. Induction of parkinsonism-related proteins in the spinal motor neurons of transgenic mouse carrying a mutant SOD1 gene.

    PubMed

    Morimoto, Nobutoshi; Nagai, Makiko; Miyazaki, Kazunori; Ohta, Yasuyuki; Kurata, Tomoko; Takehisa, Yasushi; Ikeda, Yoshio; Matsuura, Tohru; Asanuma, Masato; Abe, Koji

    2010-06-01

    Amyotrophic lateral sclerosis is a progressive and fatal disease caused by selective death of motor neurons, and a number of these patients carry mutations in the superoxide dismutase 1 (SOD1) gene involved in ameliorating oxidative stress. Recent studies indicate that oxidative stress and disruption of mitochondrial homeostasis is a common mechanism for motor neuron degeneration in amyotrophic lateral sclerosis and the loss of midbrain dopamine neurons in Parkinson's disease. Therefore, the present study investigated the presence and alterations of familial Parkinson's disease-related proteins, PINK1 and DJ-1, in spinal motor neurons of G93ASOD1 transgenic mouse model of amyotrophic lateral sclerosis. Following onset of disease, PINK1 and DJ-1 protein expression increased in the spinal motor neurons. The activated form of p53 also increased and translocated to the nuclei of spinal motor neurons, followed by increased expression of p53-activated gene 608 (PAG608). This is the first report demonstrating that increased expression of PAG608 correlates with activation of phosphorylated p53 in spinal motor neurons of an amyotrophic lateral sclerosis model. These results provide further evidence of the profound correlations between spinal motor neurons of amyotrophic lateral sclerosis and parkinsonism-related proteins.

  17. Vitamin D increases programmed death receptor-1 expression in Crohn’s disease

    PubMed Central

    Bendix, Mia; Greisen, Stinne; Dige, Anders; Hvas, Christian L.; Bak, Nina; Jørgensen, Søren P.; Dahlerup, Jens F.; Deleuran, Bent; Agnholt, Jørgen

    2017-01-01

    Background: Vitamin D modulates inflammation in Crohns disease (CD). Programmed death (PD)-1 receptor contributes to the maintenance of immune tolerance. Vitamin D might modulate PD-1 signalling in CD. Aim: To investigate PD-1 expression on T cell subsets in CD patients treated with vitamin D or placebo. Methods: We included 40 CD patients who received 1200 IU vitamin D3 for 26 weeks or placebo and eight healthy controls. Peripheral blood mononuclear cells (PBMCs) and plasma were isolated at baseline and week 26. The expressions of PD-1, PD-L1, and surface activation markers were analysed by flow cytometry. Soluble PD-1 plasma levels were measured by ELISA. Results: PD-1 expression upon T cell stimulation was increased in CD4+CD25+int T cells in vitamin D treated CD patients from 19% (range 10 39%) to 29% (11 79%)(p = 0.03) compared with placebo-treated patients. Vitamin D treatment, but not placebo, decreased the expression of the T cell activation marker CD69 from 42% (31 62%) to 33% (19 - 54%)(p = 0.01). Soluble PD-1 levels were not influenced by vitamin D treatment. Conclusions: Vitamin D treatment increases CD4+CD25+int T cells ability to up-regulate PD-1 in response to activation and reduces the CD69 expression in CD patients. PMID:28412753

  18. Ginkgolide B Reduces LOX-1 Expression by Inhibiting Akt Phosphorylation and Increasing Sirt1 Expression in Oxidized LDL-Stimulated Human Umbilical Vein Endothelial Cells

    PubMed Central

    Chen, Beidong; Li, Xingguang; Qi, Ruomei

    2013-01-01

    Oxidized low-density lipoprotein (ox-LDL) is an important risk factor in the development of atherosclerosis. LOX-1, a lectin-like receptor for ox-LDL, is present primarily on endothelial cells and upregulated by ox-LDL, tumor necrosis factor a, shear stress, and cytokines in atherosclerosis. Recent studies demonstrated that ginkgolide B, a platelet-activating factor receptor antagonist, has antiinflammatory and antioxidant effects on endothelial and nerve cells. The present study investigated the effects of ginkgolide B on LOX-1 expression and the possible mechanism of action. Our results showed that ginkgolide B inhibited LOX-1 and intercellular cell adhesion molecule-1 (ICAM-1) expression in ox-LDL-stimulated endothelial cells through a mechanism associated with the attenuation of Akt activation. Similar data were obtained by silencing Akt and LY294002. We also evaluated Sirt1 and nuclear factor erythroid 2-related factor 2 (Nrf2) expression. These molecules play a protective role in endothelial cell injury. The results showed that ginkgolide B increased Sirt1 expression in ox-LDL-treated cells. The inhibitory effects of ginkgolide B on LOX-1 and ICAM-1 expression were reduced in Sirt1 siRNA-transfected cells. Nrf2 expression was increased in ox-LDL-treated cells, and ginkgolide B downregulated Nrf2 expression. These results suggest that ginkgolide B reduces Nrf2 expression by inhibiting LOX-1 expression, consequently reducing oxidative stress injury in ox-LDL-stimulated cells. Altogether, these results indicate that the protective effect of ginkgolide B on endothelial cells may be attributable to a decrease in LOX-1 expression and an increase in Sirt1 expression in ox-LDL-stimulated endothelial cells, the mechanism of which is linked to the inhibition of Akt activation. Ginkgolide B may be a multiple-target drug that exerts protective effects in ox-LDL-treated human umbilical vein endothelial cells. PMID:24069345

  19. Increased expression of stress inducible protein 1 in glioma-associated microglia/macrophages.

    PubMed

    Carvalho da Fonseca, Anna Carolina; Wang, Huaqing; Fan, Haitao; Chen, Xuebo; Zhang, Ian; Zhang, Leying; Lima, Flavia Regina Souza; Badie, Behnam

    2014-09-15

    Factors released by glioma-associated microglia/macrophages (GAMs) play an important role in the growth and infiltration of tumors. We have previously demonstrated that the co-chaperone stress-inducible protein 1 (STI1) secreted by microglia promotes proliferation and migration of human glioblastoma (GBM) cell lines in vitro. In the present study, in order to investigate the role of STI1 in a physiological context, we used a glioma model to evaluate STI1 expression in vivo. Here, we demonstrate that STI1 expression in both the tumor and in the infiltrating GAMs and lymphocytes significantly increased with tumor progression. Interestingly, high expression of STI1 was observed in macrophages and lymphocytes that infiltrated brain tumors, whereas STI1 expression in the circulating blood monocytes and lymphocytes remained unchanged. Our results correlate, for the first time, the expression of STI1 and glioma progression, and suggest that STI1 expression in GAMs and infiltrating lymphocytes is modulated by the brain tumor microenvironment. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Lupus Risk Variant Increases pSTAT1 Binding and Decreases ETS1 Expression

    PubMed Central

    Lu, Xiaoming; Zoller, Erin E.; Weirauch, Matthew T.; Wu, Zhiguo; Namjou, Bahram; Williams, Adrienne H.; Ziegler, Julie T.; Comeau, Mary E.; Marion, Miranda C.; Glenn, Stuart B.; Adler, Adam; Shen, Nan; Nath, Swapan K.; Stevens, Anne M.; Freedman, Barry I.; Tsao, Betty P.; Jacob, Chaim O.; Kamen, Diane L.; Brown, Elizabeth E.; Gilkeson, Gary S.; Alarcón, Graciela S.; Reveille, John D.; Anaya, Juan-Manuel; James, Judith A.; Sivils, Kathy L.; Criswell, Lindsey A.; Vilá, Luis M.; Alarcón-Riquelme, Marta E.; Petri, Michelle; Scofield, R. Hal; Kimberly, Robert P.; Ramsey-Goldman, Rosalind; Joo, Young Bin; Choi, Jeongim; Bae, Sang-Cheol; Boackle, Susan A.; Graham, Deborah Cunninghame; Vyse, Timothy J.; Guthridge, Joel M.; Gaffney, Patrick M.; Langefeld, Carl D.; Kelly, Jennifer A.; Greis, Kenneth D.; Kaufman, Kenneth M.; Harley, John B.; Kottyan, Leah C.

    2015-01-01

    Genetic variants at chromosomal region 11q23.3, near the gene ETS1, have been associated with systemic lupus erythematosus (SLE), or lupus, in independent cohorts of Asian ancestry. Several recent studies have implicated ETS1 as a critical driver of immune cell function and differentiation, and mice deficient in ETS1 develop an SLE-like autoimmunity. We performed a fine-mapping study of 14,551 subjects from multi-ancestral cohorts by starting with genotyped variants and imputing to all common variants spanning ETS1. By constructing genetic models via frequentist and Bayesian association methods, we identified 16 variants that are statistically likely to be causal. We functionally assessed each of these variants on the basis of their likelihood of affecting transcription factor binding, miRNA binding, or chromatin state. Of the four variants that we experimentally examined, only rs6590330 differentially binds lysate from B cells. Using mass spectrometry, we found more binding of the transcription factor signal transducer and activator of transcription 1 (STAT1) to DNA near the risk allele of rs6590330 than near the non-risk allele. Immunoblot analysis and chromatin immunoprecipitation of pSTAT1 in B cells heterozygous for rs6590330 confirmed that the risk allele increased binding to the active form of STAT1. Analysis with expression quantitative trait loci indicated that the risk allele of rs6590330 is associated with decreased ETS1 expression in Han Chinese, but not other ancestral cohorts. We propose a model in which the risk allele of rs6590330 is associated with decreased ETS1 expression and increases SLE risk by enhancing the binding of pSTAT1. PMID:25865496

  1. Increased Expression of Plasma-Induced ABCC1 mRNA in Cystic Fibrosis.

    PubMed

    Ideozu, Justin E; Zhang, Xi; Pan, Amy; Ashrafi, Zainub; Woods, Katherine J; Hessner, Martin J; Simpson, Pippa; Levy, Hara

    2017-08-11

    The ABCC1 gene is structurally and functionally related to the cystic fibrosis transmembrane conductance regulator gene ( CFTR ). Upregulation of ABCC1 is thought to improve lung function in patients with cystic fibrosis (CF); the mechanism underlying this effect is unknown. We analyzed the ABCC1 promoter single nucleotide polymorphism (SNP rs504348), plasma-induced ABCC1 mRNA expression levels, and ABCC1 methylation status and their correlation with clinical variables among CF subjects with differing CFTR mutations. We assigned 93 CF subjects into disease severity groups and genotyped SNP rs504348. For 23 CF subjects and 7 healthy controls, donor peripheral blood mononuclear cells (PBMCs) stimulated with plasma underwent gene expression analysis via qRT-PCR. ABCC1 promoter methylation was analyzed in the same 23 CF subjects. No significant correlation was observed between rs504348 genotypes and CF disease severity, but pancreatic insufficient CF subjects showed increased colonization with any form of Pseudomonas aeruginosa (OR = 3.125, 95% CI: 1.192-8.190) and mucoid P. aeruginosa (OR = 5.075, 95% CI: 1.307-28.620) compared to the pancreatic sufficient group. A significantly higher expression of ABCC1 mRNA was induced by CF plasma compared to healthy control plasma ( p < 0.001). CF subjects with rs504348 (CC/CG) also had higher mRNA expression compared to those with the ancestral GG genotype ( p < 0.005). ABCC1 promoter was completely unmethylated; therefore, we did not detect any association between methylation and CF disease severity. In silico predictions suggested that histone modifications are crucial for regulating ABCC1 expression in PBMCs. Our results suggest that ABCC1 expression has a role in CFTR activity thereby increasing our understanding of the molecular underpinnings of the clinical heterogeneity in CF.

  2. PGC-1alpha increases skeletal muscle lactate uptake by increasing the expression of MCT1 but not MCT2 or MCT4.

    PubMed

    Benton, Carley R; Yoshida, Yuko; Lally, James; Han, Xiao-Xia; Hatta, Hideo; Bonen, Arend

    2008-09-17

    We examined the relationship between PGC-1alpha protein; the monocarboxylate transporters MCT1, 2, and 4; and CD147 1) among six metabolically heterogeneous rat muscles, 2) in chronically stimulated red (RTA) and white tibialis (WTA) muscles (7 days), and 3) in RTA and WTA muscles transfected with PGC-1alpha-pcDNA plasmid in vivo. Among rat hindlimb muscles, there was a strong positive association between PGC-1alpha and MCT1 and CD147, and between MCT1 and CD147. A negative association was found between PGC-1alpha and MCT4, and CD147 and MCT4, while there was no relationship between PGC-1alpha or CD147 and MCT2. Transfecting PGC-1alpha-pcDNA plasmid into muscle increased PGC-1alpha protein (RTA +23%; WTA +25%) and induced the expression of MCT1 (RTA +16%; WTA +28%), but not MCT2 and MCT4. As a result of the PGC-1alpha-induced upregulation of MCT1 and its chaperone CD147 (+29%), there was a concomitant increase in the rate of lactate uptake (+20%). In chronically stimulated muscles, the following proteins were upregulated, PGC-1alpha in RTA (+26%) and WTA (+86%), MCT1 in RTA (+61%) and WTA (+180%), and CD147 in WTA (+106%). In contrast, MCT4 protein expression was not altered in either RTA or WTA muscles, while MCT2 protein expression was reduced in both RTA (-14%) and WTA (-10%). In these studies, whether comparing oxidative capacities among muscles or increasing their oxidative capacities by PGC-1alpha transfection and chronic muscle stimulation, there was a strong relationship between the expression of PGC-1alpha and MCT1, and PGC-1alpha and CD147 proteins. Thus, MCT1 and CD147 belong to the family of metabolic genes whose expression is regulated by PGC-1alpha in skeletal muscle.

  3. Increased Expression of Laminin Subunit Alpha 1 Chain by dCas9-VP160.

    PubMed

    Perrin, Arnaud; Rousseau, Joël; Tremblay, Jacques P

    2017-03-17

    Laminin-111 protein complex links the extracellular matrix to integrin α7β1 in sarcolemma, thus replacing in dystrophic muscles links normally insured by the dystrophin complex. Laminin-111 injection in mdx mouse stabilized sarcolemma, restored serum creatine kinase to wild-type levels, and protected muscles from exercised-induced damages. These results suggested that increased laminin-111 is a potential therapy for DMD. Laminin subunit beta 1 and laminin subunit gamma 1 are expressed in adult human muscle, but laminin subunit alpha 1 (LAMA1) gene is expressed only during embryogenesis. We thus developed an alternative method to laminin-111 protein repeated administration by inducing expression of the endogenous mouse Lama1 gene. This was done with the CRSPR/Cas9 system, i.e., by targeting the Lama1 promoter with one or several gRNAs and a dCas9 coupled with the VP160 transcription activation domain. Lama1 mRNA (qRT-PCR) and proteins (immunohistochemistry and western blot) were not detected in the control C2C12 myoblasts and in control muscles. However, significant expression was observed in cells transfected and in mouse muscles electroporated with plasmids coding for dCas9-VP160 and a gRNA. Larger synergic increases were observed by using two or three gRNAs. The increased Lama1 expression did not modify the expression of the α7 and β1 integrins. Increased expression of Lama1 by the CRISPR/Cas9 system will have to be further investigated by systemic delivery of the CRISPR/Cas9 components to verify whether this could be a treatment for several myopathies. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Inhibition of hypothalamic MCT1 expression increases food intake and alters orexigenic and anorexigenic neuropeptide expression

    PubMed Central

    Elizondo-Vega, Roberto; Cortés-Campos, Christian; Barahona, María José; Carril, Claudio; Ordenes, Patricio; Salgado, Magdiel; Oyarce, Karina; García-Robles, María de los Angeles

    2016-01-01

    Hypothalamic glucosensing, which involves the detection of glucose concentration changes by brain cells and subsequent release of orexigenic or anorexigenic neuropeptides, is a crucial process that regulates feeding behavior. Arcuate nucleus (AN) neurons are classically thought to be responsible for hypothalamic glucosensing through a direct sensing mechanism; however, recent data has shown a metabolic interaction between tanycytes and AN neurons through lactate that may also be contributing to this process. Monocarboxylate transporter 1 (MCT1) is the main isoform expressed by tanycytes, which could facilitate lactate release to hypothalamic AN neurons. We hypothesize that MCT1 inhibition could alter the metabolic coupling between tanycytes and AN neurons, altering feeding behavior. To test this, we inhibited MCT1 expression using adenovirus-mediated transfection of a shRNA into the third ventricle, transducing ependymal wall cells and tanycytes. Neuropeptide expression and feeding behavior were measured in MCT1-inhibited animals after intracerebroventricular glucose administration following a fasting period. Results showed a loss in glucose regulation of orexigenic neuropeptides and an abnormal expression of anorexigenic neuropeptides in response to fasting. This was accompanied by an increase in food intake and in body weight gain. Taken together, these results indicate that MCT1 expression in tanycytes plays a role in feeding behavior regulation. PMID:27677351

  5. Inhibition of hypothalamic MCT1 expression increases food intake and alters orexigenic and anorexigenic neuropeptide expression.

    PubMed

    Elizondo-Vega, Roberto; Cortés-Campos, Christian; Barahona, María José; Carril, Claudio; Ordenes, Patricio; Salgado, Magdiel; Oyarce, Karina; García-Robles, María de Los Angeles

    2016-09-28

    Hypothalamic glucosensing, which involves the detection of glucose concentration changes by brain cells and subsequent release of orexigenic or anorexigenic neuropeptides, is a crucial process that regulates feeding behavior. Arcuate nucleus (AN) neurons are classically thought to be responsible for hypothalamic glucosensing through a direct sensing mechanism; however, recent data has shown a metabolic interaction between tanycytes and AN neurons through lactate that may also be contributing to this process. Monocarboxylate transporter 1 (MCT1) is the main isoform expressed by tanycytes, which could facilitate lactate release to hypothalamic AN neurons. We hypothesize that MCT1 inhibition could alter the metabolic coupling between tanycytes and AN neurons, altering feeding behavior. To test this, we inhibited MCT1 expression using adenovirus-mediated transfection of a shRNA into the third ventricle, transducing ependymal wall cells and tanycytes. Neuropeptide expression and feeding behavior were measured in MCT1-inhibited animals after intracerebroventricular glucose administration following a fasting period. Results showed a loss in glucose regulation of orexigenic neuropeptides and an abnormal expression of anorexigenic neuropeptides in response to fasting. This was accompanied by an increase in food intake and in body weight gain. Taken together, these results indicate that MCT1 expression in tanycytes plays a role in feeding behavior regulation.

  6. Cytoplasmic YY1 Is Associated with Increased Smooth Muscle-Specific Gene Expression

    PubMed Central

    Favot, Laure; Hall, Susan M.; Haworth, Sheila G.; Kemp, Paul R.

    2005-01-01

    Immediately after birth the adluminal vascular SMCs of the pulmonary elastic arteries undergo transient actin cytoskeletal remodeling as well as cellular de-differentiation and proliferation. Vascular smooth muscle phenotype is regulated by serum response factor, which is itself regulated in part by the negative regulator YY1. We therefore studied the subcellular localization of YY1 in arteries of normal newborn piglets and piglets affected by neonatal pulmonary hypertension. We found that YY1 localization changed during development and that expression of γ-smooth muscle actin correlated with expression of cytoplasmic rather than nuclear YY1. Analysis of the regulation of YY1 localization in vitro demonstrated that polymerized γ-actin sequestered EGFP-YY1 in the cytoplasm and that YY1 activation of c-myc promoter activity was inhibited by LIM kinase, which increases actin polymerization. Consistent with these data siRNA-mediated down-regulation of YY1 in C2C12 cells increased SM22-α expression and inhibited cell proliferation. Thus, actin polymerization controls subcellular YY1 localization, which contributes to vascular SMC proliferation and differentiation in normal pulmonary artery development. In the absence of actin depolymerization, YY1 does not relocate to the nucleus, and this lack of relocation may contribute to the pathobiology of pulmonary hypertension. PMID:16314465

  7. Increased Dickkopf-1 expression accelerates bone cell apoptosis in femoral head osteonecrosis.

    PubMed

    Ko, Jih-Yang; Wang, Feng-Sheng; Wang, Ching-Jen; Wong, To; Chou, Wen-Yi; Tseng, Shin-Ling

    2010-03-01

    Intensive bone cell apoptosis contributes to osteonecrosis of femoral head (ONFH). Dickkopf-1 (DKK1) reportedly mediates various types of skeletal disorders. This study investigated whether DKK1 was linked to the occurrence of ONFH. Thirty-nine patients with various stages of ONFH were recruited. Bone specimens were harvested from 34 ONFH patients underwent hip arthroplasty, and from 10 femoral neck fracture patients. Bad, Bcl2 TNFalpha, DKK1, Wnt3a, LRP5, and Axin1 expressions were analyzed by quantitative RT-PCR and ELISA. Apoptotic cells were assayed using terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end-labelling (TUNEL). Primary bone-marrow mesenchymal cells were treated with DKK1 RNA interference and recombinant DKK1 protein. ONFH patients with the histories of being administrated corticosteroids and excessive alcohol consumption had significantly higher Bad and DKK1 mRNA expressions in bone tissue and DKK1 abundances in serum than femoral neck fracture patients. Bone cells adjacent to osteonecrotic bone displayed strong DKK1 immunoreactivity and TUNEL staining. Increased DKK1 expression in bone tissue and serum correlated with Bad expression and TUNEL staining. Serum DKK1 abundance correlated with the severity of ONFH. The DKK1 RNA interference and recombinant DKK1 protein regulated Bad expression and apoptosis of primary bone-marrow mesenchymal cells. Knock down of DKK1 reduced dexamethasone-induced apoptosis of mesenchymal cells. Taken together, promoted DKK1 expression was associated with bone cell apoptosis in the occurrence of ONFH patients with the histories of corticosteroid and alcohol intake and progression of ONFH. DKK1 expression in injured tissue provides new insight into ONFH pathogenesis.

  8. Endoplasmic reticulum stress increases AT1R mRNA expression via TIA-1-dependent mechanism

    PubMed Central

    Backlund, Michael; Paukku, Kirsi; Kontula, Kimmo K.; Lehtonen, Jukka Y.A.

    2016-01-01

    As the formation of ribonucleoprotein complexes is a major mechanism of angiotensin II type 1 receptor (AT1R) regulation, we sought to identify novel AT1R mRNA binding proteins. By affinity purification and mass spectroscopy, we identified TIA-1. This interaction was confirmed by colocalization of AT1R mRNA and TIA-1 by FISH and immunofluorescence microscopy. In immunoprecipitates of endogenous TIA- 1, reverse transcription-PCR amplified AT1R mRNA. TIA-1 has two binding sites within AT1R 3′-UTR. The binding site proximal to the coding region is glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-dependent whereas the distal binding site is not. TIA-1 functions as a part of endoplasmic reticulum (ER) stress response leading to stress granule (SG) formation and translational silencing. We and others have shown that AT1R expression is increased by ER stress-inducing factors. In unstressed cells, TIA-1 binds to AT1R mRNA and decreases AT1R protein expression. Fluorescence microscopy shows that ER stress induced by thapsigargin leads to the transfer of TIA-1 to SGs. In FISH analysis AT1R mRNA remains in the cytoplasm and no longer colocalizes with TIA-1. Thus, release of TIA-1-mediated suppression by ER stress increases AT1R protein expression. In conclusion, AT1R mRNA is regulated by TIA-1 in a ER stress-dependent manner. PMID:26681690

  9. Modulation of extracellular matrix/adhesion molecule expression by BRG1 is associated with increased melanoma invasiveness.

    PubMed

    Saladi, Srinivas Vinod; Keenen, Bridget; Marathe, Himangi G; Qi, Huiling; Chin, Khew-Voon; de la Serna, Ivana L

    2010-10-22

    Metastatic melanoma is an aggressive malignancy that is resistant to therapy and has a poor prognosis. The progression of primary melanoma to metastatic disease is a multi-step process that requires dynamic regulation of gene expression through currently uncharacterized epigenetic mechanisms. Epigenetic regulation of gene expression often involves changes in chromatin structure that are catalyzed by chromatin remodeling enzymes. Understanding the mechanisms involved in the regulation of gene expression during metastasis is important for developing an effective strategy to treat metastatic melanoma. SWI/SNF enzymes are multisubunit complexes that contain either BRG1 or BRM as the catalytic subunit. We previously demonstrated that heterogeneous SWI/SNF complexes containing either BRG1 or BRM are epigenetic modulators that regulate important aspects of the melanoma phenotype and are required for melanoma tumorigenicity in vitro. To characterize BRG1 expression during melanoma progression, we assayed expression of BRG1 in patient derived normal skin and in melanoma specimen. BRG1 mRNA levels were significantly higher in stage IV melanomas compared to stage III tumors and to normal skin. To determine the role of BRG1 in regulating the expression of genes involved in melanoma metastasis, we expressed BRG1 in a melanoma cell line that lacks BRG1 expression and examined changes in extracellular matrix and adhesion molecule expression. We found that BRG1 modulated the expression of a subset of extracellular matrix remodeling enzymes and adhesion proteins. Furthermore, BRG1 altered melanoma adhesion to different extracellular matrix components. Expression of BRG1 in melanoma cells that lack BRG1 increased invasive ability while down-regulation of BRG1 inhibited invasive ability in vitro. Activation of metalloproteinase (MMP) 2 expression greatly contributed to the BRG1 induced increase in melanoma invasiveness. We found that BRG1 is recruited to the MMP2 promoter and

  10. Repeat low-level blast exposure increases transient receptor potential vanilloid 1 (TRPV1) and endothelin-1 (ET-1) expression in the trigeminal ganglion

    PubMed Central

    Burke, Teresa A.; Doyle Brackley, Allison; Jeske, Nathaniel A.; Cleland, Jeffery M.; Lund, Brian J.

    2017-01-01

    Blast-associated sensory and cognitive trauma sustained by military service members is an area of extensively studied research. Recent studies in our laboratory have revealed that low-level blast exposure increased expression of transient receptor potential vanilloid 1 (TRPV1) and endothelin-1 (ET-1), proteins well characterized for their role in mediating pain transmission, in the cornea. Determining the functional consequences of these alterations in protein expression is critical to understanding blast-related sensory trauma. Thus, the purpose of this study was to examine TRPV1 and ET-1 expression in ocular associated sensory tissues following primary and tertiary blast. A rodent model of blast injury was used in which anesthetized animals, unrestrained or restrained, received a single or repeat blast (73.8 ± 5.5 kPa) from a compressed air shock tube once or daily for five consecutive days, respectively. Behavioral and functional analyses were conducted to assess blast effects on nocifensive behavior and TRPV1 activity. Immunohistochemistry and Western Blot were also performed with trigeminal ganglia (TG) to determine TRPV1, ET-1 and glial fibrillary associated protein (GFAP) expression following blast. Increased TRPV1, ET-1 and GFAP were detected in the TG of animals exposed to repeat blast. Increased nocifensive responses were also observed in animals exposed to repeat, tertiary blast as compared to single blast and control. Moreover, decreased TRPV1 desensitization was observed in TG neurons exposed to repeat blast. Repeat, tertiary blast resulted in increased TRPV1, ET-1 and GFAP expression in the TG, enhanced nociception and decreased TRPV1 desensitization. PMID:28797041

  11. Endoplasmic reticulum stress increases AT1R mRNA expression via TIA-1-dependent mechanism.

    PubMed

    Backlund, Michael; Paukku, Kirsi; Kontula, Kimmo K; Lehtonen, Jukka Y A

    2016-04-20

    As the formation of ribonucleoprotein complexes is a major mechanism of angiotensin II type 1 receptor (AT1R) regulation, we sought to identify novel AT1R mRNA binding proteins. By affinity purification and mass spectroscopy, we identified TIA-1. This interaction was confirmed by colocalization of AT1R mRNA and TIA-1 by FISH and immunofluorescence microscopy. In immunoprecipitates of endogenous TIA- 1, reverse transcription-PCR amplified AT1R mRNA. TIA-1 has two binding sites within AT1R 3'-UTR. The binding site proximal to the coding region is glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-dependent whereas the distal binding site is not. TIA-1 functions as a part of endoplasmic reticulum (ER) stress response leading to stress granule (SG) formation and translational silencing. We and others have shown that AT1R expression is increased by ER stress-inducing factors. In unstressed cells, TIA-1 binds to AT1R mRNA and decreases AT1R protein expression. Fluorescence microscopy shows that ER stress induced by thapsigargin leads to the transfer of TIA-1 to SGs. In FISH analysis AT1R mRNA remains in the cytoplasm and no longer colocalizes with TIA-1. Thus, release of TIA-1-mediated suppression by ER stress increases AT1R protein expression. In conclusion, AT1R mRNA is regulated by TIA-1 in a ER stress-dependent manner. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Pseudogene PHBP1 promotes esophageal squamous cell carcinoma proliferation by increasing its cognate gene PHB expression.

    PubMed

    Feng, Feiyue; Qiu, Bin; Zang, Ruochuan; Song, Peng; Gao, Shugeng

    2017-04-25

    Natural antisense transcripts (NATs) as one of the most diverse classes of long noncoding RNAs (lncRNAs), have been demonstrated involved in fundamental biological processes in human. Here, we reported that human prohibitin gene pseudogene 1 (PHBP1) was upregulated in ESCC, and increased PHBP1 expression in ESCC was associated with clinical advanced stage. Functional experiments showed that PHBP1 knockdown inhibited ESCC cells proliferation, colony formation and xenograft tumor growth in vitro and in vivo by causing cell-cycle arrest at the G1-G0 phase. Mechanisms analysis revealed that PHBP1 transcript as an antisense transcript of PHB is partially complementary to PHB mRNA and formed an RNA-RNA hybrid with PHB, consequently inducing an increase of PHB expression at both the mRNA and protein levels. Furthermore, PHBP1 expression is strongly correlated with PHB expression in ESCC tissues. Collectively, this study elucidates an important role of PHBP1 in promoting ESCC partly via increasing PHB expression.

  13. The expression of 11β-hydroxysteroid dehydrogenase type 1 is increased in experimental periodontitis in rats.

    PubMed

    Nakata, Takaya; Umeda, Makoto; Masuzaki, Hiroaki; Sawai, Hirofumi

    2016-10-03

    The involvement of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), which converts inactive glucocorticoids into active glucocorticoids intracellularly, in metabolic diseases and chronic inflammatory diseases has been elucidated. We recently reported that an increase in 11β-HSD1 expression was associated with chronic periodontitis in humans irrespective of obesity. To further clarify the role of 11β-HSD1 in chronic periodontitis, the expression of 11β-HSD1 was investigated in experimental periodontitis model in rats. Experimental periodontitis was induced by silk ligature of left maxillary second molars of 7-week-old male Wistar rats, and periodontal tissues were collected at day 3. The expression of 11β-HSD1, 11β-HSD2, and TNFα mRNA was examined using real time reverse transcription-polymerase chain reaction. The expression of TNFα was used as an indicator of inflammation. Thus, the rats in which the levels of TNFα mRNA were increased in the ligature-induced periodontitis compared with the control were analysed. The findings demonstrated that the expression of 11β-HSD1 mRNA was significantly increased in experimental periodontitis compared with the control. The increase in the levels of 11β-HSD1 mRNA in the ligature-induced periodontitis compared with the control was positively correlated with that of TNFα mRNA. On the other hand, the expression of 11β-HSD2 mRNA, which inactivates glucocorticoids, was slightly decreased in experimental periodontitis. Therefore, the ratio of 11β-HSD1 versus 11β-HSD2 mRNA was significantly higher in experimental periodontitis than in the control. These results suggest that the increased expression of 11β-HSD1, which would result in the increased levels of intracellular glucocorticoids, may play a role in the pathophysiology of experimental periodontitis.

  14. PTEN Loss Increases PD-L1 Protein Expression and Affects the Correlation between PD-L1 Expression and Clinical Parameters in Colorectal Cancer

    PubMed Central

    Lu, Biyan; Wang, Chenliang; Zhang, Junxiao; Huang, Lanlan; Wang, Xiaoyan; Timmons, Christine L.; Hu, Jun; Liu, Bindong; Wu, Xiaojian; Wang, Lei; Wang, Jianping; Liu, Huanliang

    2013-01-01

    Background Programmed death ligand-1 (PD-L1) has been identified as a factor associated with poor prognosis in a range of cancers, and was reported to be mainly induced by PTEN loss in gliomas. However, the clinical effect of PD-L1 and its regulation by PTEN has not yet been determined in colorectal cancer (CRC). In the present study, we verified the regulation of PTEN on PD-L1 and further determined the effect of PTEN on the correlation between PD-L1 expression and clinical parameters in CRC. Methods/Results RNA interference approach was used to down-regulate PTEN expression in SW480, SW620 and HCT116 cells. It was showed that PD-L1 protein, but not mRNA, was significantly increased in cells transfected with siRNA PTEN compared with the negative control. Moreover, the capacity of PTEN to regulate PD-L1 expression was not obviously affected by IFN-γ, the main inducer of PD-L1. Tissue microarray immunohistochemistry was used to detect PD-L1 and PTEN in 404 CRC patient samples. Overexpression of PD-L1 was significantly correlated with distant metastasis (P<0.001), TNM stage (P<0.01), metastatic progression (P<0.01) and PTEN expression (P<0.001). Univariate analysis revealed that patients with high PD-L1 expression had a poor overall survival (P<0.001). However, multivariate analysis did not support PD-L1 as an independent prognostic factor (P = 0.548). Univariate (P<0.001) and multivariate survival (P<0.001) analysis of 310 located CRC patients revealed that high level of PD-L1 expression was associated with increased risks of metastatic progression. Furthermore, the clinical effect of PD-L1 on CRC was not statistically significant in a subset of 39 patients with no PTEN expression (distant metastasis: P = 0.102; TNM stage: P = 0.634, overall survival: P = 0.482). Conclusions PD-L1 can be used to identify CRC patients with high risk of metastasis and poor prognosis. This clinical manifestation may be partly associated with PTEN expression. PMID

  15. PTEN loss increases PD-L1 protein expression and affects the correlation between PD-L1 expression and clinical parameters in colorectal cancer.

    PubMed

    Song, Minmin; Chen, Defeng; Lu, Biyan; Wang, Chenliang; Zhang, Junxiao; Huang, Lanlan; Wang, Xiaoyan; Timmons, Christine L; Hu, Jun; Liu, Bindong; Wu, Xiaojian; Wang, Lei; Wang, Jianping; Liu, Huanliang

    2013-01-01

    Programmed death ligand-1 (PD-L1) has been identified as a factor associated with poor prognosis in a range of cancers, and was reported to be mainly induced by PTEN loss in gliomas. However, the clinical effect of PD-L1 and its regulation by PTEN has not yet been determined in colorectal cancer (CRC). In the present study, we verified the regulation of PTEN on PD-L1 and further determined the effect of PTEN on the correlation between PD-L1 expression and clinical parameters in CRC. RNA interference approach was used to down-regulate PTEN expression in SW480, SW620 and HCT116 cells. It was showed that PD-L1 protein, but not mRNA, was significantly increased in cells transfected with siRNA PTEN compared with the negative control. Moreover, the capacity of PTEN to regulate PD-L1 expression was not obviously affected by IFN-γ, the main inducer of PD-L1. Tissue microarray immunohistochemistry was used to detect PD-L1 and PTEN in 404 CRC patient samples. Overexpression of PD-L1 was significantly correlated with distant metastasis (P<0.001), TNM stage (P<0.01), metastatic progression (P<0.01) and PTEN expression (P<0.001). Univariate analysis revealed that patients with high PD-L1 expression had a poor overall survival (P<0.001). However, multivariate analysis did not support PD-L1 as an independent prognostic factor (P = 0.548). Univariate (P<0.001) and multivariate survival (P<0.001) analysis of 310 located CRC patients revealed that high level of PD-L1 expression was associated with increased risks of metastatic progression. Furthermore, the clinical effect of PD-L1 on CRC was not statistically significant in a subset of 39 patients with no PTEN expression (distant metastasis: P = 0.102; TNM stage: P = 0.634, overall survival: P = 0.482). PD-L1 can be used to identify CRC patients with high risk of metastasis and poor prognosis. This clinical manifestation may be partly associated with PTEN expression.

  16. Glucose deprivation increases monocarboxylate transporter 1 (MCT1) expression and MCT1-dependent tumor cell migration.

    PubMed

    De Saedeleer, C J; Porporato, P E; Copetti, T; Pérez-Escuredo, J; Payen, V L; Brisson, L; Feron, O; Sonveaux, P

    2014-07-31

    The glycolytic end-product lactate is a pleiotropic tumor growth-promoting factor. Its activities primarily depend on its uptake, a process facilitated by the lactate-proton symporter monocarboxylate transporter 1 (MCT1). Therefore, targeting the transporter or its chaperon protein CD147/basigin, itself involved in the aggressive malignant phenotype, is an attractive therapeutic option for cancer, but basic information is still lacking regarding the regulation of the expression, interaction and activities of both proteins. In this study, we found that glucose deprivation dose-dependently upregulates MCT1 and CD147 protein expression and their interaction in oxidative tumor cells. While this posttranslational induction could be recapitulated using glycolysis inhibition, hypoxia, oxidative phosphorylation (OXPHOS) inhibitor rotenone or hydrogen peroxide, it was blocked with alternative oxidative substrates and specific antioxidants, pointing out at a mitochondrial control. Indeed, we found that the stabilization of MCT1 and CD147 proteins upon glucose removal depends on mitochondrial impairment and the associated generation of reactive oxygen species. When glucose was a limited resource (a situation occurring naturally or during the treatment of many tumors), MCT1-CD147 heterocomplexes accumulated, including in cell protrusions of the plasma membrane. It endowed oxidative tumor cells with increased migratory capacities towards glucose. Migration increased in cells overexpressing MCT1 and CD147, but it was inhibited in glucose-starved cells provided with an alternative oxidative fuel, treated with an antioxidant, lacking MCT1 expression, or submitted to pharmacological MCT1 inhibition. While our study identifies the mitochondrion as a glucose sensor promoting tumor cell migration, MCT1 is also revealed as a transducer of this response, providing a new rationale for the use of MCT1 inhibitors in cancer.

  17. Increased SHP-1 Protein Expression by High Glucose Levels Reduces Nephrin Phosphorylation in Podocytes*

    PubMed Central

    Denhez, Benoit; Lizotte, Farah; Guimond, Marie-Odile; Jones, Nina; Takano, Tomoko; Geraldes, Pedro

    2015-01-01

    Nephrin, a critical podocyte membrane component that is reduced in diabetic nephropathy, has been shown to activate phosphotyrosine signaling pathways in human podocytes. Nephrin signaling is important to reduce cell death induced by apoptotic stimuli. We have shown previously that high glucose level exposure and diabetes increased the expression of SHP-1, causing podocyte apoptosis. SHP-1 possesses two Src homology 2 domains that serve as docking elements to dephosphorylate tyrosine residues of target proteins. However, it remains unknown whether SHP-1 interacts with nephrin and whether its elevated expression affects the nephrin phosphorylation state in diabetes. Here we show that human podocytes exposed to high glucose levels exhibited elevated expression of SHP-1, which was associated with nephrin. Coexpression of nephrin-CD16 and SHP-1 reduced nephrin tyrosine phosphorylation in transfected human embryonic kidney 293 cells. A single tyrosine-to-phenylalanine mutation revealed that rat nephrin Tyr1127 and Tyr1152 are required to allow SHP-1 interaction with nephrin. Overexpression of dominant negative SHP-1 in human podocytes prevented high glucose-induced reduction of nephrin phosphorylation. In vivo, immunoblot analysis demonstrated that nephrin expression and phosphorylation were decreased in glomeruli of type 1 diabetic Akita mice (Ins2+/C96Y) compared with control littermate mice (Ins2+/+), and this was associated with elevated SHP-1 and cleaved caspase-3 expression. Furthermore, immunofluorescence analysis indicated increased colocalization of SHP-1 with nephrin in diabetic mice compared with control littermates. In conclusion, our results demonstrate that high glucose exposure increases SHP-1 interaction with nephrin, causing decreased nephrin phosphorylation, which may, in turn, contribute to diabetic nephropathy. PMID:25404734

  18. Transgenic Mice Expressing Yeast CUP1 Exhibit Increased Copper Utilization from Feeds

    PubMed Central

    Chen, Zhenliang; Liao, Rongrong; Zhang, Xiangzhe; Wang, Qishan; Pan, Yuchun

    2014-01-01

    Copper is required for structural and catalytic properties of a variety of enzymes participating in many vital biological processes for growth and development. Feeds provide most of the copper as an essential micronutrient consumed by animals, but inorganic copper could not be utilized effectively. In the present study, we aimed to develop transgenic mouse models to test if copper utilization will be increased by providing the animals with an exogenous gene for generation of copper chelatin in saliva. Considering that the S. cerevisiae CUP1 gene encodes a Cys-rich protein that can bind copper as specifically as copper chelatin in yeast, we therefore constructed a transgene plasmid containing the CUP1 gene regulated for specific expression in the salivary glands by a promoter of gene coding pig parotid secretory protein. Transgenic CUP1 was highly expressed in the parotid and submandibular salivary glands and secreted in saliva as a 9-kDa copper-chelating protein. Expression of salivary copper-chelating proteins reduced fecal copper contents by 21.61% and increased body-weight by 12.97%, suggesting that chelating proteins improve the utilization and absorbed efficacy of copper. No negative effects on the health of the transgenic mice were found by blood biochemistry and histology analysis. These results demonstrate that the introduction of the salivary CUP1 transgene into animals offers a possible approach to increase the utilization efficiency of copper and decrease the fecal copper contents. PMID:25265503

  19. Mechanical Force-induced TGFB1 Increases Expression of SOST/POSTN by hPDL Cells.

    PubMed

    Manokawinchoke, J; Limjeerajarus, N; Limjeerajarus, C; Sastravaha, P; Everts, V; Pavasant, P

    2015-07-01

    The aim of this study was to investigate the response of human periodontal ligament (hPDL) fibroblasts to an intermittent compressive force and its effect on the expression of SOST, POSTN, and TGFB1. A computerized cell compressive force loading apparatus was introduced, and hPDL cells were subjected to intermittent compressive force. The changes in messenger RNA (mRNA) and protein expression were monitored by real-time polymerase chain reaction and Western blot analysis, respectively. An increased expression of SOST, POSTN, and TGFB1 was observed in a time-dependent fashion. Addition of cycloheximide, a transforming growth factor (TGF)-β inhibitor (SB431542), or a neutralizing antibody against TGF-β1 attenuated the force-induced expression of SOST and POSTN as well as sclerostin and periostin, indicating a role of TGF-β1 in the pressure-induced expression of these proteins. Enzyme-linked immunosorbent assay analysis revealed an increased level of TGF-β1 in the cell extracts but not in the medium, suggesting that intermittent compressive force promoted the accumulation of TGF-β1 in the cells or their surrounding matrix. In conclusion, an intermittent compressive force regulates SOST/POSTN expression by hPDL cells via the TGF-β1 signaling pathway. Since these proteins play important roles in the homeostasis of the periodontal tissue, our results indicate the importance of masticatory forces in this process. © International & American Associations for Dental Research 2015.

  20. Nitric oxide increases Wnt-induced secreted protein-1 (WISP-1/CCN4) expression and function in colitis.

    PubMed

    Wang, Hongying; Zhang, Rui; Wen, Shoubin; McCafferty, Donna-Marie; Beck, Paul L; MacNaughton, Wallace K

    2009-04-01

    Nitric oxide (NO) derived from the inducible NO synthase (iNOS) is an important and complex mediator of inflammation in the intestine. Wnt-inducible secreted protein (WISP)-1 (CCN4), a member of the connective tissue growth factor family, is involved in tissue repair. We sought to determine the relationship between iNOS and WISP-1 in colitis. By analyzing human colonic biopsy samples, we showed that the expression of mRNA for both iNOS and WISP-1 was significantly higher in ulcerative colitis samples compared with control tissue. The upregulation of WISP-1 was positively correlated with iNOS expression in two models of colitis, induced by intrarectal trinitrobenzenesulfonic acid (TNBS) or occurring spontaneously in IL-10 deficient mice. Loss of iNOS, studied using iNOS(-/-) mice in both TNBS-induced and IL-10(-/-) colitis models, significantly attenuated the colitis-related WISP-1 increase. In human colonic epithelial cell lines, the NO donor, DETA-NONOate, elevated WISP-1 mRNA and protein expression through a beta-catenin and CREB-dependent, but Wnt-1-independent, pathway. In addition, NO-induced WISP-1 directly induced secretion of soluble collagen in colonic fibroblast cells. NO increases WISP-1 expression both in vitro and in vivo, suggesting a new role for iNOS and NO in colitis.

  1. Heme oxygenase-1 gene expression modulates angiotensin II-induced increase in blood pressure.

    PubMed

    Yang, Liming; Quan, Shuo; Nasjletti, Alberto; Laniado-Schwartzman, Michal; Abraham, Nader G

    2004-06-01

    The heme-heme oxygenase (HO) system has been implicated in the regulation of vascular reactivity and blood pressure. This study examines the notion that overexpression of HO decreases pressor responsiveness to angiotensin II (Ang II). Five-day-old Sprague-Dawley rats received an intraleft ventricular injection of approximately 5x10(9) cfu/mL of retroviruses containing human HO-1 sense (LSN-HHO-1), rat HO-1 antisense (LSN-RHO-1-AS), or control retrovirus (LXSN). Three months later, rats were instrumented with femoral arterial and venous catheters for mean arterial pressure (MAP) determination and Ang II administration, respectively. Rats injected with LSN-HHO-1, but not with LXSN, expressed human HO-1 mRNA and protein in several tissues. BP increased with administration of Ang II in rats expressing and not expressing human HO-1. However, the Ang II-induced pressor response (mm Hg) in LSN-HHO-1 rats (16+/-3, 27+/-3, and 38+/-3 at 0.5, 2, and 10 ng) was surpassed (P<0.05) in LXSN rats (23+/-1, 37+/-2, and 52+/-2 at 0.5, 2, and 10 ng). Importantly, treating LSN-HHO-1 rats with the HO inhibitor tin mesoporphyrin (SnMP) enhanced (P<0.05) the Ang II-induced pressor response to a level not different from that observed in LXSN rats. Rats injected with LSN-RHO-1-AS showed a decrease in renal HO-1 protein expression and HO activity relative to control LXSN rats. Administration of Ang II (0.1 to 2 ng) caused small (4 to 5 mm Hg) but significant increases in MAP in rats injected with LSN-RHO-1-AS (P<0.05) compared with rats injected with LXSN. These data demonstrate that overexpression of HO-1 brings about a reduction in pressor responsiveness to Ang II, which is most likely due to increased generation of an HO-1 product, presumably CO, with the ability to inhibit vascular reactivity to constrictor stimuli.

  2. Glutathione S-Transferase Pi Isoform (GSTP1) Expression in Murine Retina Increases with Developmental Maturity

    PubMed Central

    Lee, Wen-Hsiang; Joshi, Pratibha; Wen, Rong

    2014-01-01

    Background and Aims Glutathione S-transferase pi isoform (GSTP1) is an intracellular detoxification enzyme that catalyzes reduction of chemically reactive electrophiles and is a zeaxanthin-binding protein in the human macula. We have previously demonstrated that GSTP1 levels are decreased in human age-related macular degeneration (AMD) retina compared to normal controls [1]. We also showed that GSTP1 levels parallel survival of human retinal pigment epithelial (RPE) cells exposed to UV light, and GSTP1 over-expression protects them against UV light damage [2]. In the present work, we determined the developmental time course of GSTP1 expression in murine retina and in response to light challenge. Methods Eyes from BALB/c mice at post-natal day 20, 1 month, and 2 months of age were prepared for retinal protein extraction and cryo sectioning, and GSTP1 levels in the retina were analyzed by Western blot and immunohistochemistry (IHC). Another group of BALB/c mice with the same age ranges was exposed to 1000 lux of white fluorescent light for 24 hours, and their retinas were analyzed for GSTP1 expression by Western blot and IHC in a similar manner. Results GSTP1 levels in the murine retina increased in ascending order from post-natal day 20, 1 month, and 2 months of age. Moreover, GSTP1 expression in murine retina at post-natal day 20, 1 month, and 2 months of age increased in response to brief light exposure compared to age-matched controls under normal condition. Conclusions GSTP1 expression in retina increases with developmental age in mice and accompanies murine retinal maturation. Brief exposure to light induces GSTP1 expression in the murine retina across various developmental ages. GSTP1 induction may be a protective response to light-induced oxidative damage in the murine retina. PMID:24664677

  3. Increased expression of high mobility group box protein 1 and vascular endothelial growth factor in placenta previa.

    PubMed

    Xie, Han; Qiao, Ping; Lu, Yi; Li, Ying; Tang, Yuping; Huang, Yiying; Bao, Yirong; Ying, Hao

    2017-12-01

    Placenta previa is often associated with preterm delivery, reduced birth weight, a higher frequency of placental accreta and postpartum haemorrhage, and increased likelihood of blood transfusion. The present study aimed to examine the expression of high mobility group box protein 1 (HMGB1) in the placenta of women with or without placenta previa. The study group consisted of placental tissues obtained from women with or without placenta previa. The expression levels of HMGB1 and vascular endothelial growth factor (VEGF) were evaluated in the placental tissues using reverse transcription‑quantitative polymerase chain reaction, western blotting and immunohistochemistry. The mRNA expression levels of HMGB1 and VEGF were significantly increased in the placenta previa group compared with in the normal group. In addition, the placenta previa group exhibited increased HMGB1 and VEGF staining in vascular endothelial cells and trophoblasts. There were no significant differences in the expression of HMGB1 or VEGF between groups with or without placenta accreta or postpartum haemorrhage. The present study hypothesised that the increased expression of HMGB1 in the placenta may be associated with the pathogenesis of placenta previa by regulating the expression of the proangiogenic factor VEGF.

  4. Glutathione S-transferase pi isoform (GSTP1) expression in murine retina increases with developmental maturity.

    PubMed

    Lee, Wen-Hsiang; Joshi, Pratibha; Wen, Rong

    2014-01-01

    Glutathione S-transferase pi isoform (GSTP1) is an intracellular detoxification enzyme that catalyzes reduction of chemically reactive electrophiles and is a zeaxanthin-binding protein in the human macula. We have previously demonstrated that GSTP1 levels are decreased in human age-related macular degeneration (AMD) retina compared to normal controls (Joshi et al., Invest Ophthalmol Vis Sci, e-abstract, 2009). We also showed that GSTP1 levels parallel survival of human retinal pigment epithelial (RPE) cells exposed to ultraviolet (UV) light, and GSTP1 over-expression protects them against UV light damage (Joshi et al., Invest Ophthalmol Vis Sci, e-abstract, 2010). In the present work, we determined the developmental time course of GSTP1 expression in murine retina and in response to light challenge. Eyes from BALB/c mice at postnatal day 20, 1 month, and 2 months of age were prepared for retinal protein extraction and cryo sectioning, and GSTP1 levels in the retina were analyzed by Western blot and immunohistochemistry (IHC). Another group of BALB/c mice with the same age ranges was exposed to 1000 lx of white fluorescent light for 24 h, and their retinas were analyzed for GSTP1 expression by Western blot and IHC in a similar manner. GSTP1 levels in the murine retina increased in ascending order from postnatal day 20, 1 month, and 2 months of age. Moreover, GSTP1 expression in murine retina at postnatal day 20, 1 month, and 2 months of age increased in response to brief light exposure compared to age-matched controls under normal condition. GSTP1 expression in retina increases with developmental age in mice and accompanies murine retinal maturation. Brief exposure to light induces GSTP1 expression in the murine retina across various developmental ages. GSTP1 induction may be a protective response to light-induced oxidative damage in the murine retina.

  5. Robust Glyoxalase activity of Hsp31, a ThiJ/DJ-1/PfpI Family Member Protein, Is Critical for Oxidative Stress Resistance in Saccharomyces cerevisiae*

    PubMed Central

    Bankapalli, Kondalarao; Saladi, SreeDivya; Awadia, Sahezeel S.; Goswami, Arvind Vittal; Samaddar, Madhuja; D'Silva, Patrick

    2015-01-01

    Methylglyoxal (MG) is a reactive metabolic intermediate generated during various cellular biochemical reactions, including glycolysis. The accumulation of MG indiscriminately modifies proteins, including important cellular antioxidant machinery, leading to severe oxidative stress, which is implicated in multiple neurodegenerative disorders, aging, and cardiac disorders. Although cells possess efficient glyoxalase systems for detoxification, their functions are largely dependent on the glutathione cofactor, the availability of which is self-limiting under oxidative stress. Thus, higher organisms require alternate modes of reducing the MG-mediated toxicity and maintaining redox balance. In this report, we demonstrate that Hsp31 protein, a member of the ThiJ/DJ-1/PfpI family in Saccharomyces cerevisiae, plays an indispensable role in regulating redox homeostasis. Our results show that Hsp31 possesses robust glutathione-independent methylglyoxalase activity and suppresses MG-mediated toxicity and ROS levels as compared with another paralog, Hsp34. On the other hand, glyoxalase-defective mutants of Hsp31 were found highly compromised in regulating the ROS levels. Additionally, Hsp31 maintains cellular glutathione and NADPH levels, thus conferring protection against oxidative stress, and Hsp31 relocalizes to mitochondria to provide cytoprotection to the organelle under oxidative stress conditions. Importantly, human DJ-1, which is implicated in the familial form of Parkinson disease, complements the function of Hsp31 by suppressing methylglyoxal and oxidative stress, thus signifying the importance of these proteins in the maintenance of ROS homeostasis across phylogeny. PMID:26370081

  6. SOD1 suppresses maternal hyperglycemia-increased iNOS expression and consequent nitrosative stress in diabetic embryopathy

    PubMed Central

    Weng, Hongbo; Li, Xuezheng; Reece, E. Albert; Yang, Peixin

    2012-01-01

    Objectives Hyperglycemia induces oxidative stress and increases inducible nitric oxide synthase (iNOS) expression. We hypothesized that oxidative stress is responsible for hyperglycemia-induced iNOS expression. Study Design iNOS-luciferase activities, nitrosylated protein, lipidperoxidation markers 4-HNE and MDA were determined in PYS-2 cells exposed to 5 mM glucose or high glucose (25 mM) with or without SOD1 (copper zinc superoxide dismutase 1) treatment. Levels of iNOS protein and mRNA, nitrosylated protein, and cleaved caspase-3 and -8 were assessed in wild-type embryos and SOD1 overexpressing embryos from non-diabetic and diabetic dams. Results SOD1 treatment diminished high glucose-induced oxidative stress, as evidenced by 4-HNE and MDA reductions, and it blocked high glucose-increased iNOS expression, iNOS-luciferase activities, and nitrosylated protein. in vivo SOD1 overexpression suppressed hyperglycemia-increased iNOS expression and nitrosylated protein, and it blocked caspase-3 and -8 cleavage. Conclusions We conclude that oxidative stress induces iNOS expression, nitrosative stress, and apoptosis in diabetic embryopathy. PMID:22425406

  7. SOD1 suppresses maternal hyperglycemia-increased iNOS expression and consequent nitrosative stress in diabetic embryopathy.

    PubMed

    Weng, Hongbo; Li, Xuezheng; Reece, E Albert; Yang, Peixin

    2012-05-01

    Hyperglycemia induces oxidative stress and increases inducible nitric oxide synthase (iNOS) expression. We hypothesized that oxidative stress is responsible for hyperglycemia-induced iNOS expression. iNOS-luciferase activities, nitrosylated protein, and lipid peroxidation markers 4-hydroxynonenal and malondialdehyde were determined in parietal yolk sac-2 cells exposed to 5 mmol/L glucose or high glucose (25 mmol/L) with or without copper zinc superoxide dismutase 1 (SOD1) treatment. Levels of iNOS protein and messenger RNA, nitrosylated protein, and cleaved caspase-3 and -8 were assessed in wild-type embryos and SOD1-overexpressing embryos from nondiabetic and diabetic dams. SOD1 treatment diminished high glucose-induced oxidative stress, as evidenced by 4-hydroxynonenal and malondialdehyde reductions, and it blocked high glucose-increased iNOS expression, iNOS-luciferase activities, and nitrosylated protein. In vivo SOD1 overexpression suppressed hyperglycemia-increased iNOS expression and nitrosylated protein, and it blocked caspase-3 and -8 cleavage. We conclude that oxidative stress induces iNOS expression, nitrosative stress, and apoptosis in diabetic embryopathy. Copyright © 2012 Mosby, Inc. All rights reserved.

  8. Evidence for increased expression of the vesicular glutamate transporter, VGLUT1, by a course of antidepressant treatment.

    PubMed

    Tordera, Rosa M; Pei, Qi; Sharp, Trevor

    2005-08-01

    The therapeutic effect of a course of antidepressant treatment is believed to involve a cascade of neuroadaptive changes in gene expression leading to increased neural plasticity. Because glutamate is linked to mechanisms of neural plasticity, this transmitter may play a role in these changes. This study investigated the effect of antidepressant treatment on expression of the vesicular glutamate transporters, VGLUT1-3 in brain regions of the rat. Repeated treatment with fluoxetine, paroxetine or desipramine increased VGLUT1 mRNA abundance in frontal, orbital, cingulate and parietal cortices, and regions of the hippocampus. Immunoautoradiography analysis showed that repeated antidepressant drug treatment increased VGLUT1 protein expression. Repeated electroconvulsive shock (ECS) also increased VGLUT1 mRNA abundance in regions of the cortex and hippocampus compared to sham controls. The antidepressant drugs and ECS did not alter VGLUT1 mRNA abundance after acute administration, and no change was detected after repeated treatment with the antipsychotic agents, haloperidol and chlorpromazine. In contrast to VGLUT1, the different antidepressant treatments did not commonly increase the expression of VGLUT2 or VGLUT3 mRNA. These data suggest that a course of antidepressant drug or ECS treatment increases expression of VGLUT1, a key gene involved in the regulation of glutamate secretion.

  9. Low-Level Blast Exposure Increases Transient Receptor Potential Vanilloid 1 (TRPV1) Expression in the Rat Cornea

    PubMed Central

    Por, Elaine D.; Choi, Jae-Hyek; Lund, Brian J.

    2016-01-01

    ABSTRACT Background: Blast-related ocular injuries sustained by military personnel have led to rigorous efforts to elucidate the effects of blast exposure on neurosensory function. Recent studies have provided some insight into cognitive and visual deficits sustained following blast exposure; however, limited data are available on the effects of blast on pain and inflammatory processes. Investigation of these secondary effects of blast exposure is necessary to fully comprehend the complex pathophysiology of blast-related injuries. The overall purpose of this study is to determine the effects of single and repeated blast exposure on pain and inflammatory mediators in ocular tissues. Methods: A compressed air shock tube was used to deliver a single or repeated blast (68.0 ± 2.7 kPa) to anesthetized rats daily for 5 days. Immunohistochemistry was performed on ocular tissues to determine the expression of the transient receptor potential vanilloid 1 (TRPV1) channel, calcitonin gene-related peptide (CGRP), substance P (SP), and endothelin-1 (ET-1) following single and repeated blast exposure. Neutrophil infiltration and myeloperoxidase (MPO) expression were also assessed in blast tissues via immunohistochemistry and enzyme-linked immunosorbent assay (ELISA) analysis, respectively. Results: TRPV1 expression was increased in rat corneas exposed to both single and repeated blast. Increased secretion of CGRP, SP, and ET-1 was also detected in rat corneas as compared to control. Moreover, repeated blast exposure resulted in neutrophil infiltration in the cornea and stromal layer as compared to control animals. Conclusion: Single and repeated blast exposure resulted in increased expression of TRPV1, CGRP, SP, and ET-1 as well as neutrophil infiltration. Collectively, these findings provide novel insight into the activation of pain and inflammation signaling mediators following blast exposure. PMID:27049881

  10. EPA and DHA increased PPARγ expression and deceased integrin-linked kinase and integrin β1 expression in rat glomerular mesangial cells treated with lipopolysaccharide.

    PubMed

    Han, Wenchao; Zhao, Hui; Jiao, Bo; Liu, Fange

    2014-04-01

    Fish oil containing n-3 polyunsaturated fatty acids (n-3 PUFAs) including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) is known to prevent the progression of nephropathy and retard the progression of kidney disease. This study sought to investigate the underlying mechanisms of EPA and DHA in terms of peroxisome proliferator-activated receptor γ (PPARγ), integrin-linked kinase (ILK), and integrin β1 expression in glomerular mesangial cells (GMCs) because of their critical roles in the development and progression of nephropathy. Lipopolysaccharide (LPS) significantly reduced the expression of PPARγand increased the expression of ILK at the mRNA level and at the protein level in GMCs as indicated by real-time PCR and Western blotting. In addition, LPS increased integrin β1 expression in GMCs at the mRNA level. Treatment with EPA and DHA significantly increased the expression of PPARγ and decreased the expression of ILK and integrin β1 in GMCs. These data suggest that the renoprotective effects of EPA and DHA may be related to their potential to increase the expression of PPARγ and decrease the expression of ILK and integrin β1.

  11. Increased Cerebral Tff1 Expression in Two Murine Models of Neuroinflammation.

    PubMed

    Znalesniak, Eva B; Fu, Ting; Guttek, Karina; Händel, Ulrike; Reinhold, Dirk; Hoffmann, Werner

    2016-01-01

    The trefoil factor family (TFF) peptide TFF1 is a typical secretory product of the gastric mucosa and a very low level of expression occurs in nearly all regions of the murine brain. TFF1 possesses a lectin activity and binding to a plethora of transmembrane glycoproteins could explain the diverse biological effects of TFF1 (e.g., anti-apoptotic effect). It was the aim to test whether TFF expression is changed during neuroinflammation. Expression profiling was performed using semi-quantitative RT-PCR analyses in two murine models of neuroinflammation, i.e. Toxoplasma gondii-induced encephalitis and experimental autoimmune encephalomyelitis (EAE), the latter being the most common animal model of multiple sclerosis. Tff1 expression was also localized using RNA in situ hybridization histochemistry. We report for the first time on a significant transcriptional induction in cerebral Tff1 expression in both T. gondii-induced encephalitis and EAE. In contrast, Tff2 and Tff3 expression were not altered. Tff1 transcripts were predominantly localized in the internal granular layer of the cerebellum indicating neuronal expression. Furthermore, also glial cells are expected to express Tff1. Characterization of both experimental models by expression profiling (e.g., inflammasome sensors, inflammatory cytokines, microglial marker Iba1, ependymin related protein 1) revealed differences concerning the expression of the inflammasome sensor Nlrp1 and interleukin 17a. The up-regulated expression of Tff1 is probably the result of a complex inflammatory process as its expression is induced by tumor necrosis factor α as well as interleukins 1β and 17. However on the transcript level, Tff1KO mice did not show any significant signs of an altered immune response after infection with T. gondii in comparison with the wild type animals. © 2016 The Author(s) Published by S. Karger AG, Basel.

  12. Increased expression of the interleukin 1 receptor on blood neutrophils of humans with the sepsis syndrome.

    PubMed Central

    Fasano, M B; Cousart, S; Neal, S; McCall, C E

    1991-01-01

    Because of the potential importance of interleukin 1 (IL-1) in modulating inflammation and the observations that human blood neutrophils (PMN) express IL-1 receptors (IL-1R) and synthesize IL-1 alpha and IL-1 beta, we studied the IL-1R on blood PMN from a group of patients with the sepsis syndrome. We report a marked enhancement in the sites per cell of IL-1R expressed on sepsis-PMN of 25 consecutively studied patients compared to 20 controls (patient mean = 9,329 +/- 2,212 SE; control mean = 716 +/- 42 SE, respectively). There was no demonstrable difference in the Kd of IL-1R on sepsis-PMN (approximately 1 nM) as determined by saturation curves of 125I-IL-1 alpha binding and the IL-1R on sepsis-PMN had an apparent Mr approximately 68,000, a value like that of normal PMN. Cytofluorographic analysis indicated that the sepsis-PMN phenotype is a single homogeneous population with respect to IL-1R expression. In contrast, expression of the membrane complement receptor CR3 is not increased on sepsis-PMN. Similar increases in expression of IL-1R were not observed in various other inflammatory processes, including acute disseminated inflammation and organ failure not caused by infection, acute infection without organ failure, and immunopathologies such as active systemic lupus erythematosus and rheumatoid arthritis. Enhanced expression of IL-1R was not related simply to the state of myeloid stimulation. Increased expression of IL-1R on normal PMN was induced in vitro by incubating cells with recombinant human granulocyte-macrophage/colony-stimulating factor for 18 h and this response was inhibited by cycloheximide, suggesting the possibility that de novo synthesis of IL-1R might occur in PMN during the sepsis syndrome. Images PMID:1834697

  13. GENE EXPRESSION IN THE TESTES OF NORMOSPERMIC VERSUS TERATOSPERMIC DOMESTIC CATS USING HUMAN CDNA MICROARRAY ANALYSES

    EPA Science Inventory

    GENE EXPRESSION IN THE TESTES OF NORMOSPERMIC VERSUS TERATOSPERMIC DOMESTIC CATS USING HUMAN cDNA MICROARRAY ANALYSES

    B.S. Pukazhenthi1, J. C. Rockett2, M. Ouyang3, D.J. Dix2, J.G. Howard1, P. Georgopoulos4, W.J. J. Welsh3 and D. E. Wildt1

    1Department of Reproductiv...

  14. Increased dysbindin-1B isoform expression in schizophrenia and its propensity in aggresome formation

    PubMed Central

    Xu, Yiliang; Sun, Yuhui; Ye, Haihong; Zhu, Li; Liu, Jianghong; Wu, Xiaofeng; Wang, Le; He, Tingting; Shen, Yan; Wu, Jane Y; Xu, Qi

    2015-01-01

    Genetic variations in the human dysbindin-1 gene (DTNBP1) have been associated with schizophrenia. As a result of alternative splicing, the human DTNBP1 gene generates at least three distinct protein isoforms, dysbindin-1A, -1B and -1C. Significant effort has focused on dysbindin-1A, an important player in multiple steps of neurodevelopment. However, the other isoforms, dysbindin-1B and dysbindin-1C have not been well characterized. Nor have been associated with human diseases. Here we report an increase in expression of DTNBP1b mRNA in patients with paranoid schizophrenia as compared with healthy controls. A single-nucleotide polymorphism located in intron 9, rs117610176, has been identified and associated with paranoid schizophrenia, and its C allele leads to an increase of DTNBP1b mRNA splicing. Our data show that different dysbindin splicing isoforms exhibit distinct subcellular distribution, suggesting their distinct functional activities. Dysbindin-1B forms aggresomes at the perinuclear region, whereas dysbindin-1A and -1C proteins exhibit diffused patterns in the cytoplasm. Dysbindin-1A interacts with dysbindin-1B, getting recruited to the aggresome structure when co-expressed with dysbindin-1B. Moreover, cortical neurons over-expressing dysbindin-1B show reduction in neurite outgrowth, suggesting that dysbindin-1B may interfere with dysbindin-1A function in a dominant-negative manner. Taken together, our study uncovers a previously unknown association of DTNBP1b expression with schizophrenia in addition to its distinct biochemical and functional properties. PMID:27462430

  15. Astrocytes increase barrier properties and ZO-1 expression in retinal vascular endothelial cells.

    PubMed

    Gardner, T W; Lieth, E; Khin, S A; Barber, A J; Bonsall, D J; Lesher, T; Rice, K; Brennan, W A

    1997-10-01

    Diabetic retinopathy and other diseases associated with retinal edema are characterized by increased microvascular leakage. Astrocytes have been proposed to maintain endothelial function in the brain, suggesting that glial impairment may underlie the development of retinal edema. The purpose of this study was to test the effects of astrocytes on barrier properties in retinal microvascular endothelial cells. Bovine retinal microvascular endothelial cells were exposed to conditioned media from rat brain astrocytes. Transendothelial electrical resistance (TER) was determined on 24-mm Transwell (Cambridge, MA) polycarbonate filters with the End-Ohm device (World Precision Instruments, Sarasota, FL). ZO-1 protein content was quantified by microtiter enzyme-linked immunosorbent assay. Astrocyte-conditioned medium (ACM) significantly increased TER (P < 0.0001) and ZO-1 content (P < 0.01). Both serum-containing and serum-free N1B defined ACM increased ZO-1 expression, but heating abolished the effect. Serum-free ACM decreased cell proliferation by 16%. Astrocytes release soluble, heat-labile factors that increase barrier properties and tight junction protein content. These results suggest that astrocytes enhance blood-retinal barrier properties, at least in part by increasing tight junction protein expression. Our findings suggest that glial malfunction plays an important role in the pathogenesis of vasogenic retinal edema.

  16. Amlodipine at high dose increases preproendothelin-1 expression in the ventricles and aorta of normotensive rats.

    PubMed

    Krenek, Peter; Morel, Nicole; Kyselovic, Jan; Wibo, Maurice

    2004-04-01

    High doses of dihydropyridine calcium channel blockers can activate the sympathetic nervous system and the renin-angiotensin system. Both noradrenaline and angiotensin II stimulate preproendothelin-1 gene expression, yet the effects of high doses of dihydropyridines on preproendothelin-1 expression in vivo remain unknown. To investigate the effects of high doses of dihydropyridines on preproendothelin-1 expression in the ventricles and aorta of normotensive rats. Sprague-Dawley rats were treated with amlodipine 5 or 20 mg/kg per day (Amlo 5 or Amlo 20) in drinking water for 5 days or 5 weeks. Systolic blood pressure and heart rate were measured by tail-cuff plethysmography. Gene expression was examined by reverse transcriptase polymerase chain reaction. Amlo 5 increased heart rate during the first week only and had no effect on blood pressure and ventricular weight and gene expression. Amlo 20 reduced blood pressure transiently and increased heart rate consistently. It did not change relative left ventricular weight (corrected for body weight) after 5 days, but increased it after 5 weeks; it increased relative right ventricular weight at both time points. Aorta weight (mg/mm) was decreased after 5 weeks of treatment with both dosages of amlodipine. Preproendothelin-1 mRNA levels were increased by Amlo 20 in the ventricles and aorta and, concomitantly, renin mRNA was increased in the kidney. Less consistently, interleukin-6 mRNA also increased in ventricles, whereas cardiotrophin-1 mRNA remained unchanged. The sensitivity of isolated aorta to the contractile effect of noradrenaline was decreased by Amlo 5, but not by Amlo 20. In Sprague-Dawley rats, high-dose amlodipine, while promoting neurohormonal activation, induced overexpression of preproendothelin-1 mRNA in the ventricles and aorta. Endothelin-1 overexpression could contribute to the lack of inhibitory effect of high-dose amlodipine on ventricular mass in normotensive rats.

  17. IGF-1R mRNA expression is increased in obese children.

    PubMed

    Ricco, Rafaela Cristina; Ricco, Rubens Garcia; Queluz, Mariangela Carletti; de Paula, Mariana Teresa Sarti; Atique, Patricia Volpon; Custódio, Rodrigo José; Tourinho Filho, Hugo; Del Roio Liberatori, Raphael; Martinelli, Carlos Eduardo

    2018-04-01

    Obese children are often taller than age-matched subjects. Reports on GH and IGF-I levels in obese individuals are controversial, with normal and reduced GH-IGF-I levels having been reported in this group of patients. Thus, the aim of this study was to analyse insulin-like growth factor type 1 receptor (IGF-IR) mRNA expression in obese children. Forty-seven pre-pubertal children were included in this study: 29 were obese and taller than their target height, and 18 were normal eutrophic controls. Fasting blood samples were collected for IGF-IR mRNA expression in isolated lymphocytes and serum IGF-I, ALS, IGFBP-3, and IGFBP-1 concentration analysis. Relative IGF-IR gene expression (2 -ΔΔCT ) was significantly (P=0.025) higher in obese children (median 1.87) than in controls (1.15). Fourteen of the 29 obese subjects showed 2 -ΔΔCT values greater than or equal to 2, while only 2 individuals in the control group showed values above 2 (P=0.01). Obese children showed significantly (P=0.01) higher IGF-I concentrations than the control group (237ng/ml and 144ng/ml, respectively). Among obese patients, 65.5% had IGF-I values above the 75 percentile of the control group (P=0.02). ALS concentration was significantly (P=0.04) higher in the obese group, while IGFBP-3 levels were similar in obese and control children. IGFBP-1 concentration was lower in obese children, while insulin levels and HOMA-IR index were higher than in controls. The higher IGF-IR mRNA expression observed in obese children, associated with the higher IGF-I and ALS and the lower IGFBP-1 levels, suggest that the higher stature observed in these children may be due to increased IGF-I bioactivity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Phospholipase D1 increases Bcl-2 expression during neuronal differentiation of rat neural stem cells.

    PubMed

    Park, Shin-Young; Ma, Weina; Yoon, Sung Nyo; Kang, Min Jeong; Han, Joong-Soo

    2015-01-01

    We studied the possible role of phospholipase D1 (PLD1) in the neuronal differentiation, including neurite formation of neural stem cells. PLD1 protein and PLD activity increased during neuronal differentiation. Bcl-2 also increased. Downregulation of PLD1 by transfection with PLD1 siRNA or a dominant-negative form of PLD1 (DN-PLD1) inhibited both neurite outgrowth and Bcl-2 expression. PLD activity was dramatically reduced by a PLCγ (phospholipase Cγ) inhibitor (U73122), a Ca(2+)chelator (BAPTA-AM), and a PKCα (protein kinase Cα) inhibitor (RO320432). Furthermore, treatment with arachidonic acid (AA) which is generated by the action of PLA2 (phospholipase A2) on phosphatidic acid (a PLD1 product), increased the phosphorylation of p38 MAPK and CREB, as well as Bcl-2 expression, indicating that PLA2 is involved in the differentiation process resulting from PLD1 activation. PGE2 (prostaglandin E2), a cyclooxygenase product of AA, also increased during neuronal differentiation. Moreover, treatment with PGE2 increased the phosphorylation of p38 MAPK and CREB, as well as Bcl-2 expression, and this effect was inhibited by a PKA inhibitor (Rp-cAMP). As expected, inhibition of p38 MAPK resulted in loss of CREB activity, and when CREB activity was blocked with CREB siRNA, Bcl-2 production also decreased. We also showed that the EP4 receptor was required for the PKA/p38MAPK/CREB/Bcl-2 pathway. Taken together, these observations indicate that PLD1 is activated by PLCγ/PKCα signaling and stimulate Bcl-2 expression through PLA2/Cox2/EP4/PKA/p38MAPK/CREB during neuronal differentiation of rat neural stem cells.

  19. SCD1 activity in muscle increases triglyceride PUFA content, exercise capacity, and PPARδ expression in mice[S

    PubMed Central

    Rogowski, Michael P.; Flowers, Matthew T.; Stamatikos, Alexis D.; Ntambi, James M.; Paton, Chad M.

    2013-01-01

    Stearoyl-CoA desaturase (SCD)1 converts saturated fatty acids into monounsaturated fatty acids. Using muscle overexpression, we sought to determine the role of SCD1 expression in glucose and lipid metabolism and its effects on exercise capacity in mice. Wild-type C57Bl/6 (WT) and SCD1 muscle transgenic (SCD1-Tg) mice were generated, and expression of the SCD1 transgene was restricted to skeletal muscle. SCD1 overexpression was associated with increased triglyceride (TG) content. The fatty acid composition of the muscle revealed a significant increase in polyunsaturated fatty acid (PUFA) content of TG, including linoleate (18:2n6). Untrained SCD1-Tg mice also displayed significantly increased treadmill exercise capacity (WT = 6.6 ± 3 min, Tg = 71.9 ± 9.5 min; P = 0.0009). SCD1-Tg mice had decreased fasting plasma glucose, glucose transporter (GLUT)1 mRNA, fatty acid oxidation, mitochondrial content, and increased peroxisome proliferator-activated receptor (PPAR)δ and Pgc-1 protein expression in skeletal muscle. In vitro studies in C2C12 myocytes revealed that linoleate (18:2n6) and not oleate (18:1n9) caused a 3-fold increase in PPARδ and a 9-fold increase in CPT-1b with a subsequent increase in fat oxidation. The present model suggests that increasing delta-9 desaturase activity of muscle increases metabolic function, exercise capacity, and lipid oxidation likely through increased PUFA content, which increases PPARδ expression and activity. However, the mechanism of action that results in increased PUFA content of SCD1-Tg mice remains to be elucidated. PMID:23918045

  20. Significant association of increased PD-L1 and PD-1 expression with nodal metastasis and a poor prognosis in oral squamous cell carcinoma.

    PubMed

    Maruse, Y; Kawano, S; Jinno, T; Matsubara, R; Goto, Y; Kaneko, N; Sakamoto, T; Hashiguchi, Y; Moriyama, M; Toyoshima, T; Kitamura, R; Tanaka, H; Oobu, K; Kiyoshima, T; Nakamura, S

    2018-07-01

    Programmed cell death ligand 1 (PD-L1) and its receptor PD-1 are immune checkpoint molecules that attenuate the immune response. Blockade of PD-L1 enhances the immune response in a variety of tumours and thus serves as an effective anti-cancer treatment. However, the biological and prognostic roles of PD-L1/PD-1 signalling in oral squamous cell carcinoma (OSCC) remain to be elucidated. The purpose of this study was to examine the correlation of PD-L1/PD-1 signalling with the prognosis of OSCC patients to assess its potential therapeutic relevance. The expression of PD-L1 and of PD-1 was determined immunohistochemically in 97 patients with OSCC and the association of this expression with clinicopathological characteristics was examined. Increased expression of PD-L1 was found in 64.9% of OSCC cases and increased expression of PD-1 was found in 61.9%. Univariate and multivariate analysis revealed that increased expression of PD-L1 and PD-1 positively correlated with cervical lymph node metastasis. The expression of CD25, an activated T-cell marker, was negatively correlated with the labelling index of PD-L1 and PD-1. Moreover, the patient group with PD-L1-positive and PD-1-positive expression showed a more unfavourable prognosis than the group with PD-L1-negative and PD-1-negative expression. These data suggest that increased PD-L1 and PD-1 expression is predictive of nodal metastasis and a poor prognosis and is possibly involved in cancer progression via attenuating the immune response. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Cholesterol regulates HERG K+ channel activation by increasing phospholipase C β1 expression.

    PubMed

    Chun, Yoon Sun; Oh, Hyun Geun; Park, Myoung Kyu; Cho, Hana; Chung, Sungkwon

    2013-01-01

    Human ether-a-go-go-related gene (HERG) K(+) channel underlies the rapidly activating delayed rectifier K(+) conductance (IKr) during normal cardiac repolarization. Also, it may regulate excitability in many neuronal cells. Recently, we showed that enrichment of cell membrane with cholesterol inhibits HERG channels by reducing the levels of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] due to the activation of phospholipase C (PLC). In this study, we further explored the effect of cholesterol enrichment on HERG channel kinetics. When membrane cholesterol level was mildly increased in human embryonic kidney (HEK) 293 cells expressing HERG channel, the inactivation and deactivation kinetics of HERG current were not affected, but the activation rate was significantly decelerated at all voltages tested. The application of PtdIns(4,5)P2 or inhibitor for PLC prevented the effect of cholesterol enrichment, while the presence of antibody against PtdIns(4,5)P2 in pipette solution mimicked the effect of cholesterol enrichment. These results indicate that the effect of cholesterol enrichment on HERG channel is due to the depletion of PtdIns(4,5)P2. We also found that cholesterol enrichment significantly increases the expression of β1 and β3 isoforms of PLC (PLCβ1, PLCβ3) in the membrane. Since the effects of cholesterol enrichment on HERG channel were prevented by inhibiting transcription or by inhibiting PLCβ1 expression, we conclude that increased PLCβ1 expression leads to the deceleration of HERG channel activation rate via downregulation of PtdIns(4,5)P2. These results confirm a crosstalk between two plasma membrane-enriched lipids, cholesterol and PtdIns(4,5)P2, in the regulation of HERG channels.

  2. Changes in protein expression in testes of L2 strain Taiwan country chickens in response to acute heat stress.

    PubMed

    Wang, Shih-Han; Cheng, Chuen-Yu; Chen, Chao-Jung; Chen, Hsin-Hsin; Tang, Pin-Chi; Chen, Chih-Feng; Lee, Yen-Pai; Huang, San-Yuan

    2014-07-01

    Heat stress causes a decrease of fertility in roosters. Yet, the way acute heat stress affects protein expression remains poorly understood. This study investigated differential protein expression in testes of the L2 strain of Taiwan country chickens following acute heat stress. Twelve 45-week-old roosters were allocated into four groups, including control roosters kept at 25 °C, roosters subjected to 38 °C acute heat stress for 4 hours without recovery, with 2 hours of recovery, and with 6 hours of recovery. Testis samples were collected for morphologic assay and protein analysis. Some of the differentially expressed proteins were validated by Western blot and immunohistochemistry. Abnormal and apoptotic spermatogenic cells were observed at 2 hours of recovery after acute heat stress, especially among the spermatocytes. Two-dimensional difference gel electrophoresis revealed that 119 protein spots were differentially expressed in chicken testes following heat stress, and peptide mass fingerprinting revealed that these spots contained 92 distinct proteins. In the heat-stressed samples, the heat shock proteins, chaperonin containing t-complex, and proteasome subunits were downregulated, and glutathione S-transferase, transgelin, and DJ-1 were upregulated. Our results demonstrate that acute heat stress impairs the processes of translation, protein folding, and protein degradation, and thus results in apoptosis and interferes with spermatogenesis. On the other hand, the increased expression of antioxidant enzymes, including glutathione S-transferase and DJ-1, may attenuate heat-induced damage. These findings may have implications for breeding chickens that can tolerate more extreme conditions. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Noncore RAG1 regions promote Vβ rearrangements and αβ T cell development by overcoming inherent inefficiency of Vβ recombination signal sequences.

    PubMed

    Horowitz, Julie E; Bassing, Craig H

    2014-02-15

    The RAG proteins are comprised of core endonuclease domains and noncore regions that modulate endonuclease activity. Mutation or deletion of noncore RAG regions in humans causes immunodeficiency and altered TCR repertoire, and mice expressing core but not full-length Rag1 (Rag1(C/C)) or Rag2 (Rag2(C/C)) exhibit lymphopenia, reflecting impaired V(D)J recombination and lymphocyte development. Rag1(C/C) mice display reduced D-to-J and V-to-DJ rearrangements of TCRβ and IgH loci, whereas Rag2(C/C) mice show decreased V-to-DJ rearrangements and altered Vβ/VH repertoire. Because Vβs/VHs only recombine to DJ complexes, the Rag1(C/C) phenotype could reflect roles for noncore RAG1 regions in promoting recombination during only the D-to-J step or during both steps. In this study, we demonstrate that a preassembled TCRβ gene, but not a preassembled DβJβ complex or the prosurvival BCL2 protein, completely rescues αβ T cell development in Rag1(C/C) mice. We find that Rag1(C/C) mice exhibit altered Vβ utilization in Vβ-to-DJβ rearrangements, increased usage of 3'Jα gene segments in Vα-to-Jα rearrangements, and abnormal changes in Vβ repertoire during αβ TCR selection. Inefficient Vβ/VH recombination signal sequences (RSSs) have been hypothesized to cause impaired V-to-DJ recombination on the background of a defective recombinase as in core-Rag mice. We show that replacement of the Vβ14 RSS with a more efficient RSS increases Vβ14 recombination and rescues αβ T cell development in Rag1(C/C) mice. Our data indicate that noncore RAG1 regions establish a diverse TCR repertoire by overcoming Vβ RSS inefficiency to promote Vβ recombination and αβ T cell development, and by modulating TCRβ and TCRα gene segment utilization.

  4. HIV-1 Vpr Enhances PPARβ/δ-Mediated Transcription, Increases PDK4 Expression, and Reduces PDC Activity

    PubMed Central

    Shrivastav, Shashi; Zhang, Liyan; Okamoto, Koji; Lee, Hewang; Lagranha, Claudia; Abe, Yoshifusa; Balasubramanyam, Ashok; Lopaschuk, Gary D.; Kino, Tomoshige

    2013-01-01

    HIV infection and its therapy are associated with disorders of lipid metabolism and bioenergetics. Previous work has suggested that viral protein R (Vpr) may contribute to the development of lipodystrophy and insulin resistance observed in HIV-1–infected patients. In adipocytes, Vpr suppresses mRNA expression of peroxisomal proliferator-activating receptor-γ (PPARγ)-responsive genes and inhibits differentiation. We investigated whether Vpr might interact with PPARβ/δ and influence its transcriptional activity. In the presence of PPARβ/δ, Vpr induced a 3.3-fold increase in PPAR response element-driven transcriptional activity, a 1.9-fold increase in pyruvate dehydrogenase kinase 4 (PDK4) protein expression, and a 1.6-fold increase in the phosphorylated pyruvate dehydrogenase subunit E1α leading to a 47% decrease in the activity of the pyruvate dehydrogenase complex in HepG2 cells. PPARβ/δ knockdown attenuated Vpr-induced enhancement of endogenous PPARβ/δ-responsive PDK4 mRNA expression. Vpr induced a 1.3-fold increase in mRNA expression of both carnitine palmitoyltransferase I (CPT1) and acetyl-coenzyme A acyltransferase 2 (ACAA2) and doubled the activity of β-hydroxylacyl coenzyme A dehydrogenase (HADH). Vpr physically interacted with the ligand-binding domain of PPARβ/δ in vitro and in vivo. Consistent with a role in energy expenditure, Vpr increased state-3 respiration in isolated mitochondria (1.16-fold) and basal oxygen consumption rate in intact HepG2 cells (1.2-fold) in an etomoxir-sensitive manner, indicating that the oxygen consumption rate increase is β-oxidation–dependent. The effects of Vpr on PPAR response element activation, pyruvate dehydrogenase complex activity, and β-oxidation were reversed by specific PPARβ/δ antagonists. These results support the hypothesis that Vpr contributes to impaired energy metabolism and increased energy expenditure in HIV patients. PMID:23842279

  5. Expression of p21Waf1/Cip1 and cyclin D1 is increased in butyrate-resistant HeLa cells.

    PubMed

    Derjuga, A; Richard, C; Crosato, M; Wright, P S; Chalifour, L; Valdez, J; Barraso, A; Crissman, H A; Nishioka, W; Bradbury, E M; Th'ng, J P

    2001-10-12

    Sodium butyrate induced cell cycle arrest in mammalian cells through an increase in p21Waf1/Cip1, although another study showed that this arrest is related to pRB signaling. We isolated variants of HeLa cells adapted to growth in 5 mm butyrate. One of these variants, clone 5.1, constitutively expressed elevated levels of p21Waf1/Cip1 when incubated in regular growth medium and in the presence of butyrate. Despite this elevated level of p21Waf1/Cip1, the cells continue to proliferate, albeit at a slower rate than parental HeLa cells. Western blot analyses showed that other cell cycle regulatory proteins were not up-regulated to compensate for the elevated expression of p21Waf1/Cip1. However, cyclin D1 was down-regulated by butyrate in HeLa cells but not in clone 5.1. We conclude that continued expression of cyclin D1 allowed clone 5.1 to grow in the presence of butyrate and elevated levels of p21Waf1/Cip1.

  6. 14 CFR 1261.417 - Referral to Department of Justice (DJ) or General Accounting Office (GAO).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... General Accounting Office (GAO). 1261.417 Section 1261.417 Aeronautics and Space NATIONAL AERONAUTICS AND....417 Referral to Department of Justice (DJ) or General Accounting Office (GAO). (a) Prompt referral... are in doubt, the designated official should refer the matter to the General Accounting Office for...

  7. Increasing the yield of middle silk gland expression system through transgenic knock-down of endogenous sericin-1.

    PubMed

    Ma, Sanyuan; Xia, Xiaojuan; Li, Yufeng; Sun, Le; Liu, Yue; Liu, Yuanyuan; Wang, Xiaogang; Shi, Run; Chang, Jiasong; Zhao, Ping; Xia, Qingyou

    2017-08-01

    Various genetically modified bioreactor systems have been developed to meet the increasing demands of recombinant proteins. Silk gland of Bombyx mori holds great potential to be a cost-effective bioreactor for commercial-scale production of recombinant proteins. However, the actual yields of proteins obtained from the current silk gland expression systems are too low for the proteins to be dissolved and purified in a large scale. Here, we proposed a strategy that reducing endogenous sericin proteins would increase the expression yield of foreign proteins. Using transgenic RNA interference, we successfully reduced the expression of BmSer1 to 50%. A total 26 transgenic lines expressing Discosoma sp. red fluorescent protein (DsRed) in the middle silk gland (MSG) under the control of BmSer1 promoter were established to analyze the expression of recombinant. qRT-PCR and western blotting showed that in BmSer1 knock-down lines, the expression of DsRed had significantly increased both at mRNA and protein levels. We did an additional analysis of DsRed/BmSer1 distribution in cocoon and effect of DsRed protein accumulation on the silk fiber formation process. This study describes not only a novel method to enhance recombinant protein expression in MSG bioreactor, but also a strategy to optimize other bioreactor systems.

  8. Increased expression of CYP4Z1 promotes tumor angiogenesis and growth in human breast cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Wei; Chai, Hongyan; Li, Ying

    2012-10-01

    Cytochrome P450 (CYP) 4Z1, a novel CYP4 family member, is over-expressed in human mammary carcinoma and associated with high-grade tumors and poor prognosis. However, the precise role of CYP4Z1 in tumor progression is unknown. Here, we demonstrate that CYP4Z1 overexpression promotes tumor angiogenesis and growth in breast cancer. Stable expression of CYP4Z1 in T47D and BT-474 human breast cancer cells significantly increased mRNA expression and production of vascular endothelial growth factor (VEGF)-A, and decreased mRNA levels and secretion of tissue inhibitor of metalloproteinase-2 (TIMP-2), without affecting cell proliferation and anchorage-independent cell growth in vitro. Notably, the conditioned medium from CYP4Z1-expressingmore » cells enhanced proliferation, migration and tube formation of human umbilical vein endothelial cells, and promoted angiogenesis in the zebrafish embryo and chorioallantoic membrane of the chick embryo. In addition, there were lower levels of myristic acid and lauric acid, and higher contents of 20-hydroxyeicosatetraenoic acid (20-HETE) in CYP4Z1-expressing T47D cells compared with vector control. CYP4Z1 overexpression significantly increased tumor weight and microvessel density by 2.6-fold and 1.9-fold in human tumor xenograft models, respectively. Moreover, CYP4Z1 transfection increased the phosphorylation of ERK1/2 and PI3K/Akt, while PI3K or ERK inhibitors and siRNA silencing reversed CYP4Z1-mediated changes in VEGF-A and TIMP-2 expression. Conversely, HET0016, an inhibitor of the CYP4 family, potently inhibited the tumor-induced angiogenesis with associated changes in the intracellular levels of myristic acid, lauric acid and 20-HETE. Collectively, these data suggest that increased CYP4Z1 expression promotes tumor angiogenesis and growth in breast cancer partly via PI3K/Akt and ERK1/2 activation. -- Highlights: ► CYP4Z1 overexpression promotes human breast cancer growth and angiogenesis. ► The pro-angiogenic effects of CYP

  9. Increased expression of aquaporin-1 on the pleura of rats with a tuberculous pleural effusion.

    PubMed

    Du, Hongchun; Xie, Canmao; He, Qiao; Deng, Xiaohua

    2007-12-01

    The purpose of this study was to investigate whether the expression of AQP-1 on the pleura is altered in a rat model with a tuberculous pleural effusion (TPE) and to study its function. A TPE model was established by intrapleural inoculation with 0.03 mg (2 ml) standard tuberculosis bacillus (H(37)Rv). The rats with TPE were sacrificed at different time points (day 1, 3, or 5) after inoculation. The control group received a 2-ml intrapleural injection of saline. The visceral and parietal pleural tissues were harvested and processed for real-time RT-PCR, Western blot, immunohistochemistry, and determination of tissue AQP-1 levels. Recombinant adenovirus Ad-rAQP-1 containing full-length cDNA of AQP-1 was constructed. Six groups of seven Wistar rats were assigned to receive the following treatments: group 1: intrapleural administration of normal saline; group 2: intrapleural administration of tuberculosis bacilli (TB); group 3: intrapleural inoculation with TB at day 7 following intrapleural administration of Ad-rAQP-1 vector; group 4: intrapleural inoculation with 0.03 mg TB at day 7 following intrapleural administration of control Ad-GFP vector; group 5: intrapleural administration of Ad-rAQP-1; group 6: intrapleural administration of control Ad-GFP vector. The expression of AQP-l on the pleural tissue was detected by immunohistochemistry and Western blot analysis. Histopathologic changes of the pleura and the volume of pleural fluid were examined on day 7 following gene intervention or on day 3 following TB inoculation. Bilateral pleural effusions appeared within 5 days in all rats who received an intrapleural inoculation with TB. The peak amount of pleural fluid occurred on day 3. The AQP-1 expression at protein and mRNA was increased in the early phase of TPE. The expression of AQP-1 was increased in the Ad-rAQP-1 gene transfer group, indicating successful adenovirus gene transfer. The volume of pleural fluid in group 3 (6.1 +/- 0.7 ml) was significantly

  10. Decreased Nephrin and GLEPP-1, But Increased VEGF, Flt-1, and Nitrotyrosine, Expressions in Kidney Tissue Sections From Women With Preeclampsia

    PubMed Central

    Zhao, Shuang; Gu, Xin; Groome, Lynn J.; Wang, Yuping

    2011-01-01

    Renal injury is a common pathophysiological feature in women with preeclampsia as evidenced by increased protein leakage (proteinuria) and glomerular injury (glomerular endotheliosis). Recently, podocyturia was found in preeclampsia, suggesting podocyte shedding occurs in this pregnancy disorder. However, podocyte function in preeclampsia is poorly understood. In this study, the authors have examined podocyte-specific protein expressions for nephrin, glomerular epithelial protein 1 (GLEPP-1), and ezrin in kidney biopsy tissue sections from women with preeclampsia. Expressions for vascular endothelial growth factor (VEGF) and its receptor Flt-1 and oxidative stress marker nitrotyrosine and antioxidant CuZn-superoxide dismutase (CuZn-SOD) were also examined. Kidney tissue sections from nonhypertensive and chronic hypertensive participants were stained as controls. The findings were (1) nephrin and GLEPP-1 were mainly expressed in glomerular podocytes; (2) ezrin was expressed in both glomerular podocytes and tubular epithelial cells; (3) compared to tissue sections from nonhypertensive and chronic hypertensive participants, nephrin and GLEPP-1 expressions were much reduced in tissue sections from preeclampsia and ezrin expression was reduced in podocytes; (4) enhanced VEGF, Flt-1, and nitrotyrosine, but reduced CuZn-SOD, expressions were observed in both glomerular podocytes and endothelial cells in tissue sections from preeclampsia; and (5) the expression pattern for nephrin, GLEPP-1, ezrin, VEGF, Flt-1, and CuZn-SOD were similar between tissue sections from nonhypertensive and chronic hypertensive participants. Although the authors could not conclude from this biopsy study whether the podocyte injury is the cause or effect of the preeclampsia phenotype, the data provide compelling evidence that podocyte injury accompanied by altered angiogenesis process and increased oxidative stress occurs in kidney of patients with preeclampsia. PMID:19528353

  11. Letrozole increases ovarian growth and Cyp17a1 gene expression in the rat ovary

    PubMed Central

    Ortega, Israel; Sokalska, Anna; Villanueva, Jesus A.; Cress, Amanda B.; Wong, Donna H.; Stener-Victorin, Elisabet; Stanley, Scott D.; Duleba, Antoni J.

    2012-01-01

    Objective To evaluate the effects of letrozole on ovarian size and steroidogenesis in vivo, as well as on proliferation and steroidogenesis of theca-interstitial cells alone and in coculture with granulosa cells using an in vitro model. Design In vivo and in vitro studies. Setting Research laboratory. Animal(s) Immature Sprague-Dawley female rats. Intervention(s) In vivo effects of letrozole were studied in intact rats receiving either letrozole (90-day continuous-release SC pellets, 400 µg/d) or placebo pellets (control group). In in vitro experiments, theca cells were cultured alone or in coculture with granulosa cells in the absence or presence of letrozole. Main Outcome Measure(s) Deoxyribonucleic acid synthesis was determined by thymidine incorporation assay; steroidogenesis by mass spectrometry; and steroidogenic enzyme messenger RNA (mRNA) expression by polymerase chain reaction. Result(s) In vivo, letrozole induced an increase in ovarian size compared with the control group and also induced a profound increase of androgen, LH levels, and Cyp17a1 mRNA expression. Conversely, a decrease in Star, Cyp11a1, and Hsd3b1 transcripts was observed in letrozole-exposed rats. In vitro, letrozole did not alter either theca cell proliferation or Cyp17a1 mRNA expression. Similarly, letrozole did not affect Cyp17a1 transcripts in granulosa-theca cocultures. Conclusion(s) These findings suggest that letrozole exerts potent, but indirect, effect on growth of rat ovary and dramatically increases androgen levels and Cyp17a1 mRNA expression, the key enzyme regulating the androgen biosynthesis pathway. The present findings reveal novel mechanisms of action of letrozole in the rat ovary. PMID:23200686

  12. Aspergillus fumigatus Increased PAR-2 Expression and Elevated Proinflammatory Cytokines Expression Through the Pathway of PAR-2/ERK1/2 in Cornea.

    PubMed

    Niu, Yawen; Zhao, Guiqiu; Li, Cui; Lin, Jing; Jiang, Nan; Che, Chengye; Zhang, Jie; Xu, Qiang

    2018-01-01

    To determine the role of protease-activated receptor-2 (PAR-2) in cornea infected by Aspergillus fumigatus. PAR-2 was tested in normal and infected corneas of C57BL/6 mice. Mice corneas were infected with A. fumigatus with or without pretreatment of PAR-2 antagonist (FSLLRY-NH2). Polymorphonuclear neutrophilic leukocytes (PMNs) were stimulated with 75% ethanol-killed A. fumigatus with or without pretreatment of FSLLRY-NH2. Disease severity was documented by clinical score and photographs with a slit lamp. PCR, Western blot, and ELISA tested expression of PAR-2, IL-1β, TNF-α, IFN-γ, MIP-2, and p-ERK1/2. PMN infiltration was assessed by myeloperoxidase assay and immunofluorescent staining. PAR-2 expression was significantly elevated by A. fumigatus, whereas the upregulation was significantly inhibited by FSLLRY-NH2 in mice corneas. FSLLRY-NH2 decreased disease response, PMN infiltration, and proinflammatory cytokine expression compared with infected control. In PMNs, PAR-2 expression was also significantly increased by A. fumigatus, which was significantly inhibited by FSLLRY-NH2. FSLLRY-NH2 significantly inhibited proinflammatory cytokine protein expression, as compared with that in infected control cells, which may be modified by p-ERK1/2. These data provide evidence that A. fumigatus increased PAR-2 expression and elevated disease, PMN infiltration, and proinflammatory cytokine expression through PAR-2, which may be modified by p-ERK1/2.

  13. Increased expression of matrix metalloproteinase-1 in systemic vessels of preeclamptic women: a critical mediator of vascular dysfunction.

    PubMed

    Estrada-Gutierrez, Guadalupe; Cappello, Renato E; Mishra, Nikita; Romero, Roberto; Strauss, Jerome F; Walsh, Scott W

    2011-01-01

    This study was conducted to determine the following: (1) whether matrix metalloproteinase-1 (MMP-1) is increased in systemic vessels of preeclamptic women, (2) whether this increase might be mediated by neutrophils, and (3) whether MMP-1 could be responsible for vascular dysfunction. Omental arteries and plasma were collected from healthy pregnant and preeclamptic women. Omental arteries were evaluated for gene and protein expression of MMP-1, collagen type 1α, tissue inhibitor of metalloproteinase-1, and vascular reactivity to MMP-1. Gene and protein expression levels were also evaluated in human vascular smooth muscle cells (VSMCs) co-cultured with activated neutrophils, reactive oxygen species, or tumor necrosis factor α. Vessel expression of MMP-1 and circulating MMP-1 levels were increased in preeclamptic women, whereas vascular expression of collagen or tissue inhibitor of metalloproteinase-1 were down-regulated or unchanged. In cultured VSMCs, the imbalance in collagen-regulating genes of preeclamptic vessels was reproduced by treatment with neutrophils, tumor necrosis factor α, or reactive oxygen species. Chemotaxis studies with cultured cells revealed that MMP-1 promoted recruitment of neutrophils via vascular smooth muscle release of interleukin-8. Furthermore, MMP-1 induced vasoconstriction via protease-activated receptor-1, whose expression was significantly increased in omental arteries of preeclamptic women and in VSMCs co-cultured with neutrophils. Collectively, these findings disclose a novel role for MMP-1 as a mediator of vasoconstriction and vascular dysfunction in preeclampsia. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  14. Progesterone inhibits contraction and increases TREK-1 potassium channel expression in late pregnant rat uterus

    PubMed Central

    Yin, Zongzhi; Li, Yun; He, Wenzhu; Li, Dan; Li, Hongyan; Yang, Yuanyuan; Shen, Bing; Wang, Xi; Cao, Yunxia; Khalil, Raouf A.

    2018-01-01

    Objective The aim of this study was to investigate the effect and mechanism by which progesterone regulates uterine contraction in late pregnant rats Results Progesterone caused concentration-dependent relaxation of uterine strips that was enhanced compared with control nontreated uterine strips. Uterine strips incubated with progesterone showed a significant increase in TREK-1 mRNA expression and protein level. TREK-1 inhibitor L-methionine partly reversed uterine relaxation caused by the progesterone, while TREK-1 activator arachidonic acid did not cause significant change in progesterone-induced relaxation. Conclusions Progesterone inhibits uterine contraction and induces uterine relaxation in late pregnancy. The progesterone-induced inhibition of uterine contraction appears to partly involve increased potassium channel TREK-1 expression/activity. Materials and Methods Uterus from late-pregnant rats (gestational day 19) was isolated, and uterine strips were prepared for isometric contraction measurement. Oxytocin-induced contraction was compared in uterine strips pretreated with different concentration of progesterone. TREK-1 potassium channel inhibitor L-methionine and TREK-1 agonist arachidonic acid were used to determine whether the changes caused by progesterone involve changes in TREK-1 activity. The mRNA and protein expression of TREK-1 in uterine tissues were measured using qPCR and Western blot. PMID:29416642

  15. Increased expression of activated pSTAT3 and PIM-1 in the pulmonary vasculature of experimental congenital diaphragmatic hernia.

    PubMed

    Hofmann, Alejandro D; Takahashi, Toshiaki; Duess, Johannes; Gosemann, Jan-Hendrik; Puri, Prem

    2015-06-01

    Signal transducer and activator of transcription (STAT) protein family (STAT1-6) regulates diverse cellular processes. Recently, the isoform STAT3 has been implicated to play a central role in the pathogenesis of pulmonary hypertension (PH). In human PH activated STAT3 (pSTAT3) was shown to directly trigger expression of the provirus integration site for Moloney murine leukemia virus (Pim-1), which promotes proliferation and resistance to apoptosis in SMCs. We designed this study to investigate the hypothesis that pSTAT3 and Pim-1 pulmonary vascular expression is increased in nitrofen-induced CDH. Pregnant rats were exposed to nitrofen or vehicle on D9.5. Fetuses were sacrificed on D21 and divided into nitrofen (n=16) and control group (n=16). QRT-PCR, western blotting, and confocal-immunofluorescence were performed to determine pulmonary gene and protein expression levels of pSTAT3 and Pim-1. Pulmonary Pim-1 gene expression was significantly increased in the CDH group compared to controls. Western blotting and confocal-microscopy confirmed increased pulmonary protein expression of Pim-1 and increased activation of pSTAT3 in CDH lungs compared to controls. Markedly increased gene and protein expression of Pim-1 and activated pSTAT3 in the pulmonary vasculature of nitrofen-induced CDH lungs suggest that pSTAT3 and Pim-1 are important mediators of PH in nitrofen-induced CDH. Copyright © 2015. Published by Elsevier Inc.

  16. Endothelin-1 increases expression of cyclooxygenase-2 and production of interlukin-8 in hunan pulmonary epithelial cells.

    PubMed

    Peng, Hong; Chen, Ping; Cai, Ying; Chen, Yan; Wu, Qing-Hua; Li, Yun; Zhou, Rui; Fang, Xiang

    2008-03-01

    Inducible cyclooxygenase (COX-2) and inflammatory cytokines play important roles in inflammatory processes of chronic obstructive pulmonary disease (COPD). Endothelin-1 (ET-1) might be also involved in the pathophysilogical processes in COPD. In the present study, we determined whether ET-1 could regulate the expression of COX-2 and alter the production of interleukin-8 (IL-8) in human pulmonary epithelial cells (A549). Induced sputum samples were collected from 13 stable COPD patients and 14 healthy subjects. The COX-2 protein, ET-1, PGE(2) and IL-8 in these sputum samples were analyzed. A549 cells were incubated with ET-1 in the presence or absence of celecoxib, a selective COX-2 inhibitor. The expression of COX-2 protein in the cell and the amounts of PGE(2) and IL-8 in the medium were measured. The levels of COX-2 protein, ET-1, PGE(2) and IL-8 were significantly increased in induced sputum from COPD patients when compared to healthy subjects. ET-1 increased the expression of COX-2 protein, as well as the production of PGE(2) in A549 cells. Increased production of PGE(2) was inhibited by celecoxib. ET-1 also increased the production of IL-8. Interestingly, ET-1-induced production of IL-8 was also inhibited by celecoxib. These findings indicate that ET-1 plays important roles in regulating COX-2 expression and production of IL-8 in A549 cells. ET-1 mediated production of IL-8 is likely through a COX-2-dependent mechanism.

  17. Pituitary adenylate cyclase activating polypeptide and PAC1 receptor signaling increase Homer 1a expression in central and peripheral neurons.

    PubMed

    Girard, Beatrice M; Keller, Emily T; Schutz, Kristin C; May, Victor; Braas, Karen M

    2004-12-15

    Pituitary adenylate cyclase activating polypeptides (PACAP) and PAC1 receptor signaling have diverse roles in central and peripheral nervous system development and function. In recent microarray analyses for PACAP and PAC1 receptor modulation of neuronal transcripts, the mRNA of Homer 1a (H1a), which encodes the noncrosslinking and immediate early gene product isoform of Homer, was identified to be strongly upregulated in superior cervical ganglion (SCG) sympathetic neurons. Given the prominent roles of Homer in synaptogenesis, synaptic protein complex assembly and receptor/channel signaling, we have examined the ability for PACAP to induce H1a expression in sympathetic, cortical and hippocampal neurons to evaluate more comprehensively the roles of PACAP in synaptic function. In both central and peripheral neuronal cultures, PACAP peptides increased transiently H1a transcript levels approximately 3.5- to 6-fold. From real-time quantitative PCR measurements, the temporal patterns of PACAP-mediated H1a mRNA induction among the different neuronal cultures appeared similar although the onset of sympathetic H1a transcript expression appeared protracted. The increase in H1a transcripts was accompanied by increases in H1a protein levels. Comparative studies with VIP and PACAP(6-38) antagonist demonstrated that the PACAP effects reflected PAC1 receptor activation and signaling. The PAC1 receptor isoforms expressed in central and peripheral neurons can engage diverse intracellular second messenger systems, and studies using selective signaling pathway inhibitors demonstrated that the cyclic AMP/PKA and MEK/ERK cascades are principal mediators of the PACAP-mediated H1a induction response. In modulating H1a transcript and protein expression, these studies may implicate broad roles for PACAP and PAC1 receptor signaling in synaptic development and plasticity.

  18. Bardoxolone methyl (BARD) ameliorates ischemic AKI and increases expression of protective genes Nrf2, PPARγ, and HO-1

    PubMed Central

    Wu, Qing Qing; Wang, Yanxia; Senitko, Martin; Meyer, Colin; Wigley, W. Christian; Ferguson, Deborah A.; Grossman, Eric; Chen, Jianlin; Zhou, Xin J.; Hartono, John; Winterberg, Pamela; Chen, Bo; Agarwal, Anapam

    2011-01-01

    Ischemic acute kidney injury (AKI) triggers expression of adaptive (protective) and maladaptive genes. Agents that increase expression of protective genes should provide a therapeutic benefit. We now report that bardoxolone methyl (BARD) ameliorates ischemic murine AKI as assessed by both renal function and pathology. BARD may exert its beneficial effect by increasing expression of genes previously shown to protect against ischemic AKI, NF-E2-related factor 2 (Nrf2), peroxisome proliferator-activated receptor-γ (PPARγ), and heme oxygenase 1 (HO-1). Although we found that BARD alone or ischemia-reperfusion alone increased expression of these genes, the greatest increase occurred after the combination of both ischemia-reperfusion and BARD. BARD had a different mode of action than other agents that regulate PPARγ and Nrf2. Thus we report that BARD regulates PPARγ, not by acting as a ligand but by increasing the amount of PPARγ mRNA and protein. This should increase ligand-independent effects of PPARγ. Similarly, BARD increased Nrf2 mRNA; this increased Nrf2 protein by mechanisms in addition to the prolongation of Nrf2 protein half-life previously reported. Finally, we localized expression of these protective genes after ischemia and BARD treatment. Using double-immunofluorescence staining for CD31 and Nrf2 or PPARγ, we found increased Nrf2 and PPARγ on glomerular endothelia in the cortex; Nrf2 was also present on cortical peritubular capillaries. In contrast, HO-1 was localized to different cells, i.e., tubules and interstitial leukocytes. Although Nrf2-dependent increases in HO-1 have been described, our data suggest that BARD's effects on tubular and leukocyte HO-1 during ischemic AKI may be Nrf2 independent. We also found that BARD ameliorated cisplatin nephrotoxicity. PMID:21289052

  19. Bardoxolone methyl (BARD) ameliorates ischemic AKI and increases expression of protective genes Nrf2, PPARγ, and HO-1.

    PubMed

    Wu, Qing Qing; Wang, Yanxia; Senitko, Martin; Meyer, Colin; Wigley, W Christian; Ferguson, Deborah A; Grossman, Eric; Chen, Jianlin; Zhou, Xin J; Hartono, John; Winterberg, Pamela; Chen, Bo; Agarwal, Anapam; Lu, Christopher Y

    2011-05-01

    Ischemic acute kidney injury (AKI) triggers expression of adaptive (protective) and maladaptive genes. Agents that increase expression of protective genes should provide a therapeutic benefit. We now report that bardoxolone methyl (BARD) ameliorates ischemic murine AKI as assessed by both renal function and pathology. BARD may exert its beneficial effect by increasing expression of genes previously shown to protect against ischemic AKI, NF-E2-related factor 2 (Nrf2), peroxisome proliferator-activated receptor-γ (PPARγ), and heme oxygenase 1 (HO-1). Although we found that BARD alone or ischemia-reperfusion alone increased expression of these genes, the greatest increase occurred after the combination of both ischemia-reperfusion and BARD. BARD had a different mode of action than other agents that regulate PPARγ and Nrf2. Thus we report that BARD regulates PPARγ, not by acting as a ligand but by increasing the amount of PPARγ mRNA and protein. This should increase ligand-independent effects of PPARγ. Similarly, BARD increased Nrf2 mRNA; this increased Nrf2 protein by mechanisms in addition to the prolongation of Nrf2 protein half-life previously reported. Finally, we localized expression of these protective genes after ischemia and BARD treatment. Using double-immunofluorescence staining for CD31 and Nrf2 or PPARγ, we found increased Nrf2 and PPARγ on glomerular endothelia in the cortex; Nrf2 was also present on cortical peritubular capillaries. In contrast, HO-1 was localized to different cells, i.e., tubules and interstitial leukocytes. Although Nrf2-dependent increases in HO-1 have been described, our data suggest that BARD's effects on tubular and leukocyte HO-1 during ischemic AKI may be Nrf2 independent. We also found that BARD ameliorated cisplatin nephrotoxicity.

  20. Glyburide treatment in gestational diabetes is associated with increased placental glucose transporter 1 expression and higher birth weight.

    PubMed

    Díaz, Paula; Dimasuay, Kris Genelyn; Koele-Schmidt, Lindsey; Jang, Brian; Barbour, Linda A; Jansson, Thomas; Powell, Theresa L

    2017-09-01

    Use of glyburide in gestational diabetes (GDM) has raised concerns about fetal and neonatal side effects, including increased birth weight. Placental nutrient transport is a key determinant of fetal growth, however the effect of glyburide on placental nutrient transporters is largely unknown. We hypothesized that glyburide treatment in GDM pregnancies is associated with increased expression of nutrient transporters in the syncytiotrophoblast plasma membranes. We collected placentas from GDM pregnancies who delivered at term and were treated with either diet modification (n = 15) or glyburide (n = 8). Syncytiotrophoblast microvillous (MVM) and basal (BM) plasma membranes were isolated and expression of glucose (glucose transporter 1; GLUT1), amino acid (sodium-coupled neutral amino acid transporter 2; SNAT2 and L-type amino acid transporter 1; LAT1) and fatty acid (fatty acid translocase; FAT/CD36, fatty acid transporter 2 and 4; FATP2, FATP4) transporters was determined by Western blot. Additionally, we determined GLUT1 expression by confocal microscopy in cultured primary human trophoblasts (PHT) after exposure to glyburide. Birth weight was higher in the glyburide-treated group as compared to diet-treated GDM women (3764 ± 126 g vs. 3386 ± 75 g; p < 0.05). GLUT1 expression was increased in both MVM (+50%; p < 0.01) and BM (+75%; p < 0.01). In contrast, MVM FAT/CD36 (-65%; p = 0.01) and FATP2 (-65%; p = 0.02) protein expression was reduced in mothers treated with glyburide. Glyburide increased membrane expression of GLUT1 in a dose-dependent manner in cultured PHT. This data is the first to show that glyburide increases GLUT1 expression in syncytiotrophoblast MVM and BM in GDM pregnancies, and may promote transplacental glucose delivery contributing to fetal overgrowth. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Decidual β-carotene-15,15'-oxygenase-1 and 2 (BCMO1,2) expression is increased in nitrofen model of congenital diaphragmatic hernia.

    PubMed

    Takahashi, Hiromizu; Kutasy, Balazs; Pes, Lara; Paradisi, Francesca; Puri, Prem

    2015-01-01

    Retinoids are essential for fetal and lung development. Beta-carotene(BC) is the main dietary retinoid source and beta-carotene-15,15'-oxygenase-1 and 2 (Bcmo1,2) is the primary enzyme generating retinoid from BC in adult mammalian tissues. Placenta has a major role in the retinol homeostasis in fetal life: Since there is no fetal retinol synthesis, maternal retinol has to cross the placenta. It has been recently shown that BC can be converted to retinol by Bcmo1,2 in placenta for retinol transfer and moreover, BC can cross the placenta intact. The placental Bcmo1,2 expression is tightly controlled by placental retinol level. In severe retinol deficiency it has been shown that placental Bcmo1,2 expression are increased for generating retinol from dietary maternal BC even when the main retinol transfer is blocked. In recent years, low pulmonary retinol levels and disrupted retinoid signaling pathway have been implicated in the pathogenesis of pulmonary hypoplasia and congenital diaphragmatic hernia (CDH) in the nitrofen model of CDH. Recently, it has been demonstrated that the main retinol transfer in the placenta is blocked in the nitrofen model of CDH causing increased placental and decreased serum retinol level. The aim of our study was to determine maternal and fetal β-carotene levels and to investigate the hypothesis that placental expression of BCMO1 and BCMO2 is altered in nitrofen-exposed rat fetuses with CDH. Pregnant rats were exposed to either olive oil or nitrofen on day 9 of gestation (D9). Maternal and fetal serum, placenta, liver and left lungs were harvested on D21 and divided into two groups: control (n = 8) and nitrofen with CDH (n = 8). Immunochistochemistry was performed to evaluate trophoblasts by cytokeratin expression and placental Bcmo1,2 expression. Expression levels of Bcmo1,2 genes in fetal lungs and liver were determined using RT-PCR and immunohistochemistry. BC level was measured using HPLC. Markedly increased decidual Bcmo1

  2. Increased Calcium Levels and Prolonged Shelf Life in Tomatoes Expressing Arabidopsis H+/Ca2+ Transporters1

    PubMed Central

    Park, Sunghun; Cheng, Ning Hui; Pittman, Jon K.; Yoo, Kil Sun; Park, Jungeun; Smith, Roberta H.; Hirschi, Kendal D.

    2005-01-01

    Here we demonstrate that fruit from tomato (Lycopersicon esculentum) plants expressing Arabidopsis (Arabidopsis thaliana) H+/cation exchangers (CAX) have more calcium (Ca2+) and prolonged shelf life when compared to controls. Previously, using the prototypical CAX1, it has been demonstrated that, in yeast (Saccharomyces cerevisiae) cells, CAX transporters are activated when the N-terminal autoinhibitory region is deleted, to give an N-terminally truncated CAX (sCAX), or altered through specific manipulations. To continue to understand the diversity of CAX function, we used yeast assays to characterize the putative transport properties of CAX4 and N-terminal variants of CAX4. CAX4 variants can suppress the Ca2+ hypersensitive yeast phenotypes and also appear to be more specific Ca2+ transporters than sCAX1. We then compared the phenotypes of sCAX1- and CAX4-expressing tomato lines. The sCAX1-expressing tomato lines demonstrate increased vacuolar H+/Ca2+ transport, when measured in root tissue, elevated fruit Ca2+ level, and prolonged shelf life but have severe alterations in plant development and morphology, including increased incidence of blossom-end rot. The CAX4-expressing plants demonstrate more modest increases in Ca2+ levels and shelf life but no deleterious effects on plant growth. These findings suggest that CAX expression may fortify plants with Ca2+ and may serve as an alternative to the application of CaCl2 used to extend the shelf life of numerous agriculturally important commodities. However, judicious regulation of CAX transport is required to assure optimal plant growth. PMID:16244156

  3. Trophoblast expression of the minor histocompatibility antigen HA-1 is regulated by oxygen and is increased in placentas from preeclamptic women.

    PubMed

    Linscheid, C; Heitmann, E; Singh, P; Wickstrom, E; Qiu, L; Hodes, H; Nauser, T; Petroff, M G

    2015-08-01

    Maternal T-cells reactive towards paternally inherited fetal minor histocompatibility antigens are expanded during pregnancy. Placental trophoblast cells express at least four fetal antigens, including human minor histocompatibility antigen 1 (HA-1). We investigated oxygen as a potential regulator of HA-1 and whether HA-1 expression is altered in preeclamptic placentas. Expression and regulation of HA-1 mRNA and protein were examined by qRT-PCR and immunohistochemistry, using first, second, and third trimester placentas, first trimester placental explant cultures, and term purified cytotrophoblast cells. Low oxygen conditions were achieved by varying ambient oxygen, and were mimicked using cobalt chloride. HA-1 mRNA and protein expression levels were evaluated in preeclamptic and control placentas. HA-1 protein expression was higher in the syncytiotrophoblast of first trimester as compared to second trimester and term placentas (P<0.01). HA-1 mRNA was increased in cobalt chloride-treated placental explants and purified cytotrophoblast cells (P = 0.04 and P<0.01, respectively) and in purified cytotrophoblast cells cultured under 2% as compared to 8% and 21% oxygen (P<0.01). HA-1 mRNA expression in preeclamptic vs. control placentas was increased 3.3-fold (P = 0.015). HA-1 protein expression was increased in syncytial nuclear aggregates and the syncytiotrophoblast of preeclamptic vs. control placentas (P = 0.02 and 0.03, respectively). Placental HA-1 expression is regulated by oxygen and is increased in the syncytial nuclear aggregates and syncytiotrophoblast of preeclamptic as compared to control placentas. Increased HA-1 expression, combined with increased preeclamptic syncytiotrophoblast deportation, provides a novel potential mechanism for exposure of the maternal immune system to increased fetal antigenic load during preeclampsia. Published by Elsevier Ltd.

  4. Increased expression of the WNT antagonist sFRP-1 in glaucoma elevates intraocular pressure

    PubMed Central

    Wang, Wan-Heng; McNatt, Loretta G.; Pang, Iok-Hou; Millar, J. Cameron; Hellberg, Peggy E.; Hellberg, Mark H.; Steely, H. Thomas; Rubin, Jeffrey S.; Fingert, John H.; Sheffield, Val C.; Stone, Edwin M.; Clark, Abbot F.

    2008-01-01

    Elevated intraocular pressure (IOP) is the principal risk factor for glaucoma and results from excessive impedance of the fluid outflow from the eye. This abnormality likely originates from outflow pathway tissues such as the trabecular meshwork (TM), but the associated molecular etiology is poorly understood. We discovered what we believe to be a novel role for secreted frizzled-related protein-1 (sFRP-1), an antagonist of Wnt signaling, in regulating IOP. sFRP1 was overexpressed in human glaucomatous TM cells. Genes involved in the Wnt signaling pathway were expressed in cultured TM cells and human TM tissues. Addition of recombinant sFRP-1 to ex vivo perfusion-cultured human eyes decreased outflow facility, concomitant with reduced levels of β-catenin, the Wnt signaling mediator, in the TM. Intravitreal injection of an adenoviral vector encoding sFRP1 in mice produced a titer-dependent increase in IOP. Five days after vector injection, IOP increased 2 fold, which was significantly reduced by topical ocular administration of an inhibitor of a downstream suppressor of Wnt signaling. Thus, these data indicate that increased expression of sFRP1 in the TM appears to be responsible for elevated IOP in glaucoma and restoring Wnt signaling in the TM may be a novel disease intervention strategy for treating glaucoma. PMID:18274669

  5. SOD-1 expression in pig coronary arterioles is increased by exercise training.

    PubMed

    Rush, J W; Laughlin, M H; Woodman, C R; Price, E M

    2000-11-01

    Coronary arterioles of exercise-trained (EX) pigs have enhanced nitric oxide (NO.)-dependent dilation. Evidence suggests that the biological half-life of NO. depends in part on the management of the superoxide anion. The purpose of this study was to test the hypothesis that expression of cytosolic copper/zinc-dependent superoxide dismutase (SOD)-1 is increased in coronary arterioles as a result of exercise training. Male Yucatan pigs either remained sedentary (SED, n = 4) or were EX (n = 4) on a motorized treadmill for 16-20 wk. Individual coronary arterioles ( approximately 100-microm unpressurized internal diameter) were dissected and frozen. Coronary arteriole SOD-1 protein (via immunoblots) increased as a result of exercise training (2.16 +/- 0.35 times SED levels) as did SOD-1 enzyme activity (measured via inhibition of pyrogallol autooxidation; approximately 75% increase vs. SED). In addition, SOD-1 mRNA levels (measured via RT-PCR) were higher in EX arterioles (1.68 +/- 0.16 times the SED levels). There were no effects of exercise training on the levels of SOD-2 (mitochondrial), catalase, or p67(phox) proteins. Thus chronic aerobic exercise training selectively increases the levels of SOD-1 mRNA, protein, and enzymatic activity in porcine coronary arterioles. Increased SOD-1 could contribute to the enhanced NO.-dependent dilation previously observed in EX porcine coronary arterioles by improving management of superoxide in the vascular cell environment, thus prolonging the biological half-life of NO.

  6. It's Not What They Play, It's What They Say: A Content Analysis of DJ Chatter.

    ERIC Educational Resources Information Center

    Lont, Cynthia M.

    Focusing on the sex roles portrayed over commercial radio targeting adolescents, a study conducted a content analysis of two radio stations in the Washington, D.C. market (the two stations held an average share of 30 to 35 percent of the adolescent audience in that area). The content analyzed included the advertisements, disc jockey (DJ) chatter,…

  7. Putative storage root specific promoters from cassava and yam: cloning and evaluation in transgenic carrots as a model system.

    PubMed

    Arango, Jacobo; Salazar, Bertha; Welsch, Ralf; Sarmiento, Felipe; Beyer, Peter; Al-Babili, Salim

    2010-06-01

    A prerequisite for biotechnological improvements of storage roots is the availability of tissue-specific promoters enabling high expression of transgenes. In this work, we cloned two genomic fragments, pMe1 and pDJ3S, controlling the expression of a gene with unknown function from cassava (Manihot esculenta) and of the storage protein dioscorin 3 small subunit gene from yam (Dioscorea japonica), respectively. Using beta-glucuronidase as a reporter, the activities of pMe1 and pDJ3S were evaluated in independent transgenic carrot lines and compared to the constitutive CaMV35S and the previously described cassava p15 promoters. Activities of pMe1 and pDJ3S in storage roots were assessed using quantitative GUS assays that showed pDJ3S as the most active one. To determine organ specificities, uidA transcript levels in leaves, stems and roots were measured by real-time RT-PCR analyses showing highest storage root specificity for pDJ3S. Root cross sections revealed that pMe1 was highly active in secondary xylem. In contrast, pDJ3S was active in all root tissues except for the central xylem. The expression patterns caused by the cassava p15 promoter in carrot storage roots were consistent with its previously described activities for the original storage organ. Our data demonstrate that the pDJ3S and, to a lesser extent, the pMe1 regulatory sequences represent feasible candidates to drive high and preferential expression of genes in carrot storage roots.

  8. Loss of Twist1 in the Mesenchymal Compartment Promotes Increased Fibrosis in Experimental Lung Injury by Enhanced Expression of CXCL12

    PubMed Central

    Tan, Jiangning; Tedrow, John R.; Nouraie, Mehdi; Dutta, Justin A.; Miller, David T.; Li, Xiaoyun; Yu, Shibing; Chu, Yanxia; Juan-Guardela, Brenda; Kaminski, Naftali; Ramani, Kritika; Biswas, Partha S.; Zhang, Yingze

    2017-01-01

    Idiopathic pulmonary fibrosis (IPF) is a disease characterized by the accumulation of apoptosis-resistant fibroblasts in the lung. We have previously shown that high expression of the transcription factor Twist1 may explain this prosurvival phenotype in vitro. However, this observation has never been tested in vivo. We found that loss of Twist1 in COL1A2+ cells led to increased fibrosis characterized by very significant accumulation of T cells and bone marrow–derived matrix-producing cells. We found that Twist1-null cells expressed high levels of the T cell chemoattractant CXCL12. In vitro, we found that the loss of Twist1 in IPF lung fibroblasts increased expression of CXCL12 downstream of increased expression of the noncanonical NF-κB transcription factor RelB. Finally, blockade of CXCL12 with AMD3100 attenuated the exaggerated fibrosis observed in Twist1-null mice. Transcriptomic analysis of 134 IPF patients revealed that low expression of Twist1 was characterized by enrichment of T cell pathways. In conclusion, loss of Twist1 in collagen-producing cells led to increased bleomycin-induced pulmonary fibrosis, which is mediated by increased expression of CXCL12. Twist1 expression is associated with dysregulation of T cells in IPF patients. Twist1 may shape the IPF phenotype and regulate inflammation in fibrotic lung injury. PMID:28179498

  9. Neuroprotective effects of Danggui-Jakyak-San on rat stroke model through antioxidant/antiapoptotic pathway.

    PubMed

    Kim, Sang-Ho; Chung, Dae-Kyoo; Lee, Young Joon; Song, Chang-Hyun; Ku, Sae-Kwang

    2016-07-21

    Dangui-Jakyak-San (DJ) is a traditional Korean medicinal polyherb, prescribed typically in patients with insufficient blood supply in Eastern Asia. The DJ also has been reported to have neuroprotective effects in vitro and in vivo studies. The therapeutic potential of DJ was examined in stroke rat model, in comparison with donepezil, a reversible acetylcholinesterase inhibitor. Ischemic stroke rat model was induced by surgery of permanent occlusion of middle cerebral artery (pMCAO). The model was orally administered with distilled water (pMCAO control), donepezil at 10mg/kg (Donepezil) and DJ at 200, 100 and 50mg/kg (DJ 200, DJ 100 and DJ 50, respectively). Sham had the same surgery excepting for the pMCAO, and it was administered with distilled water (sham control). After the administration for 28 days, the groups of DJ exhibited dose-dependent reduction in infarct/defect volumes with improvement in sensorimotor and cognitive motor function, comparing to pMCAO control. The DJ treatments seemed to enhance antiapoptotic and antioxidant effects; increases in antiapoptotic expressions (STAT3 and Pim-1) and decreases in lipid peroxidation (MDA) together with increases in contents of endogenous antioxidant (GSH) and activities of antioxidant enzymes (catalase and SOD). The histopathological analyses revealed significant reduction in neuronal apoptosis (caspase-3 and PARP) and neuronal degradation with atrophy and degeneration, in the DJ treatments. Furthermore, the oxidative stresses (nitrotyrosine as an iNOS factor and 4-HNE as a marker of lipid peroxidation) were observed mild. Although the similar neuroprotective effects were observed, the body weight loss was scarcely alleviated in Donepezil comparing to pMCAO control. These suggest that DJ ameliorate the neurological dysfunction of cerebral ischemia through augmentation of antioxidant defense system and up-regulation of STAT3 and Pim-1. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Perinatal phencyclidine administration decreases the density of cortical interneurons and increases the expression of neuregulin-1.

    PubMed

    Radonjić, Nevena V; Jakovcevski, Igor; Bumbaširević, Vladimir; Petronijević, Nataša D

    2013-06-01

    Perinatal phencyclidine (PCP) administration in rat blocks the N-methyl D-aspartate receptor (NMDAR) and causes symptoms reminiscent of schizophrenia in human. A growing body of evidence suggests that alterations in γ-aminobutyric acid (GABA) interneuron neurotransmission may be associated with schizophrenia. Neuregulin-1 (NRG-1) is a trophic factor important for neurodevelopment, synaptic plasticity, and wiring of GABA circuits. The aim of this study was to determine the long-term effects of perinatal PCP administration on the projection and local circuit neurons and NRG-1 expression in the cortex and hippocampus. Rats were treated on postnatal day 2 (P2), P6, P9, and P12 with either PCP (10 mg/kg) or saline. Morphological studies and determination of NRG-1 expression were performed at P70. We demonstrate reduced densities of principal neurons in the CA3 and dentate gyrus (DG) subregions of the hippocampus and a reduction of major interneuronal populations in all cortical and hippocampal regions studied in PCP-treated rats compared with controls. For the first time, we show the reduced density of reelin- and somatostatin-positive cells in the cortex and hippocampus of animals perinatally treated with PCP. Furthermore, an increase in the numbers of perisomatic inhibitory terminals around the principal cells was observed in the motor cortex and DG. We also show that perinatal PCP administration leads to an increased NRG-1 expression in the cortex and hippocampus. Taken together, our findings demonstrate that perinatal PCP administration increases NRG-1 expression and reduces the number of projecting and local circuit neurons, revealing complex consequences of NMDAR blockade.

  11. Acute exercise increases brain region-specific expression of MCT1, MCT2, MCT4, GLUT1, and COX IV proteins.

    PubMed

    Takimoto, Masaki; Hamada, Taku

    2014-05-01

    The brain is capable of oxidizing lactate and ketone bodies through monocarboxylate transporters (MCTs). We examined the protein expression of MCT1, MCT2, MCT4, glucose transporter 1 (GLUT1), and cytochrome-c oxidase subunit IV (COX IV) in the rat brain within 24 h after a single exercise session. Brain samples were obtained from sedentary controls and treadmill-exercised rats (20 m/min, 8% grade). Acute exercise resulted in an increase in lactate in the cortex, hippocampus, and hypothalamus, but not the brainstem, and an increase in β-hydroxybutyrate in the cortex alone. After a 2-h exercise session MCT1 increased in the cortex and hippocampus 5 h postexercise, and the effect lasted in the cortex for 24 h postexercise. MCT2 increased in the cortex and hypothalamus 5-24 h postexercise, whereas MCT2 increased in the hippocampus immediately after exercise, and remained elevated for 10 h postexercise. Regional upregulation of MCT2 after exercise was associated with increases in brain-derived neurotrophic factor and tyrosine-related kinase B proteins, but not insulin-like growth factor 1. MCT4 increased 5-10 h postexercise only in the hypothalamus, and was associated with increased hypoxia-inducible factor-1α expression. However, none of the MCT isoforms in the brainstem was affected by exercise. Whereas GLUT 1 in the cortex increased only at 18 h postexercise, COX IV in the hippocampus increased 10 h after exercise and remained elevated for 24 h postexercise. These results suggest that acute prolonged exercise induces the brain region-specific upregulation of MCT1, MCT2, MCT4, GLUT1, and COX IV proteins.

  12. Arctigenin Increases Hemeoxygenase-1 Gene Expression by Modulating PI3K/AKT Signaling Pathway in Rat Primary Astrocytes.

    PubMed

    Jeong, Yeon-Hui; Park, Jin-Sun; Kim, Dong-Hyun; Kim, Hee-Sun

    2014-11-01

    In the present study, we found that the natural compound arctigenin inhibited hydrogen peroxide-induced reactive oxygen species (ROS) production in rat primary astrocytes. Since hemeoxygenase-1 (HO-1) plays a critical role as an antioxidant defense factor in the brain, we examined the effect of arctigenin on HO-1 expression in rat primary astrocytes. We found that arctigenin increased HO-1 mRNA and protein levels. Arctigenin also increases the nuclear translocation and DNA binding of Nrf2/c-Jun to the antioxidant response element (ARE) on HO-1 promoter. In addition, arctigenin increased ARE-mediated transcriptional activities in rat primary astrocytes. Further mechanistic studies revealed that arctigenin increased the phosphorylation of AKT, a downstream substrate of phosphatidylinositol 3-kinase (PI3K). Treatment of cells with a PI3K-specific inhibitor, LY294002, suppressed the HO-1 expression, Nrf2 DNA binding and ARE-mediated transcriptional activities in arctigenin-treated astrocyte cells. The results collectively suggest that PI3K/AKT signaling pathway is at least partly involved in HO-1 expression by arctigenin via modulation of Nrf2/ARE axis in rat primary astrocytes.

  13. Arctigenin Increases Hemeoxygenase-1 Gene Expression by Modulating PI3K/AKT Signaling Pathway in Rat Primary Astrocytes

    PubMed Central

    Jeong, Yeon-Hui; Park, Jin-Sun; Kim, Dong-Hyun; Kim, Hee-Sun

    2014-01-01

    In the present study, we found that the natural compound arctigenin inhibited hydrogen peroxide-induced reactive oxygen species (ROS) production in rat primary astrocytes. Since hemeoxygenase-1 (HO-1) plays a critical role as an antioxidant defense factor in the brain, we examined the effect of arctigenin on HO-1 expression in rat primary astrocytes. We found that arctigenin increased HO-1 mRNA and protein levels. Arctigenin also increases the nuclear translocation and DNA binding of Nrf2/c-Jun to the antioxidant response element (ARE) on HO-1 promoter. In addition, arctigenin increased ARE-mediated transcriptional activities in rat primary astrocytes. Further mechanistic studies revealed that arctigenin increased the phosphorylation of AKT, a downstream substrate of phosphatidylinositol 3-kinase (PI3K). Treatment of cells with a PI3K-specific inhibitor, LY294002, suppressed the HO-1 expression, Nrf2 DNA binding and ARE-mediated transcriptional activities in arctigenin-treated astrocyte cells. The results collectively suggest that PI3K/AKT signaling pathway is at least partly involved in HO-1 expression by arctigenin via modulation of Nrf2/ARE axis in rat primary astrocytes. PMID:25489416

  14. Expression of the yeast NADH dehydrogenase Ndi1 in Drosophila confers increased lifespan independently of dietary restriction

    PubMed Central

    Sanz, Alberto; Soikkeli, Mikko; Portero-Otín, Manuel; Wilson, Angela; Kemppainen, Esko; McIlroy, George; Ellilä, Simo; Kemppainen, Kia K.; Tuomela, Tea; Lakanmaa, Matti; Kiviranta, Essi; Stefanatos, Rhoda; Dufour, Eric; Hutz, Bettina; Naudí, Alba; Jové, Mariona; Zeb, Akbar; Vartiainen, Suvi; Matsuno-Yagi, Akemi; Yagi, Takao; Rustin, Pierre; Pamplona, Reinald; Jacobs, Howard T.

    2010-01-01

    Mutations in mitochondrial oxidative phosphorylation complex I are associated with multiple pathologies, and complex I has been proposed as a crucial regulator of animal longevity. In yeast, the single-subunit NADH dehydrogenase Ndi1 serves as a non-proton-translocating alternative enzyme that replaces complex I, bringing about the reoxidation of intramitochondrial NADH. We have created transgenic strains of Drosophila that express yeast NDI1 ubiquitously. Mitochondrial extracts from NDI1-expressing flies displayed a rotenone-insensitive NADH dehydrogenase activity, and functionality of the enzyme in vivo was confirmed by the rescue of lethality resulting from RNAi knockdown of complex I. NDI1 expression increased median, mean, and maximum lifespan independently of dietary restriction, and with no change in sirtuin activity. NDI1 expression mitigated the aging associated decline in respiratory capacity and the accompanying increase in mitochondrial reactive oxygen species production, and resulted in decreased accumulation of markers of oxidative damage in aged flies. Our results support a central role of mitochondrial oxidative phosphorylation complex I in influencing longevity via oxidative stress, independently of pathways connected to nutrition and growth signaling. PMID:20435911

  15. Baicalin increases VEGF expression and angiogenesis by activating the ERRα/PGC-1α pathway

    PubMed Central

    Zhang, Keqiang; Lu, Jianming; Mori, Taisuke; Smith-Powell, Leslie; Synold, Timothy W.; Chen, Shiuan; Wen, Wei

    2011-01-01

    Aims Baicalin is the major component found in Scutellaria baicalensis root, a widely used herb in traditional Chinese medicine. Although it has been used for thousands of years to treat stroke, the mechanisms of action of S. baicalensis have not been clearly elucidated. In this report, we studied the modulation of angiogenesis as one possible mechanism by investigating the effects of these agents on expression of vascular endothelial growth factor (VEGF), a critical factor for angiogenesis. Methods and results The effects of baicalin and an extract of S. baicalensis on VEGF expression were tested in several cell lines. Both agents induced VEGF expression in all cells without increasing expression of hypoxia-inducible factor-1α (HIF-1α). The expression of reporter genes was also activated under the control of the VEGF promoter containing either a functional or a defective HIF response element (HRE). Only minimal effects were observed on reporter activation under the HRE promoter. Instead, both agents significantly induced oestrogen-related receptor (ERRα) expression as well as the activity of reporter genes under the control of ERRα-binding element. Their ability to induce VEGF expression was suppressed once ERRα expression was knocked down by siRNA or ERRα-binding sites were deleted in the VEGF promoter. We also found that both agents stimulated cell migration and vessel sprout formation from the aorta. Conclusion Our results implicate baicalin and S. baicalensis in angiogenesis by inducing VEGF expression through the activation of the ERRα pathway. These data may facilitate a better understanding of the potential health benefits of these agents in the treatment of cardiovascular diseases. PMID:20851810

  16. Resveratrol increases phagocytosis and lipopolysaccharide-induced interleukin-1β production, but decreases surface expression of Toll-like receptor 2 in THP-1 monocytes.

    PubMed

    Zunino, Susan J; Hwang, Daniel H; Huang, Shurong; Storms, David H

    2018-02-01

    THP-1 monocytes were used to evaluate the effects of physiological levels of resveratrol aglycone, resveratrol-3-O-glucuronide, resveratrol-4'-O-glucuronide, and resveratrol-3-O-sulfate on phagocytosis, IL-1β, IL-1α, and IL-18 production, viability, and TLR2 and TLR4 expression. THP-1 cells were treated with 1, 5, 10, and 15μM resveratrol or metabolites. Resveratrol-3-O-glucuronide, resveratrol-4'-O-glucuronide, and resveratrol-3-O-sulfate had no effect on the functional parameters tested. Resveratrol aglycone increased phagocytosis at concentrations of 5, 10, and 15μM and LPS-induced IL-1β production at concentrations of 10 and 15μM. Expression of TLR4 increased slightly after resveratrol treatment, but surface expression of TLR2 was reduced as resveratrol concentrations increased. Our data suggest that resveratrol may be effective in modulating monocyte function in an environment where there is direct exposure to the aglycone, such as at the gut epithelium. Published by Elsevier Ltd.

  17. Sterol regulatory element binding protein-1 (SREBP1) gene expression is similarly increased in polycystic ovary syndrome and endometrial cancer.

    PubMed

    Shafiee, Mohamad N; Mongan, Nigel; Seedhouse, Claire; Chapman, Caroline; Deen, Suha; Abu, Jafaru; Atiomo, William

    2017-05-01

    Women with polycystic ovary syndrome have a three-fold higher risk of endometrial cancer. Insulin resistance and hyperlipidemia may be pertinent factors in the pathogenesis of both conditions. The aim of this study was to investigate endometrial sterol regulatory element binding protein-1 gene expression in polycystic ovary syndrome and endometrial cancer endometrium, and to correlate endometrial sterol regulatory element binding protein-1 gene expression with serum lipid profiles. A cross-sectional study was performed at Nottingham University Hospital, UK. A total of 102 women (polycystic ovary syndrome, endometrial cancer and controls; 34 participants in each group) were recruited. Clinical and biochemical assessments were performed before endometrial biopsies were obtained from all participants. Taqman real-time polymerase chain reaction for endometrial sterol regulatory element binding protein-1 gene and its systemic protein expression were analyzed. The body mass indices of women with polycystic ovary syndrome (29.28 ± 2.91 kg/m 2 ) and controls (28.58 ± 2.62 kg/m 2 ) were not significantly different. Women with endometrial cancer had a higher mean body mass index (32.22 ± 5.70 kg/m 2 ). Sterol regulatory element binding protein-1 gene expression was significantly increased in polycystic ovary syndrome and endometrial cancer endometrium compared with controls (p < 0.0001). Sterol regulatory element binding protein-1 gene expression was positively correlated with body mass index (r = 0.017, p = 0.921) and waist-hip ratio (r = 0.023, p = 0.544) in polycystic ovary syndrome, but this was not statistically significant. Similarly, statistically insignificant positive correlations were found between endometrial sterol regulatory element binding protein-1 gene expression and body mass index in endometrial cancer (r = 0.643, p = 0.06) and waist-hip ratio (r = 0.096, p = 0.073). Sterol regulatory element binding protein-1 gene expression

  18. FGF-1-induced matrix metalloproteinase-9 expression in breast cancer cells is mediated by increased activities of NF-kappaB and activating protein-1.

    PubMed

    Lungu, Gina; Covaleda, Lina; Mendes, Odete; Martini-Stoica, Heidi; Stoica, George

    2008-06-01

    Matrix metalloproteinase-9 (MMP-9) plays a critical role in tumor invasion and metastasis. Here, we investigate the effect of fibroblast growth factor-1 (FGF-1) on the expression of MMP-9 in ENU1564, an ethyl-N-nitrosourea-induced rat mammary adenocarcinoma cell line. We observed that FGF-1 induces a dose-dependent increase in MMP-9 mRNA, protein, and activity in ENU1564 cells. To gain insight into the molecular mechanism of MMP-9 regulation by FGF-1, we investigated the role of components of PI3K-Akt and MEK1/2-ERK signaling pathways in our system since NF-kappaB and AP-1 transcription factor binding sites have been characterized in the upstream region of the MMP-9 gene. We demonstrated that FGF-1 increases Akt phosphorylation, triggers nuclear translocation of NF-kappaBp65, and enhances degradation of cytoplasmic IkappaBalpha. Pretreatment of cells with LY294002, a PI3K inhibitor, significantly inhibited MMP-9 protein expression in FGF-1-treated cells. Conversely, our data show that FGF-1 increases ERK phosphorylation in ENU1564 cells, increases c-jun and c-fos mRNA expression in a time-dependent manner, and triggers nuclear translocation of c-jun. Pretreatment of cells with PD98059, a MEK1/2 inhibitor significantly inhibited MMP-9 protein expression in FGF-1 treated cells. Finally, we observed increased DNA binding of NF-kappaB and AP-1 in FGF-1-treated cells and that mutation of either NF-kappaB or AP-1 response elements prevented MMP-9 promoter activation by FGF-1. Taken together, these results demonstrated that FGF-1-induced MMP-9 expression in ENU1564 cells is associated with increasing DNA binding activities of NF-kappaB and AP-1 and involve activation of a dual signaling pathway, PI3K-Akt and MEK1/2-ERK. (c) 2007 Wiley-Liss, Inc.

  19. LPS Increases 5-LO Expression on Monocytes via an Activation of Akt-Sp1/NF-κB Pathways.

    PubMed

    Lee, Seung Jin; Seo, Kyo Won; Kim, Chi Dae

    2015-05-01

    5-Lipoxygenase (5-LO) plays a pivotal role in the progression of atherosclerosis. Therefore, this study investigated the molecular mechanisms involved in 5-LO expression on monocytes induced by LPS. Stimulation of THP-1 monocytes with LPS (0~3 µg/ml) increased 5-LO promoter activity and 5-LO protein expression in a concentration-dependent manner. LPS-induced 5-LO expression was blocked by pharmacological inhibition of the Akt pathway, but not by inhibitors of MAPK pathways including the ERK, JNK, and p38 MAPK pathways. In line with these results, LPS increased the phosphorylation of Akt, suggesting a role for the Akt pathway in LPS-induced 5-LO expression. In a promoter activity assay conducted to identify transcription factors, both Sp1 and NF-κB were found to play central roles in 5-LO expression in LPS-treated monocytes. The LPS-enhanced activities of Sp1 and NF-κB were attenuated by an Akt inhibitor. Moreover, the LPS-enhanced phosphorylation of Akt was significantly attenuated in cells pretreated with an anti-TLR4 antibody. Taken together, 5-LO expression in LPS-stimulated monocytes is regulated at the transcriptional level via TLR4/Akt-mediated activations of Sp1 and NF-κB pathways in monocytes.

  20. Statin-Induced Increases in Atrophy Gene Expression Occur Independently of Changes in PGC1α Protein and Mitochondrial Content

    PubMed Central

    Zacharewicz, Evelyn; Lee-Young, Robert S.; Snow, Rod J.; Russell, Aaron P.; McConell, Glenn K.

    2015-01-01

    One serious side effect of statin drugs is skeletal muscle myopathy. Although the mechanism(s) responsible for statin myopathy remains to be fully determined, an increase in muscle atrophy gene expression and changes in mitochondrial content and/or function have been proposed to play a role. In this study, we examined the relationship between statin-induced expression of muscle atrophy genes, regulators of mitochondrial biogenesis, and markers of mitochondrial content in slow- (ST) and fast-twitch (FT) rat skeletal muscles. Male Sprague Dawley rats were treated with simvastatin (60 or 80 mg·kg-1·day-1) or vehicle control via oral gavage for 14 days. In the absence of overt muscle damage, simvastatin treatment induced an increase in atrogin-1, MuRF1 and myostatin mRNA expression; however, these were not associated with changes in peroxisome proliferator gamma co-activator 1 alpha (PGC-1α) protein or markers of mitochondrial content. Simvastatin did, however, increase neuronal nitric oxide synthase (nNOS), endothelial NOS (eNOS) and AMPK α-subunit protein expression, and tended to increase total NOS activity, in FT but not ST muscles. Furthermore, simvastatin induced a decrease in β-hydroxyacyl CoA dehydrogenase (β-HAD) activity only in FT muscles. These findings suggest that the statin-induced activation of muscle atrophy genes occurs independent of changes in PGC-1α protein and mitochondrial content. Moreover, muscle-specific increases in NOS expression and possibly NO production, and decreases in fatty acid oxidation, could contribute to the previously reported development of overt statin-induced muscle damage in FT muscles. PMID:26020641

  1. Increased N-myc downstream-regulated gene 1 expression is associated with breast atypia-to-carcinoma progression.

    PubMed

    Mao, Xiao-Yun; Fan, Chui-Feng; Wei, Jing; Liu, Cong; Zheng, Hua-Chuan; Yao, Fan; Jin, Feng

    2011-12-01

    N-myc downstream-regulated gene-1 (NDRG1) has been identified as a protein involved in the differentiation of epithelial cells. As a newly metastasis suppressor gene, whether it contributes to carcinogenesis of breast cancer is still unknown. This study aimed to clarify the possible role of NDRG1 for breast cancer carcinogenesis, and further to investigate its clinicopathological significance in invasive breast cancer. We examined the expression of NDRG1 in normal epithelium of breast (n = 35), usual ductal hyperplasia (n = 22), atypical ductal hyperplasia (n = 33), atypical lobular hyperplasia (n = 8), ductal carcinoma in situ (n = 16), lobular carcinoma in situ (n = 6), invasive ductal carcinoma (n = 50), and invasive lobular carcinoma (n = 45) by immunohistochemistry and analyzed the correlation between NDRG expression and clinicopathological features of invasive breast cancer. Western blot analysis was carried out to investigate the expression of NDRG1 in 20 invasive ductal breast cancer and the paired non-tumor portion of the same case. NDRG1 expression in invasive breast cancer (70/95, 73.7%) was higher than that in noninvasive breast lesions (29/85, 34.1%; p < 0.05) which was higher than that in normal breast epithelium (5/35, 14.3%; p < 0.05). Statistical analysis revealed a significant correlation between NDRG1 expression with tumor stage in invasive breast cancer, and its expression in invasive ductal carcinoma is significantly higher than invasive lobular carcinoma (p < 0.05). It was not associated with age, menopausal status, tumor size, and lymph node metastasis. NDRG1 protein levels were significantly higher in invasive ductal breast cancer compared to the paired non-tumor portion of the same case by Western blot analysis (p < 0.05). Increased NDRG-1 expression is associated with breast atypia-to-carcinoma progression. NDRG1 expression might participate in the carcinogenesis and progression of invasive

  2. Angiotensin II increases CTGF expression via MAPKs/TGF-{beta}1/TRAF6 pathway in atrial fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Jun; Liu, Xu, E-mail: xkliuxu@yahoo.cn; Wang, Quan-xing, E-mail: shmywqx@126.com

    2012-10-01

    The activation of transforming growth factor-{beta}1(TGF-{beta}1)/Smad signaling pathway and increased expression of connective tissue growth factor (CTGF) induced by angiotensin II (AngII) have been proposed as a mechanism for atrial fibrosis. However, whether TGF{beta}1/non-Smad signaling pathways involved in AngII-induced fibrogenetic factor expression remained unknown. Recently tumor necrosis factor receptor associated factor 6 (TRAF6)/TGF{beta}-associated kinase 1 (TAK1) has been shown to be crucial for the activation of TGF-{beta}1/non-Smad signaling pathways. In the present study, we explored the role of TGF-{beta}1/TRAF6 pathway in AngII-induced CTGF expression in cultured adult atrial fibroblasts. AngII (1 {mu}M) provoked the activation of P38 mitogen activated proteinmore » kinase (P38 MAPK), extracellular signal-regulated kinase 1/2(ERK1/2) and c-Jun NH(2)-terminal kinase (JNK). AngII (1 {mu}M) also promoted TGF{beta}1, TRAF6, CTGF expression and TAK1 phosphorylation, which were suppressed by angiotensin type I receptor antagonist (Losartan) as well as p38 MAPK inhibitor (SB202190), ERK1/2 inhibitor (PD98059) and JNK inhibitor (SP600125). Meanwhile, both TGF{beta}1 antibody and TRAF6 siRNA decreased the stimulatory effect of AngII on TRAF6, CTGF expression and TAK1 phosphorylation, which also attenuated AngII-induced atrial fibroblasts proliferation. In summary, the MAPKs/TGF{beta}1/TRAF6 pathway is an important signaling pathway in AngII-induced CTGF expression, and inhibition of TRAF6 may therefore represent a new target for reversing Ang II-induced atrial fibrosis. -- Highlights: Black-Right-Pointing-Pointer MAPKs/TGF{beta}1/TRAF6 participates in AngII-induced CTGF expression in atrial fibroblasts. Black-Right-Pointing-Pointer TGF{beta}1/TRAF6 participates in AngII-induced atrial fibroblasts proliferation. Black-Right-Pointing-Pointer TRAF6 may represent a new target for reversing Ang II-induced atrial fibrosis.« less

  3. Increased expression of p53 and p21 (Waf1/Cip1) in the lesional skin of bleomycin-induced scleroderma.

    PubMed

    Yamamoto, Toshiyuki; Nishioka, Kiyoshi

    2005-05-01

    Systemic sclerosis (SSc) is a connective tissue disorder characterized by excessive deposition of extracellular matrix in the affected skin as well as various internal organs, vascular injury and immune abnormality; however, the etiology of SSc remains still unknown. We previously established an experimental mouse model for scleroderma by repeated local injections of bleomycin, a DNA damaging agent. In this study, we examined the induction of apoptosis and the expression of p53, p21 (Waf1/Cip1), and proliferating cell nuclear antigen (PCNA) in the lesional skin following bleomycin exposure in this model. Dermal sclerosis was induced by alternate day's injections of bleomycin for 4 weeks. TUNEL assay showed that apoptotic cells began to appear at 1 week after bleomycin exposure, and were prominently detected at 3-4 weeks. Immunohistochemical examination showed increased expression of p53 and p21 mainly in the infiltrating mononuclear cells at 2 weeks after bleomycin treatment. Bleomycin treatment markedly enhanced PCNA expression at 1-2 weeks, mainly in mesenchyme, as compared with control phosphate buffered saline treatment. Reverse transcriptase-polymerase chain reaction analysis showed that the expression of p53 and p21 mRNA was concurrently upregulated at 1-2 weeks after bleomycin treatment. Taken together, coordinate increased levels of p53 and p21 preceded the maximal induction of apoptosis and dermal sclerosis. Our findings suggest that apoptotic processes are involved in the pathophysiology of bleomycin-induced scleroderma, which may be mediated, in part, by the upregulation of p53 and p21.

  4. Dexamethasone increases expression of 5-lipoxygenase and its activating protein in human monocytes and THP-1 cells.

    PubMed

    Riddick, C A; Ring, W L; Baker, J R; Hodulik, C R; Bigby, T D

    1997-05-15

    The aim of this study was to assess the effect of dexamethasone on 5-lipoxygenase pathway expression in human peripheral blood monocytes and the acute monocytic leukemia cell line, THP-1. Cells were conditioned over a period of days with dexamethasone, at concentrations relevant in vivo, to study the effect of the glucocorticoid on calcium-ionophore-stimulated 5-lipoxygenase product and arachidonic acid release. The effect of dexamethasone on levels of immunoreactive protein and steady-state messenger RNA encoding for 5-lipoxygenase and its activating protein (5-LAP) was also assessed. Dexamethasone increased the stimulated release of 5-lipoxygenase products from both monocytes and THP-1 cells in a dose-dependent fashion. The increase in product generation was not due to changes in the availability of arachidonic acid. However, immunoreactive protein and steady-state messenger RNA encoding for 5-lipoxygenase and 5-LAP were increased by conditioning with dexamethasone. There was no apparent effect of the glucocorticoid on LTA4-hydrolase-immunoreactive protein levels or specific activity. We conclude that dexamethasone increases 5-lipoxygenase pathway expression in both monocytes and in THP-1 cells. This effect is due, at least in part, to increases in immunoreactive protein and steady-state messenger RNA encoding for 5-lipoxygenase and 5-LAP. These results suggest a role for glucocorticoids in the regulation of 5-lipoxygenase pathway expression in mononuclear phagocytes.

  5. Increased mitochondrial calcium sensitivity and abnormal expression of innate immunity genes precede dopaminergic defects in Pink1-deficient mice.

    PubMed

    Akundi, Ravi S; Huang, Zhenyu; Eason, Joshua; Pandya, Jignesh D; Zhi, Lianteng; Cass, Wayne A; Sullivan, Patrick G; Büeler, Hansruedi

    2011-01-13

    PTEN-induced kinase 1 (PINK1) is linked to recessive Parkinsonism (EOPD). Pink1 deletion results in impaired dopamine (DA) release and decreased mitochondrial respiration in the striatum of mice. To reveal additional mechanisms of Pink1-related dopaminergic dysfunction, we studied Ca²+ vulnerability of purified brain mitochondria, DA levels and metabolism and whether signaling pathways implicated in Parkinson's disease (PD) display altered activity in the nigrostriatal system of Pink1⁻/⁻ mice. Purified brain mitochondria of Pink1⁻/⁻ mice showed impaired Ca²+ storage capacity, resulting in increased Ca²+ induced mitochondrial permeability transition (mPT) that was rescued by cyclosporine A. A subpopulation of neurons in the substantia nigra of Pink1⁻/⁻ mice accumulated phospho-c-Jun, showing that Jun N-terminal kinase (JNK) activity is increased. Pink1⁻/⁻ mice 6 months and older displayed reduced DA levels associated with increased DA turnover. Moreover, Pink1⁻/⁻ mice had increased levels of IL-1β, IL-12 and IL-10 in the striatum after peripheral challenge with lipopolysaccharide (LPS), and Pink1⁻/⁻ embryonic fibroblasts showed decreased basal and inflammatory cytokine-induced nuclear factor kappa-β (NF-κB) activity. Quantitative transcriptional profiling in the striatum revealed that Pink1⁻/⁻ mice differentially express genes that (i) are upregulated in animals with experimentally induced dopaminergic lesions, (ii) regulate innate immune responses and/or apoptosis and (iii) promote axonal regeneration and sprouting. Increased mitochondrial Ca²+ sensitivity and JNK activity are early defects in Pink1⁻/⁻ mice that precede reduced DA levels and abnormal DA homeostasis and may contribute to neuronal dysfunction in familial PD. Differential gene expression in the nigrostriatal system of Pink1⁻/⁻ mice supports early dopaminergic dysfunction and shows that Pink1 deletion causes aberrant expression of genes that regulate innate

  6. Increased Mitochondrial Calcium Sensitivity and Abnormal Expression of Innate Immunity Genes Precede Dopaminergic Defects in Pink1-Deficient Mice

    PubMed Central

    Akundi, Ravi S.; Huang, Zhenyu; Eason, Joshua; Pandya, Jignesh D.; Zhi, Lianteng; Cass, Wayne A.; Sullivan, Patrick G.; Büeler, Hansruedi

    2011-01-01

    Background PTEN-induced kinase 1 (PINK1) is linked to recessive Parkinsonism (EOPD). Pink1 deletion results in impaired dopamine (DA) release and decreased mitochondrial respiration in the striatum of mice. To reveal additional mechanisms of Pink1-related dopaminergic dysfunction, we studied Ca2+ vulnerability of purified brain mitochondria, DA levels and metabolism and whether signaling pathways implicated in Parkinson's disease (PD) display altered activity in the nigrostriatal system of Pink1−/− mice. Methods and Findings Purified brain mitochondria of Pink1−/− mice showed impaired Ca2+ storage capacity, resulting in increased Ca2+ induced mitochondrial permeability transition (mPT) that was rescued by cyclosporine A. A subpopulation of neurons in the substantia nigra of Pink1−/− mice accumulated phospho-c-Jun, showing that Jun N-terminal kinase (JNK) activity is increased. Pink1−/− mice 6 months and older displayed reduced DA levels associated with increased DA turnover. Moreover, Pink1−/− mice had increased levels of IL-1β, IL-12 and IL-10 in the striatum after peripheral challenge with lipopolysaccharide (LPS), and Pink1−/− embryonic fibroblasts showed decreased basal and inflammatory cytokine-induced nuclear factor kappa-β (NF-κB) activity. Quantitative transcriptional profiling in the striatum revealed that Pink1−/− mice differentially express genes that (i) are upregulated in animals with experimentally induced dopaminergic lesions, (ii) regulate innate immune responses and/or apoptosis and (iii) promote axonal regeneration and sprouting. Conclusions Increased mitochondrial Ca2+ sensitivity and JNK activity are early defects in Pink1−/− mice that precede reduced DA levels and abnormal DA homeostasis and may contribute to neuronal dysfunction in familial PD. Differential gene expression in the nigrostriatal system of Pink1−/− mice supports early dopaminergic dysfunction and shows that Pink1 deletion causes aberrant

  7. Increased tumor necrosis factor receptor 1 expression in human colorectal adenomas

    PubMed Central

    Hosono, Kunihiro; Yamada, Eiji; Endo, Hiroki; Takahashi, Hirokazu; Inamori, Masahiko; Hippo, Yoshitaka; Nakagama, Hitoshi; Nakajima, Atsushi

    2012-01-01

    AIM: To determine the expression statuses of tumor necrosis factor (TNF)-α, its receptors (TNF-R) and downstream effector molecules in human colorectal adenomas. METHODS: We measured the serum concentrations of TNF-α and its receptors in 62 colorectal adenoma patients and 34 healthy controls. The protein expression of TNF-α, TNF-R1, TNF-R2 and downstream signals of the TNF receptors, such as c-Jun N-terminal kinase (JNK), nuclear factor-κ B and caspase-3, were also investigated in human colorectal adenomas and in normal colorectal mucosal tissues by immunohistochemistry. Immunofluorescence confocal microscopy was used to investigate the consistency of expression of TNF-R1 and phospho-JNK (p-JNK). RESULTS: The serum levels of soluble TNF-R1 (sTNF-R1) in adenoma patients were significantly higher than in the control group (3.67 ± 0.86 ng/mL vs 1.57 ± 0.72 ng/mL, P < 0.001). Receiver operating characteristic analysis revealed the high diagnostic sensitivity of TNF-R1 measurements (AUC was 0.928) for the diagnosis of adenoma, and the best cut-off level of TNF-R1 was 2.08 ng/mL, with a sensitivity of 93.4% and a specificity of 82.4%. There were no significant differences in the serum levels of TNF-α or sTNF-R2 between the two groups. Immunohistochemistry showed high levels of TNF-R1 and p-JNK expression in the epithelial cells of adenomas. Furthermore, a high incidence of co-localization of TNF-R1 and p-JNK was identified in adenoma tissue. CONCLUSION: TNF-R1 may be a promising biomarker of colorectal adenoma, and it may also play an important role in the very early stages of colorectal carcinogenesis. PMID:23082052

  8. The peptidase inhibitor CGS-26303 increases endothelin converting enzyme-1 expression in endothelial cells through accumulation of big endothelin-1

    PubMed Central

    Raoch, V; Martinez-Miguel, P; Arribas-Gomez, I; Rodriguez-Puyol, M; Rodriguez-Puyol, D; Lopez-Ongil, S

    2007-01-01

    Background and purpose: CGS-26303 inhibits endothelin converting enzyme (ECE)-1 more specifically than phosphoramidon. We have studied the effect of CGS-26303 on ECE-1 expression in bovine aortic endothelial cells. Methods: ECE-1 activity and big endothelin (ET)-1 levels were measured by ELISA, ECE-1 expression using western and northern blot and promoter activity using transfection assays. Key results: ECE-1 activity was completely inhibited by CGS-26303 25 μ M and phosphoramidon 100 μ M. CGS-26303 and phosphoramidon, though not thiorphan, a neutral endopeptidase (NEP) inhibitor, stimulated ECE-1 expression in cells (maximal effect at 16 h, 25 μ M). Cycloheximide abolished that effect. CGS-26303 induced ECE-1 mRNA expression and ECE-1 promoter activity. CGS-35066, a selective ECE-1 inhibitor, mimicked the effects of CGS-26303, suggesting that the effect was specific to ECE-1 inhibition. Big ET-1 accumulated in the cells and in the supernatants after CGS-26303 treatment. Neither exogenously added ET-1 nor the blockade of their receptors with bosentan modified ECE-1 protein. When big ET-1 was added to cells, significant increases in ECE-1 protein content and ECE-1 promoter activity were found. Bosentan did not block those effects. CGS-26303 did not modify prepro-ET-1 expression. CGS-26303 and big ET-1 induced the same effects in human endothelial cells, at lower doses. Conclusions: These results suggest that the accumulation of big ET-1 is responsible for the effects of CGS-26303 on ECE-1 and they did not depend on NEP blockade. Changes in ECE-1 protein after the administration of CGS-26303 could lead to a decreased response in long-term treatments. PMID:17643133

  9. Increased Expression of FoxM1 Transcription Factor in Respiratory Epithelium Inhibits Lung Sacculation and Causes Clara Cell Hyperplasia

    PubMed Central

    Wang, I-Ching; Zhang, Yufang; Snyder, Jonathan; Sutherland, Mardi J.; Burhans, Michael S.; Shannon, John M.; Park, Hyun Jung; Whitsett, Jeffrey A.; Kalinichenko, Vladimir V.

    2010-01-01

    Foxm1 is a member of the Forkhead Box (Fox) family of transcription factors. Foxm1 (previously called Foxm1b, HFH-11B, Trident, Win, or MPP2) is expressed in multiple cell types and plays important roles in cellular proliferation, differentiation and tumorigenesis. Genetic deletion of Foxm1 from mouse respiratory epithelium during initial stages of lung development inhibits lung maturation and causes respiratory failure after birth. However, the role of Foxm1 during postnatal lung morphogenesis remains unknown. In the present study, Foxm1 expression was detected in epithelial cells of conducting and peripheral airways and changing dynamically with lung maturation. To discern the biological role of Foxm1 in the prenatal and postnatal lung, a novel transgenic mouse line that expresses a constitutively active form of FoxM1 (FoxM1 N-terminal deletion mutant or FoxM1-ΔN) under the control of lung epithelial-specific SPC promoter was produced. Expression of the FoxM1-ΔN transgene during embryogenesis caused epithelial hyperplasia, inhibited lung sacculation and expression of the type II epithelial marker, pro-SPC. Expression of FoxM1-ΔN mutant during the postnatal period did not influence alveologenesis but caused focal airway hyperplasia and increased proliferation of Clara cells. Likewise, expression of FoxM1-ΔN mutant in conducting airways with Scgb1a1 promoter was sufficient to induce Clara cell hyperplasia. Furthermore, FoxM1-ΔN cooperated with activated K-Ras to induce lung tumor growth in vivo. Increased activity of Foxm1 altered lung sacculation, induced proliferation in the respiratory epithelium and accelerated lung tumor growth, indicating that precise regulation of Foxm1 is critical for normal lung morphogenesis and development of lung cancer. PMID:20816795

  10. Sad Facial Expressions Increase Choice Blindness

    PubMed Central

    Wang, Yajie; Zhao, Song; Zhang, Zhijie; Feng, Wenfeng

    2018-01-01

    Previous studies have discovered a fascinating phenomenon known as choice blindness—individuals fail to detect mismatches between the face they choose and the face replaced by the experimenter. Although previous studies have reported a couple of factors that can modulate the magnitude of choice blindness, the potential effect of facial expression on choice blindness has not yet been explored. Using faces with sad and neutral expressions (Experiment 1) and faces with happy and neutral expressions (Experiment 2) in the classic choice blindness paradigm, the present study investigated the effects of facial expressions on choice blindness. The results showed that the detection rate was significantly lower on sad faces than neutral faces, whereas no significant difference was observed between happy faces and neutral faces. The exploratory analysis of verbal reports found that participants who reported less facial features for sad (as compared to neutral) expressions also tended to show a lower detection rate of sad (as compared to neutral) faces. These findings indicated that sad facial expressions increased choice blindness, which might have resulted from inhibition of further processing of the detailed facial features by the less attractive sad expressions (as compared to neutral expressions). PMID:29358926

  11. Sad Facial Expressions Increase Choice Blindness.

    PubMed

    Wang, Yajie; Zhao, Song; Zhang, Zhijie; Feng, Wenfeng

    2017-01-01

    Previous studies have discovered a fascinating phenomenon known as choice blindness-individuals fail to detect mismatches between the face they choose and the face replaced by the experimenter. Although previous studies have reported a couple of factors that can modulate the magnitude of choice blindness, the potential effect of facial expression on choice blindness has not yet been explored. Using faces with sad and neutral expressions (Experiment 1) and faces with happy and neutral expressions (Experiment 2) in the classic choice blindness paradigm, the present study investigated the effects of facial expressions on choice blindness. The results showed that the detection rate was significantly lower on sad faces than neutral faces, whereas no significant difference was observed between happy faces and neutral faces. The exploratory analysis of verbal reports found that participants who reported less facial features for sad (as compared to neutral) expressions also tended to show a lower detection rate of sad (as compared to neutral) faces. These findings indicated that sad facial expressions increased choice blindness, which might have resulted from inhibition of further processing of the detailed facial features by the less attractive sad expressions (as compared to neutral expressions).

  12. In obese mice, exercise training increases 11β-HSD1 expression, contributing to glucocorticoid activation and suppression of pulmonary inflammation.

    PubMed

    Du, Shu-Fang; Yu, Qing; Chuan, Kai; Ye, Chang-Lin; He, Ze-Jia; Liu, Shu-Juan; Zhu, Xiao-Yan; Liu, Yu-Jian

    2017-10-01

    Exercise training is advocated for treating chronic inflammation and obesity-related metabolic syndromes. Glucocorticoids (GCs), the anti-inflammatory hormones, are synthesized or metabolized in extra-adrenal organs. This study aims to examine whether exercise training affects obesity-associated pulmonary inflammation by regulating local GC synthesis or metabolism. We found that sedentary obese ( ob/ob ) mice exhibited increased levels of interleukin (IL)-1β, IL-18, monocyte chemotactic protein (MCP)-1, and leukocyte infiltration in lung tissues compared with lean mice, which was alleviated by 6 wk of exercise training. Pulmonary corticosterone levels were decreased in ob/ob mice. Exercise training increased pulmonary corticosterone levels in both lean and ob/ob mice. Pulmonary corticosterone levels were negatively correlated with IL-1β, IL-18, and MCP-1. Immunohistochemical staining of the adult mouse lung sections revealed positive immunoreactivities for the steroidogenic acute regulatory protein, the cholesterol side-chain cleavage enzyme (CYP11A1), the steroid 21-hydroxylase (CYP21), 3β-hydroxysteroid dehydrogenase (3β-HSD), and type 1 and type 2 11β-hydroxysteroid dehydrogenase (11β-HSD) but not for 11β-hydroxylase (CYP11B1). Exercise training significantly increased pulmonary 11β-HSD1 expression in both lean and ob/ob mice. In contrast, exercise training per se had no effect on pulmonary 11β-HSD2 expression, although pulmonary 11β-HSD2 levels in ob/ob mice were significantly higher than in lean mice. RU486, a glucocorticoid receptor antagonist, blocked the anti-inflammatory effects of exercise training in lung tissues of obese mice and increased inflammatory cytokines in lean exercised mice. These findings indicate that exercise training increases pulmonary expression of 11β-HSD1, thus contributing to local GC activation and suppression of pulmonary inflammation in obese mice. NEW & NOTEWORTHY Treadmill training leads to a significant increase in

  13. Increased maternal and fetal cholesterol efflux capacity and placental CYP27A1 expression in preeclampsia.

    PubMed

    Mistry, Hiten D; Kurlak, Lesia O; Mansour, Yosef T; Zurkinden, Line; Mohaupt, Markus G; Escher, Geneviève

    2017-06-01

    Preeclampsia is a pregnancy-specific condition that leads to increased cardiovascular risk in later life. A decrease in cholesterol efflux capacity is linked to CVD. We hypothesized that in preeclampsia there would be a disruption of maternal/fetal plasma to efflux cholesterol, as well as differences in the concentrations of both placental sterol 27-hydroxylase (CYP27A1) and apoA1 binding protein (AIBP). Total, HDL-, and ABCA1-mediated cholesterol effluxes were performed with maternal and fetal plasma from women with preeclampsia and normotensive controls (both n = 17). apoA1 and apoE were quantified by chemiluminescence, and 27-hydroxycholesterol (27-OHC) by GC-MS. Immunohistochemistry was used to determine placental expression/localization of CYP27A1, AIBP, apoA1, apoE, and SRB1. Maternal and fetal total and HDL-mediated cholesterol efflux capacities were increased in preeclampsia (by 10-20%), but ABCA1-mediated efflux was decreased (by 20-35%; P < 0.05). Maternal and fetal apoE concentrations were higher in preeclampsia. Fetal plasma 27-OHC levels were decreased in preeclamptic samples ( P < 0.05). Placental protein expression of both CYP27A1 and AIBP were localized around fetal vessels and significantly increased in preeclampsia ( P = 0.04). Placental 27-OHC concentrations were also raised in preeclampsia ( P < 0.05). Increased HDL-mediated cholesterol efflux capacity and placental CYP27A1/27-OHC could be a rescue mechanism in preeclampsia, to remove cholesterol from cells to limit lipid peroxidation and increase placental angiogenesis. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  14. Potential observation of the ϒ (6 S )→ϒ (13DJ)η transitions at Belle II

    NASA Astrophysics Data System (ADS)

    Huang, Qi; Xu, Hao; Liu, Xiang; Matsuki, Takayuki

    2018-05-01

    We perform the investigation of two-body hidden-bottom transitions of the ϒ (6 S ), which include ϒ (6 S )→ϒ (13DJ)η (J =1 ,2 ,3 ) decays. For estimating the branching ratios of these processes, we consider contributions from the triangle hadronic loops composed of S -wave B(s ) and B(s) * mesons, which are a bridge to connect the ϒ (6 S ) and final states. Our results show that both of the branching ratios of these decays can reach 10-3. Because of such considerable potential to observe these two-body hidden-bottom transitions of the ϒ (6 S ), we suggest the forthcoming Belle II experiment to explore them.

  15. Analysis of strong decays of charmed mesons D2*(2460 ) , D0(2560 ), D2(2740 ), D1(3000 ), D2*(3000 ), and their spin partners D1*(2680 ), D3*(2760 ), and D0*(3000 )

    NASA Astrophysics Data System (ADS)

    Gupta, Pallavi; Upadhyay, A.

    2018-01-01

    Using the effective Lagrangian approach, we examine the recently observed charm states DJ*(2460 ), DJ(2560 ), DJ(2740 ), DJ(3000 ), and their spin partners DJ*(2680 ), DJ*(2760 ), and DJ*(3000 ) with JP states 1 P3/22+, 2 S1/20-, 1 D5/22-, 2 P1/21+, and 2 S1/21-, 1 D5/23-, 2 P1/20+ respectively. We study their two body strong decays, coupling constants and branching ratios with the emission of light pseudo-scalar mesons (π ,η ,K ). We also analyze the newly observed charm state D2*(3000 ) and suggest it to be either 1 F (2+) or 2 P (2+) state and justify one of them to be the most favorable assignment for D2*(3000 ). We study the partial and the total decay width of unobserved states D (1 1F3) , Ds(1 1F3) and Ds(1 1F2) as the spin and the strange partners of the D2*(3000 ) charmed meson. The branching ratios and the coupling constants gT H, g˜H H, gY H, g˜S H, and gZ H calculated in this work can be confronted with the future experimental data.

  16. HIV-1 Vpr increases Env expression by preventing Env from endoplasmic reticulum-associated protein degradation (ERAD).

    PubMed

    Zhang, Xianfeng; Zhou, Tao; Frabutt, Dylan A; Zheng, Yong-Hui

    2016-09-01

    Vpr enhances HIV-1 replication in macrophages and dendritic cells, as well as the human CD4(+) CEM.NKR T cell line. Recently, Vpr was reported to increase HIV-1 Env expression in macrophages. Here, we report that Vpr also increases HIV-1 Env expression in dendritic cells and CEM.NKR cells. The Vpr activity depends on its N-terminal region, which was disrupted by a single A30L mutation. Env was rapidly degraded in the absence of Vpr, which was blocked by the ERAD pathway inhibitor kifunesine or the lysosome inhibitor Bafilomycin. As2O3 or PK11195, which reportedly enhances HIV-1 Env folding, also blocked the Env degradation in CEM.NKR cells. Thus, these results not only identify Env as a primary target for Vpr to boost HIV-1 replication, but also suggest that Vpr likely promotes Env folding in the ER, which is otherwise misfolded and targeted by the ERAD pathway to lysosomes for degradation. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. The neurotoxicant PCB-95 by increasing the neuronal transcriptional repressor REST down-regulates caspase-8 and increases Ripk1, Ripk3 and MLKL expression determining necroptotic neuronal death.

    PubMed

    Guida, Natascia; Laudati, Giusy; Serani, Angelo; Mascolo, Luigi; Molinaro, Pasquale; Montuori, Paolo; Di Renzo, Gianfranco; Canzoniero, Lorella M T; Formisano, Luigi

    2017-10-15

    Our previous study showed that the environmental neurotoxicant non-dioxin-like polychlorinated biphenyl (PCB)-95 increases RE1-silencing transcription factor (REST) expression, which is related to necrosis, but not apoptosis, of neurons. Meanwhile, necroptosis is a type of a programmed necrosis that is positively regulated by receptor interacting protein kinase 1 (RIPK1), RIPK3 and mixed lineage kinase domain-like (MLKL) and negatively regulated by caspase-8. Here we evaluated whether necroptosis contributes to PCB-95-induced neuronal death through REST up-regulation. Our results demonstrated that in cortical neurons PCB-95 increased RIPK1, RIPK3, and MLKL expression and decreased caspase-8 at the gene and protein level. Furthermore, the RIPK1 inhibitor necrostatin-1 or siRNA-mediated RIPK1, RIPK3 and MLKL expression knockdown significantly reduced PCB-95-induced neuronal death. Intriguingly, PCB-95-induced increases in RIPK1, RIPK3, MLKL expression and decreases in caspase-8 expression were reversed by knockdown of REST expression with a REST-specific siRNA (siREST). Notably, in silico analysis of the rat genome identified a REST consensus sequence in the caspase-8 gene promoter (Casp8-RE1), but not the RIPK1, RIPK3 and MLKL promoters. Interestingly, in PCB-95-treated neurons, REST binding to the Casp8-RE1 sequence increased in parallel with a reduction in its promoter activity, whereas under the same experimental conditions, transfection of siREST or mutation of the Casp8-RE1 sequence blocked PCB-95-induced caspase-8 reduction. Since RIPK1, RIPK3 and MLKL rat genes showed no putative REST binding site, we assessed whether the transcription factor cAMP Responsive Element Binding Protein (CREB), which has a consensus sequence in all three genes, affected neuronal death. In neurons treated with PCB-95, CREB protein expression decreased in parallel with a reduction in binding to the RIPK1, RIPK3 and MLKL gene promoter sequence. Furthermore, CREB overexpression was

  18. Prolonged food deprivation increases mRNA expression of deiodinase 1 and 2, and thyroid hormone receptor β-1 in a fasting-adapted mammal

    PubMed Central

    Martinez, Bridget; Soñanez-Organis, José G.; Vázquez-Medina, José Pablo; Viscarra, Jose A.; MacKenzie, Duncan S.; Crocker, Daniel E.; Ortiz, Rudy M.

    2013-01-01

    SUMMARY Food deprivation in mammals is typically associated with reduced thyroid hormone (TH) concentrations and deiodinase content and activity to suppress metabolism. However, in prolonged-fasted, metabolically active elephant seal pups, TH levels are maintained, if not elevated. The functional relevance of this apparent paradox is unknown and demonstrates variability in the regulation of TH levels, metabolism and function in food-deprived mammals. To address our hypothesis that cellular TH-mediated activity is upregulated with fasting duration, we quantified the mRNA expression and protein content of adipose and muscle deiodinase type I (DI1) and type II (DI2), and TH receptor beta-1 (THrβ-1) after 1, 3 and 7 weeks of fasting in northern elephant seal pups (N=5–7 per week). Fasting did not decrease the concentrations of plasma thyroid stimulating hormone, total triiodothyronine (tT3), free T3, total thyroxine (tT4) or free T4, suggesting that the hypothalamic–pituitary–thyroid axis is not suppressed, but rather maintained during fasting. Mean mRNA expression of adipose DI1 and DI2 increased threefold and fourfold, respectively, and 20- and 30-fold, respectively, in muscle. With the exception of adipose DI1, protein expression of adipose DI2 and muscle DI1 and DI2 increased twofold to fourfold. Fasting also increased adipose (fivefold) and muscle (fourfold) THrβ-1 mRNA expression, suggesting that the mechanisms mediating cellular TH activity are upregulated with prolonged fasting. The data demonstrate a unique, atypical mechanism of TH activity and regulation in mammals adapted to prolonged food deprivation in which the potential responsiveness of peripheral tissues and cellular TH activity are increased, which may contribute to their lipid-based metabolism. PMID:24307712

  19. The redox protein thioredoxin-1 (Trx-1) increases hypoxia-inducible factor 1alpha protein expression: Trx-1 overexpression results in increased vascular endothelial growth factor production and enhanced tumor angiogenesis.

    PubMed

    Welsh, Sarah J; Bellamy, William T; Briehl, Margaret M; Powis, Garth

    2002-09-01

    Hypoxia-inducible factor 1 (HIF-1), a heterodimer of HIF-1alpha and HIF-1beta subunits, is a transcriptional activator central to the cellular response to low oxygen that includes metabolic adaptation, angiogenesis, metastasis, and inhibited apoptosis. Thioredoxin-1 (Trx-1) is a small redox protein overexpressed in a number of human primary tumors. We have examined the effects of Trx-1 on HIF activity and the activation of downstream genes. Stable transfection of human breast carcinoma MCF-7 cells with human Trx-1 caused a significant increase in HIF-1alpha protein levels under both normoxic (20% oxygen) and hypoxic (1% oxygen) conditions. Trx-1 increased hypoxia-induced HIF-1 transactivation activity measured using a luciferase reporter under the control of the hypoxia response element. Changes in HIF-1alpha mRNA levels did not account for the changes observed at the protein level, and HIF-1beta protein levels did not change. Trx-1 transfection also caused a significant increase in the protein products of hypoxia-responsive genes, including vascular endothelial growth factor (VEGF) and nitric oxide synthase 2 in a number of different cell lines (MCF-7 human breast and HT29 human colon carcinomas and WEHI7.2 mouse lymphoma cells) under both normoxic and hypoxic conditions. The pattern of expression of the different isoforms of VEGF was not changed by Trx-1. Transfection of a redox-inactive Trx-1 (C32S/C35S) markedly decreased levels of HIF-1alpha protein, HIF-1 transactivating activity, and VEGF protein in MCF-7 cells compared with empty vector controls. In vivo studies using WEHI7.2 cells transfected with Trx-1 showed significantly increased tumor VEGF and angiogenesis. The results suggest that Trx-1 increases HIF-1alpha protein levels in cancer cells and increases VEGF production and tumor angiogenesis.

  20. DAP1 high expression increases risk of lymph node metastases in squamous cell carcinoma of the oral cavity.

    PubMed

    Santos, M; Maia, L L; Silva, C V M; Peterle, G T; Mercante, A M C; Nunes, F D; Carvalho, M B; Tajara, E H; Louro, I D; Silva-Conforti, A M A

    2015-09-08

    Death-associated protein 1 (DAP1) is a member of the DAP family. Its expression is associated with cell growth and normal death of the neoplastic cells, regulated by the mammalian target of the rapamycin protein. Activated DAP1 negatively regulates autophagy, which has been associated with the development and progression of several diseases, such as cancer, and with prognosis and survival of diverse tumor types. Therefore, in this study we analyzed DAP1 expression in 54 oral squamous cell carcinoma tumor samples and in 20 non-tumoral margins by immunohistochemistry. The results showed that DAP1 is more frequently expressed in tumor tissues compared with marginal non-tumoral cells. Additionally, high DAP1 expression is associated with a 4-fold increase in the risk of lymph node metastases. Our results suggest that the DAP1 protein can be used as a potential marker of lymph node metastases predisposition, helping define the best therapy for each patient to minimize risk of developing metastases.

  1. Epoxyeicosatrienoic Acids Regulate Adipocyte Differentiation of Mouse 3T3 Cells, Via PGC-1α Activation, Which Is Required for HO-1 Expression and Increased Mitochondrial Function

    PubMed Central

    Waldman, Maayan; Bellner, Lars; Vanella, Luca; Schragenheim, Joseph; Sodhi, Komal; Singh, Shailendra P.; Lin, Daohong; Lakhkar, Anand; Li, Jiangwei; Hochhauser, Edith; Arad, Michael; Darzynkiewicz, Zbigniew; Kappas, Atallah

    2016-01-01

    Epoxyeicosatrienoic acid (EET) contributes to browning of white adipose stem cells to ameliorate obesity/diabetes and insulin resistance. In the current study, we show that EET altered preadipocyte function, enhanced peroxisome proliferation-activated receptor γ coactivator α (PGC-1α) expression, and increased mitochondrial function in the 3T3-L1 preadipocyte subjected to adipogenesis. Cells treated with EET resulted in an increase, P < 0.05, in PGC-1α and a decrease in mitochondria-derived ROS (MitoSox), P < 0.05. The EET increase in heme oxygenase-1 (HO-1) levels is dependent on activation of PGC-1α as cells deficient in PGC-1α (PGC-1α knockout adipocyte cell) have an impaired ability to express HO-1, P < 0.02. Additionally, adipocytes treated with EET exhibited an increase in mitochondrial superoxide dismutase (SOD) in a PGC-1α-dependent manner, P < 0.05. The increase in PGC-1α was associated with an increase in β-catenin, P < 0.05, adiponectin expression, P < 0.05, and lipid accumulation, P < 0.02. EET decreased heme levels and mitochondria-derived ROS (MitoSox), P < 0.05, compared to adipocytes that were untreated. EET also decreased mesoderm-specific transcript (MEST) mRNA and protein levels (P < 0.05). Adipocyte secretion of EET act in an autocrine/paracrine manner to increase PGC-1α is required for activation of HO-1 expression. This is the first study to dissect the mechanism by which the antiadipogenic and anti-inflammatory lipid, EET, induces the PGC-1α signaling cascade and reprograms the adipocyte phenotype by regulating mitochondrial function and HO-1 expression, leading to an increase in healthy, that is, small, adipocytes and a decrease in adipocyte enlargement and terminal differentiation. This is manifested by an increase in mitochondrial function and an increase in the canonical Wnt signaling cascade during adipocyte proliferation and terminal differentiation. PMID:27224420

  2. The barley MATE gene, HvAACT1, increases citrate efflux and Al3+ tolerance when expressed in wheat and barley

    PubMed Central

    Zhou, Gaofeng; Delhaize, Emmanuel; Zhou, Meixue; Ryan, Peter R.

    2013-01-01

    Background and Aims Aluminium is toxic in acid soils because the soluble Al3+ inhibits root growth. A mechanism of Al3+ tolerance discovered in many plant species involves the release of organic anions from root apices. The Al3+-activated release of citrate from the root apices of Al3+-tolerant genotypes of barley is controlled by a MATE gene named HvAACT1 that encodes a citrate transport protein located on the plasma membrane. The aim of this study was to investigate whether expressing HvAACT1 with a constitutive promoter in barley and wheat can increase citrate efflux and Al3+ tolerance of these important cereal species. Methods HvAACT1 was over-expressed in wheat (Triticum aestivum) and barley (Hordeum vulgare) using the maize ubiquitin promoter. Root apices of transgenic and control lines were analysed for HvAACT1 expression and organic acid efflux. The Al3+ tolerance of transgenic and control lines was assessed in both hydroponic solution and acid soil. Key Results and Conclusions Increased HvAACT1 expression in both cereal species was associated with increased citrate efflux from root apices and enhanced Al3+ tolerance, thus demonstrating that biotechnology can complement traditional breeding practices to increase the Al3+ tolerance of important crop plants. PMID:23798600

  3. The barley MATE gene, HvAACT1, increases citrate efflux and Al(3+) tolerance when expressed in wheat and barley.

    PubMed

    Zhou, Gaofeng; Delhaize, Emmanuel; Zhou, Meixue; Ryan, Peter R

    2013-08-01

    Aluminium is toxic in acid soils because the soluble Al(3+) inhibits root growth. A mechanism of Al(3+) tolerance discovered in many plant species involves the release of organic anions from root apices. The Al(3+)-activated release of citrate from the root apices of Al(3+)-tolerant genotypes of barley is controlled by a MATE gene named HvAACT1 that encodes a citrate transport protein located on the plasma membrane. The aim of this study was to investigate whether expressing HvAACT1 with a constitutive promoter in barley and wheat can increase citrate efflux and Al(3+) tolerance of these important cereal species. HvAACT1 was over-expressed in wheat (Triticum aestivum) and barley (Hordeum vulgare) using the maize ubiquitin promoter. Root apices of transgenic and control lines were analysed for HvAACT1 expression and organic acid efflux. The Al(3+) tolerance of transgenic and control lines was assessed in both hydroponic solution and acid soil. Increased HvAACT1 expression in both cereal species was associated with increased citrate efflux from root apices and enhanced Al(3+) tolerance, thus demonstrating that biotechnology can complement traditional breeding practices to increase the Al(3+) tolerance of important crop plants.

  4. Insulin treatment augments KCNQ1/KCNE1 currents but not KCNQ1 currents, which is associated with an increase in KCNE1 expression.

    PubMed

    Wu, Minghua; Obara, Yutaro; Ohshima, Shingo; Nagasawa, Yoshinobu; Ishii, Kuniaki

    2017-11-04

    Diabetes mellitus affects ion channel physiology. We have previously reported that acute application of insulin suppresses the KCNQ1/KCNE1 currents that play an important role in terminating ventricular action potential. In this study, we investigated the effect of long-term insulin treatment on KCNQ1/KCNE1 currents using the Xenopus oocyte expression system. Insulin treatment with a duration longer than 6 h had an opposite effect to acute insulin application, that is, it augmented the KCNQ1/KCNE1 currents. Inhibitors of PI3K, wortmannin and LY294002, and a MEK inhibitor, U0126, abolished the potentiating effect of long-term insulin treatment. The long-term treatment with insulin had no effect on KCNQ1 currents indicating an essential role of KCNE1 in the insulin effect, which is similar to the acute insulin effect. Cycloheximide, an inhibitor of protein synthesis, and brefeldin A, an inhibitor of protein transport from endoplasmic reticulum, suppressed the long-term insulin effect. Western blotting analysis combined with these pharmacological data suggest that long-term insulin treatment augments KCNQ1/KCNE1 currents by increasing KCNE1 protein expression. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Cytokine gene expression in intestine of rat during the postnatal developmental period: increased IL-1 expression at weaning.

    PubMed

    Mengheri, E; Ciapponi, L; Vignolini, F; Nobili, F

    1996-01-01

    In the present study we have investigate whether cytokines are constitutively and differently expressed in intestine during the differentiative processes that take place at weaning. We have analyzed the expression of IL-1 beta, IL-2, IL-4 and IFN gamma by polymerase chain reaction in Peyer's patches (PP) and in intestine deprived of PP (I-PP) of rats from 16 to 30 days of age. The results showed a constitutive and marked expression of the cytokines already before weaning, with the exception of IL-2 in PP and IFN gamma in I-PP. IL-beta was the only cytokine to show a different expression at various ages with an initial increase at 19 days and a further elevation at 21 days when intestinal epithelium passes through major differentiative stages, suggesting an involvement of this cytokine in intestinal development. We have also tested whether treatment of rats with the immunosuppressor cyclosporin A (CsA) could affect intestinal differentiation. The results showed that only some markers of differentiation were affected (proliferation of staminal crypt cells and length of crypts). This was probably due to a direct effect rather than an immunomediated effect of CsA, since treatment of three intestinal cell lines (Caco-2, HT-29, FRIC) with CsA indicated that this drug can exert a cytostatic activity on intestinal cells.

  6. Activation of aminoimidazole carcinogens by nitrosation: mutagenicity and nucleotide adducts

    PubMed Central

    Zenser, Terry V.; Lakshmi, Vijaya M.; Schut, Herman A. J.; Zhou, Hui-jia; Josephy, P. David

    2009-01-01

    2-Amino-3-methylimidazo[4,5-f]quinoline (IQ) and 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) are heterocyclic amines (HCA) derived from high temperature cooking of meat and thought to cause colon cancer in humans. Reactive nitrogen oxygen species, which are mediators of the inflammatory response, can convert these amines to the corresponding N-nitrosamines, N-NO-IQ and N-NO-MeIQx. This study was designed to evaluate whether these N-nitrosamines are genotoxic and could be responsible, in part, for the high incidence of colon cancer in individuals with colitis. Such an association would counsel reduced intake of well-done red meat by colitis patients. Mutagenicity was evaluated by reversion of a lacZ frameshift allele in three different E. coli strains. Strains DJ701 and DJ702 express recombinant (S. typhimurium) aromatic amine N-acetyltransferase; DJ702 also expresses recombinant human cytochrome P450 1A2 and NADPH-P450 reductase; and DJ2002 served as an N-acetyltransferase-negative control. In strain DJ701, N-NO-IQ and N-NO-MeIQx elicited dose-dependent mutagenicity, which was not further increased in DJ702. Neither nitrosamine was mutagenic in strain DJ2002. While both N-nitrosamines are stable for >4 hours (pH 7.4, 37°C), they react with DNA or 2′-deoxyguanosine 3′-monophosphate at lower pH (5.5) to form adducts. HOCl, a component of the inflammatory response, increased adduct formation, as measured by 32P-postlabeling. Following treatment with nuclease P1 and separation by two-dimensional thin-layer chromatography and then HPLC, N-NO-IQ and N-NO-MeIQx were shown to form the same adducts as those formed by N-OH-MeIQx or N-OH-IQ, namely N-(deoxyguanosin-8-yl) adducts. In summary, these N-nitrosamines are genotoxic and might be alternatives to their hydroxylamine analogues as activated intermediates leading to initiation of colon cancer in individuals with colitis. PMID:19449459

  7. The expression of REG 1A and REG 1B is increased during acute amebic colitis.

    PubMed

    Peterson, Kristine M; Guo, Xiaoti; Elkahloun, Abdel G; Mondal, Dinesh; Bardhan, Pradip K; Sugawara, Akira; Duggal, Priya; Haque, Rashidul; Petri, William A

    2011-09-01

    Entamoeba histolytica, a protozoan parasite, is an important cause of diarrhea and colitis in the developing world. Amebic colitis is characterized by ulceration of the intestinal mucosa. We performed microarray analysis of intestinal biopsies during acute and convalescent amebiasis in order to identify genes potentially involved in tissue injury or repair. Colonic biopsy samples were obtained from 8 patients during acute E. histolytica colitis and again 60 days after recovery. Gene expression in the biopsies was evaluated using microarray, and confirmed by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR). REG 1A and REG 1B were the most up-regulated of all genes in the human intestine in acute versus convalescent E. histolytica disease: as determined by microarray, the levels of induction were 7.4-fold and 10.7 fold for REG 1A and B; p=0.003 and p=0.006 respectively. Increased expression of REG 1A and REG 1B protein in the colonic crypt epithelial cells during acute amebiasis was similarly observed by immunohistochemistry. Because REG 1 protein is anti-apoptotic and pro-proliferative, and since E. histolytica induces apoptosis of the intestinal epithelium as part of its disease process, we next tested if REG 1 might be protective during amebiasis by preventing parasite-induced apoptosis. Intestinal epithelial cells from REG 1-/- mice were found to be more susceptible to spontaneous, and parasite-induced, apoptosis in vitro (p=0.03). We concluded that REG 1A and REG 1B were upregulated during amebiasis and may function to protect the intestinal epithelium from parasite-induced apoptosis. Published by Elsevier Ireland Ltd.

  8. Hypoxia Increases Sirtuin 1 Expression in a Hypoxia-inducible Factor-dependent Manner*

    PubMed Central

    Chen, Rui; Dioum, Elhadji M.; Hogg, Richard T.; Gerard, Robert D.; Garcia, Joseph A.

    2011-01-01

    Hypoxia-inducible factors (HIFs) are stress-responsive transcriptional regulators of cellular and physiological processes involved in oxygen metabolism. Although much is understood about the molecular machinery that confers HIF responsiveness to oxygen, far less is known about HIF isoform-specific mechanisms of regulation, despite the fact that HIF-1 and HIF-2 exhibit distinct biological roles. We recently determined that the stress-responsive genetic regulator sirtuin 1 (Sirt1) selectively augments HIF-2 signaling during hypoxia. However, the mechanism by which Sirt1 maintains activity during hypoxia is unknown. In this report, we demonstrate that Sirt1 gene expression increases in a HIF-dependent manner during hypoxia in Hep3B and in HT1080 cells. Impairment of HIF signaling affects Sirt1 deacetylase activity as decreased HIF-1 signaling results in the appearance of acetylated HIF-2α, which is detected without pharmacological inhibition of Sirt1. We also find that Sirt1 augments HIF-2 mediated, but not HIF-1 mediated, transcriptional activation of the isolated Sirt1 promoter. These data in summary reveal a bidirectional link of HIF and Sirt1 signaling during hypoxia. PMID:21345792

  9. Fasting increases the phosphorylation of AMPK and expression of sirtuin1 in muscle of adult male northern elephant seals (Mirounga angustirostris).

    PubMed

    Lee, Debby; Martinez, Bridget; Crocker, Daniel E; Ortiz, Rudy M

    2017-02-01

    Fasting typically suppresses thyroid hormone (TH)-mediated cellular events and increases sirtuin 1 (SIRT1) activity. THs may regulate metabolism through nongenomic pathways and directly through activation of adenosine monophosphate-activated protein kinase (AMPK). Adult male elephant seals ( Mirounga angustirostris ) are active, hypermetabolic, and normothermic during their annual breeding fast, which is characterized by stable TH levels. However, the contribution of TH to maintenance of their fasting metabolism is unknown. To investigate the fasting effects on cellular TH-mediated events and its potential association with SIRT1 and AMPK, we quantified plasma TH levels, mRNA expressions of muscle SIRT1 and TH-associated genes as well as the phosphorylation of AMPK in adult, male northern elephant seals ( n  = 10/fasting period) over 8 weeks of fasting (early vs. late). Deiodinase type I (DI1) expression increased twofold with fasting duration suggesting that the potential for TH-mediated cellular signaling is increased. AMPK phosphorylation increased 61 ± 21% with fasting suggesting that cellular metabolism is increased. The mRNA expression of the TH transporter, monocarboxylate transporter 10 (MCT10), increased 2.4-fold and the TH receptor (THr β -1) decreased 30-fold suggesting that cellular uptake of T 4 is increased, but its subsequent cellular effects such as activation of AMPK are likely nongenomic. The up-regulation of SIRT1 mRNA expression (2.6-fold) likely contributes to the nongenomic activation of AMPK by TH, which may be necessary to maintain the expression of PGC-1 α These coordinated changes likely contribute to the up-regulation of mitochondrial metabolism to support the energetic demands associated with prolonged fasting in adult seals. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  10. GPR48 Increases Mineralocorticoid Receptor Gene Expression

    PubMed Central

    Wang, Jiqiu; Li, Xiaoying; Ke, Yingying; Lu, Yan; Wang, Feng; Fan, Nengguang; Sun, Haiyan; Zhang, Huijie; Liu, Ruixin; Yang, Jun; Ye, Lei; Liu, Mingyao

    2012-01-01

    Aldosterone and the mineralocorticoid receptor (MR) are critical to the maintenance of electrolyte and BP homeostasis. Mutations in the MR cause aldosterone resistance known as pseudohypoaldosteronism type 1 (PHA1); however, some cases consistent with PHA1 do not exhibit known gene mutations, suggesting the possibility of alternative genetic variants. We observed that G protein–coupled receptor 48 (Gpr48/Lgr4) hypomorphic mutant (Gpr48m/m) mice had hyperkalemia and increased water loss and salt excretion despite elevated plasma aldosterone levels, suggesting aldosterone resistance. When we challenged the mice with a low-sodium diet, these features became more obvious; the mice also developed hyponatremia and increased renin expression and activity, resembling a mild state of PHA1. There was marked renal downregulation of MR and its downstream targets (e.g., the α-subunit of the amiloride-sensitive epithelial sodium channel), which could provide a mechanism for the aldosterone resistance. We identified a noncanonical cAMP-responsive element located in the MR promoter and demonstrated that GPR48 upregulates MR expression via the cAMP/protein kinase A pathway in vitro. Taken together, our data demonstrate that GPR48 enhances aldosterone responsiveness by activating MR expression, suggesting that GPR48 contributes to homeostasis of electrolytes and BP and may be a candidate gene for PHA1. PMID:22135314

  11. NOD promoter-controlled AtIRT1 expression functions synergistically with NAS and FERRITIN genes to increase iron in rice grains.

    PubMed

    Boonyaves, Kulaporn; Gruissem, Wilhelm; Bhullar, Navreet K

    2016-02-01

    Rice is a staple food for over half of the world's population, but it contains only low amounts of bioavailable micronutrients for human nutrition. Consequently, micronutrient deficiency is a widespread health problem among people who depend primarily on rice as their staple food. Iron deficiency anemia is one of the most serious forms of malnutrition. Biofortification of rice grains for increased iron content is an effective strategy to reduce iron deficiency. Unlike other grass species, rice takes up iron as Fe(II) via the IRON REGULATED TRANSPORTER (IRT) in addition to Fe(III)-phytosiderophore chelates. We expressed Arabidopsis IRT1 (AtIRT1) under control of the Medicago sativa EARLY NODULIN 12B promoter in our previously developed high-iron NFP rice lines expressing NICOTIANAMINE SYNTHASE (AtNAS1) and FERRITIN. Transgenic rice lines expressing AtIRT1 alone had significant increases in iron and combined with NAS and FERRITIN increased iron to 9.6 µg/g DW in the polished grains that is 2.2-fold higher as compared to NFP lines. The grains of AtIRT1 lines also accumulated more copper and zinc but not manganese. Our results demonstrate that the concerted expression of AtIRT1, AtNAS1 and PvFERRITIN synergistically increases iron in both polished and unpolished rice grains. AtIRT1 is therefore a valuable transporter for iron biofortification programs when used in combination with other genes encoding iron transporters and/or storage proteins.

  12. Mitochondrial gene expression and increased oxidative metabolism: role in increased lifespan of fat-specific insulin receptor knock-out mice

    PubMed Central

    Katic, Masa; Kennedy, Adam R.; Leykin, Igor; Norris, Andrew; McGettrick, Aileen; Gesta, Stephane; Russell, Steven J.; Bluher, Matthias; Maratos-Flier, Eleftheria; Kahn, C. Ronald

    2009-01-01

    Summary Caloric restriction, leanness and decreased activity of insulin/insulin-like growth factor 1 (IGF-1) receptor signaling are associated with increased longevity in a wide range of organisms from Caenorhabditis elegans to humans. Fat-specific insulin receptor knock-out (FIRKO) mice represent an interesting dichotomy, with leanness and increased lifespan, despite normal or increased food intake. To determine the mechanisms by which a lack of insulin signaling in adipose tissue might exert this effect, we performed physiological and gene expression studies in FIRKO and control mice as they aged. At the whole body level, FIRKO mice demonstrated an increase in basal metabolic rate and respiratory exchange ratio. Analysis of gene expression in white adipose tissue (WAT) of FIRKO mice from 6 to 36 months of age revealed persistently high expression of the nuclear-encoded mitochondrial genes involved in glycolysis, tricarboxylic acid cycle, β-oxidation and oxidative phosphorylation as compared to expression of the same genes in WAT from controls that showed a tendency to decline in expression with age. These changes in gene expression were correlated with increased cytochrome c and cytochrome c oxidase subunit IV at the protein level, increased citrate synthase activity, increased expression of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) and PGC-1β, and an increase in mitochondrial DNA in WAT of FIRKO mice. Together, these data suggest that maintenance of mitochondrial activity and metabolic rates in adipose tissue may be important contributors to the increased lifespan of the FIRKO mouse. PMID:18001293

  13. Chronic hypertension increases aortic endothelial hydraulic conductivity by upregulating endothelial aquaporin-1 expression.

    PubMed

    Toussaint, Jimmy; Raval, Chirag Bharavi; Nguyen, Tieuvi; Fadaifard, Hadi; Joshi, Shripad; Wolberg, George; Quarfordt, Steven; Jan, Kung-Ming; Rumschitzki, David S

    2017-11-01

    Numerous studies have examined the role of aquaporins in osmotic water transport in various systems, but virtually none have focused on the role of aquaporin in hydrostatically driven water transport involving mammalian cells save for our laboratory's recent study of aortic endothelial cells. Here, we investigated aquaporin-1 expression and function in the aortic endothelium in two high-renin rat models of hypertension, the spontaneously hypertensive genetically altered Wistar-Kyoto rat variant and Sprague-Dawley rats made hypertensive by two-kidney, one-clip Goldblatt surgery. We measured aquaporin-1 expression in aortic endothelial cells from whole rat aortas by quantitative immunohistochemistry and function by measuring the pressure-driven hydraulic conductivities of excised rat aortas with both intact and denuded endothelia on the same vessel. We used them to calculate the effective intimal hydraulic conductivity, which is a combination of endothelial and subendothelial components. We observed well-correlated enhancements in aquaporin-1 expression and function in both hypertensive rat models as well as in aortas from normotensive rats whose expression was upregulated by 2 h of forskolin treatment. Upregulated aquaporin-1 expression and function may be a response to hypertension that critically determines conduit artery vessel wall viability and long-term susceptibility to atherosclerosis. NEW & NOTEWORTHY The aortic endothelia of two high-renin hypertensive rat models express greater than two times the aquaporin-1 and, at low pressures, have greater than two times the endothelial hydraulic conductivity of normotensive rats. Data are consistent with theory predicting that higher endothelial aquaporin-1 expression raises the critical pressure for subendothelial intima compression and for artery wall hydraulic conductivity to drop. Copyright © 2017 the American Physiological Society.

  14. [Increased expressions of substance P and neurokinin/tachykinin receptor 1 in eosinophils of patients with psoriasis].

    PubMed

    Zuo, Zhe; Wang, Junling; Zhang, Huiyun; Zheng, Wenjiao; Zhang, Zenan; He, Shaoheng

    2017-07-01

    Objective To investigate the expressions of substance P (SP) and its receptor neurokinin/tachykinin receptor 1 (NK1R) in peripheral blood eosinophils of patients with psoriasis. Methods The levels of SP and NK1R in the peripheral blood of both patients with psoriasis and healthy people were detected by flow cytometry. This method was again used to detect the levels of SP and NK1R in the peripheral blood eosinophils of patients with psoriasis after stimulated with the crude extracts of Artemisia pollen, dust mite and Platanus pollen (all at concentrations of 0.1 and 1.0 μg/mL). Results Compared with the healthy controls, the percentages of SP + and NK1R + eosinophils in psoriasis patients increased up to 2.7 and 0.5 folds, respectively. Moreover, the mean fluorescence intensity (MFI) of SP + and NK1R + eosinophils of psoriasis patients were elevated by 1.5 and 0.2 folds, respectively. The percentage of SP + eosinophils in psoriasis were down-regulated by 60% after the stimulation with Platanus pollen extract (1 μg/mL), while 0.1 μg/mL Platanus pollen extract induced a 0.6-fold increase in the percentage of NK1R + eosinophis. Conclusion The expressions of SP and NK1R are up-regulated in peripheral blood eosinophils of patients with psoriasis.

  15. Recurrent hypoinsulinemic hyperglycemia in neonatal rats increases PARP-1 and NF-κB expression and leads to microglial activation in the cerebral cortex.

    PubMed

    Gisslen, Tate; Ennis, Kathleen; Bhandari, Vineet; Rao, Raghavendra

    2015-11-01

    Hyperglycemia is a common metabolic problem in extremely low-birth-weight preterm infants. Neonatal hyperglycemia is associated with increased mortality and brain injury. Glucose-mediated oxidative injury may be responsible. Poly(ADP-ribose) polymerase-1 (PARP-1) is a nuclear enzyme involved in DNA repair and cell survival. However, PARP-1 overactivation leads to cell death. NF-κB is coactivated with PARP-1 and regulates microglial activation. The effects of recurrent hyperglycemia on PARP-1/NF-κB expression and microglial activation are not well understood. Rat pups were subjected to recurrent hypoinsulinemic hyperglycemia of 2 h duration twice daily from postnatal (P) day 3-P12 and killed on P13. mRNA and protein expression of PARP-1/NF-κB and their downstream effectors were determined in the cerebral cortex. Microgliosis was determined using CD11 immunohistochemistry. Recurrent hyperglycemia increased PARP-1 expression confined to the nucleus and without causing PARP-1 overactivation and cell death. NF-κB mRNA expression was increased, while IκB mRNA expression was decreased. inducible nitric oxide synthase (iNOS), endothelial nitric oxide synthase (eNOS), and neuronal nitric oxide synthase (nNOS) mRNA expressions were decreased. Hyperglycemia significantly increased the number of microglia. Recurrent hyperglycemia in neonatal rats is associated with upregulation of PARP-1 and NF-κB expression and subsequent microgliosis but not neuronal cell death in the cerebral cortex.

  16. Role of NADPH oxidases in inducing a selective increase of oxidant stress and cyclin D1 and checkpoint 1 over-expression during progression to human gastric adenocarcinoma.

    PubMed

    Montalvo-Javé, Eduardo E; Olguín-Martínez, Marisela; Hernández-Espinosa, Diego R; Sánchez-Sevilla, Lourdes; Mendieta-Condado, Edgar; Contreras-Zentella, Martha L; Oñate-Ocaña, Luis F; Escalante-Tatersfield, Tomás; Echegaray-Donde, Agustín; Ruiz-Molina, Juan M; Herrera, Miguel F; Morán, Julio; Hernández-Muñoz, Rolando

    2016-04-01

    Gastric cancer is one of the main causes of global mortality. Here, reactive oxygen species (ROS) could largely contribute to gastric carcinogenesis. Hence, the present work was aimed to assess the role of ROS, oxidant status, NADPH oxidases (NOXs) expression, during human gastric adenocarcinoma. We obtained subcellular fraction from samples of gastric mucosa taken from control subjects (n = 20), and from 40 patients with gastric adenocarcinoma, as well as samples of distant areas (tumour-free gastric mucosa). Parameters indicative of lipid peroxidation and cell proliferation were selectively increased in both tumour-free and in cancerous gastric mucosa, despite of glutathione (GSH) content, glutathione reductase (GR) and superoxide dismutase (SOD) activities were increased in the adenocarcinoma. These high levels of antioxidant defences inversely correlated with down-regulated expression for NOX2 and 4; however, over-expression of NOX1 occurred with increased caspase-3 activity and overexpressed checkpoint 1 (MDC1) and cyclin D1 proteins. In the tumour-free mucosa an oxidant stress took place, without changing total GSH but with decreased activities for GR and mitochondrial SOD; moreover, over-expression of checkpoint 1 (MDC1) correlated with lower NOX2 and 4 expression in this mucosa. Chronically injured gastric mucosa increases lipoperoxidative events and cell proliferation. In the adenocarcinoma, cell proliferation was further enhanced, oxidant stress decreased which seemed to be linked to NOX1, MDC1 and cyclin D1 over-expression, but with a lower NOXs activity leading a 'low tone' of ROS formation. Therefore, our results could be useful for early detection and treatment of gastric adenocarcinoma. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. A 4-Nitroquinoleneoxide-Induced Pleurotus eryngii Mutant Variety Increases Pin1 Expression in Rat Brain.

    PubMed

    Jeong, Yoonhwa; Jung, Mina; Kim, Myeung Ju; Hwang, Cheol Ho

    2017-01-01

    To develop Pleurotus eryngii varieties with improved medicinal qualities, protoplasts of P. eryngii were mutagenized using 4-nitroquinoleneoxide. The effects of the resulting variant mushrooms on a human cell were evaluated by applying their aqueous extracts to the human hepatoma cell line, HepG2, in vitro and examining any alteration in the proteomes of the treated HepG2. The P. eryngii mutant, NQ2A-12, was selected for its effects on increasing the expression level of Pin1 in HepG2. Pin1 is one of the peptidyl-prolyl cis-trans isomerases known to play an important role in repressing Alzheimer's disease pathogenesis. Validity of NQ2A-12 related to Alzheimer's disease was shown with an enhanced expression of Pin1 in a mouse brain tissue by injecting the NQ2A-12 extract. The mutant mushroom, NQ2A-12, could be developed as a new variety of P. eryngii with potential to protect against Alzheimer's disease.

  18. Intensive training and reduced volume increases muscle FXYD1 expression and phosphorylation at rest and during exercise in athletes

    PubMed Central

    Thomassen, Martin; Gunnarsson, Thomas P.; Christensen, Peter M.; Pavlovic, Davor; Shattock, Michael J.

    2016-01-01

    The present study examined the effect of intensive training in combination with marked reduction in training volume on phospholemman (FXYD1) expression and phosphorylation at rest and during exercise. Eight well-trained cyclists replaced their regular training with speed-endurance training (10–12 × ∼30-s sprints) two or three times per week and aerobic high-intensity training (4–5 × 3–4 min at 90–95% of peak aerobic power output) 1–2 times per week for 7 wk and reduced the training volume by 70%. Muscle biopsies were obtained before and during a repeated high-intensity exercise protocol, and protein expression and phosphorylation were determined by Western blot analysis. Expression of FXYD1 (30%), actin (40%), mammalian target of rapamycin (mTOR) (12%), phospholamban (PLN) (16%), and Ca2+/calmodulin-dependent protein kinase II (CaMKII) γ/δ (25%) was higher (P < 0.05) than before the training intervention. In addition, after the intervention, nonspecific FXYD1 phosphorylation was higher (P < 0.05) at rest and during exercise, mainly achieved by an increased FXYD1 Ser-68 phosphorylation, compared with before the intervention. CaMKII, Thr-287, and eukaryotic elongation factor 2 Thr-56 phosphorylation at rest and during exercise, overall PKCα/β, Thr-638/641, and mTOR Ser-2448 phosphorylation during repeated intense exercise as well as resting PLN Thr-17 phosphorylation were also higher (P < 0.05) compared with before the intervention period. Thus, a period of high-intensity training with reduced training volume increases expression and phosphorylation levels of FXYD1, which may affect Na+/K+ pump activity and muscle K+ homeostasis during intense exercise. Furthermore, higher expression of CaMKII and PLN, as well as increased phosphorylation of CaMKII Thr-287 may have improved intracellular Ca2+ handling. PMID:26791827

  19. Intensive training and reduced volume increases muscle FXYD1 expression and phosphorylation at rest and during exercise in athletes.

    PubMed

    Thomassen, Martin; Gunnarsson, Thomas P; Christensen, Peter M; Pavlovic, Davor; Shattock, Michael J; Bangsbo, Jens

    2016-04-01

    The present study examined the effect of intensive training in combination with marked reduction in training volume on phospholemman (FXYD1) expression and phosphorylation at rest and during exercise. Eight well-trained cyclists replaced their regular training with speed-endurance training (10-12 × ∼30-s sprints) two or three times per week and aerobic high-intensity training (4-5 × 3-4 min at 90-95% of peak aerobic power output) 1-2 times per week for 7 wk and reduced the training volume by 70%. Muscle biopsies were obtained before and during a repeated high-intensity exercise protocol, and protein expression and phosphorylation were determined by Western blot analysis. Expression of FXYD1 (30%), actin (40%), mammalian target of rapamycin (mTOR) (12%), phospholamban (PLN) (16%), and Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) γ/δ (25%) was higher (P < 0.05) than before the training intervention. In addition, after the intervention, nonspecific FXYD1 phosphorylation was higher (P < 0.05) at rest and during exercise, mainly achieved by an increased FXYD1 Ser-68 phosphorylation, compared with before the intervention. CaMKII, Thr-287, and eukaryotic elongation factor 2 Thr-56 phosphorylation at rest and during exercise, overall PKCα/β, Thr-638/641, and mTOR Ser-2448 phosphorylation during repeated intense exercise as well as resting PLN Thr-17 phosphorylation were also higher (P < 0.05) compared with before the intervention period. Thus, a period of high-intensity training with reduced training volume increases expression and phosphorylation levels of FXYD1, which may affect Na(+)/K(+) pump activity and muscle K(+) homeostasis during intense exercise. Furthermore, higher expression of CaMKII and PLN, as well as increased phosphorylation of CaMKII Thr-287 may have improved intracellular Ca(2+) handling. Copyright © 2016 the American Physiological Society.

  20. Food restriction increase the expression of mTORC1 complex genes in the skeletal muscle of juvenile pacu (Piaractus mesopotamicus)

    PubMed Central

    de Paula, Tassiana Gutierrez; Zanella, Bruna Tereza Thomazini; Fantinatti, Bruno Evaristo de Almeida; de Moraes, Leonardo Nazário; Duran, Bruno Oliveira da Silva; de Oliveira, Caroline Bredariol; Salomão, Rondinelle Artur Simões; da Silva, Rafaela Nunes; Padovani, Carlos Roberto; dos Santos, Vander Bruno; Mareco, Edson Assunção; Carvalho, Robson Francisco; Dal-Pai-Silva, Maeli

    2017-01-01

    Skeletal muscle is capable of phenotypic adaptation to environmental factors, such as nutrient availability, by altering the balance between muscle catabolism and anabolism that in turn coordinates muscle growth. Small noncoding RNAs, known as microRNAs (miRNAs), repress the expression of target mRNAs, and many studies have demonstrated that miRNAs regulate the mRNAs of catabolic and anabolic genes. We evaluated muscle morphology, gene expression of components involved in catabolism, anabolism and energetic metabolism and miRNAs expression in both the fast and slow muscle of juvenile pacu (Piaractus mesopotamicus) during food restriction and refeeding. Our analysis revealed that short periods of food restriction followed by refeeding predominantly affected fast muscle, with changes in muscle fiber diameter and miRNAs expression. There was an increase in the mRNA levels of catabolic pathways components (FBXO25, ATG12, BCL2) and energetic metabolism-related genes (PGC1α and SDHA), together with a decrease in PPARβ/δ mRNA levels. Interestingly, an increase in mRNA levels of anabolic genes (PI3K and mTORC1 complex: mTOR, mLST8 and RAPTOR) was also observed during food restriction. After refeeding, muscle morphology showed similar patterns of the control group; the majority of genes were slightly up- or down-regulated in fast and slow muscle, respectively; the levels of all miRNAs increased in fast muscle and some of them decreased in slow muscle. Our findings demonstrated that a short period of food restriction in juvenile pacu had a considerable impact on fast muscle, increasing the expression of anabolic (PI3K and mTORC1 complex: mTOR, mLST8 and RAPTOR) and energetic metabolism genes. The miRNAs (miR-1, miR-206, miR-199 and miR-23a) were more expressed during refeeding and while their target genes (IGF-1, mTOR, PGC1α and MAFbx), presented a decreased expression. The alterations in mTORC1 complex observed during fasting may have influenced the rates of protein

  1. Increased cardiogenesis in P19-GFP teratocarcinoma cells expressing the propeptide IGF-1Ea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poudel, Bhawana; Bilbao, Daniel; Sarathchandra, Padmini

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer In this study, we explored the function of IGF-1Ea propeptide in inducing cardiogenesis of stem cells. Black-Right-Pointing-Pointer IGF-1Ea promoted cardiac mesodermal induction in uncommitted cells. Black-Right-Pointing-Pointer Under differentiation condition, IGF-1Ea increased expression of cardiac differentiation markers. Black-Right-Pointing-Pointer Furthermore, it promoted formation of finely organized sarcomeric structure. Black-Right-Pointing-Pointer IGF-1Ea propeptide may be a good candidate to improve production of cardiomyocytes from pluripotent cells. -- Abstract: The mechanism implicated in differentiation of endogenous cardiac stem cells into cardiomyocytes to regenerate the heart tissue upon an insult remains elusive, limiting the therapeutical goals to exogenous cell injection and/or gene therapy. Wemore » have shown previously that cardiac specific overexpression of the insulin-like growth factor 1 propeptide IGF-1Ea induces beneficial myocardial repair after infarct. Although the mechanism is still under investigation, the possibility that this propeptide may be involved in promoting stem cell differentiation into the cardiac lineage has yet to be explored. To investigate whether IGF-1Ea promote cardiogenesis, we initially modified P19 embryonal carcinoma cells to express IGF-1Ea. Taking advantage of their cardiomyogenic nature, we analyzed whether overexpression of this propeptide affected cardiac differentiation program. The data herein presented showed for the first time that constitutively overexpressed IGF-1Ea increased cardiogenic differentiation program in both undifferentiated and DMSO-differentiated cells. In details, IGF-1Ea overexpression promoted localization of alpha-actinin in finely organized sarcomeric structure compared to control cells and upregulated the cardiac mesodermal marker NKX-2.5 and the ventricular structural protein MLC2v. Furthermore, activated IGF-1 signaling promoted cardiac

  2. Transgenic plants expressing GLK1 and CCA1 having increased nitrogen assimilation capacity

    DOEpatents

    Coruzzi, Gloria [New York, NY; Gutierrez, Rodrigo A [Santiago, CL; Nero, Damion C [Woodside, NY

    2012-04-10

    Provided herein are compositions and methods for producing transgenic plants. In specific embodiments, transgenic plants comprise a construct comprising a polynucleotide encoding CCA1, GLK1 or bZIP1, operably linked to a plant-specific promote, wherein the CCA1, GLK1 or bZIP1 is ectopically overexpressed in the transgenic plants, and wherein the promoter is optionally a constitutive or inducible promoter. In other embodiments, transgenic plants in which express a lower level of CCA1, GLK1 or bZIP1 are provided. Also provided herein are commercial products (e.g., pulp, paper, paper products, or lumber) derived from the transgenic plants (e.g., transgenic trees) produced using the methods provided herein.

  3. CPT1{alpha} over-expression increases long-chain fatty acid oxidation and reduces cell viability with incremental palmitic acid concentration in 293T cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jambor de Sousa, Ulrike L.; Koss, Michael D.; Fillies, Marion

    2005-12-16

    To test the cellular response to an increased fatty acid oxidation, we generated a vector for an inducible expression of the rate-limiting enzyme carnitine palmitoyl-transferase 1{alpha} (CPT1{alpha}). Human embryonic 293T kidney cells were transiently transfected and expression of the CPT1{alpha} transgene in the tet-on vector was activated with doxycycline. Fatty acid oxidation was measured by determining the conversion of supplemented, synthetic cis-10-heptadecenoic acid (C17:1n-7) to C15:ln-7. CPT1{alpha} over-expression increased mitochondrial long-chain fatty acid oxidation about 6-fold. Addition of palmitic acid (PA) decreased viability of CPT1{alpha} over-expressing cells in a concentration-dependent manner. Both, PA and CPT1{alpha} over-expression increased cell death. Interestingly,more » PA reduced total cell number only in cells over-expressing CPT1{alpha}, suggesting an effect on cell proliferation that requires PA translocation across the mitochondrial inner membrane. This inducible expression system should be well suited to study the roles of CPT1 and fatty acid oxidation in lipotoxicity and metabolism in vivo.« less

  4. Design of Experiment Analysis of the Sulzer Metco DJ High Velocity Oxy-Fuel Coating of Hydroxyapatite for Orthopedic Applications

    NASA Astrophysics Data System (ADS)

    Hasan, S.; Stokes, J.

    2011-01-01

    High Velocity Oxy-Fuel (HVOF) has the potential to produce hydroxyapatite (HA; Bio-ceramic) coatings based on its experience with other sprayed ceramic materials. This technique should offer mechanical and biological results comparable to other thermal spraying processes, such as atmospheric plasma thermal spray, currently FDA approved for HA deposition. Deposition of HA via HVOF is a new venture especially using the Sulzer Metco Diamond Jet (DJ) process, and the aim of this article was to establish this technique's potential in providing superior HA coating results compared to the FDA-approved plasma spray technique. In this research, a Design of Experiment (DOE) model was developed to optimize the Sulzer Metco DJ HVOF process for the deposition of HA. In order to select suitable ranges for the production of HA coatings, the parameters were first investigated. Five parameters (factors) were researched over two levels namely: oxygen flow rate, propylene flow rate, air flow rate, spray distance, and powder flow rate. Coating crystallinity and purity were measured at the surface of each sample as the responses to the factors used. The research showed that propylene, air flow rate, spray distance, and powder feed rate had the largest effect on the responses, and the study aimed to find the preferred optimized settings to achieve high crystallinity and purity of percentages of up to 95%. This research found crystallinity and purity values of 93.8 and 99.8%, respectively, for a set of HVOF parameters which showed improvement compared to the crystallinity and purity values of 87.6 and 99.4%, respectively, found using the FDA-approved Sulzer Metco Atmospheric Plasma thermal spray process. Hence, a new technique for HA deposition now exists using the DJ HVOF facility; however, other mechanical and biorelated properties must also be assessed.

  5. Pseudomonas aeruginosa AES-1 exhibits increased virulence gene expression during chronic infection of cystic fibrosis lung.

    PubMed

    Naughton, Sharna; Parker, Dane; Seemann, Torsten; Thomas, Torsten; Turnbull, Lynne; Rose, Barbara; Bye, Peter; Cordwell, Stuart; Whitchurch, Cynthia; Manos, Jim

    2011-01-01

    Pseudomonas aeruginosa, the leading cause of morbidity and mortality in people with cystic fibrosis (CF), adapts for survival in the CF lung through both mutation and gene expression changes. Frequent clonal strains such as the Australian Epidemic Strain-1 (AES-1), have increased ability to establish infection in the CF lung and to superimpose and replace infrequent clonal strains. Little is known about the factors underpinning these properties. Analysis has been hampered by lack of expression array templates containing CF-strain specific genes. We sequenced the genome of an acute infection AES-1 isolate from a CF infant (AES-1R) and constructed a non-redundant micro-array (PANarray) comprising AES-1R and seven other sequenced P. aeruginosa genomes. The unclosed AES-1R genome comprised 6.254Mbp and contained 6957 putative genes, including 338 not found in the other seven genomes. The PANarray contained 12,543 gene probe spots; comprising 12,147 P. aeruginosa gene probes, 326 quality-control probes and 70 probes for non-P. aeruginosa genes, including phage and plant genes. We grew AES-1R and its isogenic pair AES-1M, taken from the same patient 10.5 years later and not eradicated in the intervening period, in our validated artificial sputum medium (ASMDM) and used the PANarray to compare gene expression of both in duplicate. 675 genes were differentially expressed between the isogenic pairs, including upregulation of alginate, biofilm, persistence genes and virulence-related genes such as dihydroorotase, uridylate kinase and cardiolipin synthase, in AES-1M. Non-PAO1 genes upregulated in AES-1M included pathogenesis-related (PAGI-5) genes present in strains PACS2 and PA7, and numerous phage genes. Elucidation of these genes' roles could lead to targeted treatment strategies for chronically infected CF patients.

  6. Pseudomonas aeruginosa AES-1 Exhibits Increased Virulence Gene Expression during Chronic Infection of Cystic Fibrosis Lung

    PubMed Central

    Naughton, Sharna; Parker, Dane; Seemann, Torsten; Thomas, Torsten; Turnbull, Lynne; Rose, Barbara; Bye, Peter; Cordwell, Stuart; Whitchurch, Cynthia; Manos, Jim

    2011-01-01

    Pseudomonas aeruginosa, the leading cause of morbidity and mortality in people with cystic fibrosis (CF), adapts for survival in the CF lung through both mutation and gene expression changes. Frequent clonal strains such as the Australian Epidemic Strain-1 (AES-1), have increased ability to establish infection in the CF lung and to superimpose and replace infrequent clonal strains. Little is known about the factors underpinning these properties. Analysis has been hampered by lack of expression array templates containing CF-strain specific genes. We sequenced the genome of an acute infection AES-1 isolate from a CF infant (AES-1R) and constructed a non-redundant micro-array (PANarray) comprising AES-1R and seven other sequenced P. aeruginosa genomes. The unclosed AES-1R genome comprised 6.254Mbp and contained 6957 putative genes, including 338 not found in the other seven genomes. The PANarray contained 12,543 gene probe spots; comprising 12,147 P. aeruginosa gene probes, 326 quality-control probes and 70 probes for non-P. aeruginosa genes, including phage and plant genes. We grew AES-1R and its isogenic pair AES-1M, taken from the same patient 10.5 years later and not eradicated in the intervening period, in our validated artificial sputum medium (ASMDM) and used the PANarray to compare gene expression of both in duplicate. 675 genes were differentially expressed between the isogenic pairs, including upregulation of alginate, biofilm, persistence genes and virulence-related genes such as dihydroorotase, uridylate kinase and cardiolipin synthase, in AES-1M. Non-PAO1 genes upregulated in AES-1M included pathogenesis-related (PAGI-5) genes present in strains PACS2 and PA7, and numerous phage genes. Elucidation of these genes' roles could lead to targeted treatment strategies for chronically infected CF patients. PMID:21935417

  7. DEVELOPMENT OF A 950-GENE DNA ARRAY FOR EXAMINING GENE EXPRESSION PATTERNS IN MOUSE TESTIS

    EPA Science Inventory

    Development of a 950-gene DNA array for examining gene expression patterns in mouse testis.

    Rockett JC, Christopher Luft J, Brian Garges J, Krawetz SA, Hughes MR, Hee Kirn K, Oudes AJ, Dix DJ.

    Reproductive Toxicology Division, National Health and Environmental Effec...

  8. Experimental hyperthyroidism in rats increases the expression of the ubiquitin ligases atrogin-1 and MuRF1 and stimulates multiple proteolytic pathways in skeletal muscle.

    PubMed

    O'Neal, Patrick; Alamdari, Nima; Smith, Ira; Poylin, Vitaliy; Menconi, Michael; Hasselgren, Per-Olof

    2009-11-01

    Muscle wasting is commonly seen in patients with hyperthyroidism and is mainly caused by stimulated muscle proteolysis. Loss of muscle mass in several catabolic conditions is associated with increased expression of the muscle-specific ubiquitin ligases atrogin-1 and MuRF1 but it is not known if atrogin-1 and MuRF1 are upregulated in hyperthyroidism. In addition, it is not known if thyroid hormone increases the activity of proteolytic mechanisms other than the ubiquitin-proteasome pathway. We tested the hypotheses that experimental hyperthyroidism in rats, induced by daily intraperitoneal injections of 100 microg/100 g body weight of triiodothyronine (T3), upregulates the expression of atrogin-1 and MuRF1 in skeletal muscle and stimulates lysosomal, including cathepsin L, calpain-, and caspase-3-dependent protein breakdown in addition to proteasome-dependent protein breakdown. Treatment of rats with T3 for 3 days resulted in an approximately twofold increase in atrogin-1 and MuRF1 mRNA levels. The same treatment increased proteasome-, cathepsin L-, and calpain-dependent proteolytic rates by approximately 40% but did not influence caspase-3-dependent proteolysis. The expression of atrogin-1 and MuRF1 remained elevated during a more prolonged period (7 days) of T3 treatment. The results provide support for a role of the ubiquitin-proteasome pathway in muscle wasting during hyperthyroidism and suggest that other proteolytic pathways as well may be activated in the hyperthyroid state. (c) 2009 Wiley-Liss, Inc.

  9. Expression of NAD(P)H quinone dehydrogenase 1 (NQO1) is increased in the endometrium of women with endometrial cancer and women with polycystic ovary syndrome.

    PubMed

    Atiomo, William; Shafiee, Mohamad Nasir; Chapman, Caroline; Metzler, Veronika M; Abouzeid, Jad; Latif, Ayşe; Chadwick, Amy; Kitson, Sarah; Sivalingam, Vanitha N; Stratford, Ian J; Rutland, Catrin S; Persson, Jenny L; Ødum, Niels; Fuentes-Utrilla, Pablo; Jeyapalan, Jennie N; Heery, David M; Crosbie, Emma J; Mongan, Nigel P

    2017-11-01

    Women with a prior history of polycystic ovary syndrome (PCOS) have an increased risk of endometrial cancer (EC). To investigate whether the endometrium of women with PCOS possesses gene expression changes similar to those found in EC. Patients with EC, PCOS and control women unaffected by either PCOS or EC were recruited into a cross-sectional study at the Nottingham University Hospital, UK. For RNA sequencing, representative individual endometrial biopsies were obtained from women with EC, PCOS and a woman unaffected by PCOS or EC. Expression of a subset of differentially expressed genes identified by RNA sequencing, including NAD(P)H quinone dehydrogenase 1 (NQO1), was validated by quantitative reverse transcriptase PCR validation (n = 76) and in the cancer genome atlas UCEC (uterine corpus endometrioid carcinoma) RNA sequencing data set (n = 381). The expression of NQO1 was validated by immunohistochemistry in EC samples from a separate cohort (n = 91) comprised of consecutive patients who underwent hysterectomy at St Mary's Hospital, Manchester, between 2011 and 2013. A further 6 postmenopausal women with histologically normal endometrium who underwent hysterectomy for genital prolapse were also included. Informed consent and local ethics approval were obtained for the study. We show for the first that NQO1 expression is significantly increased in the endometrium of women with PCOS and EC. Immunohistochemistry confirms significantly increased NQO1 protein expression in EC relative to nonmalignant endometrial tissue (P < .0001). The results obtained here support a previously unrecognized molecular link between PCOS and EC involving NQO1. © 2017 The Authors. Clinical Endocrinology Published by John Wiley & Sons Ltd.

  10. Long-term increased carnitine palmitoyltransferase 1A expression in ventromedial hypotalamus causes hyperphagia and alters the hypothalamic lipidomic profile.

    PubMed

    Mera, Paula; Mir, Joan Francesc; Fabriàs, Gemma; Casas, Josefina; Costa, Ana S H; Malandrino, Maria Ida; Fernández-López, José-Antonio; Remesar, Xavier; Gao, Su; Chohnan, Shigeru; Rodríguez-Peña, Maria Sol; Petry, Harald; Asins, Guillermina; Hegardt, Fausto G; Herrero, Laura; Serra, Dolors

    2014-01-01

    Lipid metabolism in the ventromedial hypothalamus (VMH) has emerged as a crucial pathway in the regulation of feeding and energy homeostasis. Carnitine palmitoyltransferase (CPT) 1A is the rate-limiting enzyme in mitochondrial fatty acid β-oxidation and it has been proposed as a crucial mediator of fasting and ghrelin orexigenic signalling. However, the relationship between changes in CPT1A activity and the intracellular downstream effectors in the VMH that contribute to appetite modulation is not fully understood. To this end, we examined the effect of long-term expression of a permanently activated CPT1A isoform by using an adeno-associated viral vector injected into the VMH of rats. Peripherally, this procedure provoked hyperghrelinemia and hyperphagia, which led to overweight, hyperglycemia and insulin resistance. In the mediobasal hypothalamus (MBH), long-term CPT1AM expression in the VMH did not modify acyl-CoA or malonyl-CoA levels. However, it altered the MBH lipidomic profile since ceramides and sphingolipids increased and phospholipids decreased. Furthermore, we detected increased vesicular γ-aminobutyric acid transporter (VGAT) and reduced vesicular glutamate transporter 2 (VGLUT2) expressions, both transporters involved in this orexigenic signal. Taken together, these observations indicate that CPT1A contributes to the regulation of feeding by modulating the expression of neurotransmitter transporters and lipid components that influence the orexigenic pathways in VMH.

  11. Long-Term Increased Carnitine Palmitoyltransferase 1A Expression in Ventromedial Hypotalamus Causes Hyperphagia and Alters the Hypothalamic Lipidomic Profile

    PubMed Central

    Fabriàs, Gemma; Casas, Josefina; Costa, Ana S. H.; Malandrino, Maria Ida; Fernández-López, José-Antonio; Remesar, Xavier; Gao, Su; Chohnan, Shigeru; Rodríguez-Peña, Maria Sol; Petry, Harald; Asins, Guillermina; Hegardt, Fausto G.; Herrero, Laura; Serra, Dolors

    2014-01-01

    Lipid metabolism in the ventromedial hypothalamus (VMH) has emerged as a crucial pathway in the regulation of feeding and energy homeostasis. Carnitine palmitoyltransferase (CPT) 1A is the rate-limiting enzyme in mitochondrial fatty acid β-oxidation and it has been proposed as a crucial mediator of fasting and ghrelin orexigenic signalling. However, the relationship between changes in CPT1A activity and the intracellular downstream effectors in the VMH that contribute to appetite modulation is not fully understood. To this end, we examined the effect of long-term expression of a permanently activated CPT1A isoform by using an adeno-associated viral vector injected into the VMH of rats. Peripherally, this procedure provoked hyperghrelinemia and hyperphagia, which led to overweight, hyperglycemia and insulin resistance. In the mediobasal hypothalamus (MBH), long-term CPT1AM expression in the VMH did not modify acyl-CoA or malonyl-CoA levels. However, it altered the MBH lipidomic profile since ceramides and sphingolipids increased and phospholipids decreased. Furthermore, we detected increased vesicular γ-aminobutyric acid transporter (VGAT) and reduced vesicular glutamate transporter 2 (VGLUT2) expressions, both transporters involved in this orexigenic signal. Taken together, these observations indicate that CPT1A contributes to the regulation of feeding by modulating the expression of neurotransmitter transporters and lipid components that influence the orexigenic pathways in VMH. PMID:24819600

  12. Myostatin-deficiency in mice increases global gene expression at the Dlk1-Dio3 locus in the skeletal muscle

    PubMed Central

    Hitachi, Keisuke; Tsuchida, Kunihiro

    2017-01-01

    Myostatin, a member of the transforming growth factor-beta superfamily, is a negative regulator of skeletal muscle growth and development. Myostatin inhibition leads to increased skeletal muscle mass in mammals; hence, myostatin is considered a potential therapeutic target for skeletal muscle wasting. However, downstream molecules of myostatin in the skeletal muscle have not been fully elucidated. Here, we identified the Dlk1-Dio3 locus at the mouse chromosome 12qF1, also called as the callipyge locus in sheep, as a novel downstream target of myostatin. In skeletal muscle of myostatin knockout mice, the expression of mature miRNAs at the Dlk1-Dio3 locus was significantly increased. The increased miRNA levels are caused by the transcriptional activation of the Dlk1-Dio3 locus, because a significant increase in the primary miRNA transcript was observed in myostatin knockout mice. In addition, we found increased expression of coding and non-coding genes (Dlk1, Gtl2, Rtl1/Rtl1as, and Rian) at the Dlk1-Dio3 locus in myostatin-deficient skeletal muscle. Moreover, epigenetic changes, associated with the regulation of the Dlk1-Dio3 locus, were observed in myostatin knockout mice. Taken together, this is the first report demonstrating the role of myostatin in regulating the Dlk1-Dio3 (the callipyge) locus in the skeletal muscle. PMID:27992376

  13. Myostatin-deficiency in mice increases global gene expression at the Dlk1-Dio3 locus in the skeletal muscle.

    PubMed

    Hitachi, Keisuke; Tsuchida, Kunihiro

    2017-01-24

    Myostatin, a member of the transforming growth factor-beta superfamily, is a negative regulator of skeletal muscle growth and development. Myostatin inhibition leads to increased skeletal muscle mass in mammals; hence, myostatin is considered a potential therapeutic target for skeletal muscle wasting. However, downstream molecules of myostatin in the skeletal muscle have not been fully elucidated. Here, we identified the Dlk1-Dio3 locus at the mouse chromosome 12qF1, also called as the callipyge locus in sheep, as a novel downstream target of myostatin. In skeletal muscle of myostatin knockout mice, the expression of mature miRNAs at the Dlk1-Dio3 locus was significantly increased. The increased miRNA levels are caused by the transcriptional activation of the Dlk1-Dio3 locus, because a significant increase in the primary miRNA transcript was observed in myostatin knockout mice. In addition, we found increased expression of coding and non-coding genes (Dlk1, Gtl2, Rtl1/Rtl1as, and Rian) at the Dlk1-Dio3 locus in myostatin-deficient skeletal muscle. Moreover, epigenetic changes, associated with the regulation of the Dlk1-Dio3 locus, were observed in myostatin knockout mice. Taken together, this is the first report demonstrating the role of myostatin in regulating the Dlk1-Dio3 (the callipyge) locus in the skeletal muscle.

  14. Aging and a long-term diabetes mellitus increase expression of 1 α-hydroxylase and vitamin D receptors in the rat liver.

    PubMed

    Vuica, Ana; Ferhatović Hamzić, Lejla; Vukojević, Katarina; Jerić, Milka; Puljak, Livia; Grković, Ivica; Filipović, Natalija

    2015-12-01

    Diabetes mellitus (DM) is a metabolic disorder associated with serious liver complications. As a metabolic chronic disease, DM is very common in the elderly. Recent studies suggest ameliorating effects of vitamin D on metabolic and oxidative stress in the liver tissue in an experimental model of DM. The aim of this study was to investigate the expression of vitamin D receptors (VDRs) and 1α-hydroxylase, the key enzyme for the production of active vitamin D form (calcitriol) in the liver during long-term diabetes mellitus type 1 (DM1) in aging rats. We performed immunohistochemical analysis of liver expression of 1α-hydroxylase and VDRs during aging in long-term streptozotocin-induced DM1. 1α-Hydroxylase was identified in the monocyte/macrophage system of the liver. In addition to the nuclear expression, we also observed the expression of VDR in membranes of lipid droplets within hepatocytes. Aging and long-term DM1 resulted in significant increases in the number of 1α-hydroxylase immunoreactive cells, as well as the percentage of strongly positive VDR hepatocytes. In conclusion, the liver has the capacity for active vitamin D synthesis in its monocyte/macrophage system that is substantially increased in aging and long-term diabetes mellitus. These conditions are also characterized by significant increases in vitamin D receptor expression in hepatocytes. The present study suggests that VDR signaling system could be a potential target in prevention of liver complications caused by diabetes and aging. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Up-regulation of GLT1 expression increases glutamate uptake and attenuates the Huntington's disease phenotype in the R6/2 mouse.

    PubMed

    Miller, B R; Dorner, J L; Shou, M; Sari, Y; Barton, S J; Sengelaub, D R; Kennedy, R T; Rebec, G V

    2008-04-22

    The striatum, which processes cortical information for behavioral output, is a key target of Huntington's disease (HD), an autosomal dominant condition characterized by cognitive decline and progressive loss of motor control. Increasing evidence implicates deficient glutamate uptake caused by a down-regulation of GLT1, the primary astroglial glutamate transporter. To test this hypothesis, we administered ceftriaxone, a beta-lactam antibiotic known to elevate GLT1 expression (200 mg/kg, i.p., for 5 days), to symptomatic R6/2 mice, a widely studied transgenic model of HD. Relative to vehicle, ceftriaxone attenuated several HD behavioral signs: paw clasping and twitching were reduced, while motor flexibility, as measured in a plus maze, and open-field climbing were increased. Assessment of GLT1 expression in striatum confirmed a ceftriaxone-induced increase relative to vehicle. To determine if the change in behavior and GLT1 expression represented a change in striatal glutamate handling, separate groups of behaving mice were evaluated with no-net-flux microdialysis. Vehicle treatment revealed a glutamate uptake deficit in R6/2 mice relative to wild-type controls that was reversed by ceftriaxone. Vehicle-treated animals, however, did not differ in GLT1 expression, suggesting that the glutamate uptake deficit in R6/2 mice reflects dysfunctional rather than missing GLT1. Our results indicate that impaired glutamate uptake is a major factor underlying HD pathophysiology and symptomology. The glutamate uptake deficit, moreover, is present in symptomatic HD mice and reversal of this deficit by up-regulating the functional expression of GLT1 with ceftriaxone attenuates the HD phenotype.

  16. Loss of HSulf-1 expression enhances tumorigenicity by inhibiting Bim expression in ovarian cancer.

    PubMed

    He, Xiaoping; Khurana, Ashwani; Roy, Debarshi; Kaufmann, Scott; Shridhar, Viji

    2014-10-15

    The expression of human Sulfatase1 (HSulf-1) is downregulated in the majority of primary ovarian cancer tumors, but the functional consequence of this downregulation remains unclear. Using two different shRNAs (Sh1 and Sh2), HSulf-1 expression was stably downregulated in ovarian cancer OV202 cells. We found that HSulf-1-deficient OV202 Sh1 and Sh2 cells formed colonies in soft agar. In contrast, nontargeting control (NTC) shRNA-transduced OV202 cells did not form any colonies. Moreover, subcutaneous injection of OV202 HSulf-1-deficient cells resulted in tumor formation in nude mice, whereas OV202 NTC cells did not. Also, ectopic expression of HSulf-1 in ovarian cancer SKOV3 cells significantly suppressed tumor growth in nude mice. Here, we show that HSulf-1-deficient OV202 cells have markedly decreased expression of proapoptotic Bim protein, which can be rescued by restoring HSulf-1 expression in OV202 Sh1 cells. Enhanced expression of HSulf-1 in HSulf-1-deficient SKOV3 cells resulted in increased Bim expression. Decreased Bim levels after loss of HSulf-1 were due to increased p-ERK, because inhibition of ERK activity with PD98059 resulted in increased Bim expression. However, treatment with a PI3 kinase/AKT inhibitor, LY294002, failed to show any change in Bim protein level. Importantly, rescuing Bim expression in HSulf-1 knockdown cells significantly retarded tumor growth in nude mice. Collectively, these results suggest that loss of HSulf-1 expression promotes tumorigenicity in ovarian cancer through regulating Bim expression. © 2014 UICC.

  17. Cbl downregulation increases RBP4 expression in adipocytes of female mice

    PubMed Central

    Ameen, Gulizar Issa

    2018-01-01

    Obesity leads to adipose tissue dysfunction, insulin resistance and diabetes. Adipose tissue produces adipokines that contribute to regulate insulin sensitivity. In turn, insulin stimulates the production and release of some adipokines. Casitas-b-lymphoma proteins (c-Cbl, Cbl-b and Cbl3) are intracellular adaptor signalling proteins that are rapidly phosphorylated by activation of tyrosine kinase receptors. c-Cbl is rapidly phosphorylated by insulin in adipocytes. Here, we tested the hypothesis that Cbl signalling regulates adipokine expression in adipose tissue. We determined the adipokine profile of WAT of Cbl−/− and Cbl+/+ mice in the C57BL6 background. Female Cbl−/− mice exhibited altered expression of adiponectin, leptin and RBP4 in visceral adipose tissue, while no significant changes were seen in male mice. TNFα and IL6 levels were unaffected by Cbl depletion. RBP4 expression was unchanged in liver. Adipose tissue of Cbl−/− animals showed increased basal activation of extracellular regulated kinases (ERK1/2) compared to Cbl+/+. c-Cbl knockdown in 3T3L1 adipocytes also increased basal ERK phosphorylation and RBP4 expression. Inhibition of ERK1/2 phosphorylation in Cbl-depleted 3T3L1 adipocytes or in adipose tissue explants of Cbl−/− mice reduced RBP4 mRNA. 17β-Estradiol increased RBP4 mRNA in adipocytes. Cbl depletion did not change ER expression but increased phosphorylation of ERα at S118, a target site for ERK1/2. ERK1/2 inhibition reduced phosphoER and RBP4 levels. These findings suggest that Cbl contributes to regulate RBP4 expression in adipose of female mice through ERK1/2-mediated activation of ERα. Since Cbl signalling is compromised in diabetes, these data highlight a novel mechanism that upregulates RBP4 locally. PMID:29114012

  18. Interleukin-induced increase in Ia expression by normal mouse B cells.

    PubMed

    Roehm, N W; Leibson, H J; Zlotnik, A; Kappler, J; Marrack, P; Cambier, J C

    1984-09-01

    The constitutive culture supernatant (SN) of the macrophage tumor line P388D1 (P388 SN) and the concanavalin A (Con A)-induced culture supernatant of the T cell hybridoma FS6-14.13 (FS6 Con A SN) were shown to contain nonspecific factors capable of inducing increased Ia expression by normal resting B cells in a dose-dependent manner. In six consecutive experiments the relative increase in Ia expression induced by P388 SN was 4.9 +/- 0.9, with FS6 Con A SN 10.7 +/- 1.5, and with a combination of both preparations 13.0 +/- 1.7. This increase in Ia expression was observed to occur in virtually all the B cells, reaching maximum levels within 24 h of culture. The interleukin-induced increase in B cell Ia expression occurred in the absence of ancillary signals provided by ligand-receptor Ig cross-linking and despite the fact that virtually all the control B cells, cultured in the absence of factors, remained in G0. These results suggest that functional receptors for at least some interleukins are expressed on normal resting B cells and their effects can be manifest in the absence of additional activating signals. The increased Ia expression induced by the nonspecific factor preparations was shown to be correlated with enhanced antigen-presenting capacity by the B cells to T cell hybridomas. The nature of the interleukins responsible for these effects remains to be definitively determined, however, the activity of FS6 Con A SN was shown to correlate with B cell growth factor activity and increased B cell Ia expression was not observed using interleukin 2 (IL-2) or interferon-gamma, prepared by recombinant DNA technology.

  19. A two force-constant model for complexes B⋯M-X (B is a Lewis base and MX is any diatomic molecule): Intermolecular stretching force constants from centrifugal distortion constants D(J) or Δ(J).

    PubMed

    Bittner, Dror M; Walker, Nicholas R; Legon, Anthony C

    2016-02-21

    A two force-constant model is proposed for complexes of the type B⋯MX, in which B is a simple Lewis base of at least C2v symmetry and MX is any diatomic molecule lying along a Cn axis (n ≥ 2) of B. The model assumes a rigid subunit B and that force constants beyond quadratic are negligible. It leads to expressions that allow, in principle, the determination of three quadratic force constants F11, F12, and F22 associated with the r(B⋯M) = r2 and r(M-X) = r1 internal coordinates from the equilibrium centrifugal distortion constants DJ (e) or ΔJ (e), the equilibrium principal axis coordinates a1 and a2, and equilibrium principal moments of inertia. The model can be applied generally to complexes containing different types of intermolecular bond. For example, the intermolecular bond of B⋯MX can be a hydrogen bond if MX is a hydrogen halide, a halogen-bond if MX is a dihalogen molecule, or a stronger, coinage-metal bond if MX is a coinage metal halide. The equations were tested for BrCN, for which accurate equilibrium spectroscopic constants and a complete force field are available. In practice, equilibrium values of DJ (e) or ΔJ (e) for B⋯MX are not available and zero-point quantities must be used instead. The effect of doing so has been tested for BrCN. The zero-point centrifugal distortion constants DJ (0) or ΔJ (0) for all B⋯MX investigated so far are of insufficient accuracy to allow F11 and F22 to be determined simultaneously, even under the assumption F12 = 0 which is shown to be reasonable for BrCN. The calculation of F22 at a series of fixed values of F11 reveals, however, that in cases for which F11 is sufficiently larger than F22, a good approximation to F22 is obtained. Plots of F22 versus F11 have been provided for Kr⋯CuCl, Xe⋯CuCl, OC⋯CuCl, and C2H2⋯AgCl as examples. Even in cases where F22 ∼ F11 (e.g., OC⋯CuCl), such plots will yield either F22 or F11 if the other becomes available.

  20. A two force-constant model for complexes B⋯M-X (B is a Lewis base and MX is any diatomic molecule): Intermolecular stretching force constants from centrifugal distortion constants DJ or ΔJ

    NASA Astrophysics Data System (ADS)

    Bittner, Dror M.; Walker, Nicholas R.; Legon, Anthony C.

    2016-02-01

    A two force-constant model is proposed for complexes of the type B⋯MX, in which B is a simple Lewis base of at least C2v symmetry and MX is any diatomic molecule lying along a Cn axis (n ≥ 2) of B. The model assumes a rigid subunit B and that force constants beyond quadratic are negligible. It leads to expressions that allow, in principle, the determination of three quadratic force constants F11, F12, and F22 associated with the r(B⋯M) = r2 and r(M-X) = r1 internal coordinates from the equilibrium centrifugal distortion constants DJ e or ΔJ e , the equilibrium principal axis coordinates a1 and a2, and equilibrium principal moments of inertia. The model can be applied generally to complexes containing different types of intermolecular bond. For example, the intermolecular bond of B⋯MX can be a hydrogen bond if MX is a hydrogen halide, a halogen-bond if MX is a dihalogen molecule, or a stronger, coinage-metal bond if MX is a coinage metal halide. The equations were tested for BrCN, for which accurate equilibrium spectroscopic constants and a complete force field are available. In practice, equilibrium values of DJ e or ΔJ e for B⋯MX are not available and zero-point quantities must be used instead. The effect of doing so has been tested for BrCN. The zero-point centrifugal distortion constants DJ 0 or ΔJ 0 for all B⋯MX investigated so far are of insufficient accuracy to allow F11 and F22 to be determined simultaneously, even under the assumption F12 = 0 which is shown to be reasonable for BrCN. The calculation of F22 at a series of fixed values of F11 reveals, however, that in cases for which F11 is sufficiently larger than F22, a good approximation to F22 is obtained. Plots of F22 versus F11 have been provided for Kr⋯CuCl, Xe⋯CuCl, OC⋯CuCl, and C2H2⋯AgCl as examples. Even in cases where F22 ˜ F11 (e.g., OC⋯CuCl), such plots will yield either F22 or F11 if the other becomes available.

  1. Increasing CACNA1C expression in placenta containing high Cd level: an implication of Cd toxicity.

    PubMed

    Phuapittayalert, Laorrat; Saenganantakarn, Phisid; Supanpaiboon, Wisa; Cheunchoojit, Supaporn; Hipkaeo, Wiphawi; Sakulsak, Natthiya

    2016-12-01

    Cadmium (Cd) has known to produce many adverse effects on organs including placenta. Many essential transporters are involved in Cd transport pathways such as DMT-1, ZIP as well as L-VDCC. Fourteen pregnant women participated and were divided into two groups: high and low Cd-exposed (H-Cd, L-Cd) groups on the basis of their residential areas, Cd concentrations in the blood (B-Cd), urine (U-Cd), and placenta (P-Cd). The results showed that the B-Cd and U-Cd were significantly increased in H-Cd group (p < 0.05). Interestingly, the P-Cd in H-Cd group was elevated (p < 0.05) and positively related to their B-Cd and U-Cd values (p < 0.05). However, the mean cord blood Cd (C-Cd) concentration in H-Cd group was not significantly increased about 2.5-fold when comparing to L-Cd group. To determine the Cd accumulation in placental tissues, metallothionein-1A (MT-1A) and metallothionein-2A (MT-2A) expressions were used as biomarkers. The results revealed that mean MT-1A and MT-2A mRNAs and MT-1/2 proteins were up-regulated in H-Cd group (p < 0.05). In addition, the Ca channel alpha 1C (CACNA1C) mRNA and protein expressions were noticeably elevated in H-Cd group (p < 0.05). From these findings, we suggested that CACNA1C might be implicated in Cd transport in human placenta.

  2. The Young Massive Stellar Cluster Sandage-96 after the Explosion of SN 2004DJ in NGC 2403

    NASA Technical Reports Server (NTRS)

    Vinko, J.; Sarneczky, K.; Balog, Z.; Immler, S.; Sugerman, B.; Brown, P. J.; Misselt, K.; Szabo, Gy. M.; Klagyivik, P.; Kun, M.; hide

    2008-01-01

    The bright supernova 2004dj occurred within the young massive stellar cluster Sandage-96 in a spiral arm of NGC 2403, close to other star-forming complexes. New multi-wavelength observations obtained with several ground-based- and space telescopes are combined to study the radiation from Sandage-96 after SN 2004dj faded away. The late-time light curves show that Sandage-96 started to dominate the flux in the optical bands after September, 2006 (+800 days after explosion). The optical fluxes are equal to the pre-explosion ones, suggesting that Sandage-96 has survived the explosion without significant changes in its stellar population. An optical Keck-spectrum obtained at +900 days after explosion shows the dominant blue continuum from the cluster stars shortward of 6000 A as well as strong SN nebular emission lines redward. The integrated SED of the cluster has been extended into the UV-region by archival XMM-Newton and new Swift observations, and compared with theoretical models. The outer parts of the cluster have been resolved by HST allowing the construction of a color-magnitude diagram. The fitting of the cluster SED with theoretical isochrones results in two possible solutions with ages being 9+/-1 Myr and 30+/-10 Myr, depending on the assumed metallicity and the theoretical model family. The isochrone fitting of the color-magnitude diagram indicates that the outer part of the cluster consists of stars having an age dispersion of 16 < t < 63 Myr, which is similar to that of nearby field stars. This age discrepancy may be resolved by the hypothesis that the outskirt of Sandage-96 is contaminated by stars captured from the field during cluster formation. The young age of Sandage-96 and the comparison of its pre- and post-explosion SEDs suggest a progenitor mass of 15 < or equal to M(sub prog) < 25 Stellar Mass.

  3. Macrophage differentiation increases expression of the ascorbate transporter (SVCT2)

    PubMed Central

    Qiao, Huan; May, James M.

    2013-01-01

    To determine whether macrophage differentiation involves increased uptake of vitamin C, or ascorbic acid, we assessed the expression and function of its transporter SVCT2 during phorbol ester-induced differentiation of human-derived THP-1 monocytes. Induction of THP-1 monocyte differentiation by phorbol 12-myristate 13-acetate (PMA) markedly increased SVCT2 mRNA, protein, and function. When ascorbate was present during PMA-induced differentiation, the increase in SVCT2 protein expression was inhibited, but differentiation was enhanced. PMA-induced SVCT2 protein expression was blocked by inhibitors of protein kinase C (PKC), with most of the affect due to the PKCβI and βII isoforms. Activation of MEK/ERK was sustained up to 48 h after PMA treatment, and the inhibitors completely blocked PMA-stimulated SVCT2 protein expression, indicating an exclusive role for the classical MAP kinase pathway. However, inhibitors of NF-κB activation, NADPH oxidase inhibitors, and several antioxidants also partially prevented SVCT2 induction, suggesting diverse distal routes for control of SVCT2 transcription. Both known promoters for the SVCT2 were involved in these effects. In conclusion, PMA-induced monocyte-macrophage differentiation is enhanced by ascorbate and associated with increased expression and function of the SVCT2 protein through a pathway involving sustained activation of PKCβI/II, MAP kinase, NADPH oxidase, and NF-κB. PMID:19232538

  4. ICAM-1 (CD54) expression on B lymphocytes is associated with their costimulatory function and can be increased by coactivation with IL-1 and IL-7.

    PubMed

    Dennig, D; Lacerda, J; Yan, Y; Gasparetto, C; O'Reilly, R J

    1994-07-01

    Recent studies have demonstrated that acute lymphoblastic leukemia-derived pre-B cell lines are deficient in their costimulatory function for T cell proliferation in response to the mitogen Con A and the superantigens TSST-1 and SEB. Stimulation of these pre-B cells with IL-7 increased their costimulatory function which involved the B7/CD28 pathway. In the present study, we stimulated T cells with Con A, TSST-1, and SEB in the presence of peripheral blood B lineage cells that do not constitutively express B7/BB1 on their surface and investigated whether their costimulatory function could also be enhanced by IL-7. We found that, in the presence of IL-1, stimulation with IL-7 increased the costimulatory function of B cells and their surface expression level of ICAM-1 (CD54). We then investigated whether costimulatory B cell function could be inhibited by blocking the ICAM-1/LFA-1 pathway. Addition of anti-ICAM-1 mAb to the coculture of T and B cells inhibited T cell proliferation by approximately 20%. In contrast, addition of anti-LFA-1 beta (CD18) mAb, directed against the T cell ligand of ICAM-1, inhibited T cell proliferation almost completely. To determine the role of ICAM-1 in costimulatory B cell function, we sorted B cells into ICAM-1low-and ICAM-1high-expressing populations. We found that B cells expressing high levels of surface ICAM-1 elicited significantly higher T cell responses than those with low levels, suggesting that the expression level of ICAM-1 on peripheral blood B cells correlates with their costimulatory function.

  5. Hes-1 SUMOylation by protein inhibitor of activated STAT1 enhances the suppressing effect of Hes-1 on GADD45α expression to increase cell survival

    PubMed Central

    2014-01-01

    Background Hairy and Enhancer of split 1 (Hes-1) is a transcriptional repressor that plays an important role in neuronal differentiation and development, but post-translational modifications of Hes-1 are much less known. In the present study, we aimed to investigate whether Hes-1 could be SUMO-modified and identify the candidate SUMO acceptors on Hes-1. We also wished to examine the role of the SUMO E3 ligase protein inhibitor of activated STAT1 (PIAS1) in SUMOylation of Hes-1 and the molecular mechanism of Hes-1 SUMOylation. Further, we aimed to identify the molecular target of Hes-1 and examine how Hes-1 SUMOylation affects its molecular target to affect cell survival. Results In this study, by using HEK293T cells, we have found that Hes-1 could be SUMO-modified and Hes-1 SUMOylation was greatly enhanced by the SUMO E3 ligase PIAS1 at Lys8, Lys27 and Lys39. Furthermore, Hes-1 SUMOylation stabilized the Hes-1 protein and increased the transcriptional suppressing activity of Hes-1 on growth arrest and DNA damage-inducible protein alpha (GADD45α) expression. Overexpression of GADD45α increased, whereas knockdown of GADD45αα expression decreased cell apoptosis. In addition, H2O2 treatment increased the association between PIAS1 and Hes-1 and enhanced the SUMOylation of Hes-1 for endogenous protection. Overexpression of Hes-1 decreased H2O2-induced cell death, but this effect was blocked by transfection of the Hes-1 triple sumo-mutant (Hes-1 3KR). Overexpression of PIAS1 further facilitated the anti-apoptotic effect of Hes-1. Moreover, Hes-1 SUMOylation was independent of Hes-1 phosphorylation and vice versa. Conclusions The present results revealed, for the first time, that Hes-1 could be SUMO-modified by PIAS1 and GADD45α is a novel target of Hes-1. Further, Hes-1 SUMOylation mediates cell survival through enhanced suppression of GADD45α expression. These results revealed a novel role of Hes-1 in addition to its involvement in Notch signaling. They also

  6. Icariin promotes mouse hair follicle growth by increasing insulin-like growth factor 1 expression in dermal papillary cells.

    PubMed

    Su, Y-S; Fan, Z-X; Xiao, S-E; Lin, B-J; Miao, Y; Hu, Z-Q; Liu, H

    2017-04-01

    Icariin is a major flavonoid isolated from Epimedium spp. leaves (Epimedium Herba), and has multiple pharmacological functions, including anti-angiogenesis, anti-oxidant, anti-inflammatory and immunoprotective effects. To investigate whether icariin can stimulate growth of hair follicles in mice and the underlying mechanism. In vitro, the effect of icariin on hair growth was assessed by using a vibrissae hair follicle (VHF) organ-culture model. The proliferation of hair matrix keratinocytes and the expression of insulin-like growth factor (IGF)-1 in follicles were examined by double immunostaining for 5-bromo-2'-deoxyuridine and IGF-1, in the presence or absence of icariin. Dermal papilla cells (DPCs) were cultured and IGF-1 level was measured by reverse transcription-PCR and ELISA after icariin treatment. In vivo, the effect of icariin on hair growth was examined by gavage feeding of icariin to mice whose backs had been depilated, and the conversion of telogen to anagen hair was observed. Treatment with icariin promoted hair shaft elongation, prolonged the hair cycle growth phase (anagen) in cultured VHFs, and accelerated transition of hair cycle from telogen to anagen phase in the dorsal skin of mice. There was significant proliferation of matrix keratinocytes and an increased level of IGF-1 in cultured VHFs. Moreover, icariin treatment upregulated IGF-1 mRNA expression in DPCs and increased IGF-1 protein content in the conditioned medium of DPCs. These results suggest that icariin can promote mouse hair follicle growth via stimulation of IGF-1 expression in DPCs. © 2017 British Association of Dermatologists.

  7. Obesity-driven prepartal hepatic lipid accumulation in dairy cows is associated with increased CD36 and SREBP-1 expression.

    PubMed

    Prodanović, Radiša; Korićanac, Goran; Vujanac, Ivan; Djordjević, Ana; Pantelić, Marija; Romić, Snježana; Stanimirović, Zoran; Kirovski, Danijela

    2016-08-01

    We investigated the hypothesis that obesity in dairy cows enhanced expression of proteins involved in hepatic fatty acid uptake and metabolism. Sixteen Holstein-Friesian close-up cows were divided into 2 equal groups based on their body condition score (BCS) as optimal (3.25≤BCS≤3.5) and high (4.0≤BCS≤4.25). Intravenous glucose tolerance test (GTT) and liver biopsies were carried out at day 10 before calving. Blood samples were collected before (basal) and after glucose infusion, and glucose, insulin and non-esterified fatty acid (NEFA) levels were determined at each sample point. In addition, β-hydroxybutyrate and triglycerides levels were measured in the basal samples. The liver biopsies were analyzed for total lipid content and protein expression of insulin receptor beta (IRβ), fatty acid translocase (FAT/CD36) and sterol regulatory element-binding protein-1 (SREBP-1). Basal glucose and insulin were higher in high-BCS cows, which coincided with higher circulating triglycerides and hepatic lipid content. Clearance rate and AUC for NEFA during GTT were higher in optimal-BCS cows. The development of insulin resistance and fatty liver in obese cows was paralleled by increased hepatic expression of the IRβ, CD36 and SREBP-1. These results suggest that increased expression of hepatic CD36 and SREBP-1 is relevant in the obesity-driven lipid accumulation in the liver of dairy cows during late gestation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Surface expression of squamous cell carcinoma antigen (SCCA) can be increased by the preS1(21-47) sequence of hepatitis B virus.

    PubMed

    Ruvoletto, M G; Tono, N; Carollo, D; Vilei, T; Trentin, L; Muraca, M; Marino, M; Gatta, A; Fassina, G; Pontisso, P

    2004-03-01

    A variant of the serpin squamous cell carcinoma antigen (SCCA) has been identified as a hepatitis B virus binding protein and high expression of SCCA has recently been found in hepatocarcinoma. Since HBV is involved in liver carcinogenesis, experiments were carried out to examine the effect of HBV preS1 envelope protein on SCCA expression. Surface and intracellular staining for SCCA was assessed by FACS analysis. Preincubation of HepG2 cells and primary human hepatocytes with preS1 protein or with preS1(21-47) tetrameric peptide significantly increased the surface expression of SCCA, without modification of its overall cellular burden, suggesting a surface redistribution of the serpin. An increase in HBV binding and internalization was observed after pre-incubation of the cells with preS1 preparations, compared to cells preincubated with medium alone. Pretreatment of cells with DMSO, while not influencing SCCA basal expression, was responsible for an increase in the efficiency of HBV internalization and this effect was additive to that obtained after incubation with preS1 preparations. In conclusion, the HBV preS1(21-47) sequence is able to induce overexpression of SCCA at the cell surface facilitating virus internalization, while the increased efficiency of HBV entry following DMSO addition is not mediated by SCCA.

  9. Increased B7-H1 expression on dendritic cells correlates with programmed death 1 expression on T cells in simian immunodeficiency virus-infected macaques and may contribute to T cell dysfunction and disease progression.

    PubMed

    Xu, Huanbin; Wang, Xiaolei; Pahar, Bapi; Moroney-Rasmussen, Terri; Alvarez, Xavier; Lackner, Andrew A; Veazey, Ronald S

    2010-12-15

    Suppression of dendritic cell (DC) function in HIV-1 infection is thought to contribute to inhibition of immune responses and disease progression, but the mechanism of this suppression remains undetermined. Using the rhesus macaque model, we show B7-H1 (programmed death [PD]-L1) is expressed on lymphoid and mucosal DCs (both myeloid DCs and plasmacytoid DCs), and its expression significantly increases after SIV infection. Meanwhile, its receptor, PD-1, is upregulated on T cells in both peripheral and mucosal tissues and maintained at high levels on SIV-specific CD8(+) T cell clones in chronic infection. However, both B7-H1 and PD-1 expression in SIV controllers was similar to that of controls. Expression of B7-H1 on both peripheral myeloid DCs and plasmacytoid DCs positively correlated with levels of PD-1 on circulating CD4(+) and CD8(+) T cells, viremia, and declining peripheral CD4(+) T cell levels in SIV-infected macaques. Importantly, blocking DC B7-H1 interaction with PD-1(+) T cells could restore SIV-specific CD4(+) and CD8(+) T cell function as evidenced by increased cytokine secretion and proliferative capacity. Combined, the results indicate that interaction of B7-H1-PD-1 between APCs and T cells correlates with impairment of CD4(+) Th cells and CTL responses in vivo, and all are associated with disease progression in SIV infection. Blockade of this pathway may have therapeutic implications for HIV-infected patients.

  10. Increased expression of deleted in malignant brain tumors (DMBT1) gene in precancerous gastric lesions: Findings from human and animal studies.

    PubMed

    Garay, Jone; Piazuelo, M Blanca; Lopez-Carrillo, Lizbeth; Leal, Yelda A; Majumdar, Sumana; Li, Li; Cruz-Rodriguez, Nataly; Serrano-Gomez, Silvia J; Busso, Carlos S; Schneider, Barbara G; Delgado, Alberto G; Bravo, Luis E; Crist, Angela M; Meadows, Stryder M; Camargo, M Constanza; Wilson, Keith T; Correa, Pelayo; Zabaleta, Jovanny

    2017-07-18

    Helicobacter pylori infection triggers a cascade of inflammatory stages that may lead to the appearance of non-atrophic gastritis, multifocal atrophic, intestinal metaplasia, dysplasia, and cancer. Deleted in malignant brain tumors 1 (DMBT1) belongs to the group of secreted scavenger receptor cysteine-rich proteins and is considered to be involved in host defense by binding to pathogens. Initial studies showed its deletion and loss of expression in a variety of tumors but the role of this gene in tumor development is not completely understood. Here, we examined the role of DMBT1 in gastric precancerous lesions in Caucasian, African American and Hispanic individuals as well as in the development of gastric pathology in a mouse model of H. pylori infection. We found that in 3 different populations, mucosal DMBT1 expression was significantly increased (2.5 fold) in individuals with dysplasia compared to multifocal atrophic gastritis without intestinal metaplasia; the increase was also observed in individuals with advanced gastritis and positive H. pylori infection. In our animal model, H. pylori infection of Dmbt1-/- mice resulted in significantly higher levels of gastritis, more extensive mucous metaplasia and reduced Il33 expression levels in the gastric mucosa compared to H. pylori-infected wild type mice. Our data in the animal model suggest that in response to H. pylori infection DMBT1 may mediate mucosal protection reducing the risk of developing gastric precancerous lesions. However, the increased expression in human gastric precancerous lesions points to a more complex role of DMBT1 in gastric carcinogenesis.

  11. Increased expression of deleted in malignant brain tumors (DMBT1) gene in precancerous gastric lesions: Findings from human and animal studies

    PubMed Central

    Garay, Jone; Piazuelo, M. Blanca; Lopez-Carrillo, Lizbeth; Leal, Yelda A; Majumdar, Sumana; Li, Li; Cruz-Rodriguez, Nataly; Serrano-Gomez, Silvia J; Busso, Carlos S; Schneider, Barbara G; Delgado, Alberto G; Bravo, Luis E; Crist, Angela M; Meadows, Stryder M; Camargo, M. Constanza; Wilson, Keith T; Correa, Pelayo; Zabaleta, Jovanny

    2017-01-01

    Helicobacter pylori infection triggers a cascade of inflammatory stages that may lead to the appearance of non-atrophic gastritis, multifocal atrophic, intestinal metaplasia, dysplasia, and cancer. Deleted in malignant brain tumors 1 (DMBT1) belongs to the group of secreted scavenger receptor cysteine-rich proteins and is considered to be involved in host defense by binding to pathogens. Initial studies showed its deletion and loss of expression in a variety of tumors but the role of this gene in tumor development is not completely understood. Here, we examined the role of DMBT1 in gastric precancerous lesions in Caucasian, African American and Hispanic individuals as well as in the development of gastric pathology in a mouse model of H. pylori infection. We found that in 3 different populations, mucosal DMBT1 expression was significantly increased (2.5 fold) in individuals with dysplasia compared to multifocal atrophic gastritis without intestinal metaplasia; the increase was also observed in individuals with advanced gastritis and positive H. pylori infection. In our animal model, H. pylori infection of Dmbt1−/− mice resulted in significantly higher levels of gastritis, more extensive mucous metaplasia and reduced Il33 expression levels in the gastric mucosa compared to H. pylori-infected wild type mice. Our data in the animal model suggest that in response to H. pylori infection DMBT1 may mediate mucosal protection reducing the risk of developing gastric precancerous lesions. However, the increased expression in human gastric precancerous lesions points to a more complex role of DMBT1 in gastric carcinogenesis. PMID:28423364

  12. Sophora flavescens Aiton Decreases MPP+-Induced Mitochondrial Dysfunction in SH-SY5Y Cells.

    PubMed

    Kim, Hee-Young; Jeon, Hyongjun; Kim, Hyungwoo; Koo, Sungtae; Kim, Seungtae

    2018-01-01

    Sophora flavescens Aiton (SF) has been used to treat various diseases including fever and inflammation in China, South Korea and Japan. Several recent reports have shown that SF has anti-inflammatory and anti-apoptotic effects, indicating that it is a promising candidate for treatment of Parkinson's disease (PD). We evaluated the protective effect of SF against neurotoxin 1-methyl-4-phenylpyridinium ion (MPP + )-induced mitochondrial dysfunction in SH-SY5Y human neuroblastoma cells, an in vitro PD model. SH-SY5Y cells were incubated with SF for 24 h, after which they were treated with MPP + . MPP + -induced cytotoxicity and apoptosis were confirmed by 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay and terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling assay. MitoSOX red mitochondrial superoxide indicator, tetramethylrhodamine methyl ester perchlorate and Parkin, PTEN-induced putative kinase 1 (PINK1), and DJ-1 immunofluorescent staining were conducted to confirm the mitochondrial function. In addition, western blot was performed to evaluate apoptosis factors (Bcl-2, Bax, caspase-3 and cytochrome c) and mitochondrial function-related factors (Parkin, PINK1 and DJ-1). SF suppressed MPP + -induced cytotoxicity, apoptosis and collapse of mitochondrial membrane potential by inhibiting the increase of reactive oxidative species (ROS) and DNA fragmentation, and controlling Bcl-2, Bax, caspase-3 and cytochrome c expression. Moreover, it attenuated Parkin, PINK1 and DJ-1 expression from MPP + -induced decrease. SF effectively suppressed MPP + -induced cytotoxicity, apoptosis and mitochondrial dysfunction by regulating generation of ROS, disruption of mitochondrial membrane potential, mitochondria-dependent apoptosis and loss or mutation of mitochondria-related PD markers including Parkin, PINK1 and DJ-1.

  13. Dietary Polyphenols Increase Paraoxonase 1 Gene Expression by an Aryl Hydrocarbon Receptor-Dependent Mechanism

    PubMed Central

    Gouédard, Cédric; Barouki, Robert; Morel, Yannick

    2004-01-01

    Human paraoxonase 1 (PON-1) is a serum high-density lipoprotein-associated enzyme mainly secreted by the liver. It has endogenous and exogenous substrates and displays protective properties with respect to cardiovascular disease and organophosphate intoxication. In the HuH7 human hepatoma cell line, PON-1 activity and mRNA levels were increased by dietary polyphenolic compounds such as quercetin but also by toxic ligands of the aryl hydrocarbon receptor (AhR) such as 3-methylcholanthrene (3-MC). However, the 2,3,7,8-tetrachlorobenzo(p)dioxin (TCDD) was a poor inducer. Transient and stable transfection assays indicated that these compounds increased the PON-1 gene promoter activity in an AhR-dependent manner, since their effect was inhibited by 7-keto-cholesterol and AhR-directed short interfering RNA. Deletions and mutations studies showed that a xenobiotic responsive element (XRE)-like sequence within the PON-1 promoter mediated the effect of 3-MC and quercetin. In contrast with consensus XREs from the cytochrome P450 1A1 gene, the PON-1 XRE-like element mediated preferentially the effect of quercetin compared to the results seen with TCDD. Furthermore, AhR binding to this element was preferentially activated by quercetin. These observations provide a molecular mechanism for the regulation of the cardioprotective enzyme PON-1 by polyphenols. They suggest also that AhR ligands may differentially regulate gene expression depending on the DNA target sequence. PMID:15169886

  14. Increased Brahma-related Gene 1 Expression Predicts Distant Metastasis and Shorter Survival in Patients with Invasive Ductal Carcinoma of the Breast.

    PubMed

    Do, Sung-Im; Yoon, Gun; Kim, Hyun-Soo; Kim, Kyungeun; Lee, Hyunjoo; Do, In-Gu; Kim, Dong-Hoon; Chae, Seoung Wan; Sohn, Jin Hee

    2016-09-01

    Previous studies have demonstrated aberrant Brahma-related gene 1 (BRG1) expression in various tumor types. Increased BRG1 expression has recently been shown to correlate with aggressive oncogenic behavior in many different types of human cancer. However, the role of BRG1 in breast cancer development and progression is not fully understood. We evaluated BRG1 expression in 224 patients with invasive ductal carcinoma (IDC) of the breast using tissue microarray samples and immunohistochemistry. We also investigated whether BRG1 expression status is associated with clinicopathological characteristics and outcomes of patients with IDC. Among the 224 patients with IDC, 37.5% (84/224) exhibited high BRG1 expression. IDC exhibited significantly higher BRG1 expression compared to ductal carcinoma in situ (p=0.009) and normal breast tissue (p=0.005). High BRG1 expression in IDC significantly correlated with higher histological grade (p=0.035) and presence of distant metastasis (p=0.002). Furthermore, high BRG1 expression was an independent factor for predicting distant metastasis (relative risk=4.079; p=0.007). In addition, high BRG1 expression predicted shorter overall (p=0.011) and recurrence-free (p=0.003) survival in patients with IDC. In particular, BRG1 had a significant prognostic value in predicting recurrence-free survival of patients with IDC with lymph node metastasis or stage III disease. BRG1 is involved in the progression and metastasis of breast cancer and can serve as a novel biomarker predictive of distant metastasis and patient outcomes. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  15. Increased expression of fructan 1-exohydrolase in rhizophores of Vernonia herbacea during sprouting and exposure to low temperature.

    PubMed

    Asega, Amanda Francine; do Nascimento, João Roberto O; Carvalho, Maria Angela M

    2011-04-15

    Rhizophores of Vernonia herbacea, an Asteraceae found in the Brazilian Cerrado, store high amounts of fructans that vary in composition over the phenological cycle. Fructan 1-exohydrolase (1-FEH) activity is detectable during the sprouting phase, mainly in the proximal regions of rhizophores, of plants induced to sprout by defoliation and/or cold storage. We found an increase in 1-FEH gene expression during natural and induced sprouting and further enhancement through low-temperature treatment. Furthermore, a comparative analysis of 1-FEH gene expression in different regions of the rhizophores during the transition from dormancy to sprouting is presented. Transcripts were detected mainly in the proximal region, coinciding with high 1-FEH activity and a high concentration of free fructose. Low temperature promoted the accumulation of fructans of a low degree of polymerization (DP) and enhanced 1-FEH activity and gene expression. It is hypothesized that a set of 1-FEH proteins acts in two different ways during fructan mobilization: (1) by hydrolyzing fructo-oligosaccharides and -polysaccharides in sprouting plants (naturally or induced) for carbon supply and (2) by hydrolyzing preferably fructo-polysaccharides under low temperature to maintain the oligosaccharide pool for plant cold acclimation. Copyright © 2010 Elsevier GmbH. All rights reserved.

  16. Therapeutic effects of Euphorbia Pekinensis and Glycyrrhiza glabra on Hepatocellular Carcinoma Ascites Partially Via Regulating the Frk-Arhgdib-Inpp5d-Avpr2-Aqp4 Signal Axis

    PubMed Central

    Zhang, Yanqiong; Yan, Chen; Li, Yuting; Mao, Xia; Tao, Weiwei; Tang, Yuping; Lin, Ya; Guo, Qiuyan; Duan, Jingao; Lin, Na

    2017-01-01

    To clarify unknown rationalities of herbaceous compatibility of Euphorbia Pekinensis (DJ) and Glycyrrhiza glabra (GC) acting on hepatocellular carcinoma (HCC) ascites, peritoneum transcriptomics profiling of 15 subjects, including normal control (Con), HCC ascites mouse model (Mod), DJ-alone, DJ/GC-synergy and DJ/GC-antagonism treatment groups were performed on OneArray platform, followed by differentially expressed genes (DEGs) screening. DEGs between Mod and Con groups were considered as HCC ascites-related genes, and those among different drug treatment and Mod groups were identified as DJ/GC-combination-related genes. Then, an interaction network of HCC ascites-related gene-DJ/GC combination-related gene-known therapeutic target gene for ascites was constructed. Based on nodes’ degree, closeness, betweenness and k-coreness, the Frk-Arhgdib-Inpp5d-Avpr2-Aqp4 axis with highly network topological importance was demonstrated to be a candidate target of DJ/GC combination acting on HCC ascites. Importantly, both qPCR and western blot analyses verified this regulatory effects based on HCC ascites mice in vivo and M-1 collecting duct cells in vitro. Collectively, different combination designs of DJ and GC may lead to synergistic or antagonistic effects on HCC ascites partially via regulating the Frk-Arhgdib-Inpp5d-Avpr2-Aqp4 axis, implying that global gene expression profiling combined with network analysis can offer an effective way to understand pharmacological mechanisms of traditional Chinese medicine prescriptions. PMID:28165501

  17. Therapeutic effects of Euphorbia Pekinensis and Glycyrrhiza glabra on Hepatocellular Carcinoma Ascites Partially Via Regulating the Frk-Arhgdib-Inpp5d-Avpr2-Aqp4 Signal Axis

    NASA Astrophysics Data System (ADS)

    Zhang, Yanqiong; Yan, Chen; Li, Yuting; Mao, Xia; Tao, Weiwei; Tang, Yuping; Lin, Ya; Guo, Qiuyan; Duan, Jingao; Lin, Na

    2017-02-01

    To clarify unknown rationalities of herbaceous compatibility of Euphorbia Pekinensis (DJ) and Glycyrrhiza glabra (GC) acting on hepatocellular carcinoma (HCC) ascites, peritoneum transcriptomics profiling of 15 subjects, including normal control (Con), HCC ascites mouse model (Mod), DJ-alone, DJ/GC-synergy and DJ/GC-antagonism treatment groups were performed on OneArray platform, followed by differentially expressed genes (DEGs) screening. DEGs between Mod and Con groups were considered as HCC ascites-related genes, and those among different drug treatment and Mod groups were identified as DJ/GC-combination-related genes. Then, an interaction network of HCC ascites-related gene-DJ/GC combination-related gene-known therapeutic target gene for ascites was constructed. Based on nodes’ degree, closeness, betweenness and k-coreness, the Frk-Arhgdib-Inpp5d-Avpr2-Aqp4 axis with highly network topological importance was demonstrated to be a candidate target of DJ/GC combination acting on HCC ascites. Importantly, both qPCR and western blot analyses verified this regulatory effects based on HCC ascites mice in vivo and M-1 collecting duct cells in vitro. Collectively, different combination designs of DJ and GC may lead to synergistic or antagonistic effects on HCC ascites partially via regulating the Frk-Arhgdib-Inpp5d-Avpr2-Aqp4 axis, implying that global gene expression profiling combined with network analysis can offer an effective way to understand pharmacological mechanisms of traditional Chinese medicine prescriptions.

  18. Hereditary mixed polyposis syndrome is caused by a 40-kb upstream duplication that leads to increased and ectopic expression of the BMP antagonist GREM1.

    PubMed

    Jaeger, Emma; Leedham, Simon; Lewis, Annabelle; Segditsas, Stefania; Becker, Martin; Cuadrado, Pedro Rodenas; Davis, Hayley; Kaur, Kulvinder; Heinimann, Karl; Howarth, Kimberley; East, James; Taylor, Jenny; Thomas, Huw; Tomlinson, Ian

    2012-05-06

    Hereditary mixed polyposis syndrome (HMPS) is characterized by apparent autosomal dominant inheritance of multiple types of colorectal polyp, with colorectal carcinoma occurring in a high proportion of affected individuals. Here, we use genetic mapping, copy-number analysis, exclusion of mutations by high-throughput sequencing, gene expression analysis and functional assays to show that HMPS is caused by a duplication spanning the 3' end of the SCG5 gene and a region upstream of the GREM1 locus. This unusual mutation is associated with increased allele-specific GREM1 expression. Whereas GREM1 is expressed in intestinal subepithelial myofibroblasts in controls, GREM1 is predominantly expressed in the epithelium of the large bowel in individuals with HMPS. The HMPS duplication contains predicted enhancer elements; some of these interact with the GREM1 promoter and can drive gene expression in vitro. Increased GREM1 expression is predicted to cause reduced bone morphogenetic protein (BMP) pathway activity, a mechanism that also underlies tumorigenesis in juvenile polyposis of the large bowel.

  19. Presence of unique glyoxalase III proteins in plants indicates the existence of shorter route for methylglyoxal detoxification

    PubMed Central

    Ghosh, Ajit; Kushwaha, Hemant R; Hasan, Mohammad R; Pareek, Ashwani; Sopory, Sudhir K; Singla-Pareek, Sneh L

    2016-01-01

    Glyoxalase pathway, comprising glyoxalase I (GLY I) and glyoxalase II (GLY II) enzymes, is the major pathway for detoxification of methylglyoxal (MG) into D-lactate involving reduced glutathione (GSH). However, in bacteria, glyoxalase III (GLY III) with DJ-1/PfpI domain(s) can do the same conversion in a single step without GSH. Our investigations for the presence of DJ-1/PfpI domain containing proteins in plants have indicated the existence of GLY III-like proteins in monocots, dicots, lycopods, gymnosperm and bryophytes. A deeper in silico analysis of rice genome identified twelve DJ-1 proteins encoded by six genes. Detailed analysis has been carried out including their chromosomal distribution, genomic architecture and localization. Transcript profiling under multiple stress conditions indicated strong induction of OsDJ-1 in response to exogenous MG. A member of OsDJ-1 family, OsDJ-1C, showed high constitutive expression at all developmental stages and tissues of rice. MG depletion study complemented by simultaneous formation of D-lactate proved OsDJ-1C to be a GLY III enzyme that converts MG directly into D-lactate in a GSH-independent manner. Site directed mutagenesis of Cys-119 to Alanine significantly reduces its GLY III activity indicating towards the existence of functional GLY III enzyme in rice—a shorter route for MG detoxification. PMID:26732528

  20. Zinc-induced Dnmt1 expression involves antagonism between MTF-1 and nuclear receptor SHP

    PubMed Central

    Zhang, Yuxia; Andrews, Glen K.; Wang, Li

    2012-01-01

    Dnmt1 is frequently overexpressed in cancers, which contributes significantly to cancer-associated epigenetic silencing of tumor suppressor genes. However, the mechanism of Dnmt1 overexpression remains elusive. Herein, we elucidate a pathway through which nuclear receptor SHP inhibits zinc-dependent induction of Dnmt1 by antagonizing metal-responsive transcription factor-1 (MTF-1). Zinc treatment induces Dnmt1 transcription by increasing the occupancy of MTF-1 on the Dnmt1 promoter while decreasing SHP expression. SHP in turn represses MTF-1 expression and abolishes zinc-mediated changes in the chromatin configuration of the Dnmt1 promoter. Dnmt1 expression is increased in SHP-knockout (sko) mice but decreased in SHP-transgenic (stg) mice. In human hepatocellular carcinoma (HCC), increased DNMT1 expression is negatively correlated with SHP levels. Our study provides a molecular explanation for increased Dnmt1 expression in HCC and highlights SHP as a potential therapeutic target. PMID:22362755

  1. Increased methylation and decreased expression of homeobox genes TLX1, HOXA10 and DLX5 in human placenta are associated with trophoblast differentiation.

    PubMed

    Novakovic, Boris; Fournier, Thierry; Harris, Lynda K; James, Joanna; Roberts, Claire T; Yong, Hannah E J; Kalionis, Bill; Evain-Brion, Danièle; Ebeling, Peter R; Wallace, Euan M; Saffery, Richard; Murthi, Padma

    2017-07-03

    Homeobox genes regulate embryonic and placental development, and are widely expressed in the human placenta, but their regulatory control by DNA methylation is unclear. DNA methylation analysis was performed on human placentae from first, second and third trimesters to determine methylation patterns of homeobox gene promoters across gestation. Most homeobox genes were hypo-methylated throughout gestation, suggesting that DNA methylation is not the primary mechanism involved in regulating HOX genes expression in the placenta. Nevertheless, several genes showed variable methylation patterns across gestation, with a general trend towards an increase in methylation over gestation. Three genes (TLX1, HOXA10 and DLX5) showed inverse gains of methylation with decreasing mRNA expression throughout pregnancy, supporting a role for DNA methylation in their regulation. Proteins encoded by these genes were primarily localised to the syncytiotrophoblast layer, and showed decreased expression later in gestation. siRNA mediated downregulation of DLX5, TLX1 and HOXA10 in primary term villous cytotrophoblast resulted in decreased proliferation and increased expression of differentiation markers, including ERVW-1. Our data suggest that loss of DLX5, TLX1 and HOXA10 expression in late gestation is required for proper placental differentiation and function.

  2. Leucine supplementation increases SIRT1 expression and prevents mitochondrial dysfunction and metabolic disorders in high-fat diet-induced obese mice.

    PubMed

    Li, Hongliang; Xu, Mingjiang; Lee, Jiyeon; He, Chaoyong; Xie, Zhonglin

    2012-11-15

    Leucine supplementation has been shown to prevent high-fat diet (HFD)-induced obesity, hyperglycemia, and dyslipidemia in animal models, but the underlying mechanisms are not fully understood. Recent studies suggest that activation of Sirtuin 1 (SIRT1) is an important mechanism to maintain energy and metabolic homeostasis. We therefore examined the involvement of SIRT1 in leucine supplementation-prevented obesity and insulin resistance. To accomplish this goal, male C57BL/6J mice were fed normal diet or HFD, supplemented with or without leucine. After 2 mo of treatment, alterations in SIRT1 expression, insulin signaling, and energy metabolism were analyzed. Eight weeks of HFD induced obesity, fatty liver, mitochondrial dysfunction, hyperglycemia, and insulin resistance in mice. Addition of leucine to HFD correlated with increased expression of SIRT1 and NAMPT (nicotinamide phosphoribosyltransferase) as well as higher intracellular NAD(+) levels, which decreased acetylation of peroxisome proliferator-activated receptor-γ coactivator 1α (PGC1α) and forkhead box O1 (FoxO1). The deacetylation of PGC1α may contribute to upregulation of genes controlling mitochondrial biogenesis and fatty acid oxidation, thereby improving mitochondrial function and preventing HFD-induced obesity in mice. Moreover, decreased acetylation of FoxO1 was accompanied by decreased expression of pseudokinase tribble 3 (TRB3) and reduced the association between TRB3 and Akt, which enhanced insulin sensitivity and improved glucose metabolism. Finally, transfection of dominant negative AMPK prevented activation of SIRT1 signaling in HFD-Leu mice. These data suggest that increased expression of SIRT1 after leucine supplementation may lead to reduced acetylation of PGC1α and FoxO1, which is associated with attenuation of HFD-induced mitochondrial dysfunction, insulin resistance, and obesity.

  3. Leucine supplementation increases SIRT1 expression and prevents mitochondrial dysfunction and metabolic disorders in high-fat diet-induced obese mice

    PubMed Central

    Li, Hongliang; Xu, Mingjiang; Lee, Jiyeon; He, Chaoyong

    2012-01-01

    Leucine supplementation has been shown to prevent high-fat diet (HFD)-induced obesity, hyperglycemia, and dyslipidemia in animal models, but the underlying mechanisms are not fully understood. Recent studies suggest that activation of Sirtuin 1 (SIRT1) is an important mechanism to maintain energy and metabolic homeostasis. We therefore examined the involvement of SIRT1 in leucine supplementation-prevented obesity and insulin resistance. To accomplish this goal, male C57BL/6J mice were fed normal diet or HFD, supplemented with or without leucine. After 2 mo of treatment, alterations in SIRT1 expression, insulin signaling, and energy metabolism were analyzed. Eight weeks of HFD induced obesity, fatty liver, mitochondrial dysfunction, hyperglycemia, and insulin resistance in mice. Addition of leucine to HFD correlated with increased expression of SIRT1 and NAMPT (nicotinamide phosphoribosyltransferase) as well as higher intracellular NAD+ levels, which decreased acetylation of peroxisome proliferator-activated receptor-γ coactivator 1α (PGC1α) and forkhead box O1 (FoxO1). The deacetylation of PGC1α may contribute to upregulation of genes controlling mitochondrial biogenesis and fatty acid oxidation, thereby improving mitochondrial function and preventing HFD-induced obesity in mice. Moreover, decreased acetylation of FoxO1 was accompanied by decreased expression of pseudokinase tribble 3 (TRB3) and reduced the association between TRB3 and Akt, which enhanced insulin sensitivity and improved glucose metabolism. Finally, transfection of dominant negative AMPK prevented activation of SIRT1 signaling in HFD-Leu mice. These data suggest that increased expression of SIRT1 after leucine supplementation may lead to reduced acetylation of PGC1α and FoxO1, which is associated with attenuation of HFD-induced mitochondrial dysfunction, insulin resistance, and obesity. PMID:22967499

  4. Increased TET1 Expression in Inflammatory Microenvironment of Hyperinsulinemia Enhances the Response of Endometrial Cancer to Estrogen by Epigenetic Modulation of GPER

    PubMed Central

    Lv, Qiao-Ying; Xie, Bing-Ying; Yang, Bing-Yi; Ning, Cheng-Cheng; Shan, Wei-Wei; Gu, Chao; Luo, Xue-Zhen; Chen, Xiao-Jun; Zhang, Zhen-Bo; Feng, You-Ji

    2017-01-01

    Background: Insulin resistance (IR) has been well studied in the initiation and development of endometrial endometrioid carcinoma (EEC). As yet, it has been largely neglected for estrogen sensitivity in local endometrium in hyperinsulinemia-induced systemic microenvironment. The aim of this study was to investigate the role of insulin in regulating estrogen sensitivity and explore the potential mechanisms in insulin-driven inflammatory microenvironment. Methods: We first investigated the effect of insulin on estradiol-driven endometrial cancer cells proliferation in vitro to address the roles of insulin in modulating estrogen sensitivity. Then GPER, ERα and TET1 in EEC samples with or without insulin resistance were screened by immunohistochemistry to confirm whether insulin resistance regulates estrogen receptors. Further mechanism analysis was carried out to address whether TET1 was mediated epigenetic modulation of GPER in insulin-induced microenvironment. Results: Insulin enhanced estradiol-driven endometrial cancer cells proliferation by up-regulating G-protein-coupled estrogen receptor (GPER) expression, but not ERα or ERβ. Immunohistochemistry of EEC tissues showed that GPER expression was greatly increased in endometrial tissues from EEC subjects with insulin resistance and was positively correlated with Ten-eleven-translocation 1 (TET1) expression. Mechanistically, insulin up-regulates TET1 expression, and the latter, an important DNA hydroxymethylase, could up-regulate GPER expression through epigenetic modulation. Conclusion: This study identified TET1 as the upstream regulator of GPER expression and provides a possible mechanism that insulin-induced positive regulation of estrogen sensitivity in endometrial cancer cells. Increasing expression of GPER through TET1-mediated epigenetic modulation may emerge as the main regulator to enhance the response of endometrial cancer to estrogen in insulin-driven inflammatory microenvironment. PMID:28382153

  5. Increased TET1 Expression in Inflammatory Microenvironment of Hyperinsulinemia Enhances the Response of Endometrial Cancer to Estrogen by Epigenetic Modulation of GPER.

    PubMed

    Lv, Qiao-Ying; Xie, Bing-Ying; Yang, Bing-Yi; Ning, Cheng-Cheng; Shan, Wei-Wei; Gu, Chao; Luo, Xue-Zhen; Chen, Xiao-Jun; Zhang, Zhen-Bo; Feng, You-Ji

    2017-01-01

    Background: Insulin resistance (IR) has been well studied in the initiation and development of endometrial endometrioid carcinoma (EEC). As yet, it has been largely neglected for estrogen sensitivity in local endometrium in hyperinsulinemia-induced systemic microenvironment. The aim of this study was to investigate the role of insulin in regulating estrogen sensitivity and explore the potential mechanisms in insulin-driven inflammatory microenvironment. Methods: We first investigated the effect of insulin on estradiol-driven endometrial cancer cells proliferation in vitro to address the roles of insulin in modulating estrogen sensitivity. Then GPER, ERα and TET1 in EEC samples with or without insulin resistance were screened by immunohistochemistry to confirm whether insulin resistance regulates estrogen receptors. Further mechanism analysis was carried out to address whether TET1 was mediated epigenetic modulation of GPER in insulin-induced microenvironment. Results: Insulin enhanced estradiol-driven endometrial cancer cells proliferation by up-regulating G-protein-coupled estrogen receptor (GPER) expression, but not ERα or ERβ. Immunohistochemistry of EEC tissues showed that GPER expression was greatly increased in endometrial tissues from EEC subjects with insulin resistance and was positively correlated with Ten-eleven-translocation 1 (TET1) expression. Mechanistically, insulin up-regulates TET1 expression, and the latter, an important DNA hydroxymethylase, could up-regulate GPER expression through epigenetic modulation. Conclusion: This study identified TET1 as the upstream regulator of GPER expression and provides a possible mechanism that insulin-induced positive regulation of estrogen sensitivity in endometrial cancer cells. Increasing expression of GPER through TET1-mediated epigenetic modulation may emerge as the main regulator to enhance the response of endometrial cancer to estrogen in insulin-driven inflammatory microenvironment.

  6. Increased Cell Adhesion Molecules, PECAM-1, ICAM-3, or VCAM-1, Predict Increased Risk for Flare in Patients With Quiescent Inflammatory Bowel Disease.

    PubMed

    Gu, Phillip; Theiss, Arianne; Han, Jie; Feagins, Linda A

    2017-07-01

    Predicting the risk of flare-ups for patients with inflammatory bowel disease (IBD) is difficult. Alterations in gut endothelial regulation of mucosal immune homeostasis might be early events leading to flares in IBD. Cell adhesion molecules (CAMs), in particular, are important in maintaining endothelial integrity and regulating the migration of leukocytes into the gut. We evaluated the mRNA expression of various tight junction proteins, with an emphasis on CAMs, in 40 patients with IBD in clinical remission. Patients were retrospectively assessed at 6, 12, and 24 months after baseline colonoscopy, and at the end of all available follow-up (maximum 65 mo), for flare events to determine whether baseline mRNA expression was associated with subsequent flares. At all follow-up points, the baseline expression of platelet endothelial cell adhesion molecule-1 (PECAM-1), ICAM-3, and VCAM-1 was significantly higher in patients who flared than in those who did not (2.4-fold elevation, P=0.012 for PECAM-1; 1.9-fold increased, P=0.03 for ICAM-3; and 1.4-fold increased, P=0.02 for VCAM-1). PECAM-1 and ICAM-3 expression was significantly increased in patients who flared as early as 6 months after baseline colonoscopy. In contrast, there were no significant differences between patients with and without flares in baseline expression of other CAMs (ESAM, ICAM-1, ICAM-2, E-selectin, P-selectin, and MadCAM1). Increased expression of PECAM-1, ICAM-3, and VCAM-1 in colonic biopsies from patients with IBD in clinical remission is associated with subsequent flares. This suggests that increases in the expression of these proteins may be early events that lead to flares in patients with IBD.

  7. Milk peptides increase iron solubility in water but do not affect DMT-1 expression in Caco-2 cells

    USDA-ARS?s Scientific Manuscript database

    In vitro digestion of milk produces peptide fractions that enhance iron uptake by Caco-2 cells. Our objectives were to investigate whether these fractions a) exert their effect by increasing relative gene expression of DMT-1 in Caco-2 cells b) enhance iron dialyzability when added in meals. Peptid...

  8. Rufinamide, an antiepileptic drug, improves cognition and increases neurogenesis in the aged gerbil hippocampal dentate gyrus via increasing expressions of IGF-1, IGF-1R and p-CREB.

    PubMed

    Chen, Bai Hui; Ahn, Ji Hyeon; Park, Joon Ha; Song, Minah; Kim, Hyunjung; Lee, Tae-Kyeong; Lee, Jae Chul; Kim, Young-Myeong; Hwang, In Koo; Kim, Dae Won; Lee, Choong-Hyun; Yan, Bing Chun; Kang, Il Jun; Won, Moo-Ho

    2018-04-25

    Rufinamide is a novel antiepileptic drug and commonly used in the treatment of Lennox-Gastaut syndrome. In the present study, we investigated effects of rufinamide on cognitive function using passive avoidance test and neurogenesis in the hippocampal dentate gyrus using Ki-67 (a marker for cell proliferation), doublecortin (DCX, a marker for neuroblast) and BrdU/NeuN (markers for newly generated mature neurons) immunohistochemistry in aged gerbils. Aged gerbils (24-month old) were treated with 1 mg/kg and 3 mg/kg rufinamide for 4 weeks. Treatment with 3 mg/kg rufinamide, not 1 mg/kg rufinamide, significantly improved cognitive function and increased neurogenesis, showing that proliferating cells (Ki-67-immunoreactive cells), differentiating neuroblasts (DCX-immunoreactive neuroblasts) and mature neurons (BrdU/NeuN-immunoreactive cells) in the aged dentate gyrus compared with those in the control group. When we examined its mechanisms, rufinamide significantly increased immunoreactivities of insulin-like growth factor-1 (IGF-1), its receptor (IGF-1R), and phosphorylated cAMP response element binding protein (p-CREB). However, rufinamide did not show any increase in immunoreactivities of brain-derived neurotrophic factor and its receptor. Therefore, our results indicate that rufinamide can improve cognitive function and increase neurogenesis in the hippocampus of the aged gerbil via increasing expressions of IGF-1, IGF-1R and p-CREB. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Prenatal programming of metabolic syndrome in the common marmoset is associated with increased expression of 11beta-hydroxysteroid dehydrogenase type 1.

    PubMed

    Nyirenda, Moffat J; Carter, Roderick; Tang, Justin I; de Vries, Annick; Schlumbohm, Christina; Hillier, Stephen G; Streit, Frank; Oellerich, Michael; Armstrong, Victor W; Fuchs, Eberhard; Seckl, Jonathan R

    2009-12-01

    Recent studies in humans and animal models of obesity have shown increased adipose tissue activity of 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1), which amplifies local tissue glucocorticoid concentrations. The reasons for this 11beta-HSD1 dysregulation are unknown. Here, we tested whether 11beta-HSD1 expression, like the metabolic syndrome, is "programmed" by prenatal environmental events in a nonhuman primate model, the common marmoset monkey. We used a "fetal programming" paradigm where brief antenatal exposure to glucocorticoids leads to the metabolic syndrome in the offspring. Pregnant marmosets were given the synthetic glucocorticoid dexamethasone orally for 1 week in either early or late gestation, or they were given vehicle. Tissue 11beta-HSD1 and glucocorticoid receptor mRNA expression were examined in the offspring at 4 and 24 months of age. Prenatal dexamethasone administration, selectively during late gestation, resulted in early and persistent elevations in 11beta-HSD1 mRNA expression and activity in the liver, pancreas, and subcutaneous-but not visceral-fat. The increase in 11beta-HSD1 occurred before animals developed obesity or overt features of the metabolic syndrome. In contrast to rodents, in utero dexamethasone exposure did not alter glucocorticoid receptor expression in metabolic tissues in marmosets. These data suggest that long-term upregulation of 11beta-HSD1 in metabolically active tissues may follow prenatal "stress" hormone exposure and indicates a novel mechanism for fetal origins of adult obesity and the metabolic syndrome.

  10. Over-expression of (1,3;1,4)-β-D-glucanase isoenzyme EII gene results in decreased (1,3;1,4)-β-D-glucan content and increased starch level in barley grains.

    PubMed

    Han, Ning; Na, Chenglong; Chai, Yuqiong; Chen, Jianshu; Zhang, Zhongbo; Bai, Bin; Bian, Hongwu; Zhang, Yuhong; Zhu, Muyuan

    2017-01-01

    High content of (1,3;1,4)-β-d-glucan in barley grains is regarded as an undesirable factor affecting malting potential, brewing yield and feed utilization. Production of thermostable bacterial (1,3;1,4)-β-glucanase in transgenic barley grain or supplementation of exogenous bacterial (1,3;1,4)-β-glucanase has been used to improve malt and feed quality. The aim of the present study was to investigate the effect of over-expression of an endogenous (1,3;1,4)-β-glucanase on β-glucan content and grain composition in barley. A construct containing full-length HvGlb2 cDNA encoding barley (1,3;1,4)-β-glucanase isoenzyme EII under the control of a promoter of barley D-Hordein gene Hor3-1 was introduced into barley cultivar Golden Promise via Agrobacterium-mediated transformation, and transgenic plants were regenerated after hygromycin selection. The T 2 generation of proHor3:HvGlb2 transgenic lines showed increased activity of (1,3;1,4)-β-glucanase in grains. Total β-glucan content was reduced by more than 95.73% in transgenic grains compared with the wild-type control. Meanwhile, over-expression of (1,3;1,4)-β-glucanase led to an increase in 1000-grain weight, which might be due to elevated amounts of starch in the grain. Manipulating the expression of (1,3;1,4)-β-glucanase EII can control the β-glucan content in grain with no apparent harmful effects on grain quality of transgenic plants. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  11. UDP-Glucuronosyltransferase Expression in Mouse Liver Is Increased in Obesity- and Fasting-Induced Steatosis

    PubMed Central

    Xu, Jialin; Kulkarni, Supriya R.; Li, Liya

    2012-01-01

    UDP-glucuronosyltransferases (Ugt) catalyze phase II conjugation reactions with glucuronic acid, which enhances chemical polarity and the elimination from the body. Few studies have addressed whether Ugt expression and activity are affected by liver disease, such as steatosis. The purpose of this study was to determine whether steatosis induced by obesity or fasting could affect liver Ugt mRNA expression and activity. Male C57BL/6J and Lepob/ob (ob/ob) mice were fed ad libitum or food was withheld for 24 h. In steatotic livers of ob/ob mice, Ugt1a1, -1a6, -1a9, -2a3, -3a1, and -3a2 mRNA expression increased. Fasting, which also induced steatosis, increased hepatic Ugt1a1, -1a6, -1a7, -1a9, -2b1, -2b5, -2a3, -3a1, and -3a2 mRNA expression in mouse liver. Likewise, acetaminophen glucuronidation increased by 47% in hepatic microsomes from ob/ob mice compared with that in C57BL/6J mice, but not after fasting. In both steatosis models, Ugt induction was accompanied by increased aryl hydrocarbon receptor, constitutive androstane receptor (CAR), peroxisome proliferator-activated receptor (PPAR)-α, pregnane X receptor, nuclear factor (erythroid-derived 2)-like 2 (Nrf2), and peroxisome proliferator-activated receptor-γ coactivator-1α mRNA expression. In addition, fasting increased CAR, PPAR, and Nrf2 binding activity. The work points to hepatic triglyceride concentrations corresponding with nuclear receptor and Ugt expression. The findings indicate that steatosis significantly alters hepatic Ugt expression and activity, which could have a significant impact on determining circulating hormone levels, drug efficacy, and environmental chemical clearance. PMID:22031624

  12. UDP-glucuronosyltransferase expression in mouse liver is increased in obesity- and fasting-induced steatosis.

    PubMed

    Xu, Jialin; Kulkarni, Supriya R; Li, Liya; Slitt, Angela L

    2012-02-01

    UDP-glucuronosyltransferases (Ugt) catalyze phase II conjugation reactions with glucuronic acid, which enhances chemical polarity and the elimination from the body. Few studies have addressed whether Ugt expression and activity are affected by liver disease, such as steatosis. The purpose of this study was to determine whether steatosis induced by obesity or fasting could affect liver Ugt mRNA expression and activity. Male C57BL/6J and Lep(ob/ob) (ob/ob) mice were fed ad libitum or food was withheld for 24 h. In steatotic livers of ob/ob mice, Ugt1a1, -1a6, -1a9, -2a3, -3a1, and -3a2 mRNA expression increased. Fasting, which also induced steatosis, increased hepatic Ugt1a1, -1a6, -1a7, -1a9, -2b1, -2b5, -2a3, -3a1, and -3a2 mRNA expression in mouse liver. Likewise, acetaminophen glucuronidation increased by 47% in hepatic microsomes from ob/ob mice compared with that in C57BL/6J mice, but not after fasting. In both steatosis models, Ugt induction was accompanied by increased aryl hydrocarbon receptor, constitutive androstane receptor (CAR), peroxisome proliferator-activated receptor (PPAR)-α, pregnane X receptor, nuclear factor (erythroid-derived 2)-like 2 (Nrf2), and peroxisome proliferator-activated receptor-γ coactivator-1α mRNA expression. In addition, fasting increased CAR, PPAR, and Nrf2 binding activity. The work points to hepatic triglyceride concentrations corresponding with nuclear receptor and Ugt expression. The findings indicate that steatosis significantly alters hepatic Ugt expression and activity, which could have a significant impact on determining circulating hormone levels, drug efficacy, and environmental chemical clearance.

  13. Increased AIF-1-mediated TNF-α expression during implantation phase in IVF cycles with GnRH antagonist protocol.

    PubMed

    Xu, Bufang; Zhou, Mingjuan; Wang, Jingwen; Zhang, Dan; Guo, Feng; Si, Chenchen; Leung, Peter C K; Zhang, Aijun

    2018-06-12

    Is allograft inflammatory factor-1 (AIF-1), a cytokine associated with inflammation and allograft rejection, aberrantly elevated in in vitro fertilization (IVF) cycles with gonadotropin-releasing hormone (GnRH) antagonist protocol with potential effects on endometrial receptivity? Our findings indicated AIF-1 is increased in IVF cycles with GnRH antagonist protocol and mediates greater TNF-α expression during implantation phase, which may be unfavorable for embryo implantation. Studies have shown that GnRH antagonist protocol cycles have lower implantation and clinical pregnancy rates than GnRH agonist long protocol cycles. Endometrial receptivity but not embryo quality is a key factor contributing to this phenomenon; however, the mechanism is still unknown. Implantation and pregnancy rates were studied in 238 patients undergoing their first cycle of IVF/ICSI between 2012 and 2014. Forty of these patients opted to have no fresh embryo replacement and were divided into two equal groups: (i) GnRH antagonist protocol and (ii) GnRH agonist long protocol, group 3 included 20 infertile women with a tubal factor in untreated cycles. During the same interval, endometrial tissues were taken from 18 infertile women with a tubal factor in the early proliferative phase, late proliferative phase, and mid-secretory phase of the menstrual cycle (n = 6/group). Microarray analysis, RT-qPCR, Western blot analysis, immunohistochemistry were used to investigate the expression levels of AIF-1 and the related cytokines (TNF-α, IL1β, IL1RA, IL6, IL12, IL15 and IL18). The effect of AIF-1 on uterine receptivity was modeled using in vitro adhesion experiments (coculture of JAR cells and Ishikawa cells). The expression of AIF-1 was the highest in early proliferative phase, decreasing thereafter in the late proliferative phase, and almost disappearing in the mid-secretory phase, indicating that low AIF-1 expression might be important for embryo implantation during implantation phase

  14. Reduced expression of brain cannabinoid receptor 1 (Cnr1) is coupled with an increased complementary micro-RNA (miR-26b) in a mouse model of fetal alcohol spectrum disorders.

    PubMed

    Stringer, Randa L; Laufer, Benjamin I; Kleiber, Morgan L; Singh, Shiva M

    2013-08-02

    Prenatal alcohol exposure is known to result in fetal alcohol spectrum disorders, a continuum of physiological, behavioural, and cognitive phenotypes that include increased risk for anxiety and learning-associated disorders. Prenatal alcohol exposure results in life-long disorders that may manifest in part through the induction of long-term gene expression changes, potentially maintained through epigenetic mechanisms. Here we report a decrease in the expression of Canabinoid receptor 1 (Cnr1) and an increase in the expression of the regulatory microRNA miR-26b in the brains of adult mice exposed to ethanol during neurodevelopment. Furthermore, we show that miR-26b has significant complementarity to the 3'-UTR of the Cnr1 transcript, giving it the potential to bind and reduce the level of Cnr1 expression. These findings elucidate a mechanism through which some genes show long-term altered expression following prenatal alcohol exposure, leading to persistent alterations to cognitive function and behavioural phenotypes observed in fetal alcohol spectrum disorders.

  15. Increased Expression of Fatty-Acid and Calcium Metabolism Genes in Failing Human Heart

    PubMed Central

    Rodríguez-Penas, Diego; Feijóo-Bandín, Sandra; Noguera-Moreno, Teresa; Calaza, Manuel; Álvarez-Barredo, María; Mosquera-Leal, Ana; Parrington, John; Brugada, Josep; Portolés, Manuel; Rivera, Miguel; González-Juanatey, José Ramón; Lago, Francisca

    2012-01-01

    Background Heart failure (HF) involves alterations in metabolism, but little is known about cardiomyopathy-(CM)-specific or diabetes-independent alterations in gene expression of proteins involved in fatty-acid (FA) uptake and oxidation or in calcium-(Ca2+)-handling in the human heart. Methods RT-qPCR was used to quantify mRNA expression and immunoblotting to confirm protein expression in left-ventricular myocardium from patients with HF (n = 36) without diabetes mellitus of ischaemic (ICM, n = 16) or dilated (DCM, n = 20) cardiomyopathy aetiology, and non-diseased donors (CTL, n = 6). Results Significant increases in mRNA of genes regulating FA uptake (CD36) and intracellular transport (Heart-FA-Binding Protein (HFABP)) were observed in HF patients vs CTL. Significance was maintained in DCM and confirmed at protein level, but not in ICM. mRNA was higher in DCM than ICM for peroxisome-proliferator-activated-receptor-alpha (PPARA), PPAR-gamma coactivator-1-alpha (PGC1A) and CD36, and confirmed at the protein level for PPARA and CD36. Transcript and protein expression of Ca2+-handling genes (Two-Pore-Channel 1 (TPCN1), Two-Pore-Channel 2 (TPCN2), and Inositol 1,4,5-triphosphate Receptor type-1 (IP3R1)) increased in HF patients relative to CTL. Increases remained significant for TPCN2 in all groups but for TPCN1 only in DCM. There were correlations between FA metabolism and Ca2+-handling genes expression. In ICM there were six correlations, all distinct from those found in CTL. In DCM there were also six (all also different from those found in CTL): three were common to and three distinct from ICM. Conclusion DCM-specific increases were found in expression of several genes that regulate FA metabolism, which might help in the design of aetiology-specific metabolic therapies in HF. Ca2+-handling genes TPCN1 and TPCN2 also showed increased expression in HF, while HF- and CM-specific positive correlations were found among several FA and Ca2+-handling genes

  16. Neurotoxic Methamphetamine Doses Increase LINE-1 Expression in the Neurogenic Zones of the Adult Rat Brain

    PubMed Central

    Moszczynska, Anna; Flack, Amanda; Qiu, Ping; Muotri, Alysson R.; Killinger, Bryan A.

    2015-01-01

    Methamphetamine (METH) is a widely abused psychostimulant with the potential to cause neurotoxicity in the striatum and hippocampus. Several epigenetic changes have been described after administration of METH; however, there are no data regarding the effects of METH on the activity of transposable elements in the adult brain. The present study demonstrates that systemic administration of neurotoxic METH doses increases the activity of Long INterspersed Element (LINE-1) in two neurogenic niches in the adult rat brain in a promoter hypomethylation-independent manner. Our study also demonstrates that neurotoxic METH triggers persistent decreases in LINE-1 expression and increases the LINE-1 levels within genomic DNA in the striatum and dentate gyrus of the hippocampus, and that METH triggers LINE-1 retrotransposition in vitro. We also present indirect evidence for the involvement of glutamate (GLU) in LINE-1 activation. The results suggest that LINE-1 activation might occur in neurogenic areas in human METH users and might contribute to METH abuse-induced hippocampus-dependent memory deficits and impaired performance on several cognitive tasks mediated by the striatum. PMID:26463126

  17. Berry Phenolic Compounds Increase Expression of Hepatocyte Nuclear Factor-1α (HNF-1α) in Caco-2 and Normal Colon Cells Due to High Affinities with Transcription and Dimerization Domains of HNF-1α

    PubMed Central

    Real Hernandez, Luis M.; Fan, Junfeng; Johnson, Michelle H.; Gonzalez de Mejia, Elvira

    2015-01-01

    Hepatocyte nuclear factor-1α (HNF-1α) is found in the kidneys, spleen, thymus, testis, skin, and throughout the digestive organs. It has been found to promote the transcription of various proteins involved in the management of type II diabetes, including dipeptidyl peptidase-IV (DPP-IV). Phenolic compounds from berries and citrus fruits are known to inhibit DPP-IV, but have not been tested for their interactions with wild-type HNF-1α. By studying the interactions of compounds from berries and citrus fruits have with HNF-1α, pre-transcriptional mechanisms that inhibit the expression of proteins such as DPP-IV may be elucidated. In this study, the interactions of berry phenolic compounds and citrus flavonoids with the dimerization and transcriptional domains of HNF-1α were characterized using the molecular docking program AutoDock Vina. The anthocyanin delphinidin-3-O-arabinoside had the highest binding affinity for the dimerization domain as a homodimer (-7.2 kcal/mol) and transcription domain (-8.3 kcal/mol) of HNF-1α. Anthocyanins and anthocyanidins had relatively higher affinities than resveratrol and citrus flavonoids for both, the transcription domain and the dimerization domain as a homodimer. The flavonoid flavone had the highest affinity for a single unit of the dimerization domain (-6.5 kcal/mol). Nuclear expression of HNF-1α was measured in Caco-2 and human normal colon cells treated with blueberry and blackberry anthocyanin extracts. All extracts tested increased significantly (P < 0.05) the nuclear expression of HNF-1α in Caco-2 cells by 85.2 to 260% compared to a control. The extracts tested increased significantly (P < 0.02) the nuclear expression of HNF-1α in normal colon cells by 48.6 to 243%. It was confirmed that delphinidin-3-O-glucoside increased by 3-fold nuclear HNF-1α expression in Caco-2 cells (P < 0.05). Anthocyanins significantly increased nuclear HNF-1α expression, suggesting that these compounds might regulate the genes HNF-1

  18. Increased Expression of TGF-β1 in Correlation with Liver Fibrosis during Echinococcus granulosus Infection in Mice.

    PubMed

    Liu, Yumei; Abudounnasier, Gulizhaer; Zhang, Taochun; Liu, Xuelei; Wang, Qian; Yan, Yi; Ding, Jianbing; Wen, Hao; Yimiti, Delixiati; Ma, Xiumin

    2016-08-01

    To investigate the potential role of transforming growth factor (TGF)-β1 in liver fibrosis during Echinococcus granulosus infection, 96 BALB/c mice were randomly divided into 2 groups, experimental group infected by intraperitoneal injection with a metacestode suspension and control group given sterile physiological saline. The liver and blood samples were collected at days 2, 8, 30, 90, 180, and 270 post infection (PI), and the expression of TGF-β1 mRNA and protein was determined by real-time quantitative RT-PCR and ELISA, respectively. We also evaluated the pathological changes in the liver during the infection using hematoxylin and eosin (H-E) and Masson staining of the liver sections. Pathological analysis of H-E stained infected liver sections revealed liver cell edema, bile duct proliferation, and structural damages of the liver as evidenced by not clearly visible lobular architecture of the infected liver, degeneration of liver cell vacuoles, and infiltration of lymphocytes at late stages of infection. The liver tissue sections from control mice remained normal. Masson staining showed worsening of liver fibrosis at the end stages of the infection. The levels of TGF-β1 did not show significant changes at the early stages of infection, but there were significant increases in the levels of TGF-β1 at the middle and late stages of infection (P<0.05). RT-PCR results showed that, when compared with the control group, TGF-β1 mRNA was low and comparable with that in control mice at the early stages of infection, and that it was significantly increased at day 30 PI and remained at high levels until day 270 PI (P<0.05). The results of this study suggested that increased expression of TGF-β1 during E. granulosus infection may play a significant role in liver fibrosis associated with E. granulosus infection.

  19. Extracorporeal shock waves promote healing of collagenase-induced Achilles tendinitis and increase TGF-beta1 and IGF-I expression.

    PubMed

    Chen, Yeung-Jen; Wang, Ching-Jen; Yang, Kuender D; Kuo, Yur-Ren; Huang, Hui-Chen; Huang, Yu-Ting; Sun, Yi-Chih; Wang, Feng-Sheng

    2004-07-01

    Extracorporeal shock waves (ESW) have recently been used in resolving tendinitis. However, mechanisms by which ESW promote tendon repair is not fully understood. In this study, we reported that an optimal ESW treatment promoted healing of Achilles tendintis by inducing TGF-beta1 and IGF-I. Rats with the collagenease-induced Achilles tendinitis were given a single ESW treatment (0.16 mJ/mm(2) energy flux density) with 0, 200, 500 and 1000 impulses. Achilles tendons were subjected to biomechanical (load to failure and stiffness), biochemical properties (DNA, glycosaminoglycan and hydroxyproline content) and histological assessment. ESW with 200 impulses restored biomechanical and biochemical characteristics of healing tendons 12 weeks after treatment. However, ESW treatments with 500 and 1000 impulses elicited inhibitory effects on tendinitis repair. Histological observation demonstrated that ESW treatment resolved edema, swelling, and inflammatory cell infiltration in injured tendons. Lesion site underwent intensive tenocyte proliferation, neovascularization and progressive tendon tissue regeneration. Tenocytes at the hypertrophied cellular tissue and newly developed tendon tissue expressed strong proliferating cell nuclear antigen (PCNA) after ESW treatment, suggesting that physical ESW could increase the mitogenic responses of tendons. Moreover, the proliferation of tenocytes adjunct to hypertrophied cell aggregate and newly formed tendon tissue coincided with intensive TGF-beta1 and IGF-I expression. Increasing TGF-beta1 expression was noted in the early stage of tendon repair, and elevated IGF-I expression was persisted throughout the healing period. Together, low-energy shock wave effectively promoted tendon healing. TGF-beta1 and IGF-I played important roles in mediating ESW-stimulated cell proliferation and tissue regeneration of tendon.

  20. Increased expression of the retinoic acid-metabolizing enzyme CYP26A1 during the progression of cervical squamous neoplasia and head and neck cancer.

    PubMed

    Osanai, Makoto; Lee, Gang-Hong

    2014-10-07

    Retinoic acid (RA) is a critical regulator of cell differentiation, proliferation, and apoptosis in various cell types. Recently, the RA-metabolizing enzyme CYP26A1 (cytochrome P450, family 26, subfamily A, polypeptide 1) has been shown to have an oncogenic function in breast carcinogenesis. However, the relevance of elevated CYP26A1 expression in human cancers remains to be clarified. We immunohistochemically examined the expression of CYP26A1 in cervical squamous cell carcinoma (SCC) and its precursors, including low- and high-grade squamous intraepithelial lesions (LSIL and HSIL, respectively), as well as head and neck cancer (HNC). The association between CYP26A1 expression and a number of clinicopathological parameters was also evaluated. CYP26A1 was not expressed in normal cervical epithelium. CYP26A1 expression was present in LSIL but limited to basal and parabasal cells. HSIL cases exhibited strong nuclear expression of CYP26A1 and mixed cytoplasmic expression patterns with widely distributed expression toward the epithelial surface. Importantly, strong cytoplasmic staining of CYP26A1 was observed in 19 of 50 (38%) patients with cervical SCC. Elevated expression of CYP26A1 was significantly associated with younger age (<50 years) and lymph node involvement (pN). Similarly, CYP26A1 was not expressed in non-neoplastic tissues of the head and neck, but strong cytoplasmic staining of CYP26A1 was observed in 52 of 128 (41%) HNC cases. Such strong CYP26A1 expression was significantly associated with the primary tumor stage of carcinomas (pT) and the pathological tumor-node-metastasis (pTNM) stage in HNC. Our results indicated an elevated CYP26A1 expression in malignant and precancerous dysplastic lesions of the human cervix, which also increased with the progression of cervical squamous neoplasia. In addition, this report is the first to demonstrate the increased expression of CYP26A1 in HNC and its significant correlation with primary tumor growth. These data

  1. GLUT-1 Expression in Pancreatic Neoplasia

    PubMed Central

    Basturk, Olca; Singh, Rajendra; Kaygusuz, Ecmel; Balci, Serdar; Dursun, Nevra; Culhaci, Nil; Adsay, N. Volkan

    2011-01-01

    Objectives GLUT-1 has been found to have an important role in the upregulation of various cellular pathways and implicated in neoplastic transformation correlating with biological behavior in malignancies. However, literature regarding the significance of GLUT-1 expression in pancreatic neoplasia has been limited and controversial. Methods Immunohistochemical expression of GLUT-1 was tested in a variety of pancreatic neoplasia including ductal adenocarcinomas (DAs), pancreatic intraepithelial neoplasms (PanINs), intraductal papillary mucinous neoplasms (IPMNs), and serous cystadenomas. Results There was a progressive increase in the expression of GLUT-1 from low- to higher-grade dysplastic lesions: All higher-grade PanINs/IPMNs (the ones with moderate/high-grade dysplasia) revealed noticeable GLUT-1 expression. Among the 94 DAs analyzed, there were minimal/moderate expression in 46 and significant expression in 24 DAs. However, all 4 clear-cell variants of DAs revealed significant GLUT-1 immunolabeling, as did areas of clear-cell change seen in other DAs. Moreover, all 12 serous cystadenomas expressed significant GLUT-1. GLUT-1 expression was also directly correlated with DA histological grade (P = 0.016) and tumor size (P = 0.03). Conclusions GLUT-1 may give rise to the distinctive clear-cell appearance of these tumors by inducing the accumulation of glycogen in the cytoplasm. Additionally, because GLUT-1 expression was related to histological grade and tumor size of DA, further studies are warranted to investigate the association of GLUT-1 with prognosis and tumor progression. PMID:21206329

  2. Reduced Cx43 expression triggers increased fibrosis due to enhanced fibroblast activity.

    PubMed

    Jansen, John A; van Veen, Toon A B; de Jong, Sanne; van der Nagel, Roel; van Stuijvenberg, Leonie; Driessen, Helen; Labzowski, Ronald; Oefner, Carolin M; Bosch, Astrid A; Nguyen, Tri Q; Goldschmeding, Roel; Vos, Marc A; de Bakker, Jacques M T; van Rijen, Harold V M

    2012-04-01

    Arrhythmogenic ventricular remodeling is hallmarked by both reduced gap junction expression and increased collagen deposition. We hypothesized that reduced connexin43 (Cx43) expression is responsible for enhanced fibrosis in the remodeled heart, resulting in an arrhythmogenic substrate. Therefore, we investigated the effect of normal or reduced Cx43 expression on the formation of fibrosis in a physiological (aging) and pathophysiological (transverse aortic constriction [TAC]) mouse model. The Cx43(fl/fl) and Cx43(CreER(T)/fl) mice were aged 18 to 21 months or, at the age of 3 months, either TAC or sham operated and euthanized after 16 weeks. Epicardial activation mapping of the right and left ventricles was performed on Langendorff perfused hearts. Sustained ventricular arrhythmias were induced in 0 of 11 aged Cx43(fl/fl) and 10 of 15 Cx43(Cre-ER(T)/fl) mice (P<0.01). Cx43 expression was reduced by half in aged Cx43(CreER(T)/fl) compared with aged Cx43(fl/fl) mice, whereas collagen deposition was significantly increased from 1.1±0.2% to 7.4±1.3%. Aged Cx43(CreER(T)/fl) mice with arrhythmias had significantly higher levels of fibrosis and conduction heterogeneity than aged Cx43(CreER(T)/fl) mice without arrhythmias. The TAC operation significantly increased fibrosis in control compared with sham (4.0±1.2% versus 0.4±0.06%), but this increase was significantly higher in Cx43(CreER(T)/fl) mice (10.8±1.4%). Discoidin domain receptor 2 expression was unchanged, but procollagen peptide I and III expression and collagen type 1α2 mRNA levels were higher in TAC-operated Cx43HZ mice. Reduced cellular coupling results in more excessive collagen deposition during aging or pressure overload in mice due to enhanced fibroblast activity, leading to increased conduction in homogeneity and proarrhythmia.

  3. Increased EGFR expression induced by a novel oncogene, CUG2, confers resistance to doxorubicin through Stat1-HDAC4 signaling.

    PubMed

    Kaowinn, Sirichat; Jun, Seung Won; Kim, Chang Seok; Shin, Dong-Myeong; Hwang, Yoon-Hwae; Kim, Kyujung; Shin, Bosung; Kaewpiboon, Chutima; Jeong, Hyeon Hee; Koh, Sang Seok; Krämer, Oliver H; Johnston, Randal N; Chung, Young-Hwa

    2017-12-01

    Previously, it has been found that the cancer upregulated gene 2 (CUG2) and the epidermal growth factor receptor (EGFR) both contribute to drug resistance of cancer cells. Here, we explored whether CUG2 may exert its anticancer drug resistance by increasing the expression of EGFR. EGFR expression was assessed using Western blotting, immunofluorescence and capacitance assays in A549 lung cancer and immortalized bronchial BEAS-2B cells, respectively, stably transfected with a CUG2 expression vector (A549-CUG2; BEAS-CUG2) or an empty control vector (A549-Vec; BEAS-Vec). After siRNA-mediated EGFR, Stat1 and HDAC4 silencing, antioxidant and multidrug resistance protein and mRNA levels were assessed using Western blotting and RT-PCR. In addition, the respective cells were treated with doxorubicin after which apoptosis and reactive oxygen species (ROS) levels were measured. Stat1 acetylation was assessed by immunoprecipitation. We found that exogenous CUG2 overexpression induced EGFR upregulation in A549 and BEAS-2B cells, whereas EGFR silencing sensitized these cells to doxorubicin-induced apoptosis. In addition, we found that exogenous CUG2 overexpression reduced the formation of ROS during doxorubicin treatment by enhancing the expression of antioxidant and multidrug resistant proteins such as MnSOD, Foxo1, Foxo4, MRP2 and BCRP, whereas EGFR silencing congruently increased the levels of ROS by decreasing the expression of these proteins. We also found that EGFR silencing and its concomitant Akt, ERK, JNK and p38 MAPK inhibition resulted in a decreased Stat1 phosphorylation and, thus, a decreased activation. Since also acetylation can affect Stat1 activation via a phospho-acetyl switch, HDAC inhibition may sensitize cells to doxorubicin-induced apoptosis. Interestingly, we found that exogenous CUG2 overexpression upregulated HDAC4, but not HDAC2 or HDAC3. Conversely, we found that HDAC4 silencing sensitized the cells to doxorubicin resistance by

  4. Identification and characterization of TF1(phox), a DNA-binding protein that increases expression of gp91(phox) in PLB985 myeloid leukemia cells.

    PubMed

    Eklund, E A; Kakar, R

    1997-04-04

    The CYBB gene encodes gp91(phox), the heavy chain of the phagocyte-specific NADPH oxidase. CYBB is transcriptionally inactive until the promyelocyte stage of myelopoiesis, and in mature phagocytes, expression of gp91(phox) is further increased by interferon-gamma (IFN-gamma) and other inflammatory mediators. The CYBB promoter region contains several lineage-specific cis-elements involved in the IFN-gamma response. We screened a leukocyte cDNA expression library for proteins able to bind to one of these cis-elements (-214 to -262 base pairs) and identified TF1(phox), a protein with sequence-specific binding to the CYBB promoter. Electrophoretic mobility shift assay with nuclear proteins from a variety of cell lines demonstrated binding of a protein to the CYBB promoter that was cross-immunoreactive with TF1(phox). DNA binding of this protein was increased by IFN-gamma treatment in the myeloid cell line PLB985, but not in the non-myeloid cell line HeLa. Overexpression of recombinant TF1(phox) in PLB985 cells increased endogenous gp91(phox) message abundance, but did not lead to cellular differentiation. Overexpression of TF1(phox) in myeloid leukemia cell lines increased reporter gene expression from artificial promoter constructs containing CYBB promoter sequence. These data suggested that TF1(phox) increased expression of gp91(phox).

  5. Mesenchymal stem cells increase skin graft survival time and up-regulate PD-L1 expression in splenocytes of mice.

    PubMed

    Moravej, Ali; Geramizadeh, Bita; Azarpira, Negar; Zarnani, Amir-Hassan; Yaghobi, Ramin; Kalani, Mehdi; Khosravi, Maryam; Kouhpayeh, Amin; Karimi, Mohammad-Hossein

    2017-02-01

    Recently, mesenchymal stem cells (MSCs) have gained considerable interests as hopeful therapeutic cells in transplantation due to their immunoregulatory functions. But exact mechanisms underlying MSCs immunoregulatory function is not fully understood. Herein, in addition to investigate the ability of MSCs to prolong graft survival time, the effects of them on the expression of PD-L1 and IDO immunomodulatory molecules in splenocytes of skin graft recipient mice was clarified. To achieve this goal, full-thickness skins were transplanted from C57BL/6 to BALB/c mice. MSCs were isolated from bone marrow of BALB/c mice and injected to the recipient mice. Skin graft survival was monitored daily to determine graft rejection time. On days 2, 5 and 10 post skin transplantation, serum cytokine levels and expression of PD-L1 and IDO mRNA and protein in the splenocytes of recipient mice were evaluated. The results showed that administration of MSCs prolonged skin graft survival time from 11 to 14 days. On days 2 and 5 post transplantation, splenocytes PD-L1 expression and IL-10 serum level in MSCs treated mice were higher than those in the controls, while IL-2 and IFN-γ levels were lower. Rejection in MSCs treated mice was accompanied by an increase in IL-2 and IFN-γ, and decrease in PD-L1 expression and IL-10 level. No difference in the expression of IDO between MSCs treated mice and controls was observed. In conclusion, we found that one of the mechanisms underlying MSCs immunomodulatory function could be up-regulating PD-L1 expression. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  6. Increased nuclear Olig1-expression in the pregenual anterior cingulate white matter of patients with major depression: a regenerative attempt to compensate oligodendrocyte loss?

    PubMed

    Mosebach, Jennifer; Keilhoff, Gerburg; Gos, Tomasz; Schiltz, Kolja; Schoeneck, Linda; Dobrowolny, Henrik; Mawrin, Christian; Müller, Susan; Schroeter, Matthias L; Bernstein, Hans-Gert; Bogerts, Bernhard; Steiner, Johann

    2013-08-01

    Structural and functional oligodendrocyte deficits as well as impaired myelin integrity have been described in affective disorders and schizophrenia, and may disturb the connectivity between disease-relevant brain regions. Olig1, an oligodendroglial transcription factor, might be important in this context, but has not been systematically studied so far. Nissl- and Olig1-stained oligodendrocytes were quantified in the pregenual anterior cingulate (pACC)/dorsolateral prefrontal cortex (DLPFC), and adjacent white matter of patients with major depressive disorder (MDD, n = 9), bipolar disorder (BD, n = 8), schizophrenia (SZ, n = 13), and matched controls (n = 16). Potential downstream effects of increased Olig1-expression were analyzed. Antidepressant drug effects on Olig1-expression were further explored in OLN-93 oligodendrocyte cultures. Nissl-stainings of both white matter regions showed a 19-27% reduction of total oligodendrocyte densities in MDD and BD, but not in SZ. In contrast, nuclear Olig1-immunoreactivity was elevated in MDD in the pACC-adjacent white matter (left: p = 0.008; right: p = 0.018); this effect tended to increase with antidepressant dosage (r = 0.631, p = 0.069). This reactive increase of Olig1 was confirmed by partly dose-dependent effects of imipramine and amitriptyline in oligodendrocyte cultures. Correspondingly, MBP expression in the pACC-adjacent white matter tended to increase with antidepressant dosage (r = 0.637, p = 0.065). Other tested brain regions showed no diagnosis-dependent differences regarding Olig1-immunoreactivity. Since nuclear Olig1-expression marks oligodendrocyte precursor cells, its increased expression along with reduced total oligodendrocyte densities (Nissl-stained) in the pACC-adjacent white matter of MDD patients might indicate a (putatively medication-boosted) regenerative attempt to compensate oligodendrocyte loss. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Increased leukemia-associated gene expression in benzene-exposed workers

    PubMed Central

    Li, Keqiu; Jing, Yaqing; Yang, Caihong; Liu, Shasha; Zhao, Yuxia; He, Xiaobo; Li, Fei; Han, Jiayi; Li, Guang

    2014-01-01

    Long-term exposure to benzene causes several adverse health effects, including an increased risk of acute myeloid leukemia. This study was to identify genetic alternations involved in pathogenesis of leukemia in benzene-exposed workers without clinical symptoms of leukemia. This study included 33 shoe-factory workers exposed to benzene at levels from 1 ppm to 10 ppm. These workers were divided into 3 groups based on the benzene exposure time, 1- < 7, 7- < 12, and 12- < 24 years. 17 individuals without benzene exposure history were recruited as controls. Cytogenetic analysis using Affymetrix Cytogenetics Array found copy-number variations (CNVs) in several chromosomes of benzene-exposed workers. Expression of targeted genes in these altered chromosomes, NOTCH1 and BSG, which play roles in leukemia pathogenesis, was further examined using real-time PCR. The NOTCH1 mRNA level was significantly increased in all 3 groups of workers, and the NOTCH1 mRNA level in the 12- < 24 years group was significantly higher than that in 1- < 7 and 7- < 12 years groups. Compared to the controls, the BSG mRNA level was significantly increased in 7- < 12 and 12- < 24 years groups, but not in the 1- < 7 years group. These results suggest that CNVs and leukemia-related gene expression might play roles in leukemia development in benzene-exposed workers. PMID:24993241

  8. Antipsychotics increase vesicular glutamate transporter 2 (VGLUT2) expression in thalamolimbic pathways.

    PubMed

    Moutsimilli, Larissa; Farley, Severine; El Khoury, Marie-Anne; Chamot, Christophe; Sibarita, Jean-Baptiste; Racine, Victor; El Mestikawy, Salah; Mathieu, Flavie; Dumas, Sylvie; Giros, Bruno; Tzavara, Eleni T

    2008-03-01

    Recently the two vesicular-glutamate-transporters VGLUT1 and VGLUT2 have been cloned and characterized. VGLUT1 and VGLUT2 together label all glutamatergic neurons, but because of their distinct expression patterns in the brain they facilitate our ability to define between a VGLUT1-positive cortical and a VGLUT2-positive subcortical glutamatergic systems. We have previously demonstrated an increased cortical VGLUT1 expression as marker of antidepressant activity. Here, we assessed the effects of different psychotropic drugs on brain VGLUT2 mRNA and protein expression. The typical antipsychotic haloperidol, and the atypicals clozapine and risperidone increased VGLUT2 mRNA selectively in the central medial/medial parafascicular, paraventricular and intermediodorsal thalamic nuclei; VGLUT2 protein was accordingly amplified in paraventricular and ventral striatum and in prefrontal cortex. The antidepressants fluoxetine and desipramine and the sedative anxiolytic diazepam had no effect. These results highlight the implication of thalamo-limbic glutamatergic pathways in the action of antipsychotics. Increased VGLUT2 expression in these neurons might constitute a marker for antipsychotic activity and subcortical glutamate neurotransmission might be a possible novel target for future generation antipsychotics.

  9. Increased temperature, not cardiac load, activates heat shock transcription factor 1 and heat shock protein 72 expression in the heart.

    PubMed

    Staib, Jessica L; Quindry, John C; French, Joel P; Criswell, David S; Powers, Scott K

    2007-01-01

    The expression of myocardial heat shock protein 72 (HSP72) postexercise is initiated by the activation of heat shock transcription factor 1 (HSF1). However, it remains unknown which physiological stimuli govern myocardial HSF1 activation during exercise. These experiments tested the hypothesis that thermal stress and mechanical load, concomitant with simulated exercise, provide independent stimuli for HSF1 activation and ensuing cardiac HSP72 gene expression. To elucidate the independent roles of increased temperature and cardiac workload in the exercise-mediated upregulation of left-ventricular HSP72, hearts from adult male Sprague-Dawley rats were randomly assigned to one of five simulated exercise conditions. Upon reaching a surgical plane of anesthesia, each experimental heart was isolated and perfused using an in vitro working heart model, while independently varying temperatures (i.e., 37 degrees C vs. 40 degrees C) and cardiac workloads (i.e., low preload and afterload vs. high preload and afterload) to mimic exercise responses. Results indicate that hyperthermia, independent of cardiac workload, promoted an increase in nuclear translocation and phosphorylation of HSF1 compared with normothermic left ventricles. Similarly, hyperthermia, independent of workload, resulted in significant increases in cardiac levels of HSP72 mRNA. Collectively, these data suggest that HSF1 activation and HSP72 gene transcriptional competence during simulated exercise are linked to elevated heart temperature and are not a direct function of increased cardiac workload.

  10. EGR-1 regulates Ho-1 expression induced by cigarette smoke

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Huaqun, E-mail: chenhuaqun@njnu.edu.cn; Wang, Lijuan; Gong, Tao

    2010-05-28

    As an anti-oxidant molecule, heme oxygenase-1 (HO-1) has been implicated in the protection of lung injury by cigarette smoke (CS). The mechanisms regulating its expression have not been defined. In this report, the role of early growth response 1 (EGR-1) in the regulation of Ho-1 expression was investigated. In C57BL/6 mice with CS exposure, HO-1 was greatly increased in bronchial epithelial cells and alveolar inflammatory cells. In primary cultured mouse lung fibroblasts and RAW264.7 cells exposed to cigarette smoke water extract (CSE), an increase in HO-1 protein level was detected. In addition, CSE induced HO-1 expression was decreased in Egr-1more » deficient mouse embryo fibroblasts (Egr-1{sup -/-} MEFs). Nuclear localization of EGR-1 was examined in mouse lung fibroblasts after exposure to CSE. Luciferase reporter activity assays showed that the enhancer region of the Ho-1 gene containing a proposed EGR-1 binding site was responsible for the induction of HO-1. A higher increase of alveolar mean linear intercept (Lm) was observed in lung tissues, and a larger increase in the number of total cells and monocytes/macrophages from bronchial alveolar lavage fluid was found in CS-exposed mice by loss of function of EGR-1 treatment. In summary, the present data demonstrate that EGR-1 plays a critical role in HO-1 production induced by CS.« less

  11. Genome analysis of crude oil degrading Franconibacter pulveris strain DJ34 revealed its genetic basis for hydrocarbon degradation and survival in oil contaminated environment.

    PubMed

    Pal, Siddhartha; Kundu, Anirban; Banerjee, Tirtha Das; Mohapatra, Balaram; Roy, Ajoy; Manna, Riddha; Sar, Pinaki; Kazy, Sufia K

    2017-10-01

    Franconibacter pulveris strain DJ34, isolated from Duliajan oil fields, Assam, was characterized in terms of its taxonomic, metabolic and genomic properties. The bacterium showed utilization of diverse petroleum hydrocarbons and electron acceptors, metal resistance, and biosurfactant production. The genome (4,856,096bp) of this strain contained different genes related to the degradation of various petroleum hydrocarbons, metal transport and resistance, dissimilatory nitrate, nitrite and sulfite reduction, chemotaxy, biosurfactant synthesis, etc. Genomic comparison with other Franconibacter spp. revealed higher abundance of genes for cell motility, lipid transport and metabolism, transcription and translation in DJ34 genome. Detailed COG analysis provides deeper insights into the genomic potential of this organism for degradation and survival in oil-contaminated complex habitat. This is the first report on ecophysiology and genomic inventory of Franconibacter sp. inhabiting crude oil rich environment, which might be useful for designing the strategy for bioremediation of oil contaminated environment. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Over-expression of Trxo1 increases the viability of tobacco BY-2 cells under H2O2 treatment

    PubMed Central

    Ortiz-Espín, Ana; Locato, Vittoria; Camejo, Daymi; Schiermeyer, Andreas; De Gara, Laura; Sevilla, Francisca; Jiménez, Ana

    2015-01-01

    Background and Aims Reactive oxygen species (ROS), especially hydrogen peroxide, play a critical role in the regulation of plant development and in the induction of plant defence responses during stress adaptation, as well as in plant cell death. The antioxidant system is responsible for controlling ROS levels in these processes but redox homeostasis is also a key factor in plant cell metabolism under normal and stress situations. Thioredoxins (Trxs) are ubiquitous small proteins found in different cell compartments, including mitochondria and nuclei (Trxo1), and are involved in the regulation of target proteins through reduction of disulphide bonds, although their role under oxidative stress has been less well studied. This study describes over-expression of a Trxo1 for the first time, using a cell-culture model subjected to an oxidative treatment provoked by H2O2. Methods Control and over-expressing PsTrxo1 tobacco (Nicotiana tabacum) BY-2 cells were treated with 35 mm H2O2 and the effects were analysed by studying the growth dynamics of the cultures together with oxidative stress parameters, as well as several components of the antioxidant systems involved in the metabolism of H2O2. Analysis of different hallmarks of programmed cell death was also carried out. Key Results Over-expression of PsTrxo1 caused significant differences in the response of TBY-2 cells to high concentrations of H2O2, namely higher and maintained viability in over-expressing cells, whilst the control line presented a severe decrease in viability and marked indications of oxidative stress, with generalized cell death after 3 d of treatment. In over-expressing cells, an increase in catalase activity, decreases in H2O2 and nitric oxide contents and maintenance of the glutathione redox state were observed. Conclusions A decreased content of endogenous H2O2 may be responsible in part for the delayed cell death found in over-expressing cells, in which changes in oxidative parameters and

  13. Over-expression of Trxo1 increases the viability of tobacco BY-2 cells under H2O2 treatment.

    PubMed

    Ortiz-Espín, Ana; Locato, Vittoria; Camejo, Daymi; Schiermeyer, Andreas; De Gara, Laura; Sevilla, Francisca; Jiménez, Ana

    2015-09-01

    Reactive oxygen species (ROS), especially hydrogen peroxide, play a critical role in the regulation of plant development and in the induction of plant defence responses during stress adaptation, as well as in plant cell death. The antioxidant system is responsible for controlling ROS levels in these processes but redox homeostasis is also a key factor in plant cell metabolism under normal and stress situations. Thioredoxins (Trxs) are ubiquitous small proteins found in different cell compartments, including mitochondria and nuclei (Trxo1), and are involved in the regulation of target proteins through reduction of disulphide bonds, although their role under oxidative stress has been less well studied. This study describes over-expression of a Trxo1 for the first time, using a cell-culture model subjected to an oxidative treatment provoked by H2O2. Control and over-expressing PsTrxo1 tobacco (Nicotiana tabacum) BY-2 cells were treated with 35 mm H2O2 and the effects were analysed by studying the growth dynamics of the cultures together with oxidative stress parameters, as well as several components of the antioxidant systems involved in the metabolism of H2O2. Analysis of different hallmarks of programmed cell death was also carried out. Over-expression of PsTrxo1 caused significant differences in the response of TBY-2 cells to high concentrations of H2O2, namely higher and maintained viability in over-expressing cells, whilst the control line presented a severe decrease in viability and marked indications of oxidative stress, with generalized cell death after 3 d of treatment. In over-expressing cells, an increase in catalase activity, decreases in H2O2 and nitric oxide contents and maintenance of the glutathione redox state were observed. A decreased content of endogenous H2O2 may be responsible in part for the delayed cell death found in over-expressing cells, in which changes in oxidative parameters and antioxidants were less extended after the oxidative

  14. Tubular epithelial cells in renal clear cell carcinoma express high RIPK1/3 and show increased susceptibility to TNF receptor 1-induced necroptosis

    PubMed Central

    Al-Lamki, R S; Lu, W; Manalo, P; Wang, J; Warren, A Y; Tolkovsky, A M; Pober, J S; Bradley, J R

    2016-01-01

    We previously reported that renal clear cell carcinoma cells (RCC) express both tumor necrosis factor receptor (TNFR)-1 and -2, but that, in organ culture, a TNF mutein that only engages TNFR1, but not TNFR2, causes extensive cell death. Some RCC died by apoptosis based on detection of cleaved caspase 3 in a minority TUNEL-positive cells but the mechanism of death in the remaining cells was unexplained. Here, we underpin the mechanism of TNFR1-induced cell death in the majority of TUNEL-positive RCC cells, and show that they die by necroptosis. Malignant cells in high-grade tumors displayed threefold to four fold higher expression of both receptor-interacting protein kinase (RIPK)1 and RIPK3 compared with non-tumor kidney tubular epithelium and low-grade tumors, but expression of both enzymes was induced in lower grade tumors in organ culture in response to TNFR1 stimulation. Furthermore, TNFR1 activation induced significant MLKLSer358 and Drp1Ser616 phosphorylation, physical interactions in RCC between RIPK1-RIPK3 and RIPK3-phospho-MLKLSer358, and coincidence of phospho-MLKLser358 and phospho-Drp1Ser616 at mitochondria in TUNEL-positive RCC. A caspase inhibitor only partially reduced the extent of cell death following TNFR1 engagement in RCC cells, whereas three inhibitors, each targeting a different step in the necroptotic pathway, were much more protective. Combined inhibition of caspases and necroptosis provided additive protection, implying that different subsets of cells respond differently to TNF-α, the majority dying by necroptosis. We conclude that most high-grade RCC cells express increased amounts of RIPK1 and RIPK3 and are poised to undergo necroptosis in response to TNFR1 signaling. PMID:27362805

  15. Increased duodenal DMT-1 expression and unchanged HFE mRNA levels in HFE-associated hereditary hemochromatosis and iron deficiency.

    PubMed

    Byrnes, V; Barrett, S; Ryan, E; Kelleher, T; O'Keane, C; Coughlan, B; Crowe, J

    2002-01-01

    HFE-associated hereditary hemochromatosis is characterized by imbalances of iron homeostasis and alterations in intestinal iron absorption. The identification of the HFE gene and the apical iron transporter divalent metal transporter-1, DMT-1, provide a direct method to address the mechanisms of iron overload in this disease. The aim of this study was to evaluate the regulation of duodenal HFE and DMT-1 gene expression in HFE-associated hereditary hemochromatosis. Small bowel biopsies and serum iron indices were obtained from a total of 33 patients. The study population comprised 13 patients with hereditary hemochromatosis (C282Y homozygous), 10 patients with iron deficiency anemia, and 10 apparently healthy controls, all of whom were genotyped for the two common mutations in the HFE gene (C282Y and H63D). Total RNA was isolated from tissue and amplified via RT-PCR for HFE, DMT-1, and the internal control GAPDH. DMT-1 protein expression was additionally assessed by immunohistochemistry. Levels of HFE mRNA did not differ significantly between patient groups (P = 0.09), specifically between C282Y homozygotes and iron deficiency anemic patients, when compared to controls (P = 0.09, P = 0.9, respectively). In contrast, DMT-1 mRNA levels were at least twofold greater in patients with hereditary hemochromatosis and iron deficiency anemia when compared to controls (P = 0.02, P = 0.01, respectively). Heightened DMT-1 protein expression correlated with mRNA levels in all patients. Loss of HFE function in hereditary hemochromatosis is not derived from inhibition of its gene expression. DMT-1 expression in C282Y homozygote subjects is consistent with the hypothesis of a "paradoxical" duodenal iron deficiency in hereditary hemochromatosis. The observed twofold upregulation of the DMT-1 is consistent with the slow but steady increase in body iron stores observed in those presenting with clinical features of hereditary hemochromatosis.

  16. Reduced expression of brain cannabinoid receptor 1 (Cnr1) is coupled with an increased complementary micro-RNA (miR-26b) in a mouse model of fetal alcohol spectrum disorders

    PubMed Central

    2013-01-01

    Background Prenatal alcohol exposure is known to result in fetal alcohol spectrum disorders, a continuum of physiological, behavioural, and cognitive phenotypes that include increased risk for anxiety and learning-associated disorders. Prenatal alcohol exposure results in life-long disorders that may manifest in part through the induction of long-term gene expression changes, potentially maintained through epigenetic mechanisms. Findings Here we report a decrease in the expression of Canabinoid receptor 1 (Cnr1) and an increase in the expression of the regulatory microRNA miR-26b in the brains of adult mice exposed to ethanol during neurodevelopment. Furthermore, we show that miR-26b has significant complementarity to the 3’-UTR of the Cnr1 transcript, giving it the potential to bind and reduce the level of Cnr1 expression. Conclusions These findings elucidate a mechanism through which some genes show long-term altered expression following prenatal alcohol exposure, leading to persistent alterations to cognitive function and behavioural phenotypes observed in fetal alcohol spectrum disorders. PMID:23915435

  17. Sophora flavescens Aiton Decreases MPP+-Induced Mitochondrial Dysfunction in SH-SY5Y Cells

    PubMed Central

    Kim, Hee-Young; Jeon, Hyongjun; Kim, Hyungwoo; Koo, Sungtae; Kim, Seungtae

    2018-01-01

    Sophora flavescens Aiton (SF) has been used to treat various diseases including fever and inflammation in China, South Korea and Japan. Several recent reports have shown that SF has anti-inflammatory and anti-apoptotic effects, indicating that it is a promising candidate for treatment of Parkinson’s disease (PD). We evaluated the protective effect of SF against neurotoxin 1-methyl-4-phenylpyridinium ion (MPP+)-induced mitochondrial dysfunction in SH-SY5Y human neuroblastoma cells, an in vitro PD model. SH-SY5Y cells were incubated with SF for 24 h, after which they were treated with MPP+. MPP+-induced cytotoxicity and apoptosis were confirmed by 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay and terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling assay. MitoSOX red mitochondrial superoxide indicator, tetramethylrhodamine methyl ester perchlorate and Parkin, PTEN-induced putative kinase 1 (PINK1), and DJ-1 immunofluorescent staining were conducted to confirm the mitochondrial function. In addition, western blot was performed to evaluate apoptosis factors (Bcl-2, Bax, caspase-3 and cytochrome c) and mitochondrial function-related factors (Parkin, PINK1 and DJ-1). SF suppressed MPP+-induced cytotoxicity, apoptosis and collapse of mitochondrial membrane potential by inhibiting the increase of reactive oxidative species (ROS) and DNA fragmentation, and controlling Bcl-2, Bax, caspase-3 and cytochrome c expression. Moreover, it attenuated Parkin, PINK1 and DJ-1 expression from MPP+-induced decrease. SF effectively suppressed MPP+-induced cytotoxicity, apoptosis and mitochondrial dysfunction by regulating generation of ROS, disruption of mitochondrial membrane potential, mitochondria-dependent apoptosis and loss or mutation of mitochondria-related PD markers including Parkin, PINK1 and DJ-1. PMID:29740311

  18. Cortical Astrocytes Acutely Exposed to the Monomethylarsonous Acid (MMAIII) Show Increased Pro-inflammatory Cytokines Gene Expression that is Consistent with APP and BACE-1: Over-expression.

    PubMed

    Escudero-Lourdes, C; Uresti-Rivera, E E; Oliva-González, C; Torres-Ramos, M A; Aguirre-Bañuelos, P; Gandolfi, A J

    2016-10-01

    Long-term exposure to inorganic arsenic (iAs) through drinking water has been associated with cognitive impairment in children and adults; however, the related pathogenic mechanisms have not been completely described. Increased or chronic inflammation in the brain is linked to impaired cognition and neurodegeneration; iAs induces strong inflammatory responses in several cells, but this effect has been poorly evaluated in central nervous system (CNS) cells. Because astrocytes are the most abundant cells in the CNS and play a critical role in brain homeostasis, including regulation of the inflammatory response, any functional impairment in them can be deleterious for the brain. We propose that iAs could induce cognitive impairment through inflammatory response activation in astrocytes. In the present work, rat cortical astrocytes were acutely exposed in vitro to the monomethylated metabolite of iAs (MMA III ), which accumulates in glial cells without compromising cell viability. MMA III LD 50 in astrocytes was 10.52 μM, however, exposure to sub-toxic MMA III concentrations (50-1000 nM) significantly increased IL-1β, IL-6, TNF-α, COX-2, and MIF-1 gene expression. These effects were consistent with amyloid precursor protein (APP) and β-secretase (BACE-1) increased gene expression, mainly for those MMA III concentrations that also induced TNF-α over-expression. Other effects of MMA III on cortical astrocytes included increased proliferative and metabolic activity. All tested MMA III concentrations led to an inhibition of intracellular lactate dehydrogenase (LDH) activity. Results suggest that MMA III induces important metabolic and functional changes in astrocytes that may affect brain homeostasis and that inflammation may play a major role in cognitive impairment-related pathogenicity in As-exposed populations.

  19. Increased oxidative stress and antioxidant expression in mouse keratinocytes following exposure to paraquat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, Adrienne T.; Gray, Joshua P.; Shakarjian, Michael P.

    Paraquat (1,1'-dimethyl-4,4'-bipyridinium) is a widely used herbicide known to induce skin toxicity. This is thought to be due to oxidative stress resulting from the generation of cytotoxic reactive oxygen intermediates (ROI) during paraquat redox cycling. The skin contains a diverse array of antioxidant enzymes which protect against oxidative stress including superoxide dismutase (SOD), catalase, glutathione peroxidase-1 (GPx-1), heme oxygenase-1 (HO-1), metallothionein-2 (MT-2), and glutathione-S-transferases (GST). In the present studies we compared paraquat redox cycling in primary cultures of undifferentiated and differentiated mouse keratinocytes and determined if this was associated with oxidative stress and altered expression of antioxidant enzymes. We foundmore » that paraquat readily undergoes redox cycling in both undifferentiated and differentiated keratinocytes, generating superoxide anion and hydrogen peroxide as well as increased protein oxidation which was greater in differentiated cells. Paraquat treatment also resulted in increased expression of HO-1, Cu,Zn-SOD, catalase, GSTP1, GSTA3 and GSTA4. However, no major differences in expression of these enzymes were evident between undifferentiated and differentiated cells. In contrast, expression of GSTA1-2 was significantly greater in differentiated relative to undifferentiated cells after paraquat treatment. No changes in expression of MT-2, Mn-SOD, GPx-1, GSTM1 or the microsomal GST's mGST1, mGST2 and mGST3, were observed in response to paraquat. These data demonstrate that paraquat induces oxidative stress in keratinocytes leading to increased expression of antioxidant genes. These intracellular proteins may be important in protecting the skin from paraquat-mediated cytotoxicity.« less

  20. Increased and correlated expression of connective tissue growth factor and transforming growth factor beta 1 in surgically removed periodontal tissues with chronic periodontitis.

    PubMed

    Mize, T W; Sundararaj, K P; Leite, R S; Huang, Y

    2015-06-01

    Both gingival tissue destruction and regeneration are associated with chronic periodontitis, although the former overwhelms the latter. Studies have shown that transforming growth factor beta 1 (TGF-β1), a growth factor largely involved in tissue regeneration and remodeling, is upregulated in chronic periodontitis. However, the gingival expression of connective tissue growth factor (CTGF or CCN2), a TGF-β1-upregulated gene, in patients with periodontitis remains undetermined. Although both CTGF/CCN2 and TGF-b1 increase the production of extracellular matrix, they have many different biological functions. Therefore, it is important to delineate the impact of periodontitis on gingival CTGF/CCN2 expression. Periodontal tissue specimens were collected from seven individuals without periodontitis (group 1) and from 14 with periodontitis (group 2). The expression of CTGF and TGFβ1 mRNAs were quantified using real-time PCR. Analysis using the nonparametric Mann-Whitney U-test showed that the levels of expression of both CTGF/CCN2 and TGFβ1 mRNAs were significantly increased in individuals with periodontitis compared with individuals without periodontitis. Furthermore, analysis using a nonparametric correlation (Spearman r) test showed a positive correlation between TGFβ1 and CTGF/CCN2 mRNAs. The gingival expression levels of CTGF/CCN2 and TGFβ1 mRNAs in individuals with periodontitis are upregulated and correlated. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Structure and function of primitive immunoglobulin superfamily neural cell adhesion molecules: a lesson from studies on planarian.

    PubMed

    Fusaoka, Eri; Inoue, Takeshi; Mineta, Katsuhiko; Agata, Kiyokazu; Takeuchi, Kosei

    2006-05-01

    Precise wiring and proper remodeling of the neural network are essential for its normal function. The freshwater planarian is an attractive animal in which to study the formation and maintenance of the neural network due to its high regenerative capability and developmental plasticity. Although a recent study revealed that homologs of netrin and its receptors are required for regeneration and maintenance of the planarian central nervous system (CNS), the roles of cell adhesion in the formation and maintenance of the planarian neural network remain poorly understood. In the present study, we found primitive immunoglobulin superfamily cell adhesion molecules (IgCAMs) in a planarian that are homologous to vertebrate neural IgCAMs. We identified planarian orthologs of NCAM, L1CAM, contactin and DSCAM, and designated them DjCAM, DjLCAM, DjCTCAM and DjDSCAM, respectively. We further confirmed that they function as cell adhesion molecules using cell aggregation assays. DjCAM and DjDSCAM were found to be differentially expressed in the CNS. Functional analyses using RNA interference revealed that DjCAM is partly involved in axon formation, and that DjDSCAM plays crucial roles in neuronal cell migration, axon outgrowth, fasciculation and projection.

  2. Sheep YAP1 temporal and spatial expression trend and its relation with MyHCs expression.

    PubMed

    Gao, W; Sun, W; Su, R; Lv, X Y; Wang, Q Z; Li, D; Musa, H H; Chen, L; Zhou, H; Xu, H S; Hua, W H

    2016-04-04

    RT-PCR was used to study the temporal and spatial pattern of Yes-associated protein 1 (YAP1) and myosin heavy chain (MyHC) expression in four different skeletal muscles (i.e., longissimus dorsi muscle, soleus muscle, gastrocnemius muscle, and extensor digitorum longus) and three growth stages (i.e., 2 days old, 2 and 6 months old) of Hu Sheep. The results showed that YAP1 was differentially expressed in skeletal muscles of sheep, that expression increased gradually with age, and that there were high levels of expression in the gastrocnemius muscle and lower levels in the longissimus dorsi muscle. MyHCI was expressed at high levels in the soleus muscle and at lower levels in the longissimus dorsi muscle. In contrast, MyHCIIA and MyHCIIX were expressed at high levels in the extensor digitorum longus and at lower levels in the soleus muscle. The expression of MyHCI and MyHCIIA decreased with increasing age while that of MyHCIIX increased. YAP1 expression was negatively correlated with MyHCII (P < 0.01) and positively correlated with MyHCIIX (P < 0.01) across all growth stages and skeletal muscle types studied. We speculate that after birth, the thicker muscle fiber diameter is associated with the high expression of MyHCIIX. Therefore, we conclude that YAP1 expression affects sheep muscle fiber development after birth and provides important genetic information for the selection candidate genes for sheep muscle growth.

  3. Inhibition of GLO1 in Glioblastoma Multiforme Increases DNA-AGEs, Stimulates RAGE Expression, and Inhibits Brain Tumor Growth in Orthotopic Mouse Models.

    PubMed

    Jandial, Rahul; Neman, Josh; Lim, Punnajit P; Tamae, Daniel; Kowolik, Claudia M; Wuenschell, Gerald E; Shuck, Sarah C; Ciminera, Alexandra K; De Jesus, Luis R; Ouyang, Ching; Chen, Mike Y; Termini, John

    2018-01-30

    Cancers that exhibit the Warburg effect may elevate expression of glyoxylase 1 (GLO1) to detoxify the toxic glycolytic byproduct methylglyoxal (MG) and inhibit the formation of pro-apoptotic advanced glycation endproducts (AGEs). Inhibition of GLO1 in cancers that up-regulate glycolysis has been proposed as a therapeutic targeting strategy, but this approach has not been evaluated for glioblastoma multiforme (GBM), the most aggressive and difficult to treat malignancy of the brain. Elevated GLO1 expression in GBM was established in patient tumors and cell lines using bioinformatics tools and biochemical approaches. GLO1 inhibition in GBM cell lines and in an orthotopic xenograft GBM mouse model was examined using both small molecule and short hairpin RNA (shRNA) approaches. Inhibition of GLO1 with S -( p -bromobenzyl) glutathione dicyclopentyl ester ( p- BrBzGSH(Cp)₂) increased levels of the DNA-AGE N ²-1-(carboxyethyl)-2'-deoxyguanosine (CEdG), a surrogate biomarker for nuclear MG exposure; substantially elevated expression of the immunoglobulin-like receptor for AGEs (RAGE); and induced apoptosis in GBM cell lines. Targeting GLO1 with shRNA similarly increased CEdG levels and RAGE expression, and was cytotoxic to glioma cells. Mice bearing orthotopic GBM xenografts treated systemically with p -BrBzGSH(Cp)₂ exhibited tumor regression without significant off-target effects suggesting that GLO1 inhibition may have value in the therapeutic management of these drug-resistant tumors.

  4. Inhibition of GLO1 in Glioblastoma Multiforme Increases DNA-AGEs, Stimulates RAGE Expression, and Inhibits Brain Tumor Growth in Orthotopic Mouse Models

    PubMed Central

    Jandial, Rahul; Neman, Josh; Tamae, Daniel; Kowolik, Claudia M.; Wuenschell, Gerald E.; Ciminera, Alexandra K.; De Jesus, Luis R.; Ouyang, Ching; Chen, Mike Y.

    2018-01-01

    Cancers that exhibit the Warburg effect may elevate expression of glyoxylase 1 (GLO1) to detoxify the toxic glycolytic byproduct methylglyoxal (MG) and inhibit the formation of pro-apoptotic advanced glycation endproducts (AGEs). Inhibition of GLO1 in cancers that up-regulate glycolysis has been proposed as a therapeutic targeting strategy, but this approach has not been evaluated for glioblastoma multiforme (GBM), the most aggressive and difficult to treat malignancy of the brain. Elevated GLO1 expression in GBM was established in patient tumors and cell lines using bioinformatics tools and biochemical approaches. GLO1 inhibition in GBM cell lines and in an orthotopic xenograft GBM mouse model was examined using both small molecule and short hairpin RNA (shRNA) approaches. Inhibition of GLO1 with S-(p-bromobenzyl) glutathione dicyclopentyl ester (p-BrBzGSH(Cp)2) increased levels of the DNA-AGE N2-1-(carboxyethyl)-2′-deoxyguanosine (CEdG), a surrogate biomarker for nuclear MG exposure; substantially elevated expression of the immunoglobulin-like receptor for AGEs (RAGE); and induced apoptosis in GBM cell lines. Targeting GLO1 with shRNA similarly increased CEdG levels and RAGE expression, and was cytotoxic to glioma cells. Mice bearing orthotopic GBM xenografts treated systemically with p-BrBzGSH(Cp)2 exhibited tumor regression without significant off-target effects suggesting that GLO1 inhibition may have value in the therapeutic management of these drug-resistant tumors. PMID:29385725

  5. Therapeutic Effects of Monoclonal Antibody against Dengue Virus NS1 in a STAT1 Knockout Mouse Model of Dengue Infection.

    PubMed

    Wan, Shu-Wen; Chen, Pei-Wei; Chen, Chin-Yu; Lai, Yen-Chung; Chu, Ya-Ting; Hung, Chia-Yi; Lee, Han; Wu, Hsuan Franziska; Chuang, Yung-Chun; Lin, Jessica; Chang, Chih-Peng; Wang, Shuying; Liu, Ching-Chuan; Ho, Tzong-Shiann; Lin, Chiou-Feng; Lee, Chien-Kuo; Wu-Hsieh, Betty A; Anderson, Robert; Yeh, Trai-Ming; Lin, Yee-Shin

    2017-10-15

    Dengue virus (DENV) is the causative agent of dengue fever, dengue hemorrhagic fever, and dengue shock syndrome and is endemic to tropical and subtropical regions of the world. Our previous studies showed the existence of epitopes in the C-terminal region of DENV nonstructural protein 1 (NS1) which are cross-reactive with host Ags and trigger anti-DENV NS1 Ab-mediated endothelial cell damage and platelet dysfunction. To circumvent these potentially harmful events, we replaced the C-terminal region of DENV NS1 with the corresponding region from Japanese encephalitis virus NS1 to create chimeric DJ NS1 protein. Passive immunization of DENV-infected mice with polyclonal anti-DJ NS1 Abs reduced viral Ag expression at skin inoculation sites and shortened DENV-induced prolonged bleeding time. We also investigated the therapeutic effects of anti-NS1 mAb. One mAb designated 2E8 does not recognize the C-terminal region of DENV NS1 in which host-cross-reactive epitopes reside. Moreover, mAb 2E8 recognizes NS1 of all four DENV serotypes. We also found that mAb 2E8 caused complement-mediated lysis in DENV-infected cells. In mouse model studies, treatment with mAb 2E8 shortened DENV-induced prolonged bleeding time and reduced viral Ag expression in the skin. Importantly, mAb 2E8 provided therapeutic effects against all four serotypes of DENV. We further found that mAb administration to mice as late as 1 d prior to severe bleeding still reduced prolonged bleeding time and hemorrhage. Therefore, administration with a single dose of mAb 2E8 can protect mice against DENV infection and pathological effects, suggesting that NS1-specific mAb may be a therapeutic option against dengue disease. Copyright © 2017 by The American Association of Immunologists, Inc.

  6. Ginseng (Panax quinquefolius) Reduces Cell Growth, Lipid Acquisition and Increases Adiponectin Expression in 3T3-L1 Cells

    PubMed Central

    Yeo, Chia-Rou; Lee, Sea-Ming; Popovich, David G.

    2011-01-01

    An American ginseng (Panax quinquefolius) extract (GE) that contained a quantifiable amount of ginsenosides was investigated for the potential to inhibit proliferation, affect the cell cycle, influence lipid acquisition and adiponectin expression in 3T3-L1 cells. Six fingerprint ginsenosides were quantified by high performance liquid chromatography and the respective molecular weights were confirmed by LC-ESI-MS analysis. The extract contained Rg1 (347.3 ± 99.7 μg g−1, dry weight), Re (8280.4 ± 792.3 μg g−1), Rb1 (1585.8 ± 86.8 μg g−1), Rc (32.9 ± 8 μg g−1), Rb2 (62.6 ± 10.6 μg g−1) and Rd (90.4 ± 3.2 μg g−1). The GE had a dose-dependent effect on 3T3-L1 cell growth, the LC50 value was determined to be 40.3 ± 5 μg ml−1. Cell cycle analysis showed modest changes in the cell cycle. No significant changes observed in both G1 and G2/M phases, however there was a significant decrease (P < .05) in the S phase after 24 and 48 h treatment. Apoptotic cells were modest but significantly (P < .05) increased after 48 h (3.2 ± 1.0%) compared to untreated control cells (1.5 ± 0.1%). Lipid acquisition was significantly reduced (P < .05) by 13 and 22% when treated at concentrations of 20.2 and 40.3 μg ml−1 compared to untreated control cells. In relation to adiponectin activation, western blot analysis showed that the protein expression was significantly (P < .05) increased at concentrations tested. A quantified GE reduced the growth of 3T3-L1 cells, down-regulated the accumulation of lipid and up-regulated the expression of adiponectin in the 3T3-L1 adipocyte cell model. PMID:21799682

  7. Increased Expression of ALDH1A1 in Prostate Cancer is Correlated With Tumor Aggressiveness: A Tissue Microarray Study of Iranian Patients.

    PubMed

    Kalantari, Elham; Saadi, Faezeh H; Asgari, Mojgan; Shariftabrizi, Ahmad; Roudi, Raheleh; Madjd, Zahra

    2017-09-01

    Subpopulations of prostate cancer (PCa) cells expressing putative stem cell markers possess the ability to promote tumor growth, maintenance, and progression. This study aimed to evaluate the expression patterns and clinical significance of putative stem cell marker aldehyde dehydrogenase 1 A1 (ALDH1A1) in prostate tumor tissues. ALDH1A1 expression was examined in a well-defined series of prostate tissues, including 105 (68%) samples of PCa, 21 (13%) samples of high-grade prostatic intraepithelial neoplasia, and 31 (19%) samples of benign prostate hyperplasia, which were embedded in tissue microarray blocks. The correlation of ALDH1A1 expression with clinicopathologic parameters was also assessed. There was a significant difference between the expression level of ALDH1A1 in PCa compared with the high-grade prostatic intraepithelial neoplasia and benign prostate hyperplasia samples (P<0.001). PCa cells expressing ALDH1A1 were more often seen in samples with advanced Gleason score (P=0.05) and high serum prostate specific antigen level (P=0.02). In addition, a positive correlation was found between ALDH1A1 expression and primary tumor stage and regional lymph node involvement (P=0.04 and 0.03, respectively). The significant association between ALDH1A1 expressions with Gleason score indicates the potential role of this protein in PCa tumorigenesis and aggressive behavior; therefore, this cancer stem cell marker can be used as a promising candidate for targeted therapy of PCa, especially those with high Gleason score.

  8. Loss of p21{sup Sdi1} expression in senescent cells after DNA damage accompanied with increase of miR-93 expression and reduced p53 interaction with p21{sup Sdi1} gene promoter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Ok Ran; Lim, In Kyoung, E-mail: iklim@ajou.ac.kr

    2011-04-08

    Highlights: {yields} Reduced p21 expression in senescent cells treated with DNA damaging agents. {yields} Increase of [{sup 3}H]thymidine and BrdU incorporations in DNA damaged-senescent cells. {yields} Upregulation of miR-93 expression in senescent cells in response to DSB. {yields} Failure of p53 binding to p21 promoter in senescent cells in response to DSB. {yields} Molecular mechanism of increased cancer development in aged than young individuals. -- Abstract: To answer what is a critical event for higher incidence of tumor development in old than young individuals, primary culture of human diploid fibroblasts were employed and DNA damage was induced by doxorubicin ormore » X-ray irradiation. Response to the damage was different between young and old cells; loss of p21{sup sdi1} expression in spite of p53{sup S15} activation in old cells along with [{sup 3}H]thymidine and BrdU incorporation, but not in young cells. The phenomenon was confirmed by other tissue fibroblasts obtained from different donor ages. Induction of miR-93 expression and reduced p53 binding to p21 gene promoter account for loss of p21{sup sdi1} expression in senescent cells after DNA damage, suggesting a mechanism of in vivo carcinogenesis in aged tissue without repair arrest.« less

  9. Integrin Expression Regulates Neuroblastoma Attachment and Migration1

    PubMed Central

    Meyer, Amy; van Golen, Cynthia M.; Kim, Bhumsoo; van Golen, Kenneth L.; Feldman, Eva L.

    2004-01-01

    Abstract Neuroblastoma (NBL) is the most common malignant disease of infancy, and children with bone metastasis have a mortality rate greater than 90%. Two major classes of proteins, integrins and growth factors, regulate the metastatic process. We have previously shown that tumorigenic NBL cells express higher levels of the type I insulin-like growth factor receptor (IGF-IR) and that β1 integrin expression is inversely proportional to tumorigenic potential in NBL. In the current study, we analyze the effect of β1 integrin and IGF-IR on NBL cell attachment and migration. Nontumorigenic S-cells express high levels of β1 integrin, whereas tumorigenic N-cells express little β1 integrin. Alterations in β1 integrin are due to regulation at the protein level, as translation is decreased in N-type cells. Moreover, inhibition of protein synthesis shows that β1 integrin is degraded more slowly in S-type cells (SHEP) than in N-type cells (SH-SY5Y and IMR32). Inhibition of α5β1 integrin prevents SHEP (but not SH-SY5Y or IMR32) cell attachment to fibronectin and increases SHEP cell migration. Increases in IGF-IR decrease β1 integrin expression, and enhance SHEP cell migration, potentially through increased expression of αvβ3. These data suggest that specific classes of integrins in concert with IGF-IR regulate NBL attachment and migration. PMID:15256055

  10. Low concentration of 4-hydroxy hexenal increases heme oxygenase-1 expression through activation of Nrf2 and antioxidative activity in vascular endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishikado, Atsushi; Nishio, Yoshihiko, E-mail: nishio@belle.shiga-med.ac.jp; Morino, Katsutaro

    2010-11-05

    Research highlights: {yields} Low doses of 4-HHE and 4-HNE induce HO-1 expression in vascular endothelial cells. {yields} 4-HHE and 4-HNE increase the intranuclear expression and DNA binding of Nrf2. {yields} 4-HHE and 4-HNE-induced HO-1 expression depends on the activation of Nrf2. {yields} Pretreatment with 4-HHE and 4-HNE prevents oxidative stress-induced cytotoxicity. -- Abstract: Large-scale clinical studies have shown that n-3 polyunsaturated fatty acids (n-3 PUFAs) such as eicosapentaenoic and docosahexaenoic acids reduce cardiovascular events without improving classical risk factors for atherosclerosis. Recent studies have proposed that direct actions of n-3 PUFAs themselves, or of their enzymatic metabolites, have antioxidative andmore » anti-inflammatory effects on vascular cells. Although a recent study showed that plasma 4-hydroxy hexenal (4-HHE), a peroxidation product of n-3 PUFA, increased after supplementation of docosahexaenoic acid, the antiatherogenic effects of 4-HHE in vascular cells remain unclear. In the present study, we tested the hypothesis that 4-HHE induces the antioxidative enzyme heme oxygenase-1 (HO-1) through activation of nuclear factor erythroid 2-related factor 2 (Nrf2), a master regulatory transcriptional factor, and prevents oxidative stress-induced cytotoxicity in vascular endothelial cells. This mechanism could partly explain the cardioprotective effects of n-3 PUFAs. Human umbilical vein endothelial cells were stimulated with 1-10 {mu}M 4-HHE or 4-hydroxy nonenal (4-HNE), a peroxidation product of n-6 PUFAs. Both 4-HHE and 4-HNE dose-dependently increased HO-1 mRNA and protein expression, and intranuclear expression and DNA binding of Nrf2 at 5 {mu}M. Small interfering RNA for Nrf2 significantly reduced 4-HHE- or 4-HNE-induced HO-1 mRNA and protein expression. Furthermore, pretreatment with 4-HHE or 4-HNE prevented tert-butyl hydroperoxide-induced cytotoxicity. In conclusion, 4-HHE, a peroxidation product of n-3 PUFAs

  11. N-Myc Differentially Regulates Expression of MXI1 Isoforms in Neuroblastoma1

    PubMed Central

    Armstrong, Michael B; Mody, Rajen J; Ellis, D Christian; Hill, Adam B; Erichsen, David A; Wechsler, Daniel S

    2013-01-01

    Amplification of the MYCN proto-oncogene is associated with a poor prognosis in patients with metastatic neuroblastoma (NB). MYCN encodes the N-Myc protein, a transcriptional regulator that dimerizes with the Max transcription factor, binds to E-box DNA sequences, and regulates genes involved in cell growth and apoptosis. Overexpression of N-Myc leads to transcriptional activation and an increase in NB cell proliferation. Mxi1, a member of the Myc family of transcriptional regulators, also binds to Max. However, Mxi1 is a transcriptional repressor and inhibits proliferation of NB cells, suggesting that Mxi1 functions as an N-Myc antagonist. Our laboratory previously identified Mxi1-0, an alternatively transcribed Mxi1 isoform. Mxi1-0 has properties distinct from those of Mxi1; in contrast to Mxi1, Mxi1-0 is unable to suppress c-Myc-dependent transcription. We now show that Mxi1-0 expression increases in response to MYCN overexpression in NB cells, with a positive correlation between MYCN and MXI1-0 RNA levels. We also show that N-Myc expression differentially regulates the MXI1 and MXI1-0 promoters: Increased MYCN expression suppresses MXI1 promoter activity while enhancing transcription through the MXI1-0 promoter. Finally, induction of Mxi1-0 leads to increased proliferation, whereas expression of Mxi1 inhibits cell growth, indicating differential roles for these two proteins. These data suggest that N-Myc differentially regulates the expression of MXI1 and MXI1-0 and can alter the balance between the two transcription factors. Furthermore, MXI1-0 appears to be a downstream target of MYCN-dependent signaling pathways and may contribute to N-Myc-dependent cell growth and proliferation. PMID:24403858

  12. Chemoresistance of CD133{sup +} colon cancer may be related with increased survivin expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Mi-Ra; Ji, Sun-Young; Mia-Jan, Khalilullah

    2015-07-31

    CD133, putative cancer stem cell marker, deemed to aid chemoresistance. However, this claim has been challenged recently and we previously reported that patients with CD133{sup +} colon cancer have benefit from 5-fluorouracil (5-FU) chemotherapy incontrast to no benefit in patients with CD133{sup −} cancer. To elucidate the role of CD133 expression in chemoresistance, we silenced the CD133 expression in a colon cancer cell line and determined its effect on the biological characteristics downstream. We comparatively analyzed the sequential changes of MDR1, ABCG2, AKT1 and survivin expression and the result of proliferation assay (WST-1 assay) with 5-FU treatment in CD133{sup +}more » and siRNA-induced CD133{sup −} cells, derived from Caco-2 colon cancer cell line. 5-FU treatment induced significantly increase of the mRNA expression of MDR1, ABCG2 and AKT1genes, but not protein level. CD133 had little to no effect on the mRNA and protein expression of these genes. However, survivin expression at mRNA and protein level were significantly increased in CD133{sup +} cells compared with siRNA-induced CD133-cells and Mock (not sorted CD133{sup +} cells) at 96 h after siRNA transfection. The cytotoxicity assay demonstrated notable increase of chemoresistance to 5-FU treatment (10 μM) in CD133{sup +} cells at 96 h after siRNA transfection. From this study, we conclude that CD133{sup +} cells may have chemoresistance to 5-FU through the mechanism which is related with survivin expression, instead of MDR1, ABCG2 and AKT1 expression. Therefore a survivin inhibitor can be a new target for effective treatment of CD133{sup +} colon cancer. - Highlights: • We evaluate the role of CD133 in chemoresistance of colon cancer. • We compared the chemoresistance of CD133{sup +} cells and siRNA-induced CD133{sup −} cells. • CD133 had little to no effect on MDR1, ABCG2 and AKT1 expression. • Survivin expression and chemoresistance were increased in CD133{sup +} colon

  13. Neurexin 1 (NRXN1) Splice Isoform Expression During Human Neocortical Development and Aging

    PubMed Central

    Jenkins, Aaron K.; Paterson, Clare; Wang, Yanhong; Hyde, Thomas M.; Kleinman, Joel E.; Law, Amanda J.

    2015-01-01

    Neurexin 1 (NRXN1), a presynaptic adhesion molecule, is implicated in several neurodevelopmental disorders characterized by synaptic dysfunction including, autism, intellectual disability, and schizophrenia. To gain insight into NRXN1’s involvement in human cortical development we used quantitative real time PCR to examine the expression trajectories of NRXN1, and its predominant isoforms NRXN1-α and NRXN1-β in prefrontal cortex from fetal stages to aging. Additionally, we investigated whether prefrontal cortical expression levels of NRXN1 transcripts are altered in schizophrenia or bipolar disorder in comparison to non-psychiatric control subjects. We observed that all three NRXN1 transcripts were highly expressed during human fetal cortical development, dramatically increasing with gestational age. In the postnatal DLPFC, expression levels were negatively correlated with age, peaking at birth until approximately 3 years of age, after which levels declined dramatically to be stable across the lifespan. NRXN1expression was modestly but significantly elevated in the brains of patients with schizophrenia compared to non-psychiatric controls, whereas NRXN1expression was increased in bipolar disorder. These data provide novel evidence that NRXN1 expression is highest in human prefrontal cortex during critical developmental windows relevant to the onset and diagnosis of a range of neurodevelopmental disorders, and that NRXN1 expression may be differentially altered in neuropsychiatric disorders. PMID:26216298

  14. Clinical Significance of SASH1 Expression in Glioma

    PubMed Central

    Yang, Liu; Zhang, Haitao; Yao, Qi; Yan, Yingying; Wu, Ronghua; Liu, Mei

    2015-01-01

    Objective. SAM and SH3 domain containing 1 (SASH1) is a recently discovered tumor suppressor gene. The role of SASH1 in glioma has not yet been described. We investigated SASH1 expression in glioma cases to determine its clinical significance on glioma pathogenesis and prognosis. Methods. We produced tissue microarrays using 121 patient-derived glioma samples and 30 patient-derived nontumor cerebral samples. Immunohistochemistry and Western blotting were used to evaluate SASH1 expression. We used Fisher's exact tests to determine relationships between SASH1 expression and clinicopathological characteristics; Cox regression analysis to evaluate the independency of different SASH1 expression; Kaplan-Meier analysis to determine any correlation of SASH1 expression with survival rate. Results. SASH1 expression was closely correlated with the WHO glioma grade. Of the 121 cases, 66.9% with low SASH1 expression were mostly grade III-IV cases, whereas 33.1% with high SASH1 expression were mostly grades I-II. Kaplan-Meier analysis revealed a significant positive correlation between SASH1 expression and postoperative survival. Conclusions. SASH1 was widely expressed in normal and low-grade glioma tissues. SASH1 expression strongly correlated with glioma grades, showing higher expression at a lower grade, which decreased significantly as grade increased. Furthermore, SASH1 expression was positively correlated with better postoperative survival in patients with glioma. PMID:26424902

  15. Clinical Significance of SASH1 Expression in Glioma.

    PubMed

    Yang, Liu; Zhang, Haitao; Yao, Qi; Yan, Yingying; Wu, Ronghua; Liu, Mei

    2015-01-01

    SAM and SH3 domain containing 1 (SASH1) is a recently discovered tumor suppressor gene. The role of SASH1 in glioma has not yet been described. We investigated SASH1 expression in glioma cases to determine its clinical significance on glioma pathogenesis and prognosis. We produced tissue microarrays using 121 patient-derived glioma samples and 30 patient-derived nontumor cerebral samples. Immunohistochemistry and Western blotting were used to evaluate SASH1 expression. We used Fisher's exact tests to determine relationships between SASH1 expression and clinicopathological characteristics; Cox regression analysis to evaluate the independency of different SASH1 expression; Kaplan-Meier analysis to determine any correlation of SASH1 expression with survival rate. SASH1 expression was closely correlated with the WHO glioma grade. Of the 121 cases, 66.9% with low SASH1 expression were mostly grade III-IV cases, whereas 33.1% with high SASH1 expression were mostly grades I-II. Kaplan-Meier analysis revealed a significant positive correlation between SASH1 expression and postoperative survival. SASH1 was widely expressed in normal and low-grade glioma tissues. SASH1 expression strongly correlated with glioma grades, showing higher expression at a lower grade, which decreased significantly as grade increased. Furthermore, SASH1 expression was positively correlated with better postoperative survival in patients with glioma.

  16. Increased PTP1B expression and phosphatase activity in colorectal cancer results in a more invasive phenotype and worse patient outcome.

    PubMed

    Hoekstra, Elmer; Das, Asha M; Swets, Marloes; Cao, Wanlu; van der Woude, C Janneke; Bruno, Marco J; Peppelenbosch, Maikel P; Kuppen, Peter J K; Ten Hagen, Timo L M; Fuhler, Gwenny M

    2016-04-19

    Cell signaling is dependent on the balance between phosphorylation of proteins by kinases and dephosphorylation by phosphatases. This balance if often disrupted in colorectal cancer (CRC), leading to increased cell proliferation and invasion. For many years research has focused on the role of kinases as potential oncogenes in cancer, while phosphatases were commonly assumed to be tumor suppressive. However, this dogma is currently changing as phosphatases have also been shown to induce cancer growth. One of these phosphatases is protein tyrosine phosphatase 1B (PTP1B). Here we report that the expression of PTP1B is increased in colorectal cancer as compared to normal tissue, and that the intrinsic enzymatic activity of the protein is also enhanced. This suggests a role for PTP1B phosphatase activity in CRC formation and progression. Furthermore, we found that increased PTP1B expression is correlated to a worse patient survival and is an independent prognostic marker for overall survival and disease free survival. Knocking down PTP1B in CRC cell lines results in a less invasive phenotype with lower adhesion, migration and proliferation capabilities. Together, these results suggest that inhibition of PTP1B activity is a promising new target in the treatment of colorectal cancer and the prevention of metastasis.

  17. Identification and characterization of an oocyte factor required for development of porcine nuclear transfer embryos

    PubMed Central

    Miyamoto, Kei; Nagai, Kouhei; Kitamura, Naoya; Nishikawa, Tomoaki; Ikegami, Haruka; Binh, Nguyen T.; Tsukamoto, Satoshi; Matsumoto, Mai; Tsukiyama, Tomoyuki; Minami, Naojiro; Yamada, Masayasu; Ariga, Hiroyoshi; Miyake, Masashi; Kawarasaki, Tatsuo; Matsumoto, Kazuya; Imai, Hiroshi

    2011-01-01

    Nuclear reprogramming of differentiated cells can be induced by oocyte factors. Despite numerous attempts, these factors and mechanisms responsible for successful reprogramming remain elusive. Here, we identify one such factor, necessary for the development of nuclear transfer embryos, using porcine oocyte extracts in which some reprogramming events are recapitulated. After incubating somatic nuclei in oocyte extracts from the metaphase II stage, the oocyte proteins that were specifically and abundantly incorporated into the nuclei were identified by mass spectrometry. Among 25 identified proteins, we especially focused on a multifunctional protein, DJ-1. DJ-1 is present at a high concentration in oocytes from the germinal vesicle stage until embryos at the four-cell stage. Inhibition of DJ-1 function compromises the development of nuclear transfer embryos but not that of fertilized embryos. Microarray analysis of nuclear transfer embryos in which DJ-1 function is inhibited shows perturbed expression of P53 pathway components. In addition, embryonic arrest of nuclear transfer embryos injected with anti–DJ-1 antibody is rescued by P53 inhibition. We conclude that DJ-1 is an oocyte factor that is required for development of nuclear transfer embryos. This study presents a means for identifying natural reprogramming factors in mammalian oocytes and a unique insight into the mechanisms underlying reprogramming by nuclear transfer. PMID:21482765

  18. 2B4 expression on natural killer cells increases in HIV-1 infected patients followed prospectively during highly active antiretroviral therapy

    PubMed Central

    Ostrowski, S R; Ullum, H; Pedersen, B K; Gerstoft, J; Katzenstein, T L

    2005-01-01

    Human immunodeficiency virus (HIV)-1 infection influences natural killer (NK) cell expression of inhibitory NK receptors and activating natural cytotoxicity receptors. It is unknown whether expression of the co-stimulatory NK cell receptor 2B4 (CD244) on NK cells and CD3+ CD8+ cells are affected by highly active antiretroviral therapy (HAART), low-level viraemia, proviral-DNA or immune activation in HIV-1 infected patients. A total of 101 HAART-treated HIV-1 infected patients with ≤ 200 HIV-RNA copies/ml were followed prospectively for 24 months. HIV-RNA was investigated 3-monthly and 2B4 expression on CD3− CD16+ NK cells and CD3+ CD8+ cells, proviral-DNA and plasma soluble tumour necrosis factor receptor (sTNFr)-II were investigated 6-monthly. For comparison, 2B4 expression was investigated in 20 healthy individuals. The concentration of 2B4+ NK cells was initially reduced in HIV-1 infected patients (P < 0·001) but increased to a normal level during the 24 months’ follow-up. The concentration of CD3+ CD8+ 2B4+ cells in HIV-1 infected patients was normal and did not change during follow-up. The relative fluorescence intensity (RFI) of 2B4 increased on both NK cells and CD3+ CD8+ cells during follow-up (both P < 0·001). Higher levels of proviral-DNA carrying cells and plasma sTNFrII were associated with reductions in the concentration of 2B4+ NK cells (all P < 0·05). HIV-RNA had no effect on 2B4 expression on NK cells or CD3+ CD8+ cells. These findings demonstrate that the concentration of 2B4+ NK cells normalizes during long-term HAART in HIV-1 infected patients. The finding that proviral-DNA and sTNFrII were associated negatively with the concentration of 2B4+ NK cells suggests that immune activation in HIV-1 infected patients receiving HAART influences the target cell recognition by NK cells. PMID:16045743

  19. 2B4 expression on natural killer cells increases in HIV-1 infected patients followed prospectively during highly active antiretroviral therapy.

    PubMed

    Ostrowski, S R; Ullum, H; Pedersen, B K; Gerstoft, J; Katzenstein, T L

    2005-09-01

    Human immunodeficiency virus (HIV)-1 infection influences natural killer (NK) cell expression of inhibitory NK receptors and activating natural cytotoxicity receptors. It is unknown whether expression of the co-stimulatory NK cell receptor 2B4 (CD244) on NK cells and CD3+ CD8+ cells are affected by highly active antiretroviral therapy (HAART), low-level viraemia, proviral-DNA or immune activation in HIV-1 infected patients. A total of 101 HAART-treated HIV-1 infected patients with < or = 200 HIV-RNA copies/ml were followed prospectively for 24 months. HIV-RNA was investigated 3-monthly and 2B4 expression on CD3- CD16+ NK cells and CD3+ CD8+ cells, proviral-DNA and plasma soluble tumour necrosis factor receptor (sTNFr)-II were investigated 6-monthly. For comparison, 2B4 expression was investigated in 20 healthy individuals. The concentration of 2B4+ NK cells was initially reduced in HIV-1 infected patients (P < 0.001) but increased to a normal level during the 24 months' follow-up. The concentration of CD3+ CD8+ 2B4+ cells in HIV-1 infected patients was normal and did not change during follow-up. The relative fluorescence intensity (RFI) of 2B4 increased on both NK cells and CD3+ CD8+ cells during follow-up (both P < 0.001). Higher levels of proviral-DNA carrying cells and plasma sTNFrII were associated with reductions in the concentration of 2B4+ NK cells (all P < 0.05). HIV-RNA had no effect on 2B4 expression on NK cells or CD3+ CD8+ cells. These findings demonstrate that the concentration of 2B4+ NK cells normalizes during long-term HAART in HIV-1 infected patients. The finding that proviral-DNA and sTNFrII were associated negatively with the concentration of 2B4+ NK cells suggests that immune activation in HIV-1 infected patients receiving HAART influences the target cell recognition by NK cells.

  20. Creatine supplementation increases glycogen storage but not GLUT-4 expression in human skeletal muscle.

    PubMed

    van Loon, Luc J C; Murphy, Robyn; Oosterlaar, Audrey M; Cameron-Smith, David; Hargreaves, Mark; Wagenmakers, Anton J M; Snow, Rodney

    2004-01-01

    It has been speculated that creatine supplementation affects muscle glucose metabolism in humans by increasing muscle glycogen storage and up-regulating GLUT-4 protein expression. In the present study, we assessed the effects of creatine loading and prolonged supplementation on muscle glycogen storage and GLUT-4 mRNA and protein content in humans. A total of 20 subjects participated in a 6-week supplementation period during which creatine or a placebo was ingested. Muscle biopsies were taken before and after 5 days of creatine loading (20 g.day(-1)) and after 6 weeks of continued supplementation (2 g.day(-1)). Fasting plasma insulin concentrations, muscle creatine, glycogen and GLUT-4 protein content as well as GLUT-4, glycogen synthase-1 (GS-1) and glycogenin-1 (Gln-1) mRNA expression were determined. Creatine loading significantly increased total creatine, free creatine and creatine phosphate content with a concomitant 18 +/- 5% increase in muscle glycogen content (P<0.05). The subsequent use of a 2 g.day(-1) maintenance dose for 37 days did not maintain total creatine, creatine phosphate and glycogen content at the elevated levels. The initial increase in muscle glycogen accumulation could not be explained by an increase in fasting plasma insulin concentration, muscle GLUT-4 mRNA and/or protein content. In addition, neither muscle GS-1 nor Gln-1 mRNA expression was affected. We conclude that creatine ingestion itself stimulates muscle glycogen storage, but does not affect muscle GLUT-4 expression.

  1. An anti-HIV-1 compound that increases steady-state expression of apoplipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G.

    PubMed

    Ejima, Tomohiko; Hirota, Mayuko; Mizukami, Tamio; Otsuka, Masami; Fujita, Mikako

    2011-10-01

    Human apoplipoprotein B mRNA-editing enzyme-catalytic polypeptide-like (APOBEC) 3G (A3G) is an antiviral protein that blocks HIV-1 replication. However, the antiviral activity of A3G is overcome by the HIV-1 protein Vif. This inhibitory function of Vif is related to its ability to degrade A3G in the proteasome. This finding prompted us to examine the activities of 4-(dimethylamino)-2,6-bis[(N-(2-[(2-nitrophenyl)dithio]ethyl)amino)methyl]pyridine (SN-2) and SN-3. We found that 5 µM SN-2 increases the expression of A3G to a level much higher than that observed in the absence of Vif, without affecting the level of Vif expression. The proteasome inhibitor MG-132 increased the level of both A3G and Vif expression. These results demonstrate that A3G is ubiquitinated and degraded in the proteasome by a factor other than Vif, and that SN-2 selectively inhibits these processes. Furthermore, 5 µM SN-2 significantly inhibited the MAGI cell infectivity of wild-type HIV-1. These findings may contribute to the development of a novel anti-HIV-1 drug.

  2. Erythritol reduces small intestinal glucose absorption, increases muscle glucose uptake, improves glucose metabolic enzymes activities and increases expression of Glut-4 and IRS-1 in type 2 diabetic rats.

    PubMed

    Chukwuma, Chika Ifeanyi; Mopuri, Ramgopal; Nagiah, Savania; Chuturgoon, Anil Amichund; Islam, Md Shahidul

    2017-08-02

    Studies have reported that erythritol, a low or non-glycemic sugar alcohol possesses anti-hyperglycemic and anti-diabetic potentials but the underlying mode of actions is not clear. This study investigated the underlying mode of actions behind the anti-hyperglycemic and anti-diabetic potentials of erythritol using different experimental models (experiment 1, 2 and 3). Experiment 1 examined the effects of increasing concentrations (2.5-20%) of erythritol on glucose absorption and uptake in isolated rat jejunum and psoas muscle, respectively. Experiments 2 and 3 examined the effects of a single oral dose of erythritol (1 g/kg bw) on intestinal glucose absorption, gastric emptying and postprandial blood glucose increase, glucose tolerance, serum insulin level, muscle/liver hexokinase and liver glucose-6 phosphatase activities, liver and muscle glycogen contents and mRNA and protein expression of muscle Glut-4 and IRS-1 in normal and type 2 diabetic animals. Experiment 1 revealed that erythritol dose dependently enhanced muscle glucose ex vivo. Experiment 2 demonstrated that erythritol feeding delayed gastric emptying and reduced small intestinal glucose absorption as well as postprandial blood glucose rise, especially in diabetic animals. Experiment 3 showed that erythritol feeding improved glucose tolerance, muscle/liver hexokinase and liver glucose-6 phosphatase activities, glycogen storage and also modulated expression of muscle Glut-4 and IRS-1 in diabetic animals. Data suggest that erythritol may exert anti-hyperglycemic effects not only via reducing small intestinal glucose absorption, but also by increasing muscle glucose uptake, improving glucose metabolic enzymes activity and modulating muscle Glut-4 and IRS-1 mRNA and protein expression. Hence, erythritol may be a useful dietary supplement for managing hyperglycemia, particularly for T2D.

  3. Increased FasL expression correlates with apoptotic changes in granulocytes cultured with oxidized clozapine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Husain, Zaheed; Department of Pathology, Harvard Medical School, Boston, MA; Almeciga, Ingrid

    Clozapine has been associated with a 1% incidence of agranulocytosis. The formation of an oxidized intermediate clozapine metabolite has been implicated in direct polymorphonuclear (PMN) toxicity. We utilized two separate systems to analyze the role of oxidized clozapine in inducing apoptosis in treated cells. Human PMN cells incubated with clozapine (0-10 {mu}M) in the presence of 0.1 mM H{sub 2}O{sub 2} demonstrated a progressive decrease of surface CD16 expression along with increased apoptosis. RT-PCR analysis showed decreased CD16 but increased FasL gene expression in clozapine-treated PMN cells. No change in constitutive Fas expression was observed in treated cells. In HL-60more » cells induced to differentiate with retinoic acid (RA), a similar increase in FasL expression, but no associated changes in CD16 gene expression, was observed following clozapine treatments. Our results demonstrate increased FasL gene expression in oxidized clozapine-induced apoptotic neutrophils suggesting that apoptosis in granulocytes treated with clozapine involves Fas/FasL interaction that initiates a cascade of events leading to clozapine-induced agranulocytosis.« less

  4. LMW Heparin Prevents Increased Kidney Expression of Proinflammatory Mediators in (NZBxNZW)F1 Mice

    PubMed Central

    Kanapathippillai, Premasany; Rekvig, Ole Petter; Fenton, Kristin Andreassen

    2013-01-01

    We have previously demonstrated that continuous infusion of low molecular weight (LMW) heparin delays autoantibody production and development of lupus nephritis in (NZBxNZW)F1 (B/W) mice. In this study we investigated the effect of LMW heparin on renal cytokine and chemokine expression and on nucleosome-mediated activation of nucleosome-specific splenocytes. Total mRNA extracted from kidneys of heparin-treated or -untreated B/W mice was analysed by qPCR for the expression of several cytokines, chemokines, and Toll-like receptors. Splenocytes taken from B/W mice were stimulated with nucleosomes with or without the presence of heparin. Splenocyte cell proliferation as thymidine incorporation and the expression of costimulatory molecules and cell activation markers were measured. Heparin treatment of B/W mice reduced the in vivo expression of CCR2, IL1β, and TLR7 compared to untreated B/W mice. Nucleosome-induced cell proliferation of splenocytes was not influenced by heparin. The expression of CD80, CD86, CD69, CD25, CTLA-4, and TLR 2, 7, 8, and 9 was upregulated upon stimulation by nucleosomes, irrespective of whether heparin was added to the cell culture or not. In conclusion, treatment with heparin lowers the kidney expression of proinflammatory mediators in B/W mice but does not affect nucleosomal activation of splenocytes. PMID:24151519

  5. Increased expression of insulin-like growth factor-1 receptor is correlated with worse survival in canine appendicular osteosarcoma.

    PubMed

    Maniscalco, Lorella; Iussich, Selina; Morello, Emanuela; Martano, Marina; Gattino, Francesca; Miretti, Silvia; Biolatti, Bartolomeo; Accornero, Paolo; Martignani, Eugenio; Sánchez-Céspedes, Raquel; Buracco, Paolo; De Maria, Raffaella

    2015-08-01

    Insulin-like growth factor 1 receptor (IGF-1R) is a cell membrane receptor widely expressed in tissues and involved in different cancers in humans. IGF-1R expression in human osteosarcoma has been associated with the development of tumour metastasis and with prognosis, and represents an attractive therapeutic target. The goal of this study was to investigate the expression of IGF-1R in canine osteosarcoma tissues and cell lines and assess its role and prognostic value. Samples from 34 dogs were examined by immunohistochemistry for IGF-1R expression. IGF-1R/AKT/MAPK signalling was evaluated by western blot and quantitative polymerase chain reaction in the cell lines. In addition, the in vitro inhibition of IGF-1R with pycropodophillin (PPP) was used to evaluate molecular and biological effects. Immunohistochemical data showed that IGF-1R was expressed in 71% of the analysed osteosarcoma samples and that dogs with higher levels of IGF-IR expression (47% of cases) had decreased survival (P < 0.05) when compared to dogs with lower IGF-IR expression. Molecular studies demonstrated that in canine osteosarcoma IGF-IR is activated by IGF-1 mostly in a paracrine or endocrine (rather than autocrine) manner, leading to activation of AKT/MAPK signalling. PPP caused p-IGF-1R dephosphorylation with partial blocking of p-MAPK and p-AKT, as well as apoptosis. It was concluded that IGF-1R is expressed and plays a role in canine osteosarcoma and that its expression is correlated with a poor prognosis. As in humans, IGF-1R may represent a good therapeutic target and a prognostic factor for canine osteosarcoma. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Emodin Increases Expression of Insulin-Like Growth Factor Binding Protein 1 through Activation of MEK/ERK/AMPKα and Interaction of PPARγ and Sp1 in Lung Cancer.

    PubMed

    Tang, Qing; Wu, JingJing; Zheng, Fang; Hann, Swei Sunny; Chen, YuQing

    2017-01-01

    Emodin has anti-neoplastic activities on multiple tumors. However, the molecular mechanisms underlying this effect still remain to be fully understood. Cell viability and cell cycle distribution were measured using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assays and flow cytometry, respectively. Cell invasion and migration were examined by transwell invasion and wound healing assays. Western blot analysis was performed to examine the phosphorylation and protein expression of AMP-activated protein kinase alpha (AMPKα), extracellular signaling-regulated kinase 1/2 (ERK1/2), peroxisome proliferators-activated receptor gamma (PPARγ), insulin-like growth factor (IGF) binding protein 1 (IGFBP1) and the transcription factor Sp1. QRT-PCR was used to examine the mRNA levels of the IGFBP1 gene. Small interfering RNAs (siRNAs) were used to knockdown PPARγ and IGFBP1 genes. Exogenously expression of IGFBP1 and Sp1 was determined by transient transfection assays. IGFBP1 promoter activity was measured by Secrete-Pair Dual Luminescence Assay Kit. In vivo nude mice xenograft model and bioluminescent imaging system were used to confirm the findings. We showed that emodin induced cell cycle arrest of NSCLC cells. Emodin increased PPARγ protein and luciferase reporter activity, which were abolished by inhibitors of MAPK extracellular signaling-regulated kinase (ERK) kinase (MEK)/ERK and AMPK. Silencing of PPARγ abrogated emodin-inhibited cell growth and cell cycle arrest. Furthermore, emodin elevated IGFBP1 mRNA, protein, and promoter activity through activation of PPARγ. Intriguingly, overexpressed Sp1 attenuated emodin-induced IGFBP1 expression, which was not observed in cells with silenced PPARγ gene. Moreover, silencing of IGFBP1 gene blunted emodin-induced inhibition of cell growth and cell cycle arrest. On the contrary, overexpressed IGFBP1 enhanced emodin-induced phosphorylation of AMPKα and ERK1/2, and restored emodin-inhibited growth in

  7. Specificity protein, Sp1-mediated increased expression of Prdx6 as a curcumin-induced antioxidant defense in lens epithelial cells against oxidative stress

    PubMed Central

    Chhunchha, B; Fatma, N; Bhargavan, B; Kubo, E; Kumar, A; Singh, D P

    2011-01-01

    Peroxiredoxin 6 (Prdx6) is a pleiotropic oxidative stress-response protein that defends cells against reactive oxygen species (ROS)-induced damage. Curcumin, a naturally occurring agent, has diversified beneficial roles including cytoprotection. Using human lens epithelial cells (hLECs) and Prdx6-deficient cells, we show the evidence that curcumin protects cells by upregulating Prdx6 transcription via invoking specificity protein 1 (Sp1) activity against proapoptotic stimuli. Curcumin enhanced Sp1 and Prdx6 mRNA and protein expression in a concentration-dependent manner, as evidenced by western and real-time PCR analyses, and thereby negatively regulated ROS-mediated apoptosis by blunting ROS expression and lipid peroxidation. Bioinformatic analysis and DNA–protein binding assays disclosed three active Sp1 sites (−19/27, −61/69 and −82/89) in Prdx6 promoter. Co-transfection experiments with Sp1 and Prdx6 promoter–chloramphenicol acetyltransferase (CAT) constructs showed that CAT activity was dramatically increased in LECs or Sp1-deficient cells (SL2). Curcumin treatment of LECs enhanced Sp1 binding to its sites, consistent with curcumin-dependent stimulation of Prdx6 promoter with Sp1 sites and cytoprotection. Notably, disruption of Sp1 sites by point mutagenesis abolished curcumin transactivation of Prdx6. Also, curcumin failed to activate Prdx6 expression in the presence of Sp1 inhibitors, demonstrating that curcumin-mediated increased expression of Prdx6 was dependent on Sp1 activity. Collectively, the study may provide a foundation for developing transcription-based inductive therapy to reinforce endogenous antioxidant defense by using dietary supplements. PMID:22113199

  8. Milk peptides increase iron dialyzability in water but do not affect DMT-1 expression in Caco-2 cells.

    PubMed

    Argyri, Konstantina; Tako, Elad; Miller, Dennis D; Glahn, Raymond P; Komaitis, Michael; Kapsokefalou, Maria

    2009-02-25

    In vitro digestion of milk produces peptide fractions that enhance iron uptake by Caco-2 cells. The objectives of this study were to investigate whether these fractions (a) exert their effect by increasing relative gene expression of DMT-1 in Caco-2 cells and (b) enhance iron dialyzability when added in meals. Two milk peptide fractions that solubilize iron were isolated by Sephadex G-25 gel filtration of a milk digest. These peptide fractions did not affect relative gene expression of DMT-1 when incubated with Caco-2 cells for 2 or 48 h. Dialyzability was measured after in vitro simulated gastric and pancreatic digestion. Both peptide fractions enhanced the dialyzability of iron from ferric chloride added to PIPES buffer, but had no effect on dialyzability from milk or a vegetable or fruit meal after in vitro simulated gastric and pancreatic digestion. However, dialyzability from milk was enhanced by the addition of a more concentrated lyophilized peptide fraction.

  9. Increased Expression and Altered Methylation of HERVWE1 in the Human Placentas of Smaller Fetuses from Monozygotic, Dichorionic, Discordant Twins

    PubMed Central

    Wang, Zilian; Luo, Yanmin; Sun, Hongyu; Zhou, Yi; Huang, Linhuan; Li, Manchao; Fang, Qun; Jiang, Shiwen

    2012-01-01

    Background The human endogenous retroviral family W, Env(C7), member 1 gene (HERVWE1) is thought to participate in trophoblast cell fusion, and its expression is diminished in the placentas of singleton intrauterine growth-retarded pregnancies. However, there is limited information about the role of HERVWE1 in discordant fetal growth in twins. This study was to compare HERVWE1 gene expression between the placentas of discordant monozygotic twins and to identify its regulation by methylation. Methodology/Principal Findings Fetuses from twenty-one pairs of monozygotic, dichorionic, discordant twins were marked as “smaller” or “larger” according to birth weight. Placental HERVWE1 mRNA and protein expression profiles were analyzed using quantitative RT-PCR and immunohistochemistry (IHC) staining. Methylation profiles of the HERVWE1 promoter region were analyzed using a pyrosequencing assay. DNA methyltransferase (DNMT) transcript levels were analyzed by RT-PCR. 5-methyl cytosine (5-MC) was stained using an immunohistochemical assay. There was a significant negative correlation between HERVWE1 mRNA levels and birth weight in twins (P<0.01). Whereas the mean methylation level of the HERVWE1 promoter region was diminished in the smaller group in discordant twins(P<0.01), increased mRNA and protein levels of HERVWE1 were found in smaller fetuses compared with larger fetuses in discordant twins(P<0.01). There was no significant difference in 5-MC staining intensity between discordant twins (P>0.05). The DNMT3b3 mRNA levels in the smaller group were significantly downregulated compared with the larger group in discordant twins(P<0.05), whereas the DNMT3b7 mRNA levels in the smaller group were significantly upregulated compared with the larger group in discordant twins(P<0.05). Conclusions/Significance In discordant, monozygotic, dichorionic twins, HERVWE1 expression was higher in smaller fetuses and lower in larger fetuses. Methylation of the HERVWE1 gene promoter

  10. Progesterone receptor membrane component 1 (PGRMC1) expression in murine retina

    PubMed Central

    Shanmugam, Arul K.; Mysona, Barbara A.; Wang, Jing; Zhao, Jing; Tawfik, Amany; Sanders, A.; Markand, Shanu; Zorrilla, Eric; Ganapathy, Vadivel; Bollinger, Kathryn E.; Smith, Sylvia B.

    2015-01-01

    Purpose Sigma receptor 1 (σR1) and 2 (σR2) are thought to be two distinct proteins which share the ability to bind multiple ligands, several of which are common to both receptors. Whether σR1 and σR2 share overlapping biological functions is unknown. Recently, progesterone receptor membrane component 1 (PGRMC1) was shown to contain the putative σR2 binding site. PGRMC1 has not been studied in retina. We hypothesize that biological interactions between σR1 and PGRMC1 will be evidenced by compensatory upregulation of PGRMC1 in σR1−/− mice. Methods Immunofluorescence, RT-PCR, and immunoblotting methods were used to analyze expression of PGRMC1 in wild type mouse retina. Tissues from σR1−/− mice were used to investigate whether a biological interaction exists between σR1 and PGRMC1. Results In the eye, PGRMC1 is expressed in corneal epithelium, lens, ciliary body epithelium, and retina. In retina, PGRMC1 is present in Müller cells and retinal pigment epithelium. This expression pattern is similar, but not identical to σR1. PGRMC1 protein levels in neural retina and eye cup from σR1−/− mice did not differ from wild type mice. Nonocular tissues, lung, heart, and kidney showed similar Pgrmc1 gene expression in wild type and σR1−/− mice. In contrast, liver, brain and intestine showed increased Pgrmc1 gene expression in σR1−/− mice. Conclusion Despite potential biological overlap, deletion of σR1 did not result in a compensatory change in PGRMC1 protein levels in σR1−/− mouse retina. Increased Pgrmc1 gene expression in organs with high lipid content such as liver, brain, and intestine indicate a possible tissue specific interaction between σR1 and PGRMC1. The current studies establish the presence of PGRMC1 in retina and lay the foundation for analysis of its biological function. PMID:26642738

  11. Progesterone Receptor Membrane Component 1 (PGRMC1) Expression in Murine Retina.

    PubMed

    Shanmugam, Arul K; Mysona, Barbara A; Wang, Jing; Zhao, Jing; Tawfik, Amany; Sanders, A; Markand, Shanu; Zorrilla, Eric; Ganapathy, Vadivel; Bollinger, Kathryn E; Smith, Sylvia B

    2016-08-01

    Sigma receptors 1 (σR1) and 2 (σR2) are thought to be two distinct proteins which share the ability to bind multiple ligands, several of which are common to both receptors. Whether σR1 and σR2 share overlapping biological functions is unknown. Recently, progesterone receptor membrane component 1 (PGRMC1) was shown to contain the putative σR2 binding site. PGRMC1 has not been studied in retina. We hypothesize that biological interactions between σR1 and PGRMC1 will be evidenced by compensatory upregulation of PGRMC1 in σR1 -/- mice. Immunofluorescence, RT-PCR, and immunoblotting methods were used to analyze expression of PGRMC1 in wild-type mouse retina. Tissues from σR1 -/- mice were used to investigate whether a biological interaction exists between σR1 and PGRMC1. In the eye, PGRMC1 is expressed in corneal epithelium, lens, ciliary body epithelium, and retina. In retina, PGRMC1 is present in Müller cells and retinal pigment epithelium. This expression pattern is similar, but not identical to σR1. PGRMC1 protein levels in neural retina and eye cup from σR1 -/- mice did not differ from wild-type mice. Nonocular tissues, lung, heart, and kidney showed similar Pgrmc1 gene expression in wild-type and σR1 -/- mice. In contrast, liver, brain, and intestine showed increased Pgrmc1 gene expression in σR1 -/- mice. Despite potential biological overlap, deletion of σR1 did not result in a compensatory change in PGRMC1 protein levels in σR1 -/- mouse retina. Increased Pgrmc1 gene expression in organs with high lipid content such as liver, brain, and intestine indicates a possible tissue-specific interaction between σR1 and PGRMC1. The current studies establish the presence of PGRMC1 in retina and lay the foundation for analysis of its biological function.

  12. In vitro C3 mRNA expression in Pemphigus vulgaris: complement activation is increased by IL-1alpha and TNF-alpha.

    PubMed

    Feliciani, C; Toto, P; Amerio, P

    1999-01-01

    Pemphigus vulgaris (PV) is a potentially life-threatening disease, characterized immunohistologically by IgG deposits and complement activation on the surface of keratinocytes. Complement activation has been implicated in the pathogenesis with C3 deposits in about 90% of patients. In order to further elucidate the role of complement in PV and to define which cytokines play a role in C3 mRNA expression, we performed an in vitro study in human keratinocytes. Normal human epidermal keratinocytes (NHuK) were incubated with PV serum and C3 mRNA was measured. We previously had shown that IL-1alpha and TNF-alpha are expressed in PV in vivo and in vitro. Since cytokines are able to modulate complement activation, mRNA expression was evaluated in a similar experiment after pretreatment using antibodies against IL-1alpha and TNF-alpha. Incubation of NHuK with PV sera caused their detachment from the plates after 20-30 minutes with a complete acantholysis within 12 hours. An early C3 mRNA expression was seen after 30 minutes with a peak level after 1 hour. Blocking studies, using antibodies against human IL-1alpha and TNF-alpha in NHuK together with PV-IgG, showed reduction of in vitro induced acantholysis and inhibition of C3 mRNA expression. This study supports the hypothesis that complement C3 is important in PV acantholysis and that complement activation is increased by IL-1alpha and TNF-alpha.

  13. Edible Bird's Nest Prevents Menopause-Related Memory and Cognitive Decline in Rats via Increased Hippocampal Sirtuin-1 Expression

    PubMed Central

    He, Peiyuan; Qi, Jiemen; Tang, Shiying; Song, Chengjun; Ismail, Maznah

    2017-01-01

    Menopause causes cognitive and memory dysfunction due to impaired neuronal plasticity in the hippocampus. Sirtuin-1 (SIRT1) downregulation in the hippocampus is implicated in the underlying molecular mechanism. Edible bird's nest (EBN) is traditionally used to improve general wellbeing, and in this study, we evaluated its effects on SIRT1 expression in the hippocampus and implications on ovariectomy-induced memory and cognitive decline in rats. Ovariectomized female Sprague-Dawley rats were fed with normal pellet alone or normal pellet + EBN (6, 3, or 1.5%), compared with estrogen therapy (0.2 mg/kg/day). After 12 weeks of intervention, Morris water maze (four-day trial and one probe trial) was conducted, and serum estrogen levels, toxicity markers (alanine transaminase, alkaline phosphatase, urea, and creatinine), and hippocampal SIRT1 immunohistochemistry were estimated after sacrifice. The results indicated that EBN and estrogen enhanced spatial learning and memory and increased serum estrogen and hippocampal SIRT1 expression. In addition, the EBN groups did not show as much toxicity to the liver as the estrogen group. The data suggested that EBN treatment for 12 weeks could improve cognition and memory in ovariectomized female rats and may be an effective alternative to estrogen therapy for menopause-induced aging-related memory loss. PMID:29104731

  14. VCAM1 and ICAM1 expression in oral lichen planus

    PubMed Central

    Seyedmajidi, Maryam; Shafaee, Shahryar; Bijani, Ali; Bagheri, Soodabeh

    2013-01-01

    Oral lichen planus is a chronic inflammatory immune-mediated disease. ICAM-1 and VCAM-1 are vascular adhesion molecules that their receptors are located on endothelial cells and leukocytes. The aim of this study is the immunohistochemical evaluation of VCAM1 and ICAM1 in oral lichen planus and to compare these two markers with normal mucosa for evaluation of angiogenesis. This descriptive-analytical study was performed on 70 paraffined blocks of oral lichen planus and 30 normal mucosa samples taken from around the lesions. Samples were stained with H & E and then with Immunohistochemistry using monoclonal mouse anti human VCAM1 (CD106), & monoclonal mouse anti human ICAM1(CD54) for confirmation of diagnosis. Slides were evaluated under light microscope and VCAM1 and ICAM1 positive cells (endothelial cells and leukocytes) were counted. Data were analyzed with Mann-Whitney test, Wilcoxon and Chi-Square and p<0.001 was declared significant. VCAM1 and ICAM1 expression significantly increased compared to normal mucosa in oral lichen planus according to the percentage of stained cells (p=0.000& p=0.000, Mann-Whitney test). Thirty cases of oral normal mucosa associated with lichen planus showed that the VCAM1 has increased significantly in comparison to normal mucosa (p<0.001). Also, ICAM1 expression between lichen planus and normal mucosa, showed a significantly difference (p<0.001). A significant difference between VCAM1 and ICAM1 expression and type of lichen planus was not observed (p>0.05). Regarding the results, it seems that high expression of VCAM1 and ICAM1 is related to oral lichen planus. PMID:24551788

  15. Novel Genetic Variants Associated With Increased Vertebral Volumetric BMD, Reduced Vertebral Fracture Risk, and Increased Expression of SLC1A3 and EPHB2

    PubMed Central

    Nielson, Carrie M; Liu, Ching-Ti; Smith, Albert V; Ackert-Bicknell, Cheryl L; Reppe, Sjur; Jakobsdottir, Johanna; Wassel, Christina; Register, Thomas C; Oei, Ling; Alonso, Nerea; Oei, Edwin H; Parimi, Neeta; Samelson, Elizabeth J; Nalls, Mike A; Zmuda, Joseph; Lang, Thomas; Bouxsein, Mary; Latourelle, Jeanne; Claussnitzer, Melina; Siggeirsdottir, Kristin; Srikanth, Priya; Lorentzen, Erik; Vandenput, Liesbeth; Langefeld, Carl; Raffield, Laura; Terry, Greg; Cox, Amanda J; Allison, Matthew A; Criqui, Michael H; Bowden, Don; Ikram, M Arfan; Mellstrom, Dan; Karlsson, Magnus K; Carr, John; Budoff, Matthew; Phillips, Caroline; Cupples, L Adrienne; Chou, Wen-Chi; Myers, Richard H; Ralston, Stuart H; Gautvik, Kaare M; Cawthon, Peggy M; Cummings, Steven; Karasik, David; Rivadeneira, Fernando; Gudnason, Vilmundur; Orwoll, Eric S; Harris, Tamara B; Ohlsson, Claes; Kiel, Douglas P; Hsu, Yi-Hsiang

    2017-01-01

    Genome-wide association studies (GWASs) have revealed numerous loci for areal bone mineral density (aBMD). We completed the first GWAS meta-analysis (n = 15,275) of lumbar spine volumetric BMD (vBMD) measured by quantitative computed tomography (QCT), allowing for examination of the trabecular bone compartment. SNPs that were significantly associated with vBMD were also examined in two GWAS meta-analyses to determine associations with morphometric vertebral fracture (n = 21,701) and clinical vertebral fracture (n = 5893). Expression quantitative trait locus (eQTL) analyses of iliac crest biopsies were performed in 84 postmenopausal women, and murine osteoblast expression of genes implicated by eQTL or by proximity to vBMD-associated SNPs was examined. We identified significant vBMD associations with five loci, including: 1p36.12, containing WNT4 and ZBTB40; 8q24, containing TNFRSF11B; and 13q14, containing AKAP11 and TNFSF11. Two loci (5p13 and 1p36.12) also contained associations with radiographic and clinical vertebral fracture, respectively. In 5p13, rs2468531 (minor allele frequency [MAF] = 3%) was associated with higher vBMD (β = 0.22, p = 1.9 × 10−8) and decreased risk of radiographic vertebral fracture (odds ratio [OR] = 0.75; false discovery rate [FDR] p = 0.01). In 1p36.12, rs12742784 (MAF = 21%) was associated with higher vBMD (β = 0.09, p = 1.2 × 10−10) and decreased risk of clinical vertebral fracture (OR = 0.82; FDR p = 7.4 × 10−4). Both SNPs are noncoding and were associated with increased mRNA expression levels in human bone biopsies: rs2468531 with SLC1A3 (β = 0.28, FDR p = 0.01, involved in glutamate signaling and osteogenic response to mechanical loading) and rs12742784 with EPHB2 (β = 0.12, FDR p = 1.7 × 10−3, functions in bone-related ephrin signaling). Both genes are expressed in murine osteoblasts. This is the first study to linkSLC1A3 and EPHB2 to clinically relevant vertebral osteoporosis phenotypes. These results may help

  16. TSA increases C/EBP‑α expression by increasing its lysine acetylation in hepatic stellate cells.

    PubMed

    Tao, Li-Li; Ding, Di; Yin, Wei-Hua; Peng, Ji-Ying; Hou, Chen-Jian; Liu, Xiu-Ping; Chen, Yao-Li

    2017-11-01

    CCAAT enhancer binding protein‑α (C/EBP‑α) is a transcription factor expressed only in certain tissues, including the liver. It has been previously demonstrated that C/EBP‑α may induce apoptosis in hepatic stellate cells (HSCs), raising the question of whether acetylation of C/EBP‑α is associated with HSCs, and the potential associated mechanism. A total of three histone deacetylase inhibitors (HDACIs), including trichostatin A (TSA), suberoylanilide hydroxamic acid and nicotinamide, were selected to determine whether acetylation affects C/EBP‑α expression. A Cell Counting Kit‑8 assay was used to determine the rate of proliferation inhibition following treatment with varying doses of the three HDACIs in HSC‑T6 and BRL‑3A cells. Western blot analysis was used to examine Caspase‑3, ‑8, ‑9, and ‑12 levels in HSC‑T6 cells treated with adenoviral‑C/EBP‑α and/or TSA. Following treatment with TSA, a combination of reverse transcription‑quantitative polymerase chain reaction and western blot analyses was used to determine the inherent C/EBP‑α mRNA and protein levels in HSC‑T6 cells at 0, 1, 2, 4, 8, 12, 24, 36 and 48 h. Nuclear and cytoplasmic proteins were extracted to examine C/EBP‑α distribution. Co‑immunoprecipitation analysis was used to examine the lysine acetylation of C/EBP‑α. It was observed that TSA inhibited the proliferation of HSC‑T6 cells to a greater extent compared with BRL‑3A cells, following treatment with the three HDACIs. TSA induced apoptosis in HSC‑T6 cells and enhanced the expression of C/EBP‑α. Following treatment of HSC‑T6 cells with TSA, inherent C/EBP‑α expression increased in a time‑dependent manner, and its lysine acetylation simultaneously increased. Therefore, the results of the present study suggested that TSA may increase C/EBP‑α expression by increasing its lysine acetylation in HSCs.

  17. Epidermal Growth Factor Increases LRF/Pokemon Expression in Human Prostate Cancer Cells

    PubMed Central

    Aggarwal, Himanshu; Aggarwal, Anshu; Agrawal, Devendra K.

    2011-01-01

    Leukemia/lymphoma related factor/POK erythroid myeloid ontogenic factor (LRF/Pokemon) is a member of the POK family of proteins that promotes oncogenesis in several forms of cancer. Recently, we found higher LRF expression in human breast and prostate carcinomas compared to the corresponding normal tissues. The aim of this study was to examine the regulation of LRF expression in human prostate cells. Epidermal growth factor (EGF) and its receptors mediate several tumorigenic cascades that regulate cell differentiation, proliferation, migration and survival of prostate cancer cells. There was significantly higher level of LRF expression in the nucleus of LNCaP and PC-3 cells than RWPE-1 cells. A significant increase in LRF expression was observed with increasing doses of EGF in more aggressive and androgen-sensitive prostate cancer cells suggesting that EGF signaling pathway is critical in upregulating the expression of LRF/Pokemon to promote oncogenesis. PMID:21640721

  18. Silk protein hydrolysate increases glucose uptake through up-regulation of GLUT 4 and reduces the expression of leptin in 3T3-L1 fibroblast.

    PubMed

    Lee, Hyun-Sun; Lee, Hyun Jung; Suh, Hyung Joo

    2011-12-01

    The purpose of our research was to test the hypothesis that silk protein hydrolysate increases glucose uptake in cultured murine embryonic fibroblasts. Insulin sensitizing activity was observed in a cell-based glucose uptake assay using 3T3-L1 embryonic fibroblasts. The treatment of 1 mg/mL of silk peptide E5K6 plus 0.2 nM insulin was associated with a significant increase in glucose uptake (124.0% ± 2.5%) compared to treatment with 0.2 nM insulin alone. When the 3T3-L1 cells were induced to differentiate into fibroblasts, fat droplets formed inside the cells. Silk peptide E5K6 reduced the formation of fat droplets at the 1-mg/mL dosage (86.1% ± 2.5%) when compared to the control (100.0% ± 5.8%). A 1 mg/mL dose of silk peptide E5K6 significantly increased GLUT 4 expression (131.5% ± 4.0%). The treatment of 1 mg/mL of silk peptide E5K6 did not present any changes for adipogenic expressed genes, but leptin expression was significantly increased by silk peptide E5K6 supplementation (175.9% ± 11.1%). From these results, silk peptide E5K6 increased glucose uptake via up-regulation of GLUT 4 and decreased fat accumulation via the up-regulation of leptin. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Binding of Losartan to Angiotensin AT1 Receptors Increases Dopamine D1 Receptor Activation

    PubMed Central

    Li, Dong; Scott, Lena; Crambert, Susanne; Zelenin, Sergey; Eklöf, Ann-Christine; Di Ciano, Luis; Ibarra, Fernando

    2012-01-01

    Signaling through both angiotensin AT1 receptors (AT1R) and dopamine D1 receptors (D1R) modulates renal sodium excretion and arterial BP. AT1R and D1R form heterodimers, but whether treatment with AT1R antagonists functionally modifies D1R via allosterism is unknown. In this study, the AT1R antagonist losartan strengthened the interaction between AT1R and D1R and increased expression of D1R on the plasma membrane in vitro. In rat proximal tubule cells that express endogenous AT1R and D1R, losartan increased cAMP generation. Losartan increased cAMP in HEK 293a cells transfected with both AT1R and D1R, but it did not increase cAMP in cells transfected with either receptor alone, suggesting that losartan induces D1R activation. Furthermore, losartan did not increase cAMP in HEK 293a cells expressing AT1R and mutant S397/S398A D1R, which disrupts the physical interaction between AT1R and D1R. In vivo, administration of a D1R antagonist significantly attenuated the antihypertensive effect of losartan in rats with renal hypertension. Taken together, these data imply that losartan might exert its antihypertensive effect both by inhibiting AT1R signaling and by enhancing D1R signaling. PMID:22193384

  20. 14-3-3 α and 14-3-3 ζ contribute to immune responses in planarian Dugesia japonica.

    PubMed

    Lu, Qingqing; Wu, Suge; Zhen, Hui; Deng, Hongkuan; Song, Qian; Ma, Kaifu; Cao, Zhonghong; Pang, Qiuxiang; Zhao, Bosheng

    2017-06-05

    14-3-3 proteins are a family of highly conserved acidic proteins that regulate cellular processes. They act as a kind of important signaling molecules taking part in many crucial decisions throughout the development process. We have isolated and characterized two members of the 14-3-3 family, namely, Dj14-3-3 α and Dj14-3-3 ζ in the planarian Dugesia japonica. The Dj14-3-3 α and ζ genes encode polypeptides of 260 and 255 amino acids respectively. We have proved that the Dj14-3-3 α and ζ genes were especially expressed in the pharynx in adult and regenerating planarians by in situ hybridization and they were not involved in regeneration process. Besides, Dj14-3-3 α and ζ genes can compensate each other in planarians by RNA interference. The Dj14-3-3 α and ζ were significantly up-regulated expression when planarians were stimulated with the pathogen-associated molecular patterns including lipopolysaccharide (LPS), peptidoglycan (PGN), β-Glu and Poly (I:C), indicating that the Dj14-3-3 α and ζ may be involved in the immune responses. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Increased Energy Expenditure, Ucp1 Expression, and Resistance to Diet-induced Obesity in Mice Lacking Nuclear Factor-Erythroid-2-related Transcription Factor-2 (Nrf2).

    PubMed

    Schneider, Kevin; Valdez, Joshua; Nguyen, Janice; Vawter, Marquis; Galke, Brandi; Kurtz, Theodore W; Chan, Jefferson Y

    2016-04-01

    The NRF2 (also known as NFE2L2) transcription factor is a critical regulator of genes involved in defense against oxidative stress. Previous studies suggest thatNrf2plays a role in adipogenesisin vitro, and deletion of theNrf2gene protects against diet-induced obesity in mice. Here, we demonstrate that resistance to diet-induced obesity inNrf2(-/-)mice is associated with a 20-30% increase in energy expenditure. Analysis of bioenergetics revealed thatNrf2(-/-)white adipose tissues exhibit greater oxygen consumption. White adipose tissue showed a >2-fold increase inUcp1gene expression. Oxygen consumption is also increased nearly 2.5-fold inNrf2-deficient fibroblasts. Oxidative stress induced by glucose oxidase resulted in increasedUcp1expression. Conversely, antioxidant chemicals (such asN-acetylcysteine and Mn(III)tetrakis(4-benzoic acid)porphyrin chloride) and SB203580 (a known suppressor ofUcp1expression) decreasedUcp1and oxygen consumption inNrf2-deficient fibroblasts. These findings suggest that increasing oxidative stress by limitingNrf2function in white adipocytes may be a novel means to modulate energy balance as a treatment of obesity and related clinical disorders. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Searching for non-transposable targets of planarian nuclear PIWI in pluripotent stem cells and differentiated cells.

    PubMed

    Kashima, Makoto; Agata, Kiyokazu; Shibata, Norito

    2018-06-01

    Nuclear PIWIs together with their guide RNAs (piRNAs) epigenetically silence various genes including transposons in many organisms. In planarians, the nuclear piwi family gene, DjpiwiB is specifically transcribed in adult pluripotent stem cells (adult PSC, neoblast), but not in differentiated cells. However, the protein accumulates in the nuclei of both neoblasts and their descendant differentiated cells. Interestingly, PIWI(DjPiwiB)-piRNA complexes are indispensable for the repression of transposable genes at the onset of differentiation from neoblasts. Here, we conducted a comparative transcriptome analysis between control and DjpiwiB(RNAi) animals to identify non-transposable target genes of the DjPiwiB-piRNA complexes. Using bioinformatic analyses and RNAi we demonstrate that DjPiwiB-piRNA complexes are required for the proper expression of Djmcm2 and Djhistone h4 in neoblasts and that DjPiwiB-piRNA complexes regulate the transient expression of Djcalu during neoblast differentiation. Thus, DjPiwiB-piRNA complexes regulate the correct expression patterns during neoblast self-renewal and differentiation. © 2018 Japanese Society of Developmental Biologists.

  3. GPR30 Regulates Glutamate Transporter GLT-1 Expression in Rat Primary Astrocytes*

    PubMed Central

    Lee, Eunsook; Sidoryk-Wêgrzynowicz, Marta; Wang, Ning; Webb, Anton; Son, Deok-Soo; Lee, Kyuwon; Aschner, Michael

    2012-01-01

    The G protein-coupled estrogen receptor GPR30 contributes to the neuroprotective effects of 17β-estradiol (E2); however, the mechanisms associated with this protection have yet to be elucidated. Given that E2 increases astrocytic expression of glutamate transporter-1 (GLT-1), which would prevent excitotoxic-induced neuronal death, we proposed that GPR30 mediates E2 action on GLT-1 expression. To investigate this hypothesis, we examined the effects of G1, a selective agonist of GPR30, and GPR30 siRNA on astrocytic GLT-1 expression, as well as glutamate uptake in rat primary astrocytes, and explored potential signaling pathways linking GPR30 to GLT-1. G1 increased GLT-1 protein and mRNA levels, subject to regulation by both MAPK and PI3K signaling. Inhibition of TGF-α receptor suppressed the G1-induced increase in GLT-1 expression. Silencing GPR30 reduced the expression of both GLT-1 and TGF-α and abrogated the G1-induced increase in GLT-1 expression. Moreover, the G1-induced increase in GLT-1 protein expression was abolished by a protein kinase A inhibitor and an NF-κB inhibitor. G1 also enhanced cAMP response element-binding protein (CREB), as well as both NF-κB p50 and NF-κB p65 binding to the GLT-1 promoter. Finally, to model dysfunction of glutamate transporters, manganese was used, and G1 was found to attenuate manganese-induced impairment in GLT-1 protein expression and glutamate uptake. Taken together, the present data demonstrate that activation of GPR30 increases GLT-1 expression via multiple pathways, suggesting that GPR30 is worthwhile as a potential target to be explored for developing therapeutics of excitotoxic neuronal injury. PMID:22645130

  4. BRCA1-IRIS regulates cyclin D1 expression in breast cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakuci, Enkeleda; Mahner, Sven; DiRenzo, James

    2006-10-01

    The regulator of cell cycle progression, cyclin D1, is up-regulated in breast cancer cells; its expression is, in part, dependent on ER{alpha} signaling. However, many ER{alpha}-negative tumors and tumor cell lines (e.g., SKBR3) also show over-expression of cyclin D1. This suggests that, in addition to ER{alpha} signaling, cyclin D1 expression is under the control of other signaling pathways; these pathways may even be over-expressed in the ER{alpha}-negative cells. We previously noticed that both ER{alpha}-positive and -negative cell lines over-express BRCA1-IRIS mRNA and protein. Furthermore, the level of over-expression of BRCA1-IRIS in ER{alpha}-negative cell lines even exceeded its over-expression level inmore » ER{alpha}-positive cell lines. In this study, we show that: (1) BRCA1-IRIS forms complex with two of the nuclear receptor co-activators, namely, SRC1 and SRC3 (AIB1) in an ER{alpha}-independent manner. (2) BRCA1-IRIS alone, or in connection with co-activators, is recruited to the cyclin D1 promoter through its binding to c-Jun/AP1 complex; this binding activates the cyclin D1 expression. (3) Over-expression of BRCA1-IRIS in breast cells over-activates JNK/c-Jun; this leads to the induction of cyclin D1 expression and cellular proliferation. (4) BRCA1-IRIS activation of JNK/c-Jun/AP1 appears to account for this, because in cells that were depleted from BRCA1-IRIS, JNK remained inactive. However, depletion of SRC1 or SRC3 instead reduced c-Jun expression. Our data suggest that this novel signaling pathway links BRCA1-IRIS to cellular proliferation through c-Jun/AP1 nuclear pathway; finally, this culminates in the increased expression of the cyclin D1 gene.« less

  5. Increased Nicotiana tabacum fitness through positive regulation of carotenoid, gibberellin and chlorophyll pathways promoted by Daucus carota lycopene β-cyclase (Dclcyb1) expression

    PubMed Central

    Moreno, J.C.; Cerda, A.; Simpson, K.; Lopez-Diaz, I.; Carrera, E; Handford, M.; Stange, C.

    2016-01-01

    Carotenoids, chlorophylls and gibberellins are derived from the common precursor geranylgeranyl diphosphate (GGPP). One of the enzymes in carotenoid biosynthesis is lycopene β-cyclase (LCYB) that catalyzes the conversion of lycopene into β-carotene. In carrot, Dclcyb1 is essential for carotenoid synthesis in the whole plant. Here we show that when expressed in tobacco, increments in total carotenoids, β-carotene and chlorophyll levels occur. Furthermore, photosynthetic efficiency is enhanced in transgenic lines. Interestingly, and contrary to previous observations where overexpression of a carotenogenic gene resulted in the inhibition of the synthesis of gibberellins, we found raised levels of active GA4 and the concommitant increases in plant height, leaf size and whole plant biomass, as well as an early flowering phenotype. Moreover, a significant increase in the expression of the key carotenogenic genes, Ntpsy1, Ntpsy2 and Ntlcyb, as well as those involved in the synthesis of chlorophyll (Ntchl), gibberellin (Ntga20ox, Ntcps and Ntks) and isoprenoid precursors (Ntdxs2 and Ntggpps) was observed. These results indicate that the expression of Dclcyb1 induces a positive feedback affecting the expression of isoprenoid gene precursors and genes involved in carotenoid, gibberellin and chlorophyll pathways leading to an enhancement in fitness measured as biomass, photosynthetic efficiency and carotenoid/chlorophyll composition. PMID:26893492

  6. Running wheel exercise reduces α-synuclein aggregation and improves motor and cognitive function in a transgenic mouse model of Parkinson's disease

    PubMed Central

    Barkow, Jessica Cummiskey; Freed, Curt R.

    2017-01-01

    Exercise has been recommended to improve motor function in Parkinson patients, but its value in altering progression of disease is unknown. In this study, we examined the neuroprotective effects of running wheel exercise in mice. In adult wild-type mice, one week of running wheel activity led to significantly increased DJ-1 protein concentrations in muscle and plasma. In DJ-1 knockout mice, running wheel performance was much slower and Rotarod performance was reduced, suggesting that DJ-1 protein is required for normal motor activity. To see if exercise can prevent abnormal protein deposition and behavioral decline in transgenic animals expressing a mutant human form of α-synuclein in all neurons, we set up running wheels in the cages of pre-symptomatic animals at 12 months old. Activity was monitored for a 3-month period. After 3 months, motor and cognitive performance on the Rotarod and Morris Water Maze were significantly better in running animals compared to control transgenic animals with locked running wheels. Biochemical analysis revealed that running mice had significantly higher DJ-1, Hsp70 and BDNF concentrations and had significantly less α-synuclein aggregation in brain compared to control mice. By contrast, plasma concentrations of α-synuclein were significantly higher in exercising mice compared to control mice. Our results suggest that exercise may slow the progression of Parkinson’s disease by preventing abnormal protein aggregation in brain. PMID:29272304

  7. AGO1 controls arabidopsis inflorescence architecture possibly by regulating TFL1 expression.

    PubMed

    Fernández-Nohales, P; Domenech, M J; Martínez de Alba, A E; Micol, J L; Ponce, M R; Madueño, F

    2014-11-01

    The TERMINAL FLOWER 1 (TFL1) gene is pivotal in the control of inflorescence architecture in arabidopsis. Thus, tfl1 mutants flower early and have a very short inflorescence phase, while TFL1-overexpressing plants have extended vegetative and inflorescence phases, producing many coflorescences. TFL1 is expressed in the shoot meristems, never in the flowers. In the inflorescence apex, TFL1 keeps the floral genes LEAFY (LFY) and APETALA1 (AP1) restricted to the flower, while LFY and AP1 restrict TFL1 to the inflorescence meristem. In spite of the central role of TFL1 in inflorescence architecture, regulation of its expression is poorly understood. This study aims to expand the understanding of inflorescence development by identifying and studying novel TFL1 regulators. Mutagenesis of an Arabidopsis thaliana line carrying a TFL1::GUS (β-glucuronidase) reporter construct was used to isolate a mutant with altered TFL1 expression. The mutated gene was identified by positional cloning. Expression of TFL1 and TFL1::GUS was analysed by real-time PCR and histochemical GUS detection. Double-mutant analysis was used to assess the contribution of TFL1 to the inflorescence mutant phenotype. A mutant with both an increased number of coflorescences and high and ectopic TFL1 expression was isolated. Cloning of the mutated gene showed that both phenotypes were caused by a mutation in the ARGONAUTE1 (AGO1) gene, which encodes a key component of the RNA silencing machinery. Analysis of another ago1 allele indicated that the proliferation of coflorescences and ectopic TFL1 expression phenotypes are not allele specific. The increased number of coflorescences is suppressed in ago1 tfl1 double mutants. The results identify AGO1 as a repressor of TFL1 expression. Moreover, they reveal a novel role for AGO1 in inflorescence development, controlling the production of coflorescences. AGO1 seems to play this role through regulating TFL1 expression. © The Author 2014. Published by Oxford

  8. Insulin signaling pathway protects neuronal cell lines by Sirt3 mediated IRS2 activation.

    PubMed

    Mishra, Neha; Lata, Sonam; Deshmukh, Priyanka; Kamat, Kajal; Surolia, Avadhesha; Banerjee, Tanushree

    2018-05-01

    Cellular stress like ER and oxidative stress are the principle causative agents of various proteinopathies. Multifunctional protein PARK7/DJ-1 provides protection against cellular stress. Recently, insulin/IGF also has emerged as a neuro-protective molecule. However, it is not known whether DJ-1 and insulin/IGF complement each other for cellular protection in response to stress. In this study, we show for the first time, that in human and mouse neuronal cell lines, down regulation of DJ-1 for 48 h leads to compensatory upregulation of insulin/IGF signaling (IIS) pathway genes, namely, insulin receptor, insulin receptor substrate, and Akt under normal physiological conditions as well as in cellular stress conditions. Moreover, upon exogenous supply of insulin there is a marked increase in the IIS components both at gene and protein levels leading to down regulation and inactivation of GSK3β. By immunoprecipitation, it was observed that Sirt3 mediated deacetylation and activation of FoxO3a could not occur under DJ-1 downregulation. Transient DJ-1 downregulation also led to Akt mediated increased phosphorylation and nuclear exclusion of FoxO3a. When DJ-1 was downregulated increased interaction of Sirt3 with IRS2 was observed leading to its activation resulting in IIS upregulation. Thus, transient downregulation of DJ-1 leads to stimulation of IIS pathway by Sirt3 mediated IRS2 activation. Consequently, antiapoptotic program is triggered in neuronal cells via Akt-GSK3β-FoxO3a axis. © 2018 BioFactors, 44(3):224-236, 2018. © 2018 International Union of Biochemistry and Molecular Biology.

  9. Hypoxia induces arginase II expression and increases viable human pulmonary artery smooth muscle cell numbers via AMPKα1 signaling

    PubMed Central

    Xue, Jianjing; Nelin, Leif D.

    2017-01-01

    Pulmonary artery smooth muscle cell (PASMC) proliferation is one of the hallmark features of hypoxia-induced pulmonary hypertension. With only supportive treatment options available for this life-threatening disease, treating and preventing the proliferation of PASMCs is a viable therapeutic option. A key promoter of hypoxia-induced increases in the number of viable human PASMCs is arginase II, with attenuation of viable cell numbers following pharmacologic inhibition or siRNA knockdown of the enzyme. Additionally, increased levels of arginase have been demonstrated in the pulmonary vasculature of patients with pulmonary hypertension. The signaling pathways responsible for the hypoxic induction of arginase II in PASMCs, however, remain unknown. Hypoxia is a recognized activator of AMPK, which is known to be expressed in human PASMCs (hPASMCs). Activation of AMPK by hypoxia has been shown to promote cell survival in PASMCs. In addition, pharmacologic agents targeting AMPK have been shown to attenuate chronic hypoxia-induced pulmonary hypertension in animal models. The present studies tested the hypothesis that hypoxia-induced arginase II expression in hPASMCs is mediated through AMPK signaling. We found that pharmacologic inhibitors of AMPK, as well as siRNA knockdown of AMPKα1, prevented hypoxia-induced arginase II. The hypoxia-induced increase in viable hPASMC numbers was also prevented following both pharmacologic inhibition and siRNA knockdown of AMPK. Furthermore, we demonstrate that overexpression of AMPK induced arginase II protein expression and viable cells numbers in hPASMCs. PMID:28213467

  10. Daily supplementation with fresh pomegranate juice increases paraoxonase 1 expression and activity in mice fed a high-fat diet.

    PubMed

    Estrada-Luna, D; Martínez-Hinojosa, E; Cancino-Diaz, J C; Belefant-Miller, H; López-Rodríguez, G; Betanzos-Cabrera, G

    2018-02-01

    Studies have found that pomegranate juice (PJ) consumption increases the binding of high-density lipoproteins (HDL) to paraoxonase 1 (PON1), thus increasing the catalytic activity of this enzyme. PON1 is an antioxidant arylesterase synthesized in the liver and transported in plasma in association with HDL. Decreased levels of PON1 are associated with higher levels of cholesterol. We determined the effects of PJ on body weight, cholesterol, and triacylglycerols through 5 months of supplementation. In addition, the effect of PJ on pon1 gene expression in the liver was also measured by RT-qPCR as well as the activity in serum by a semiautomated method using paraoxon as a substrate. CD-1 mice were either fed a control diet or were fed a high-fat diet 1.25% (wt/wt) cholesterol, 0.5% (wt/wt) sodium cholate, and 15% (wt/wt) saturated fat. 300 μL of PJ containing 0.35 mmol total polyphenols was administered by oral gavage to half of the high fat mice daily. The rest of the high fat mice and the control mice were administered with 300 μL of water. PJ-supplemented animals had significantly higher levels of expression of pon1 compared to the unsupplemented group. PJ-supplemented animals had twice the PON1 activity of the unsupplemented group. In addition, PJ-supplemented animals had the lowest body weight and significantly reduced cholesterol and triacylglycerol levels, although the tricylglycerol levels were not consistently decreased. These results suggest that PJ protects against the effects of a high-fat diet in body weight, and cholesterol levels.

  11. Bradykinin increases blood-tumor barrier permeability by down-regulating the expression levels of ZO-1, occludin, and claudin-5 and rearranging actin cytoskeleton.

    PubMed

    Liu, Li-Bo; Xue, Yi-Xue; Liu, Yun-Hui; Wang, Yi-Bao

    2008-04-01

    Bradykinin (BK) has been shown to open blood-tumor barrier (BTB) selectively and to increase permeability of the BTB transiently, but the mechanism is unclear. This study was performed to determine whether BK opens the BTB by affecting the tight junction (TJ)-associated proteins zonula occluden-1 (ZO-1), occludin, and caludin-5 and cytoskeleton protein filamentous actin (F-actin). In rat brain glioma model and BTB model in vitro, we find that the protein expression levels of ZO-1, occludin, and claudin-5 are attenuated by BK induction. Immunohistochemistry and immunofluorescence assays show that the attenuated expression of ZO-1, occludin, and claudin-5 and F-actin is most obvious in the smaller tumor capillaries (<20 microm) after BK infusion, and there is no change in the larger tumor capillaries (>20 microm). The redistribution of ZO-1, occludin, and claudin-5 and rearrangement of F-actin in brain microvascular endothelial cells are observed at the same time. Meanwhile, Evans blue assay shows that the permeability of BTB increases after BK infusion. Transmission electron microscopy indicates that TJ is opened and that pinocytotic vesicular density is increased. Transendothelial electrical resistance (TEER) and horseradish peroxidase flux assays also reveal that TJ is opened by BK induction. In addition, radioimmunity and Western blot assay reveal a significant decrease in expression levels of cAMP and catalytic subunit of protien kinase A (PKAcs) of tumor tissue. This study demonstrates that the increase of BK-mediated BTB permeability is associated with the down-regulation of ZO-1, occludin, and claudin-5 and the rearrangement of F-actin and that cAMP/PKA signal transduction system might be involved in the modulating process.

  12. Epidermal growth factor increases LRF/Pokemon expression in human prostate cancer cells.

    PubMed

    Aggarwal, Himanshu; Aggarwal, Anshu; Agrawal, Devendra K

    2011-10-01

    Leukemia/lymphoma related factor/POK erythroid myeloid ontogenic factor (LRF/Pokemon) is a member of the POK family of proteins that promotes oncogenesis in several forms of cancer. Recently, we found higher LRF expression in human breast and prostate carcinomas compared to the corresponding normal tissues. The aim of this study was to examine the regulation of LRF expression in human prostate cells. Epidermal growth factor (EGF) and its receptors mediate several tumorigenic cascades that regulate cell differentiation, proliferation, migration and survival of prostate cancer cells. There was significantly higher level of LRF expression in the nucleus of LNCaP and PC-3 cells than RWPE-1 cells. A significant increase in LRF expression was observed with increasing doses of EGF in more aggressive and androgen-sensitive prostate cancer cells suggesting that EGF signaling pathway is critical in upregulating the expression of LRF/Pokemon to promote oncogenesis. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Decreased ENaC expression compensates the increased NCC activity following inactivation of the kidney-specific isoform of WNK1 and prevents hypertension.

    PubMed

    Hadchouel, Juliette; Soukaseum, Christelle; Büsst, Cara; Zhou, Xiao-ou; Baudrie, Véronique; Zürrer, Tany; Cambillau, Michelle; Elghozi, Jean-Luc; Lifton, Richard P; Loffing, Johannes; Jeunemaitre, Xavier

    2010-10-19

    Mutations in WNK1 and WNK4 lead to familial hyperkalemic hypertension (FHHt). Because FHHt associates net positive Na(+) balance together with K(+) and H(+) renal retention, the identification of WNK1 and WNK4 led to a new paradigm to explain how aldosterone can promote either Na(+) reabsorption or K(+) secretion in a hypovolemic or hyperkalemic state, respectively. WNK1 gives rise to L-WNK1, an ubiquitous kinase, and KS-WNK1, a kinase-defective isoform expressed in the distal convoluted tubule. By inactivating KS-WNK1 in mice, we show here that this isoform is an important regulator of sodium transport. KS-WNK1(-/-) mice display an increased activity of the Na-Cl cotransporter NCC, expressed specifically in the distal convoluted tubule, where it participates in the fine tuning of sodium reabsorption. Moreover, the expression of the ROMK and BKCa potassium channels was modified in KS-WNK1(-/-) mice, indicating that KS-WNK1 is also a regulator of potassium transport in the distal nephron. Finally, we provide an alternative model for FHHt. Previous studies suggested that the activation of NCC plays a central role in the development of hypertension and hyperkalemia. Even though the increase in NCC activity in KS-WNK1(-/-) mice was less pronounced than in mice overexpressing a mutant form of WNK4, our study suggests that the activation of Na-Cl cotransporter is not sufficient by itself to induce a hyperkalemic hypertension and that the deregulation of other channels, such as the Epithelial Na(+) channel (ENaC), is probably required.

  14. Analysis of the temporal expression of chemokines and chemokine receptors during experimental granulomatous inflammation: role and expression of MIP-1α and MCP-1

    PubMed Central

    Carollo, Maria; Hogaboam, Cory M; Kunkel, Stephen L; Delaney, Stephen; Christie, Mark I; Perretti, Mauro

    2001-01-01

    Chemokine expression and function was monitored in an experimental model of granulomatous tissue formation after injection of croton oil in complete Freund's adjuvant (CO/CFA) into mouse dorsal air-pouches up to 28 days. In the first week, mast cell degranulation and leukocyte influx (mononuclear cell, MNC, and polymorphonuclear cell, PMN) were associated with CXCR2, KC and macrophage inflammatory protein (MIP)-2 mRNA expression, as determined by TaqMan® reverse transcriptase-polymerase chain reaction. KC (∼400 pg mg protein−1, n=12) and MIP-2 (∼800 pg mg protein−1, n=12) proteins peaked at day 7, together with myeloperoxidase (MPO) activity. Highest MIP-1α (>1 ng mg protein−1, n=12) levels were measured at day 3. After day 7, a gradual increase in CCR2 and CCR5 mRNA, monocyte chemoattractant protein (MCP)-1 mRNA and protein expression was measured. MCP-1 protein peaked at day 21 (∼150 pg mg protein−1, n=12) and was predominantly expressed by mast cells. A gradual increase in N-acetyl-β-D-glucosaminidase (NAG) activity (maximal at 28 days) was also measured. An antiserum against MIP-1α did not modify the inflammatory response measured at day 7 (except for a 50% reduction in MIP-1α levels), but provoked a significant increase in MPO, NAG and MCP-1 levels as measured at day 21 (n=6, P<0.05). An antiserum to MCP-1 reduced NAG activity at day 21 but increased MPO activity values (n=8, P<0.05). In conclusion, we have shown that CO/CFA initiates a complex inflammatory reaction in which initial expression of MIP-1α serves a protective role whereas delayed expression of MCP-1 seems to have a genuine pro-inflammatory role. PMID:11704636

  15. Activation of calcium-sensing receptor increases TRPC3 expression in rat cardiomyocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Shan-Li; Sun, Ming-Rui; Li, Ting-Ting

    Research highlights: {yields} Calcium-sensing receptor (CaR) activation stimulates TRP channels. {yields} CaR promoted transient receptor potential C3 (TRPC3) expression. {yields} Adult rat ventricular myocytes display capacitative calcium entry (CCE), which was operated by TRPCs. {yields} TRPC channels activation induced by CaR activator sustained the increased [Ca{sup 2+}]{sub i} to evoke cardiomyocytes apoptosis. -- Abstract: Transient receptor potential (TRP) channels are expressed in cardiomyocytes, which gate a type of influx of extracellular calcium, the capacitative calcium entry. TRP channels play a role in mediating Ca{sup 2+} overload in the heart. Calcium-sensing receptors (CaR) are also expressed in rat cardiac tissue andmore » promote the apoptosis of cardiomyocytes by Ca{sup 2+} overload. However, data about the link between CaR and TRP channels in rat heart are few. In this study, reverse transcriptase polymerase chain reaction (RT-PCR) and Western blotting were used to examine the expression of the TRP canonical proteins TRPC1 and TRPC3 in adult and neonatal rat cardiomyocytes. Laser scan confocal microscopy was used to detect intracellular [Ca{sup 2+}]{sub i} levels in isolated adult rat ventricular myocytes. The results showed that, in adult rat cardiomyocytes, the depletion of Ca{sup 2+} stores in the endoplasmic/sarcoplasmic reticulum (ER/SR) by thapsigargin induced a transient increase in [Ca{sup 2+}]{sub i} in the absence of [Ca{sup 2+}]{sub o} and the subsequent restoration of [Ca{sup 2+}]{sub o} sustained the increased [Ca{sup 2+}]{sub i} for a few minutes, whereas, the persisting elevation of [Ca{sup 2+}]{sub i} was reduced in the presence of the TRPC inhibitor SKF96365. The stimulation of CaR by its activator gadolinium chloride (GdCl{sub 3}) or spermine also resulted in the same effect and the duration of [Ca{sup 2+}]{sub i} increase was also shortened in the absence of [Ca{sup 2+}]{sub o}. In adult and neonatal rat cardiomyocytes, Gd

  16. Systemic and local expression levels of TNF-like ligand 1A and its decoy receptor 3 are increased in primary biliary cirrhosis.

    PubMed

    Aiba, Yoshihiro; Harada, Kenichi; Komori, Atsumasa; Ito, Masahiro; Shimoda, Shinji; Nakamura, Hitomi; Nagaoka, Shinya; Abiru, Seigo; Migita, Kiyoshi; Ishibashi, Hiromi; Nakanuma, Yasuni; Nishida, Nao; Kawashima, Minae; Tokunaga, Katsushi; Yatsuhashi, Hiroshi; Nakamura, Minoru

    2014-05-01

    Through a genome-wide association study of a Japanese population, we recently identified TNFSF15, a gene encoding TNF-like ligand 1A (TL1A), as a susceptibility gene for primary biliary cirrhosis (PBC). We investigated the clinical significance of TL1A and one of its receptors, decoy receptor 3 (DcR3), in PBC. We analysed the systemic and local expression of TL1A and DcR3 in 110 PBC patients and 46 healthy controls using enzyme-linked immunosorbent assay, quantitative polymerase chain reaction and immunohistochemical staining. Serum TL1A levels were significantly increased in PBC patients at both early and late stages as compared with healthy controls, and its levels were significantly decreased in early-stage PBC patients after ursodeoxycholic acid (UDCA) treatment. TL1A was immunohistochemically localized to biliary epithelial cells, Kupffer cells, blood vessels and infiltrating mononuclear cells in the PBC liver. In addition, TL1A messenger RNA expression was increased in the PBC liver as compared with the non-diseased liver. Serum DcR3 levels were also significantly increased in PBC patients, and were significantly decreased after UDCA treatment in early-stage PBC patients. These results indicate that TL1A and DcR3 may play an important role in the pathogenesis of PBC. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Distribution of cellular HSV-1 receptor expression in human brain.

    PubMed

    Lathe, Richard; Haas, Juergen G

    2017-06-01

    Herpes simplex virus type 1 (HSV-1) is a neurotropic virus linked to a range of acute and chronic neurological disorders affecting distinct regions of the brain. Unusually, HSV-1 entry into cells requires the interaction of viral proteins glycoprotein D (gD) and glycoprotein B (gB) with distinct cellular receptor proteins. Several different gD and gB receptors have been identified, including TNFRSF14/HVEM and PVRL1/nectin 1 as gD receptors and PILRA, MAG, and MYH9 as gB receptors. We investigated the expression of these receptor molecules in different areas of the adult and developing human brain using online transcriptome databases. Whereas all HSV-1 receptors showed distinct expression patterns in different brain areas, the Allan Brain Atlas (ABA) reported increased expression of both gD and gB receptors in the hippocampus. Specifically, for PVRL1, TNFRFS14, and MYH9, the differential z scores for hippocampal expression, a measure of relative levels of increased expression, rose to 2.9, 2.9, and 2.5, respectively, comparable to the z score for the archetypical hippocampus-enriched mineralocorticoid receptor (NR3C2, z = 3.1). These data were confirmed at the Human Brain Transcriptome (HBT) database, but HBT data indicate that MAG expression is also enriched in hippocampus. The HBT database allowed the developmental pattern of expression to be investigated; we report that all HSV1 receptors markedly increase in expression levels between gestation and the postnatal/adult periods. These results suggest that differential receptor expression levels of several HSV-1 gD and gB receptors in the adult hippocampus are likely to underlie the susceptibility of this brain region to HSV-1 infection.

  18. Retrogenic ICOS Expression Increases Differentiation of KLRG-1hi CD127lo CD8+ T Cells During Listeria Infection and Diminishes Recall Responses1

    PubMed Central

    Liu, Danya; Burd, Eileen M.; Coopersmith, Craig M.; Ford, Mandy L.

    2016-01-01

    Following T cell encounter with antigen, multiple signals are integrated to collectively induce distinct differentiation programs within antigen-specific CD8+ T cell populations. Several factors contribute to these cell fate decisions including the amount and duration of antigen, exposure to inflammatory cytokines, and degree of ligation of cosignaling molecules. The inducible costimulator (ICOS) is not expressed on resting T cells but is rapidly upregulated upon encounter with antigen. However, the impact of ICOS signaling on programmed differentiation is not well understood. In this study we therefore sought to determine the role of ICOS signaling on CD8+ T cell programmed differentiation. Through the creation of novel ICOS retrogenic antigen-specific TCR transgenic CD8+ T cells, we interrogated the phenotype, functionality, and recall potential of CD8+ T cells that receive early and sustained ICOS signaling during antigen exposure. Our results reveal that these ICOS signals critically impacted cell fate decisions of antigen-specific CD8+ T cells, resulting in increased frequencies of KLRG-1hiCD127lo cells, altered BLIMP-1, T-bet, and eomesodermin expression, and increased cytolytic capacity as compared to empty vector controls. Interestingly, however, ICOS retrogenic CD8+ T cells also preferentially homed to non-lymphoid organs, and exhibited reduced multi-cytokine functionality and reduced ability to mount secondary recall responses upon challenge in vivo. In sum, our results suggest that an altered differentiation program is induced following early and sustained ICOS expression, resulting in the generation of more cytolyticly potent, terminally differentiated effectors that possess limited capacity for recall response. PMID:26729800

  19. Age-dependent Impairment of HIF-1α̣Expression in Diabetic Mice: Correction with Electroporation-facilitated Gene Therapy Increases Wound Healing, Angiogenesis, and Circulating Angiogenic Cells

    PubMed Central

    Liu, Lixin; Marti, Guy P.; Wei, Xiaofei; Zhang, Xianjie; Zhang, Huafeng; Liu, Ye V.; Nastai, Manuel; Semenza, Gregg L.; Harmon, John W.

    2009-01-01

    Wound healing is impaired in elderly patients with diabetes mellitus. We hypothesized that age-dependent impairment of cutaneous wound healing in db/db diabetic mice: (a) would correlate with reduced expression of the transcription factor hypoxia-inducible factor 1α (HIF-1α) as well as its downstream target genes; and (b) could be overcome by HIF-1α replacement therapy. Wound closure, angiogenesis, and mRNA expression in excisional skin wounds were analyzed and circulating angiogenic cells were quantified in db/db mice that were untreated or received electroporation-facilitated HIF-1α gene therapy. HIF-1α mRNA levels in wound tissue were significantly reduced in older (4–6 months) as compared to younger (1.5–2 months) db/db mice. Expression of mRNAs encoding the angiogenic cytokines vascular endothelial growth factor (VEGF), angiopoietin 1 (ANGPT1), ANGPT2, platelet derived growth factor B (PDGF-B), and placental growth factor (PLGF) was also impaired in wounds of older db/db mice. Intradermal injection of plasmid gWIZ-CA5, which encodes a constitutively active form of HIF-1α, followed by electroporation, induced increased levels of HIF-1α mRNA at the injection site on day 3 and increased levels of VEGF, PLGF, PDGF-B, and ANGPT2 mRNA on day 7. Circulating angiogenic cells in peripheral blood increased 10-fold in mice treated with gWIZ-CA5. Wound closure was significantly accelerated in db/db mice treated with gWIZ-CA5 as compared to mice treated with empty vector. Thus, HIF-1α gene therapy corrects the age-dependent impairment of HIF-1α expression, angiogenic cytokine expression, and circulating angiogenic cells that contribute to the age-dependent impairment of wound healing in db/db mice. PMID:18506785

  20. Chondrogenesis of Embryonic Stem Cell-Derived Mesenchymal Stem Cells Induced by TGFβ1 and BMP7 Through Increased TGFβ Receptor Expression and Endogenous TGFβ1 Production.

    PubMed

    Lee, Patrick T; Li, Wan-Ju

    2017-01-01

    For decades stem cells have proven to be invaluable to the study of tissue development. More recently, mesenchymal stem cells (MSCs) derived from embryonic stem cells (ESCs) (ESC-MSCs) have emerged as a cell source with great potential for the future of biomedical research due to their enhanced proliferative capability compared to adult tissue-derived MSCs and effectiveness of musculoskeletal lineage-specific cell differentiation compared to ESCs. We have previously compared the properties and differentiation potential of ESC-MSCs to bone marrow-derived MSCs. In this study, we evaluated the potential of TGFβ1 and BMP7 to induce chondrogenic differentiation of ESC-MSCs compared to that of TGFβ1 alone and further investigated the cellular phenotype and intracellular signaling in response to these induction conditions. Our results showed that the expression of cartilage-associated markers in ESC-MSCs induced by the TGFβ1 and BMP7 combination was increased compared to induction with TGFβ1 alone. The TGFβ1 and BMP7 combination upregulated the expression of TGFβ receptor and the production of endogenous TGFβs compared to TGFβ1 induction. The growth factor combination also increasingly activated both of the TGF and BMP signaling pathways, and inhibition of the signaling pathways led to reduced chondrogenesis of ESC-MSCs. Our findings suggest that by adding BMP7 to TGFβ1-supplemented induction medium, ESC-MSC chondrogenesis is upregulated through increased production of endogenous TGFβ and activities of TGFβ and BMP signaling. J. Cell. Biochem. 118: 172-181, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Decreased expression of serum- and glucocorticoid-inducible kinase 1 (SGK1) promotes alpha-synuclein increase related with down-regulation of dopaminergic cell in the Substantia Nigra of chronic MPTP-induced Parkinsonism mice and in SH-SY5Y cells.

    PubMed

    Yeo, Sujung; Sung, Backil; Hong, Yeon-Mi; van den Noort, Maurits; Bosch, Peggy; Lee, Sook-Hyun; Song, Jongbeom; Park, Sang-Kyun; Lim, Sabina

    2018-06-30

    Parkinson's disease (PD) is a chronically progressive neurodegenerative disease, with its main pathological hallmarks being a dramatic loss of dopaminergic neurons predominantly in the Substantia Nigra (SN), and the formations of intracytoplasmic Lewy bodies and dystrophic neurites. Alpha-synuclein (α-syn), widely recognized as the most prominent element of the Lewy body, is one of the representative hallmarks in PD. However, the mechanisms behind the increased α-syn expression and aggregation have not yet been clarified. To examine what causes α-syn expression to increase, we analyzed the pattern of gene expression in the SN of mice intoxicated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), where down-regulation of dopaminergic cells occurred. We identified serum- and glucocorticoid-dependent kinase 1 (SGK1) as one of the genes that is evidently downregulated in chronic MPTP-intoxication. The results of Western blot analyses showed that, together with the down-regulation of dopaminergic cells, the decrease in SGK1 expression increased α-syn expression in the SN in a chronic MPTP-induced Parkinsonism mouse. For an examination of the expression correlation between SGK1 and α-syn, SH-5YSY cells were knocked down with SGK1 siRNA then, the downregulation of dopaminergic cells and the increase in the expression of α-syn were observed. These results suggest that decreased expression of SGK1 may play a critical role in increasing the expression of α-syn, which is related with dopaminergic cell death in the SN of chronic MPTP-induced Parkinsonism mice and in SH-SY5Y cells. Copyright © 2018. Published by Elsevier B.V.

  2. Expression of long noncoding RNA MALAT1 correlates with increased levels of Nischarin and inhibits oncogenic cell functions in breast cancer.

    PubMed

    Eastlack, Steven C; Dong, Shengli; Mo, Yin Y; Alahari, Suresh K

    2018-01-01

    Malat1 is a long noncoding RNA with a wide array of functions, including roles in regulating cancer cell migration and metastasis. However, the nature of its involvement in control of these oncogenic processes is incompletely understood. In the present study, we investigate the role of Malat1 and the effects of Malat1 KO in a breast cancer cell model. Our selection of Malat1 as the subject of inquiry followed initial screening experiments seeking to identify lncRNAs which are altered in the presence or absence of Nischarin, a gene of interest previously discovered by our lab. Nischarin is a well characterized tumor suppressor protein and actively represses cell proliferation, migration, and invasion in breast cancer. Our microarray screen for lncRNAs revealed multiple lncRNAs to be significantly elevated in cells ectopically expressing Nischarin compared to control cancer cells, which have only marginal Nisch expression. Using these cells, we assess how the link between Nischarin and Malat1 affects cancer cell function, finding that Malat1 confers an inhibitory effect on cell growth and migration which is lost following Malat1 KO, but in a Nisch-dependent context. Specifically, Malat1 KO in the background of low Nischarin expression had a limited effect on cell functions, while Malat1 KO in cells with high levels of Nischarin led to significant increases in cell proliferation and migration. In summary, this project provides further clarity concerning the function of Malat1, specifically in breast cancer, while also indicating that the Nischarin expression context is an important factor in the determining how Malat1 activity is governed in breast cancer.

  3. Expression and clinical significance of glucose transporter-1 in pancreatic cancer

    PubMed Central

    LU, KAI; YANG, JIAN; LI, DE-CHUN; HE, SONG-BING; ZHU, DONG-MING; ZHANG, LI-FENG; ZHANG, XU; CHEN, XIAO-CHEN; ZHANG, BING; ZHOU, JIAN

    2016-01-01

    Increasing evidence has demonstrated that malignant cells exhibit increased glucose uptake, which facilitates survival and growth in a hypoxic environment. The glucose transporter-1 (GLUT-1) is overexpressed in a variety of malignant tumors. However, the association between GLUT-1 expression and clinicopathological factors, 18F-fluorodeoxyglucose uptake and tumor proliferation in pancreatic cancer has not been investigated to date. In the present study, the expression of GLUT-1 in 53 pancreatic cancer tissues was analyzed, which revealed that GLUT-1 was overexpressed in pancreatic tissue and correlated with poor prognosis and clinicopathological characteristics, including increased tumor size, clinical stage and lymph node metastasis, maximum standardized uptake value (SUVmax) and Ki-67 expression. The receiver operating characteristic curve analysis indicated that a cut-off SUVmax value of 4.830 was associated with optimal sensitivity (88%) and specificity (71.4%) for the detection of strong positive GLUT-1 expression. In addition, as the expression of GLUT-1 was found to correlate with Ki-67 expression, GLUT-1 may exhibit a significant effect on cell proliferation in pancreatic cancer. Overall, these findings indicate that GLUT-1 may represent a prognostic indicator, and a potential therapeutic target for pancreatic cancer. PMID:27347132

  4. PU.1 regulates TCR expression by modulating GATA-3 activity

    PubMed Central

    Chang, Hua-Chen; Han, Ling; Jabeen, Rukhsana; Carotta, Sebastian; Nutt, Stephen L.; Kaplan, Mark H.

    2009-01-01

    The Ets transcription factor PU.1 is a master regulator for the development of multiple lineages during hematopoiesis. The expression pattern of PU.1 is dynamically regulated during early T lineage development in the thymus. We previously revealed that PU.1 delineates heterogeneity of effector Th2 populations. In this study, we further define the function of PU.1 on the Th2 phenotype using mice that specifically lack PU.1 in T cells using an lck-Cre transgene with a conditional Sfpi1 allele (Sfpi1lck-/-). While deletion of PU.1 by the lck-Cre transgene does not affect T cell development, Sfpi1lck-/- T cells have a lower activation threshold than wild type T cells. When TCR engagement is limiting, Sfpi1lck-/- T cells cultured in Th2 polarizing conditions secrete higher levels of Th2 cytokines and have greater cytokine homogeneity than wild type cells. We show that PU.1 modulates the levels of TCR expression in CD4+ T cells by regulating the DNA-binding activity of GATA-3 and limiting GATA-3 regulation of TCR gene expression. GATA-3 dependent regulation of TCR expression is also observed in Th1 and Th2 cells. In CD4+ T cells, PU.1 expression segregates into subpopulations of cells that have lower levels of surface TCR, suggesting that PU.1 contributes to the heterogeneity of TCR expression. Thus, we have identified a mechanism whereby increased GATA-3 function in the absence of the antagonizing activity of PU.1 leads to increased TCR expression, a reduced activation threshold and increased homogeneity in Th2 populations. PMID:19801513

  5. Programmed Hyperphagia secondary to Increased Hypothalamic SIRT1

    PubMed Central

    Desai, Mina; Li, Tie; Han, Guang; Ross, Michael G.

    2014-01-01

    Small for gestational age (SGA) offspring exhibit reduced hypothalamic neural satiety pathways leading to programmed hyperphagia and adult obesity. Appetite regulatory site, the hypothalamic arcuate nucleus (ARC) contains appetite (NPY/AgRP) and satiety (POMC) neurons. Using in vitro culture of hypothalamic neuroprogenitor cells (NPC) which form the ARC, we demonstrated that SGA offspring exhibit reduced NPC proliferation and neuronal differentiation. bHLH protein Hes1 promotes NPC self-renewal and inhibits differentiation by repressing neuronal differentiation genes (Mash1, neurogenin3). We hypothesized that Hes1/Mash1 and ultimately ARC neuronal differentiation and expression of NPY/POMC neurons are influenced by SIRT1 which is a nutrient sensor and a histone deacetylase. Control dams received ad libitum food, whereas study dams were 50% food-restricted from pregnancy day 10 to 21 (SGA). In vivo studies showed that SGA newborns and adult offspring had increased protein expression of hypothalamic/ARC SIRT1 and AgRP with decreased POMC. Additionally, SGA newborns had decreased expression of hypothalamic neurogenic factors with reduced in vivo NPC proliferation. In vitro culture of hypothalamic NPCs showed similar changes with elevated SIRT1 binding to Hes1 in SGA newborn. Silencing SIRT1 increased NPC proliferation and Hes1 and Tuj1expression in both Control and SGA NPCs. Although SGA NPC proliferation remained below that of Controls, it was higher than Control NPCs in the absence of SIRT1 siRNA. The direct impact of SIRT1 on NPC proliferation and differentiation were further confirmed with pharmacologic SIRT1 inhibitor and activator. Thus, in SGA newborns elevated SIRT1 induces premature differentiation of NPCs, reducing the NPC pool and cell proliferation. PMID:25245521

  6. Mechanical stretch increases CCN2/CTGF expression in anterior cruciate ligament-derived cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyake, Yoshiaki; Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama; Furumatsu, Takayuki, E-mail: matino@md.okayama-u.ac.jp

    Highlights: {yields} CCN2/CTGF localizes to the ligament-to-bone interface, but is not to the midsubstance region of human anterior cruciate ligament (ACL). {yields} Mechanical stretch induces higher increase of CCN2/CTGF gene expression and protein secretion in ACL interface cells compared with ACL midsubstance cells. {yields} CCN2/CTGF treatment stimulates the proliferation of ACL interface cells. -- Abstract: Anterior cruciate ligament (ACL)-to-bone interface serves to minimize the stress concentrations that would arise between two different tissues. Mechanical stretch plays an important role in maintaining cell-specific features by inducing CCN family 2/connective tissue growth factor (CCN2/CTGF). We previously reported that cyclic tensile strain (CTS)more » stimulates {alpha}1(I) collagen (COL1A1) expression in human ACL-derived cells. However, the biological function and stress-related response of CCN2/CTGF were still unclear in ACL fibroblasts. In the present study, CCN2/CTGF was observed in ACL-to-bone interface, but was not in the midsubstance region by immunohistochemical analyses. CTS treatments induced higher increase of CCN2/CTGF expression and secretion in interface cells compared with midsubstance cells. COL1A1 expression was not influenced by CCN2/CTGF treatment in interface cells despite CCN2/CTGF stimulated COL1A1 expression in midsubstance cells. However, CCN2/CTGF stimulated the proliferation of interface cells. Our results suggest that distinct biological function of stretch-induced CCN2/CTGF might regulate region-specific phenotypes of ACL-derived cells.« less

  7. FTY720/fingolimod increases NPC1 and NPC2 expression and reduces cholesterol and sphingolipid accumulation in Niemann-Pick type C mutant fibroblasts

    PubMed Central

    Newton, Jason; Hait, Nitai C.; Maceyka, Michael; Colaco, Alexandria; Maczis, Melissa; Wassif, Christopher A.; Cougnoux, Antony; Porter, Forbes D.; Milstien, Sheldon; Platt, Nicholas; Platt, Frances M.; Spiegel, Sarah

    2017-01-01

    Niemann-Pick type C (NPC) disease is a fatal neurodegenerative disorder caused by mutations in NPC1 or NPC2 with decreased functions leading to lysosomal accumulation of cholesterol and sphingolipids. FTY720/fingolimod, used for treatment of multiple sclerosis, is phosphorylated by nuclear sphingosine kinase 2, and its active phosphorylated form (FTY720-P) is an inhibitor of class I histone deacetylases. In this study, administration of clinically relevant doses of FTY720 to mice increased expression of NPC1 and -2 in brain and liver and decreased cholesterol in an SphK2-dependent manner. FTY720 greatly increased expression of NPC1 and -2 in human NPC1 mutant fibroblasts that correlated with formation of FTY720-P and significantly reduced the accumulation of cholesterol and glycosphingolipids. In agreement with this finding, FTY720 pretreatment of human NPC1 mutant fibroblasts restored transport of the cholera toxin B subunit, which binds ganglioside GM1, to the Golgi apparatus. Together, these findings suggest that FTY720 administration can ameliorate cholesterol and sphingolipid storage and trafficking defects in NPC1 mutant fibroblasts. Because neurodegeneration is the main clinical feature of NPC disease, and FTY720 accumulates in the CNS and has several advantages over available histone deacetylase inhibitors now in clinical trials, our work provides a potential opportunity for treatment of this incurable disease.—Newton, J., Hait, N. C., Maceyka, M., Colaco, A., Maczis, M., Wassif, C. A., Cougnoux, A., Porter, F. D., Milstien, S., Platt, N., Platt, F. M., Spiegel, S. FTY720/fingolimod increases NPC1 and NPC2 expression and reduces cholesterol and sphingolipid accumulation in Niemann-Pick type C mutant fibroblasts. PMID:28082351

  8. Tributyltin increases the expression of apoptosis- and adipogenesis-related genes in rat ovaries

    PubMed Central

    Lee, Hyojin; Lim, Sojeong; Yun, Sujin; Yoon, Ayoung; Park, Gayoung

    2012-01-01

    Objective Tributyltin (TBT), an endocrine disrupting chemical, has been reported to decrease ovarian function by causing apoptosis in the ovary, but the mechanism is not fully understood. Therefore, we examined whether TBT increases the expression of adipogenesis-related genes in the ovary and the increased expression of these genes is associated with apoptosis induction. Methods Three-week-old Sprague-Dawley rats were orally administered TBT (1 or 10 mg/kg body weight) or sesame oil as a control for 7 days. The ovaries were obtained and weighed on day 8, and then they were fixed for terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) or frozen for RNA extraction. Using the total RNA of the ovaries, adipogenesis- and apoptosis-related genes were analyzed by real-time polymerase chain reaction (PCR). Results The ovarian weight was significantly decreased in rats administered 10 mg/kg TBT compared to that in control rats. As determined by the TUNEL assay, the number of apoptotic follicles in ovary was significantly increased in rats administered 10 mg/kg TBT. The real-time PCR results showed that the expression of adipogenesis-related genes such as PPARγ, aP2, CD36, and PEPCK was increased after TBT administration. In addition, apoptosis-related genes such as TNFα and TNFR1 were expressed more in the TBT-administered rats compared with the control rats. Conclusion The present study demonstrates that TBT induces the expression of adipogenesis- and apoptosis-related genes in the ovary leading to apoptosis in the ovarian follicles. These results suggest that the increased expression of adipogenesis-related genes in the ovary by TBT exposure might induce apoptosis resulting in a loss of ovarian function. PMID:22563546

  9. Publications - IC 57 v. 1.0.1 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    content DGGS IC 57 v. 1.0.1 Publication Details Title: Alaska's mineral industry 2007: A summary Authors Bibliographic Reference Szumigala, D.J., and Hughes, R.A., 2008, Alaska's mineral industry 2007: A summary

  10. Increased Nicotiana tabacum fitness through positive regulation of carotenoid, gibberellin and chlorophyll pathways promoted by Daucus carota lycopene β-cyclase (Dclcyb1) expression.

    PubMed

    Moreno, J C; Cerda, A; Simpson, K; Lopez-Diaz, I; Carrera, E; Handford, M; Stange, C

    2016-04-01

    Carotenoids, chlorophylls and gibberellins are derived from the common precursor geranylgeranyl diphosphate (GGPP). One of the enzymes in carotenoid biosynthesis is lycopene β-cyclase (LCYB) that catalyzes the conversion of lycopene into β-carotene. In carrot, Dclcyb1 is essential for carotenoid synthesis in the whole plant. Here we show that when expressed in tobacco, increments in total carotenoids, β-carotene and chlorophyll levels occur. Furthermore, photosynthetic efficiency is enhanced in transgenic lines. Interestingly, and contrary to previous observations where overexpression of a carotenogenic gene resulted in the inhibition of the synthesis of gibberellins, we found raised levels of active GA4 and the concommitant increases in plant height, leaf size and whole plant biomass, as well as an early flowering phenotype. Moreover, a significant increase in the expression of the key carotenogenic genes, Ntpsy1, Ntpsy2 and Ntlcyb, as well as those involved in the synthesis of chlorophyll (Ntchl), gibberellin (Ntga20ox, Ntcps and Ntks) and isoprenoid precursors (Ntdxs2 and Ntggpps) was observed. These results indicate that the expression of Dclcyb1 induces a positive feedback affecting the expression of isoprenoid gene precursors and genes involved in carotenoid, gibberellin and chlorophyll pathways leading to an enhancement in fitness measured as biomass, photosynthetic efficiency and carotenoid/chlorophyll composition. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  11. 5, 8, 11, 14-eicosatetraynoic acid suppresses CCL2/MCP-1 expression in IFN-γ-stimulated astrocytes by increasing MAPK phosphatase-1 mRNA stability.

    PubMed

    Lee, Jee Hoon; Kim, Hyunmi; Woo, Joo Hong; Joe, Eun-hye; Jou, Ilo

    2012-02-18

    The peroxisome proliferator-activated receptor (PPAR)-α activator, 5,8,11,14-eicosatetraynoic acid (ETYA), is an arachidonic acid analog. It is reported to inhibit up-regulation of pro-inflammatory genes; however, its underlying mechanism of action is largely unknown. In the present study, we focused on the inhibitory action of ETYA on the expression of the chemokine, CCL2/MCP-1, which plays a key role in the initiation and progression of inflammation. To determine the effect of ETYA, primary cultured rat astrocytes and microglia were stimulated with IFN-γ in the presence of ETYA and then, expression of CCL2/MCP-1 and MAPK phosphatase (MKP-1) were determined using RT-PCR and ELISA. MKP-1 mRNA stability was evaluated by treating actinomycin D. The effect of MKP-1 and human antigen R (HuR) was analyzed by using specific siRNA transfection system. The localization of HuR was analyzed by immunocytochemistry and subcellular fractionation experiment. We found that ETYA suppressed CCL2/MCP-1 transcription and secretion of CCL2/MCP-1 protein through up-regulation of MKP-1mRNA levels, resulting in suppression of c-Jun N-terminal kinase (JNK) phosphorylation and activator protein 1 (AP1) activity in IFN-γ-stimulated brain glial cells. Moreover, these effects of ETYA were independent of PPAR-α. Experiments using actinomycin D revealed that the ETYA-induced increase in MKP-1 mRNA levels reflected an increase in transcript stability. Knockdown experiments using small interfering RNA demonstrated that this increase in MKP-1 mRNA stability depended on HuR, an RNA-binding protein known to promote enhanced mRNA stability. Furthermore, ETYA-induced, HuR-mediated mRNA stabilization resulted from HuR-MKP-1 nucleocytoplasmic translocation, which served to protect MKP-1 mRNA from the mRNA degradation machinery. ETYA induces MKP-1 through HuR at the post-transcriptional level in a receptor-independent manner. The mechanism revealed here suggests eicosanoids as potential therapeutic

  12. Peripheral inflammation increased the synaptic expression of NMDA receptors in spinal dorsal horn.

    PubMed

    Yang, Xian; Yang, Hong-Bin; Xie, Qin-Jian; Liu, Xiao-Hua; Hu, Xiao-Dong

    2009-07-01

    Considerable evidence has indicated that the aberrant, sustained enhancement of spinal NMDA receptors (NMDARs) function is closely associated with behavioral sensitization during inflammatory pain. However, the molecular mechanisms underlying inflammation-induced NMDARs hyperfunction remain poorly understood. The present study performed immunoblotting analysis to evaluate the possible changes in the protein expression of spinal NMDARs after injection of complete Freund's adjuvant (CFA) in mice. We found that CFA did not affect the total protein level of NMDARs subunit NR1 in spinal dorsal horn. However, NR1 immunoreactivity at synapses significantly increased after CFA injection, which was correlated in the time course with the development of mechanical allodynia. Inhibition of spinal NMDARs with D-APV completely eliminated the CFA-induced increase in NR1 immunoreactive density at synapses, and direct application of NMDA onto the spinal cord of naïve mice mimicked the effects of CFA, suggesting the importance of NMDARs activity in regulating the synaptic content of NR1 during inflammatory pain. Moreover, cAMP-dependent protein kinase (PKA) downstream to NMDARs was also required for NR1 synaptic expression because inhibition of PKA activity abolished the enhancement of synaptic NR1 immunoreactivity evoked by either CFA or NMDA. Thus, our data suggested that NMDARs- and PKA-dependent increase in NR1 synaptic expression represented an important mechanism for the hyperfunction of spinal NMDARs following peripheral inflammation.

  13. Transient Co-Expression of Post-Transcriptional Gene Silencing Suppressors for Increased in Planta Expression of a Recombinant Anthrax Receptor Fusion Protein

    PubMed Central

    Arzola, Lucas; Chen, Junxing; Rattanaporn, Kittipong; Maclean, James M.; McDonald, Karen A.

    2011-01-01

    Potential epidemics of infectious diseases and the constant threat of bioterrorism demand rapid, scalable, and cost-efficient manufacturing of therapeutic proteins. Molecular farming of tobacco plants provides an alternative for the recombinant production of therapeutics. We have developed a transient production platform that uses Agrobacterium infiltration of Nicotiana benthamiana plants to express a novel anthrax receptor decoy protein (immunoadhesin), CMG2-Fc. This chimeric fusion protein, designed to protect against the deadly anthrax toxins, is composed of the von Willebrand factor A (VWA) domain of human capillary morphogenesis 2 (CMG2), an effective anthrax toxin receptor, and the Fc region of human immunoglobulin G (IgG). We evaluated, in N. benthamiana intact plants and detached leaves, the expression of CMG2-Fc under the control of the constitutive CaMV 35S promoter, and the co-expression of CMG2-Fc with nine different viral suppressors of post-transcriptional gene silencing (PTGS): p1, p10, p19, p21, p24, p25, p38, 2b, and HCPro. Overall, transient CMG2-Fc expression was higher on intact plants than detached leaves. Maximum expression was observed with p1 co-expression at 3.5 days post-infiltration (DPI), with a level of 0.56 g CMG2-Fc per kg of leaf fresh weight and 1.5% of the total soluble protein, a ten-fold increase in expression when compared to absence of suppression. Co-expression with the p25 PTGS suppressor also significantly increased the CMG2-Fc expression level after just 3.5 DPI. PMID:21954339

  14. Transient co-expression of post-transcriptional gene silencing suppressors for increased in planta expression of a recombinant anthrax receptor fusion protein.

    PubMed

    Arzola, Lucas; Chen, Junxing; Rattanaporn, Kittipong; Maclean, James M; McDonald, Karen A

    2011-01-01

    Potential epidemics of infectious diseases and the constant threat of bioterrorism demand rapid, scalable, and cost-efficient manufacturing of therapeutic proteins. Molecular farming of tobacco plants provides an alternative for the recombinant production of therapeutics. We have developed a transient production platform that uses Agrobacterium infiltration of Nicotiana benthamiana plants to express a novel anthrax receptor decoy protein (immunoadhesin), CMG2-Fc. This chimeric fusion protein, designed to protect against the deadly anthrax toxins, is composed of the von Willebrand factor A (VWA) domain of human capillary morphogenesis 2 (CMG2), an effective anthrax toxin receptor, and the Fc region of human immunoglobulin G (IgG). We evaluated, in N. benthamiana intact plants and detached leaves, the expression of CMG2-Fc under the control of the constitutive CaMV 35S promoter, and the co-expression of CMG2-Fc with nine different viral suppressors of post-transcriptional gene silencing (PTGS): p1, p10, p19, p21, p24, p25, p38, 2b, and HCPro. Overall, transient CMG2-Fc expression was higher on intact plants than detached leaves. Maximum expression was observed with p1 co-expression at 3.5 days post-infiltration (DPI), with a level of 0.56 g CMG2-Fc per kg of leaf fresh weight and 1.5% of the total soluble protein, a ten-fold increase in expression when compared to absence of suppression. Co-expression with the p25 PTGS suppressor also significantly increased the CMG2-Fc expression level after just 3.5 DPI.

  15. WT1 isoform expression pattern in acute myeloid leukemia.

    PubMed

    Luna, Irene; Such, Esperanza; Cervera, Jose; Barragán, Eva; Ibañez, Mariam; Gómez-Seguí, Inés; López-Pavía, María; Llop, Marta; Fuster, Oscar; Dolz, Sandra; Oltra, Silvestre; Alonso, Carmen; Vera, Belén; Lorenzo, Ignacio; Martínez-Cuadrón, David; Montesinos, Pau; Senent, M Leonor; Moscardó, Federico; Bolufer, Pascual; Sanz, Miguel A

    2013-12-01

    WT1 plays a dual role in leukemia development, probably due to an imbalance in the expression of the 4 main WT1 isoforms. We quantify their expression and evaluate them in a series of AML patients. Our data showed a predominant expression of isoform D in AML, although in a lower quantity than in normal CD34+ cells. We found a positive correlation between the total WT1 expression and A, B and C isoforms. The overexpression of WT1 in AML might be due to a relative increase in A, B and C isoforms, together with a relative decrease in isoform D expression. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Bone marrow mesenchymal stem cells repair the hippocampal neurons and increase the expression of IGF-1 after cardiac arrest in rats.

    PubMed

    Tang, Xiahong; Chen, Feng; Lin, Qinming; You, Yan; Ke, Jun; Zhao, Shen

    2017-11-01

    The present study aimed to investigate the beneficial effects and underlying mechanisms of bone marrow mesenchymal stem cells (BMSCs) on global ischemic hypoxic brain injury. Cells collected from the femurs and tibias of male Sprague Dawley rats were used to generate BMSCs following three culture passages. A rate model of cardiac arrest (CA) was induced by asphyxia. One hour following return of spontaneous circulation (ROSC), BMSCs were transplanted through injection into the tail vein. Neurological status was assessed using modified neurological severity score (mNSS) tests 1, 3 and 7 days following ROSC. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunohistochemical staining were used to detect insulin-like growth factor 1 (IGF-1) expression in the hippocampus. Furthermore, double-fluorescent labeling of green fluorescent protein (GFP) and IGF-1 was used to detect the IGF-1 expression in transplanted BMSCs. Serum levels of protein S100-B were examined using ELISA. GFP-labeled BMSCs were observed in the hippocampus at 1, 3 and 7 days post transplantation through fluorescent microscopy. BMSC transplantation resulted in reduced protein S100-B levels. The mNSS of the BMSC-treatment group was significantly reduced compared with that of the CA group. The RT-qPCR analysis and immunohistochemistry results demonstrated that BMSC treatment significantly increased IGF-1 expression in the hippocampus. In addition, the double-fluorescent labeling results demonstrated that transplanted BMSCs expressed IGF-1 in the hippocampus. The results of the present study suggest that BMSC treatment promotes the recovery of cerebral function following CA in rats possibly through the secretion of IGF-1.

  17. L-Citrulline Supplementation-Increased Skeletal Muscle PGC-1α Expression is Associated With Exercise Performance and Increased Skeletal Muscle Weight.

    PubMed

    Villareal, Myra O; Matsukawa, Toshiya; Isoda, Hiroko

    2018-05-24

    L-citrulline has recently been reported as a more effective supplement for promoting intracellular NO production compared to L-arginine. Here, the effect of L-citrulline on skeletal muscle and its influence on exercise performance were investigated. The underlying mechanism of its effect, specifically on the expression of skeletal muscle peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α), was also elucidated. Six-week-old ICR mice were orally supplemented with L-citrulline (250 mg kg -1 ) daily, and their performance in weight-loaded swimming exercise every other day for 15 days, was evaluated. In addition, mice muscles were weighed and evaluated for the expression of PGC-1α and PGC-1α-regulated genes. Mice orally supplemented with L-citrulline had significantly higher gastrocnemius and biceps femoris muscle mass. Although not statistically significant, L-citrulline prolonged the swimming time to exhaustion. PGC-1α upregulation was associated with vascular endothelial growth factor α (VEGFα) and insulin-like growth factor 1 (IGF1) upregulation. VEGFα and IGF1 are important for angiogenesis and muscle growth, respectively, and are regulated by PGC-1α. Treatment with L-NAME, a nitric oxide synthesis inhibitor, suppressed the L-citrulline-induced PGC-1α upregulation in-vitro. Supplementation with L-citrulline upregulates skeletal muscle PGC-1α levels resulting to higher skeletal muscle weight that improves time to exhaustion during exercise. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. Patients with encapsulating peritoneal sclerosis have increased peritoneal expression of connective tissue growth factor (CCN2), transforming growth factor-β1, and vascular endothelial growth factor.

    PubMed

    Abrahams, Alferso C; Habib, Sayed M; Dendooven, Amélie; Riser, Bruce L; van der Veer, Jan Willem; Toorop, Raechel J; Betjes, Michiel G H; Verhaar, Marianne C; Watson, Christopher J E; Nguyen, Tri Q; Boer, Walther H

    2014-01-01

    Encapsulating peritoneal sclerosis (EPS) is a devastating complication of peritoneal dialysis (PD). The pathogenesis is not exactly known and no preventive strategy or targeted medical therapy is available. CCN2 has both pro-fibrotic and pro-angiogenic actions and appears an attractive target. Therefore, we studied peritoneal expression of CCN2, as well as TGFβ1 and VEGF, in different stages of peritoneal fibrosis. Sixteen PD patients were investigated and compared to 12 hemodialysis patients and four pre-emptively transplanted patients. Furthermore, expression was investigated in 12 EPS patients in comparison with 13 PD and 12 non-PD patients without EPS. Peritoneal tissue was taken during kidney transplantation procedure or during EPS surgery. In a subset of patients, CCN2 protein levels in peritoneal effluent and plasma were determined. Samples were examined by qPCR, histology, immunohistochemistry, and ELISA. Peritoneal CCN2 expression was 5-fold higher in PD patients compared to pre-emptively transplanted patients (P < 0.05), but did not differ from hemodialysis patients. Peritoneal expression of TGFβ1 and VEGF were not different between the three groups; neither was peritoneal thickness. Peritoneum of EPS patients exhibited increased expression of CCN2 (35-fold, P < 0.001), TGFβ1 (24-fold, P < 0.05), and VEGF (77-fold, P < 0.001) compared to PD patients without EPS. In EPS patients, CCN2 protein was mainly localized in peritoneal endothelial cells and fibroblasts. CCN2 protein levels were significantly higher in peritoneal effluent of EPS patients compared to levels in dialysate of PD patients (12.0 ± 4.5 vs. 0.91 ± 0.92 ng/ml, P < 0.01), while plasma CCN2 levels were not increased. Peritoneal expression of CCN2, TGFβ1, and VEGF are significantly increased in EPS patients. In early stages of peritoneal fibrosis, only CCN2 expression is slightly increased. Peritoneal CCN2 overexpression in EPS patients is a locally driven response. The potential of CCN2

  19. Expression of NADPH Oxidase Isoform 1 (Nox1) in Human Placenta: Involvement in Preeclampsia

    PubMed Central

    Cui, X.-L.; Brockman, D.; Campos, B.; Myatt, L.

    2010-01-01

    Increased oxidative stress in the placenta has been associated with preeclampsia (PE), a clinical syndrome involving placental pathology. The enzymatic sources of reactive oxygen species in the human placenta are as yet unidentified. We hypothesized that NADPH oxidase is a main source of reactive oxygen species in the placenta and its expression may change in PE. Employing RTPCR, we have amplified a novel NADPH oxidase isoform Nox1 from human choriocarcinoma BeWo cells. Using polyclonal anti-peptide antiserum recognizing unique Nox1 peptide sequences, we identified by immunohistochemistry and cell fractionation that Nox1 protein localizes in the BeWo cell membrane structures. Immunohistochemistry of normal placental tissues showed that Nox1 was localized in syncytiotrophoblasts, in villous vascular endothelium, and in some stromal cells. At the immunohistochemical level Nox1 expression was significantly increased in syncytiotrophoblast and endothelial cells in placentas from patients with preeclampsia as compared to gestational age-matched controls. Western blot analysis of whole placental homogenate confirmed this increase. Our data suggests that increased Nox1 expression is associated with the increased oxidative stress found in these placentas. PMID:15993942

  20. Influence of inoculum density on population dynamics and dauer juvenile yields in liquid culture of biocontrol nematodes Steinernema carpocapsae and S. feltiae (Nematoda: Rhabditida).

    PubMed

    Hirao, Ayako; Ehlers, Ralf-Udo

    2010-01-01

    For improvement of mass production of the rhabditid biocontrol nematodes Steinernema carpocapsae and Steinernema feltiae in monoxenic liquid culture with their bacterial symbionts Xenorhabdus nematophila and Xenorhabdus bovienii, respectively, the effect of the initial nematode inoculum density on population development and final concentration of dauer juveniles (DJs) was investigated. Symbiotic bacterial cultures are pre-incubated for 1 day prior to inoculation of DJs. DJs are developmentally arrested and recover development as a reaction to food signals provided by their symbionts. After development to adults, the nematodes produce DJ offspring. Inoculum density ranged from 1 to 10 x 10(3) DJ per milliliter for S. carpocapsae and 1 to 8 x 10(3) DJs per milliliter for S. feltiae. No significant influence of the inoculum density on the final DJ yields in both nematode species was recorded, except for S. carpocapsae cultures with a parental female density <2 x 10(3) DJs per milliliter, in which the yields increased with increasing inoculation density. A strong negative response of the parental female fecundity to increasing DJ inoculum densities was recorded for both species with a maximum offspring number per female of >300 for S. carpocapsae and almost 200 for S. feltiae. The compensative adaptation of fecundity to nematode population density is responsible for the lack of an inoculum (or parental female) density effect on DJ yields. At optimal inoculation density of S. carpocapsae, offspring were produced by the parental female population, whereas S. feltiae always developed a F1 female population, which contributed to the DJ yields and was the reason for a more scattered distribution of the yields. The F1 female generation was accompanied by a second peak in X. bovienii density. The optimal DJ inoculum density for S. carpocapsae is 3-6 x 10(3) DJs per milliliter in order to obtain >10(3) parental females per milliliter. Density-dependent effects were neither

  1. Tumor Necrosis Factor B (TNFB) Genetic Variants and Its Increased Expression Are Associated with Vitiligo Susceptibility

    PubMed Central

    Laddha, Naresh C.; Dwivedi, Mitesh; Gani, Amina R.; Mansuri, Mohmmad Shoab; Begum, Rasheedunnisa

    2013-01-01

    Genetic polymorphisms in TNFB are involved in the regulation of its expression and are found to be associated with various autoimmune diseases. The aim of the present study was to determine whether TNFB +252A/G (rs909253) and exon 3 C/A (rs1041981) polymorphisms are associated with vitiligo susceptibility, and expression of TNFB and ICAM1 affects the disease onset and progression. We have earlier reported the role of TNFA in autoimmune pathogenesis of vitiligo, and we now show the involvement of TNFB in vitiligo pathogenesis. The two polymorphisms investigated in the TNFB were in strong linkage disequilibrium and significantly associated with vitiligo. TNFB and ICAM1 transcripts were significantly increased in patients compared to controls. Active vitiligo patients showed significant increase in TNFB transcripts compared to stable vitiligo. The genotype-phenotype analysis revealed that TNFB expression levels were higher in patients with GG and AA genotypes as compared to controls. Patients with the early age of onset and female patients showed higher TNFB and ICAM1 expression. Overall, our findings suggest that the increased TNFB transcript levels in vitiligo patients could result, at least in part, from variations at the genetic level which in turn leads to increased ICAM1 expression. For the first time, we show that TNFB +252A/G and exon 3 C/A polymorphisms are associated with vitiligo susceptibility and influence the TNFB and ICAM1 expression. Moreover, the study also emphasizes influence of TNFB and ICAM1 on the disease progression, onset and gender bias for developing vitiligo. PMID:24312346

  2. Development of Novel Monoclonal Antibodies that Define Differentiation Stages of Human Stromal (Mesenchymal) Stem Cells

    PubMed Central

    Andersen, Ditte C.; Kortesidis, Angela; Zannettino, Andrew C.W.; Kratchmarova, Irina; Chen, Li; Jensen, Ole N.; Teisner, Børge; Gronthos, Stan; Jensen, Charlotte H.; Kassem, Moustapha

    2011-01-01

    Human mesenchymal stem cells (hMSC) are currently being introduced for cell therapy, yet, antibodies specific for native and differentiated MSCs are required for their identification prior to clinical use. Herein, high quality antibodies against MSC surface proteins were developed by immunizing mice with hMSC, and by using a panel of subsequent screening methods. Flow cytometry analysis revealed that 83.5, 1.1, and 8.5% of primary cultures of hMSC were double positive for STRO-1 and either of DJ 3, 9, and 18, respectively. However, none of the three DJ antibodies allowed enrichment of clonogenic hMSC from BMMNCs as single reagents. Using mass-spectrometric analysis, we identified the antigen recognised by DJ3 as CD44, whereas DJ9 and DJ18 recognized HLA-DRB1 and Collagen VI, respectively. The identified proteins were highly expressed throughout in vitro osteogenic- and adipogenic differentiation. Interestingly, undifferentiated cells revealed a sole cytoplasmic distribution pattern of Collagen VI, which however changed to an extracellular matrix appearance upon osteogenic- and adipogenic differentiation. In relation to this, we found that STRO-1+/-/Collagen VI- sorted hMSC contained fewer differentiated alkaline phosphatase + cells compared to STRO-1+/-/Collagen VI+ hMSC, suggesting that Collagen VI on the cell membrane exclusively defines differentiated MSCs. In conclusion, we have generated a panel of high quality antibodies to be used for characterization of MSCs, and in addition our results may suggest that the DJ18 generated antibody against Collagen VI can be used for negative selection of cultured undifferentiated MSCs. PMID:21614487

  3. Programmed hyperphagia secondary to increased hypothalamic SIRT1.

    PubMed

    Desai, Mina; Li, Tie; Han, Guang; Ross, Michael G

    2014-11-17

    Small for gestational age (SGA) offspring exhibit reduced hypothalamic neural satiety pathways leading to programmed hyperphagia and adult obesity. Appetite regulatory site, the hypothalamic arcuate nucleus (ARC) contains appetite (NPY/AgRP) and satiety (POMC) neurons. Using in vitro culture of hypothalamic neuroprogenitor cells (NPC) which form the ARC, we demonstrated that SGA offspring exhibit reduced NPC proliferation and neuronal differentiation. bHLH protein Hes1 promotes NPC self-renewal and inhibits differentiation by repressing neuronal differentiation genes (Mash1, neurogenin3). We hypothesized that Hes1/Mash1 and ultimately ARC neuronal differentiation and expression of NPY/POMC neurons are influenced by SIRT1 which is a nutrient sensor and a histone deacetylase. Control dams received ad libitum food, whereas study dams were 50% food-restricted from pregnancy day 10 to 21 (SGA). In vivo studies showed that SGA newborns and adult offspring had increased protein expression of hypothalamic/ARC SIRT1 and AgRP with decreased POMC. Additionally, SGA newborns had decreased expression of hypothalamic neurogenic factors with reduced in vivo NPC proliferation. In vitro culture of hypothalamic NPCs showed similar changes with elevated SIRT1 binding to Hes1 in SGA newborn. Silencing SIRT1 increased NPC proliferation and Hes1 and Tuj1expression in both Control and SGA NPCs. Although SGA NPC proliferation remained below that of Controls, it was higher than Control NPCs in the absence of SIRT1 siRNA. The direct impact of SIRT1 on NPC proliferation and differentiation were further confirmed with pharmacologic SIRT1 inhibitor and activator. Thus, in SGA newborns elevated SIRT1 induces premature differentiation of NPCs, reducing the NPC pool and cell proliferation. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Mechanical Loading of Articular Cartilage Reduces IL-1-Induced Enzyme Expression

    PubMed Central

    Torzilli, P. A.; Bhargava, M.; Chen, C. T.

    2011-01-01

    Objective: Exposure of articular cartilage to interleukin-1 (IL-1) results in increased synthesis of matrix degrading enzymes. Previously mechanical load applied together with IL-1 stimulation was found to reduce aggrecan cleavage by ADAMTS-4 and 5 and MMP-1, -3, -9, and -13 and reduce proteoglycan loss from the extracellular matrix. To further delineate the inhibition mechanism the gene expression of ADAMTS-4 and 5; MMP-1, -3, -9, and -13; and TIMP-1, -2, and -3 were measured. Design: Mature bovine articular cartilage was stimulated with a 0.5 MPa compressive stress and 10 ng/ml of IL-1α for 3 days and then allowed to recover without stimulation for 1 additional day. The media was assayed for proteoglycan content on a daily basis, while chondrocyte gene expression (mRNA) was measured during stimulation and 1 day of recovery. Results: Mechanical load alone did not change the gene expression for ADAMTS, MMP, or TIMP. IL-1 caused an increase in gene expression for all enzymes after 1 day of stimulation while not affecting the TIMP levels. Load applied together with IL-1 decreased the expression levels of ADAMTS-4 and -5 and MMP-1 and -3 and increased TIMP-3 expression. Conclusions: A mechanical load appears to modify cartilage degradation by IL-1 at the cellular level by reducing mRNA. PMID:22039566

  5. Calpain expression in lymphoid cells. Increased mRNA and protein levels after cell activation.

    PubMed

    Deshpande, R V; Goust, J M; Chakrabarti, A K; Barbosa, E; Hogan, E L; Banik, N L

    1995-02-10

    Although calpain is ubiquitously present in human tissues and is thought to play a role in demyelination, its activity is very low in resting normal lymphocytes. To determine the nature of calpain expression at the mRNA and protein levels in human lymphoid cells, we studied human T lymphocytic, B lymphocytic, and monocytic lines as well as peripheral blood mononuclear cells. Stimulation of cells with the phorbol ester phorbol myristate acetate and the calcium ionophore A23187 resulted in increased calpain mRNA and protein expression. Calpain mRNA expression is also increased in human T cells stimulated with anti-CD3. A dissociation between the increases of RNA and protein suggested that calpain could be released from the cells; the subsequent experiments showed its presence in the extracellular environment. 5,6-Dichloro-1b-D-ribofuranosylbenzimidazole, a reversible inhibitor of mRNA synthesis, reduced calpain mRNA levels by 50-67% and protein levels by 72-91%. Its removal resulted in resumption of both calpain mRNA and protein synthesis. Cycloheximide, a translational inhibitor, reduced calpain protein levels by 77-81% and calpain mRNA levels by 96% in activated THP-1 cells. Interferon-gamma induced calpain mRNA and protein in U-937 and THP-1 cells. Dexamethasone increased mRNA expression in THP-1 cells. Our results indicate that activation of lymphoid cells results in de novo synthesis and secretion of calpain.

  6. Age-associated increase in aneuploidy and changes in gene expression in mouse eggs

    PubMed Central

    Pan, Hua; Ma, Pengpeng; Zhu, Wenting; Schultz, Richard M.

    2008-01-01

    An increase in the incidence of aneuploidy is well documented with increasing maternal age, in particular in human females. Remarkably, little is known regarding the underlying molecular basis for the age-associated increase in aneuploidy, which is a major source of decreased fertility in humans. Using mouse as a model system we find that eggs obtained from old mice (60–70 weeks of age) display a six-fold increase in the incidence of hyperploidy as assessed by chromosome spreads. Expression profiling of transcripts in oocytes and eggs obtained from young and old mice reveals that ~5% of the transcripts are differentially expressed in oocytes obtained from old females when compared to oocytes obtained from young females (6–12 weeks of age) and that this fraction increases to ~33% in eggs. The latter finding indicates that the normal pattern of degradation of maternal mRNAs that occurs during oocyte maturation is dramatically altered in eggs obtained from old mice and could therefore be a contributing source to the decline in fertility. Analysis of the differentially expressed transcripts also indicated that the strength of the spindle assembly checkpoint is weakened and that higher errors of microtubule-kinetochore interactions constitute part of molecular basis for the ageassociated increase in aneuploidy in females. Last, BRCA1 expression is reduced in oocytes obtained from old females and RNAi-mediated reduction of BRCA1 in oocytes obtained from young females results in perturbing spindle formation and chromosome congression following maturation. PMID:18342300

  7. Estradiol increases urethral tone through the local inhibition of neuronal nitric oxide synthase expression.

    PubMed

    Gamé, Xavier; Allard, Julien; Escourrou, Ghislaine; Gourdy, Pierre; Tack, Ivan; Rischmann, Pascal; Arnal, Jean-François; Malavaud, Bernard

    2008-03-01

    Estrogens are known to modulate lower urinary tract (LUT) trophicity and neuronal nitric oxide synthase (nNOS) expression in several organs. The aim of this study was to explore the effects of endogenous and supraestrus levels of 17beta-estradiol (E2) on LUT and urethral nNOS expression and function. LUT function and histology and urethral nNOS expression were studied in adult female mice subjected either to sham surgery, surgical castration, or castration plus chronic E2 supplementation (80 microg.kg(-1).day(-1), i.e., pregnancy level). The micturition pattern was profoundly altered by long-term supraestrus levels of E2 with decreased frequency paralleled by increased residual volumes higher than those of ovariectomized mice. Urethral resistance was increased twofold in E2-treated mice, with no structural changes in urethra, supporting a pure tonic mechanism. Acute nNOS inhibition by 7-nitroindazole decreased frequency and increased residual volumes in ovariectomized mice but had no additive effect on the micturition pattern of long-term supraestrus mice, showing that long-term supraestrus E2 levels and acute inhibition of nNOS activity had similar functional effects. Finally, E2 decreased urethral nNOS expression in ovariectomized mice. Long-term supraestrus levels of E2 increased urethral tone through inhibition of nNOS expression, whereas physiological levels of E2 had no effect.

  8. Increased expression of stathmin and elongation factor 1α in precancerous nodules with telomere dysfunction in hepatitis B viral cirrhotic patients

    PubMed Central

    2014-01-01

    Background Telomere dysfunction is important in carcinogenesis, and recently, stathmin and elongation factor 1α (EF1α) were reported to be up-regulated in telomere dysfunctional mice. Methods In the present study, the expression levels of stathmin and EF1α in relation to telomere length, telomere dysfunction-induced foci (TIF), γ-H2AX, and p21WAF1/CIP1 expression were assessed in specimens of hepatitis B virus (HBV)-related multistep hepatocarcinogenesis, including 13 liver cirrhosis specimens, 14 low-grade dysplastic nodules (DN), 17 high-grade DNs, and 14 hepatocellular carcinomas (HCC). Five normal liver specimens were used as controls. TIF were analyzed by telomere fluorescent in situ hybridization (FISH) combined with immunostaining, while the protein expressions of stathmin, EF1α, γ-H2AX, and p21WAF1/CIP1 were detected by immunohistochemistry. Result The expressions of stathmin and EF1α gradually increased as multistep hepatocarcinogenesis progressed, showing the highest levels in HCC. Stathmin mRNA levels were higher in high-grade DNs than normal liver and liver cirrhosis, whereas EF1α mRNA expression did not show such a difference. The protein expressions of stathmin and EF1α were found in DNs of precancerous lesions, whereas they were absent or present at very low levels in normal liver and liver cirrhosis. Stathmin histoscores were higher in high-grade DNs and low-grade DNs than in normal liver (all, P < 0.05). EF1α histoscores were higher in high-grade DNs than in normal liver and liver cirrhosis (all, P < 0.05). Stathmin mRNA levels and histoscores, as well as EF1α histoscores (but not mRNA levels), were positively correlated with telomere shortening and γ-H2AX labeling index (all, P < 0.05). EF1α histoscores were also positively correlated with TIF (P < 0.001). Significantly greater inactivation of p21WAF1/CIP1 was observed in low-grade DNs, high-grade DNs, and HCC, compared to liver cirrhosis (all, P < 0.05). p21WAF1

  9. Increased expression of stathmin and elongation factor 1α in precancerous nodules with telomere dysfunction in hepatitis B viral cirrhotic patients.

    PubMed

    Ahn, Ei Yong; Yoo, Jeong Eun; Rhee, Hyungjin; Kim, Myung Soo; Choi, Junjeong; Ko, Jung Eun; Lee, Jee San; Park, Young Nyun

    2014-05-31

    Telomere dysfunction is important in carcinogenesis, and recently, stathmin and elongation factor 1α (EF1α) were reported to be up-regulated in telomere dysfunctional mice. In the present study, the expression levels of stathmin and EF1α in relation to telomere length, telomere dysfunction-induced foci (TIF), γ-H2AX, and p21WAF1/CIP1 expression were assessed in specimens of hepatitis B virus (HBV)-related multistep hepatocarcinogenesis, including 13 liver cirrhosis specimens, 14 low-grade dysplastic nodules (DN), 17 high-grade DNs, and 14 hepatocellular carcinomas (HCC). Five normal liver specimens were used as controls. TIF were analyzed by telomere fluorescent in situ hybridization (FISH) combined with immunostaining, while the protein expressions of stathmin, EF1α, γ-H2AX, and p21WAF1/CIP1 were detected by immunohistochemistry. The expressions of stathmin and EF1α gradually increased as multistep hepatocarcinogenesis progressed, showing the highest levels in HCC. Stathmin mRNA levels were higher in high-grade DNs than normal liver and liver cirrhosis, whereas EF1α mRNA expression did not show such a difference. The protein expressions of stathmin and EF1α were found in DNs of precancerous lesions, whereas they were absent or present at very low levels in normal liver and liver cirrhosis. Stathmin histoscores were higher in high-grade DNs and low-grade DNs than in normal liver (all, P<0.05). EF1α histoscores were higher in high-grade DNs than in normal liver and liver cirrhosis (all, P<0.05). Stathmin mRNA levels and histoscores, as well as EF1α histoscores (but not mRNA levels), were positively correlated with telomere shortening and γ-H2AX labeling index (all, P<0.05). EF1α histoscores were also positively correlated with TIF (P<0.001). Significantly greater inactivation of p21WAF1/CIP1 was observed in low-grade DNs, high-grade DNs, and HCC, compared to liver cirrhosis (all, P<0.05). p21WAF1/CIP1 labeling index was inversely correlated with TIF

  10. Simulated physiological stretch increases expression of extracellular matrix proteins in human bladder smooth muscle cells via integrin α4/αv-FAK-ERK1/2 signaling pathway.

    PubMed

    Chen, Shulian; Peng, Chuandu; Wei, Xin; Luo, Deyi; Lin, Yifei; Yang, Tongxin; Jin, Xi; Gong, Lina; Li, Hong; Wang, Kunjie

    2017-08-01

    To investigate the effect of simulated physiological stretch on the expression of extracellular matrix (ECM) proteins and the role of integrin α4/αv, focal adhesion kinase (FAK), extracellular regulated protein kinases 1/2 (ERK1/2) in the stretch-induced ECM protein expression of human bladder smooth muscle cells (HBSMCs). HBSMCs were seeded onto silicone membrane and subjected to simulated physiological stretch at the range of 5, 10, and 15% elongation. Expression of primary ECM proteins in HBSMCs was analyzed by real-time polymerase chain reaction and Western blot. Specificity of the FAK and ERK1/2 was determined by Western blot with FAK inhibitor and ERK1/2 inhibitor (PD98059). Specificity of integrin α4 and integrin αv was determined with small interfering ribonucleic acid (siRNA) transfection. The expression of collagen I (Col1), collagen III (Col3), and fibronectin (Fn) was increased significantly under the simulated physiological stretch of 10 and 15%. Integrin α4 and αv, FAK, ERK1/2 were activated by 10% simulated physiological stretch compared with the static condition. Pretreatment of ERK1/2 inhibitor, FAK inhibitor, integrin α4 siRNA, or integrin αv siRNA reduced the stretch-induced expression of ECM proteins. And FAK inhibitor decreased the stretch-induced ERK1/2 activity and ECM protein expression. Integrin α4 siRNA or integrin αv siRNA inhibited the stretch-induced activity of FAK. Simulated physiological stretch increases the expression of ECM proteins in HBSMCs, and integrin α4/αv-FAK-ERK1/2 signaling pathway partly modulates the mechano-transducing process.

  11. Increased prenatal IGF2 expression due to the porcine intron3-G3072A mutation may be responsible for increased muscle mass.

    PubMed

    Clark, D L; Clark, D I; Beever, J E; Dilger, A C

    2015-05-01

    A SNP (IGF2 G3072A) within intron 3 of disrupts a binding site for the repressor zinc finger BED-type containing 6 (ZBED6), leading to increased carcass lean yields in pigs. However, the relative contributions of prenatal as opposed to postnatal increased IGF2 expression are unclear. As muscle fiber number is set at birth, prenatal and neonate skeletal muscle development is critical in determining mature growth potential. Therefore, the objectives of this study were to determine the contributions of hyperplasia and hypertrophy to increased muscle mass and to delineate the effect of the mutation on the expression of myogenic genes during prenatal and postnatal growth. Sows (IGF2 A/A) were bred to a single heterozygous (IGF2 A/G) boar. For fetal samples, sows were euthanized at 60 and 90 d of gestation (d60 and d90) to obtain fetuses. Male and female offspring were also euthanized at birth (0d), weaning (21d), and market weight of approximately 130 kg (176d). At each sampling time, the LM, psoas major (PM), and semitendinosus (ST) muscles were weighed. Samples of the LM were used to quantify the expression of IGF family members, myogenic regulatory factors (MRF), myosin heavy chain isoforms, and growth factors, myostatin, and . Liver samples were used to quantify and expression. At 176d, weights of LM, PM, and ST muscles were all increased approximately 8% to 14% (P < 0.01) in pigs with paternal A (A(Pat)) alleles compared with those with paternal G (G(Pat)) alleles. Additionally, total muscle fiber number in the ST at 176d tended to be greater (P = 0.10), whereas muscle fiber cross-sectional area tended to be reduced ( P= 0.08) in A(Pat) pigs compared with G(Pat) pigs. In addition to the expected 2.7- to 4.5-fold increase (P ≤ 0.02) in expression in the LM in A(Pat) compared with G(Pat) pigs at postnatal sampling times (21d and 176d), IGF2 expression was also increased (P ≤ 0.06) 1.4- to 1.5-fold at d90 of gestation and at birth. At d90, expression of myogenic

  12. Hypertension produced by placental ischemia in pregnant rats is associated with increased soluble endoglin expression.

    PubMed

    Gilbert, Jeffrey S; Gilbert, Sara A B; Arany, Marietta; Granger, Joey P

    2009-02-01

    Recent clinical studies indicate that an excess of angiostatic factors, such as soluble endoglin (sEng), is related to the occurrence of preeclampsia. Although recent clinical studies report that sEng is increased in preeclamptic women, the mechanisms underlying its overexpression remain unclear. Evidence suggests that hypoxia and induction of heme oxygenase-1 have opposing effects on sEng expression, the former stimulatory and the latter inhibitory. Hence, we hypothesized that placental ischemia because of reduced uterine perfusion pressure (RUPP) in the pregnant rat would increase sEng expression and decrease heme oxygenase-1. Mean arterial pressure was obtained via arterial catheter, and serum and placental proteins were measured by Western blot. Mean arterial pressure was increased (132+/-3 mm Hg versus 102+/-2 mm Hg; P<0.001), and fetal (2.35+/-0.05 g versus 1.76+/-0.08 g; P<0.001) and placental weight were decreased (0.47+/-0.04 g versus 0.58+/-0.03 g; P<0.01) in the RUPP compared with normal pregnant controls. Serum sEng (0.10+/-0.02 arbitrary pixel units [apu] versus 0.05+/-0.01 apu; P<0.05) and placental endoglin (4.7+/-2.3 apu versus 1.45+/-0.42 apu; P<0.05) were increased along with placental hypoxia inducible factor-1 alpha (1.42+/-0.25 apu versus 0.68+/-0.09 apu; P<0.05) expression in the RUPP versus the normal pregnant dams. Placental HO-1 (1.4+/-0.3 apu versus 2.5+/-0.1 apu; P<0.05) expression decreased in the RUPP compared with normal pregnant dams. The present findings support our hypothesis that placental ischemia because of RUPP increases the expression of sEng and shifts the balance of angiogenic factors in the maternal circulation toward an angiostatic state. The present study provides further evidence that placental ischemia is a strong in vivo stimulus of angiostatic factors during pregnancy.

  13. Resistin increases the expression of NOD2 in mouse monocytes.

    PubMed

    Ren, Yi; Wan, Taomei; Zuo, Zhicai; Cui, Hengmin; Peng, Xi; Fang, Jing; Deng, Junliang; Hu, Yanchun; Yu, Shuming; Shen, Liuhong; Ma, Xiaoping; Wang, Ya; Ren, Zhihua

    2017-05-01

    Previous studies have indicated that resistin, a type of adipokine, contributes to the development of insulin resistance and type 2 diabetes mellitus, and mediates inflammatory reactions. However, a specific receptor for resistin has not yet been identified. In this study, the relationship between resistin and nucleotide-binding oligomerization domain-like receptors, as well as resistin signal transduction, was examined through transfection, quantitative polymerase chain reaction, western blot analysis and ELISA. The mRNA expression of nucleotide-binding oligomerization domain-containing protein 2 (NOD2), a key immune receptor related to insulin resistance, was significantly increased by resistin treatment at concentrations of 100, 150 and 200 ng/ml (P<0.05, P<0.01 and P<0.01, respectively). The mRNA expression of downstream signaling molecules in the NOD2 signaling pathway, receptor-interacting serine/threonine-protein kinase 2 (RIP2; P<0.01 at 6, 12 and 24 h) and inhibitor of NF-κB kinase subunit beta (P<0.01 at 3, 6, 12 and 24 h) were significantly increased by resistin treatment compared with the control. The mRNA expression of key proinflammatory cytokines, tumor necrosis factor α, IL (interleukin)-6 and IL-1β, were also significantly increased by resistin treatment compared with the control (P<0.01). NOD2 knockdown by small interfering RNA (siRNA) significantly decreased the expression of NOD2 and RIP2 (P<0.01), and there was no significant increase in the levels of cytokines, as compared with treatment with control siRNA. These findings indicate that the inflammatory reaction induced by resistin involves the NOD2-nuclear factor (NF)-κB signaling pathway. The inhibition of NF-κB significantly decreased the secretion of key inflammatory cytokines (P<0.01), suggesting that NF-κB signaling mechanisms are essential to the resistin-induced inflammatory response.

  14. Long-Term Haloperidol Treatment Prolongs QT Interval and Increases Expression of Sigma 1 and IP3 Receptors in Guinea Pig Hearts.

    PubMed

    Stracina, Tibor; Slaninova, Iva; Polanska, Hana; Axmanova, Martina; Olejnickova, Veronika; Konecny, Petr; Masarik, Michal; Krizanova, Olga; Novakova, Marie

    2015-07-01

    Haloperidol is a neuroleptic drug used for a medication of various psychoses and deliria. Its administration is frequently accompanied by cardiovascular side effects, expressed as QT interval prolongation and occurrence of even lethal arrhythmias. Despite these side effects, haloperidol is still prescribed in Europe in clinical practice. Haloperidol binds to sigma receptors that are coupled with inositol 1,4,5-trisphosphate (IP3) receptors. Sigma receptors are expressed in various tissues, including heart muscle, and they modulate potassium channels. Together with IP3 receptors, sigma receptors are also involved in calcium handling in various tissues. Therefore, the present work aimed to study the effects of long-term haloperidol administration on the cardiac function. Haloperidol (2 mg/kg once a day) or vehiculum was administered by intraperitoneal injection to guinea pigs for 21 consecutive days. We measured the responsiveness of the hearts isolated from the haloperidol-treated animals to additional application of haloperidol. Expression of the sigma 1 receptor and IP3 receptors was studied by real time-PCR and immunohistochemical analyses. Haloperidol treatment caused the significant decrease in the relative heart rate and the prolongation of QT interval of the isolated hearts from the haloperidol-treated animals, compared to the hearts isolated from control animals. The expression of sigma 1 and IP3 type 1 and type 2 receptors was increased in both atria of the haloperidol-treated animals but not in ventricles. The modulation of sigma 1 and IP3 receptors may lead to altered calcium handling in cardiomyocytes and thus contribute to changed sensitivity of cardiac cells to arrhythmias.

  15. Pim-1 kinase expression during murine mammary development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gapter, Leslie A.; School of Molecular Biosciences, Washington State University, Pullman, WA 99164-4234; Magnuson, Nancy S.

    2006-07-07

    Pim-1 kinase phosphorylates substrates whose activities are linked to proliferation, survival, differentiation, and apoptosis. Although pim-1 is induced by hormones and cytokines, the hormonal control and contribution of Pim-1 to mammary gland development have not been evaluated. We examined Pim-1 expression in mammary cell lines, investigated whether Pim-1 levels could be altered in breast epithelia by mammogenic hormones, and evaluated Pim-1 expression during mammary development. We found that Pim-1 was elevated in most mammary carcinoma cell lines and progesterone increased Pim-1 protein to some extent in non-tumorigenic mammary epithelia. Pim-1 expression in situ was consistent with the documented profile ofmore » progesterone activity in mouse mammary glands. Pim-1 nuclear localization correlated with cytoplasmic distribution for its substrate, p21{sup CIP/Waf1}, and we found that Pim-1 and p21 associate in vitro. Our results suggest that Pim-1 expression may be regulated by progesterone during mammary development and Pim-1 associates with p21 in mammary epithelial cells.« less

  16. Comparison of the exact thermodynamics of the AF Blume-Emery-Grifiths and of the spin-1 ferromagnetic Ising models

    NASA Astrophysics Data System (ADS)

    Corrêa Silva, E. V.; Thomaz, M. T.

    2016-11-01

    We study in detail the thermodynamics of the anti-ferromagnetic Blume-Emery-Griffiths (AF BEG) model in the presence of a longitudinal magnetic field. Its thermodynamics is derived from the exact Helmholtz free energy (HFE) of the model, valid for T > 0. Numerical simulations of this model on a periodic space chain with 10 sites (N=10) yield the energy spectra of the model at K/J = 2 for D/J = 1 and D/J = 2, thus helping us compare, for a broad range of temperature, how some (per site) thermodynamic functions with the same value of K/J but distinct values of D/J behave, namely: the z-component of the magnetization, the specific heat and the entropy. These thermodynamic functions of the AF BEG model at K/|J| = 2 are compared to those of the spin-1 ferromagnetic Ising model with D/|J| > 1.5, for which the T=0 phase diagrams of both models are identical. This comparison is done in a large interval of temperature.

  17. A Novel FOXE1 Mutation (R73S) in Bamforth–Lazarus Syndrome Causing Increased Thyroidal Gene Expression

    PubMed Central

    Carré, Aurore; Hamza, Rasha T.; Kariyawasam, Dulanjalee; Guillot, Loïc; Teissier, Raphaël; Tron, Elodie; Castanet, Mireille; Dupuy, Corinne; El Kholy, Mohamed; Polak, Michel

    2014-01-01

    Background: Homozygous loss-of-function mutations in the FOXE1 gene have been reported in several patients with partial or complete Bamforth–Lazarus syndrome: congenital hypothyroidism (CH) with thyroid dysgenesis (usually athyreosis), cleft palate, spiky hair, with or without choanal atresia, and bifid epiglottis. Here, our objective was to evaluate potential functional consequences of a FOXE1 mutation in a patient with a similar clinical phenotype. Methods: FOXE1 was sequenced in eight patients with thyroid dysgenesis and cleft palate. Transient transfection was performed in HEK293 cells using the thyroglobulin (TG) and thyroid peroxidase (TPO) promoters in luciferase reporter plasmids to assess the functional impact of the FOXE1 mutations. Primary human thyrocytes transfected with wild type and mutant FOXE1 served to assess the impact of the mutation on endogenous TG and TPO expression. Results: We identified and characterized the function of a new homozygous FOXE1 missense mutation (p.R73S) in a boy with a typical phenotype (athyreosis, cleft palate, and partial choanal atresia). This new mutation located within the forkhead domain was inherited from the heterozygous healthy consanguineous parents. In vitro functional studies in HEK293 cells showed that this mutant gene enhanced the activity of the TG and TPO gene promoters (1.5-fold and 1.7-fold respectively vs. wild type FOXE1; p<0.05), unlike the five mutations previously reported in Bamforth–Lazarus syndrome. The gain-of-function effect of the FOXE1-p.R73S mutant gene was confirmed by an increase in endogenous TG production in primary human thyrocytes. Conclusion: We identified a new homozygous FOXE1 mutation responsible for enhanced expression of the TG and TPO genes in a boy whose phenotype is similar to that reported previously in patients with loss-of-function FOXE1 mutations. This finding further delineates the role for FOXE1 in both thyroid and palate development, and shows that enhanced gene

  18. BRCA1/2 and TP53 mutation status associates with PD-1 and PD-L1 expression in ovarian cancer.

    PubMed

    Wieser, Verena; Gaugg, Inge; Fleischer, Martina; Shivalingaiah, Giridhar; Wenzel, Soeren; Sprung, Susanne; Lax, Sigurd F; Zeimet, Alain G; Fiegl, Heidelinde; Marth, Christian

    2018-04-03

    Checkpoint molecules such as programmed cell death protein-1 (PD-1) and its ligand PD-L1 are critically required for tumor immune escape. The objective of this study was to investigate tumoral PD-1 and PD-L1 mRNA-expression in a cohort of ovarian cancer (OC) patients in relation to tumor mutations. We analyzed mRNA expression of PD-1 , PD-L1 and IFNG by quantitative real-time PCR in tissue of 170 patients with low grade-serous (LGSOC), high-grade serous (HGSOC), endometrioid and clear cell OC compared to 28 non-diseased tissues (ovaries and fallopian tubes) in relation to tumor protein 53 ( TP53 ) and breast cancer gene 1/2 ( BRCA1/2 ) mutation status. TP53 -mutated OC strongly expressed PD-L1 compared to TP53 wild-type OC ( p = 0.028) and BRCA1/2 -mutated OC increasingly expressed PD-1 ( p = 0.024) and PD-L1 ( p = 0.012) compared to BRCA1/2 wild-type OC. For the first time in human, we noted a strong correlation between tumoral IFNG and PD-1 or PD-L1 mRNA-expression, respectively ( p < 0.001). OC tissue increasingly expressed PD-1 compared to healthy controls (vs. ovaries: p < 0.001; vs. tubes: p = 0.018). PD-1 and PD-L1 mRNA-expression increased with higher tumor grade ( p = 0.008 and p = 0.027, respectively) and younger age (< median age, p = 0.001). Finally, in the major subgroup of our cohort, FIGO stage III/IV HGSOC, high PD-1 and PD-L1 mRNA-expression was associated with reduced progression-free ( p = 0.024) and overall survival ( p = 0.049) but only in the univariate analysis. Our study suggests that in OC PD-1 / PD-L1 mRNA-expression is controlled by IFNγ and affected by TP53 and BRCA1/2 mutations. We suggest that these mutations might serve as potential predictive factors that guide anti- PD1 / PD-L1 immunotherapy.

  19. Aripiprazole Increases the PKA Signalling and Expression of the GABAA Receptor and CREB1 in the Nucleus Accumbens of Rats.

    PubMed

    Pan, Bo; Lian, Jiamei; Huang, Xu-Feng; Deng, Chao

    2016-05-01

    The GABAA receptor is implicated in the pathophysiology of schizophrenia and regulated by PKA signalling. Current antipsychotics bind with D2-like receptors, but not the GABAA receptor. The cAMP-responsive element-binding protein 1 (CREB1) is also associated with PKA signalling and may be related to the positive symptoms of schizophrenia. This study investigated the effects of antipsychotics in modulating D2-mediated PKA signalling and its downstream GABAA receptors and CREB1. Rats were treated orally with aripiprazole (0.75 mg/kg, ter in die (t.i.d.)), bifeprunox (0.8 mg/kg, t.i.d.), haloperidol (0.1 mg/kg, t.i.d.) or vehicle for 1 week. The levels of PKA-Cα and p-PKA in the prefrontal cortex (PFC), nucleus accumbens (NAc) and caudate putamen (CPu) were detected by Western blots. The mRNA levels of Gabrb1, Gabrb2, Gabrb3 and Creb1, and their protein expression were measured by qRT-PCR and Western blots, respectively. Aripiprazole elevated the levels of p-PKA and the ratio of p-PKA/PKA in the NAc, but not the PFC and CPu. Correlated with this elevated PKA signalling, aripiprazole elevated the mRNA and protein expression of the GABAA (β-1) receptor and CREB1 in the NAc. While haloperidol elevated the levels of p-PKA and the ratio of p-PKA/PKA in both NAc and CPu, it only tended to increase the expression of the GABAA (β-1) receptor and CREB1 in the NAc, but not the CPu. Bifeprunox had no effects on PKA signalling in these brain regions. These results suggest that aripiprazole has selective effects on upregulating the GABAA (β-1) receptor and CREB1 in the NAc, probably via activating PKA signalling.

  20. Reduced methylation of the thromboxane synthase gene is correlated with its increased vascular expression in preeclampsia.

    PubMed

    Mousa, Ahmad A; Strauss, Jerome F; Walsh, Scott W

    2012-06-01

    Preeclampsia is characterized by increased thromboxane and decreased prostacyclin levels, which predate symptoms, and can explain some of the clinical manifestations of preeclampsia, including hypertension and thrombosis. In this study, we examined DNA methylation of the promoter region of the thromboxane synthase gene (TBXAS1) and the expression of thromboxane synthase in systemic blood vessels of normal pregnant and preeclamptic women. Thromboxane synthase is responsible for the synthesis of thromboxane A(2), a potent vasoconstrictor and activator of platelets. We also examined the effect of experimentally induced DNA hypomethylation on the expression of thromboxane synthase in a neutrophil-like cell line (HL-60 cells) and in cultured vascular smooth muscle and endothelial cells. We found that DNA methylation of the TBXAS1 promoter was decreased and thromboxane synthase expression was increased in omental arteries of preeclamptic women as compared with normal pregnant women. Increased thromboxane synthase expression was observed in vascular smooth muscles cells, endothelial cells, and infiltrating neutrophils. Experimentally induced DNA hypomethylation only increased expression of thromboxane synthase in the neutrophil-like cell line, whereas tumor necrosis factor-α, a neutrophil product, increased its expression in cultured vascular smooth muscle cells. Our study suggests that epigenetic mechanisms and release of tumor necrosis factor-α by infiltrating neutrophils could contribute to the increased expression of thromboxane synthase in maternal systemic blood vessels, contributing to the hypertension and coagulation abnormalities associated with preeclampsia.

  1. TGF-beta1 expression in EL4 lymphoma cells overexpressing growth hormone.

    PubMed

    Farmer, John T; Weigent, Douglas A

    2006-03-01

    Our previous studies show that growth hormone overexpression (GHo) upregulates the expression of the IGF-1R and IGF-2R resulting in the protection of the EL4 lymphoma cell line from apoptosis. In this study, we report that GHo also increases TGF-beta1 protein expression measured by luciferase promoter assay, Western analysis, and ELISA. Further, the data show that antibody to TGF-betaR2 decreases TGF-beta1 promoter activity to the level of vector alone control cells. GHo cells treated with (125)I-rh-latent TGF-beta1 showed increased activation of latent TGF-beta1 as measured by an increase in the active 24kDa, TGF-beta1 compared to vector alone control cells. The ability of endogenous GH to increase TGF-beta1 expression is blocked in EL4 cells by antisense but not sense oligodeoxynucleotides or in cells cultured with antibody to growth hormone (GH). The data suggest that endogenous GH may protect from apoptosis through the IGF-1R receptor while limiting cellular growth through increased expression and activation of TGF-beta1.

  2. Sex-dependent expression of TRPV1 in bladder arterioles

    PubMed Central

    Phan, Thieu X.; Ton, Hoai T.; Chen, Yue; Basha, Maureen E.

    2016-01-01

    Transient receptor potential vanilloid type 1 (TRPV1) is a major nociceptive ion channel implicated in bladder physiology and/or pathophysiology. However, the precise expression of TRPV1 in neuronal vs. nonneuronal bladder cells is uncertain. Here we used reporter mouse lines (TRPV1-Cre:tdTomato and TRPV1PLAP-nlacZ) to map expression of TRPV1 in postnatal bladder. TRPV1 was not detected in the urothelium, however, we found marked expression of TRPV1 lineage in sensory nerves, and surprisingly, in arterial/arteriolar smooth muscle (ASM) cells. Tomato fluorescence was prominent in the vesical arteries and in small-diameter (15–40 μm) arterioles located in the suburothelial layer with a near equal distribution in bladder dome and base. Notably, arteriolar TRPV1 expression was greater in females than in males and increased in both sexes after 90 days of age, suggesting sex hormone and age dependency. Analysis of whole bladder and vesical artery TRPV1 mRNA revealed a similar sex and developmental dependence. Pharmacological experiments confirmed functional TRPV1 protein expression; capsaicin increased intracellular Ca2+ in ∼15% of ASM cells from wild-type female bladders, but we observed no responses to capsaicin in bladder arterioles isolated from TRPV1-null mice. Furthermore, capsaicin triggered arteriole constriction that was rapidly reversed by the TRPV1 antagonist, BCTC. These data show that predominantly in postpubertal female mice, bladder ASM cells express functional TRPV1 channels that may act to constrict arterioles. TRPV1 may therefore play an important role in regulating the microcirculation of the female bladder, and this effect may be of significance during inflammatory conditions. PMID:27654891

  3. Increasing RpoS expression causes cell death in Borrelia burgdorferi.

    PubMed

    Chen, Linxu; Xu, Qilong; Tu, Jiagang; Ge, Yihe; Liu, Jun; Liang, Fang Ting

    2013-01-01

    RpoS, one of the two alternative σ factors in Borrelia burgdorferi, is tightly controlled by multiple regulators and, in turn, determines expression of many critical virulence factors. Here we show that increasing RpoS expression causes cell death. The immediate effect of increasing RpoS expression was to promote bacterial division and as a consequence result in a rapid increase in cell number before causing bacterial death. No DNA fragmentation or degradation was observed during this induced cell death. Cryo-electron microscopy showed induced cells first formed blebs, which were eventually released from dying cells. Apparently blebbing initiated cell disintegration leading to cell death. These findings led us to hypothesize that increasing RpoS expression triggers intracellular programs and/or pathways that cause spirochete death. The potential biological significance of induced cell death may help B. burgdorferi regulate its population to maintain its life cycle in nature.

  4. TPS1 terminator increases mRNA and protein yield in a Saccharomyces cerevisiae expression system.

    PubMed

    Yamanishi, Mamoru; Katahira, Satoshi; Matsuyama, Takashi

    2011-01-01

    Both terminators and promoters regulate gene expression. In Saccharomyces cerevisiae, the TPS1 terminator (TPS1t), coupled to a gene encoding a fluorescent protein, produced more transgenic mRNA and protein than did similar constructs containing other terminators, such as CYC1t, TDH3t, and PGK1t. This suggests that TPS1t can be used as a general terminator in the development of metabolically engineered yeast in high-yield systems.

  5. Aliskiren increases aquaporin-2 expression and attenuates lithium-induced nephrogenic diabetes insipidus.

    PubMed

    Lin, Yu; Zhang, Tiezheng; Feng, Pinning; Qiu, Miaojuan; Liu, Qiaojuan; Li, Suchun; Zheng, Peili; Kong, Yonglun; Levi, Moshe; Li, Chunling; Wang, Weidong

    2017-10-01

    The direct renin inhibitor aliskiren has been shown to be retained and persist in medullary collecting ducts even after treatment is discontinued, suggesting a new mechanism of action for this drug. The purpose of the present study was to investigate whether aliskiren regulates renal aquaporin expression in the collecting ducts and improves urinary concentrating defect induced by lithium in mice. The mice were fed with either normal chow or LiCl diet (40 mmol·kg dry food -1 ·day -1 for 4 days and 20 mmol·kg dry food -1 ·day -1 for the last 3 days) for 7 days. Some mice were intraperitoneally injected with aliskiren (50 mg·kg body wt -1 ·day -1 in saline). Aliskiren significantly increased protein abundance of aquaporin-2 (AQP2) in the kidney inner medulla in mice. In inner medulla collecting duct cell suspension, aliskiren markedly increased AQP2 and phosphorylated AQP2 at serine 256 (pS256-AQP2) protein abundance, which was significantly inhibited both by adenylyl cyclase inhibitor MDL-12330A and by PKA inhibitor H89, indicating an involvement of the cAMP-PKA signaling pathway in aliskiren-induced increased AQP2 expression. Aliskiren treatment improved urinary concentrating defect in lithium-treated mice and partially prevented the decrease of AQP2 and pS256-AQP2 protein abundance in the inner medulla of the kidney. In conclusion, the direct renin inhibitor aliskiren upregulates AQP2 protein expression in inner medullary collecting duct principal cells and prevents lithium-induced nephrogenic diabetes insipidus likely via cAMP-PKA pathways. Copyright © 2017 the American Physiological Society.

  6. The HSP terminator of Arabidopsis thaliana increases gene expression in plant cells.

    PubMed

    Nagaya, Shingo; Kawamura, Kazue; Shinmyo, Atsuhiko; Kato, Ko

    2010-02-01

    To express a foreign gene in plants effectively, a good expression system is required. Here we describe the identification of a transcriptional terminator that supports increased levels of expression. The terminators of several Arabidopsis genes were examined in transfected Arabidopsis T87 protoplasts. The heat shock protein 18.2 (HSP) terminator was the most effective in supporting increased levels of expression. The HSP terminator increases mRNA levels of both transiently and stably expressed transgenes approximately 2-fold more than the NOS (nopaline synthase) terminator. When combined with the HSP terminator, a translational enhancer increased gene expression levels approximately 60- to 100-fold in transgenic plants.

  7. Whole-body vibration of mice induces progressive degeneration of intervertebral discs associated with increased expression of Il-1β and multiple matrix degrading enzymes.

    PubMed

    McCann, Matthew R; Veras, Matthew A; Yeung, Cynthia; Lalli, Gurkeet; Patel, Priya; Leitch, Kristyn M; Holdsworth, David W; Dixon, S Jeffrey; Séguin, Cheryle A

    2017-05-01

    Whole-body vibration (WBV) is a popular fitness trend based on claims of increased muscle mass, weight loss and reduced joint pain. Following its original implementation as a treatment to increase bone mass in patients with osteoporosis, WBV has been incorporated into clinical practice for musculoskeletal disorders, including back pain. However, our recent studies revealed damaging effects of WBV on joint health in a murine model. In this report, we examined potential mechanisms underlying disc degeneration following exposure of mice to WBV. Ten-week-old male mice were exposed to WBV (45 Hz, 0.3 g peak acceleration, 30 min/day, 5 days/week) for 4 weeks, 8 weeks, or 4 weeks WBV followed by 4 weeks recovery. Micro-computed tomography (micro-CT), histological, and gene expression analyses were used to assess the effects of WBV on spinal tissues. Exposure of mice to 4 or 8 weeks of WBV did not alter total body composition or induce significant changes in vertebral bone density. On the other hand, WBV-induced intervertebral disc (IVD) degeneration, associated with decreased disc height and degenerative changes in the annulus fibrosus (AF) that did not recover within 4 weeks after cessation of WBV. Gene expression analysis showed that WBV for 8 weeks induced expression of Mmp3, Mmp13, and Adamts5 in IVD tissues, changes preceded by increased expression of Il-1β. Progressive IVD degeneration induced by WBV was associated with increased expression of Il-1β within the IVD that preceded Mmp and Adamts gene induction. Moreover, WBV-induced IVD degeneration is not reversed following cessation of vibration. Copyright © 2017 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  8. Prominin-2 expression increases protrusions, decreases caveolae and inhibits Cdc42 dependent fluid phase endocytosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Raman Deep, E-mail: Takhter.Ramandeep@mayo.edu; Schroeder, Andreas S.; Scheffer, Luana

    Highlights: •Prominin-2 expression induced protrusions that co-localized with lipid raft markers. •Prominin-2 expression decreased caveolae, caveolar endocytosis and increased pCav1. •Prominin-2 expression inhibited fluid phase endocytosis by inactivation of Cdc42. •These endocytic effects can be reversed by adding exogenous cholesterol. •Caveolin1 knockdown restored fluid phase endocytosis in Prominin2 expressing cells. -- Abstract: Background: Membrane protrusions play important roles in biological processes such as cell adhesion, wound healing, migration, and sensing of the external environment. Cell protrusions are a subtype of membrane microdomains composed of cholesterol and sphingolipids, and can be disrupted by cholesterol depletion. Prominins are pentaspan membrane proteins thatmore » bind cholesterol and localize to plasma membrane (PM) protrusions. Prominin-1 is of great interest as a marker for stem and cancer cells, while Prominin-2 (Prom2) is reportedly restricted to epithelial cells. Aim: To characterize the effects of Prom-2 expression on PM microdomain organization. Methods: Prom2-fluorescent protein was transfected in human skin fibroblasts (HSF) and Chinese hamster ovary (CHO) cells for PM raft and endocytic studies. Caveolae at PM were visualized using transmission electron microscopy. Cdc42 activation was measured and caveolin-1 knockdown was performed using siRNAs. Results: Prom2 expression in HSF and CHO cells caused extensive Prom2-positive protrusions that co-localized with lipid raft markers. Prom2 expression significantly decreased caveolae at the PM, reduced caveolar endocytosis and increased caveolin-1 phosphorylation. Prom2 expression also inhibited Cdc42-dependent fluid phase endocytosis via decreased Cdc42 activation. Effects on endocytosis were reversed by addition of cholesterol. Knockdown of caveolin-1 by siRNA restored Cdc42 dependent fluid phase endocytosis in Prom2-expressing cells. Conclusions: Prom2 protrusions

  9. Lrrk2 and alpha-synuclein are co-regulated in rodent striatum.

    PubMed

    Westerlund, Marie; Ran, Caroline; Borgkvist, Anders; Sterky, Fredrik H; Lindqvist, Eva; Lundströmer, Karin; Pernold, Karin; Brené, Stefan; Kallunki, Pekka; Fisone, Gilberto; Olson, Lars; Galter, Dagmar

    2008-12-01

    LRRK2, alpha-synuclein, UCH-L1 and DJ-1 are implicated in the etiology of Parkinson's disease. We show for the first time that increase in striatal alpha-synuclein levels induce increased Lrrk2 mRNA levels while Dj-1 and Uch-L1 are unchanged. We also demonstrate that a mouse strain lacking the dopamine signaling molecule DARPP-32 has significantly reduced levels of both Lrrk2 and alpha-synuclein, while mice carrying a disabling mutation of the DARPP-32 phosphorylation site T34A or lack alpha-synuclein do not show any changes. To test if striatal dopamine depletion influences Lrrk2 or alpha-synuclein expression, we used the neurotoxin 6-hydroxydopamine in rats and MitoPark mice in which there is progressive degeneration of dopamine neurons. Because striatal Lrrk2 and alpha-synuclein levels were not changed by dopamine depletion, we conclude that Lrrk2 and alpha-synuclein mRNA levels are possibly co-regulated, but they are not influenced by striatal dopamine levels.

  10. Changes in biomechanical properties during drop jumps of incremental height.

    PubMed

    Peng, Hsien-Te

    2011-09-01

    The purpose of this study was to investigate changing biomechanical properties with increasing drop jump height. Sixteen physically active college students participated in this study and performed drop jumps from heights of 20, 30, 40, 50, and 60 cm (DJ20-DJ60). Kinematic and kinetic data were collected using 11 Eagle cameras and 2 force platforms. Data pertaining to the dominant leg for each of 3 trials for each drop height were recorded and analyzed. Statistical comparisons of vertical ground reaction force (vGRF), impulse, moment, power, work, and stiffness were made between different drop jump heights. The peak vGRF of the dominant leg exceeded 3 times the body weight during DJ50 and DJ60; these values were significantly greater than those for DJ20, DJ30, and DJ40 (all p < 0.004). The height jumped during DJ60 was significantly less than that during DJ20 and DJ30 (both p = 0.010). Both the landing impulse and total impulse during the contact phase were significantly different between each drop height (all p < 0.036) and significantly increased with drop height. There were no significant differences in the takeoff impulse. Peak and mean power absorption and negative work at the knee and ankle joints during DJ40, DJ50, and DJ60 were significantly greater than those during DJ20 and DJ30 (all p < 0.049). Leg, knee, and ankle stiffness during DJ60 were significantly less than during DJ20, DJ30, and DJ40 (all p < 0.037). The results demonstrated that drop jumps from heights >40 cm offered no advantages in terms of mechanical efficiency (SSC power output) and stiffness. Drop jumps from heights in excess of 60 cm are not recommended because of the lack of biomechanical efficiency and the potentially increased risk of injury.

  11. Cdx1 and cdx2 expression during intestinal development.

    PubMed

    Silberg, D G; Swain, G P; Suh, E R; Traber, P G

    2000-10-01

    The intestine-specific transcription factors Cdx1 and Cdx2 are candidate genes for directing intestinal development, differentiation, and maintenance of the intestinal phenotype. This study focused on the complex patterns of expression of Cdx1 and Cdx2 during mouse gastrointestinal development. Embryonic and postnatal mouse tissues were analyzed by immunohistochemistry to determine protein expression of Cdx1 and Cdx2 in the developing intestinal tract. Cdx2 protein expression was observed at 9. 5 postcoitum (pc), whereas weak expression of Cdx1 protein was first seen at 12.5 pc in the distal developing intestine (hindgut). Expression of Cdx1 increased from 13.5 to 14.5 pc during the endoderm/epithelial transition with predominately distal expression. In contrast to Cdx1, there was intense expression of Cdx2 in all but the distal portions of the developing intestine. Cdx2 expression remained low in the distal colon throughout postnatal development. A gradient of expression formed in the crypt-villus axis, with Cdx1 primarily in the crypt and Cdx2 primarily in the villus. Direct comparison of the patterns of Cdx1 and Cdx2 protein expression during development as performed in this study provides new insights into their potential functional roles. The relative expression of Cdx1 to Cdx2 protein may be important in the anterior to posterior patterning of the intestinal epithelium and in defining patterns of proliferation and differentiation along the crypt-villus axis.

  12. Kinematic And Neuromuscular Measures Of Intensity During Plyometric Jumps.

    PubMed

    Andrade, David Cristóbal; Manzo, Oscar; Beltrán, Ana Rosa; Álvarez, Cristian; Del Rio, Rodrigo; Toledo, Camilo; Moran, Jason; Ramirez-Campillo, Rodrigo

    2017-08-15

    The aim of this study was to assess jumping performance and neuromuscular activity in lower limb muscles after drop jumps (DJ) from different drop heights (intensity) and during continuous jumping (fatigue), using markers such as reactive strength, jump height, mechanical power and surface electromyography (sEMG). The eccentric (EC) and concentric (CON) sEMG from the medial gastrocnemius (MG), biceps femoris (BF) and rectus (R) muscles were assessed during all tests. In a cross-sectional, randomized study, eleven volleyball players (age 24.4±3.2 years) completed 20 to 90-cm (DJ20 to DJ90) drop jumps and a 60-s continuous jump test. A one-way ANOVA test was used for comparisons, with Sidak post-hoc. The α level was <0.05. Reactive strength was greater for DJ40 compared to DJ90 (p<0.05; ES: 1.27). Additionally jump height was greater for DJ40 and DJ60 compared to DJ20 (p<0.05; ES: 1.26 and 1.27, respectively). No clear pattern of neuromuscular activity appeared during DJ20 to DJ90: some muscles showed greater, lower, or no change with increasing heights for both agonist and antagonist muscles, as well as for eccentric and concentric activity. Mechanical power, but not reactive strength, was reduced in the 60-s jump test (p<0.05; ES: 3.46). No changes were observed in sEMG for any muscle during the eccentric phase nor for the R muscle during the concentric phase of the 60-s jump test. However, for both MG and BF, concentric sEMG was reduced during the 60-s jump test (p<0.05; ES: 5.10 and 4.61, respectively). In conclusion, jumping performance and neuromuscular markers are sensitive to DJ height (intensity), although not in a clear dose-response fashion. In addition, markers such as mechanical power and sEMG are especially sensitive to the effects of continuous jumping (fatigue). Therefore, increasing the drop height during DJ does not ensure a greater training intensity and a combination of different drop heights may be required to elicit adaptations.

  13. Increased expression of microRNA-29a in ALS mice: functional analysis of its inhibition.

    PubMed

    Nolan, Katie; Mitchem, Mollie R; Jimenez-Mateos, Eva M; Henshall, David C; Concannon, Caoimhín G; Prehn, Jochen H M

    2014-06-01

    Endoplasmic reticulum (ER) stress has been implicated in a number of neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). MicroRNAs are small ribonucleic acids which can modulate protein expression by binding to the 3'UTR of target mRNAs. We recently identified increased miR-29a expression in response to ER stress in neurons, with members of the miR-29 family implicated in cancer and neurodegeneration. We found high expression of miR-29a in the mouse brain and spinal cord by quantitative PCR analysis and increased expression of miR-29a in the spinal cord of SOD1(G93A) transgenic mice, a mouse model of familial ALS. In situ hybridisation experiments revealed increased miR-29a expression in the lumbar spinal cord of SOD1(G93A) transgenic mice from postnatal day 70 onward when compared to wild-type mice. miR-29a knockdown was achieved in the CNS in vivo after a single intracerebroventricular injection of a miR-29a-specific antagomir. While analysis of disease progression and motor function could not identify a significant alteration in ALS disease manifestations, a trend towards increased lifespan was observed in male SOD1(G93A) mice. These findings demonstrate that miR-29a may act as a marker for disease progression in SOD1(G93A) mice, and provide first proof-of-concept for a therapeutic modulation of miR-29a function in ALS.

  14. Patients with Encapsulating Peritoneal Sclerosis Have Increased Peritoneal Expression of Connective Tissue Growth Factor (CCN2), Transforming Growth Factor-β1, and Vascular Endothelial Growth Factor

    PubMed Central

    Abrahams, Alferso C.; Habib, Sayed M.; Dendooven, Amélie; Riser, Bruce L.; van der Veer, Jan Willem; Toorop, Raechel J.; Betjes, Michiel G. H.; Verhaar, Marianne C.; Watson, Christopher J. E.; Nguyen, Tri Q.; Boer, Walther H.

    2014-01-01

    Introduction Encapsulating peritoneal sclerosis (EPS) is a devastating complication of peritoneal dialysis (PD). The pathogenesis is not exactly known and no preventive strategy or targeted medical therapy is available. CCN2 has both pro-fibrotic and pro-angiogenic actions and appears an attractive target. Therefore, we studied peritoneal expression of CCN2, as well as TGFβ1 and VEGF, in different stages of peritoneal fibrosis. Materials and methods Sixteen PD patients were investigated and compared to 12 hemodialysis patients and four pre-emptively transplanted patients. Furthermore, expression was investigated in 12 EPS patients in comparison with 13 PD and 12 non-PD patients without EPS. Peritoneal tissue was taken during kidney transplantation procedure or during EPS surgery. In a subset of patients, CCN2 protein levels in peritoneal effluent and plasma were determined. Samples were examined by qPCR, histology, immunohistochemistry, and ELISA. Results Peritoneal CCN2 expression was 5-fold higher in PD patients compared to pre-emptively transplanted patients (P<0.05), but did not differ from hemodialysis patients. Peritoneal expression of TGFβ1 and VEGF were not different between the three groups; neither was peritoneal thickness. Peritoneum of EPS patients exhibited increased expression of CCN2 (35-fold, P<0.001), TGFβ1 (24-fold, P<0.05), and VEGF (77-fold, P<0.001) compared to PD patients without EPS. In EPS patients, CCN2 protein was mainly localized in peritoneal endothelial cells and fibroblasts. CCN2 protein levels were significantly higher in peritoneal effluent of EPS patients compared to levels in dialysate of PD patients (12.0±4.5 vs. 0.91±0.92 ng/ml, P<0.01), while plasma CCN2 levels were not increased. Conclusions Peritoneal expression of CCN2, TGFβ1, and VEGF are significantly increased in EPS patients. In early stages of peritoneal fibrosis, only CCN2 expression is slightly increased. Peritoneal CCN2 overexpression in EPS patients is a

  15. Osthole, a coumadin analog from Cnidium monnieri (L.) Cusson, stimulates corticosterone secretion by increasing steroidogenic enzyme expression in mouse Y1 adrenocortical tumor cells.

    PubMed

    Pan, Zhiqiang; Fang, Zhaoqin; Lu, Wenli; Liu, Xiaomei; Zhang, Yuanyuan

    2015-12-04

    Osthole is an O-methylated coumadin, which was isolated and purified from the seeds of Cnidium monnieri (L.) Cusson. Osthole is a commonly used traditional Chinese medicine to treat patients with Kidney-Yang deficiency patients, who exhibit clinical signs similar to those of glucocorticoid withdrawal. However, the mechanism of action of osthole is not fully understood. This study was designed to reveal the effects of osthole on corticosterone production in mouse Y1 cell. Mouse Y1 adrenocortical cells were used to evaluate corticosterone production, which was quantified by enzyme-linked immunosorbent assay (ELISA) kits. Cell viability was tested using the MTT assay, and the mRNA and protein expression of genes encoding steroidogenic enzymes and transcription factors was monitored by quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR) and western blotting, respectively. Osthole stimulated corticosterone secretion from mouse Y1 cells in a dose- and time-dependent manner, and osthole enhanced the effect of dibutyryl-cAMP (Bu2cAMP) on corticosterone production. Further, osthole also increased StAR and CYP11B1 mRNA expression in a dose-dependent manner and enhanced the expression of transcription factors such as HSD3B1, FDX1, POR and RXRα as well as immediate early genes such as NR4A1. Moreover, osthole significantly increased SCARB1(SRB1) mRNA and StAR protein expression in the presence or absence of Bu2cAMP; these proteins are an important for the transport of the corticosteroid precursor cholesterol transport into mitochondria. Our results show that the promotion of corticosterone biosynthesis and secretion is a novel effect of osthole, suggesting that this agent can be utilized for the prevention and treatment of Kidney-Yang deficiency syndrome. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. SATB1 Expression Governs Epigenetic Repression of PD-1 in Tumor-Reactive T Cells.

    PubMed

    Stephen, Tom L; Payne, Kyle K; Chaurio, Ricardo A; Allegrezza, Michael J; Zhu, Hengrui; Perez-Sanz, Jairo; Perales-Puchalt, Alfredo; Nguyen, Jenny M; Vara-Ailor, Ana E; Eruslanov, Evgeniy B; Borowsky, Mark E; Zhang, Rugang; Laufer, Terri M; Conejo-Garcia, Jose R

    2017-01-17

    Despite the importance of programmed cell death-1 (PD-1) in inhibiting T cell effector activity, the mechanisms regulating its expression remain poorly defined. We found that the chromatin organizer special AT-rich sequence-binding protein-1 (Satb1) restrains PD-1 expression induced upon T cell activation by recruiting a nucleosome remodeling deacetylase (NuRD) complex to Pdcd1 regulatory regions. Satb1 deficienct T cells exhibited a 40-fold increase in PD-1 expression. Tumor-derived transforming growth factor β (Tgf-β) decreased Satb1 expression through binding of Smad proteins to the Satb1 promoter. Smad proteins also competed with the Satb1-NuRD complex for binding to Pdcd1 enhancers, releasing Pdcd1 expression from Satb1-mediated repression, Satb1-deficient tumor-reactive T cells lost effector activity more rapidly than wild-type lymphocytes at tumor beds expressing PD-1 ligand (CD274), and these differences were abrogated by sustained CD274 blockade. Our findings suggest that Satb1 functions to prevent premature T cell exhaustion by regulating Pdcd1 expression upon T cell activation. Dysregulation of this pathway in tumor-infiltrating T cells results in diminished anti-tumor immunity. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Chemokine-like factor 1 (CLFK1) is over-expressed in patients with atopic dermatitis.

    PubMed

    Yang, Gao-Yun; Chen, Xue; Sun, Ya-Chun; Ma, Chen-Li; Qian, Ge

    2013-01-01

    Human chemokine-like factor 1 (CKLF1), a recently discovered chemokine, has a broad spectrum of biological functions in immune-mediated diseases. It is highly expressed on Th2 lymphocytes and is a functional ligand for human CCR4. CKLF1 has a major role in the recruitment and activation of leucocytes, which plays an important role in the pathogenesis of allergic diseases. The present study was designed to determine the expression of CKLF1 in skin and serum in patients with atopic dermatitis (AD). The CKLF1 protein expression in skin lesion was analyzed by immunohistochemistry and ELISA. The mRNA expression of CKLF1 in skin lesion was detected by Real-time PCR. The serum levels of CKLF1, IgE, eotaxin, IL-4, IL-5, and IL-13 were measured by ELISA. Histopathological changes in the skin of AD patients showed local inflammation with epidermal thickening and significant inflammatory cellular infiltration. Immunohistochemistry results demonstrated that CKLF1-staining positive cells were located in the epidermal and dermis, and that the CKLF1 expression in AD patients was significantly higher than that in normal control. The CKLF1 mRNA expression in AD patients was significantly higher than that in healthy controls. Serum CKLF1 and IgE levels were significantly increased in AD patients, as were the serum levels of IL-4, IL-5, IL-13 and eotaxin. Both CKLF1 protien and mRNA levels are overexpressed in the skin lesion of AD patients, along with an increase in serum CKLF1 level, indicating that CKLF1 may play an important role in the development of atopic dermatitis.

  18. Mechanical stretch increases CCN2/CTGF expression in anterior cruciate ligament-derived cells.

    PubMed

    Miyake, Yoshiaki; Furumatsu, Takayuki; Kubota, Satoshi; Kawata, Kazumi; Ozaki, Toshifumi; Takigawa, Masaharu

    2011-06-03

    Anterior cruciate ligament (ACL)-to-bone interface serves to minimize the stress concentrations that would arise between two different tissues. Mechanical stretch plays an important role in maintaining cell-specific features by inducing CCN family 2/connective tissue growth factor (CCN2/CTGF). We previously reported that cyclic tensile strain (CTS) stimulates α1(I) collagen (COL1A1) expression in human ACL-derived cells. However, the biological function and stress-related response of CCN2/CTGF were still unclear in ACL fibroblasts. In the present study, CCN2/CTGF was observed in ACL-to-bone interface, but was not in the midsubstance region by immunohistochemical analyses. CTS treatments induced higher increase of CCN2/CTGF expression and secretion in interface cells compared with midsubstance cells. COL1A1 expression was not influenced by CCN2/CTGF treatment in interface cells despite CCN2/CTGF stimulated COL1A1 expression in midsubstance cells. However, CCN2/CTGF stimulated the proliferation of interface cells. Our results suggest that distinct biological function of stretch-induced CCN2/CTGF might regulate region-specific phenotypes of ACL-derived cells. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Increasing α7β1-integrin promotes muscle cell proliferation, adhesion, and resistance to apoptosis without changing gene expression

    PubMed Central

    Liu, Jianming; Burkin, Dean J.; Kaufman, Stephen J.

    2008-01-01

    The dystrophin-glycoprotein complex maintains the integrity of skeletal muscle by associating laminin in the extracellular matrix with the actin cytoskeleton. Several human muscular dystrophies arise from defects in the components of this complex. The α7β1-integrin also binds laminin and links the extracellular matrix with the cytoskeleton. Enhancement of α7-integrin levels alleviates pathology in mdx/utrn−/− mice, a model of Duchenne muscular dystrophy, and thus the integrin may functionally compensate for the absence of dystrophin. To test whether increasing α7-integrin levels affects transcription and cellular functions, we generated α7-integrin-inducible C2C12 cells and transgenic mice that overexpress the integrin in skeletal muscle. C2C12 myoblasts with elevated levels of integrin exhibited increased adhesion to laminin, faster proliferation when serum was limited, resistance to staurosporine-induced apoptosis, and normal differentiation. Transgenic expression of eightfold more integrin in skeletal muscle did not result in notable toxic effects in vivo. Moreover, high levels of α7-integrin in both myoblasts and in skeletal muscle did not disrupt global gene expression profiles. Thus increasing integrin levels can compensate for defects in the extracellular matrix and cytoskeleton linkage caused by compromises in the dystrophin-glycoprotein complex without triggering apparent overt negative side effects. These results support the use of integrin enhancement as a therapy for muscular dystrophy. PMID:18045857

  20. Expression of the Arabidopsis thaliana BBX32 gene in soybean increases grain yield.

    PubMed

    Preuss, Sasha B; Meister, Robert; Xu, Qingzhang; Urwin, Carl P; Tripodi, Federico A; Screen, Steven E; Anil, Veena S; Zhu, Shuquan; Morrell, James A; Liu, Grace; Ratcliffe, Oliver J; Reuber, T Lynne; Khanna, Rajnish; Goldman, Barry S; Bell, Erin; Ziegler, Todd E; McClerren, Amanda L; Ruff, Thomas G; Petracek, Marie E

    2012-01-01

    Crop yield is a highly complex quantitative trait. Historically, successful breeding for improved grain yield has led to crop plants with improved source capacity, altered plant architecture, and increased resistance to abiotic and biotic stresses. To date, transgenic approaches towards improving crop grain yield have primarily focused on protecting plants from herbicide, insects, or disease. In contrast, we have focused on identifying genes that, when expressed in soybean, improve the intrinsic ability of the plant to yield more. Through the large scale screening of candidate genes in transgenic soybean, we identified an Arabidopsis thaliana B-box domain gene (AtBBX32) that significantly increases soybean grain yield year after year in multiple transgenic events in multi-location field trials. In order to understand the underlying physiological changes that are associated with increased yield in transgenic soybean, we examined phenotypic differences in two AtBBX32-expressing lines and found increases in plant height and node, flower, pod, and seed number. We propose that these phenotypic changes are likely the result of changes in the timing of reproductive development in transgenic soybean that lead to the increased duration of the pod and seed development period. Consistent with the role of BBX32 in A. thaliana in regulating light signaling, we show that the constitutive expression of AtBBX32 in soybean alters the abundance of a subset of gene transcripts in the early morning hours. In particular, AtBBX32 alters transcript levels of the soybean clock genes GmTOC1 and LHY-CCA1-like2 (GmLCL2). We propose that through the expression of AtBBX32 and modulation of the abundance of circadian clock genes during the transition from dark to light, the timing of critical phases of reproductive development are altered. These findings demonstrate a specific role for AtBBX32 in modulating soybean development, and demonstrate the validity of expressing single genes in crops to

  1. Enhanced UGT1A1 Gene and Protein Expression in Endometriotic Lesions.

    PubMed

    Piccinato, Carla A; Neme, Rosa M; Torres, Natália; da Silva Victor, Elivane; Brudniewski, Heloísa F; Rosa E Silva, Júlio C; Ferriani, Rui A

    2018-01-01

    The cellular function in endometriosis lesions depends on a highly estrogenic milieu. Lately, it is becoming evident that, besides the circulating levels of estrogens, the balance of synthesis versus inactivation (metabolism) of estrogens by intralesion steroid-metabolizing enzymes also determines the local net estrogen availability. In order to extend the knowledge of the role of estrogen-metabolizing enzymes in endometriosis, we investigated the gene and protein expression of a key uridine diphospho-glucuronosyltransferase (UGT) for estrogen glucuronidation, UGT1A1, in eutopic endometrial samples obtained from nonaffected and endometriosis-affected women and also from endometriotic lesions. Although UGT1A1 messenger RNA (mRNA) expression was detected at similar frequencies in endometriotic lesions and in eutopic endometrial samples, the levels of mRNA expression were greater in deep-infiltrating endometriotic lesions and in non-deep-infiltrating lesions when compared with either control endometrium or eutopic endometrium from women with endometriosis. Overall, we observed that protein expression of UGT1A1 was significantly more frequent in samples from endometriotic lesions in comparison with endometria. In addition, expression of UGT1A1 protein was greater in deep-infiltrating than in non-deep-infiltrating endometriotic lesions. We suggest that the finding of increased expression of UGT1A1 in lesions versus endometria might be related to impairment of regulatory mechanisms, in response to a highly estrogenic milieu, and that this enzyme may be a new target for therapy.

  2. Erythropoietin over-expression protects against diet-induced obesity in mice through increased fat oxidation in muscles.

    PubMed

    Hojman, Pernille; Brolin, Camilla; Gissel, Hanne; Brandt, Claus; Zerahn, Bo; Pedersen, Bente Klarlund; Gehl, Julie

    2009-06-12

    Erythropoietin can be over-expressed in skeletal muscles by gene electrotransfer, resulting in 100-fold increase in serum EPO and significant increases in haemoglobin levels. Earlier studies have suggested that EPO improves several metabolic parameters when administered to chronically ill kidney patients. Thus we applied the EPO over-expression model to investigate the metabolic effect of EPO in vivo.At 12 weeks, EPO expression resulted in a 23% weight reduction (P<0.01) in EPO transfected obese mice; thus the mice weighed 21.9+/-0.8 g (control, normal diet,) 21.9+/-1.4 g (EPO, normal diet), 35.3+/-3.3 g (control, high-fat diet) and 28.8+/-2.6 g (EPO, high-fat diet). Correspondingly, DXA scanning revealed that this was due to a 28% reduction in adipose tissue mass.The decrease in adipose tissue mass was accompanied by a complete normalisation of fasting insulin levels and glucose tolerance in the high-fat fed mice. EPO expression also induced a 14% increase in muscle volume and a 25% increase in vascularisation of the EPO transfected muscle. Muscle force and stamina were not affected by EPO expression. PCR array analysis revealed that genes involved in lipid metabolism, thermogenesis and inflammation were increased in muscles in response to EPO expression, while genes involved in glucose metabolism were down-regulated. In addition, muscular fat oxidation was increased 1.8-fold in both the EPO transfected and contralateral muscles.In conclusion, we have shown that EPO when expressed in supra-physiological levels has substantial metabolic effects including protection against diet-induced obesity and normalisation of glucose sensitivity associated with a shift to increased fat metabolism in the muscles.

  3. Vinclozolin, a widely used fungizide, enhanced BaP-induced micronucleus formation in human derived hepatoma cells by increasing CYP1A1 expression.

    PubMed

    Wu, Xin-Jiang; Lu, Wen-qing; Roos, Peter H; Mersch-Sundermann, Volker

    2005-10-15

    Vinclozolin, a widely used fungicide, can be identified as a residue in numerous vegetable and fruit samples. To get insight in its genetic toxicity, we investigated the genotoxic effect of vinclozolin in the human derived hepatoma cell line HepG2 using the micronucleus (MN) assay. Additionally, to evaluate the co- or anti-mutagenic potency of vinclozolin, we treated HepG2 cells with different concentrations of vinclozolin for 24 h. Subsequently, the cells were exposed to benzo[a]pyrene (BaP) for 1h. Exposure of HepG2 cells to 50-400 microM vinclozolin alone did not cause any induction of micronuclei. However, a pronounced co-mutagenic effect was observed. MN frequencies caused by BaP increased by 30.6%, 52.8% and 65.3% after pretreatment of the cell cultures with 50, 100 and 200 microM vinclozolin, respectively. The highest concentration (400 microM) of vinclozolin tested caused cytotoxicity. Therefore, micronuclei were not considered for that concentration. To clarify the mechanism of cogenotoxicity, we assayed cytochrome P450 1A1 (CYP1A1), which plays a pivotal role in activation of BaP. Cells exposed to vinclozolin led to significant increase of CYP1A1 expression in Western blot. The result suggested that induction of CYP1A1 by vinclozolin account for its enhancing effect on genotoxicity caused by BaP.

  4. Expression of Arabidopsis SHN1 in Indian Mulberry (Morus indica L.) Increases Leaf Surface Wax Content and Reduces Post-harvest Water Loss

    PubMed Central

    Sajeevan, R. S.; Nataraja, Karaba N.; Shivashankara, K. S.; Pallavi, N.; Gurumurthy, D. S.; Shivanna, M. B.

    2017-01-01

    Mulberry (Morus species) leaf is the sole food for monophagous silkworms, Bombyx mori L. Abiotic stresses such as drought, salinity, and high temperature, significantly decrease mulberry productivity and post-harvest water loss from leaves influence silkworm growth and cocoon yield. Leaf surface properties regulate direct water loss through the cuticular layer. Leaf surface waxes, contribute for cuticular resistance and protect mesophyll cells from desiccation. In this study we attempted to overexpress AtSHN1, a transcription factor associated with epicuticular wax biosynthesis to increase leaf surface wax load in mulberry. Agrobacterium mediated in vitro transformation was carried out using hypocotyl and cotyledonary explants of Indian mulberry (cv. M5). Mulberry transgenic plants expressing AtSHN1 displayed dark green shiny appearance with increased leaf surface wax content. Scanning electron microscopy (SEM) and gas chromatograph–mass spectrometry (GC-MS) analysis showed change in pattern of surface wax deposition and significant change in wax composition in AtSHN1 overexpressors. Increased wax content altered leaf surface properties as there was significant difference in water droplet contact angle and diameter between transgenic and wild type plants. The transgenic plants showed significant improvement in leaf moisture retention capacity even 5 h after harvest and there was slow degradation of total buffer soluble protein in detached leaves compared to wild type. Silkworm bioassay did not indicate any undesirable effects on larval growth and cocoon yield. This study demonstrated that expression of AtSHN1, can increase surface wax load and reduce the post-harvest water loss in mulberry. PMID:28421085

  5. Na⁺/K⁺-ATPase α1 mRNA expression in the gill and rectal gland of the Atlantic stingray, Dasyatis sabina, following acclimation to increased salinity.

    PubMed

    Evans, Andrew N; Lambert, Faith N

    2015-06-05

    The salt-secreting rectal gland plays a major role in elasmobranch osmoregulation, facilitating ion balance in hyperosmotic environments in a manner analogous to the teleost gill. Several studies have examined the central role of the sodium pump Na(+)/K(+)-ATPase in osmoregulatory tissues of euryhaline elasmobranch species, including regulation of Na(+)/K(+)-ATPase activity and abundance in response to salinity acclimation. However, while the transcriptional regulation of Na(+)/K(+)-ATPase in the teleost gill has been well documented the potential for mRNA regulation to facilitate rectal gland plasticity during salinity acclimation in elasmobranchs has not been examined. Therefore, in this study we acclimated Atlantic stingrays, Dasyatis sabina (Lesueur) from 11 to 34 ppt salinity over 3 days, and examined changes in plasma components as well as gill and rectal gland Na(+)/K(+)-ATPase α1 (atp1a1) mRNA expression. Acclimation to increased salinity did not affect hematocrit but resulted in significant increases in plasma osmolality, chloride and urea. Rectal gland atp1a1 mRNA expression was higher in 34 ppt-acclimated D. sabina vs. There was no significant change in gill atp1a1 mRNA expression, however mRNA expression of this gene in the gill and rectal gland were negatively correlated. This study demonstrates regulation of atp1a1 in the elasmobranch salt-secreting gland in response to salinity acclimation and a negative relationship between rectal gland and gill atp1a1 expression. These results support the hypothesis that the gill and rectal gland play opposing roles in ion balance with the gill potentially facilitating ion uptake in hypoosmotic environments. Future studies should further examine this possibility as well as potential differences in the regulation of Na(+)/K(+)-ATPase gene expression between euryhaline and stenohaline elasmobranch species.

  6. Increased Eps15 homology domain 1 and RAB11FIP3 expression regulate breast cancer progression via promoting epithelial growth factor receptor recycling.

    PubMed

    Tong, Dandan; Liang, Ya-Nan; Stepanova, A A; Liu, Yu; Li, Xiaobo; Wang, Letian; Zhang, Fengmin; Vasilyeva, N V

    2017-02-01

    Recent research indicates that the C-terminal Eps15 homology domain 1 is associated with epithelial growth factor receptor-mediated endocytosis recycling in non-small-cell lung cancer. The aim of this study was to determine the clinical significance of Eps15 homology domain 1 gene expression in relation to phosphorylation of epithelial growth factor receptor expression in patients with breast cancer. Primary breast cancer samples from 306 patients were analyzed for Eps15 homology domain 1, RAB11FIP3, and phosphorylation of epithelial growth factor receptor expression via immunohistochemistry. The clinical significance was assessed via a multivariate Cox regression analysis, Kaplan-Meier curves, and the log-rank test. Eps15 homology domain 1 and phosphorylation of epithelial growth factor receptor were upregulated in 60.46% (185/306) and 53.92% (165/306) of tumor tissues, respectively, as assessed by immunohistochemistry. The statistical correlation analysis indicated that Eps15 homology domain 1 overexpression was positively correlated with the increases in phosphorylation of epithelial growth factor receptor ( r = 0.242, p < 0.001) and RAB11FIP3 ( r = 0.165, p = 0.005) expression. The multivariate Cox proportional hazard model analysis demonstrated that the expression of Eps15 homology domain 1 alone is a significant prognostic marker of breast cancer for the overall survival in the total, chemotherapy, and human epidermal growth factor receptor 2 (-) groups. However, the use of combined expression of Eps15 homology domain 1 and phosphorylation of epithelial growth factor receptor markers is more effective for the disease-free survival in the overall population, chemotherapy, and human epidermal growth factor receptor 2 (-) groups. Moreover, the combined markers are also significant prognostic markers of breast cancer in the human epidermal growth factor receptor 2 (+), estrogen receptor (+), and estrogen receptor (-) groups. Eps15 homology domain

  7. The Expression of the Endogenous mTORC1 Inhibitor Sestrin 2 Is Induced by UVB and Balanced with the Expression Level of Sestrin 1.

    PubMed

    Mlitz, Veronika; Gendronneau, Gaelle; Berlin, Irina; Buchberger, Maria; Eckhart, Leopold; Tschachler, Erwin

    2016-01-01

    Sestrin 2 (SESN2) is an evolutionarily conserved regulator of mechanistic target of rapamycin complex 1 (mTORC1) which controls central cellular processes such as protein translation and autophagy. Previous studies have suggested that SESN2 itself is subjected to regulation at multiple levels. Here, we investigated the expression of SESN2 in the skin and in isolated skin cells. SESN2 was detected by immunofluorescence analysis in fibroblasts and keratinocytes of human skin. Differentiation of epidermal keratinocytes was not associated with altered SESN2 expression and siRNA-mediated knockdown of SESN2 did not impair stratum corneum formation in vitro. However, SESN2 was increased in both cell types when the expression of its paralog SESN1 was blocked by siRNA-mediated knock down, indicating a compensatory mechanism for the control of expression. Irradiation with UVB but not with UVA significantly increased SESN2 expression in both keratinocytes and fibroblasts. Upregulation of SESN2 expression could be completely blocked by suppression of p53. These results suggest that SESN2 is dispensable for normal epidermal keratinization but involved in the UVB stress response of skin cells.

  8. Noradrenaline increases the expression and release of Hsp72 by human neutrophils.

    PubMed

    Giraldo, E; Multhoff, G; Ortega, E

    2010-05-01

    The blood concentration of extracellular 72kDa heat shock protein (eHsp72) increases under conditions of stress, including intense exercise. However, the signal(s), source(s), and secretory pathways in its release into the bloodstream have yet to be clarified. The aim of the present study was to evaluate the role of noradrenaline (NA) as a stress signal on the expression and release of Hsp72 by circulating neutrophils (as a source), all within a context of the immunophysiological regulation during exercise-induced stress in sedentary and healthy young (21-26years) women. The expression of Hsp72 on the surface of isolated neutrophils was determined by flow cytometry, and its release by cultured isolated neutrophils was determined by ELISA. Incubation with cmHsp70-FITC showed that neutrophils express Hsp72 on their surface under basal conditions. In addition, cultured isolated neutrophils (37 degrees C and 5% CO(2)) also released Hsp72 under basal conditions, with this release increasing from 10min to 24h in the absence of cell damage. NA at 10(-9)-10(-5)M doubled the percentage of neutrophils expressing Hsp72 after 60min and 24h incubation. NA also stimulated (by about 20%) the release of Hsp72 after 10min of incubation. (1) Hsp72 is expressed on the surface of isolated neutrophils under basal conditions, and this expression is augmented by NA. (2) Isolated neutrophils can also release Hsp72 under cultured basal conditions in the absence of cell death, and NA can increase this release. These results may contribute to confirming the hypothesis that NA can act as a "stress signal" for the increased eHsp72 in the context of exercise stress, with a role for neutrophils as a source for the expression and, to a lesser degree, the release of Hsp72 after activation by NA. Copyright 2010 Elsevier Inc. All rights reserved.

  9. Neisseria gonorrhoeae Challenge Increases Matrix Metalloproteinase-8 Expression in Fallopian Tube Explants.

    PubMed

    Juica, Natalia E; Rodas, Paula I; Solar, Paula; Borda, Paula; Vargas, Renato; Muñoz, Cristobal; Paredes, Rodolfo; Christodoulides, Myron; Velasquez, Luis A

    2017-01-01

    Background: Neisseria gonorrhoeae (Ngo) is the etiological agent of gonorrhea, a sexually transmitted infection that initially infects the female lower genital tract. In untreated women, the bacteria can ascend to the upper genital reproductive tract and infect the fallopian tube (FTs), which is associated with salpingitis and can lead to impaired FT function and infertility. The extracellular matrix (ECM) plays an important role in cell migration and differentiation in the female genital tract, and some pathogens modify the ECM to establish successful infections. The ECM is regulated by matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs), their endogenous inhibitors; MMP deregulation causes pathological conditions in a variety of tissues. Results: The aim of this work was to analyze the expression and localization of MMP-3, MMP-8, MMP-9, and TIMP-1 in FT explants during Ngo infection using real-time PCR, immunohistochemistry, zymography and ELISA. No significant variations in MMP-3, MMP-9, and TIMP-1 transcript levels were observed. In contrast, a significant increase ( p < 0.05) was observed for MMP-8 expression and was accompanied by stromal immunoreactivity in infected explants. ELISA results supported these findings and showed that MMP-8 release increased upon gonococcal infection. Conclusions: Our results indicate that gonococcal infection induces increased MMP-8 expression, which might contribute to FT damage during infection.

  10. The decreased expression of mitofusin-1 and increased fission-1 together with alterations in mitochondrial morphology in the kidney of rats with chronic fluorosis may involve elevated oxidative stress.

    PubMed

    Qin, Shuang-Li; Deng, Jie; Lou, Di-Dong; Yu, Wen-Feng; Pei, Jinjing; Guan, Zhi-Zhong

    2015-01-01

    This study was designed to characterize changes in the expression of mitofusin-1 (Mfn1) and fission-1 (Fis1), as well as in mitochondrial morphology in the kidney of rats subjected to chronic fluorosis and to elucidate whether any mitochondrial injury observed is associated with increased oxidative stress. Sixty Sprague-Dawley (SD) rats were divided randomly into 3 groups of 20 each, i.e., the untreated control group (natural drinking water containing <0.5mg fluoride/L), the low-fluoride group (drinking water supplemented with 10mg fluoride/L, prepared with NaF) and the high-fluoride group (50mg fluoride/L), and treated for 6 months. Thereafter, renal expression of Mfn1 and Fis1 at both the protein and mRNA levels was determined by immunohistochemistry and real-time PCR, respectively. In addition, the malondiadehyde (MDA) was quantitated by the thiobarbituric acid procedure and the total antioxidative capability (T-AOC) by a colorimetric method. The morphology of renal mitochondria was observed under the transmission electron microscope. In the renal tissues of rats with chronic fluorosis, expression of both Mfn1 protein and mRNA was clearly reduced, whereas that of Fis1 was elevated. The level of MDA was increased and the T-AOC lowered. Swollen or fragmented mitochondria in renal cells were observed under the electronic microscope. These findings indicate that chronic fluorosis can lead to the abnormal mitochondrial dynamics and changed morphology in the rat kidney, which in mechanism might be induced by a high level of oxidative stress in the disease. Copyright © 2014 Elsevier GmbH. All rights reserved.

  11. Activation of neurokinin-1 receptors up-regulates substance P and neurokinin-1 receptor expression in murine pancreatic acinar cells

    PubMed Central

    Koh, Yung-Hua; Moochhala, Shabbir; Bhatia, Madhav

    2012-01-01

    Abstract Acute pancreatitis (AP) has been associated with an up-regulation of substance P (SP) and neurokinin-1 receptor (NK1R) in the pancreas. Increased SP-NK1R interaction was suggested to be pro-inflammatory during AP. Previously, we showed that caerulein treatment increased SP/NK1R expression in mouse pancreatic acinar cells, but the effect of SP treatment was not evaluated. Pancreatic acinar cells were obtained from pancreas of male swiss mice (25–30 g). We measured mRNA expression of preprotachykinin-A (PPTA) and NK1R following treatment of SP (10−6M). SP treatment increased PPTA and NK1R expression in isolated pancreatic acinar cells, which was abolished by pretreatment of a selective NK1R antagonist, CP96,345. SP also time dependently increased protein expression of NK1R. Treatment of cells with a specific NK1R agonist, GR73,632, up-regulated SP protein levels in the cells. Using previously established concentrations, pre-treatment of pancreatic acinar cells with Gö6976 (10 nM), rottlerin (5 μM), PD98059 (30 μM), SP600125 (30 μM) or Bay11-7082 (30 μM) significantly inhibited up-regulation of SP and NK1R. These observations suggested that the PKC-ERK/JNK-NF-κB pathway is necessary for the modulation of expression levels. In comparison, pre-treatment of CP96,345 reversed gene expression in SP-induced cells, but not in caerulein-treated cells. Overall, the findings in this study suggested a possible auto-regulatory mechanism of SP/NK1R expression in mouse pancreatic acinar cells, via activation of NK1R. Elevated SP levels during AP might increase the occurrence of a positive feedback loop that contributes to abnormally high expression of SP and NK1R. PMID:22040127

  12. Nickel-smelting fumes increased the expression of HIF-1α through PI3K/ERK pathway in NIH/3T3 cells

    PubMed Central

    Han, Dan; Yang, Yue; Zhang, Lin; Wang, Chao; Wang, Yue; Tan, Wen-Qiao; Hu, Xue-Ying; Wu, Yong-Hui

    2016-01-01

    Objective: The purpose of this study was to investigate the effects of Nickel (Ni) -smelting fumes on oncogenic proteins in vivo and in vitro. Methods: Ni fallout beside a Ni smelting furnace in a factory was sampled to study its toxic effect. The effects of Ni-smelting fumes on the regulation of PI3K and ERK signaling pathways and the important downstream hypoxia inducible factor, HIF-1α, were studied both in NIH/3T3 cells and in the lung tissue of rats. NIH/3T3 cell transformation induced by Ni-smelting fumes was also observed. Results: Ni-smelting fumes activated PI3K, p-AKT, p70S6K1, and ERK proteins and increased HIF-1α expression in a time- and dose-dependent manner. However, activation was suppressed when NIH/3T3 cells were pretreated with PI3K/AKT or ERK inhibitors. Ni-smelting fumes caused malignant transformation of NIH/3T3 cells. Conclusions: Ni-smelting fumes increased the expression of HIF-1α through the PI3K/ERK pathway in NIH/3T3 cells and induced malignant transformation in these cells indicating that Ni-smelting fumes may be a potential carcinogen in mammalian cells. PMID:27488040

  13. Mice with GFAP-targeted loss of neurofibromin demonstrate increased axonal MET expression with aging.

    PubMed

    Su, Weiping; Xing, Rubing; Guha, Abhijit; Gutmann, David H; Sherman, Larry S

    2007-05-01

    Neurofibromatosis 1 (NF1) is a common genetic disease that predisposes patients to peripheral nerve tumors and central nervous system (CNS) abnormalities including low-grade astrocytomas and cognitive disabilities. Using mice with glial fibrillary acidic protein (GFAP)-targeted Nf1 loss (Nf1(GFAP)CKO mice), we found that Nf1(-/-) astrocytes proliferate faster and are more invasive than wild-type astrocytes. In light of our previous finding that aberrant expression of the MET receptor tyrosine kinase contributes to the invasiveness of human NF1-associated malignant peripheral nerve sheath tumors, we sought to determine whether MET expression is aberrant in the brains of Nf1 mutant mice. We found that Nf1(-/-) astrocytes express slightly more MET than wild-type cells in vitro, but do not express elevated MET in situ. However, fiber tracts containing myelinated axons in the hippocampus, midbrain, cerebral cortex, and cerebellum express higher than normal levels of MET in older (> or =6 months) Nf1(GFAP)CKO mice. Both Nf1(GFAP)CKO and wild-type astrocytes induced MET expression in neurites of wild-type hippocampal neurons in vitro, suggesting that astrocyte-derived signals may induce MET in Nf1 mutant mice. Because the Nf1 gene product functions as a RAS GTPase, we examined MET expression in the brains of mice with GFAP-targeted constitutively active forms of RAS. MET was elevated in axonal fiber tracts in mice with active K-RAS but not H-RAS. Collectively, these data suggest that loss of Nf1 in either astrocytes or GFAP(+) neural progenitor cells results in increased axonal MET expression, which may contribute to the CNS abnormalities in children and adults with NF1. (c) 2007 Wiley-Liss, Inc.

  14. Coffee enhances the expression of chaperones and antioxidant proteins in rats with nonalcoholic fatty liver disease.

    PubMed

    Salomone, Federico; Li Volti, Giovanni; Vitaglione, Paola; Morisco, Filomena; Fogliano, Vincenzo; Zappalà, Agata; Palmigiano, Angelo; Garozzo, Domenico; Caporaso, Nicola; D'Argenio, Giuseppe; Galvano, Fabio

    2014-06-01

    Coffee consumption is inversely related to the degree of liver injury in patients with nonalcoholic fatty liver disease (NAFLD). Molecular mediators contributing to coffee's beneficial effects in NAFLD remain to be elucidated. In this study, we administrated decaffeinated espresso coffee or vehicle to rats fed an high-fat diet (HFD) for 12 weeks and examined the effects of coffee on liver injury by using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) proteomic analysis combined with mass spectrometry. Rats fed an HFD and water developed panacinar steatosis, lobular inflammation, and mild fibrosis, whereas rats fed an HFD and coffee exhibited only mild steatosis. Coffee consumption increased liver expression of the endoplasmic reticulum chaperones glucose-related protein 78 and protein disulfide-isomerase A3; similarly, coffee drinking enhanced the expression of the mitochondrial chaperones heat stress protein 70 and DJ-1. Furthermore, in agreement with reduced hepatic levels of 8-isoprostanes and 8-hydroxy-2'-deoxyguanosine, proteomic analysis showed that coffee consumption induces the expression of master regulators of redox status (i.e., peroxiredoxin 1, glutathione S-transferase α2, and D-dopachrome tautomerase). Last, proteomics revealed an association of coffee intake with decreased expression of electron transfer flavoprotein subunit α, a component of the mitochondrial respiratory chain, involved in de novo lipogenesis. In this study, we were able to identify by proteomic analysis the stress proteins mediating the antioxidant effects of coffee; moreover, we establish for the first time the contribution of specific coffee-induced endoplasmic reticulum and mitochondrial chaperones ensuring correct protein folding and degradation in the liver. Copyright © 2014 Mosby, Inc. All rights reserved.

  15. Expression of the β-1,3-glucanase gene bgn13.1 from Trichoderma harzianum in strawberry increases tolerance to crown rot diseases but interferes with plant growth.

    PubMed

    Mercado, José A; Barceló, Marta; Pliego, Clara; Rey, Manuel; Caballero, José L; Muñoz-Blanco, Juan; Ruano-Rosa, David; López-Herrera, Carlos; de Los Santos, Berta; Romero-Muñoz, Fernando; Pliego-Alfaro, Fernando

    2015-12-01

    The expression of antifungal genes from Trichoderma harzianum, mainly chitinases, has been used to confer plant resistance to fungal diseases. However, the biotechnological potential of glucanase genes from Trichoderma has been scarcely assessed. In this research, transgenic strawberry plants expressing the β-1,3-glucanase gene bgn13.1 from T. harzianum, under the control of the CaMV35S promoter, have been generated. After acclimatization, five out of 12 independent lines analysed showed a stunted phenotype when growing in the greenhouse. Moreover, most of the lines displayed a reduced yield due to both a reduction in the number of fruit per plant and a lower fruit size. Several transgenic lines showing higher glucanase activity in leaves than control plants were selected for pathogenicity tests. When inoculated with Colletotrichum acutatum, one of the most important strawberry pathogens, transgenic lines showed lower anthracnose symptoms in leaf and crown than control. In the three lines selected, the percentage of plants showing anthracnose symptoms in crown decreased from 61 % to a mean value of 16.5 %, in control and transgenic lines, respectively. Some transgenic lines also showed an enhanced resistance to Rosellinia necatrix, a soil-borne pathogen causing root and crown rot in strawberry. These results indicate that bgn13.1 from T. harzianum can be used to increase strawberry tolerance to crown rot diseases, although its constitutive expression affects plant growth and fruit yield. Alternative strategies such as the use of tissue specific promoters might avoid the negative effects of bgn13.1 expression in plant performance.

  16. Stimulation of GLUT-1 glucose transporter expression in response to hyperosmolarity.

    PubMed

    Hwang, D Y; Ismail-Beigi, F

    2001-10-01

    Glucose transporter isoform-1 (GLUT-1) expression is stimulated in response to stressful conditions. Here we examined the mechanisms mediating the enhanced expression of GLUT-1 by hyperosmolarity. GLUT-1 mRNA, GLUT-1 protein, and glucose transport increased after exposure of Clone 9 cells to 600 mosmol/l (produced by addition of mannitol). The stimulation of glucose transport was biphasic: in the early phase (0-6 h) a approximately 2.5-fold stimulation of glucose uptake was associated with no change in the content of GLUT-1 mRNA, GLUT-1 protein, or GLUT-1 in the plasma membrane, whereas the approximately 17-fold stimulation of glucose transport during the late phase (12-24 h) was associated with increases in both GLUT-1 mRNA (approximately 7.5-fold) and GLUT-1 protein content. Cell sorbitol increased after 3 h of exposure to hyperosmolarity. The increase in GLUT-1 mRNA content was associated with an increase in the half-life of the mRNA from 2 to 8 h. A 44-bp region in the proximal GLUT-1 promoter was necessary for basal activity and for the two- to threefold increases in expression by hyperosmolarity. It is concluded that the increase in GLUT-1 mRNA content is mediated by both enhanced transcription and stabilization of GLUT-1 mRNA and is associated with increases in GLUT-1 content and glucose transport activity.

  17. Increased ERp57 Expression in HBV-Related Hepatocellular Carcinoma: Possible Correlation and Prognosis.

    PubMed

    Liu, Miao; Du, Lingyao; He, Zhiliang; Yan, Libo; Shi, Ying; Shang, Jin; Tang, Hong

    2017-01-01

    Aim. ERp57 is involved in virus induced endoplasmic reticulum stress (ERS) and plays an important role in tumorigenesis. This study aimed to find whether HBV infection altered ERp57 expression and whether ERp57 regulation was involved in hepatitis B virus-related hepatocellular carcinoma (HBV-HCC) genesis. Materials and Methods. HBV-HCC tissues, chronic hepatitis B (CHB) liver tissues, and normal liver tissues were acquired. ERp57 expressions in these tissues were detected through immunohistochemistry (IHC). And ERp57 expression in liver cell line L02, HBV replicative liver cell line L02-pHBV4.1, and HCC cell lines were detected through western blot for verification. Then medical data on patients providing HCC tissues were collected and analyzed along with ERp57 expression. Results. Higher ERp57 expression was found in HCC and CHB tissues ( p < 0.001). And HCC cell lines and L02-pHBV4.1 presented higher ERp57 expression as well. In patients, ERp57 expression showed significant differences between death and survival groups ( p = 0.037). And cumulative survival in patients with higher ERp57 (score ⩾ 8.75) is significantly lower ( p = 0.009). Conclusion. Our study found increased expression of ERp57 in HBV-HCC. Such altered expression could be related to HBV infection and high ERp57 expression may lead to poor prognosis of HBV-HCC patients.

  18. Pulmonary vasculature directed adenovirus increases epithelial lining fluid alpha-1 antitrypsin levels.

    PubMed

    Buggio, Maurizio; Towe, Christopher; Annan, Anand; Kaliberov, Sergey; Lu, Zhi Hong; Stephens, Calvin; Arbeit, Jeffrey M; Curiel, David T

    2016-01-01

    Gene therapy for inherited serum deficiency disorders has previously been limited by the balance between obtaining adequate expression and causing hepatic toxicity. Our group has previously described modifications of a replication deficient human adenovirus serotype 5 that increase pulmonary vasculature transgene expression. In the present study, we use a modified pulmonary targeted adenovirus to express human alpha-1 antitrypsin (A1AT) in C57BL/6 J mice. Using the targeted adenovirus, we were able to achieve similar increases in serum A1AT levels with less liver viral uptake. We also increased pulmonary epithelial lining fluid A1AT levels by more than an order of magnitude compared to that of untargeted adenovirus expressing A1AT in a mouse model. These gains are achieved along with evidence of decreased systemic inflammation and no evidence for increased inflammation within the vector-targeted end organ. In addition to comprising a step towards clinically viable gene therapy for A1AT, maximization of protein production at the site of action represents a significant technical advancement in the field of systemically delivered pulmonary targeted gene therapy. It also provides an alternative to the previous limitations of hepatic viral transduction and associated toxicities. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Increased miR-155 and heme oxygenase-1 expression is involved in the protective effects of formononetin in traumatic brain injury in rats.

    PubMed

    Li, Zhengzhao; Wang, Yong; Zeng, Guang; Zheng, Xiaowen; Wang, Wenbo; Ling, Yun; Tang, Huamin; Zhang, Jianfeng

    2017-01-01

    Oxidative stress has been considered a major contributing factor to traumatic brain injury (TBI). Formononetin, a phytoestrogen that belongs to the flavonoid family, is extracted from plants and herbs such as the red clover. Growing evidence demonstrates that formononetin has antioxidant properties. Therefore, formononetin has potential use in treating oxidative stress injuries in TBI. In this study, the neuroprotective and antioxidant effects of formononetin against TBI, as well as the related probable mechanisms, were investigated. The TBI model was produced in male Wistar rats through Feeney's weight-drop model. At 1 day after TBI, the neurological function score and brain water content were assessed. TUNEL assay was used to determine neuronal apoptosis. The expression levels of miR-155, HO-1, and BACH1 were measured by RT-PCR and western blotting. Consequently, our findings showed that formononetin pretreatment for 5 days significantly improved the neurological scores, reduced brain edema and inhibited neuronal apoptosis in rats after TBI. MiR-155 was substantially decreased and BACH1 expression was significantly increased in the TBI model, while pretreatment with formononetin dramatically up-regulated the expression levels of miR-155 and HO-1 and down-regulated the protein expression of BACH1 in rats after TBI. In summary, formononetin has been shown to have neuroprotective effects, and the mechanisms of this effect may be associated with its inhibition of oxidative stress and activation of Nrf2-dependent antioxidant pathways in TBI.

  20. Increased miR-155 and heme oxygenase-1 expression is involved in the protective effects of formononetin in traumatic brain injury in rats

    PubMed Central

    Li, Zhengzhao; Wang, Yong; Zeng, Guang; Zheng, Xiaowen; Wang, Wenbo; Ling, Yun; Tang, Huamin; Zhang, Jianfeng

    2017-01-01

    Oxidative stress has been considered a major contributing factor to traumatic brain injury (TBI). Formononetin, a phytoestrogen that belongs to the flavonoid family, is extracted from plants and herbs such as the red clover. Growing evidence demonstrates that formononetin has antioxidant properties. Therefore, formononetin has potential use in treating oxidative stress injuries in TBI. In this study, the neuroprotective and antioxidant effects of formononetin against TBI, as well as the related probable mechanisms, were investigated. The TBI model was produced in male Wistar rats through Feeney’s weight-drop model. At 1 day after TBI, the neurological function score and brain water content were assessed. TUNEL assay was used to determine neuronal apoptosis. The expression levels of miR-155, HO-1, and BACH1 were measured by RT-PCR and western blotting. Consequently, our findings showed that formononetin pretreatment for 5 days significantly improved the neurological scores, reduced brain edema and inhibited neuronal apoptosis in rats after TBI. MiR-155 was substantially decreased and BACH1 expression was significantly increased in the TBI model, while pretreatment with formononetin dramatically up-regulated the expression levels of miR-155 and HO-1 and down-regulated the protein expression of BACH1 in rats after TBI. In summary, formononetin has been shown to have neuroprotective effects, and the mechanisms of this effect may be associated with its inhibition of oxidative stress and activation of Nrf2-dependent antioxidant pathways in TBI. PMID:29312517

  1. Erythropoietin Over-Expression Protects against Diet-Induced Obesity in Mice through Increased Fat Oxidation in Muscles

    PubMed Central

    Hojman, Pernille; Brolin, Camilla; Gissel, Hanne; Brandt, Claus; Zerahn, Bo; Pedersen, Bente Klarlund; Gehl, Julie

    2009-01-01

    Erythropoietin can be over-expressed in skeletal muscles by gene electrotransfer, resulting in 100-fold increase in serum EPO and significant increases in haemoglobin levels. Earlier studies have suggested that EPO improves several metabolic parameters when administered to chronically ill kidney patients. Thus we applied the EPO over-expression model to investigate the metabolic effect of EPO in vivo. At 12 weeks, EPO expression resulted in a 23% weight reduction (P<0.01) in EPO transfected obese mice; thus the mice weighed 21.9±0.8 g (control, normal diet,) 21.9±1.4 g (EPO, normal diet), 35.3±3.3 g (control, high-fat diet) and 28.8±2.6 g (EPO, high-fat diet). Correspondingly, DXA scanning revealed that this was due to a 28% reduction in adipose tissue mass. The decrease in adipose tissue mass was accompanied by a complete normalisation of fasting insulin levels and glucose tolerance in the high-fat fed mice. EPO expression also induced a 14% increase in muscle volume and a 25% increase in vascularisation of the EPO transfected muscle. Muscle force and stamina were not affected by EPO expression. PCR array analysis revealed that genes involved in lipid metabolism, thermogenesis and inflammation were increased in muscles in response to EPO expression, while genes involved in glucose metabolism were down-regulated. In addition, muscular fat oxidation was increased 1.8-fold in both the EPO transfected and contralateral muscles. In conclusion, we have shown that EPO when expressed in supra-physiological levels has substantial metabolic effects including protection against diet-induced obesity and normalisation of glucose sensitivity associated with a shift to increased fat metabolism in the muscles. PMID:19521513

  2. TRPC1 Deletion Causes Striatal Neuronal Cell Apoptosis and Proteomic Alterations in Mice.

    PubMed

    Wang, Dian; Yu, Haitao; Xu, Benhong; Xu, Hua; Zhang, Zaijun; Ren, Xiaohu; Yuan, Jianhui; Liu, Jianjun; Guo, Yi; Spencer, Peter S; Yang, Xifei

    2018-01-01

    Transient receptor potential channel 1 (TRPC1) is widely expressed throughout the nervous system, while its biological role remains unclear. In this study, we showed that TRPC1 deletion caused striatal neuronal loss and significantly increased TUNEL-positive and 8-hydroxy-2'-deoxyguanosine (8-OHdG) staining in the striatum. Proteomic analysis by two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) coupled with mass spectrometry (MS) revealed a total of 51 differentially expressed proteins (26 increased and 25 decreased) in the stratum of TRPC1 knockout (TRPC1 -/- ) mice compared to that of wild type (WT) mice. Bioinformatics analysis showed these dysregulated proteins included: oxidative stress-related proteins, synaptic proteins, endoplasmic reticulum (ER) stress-related proteins and apoptosis-related proteins. STRING analysis showed these differential proteins have a well-established interaction network. Based on the proteomic data, we revealed by Western-blot analysis that TRPC1 deletion caused ER stress as evidenced by the dysregulation of GRP78 and PERK activation-related signaling pathway, and elevated oxidative stress as suggested by increased 8-OHdG staining, increased NADH dehydrogenase (ubiquinone) flavoprotein 2 (NDUV2) and decreased protein deglycase (DJ-1), two oxidative stress-related proteins. In addition, we also demonstrated that TRPC1 deletion led to significantly increased apoptosis in striatum with concurrent decrease in both 14-3-3Z and dynamin-1 (D2 dopamine (DA) receptor binding), two apoptosis-related proteins. Taken together, we concluded that TRPC1 deletion might cause striatal neuronal apoptosis by disturbing multiple biological processes (i.e., ER stress, oxidative stress and apoptosis-related signaling). These data suggest that TRPC1 may be a key player in the regulation of striatal cellular survival and death.

  3. Increased expression of electron transport chain genes in uterine leiomyoma.

    PubMed

    Tuncal, Akile; Aydin, Hikmet Hakan; Askar, Niyazi; Ozkaya, Ali Burak; Ergenoglu, Ahmet Mete; Yeniel, Ahmet Ozgur; Akdemir, Ali; Ak, Handan

    2014-01-01

    The etiology and pathophysiology of uterine leiomyomas, benign smooth muscle tumors of the uterus, are not well understood. To evaluate the role of mitochondria in uterine leiomyoma, we compared electron transport gene expressions of uterine leiomyoma tissue with myometrium tissue in six uterine leiomyoma patients by RT-PCR array. Our results showed an average of 1.562 (±0.445) fold increase in nuclear-encoded electron transport genes. These results might suggest an increase in size, number, or activity of mitochondria in uterine leiomyoma that, to our knowledge, has not been previously reported. © 2014 by the Association of Clinical Scientists, Inc.

  4. Serum/glucocorticoid-regulated kinase 1 expression in primary human prostate cancers.

    PubMed

    Szmulewitz, Russell Z; Chung, Elizabeth; Al-Ahmadie, Hikmat; Daniel, Silver; Kocherginsky, Masha; Razmaria, Aria; Zagaja, Gregory P; Brendler, Charles B; Stadler, Walter M; Conzen, Suzanne D

    2012-02-01

    Serum/glucocorticoid-regulated kinase 1 (SGK1), a known target of the androgen receptor (AR) and glucocorticoid receptor (GR), is reported to enhance cell survival. This study sought to better define the role of SGK1 and GR in prostate cancer. Immunohistochemistry was performed for AR, GR, and SGK1 on primary prostate cancers (n = 138) and 18 prostate cancers from patients treated with androgen deprivation therapy. Relative staining intensity was compared utilizing a Fisher's exact test. Univariate analyses were performed using log-rank and chi-squared tests to evaluate prostate cancer recurrence with respect to SGK1 expression. SGK1 expression was strong (3+) in 79% of untreated cancers versus 44% in androgen-deprived cancers (P = 0.003). Conversely, GR expression was present in a higher proportion of androgen-deprived versus untreated cancers (78% vs. 38%, P = 0.002). High-grade cancers were nearly twice as likely to have relatively low (0 to 2+) SGK1 staining compared to low-grade cancers (13.8% vs. 26.5%, P = 0.08). Low SGK1 expression in untreated tumors was associated with increased risk of cancer recurrence (adjusted log-rank test P = 0.077), 5-year progression-free survival 47.8% versus 72.6% (P = 0.034). SGK1 expression is high in most untreated prostate cancers and declines with androgen deprivation. However, these data suggest that relatively low expression of SGK1 is associated with higher tumor grade and increased cancer recurrence, and is a potential indicator of aberrant AR signaling in these tumors. GR expression increased with androgen deprivation, potentially providing a mechanism for the maintenance of androgen pathway signaling in these tumors. Further study of the AR/GR/SGK1 network in castration resistance. Copyright © 2011 Wiley Periodicals, Inc.

  5. SGLT2 Protein Expression Is Increased in Human Diabetic Nephropathy

    PubMed Central

    Wang, Xiaoxin X.; Levi, Jonathan; Luo, Yuhuan; Myakala, Komuraiah; Herman-Edelstein, Michal; Qiu, Liru; Wang, Dong; Peng, Yingqiong; Grenz, Almut; Lucia, Scott; Dobrinskikh, Evgenia; D'Agati, Vivette D.; Koepsell, Hermann; Kopp, Jeffrey B.; Rosenberg, Avi Z.; Levi, Moshe

    2017-01-01

    There is very limited human renal sodium gradient-dependent glucose transporter protein (SGLT2) mRNA and protein expression data reported in the literature. The first aim of this study was to determine SGLT2 mRNA and protein levels in human and animal models of diabetic nephropathy. We have found that the expression of SGLT2 mRNA and protein is increased in renal biopsies from human subjects with diabetic nephropathy. This is in contrast to db-db mice that had no changes in renal SGLT2 protein expression. Furthermore, the effect of SGLT2 inhibition on renal lipid content and inflammation is not known. The second aim of this study was to determine the potential mechanisms of beneficial effects of SGLT2 inhibition in the progression of diabetic renal disease. We treated db/db mice with a selective SGLT2 inhibitor JNJ 39933673. We found that SGLT2 inhibition caused marked decreases in systolic blood pressure, kidney weight/body weight ratio, urinary albumin, and urinary thiobarbituric acid-reacting substances. SGLT2 inhibition prevented renal lipid accumulation via inhibition of carbohydrate-responsive element-binding protein-β, pyruvate kinase L, SCD-1, and DGAT1, key transcriptional factors and enzymes that mediate fatty acid and triglyceride synthesis. SGLT2 inhibition also prevented inflammation via inhibition of CD68 macrophage accumulation and expression of p65, TLR4, MCP-1, and osteopontin. These effects were associated with reduced mesangial expansion, accumulation of the extracellular matrix proteins fibronectin and type IV collagen, and loss of podocyte markers WT1 and synaptopodin, as determined by immunofluorescence microscopy. In summary, our study showed that SGLT2 inhibition modulates renal lipid metabolism and inflammation and prevents the development of nephropathy in db/db mice. PMID:28196866

  6. Metformin suppresses CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating aryl hydrocarbon receptor expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Do, Minh Truong; Kim, Hyung Gyun; Tran, Thi Thu Phuong

    2014-10-01

    Induction of cytochrome P450 (CYP) 1A1 and CYP1B1 by environmental xenobiotic chemicals or endogenous ligands through the activation of the aryl hydrocarbon receptor (AhR) has been implicated in a variety of cellular processes related to cancer, such as transformation and tumorigenesis. Here, we investigated the effects of the anti-diabetes drug metformin on expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and inducible conditions. Our results indicated that metformin down-regulated the expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced conditions. Down-regulation of AhR expression was required for metformin-mediated decreases in CYP1A1 andmore » CYP1B1 expression, and the metformin-mediated CYP1A1 and CYP1B1 reduction is irrelevant to estrogen receptor α (ERα) signaling. Furthermore, we found that metformin markedly down-regulated Sp1 protein levels in breast cancer cells. The use of genetic and pharmacological tools revealed that metformin-mediated down-regulation of AhR expression was mediated through the reduction of Sp1 protein. Metformin inhibited endogenous AhR ligand-induced CYP1A1 and CYP1B1 expression by suppressing tryptophan-2,3-dioxygenase (TDO) expression in MCF-7 cells. Finally, metformin inhibits TDO expression through a down-regulation of Sp1 and glucocorticoid receptor (GR) protein levels. Our findings demonstrate that metformin reduces CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating AhR signaling. Metformin would be able to act as a potential chemopreventive agent against CYP1A1 and CYP1B1-mediated carcinogenesis and development of cancer. - Graphical abstract: Schematic of the CYP1A1 and CYP1B1 gene regulation by metformin. - Highlights: • Metformin inhibits CYP1A1 and CYP1B1 expression. • Metformin down-regulates the AhR signaling. • Metformin reduces Sp1 protein expression. • Metformin suppresses TDO

  7. MDR1 haplotypes conferring an increased expression of intestinal CYP3A4 rather than MDR1 in female living-donor liver transplant patients.

    PubMed

    Hosohata, Keiko; Masuda, Satohiro; Yonezawa, Atsushi; Katsura, Toshiya; Oike, Fumitaka; Ogura, Yasuhiro; Takada, Yasutsugu; Egawa, Hiroto; Uemoto, Shinji; Inui, Ken-Ichi

    2009-07-01

    This study investigated whether haplotypes in the multidrug resistance 1 (MDR1) gene had effects on mRNA expression levels of MDR1 and cytochrome P450 (CYP) 3A4, and on the pharmacokinetics of tacrolimus in living-donor liver transplant (LDLT) patients, considering the gender difference. Haplotype analysis of MDR1 with G2677T/A and C3435T was performed in 63 de novo Japanese LDLT patients (17 to 55 years; 44.4% women). The expression levels of MDR1 and CYP3A4 mRNAs in jejunal biopsy specimens were quantified by real-time PCR. Intestinal CYP3A4 mRNA expression levels (amol/microg total RNA) showed significantly higher values in women carrying the 2677TT-3435TT haplotype (median, 10.7; range, 5.92-15.2) than those with 2677GG-3435CC (3.03; range 1.38-4.68) and 2677GT-3435CT (median, 4.31; range, 0.07-9.42) (P = 0.022), but not in men (P = 0.81). However, MDR1 haplotype did not influence mRNA expression levels of MDR1 nor the concentration/dose ratio [(ng/mL)/(mg/day)] of oral tacrolimus for the postoperative 7 days, irrespective of gender. MDR1 haplotype may have a minor association with the tacrolimus pharmacokinetics after LDLT, but could be a good predictor of the inter-individual variation of intestinal expression of CYP3A4 in women.

  8. The Identification and Cloning of the Wnt-1 Receptor

    DTIC Science & Technology

    1996-10-01

    examination of embryos with duplicated axes revealed that Xwnt-5A and hFz5 induced a full array of dorsal tissues, including notochord , neural tube...tube, a notochord and somites in both axes. c). Xwnt-5A plus hfz5 induce ectopic goosecoid (gsc) expression in stage 11 embryos, as visualized by whole...Lai CJ, Olson DJ, Kelly GM: Dissecting Wnt signalling pathways and Wnt-sensitive developmental processes through transient misexpression analyses in

  9. GLUT-1 Expression in Proliferative Endometrium, Endometrial Hyperplasia, Endometrial Adenocarcinoma and the Relationship Between GLUT-1 Expression and Prognostic Parameters in Endometrial Adenocarcinoma.

    PubMed

    Canpolat, Tuba; Ersöz, Canan; Uğuz, Aysun; Vardar, Mehmet Ali; Altintaş, Aytekin

    2016-01-01

    Malignant cells show increased glucose uptake in in vitro and in vivo studies. This uptake is mediated by glucose transporter proteins. GLUT-1 is the most common transporter protein, and its expression is reported to be increase in many human cancers. The aim of this study is to determine the GLUT-1 overexpression in benign, hyperplastic, and malignant endometrial tissues, to evaluate the usefulness of GLUT-1 expression in endometrial hyperplasia, and to determine its role in the neoplastic progression to endometrioid type adenocarcinoma. We also aimed to analyze prognostic clinical parameters, predict prognosis, and survival. We examined immunohistochemical expression of GLUT-1 in 91 cases of endometrial hyperplasia, 100 cases of endometrioid type adenocarcinoma, and 10 proliferative endometrial tissues. The percentage of positive cells and staining intensity were assessed in a semi quantitative fashion and scored (1+ to 3+). GLUT-1 immunoreactivity was not present in proliferative endometrium. Twenty-nine (31.9%) of 91 endometrial hyperplasia cases showed positive immunoreactivity, of which only six were cases of hyperplasia without atypia while 23 of them were cases with atypia. We found GLUT-1 positivity of 95% in endometrioid type adenocarcinoma. GLUT-1 overexpression was not significantly correlated with any of the clinicopathological parameters except histological grade in endometrioid adenocarcinoma; the survival was not found to be correlated with GLUT-1 expression. GLUT-1 immunostaining may be useful in distinguishing hyperplasia without atypia from hyperplasia with atypia; GLUT-1 overexpression is a consistent feature of endometrioid adenocarcinoma. A correlation between GLUT -1 expression and tumor grade has been found, although other prognostic parameters and survival has no meaningful correlation.

  10. Rht18 Semidwarfism in Wheat Is Due to Increased GA 2-oxidaseA9 Expression and Reduced GA Content1[OPEN

    PubMed Central

    Karafiatova, Miroslava; Uauy, Cristobal

    2018-01-01

    Semidwarfing genes have improved crop yield by reducing height, improving lodging resistance, and allowing plants to allocate more assimilates to grain growth. In wheat (Triticum aestivum), the Rht18 semidwarfing gene was identified and deployed in durum wheat before it was transferred into bread wheat, where it was shown to have agronomic potential. Rht18, a dominant and gibberellin (GA) responsive mutant, is genetically and functionally distinct from the widely used GA-insensitive semidwarfing genes Rht-B1b and Rht-D1b. In this study, the Rht18 gene was identified by mutagenizing the semidwarf durum cultivar Icaro (Rht18) and generating mutants with a range of tall phenotypes. Isolating and sequencing chromosome 6A of these “overgrowth” mutants showed that they contained independent mutations in the coding region of GA2oxA9. GA2oxA9 is predicted to encode a GA 2-oxidase that metabolizes GA biosynthetic intermediates into inactive products, effectively reducing the amount of bioactive GA (GA1). Functional analysis of the GA2oxA9 protein demonstrated that GA2oxA9 converts the intermediate GA12 to the inactive metabolite GA110. Furthermore, Rht18 showed higher expression of GA2oxA9 and lower GA content compared with its tall parent. These data indicate that the increased expression of GA2oxA9 in Rht18 results in a reduction of both bioactive GA content and plant height. This study describes a height-reducing mechanism that can generate new genetic diversity for semidwarfism in wheat by combining increased expression with mutations of specific amino acid residues in GA2oxA9. PMID:29545269

  11. Human Adipose Mesenchymal Cells Inhibit Melanocyte Differentiation and the Pigmentation of Human Skin via Increased Expression of TGF-β1.

    PubMed

    Klar, Agnes S; Biedermann, Thomas; Michalak, Katarzyna; Michalczyk, Teresa; Meuli-Simmen, Claudia; Scherberich, Arnaud; Meuli, Martin; Reichmann, Ernst

    2017-12-01

    There is accumulating evidence that interactions between epidermal melanocytes and stromal cells play an important role in the regulation of skin pigmentation. In this study we established a pigmented dermo-epidermal skin model, melDESS, of human origin to investigate the effects of distinct stromal cells on melanogenesis. melDESS is a complex, clinically relevant skin equivalent composed of an epidermis containing both melanocytes and keratinocytes. Its dermal compartment consists either of adipose tissue-derived stromal cells, dermal fibroblasts (Fbs), or a mixture of both cell types. These skin substitutes were transplanted for 5 weeks on the backs of immuno-incompetent rats and analyzed. Gene expression and Western blot analyses showed a significantly higher expression of transforming growth factor-β1 by adipose tissue-derived stromal cells compared with dermal Fbs. In addition, we showed that melanocytes responded to the increased levels of transforming growth factor-β1 by down-regulating the expression of key melanogenic enzymes such as tyrosinase. This caused decreased melanin synthesis and, consequently, greatly reduced pigmentation of melDESS. The conclusions are of utmost clinical relevance, namely that adipose tissue-derived stromal cells derived from the hypodermis fail to appropriately interact with epidermal melanocytes, thus preventing the sustainable restoration of the patient's native skin color in bioengineered skin grafts. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Increased expression of argininosuccinate synthetase protein predicts poor prognosis in human gastric cancer

    PubMed Central

    SHAN, YAN-SHEN; HSU, HUI-PING; LAI, MING-DERG; YEN, MENG-CHI; LUO, YI-PEY; CHEN, YI-LING

    2015-01-01

    Aberrant expression of argininosuccinate synthetase (ASS1, also known as ASS) has been found in cancer cells and is involved in the carcinogenesis of gastric cancer. The aim of the present study was to investigate the level of ASS expression in human gastric cancer and to determine the possible correlations between ASS expression and clinicopathological findings. Immunohistochemistry was performed on paraffin-embedded tissues to determine whether ASS was expressed in 11 of 11 specimens from patients with gastric cancer. The protein was localized primarily to the cytoplasm of cancer cells and normal epithelium. In the Oncomine cancer microarray database, expression of the ASS gene was significantly increased in gastric cancer tissues. To investigate the clinicopathological and prognostic roles of ASS expression, we performed western blot analysis of 35 matched specimens of gastric adenocarcinomas and normal tissue obtained from patients treated at the National Cheng Kung University Hospital. The ratio of relative ASS expression (expressed as the ASS/β-actin ratio) in tumor tissues to that in normal tissues was correlated with large tumor size (P=0.007) and with the tumor, node, metastasis (TNM) stage of the American Joint Committee on Cancer staging system (P=0.031). Patients whose cancer had increased the relative expression of ASS were positive for perineural invasion and had poor recurrence-free survival. In summary, ASS expression in gastric cancer was associated with a poor prognosis. Further study of mechanisms to silence the ASS gene or decrease the enzymatic activity of ASS protein has the potential to provide new treatments for patients with gastric cancer. PMID:25333458

  13. [MACF1 knockdown in glioblastoma multiforme cells increases temozolomide-induced cytotoxicity].

    PubMed

    Xie, Si-di; Chen, Zi-Yang; Wang, Hai; He, Min-Yi; Lu, Yun-Tao; Lei, Bing-Xi; Li, He-Zhen; Liu, Ya-Wei; Qi, Song-Tao

    2017-09-20

    To investigate the role of microtubule-actin crosslinking factor 1 (MACF1) in the response of glioma cells to temozolomide (TMZ). TMZ was applied to a human gliomablastoma cell line (U87) and changes in the protein expression and cellular localization were determined with Western blot, RT-PCR, and immunofluorescence. The responses of the cells with MACF1 expression knockdown by RNA interference to TMZ were assessed. TMZ-induced effects on MACF1 expression were also assessed by immunohistochemistry in a nude mouse model bearing human glioblastoma xenografts. TMZ resulted in significantly increased MACF1 expression (by about 2 folds) and changes in its localization in the gliomablastoma cells both in vitro and in vivo (P<0.01). Knockdown of MACF1 reduced the proliferation (by 45%) of human glioma cell lines treated with TMZ (P<0.01). TMZ-induced changes in MACF1 expression was accompanied by cytoskeletal rearrangement. MACF1 may be a potential therapeutic target for glioblastoma.

  14. Exendin-4 and GLP-1 decreases induced expression of ICAM-1, VCAM-1 and RAGE in human retinal pigment epithelial cells.

    PubMed

    Dorecka, Mariola; Siemianowicz, Krzysztof; Francuz, Tomasz; Garczorz, Wojciech; Chyra, Agnieszka; Klych, Agnieszka; Romaniuk, Wanda

    2013-01-01

    Advanced glycation end products (AGEs) take part in the development of diabetic retinopathy. Hyperglycemia triggers an inflammatory response in the retina. These mechanisms may lead to an enhanced expression of adhesion molecules (ICAM-1 and VCAM-1) in human retinal pigment epithelium (HRPE). Glucagon-like peptide 1 (GLP-1) functions as an incretin hormone with antidiabetogenic properties. GLP-1 also possesses vasoprotective properties. The aim of our study was to evaluate the influence of glycated albumin (GlyAlb; 100; 500 and 1000 mg/l) and pro-inflammatory cytokine, TNF-α (2.5 and 10 ng/ml), on expression of RAGE, ICAM-1 and VCAM-1 and to evaluate the influence of GLP-1 (100 nM) and its analogue, exendin-4 (10 nM), on the expression of RAGE, ICAM-1 and VCAM-1 in stimulated HRPE. TNF-α increased RAGE expression in HRPE cells. The addition of GlyAlb (500 and 1000 mg/l) resulted in a decrease of RAGE expression. Both TNF-α and GlyAlb increased the secretion of both adhesion molecules. In cells co-treated with GLP-1 or exendin-4 both incretins decreased RAGE expression in TNF-α treated cells, and in GlyAlb group. The ICAM-1 expression was lowered by exendin-4 and GLP-1 in cells stimulated by TNF-α and GlyAlb. The similar results were obtained for VCAM-1. All observed alterations were statistically significant. The obtained results indicate that both GLP-1 and exendin-4 by decreasing the expression of RAGE in HRPE can make these cells more resistant to circulating AGEs, and decreased expression of circulating VCAM-1 and ICAM-1, can be the result of anti-inflammatory properties of incretins and decreased expression of RAGE.

  15. Glucagon-like peptide-1 contributes to increases ABCA1 expression by downregulating miR-758 to regulate cholesterol homeostasis.

    PubMed

    Yao, Yue; Li, Qiang; Gao, Ping; Wang, Wei; Chen, Lili; Zhang, Jinchao; Xu, Yi

    2018-03-04

    Abnormal regulation of lipid metabolism is associated with type 2 diabetes mellitus (T2DM). GLP-1 as a new treatment for T2DM, has unique effects in modulating cholesterol homeostasis. However, the mechanism of this effect is largely missing. The aim of this study was to determine the effects of GLP-1 on cholesterol-induced lipotoxicity in hepatocytes and examine the underlying mechanisms. The cell viability was determined, and caspase-3 was used to detect the effects of GLP-1 on cholesterol-induced apoptosis. The alterations of miR-758 and ATP-binding cassette transporter A1 (ABCA1) resulting from cholesterol incubation or GLP-1 were detected by qRT-PCR and Western blot assays. Overexpression of miR-758 abrogated the GLP-1-mediated ABCA1 expression, and conversely, down-regulation of miR-758 aggravated GLP-1's action and revealed significant promotion effects. BODIPY-Cholesterol efflux assay revealed that treatment with miR-758 inhibitor significantly enhanced ABCA1-dependent cholesterol efflux, resulting in reduced total cholesterol. Furthermore, Oil red O staining and cholesterol measurement were used to detect lipid accumulation. As a result, cholesterol significantly attenuated cell viability, promoted cell apoptosis, and facilitated lipid accumulation, and these effects were reversed by GLP-1. This study provides evidence that, in HepG2 cells, GLP-1 may affect cholesterol homeostasis by regulating the expression of miR-758 and ABCA1. These data can inform the development of biomarkers for miR-758, and potentially other drugs, on the key pathways of lipid metabolism. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Increased ICAM-1 Expression in Transformed Human Oral Epithelial Cells: Molecular Mechanism and Functional Role in Peripheral Blood Mononuclear Cell Adhesion and Lymphokine-Activated-Killer Cell Cytotoxicity

    PubMed Central

    Huang, George T.-J.; Zhang, Xinli; Park, No-Hee

    2012-01-01

    The intercellular adhesion molecule-1 (ICAM-1, CD54) serves as a counter-receptor for the β2-integrins, LFA-1 and Mac-1, which are expressed on leukocytes. Although expression of ICAM-1 on tumor cells has a role in tumor progression and development, information on ICAM-1 expression and its role in oral cancer has not been established. Normal human oral keratinocytes (NHOK), human papilloma virus (HPV)-immortalized human oral keratinocyte lines (HOK-16B, HOK-18A, and HOK-18C), and six human oral neoplastic cell lines (HOK-16B-BaP-T1, SCC-4, SCC-9, HEp-2, Tu-177 and 1483) were used to study ICAM-1 expression and its functional role in vitro. Our results demonstrated that NHOK express negligible levels of ICAM-1, whereas immortalized human oral keratinocytes and cancer cells express significantly higher levels of ICAM-1, except for HOK-16B-BaP-T1 and HEp-2. Altered mRNA half-lives did not fully account for the increased accumulation of ICAM-1 mRNA. Adhesion of peripheral blood mononuclear cells (PBMC) to epithelial cells correlated with cell surface ICAM-1 expression levels. This adhesion was inhibited by antibodies specific for either ICAM-1 or LFA-1/Mac-1, suggesting a role for these molecules in adhesion. In contrast, lymphokine-activated-killer (LAK) cell cytotoxic killing of epithelial cells did not correlate with ICAM-1 levels or with adhesion. Nonetheless, within each cell line, blocking of ICAM-1 or LFA-1/Mac-1 reduced LAK cells killing, suggesting that ICAM-1 is involved in mediating this killing. PMID:10938387

  17. Bidirectional signalling between EphA2 and ephrinA1 increases tubular cell attachment, laminin secretion and modulates erythropoietin expression after renal hypoxic injury.

    PubMed

    Rodriguez, Stéphane; Rudloff, Stefan; Koenig, Katrin Franziska; Karthik, Swapna; Hoogewijs, David; Huynh-Do, Uyen

    2016-08-01

    Acute kidney injury (AKI) is common in hospitalized patients and has a poor prognosis, the severity of AKI being linked to progression to chronic kidney disease. This stresses the need to search for protective mechanisms during the acute phase. We investigated kidney repair after hypoxic injury using a rat model of renal artery branch ligation, which led to an oxygen gradient vertical to the corticomedullary axis. Three distinct zones were observed: tubular necrosis, infarction border zone and preserved normal tissue. EphA2 is a receptor tyrosine kinase with pivotal roles in cell architecture, migration and survival, upon juxtacrine contact with its membrane-bound ligand EphrinA1. Following hypoxia, EphA2 was up-regulated in cortical and medullary tubular cells, while EphrinA1 was up-regulated in interstitial cells adjacent to peritubular capillaries. Moreover, erythropoietin (EPO) messenger RNA (mRNA) was strongly expressed in the border zone of infarcted kidney within the first 6 h. To gain more insight into the biological impact of EphA2 and EphrinA1 up-regulation, we activated the signalling pathways in vitro using recombinant EphrinA1/Fc or EphA2/Fc proteins. Stimulation of EphA2 forward signalling in the proximal tubular cell line HK2 increased cell attachment and laminin secretion at the baso-lateral side. Conversely, activation of reverse signalling through EphrinA1 expressed by Hep3B cells promoted EPO production at both the transcriptional and protein level. Strikingly, in co-culture experiments, juxtacrine contact between EphA2 expressing MDCK and EphrinA1 expressing Hep3B was sufficient to induce a significant up-regulation of EPO mRNA production in the latter cells, even in the absence of hypoxic conditions. The synergistic effects of EphA2 and hypoxia led to a 15-20-fold increase of EPO expression. Collectively, our results suggest an important role of EphA2/EphrinA1 signalling in kidney repair after hypoxic injury through stimulation of (i) tubular

  18. Interleukin-6-driven progranulin expression increases cholangiocarcinoma growth by an Akt-dependent mechanism.

    PubMed

    Frampton, Gabriel; Invernizzi, Pietro; Bernuzzi, Francesca; Pae, Hae Yong; Quinn, Matthew; Horvat, Darijana; Galindo, Cheryl; Huang, Li; McMillin, Matthew; Cooper, Brandon; Rimassa, Lorenza; DeMorrow, Sharon

    2012-02-01

    Cholangiocarcinoma is a devastating cancer of biliary origin with limited treatment options. The growth factor, progranulin, is overexpressed in a number of tumours. The study aims were to assess the expression of progranulin in cholangiocarcinoma and to determine its effects on tumour growth. The expression and secretion of progranulin were evaluated in multiple cholangiocarcinoma cell lines and in clinical samples from patients with cholangiocarcinoma. The role of interleukin 6 (IL-6)-mediated signalling in the expression of progranulin was assessed using a combination of specific inhibitors and shRNA knockdown techniques. The effect of progranulin on proliferation and Akt activation and subsequent effects of FOXO1 phosphorylation were assessed in vitro. Progranulin knockdown cell lines were established, and the effects on cholangiocarcinoma growth were determined. Progranulin expression and secretion were upregulated in cholangiocarcinoma cell lines and tissue, which were in part via IL-6-mediated activation of the ERK1/2/RSK1/C/EBPβ pathway. Blocking any of these signalling molecules, by either pharmacological inhibitors or shRNA, prevented the IL-6-dependent activation of progranulin expression. Treatment of cholangiocarcinoma cells with recombinant progranulin increased cell proliferation in vitro by a mechanism involving Akt phosphorylation leading to phosphorylation and nuclear extrusion of FOXO1. Knockdown of progranulin expression in cholangiocarcinoma cells decreased the expression of proliferating cellular nuclear antigen, a marker of proliferative capacity, and slowed tumour growth in vivo. Evidence is presented for a role for progranulin as a novel growth factor regulating cholangiocarcinoma growth. Specific targeting of progranulin may represent an alternative for the development of therapeutic strategies.

  19. Increased receptor for advanced glycation end product expression in the human alcoholic prefrontal cortex is linked to adolescent drinking.

    PubMed

    Vetreno, Ryan P; Qin, Liya; Crews, Fulton T

    2013-11-01

    Adolescence is characterized behaviorally by increased impulsivity and risk-taking that declines in parallel with maturation of the prefrontal cortex and executive function. In the brain, the receptor for advanced glycation end products (RAGE) is critically involved in neurodevelopment and neuropathology. In humans, the risk of alcoholism is greatly increased in those who begin drinking between 13 and 15years of age, and adolescents binge drink more than any other age group. We have previously found that alcoholism is associated with increased expression of neuroimmune genes. This manuscript tested the hypothesis that adolescent binge drinking upregulates RAGE and Toll-like receptor (TLR) 4 as well as their endogenous agonist, high-mobility group box 1 (HMGB1). Immunohistochemistry, Western blot, and mRNA analyses found that RAGE expression was increased in the human post-mortem alcoholic orbitofrontal cortex (OFC). Further, an earlier age of drinking onset correlated with increased expression of RAGE, TLR4, and HMGB1. To determine if alcohol contributed to these changes, we used an adolescent binge ethanol model in rats (5.0g/kg, i.g., 2-day on/2-day off from postnatal day [P] 25 to P55) and assessed neuroimmune gene expression. We found an age-associated decline of RAGE expression from late adolescence (P56) to young adulthood (P80). Adolescent intermittent ethanol exposure did not alter RAGE expression at P56, but increased RAGE in the young adult PFC (P80). Adolescent intermittent ethanol exposure also increased TLR4 and HMGB1 expression at P56 that persisted into young adulthood (P80). Assessment of young adult frontal cortex mRNA (RT-PCR) found increased expression of proinflammatory cytokines, oxidases, and neuroimmune agonists at P80, 25days after ethanol treatment. Together, these human and animal data support the hypothesis that an early age of drinking onset upregulates RAGE/TLR4-HMGB1 and other neuroimmune genes that persist into young adulthood and

  20. Acute intermittent hypoxia induced phrenic long-term facilitation despite increased SOD1 expression in a rat model of ALS

    PubMed Central

    Nichols, Nicole L.; Satriotomo, Irawan; Harrigan, Daniel J.; Mitchell, Gordon S.

    2015-01-01

    Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neurodegenerative disease characterized by motor neuron death. Since most ALS patients succumb to ventilatory failure from loss of respiratory motor neurons, any effective ALS treatment must preserve and/or restore breathing capacity. In rats over-expressing mutated superoxide dismutase-1 (SOD1G93A), the capacity to increase phrenic motor output is decreased at disease end-stage, suggesting imminent ventilatory failure. Acute intermittent hypoxia (AIH) induces phrenic long-term facilitation (pLTF), a form of spinal respiratory motor plasticity with potential to restore phrenic motor output in clinical disorders that compromise breathing. Since pLTF requires NADPH oxidase activity and reactive oxygen species (ROS) formation, it is blocked by NADPH oxidase inhibition and SOD mimetics in normal rats. Thus, we hypothesized that SOD1G93A (mutant; MT) rats do not express AIH-induced pLTF due to over-expression of active mutant superoxide dismutase-1. AIH-induced pLTF and hypoglossal (XII) LTF were assessed in young, pre-symptomatic and end-stage anesthetized MT rats and age-matched wild-type littermates. Contrary to predictions, pLTF and XII LTF were observed in MT rats at all ages; at end-stage, pLTF was actually enhanced. SOD1 levels were elevated in young and pre-symptomatic MT rats, yet superoxide accumulation in putative phrenic motor neurons (assessed with dihydroethidium) was unchanged; however, superoxide accumulation significantly decreased at end-stage. Thus, compensatory mechanisms appear to maintain ROS homoeostasis until late in disease progression, preserving AIH-induced respiratory plasticity. Following intrathecal injections of an NADPH oxidase inhibitor (apocynin; 600µM; 12µL), pLTF was abolished in pre-symptomatic, but not end-stage MT rats, demonstrating that pLTF is NADPH oxidase dependent in pre-symptomatic, but NADPH oxidase independent in end-stage MT rats. Mechanisms preserving

  1. Fluoxetine induces lean phenotype in rat by increasing the brown/white adipose tissue ratio and UCP1 expression.

    PubMed

    da Silva, A I; Braz, G R F; Pedroza, A A; Nascimento, L; Freitas, C M; Ferreira, D J S; Manhães de Castro, R; Lagranha, C J

    2015-08-01

    The serotonergic system plays a crucial role in the energy balance regulation. Energy balance is mediated by food intake and caloric expenditure. Thus, the present study investigated the mechanisms that might be associated with fluoxetine treatment-induced weight reduction. Wistar male rat pups received daily injections with subcutaneous fluoxetine (Fx-group) or vehicle solution (Ct-group) from day 1 until 21 days of age. Several analyses were conducted to verify the involvement of mitochondria in weight reduction. We found that body weight in the Fx-group was lower compared to control. In association to lower fat mass in the Fx-group (25%). Neither neonatal caloric intake nor food intake reveals significant differences. Evaluating caloric expenditure (locomotor activity and temperature after stimulus), we did not observe differences in locomotor activity. However, we observed that the Fx group had a higher capacity to maintain body temperature in a cold environment compared with the Ct-group. Since brown adipose tissue-(BAT) is specialized for heat production and the rate of heat production is related to mitochondrial function, we found that Fx-treatment increases respiration by 36%, although after addition of GDP respiration returned to Ct-levels. Examining ROS production we observe that Fx-group produced less ROS than control group. Evaluating uncoupling protein (UCP) expression we found that Fx-treatment increases the expression by 23%. Taken together, our results suggest that modulation of serotonin system results in positive modulation of UCP and mitochondrial bioenergetics in brown fat tissue.

  2. Fisetin induces Sirt1 expression while inhibiting early adipogenesis in 3T3-L1 cells.

    PubMed

    Kim, Sang Chon; Kim, Yoo Hoon; Son, Sung Wook; Moon, Eun-Yi; Pyo, Suhkneung; Um, Sung Hee

    2015-11-27

    Fisetin (3,7,3',4'-tetrahydroxyflavone) is a naturally found flavonol in many fruits and vegetables and is known to have anti-aging, anti-cancer and anti-viral effects. However, the effects of fisetin on early adipocyte differentiation and the epigenetic regulator controlling adipogenic transcription factors remain unclear. Here, we show that fisetin inhibits lipid accumulation and suppresses the expression of PPARγ in 3T3-L1 cells. Fisetin suppressed early stages of preadipocyte differentiation, and induced expression of Sirt1. Depletion of Sirt1 abolished the inhibitory effects of fisetin on intracellular lipid accumulation and on PPARγ expression. Mechanistically, fisetin facilitated Sirt1-mediated deacetylation of PPARγ and FoxO1, and enhanced the association of Sirt1 with the PPARγ promoter, leading to suppression of PPARγ transcriptional activity, thereby repressing adipogenesis. Lowering Sirt1 levels reversed the effects of fisetin on deacetylation of PPARγ and increased PPARγ transactivation. Collectively, our results suggest the effects of fisetin in increasing Sirt1 expression and in epigenetic control of early adipogenesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. [Expression of matrix metalloproteinase-1 and tissue inhibitor of metalloproteinase-1 in human and nude mouse ectopic endometrium and the effect of estrogen and progestin on their expression].

    PubMed

    Lou, Yan-hui; Guo, Xin-hua; Jiang, Hua; Xia, Yu-fang

    2010-04-01

    To explore the roles of matrix metalloproteinase-1(MMP-1) and tissue inhibitor of metalloproteinase-1(TIMP-1) in the pathogenesis of endometriosis and the effects of estrogen and progestin on their expression. Immunohistochemistry and RT-PCR were employed to detect the expression of MMP-1 and TIMP-1 in the ectopic tissues of 35 patients with endometriosis, 22 eutopic endometrium tissues from women with endometriosis and 28 normal controls. Fifty-nine nude mice were injected with human late secretory endometrial chippings and randomized into estrogen group, progestin group, estrogen-progestin group and control group with corresponding treatments. The implantation rates and graft morphology were observed and MMP-1 and TIMP-1 expressions in the grafts detected by immunohistochemistry. Typical endometrial glands and stroma were observed in all the groups with comparable implantation rates. The administration of progestin was associated with multiple peritoneal implantation sites and significantly larger implants. The transplanted endometria showed proliferative or secretory changes with estrogen or progestin administration. MMP-1 expression significantly increased and TIMP-1 expression decreased with increased MMP-1/TIMP-1 ratio in human and nude mouse ectopic endometria in comparison with those in normal endometria (P<0.05, P<0.01). MMP-1 expression was higher in estrogen and estrogen-progestin groups than in the control group, and was lower in the 3 sexual hormone-treated groups than in the control group. MMP-1 mRNA expression in the eutopic endometrium was significantly higher than that in the normal endometria. Progestrin can not inhibit MMP-1 expression or the effect of estrogen on ectopic endometrium known as progestin resistance. The high expression of MMP-1 and low expression of TIMP-1 in endometriotic tissues confer strong invasiveness of ectopic endometrial tissue, especially in eutopic endometrial tissue, and may play an important role in the pathogenesis of

  4. Placental Expressions of CDKN1C and KCNQ1OT1 in Monozygotic Twins with Selective Intrauterine Growth Restriction.

    PubMed

    Gou, Chenyu; Liu, Xiangzhen; Shi, Xiaomei; Chai, Hanjing; He, Zhi-Ming; Huang, Xuan; Fang, Qun

    2017-10-01

    CDKN1C and KCNQ1OT1 are imprinted genes that might be potential regulators of placental development. This study investigated placental expressions of CDKN1C and KCNQ1OT1 in monozygotic twins with and without selective intrauterine growth restriction (sIUGR). Seventeen sIUGR and fifteen normal monozygotic(MZ) twin pairs were examined. Placental mRNA expressions of CDKN1C and KCNQ1OT1 were detected by real-time fluorescent quantitative PCR. CDKN1C protein expression was detected by immunohistochemical assay and Western-blotting. In the sIUGR group, smaller fetuses had a smaller share of the placenta, and CDKN1C protein expression was significantly increased while KCNQ1OT1 mRNA expression was significantly decreased. The CDKN1C/KCNQ1OT1 mRNA ratio was lower in the larger fetus than in the smaller fetus (p < .05). In the control group, CDKN1C protein expression showed no difference between larger and smaller fetuses, while KCNQ1OT1 mRNA expression was significantly lower in the larger fetus, and the CDKN1C/KCNQ1OT1 mRNA ratio was higher in the larger fetus than in the smaller fetus (p < .05). Our findings showed that pathogenesis of sIUGR may be related to the co-effect of the up-regulated protein expression of CDKN1C and down-regulated mRNA expression of KCNQ1OT1 in the placenta.

  5. Adaptation to acidic soil is achieved by increased numbers of cis-acting elements regulating ALMT1 expression in Holcus lanatus.

    PubMed

    Chen, Zhi Chang; Yokosho, Kengo; Kashino, Miho; Zhao, Fang-Jie; Yamaji, Naoki; Ma, Jian Feng

    2013-10-01

    Yorkshire fog (Holcus lanatus), which belongs to the Poaceae family and is a close relative of the agronomic crop oat (Avena sativa), is a widely adaptable grass species that is able to grow on highly acidic soils with high levels of Al, but the mechanism underlying the high Al tolerance is unknown. Here, we characterized two accessions of H. lanatus collected from an acid plot (soil pH 3.6, HL-A) and a neutral plot (pH 7.1, HL-N) in terms of Al tolerance, organic acid anion secretion and related gene expression. In response to Al (pH 4.5), the HL-A roots secreted approximately twice as much malate as the HL-N roots, but there was no difference in citrate secretion. Cloning of the gene HlALMT1 responsible for malate secretion showed that the encoded amino acid sequence did not differ between two accessions, but the expression level in the outer cell layers of the HL-A roots was twice as high as in the HL-N roots. This difference was not due to the genomic copy number, but was due to the number of cis-acting elements for an Al-responsive transcription factor (HlART1) in the promoter region of HlALMT1, as demonstrated by both a yeast one-hybrid assay and a transient assay in tobacco protoplasts. Furthermore, introduction of HlALMT1 driven by the HL-A promoter into rice resulted in significantly more Al-induced malate secretion than introduction of HlALMT1 driven by the HL-N promoter. These findings indicate that the adaptation of H. lanatus to acidic soils may be achieved by increasing number of cis-acting elements for ART1 in the promoter region of the HlALMT1 gene, enhancing the expression of HlALMT1 and the secretion of malate. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  6. Increased oxygen exposure alters collagen expression and tissue architecture during ligature-induced periodontitis.

    PubMed

    Gajendrareddy, P K; Junges, R; Cygan, G; Zhao, Y; Marucha, P T; Engeland, C G

    2017-06-01

    The aim of this study was to evaluate the effects of increased oxygen availability on gene expression and on collagen deposition/maturation in the periodontium following disease. Male Wistar rats had ligatures placed around their molars to induce periodontal disease, and a subset of animals underwent hyperbaric oxygen (HBO) treatment for 2 h twice per day. At 15 and 28 d, tissue gene expression of COL1A1, transforming growth factor-β1 and alkaline phosphatase was determined; other histological samples were stained with Picrosirius red to evaluate levels of collagen deposition, maturation and thickness. In animals that underwent HBO treatment, type I collagen expression was higher and collagen deposition, maturation and thickness were more robust. Reduced mRNA levels of transforming growth factor-beta1 and alkaline phosphatase in HBO-treated rats on day 28 suggested that a quicker resolution in both soft tissue and bone remodeling occurred following oxygen treatment. No differences in inflammation were observed between groups. The extracellular matrix regenerated more quickly in the HBO-treated group as evidenced by higher collagen expression, deposition and maturation. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Hypothalamic AMPK-induced autophagy increases food intake by regulating NPY and POMC expression.

    PubMed

    Oh, Tae Seok; Cho, Hanchae; Cho, Jae Hyun; Yu, Seong-Woon; Kim, Eun-Kyoung

    2016-11-01

    Hypothalamic AMP-activated protein kinase (AMPK) plays important roles in the regulation of food intake by altering the expression of orexigenic or anorexigenic neuropeptides. However, little is known about the mechanisms of this regulation. Here, we report that hypothalamic AMPK modulates the expression of NPY (neuropeptide Y), an orexigenic neuropeptide, and POMC (pro-opiomelanocortin-α), an anorexigenic neuropeptide, by regulating autophagic activity in vitro and in vivo. In hypothalamic cell lines subjected to low glucose availability such as 2-deoxy-d-glucose (2DG)-induced glucoprivation or glucose deprivation, autophagy was induced via the activation of AMPK, which regulates ULK1 and MTOR complex 1 followed by increased Npy and decreased Pomc expression. Pharmacological or genetic inhibition of autophagy diminished the effect of AMPK on neuropeptide expression in hypothalamic cell lines. Moreover, AMPK knockdown in the arcuate nucleus of the hypothalamus decreased autophagic activity and changed Npy and Pomc expression, leading to a reduction in food intake and body weight. AMPK knockdown abolished the orexigenic effects of intraperitoneal 2DG injection by decreasing autophagy and changing Npy and Pomc expression in mice fed a high-fat diet. We suggest that the induction of autophagy is a possible mechanism of AMPK-mediated regulation of neuropeptide expression and control of feeding in response to low glucose availability.

  8. Niaspan increases axonal remodeling after stroke in type 1 diabetes rats✩

    PubMed Central

    Yan, Tao; Chopp, Michael; Ye, Xinchun; Liu, Zhongwu; Zacharek, Alex; Cui, Yisheng; Roberts, Cynthia; Buller, Ben; Chen, Jieli

    2012-01-01

    Background and objective We investigated axonal plasticity in the bilateral motor cortices and the long term therapeutic effect of Niaspan on axonal remodeling after stroke in type-1 diabetic (T1DM) rats. Experimental approaches T1DM was induced in young adult male Wistar rats via injection of streptozotocin. T1DM rats were subjected to 2 h transient middle cerebral artery occlusion (MCAo) and were treated with 40 mg/kg Niaspan or saline starting 24 h after MCAo and daily for 28 days. Anterograde tracing using biotinylated dextran amine (BDA) injected into the contralateral motor cortex was performed to assess axonal sprouting in the ipsilateral motor cortex area. Functional outcome, SMI-31 (a pan-axonal microfilament marker), Bielschowsky silver and synaptophysin expression were measured. In vitro studies using primary cortical neuron (PCN) cultures and in vivo BDA injection into the brain to anterogradely label axons and terminals were employed. Results Niaspan treatment of stroke in T1DM–MCAo rats significantly improved functional outcome after stroke and increased SMI-31, Bielschowsky silver and synaptophysin expression in the ischemic brain compared to saline treated T1DM–MCAo rats (p<0.05). Using BDA to anterograde label axons and terminals, Niaspan treatment significantly increased axonal density in ipsilateral motor cortex in T1DM–MCAo rats (p<0.05, n=7/group). Niacin treatment of PCN significantly increased Ang1 expression under high glucose condition. Niacin and Ang1 significantly increased neurite outgrowth, and anti-Ang1 antibody marginally attenuated Niacin induced neurite outgrowth (p=0.06, n=6/group) in cultured PCN under high glucose condition. Conclusion Niaspan treatment increased ischemic brain Ang1 expression and promoted axonal remodeling in the ischemic brain as well as improved functional outcome after stroke. Ang1 may partially contribute to Niaspan-induced axonal remodeling after stroke in T1DM-rats. PMID:22266016

  9. Effects of Forskolin on Trefoil factor 1 expression in cultured ventral mesencephalic dopaminergic neurons.

    PubMed

    Jensen, P; Ducray, A D; Widmer, H R; Meyer, M

    2015-12-03

    Trefoil factor 1 (TFF1) belongs to a family of secreted peptides that are mainly expressed in the gastrointestinal tract. Notably, TFF1 has been suggested to operate as a neuropeptide, however, its specific cellular expression, regulation and function remain largely unknown. We have previously shown that TFF1 is expressed in developing and adult rat ventral mesencephalic tyrosine hydroxylase-immunoreactive (TH-ir) dopaminergic neurons. Here, we investigated the expression of TFF1 in rat ventral mesencephalic dopaminergic neurons (embryonic day 14) grown in culture for 5, 7 or 10 days in the absence (controls) or presence of either glial cell line-derived neurotrophic factor (GDNF), Forskolin or the combination. No TFF1-ir cells were identified at day 5 and only a few at day 7, whereas TH was markedly expressed at both time points. At day 10, several TFF1-ir cells were detected, and their numbers were significantly increased after the addition of GDNF (2.2-fold) or Forskolin (4.1-fold) compared to controls. Furthermore, the combination of GDNF and Forskolin had an additive effect and increased the number of TFF1-ir cells by 5.6-fold compared to controls. TFF1 expression was restricted to neuronal cells, and the percentage of TH/TFF1 co-expressing cells was increased to the same extent in GDNF and Forskolin-treated cultures (4-fold) as compared to controls. Interestingly, the combination of GDNF and Forskolin resulted in a significantly increased co-expression (8-fold) of TH/TFF1, which could indicate that GDNF and Forskolin targeted different subpopulations of TH/TFF1 neurons. Short-term treatment with Forskolin resulted in an increased number of TFF1-ir cells, and this effect was significantly reduced by the MEK1 inhibitor PD98059 or the protein kinase A (PKA) inhibitor H89, suggesting that Forskolin induced TFF1 expression through diverse signaling pathways. In conclusion, distinct populations of cultured dopaminergic neurons express TFF1, and their numbers can be

  10. Activation of neurokinin-1 receptors up-regulates substance P and neurokinin-1 receptor expression in murine pancreatic acinar cells.

    PubMed

    Koh, Yung-Hua; Moochhala, Shabbir; Bhatia, Madhav

    2012-07-01

    Acute pancreatitis (AP) has been associated with an up-regulation of substance P (SP) and neurokinin-1 receptor (NK1R) in the pancreas. Increased SP-NK1R interaction was suggested to be pro-inflammatory during AP. Previously, we showed that caerulein treatment increased SP/NK1R expression in mouse pancreatic acinar cells, but the effect of SP treatment was not evaluated. Pancreatic acinar cells were obtained from pancreas of male swiss mice (25-30 g). We measured mRNA expression of preprotachykinin-A (PPTA) and NK1R following treatment of SP (10(-6) M). SP treatment increased PPTA and NK1R expression in isolated pancreatic acinar cells, which was abolished by pretreatment of a selective NK1R antagonist, CP96,345. SP also time dependently increased protein expression of NK1R. Treatment of cells with a specific NK1R agonist, GR73,632, up-regulated SP protein levels in the cells. Using previously established concentrations, pre-treatment of pancreatic acinar cells with Gö6976 (10 nM), rottlerin (5 μM), PD98059 (30 μM), SP600125 (30 μM) or Bay11-7082 (30 μM) significantly inhibited up-regulation of SP and NK1R. These observations suggested that the PKC-ERK/JNK-NF-κB pathway is necessary for the modulation of expression levels. In comparison, pre-treatment of CP96,345 reversed gene expression in SP-induced cells, but not in caerulein-treated cells. Overall, the findings in this study suggested a possible auto-regulatory mechanism of SP/NK1R expression in mouse pancreatic acinar cells, via activation of NK1R. Elevated SP levels during AP might increase the occurrence of a positive feedback loop that contributes to abnormally high expression of SP and NK1R. © 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  11. Hsp27 (HSPB1) differential expression in normal salivary glands and pleomorphic adenomas and association with an increased Bcl2/Bax ratio.

    PubMed

    Siqueira, Elisa C de; Souza, Fabrício T A; Diniz, Marina G; Gomez, Ricardo S; Gomes, Carolina C

    2015-01-01

    Pleomorphic adenoma (PA) is the most common salivary gland neoplasm. The Hsp27 (HSPB1) is an antiapoptotic protein whose synthesis follows cytotoxic stresses and result in a transient increase in tolerance to subsequent cell injury. Although Hsp27 is expressed in a range of normal tissues and neoplasms, a wide variation in its expression exists among different cells and tissues types. In certain tumours of glandular origin (such as oesophageal adenocarcinomas), the level of Hsp27 is decreased. In the present study, Hsp27 protein levels were evaluated by enzyme-linked immunosorbent assay (ELISA) in a set of 18 fresh PA and 12 normal salivary gland samples. In addition, we tested if Hsp27 protein levels correlated with p53 expression and cell proliferation index, as well as with the transcriptional levels of Bcl-2-associated X protein (BAX), B cell lymphoma 2 (BCL2) and Caspase 3 in PA. We further tested the association between Hsp27 expression and PA tumour size. While all normal salivary gland samples expressed Hsp27 protein, only half of the PA samples expressed it, resulting in a reduced expression of Hsp27 in PA when compared with normal salivary glands (P = 0.003). The expression levels of this protein correlated positively with a higher messenger ribonucleic acid (mRNA) ratio of Bcl2/Bax (R = 0.631; P = 0.01). In conclusion, a decreased Hsp27 protein expression level in PA was found. In addition, Hsp27 levels correlated positively with the Bcl2/Bax mRNA ratio, suggesting an antiapoptotic effect.

  12. Cathepsin K expression is increased in oral lichen planus.

    PubMed

    Siponen, Maria; Bitu, Carolina Cavalcante; Al-Samadi, Ahmed; Nieminen, Pentti; Salo, Tuula

    2016-11-01

    Oral lichen planus (OLP) is an idiopathic T-cell-mediated mucosal inflammatory disease. Cathepsin K (Cat K) is one of the lysosomal cysteine proteases. It is involved in many pathological conditions, including osteoporosis and cancer. The expression and role of Cat K in OLP are unknown. Twenty-five oral mucosal specimens diagnosed histopathologically as OLP and fourteen healthy controls (HC) were used to study the immunohistochemical (IHC) expression of Cat K. Colocalization of Cat K with CD1a, Melan-A, CD68, CD45, mast cell tryptase (MCT), and Toll-like receptors (TLRs) 4 and 9 were studied using double IHC and/or immunofluorescence (IF) staining. Expression of Cat K was also evaluated in OLP tissue samples before and after topical tacrolimus treatment. Cat K was expressed in a higher percentage of cells in the epithelial zone, and the staining intensity was stronger in the stroma in OLP compared to controls (P < 0.001). In OLP, Cat K was present mostly in melanocytes and macrophages and sporadically in basal keratinocytes, endothelial cells, and extracellularly. Cat K was found also in some fibroblasts in HC and OLP samples. Coexpression of Cat K and TLRs 4 and 9 was seen in some dendritic cells (presumably melanocytes) and macrophages. In OLP, tacrolimus treatment reduced the expression of Cat K in the epithelium but increased it in the stroma. These results suggest that Cat K is involved in the pathogenesis of OLP. Cat K possibly takes part in the modulation of matrix molecules and cellular receptors. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. FOXP3 expression is modulated by TGF-β1/NOTCH1 pathway in human melanoma

    PubMed Central

    Skarmoutsou, Eva; Bevelacqua, Valentina; D'Amico, Fabio; Russo, Angela; Spandidos, Demetrios A.; Scalisi, Aurora

    2018-01-01

    Forkhead box protein 3 (FOXP3) transcription factor is expressed by immune cells and several human cancers and is associated with tumor aggressiveness and unfavorable clinical outcomes. NOTCH and transforming growth factor-β (TGF-β) protumorigenic effects are mediated by FOXP3 expression in several cancer models; however, their interaction and role in melanoma is unknown. We investigated TGF-β-induced FOXP3 gene expression during NOTCH1 signaling inactivation. Primary (WM35) and metastatic melanoma (A375 and A2058) cell lines and normal melanocytes (NHEM) were used. FOXP3 subcellular distribution was evaluated by immuno cytochemical analysis. Gene expression levels were assessed by reverse transcription-quantitative polymerase chain reaction. Protein levels were assessed by western blot analysis. The γ-secretase inhibitor (GSI) was used for NOTCH1 inhibition and recombinant human (rh)TGF-β was used for melanoma cell stimulation. Cell proliferation and viability were respectively assessed by MTT and Trypan blue dye assays. FOXP3 mRNA and protein levels were progressively higher in WM35, A375 and A2058 cell lines compared to NHEM and their levels were further increased after stimulation with rh-TGF-β. TGF-β-mediated FOXP3 expression was mediated by NOTCH1 signaling. Inhibition of NOTCH1 with concomitant rh-TGF-β stimulation determined the reduction in gene expression and protein level of FOXP3. Finally, melanoma cell line proliferation and viability were reduced by NOTCH1 inhibition. The results show that nn increase in FOXP3 expression in metastatic melanoma cell lines is a potential marker of tumor aggressiveness and metastasis. NOTCH1 is a central mediator of TGF-β-mediated FOXP3 expression and NOTCH1 inhibition produces a significant reduction of melanoma cell proliferation and viability. PMID:29620159

  14. Expression of phytoene synthase1 and carotene desaturase crtI genes result in an increase in the total carotenoids content in transgenic elite wheat (Triticum aestivum L.).

    PubMed

    Cong, Ling; Wang, Cheng; Chen, Ling; Liu, Huijuan; Yang, Guangxiao; He, Guangyuan

    2009-09-23

    Dietary micronutrient deficiencies, such as the lack of vitamin A, are a major source of morbidity and mortality worldwide. Carotenoids in food can function as provitamin A in humans, while grains of Chinese elite wheat cultivars generally have low carotenoid contents. To increase the carotenoid contents in common wheat endosperm, transgenic wheat has been generated by expressing the maize y1 gene encoding phytoene synthase driven by a endosperm-specific 1Dx5 promoter in the elite wheat (Triticum aestivum L.) variety EM12, together with the bacterial phytoene desaturase crtI gene from Erwinia uredovora under the constitutive CaMV 35S promoter control. A clear increase of the carotenoid content was detected in the endosperms of transgenic wheat that visually showed a light yellow color. The total carotenoids content was increased up to 10.8-fold as compared with the nontransgenic EM12 cultivar. To test whether the variability of total carotenoid content in different transgenic lines was due to differences in the transgene copy number or expression pattern, Southern hybridization and semiquantitative reverse transcriptase polymerase chain reaction analyses were curried out. The results showed that transgene copy numbers and transcript levels did not associate well with carotenoid contents. The expression patterns of endogenous carotenoid genes, such as the phytoene synthases and carotene desaturases, were also investigated in wild-type and transgenic wheat lines. No significant changes in expression levels of these genes were detected in the transgenic endosperms, indicating that the increase in carotenoid transgenic wheat endosperms resulted from the expression of transgenes.

  15. The Absence of NOD1 Enhances Killing of Aspergillus fumigatus Through Modulation of Dectin-1 Expression

    PubMed Central

    Gresnigt, Mark S.; Jaeger, Martin; Subbarao Malireddi, R. K.; Rasid, Orhan; Jouvion, Grégory; Fitting, Catherine; Melchers, Willem J. G.; Kanneganti, Thirumala-Devi; Carvalho, Agostinho; Ibrahim-Granet, Oumaima; van de Veerdonk, Frank L.

    2017-01-01

    One of the major life-threatening infections for which severely immunocompromised patients are at risk is invasive aspergillosis (IA). Despite the current treatment options, the increasing antifungal resistance and poor outcome highlight the need for novel therapeutic strategies to improve outcome of patients with IA. In the current study, we investigated whether and how the intracellular pattern recognition receptor NOD1 is involved in host defense against Aspergillus fumigatus. When exploring the role of NOD1 in an experimental mouse model, we found that Nod1−/− mice were protected against IA and demonstrated reduced fungal outgrowth in the lungs. We found that macrophages derived from bone marrow of Nod1−/− mice were more efficiently inducing reactive oxygen species and cytokines in response to Aspergillus. Most strikingly, these cells were highly potent in killing A. fumigatus compared with wild-type cells. In line, human macrophages in which NOD1 was silenced demonstrated augmented Aspergillus killing and NOD1 stimulation decreased fungal killing. The differentially altered killing capacity of NOD1 silencing versus NOD1 activation was associated with alterations in dectin-1 expression, with activation of NOD1 reducing dectin-1 expression. Furthermore, we were able to demonstrate that Nod1−/− mice have elevated dectin-1 expression in the lung and bone marrow, and silencing of NOD1 gene expression in human macrophages increases dectin-1 expression. The enhanced dectin-1 expression may be the mechanism of enhanced fungal killing of Nod1−/− cells and human cells in which NOD1 was silenced, since blockade of dectin-1 reversed the augmented killing in these cells. Collectively, our data demonstrate that NOD1 receptor plays an inhibitory role in the host defense against Aspergillus. This provides a rationale to develop novel immunotherapeutic strategies for treatment of aspergillosis that target the NOD1 receptor, to enhance the efficiency of host

  16. The Absence of NOD1 Enhances Killing of Aspergillus fumigatus Through Modulation of Dectin-1 Expression.

    PubMed

    Gresnigt, Mark S; Jaeger, Martin; Subbarao Malireddi, R K; Rasid, Orhan; Jouvion, Grégory; Fitting, Catherine; Melchers, Willem J G; Kanneganti, Thirumala-Devi; Carvalho, Agostinho; Ibrahim-Granet, Oumaima; van de Veerdonk, Frank L

    2017-01-01

    One of the major life-threatening infections for which severely immunocompromised patients are at risk is invasive aspergillosis (IA). Despite the current treatment options, the increasing antifungal resistance and poor outcome highlight the need for novel therapeutic strategies to improve outcome of patients with IA. In the current study, we investigated whether and how the intracellular pattern recognition receptor NOD1 is involved in host defense against Aspergillus fumigatus . When exploring the role of NOD1 in an experimental mouse model, we found that Nod1 -/- mice were protected against IA and demonstrated reduced fungal outgrowth in the lungs. We found that macrophages derived from bone marrow of Nod1 -/- mice were more efficiently inducing reactive oxygen species and cytokines in response to Aspergillus . Most strikingly, these cells were highly potent in killing A. fumigatus compared with wild-type cells. In line, human macrophages in which NOD1 was silenced demonstrated augmented Aspergillus killing and NOD1 stimulation decreased fungal killing. The differentially altered killing capacity of NOD1 silencing versus NOD1 activation was associated with alterations in dectin-1 expression, with activation of NOD1 reducing dectin-1 expression. Furthermore, we were able to demonstrate that Nod1 -/- mice have elevated dectin-1 expression in the lung and bone marrow, and silencing of NOD1 gene expression in human macrophages increases dectin-1 expression. The enhanced dectin-1 expression may be the mechanism of enhanced fungal killing of Nod1 -/- cells and human cells in which NOD1 was silenced, since blockade of dectin-1 reversed the augmented killing in these cells. Collectively, our data demonstrate that NOD1 receptor plays an inhibitory role in the host defense against Aspergillus . This provides a rationale to develop novel immunotherapeutic strategies for treatment of aspergillosis that target the NOD1 receptor, to enhance the efficiency of host immune cells

  17. Increased expression of placental growth factor in high-grade endometrial carcinoma.

    PubMed

    Coenegrachts, Lieve; Schrauwen, Stefanie; Van Bree, Rita; Despierre, Evelyn; Luyten, Catherine; Jonckx, Bart; Stassen, Jean Marie; Vergote, Ignace; Amant, Frédéric

    2013-02-01

    Placental growth factor (PlGF), a homolog of vascular endothelial growth factor (VEGF), exerts pleiotropic functions in cancer by affecting tumor cells as well as endothelial and inflammatory cells. Moreover, PlGF expression correlates with tumor stage, recurrence, metastasis and patient outcome in different types of cancer. Recently, administration of anti-PlGF therapy reduced tumor growth and metastasis in preclinical tumor models. In the present study, we evaluated the diagnostic and prognostic value of systemic and local expression of PlGF in primary endometrial carcinomas. PlGF levels in tumor lysates (n=128) and serum (n=88) of patients with primary endometrial cancer were determined using ELISA. PlGF mRNA expression in endometrial carcinoma tissues was quantified by quantitative qRT-PCR. Results were compared to endometrial cancer stage and grade. Systemic PlGF levels were not altered in patients with endometrial cancer (FIGO stage I-II-III) as compared to healthy controls. Only in FIGO stage IV patients, serum PlGF levels were slightly increased. Local PlGF mRNA and protein expression in endometrial tumors progressively increased with tumor grade. In endometrioid carcinomas, PlGF mRNA expression was significantly increased in endometrioid grade 3 tumors as compared to normal endometrial tissue. PlGF protein expression was significantly increased in endometrioid grade 2 and 3 carcinomas and in serous carcinomas as compared to normal endometrial tissue. Our study showed that systemic/serum PlGF levels cannot be used as a diagnostic or prognostic marker in endometrial cancer. However, the increased local expression of PlGF, primarily in high-grade carcinomas, underscores the possibility for preclinical assessment of anti-PlGF therapy in endometrial cancer.

  18. Down-regulation of increased TRAF6 expression in the peripheral mononuclear cells of patients with primary Sjögren's syndrome by an EBV-EBER1-specific synthetic single-stranded complementary DNA molecule.

    PubMed

    Sipka, Sándor; Zilahi, Erika; Papp, Gábor; Chen, Ji-Qing; Nagy, Andrea; Hegyi, Katalin; Kónya, József; Zeher, Margit

    2017-05-01

    We described earlier a simultaneously increased that the increased expression of miRNA-146a/b was accompanied by an increase in the expression of and TRAF6 and a decrease in the expression of IRAK1 genes in the peripheral mononuclear cells (PBMCs) of patients with primary Sjogren's syndrome (pSS) patients. Recently, the expression of EBV encoded. RNA (EBER) was published in the B cells of salivary glands of in pSS. In the present study, we applied an EBV-EBER1 specific synthetic single stranded complementary DNA molecule (EBV-EBER1-cDNA) to test whether any EBER1 related effect exists also in PBMCs of pSS patients. In the PBMCs of pSS patients and healthy controls, we investigated in vitro the effects of a synthetic single stranded EBV-EBER1-cDNA molecule, synthetic double-stranded (ds)RNA polyinosinic-polycytidylic acid [poly (I:C)] and polyadenylic acid potassium salt poly-adenylic acid [poly-(A)] on the expression of TRAF6 gene tested by qRTPCR. The release of interferon -α was detected by ELISA. EBV-EBER1-cDNA resulted in a significant reduction in the expression of TRAF6 in the cells of patients, but in the healthy controls not, whereas the treatments with poly (I:C) and poly-(A) could not reduce the TRAF6 over-expression. No release of EBER1 could be observed in the culture supernatants of patients with pSS. Only the treatment with poly (I:C) resulted in a significant increase of interferon -α release, and only in the heathy controls. No release of EBER1 molecules took place during the culturing of cells. EBV-EBER- cDNA acted functionally on the cells of patients only. These findings give a further evidence of the linkage between EBV and pSS, furthermore, they show the possible role of EBV-EBER1 in the induction of increased TRAF6 expression in the peripheral B cells of Sjögren's patients. © 2017 Asia Pacific League of Associations for Rheumatology and John Wiley & Sons Australia, Ltd.

  19. Central leptin regulates heart lipid content by selectively increasing PPAR β/δ expression.

    PubMed

    Mora, Cristina; Pintado, Cristina; Rubio, Blanca; Mazuecos, Lorena; López, Virginia; Fernández, Alejandro; Salamanca, Aurora; Bárcena, Brenda; Fernández-Agulló, Teresa; Arribas, Carmen; Gallardo, Nilda; Andrés, Antonio

    2018-01-01

    The role of central leptin in regulating the heart from lipid accumulation in lean leptin-sensitive animals has not been fully elucidated. Herein, we investigated the effects of central leptin infusion on the expression of genes involved in cardiac metabolism and its role in the control of myocardial triacylglyceride (TAG) accumulation in adult Wistar rats. Intracerebroventricular (icv) leptin infusion (0.2 µg/day) for 7 days markedly decreased TAG levels in cardiac tissue. Remarkably, the cardiac anti-steatotic effects of central leptin were associated with the selective upregulation of gene and protein expression of peroxisome proliferator-activated receptor β/δ (PPARβ/δ, encoded by Pparb/d ) and their target genes, adipose triglyceride lipase (encoded by Pnpla2 , herefater referred to as Atgl ), hormone sensitive lipase (encoded by Lipe , herefater referred to as Hsl ), pyruvate dehydrogenase kinase 4 ( Pdk4 ) and acyl CoA oxidase 1 ( Acox1 ), involved in myocardial intracellular lipolysis and mitochondrial/peroxisomal fatty acid utilization. Besides, central leptin decreased the expression of stearoyl-CoA deaturase 1 ( Scd1 ) and diacylglycerol acyltransferase 1 ( Dgat1 ) involved in TAG synthesis and increased the CPT-1 independent palmitate oxidation, as an index of peroxisomal β-oxidation. Finally, the pharmacological inhibition of PPARβ/δ decreased the effects on gene expression and cardiac TAG content induced by leptin. These results indicate that leptin, acting at central level, regulates selectively the cardiac expression of PPARβ/δ, contributing in this way to regulate the cardiac TAG accumulation in rats, independently of its effects on body weight. © 2018 Society for Endocrinology.

  20. Public antibodies to malaria antigens generated by two LAIR1 insertion modalities.

    PubMed

    Pieper, Kathrin; Tan, Joshua; Piccoli, Luca; Foglierini, Mathilde; Barbieri, Sonia; Chen, Yiwei; Silacci-Fregni, Chiara; Wolf, Tobias; Jarrossay, David; Anderle, Marica; Abdi, Abdirahman; Ndungu, Francis M; Doumbo, Ogobara K; Traore, Boubacar; Tran, Tuan M; Jongo, Said; Zenklusen, Isabelle; Crompton, Peter D; Daubenberger, Claudia; Bull, Peter C; Sallusto, Federica; Lanzavecchia, Antonio

    2017-08-31

    In two previously described donors, the extracellular domain of LAIR1, a collagen-binding inhibitory receptor encoded on chromosome 19 (ref. 1), was inserted between the V and DJ segments of an antibody. This insertion generated, through somatic mutations, broadly reactive antibodies against RIFINs, a type of variant antigen expressed on the surface of Plasmodium falciparum-infected erythrocytes. To investigate how frequently such antibodies are produced in response to malaria infection, we screened plasma from two large cohorts of individuals living in malaria-endemic regions. Here we report that 5-10% of malaria-exposed individuals, but none of the European blood donors tested, have high levels of LAIR1-containing antibodies that dominate the response to infected erythrocytes without conferring enhanced protection against febrile malaria. By analysing the antibody-producing B cell clones at the protein, cDNA and gDNA levels, we characterized additional LAIR1 insertions between the V and DJ segments and discovered a second insertion modality whereby the LAIR1 exon encoding the extracellular domain and flanking intronic sequences are inserted into the switch region. By exon shuffling, this mechanism leads to the production of bispecific antibodies in which the LAIR1 domain is precisely positioned at the elbow between the VH and CH1 domains. Additionally, in one donor the genomic DNA encoding the VH and CH1 domains was deleted, leading to the production of a camel-like LAIR1-containing antibody. Sequencing of the switch regions of memory B cells from European blood donors revealed frequent templated inserts originating from transcribed genes that, in rare cases, comprised exons with orientations and frames compatible with expression. These results reveal different modalities of LAIR1 insertion that lead to public and dominant antibodies against infected erythrocytes and suggest that insertion of templated DNA represents an additional mechanism of antibody

  1. Artemin growth factor increases nicotinic cholinergic receptor subunit expression and activity in nociceptive sensory neurons.

    PubMed

    Albers, Kathryn M; Zhang, Xiu Lin; Diges, Charlotte M; Schwartz, Erica S; Yang, Charles I; Davis, Brian M; Gold, Michael S

    2014-05-22

    Artemin (Artn), a member of the glial cell line-derived growth factor (GDNF) family, supports the development and function of a subpopulation of peptidergic, TRPV1-positive sensory neurons. Artn (enovin, neublastin) is elevated in inflamed tissue and its injection in skin causes transient thermal hyperalgesia. A genome wide expression analysis of trigeminal ganglia of mice that overexpress Artn in the skin (ART-OE mice) showed elevation in nicotinic acetylcholine receptor (nAChR) subunits, suggesting these ion channels contribute to Artn-induced sensitivity. Here we have used gene expression, immunolabeling, patch clamp electrophysiology and behavioral testing assays to investigate the link between Artn, nicotinic subunit expression and thermal hypersensitivity. Reverse transcriptase-PCR validation showed increased levels of mRNAs encoding the nAChR subunits α3 (13.3-fold), β3 (4-fold) and β4 (7.7-fold) in trigeminal ganglia and α3 (4-fold) and β4 (2.8-fold) in dorsal root ganglia (DRG) of ART-OE mice. Sensory ganglia of ART-OE mice had increased immunoreactivity for nAChRα3 and exhibited increased overlap in labeling with GFRα3-positive neurons. Patch clamp analysis of back-labeled cutaneous afferents showed that while the majority of nicotine-evoked currents in DRG neurons had biophysical and pharmacological properties of α7-subunit containing nAChRs, the Artn-induced increase in α3 and β4 subunits resulted in functional channels. Behavioral analysis of ART-OE and wildtype mice showed that Artn-induced thermal hyperalgesia can be blocked by mecamylamine or hexamethonium. Complete Freund's adjuvant (CFA) inflammation of paw skin, which causes an increase in Artn in the skin, also increased the level of nAChR mRNAs in DRG. Finally, the increase in nAChRs transcription was not dependent on the Artn-induced increase in TRPV1 or TRPA1 in ART-OE mice since nAChRs were elevated in ganglia of TRPV1/TRPA1 double knockout mice. These findings suggest that Artn

  2. Medium-chain, triglyceride-containing lipid emulsions increase human neutrophil beta2 integrin expression, adhesion, and degranulation.

    PubMed

    Wanten, G J; Geijtenbeek, T B; Raymakers, R A; van Kooyk, Y; Roos, D; Jansen, J B; Naber, A H

    2000-01-01

    To test the hypothesis that lipid emulsions with different triglyceride structures have distinct immunomodulatory properties, we analyzed human neutrophil adhesion and degranulation after lipid incubation. Neutrophils, isolated from the blood of 10 healthy volunteers, were incubated in medium or physiologic (2.5 mmol/L) emulsions containing long-chain (LCT), medium-chain (MCT), mixed LCT/MCT, or structured (SL) triglycerides. Expression of adhesion molecules and degranulation markers was evaluated by flow cytometry. Also, functional adhesion was investigated by means of a flow cytometric assay using fluorescent beads coated with the integrin ligand intercellular adhesion molecule (ICAM)-1. Although LCT and SL had no effect, LCT/MCT significantly increased expression of the beta2 integrins lymphocyte-function-associated antigen 1 (+18%), macrophage antigen 1 (+387%), p150,95 (+82%), and (alphaDbeta2 (+230%). Degranulation marker expression for azurophilic (CD63, +210%) and specific granules (CD66b, +370%) also significantly increased, whereas L-selectin (CD62L, -70%) decreased. The effects of LCT/MCT were mimicked by the MCT emulsion. ICAM-1 adhesion (% beads bound) was increased by LCT/MCT (34% +/- 4%), whereas LCT (19% +/-3%) and SL (20% +/- 2%) had no effect compared with medium (17% +/- 3%). LCT/MCT and MCT, contrary to LCT and SL emulsions, increased neutrophil beta2 integrin expression, adhesion, and degranulation. Apart from other emulsion constituents, triglyceride chain length might therefore be a key feature in the interaction of lipid emulsions and the phagocyte immune system.

  3. β-Catenin Up-regulates Atoh1 Expression in Neural Progenitor Cells by Interaction with an Atoh1 3′ Enhancer*

    PubMed Central

    Shi, Fuxin; Cheng, Yen-fu; Wang, Xiaohui L.; Edge, Albert S. B.

    2010-01-01

    Atoh1, a basic helix-loop-helix transcription factor, plays a critical role in the differentiation of several epithelial and neural cell types. We found that β-catenin, the key mediator of the canonical Wnt pathway, increased expression of Atoh1 in mouse neuroblastoma cells and neural progenitor cells, and baseline Atoh1 expression was decreased by siRNA directed at β-catenin. The up-regulation of Atoh1 was caused by an interaction of β-catenin with the Atoh1 enhancer that could be demonstrated by chromatin immunoprecipitation. We found that two putative Tcf-Lef sites in the 3′ enhancer of the Atoh1 gene displayed an affinity for β-catenin and were critical for the activation of Atoh1 transcription because mutation of either site decreased expression of a reporter gene downstream of the enhancer. Tcf-Lef co-activators were found in the complex that bound to these sites in the DNA together with β-catenin. Inhibition of Notch signaling, which has previously been shown to induce bHLH transcription factor expression, increased β-catenin expression in progenitor cells of the nervous system. Because this could be a mechanism for up-regulation of Atoh1 after inhibition of Notch, we tested whether siRNA to β-catenin prevented the increase in Atoh1 and found that β-catenin expression was required for increased expression of Atoh1 after Notch inhibition. PMID:19864427

  4. PD-1 expression and clinical PD-1 blockade in B-cell lymphomas.

    PubMed

    Xu-Monette, Zijun Y; Zhou, Jianfeng; Young, Ken H

    2018-01-04

    Programmed cell death protein 1 (PD-1) blockade targeting the PD-1 immune checkpoint has demonstrated unprecedented clinical efficacy in the treatment of advanced cancers including hematologic malignancies. This article reviews the landscape of PD-1/programmed death-ligand 1 (PD-L1) expression and current PD-1 blockade immunotherapy trials in B-cell lymphomas. Most notably, in relapsed/refractory classical Hodgkin lymphoma, which frequently has increased PD-1 + tumor-infiltrating T cells, 9p24.1 genetic alteration, and high PD-L1 expression, anti-PD-1 monotherapy has demonstrated remarkable objective response rates (ORRs) of 65% to 87% and durable disease control in phase 1/2 clinical trials. The median duration of response was 16 months in a phase 2 trial. PD-1 blockade has also shown promise in a phase 1 trial of nivolumab in relapsed/refractory B-cell non-Hodgkin lymphomas, including follicular lymphoma, which often displays abundant PD-1 expression on intratumoral T cells, and diffuse large B-cell lymphoma, which variably expresses PD-1 and PD-L1. In primary mediastinal large B-cell lymphoma, which frequently has 9p24.1 alterations, the ORR was 35% in a phase 2 trial of pembrolizumab. In contrast, the ORR with pembrolizumab was 0% in relapsed chronic lymphocytic leukemia (CLL) and 44% in CLL with Richter transformation in a phase 2 trial. T cells from CLL patients have elevated PD-1 expression; CLL PD-1 + T cells can exhibit a pseudo-exhaustion or a replicative senescence phenotype. PD-1 expression was also found in marginal zone lymphoma but not in mantle cell lymphoma, although currently anti-PD-1 clinical trial data are not available. Mechanisms and predictive biomarkers for PD-1 blockade immunotherapy, treatment-related adverse events, hyperprogression, and combination therapies are discussed in the context of B-cell lymphomas. © 2018 by The American Society of Hematology.

  5. Pseudomonas Pyocyanin Increases Interleukin-8 Expression by Human Airway Epithelial Cells

    PubMed Central

    Denning, Gerene M.; Wollenweber, Laura A.; Railsback, Michelle A.; Cox, Charles D.; Stoll, Lynn L.; Britigan, Bradley E.

    1998-01-01

    Pseudomonas aeruginosa, an opportunistic human pathogen, causes acute pneumonia in patients with hospital-acquired infections and is commonly associated with chronic lung disease in individuals with cystic fibrosis (CF). Evidence suggests that the pathophysiological effects of P. aeruginosa are mediated in part by virulence factors secreted by the bacterium. Among these factors is pyocyanin, a redox active compound that increases intracellular oxidant stress. We find that pyocyanin increases release of interleukin-8 (IL-8) by both normal and CF airway epithelial cell lines and by primary airway epithelial cells. Moreover, pyocyanin synergizes with the inflammatory cytokines tumor necrosis factor alpha and IL-1α. RNase protection assays indicate that increased IL-8 release is accompanied by increased levels of IL-8 mRNA. The antioxidant n-acetyl cysteine, general inhibitors of protein tyrosine kinases, and specific inhibitors of mitogen-activated protein kinases diminish pyocyanin-dependent increases in IL-8 release. Conversely, inhibitors of protein kinases C (PKC) and PKA have no effect. In contrast to its effects on IL-8 expression, pyocyanin inhibits cytokine-dependent expression of the monocyte/macrophage/T-cell chemokine RANTES. Increased release of IL-8, a potent neutrophil chemoattractant, in response to pyocyanin could contribute to the marked infiltration of neutrophils and subsequent neutrophil-mediated tissue damage that are observed in Pseudomonas-associated lung disease. PMID:9826354

  6. Interleukin-6-driven progranulin expression increases cholangiocarcinoma growth by an Akt-dependent mechanism

    PubMed Central

    Frampton, Gabriel; Invernizzi, Pietro; Bernuzzi, Francesca; Pae, Hae Yong; Quinn, Matthew; Horvat, Darijana; Galindo, Cheryl; Huang, Li; McMillin, Matthew; Cooper, Brandon; Rimassa, Lorenza; DeMorrow, Sharon

    2015-01-01

    Background and objectives Cholangiocarcinoma is a devastating cancer of biliary origin with limited treatment options. The growth factor, progranulin, is overexpressed in a number of tumours. The study aims were to assess the expression of progranulin in cholangiocarcinoma and to determine its effects on tumour growth. Methods The expression and secretion of progranulin were evaluated in multiple cholangiocarcinoma cell lines and in clinical samples from patients with cholangiocarcinoma. The role of interleukin 6 (IL-6)-mediated signalling in the expression of progranulin was assessed using a combination of specific inhibitors and shRNA knockdown techniques. The effect of progranulin on proliferation and Akt activation and subsequent effects of FOXO1 phosphorylation were assessed in vitro. Progranulin knockdown cell lines were established, and the effects on cholangiocarcinoma growth were determined. Results Progranulin expression and secretion were upregulated in cholangiocarcinoma cell lines and tissue, which were in part via IL-6-mediated activation of the ERK1/2/RSK1/C/EBPβ pathway. Blocking any of these signalling molecules, by either pharmacological inhibitors or shRNA, prevented the IL-6-dependent activation of progranulin expression. Treatment of cholangiocarcinoma cells with recombinant progranulin increased cell proliferation in vitro by a mechanism involving Akt phosphorylation leading to phosphorylation and nuclear extrusion of FOXO1. Knockdown of progranulin expression in cholangiocarcinoma cells decreased the expression of proliferating cellular nuclear antigen, a marker of proliferative capacity, and slowed tumour growth in vivo. Conclusions Evidence is presented for a role for progranulin as a novel growth factor regulating cholangiocarcinoma growth. Specific targeting of progranulin may represent an alternative for the development of therapeutic strategies. PMID:22068162

  7. Overexpression of COUP-TF1 in murine embryonic stem cells reduces retinoic acid-associated growth arrest and increases extraembryonic endoderm gene expression.

    PubMed

    Zhuang, Yong; Gudas, Lorraine J

    2008-09-01

    Vitamin A (retinol [Rol]) and its metabolites are essential for embryonic development. The Rol metabolite all-trans retinoic acid (RA) is a biologically active form of Rol. The orphan nuclear receptor chicken ovalbumin upstream promoter-transcription-factors (COUP-TF) proteins have been implicated in the regulation of several important biological processes, such as embryonic development and neuronal cell differentiation. Because there is evidence that COUP-TFs function in the retinoid signaling network during development and differentiation, we generated murine embryonic stem (ES) cell lines which stably and constitutively overexpress COUP-TF1 (NR2F1) and we analyzed RA-induced differentiation. COUP-TF1 overexpression resulted in reduced RA-associated growth arrest. A 2.4+/-0.17-fold higher Nanog mRNA level was seen in COUP-TF1 overexpressing lines, as compared with wild-type (WT) ES cells, after a 72 hr RA treatment. We also showed that COUP-TF1 overexpression enhanced RA-induced extraembryonic endoderm gene expression. Specifically, COUP-TF1 overexpression increased mRNA levels of GATA6 by 3.3+/-0.3-fold, GATA4 by 3.6+/-0.1-fold, laminin B1 (LAMB1) by 3.4+/-0.1-fold, LAMC1 by 3.4+/-0.2-fold, Dab2 by 2.4+0.1-fold, and SOX17 by 2.5-fold at 72 hr after RA treatment plus LIF, as compared with the increases seen in WT ES cells. However, RA-induced neurogenesis was unaffected by COUP-TF1 overexpression, as shown by the equivalent levels of expression of NeuroD1, nestin, GAP43 and other neuronal markers. Our results revealed for the first time that COUP-TF1 is an important signaling molecule during vitamin A (Rol)-mediated very early stage of embryonic development.

  8. HPV16 E6 regulates annexin 1 (ANXA1) protein expression in cervical carcinoma cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calmon, Marilia Freitas; Sichero, Laura; Boccardo, Enrique

    Annexin 1 (ANXA1) is a substrate for E6AP mediated ubiquitylation. It has been hypothesized that HPV 16 E6 protein redirects E6AP away from ANXA1, increasing its stability and possibly contributing to viral pathogenesis. We analyzed ANXA1 expression in HPV-positive and negative cervical carcinoma-derived cells, in cells expressing HPV-16 oncogenes and in cells transduced with shRNA targeting E6AP. We observed that ANXA1 protein expression increased in HPV-16-positive tumor cells, in keratinocytes expressing HPV-16 E6wt (wild-type) or E6/E7 and C33 cells expressing HPV-16 E6wt. ANXA1 protein expression decreased in cells transfected with E6 Dicer-substrate RNAs (DsiRNA) and C33 cells cotransduced with HPV-16more » E6wt and E6AP shRNA. Moreover, colony number and proliferation rate decreased in HPV16-positive cells transduced with ANXA1 shRNA. We observed that in cells infected with HPV16, the E6 binds to E6AP to degrade p53 and upregulate ANXA1. We suggest that ANXA1 may play a role in HPV-mediated carcinogenesis. - Highlights: • ANXA1 upregulation requires the presence of E6 and E6AP and is dependent on E6 integrity. • E6 binds to E6AP to degrade p53 and upregulate ANXA1 in cells infected with HPV16. • ANXA1 plays a role in cell proliferation in HPV-positive cervical cells.« less

  9. Ectopically expressing MdPIP1;3, an aquaporin gene, increased fruit size and enhanced drought tolerance of transgenic tomatoes.

    PubMed

    Wang, Lin; Li, Qing-Tian; Lei, Qiong; Feng, Chao; Zheng, Xiaodong; Zhou, Fangfang; Li, Lingzi; Liu, Xuan; Wang, Zhi; Kong, Jin

    2017-12-19

    Water deficit severely reduces apple growth and production, is detrimental to fruit quality and size. This problem is exacerbated as global warming is implicated in producing more severe drought stress. Thus water-efficiency has becomes the major target for apple breeding. A desired apple tree can absorb and transport water efficiently, which not only confers improved drought tolerance, but also guarantees fruit size for higher income returns. Aquaporins, as water channels, control water transportation across membranes and can regulate water flow by changing their amount and activity. The exploration of molecular mechanism of water efficiency and the gene wealth will pave a way for molecular breeding of drought tolerant apple tree. In the current study, we screened out a drought inducible aquaporin gene MdPIP1;3, which specifically enhanced its expression during fruit expansion in 'Fuji' apple (Malus domestica Borkh. cv. Red Fuji). It localized on plasma membranes and belonged to PIP1 subfamily. The tolerance to drought stress enhanced in transgenic tomato plants ectopically expressing MdPIP1;3, showing that the rate of losing water in isolated transgenic leaves was slower than wild type, and stomata of transgenic plants closed sensitively to respond to drought compared with wild type. Besides, length and diameter of transgenic tomato fruits increased faster than wild type, and in final, fruit sizes and fresh weights of transgenic tomatoes were bigger than wild type. Specially, in cell levels, fruit cell size from transgenic tomatoes was larger than wild type, showing that cell number per mm 2 in transgenic fruits was less than wild type. Altogether, ectopically expressing MdPIP1;3 enhanced drought tolerance of transgenic tomatoes partially via reduced water loss controlled by stomata closure in leaves. In addition, the transgenic tomato fruits are larger and heavier with larger cells via more efficient water transportation across membranes. Our research will

  10. Publications - RDF 2009-1 v. 1.2 | Alaska Division of Geological &

    Science.gov Websites

    main content DGGS RDF 2009-1 v. 1.2 Publication Details Title: Geochemical, major-oxide, minor-oxide , M.B., Szumigala, D.J., Andrew, J.E., Newberry, R.J., and Athey, J.E., 2009, Geochemical, major-oxide prospect; Keevy Peak Formation; LEA Creek prospect; Major Oxides; Mississippian; Newman Creek; Newman Creek

  11. Increased expression of placental growth factor in high-grade endometrial carcinoma

    PubMed Central

    COENEGRACHTS, LIEVE; SCHRAUWEN, STEFANIE; VAN BREE, RITA; DESPIERRE, EVELYN; LUYTEN, CATHERINE; JONCKX, BART; STASSEN, JEAN MARIE; VERGOTE, IGNACE; AMANT, FRÉDÉRIC

    2013-01-01

    Placental growth factor (PlGF), a homolog of vascular endothelial growth factor (VEGF), exerts pleiotropic functions in cancer by affecting tumor cells as well as endothelial and inflammatory cells. Moreover, PlGF expression correlates with tumor stage, recurrence, metastasis and patient outcome in different types of cancer. Recently, administration of anti-PlGF therapy reduced tumor growth and metastasis in preclinical tumor models. In the present study, we evaluated the diagnostic and prognostic value of systemic and local expression of PlGF in primary endometrial carcinomas. PlGF levels in tumor lysates (n=128) and serum (n=88) of patients with primary endometrial cancer were determined using ELISA. PlGF mRNA expression in endometrial carcinoma tissues was quantified by quantitative qRT-PCR. Results were compared to endometrial cancer stage and grade. Systemic PlGF levels were not altered in patients with endometrial cancer (FIGO stage I-II-III) as compared to healthy controls. Only in FIGO stage IV patients, serum PlGF levels were slightly increased. Local PlGF mRNA and protein expression in endometrial tumors progressively increased with tumor grade. In endometrioid carcinomas, PlGF mRNA expression was significantly increased in endometrioid grade 3 tumors as compared to normal endometrial tissue. PlGF protein expression was significantly increased in endometrioid grade 2 and 3 carcinomas and in serous carcinomas as compared to normal endometrial tissue. Our study showed that systemic/serum PlGF levels cannot be used as a diagnostic or prognostic marker in endometrial cancer. However, the increased local expression of PlGF, primarily in high-grade carcinomas, underscores the possibility for preclinical assessment of anti-PlGF therapy in endometrial cancer. PMID:23232836

  12. IL-22/STAT3-Induced Increases in SLURP1 Expression within Psoriatic Lesions Exerts Antimicrobial Effects against Staphylococcus aureus.

    PubMed

    Moriwaki, Yasuhiro; Takada, Kiyoko; Nagasaki, Toshinori; Kubo, Natsuki; Ishii, Tomohiro; Kose, Kazuaki; Kageyama, Taihei; Tsuji, Shoutaro; Kawashima, Koichiro; Misawa, Hidemi

    2015-01-01

    SLURP1 is the causal gene for Mal de Meleda (MDM), an autosomal recessive skin disorder characterized by diffuse palmoplantar keratoderma and transgressive keratosis. Moreover, although SLURP1 likely serves as an important proliferation/differentiation factor in keratinocytes, the possible relation between SLURP1 and other skin diseases, such as psoriasis and atopic dermatitis, has not been studied, and the pathophysiological control of SLURP1 expression in keratinocytes is largely unknown. Our aim was to examine the involvement of SLURP1 in the pathophysiology of psoriasis using an imiquimod (IMQ)-induced psoriasis model mice and normal human epidermal keratinocytes (NHEKs). SLURP1 expression was up-regulated in the skin of IMQ-induced psoriasis model mice. In NHEKs stimulated with the inflammatory cytokines IL-17, IL-22 and TNF-α, which are reportedly expressed in psoriatic lesions, SLURP1 mRNA expression was significantly up-regulated by IL-22 but not the other two cytokines. The stimulatory effect of IL-22 was completely suppressed in NHEKs treated with a STAT3 inhibitor or transfected with siRNA targeting STAT3. Because IL-22 induces production of antimicrobial proteins in epithelial cells, the antibacterial activity of SLURP1 was assessed against Staphylococcus aureus (S. aureus), which is known to be associated with disease severity in psoriasis. SLURP1 significantly suppressed the growth of S. aureus. These results indicate SLURP1 participates in pathophysiology of psoriasis by regulating keratinocyte proliferation and differentiation, and by suppressing the growth of S. aureus.

  13. Hyperoxia Causes Mitochondrial Fragmentation in Pulmonary Endothelial Cells by Increasing Expression of Pro-Fission Proteins.

    PubMed

    Ma, Cui; Beyer, Andreas M; Durand, Matthew; Clough, Anne V; Zhu, Daling; Norwood Toro, Laura; Terashvili, Maia; Ebben, Johnathan D; Hill, R Blake; Audi, Said H; Medhora, Meetha; Jacobs, Elizabeth R

    2018-03-01

    We explored mechanisms that alter mitochondrial structure and function in pulmonary endothelial cells (PEC) function after hyperoxia. Mitochondrial structures of PECs exposed to hyperoxia or normoxia were visualized and mitochondrial fragmentation quantified. Expression of pro-fission or fusion proteins or autophagy-related proteins were assessed by Western blot. Mitochondrial oxidative state was determined using mito-roGFP. Tetramethylrhodamine methyl ester estimated mitochondrial polarization in treatment groups. The role of mitochondrially derived reactive oxygen species in mt-fragmentation was investigated with mito-TEMPOL and mitochondrial DNA (mtDNA) damage studied by using ENDO III (mt-tat-endonuclease III), a protein that repairs mDNA damage. Drp-1 (dynamin-related protein 1) was overexpressed or silenced to test the role of this protein in cell survival or transwell resistance. Hyperoxia increased fragmentation of PEC mitochondria in a time-dependent manner through 48 hours of exposure. Hyperoxic PECs exhibited increased phosphorylation of Drp-1 (serine 616), decreases in Mfn1 (mitofusion protein 1), but increases in OPA-1 (optic atrophy 1). Pro-autophagy proteins p62 (LC3 adapter-binding protein SQSTM1/p62), PINK-1 (PTEN-induced putative kinase 1), and LC3B (microtubule-associated protein 1A/1B-light chain 3) were increased. Returning cells to normoxia for 24 hours reversed the increased mt-fragmentation and changes in expression of pro-fission proteins. Hyperoxia-induced changes in mitochondrial structure or cell survival were mitigated by antioxidants mito-TEMPOL, Drp-1 silencing, or inhibition or protection by the mitochondrial endonuclease ENDO III. Hyperoxia induced oxidation and mitochondrial depolarization and impaired transwell resistance. Decrease in resistance was mitigated by mito-TEMPOL or ENDO III and reproduced by overexpression of Drp-1. Because hyperoxia evoked mt-fragmentation, cell survival and transwell resistance are prevented by ENDO

  14. Fas/APO-1 (CD95) expression in myelodysplastic syndromes.

    PubMed

    Lepelley, P; Grardel, N; Erny, O; Iaru, T; Obein, V; Cosson, A; Fenaux, P

    1998-07-01

    Increased apoptosis of myeloid precursors appears to contribute to the pathophysiology of cytopenias in myelodysplastic syndromes (MDS). Fas /APO-1(CD95) is a cell surface protein inducing an apoptotic signal after its binding to Fas ligand or to a functional anti-Fas antibody. Here we studied Fas expression by immunocytochemistry on marrow slides from 30 cases of MDS. Increased Fas expression in erythroblasts and/or immature granulocytes, compared to controls, was seen in 12 (40%) of the cases. In addition, in 16 of the 18 cases with > or = 5% marrow blasts, a variable proportion of blasts expressed Fas. Increased apoptosis was found by morphological analysis and/or TUNEL technique in marrow cells from 8 of the 26 cases analyzed (31%) The ability of Fas antigen to trigger apoptosis was studied after addition of a functional anti Fas antibody in 5 of the patients with Fas overexpression. Addition of this antibody, however, only lead to mild increase of apoptosis in immature granulocytes (but not other myeloid cells) in 2 of the 5 cases. Thus, increased Fas expression is seen in myeloid and/or blast cells in the majority of MDS cases. However, the relationship between this finding and increased apoptosis in MDS still remains to be established.

  15. Valproic Acid Increases Expression of Neuronal Stem/Progenitor Cell in Spinal Cord Injury

    PubMed Central

    Bang, Woo-Seok; Cho, Dae-Chul; Kim, Hye-Jeong; Sung, Joo-Kyung

    2013-01-01

    Objective This study investigates the effect of valproic acid (VPA) on expression of neural stem/progenitor cells (NSPCs) in a rat spinal cord injury (SCI) model. Methods Adult male rats (n=24) were randomly and blindly allocated into three groups. Laminectomy at T9 was performed in all three groups. In group 1 (sham), only laminectomy was performed. In group 2 (SCI-VPA), the animals received a dose of 200 mg/kg of VPA. In group 3 (SCI-saline), animals received 1.0 mL of the saline vehicle solution. A modified aneurysm clip with a closing force of 30 grams was applied extradurally around the spinal cord at T9, and then rapidly released with cord compression persisting for 2 minutes. The rats were sacrificed and the spinal cord were collected one week after SCI. Immunohistochemistry (IHC) and western blotting sample were obtained from 5 mm rostral region to the lesion and prepared. We analyzed the nestin immunoreactivity from the white matter of ventral cord and the ependyma of central canal. Nestin and SOX2 were used for markers for NSPCs and analyzed by IHC and western blotting, respectively. Results Nestin and SOX2 were expressed significantly in the SCI groups but not in the sham group. Comparing SCI groups, nestin and SOX2 expression were much stronger in SCI-VPA group than in SCI-saline group. Conclusion Nestin and SOX2 as markers for NSPCs showed increased expression in SCI-VPA group in comparison with SCI-saline group. This result suggests VPA increases expression of spinal NSPCs in SCI. PMID:24044073

  16. Glucagon Like Peptide-1 Receptor Expression in the Human Thyroid Gland

    PubMed Central

    Gier, Belinda; Butler, Peter C.; Lai, Chi K.; Kirakossian, David; DeNicola, Matthew M.

    2012-01-01

    Background: Glucagon like peptide-1 (GLP-1) mimetic therapy induces medullary thyroid neoplasia in rodents. We sought to establish whether C cells in human medullary thyroid carcinoma, C cell hyperplasia, and normal human thyroid express the GLP-1 receptor. Methods: Thyroid tissue samples with medullary thyroid carcinoma (n = 12), C cell hyperplasia (n = 9), papillary thyroid carcinoma (n = 17), and normal human thyroid (n = 15) were evaluated by immunofluorescence for expression of calcitonin and GLP-1 receptors. Results: Coincident immunoreactivity for calcitonin and GLP-1 receptor was consistently observed in both medullary thyroid carcinoma and C cell hyperplasia. GLP-1 receptor immunoreactivity was also detected in 18% of papillary thyroid carcinoma (three of 17 cases). Within normal human thyroid tissue, GLP-1 receptor immunoreactivity was found in five of 15 of the examined cases in about 35% of the total C cells assessed. Conclusions: In humans, neoplastic and hyperplastic lesions of thyroid C cells express the GLP-1 receptor. GLP-1 receptor expression is detected in 18% papillary thyroid carcinomas and in C cells in 33% of control thyroid lobes. The consequence of long-term pharmacologically increased GLP-1 signaling on these GLP-1 receptor-expressing cells in the thyroid gland in humans remains unknown, but appropriately powered prospective studies to exclude an increase in medullary or papillary carcinomas of the thyroid are warranted. PMID:22031513

  17. In-vivo extravasation induces the expression of interleukin 1 receptor type 1 in human neutrophils

    PubMed Central

    Paulsson, J M; Moshfegh, A; Dadfar, E; Held, C; Jacobson, S H; Lundahl, J

    2012-01-01

    In order to address neutrophil activation during inflammation we assessed the expression of interleukin 1 receptor type 1 (IL-1R1) following in-vivo extravasation. Extravasated neutrophils were collected from 11 healthy study subjects by a skin chamber technique and compared to neutrophils in peripheral blood. Expression of IL-1R1 was assessed by microarray, quantitative polymerase chain reaction (qPCR), Western blot, flow cytometry, enzyme linked immunosorbent assay (ELISA) and immunoelectron microscopy (iEM). IL-1R1 was induced following extravasation, demonstrated by both gene array and qPCR. Western blot demonstrated an increased expression of IL-1R1 in extravasated leucocytes. This was confirmed further in neutrophils by flow cytometry and iEM that also demonstrated an increased intracellular pool of IL-1R1 that could be mobilized by N-formyl-methionine-leucine-phenylalanine (fMLP). Stimulation of peripheral neutrophils with IL-1 resulted in transcription of NFκB and a number of downstream chemokines and the corresponding chemokines were also induced following in-vivo extravasation. The present results demonstrate that IL-1R1 is induced following extravasation and exists on the neutrophil surface, as well as in a mobile intracellular pool. Furthermore, neutrophils express functional IL-1R1 as demonstrated by the induction of chemokines following IL-1 stimulation. The results indicate a potential role for IL-1 in the activation of neutrophils at inflammatory sites. PMID:22385245

  18. miR-1 is increased in pulmonary hypertension and downregulates Kv1.5 channels in rat pulmonary arteries.

    PubMed

    Mondejar-Parreño, Gema; Callejo, María; Barreira, Bianca; Morales-Cano, Daniel; Esquivel-Ruiz, Sergio; Moreno, Laura; Cogolludo, Angel; Perez-Vizcaino, Francisco

    2018-05-02

    ■The expression of miR-1 is increased in lungs from the Hyp/Su5416 PAH rat model. ■PASMC from this animal model are more depolarised and show decreased expression and activity of Kv1.5. ■miR-1 directly targets Kv1.5 channels, reduces Kv1.5 activity and induces membrane depolarization. ■Antagomir-1 prevents Kv1.5 channel downregulation and the depolarization induced by hypoxia/Su5416 exposition. Impairment of voltage-dependent potassium channel (Kv) plays a central role in the development of cardiovascular diseases, including pulmonary arterial hypertension (PAH). MicroRNAs (miRNAs) are non-coding RNAs that regulate gene expression by binding to the 3'-UTR region of specific mRNAs. The aim of this study was to analyze the effects of miR-1 on Kv channel function in pulmonary arteries (PA). Kv channel activity was studied in PA from healthy animals transfected with miR-1 or scrambled-miR. Kv currents were studied using the whole-cell configuration of patch-clamp technique. The characterization of the Kv1.5 currents was performed with the selective inhibitor DPO-1. miR-1 expression was increased and Kv1.5 channels were decreased in lungs from a rat model of PAH induced by hypoxia and Su5416. miR-1 transfection increased cell capacitance, reduced Kv1.5 currents and induced membrane depolarization in isolated pulmonary artery smooth muscle cells (PASMCs). Luciferase reporter assay indicated that KCNA5, which encodes Kv1.5 channels, is a direct target gene of miR-1. Incubation of PA with Su5416 and hypoxia (3% O 2 ) increased miR-1 and induced a decline in Kv1.5 currents, which was prevented by antagomiR-1. In conclusion, these data indicate that miR-1 induces PASMC hypertrophy and reduces the activity and expression of Kv channels, suggesting a pathophysiological role in PAH. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  19. Abnormal Uterine Bleeding Is Associated With Increased BMP7 Expression in Human Endometrium.

    PubMed

    Richards, Elliott G; El-Nashar, Sherif A; Schoolmeester, John K; Keeney, Gary L; Mariani, Andrea; Hopkins, Matthew R; Dowdy, Sean C; Daftary, Gaurang S; Famuyide, Abimbola O

    2017-05-01

    Abnormal uterine bleeding (AUB), a common health concern of women, is a heterogeneous clinical entity that is traditionally categorized into organic and nonorganic causes. Despite varied pharmacologic treatments, few offer sustained efficacy, as most are empiric, unfocused, and do not directly address underlying dysregulated molecular mechanisms. Characterization of such molecular derangements affords the opportunity to develop and use novel, more successful treatments for AUB. Given its implication in other organ systems, we hypothesized that bone morphogenetic protein (BMP) expression is altered in patients with AUB and hence comprehensively investigated dysregulation of BMP signaling pathways by systematically screening 489 samples from 365 patients for differences in the expression of BMP2, 4, 6, and 7 ligands, BMPR1A and B receptors, and downstream SMAD4, 6, and 7 proteins. Expression analysis was correlated clinically with data abstracted from medical records, including bleeding history, age at procedure, ethnicity, body mass index, hormone treatment, and histological diagnosis of fibroids, polyps, adenomyosis, hyperplasia, and cancer. Expression of BMP7 ligand was significantly increased in patients with AUB (H-score: 18.0 vs 26.7; P < .0001). Patients reporting heavy menstrual bleeding (menorrhagia) as their specific AUB pattern demonstrated significantly higher BMP7 expression. Significantly, no differences in the expression of any other BMP ligands, receptors, or SMAD proteins were observed in this large patient cohort. However, expression of BMPR1A, BMPR1B, and SMAD4 was significantly decreased in cancer compared to benign samples. Our study demonstrates that BMP7 is a promising target for future investigation and pharmacologic treatment of AUB.

  20. Apelin-APJ system is responsible for stress-induced increase in atrial natriuretic peptide expression in rat heart.

    PubMed

    Izgut-Uysal, Vecihe Nimet; Acar, Nuray; Birsen, Ilknur; Ozcan, Filiz; Ozbey, Ozlem; Soylu, Hakan; Avci, Sema; Tepekoy, Filiz; Akkoyunlu, Gokhan; Yucel, Gultekin; Ustunel, Ismail

    2018-04-01

    The cardiovascular system is a primary target of stress and stress is the most important etiologic factor in cardiovascular diseases. Stressors increase expressions of atrial natriuretic peptide (ANP) and apelin in cardiac tissue. The aim of the present study was to investigate whether stress-induced apelin has an effect on the expression of ANP in the right atrium of rat heart. The rats were divided into the control, stress and F13A+stress groups. In the stress and F13A+stress groups, the rats were subjected to water immersion and restraint stress (WIRS) for 6h. In the F13A+stress group, apelin receptor antagonist F13A, was injected intravenously immediately before application of WIRS. The plasma samples were obtained for the measurement of corticosterone and atrial natriuretic peptide. The atrial samples were used for immunohistochemistry and western blot analysis. F13A administration prevented the rise of plasma corticosterone and ANP levels induced by WIRS. While WIRS application increased the expressions of apelin, HIF-1α and ANP in atrial tissue, while F13A prevented the stress-induced increase in the expression of HIF-1α and ANP. Stress-induced apelin induces ANP expression in atrial tissue and may play a role in cardiovascular homeostasis by increasing ANP expression under WIRS conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.