Science.gov

Sample records for increased inflammatory gene

  1. Bactericidal Permeability Increasing Protein Gene Polymorphism is Associated with Inflammatory Bowel Diseases in the Turkish Population

    PubMed Central

    Can, Güray; Akın, Hakan; Özdemir, Filiz T.; Can, Hatice; Yılmaz, Bülent; Eren, Fatih; Atuğ, Özlen; Ünsal, Belkıs; Hamzaoğlu, Hülya O.

    2015-01-01

    Background/Aims: Inflammatory bowel disease, a chronic inflammatory disease with unknown etiology, affects the small and large bowel at different levels. It is increasingly considered that innate immune system may have a central position in the pathogenesis of the disease. As a part of the innate immune system, bactericidal permeability increasing protein has an important role in the recognition and neutralization of gram-negative bacteria. The aim of our study was to investigate the involvement of bactericidal permeability increasing protein gene polymorphism (bactericidal permeability increasing protein Lys216Glu) in inflammatory bowel disease in a large group of Turkish patients. Patients and Methods: The present study included 528 inflammatory bowel disease patients, 224 with Crohn's disease and 304 with ulcerative colitis, and 339 healthy controls. Results: Bactericidal permeability increasing protein Lys216Glu polymorphism was found to be associated with both Crohn's disease and ulcerative colitis (P = 0.0001). The frequency of the Glu/Glu genotype was significantly lower in patients using steroids and in those with steroid dependence (P = 0.012, OR, 0.80; 95% confidence interval [CI]: 0.68-0.94; P = 0.0286, OR, 0.75; 95% CI: 0.66-0.86, respectively). There was no other association between bactericidal permeability increasing protein gene polymorphism and phenotypes of inflammatory bowel disease. Conclusions: Bactericidal permeability increasing protein Lys216Glu polymorphism is associated with both Crohn's disease and ulcerative colitis. This is the first study reporting the association of bactericidal permeability increasing protein gene polymorphism with steroid use and dependence in Crohn's disease. PMID:26228368

  2. High Glucose Increases the Expression of Inflammatory Cytokine Genes in Macrophages Through H3K9 Methyltransferase Mechanism.

    PubMed

    Li, Mei-Fang; Zhang, Rong; Li, Ting-Ting; Chen, Ming-Yun; Li, Lian-Xi; Lu, Jun-Xi; Jia, Wei-Ping

    2016-01-01

    Recent studies suggest that histone modification is one of the mechanisms regulating inflammatory cytokine gene expression in hyperglycemic conditions. However, it remains unknown how histone methylation is initiated and involved in changes of inflammatory cytokine gene expression under high glucose (HG) conditions. Our aim was to investigate whether H3K9 methylation was involved in HG-induced expression of inflammatory cytokines in macrophages. Expression profile of cytokine genes under hyperglycemia in THP-1-derived macrophages was determined by human cytokine antibody array. Based on the results from the human cytokine antibody array analyses, the H3K9me3 levels of 4 inflammatory cytokine genes, including interleukin-6 (IL-6), IL-12p40, macrophage inflammatory protein-1α (MIP-1α), and MIP-1β under HG were determined by ChIP assays. Furthermore, the expression of these 4 inflammatory cytokine genes under either HG or chaetocin (an inhibitor of SUV39H1 methyltransferase) exposure or overexpression of SUV39H1 (a H3K9me3-specific methyltransferase) was analyzed by quantitative polymerase chain reaction. Macrophages cultured in HG conditions showed increased gene expression and decreased H3K9me3 levels of inflammatory cytokine genes compared with macrophages incubated in normal glucose (NG) culture. Inhibition of SUV39H1 with chaetocin in NG-treated macrophages also increased the expression of IL-6, IL-12p40, MIP-1α, and MIP-1β. Furthermore, inhibition of SUV39H1 with chaetocin in HG-treated macrophages further increased the expression of these inflammatory cytokines. Contrarily, NG-treated macrophages transfected with SUV39H1 plasmids show decreased expression of inflammatory cytokines. Furthermore, overexpression of SUV39H1 in HG-treated macrophages alleviated the expression of inflammatory cytokines under HG conditions. Finally, HG also increases the expression of inflammation cytokines in mouse bone marrow-derived macrophages. Our data demonstrated that HG

  3. Gene expression analysis of tuberous sclerosis complex cortical tubers reveals increased expression of adhesion and inflammatory factors

    PubMed Central

    Boer, Karin; Crino, Peter B.; Gorter, Jan A.; Nellist, Mark; Jansen, Floor E.; Spliet, Wim G.M.; van Rijen, Peter C.; Wittink, Floyd R.A.; Breit, Timo M.; Troost, Dirk; Wadman, Wytse J.; Aronica, Eleonora

    2009-01-01

    Cortical tubers in patients with tuberous sclerosis complex are associated with disabling neurological manifestations, including intractable epilepsy. While these malformations are believed to result from the effects of TSC1 or TSC2 gene mutations, the molecular mechanisms leading to tuber formation, as well as the onset of seizures remain largely unknown. We used the Affymetrix Gene Chip platform to provide the first genome wide investigation of gene expression in surgically resected tubers, compared with histological normal perituberal tissue from the same patients or autopsy control tissue. We identified 2501 differentially expressed genes in cortical tubers compared with autopsy controls. Expression of genes associated with cell adhesion e.g., VCAM1, integrins and CD44, or with the inflammatory response, including complement factors, serpinA3, CCL2 and several cytokines, was increased in cortical tubers, whereas genes related to synaptic transmission e.g., the glial glutamate transporter GLT-1, and voltage-gated channel activity, exhibited lower expression. Gene expression in perituberal cortex was distinct from autopsy control cortex suggesting that even in the absence of tissue pathology the transcriptome is altered in TSC. Changes in gene expression yield insights into new candidate genes that may contribute to tuber formation or seizure onset, representing new targets for potential therapeutic development. PMID:19912235

  4. RNA Sequence Analysis of Human Huntington Disease Brain Reveals an Extensive Increase in Inflammatory and Developmental Gene Expression

    PubMed Central

    Labadorf, Adam; Hoss, Andrew G.; Lagomarsino, Valentina; Latourelle, Jeanne C.; Hadzi, Tiffany C.; Bregu, Joli; MacDonald, Marcy E.; Gusella, James F.; Chen, Jiang-Fan; Akbarian, Schahram; Weng, Zhiping; Myers, Richard H.

    2015-01-01

    Huntington’s Disease (HD) is a devastating neurodegenerative disorder that is caused by an expanded CAG trinucleotide repeat in the Huntingtin (HTT) gene. Transcriptional dysregulation in the human HD brain has been documented but is incompletely understood. Here we present a genome-wide analysis of mRNA expression in human prefrontal cortex from 20 HD and 49 neuropathologically normal controls using next generation high-throughput sequencing. Surprisingly, 19% (5,480) of the 28,087 confidently detected genes are differentially expressed (FDR<0.05) and are predominantly up-regulated. A novel hypothesis-free geneset enrichment method that dissects large gene lists into functionally and transcriptionally related groups discovers that the differentially expressed genes are enriched for immune response, neuroinflammation, and developmental genes. Markers for all major brain cell types are observed, suggesting that HD invokes a systemic response in the brain area studied. Unexpectedly, the most strongly differentially expressed genes are a homeotic gene set (represented by Hox and other homeobox genes), that are almost exclusively expressed in HD, a profile not widely implicated in HD pathogenesis. The significance of transcriptional changes of developmental processes in the HD brain is poorly understood and warrants further investigation. The role of inflammation and the significance of non-neuronal involvement in HD pathogenesis suggest anti-inflammatory therapeutics may offer important opportunities in treating HD. PMID:26636579

  5. Increasing of temperature induces pathogenicity of Streptococcus agalactiae and the up-regulation of inflammatory related genes in infected Nile tilapia (Oreochromis niloticus).

    PubMed

    Kayansamruaj, Pattanapon; Pirarat, Nopadon; Hirono, Ikuo; Rodkhum, Channarong

    2014-08-01

    Temperature strongly affects the health of aquatic poikilotherms. In Nile tilapia (Oreochromis niloticus), elevated water temperatures increase the severity of streptococcosis. Here we investigated the effects of temperature on the vulnerability and inflammatory response of Nile tilapia to Streptococcus agalactiae (Group B streptococci; GBS). At 35 and 28 °C, GBS took 4 and 7h, respectively to reach the log-phase and, when incubated with tilapia whole blood, experienced survival rates of 97% and 2%, respectively. The hemolysis activity of GBS grown at 35 °C was five times higher than that of GBS grown at 28 °C. GBS expressed cylE (β-hemolysin/cytolysin), cfb (CAMP factor) and PI-2b (pili-backbone) much more strongly at 35 °C than at 28 °C. Challenging Nile tilapia reared at 35 and 28 °C with GBS resulted in accumulated mortalities of about 85% and 45%, respectively. At 35 °C, infected tilapia exhibited tremendous inflammatory responses due to a dramatic up-regulation (30-40-fold) of inflammatory-related genes (cyclooxygenase-2, IL-1β and TNF-α) between 6 and 96 h-post infection. These results suggest that the increase of GBS pathogenicity to Nile tilapia induced by elevated temperature is associated with massive inflammatory responses, which may lead to acute mortality. PMID:24856132

  6. Type 2 Diabetes Monocyte MicroRNA and mRNA Expression: Dyslipidemia Associates with Increased Differentiation-Related Genes but Not Inflammatory Activation

    PubMed Central

    Baldeón R., Lucy; Weigelt, Karin; de Wit, Harm; Ozcan, Behiye; van Oudenaren, Adri; Sempértegui, Fernando; Sijbrands, Eric; Grosse, Laura; van Zonneveld, Anton-Jan; Drexhage, Hemmo A.; Leenen, Pieter J. M.

    2015-01-01

    There is increasing evidence that inflammatory macrophages in adipose tissue are involved in insulin resistance of type 2 diabetes (T2D). Due to a relative paucity of data on circulating monocytes in T2D, it is unclear whether the inflammatory changes of adipose tissue macrophages are reflected in these easily accessible cells. Objective To study the expression pattern of microRNAs and mRNAs related to inflammation in T2D monocytes. Design A microRNA finding study on monocytes of T2D patients and controls using array profiling was followed by a quantitative Real Time PCR (qPCR) study on monocytes of an Ecuadorian validation cohort testing the top over/under-expressed microRNAs. In addition, monocytes of the validation cohort were tested for 24 inflammation-related mRNAs and 2 microRNAs previously found deregulated in (auto)-inflammatory monocytes. Results In the finding study, 142 significantly differentially expressed microRNAs were identified, 15 having the strongest power to discriminate T2D patients from controls (sensitivity 66%, specificity 90%). However, differences in expression of these microRNAs between patients and controls were small. On the basis of >1.4 or <0.6-fold change expression 5 microRNAs were selected for further validation. One microRNA (miR-34c-5p) was validated as significantly over-expressed in T2D monocytes. In addition, we found over expression of 3 mRNAs (CD9, DHRS3 and PTPN7) in the validation cohort. These mRNAs are important for cell morphology, adhesion, shape change, and cell differentiation. Classical inflammatory genes (e.g. TNFAIP3) were only over-expressed in monocytes of patients with normal serum lipids. Remarkably, in dyslipidemia, there was a reduction in the expression of inflammatory genes (e.g. ATF3, DUSP2 and PTGS2). Conclusions The expression profile of microRNAs/mRNAs in monocytes of T2D patients indicates an altered adhesion, differentiation, and shape change potential. Monocyte inflammatory activation was only found

  7. Gene expression profiling of inflammatory bladder disorders.

    PubMed

    Saban, Marcia R; Nguyen, Ngoc-Bich; Hurst, Robert E; Saban, Ricardo

    2003-03-01

    Inflammation underlies all major bladder pathologies including malignancy and represents a defense reaction to injury caused by physical damage, chemical substances, micro-organisms or other agents. During acute inflammation, activation of specific molecular pathways leads to an increased expression of selected genes whose products attack the insult, but ultimately should protect the tissue from the noxious stimulus. However, once the stimulus ceases, gene-expression should return to basal levels to avoid tissue damage, fibrosis, loss of function, and chronic inflammation. If this down-regulation does not occur, tissue fibrosis occurs as a serious complication of chronic inflammation. Although sensory nerve and most cells products are known to be key parts of the inflammatory puzzle, other key molecules are constantly being described that have a role in bladder inflammation. Therefore, as the database describing the repertoire of inflammatory mediators implicated in bladder inflammation increases, the central mechanisms by which injury can induce inflammation, cell damage, and repair often becomes less rather than more clear. To make sense of the vast knowledge of the genes involved in the inflammatory response may require analysis of the patterns of change and the elucidation of gene networks far more than definition of additional members of inflammatory cascades. This review discuss the appropriate use of microarray technology, which promises to solve both of these problems as well as identifying key molecules and mechanisms involved in the transition between acute and chronic inflammation. PMID:12647997

  8. Irradiation of mechanically-injured human arterial endothelial cells leads to increased gene expression and secretion of inflammatory and growth promoting cytokines.

    PubMed

    Wondergem, J; Wedekind, L E; Bart, C I; Chin, A; van der Laarse, A; Beekhuizen, H

    2004-07-01

    induced a 2.3 +/- 0.3-fold increase (P < 0.05) in Fas surface expression only. In conclusion, irradiation of mechanically-injured human EC leads to increased gene expression and protein secretion of inflammatory and growth promoting cytokines. PMID:15186947

  9. Harsh parent-child conflict is associated with decreased anti-inflammatory gene expression and increased symptom severity in children with asthma.

    PubMed

    Ehrlich, Katherine B; Miller, Gregory E; Chen, Edith

    2015-11-01

    Asthma is a chronic respiratory disorder that affects over 7 million children in the United States. Evidence indicates that family stressors are associated with worsening of asthma symptoms, and some research suggests that these stressful experiences engender changes in children's immune systems in ways that exacerbate airway inflammation and contribute to both acute and chronic asthma symptoms. We examined the association between observed experiences of parent-child conflict and the expression of signaling molecules involved in the transduction of anti-inflammatory signals that regulate airway inflammation and obstruction. Fifty-seven children and their parents participated in a conflict task, and coders rated interactions for evidence of harsh and supportive behaviors. Children reported on their perceptions of parental support and reported on their daily asthma symptoms for 2 weeks. We collected peripheral blood in children to measure leukocyte expression of messenger RNA for the glucocorticoid receptor and the β2-adrenergic receptor. Analyses revealed that harsh conflict behaviors were associated with decreased expression of both messenger RNAs and more severe asthma symptoms. Neither supportive behaviors nor perceived parental support was associated with gene expression or asthma symptoms. These findings suggest that harsh interactions with parents are associated with downregulation of key anti-inflammatory signaling molecules and difficulties breathing in children with asthma. Children with asthma who are also victims of maltreatment may be particularly susceptible to transcriptional changes in immune cells that could worsen asthma over time. PMID:26535943

  10. Increased messenger RNA for allograft inflammatory factor-1, LERK-5, and a novel gene in 17.5-day relative to 15.5-day bovine embryos.

    PubMed

    Glover, Michelle D; Seidel, George E

    2003-09-01

    Considerable embryonic loss occurs between Gestation Days 15 and 18 in cattle when critical cellular and molecular events occur, including maternal recognition of pregnancy. To gain insight into these events, mRNA differential display analysis was used to identify eight unique cDNA fragments present in greater abundance in 17.5-day than in 15.5-day bovine embryos. Four cDNA fragments, confirmed to be upregulated in 17.5-day embryos using Northern analysis, were cloned and sequenced. Three cDNA fragments shared sequence identities with known homologs: human allograft inflammatory factor-1 (AIF-1), human LERK-5, and bovine interferon-tau. One novel cDNA fragment did not share sequence identity to previously reported genes, except for a similar DNA sequence in the human genome. AIF-1 mRNA was present in developing placenta through Gestation Day 36, and abundant levels were observed in adult bovine spleen and lung. The novel gene, which we have named periattachment factor (PAF), was not detected in adult tissues using Northern analysis or in conceptuses between Days 30 and 36 of pregnancy. Additional sequence information for bPAF was obtained from a cDNA library constructed from a 25-day bovine embryo. The protein corresponding to the open reading frame has four protein kinase C phosphorylation sites, two casein kinase II phosphorylation sites, a nuclear targeting sequence, but no obvious DNA or RNA binding motifs. Abundant expression of this gene during a narrow but critical window of embryonic development makes it worthy of further study. PMID:12773430

  11. Plasma infusions into porcine cerebral white matter induce early edema, oxidative stress, pro-inflammatory cytokine gene expression and DNA fragmentation: implications for white matter injury with increased blood-brain-barrier permeability.

    PubMed

    Wagner, Kenneth R; Dean, Christopher; Beiler, Shauna; Bryan, David W; Packard, Benjamin A; Smulian, A George; Linke, Michael J; de Courten-Myers, Gabrielle M

    2005-04-01

    Plasma infused into porcine cerebral white matter induces both acute interstitial and delayed vasogenic edema. Edematous white matter contains extracellular plasma proteins and rapidly induces oxidative stress as evidenced by increased protein carbonyl formation and heme oxygenase-1 induction. We tested the hypothesis that edematous white matter would also upregulate pro-inflammatory cytokine gene expression and develop DNA damage. We infused autologous plasma into the frontal hemispheric white matter of pentobarbital-anesthetized pigs. We monitored and controlled physiological variables and froze brains in situ at 1, 4 or 24 hrs. We determined edema volumes by computer-assisted morphometry. We measured white matter protein carbonyl formation by immunoblotting, cytokine gene expression by standard RT-PCR methods and DNA fragmentation by agarose gel electrophoresis. White matter edema developed acutely (1 hr) after plasma infusion and increased significantly in volume between 4 and 24 hrs. Protein carbonyl formation also occurred rapidly in edematous white matter with significant elevations (3 to 4-fold) already present at 1 hr. This increase remained through 24 hrs. Pro-inflammatory cytokine gene expression was also rapidly increased at 1 hr post-infusion. Evidence for DNA fragmentation began at 2 to 4 hrs, and a pattern indicative of both ongoing necrosis and apoptosis was robust by 24 hrs. Plasma protein accumulation in white matter induces acute edema development and a cascade of patho-chemical events including oxidative stress, pro-inflammatory cytokine gene expression and DNA damage. These results suggest that in diseases with increased blood-brain barrier (BBB) permeability or following intracerebral hemorrhage or traumatic brain injury, interstitial plasma can rapidly damage white matter. PMID:16181107

  12. Age-Related Macular Degeneration: Insights into Inflammatory Genes

    PubMed Central

    Ragazzo, Michele; Missiroli, Filippo; Borgiani, Paola; Angelucci, Francesco; Marsella, Luigi Tonino; Cusumano, Andrea; Novelli, Giuseppe; Ricci, Federico; Giardina, Emiliano

    2014-01-01

    Age-related macular degeneration (AMD) is a progressive neurodegenerative disease that affects approximately 8.7% of elderly people worldwide (>55 years old). AMD is characterized by a multifactorial aetiology that involves several genetic and environmental risk factors (genes, ageing, smoking, family history, dietary habits, oxidative stress, and hypertension). In particular, ageing and cigarette smoking (including oxidative compounds and reactive oxygen species) have been shown to significantly increase susceptibility to the disease. Furthermore, different genes (CFH, CFI, C2, C3, IL-6, IL-8, and ARMS2) that play a crucial role in the inflammatory pathway have been associated with AMD risk. Several genetic and molecular studies have indicated the participation of inflammatory molecules (cytokines and chemokines), immune cells (macrophages), and complement proteins in the development and progression of the disease. Taking into consideration the genetic and molecular background, this review highlights the genetic role of inflammatory genes involved in AMD pathogenesis and progression. PMID:25478207

  13. Gene therapy for lung inflammatory diseases: not so far away?

    PubMed Central

    Sallenave, J. M.; Porteous, D. J.; Haslett, C.

    1997-01-01

    The lung is a readily accessible target organ for gene therapy. To date, therapeutic gene delivery has largely focused on introducing functional, corrective genes in lung diseases arising from single gene defects such as cystic fibrosis. More recently interest has centred on gene therapy as a potential therapeutic tool in modulating complex pathological processes such as pulmonary inflammation. Genetic modification of critical components of the inflammatory process may be beneficial-for example, overexpressing anti-elastase genes may circumvent elastase mediated lung damage in emphysema. With the development of improved viral and liposome vectors and the evolution of effective adjuvant immunosuppression to obviate host immune responses-- for example, using selective cytokines and blockers of T cell surface activation--the potential exists to target therapeutic doses of transgene to deficient or dysregulated cells. Furthermore, increased understanding of tissue-specific promoter regions and of mechanisms controlling regulation of gene expression offer the potential for close control of therapeutic gene expression within the lung. Continuing refinements in these technologies will provide new therapeutic strategies in inflammatory lung disease. 


 PMID:9337837

  14. Gene therapy for lung inflammatory diseases: not so far away?

    PubMed

    Sallenave, J M; Porteous, D J; Haslett, C

    1997-08-01

    The lung is a readily accessible target organ for gene therapy. To date, therapeutic gene delivery has largely focused on introducing functional, corrective genes in lung diseases arising from single gene defects such as cystic fibrosis. More recently interest has centred on gene therapy as a potential therapeutic tool in modulating complex pathological processes such as pulmonary inflammation. Genetic modification of critical components of the inflammatory process may be beneficial-for example, overexpressing anti-elastase genes may circumvent elastase mediated lung damage in emphysema. With the development of improved viral and liposome vectors and the evolution of effective adjuvant immunosuppression to obviate host immune responses--for example, using selective cytokines and blockers of T cell surface activation--the potential exists to target therapeutic doses of transgene to deficient or dysregulated cells. Furthermore, increased understanding of tissue-specific promoter regions and of mechanisms controlling regulation of gene expression offer the potential for close control of therapeutic gene expression within the lung. Continuing refinements in these technologies will provide new therapeutic strategies in inflammatory lung disease. PMID:9337837

  15. Titanium dioxide nanoparticles increase inflammatory responses in vascular endothelial cells

    PubMed Central

    Han, Sung Gu; Newsome, Bradley; Hennig, Bernhard

    2013-01-01

    Atherosclerosis is a chronic inflammatory disease that remains the leading cause of death in the United States. Numerous risk factors for endothelial cell inflammation and the development of atherosclerosis have been identified, including inhalation of ultrafine particles. Recently, engineered nanoparticles (NPs) such as titanium (TiO2) NPs have attracted much attention due to their wide range of applications. However, there are also great concerns surrounding potential adverse health effects in vascular systems. Although TiO2 NPs are known to induce oxidative stress and inflammation, the associated signaling pathways have not been well studied. The focus of this work, therefore, deals with examination of the cellular signaling pathways responsible for TiO2 NP-induced endothelial oxidative stress and inflammation. In this study, primary vascular endothelial cells were treated with TiO2 NPs for 2–16 h at concentrations of 0–50 µg/mL. TiO2 NP exposure increased cellular oxidative stress and DNA binding of NF-κB. Further, phosphorylation of Akt, ERK, JNK and p38 was increased in cells exposed to TiO2 NPs. TiO2 NPs also significantly increased induction of mRNA and protein levels of vascular cell adhesion molecule-1 (VCAM-1) and mRNA levels of monocyte chemoattractant protein-1 (MCP-1). Pretreatment with inhibitors for NF-κB (pyrrolidine dithiocarbamate), oxidative stress (epigallocatechin gallate and apocynin), Akt (LY294002), ERK (PD98059), JNK (SP600125) and p38 (SB203580) significantly attenuated TiO2 NP-induced MCP-1 and VCAM-1 gene expression, as well as activation of NF-κB. These data indicate that TiO2 NPs can induce endothelial inflammatory responses via redox-sensitive cellular signaling pathways. PMID:23380242

  16. Recombinant bovine respiratory syncytial virus with deletion of the SH gene induces increased apoptosis and pro-inflammatory cytokines in vitro, and is attenuated and induces protective immunity in calves

    PubMed Central

    Wyld, Sara; Valarcher, Jean-Francois; Guzman, Efrain; Thom, Michelle; Widdison, Stephanie; Buchholz, Ursula J.

    2014-01-01

    Bovine respiratory syncytial virus (BRSV) causes inflammation and obstruction of the small airways, leading to severe respiratory disease in young calves. The virus is closely related to human (H)RSV, a major cause of bronchiolitis and pneumonia in young children. The ability to manipulate the genome of RSV has provided opportunities for the development of stable, live attenuated RSV vaccines. The role of the SH protein in the pathogenesis of BRSV was evaluated in vitro and in vivo using a recombinant (r)BRSV in which the SH gene had been deleted. Infection of bovine epithelial cells and monocytes with rBRSVΔSH, in vitro, resulted in an increase in apoptosis, and higher levels of TNF-α and IL-1β compared with cells infected with parental, wild-type (WT) rBRSV. Although replication of rBRSVΔSH and WT rBRSV, in vitro, were similar, the replication of rBRSVΔSH was moderately reduced in the lower, but not the upper, respiratory tract of experimentally infected calves. Despite the greater ability of rBRSVΔSH to induce pro-inflammatory cytokines, in vitro, the pulmonary inflammatory response in rBRSVΔSH-infected calves was significantly reduced compared with that in calves inoculated with WT rBRSV, 6 days previously. Virus lacking SH appeared to be as immunogenic and effective in inducing resistance to virulent virus challenge, 6 months later, as the parental rBRSV. These findings suggest that rBRSVΔSH may be an ideal live attenuated virus vaccine candidate, combining safety with a high level of immunogenicity. PMID:24700100

  17. Macrophage Expression of Inflammatory Genes in Response to EMCV Infection

    PubMed Central

    Shaheen, Zachary R.; Corbett, John A.

    2015-01-01

    The expression and production of type 1 interferon is the classic cellular response to virus infection. In addition to this antiviral response, virus infection also stimulates the production of proinflammatory mediators. In this review, the pathways controlling the induction of inflammatory genes and the roles that these inflammatory mediators contribute to host defense against viral pathogens will be discussed. Specific focus will be on the role of the chemokine receptor CCR5, as a signaling receptor controlling the activation of pathways leading to virus-induced inflammatory gene expression. PMID:26295266

  18. Placental inflammation is not increased in inflammatory bowel disease

    PubMed Central

    Taleban, Sasha; Gundogan, Fusun; Chien, Edward K.; Degli-Esposti, Silvia; Saha, Sumona

    2015-01-01

    Background Women with inflammatory bowel disease (IBD) are at increased risk for adverse birth outcomes such as preterm delivery and small for gestational age (SGA) infants. Most recognized cases of fetal growth restriction in singleton pregnancies have underlying placental causes. However, studies in IBD examining poor birth outcomes have focused on maternal factors. We examined whether women with IBD have a higher rate of placental inflammation than non-IBD controls. Methods Between 2008 and 2011, the placental tissue of 7 ulcerative colitis, 5 Crohn’s disease, and 2 IBD-unclassified subjects enrolled in the Pregnancy in Inflammatory Bowel Disease and Neonatal Outcome (PIANO) registry were evaluated for villitis, deciduitis, and chorioamnionitis with/without a fetal inflammatory response. The history and birth outcomes of all IBD subjects were reviewed and matched to 26 non-IBD controls by gestational age at delivery. Results Of women with IBD, 29% delivered preterm infants and 21% delivered SGA infants. Half of the IBD patients had mild-moderate disease flares during pregnancy. Five (36%) patients required corticosteroids, 2 (14%) were maintained on an immunomodulator, and 3 (21%) others received tumor necrosis factor-alpha inhibitors during their pregnancy. Chorioamnionitis was the only identified placental pathology present in the placentas reviewed, occurring less frequently in cases compared to controls (7% vs. 27%, P=0.32). Conclusions Placental inflammatory activation does not appear to be responsible for the increase in adverse birth outcome in women with IBD. Further studies are necessary to validate these findings in IBD to explain poor birth outcomes. PMID:26423206

  19. Increased Prevalence of Methanosphaera stadtmanae in Inflammatory Bowel Diseases

    PubMed Central

    Blais Lecours, Pascale; Marsolais, David; Cormier, Yvon; Berberi, Marie; Haché, Chantal; Bourdages, Raymond; Duchaine, Caroline

    2014-01-01

    Background The gut microbiota is associated with the modulation of mucosal immunity and the etiology of inflammatory bowel diseases (IBD). Previous studies focused on the impact of bacterial species on IBD but seldom suspected archaea, which can be a major constituent of intestinal microbiota, to be implicated in the diseases. Recent evidence supports that two main archaeal species found in the digestive system of humans, Methanobrevibacter smithii (MBS) and Methanosphaera stadtmanae (MSS) can have differential immunogenic properties in lungs of mice; with MSS but not MBS being a strong inducer of the inflammatory response. We thus aimed at documenting the immunogenic potential of MBS and MSS in humans and to explore their association with IBD. Methods To validate the immunogenicity of MBS and MSS in humans, peripheral blood mononuclear cells from healthy subjects were stimulated with these two microorganisms and the production of inflammatory cytokine TNF was measured by ELISA. To verify MBS and MSS prevalence in IBD, stool samples from 29 healthy control subjects and 29 patients suffering from IBD were collected for DNA extraction. Plasma was also collected from these subjects to measure antigen-specific IgGs by ELISA. Quantitative PCR was used for bacteria, methanogens, MBS and MSS quantification. Results Mononuclear cells stimulated with MSS produced higher concentrations of TNF (39.5 ng/ml) compared to MBS stimulation (9.1 ng/ml). Bacterial concentrations and frequency of MBS-containing stools were similar in both groups. However, the number of stool samples positive for the inflammatory archaea MSS was higher in patients than in controls (47% vs 20%). Importantly, only IBD patients developed a significant anti-MSS IgG response. Conclusion The prevalence of MSS is increased in IBD patients and is associated with an antigen-specific IgG response. PMID:24498365

  20. Pro- and anti-inflammatory cytokine gene single-nucleotide polymorphisms in inflammatory bowel disease.

    PubMed

    López-Hernández, R; Valdés, M; Campillo, J A; Martínez-García, P; Salama, H; Bolarin, J M; Martínez, H; Moya-Quiles, M R; Minguela, A; Sánchez-Torres, A; Botella, C; Salgado, G; Miras, M; Carballo, F; Muro, M

    2015-02-01

    Anti-inflammatory cytokines have an important role in disease, tumour and transplant processes. Alterations in the regulation of several cytokines have been implicated in a variety of inflammatory disorders, including IBD (inflammatory bowel disease) [Crohn's disease (CD) and ulcerative colitis (UC)]. Cytokine polymorphisms are also known to affect the level of gene expression. Thus, the aim of this study was to determine the relationship between cytokine polymorphisms and the IBD pathologies in a Spanish population. Polymorphisms analysis was performed using PCR-SSOP using a microbeads luminex assay. The following polymorphisms were determined: TNFα [-238G/A (rs361525) and -308G/A (rs1800629)], IFNγ [+874A/T (rs62559044)], TGFβ [+869C/T (rs1982073) and +915G/C (rs1800471)], IL10 [-1082A/A (rs1800896), -592A/C (rs1800872), -819C/T (rs1800871)], IL6 [-174C/G (rs1800795)], IL12p40 [3'UTR -1188A/C (rs3212227)], IL1α [-889C/T (rs1800587)], IL1β [-511C/T (rs1143634) and +3962C/T (rs1143633)], IL1R [Pst-1 1970C/T] and IL1RA [Mspa-1 11100C/T]. No statistical differences in TNFα, IFNγ, TGFβ, IL10, IL6, IL1α, IL1β, IL1R and IL1Ra genotypes and allele distributions between the IBD groups and healthy controls were found. However, we observed significant differences in the 3'UTR -1188A/C polymorphism of IL12p40. So -1188A allele was increased in patients with UC and the -1188C allele (high IL12p40 production) was increased in patients with CD with respect to controls. These data are in concordance with the fact that CD has been shown to be associated with a Th1 T-cell-mediated inflammation model and high IL12/IFNγ production at histological affected sites. These data suggest that cytokine polymorphisms in TNFα, IFNγ, TGFβ, IL10, IL6 and IL1α, IL1β, IL1R and IL1Ra cytokine gene do not seem to be relevant in IBD susceptibility and IL12p40 3'UTR -1188A/C polymorphism seems to be associated with a differential IBD development. PMID:25359546

  1. Genomic loci and candidate genes underlying inflammatory nociception

    PubMed Central

    Nair, Harsha K.; Hain, Heather; Quock, Raymond M.; Philip, Vivek M.; Chesler, Elissa J.; Belknap, John K.; Lariviere, William R.

    2011-01-01

    Heritable genetic factors contribute significantly to inflammatory nociception. To determine candidate genes underlying inflammatory nociception, the current study used a mouse model of abdominal inflammatory pain. BXD recombinant inbred (RI) mouse strains were administered the intraperitoneal (IP) acetic acid test and genome-wide quantitative trait locus (QTL) mapping was performed on the mean number of abdominal contraction and extension movements in three distinct groups of BXD RI mouse strains in two separate experiments. Combined mapping results detected two QTLs on chromosomes (Chr) 3 and 10 across experiments and groups of mice; an additional sex-specific QTL was detected on Chr 16. The results replicate previous findings of a significant QTL, Nociq2, on distal Chr 10 for formalin-induced inflammatory nociception and will aid in identification of the underlying candidate genes. Comparisons of sensitivity to IP acetic acid in BXD RI mouse strains with microarray mRNA transcript expression profiles in specific brain areas detected covarying expression of candidate genes that are also found in the detected QTL confidence intervals. The results indicate that common and distinct genetic mechanisms underlie heritable sensitivity to diverse inflammatory insults, and provide a discrete set of high priority candidate genes to investigate further in rodents and human association studies. PMID:21195549

  2. Systematically identify key genes in inflammatory and non-inflammatory breast cancer.

    PubMed

    Chai, Fan; Liang, Yan; Zhang, Fan; Wang, Minghao; Zhong, Ling; Jiang, Jun

    2016-01-10

    Although the gene expression in breast tumor stroma, playing a critical role in determining inflammatory breast cancer (IBC) phenotype, has been proved to be significantly different between IBC and non-inflammatory breast cancer (non-IBC), more effort needs to systematically investigate the gene expression profiles between tumor epithelium and stroma and to efficiently uncover the potential molecular networks and critical genes for IBC and non-IBC. Here, we comprehensively analyzed and compared the transcriptional profiles from IBC and non-IBC patients using hierarchical clustering, protein-protein interaction (PPI) network, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) database analyses, and identified PDGFRβ, SUMO1, COL1A1, FYN, CAV1, COL5A1 and MMP2 to be the key genes for breast cancer. Interestingly, PDGFRβ was found to be the hub gene in both IBC and non-IBC; SUMO1 and COL1A1 were respectively the key genes for IBC and non-IBC. These analysis results indicated that those key genes might play important role in IBC and non-IBC and provided some clues for future studies. PMID:26403314

  3. WISP1 Is Increased in Intestinal Mucosa and Contributes to Inflammatory Cascades in Inflammatory Bowel Disease

    PubMed Central

    Zhang, Qi; Zhang, Cuiping; Li, Xiaoyu; Yu, Yanan; Liang, Kun; Shan, Xinzhi; Zhao, Kun; Niu, Qinghui; Tian, Zibin

    2016-01-01

    Inflammatory bowel disease (IBD) is mainly characterized by intestinal tissue damage, which is caused by excessive autoimmune responses poorly controlled by corresponding regulatory mechanisms. WISP1, which belongs to the CCN protein family, is a secreted matricellular protein regulating several inflammatory pathways, such as Wnt/β-catenin pathway, and has been reported in several diseases including cancer. Here we examined the expression, regulatory mechanisms, and functions of WISP1 in IBD. WISP1 mRNA and protein expression was upregulated in colonic biopsies and lamina propria mononuclear cells (LPMC) of IBD patients compared with those of healthy controls. Tumor necrosis factor- (TNF-) α induced WISP1 expression in LPMC from healthy controls. Consistently, WISP1 mRNA expression was downregulated in colonic biopsies from IBD patients who had achieved clinical remission with infliximab (IFX). Furthermore, WISP1 expression was also found to be increased in colons from 2,4,6-trinitrobenzenesulfonic acid- (TNBS-) induced mice compared with those from control mice. Further studies confirmed that administration of rWISP1 could aggravate TNBS-induced colitis in vivo. Therefore, we concluded that WISP1 is increased in IBD and contributes to the proinflammatory cascades in the gut. PMID:27403031

  4. Regulation of Inflammatory Gene Expression in PBMCs by Immunostimulatory Botanicals

    PubMed Central

    Denzler, Karen L.; Waters, Robert; Jacobs, Bertram L.; Rochon, Yvan; Langland, Jeffrey O.

    2010-01-01

    Many hundreds of botanicals are used in complementary and alternative medicine for therapeutic use as antimicrobials and immune stimulators. While there exists many centuries of anecdotal evidence and few clinical studies on the activity and efficacy of these botanicals, limited scientific evidence exists on the ability of these botanicals to modulate the immune and inflammatory responses. Using botanogenomics (or herbogenomics), this study provides novel insight into inflammatory genes which are induced in peripheral blood mononuclear cells following treatment with immunomodulatory botanical extracts. These results may suggest putative genes involved in the physiological responses thought to occur following administration of these botanical extracts. Using extracts from immunostimulatory herbs (Astragalus membranaceus, Sambucus cerulea, Andrographis paniculata) and an immunosuppressive herb (Urtica dioica), the data presented supports previous cytokine studies on these herbs as well as identifying additional genes which may be involved in immune cell activation and migration and various inflammatory responses, including wound healing, angiogenesis, and blood pressure modulation. Additionally, we report the presence of lipopolysaccharide in medicinally prepared extracts of these herbs which is theorized to be a natural and active component of the immunostimulatory herbal extracts. The data presented provides a more extensive picture on how these herbs may be mediating their biological effects on the immune and inflammatory responses. PMID:20838436

  5. Rofecoxib modulates multiple gene expression pathways in a clinical model of acute inflammatory pain

    PubMed Central

    Wang, Xiao-Min; Wu, Tian-Xia; Hamza, May; Ramsay, Edward S.; Wahl, Sharon M.; Dionne, Raymond A.

    2007-01-01

    New insights into the biological properties of cyclooxygenase-2 (COX-2) and its response pathway challenge the hypothesis that COX-2 is simply pro-inflammatory and inhibition of COX-2 solely prevents the development of inflammation and ameliorates inflammatory pain. The present study performed a comprehensive analysis of gene/protein expression induced by a selective inhibitor of COX-2, rofecoxib, compared with a non-selective COX inhibitor, ibuprofen, and placebo in a clinical model of acute inflammatory pain (the surgical extraction of impacted third molars) using microarray analysis followed by quantitative RT-PCR verification and Western blotting. Inhibition of COX-2 modulated gene expression related to inflammation and pain, the arachidonic acid pathway, apoptosis/angiogenesis, cell adhesion and signal transduction. Compared to placebo, rofecoxib treatment increased the gene expression of ANXA3 (annexin 3), SOD2 (superoxide dismutase 2), SOCS3 (suppressor of cytokine signaling 3) and IL1RN (IL1 receptor antagonist) which are associated with inhibition of phospholipase A2 and suppression of cytokine signaling cascades, respectively. Both rofecoxib and ibuprofen treatment increased the gene expression of the pro-inflammatory mediators, IL6 and CCL2 (chemokine C-C motif ligand 2), following tissue injury compared to the placebo treatment. These results indicate a complex role for COX-2 in the inflammatory cascade in addition to the well-characterized COX-dependent pathway, as multiple pathways are also involved in rofecoxib-induced anti-inflammatory and analgesic effects at the gene expression level. These findings may also suggest an alternative hypothesis for the adverse effects attributed to selective inhibition of COX-2. PMID:17070997

  6. Increased matriptase zymogen activation in inflammatory skin disorders

    PubMed Central

    Chen, Cheng-Jueng; Wu, Bai-Yao; Tsao, Pai-In; Chen, Chi-Yung; Wu, Mei-Hsuan; Chan, Yee Lam E.; Lee, Herng-Sheng; Johnson, Michael D.; Eckert, Richard L.; Chen, Ya-Wen; Chou, Fengpai; Lin, Chen-Yong

    2011-01-01

    Matriptase, a type 2 transmembrane serine protease, and its inhibitor hepatocyte growth factor activator inhibitor (HAI)-1 are required for normal epidermal barrier function, and matriptase activity is tightly regulated during this process. We therefore hypothesized that this protease system might be deregulated in skin disease. To test this, we examined the level and activation state of matriptase in examples of 23 human skin disorders. We first examined matriptase and HAI-1 protein distribution in normal epidermis. Matriptase was detected at high levels at cell-cell junctions in the basal layer and spinous layers but was present at minimal levels in the granular layer. HAI-1 was distributed in a similar pattern, except that high-level expression was retained in the granular layer. This pattern of expression was retained in most skin disorders. We next examined the distribution of activated matriptase. Although activated matriptase is not detected in normal epidermis, a dramatic increase is seen in keratinocytes at the site of inflammation in 16 different skin diseases. To gain further evidence that activation is associated with inflammatory stimuli, we challenged HaCaT cells with acidic pH or H2O2 and observed matriptase activation. These findings suggest that inflammation-associated reactive oxygen species and tissue acidity may enhance matriptase activation in some skin diseases. PMID:21123732

  7. Lactobacillus reuteri 6475 Increases Bone Density in Intact Females Only under an Inflammatory Setting

    PubMed Central

    Collins, Fraser L.; Irwin, Regina; Bierhalter, Hayley; Schepper, Jonathan; Britton, Robert A.

    2016-01-01

    Background & Aims We previously demonstrated that short-term oral administration of the probiotic Lactobacillus reuteri 6475 enhanced bone density in male but not female mice. We also established that L. reuteri 6475 enhanced bone health and prevented bone loss in estrogen-deficient female mice. In this study, we tested whether a mild inflammatory state and/or a long-term treatment with the probiotic was required to promote a positive bone effect in estrogen-sufficient female mice. Methods A mild inflammatory state was induced in female mice by dorsal surgical incision (DSI). Following DSI animals were orally supplemented with L. reuteri or vehicle control for a period of 8 weeks. Gene expression was measured in the intestine and bone marrow by qPCR. Distal femoral bone density and architecture was analyzed by micro-CT. Results We report that 8 weeks after DSI there is a significant increase in the weight of spleen, thymus and visceral (retroperitoneal) fat pads. Expression of intestinal cytokines and tight junction proteins are also altered 8 weeks post-DSI. Interestingly, L. reuteri treatment was found to display both intestinal region- and inflammation-dependent effects. Unexpectedly we identified that 1) L. reuteri treatment increased bone density in females but only in those that underwent DSI and 2) DSI benefited cortical bone parameters. In the bone marrow, dorsal surgery induced CD4+ T cell numbers, a response that was unaffected by L. reuteri treatment, whereas expression of RANKL, OPG and IL-10 were significantly affected by L. reuteri treatment. Conclusion Our data reveals a previously unappreciated effect of a mild surgical procedure causing a long-lasting effect on inflammatory gene expression in the gut and the bone. Additionally, we demonstrate that in intact female mice, the beneficial effect of L. reuteri on bone requires an elevated inflammatory status. PMID:27058036

  8. Reduced tissue osmolarity increases TRPV4 expression and pro-inflammatory cytokines in intervertebral disc cells.

    PubMed

    Walter, B A; Purmessur, D; Moon, A; Occhiogrosso, J; Laudier, D M; Hecht, A C; Iatridis, J C

    2016-01-01

    The mechanical behaviour and cellular metabolism of intervertebral discs (IVDs) and articular cartilage are strongly influenced by their proteoglycan content and associated osmotic properties. This osmotic environment is a biophysical signal that changes with disease and may contribute to the elevated matrix breakdown and altered biologic response to loading observed in IVD degeneration and osteoarthritis. This study tested the hypothesis that changes in osmo-sensation by the transient receptor potential vallinoid-4 (TRPV4) ion channel occur with disease and contribute to the inflammatory environment found during degeneration. Immunohistochemistry on bovine IVDs from an inflammatory organ culture model were used to investigate if TRPV4 is expressed in the IVD and how expression changes with degeneration. Western blot, live-cell calcium imaging, and qRT-PCR were used to investigate whether osmolarity changes or tumour necrosis factor α (TNFα) regulate TRPV4 expression, and how altered TRPV4 expression influences calcium signalling and pro-inflammatory cytokine expression. TRPV4 expression correlated with TNFα expression, and was increased when cultured in reduced medium osmolarity and unaltered with TNFα-stimulation. Increased TRPV4 expression increased the calcium flux following TRPV4 activation and increased interleukin-1β (IL-1β) and IL-6 gene expression in IVD cells. TRPV4 expression was qualitatively elevated in regions of aggrecan depletion in degenerated human IVDs. Collectively, results suggest that reduced tissue osmolarity, likely following proteoglycan degradation, can increase TRPV4 signalling and enhance pro-inflammatory cytokine production, suggesting changes in TRPV4 mediated osmo-sensation may contribute to the progressive matrix breakdown in disease. PMID:27434269

  9. BET Inhibition Attenuates Helicobacter pylori-Induced Inflammatory Response by Suppressing Inflammatory Gene Transcription and Enhancer Activation.

    PubMed

    Chen, Jinjing; Wang, Zhen; Hu, Xiangming; Chen, Ruichuan; Romero-Gallo, Judith; Peek, Richard M; Chen, Lin-Feng

    2016-05-15

    Helicobacter pylori infection causes chronic gastritis and peptic ulceration. H. pylori-initiated chronic gastritis is characterized by enhanced expression of many NF-κB-regulated inflammatory cytokines. Brd4 has emerged as an important NF-κB regulator and regulates the expression of many NF-κB-dependent inflammatory genes. In this study, we demonstrated that Brd4 was not only actively involved in H. pylori-induced inflammatory gene mRNA transcription but also H. pylori-induced inflammatory gene enhancer RNA (eRNA) synthesis. Suppression of H. pylori-induced eRNA synthesis impaired H. pylori-induced mRNA synthesis. Furthermore, H. pylori stimulated NF-κB-dependent recruitment of Brd4 to the promoters and enhancers of inflammatory genes to facilitate the RNA polymerase II-mediated eRNA and mRNA synthesis. Inhibition of Brd4 by JQ1 attenuated H. pylori-induced eRNA and mRNA synthesis for a subset of NF-κB-dependent inflammatory genes. JQ1 also inhibited H. pylori-induced interaction between Brd4 and RelA and the recruitment of Brd4 and RNA polymerase II to the promoters and enhancers of inflammatory genes. Finally, we demonstrated that JQ1 suppressed inflammatory gene expression, inflammation, and cell proliferation in H. pylori-infected mice. These studies highlight the importance of Brd4 in H. pylori-induced inflammatory gene expression and suggest that Brd4 could be a potential therapeutic target for the treatment of H. pylori-triggered inflammatory diseases and cancer. PMID:27084101

  10. Transcription of Inflammatory Genes: Long Noncoding RNA and Beyond

    PubMed Central

    Carpenter, Susan

    2015-01-01

    The innate immune system must coordinate elaborate signaling pathways to turn on expression of hundreds of genes to provide protection against pathogens and resolve acute inflammation. Multiple genes within distinct functional categories are coordinately and temporally regulated by transcriptional on and off switches in response to distinct external stimuli. Three classes of transcription factors act together with transcriptional coregulators and chromatin-modifying complexes to control these programs. In addition, newer studies implicate long noncoding RNA (lncRNA) as additional regulators of these responses. LncRNAs promote, fine-tune, and restrain the inflammatory program. In this study, we provide an overview of gene regulation and the emerging importance of lncRNAs in the immune system. PMID:25250698

  11. Effect of dietary fatty acids on inflammatory gene expression in healthy humans.

    PubMed

    Weaver, Kelly L; Ivester, Priscilla; Seeds, Michael; Case, L Douglas; Arm, Jonathan P; Chilton, Floyd H

    2009-06-01

    Over the past 100 years, changes in the food supply in Western nations have resulted in alterations in dietary fatty acid consumption, leading to a dramatic increase in the ratio of omega-6 (omega6) to omega3 polyunsaturated fatty acids (PUFA) in circulation and in tissues. Increased omega6/omega3 ratios are hypothesized to increase inflammatory mediator production, leading to higher incidence of inflammatory diseases, and may impact inflammatory gene expression. To determine the effect of reducing the omega6/omega3 ratio on expression of inflammatory pathway genes in mononuclear cells, healthy humans were placed on a controlled diet for 1 week, then given fish oil and borage oil for an additional 4 weeks. Serum and neutrophil fatty acid composition and ex vivo leukotriene B(4) production from stimulated neutrophils were measured at the start and end of the supplementation period and after a 2-week washout. RNA was isolated from mononuclear cells and expression of PI3K, Akt, NFkappaB, and inflammatory cytokines was measured by real-time PCR. A marked increase was seen in serum and neutrophil levels of long-chain omega3 PUFA concomitant with a reduction in the omega6/omega3 PUFA ratio (40%). The ex vivo capacity of stimulated neutrophils to produce leukotriene B(4) was decreased by 31%. Expression of PI3Kalpha and PI3Kgamma and the quantity of PI3Kalpha protein in mononuclear cells was reduced after supplementation, as was the expression of several proinflammatory cytokines. These data reveal that PUFA may exert their clinical effects via their capacity to regulate the expression of signal transduction genes and genes for proinflammatory cytokines. PMID:19359242

  12. Modulation of the inflammatory response by increasing fetal wound size or interleukin-10 overexpression determines wound phenotype and scar formation.

    PubMed

    Morris, Michael W; Allukian, Myron; Herdrich, Benjamin J; Caskey, Robert C; Zgheib, Carlos; Xu, Junwang; Dorsett-Martin, Wanda; Mitchell, Marc E; Liechty, Kenneth W

    2014-01-01

    Wound size impacts the threshold between scarless regeneration and reparative healing in the fetus with increased inflammation showed in fetal scar formation. We hypothesized that increased fetal wound size increases pro-inflammatory and fibrotic genes with resultant inflammation and fibroplasia and that transition to scar formation could be reversed by overexpression of interleukin-10 (IL-10). To test this hypothesis, 2-mm and 8-mm dermal wounds were created in mid-gestation fetal sheep. A subset of 8-mm wounds were injected with a lentiviral vector containing the IL-10 transgene (n = 4) or vehicle (n = 4). Wounds were harvested at 3 or 30 days for histology, immunohistochemistry, analysis of gene expression by microarray, and validation with real-time polymerase chain reaction. In contrast to the scarless 2-mm wounds, 8-mm wounds showed scar formation with a differential gene expression profile, increased inflammatory cytokines, decreased CD45+ cells, and subsequent inflammation. Lentiviral-mediated overexpression of the IL-10 gene resulted in conversion to a regenerative phenotype with decreased inflammatory cytokines and regeneration of dermal architecture. In conclusion, increased fetal wounds size leads to a unique gene expression profile that promotes inflammation and leads to scar formation and furthermore, these results show the significance of attenuated inflammation and IL-10 in the transition from fibroplasia to fetal regenerative healing. PMID:24844340

  13. Genetic variability of inflammatory genes in the Brazilian population.

    PubMed

    dos Santos, Marcelo; Stur, Elaine; Maia, Lucas Lima; Agostini, Lidiane Pignaton; Peterle, Gabriela Tonini; Mendes, Suzanny Oliveira; Tajara, Eloiza Helena; de Carvalho, Marcos Brasilino; Louro, Iúri Drumond; Silva-Conforti, Adriana Madeira Álvares

    2013-11-01

    Inflammatory gene variants have been associated with several diseases, including cancer, diabetes, vascular diseases, neurodegenerative diseases, arthritis, and others. Therefore, determining the population genetic composition of inflammation-related genes can be useful for the determination of general risk, prognostic and therapeutic strategies to prevent or cure specific diseases. We have aimed to identify polymorphism genotype frequencies in genes related to the inflammatory response in the Brazilian population, namely, IκBL -62AT, IκBL -262CT, tumor necrosis factors alpha (TNFa) -238GA, TNFa -308GA, lymphotoxin-alpha (LTa) +80AC, LTa +252AG, FAS -670AG, and FASL -844TC, considering the white, black, and Pardo ethnicities of the São Paulo State. Our results suggest that the Brazilian population is under a miscegenation process at the current time, since some genotypes are not in the Hardy-Weinberg equilibrium. In addition, we conclude that the Pardo ethnicity is derived from a complex mixture of ethnicities, including the native Indian population. PMID:23909556

  14. Genetic Variability of Inflammatory Genes in the Brazilian Population

    PubMed Central

    dos Santos, Marcelo; Stur, Elaine; Maia, Lucas Lima; Agostini, Lidiane Pignaton; Peterle, Gabriela Tonini; Mendes, Suzanny Oliveira; Tajara, Eloiza Helena; de Carvalho, Marcos Brasilino; Louro, Iúri Drumond

    2013-01-01

    Inflammatory gene variants have been associated with several diseases, including cancer, diabetes, vascular diseases, neurodegenerative diseases, arthritis, and others. Therefore, determining the population genetic composition of inflammation-related genes can be useful for the determination of general risk, prognostic and therapeutic strategies to prevent or cure specific diseases. We have aimed to identify polymorphism genotype frequencies in genes related to the inflammatory response in the Brazilian population, namely, IκBL −62AT, IκBL −262CT, tumor necrosis factors alpha (TNFa) −238GA, TNFa −308GA, lymphotoxin-alpha (LTa) +80AC, LTa +252AG, FAS −670AG, and FASL −844TC, considering the white, black, and Pardo ethnicities of the São Paulo State. Our results suggest that the Brazilian population is under a miscegenation process at the current time, since some genotypes are not in the Hardy–Weinberg equilibrium. In addition, we conclude that the Pardo ethnicity is derived from a complex mixture of ethnicities, including the native Indian population. PMID:23909556

  15. Inflammatory mediators release calcitonin gene-related peptide from dorsal root ganglion neurons of the rat.

    PubMed

    Averbeck, B; Izydorczyk, I; Kress, M

    2000-01-01

    The interactions between the inflammatory mediators bradykinin, serotonin, prostaglandin E(2) and acid pH were studied in rat dorsal root ganglion neurons in culture. For this purpose, the cultures were stimulated by inflammatory mediators (bradykinin, serotonin, prostaglandin E(2), 10(-5)M each) or acid solution (pH 6.1) for 5 min and the content of calcitonin gene-related peptide was determined in the supernatant before, during and after stimulation, using an enzyme immunoassay. Acid solution resulted in a threefold increase of the basal calcitonin gene-related peptide release which was entirely dependent on the presence of extracellular calcium. The release could not be blocked by the addition of the capsaicin antagonist capsazepine (10(-5)M). Bradykinin (10(-5)M) caused a 50% increase of the basal calcitonin gene-related peptide release which was again dependent on the presence of extracellular calcium, whereas serotonin and prostaglandin E(2) were each ineffective at 10(-5)M concentration. The combination of bradykinin, serotonin and prostaglandin E(2) led to a fivefold increase of the calcitonin gene-related peptide release which could not be further enhanced by acidification. The competitive capsaicin receptor antagonist capsazepine (10(-5)M) significantly reduced the release induced by the combination of bradykinin, serotonin and prostaglandin E(2). It is suggested that the inflammatory mediators co-operate and together may act as endogenous agonists at the capsaicin receptor to cause calcium influx and consecutive neuropeptide release. PMID:10858619

  16. Increased Dietary Inflammatory Index (DII) Is Associated With Increased Risk of Prostate Cancer in Jamaican Men

    PubMed Central

    Shivappa, Nitin; Jackson, Maria D.; Bennett, Franklyn; Hébert, James R.

    2015-01-01

    Purpose Prostate cancer is the most common non-skin malignancy; and it accounts for the most cancer deaths among Jamaican males. Diet has been implicated in the etiology of prostate cancer, including through its effects on inflammation. Method We examined the association between a newly developed dietary inflammatory index (DII) and prostate cancer in a case-control study of 40-80 year-old Jamaican males. A total of 229 incident cases and 250 controls attended the same urology out-patient clinics at 2 major hospitals and private practitioners in the Kingston, Jamaica Metropolitan area between March 2005 and July 2007. The DII was computed based on dietary intake assessed using a previously validated food frequency questionnaire (FFQ) that was expanded to assess diet and cancer in this Jamaican population. Multivariable logistic regression was used to estimate odds ratios, with DII as continuous and expressed as quartiles. Logistic regression analysis adjusted for age, total energy intake, education, body mass index (BMI), smoking status, physical activity and family history of prostate cancer. Results Men in the highest quartile of the DII were at higher risk of prostate cancer [odds ratio (OR) = 2.39; 95% confidence interval (CI) =1.14–5.04 (Ptrend = 0.08)] compared to men in the lowest DII quartile. Conclusion These data suggest a pro-inflammatory diet, as indicated by increasing DII score, may be a risk factor for prostate cancer in Jamaican men. PMID:26226289

  17. Gene-gene, gene-environment, gene-nutrient interactions and single nucleotide polymorphisms of inflammatory cytokines

    PubMed Central

    Nadeem, Amina; Mumtaz, Sadaf; Naveed, Abdul Khaliq; Aslam, Muhammad; Siddiqui, Arif; Lodhi, Ghulam Mustafa; Ahmad, Tausif

    2015-01-01

    Inflammation plays a significant role in the etiology of type 2 diabetes mellitus (T2DM). The rise in the pro-inflammatory cytokines is the essential step in glucotoxicity and lipotoxicity induced mitochondrial injury, oxidative stress and beta cell apoptosis in T2DM. Among the recognized markers are interleukin (IL)-6, IL-1, IL-10, IL-18, tissue necrosis factor-alpha (TNF-α), C-reactive protein, resistin, adiponectin, tissue plasminogen activator, fibrinogen and heptoglobins. Diabetes mellitus has firm genetic and very strong environmental influence; exhibiting a polygenic mode of inheritance. Many single nucleotide polymorphisms (SNPs) in various genes including those of pro and anti-inflammatory cytokines have been reported as a risk for T2DM. Not all the SNPs have been confirmed by unifying results in different studies and wide variations have been reported in various ethnic groups. The inter-ethnic variations can be explained by the fact that gene expression may be regulated by gene-gene, gene-environment and gene-nutrient interactions. This review highlights the impact of these interactions on determining the role of single nucleotide polymorphism of IL-6, TNF-α, resistin and adiponectin in pathogenesis of T2DM. PMID:25987962

  18. Gene-gene, gene-environment, gene-nutrient interactions and single nucleotide polymorphisms of inflammatory cytokines.

    PubMed

    Nadeem, Amina; Mumtaz, Sadaf; Naveed, Abdul Khaliq; Aslam, Muhammad; Siddiqui, Arif; Lodhi, Ghulam Mustafa; Ahmad, Tausif

    2015-05-15

    Inflammation plays a significant role in the etiology of type 2 diabetes mellitus (T2DM). The rise in the pro-inflammatory cytokines is the essential step in glucotoxicity and lipotoxicity induced mitochondrial injury, oxidative stress and beta cell apoptosis in T2DM. Among the recognized markers are interleukin (IL)-6, IL-1, IL-10, IL-18, tissue necrosis factor-alpha (TNF-α), C-reactive protein, resistin, adiponectin, tissue plasminogen activator, fibrinogen and heptoglobins. Diabetes mellitus has firm genetic and very strong environmental influence; exhibiting a polygenic mode of inheritance. Many single nucleotide polymorphisms (SNPs) in various genes including those of pro and anti-inflammatory cytokines have been reported as a risk for T2DM. Not all the SNPs have been confirmed by unifying results in different studies and wide variations have been reported in various ethnic groups. The inter-ethnic variations can be explained by the fact that gene expression may be regulated by gene-gene, gene-environment and gene-nutrient interactions. This review highlights the impact of these interactions on determining the role of single nucleotide polymorphism of IL-6, TNF-α, resistin and adiponectin in pathogenesis of T2DM. PMID:25987962

  19. Novel immune genes associated with excessive inflammatory and antiviral responses to rhinovirus in COPD

    PubMed Central

    2013-01-01

    Background Rhinovirus (RV) is a major cause of chronic obstructive pulmonary disease (COPD) exacerbations, and primarily infects bronchial epithelial cells. Immune responses from BECs to RV infection are critical in limiting viral replication, and remain unclear in COPD. The objective of this study is to investigate innate immune responses to RV infection in COPD primary BECs (pBECs) in comparison to healthy controls. Methods Primary bronchial epithelial cells (pBECs) from subjects with COPD and healthy controls were infected with RV-1B. Cells and cell supernatant were collected and analysed using gene expression microarray, qPCR, ELISA, flow cytometry and titration assay for viral replication. Results COPD pBECs responded to RV-1B infection with an increased expression of antiviral and pro-inflammatory genes compared to healthy pBECs, including cytokines, chemokines, RNA helicases, and interferons (IFNs). Similar levels of viral replication were observed in both disease groups; however COPD pBECs were highly susceptible to apoptosis. COPD pBECs differed at baseline in the expression of 9 genes, including calgranulins S100A8/A9, and 22 genes after RV-1B infection including the signalling proteins pellino-1 and interleukin-1 receptor associated kinase 2. In COPD, IFN-β/λ1 pre-treatment did not change MDA-5/RIG-I and IFN-β expression, but resulted in higher levels IFN-λ1, CXCL-10 and CCL-5. This led to reduced viral replication, but did not increase pro-inflammatory cytokines. Conclusions COPD pBECs elicit an exaggerated pro-inflammatory and antiviral response to RV-1B infection, without changing viral replication. IFN pre-treatment reduced viral replication. This study identified novel genes and pathways involved in potentiating the inflammatory response to RV in COPD. PMID:23384071

  20. Regulation of sucrase-isomaltase gene expression in human intestinal epithelial cells by inflammatory cytokines.

    PubMed

    Ziambaras, T; Rubin, D C; Perlmutter, D H

    1996-01-12

    Using metabolic labeling techniques in human intestinal epithelial cell lines in tissue culture and in situ hybridization techniques in normal and inflamed (Crohn's) intestine, recent studies have shown that there is synthesis of acute phase proteins in enterocytes. Moreover, these studies have shown that acute phase protein biosynthesis in enterocytes is regulated by inflammatory cytokines in a manner characteristic of the physiologic acute phase response. In the course of these studies it was noticed that one inflammatory cytokine, interleukin-6 (IL-6), mediated selective down-regulation of the enterocyte-specific, differentiation-dependent integral membrane protein sucrase-isomaltase (SI) in the Caco2 intestinal epithelial cell line. In the current study we examined the effect of several other inflammatory cytokines interleukin-1 (IL-1 beta), tumor necrosis factor alpha (TNF alpha), and interferon gamma (IFN gamma) on synthesis of SI in Caco2 cells, examined the possibility that inflammatory cytokines affect the synthesis of other enterocyte integral membrane proteins using lactase as a prototype, and examined the possibility that SI gene expression was down-regulated in villous enterocytes in vivo during the local inflammatory response of Crohn's disease. The results show that IL-6 and IFN gamma each mediate a decrease and TNF alpha mediates an increase in synthesis of SI in Caco2 cells. The magnitude of down-regulation by IL-6 and IFN gamma is significantly greater than the up-regulation by TNF alpha. IL-1 beta has no effect on synthesis of SI. Synthesis of lactase is not affected by any of the cytokines. There is a marked specific decrease in SI gene expression in villous enterocytes in acutely inflamed Crohn's ileum as compared to adjacent uninflamed ileum and normal ileum. Taken together, these data show that inflammatory cytokines have specific and selective effects on the expression of the brush border hydrolase SI in tissue culture and in vivo and

  1. Inflammatory bowel disease: An increased risk factor for neurologic complications

    PubMed Central

    Morís, Germán

    2014-01-01

    Only a very few systematic studies have investigated the frequency of neurologic disorders in patients with Crohn’s disease (CD) and ulcerative colitis (UC), which are the two main types of inflammatory bowel disease (IBD). Results have been inconsistent and variable, owing to differences in case-finding methods and evaluated outcomes in different studies. The most frequent neurologic manifestations reported in CD and UC populations are cerebrovascular disease (with either arterial or venous events), demyelinating central nervous system disease, and peripheral neuropathy (whether axonal or demyelinating); however, the literature describes numerous nervous system disorders as being associated with IBD. The pathogenesis of nervous system tissue involvement in IBD has yet to be elucidated, although it seems to be related to immune mechanisms or prothrombotic states. The recently-introduced tumor necrosis factor (TNF) inhibitors have proven successful in controlling moderate to severe IBD activity. However, severe neurologic disorders associated with TNF inhibitors have been reported, which therefore raises concerns regarding the effect of anti-TNF-α antibodies on the nervous system. Although neurological involvement associated with IBD is rarely reported, gastroenterologists should be aware of the neurologic manifestations of IBD in order to provide early treatment, which is crucial for preventing major neurologic morbidity. PMID:24574797

  2. Aminoglycoside uptake increased by tet gene expression.

    PubMed Central

    Merlin, T L; Davis, G E; Anderson, W L; Moyzis, R K; Griffith, J K

    1989-01-01

    The expression of extrachromosomal tet genes not only confers tetracycline resistance but also increases the susceptibilities of gram-negative bacteria to commonly used aminoglycoside antibiotics. We investigated the possibility that tet expression increases aminoglycoside susceptibility by increasing bacterial uptake of aminoglycoside. Studies of [3H]gentamicin uptake in paired sets of Escherichia coli HB101 and Salmonella typhimurium LT2 expressing and not expressing tet showed that tet expression accelerates energy-dependent [3H]gentamicin uptake. Increased [3H]gentamicin uptake was accompanied by decreased bacterial protein synthesis and bacterial growth. Increased aminoglycoside uptake occurred whether tet expression was constitutive or induced, whether the tet gene was class B or C, and whether the tet gene was plasmid borne or integrated into the bacterial chromosome. tet expression produced no measurable change in membrane potential, suggesting that tet expression increases aminoglycoside uptake either by increasing the availability of specific carriers or by lowering the minimum membrane potential that is necessary for uptake. PMID:2684011

  3. Transcriptional Activation of Inflammatory Genes: Mechanistic Insight into Selectivity and Diversity

    PubMed Central

    Ahmed, Afsar U.; Williams, Bryan R. G.; Hannigan, Gregory E.

    2015-01-01

    Acute inflammation, an integral part of host defence and immunity, is a highly conserved cellular response to pathogens and other harmful stimuli. An inflammatory stimulation triggers transcriptional activation of selective pro-inflammatory genes that carry out specific functions such as anti-microbial activity or tissue healing. Based on the nature of inflammatory stimuli, an extensive exploitation of selective transcriptional activations of pro-inflammatory genes is performed by the host to ensure a defined inflammatory response. Inflammatory signal transductions are initiated by the recognition of inflammatory stimuli by transmembrane receptors, followed by the transmission of the signals to the nucleus for differential gene activations. The differential transcriptional activation of pro-inflammatory genes is precisely controlled by the selective binding of transcription factors to the promoters of these genes. Among a number of transcription factors identified to date, NF-κB still remains the most prominent and studied factor for its diverse range of selective transcriptional activities. Differential transcriptional activities of NF-κB are dictated by post-translational modifications, specificities in dimer formation, and variability in activation kinetics. Apart from the differential functions of transcription factors, the transcriptional activation of selective pro-inflammatory genes is also governed by chromatin structures, epigenetic markers, and other regulators as the field is continuously expanding. PMID:26569329

  4. Transcriptional Activation of Inflammatory Genes: Mechanistic Insight into Selectivity and Diversity.

    PubMed

    Ahmed, Afsar U; Williams, Bryan R G; Hannigan, Gregory E

    2015-01-01

    Acute inflammation, an integral part of host defence and immunity, is a highly conserved cellular response to pathogens and other harmful stimuli. An inflammatory stimulation triggers transcriptional activation of selective pro-inflammatory genes that carry out specific functions such as anti-microbial activity or tissue healing. Based on the nature of inflammatory stimuli, an extensive exploitation of selective transcriptional activations of pro-inflammatory genes is performed by the host to ensure a defined inflammatory response. Inflammatory signal transductions are initiated by the recognition of inflammatory stimuli by transmembrane receptors, followed by the transmission of the signals to the nucleus for differential gene activations. The differential transcriptional activation of pro-inflammatory genes is precisely controlled by the selective binding of transcription factors to the promoters of these genes. Among a number of transcription factors identified to date, NF-κB still remains the most prominent and studied factor for its diverse range of selective transcriptional activities. Differential transcriptional activities of NF-κB are dictated by post-translational modifications, specificities in dimer formation, and variability in activation kinetics. Apart from the differential functions of transcription factors, the transcriptional activation of selective pro-inflammatory genes is also governed by chromatin structures, epigenetic markers, and other regulators as the field is continuously expanding. PMID:26569329

  5. Epigenetic regulation of inflammatory gene expression in macrophages by selenium.

    PubMed

    Narayan, Vivek; Ravindra, Kodihalli C; Liao, Chang; Kaushal, Naveen; Carlson, Bradley A; Prabhu, K Sandeep

    2015-02-01

    Acetylation of histone and non-histone proteins by histone acetyltransferases plays a pivotal role in the expression of proinflammatory genes. Given the importance of dietary selenium in mitigating inflammation, we hypothesized that selenium supplementation may regulate inflammatory gene expression at the epigenetic level. The effect of selenium towards histone acetylation was examined in both in vitro and in vivo models of inflammation by chromatin immunoprecipitation assays and immunoblotting. Our results indicated that selenium supplementation, as selenite, decreased acetylation of histone H4 at K12 and K16 in COX-2 and TNFα promoters, and of the p65 subunit of the redox sensitive transcription factor NFκB in primary and immortalized macrophages. On the other hand, selenomethionine had a much weaker effect. Selenite treatment of HIV-1-infected human monocytes also significantly decreased the acetylation of H4 at K12 and K16 on the HIV-1 promoter, supporting the down-regulation of proviral expression by selenium. A similar decrease in histone acetylation was also seen in the colonic extracts of mice treated with dextran sodium sulfate that correlated well with the levels of selenium in the diet. Bone-marrow-derived macrophages from Trsp(fl/fl)Cre(LysM) mice that lack expression of selenoproteins in macrophages confirmed the important role of selenoproteins in the inhibition of histone H4 acetylation. Our studies suggest that the ability of selenoproteins to skew the metabolism of arachidonic acid contributes, in part, to their ability to inhibit histone acetylation. In summary, our studies suggest a new role for selenoproteins in the epigenetic modulation of proinflammatory genes. PMID:25458528

  6. Asian Sand Dust Enhances the Inflammatory Response and Mucin Gene Expression in the Middle Ear

    PubMed Central

    Chang, Jiwon; Go, Yoon Young; Park, Moo Kyun; Chae, Sung-Won; Lee, Seon-Heui; Song, Jae-Jun

    2016-01-01

    Objectives. Asia sand dust (ASD) is known to cause various human diseases including respiratory infection. The aim of this study was to examine the effect of ASD on inflammatory response in human middle ear epithelial cells (HMEECs) in vitro and in vivo. Methods. Cell viability was assessed using the cell counting kit-8 assay. The mRNA levels of various genes including COX-2, TNF-a, MUC 5AC, MUC 5B, TP53, BAX, BCL-2, NOX4, and SOD1 were analyzed using semiquantitative realtime polymerase chain reaction. COX-2 protein levels were determined by western blot analysis. Sprague Dawley rats were used for in vivo investigations of inflammatory reactions in the middle ear epithelium as a result of ASD injection. Results. We observed dose-dependent decrease in HMEEC viability. ASD exposure significantly increased COX-2, TNF-a, MUC5AC, and MUC5B mRNA expression. Also, ASD affected the mRNA levels of apoptosis- and oxidative stress-related genes. Western blot analysis revealed a dose-dependent increase in COX-2 production. Animal studies also demonstrated an ASD-induced inflammatory response in the middle ear epithelium. Conclusion. Environmental ASD exposure can result in the development of otitis media. PMID:27095518

  7. Mucin gene 19 (MUC19) expression and response to inflammatory cytokines in middle ear epithelium.

    PubMed

    Kerschner, Joseph E; Khampang, Pawjai; Erbe, Christy B; Kolker, Alexander; Cioffi, Joseph A

    2009-12-01

    Mucin gene 19 (MUC19) has been identified as a major gel-forming mucin in the human middle ear (ME). The objectives of this investigation were to characterize the expression and assess the regulation of MUC19 in the ME cell culture models utilized in the study of otitis media (OM). Findings demonstrate that MUC19 is expressed in both human immortalized cell culture (HMEEC) and chinchilla primary epithelial culture (CMEEC). ME exposure to inflammatory cytokines TNF-alpha, IL-1beta, IL-6 and IL-8 up-regulate MUC19 transcription, most robustly after exposure to TNF-alpha. Kinetic experiments suggest a relative early response in MUC19 transcription and a down-regulation after prolonged exposure. Glycoprotein production was increased in response to the increased transcription as well. Similar to other mucin genes in the ME, MUC19 is differentially regulated after exposure to inflammatory cytokines. The large size, gel-forming properties and up-regulation in response to important inflammatory cytokines of MUC19 suggest that it has significant potential to play a role in both physiology and pathophysiology of the ME. PMID:19533339

  8. Urban air pollution produces up-regulation of myocardial inflammatory genes and dark chocolate provides cardioprotection.

    PubMed

    Villarreal-Calderon, Rodolfo; Reed, William; Palacios-Moreno, Juan; Keefe, Sheyla; Herritt, Lou; Brooks, Diane; Torres-Jardón, Ricardo; Calderón-Garcidueñas, Lilian

    2012-05-01

    Air pollution is a serious environmental problem. Elderly subjects show increased cardiac morbidity and mortality associated with air pollution exposure. Mexico City (MC) residents are chronically exposed to high concentrations of fine particulate matter (PM(2.5)) and PM-associated lipopolysaccharides (PM-LPS). To test the hypothesis that chronic exposure to urban pollution produces myocardial inflammation, female Balb-c mice age 4 weeks were exposed for 16 months to two distinctly different polluted areas within MC: southwest (SW) and northwest (NW). SW mice were given either no treatment or chocolate 2g/9.5 mg polyphenols/3 times per week. Results were compared to mice kept in clean air. Key inflammatory mediator genes: cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), and the LPS receptor CD14 (cluster of differentiation antigen 14) were measured by real-time polymerase chain reaction. Also explored were target NFκB (nuclear factor κB), oxidative stress and antioxidant defense genes. TNF-α, IL-6, and COX-2 were significantly increased in both NW and SWMC mice (p=0.0001). CD14 was up-regulated in SW mice in keeping with the high exposures to particulate matter associated endotoxin. Chocolate administration resulted in a significant down-regulation of TNF-α (p<0.0001), IL-6 (p=0.01), and IL-1β (p=0.02). The up-regulation of antioxidant enzymes and the down-regulation of potent oxidases, toll-like receptors, and pro-apoptotic signaling genes completed the protective profile. Exposure to air pollution produces up-regulation of inflammatory myocardial genes and endotoxin plays a key role in the inflammatory response. Regular consumption of dark chocolate may reduce myocardial inflammation and have cardioprotective properties in the setting of air pollution exposures. PMID:20932730

  9. Urban Air Pollution Produces Up-Regulation of Myocardial Inflammatory Genes and Dark Chocolate Provides Cardioprotection

    PubMed Central

    Villarreal-Calderon, Rodolfo; Reed, William; Palacios-Moreno, Juan; Keefe, Sheyla; Herritt, Lou; Brooks, Diane; Torres-Jardón, Ricardo; Calderón-Garcidueñas, Lilian

    2010-01-01

    Air pollution is a serious environmental problem. Elderly subjects show increased cardiac morbidity and mortality associated with air pollution exposure. Mexico City (MC) residents are chronically exposed to high concentrations of fine particulate matter (PM2.5) and PM-associated lipopolysaccharides (PM-LPS). To test the hypothesis that chronic exposure to urban pollution produces myocardial inflammation, female Balb-c mice age 4 weeks were exposed for 16 months to two distinctly different polluted areas within MC: Southwest (SW) and Northwest (NW). SW mice were given either no treatment or chocolate 2g/9.5 mg polyphenols/3 times per week. Results were compared to mice kept in clean air. Key inflammatory mediator genes: cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), and the LPS receptor CD14 (cluster of differentiation antigen 14) were measured by real time polymerase chain reaction. Also explored were target NFκB (Nuclear Factor κ B), oxidative stress and antioxidant defense genes. TNF-α, IL-6, and COX-2 were significantly increased in both NW and SWMC mice (p=0.0001). CD14 was up-regulated in SW mice in keeping with the high exposures to particulate matter associated endotoxin. Chocolate administration resulted in a significant down-regulation of TNF-α (p<0.0001), IL-6 (p=0.01), and IL-1β (p=0.02). The up-regulation of antioxidant enzymes and the down-regulation of potent oxidases, toll-like receptors, and pro-apoptotic signaling genes completed the protective profile. Exposure to air pollution produces up-regulation of inflammatory myocardial genes and endotoxin plays a key role in the inflammatory response. Regular consumption of dark chocolate may reduce myocardial inflammation and have cardioprotective properties in the setting of air pollution exposures. PMID:20932730

  10. Cortisol-treated zebrafish embryos develop into pro-inflammatory adults with aberrant immune gene regulation.

    PubMed

    Hartig, Ellen I; Zhu, Shusen; King, Benjamin L; Coffman, James A

    2016-01-01

    Chronic early-life stress increases adult susceptibility to numerous health problems linked to chronic inflammation. One way that this may occur is via glucocorticoid-induced developmental programming. To gain insight into such programming we treated zebrafish embryos with cortisol and examined the effects on both larvae and adults. Treated larvae had elevated whole-body cortisol and glucocorticoid signaling, and upregulated genes associated with defense response and immune system processes. In adulthood the treated fish maintained elevated basal cortisol levels in the absence of exogenous cortisol, and constitutively mis-expressed genes involved in defense response and its regulation. Adults derived from cortisol-treated embryos displayed defective tailfin regeneration, heightened basal expression of pro-inflammatory genes, and failure to appropriately regulate those genes following injury or immunological challenge. These results support the hypothesis that chronically elevated glucocorticoid signaling early in life directs development of a pro-inflammatory adult phenotype, at the expense of immunoregulation and somatic regenerative capacity. PMID:27444789

  11. Cortisol-treated zebrafish embryos develop into pro-inflammatory adults with aberrant immune gene regulation

    PubMed Central

    Hartig, Ellen I.; Zhu, Shusen; King, Benjamin L.

    2016-01-01

    ABSTRACT Chronic early-life stress increases adult susceptibility to numerous health problems linked to chronic inflammation. One way that this may occur is via glucocorticoid-induced developmental programming. To gain insight into such programming we treated zebrafish embryos with cortisol and examined the effects on both larvae and adults. Treated larvae had elevated whole-body cortisol and glucocorticoid signaling, and upregulated genes associated with defense response and immune system processes. In adulthood the treated fish maintained elevated basal cortisol levels in the absence of exogenous cortisol, and constitutively mis-expressed genes involved in defense response and its regulation. Adults derived from cortisol-treated embryos displayed defective tailfin regeneration, heightened basal expression of pro-inflammatory genes, and failure to appropriately regulate those genes following injury or immunological challenge. These results support the hypothesis that chronically elevated glucocorticoid signaling early in life directs development of a pro-inflammatory adult phenotype, at the expense of immunoregulation and somatic regenerative capacity. PMID:27444789

  12. Human adipocytes are highly sensitive to intermittent hypoxia induced NF-kappaB activity and subsequent inflammatory gene expression

    SciTech Connect

    Taylor, Cormac T.; Kent, Brian D.; Crinion, Sophie J.; McNicholas, Walter T.; Ryan, Silke

    2014-05-16

    Highlights: • Intermittent hypoxia (IH) leads to NF-κB activation in human primary adipocytes. • Adipocytes bear higher pro-inflammatory potential than other human primary cells. • IH leads to upregulation of multiple pro-inflammatory genes in human adipocytes. - Abstract: Introduction: Intermittent hypoxia (IH)-induced activation of pro-inflammatory pathways is a major contributing factor to the cardiovascular pathophysiology associated with obstructive sleep apnea (OSA). Obesity is commonly associated with OSA although it remains unknown whether adipose tissue is a major source of inflammatory mediators in response to IH. The aim of this study was to test the hypothesis that IH leads to augmented inflammatory responses in human adipocytes when compared to cells of non-adipocyte lineages. Methods and results: Human primary subcutaneous and visceral adipocytes, human primary microvascular pulmonary endothelial cells (HUMEC-L) and human primary small airway epithelial cells (SAEC) were exposed to 0, 6 or 12 cycles of IH or stimulated with tumor necrosis factor (TNF)-α. IH led to a robust increase in NF-κB DNA-binding activity in adipocytes compared with normoxic controls regardless of whether the source of adipocytes was visceral or subcutaneous. Notably, the NF-κB response of adipocytes to both IH and TNF-α was significantly greater than that in HUMEC-L and SAEC. Western blotting confirmed enhanced nuclear translocation of p65 in adipocytes in response to IH, accompanied by phosphorylation of I-κB. Parallel to p65 activation, we observed a significant increase in secretion of the adipokines interleukin (IL)-8, IL-6 and TNF-α with IH in adipocytes accompanied by significant upregulation of mRNA expression. PCR-array suggested profound influence of IH on pro-inflammatory gene expression in adipocytes. Conclusion: Human adipocytes demonstrate strong sensitivity to inflammatory gene expression in response to acute IH and hence, adipose tissue may be a key

  13. Micronutrient (Zn, Cu, Fe)-gene interactions in ageing and inflammatory age-related diseases: implications for treatments.

    PubMed

    Mocchegiani, Eugenio; Costarelli, Laura; Giacconi, Robertina; Piacenza, Francesco; Basso, Andrea; Malavolta, Marco

    2012-04-01

    In ageing, alterations in inflammatory/immune response and antioxidant capacity lead to increased susceptibility to diseases and loss of mobility and agility. Various essential micronutrients in the diet are involved in age-altered biological functions. Micronutrients (zinc, copper, iron) play a pivotal role either in maintaining and reinforcing the immune and antioxidant performances or in affecting the complex network of genes (nutrigenomic approach) involved in encoding proteins for a correct inflammatory/immune response. By the other side, the genetic inter-individual variability may affect the absorption and uptake of the micronutrients (nutrigenetic approach) with subsequent altered effects on inflammatory/immune response and antioxidant activity. Therefore, the individual micronutrient-gene interactions are fundamental to achieve healthy ageing. In this review, we report and discuss the role of micronutrients (Zn, Cu, Fe)-gene interactions in relation to the inflammatory status and the possibility of a supplement in the event of a micronutrient deficiency or chelation in presence of micronutrient overload in relation to specific polymorphisms of inflammatory proteins or proteins related of the delivery of the micronutriemts to various organs and tissues. In this last context, we report the protein-metal speciation analysis in order to have, coupled with micronutrient-gene interactions, a more complete picture of the individual need in micronutrient supplementation or chelation to achieve healthy ageing and longevity. PMID:22322094

  14. β-Cryptoxanthin Alleviates Diet-Induced Nonalcoholic Steatohepatitis by Suppressing Inflammatory Gene Expression in Mice

    PubMed Central

    Kobori, Masuko; Ni, Yinhua; Takahashi, Yumiko; Watanabe, Natsumi; Sugiura, Minoru; Ogawa, Kazunori; Nagashimada, Mayumi; Kaneko, Shuichi; Naito, Shigehiro; Ota, Tsuguhito

    2014-01-01

    Recent nutritional epidemiological surveys showed that serum β-cryptoxanthin inversely associates with the risks for insulin resistance and liver dysfunction. Consumption of β-cryptoxanthin possibly prevents nonalcoholic steatohepatitis (NASH), which is suggested to be caused by insulin resistance and oxidative stress from nonalcoholic fatty liver disease. To evaluate the effect of β-cryptoxanthin on diet-induced NASH, we fed a high-cholesterol and high-fat diet (CL diet) with or without 0.003% β-cryptoxanthin to C56BL/6J mice for 12 weeks. After feeding, β-cryptoxanthin attenuated fat accumulation, increases in Kupffer and activated stellate cells, and fibrosis in CL diet-induced NASH in the mice. Comprehensive gene expression analysis showed that although β-cryptoxanthin histochemically reduced steatosis, it was more effective in inhibiting inflammatory gene expression change in NASH. β-Cryptoxanthin reduced the alteration of expression of genes associated with cell death, inflammatory responses, infiltration and activation of macrophages and other leukocytes, quantity of T cells, and free radical scavenging. However, it showed little effect on the expression of genes related to cholesterol and other lipid metabolism. The expression of markers of M1 and M2 macrophages, T helper cells, and cytotoxic T cells was significantly induced in NASH and reduced by β-cryptoxanthin. β-Cryptoxanthin suppressed the expression of lipopolysaccharide (LPS)-inducible and/or TNFα-inducible genes in NASH. Increased levels of the oxidative stress marker thiobarbituric acid reactive substances (TBARS) were reduced by β-cryptoxanthin in NASH. Thus, β-cryptoxanthin suppresses inflammation and the resulting fibrosis probably by primarily suppressing the increase and activation of macrophages and other immune cells. Reducing oxidative stress is likely to be a major mechanism of inflammation and injury suppression in the livers of mice with NASH. PMID:24858832

  15. Increased Peripheral Blood Pro-Inflammatory/Cytotoxic Lymphocytes in Children with Bronchiectasis

    PubMed Central

    Hodge, G.; Upham, J. W.; Chang, A. B.; Baines, K. J.; Yerkovich, S. T.; Pizzutto, S. J.; Hodge, S.

    2015-01-01

    Objective Bronchiectasis (BE) in children is common in some communities including Indigenous children in Australia. Relatively little is known about the nature of systemic inflammation in these children, especially the contribution of specific pro-inflammatory and cytotoxic lymphocyte subsets: T-cells, natural killer (NK) cells and NKT-like cells. We have shown that these cells produce increased cytotoxic (granzyme b and perforin) and inflammatory (IFNγ and TNFα) mediators in several adult chronic lung diseases and hypothesised that similar changes would be evident in children with BE. Methods Intracellular cytotoxic mediators perforin and granzyme b and pro-inflammatory cytokines were measured in T cell subsets, NKT-like and NK cells from blood and bronchoalveolar samples from 12 children with BE and 10 aged-matched control children using flow cytometry. Results There was a significant increase in the percentage of CD8+ T cells and T and NKT-like subsets expressing perforin/granzyme and IFNγ and TNFα in blood in BE compared with controls. There was a further increase in the percentage of pro-inflammatory cytotoxic T cells in Indigenous compared with non-Indigenous children. There was no change in any of these mediators in BAL. Conclusions Childhood bronchiectasis is associated with increased systemic pro-inflammatory/cytotoxic lymphocytes in the peripheral blood. Future studies need to examine the extent to which elevated levels of pro-inflammatory cytotoxic cells predict future co-morbidities. PMID:26258716

  16. Zinc deficiency enhanced inflammatory response by increasing immune cell activation and inducing IL6 promoter demethylation

    PubMed Central

    Wong, Carmen P.; Rinaldi, Nicole A.; Ho, Emily

    2015-01-01

    Scope Zinc deficiency results in immune dysfunction and promotes systemic inflammation. The objective of this study was to examine the effects of zinc deficiency on cellular immune activation and epigenetic mechanisms that promote inflammation. This work is potentially relevant to the aging population given that age-related immune defects, including chronic inflammation, coincide with declining zinc status. Methods and results An in vitro cell culture system and the aged mouse model were used to characterize immune activation and DNA methylation profiles that may contribute to the enhanced proinflammatory response mediated by zinc deficiency. Zinc deficiency up-regulated cell activation markers ICAM1, MHC class II, and CD86 in THP1 cells, that coincided with increased IL1β and IL6 responses following LPS stimulation. A decreased zinc status in aged mice was similarly associated with increased ICAM1 and IL6 gene expression. Reduced IL6 promoter methylation was observed in zinc deficient THP1 cells, as well as in aged mice and human lymphoblastoid cell lines derived from aged individuals. Conclusion Zinc deficiency induced inflammatory response in part by eliciting aberrant immune cell activation and altered promoter methylation. Our results suggested potential interactions between zinc status, epigenetics, and immune function, and how their dysregulation could contribute to chronic inflammation. PMID:25656040

  17. Response and habituation of pro and anti inflammatory gene expression to repeated acute stress

    PubMed Central

    McInnis, Christine M.; Wang, Diana; Gianferante, Danielle; Hanlin, Luke; Chen, Xuejie; Thoma, Myriam V.; Rohleder, Nicolas

    2015-01-01

    Introduction Acute stress induces increases in plasma inflammatory mediators, which do not habituate to repeated stress. Inflammation is a risk factor for age-related illnesses, highlighting the need to understand factors controlling inflammation. No studies have examined changes in pro- and anti-inflammatory gene expression in response to repeated acute stress in humans. Methods RNA was isolated from peripheral blood before, 30 and 120 minutes after exposure of n=32 healthy human participants to the Trier Social Stress Test (TSST) on two days. Gene expression of interleukin (IL)-6, IL-1β, nuclear factor (NF)-κB and IκB was measured repeatedly on both days. We further assessed leukocyte numbers, plasma IL-6, and salivary cortisol. Results Stress induced IL-6 (F=44.7; p<0.001) and cortisol responses (F=18.6; p<0.001). Cortisol responses habituated (F=5.1, p=0.003), but IL-6 responses did not (n.s.). All genes increased in response to initial stress (IL-6: F=3.8; p=0.029; IL-1β: F=7.1; p=0.008; NF-κB: F=5.1; p=0.009; IκB; F=4.7; p=0.013) and showed habituation to repeated stress (IL-6: t=2.3; p=0.03; IL-1β: t=3.9; p=0.001; NF-κB: t=2.1; p=0.041; IκB: t=3.1; p=0.005). Day 1 responses of IL-1β and IκB were not explained by changes in leukocyte populations, but IL-6 and NF-κB, as well as most day 2 changes were not independent of leukocyte populations. Conclusions Stress response and habituation of pro- and anti-inflammatory gene expression as found here might indicate that even on an intracellular level, inflammatory responses to acute stress are adaptive in that they respond to initial, but habituate to repeated, similar stress. Future studies will need to test whether non-habituation is predictive of disease. PMID:25683696

  18. Bugs, genes, fatty acids, and serotonin: Unraveling inflammatory bowel disease?

    PubMed Central

    Kaunitz, Jonathan; Nayyar, Piyush

    2015-01-01

    The annual incidence of the inflammatory bowel diseases (IBDs) ulcerative colitis and Crohn’s disease has increased at an alarming rate. Although the specific pathophysiology underlying IBD continues to be elusive, it is hypothesized that IBD results from an aberrant and persistent immune response directed against microbes or their products in the gut, facilitated by the genetic susceptibility of the host and intrinsic alterations in mucosal barrier function. In this review, we will describe advances in the understanding of how the interaction of host genetics and the intestinal microbiome contribute to the pathogenesis of IBD, with a focus on bacterial metabolites such as short chain fatty acids (SCFAs) as possible key signaling molecules.  In particular, we will describe alterations of the intestinal microbiota in IBD, focusing on how genetic loci affect the gut microbial phylogenetic distribution and the production of their major microbial metabolic product, SCFAs. We then describe how enteroendocrine cells and myenteric nerves express SCFA receptors that integrate networks such as the cholinergic and serotonergic neural systems and the glucagon-like peptide hormonal pathway, to modulate gut inflammation, permeability, and growth as part of an integrated model of IBD pathogenesis.  Through this integrative approach, we hope that novel hypotheses will emerge that will be tested in reductionist, hypothesis-driven studies in order to examine the interrelationship of these systems in the hope of better understanding IBD pathogenesis and to inform novel therapies.

  19. β2-adrenergic agonists modulate TNF-α induced astrocytic inflammatory gene expression and brain inflammatory cell populations

    PubMed Central

    2014-01-01

    Background The NF-κB signaling pathway orchestrates many of the intricate aspects of neuroinflammation. Astrocytic β2-adrenergic receptors have emerged as potential regulators in central nervous system inflammation and are potential targets for pharmacological modulation. The aim of this study was to elucidate the crosstalk between astrocytic β2-adrenergic receptors and the TNF-α induced inflammatory gene program. Methods Proinflammatory conditions were generated by the administration of TNF-α. Genes that are susceptible to astrocytic crosstalk between β2-adrenergic receptors (stimulated by clenbuterol) and TNF-α were identified by qPCR-macroarray-based gene expression analysis in a human 1321 N1 astrocytoma cell line. Transcriptional patterns of the identified genes in vitro were validated by RT-PCR on the 1321 N1 cell line as well as on primary rat astrocytes. In vivo expression patterns were examined by intracerebroventricular administration of clenbuterol and/or TNF-α in rats. To examine the impact on the inflammatory cell content of the brain we performed extensive FACS analysis of rat brain immune cells after intracerebroventricular clenbuterol and/or TNF-α administration. Results Parallel transcriptional patterns in vivo and in vitro confirmed the relevance of astrocytic β2-adrenergic receptors as modulators of brain inflammatory responses. Importantly, we observed pronounced effects of β2-adrenergic receptor agonists and TNF-α on IL-6, CXCL2, CXCL3, VCAM1, and ICAM1 expression, suggesting a role in inflammatory brain cell homeostasis. Extensive FACS-analysis of inflammatory cell content in the brain demonstrated that clenbuterol/TNF-α co-administration skewed the T cell population towards a double negative phenotype and induced a shift in the myeloid brain cell population towards a neutrophilic predominance. Conclusions Our results show that astrocytic β2-adrenergic receptors are potent regulators of astrocytic TNF-α-activated genes in

  20. KGF alters gene expression in human airway epithelia: potential regulation of the inflammatory response.

    PubMed

    Prince, L S; Karp, P H; Moninger, T O; Welsh, M J

    2001-07-17

    Keratinocyte growth factor (KGF) regulates several functions in adult and developing lung epithelia; it causes proliferation, stimulates secretion of fluid and electrolytes, enhances repair, and may minimize injury. To gain insight into the molecular processes influenced by KGF, we applied KGF to primary cultures of well-differentiated human airway epithelia and used microarray hybridization to assess the abundance of gene transcripts. Of 7,069 genes tested, KGF changed expression levels of 910. Earlier studies showed that KGF causes epithelial proliferation, and as expected, treatment altered expression of numerous genes involved in cell proliferation. We found that KGF stimulated transepithelial Cl(-) transport, but the number of cystic fibrosis (CF) transmembrane conductance regulator (CFTR) transcripts fell. Although transcripts for ClC-1 and ClC-7 Cl(-) channels increased, KGF failed to augment transepithelial Cl(-) transport in CF epithelia, suggesting that KGF-stimulated Cl(-) transport in differentiated airway epithelia depends on the CFTR Cl(-) channel. Interestingly, KGF decreased transcripts for many interferon (IFN)-induced genes. IFN causes trafficking of Stat dimers to the nucleus, where they activate transcription of IFN-induced genes. We found that KGF prevented the IFN-stimulated trafficking of Stat1 from the cytosol to the nucleus, suggesting a molecular mechanism for KGF-mediated suppression of the IFN-signaling pathway. These results suggest that in addition to stimulating proliferation and repair of damaged airway epithelia, KGF stimulates Cl(-) transport and may dampen the response of epithelial cells to inflammatory mediators. PMID:11459923

  1. Astragaloside IV inhibits NF- κ B activation and inflammatory gene expression in LPS-treated mice.

    PubMed

    Zhang, Wei-Jian; Frei, Balz

    2015-01-01

    In this study we investigated the role of astragaloside IV (AS-IV), one of the major active constituents purified from the Chinese medicinal herb Astragalus membranaceus, in LPS-induced acute inflammatory responses in mice in vivo and examined possible underlying mechanisms. Mice were assigned to four groups: vehicle-treated control animals; AS-IV-treated animals (10 mg/kg b.w. AS-IV daily i.p. injection for 6 days); LPS-treated animals; and AS-IV plus LPS-treated animals. We found that AS-IV treatment significantly inhibited LPS-induced increases in serum levels of MCP-1 and TNF by 82% and 49%, respectively. AS-IV also inhibited LPS-induced upregulation of inflammatory gene expression in different organs. Lung mRNA levels of cellular adhesion molecules, MCP-1, TNFα, IL-6, and TLR4 were significantly attenuated, and lung neutrophil infiltration and activation were strongly inhibited, as reflected by decreased myeloperoxidase content, when the mice were pretreated with AS-IV. Similar results were observed in heart, aorta, kidney, and liver. Furthermore, AS-IV significantly suppressed LPS-induced NF-κB and AP-1 DNA-binding activities in lung and heart. In conclusion, our data provide new in vivo evidence that AS-IV effectively inhibits LPS-induced acute inflammatory responses by modulating NF-κB and AP-1 signaling pathways. Our results suggest that AS-IV may be useful for the prevention or treatment of inflammatory diseases. PMID:25960613

  2. Suppressed inflammatory gene expression during human hypertrophic scar compared to normotrophic scar formation.

    PubMed

    van den Broek, Lenie J; van der Veer, Willem M; de Jong, Etty H; Gibbs, Susan; Niessen, Frank B

    2015-08-01

    Hypertrophic scar formation is a result of adverse cutaneous wound healing. The pathogenesis of hypertrophic scar formation is still poorly understood. A problem next to the lack of suitable animal models is that often normal skin is compared to hypertrophic scar (HTscar) and not to normotrophic scar (NTscar) tissue. Another drawback is that often only one time period after wounding is studied, while scar formation is a dynamic process over a period of several months. In this study, we compared the expression of genes involved in inflammation, angiogenesis and extracellular matrix (ECM) formation and also macrophage infiltration in biopsies obtained before and up to 52 weeks after standard surgery in five patients who developed HTscar and six patients who developed NTscar. It was found that HTscar formation coincided with a prolonged decreased expression of inflammatory genes (TNFα, IL-1α, IL-1RN, CCL2, CCL3, CXCL2, CXCR2, C3 and IL-10) and an extended increased expression of ECM-related genes (PLAU, Col3A1, TGFβ3). This coincided with a delayed but prolonged infiltration of macrophages (type 2) in HTscar tissue compared to NTscar tissue. These findings were supported by immunohistochemical localization of proteins coding for select genes named above. Our study emphasizes that human cutaneous wound healing is a dynamic process that is needed to be studied over a period of time rather than a single point of time. Taken together, our results suggest innate immune stimulatory therapies may be a better option for improving scar quality than the currently used anti-inflammatory scar therapies. PMID:25939875

  3. Inflammatory bowel disease associations with HLA Class II genes

    SciTech Connect

    Castro, R.; Yang, H.; Targan, S.

    1994-09-01

    A PCR-SSOP assay has been used to analyze HLA-Class II DRB1 and DQB1 alleles in 378 Caucasians from a population in Southern California. The data has been analyzed separately for the Ashkenasi Jews and non-Jewish patients (n=286) and controls (n=92). Two common clinical forms of inflammatory bowel disease (IBD) have been studied: ulcerative colitis (UC) and Crohn`s disease (CD). In CD, we observed a susceptible effect with the rare DR1 allele - DRB*0103 [O.R.=4.56; 95% CI (0.96, 42.97); p=0.03]; a trend for an increase in DRB1*0103 was also observed in UC patients. A susceptible effect with DRB1*1502 [O.R.=5.20; 95% CI (1.10, 48.99); p=0.02] was observed in non-Jewish UC patients. This susceptible effect was restricted to UC ANCA-positive (antineutrophil cytoplasmic antibodies) patients. In addition, a significant association with DRB1*1101-DQB1*0301 [O.R.=9.46; 95% CI (1.30, 413.87); p=0.01] was seen with UC among non-Jewish patients: this haplotype was increased with CD among non-Jewish patients. Two protective haplotypes were detected among CD non-Jewish patients: DRB1*1301-DQB1*0603 [O.R.=0.34; 95% CI (0.09, 1.09); p=0.04], and DRB*0404-DQB1*0302 [O.R.=<0.08; 95% CI (0.0, 0.84); p=0.01]. When the same data were analyzed at the serology level, we observed a positive association in UC with DR2 [O.R.6.77; 95% CI (2.47, 22.95); p=2 x 10{sup -4}], and a positive association in CD with DR1 [O.R.=2.63; 95% CI (1.14, 6.62); p=0.01] consistent with previous reports. Thus, some IBD disease associations appear to be common to both UC and CD, while some are unique to one disease.

  4. Differential DNA methylation and expression of inflammatory and zinc transporter genes defines subgroups of osteoarthritic hip patients

    PubMed Central

    Rushton, Michael D; Young, David A; Loughlin, John; Reynard, Louise N

    2015-01-01

    Objectives We have previously shown that the cartilage DNA methylome delineates two clusters of osteoarthritic (OA) hip patients, characterised by differential methylation of inflammatory genes, while others have demonstrated a link between zinc homeostasis and inflammation in OA. We aimed to investigate these effects at the methylation and gene expression level. Methods We used our previously generated methylation data while quantitative PCR was used to measure gene expression using RNA from the hip cartilage of members of both clusters and from control individuals without hip OA. Results One of the OA clusters is characterised by the promoter hypomethylation and increased expression of inflammation-associated genes including IL1A and TNF. Furthermore, we show that the increase in expression of these genes is accompanied by increased expression of several zinc transporter genes. In addition, the zinc responsive transcription factor MTF1 is also upregulated, which is accompanied by an increase in the expression of its targets the metalloproteinases MMP13 and ADAMTS5. Conclusions We have identified a subgroup of OA hip patients that are epigenetically and transcriptiomically characterised by a cartilage inflammatory phenotype with concurrent differential regulation of zinc regulators. The identification of subgroups enhances stratified phenotyping of OA patients and has important implications for future therapeutic applications. PMID:25854584

  5. AGING INCREASES EXPRESSION OF INFLAMMATORY MEDIATORS IN MOUSE ADIPOSE TISSUE (AT)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The incidence of type 2 diabetes (T2D) increases with age. Low-grade inflammation in AT is implicated in development of insulin resistance and T2D. We conducted a study to determine if inflammatory responses are upregulated with age in AT. Results show that visceral AT from old mice had significantl...

  6. Angiogenic gene signature in human pancreatic cancer correlates with TGF-beta and inflammatory transcriptomes.

    PubMed

    Craven, Kelly E; Gore, Jesse; Wilson, Julie L; Korc, Murray

    2016-01-01

    Pancreatic ductal adenocarcinomas (PDACs) are hypovascular, but overexpress pro-angiogenic factors and exhibit regions of microvasculature. Using RNA-seq data from The Cancer Genome Atlas (TCGA), we previously reported that ~12% of PDACs have an angiogenesis gene signature with increased expression of multiple pro-angiogenic genes. By analyzing the recently expanded TCGA dataset, we now report that this signature is present in ~35% of PDACs but that it is mostly distinct from an angiogenesis signature present in pancreatic neuroendocrine tumors (PNETs). These PDACs exhibit a transcriptome that reflects active TGF-β signaling, and up-regulation of several pro-inflammatory genes, and many members of JAK signaling pathways. Moreover, expression of SMAD4 and HDAC9 correlates with endothelial cell abundance in PDAC tissues. Concomitantly targeting the TGF-β type I receptor (TβRI) kinase with SB505124 and JAK1-2 with ruxolitinib suppresses JAK1 phosphorylation and blocks proliferative cross-talk between human pancreatic cancer cells (PCCs) and human endothelial cells (ECs), and these anti-proliferative effects were mimicked by JAK1 silencing in ECs. By contrast, either inhibitor alone does not suppress their enhanced proliferation in 3D co-cultures. These findings suggest that targeting both TGF-β and JAK1 signaling could be explored therapeutically in the 35% of PDAC patients whose cancers exhibit an angiogenesis gene signature. PMID:26586478

  7. Angiogenic gene signature in human pancreatic cancer correlates with TGF-beta and inflammatory transcriptomes

    PubMed Central

    Wilson, Julie L.; Korc, Murray

    2016-01-01

    Pancreatic ductal adenocarcinomas (PDACs) are hypovascular, but overexpress pro-angiogenic factors and exhibit regions of microvasculature. Using RNA-seq data from The Cancer Genome Atlas (TCGA), we previously reported that ∼12% of PDACs have an angiogenesis gene signature with increased expression of multiple pro-angiogenic genes. By analyzing the recently expanded TCGA dataset, we now report that this signature is present in ∼35% of PDACs but that it is mostly distinct from an angiogenesis signature present in pancreatic neuroendocrine tumors (PNETs). These PDACs exhibit a transcriptome that reflects active TGF-β signaling, and up-regulation of several pro-inflammatory genes, and many members of JAK signaling pathways. Moreover, expression of SMAD4 and HDAC9 correlates with endothelial cell abundance in PDAC tissues. Concomitantly targeting the TGF-β type I receptor (TβRI) kinase with SB505124 and JAK1-2 with ruxolitinib suppresses JAK1 phosphorylation and blocks proliferative cross-talk between human pancreatic cancer cells (PCCs) and human endothelial cells (ECs), and these anti-proliferative effects were mimicked by JAK1 silencing in ECs. By contrast, either inhibitor alone does not suppress their enhanced proliferation in 3D co-cultures. These findings suggest that targeting both TGF-β and JAK1 signaling could be explored therapeutically in the 35% of PDAC patients whose cancers exhibit an angiogenesis gene signature. PMID:26586478

  8. Gene polymorphisms and increased DNA damage in morbidly obese women.

    PubMed

    Luperini, B C O; Almeida, D C; Porto, M P; Marcondes, J P C; Prado, R P; Rasera, I; Oliveira, M R M; Salvadori, D M F

    2015-06-01

    Obesity is characterized by increased adipose tissue mass resulting from a chronic imbalance between energy intake and expenditure. Furthermore, there is a clearly defined relationship among fat mass expansion, chronic low-grade systemic inflammation and reactive oxygen species (ROS) generation; leading to ROS-related pathological events. In the past years, genome-wide association studies have generated convincing evidence associating genetic variation at multiple regions of the genome with traits that reflect obesity. Therefore, the present study aimed to evaluate the relationships among the gene polymorphisms ghrelin (GHRL-rs26802), ghrelin receptor (GHSR-rs572169), leptin (LEP-rs7799039), leptin receptor (LEPR-rs1137101) and fat mass and obesity-associated (FTO-rs9939609) and obesity. The relationships among these gene variants and the amount of DNA damage were also investigated. Three hundred Caucasian morbidly obese and 300 eutrophic (controls) women were recruited. In summary, the results demonstrated that the frequencies of the GHRL, GHSR, LEP and LEPR polymorphisms were not different between Brazilian white morbidly obese and eutrophic women. Exceptions were the AA-FTO genotype and allele A, which were significantly more frequent in obese women than in the controls (0.23% vs. 0.10%; 0.46 vs. 0.36, respectively), and the TT-FTO genotype and the T allele, which were less frequent in morbidly obese women (p<0.01). Furthermore, significant differences in the amount of genetic lesions associated with FTO variants were observed only in obese women. In conclusion, this study demonstrated that the analyzed SNPs were not closely associated with morbid obesity, suggesting they are not the major contributors to obesity. Therefore, our data indicated that these gene variants are not good biomarkers for predicting risk susceptibility for obesity, whereas ROS generated by the inflammatory status might be one of the causes of DNA damage in obese women, favoring

  9. Glucocorticoid-Induced Reversal of Interleukin-1β-Stimulated Inflammatory Gene Expression in Human Oviductal Cells

    PubMed Central

    Haw, Robin; Stein, Lincoln; Brown, Theodore J.

    2014-01-01

    Studies indicate that high-grade serous ovarian carcinoma (HGSOC), the most common epithelial ovarian carcinoma histotype, originates from the fallopian tube epithelium (FTE). Risk factors for this cancer include reproductive parameters associated with lifetime ovulatory events. Ovulation is an acute inflammatory process during which the FTE is exposed to follicular fluid containing both pro- and anti-inflammatory molecules, such as interleukin-1 (IL1), tumor necrosis factor (TNF), and cortisol. Repeated exposure to inflammatory cytokines may contribute to transforming events in the FTE, with glucocorticoids exerting a protective effect. The global response of FTE cells to inflammatory cytokines or glucocorticoids has not been investigated. To examine the response of FTE cells and the ability of glucocorticoids to oppose this response, an immortalized human FTE cell line, OE-E6/E7, was treated with IL1β, dexamethasone (DEX), IL1β and DEX, or vehicle and genome-wide gene expression profiling was performed. IL1β altered the expression of 47 genes of which 17 were reversed by DEX. DEX treatment alone altered the expression of 590 genes, whereas combined DEX and IL1β treatment altered the expression of 784 genes. Network and pathway enrichment analysis indicated that many genes altered by DEX are involved in cytokine, chemokine, and cell cycle signaling, including NFκΒ target genes and interacting proteins. Quantitative real time RT-PCR studies validated the gene array data for IL8, IL23A, PI3 and TACC2 in OE-E6/E7 cells. Consistent with the array data, Western blot analysis showed increased levels of PTGS2 protein induced by IL1β that was blocked by DEX. A parallel experiment using primary cultured human FTE cells indicated similar effects on PTGS2, IL8, IL23A, PI3 and TACC2 transcripts. These findings support the hypothesis that pro-inflammatory signaling is induced in FTE cells by inflammatory mediators and raises the possibility that dysregulation of

  10. Anti-inflammatory effect and prostate gene expression profiling of steryl ferulate on experimental rats with non-bacterial prostatitis.

    PubMed

    Hu, Yinzhou; Xiong, Lina; Huang, Weisu; Cai, Huafang; Luo, Yanxi; Zhang, Ying; Lu, Baiyi

    2014-06-01

    Steryl ferulate (SF) is a bioactive mixture extracted from rice bran and shows higher inhibitory activity against inflammation than the corresponding free sterols. In this study, the aim was to investigate the anti-inflammatory effect and prostate gene expression profiling of SF using a Xiaozhiling-induced non-bacterial prostatitis (NBP) rat model. The anti-inflammatory effect was evaluated by prostate weight, prostate index, acid phosphatase, density of lecithin corpuscles (DLC), white blood cell count (WBC), and prostatic histologic section. Prostate gene expression profiling was assessed by a cDNA microarray and validated by quantitative real-time PCR of five selected genes. Pathway analysis and Gene ontology (GO) analysis were applied to determine the roles of these differentially expressed genes involved in these biological pathways or GO terms. SF treatment could significantly inhibit prostate weight, prostate index, total acid phosphatase, prostatic acid phosphatase and WBC, suppress the severity of histological lesion and increase the DLC. Compared with the control group, the SF treatment group contained 238 up-regulated genes and 111 down-regulated genes. GO analysis demonstrated that the most significant expression genes were closely related to the terms of fibrinolysis, inflammatory response, high-density lipoprotein particle, protein-lipid complex, enzyme inhibitor activity, peptidase inhibitor activity and others. Canonical pathway analysis indicated five pathways were significantly regulated, which were associated with inflammation and tumorgenesis. In conclusion, SF may be used as a health supplement to prevent NBP, in that it could inhibit prostate inflammation in NBP patients by affecting the expression of genes in the related GO terms and pathways. PMID:24686498

  11. Essential nutrients suppress inflammation by modulating key inflammatory gene expression.

    PubMed

    Ivanov, V; Cha, J; Ivanova, S; Kalinovsky, T; Roomi, M W; Rath, M; Niedzwiecki, A

    2008-12-01

    We investigated the effects of a nutrient mixture (NM) consisting of ascorbic acid, quercetin, naringenin, hesperetin, tea catechins, lysine, proline, arginine and N-acetylcysteine on experimental in vivo and in vitro inflammation triggered by bacterial lipopolysaccharide (LPS). BALB/c mice (n=36) were administered NM (200 mg/kg BW) or ibuprofen (20 mg/kg BW) for two weeks. Blood plasma, collected three hours after a single intraperitoneal injection with LPS (1 mg/kg BW), was analyzed with 14 cytokine microarray. LPS inflammatory effects were analyzed in human U937 macrophages by cytokine release, cyclooxygenase (COX) enzymatic activity, COX protein expression (Western blot analysis), specific mRNA levels (RT-PCR), and nuclear factor kappabeta (NFkappabeta) activation (phosphorylated p65 immunoassay). Nutrient supplementation in mice altered the LPS-induced cytokine response in a manner similar to ibuprofen (r=0.4157, p=0.139). Cytokine response to LPS in cultured macrophages was similar to the in vivo study (r=0.718, p=0.023). NM inhibited COX-2 enzymatic activity, and COX-2 and pro-inflammatory cytokine protein expression levels were downregulated by NM at the transcription level complementing a blockade in NFkappabeta activation. NM demonstrated strong beneficial effects on the experimental inflammation by targeting multiple responsible mechanisms in the complex process involved in the inflammatory reaction to pathogens. PMID:19020770

  12. C/EBPβ regulates multiple IL-1β-induced human astrocyte inflammatory genes

    PubMed Central

    2012-01-01

    Background CCAAT enhancer-binding protein (C/EBP)β regulates gene expression in multiple organ systems and cell types, including astrocytes in the central nervous system (CNS). Inflammatory stimuli, interleukin (IL)-1β, tumor necrosis factor-α, human immunodeficiency virus (HIV)-1 and lipopolysaccharide induce astrocyte C/EBPβ expression. C/EBPβ is detectable in brains of Alzheimer’s disease (AD), Parkinson’s disease (PD) and HIV-1-associated dementia (HAD) patients, yet little is known about how C/EBPβ contributes to astrocyte gene regulation during neuroinflammation. Methods The expression of 92 human inflammation genes was compared between IL-1β-treated primary human astrocytes and astrocytes transfected with C/EBPβ-specific small interfering (si)RNA prior to IL-1β treatment for 12 h. Transcripts altered by > two-fold compared to control were subjected to one-way analysis of variance and Newman-Keuls post-test for multiple comparisons. Expression of two genes, cyclooxygenase-2 (COX-2) and bradykinin receptor B2 (BDKRB2) was further confirmed in additional human astrocyte donors. Astrocytes were treated with mitogen-activated protein kinase-selective inhibitors, then with IL-1β for 12 or 24 h followed by COX-2 and BDKRB2, expression analyses. Results IL-1β altered expression of 29 of 92 human inflammation genes by at least two-fold in primary human astrocytes in 12 h. C/EBPβ knockdown affected expression of 17 out of 29 IL-1β-regulated genes by > 25%. Two genes relevant to neuroinflammation, COX-2 and BDKRB2, were robustly decreased and increased, respectively, in response to C/EBPβ knockdown, and expression was confirmed in two additional donors. COX-2 and BDKRB2 mRNA remained altered in siRNA-transfected astrocytes at 12, 24 or 72 h. Inhibiting p38 kinase (p38K) activation blocked IL-1β-induced astrocyte COX-2 mRNA and protein expression, but not IL-1β-induced astrocyte BDKRB2 expression. Inhibiting extracellular

  13. Gene and cell therapy based treatment strategies for inflammatory bowel diseases

    PubMed Central

    van der Marel, Sander; Majowicz, Anna; van Deventer, Sander; Petry, Harald; Hommes, Daniel W; Ferreira, Valerie

    2011-01-01

    Inflammatory bowel diseases (IBD) are a group of chronic inflammatory disorders most commonly affecting young adults. Currently available therapies can result in induction and maintenance of remission, but are not curative and have sometimes important side effects. Advances in basic research in IBD have provided new therapeutic opportunities to target the inflammatory process involved. Gene and cell therapy approaches are suitable to prevent inflammation in the gastrointestinal tract and show therefore potential in the treatment of IBD. In this review, we present the current progress in the field of both gene and cell therapy and future prospects in the context of IBD. Regarding gene therapy, we focus on viral vectors and their applications in preclinical models. The focus for cell therapy is on regulatory T lymphocytes and mesenchymal stromal cells, their potential for the treatment of IBD and the progress made in both preclinical models and clinical trials. PMID:22180846

  14. Gene expression of inflammatory molecules in circulating lymphocytes from arsenic-exposed human subjects.

    PubMed Central

    Wu, Meei-Maan; Chiou, Hung-Yi; Ho, I-Ching; Chen, Chien-Jen; Lee, Te-Chang

    2003-01-01

    Long-term arsenic exposure is associated with an increased risk of vascular diseases including ischemic heart disease, cerebrovascular disease, and carotid atherosclerosis. The pathogenic mechanisms of arsenic atherogenicity are not completely clear. A fundamental role for inflammation in atherosclerosis and its complications has become appreciated recently. To investigate molecular targets of inflammatory pathway possibly involved in arsenic-associated atherosclerosis, we conducted an exploratory study using cDNA microarray and enzyme-linked immunosorbent assay to identify genes with differential expression in arsenic-exposed yet apparently healthy individuals. As an initial experiment, array hybridization was performed with mRNA isolated from activated lymphocytes of 24 study subjects with low (0-4.32 microg/L), intermediate (4.64-9.00 microg/L), and high (9.60-46.5 microg/L) levels of blood arsenic, with each group comprising eight age-, sex-, and smoking frequency-matched individuals. A total of 708 transcripts of known human genes were analyzed, and 62 transcripts (8.8%) showed significant differences in the intermediate or high-arsenic groups compared with the low-level arsenic group. Among the significantly altered genes, several cytokines and growth factors involving inflammation, including interleukin-1 beta, interleukin-6, chemokine C-C motif ligand 2/monocyte chemotactic protein-1 (CCL2/MCP1), chemokine C-X-C motif ligand 1/growth-related oncogene alpha, chemokine C-X-C motif ligand 2/growth-related oncogene beta, CD14 antigen, and matrix metalloproteinase 1 (interstitial collagenase) were upregulated in persons with increased arsenic exposure. Multivariate analyses on 64 study subjects of varying arsenic exposure levels showed that the association of CCL2/MCP1 plasma protein level with blood arsenic remained significant after adjustment for other risk factors of cardiovascular diseases. The results of this gene expression study indicate that the

  15. Expression of Heat Shock Protein 70 Gene and Its Correlation with Inflammatory Markers in Essential Hypertension

    PubMed Central

    Srivastava, Kamna; Narang, Rajiv; Bhatia, Jagriti; Saluja, Daman

    2016-01-01

    Objectives Hypertension is characterized by systemic high blood pressure and is the most common and important risk factor for the development of cardiovascular diseases. Studies have shown that the circulating levels of certain inflammatory markers such as tumor necrosis factor-alpha (TNF-alpha), interlukin-6 (IL-6), c-reactive protein (CRP), and tumor suppressor protein-53 (p53) are upregulated and are independently associated with essential hypertension. However, mechanism of increase in the levels of HSP70 protein is not clear. No such studies are reported in the blood circulation of patients with essential hypertension. In the present study, we investigated the expression of circulating HSP70 at mRNA and protein levels and its relationship with other inflammatory markers in patients with essential hypertension. Materials and Methods We recruited 132 patients with essential hypertension and 132 normal controls from similar socio-economic-geographical background. The expression of HSP70 at mRNA levels was determined by Real Time PCR and at protein levels by indirect Elisa and Western Blot techniques. Results We found a significantly higher expression of HSP70 gene expression (approximately 6.45 fold, P < 0.0001) in hypertensive patients as compared to healthy controls. A significant difference (P < 0.0001) in the protein expression of HSP70 was also observed in plasma of patients as compared to that of controls. Conclusion Higher expression of HSP70 is positively correlated with inflammatory markers in patients with essential hypertension and this correlation could play an important role in essential hypertension. PMID:26989902

  16. Selection for pro-inflammatory mediators yields chickens with increased resistance against Salmonella enterica serovar Enteritidis.

    PubMed

    Swaggerty, Christina L; Pevzner, Igal Y; Kogut, Michael H

    2014-03-01

    Salmonella is a leading cause of foodborne illness and can be transmitted through consumption of contaminated poultry; therefore, increasing a flock's natural resistance to Salmonella could improve food safety. Previously, we characterized the heterophil-mediated innate immune response of 2 parental broiler lines and F1 reciprocal crosses and showed that increased heterophil function and expression of pro-inflammatory mediators corresponds with increased resistance against diverse pathogens. A preliminary selection trial showed that individual sires had varying inherent levels of pro-inflammatory mediators and selection based on a high or low phenotype was passed onto progeny. Based on these results, we hypothesized selection of broilers for higher levels of the pro-inflammatory mediators IL-6, CXCLi2, and CCLi2 would produce progeny with increased resistance against Salmonella Enteritidis. Peripheral blood leukocytes were isolated from 75 commercial broiler sires, screened, and 10 naturally high and low expressing sires were selected and mated to randomly selected dams to produce the first generation of "high" and "low" progeny. The mRNA expression of CXCLi2 and CCLi2 were significantly (P ≤ 0.02) higher in the high progeny and were more resistant to liver and spleen organ invasion by Salmonella Enteritidis compared with low progeny. Production of the second generation yielded progeny that had differences (P ≤ 0.03) in all 3 mediators and further improved resistance against Salmonella Enteritidis. Feed conversion ratio and percent breast meat yield were calculated and were equal, whereas the high birds weighed slightly, but significantly, less than the low birds. These data clearly demonstrate that selection based on a higher phenotype of key pro-inflammatory mediators is a novel means to produce broilers that are naturally more resistant to Salmonella, one of the most important foodborne pathogens affecting the poultry industry. PMID:24604845

  17. Inflammatory bowel disease gene discovery. CRADA final report

    SciTech Connect

    1997-09-09

    The ultimate goal of this project is to identify the human gene(s) responsible for the disorder known as IBD. The work was planned in two phases. The desired products resulting from Phase 1 were BAC clone(s) containing the genetic marker(s) identified by gene/Networks, Inc. as potentially linked to IBD, plasmid subclones of those BAC(s), and new genetic markers developed from these plasmid subclones. The newly developed markers would be genotyped by gene/Networks, Inc. to ascertain evidence for linkage or non-linkage of IBD to this region. If non-linkage was indicated, the project would move to investigation of other candidate chromosomal regions. Where linkage was indicated, the project would move to Phase 2, in which a physical map of the candidate region(s) would be developed. The products of this phase would be contig(s) of BAC clones in the region exhibiting linkage to IBD, as well as plasmic subclones of the BACs and further genetic marker development. There would also be continued genotyping with new polymorphic markers during this phase. It was anticipated that clones identified and developed during these two phases would provide the physical resources for eventual disease gene discovery.

  18. Lipopolysaccharide derived from the digestive tract activates inflammatory gene expression and inhibits casein synthesis in the mammary glands of lactating dairy cows

    PubMed Central

    Zhang, Kai; Chang, Guangjun; Xu, Tianle; Xu, Lei; Guo, Junfei; Jin, Di; Shen, Xiangzhen

    2016-01-01

    To meet the nutrition requirements of lactation, dairy cows are usually fed a high concentrate diet (HC). However, high-grain feeding causes subacute ruminal acidosis (SARA), a metabolic disorder that causes milk protein depression. This study aimed to investigate the effect of lipopolysaccharide (LPS) released in the rumen on inflammatory gene expression and casein synthesis in mammary glands of lactating dairy cows fed a HC diet. We found that milk protein was significantly decreased in the HC group after 15 weeks of feeding. Overall, LPS concentrations in the rumen fluid, lacteal artery and vein were increased in the HC group. Transcriptome microarray was used to evaluate alterations in the signaling pathway in mammary glands. Signaling pathways involved in inflammatory responses were activated, whereas those involved in protein synthesis were inhibited in the HC group. mRNA expression involved in inflammatory responses, including that of TLR4, NF-кB and pro-inflammatory genes, was increased in the HC group, while αs1-casein (CSN1S1), β-casein (CSN2), mTOR and S6K gene expression were decreased. Moreover, protein expression was consistent with the corresponding gene expression. After feeding with an HC diet, LPS derived from the rumen increased inflammatory gene expression and inhibited casein synthesis in the mammary glands of lactating dairy cows fed a HC diet. PMID:26893357

  19. Lipopolysaccharide derived from the digestive tract activates inflammatory gene expression and inhibits casein synthesis in the mammary glands of lactating dairy cows.

    PubMed

    Zhang, Kai; Chang, Guangjun; Xu, Tianle; Xu, Lei; Guo, Junfei; Jin, Di; Shen, Xiangzhen

    2016-03-01

    To meet the nutrition requirements of lactation, dairy cows are usually fed a high concentrate diet (HC). However, high-grain feeding causes subacute ruminal acidosis (SARA), a metabolic disorder that causes milk protein depression. This study aimed to investigate the effect of lipopolysaccharide (LPS) released in the rumen on inflammatory gene expression and casein synthesis in mammary glands of lactating dairy cows fed a HC diet. We found that milk protein was significantly decreased in the HC group after 15 weeks of feeding. Overall, LPS concentrations in the rumen fluid, lacteal artery and vein were increased in the HC group. Transcriptome microarray was used to evaluate alterations in the signaling pathway in mammary glands. Signaling pathways involved in inflammatory responses were activated, whereas those involved in protein synthesis were inhibited in the HC group. mRNA expression involved in inflammatory responses, including that of TLR4, NF-кB and pro-inflammatory genes, was increased in the HC group, while αs1-casein (CSN1S1), β-casein (CSN2), mTOR and S6K gene expression were decreased. Moreover, protein expression was consistent with the corresponding gene expression. After feeding with an HC diet, LPS derived from the rumen increased inflammatory gene expression and inhibited casein synthesis in the mammary glands of lactating dairy cows fed a HC diet. PMID:26893357

  20. Inflammatory Signalling in Fetal Membranes: Increased Expression Levels of TLR 1 in the Presence of Preterm Histological Chorioamnionitis

    PubMed Central

    Waring, Gareth J.; Robson, Stephen C.; Bulmer, Judith N.; Tyson-Capper, Alison J.

    2015-01-01

    Histological chorioamnionitis (HCA) is an established marker of ascending infection, a major cause of preterm birth. No studies have characterised the global change in expression of genes involved in the toll-like receptor (TLR) signalling pathways in the presence of HCA in the setting of preterm birth (pHCA). Fetal membranes were collected immediately after delivery and underwent histological staging for inflammation to derive 3 groups; term spontaneous labour without HCA (n = 9), preterm birth <34 weeks gestation without HCA (n = 8) and pHCA <34 weeks (n = 12). Profiling arrays ran in triplicate for each group were used to determine the expression of 84 genes associated with TLR signalling and screen for genes of interest (fold change >2; p<0.1). Expression of identified genes was validated individually for all samples, relative to GAPDH, using RT-PCR. Expression of TLR 1, TLR 2, lymphocyte antigen 96, interleukin 8 and Interleukin-1 receptor-associated kinase-like 2 was increased in pHCA (p<0.05). Degree of expression was positively associated with histological staging of both maternal and fetal inflammation (p<0.05). The inflammatory expression profile at the maternal/fetal interface associated with pHCA, a reflection of ascending infection, is extremely heterogeneous suggesting polymicrobial involvement with activation of a common pathway. Antagonism of TLR 1 and TLR 2 signalling in this setting warrants further assessment. PMID:25965269

  1. Rapid changes in histone deacetylases and inflammatory gene expression in expert meditators

    PubMed Central

    Kaliman, Perla; Álvarez-López, María Jesús; Cosín-Tomás, Marta; Rosenkranz, Melissa A.; Lutz, Antoine; Davidson, Richard J.

    2013-01-01

    BACKGROUND A growing body of research shows that mindfulness meditation can alter neural, behavioral and biochemical processes. However, the mechanisms responsible for such clinically relevant effects remain elusive. METHODS Here we explored the impact of a day of intensive practice of mindfulness meditation in experienced subjects (n= 19) on the expression of circadian, chromatin modulatory and inflammatory genes in peripheral blood mononuclear cells (PBMCs). In parallel, we analyzed a control group of subjects with no meditation experience who engaged in leisure activities in the same environment (n= 21). PBMCs from all participants were obtained before (t1) and after (t2) the intervention (t2-t1= 8 hours) and gene expression was analyzed using custom pathway focused quantitative-real time PCR assays. Both groups were also presented with the Trier Social Stress Test (TSST). RESULTS Core clock gene expression at baseline (t1) was similar between groups and their rhythmicity was not influenced in meditators by the intensive day of practice. Similarly, we found that all the epigenetic regulatory enzymes and inflammatory genes analyzed exhibited similar basal expression levels in the two groups. In contrast, after the brief intervention we detected reduced expression of histone deacetylase genes (HDAC2, 3 and 9), alterations in global modification of histones (H4ac; H3K4me3) and decreased expression of pro-inflammatory genes (RIPK2 and COX2) in meditators compared with controls. We found that the expression of RIPK2 and HDAC2 genes was associated with a faster cortisol recovery to the TSST in both groups. CONCLUSIONS The regulation of HDACs and inflammatory pathways may represent some of the mechanisms underlying the therapeutic potential of mindfulness-based interventions. Our findings set the foundation for future studies to further assess meditation strategies for the treatment of chronic inflammatory conditions. PMID:24485481

  2. The histone acetyltransferase p300 inhibitor C646 reduces pro-inflammatory gene expression and inhibits histone deacetylases

    PubMed Central

    van den Bosch, Thea; Boichenko, Alexander; Leus, Niek G. J.; Eleni Ourailidou, Maria; Wapenaar, Hannah; Rotili, Dante; Mai, Antonello; Imhof, Axel; Bischoff, Rainer; Haisma, Hidde J.; Dekker, Frank J.

    2016-01-01

    Lysine acetylations are reversible posttranslational modifications of histone and non-histone proteins that play important regulatory roles in signal transduction cascades and gene expression. Lysine acetylations are regulated by histone acetyltransferases as writers and histone deacetylases as erasers. Because of their role in signal transduction cascades, these enzymes are important players in inflammation. Therefore, applications of histone acetyltransferase inhibitors to reduce inflammatory responses are interesting. Among the few histone acetyltransferase inhibitors described, C646 is one of the most potent (Ki of 0.4 μM for histone acetyltransferase p300). C646 was described to regulate the NF-κB pathway; an important pathway in inflammatory responses, which is regulated by acetylation. Interestingly, this pathway has been implicated in asthma and COPD. Therefore we hypothesized that via regulation of the NF-κB signaling pathway, C646 can inhibit pro-inflammatory gene expression, and have potential for the treatment of inflammatory lung diseases. In line with this, here we demonstrate that C646 reduces pro-inflammatory gene expression in RAW264.7 murine macrophages and murine precision-cut lung slices. To unravel its effects on cellular substrates we applied mass spectrometry and found, counterintuitively, a slight increase in acetylation of histone H3. Based on this finding, and structural features of C646, we presumed inhibitory activity of C646 on histone deacetylases, and indeed found inhibition of histone deacetylases from 7 μM and higher concentrations. This indicates that C646 has potential for further development towards applications in the treatment of inflammation, however, its newly discovered lack of selectivity at higher concentrations needs to be taken into account. PMID:26718586

  3. The histone acetyltransferase p300 inhibitor C646 reduces pro-inflammatory gene expression and inhibits histone deacetylases.

    PubMed

    van den Bosch, Thea; Boichenko, Alexander; Leus, Niek G J; Ourailidou, Maria E; Wapenaar, Hannah; Rotili, Dante; Mai, Antonello; Imhof, Axel; Bischoff, Rainer; Haisma, Hidde J; Dekker, Frank J

    2016-02-15

    Lysine acetylations are reversible posttranslational modifications of histone and non-histone proteins that play important regulatory roles in signal transduction cascades and gene expression. Lysine acetylations are regulated by histone acetyltransferases as writers and histone deacetylases as erasers. Because of their role in signal transduction cascades, these enzymes are important players in inflammation. Therefore, histone acetyltransferase inhibitors could reduce inflammatory responses. Among the few histone acetyltransferase inhibitors described, C646 is one of the most potent (Ki of 0.4μM for histone acetyltransferase p300). C646 was described to affect the NF-κB pathway; an important pathway in inflammatory responses, which is regulated by acetylation. This pathway has been implicated in asthma and COPD. Therefore, we hypothesized that via regulation of the NF-κB signaling pathway, C646 can inhibit pro-inflammatory gene expression, and have potential for the treatment of inflammatory lung diseases. In line with this, we demonstrate here that C646 reduces pro-inflammatory gene expression in RAW264.7 murine macrophages and murine precision-cut lung slices. To unravel its effects on cellular substrates we applied mass spectrometry and found, counterintuitively, a slight increase in acetylation of histone H3. Based on this finding, and structural features of C646, we presumed inhibitory activity of C646 on histone deacetylases, and indeed found inhibition of histone deacetylases from 7μM and higher concentrations. This indicates that C646 has potential for further development towards applications in the treatment of inflammation, however, its newly discovered lack of selectivity at higher concentrations needs to be taken into account. PMID:26718586

  4. The potent anti-inflammatory agent escin does not increase corticosterone secretion and immune cell apoptosis in mice.

    PubMed

    Zhang, Leiming; Wang, Hongsheng; Fan, Huaying; Wang, Tian; Jiang, Na; Yu, Pengfei; Fu, Fenghua

    2011-09-01

    Escin exerts potent glucocorticoid-like anti-inflammatory effects. The aim of this study was to investigate whether the anti-inflammatory effect of escin is through the up-regulation of glucocorticoids and if escin induces pathological changes in immune organs. Mice were administrated with escin intravenously for 7 days before observing the relevant parameters. The results showed that escin exhibits a potent anti-inflammatory effect, but does not increase corticosterone secretion in mice, and does not increase immune cell apoptosis in the spleen and thymus of mice. These findings suggest that the anti-inflammatory effect of escin is not dependent on the release of corticosterone. PMID:21596110

  5. Stress and inflammatory gene networks in bovine liver are altered by plane of dietary energy during late pregnancy.

    PubMed

    Khan, M Jawad; Jacometo, Carolina B; Riboni, Mario Vailati; Trevisi, Erminio; Graugnard, Daniel E; Corrêa, Marcio N; Loor, Juan J

    2015-09-01

    The prepartal dietary energy level is tightly correlated with the degree of tissue mobilization that the animal experiences around parturition (giving birth). To better understand the link between the dry period dietary energy management and the inflammatory status around parturition, 12 multiparous Holstein cows were fed for the entire dry period either a high-wheat straw/lower-energy diet to supply at least 100% of the calculated net energy for lactation (NEL) (control, CON) or a higher-energy diet to supply >140% of NEL (overfed, OVE). The blood was sampled throughout the transition period for biomarker analyses. Liver tissue samples were taken on days -14, 7, 14, and 30 relative to parturition for triacylglycerol (TAG) composition and gene expression analysis. Fifty genes involved in inflammation, endoplasmic reticulum (ER), and oxidative stress, and cell cycle and growth were evaluated. Although blood biomarkers did not reveal signs of a greater inflammatory status compared with OVE, CON cows had a greater activation of the intrahepatic unfolded protein response prepartum. However, postpartum mRNA profiling indicated that the OVE group experienced a mild but sustained level of ER stress, with higher oxidative stress and impairment of antioxidant mechanisms. After parturition, inflammation-related genes were upregulated in OVE cows compared with CON. However, CON cows experienced a gradual increase in expression of key inflammatory transcription regulators up to 30 days postpartum which agreed with the lower plasma albumin and cholesterol, suggesting an inflammatory state. Data underscored that ER stress is not necessarily linked with inflammation during the peripartal period. Gene expression data also suggest that prepartum overnutrition could have negative effects on normal cell cycle activity. Overall, allowing cows to overconsume energy prepartum increased the hepatic pro-inflammatory response prepartum and up to the point of parturition. Subsequently, cows

  6. Inflammatory mediator bradykinin increases population of sensory neurons expressing functional T-type Ca(2+) channels.

    PubMed

    Huang, Dongyang; Liang, Ce; Zhang, Fan; Men, Hongchao; Du, Xiaona; Gamper, Nikita; Zhang, Hailin

    2016-04-29

    T-type Ca(2+) channels are important regulators of peripheral sensory neuron excitability. Accordingly, T-type Ca(2+) currents are often increased in various pathological pain conditions, such as inflammation or nerve injury. Here we investigated effects of inflammation on functional expression of T-type Ca(2+) channels in small-diameter cultured dorsal root ganglion (DRG) neurons. We found that overnight treatment of DRG cultures with a cocktail of inflammatory mediators bradykinin (BK), adenosine triphosphate (ATP), norepinephrine (NE) and prostaglandin E2 (PGE2) strongly increased the population size of the small-diameter neurons displaying low-voltage activated (LVA, T-type) Ca(2+) currents while having no effect on the peak LVA current amplitude. When applied individually, BK and ATP also increased the population size of LVA-positive neurons while NE and PGE2 had no effect. The PLC inhibitor U-73122 and B2 receptor antagonist, Hoe-140, both abolished the increase of the population of LVA-positive DRG neurons. Inflammatory treatment did not affect CaV3.2 mRNA or protein levels in DRG cultures. Furthermore, an ubiquitination inhibitor, MG132, did not increase the population of LVA-positive neurons. Our data suggest that inflammatory mediators BK and ATP increase the abundance of LVA-positive DRG neurons in total neuronal population by stimulating the recruitment of a 'reserve pool' of CaV3.2 channels, particularly in neurons that do not display measurable LVA currents under control conditions. PMID:26944020

  7. Inflammatory mediator bradykinin increases population of sensory neurons expressing functional T-type Ca2+ channels

    PubMed Central

    Huang, Dongyang; Liang, Ce; Zhang, Fan; Men, Hongchao; Du, Xiaona; Gamper, Nikita; Zhang, Hailin

    2016-01-01

    T-type Ca2+ channels are important regulators of peripheral sensory neuron excitability. Accordingly, T-type Ca2+ currents are often increased in various pathological pain conditions, such as inflammation or nerve injury. Here we investigated effects of inflammation on functional expression of T-type Ca2+ channels in small-diameter cultured dorsal root ganglion (DRG) neurons. We found that overnight treatment of DRG cultures with a cocktail of inflammatory mediators bradykinin (BK), adenosine triphosphate (ATP), norepinephrine (NE) and prostaglandin E2 (PGE2) strongly increased the population size of the small-diameter neurons displaying low-voltage activated (LVA, T-type) Ca2+ currents while having no effect on the peak LVA current amplitude. When applied individually, BK and ATP also increased the population size of LVA-positive neurons while NE and PGE2 had no effect. The PLC inhibitor U-73122 and B2 receptor antagonist, Hoe-140, both abolished the increase of the population of LVA-positive DRG neurons. Inflammatory treatment did not affect CaV3.2 mRNA or protein levels in DRG cultures. Furthermore, an ubiquitination inhibitor, MG132, did not increase the population of LVA-positive neurons. Our data suggest that inflammatory mediators BK and ATP increase the abundance of LVA-positive DRG neurons in total neuronal population by stimulating the recruitment of a ‘reserve pool’ of CaV3.2 channels, particularly in neurons that do not display measurable LVA currents under control conditions. PMID:26944020

  8. The Vascular Endothelial Growth Factor Inhibitors Ranibizumab and Aflibercept Markedly Increase Expression of Atherosclerosis-Associated Inflammatory Mediators on Vascular Endothelial Cells

    PubMed Central

    Arnott, Clare; Punnia-Moorthy, Gaya; Tan, Joanne; Sadeghipour, Sara; Bursill, Christina; Patel, Sanjay

    2016-01-01

    Introduction Recent studies have suggested that the VEGF inhibitors, Ranibizumab and Aflibercept may be associated with an excess of cardiovascular events, potentially driven by increasing atheroma instability, leading to plaque rupture and clinical events. Inflammation plays a key role in the progression of atherosclerotic plaque and particularly conversion to an unstable phenotype. Here, we sought to assess the in vitro effects of these drugs on the expression of key inflammatory mediators on endothelial cells. Methods Human coronary artery endothelial cells were co-incubated for 16h with Ranibizumab (0.11nM) or Aflibercept (0.45nM), as determined by each drug’s peak serum concentration (Cmax). Expression at protein (ELISA) and gene (RT-PCR) level of inflammatory chemokines CCL2, CCL5 and CXC3L1 as well as gene expression for the cell adhesion molecules VCAM-1, ICAM-1 and the key NF-κb protein p65 was assessed. VEGF-A protein levels were also determined. Results Both drugs significantly increased chemokine, cell adhesion molecule (CAM) and p65 expression, while decreasing VEGF-A protein secretion. At equivalent Cmax concentrations, Aflibercept was significantly more pro-inflammatory than Ranibizumab. Reduction of secreted VEGF-A levels significantly attenuated inflammatory effects of both drugs, whereas blockade of the VEGF-A receptor or silencing of VEGF-A gene synthesis alone had no effect, suggesting that binding of drug to secreted VEGF-A is crucial in promoting inflammation. Finally, blockade of Toll-like receptor 4 significantly reduced inflammatory effects of both drugs. Conclusion We demonstrated here, for the first time, that both drugs have potent pro-inflammatory effects, mediated via activation of Toll-like receptor 4 on the endothelial cell surface by drug bound to VEGF-A. Further studies are required to investigate whether these effects are also seen in vivo. PMID:26959822

  9. Inflammatory and steroid receptor gene methylation in the human amnion and decidua.

    PubMed

    Mitchell, Carolyn M; Sykes, Shane D; Pan, Xin; Pringle, Kirsty G; Lumbers, Eugenie R; Hirst, Jonathan J; Zakar, Tamas

    2013-04-01

    Correct timing of parturition requires inflammatory gene activation in the gestational tissues at term and repression during pregnancy. Promoter methylation at CpG dinucleotides represses gene activity; therefore, we examined the possibility that DNA methylation is involved in the regulation of labour-associated genes in human pregnancy. Amnion and decidua were collected at 11-17 weeks of gestation and at term following elective Caesarean delivery or spontaneous labour. Methylation of the inflammatory genes PTGS2, BMP2, NAMPT and CXCL2 was analysed using the Methyl-Profiler PCR System and bisulphite sequencing. Methylation of the glucocorticoid, progesterone and oestrogen receptor genes, involved in the hormonal regulation of gestational tissue function, and the expression of the DNA methyltransferases DNMT1, -3A and -3B were also determined. Variable proportions of inflammatory and steroid receptor gene copies, to a maximum of 50.9%, were densely methylated in both tissues consistent with repression. Densely methylated copy proportions were significantly different between genes showing no relationship with varying expression during pregnancy, between tissues and in individuals. Methylated copy proportions of all genes in amnion and most genes in decidua were highly correlated in individuals. DNMT1 and -3A were expressed in both tissues with significantly higher levels in the amnion at 11-17 weeks than at term. We conclude that the unmethylated portion of gene copies is responsible for the full range of regulated expression in the amnion and decidua during normal pregnancy. Dense methylation of individually variable gene copy proportions happens in the first trimester amnion influenced by sequence context and affected strongly by individual circumstances. PMID:23393306

  10. Thioredoxin-1 Increases Survival in Sepsis by Inflammatory Response Through Suppressing Endoplasmic Reticulum Stress.

    PubMed

    Chen, Guobing; Li, Xiang; Huang, Mengbing; Li, Mei; Zhou, Xiaoshuang; Li, Ye; Bai, Jie

    2016-07-01

    Sepsis is the main cause of death in critically ill patients, pathogenesis of which is still unclear. The nuclear factor κB (NF-κB) inflammatory signal pathway mediated by endoplasmic reticulum stress is involved in sepsis. Thioredoxin-1 (Trx-1) is an important protein of regulating oxidative stress. It plays a crucial role in the anti-oxidation, anti-apoptosis, and anti-inflammation. However, the role and the mechanism of Trx-1 in sepsis have not been extensively studied. In the present study, we showed that the survival was longer in sepsis induced by cecal ligation and puncture in Trx-1 overexpression transgenic (Tg) mice compared with wild-type mice. Wet/dry lung weight ratio was decreased in Trx-1 Tg mice. The levels of TNF-α and IL-1β in plasma and lung tissue were inhibited in Tg mice. The expressions of glucose-regulated protein 78, inositol-requiring enzyme 1α (IRE1α), tumor necrosis factor receptor-associated factor 2, C/EBP homologous protein, NF-κB, and inhibitors of NF-κBα were increased in lung tissue. More importantly, the overexpression of Trx-1 in transgenic mice suppressed NF-κB inflammatory signal pathway by inhibiting the activation of molecules involved in ER stress. Our results suggest that Trx-1 may play protective role in extending survival in sepsis by regulating inflammatory response through suppressing ER stress. PMID:27299588

  11. A sumoylation-dependent pathway mediating transrepression of inflammatory response genes by PPARγ

    PubMed Central

    Pascual, Gabriel; Fong, Amy L.; Ogawa, Sumito; Gamliel, Amir; Li, Andrew C.; Perissi, Valentina; Rose, David W.; Willson, Timothy; Rosenfeld, Michael G.; Glass, Christopher K.

    2005-01-01

    The peroxisome proliferator-activated receptor γ (PPARγ) plays essential roles in adipogenesis and glucose homeostasis and is a molecular target of insulin-sensitizing drugs1–3. Although the ability of PPARγ agonists to antagonize inflammatory responses by transrepression of nuclear factor kappaB (NF-κB) target genes is linked to anti-diabetic4 and antiatherogenic actions5, the mechanisms remain poorly understood. Here we report the identification of a molecular pathway by which PPARγ represses transcriptional activation of inflammatory response genes in macrophages. The initial step of this pathway involves ligand-dependent sumoylation of the PPARγ ligand-binding domain, which targets PPARγ to nuclear receptor co-repressor (NCoR)/histone deacetylase-3 (HDAC3) complexes on inflammatory gene promoters. This in turn prevents recruitment of the ubiquitylation/19S proteosome machinery that normally mediates the signal-dependent removal of corepressor complexes required for gene activation. As a result, NCoR complexes are not cleared from the promoter and target genes are maintained in a repressed state. This mechanism provides an explanation for how an agonist-bound nuclear receptor can be converted from an activator of transcription to a promoter-specific repressor of NF-κB target genes that regulate immunity and homeostasis. PMID:16127449

  12. Loss of neutral ceramidase increases inflammation in a mouse model of inflammatory bowel disease

    PubMed Central

    Snider, Ashley J.; Wu, Bill X.; Jenkins, Russell W.; Sticca, Jonathan A.; Kawamori, Toshihiko; Hannun, Yusuf A.; Obeid, Lina M.

    2012-01-01

    Sphingolipids are emerging as important mediators of immune and inflammatory responses. We have previously demonstrated that sphingosine-1-phosphate (S1P) and its synthetic enzyme sphingosine kinase-1 (SK1) play an important role in inflammatory bowel disease. S1P generation is dependent on SK phosphorylation of sphingosine. Generation of sphingosine results only from the breakdown of ceramide by ceramidases (CDase). In this study, we set out to determine the role of neutral CDase (nCDase) in S1P generation and inflammatory bowel disease. To this end, we established nCDase expression is increased in patients with ulcerative colitis. Using the dextran sulfate sodium (DSS)-induced colitis model, we determined nCDase activity increased in colon epithelium, but not submucosa, in wild-type (WT) mice. Following DSS, ceramide levels were elevated in colon epithelium from WT and nCDase−/− mice, while S1P levels were significantly elevated only in the epithelium of nCDase−/− mice. Similarly, cyclooxygenase-2 (Cox-2) levels were significantly elevated only in the epithelium of nCDase−/− mice. Neutral CDase−/− mice also exhibited higher endotoxin levels in circulation, as well as higher circulating levels of S1P. This increase in S1P in nCDase−/− mice was accompanied by a marked leukocytosis, most notably circulating neutrophils and lymphocytes. Taken together these data demonstrate that loss of nCDase results in an unexpected increase in S1P generation in inflammation, and suggests that nCDase may actually protect against inflammation. PMID:22940715

  13. Single nucleotide polymorphism in the tumor necrosis factor-alpha gene affects inflammatory bowel diseases risk

    PubMed Central

    Ferguson, Lynnette R; Huebner, Claudia; Petermann, Ivonne; Gearry, Richard B; Barclay, Murray L; Demmers, Pieter; McCulloch, Alan; Han, Dug Yeo

    2008-01-01

    AIM: To investigate the role that single nucleotide polymorphisms (SNPs) in the promoter of the tumour necrosis factor-alpha (TNF-α) gene play in the risk of inflammatory bowel diseases (IBDs) in a New Zealand population, in the context of international studies. METHODS: DNA samples from 388 patients with Crohn’s disease (CD), 405 ulcerative colitis (UC), 27 indeterminate colitis (IC) and 201 randomly selected controls, from Canterbury, New Zealand were screened for 3 common polymorphisms in the TNF-α receptor: -238 G→A, -308 G→A and -857C→T, using a TaqmanR assay. A meta-analysis was performed on the data obtained on these polymorphisms combined with that from other published studies. RESULTS: Individuals carrying the -308 G/A allele had a significantly (OR = 1.91, χ2 = 17.36, P < 0.0001) increased risk of pancolitis, and a 1.57-fold increased risk (OR = 1.57, χ2 = 4.34, P = 0.037) of requiring a bowel resection in UC. Carrying the -857 C/T variant decreased the risk of ileocolonic CD (OR = 0.56, χ2 = 4.32, P = 0.037), and the need for a bowel resection (OR = 0.59, χ2 = 4.85, P = 0.028). The risk of UC was reduced in individuals who were smokers at diagnosis, (OR = 0.48, χ2 = 4.86, P = 0.028). CONCLUSION: TNF-α is a key cytokine known to play a role in inflammatory response, and the locus for the gene is found in the IBD3 region on chromosome 6p21, known to be associated with an increased risk for IBD. The -308 G/A SNP in the TNF-α promoter is functional, and may account in part for the increased UC risk associated with the IBD3 genomic region. The -857 C/T SNP may decrease IBD risk in certain groups. Pharmaco- or nutrigenomic approaches may be desirable for individuals with such affected genotypes. PMID:18698679

  14. Microarray analysis of inflammatory response-related gene expression in the uteri of dogs with pyometra.

    PubMed

    Bukowska, D; Kempisty, B; Zawierucha, P; Jopek, K; Piotrowska, H; Antosik, P; Ciesiółka, S; Woźna, M; Brüssow, K P; Jaśkowski, J M

    2014-01-01

    Pyometra, which is accompanied by bacterial contamination of the uterus, is defined as a complex disease associated with the activation of several systems, including the immune system. The objective of the study was to evaluate the gene expression profile in dogs with pyometra compared with those that were clinically normal. The study included uteri from 43 mongrel bitches (23 with pyometra, 20 clinically healthy). RNA used for the microarray study was pooled to four separated vials for control and pyometra. A total of 17,138 different transcripts were analyzed on the uteri of female dogs with pyometra and of healthy controls. From 264 inflammatory response-related transcripts, we found 23 transcripts that revealed a 10- to 77-fold increased expression. Thereby, the expression of interleukin 8 (IL8), interleukin-1-beta (IL1B), interleukin 18 receptor (IL18RAP), interleukin 1-alpha (IL1A), interleukin receptor antagonist (IL1RN) and interleukin 6 (IL6) increased 77-, 20-, 17-, 13-, 13- and 11-fold, respectively. Furthermore, the expression of the calcium binding proteins S100A8 was 44-fold higher, and that of S100A12 and S100A9 37-fold, respectively, in the uteri of canines with pyometra compared with that of the controls. Moreover, the expression of the transcripts of toll-like receptors (TLR8 and TLR2), integrin beta 2 (ITGB2), chemokine ligand 3 (CCL3), semaphorin 7A (SEMA7A), CD14 and prostaglandin-endoperoxide synthase 2 (PTGS2) was increased between 10- and 18-fold. Furthermore, after using RT-qPCR we found an increased expression of AOAH, IL1A, IL8, CCL3, IL1RN and SERPINE 1 mRNAs which can be served also as markers of the occurrence of pyometra in domestic bitches. In summary, it is concluded that up-regulation of interleukins may be used as a marker of the inflammatory response in dogs with pyometra. Moreover, all of the 23 up-regulated transcripts may be novel molecular markers of the pathogenesis of canine pyometra. Several proteins--–products of these

  15. Spaceflight impairs antigen-specific tolerance induction in vivo and increases inflammatory cytokines.

    PubMed

    Chang, Tammy T; Spurlock, Sandra M; Candelario, Tara Lynne T; Grenon, S Marlene; Hughes-Fulford, Millie

    2015-10-01

    The health risks of a dysregulated immune response during spaceflight are important to understand as plans emerge for humans to embark on long-term space travel to Mars. In this first-of-its-kind study, we used adoptive transfer of T-cell receptor transgenic OT-II CD4 T cells to track an in vivo antigen-specific immune response that was induced during the course of spaceflight. Experimental mice destined for spaceflight and mice that remained on the ground received transferred OT-II cells and cognate peptide stimulation with ovalbumin (OVA) 323-339 plus the inflammatory adjuvant, monophosphoryl lipid A. Control mice in both flight and ground cohorts received monophosphoryl lipid A alone without additional OVA stimulation. Numbers of OT-II cells in flight mice treated with OVA were significantly increased by 2-fold compared with ground mice treated with OVA, suggesting that tolerance induction was impaired by spaceflight. Production of proinflammatory cytokines were significantly increased in flight compared with ground mice, including a 5-fold increase in IFN-γ and a 10-fold increase in IL-17. This study is the first to show that immune tolerance may be impaired in spaceflight, leading to excessive inflammatory responses. PMID:26085131

  16. Haemophilus influenzae increases the susceptibility and inflammatory response of airway epithelial cells to viral infections.

    PubMed

    Gulraiz, Fahad; Bellinghausen, Carla; Bruggeman, Cathrien A; Stassen, Frank R

    2015-03-01

    Nontypeable Haemophilus influenzae (NTHI), a common colonizer of lungs of patients with chronic obstructive pulmonary disease (COPD), can enhance expression of the cellular receptor intercellular adhesion molecule 1 (ICAM-1), which in turn can be used by major group human rhinoviruses (HRVs) for attachment. Here, we evaluated the effect of NTHI-induced up-regulation of ICAM-1 on viral replication and inflammatory responses toward different respiratory viruses. Therefore, human bronchial epithelial cells were pretreated with heat-inactivated NTHI (hi-NTHI) and subsequently infected with either HRV16 (major group), HRV1B (minor group), or respiratory syncytial virus (RSV). Pretreatment with hi-NTHI significantly up-regulated ICAM-1 in BEAS-2B cells and primary bronchial epithelial cells. Concomitantly, release of infectious HRV16 particles was increased in cells pretreated with hi-NTHI. Pretreatment with hi-NTHI also caused a significant increase in HRV16 RNA, whereas replication of HRV1B and RSV were increased to a far lesser extent and only at later time points. Interestingly, release of IL-6 and IL-8 after RSV, but not HRV, infection was synergistically increased in hi-NTHI-pretreated BEAS-2B cells. In summary, exposure to hi-NTHI significantly enhanced sensitivity toward HRV16 but not HRV1B or RSV, probably through ICAM-1 up-regulation. Furthermore, hi-NTHI pretreatment may enhance the inflammatory response to RSV infection, suggesting that preexisting bacterial infections might exaggerate inflammation during secondary viral infection. PMID:25411435

  17. Co-culture with human synovium-derived mesenchymal stem cells inhibits inflammatory activity and increases cell proliferation of sodium nitroprusside-stimulated chondrocytes

    SciTech Connect

    Ryu, Jae-Sung; Jung, Yeon-Hwa; Cho, Mi-Young; Yeo, Jee Eun; Choi, Yun-Jin; Kim, Yong Il; Koh, Yong-Gon

    2014-05-16

    Highlights: • Co-culture of hSDMSCs with SNP-stimulated chondrocytes improves anti-inflammation. • Co-culture system produces IGF-1. • Co-culture system suppresses inflammatory genes expression. • Co-culture system improves cell proliferation. • Exogenous IGF-1 inhibits inflammatory activity in SNP-stimulated chondrocytes. - Abstract: Rheumatoid arthritis (RA) and osteoarthritis (OA) are primarily chronic inflammatory diseases. Mesenchymal stem cells (MSCs) have the ability to differentiate into cells of the mesodermal lineage, and to regulate immunomodulatory activity. Specifically, MSCs have been shown to secrete insulin-like growth factor 1 (IGF-1). The purpose of the present study was to examine the inhibitory effects on inflammatory activity from a co-culture of human synovium-derived mesenchymal stem cells (hSDMSCs) and sodium nitroprusside (SNP)-stimulated chondrocytes. First, chondrocytes were treated with SNP to generate an in vitro model of RA or OA. Next, the co-culture of hSDMSCs with SNP-stimulated chondrocytes reduced inflammatory cytokine secretion, inhibited expression of inflammation activity-related genes, generated IGF-1 secretion, and increased the chondrocyte proliferation rate. To evaluate the effect of IGF-1 on inhibition of inflammation, chondrocytes pre-treated with IGF-1 were treated with SNP, and then the production of inflammatory cytokines was analyzed. Treatment with IGF-1 was shown to significantly reduce inflammatory cytokine secretion in SNP-stimulated chondrocytes. Our results suggest that hSDMSCs offer a new strategy to promote cell-based cartilage regeneration in RA or OA.

  18. Pneumococcal Hydrogen Peroxide–Induced Stress Signaling Regulates Inflammatory Genes

    PubMed Central

    Loose, Maria; Hudel, Martina; Zimmer, Klaus-Peter; Garcia, Ernesto; Hammerschmidt, Sven; Lucas, Rudolf; Chakraborty, Trinad; Pillich, Helena

    2015-01-01

    Microbial infections can induce aberrant responses in cellular stress pathways, leading to translational attenuation, metabolic restriction, and activation of oxidative stress, with detrimental effects on cell survival. Here we show that infection of human airway epithelial cells with Streptococcus pneumoniae leads to induction of endoplasmic reticulum (ER) and oxidative stress, activation of mitogen-associated protein kinase (MAPK) signaling pathways, and regulation of their respective target genes. We identify pneumococcal H2O2 as the causative agent for these responses, as both catalase-treated and pyruvate oxidase-deficient bacteria lacked these activities. Pneumococcal H2O2 induced nuclear NF-κB translocation and transcription of proinflammatory cytokines. Inhibition of translational arrest and ER stress by salubrinal or of MAPK signaling pathways attenuate cytokine transcription. These results provide strong evidence for the notion that inhibition of translation is an important host pathway in monitoring harmful pathogen-associated activities, thereby enabling differentiation between pathogenic and nonpathogenic bacteria. PMID:25183769

  19. Association between two single base polymorphisms of intercellular adhesion molecule 1 gene and inflammatory bowel disease

    PubMed Central

    Habibi, Manijeh; Naderi, Nosratllah; Farnood, Alma; Balaii, Hedieh; Dadaei, Tahereh; Almasi, Shohreh; Zojaji, Homayoun; Asadzadeh Aghdae, Hamid; Zali, Mohammad Reza

    2016-01-01

    Aim: The present study evaluated the association between G241R and K469E polymorphisms of intercellular adhesion molecule 1 gene and inflammatory bowel disease in Iranian population. Background: Inflammatory bowel disease including ulcerative colitis and Crohn’s disease, is a chronic idiopathic inflammatory disease of the gastrointestinal tract. There are two single base polymorphisms of intercellular adhesion molecule 1gene, G241R and K469E, reported to be associated with inflammatory disorders. Patients and methods: In this case-control study, 156 inflammatory bowel disease patients (110 ulcerative colitis and 46 Crohn’s disease patients) and 131 healthy controls were enrolled. Two polymorphisms of intercellular adhesion molecule 1 gene, including G241R and K469E, were assessed by polymerase chain reaction followed by restriction fragment length polymorphism. Results: The E469 allele of K469E polymorphism was significantly more frequent in Crohn’s disease patients compared to controls (P< 0.05, OR= 1.83; 95% CI: 1.13 to 2.96). The mutant homozygote genotype of K469E polymorphism (E/E) was also significantly more frequent in Crohn’s disease patients compared to controls (P< 0.05, OR= 4.23; 95% CI: 1.42 to 12.59). No difference was observed in the frequency of K469E polymorphism among ulcerative colitis patients compared to controls. There were no significant differences in genotype and allele frequencies of G241R polymorphism among ulcerative colitis and Crohn’s disease patients compared to control subjects. Conclusion: According to our findings, K469E polymorphism of intercellular adhesion molecule 1 gene may probably participate in the pathogenesis of Crohn’s disease in Iran. PMID:27099667

  20. Mindfulness-Based Stress Reduction Training Reduces Loneliness and Pro-Inflammatory Gene Expression in Older Adults: A Small Randomized Controlled Trial

    PubMed Central

    Creswell, J. David; Irwin, Michael R.; Burklund, Lisa J.; Lieberman, Matthew D.; Arevalo, Jesusa M. G.; Ma, Jeffrey; Breen, Elizabeth Crabb; Cole, Steven W.

    2013-01-01

    Lonely older adults have increased expression of pro-inflammatory genes as well as increased risk for morbidity and mortality. Previous behavioral treatments have attempted to reduce loneliness and its concomitant health risks, but have had limited success. The present study tested whether the 8-week Mindfulness-Based Stress Reduction (MBSR) program (compared to a Wait-List control group) reduces loneliness and downregulates loneliness-related pro-inflammatory gene expression in older adults (N=40). Consistent with study predictions, mixed effect linear models indicated that the MBSR program reduced loneliness, compared to small increases in loneliness in the control group (treatment condition × time interaction: F(1,35)=7.86, p=.008). Moreover, at baseline, there was an association between reported loneliness and upregulated pro-inflammatory NF-κB-related gene expression in circulating leukocytes, and MBSR downregulated this NF-κB-associated gene expression profile at post-treatment. Finally, there was a trend for MBSR to reduce C Reactive Protein (treatment condition × time interaction: (F(1,33)=3.39, p=.075). This work provides an initial indication that MBSR may be a novel treatment approach for reducing loneliness and related pro-inflammatory gene expression in older adults. PMID:22820409

  1. Nedd4-2 haploinsufficiency causes hyperactivity and increased sensitivity to inflammatory stimuli

    PubMed Central

    Yanpallewar, Sudhirkumar; Wang, Ting; Koh, Dawn C. I.; Quarta, Eros; Fulgenzi, Gianluca; Tessarollo, Lino

    2016-01-01

    Nedd4-2 (NEDD4L in humans) is a ubiquitin protein ligase best known for its role in regulating ion channel internalization and turnover. Nedd4-2 deletion in mice causes perinatal lethality associated with increased epithelial sodium channel (ENaC) expression in lung and kidney. Abundant data suggest that Nedd4-2 plays a role in neuronal functions and may be linked to epilepsy and dyslexia in humans. We used a mouse model of Nedd4-2 haploinsufficiency to investigate whether an alteration in Nedd4-2 levels of expression affects general nervous system functions. We found that Nedd4-2 heterozygous mice are hyperactive, have increased basal synaptic transmission and have enhanced sensitivity to inflammatory pain. Thus, Nedd4-2 heterozygous mice provide a new genetic model to study inflammatory pain. These data also suggest that in human, SNPs affecting NEDD4L levels may be involved in the development of neuropsychological deficits and peripheral neuropathies and may help unveil the genetic basis of comorbidities. PMID:27604420

  2. Nedd4-2 haploinsufficiency causes hyperactivity and increased sensitivity to inflammatory stimuli.

    PubMed

    Yanpallewar, Sudhirkumar; Wang, Ting; Koh, Dawn C I; Quarta, Eros; Fulgenzi, Gianluca; Tessarollo, Lino

    2016-01-01

    Nedd4-2 (NEDD4L in humans) is a ubiquitin protein ligase best known for its role in regulating ion channel internalization and turnover. Nedd4-2 deletion in mice causes perinatal lethality associated with increased epithelial sodium channel (ENaC) expression in lung and kidney. Abundant data suggest that Nedd4-2 plays a role in neuronal functions and may be linked to epilepsy and dyslexia in humans. We used a mouse model of Nedd4-2 haploinsufficiency to investigate whether an alteration in Nedd4-2 levels of expression affects general nervous system functions. We found that Nedd4-2 heterozygous mice are hyperactive, have increased basal synaptic transmission and have enhanced sensitivity to inflammatory pain. Thus, Nedd4-2 heterozygous mice provide a new genetic model to study inflammatory pain. These data also suggest that in human, SNPs affecting NEDD4L levels may be involved in the development of neuropsychological deficits and peripheral neuropathies and may help unveil the genetic basis of comorbidities. PMID:27604420

  3. Perineal Injury During Childbirth Increases Risk of Postpartum Depressive Symptoms and Inflammatory Markers

    PubMed Central

    Dunn, Alexis B.; Paul, Sudeshna; Ware, Laurel Z.; Corwin, Elizabeth J.

    2014-01-01

    Introduction Perineal lacerations during childbirth affect more than 65% of women in the United States. Little attention has been given to the long-term biologic consequences associated with perineal lacerations or possible associations with postpartum mental health. In this article we describe the results of a study that explored inflammatory pathways in women who reported perineal lacerations during childbirth and the relationship with stress and depressive symptoms during the first six months postpartum. Methods A repeated measures design was used to explore the relationship between varying degrees of perineal lacerations, inflammatory cytokines, postpartum stress, and depressive symptoms in 153 women over six months. Depressive symptoms were measured using the Edinburg Postnatal Depression Scale (EPDS) and maternal stress via the Perceived Stress Scale (PSS). Plasma was analyzed for pro (TNF-α, IL-6, IL-1β, IFN-γ) and anti-inflammatory (IL-10) cytokines. Levels of cytokines were compared between women with or without varying degrees of injury. Results A relationship was identified between symptoms of depression and a 2nd degree or more severe perineal laceration starting at 1 month postpartum (P=0.04) and continuing through 3 months (P=0.03). Similarly, stress symptoms were higher at 3 months postpartum (P=0.02). Markers of inflammation were significantly higher among this group with IL-6 increased at 2 weeks postpartum (P=0.02), and remaining elevated through 2 months postpartum (P=0.003); there were also significant differences in pro to anti-inflammatory cytokine ratios out to 6 months postpartum. Regression analysis indicated that 2nd degree or more severe lacerations accounted for 5.9% of the variance in EPDS score at one month postpartum (P=0.024, F=2.865, t=2.127), increasing substantially when the 1-month stress score was included as well. Discussion This study suggests that perineal lacerations, inflammation, stress, and depressed mood are

  4. Sumoylation coordinates the repression of inflammatory and anti-viral gene-expression programs during innate sensing.

    PubMed

    Decque, Adrien; Joffre, Olivier; Magalhaes, Joao G; Cossec, Jack-Christophe; Blecher-Gonen, Ronnie; Lapaquette, Pierre; Silvin, Aymeric; Manel, Nicolas; Joubert, Pierre-Emmanuel; Seeler, Jacob-Sebastian; Albert, Matthew L; Amit, Ido; Amigorena, Sebastian; Dejean, Anne

    2016-02-01

    Innate sensing of pathogens initiates inflammatory cytokine responses that need to be tightly controlled. We found here that after engagement of Toll-like receptors (TLRs) in myeloid cells, deficient sumoylation caused increased secretion of transcription factor NF-κB-dependent inflammatory cytokines and a massive type I interferon signature. In mice, diminished sumoylation conferred susceptibility to endotoxin shock and resistance to viral infection. Overproduction of several NF-κB-dependent inflammatory cytokines required expression of the type I interferon receptor, which identified type I interferon as a central sumoylation-controlled hub for inflammation. Mechanistically, the small ubiquitin-like modifier SUMO operated from a distal enhancer of the gene encoding interferon-β (Ifnb1) to silence both basal and stimulus-induced activity of the Ifnb1 promoter. Therefore, sumoylation restrained inflammation by silencing Ifnb1 expression and by strictly suppressing an unanticipated priming by type I interferons of the TLR-induced production of inflammatory cytokines. PMID:26657003

  5. Anti-Inflammatory Potential of Ethanolic Leaf Extract of Eupatorium adenophorum Spreng. Through Alteration in Production of TNF-α, ROS and Expression of Certain Genes

    PubMed Central

    Chakravarty, Ashim K.; Mazumder, Tamal; Chatterjee, Shankar N.

    2011-01-01

    Search for a novel anti-inflammatory agent from a herbal source, such as Eupatorium adenophorum Spreng., a plant from the Eastern Himalayas, is of prime interest in the present investigation. Inflammation causes tissue destruction and development of diseases such as asthma, rheumatoid arthritis, and so forth. The ethanolic leaf extract of E. adenophorum (EEA) was administered intravenously and in other cases topically at the site of delayed type hypersensitivity (DTH) reaction in mouse foot paw induced with dinitrofluorobenzene. EEA can effectively inhibit DTH reaction and bring back normalcy to the paw much earlier than the controls. Efficacy of EEA on regulatory mechanisms for inflammation has also been considered. Intravenous administration of EEA increased the number of CD4+ T cells in spleen and tumor necrosis factor (TNF)-α in serum of DTH mice. Initially it was difficult to reconcile with the anti-inflammatory role of EEA and simultaneous induction of TNF-α, an established pro-inflammatory cytokine. EEA induces higher expression of TNF-α gene and amount of the cytokine in serum. We discussed the other role of TNF-α, its involvement in repairing tissue damage incurred in course of inflammatory reaction. EEA also induces TGF-β encoding a cytokine involved in tissue repair mechanism. EEA inhibits expression of another pro-inflammatory cytokine gene IL-1β and downregulates cycloxygenase 2 (COX2) gene responsible for metabolism of inflammatory mediators like prostaglandins. Furthermore, anti-inflammatory role of EEA is also revealed through its inhibition of hydroxyl radical generation. Notably EEA does not necessarily affect the expression of other inflammation-related genes such as IL-6, IL-10 and IKK. The present study reports and analyzes for the first time the anti-inflammatory property of the leaf extract of E. adenophorum. PMID:21808653

  6. Human colon carcinogenesis is associated with increased interleukin-17-driven inflammatory responses

    PubMed Central

    Xie, Zhaohui; Qu, Yine; Leng, Yanli; Sun, Wenxiu; Ma, Siqi; Wei, Jingbo; Hu, Jiangong; Zhang, Xiaolan

    2015-01-01

    Inflammation is known to contribute to carcinogenesis in human colorectal cancer. Proinflammatory cytokine interleukin-17 (IL-17 or IL-17A) has been shown to play a critical role in colon carcinogenesis in mouse models. However, few studies have investigated IL-17A in human colon tissues. In the present study, we assessed IL-17-driven inflammatory responses in 17 cases of human colon adenocarcinomas, 16 cases of human normal colon tissues adjacent to the resected colon adenocarcinomas, ten cases of human ulcerative colitis tissues from biopsies, and eight cases of human colon polyps diagnosed as benign adenomas. We found that human colon adenocarcinomas contained the highest levels of IL-17A cytokine, which was significantly higher than the IL-17A levels in the adenomas, ulcerative colitis, and normal colon tissues (P<0.01). The levels of IL-17 receptor A (IL-17RA) were also the highest in human colon adenocarcinomas, followed by adenomas and ulcerative colitis. The increased levels of IL-17A and IL-17RA were accompanied with increased IL-17-driven inflammatory responses, including activation of extracellular signal-regulated kinase (ERK)1/2 and c-Jun N-terminal kinase (JNK) pathways, increase in expression of matrix metalloproteinase (MMP)9, MMP7, MMP2, B-cell lymphoma (Bcl-2), and cyclin D1, decrease in Bcl-2-associated X protein (BAX) expression, and increase in vascular endothelial growth factor (VEGF) and VEGF receptor (VEGFR) expression that were associated with increased angiogenesis. These findings suggest that IL-17 and its signaling pathways appear as promising new targets in the design and development of drugs for cancer prevention and treatment, particularly in colorectal cancer. PMID:25834404

  7. Increased Anxiety-Like Behaviors in Rats Experiencing Chronic Inflammatory Pain

    PubMed Central

    Parent, Alexandre J.; Beaudet, Nicolas; Beaudry, Hélène; Bergeron, Jenny; Bérubé, Patrick; Drolet, Guy; Sarret, Philippe; Gendron, Louis

    2013-01-01

    For many patients, chronic pain is often accompanied, and sometimes amplified, by co-morbidities such as anxiety and depression. Although it represents important challenges, the establishment of appropriate preclinical behavioral models contributes to drug development for treating chronic inflammatory pain and associated psychopathologies. In this study, we investigated whether rats experiencing persistent inflammatory pain induced by intraplantar injection of complete Freund’s adjuvant (CFA) developed anxiety-like behaviors, and whether clinically used analgesic and anxiolytic drugs were able to reverse CFA-induced anxiety-related phenotypes. These behaviors were evaluated over 28 days in both CFA- and saline-treated groups with a variety of behavioral tests. CFA-induced mechanical allodynia resulted in increased anxiety-like behaviors as evidenced by: 1) a significant decrease in percentage of time spent and number of entries in open arms of the elevated-plus maze (EPM), 2) a decrease in number of central squares visited in the open field (OF), and 3) a reduction in active social interactions in the social interaction test (SI). The number of entries in closed arms in the EPM and the distance travelled in the OF used as indicators of locomotor performance did not differ between treatments. Our results also reveal that in CFA-treated rats, acute administration of morphine (3 mg/kg, s.c.) abolished tactile allodynia and anxiety-like behaviors, whereas acute administration of diazepam (1 mg/kg, s.c) solely reversed anxiety-like behaviors. Therefore, pharmacological treatment of anxiety-like behaviors induced by chronic inflammatory pain can be objectively evaluated using multiple behavioral tests. Such a model could help identify/validate alternative potential targets that influence pain and cognitive dimensions of anxiety. PMID:22245257

  8. Vcsa1 gene peptides for the treatment of inflammatory and allergic reactions.

    PubMed

    Morris, Katherine; Kuo, Byron; Wilkinson, Mark D; Davison, Joseph S; Befus, A Dean; Mathison, Ronald D

    2007-06-01

    The recently emerged Vcsa1 gene is one member of the variable coding sequence (VCS) multigene family of Rattus norvegicus. This gene encodes the precursor prohormone SMR1 (submandibular rat-1), which on enzymatic processing gives rise to several 5 to 11 amino acid peptides that modulate a variety of physiological functions. The analgesic pentapeptide sialorphin and anti-inflammatory heptapeptide submandibular gland peptide-T (TDIFEGG) are the most intensively studied. Although the Vcsa1 gene and its protein product are unique to rats, TDIFEGG or a derivative acts on all species examined to date, including human cells, in functions related to allergic reactions and inflammation. In this review, the patent and academic literature on SMR1 and its natural peptides and their derivatives are reviewed for consideration of biological targets and relevance to the development of novel therapeutic agents. The VCS gene family is discussed and we speculate on possible human homologs of these potent anti-inflammatory rat-derived peptides. The biologically active peptide products of SMR1 are considered and the mechanism of action and structure-activity relationships of the anti-inflammatory submandibular gland peptide-T and its derivatives are discussed. PMID:19075974

  9. Adenoviral gene transfer of macrophage inflammatory protein-2 in rat lung.

    PubMed Central

    Foley, R.; Driscoll, K.; Wan, Y.; Braciak, T.; Howard, B.; Xing, Z.; Graham, F.; Gauldie, J.

    1996-01-01

    Replication-defective adenoviral vectors are capable of localized transfer and expression of incorporated gene product in lung tissue. We have constructed an adenoviral vector that expresses rat macrophage inflammatory protein (MIP)-2, a C-X-C chemokine specifically chemotactic for neutrophils, Supernatants from 293 cells, infected with the adenoviral MIP-2 (ADMIP-2) construct, showed potent chemotactic activity and the ability of the ADMIP-2 vector to transcribe and make functional protein was confirmed. In vivo analysis of bronchoalveolar lavage fluid from rats after intratracheal instillation of ADMIP-2 (10(9) plaque-forming units) showed a 10-fold increase in the absolute number of neutrophils in bronchoalveolar lavage fluid as opposed to rats treated with an equal titer of an E1-disabled control virus expressing firefly luciferase (ADCA-18). Neutrophils constituted 65% of total BAL cells with alveolar macrophages being the other major cell type recovered. Rat MIP-2 protein was increased (nanograms per milliliter) in bronchoalveolar lavage fluid over a period of 7 days in ADMIP-2-treated animals. MIP-2 mRNA was demonstrated by Northern blot analysis in lung tissue, and histological analysis confirmed the presence of massive localized tissue neutrophilia. Evidence of chronic tissue injury and repair (ie, fibrosis) was not detected up to 2 weeks after the neutrophil infiltrate had resolved, subsequent to decreased chemokine presence. Adenoviral gene transfer proved an effective tool for the assessment of lung tissue expression of this chemokine in vivo and is useful in developing rodent models of tissue neutrophilia. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 7 Figure 8 PMID:8863686

  10. The Increasing Importance of Gene-Based Analyses.

    PubMed

    Cirulli, Elizabeth T

    2016-04-01

    In recent years, genome and exome sequencing studies have implicated a plethora of new disease genes with rare causal variants. Here, I review 150 exome sequencing studies that claim to have discovered that a disease can be caused by different rare variants in the same gene, and I determine whether their methods followed the current best-practice guidelines in the interpretation of their data. Specifically, I assess whether studies appropriately assess controls for rare variants throughout the entire gene or implicated region as opposed to only investigating the specific rare variants identified in the cases, and I assess whether studies present sufficient co-segregation data for statistically significant linkage. I find that the proportion of studies performing gene-based analyses has increased with time, but that even in 2015 fewer than 40% of the reviewed studies used this method, and only 10% presented statistically significant co-segregation data. Furthermore, I find that the genes reported in these papers are explaining a decreasing proportion of cases as the field moves past most of the low-hanging fruit, with 50% of the genes from studies in 2014 and 2015 having variants in fewer than 5% of cases. As more studies focus on genes explaining relatively few cases, the importance of performing appropriate gene-based analyses is increasing. It is becoming increasingly important for journal editors and reviewers to require stringent gene-based evidence to avoid an avalanche of misleading disease gene discovery papers. PMID:27055023

  11. The Increasing Importance of Gene-Based Analyses

    PubMed Central

    Cirulli, Elizabeth T.

    2016-01-01

    In recent years, genome and exome sequencing studies have implicated a plethora of new disease genes with rare causal variants. Here, I review 150 exome sequencing studies that claim to have discovered that a disease can be caused by different rare variants in the same gene, and I determine whether their methods followed the current best-practice guidelines in the interpretation of their data. Specifically, I assess whether studies appropriately assess controls for rare variants throughout the entire gene or implicated region as opposed to only investigating the specific rare variants identified in the cases, and I assess whether studies present sufficient co-segregation data for statistically significant linkage. I find that the proportion of studies performing gene-based analyses has increased with time, but that even in 2015 fewer than 40% of the reviewed studies used this method, and only 10% presented statistically significant co-segregation data. Furthermore, I find that the genes reported in these papers are explaining a decreasing proportion of cases as the field moves past most of the low-hanging fruit, with 50% of the genes from studies in 2014 and 2015 having variants in fewer than 5% of cases. As more studies focus on genes explaining relatively few cases, the importance of performing appropriate gene-based analyses is increasing. It is becoming increasingly important for journal editors and reviewers to require stringent gene-based evidence to avoid an avalanche of misleading disease gene discovery papers. PMID:27055023

  12. Glucocorticoid Repression of Inflammatory Gene Expression Shows Differential Responsiveness by Transactivation- and Transrepression-Dependent Mechanisms

    PubMed Central

    King, Elizabeth M.; Chivers, Joanna E.; Rider, Christopher F.; Minnich, Anne; Giembycz, Mark A.; Newton, Robert

    2013-01-01

    Binding of glucocorticoid to the glucocorticoid receptor (GR/NR3C1) may repress inflammatory gene transcription via direct, protein synthesis-independent processes (transrepression), or by activating transcription (transactivation) of multiple anti-inflammatory/repressive factors. Using human pulmonary A549 cells, we showed that 34 out of 39 IL-1β-inducible mRNAs were repressed to varying degrees by the synthetic glucocorticoid, dexamethasone. Whilst these repressive effects were GR-dependent, they did not correlate with either the magnitude of IL-1β-inducibility or the NF-κB-dependence of the inflammatory genes. This suggests that induction by IL-1β and repression by dexamethasone are independent events. Roles for transactivation were investigated using the protein synthesis inhibitor, cycloheximide. However, cycloheximide reduced the IL-1β-dependent expression of 13 mRNAs, which, along with the 5 not showing repression by dexamethasone, were not analysed further. Of the remaining 21 inflammatory mRNAs, cycloheximide significantly attenuated the dexamethasone-dependent repression of 11 mRNAs that also showed a marked time-dependence to their repression. Such effects are consistent with repression occurring via the de novo synthesis of a new product, or products, which subsequently cause repression (i.e., repression via a transactivation mechanism). Conversely, 10 mRNAs showed completely cycloheximide-independent, and time-independent, repression by dexamethasone. This is consistent with direct GR transrepression. Importantly, the inflammatory mRNAs showing attenuated repression by dexamethasone in the presence of cycloheximide also showed a significantly greater extent of repression and a higher potency to dexamethasone compared to those mRNAs showing cycloheximide-independent repression. This suggests that the repression of inflammatory mRNAs by GR transactivation-dependent mechanisms accounts for the greatest levels of repression and the most potent

  13. Increased catabolism and decreased unsaturation of ganglioside in patients with inflammatory bowel disease

    PubMed Central

    Miklavcic, John J; Hart, Tasha DL; Lees, Gordon M; Shoemaker, Glen K; Schnabl, Kareena L; Larsen, Bodil MK; Bathe, Oliver F; Thomson, Alan BR; Mazurak, Vera C; Clandinin, M Tom

    2015-01-01

    AIM: To investigate whether accelerated catabolism of ganglioside and decreased ganglioside content contribute to the etiology of pro-inflammatory intestinal disease. METHODS: Intestinal mucosa from terminal ileum or colon was obtained from patients with ulcerative colitis or inflammatory Crohn’s disease (n = 11) undergoing bowel resection and compared to control samples of normal intestine from patients with benign colon polyps (n = 6) and colorectal cancer (n = 12) in this observational case-control study. Gangliosides and phospholipids of intestinal mucosa were characterized by class and ceramide or fatty acid composition using liquid chromatography triple-quad mass spectrometry. Content and composition of ganglioside classes GM1, GM3, GD3, GD1a, GT1 and GT3 were compared among subject groups. Content and composition of phospholipid classes phosphatidylcholine (PC) and phosphatidylethanolamine were compared among subject groups. Unsaturation index of individual ganglioside and phospholipid classes was computed and compared among subject groups. Ganglioside catabolism enzymes beta-hexosaminidase A (HEXA) and sialidase-3 (NEU3) were measured in intestinal mucosa using western blot and compared among subject groups. RESULTS: Relative GM3 ganglioside content was 2-fold higher (P < 0.05) in intestine from patients with inflammatory bowel disease (IBD) compared to control intestine. The quantity of GM3 and ratio of GM3/GD3 was also higher in IBD intestine than control tissue (P < 0.05). Control intestine exhibited 3-fold higher (P < 0.01) relative GD1a ganglioside content than IBD intestine. GD3 and GD1a species of ganglioside containing three unsaturated bonds were present in control intestine, but were not detected in IBD intestine. The relative content of PC containing more than two unsaturated bonds was 30% lower in IBD intestine than control intestine (P < 0.05). The relative content of HEXA in IBD intestine was increased 1.7-fold (P < 0.05) and NEU3 was

  14. Prolonged niacin treatment leads to increased adipose tissue PUFA synthesis and anti-inflammatory lipid and oxylipin plasma profile.

    PubMed

    Heemskerk, Mattijs M; Dharuri, Harish K; van den Berg, Sjoerd A A; Jónasdóttir, Hulda S; Kloos, Dick-Paul; Giera, Martin; van Dijk, Ko Willems; van Harmelen, Vanessa

    2014-12-01

    Prolonged niacin treatment elicits beneficial effects on the plasma lipid and lipoprotein profile that is associated with a protective CVD risk profile. Acute niacin treatment inhibits nonesterified fatty acid release from adipocytes and stimulates prostaglandin release from skin Langerhans cells, but the acute effects diminish upon prolonged treatment, while the beneficial effects remain. To gain insight in the prolonged effects of niacin on lipid metabolism in adipocytes, we used a mouse model with a human-like lipoprotein metabolism and drug response [female APOE*3-Leiden.CETP (apoE3 Leiden cholesteryl ester transfer protein) mice] treated with and without niacin for 15 weeks. The gene expression profile of gonadal white adipose tissue (gWAT) from niacin-treated mice showed an upregulation of the "biosynthesis of unsaturated fatty acids" pathway, which was corroborated by quantitative PCR and analysis of the FA ratios in gWAT. Also, adipocytes from niacin-treated mice secreted more of the PUFA DHA ex vivo. This resulted in an increased DHA/arachidonic acid (AA) ratio in the adipocyte FA secretion profile and in plasma of niacin-treated mice. Interestingly, the DHA metabolite 19,20-dihydroxy docosapentaenoic acid (19,20-diHDPA) was increased in plasma of niacin-treated mice. Both an increased DHA/AA ratio and increased 19,20-diHDPA are indicative for an anti-inflammatory profile and may indirectly contribute to the atheroprotective lipid and lipoprotein profile associated with prolonged niacin treatment. PMID:25320342

  15. The effect of PrPSc accumulation on inflammatory gene expression within sheep peripheral lymphoid tissue

    PubMed Central

    Gossner, Anton G.; Hopkins, John

    2015-01-01

    Accumulation of the misfolded prion protein, PrPSc in the central nervous system (CNS) is strongly linked to progressive neurodegenerative disease. For many transmissible spongiform encephalopathies (TSEs), peripheral lymphoid tissue is an important site of PrPSc amplification but without gross immunological consequence. Susceptible VRQ homozygous New Zealand Cheviot sheep were infected with SSBP/1 scrapie by inoculation in the drainage area of the prescapular lymph nodes. The earliest time that PrPSc was consistently detected by immunohistology in these nodes was D50 post infection. This transcriptomic study of lymph node taken before (D10) and after (D50) the detection of PrPSc, aimed to identify the genes and physiological pathways affected by disease progression within the nodes as assessed by PrPSc detection. Affymetrix Ovine Gene arrays identified 75 and 80 genes as differentially-expressed at D10 and D50, respectively, in comparison with control sheep inoculated with uninfected brain homogenate. Approximately 70% of these were repressed at each time point. RT-qPCR analysis of seven genes showed statistically significant correlation with the array data, although the results for IL1RN and TGIF were different between the two technologies. The ingenuity pathway analysis (IPA) and general low level of repression of gene expression in lymphoid tissue, including many inflammatory genes, contrasts with the pro-inflammatory and pro-apoptotic events that occur within the CNS at equivalent stages of disease progression as assessed by PrPSc accumulation. PMID:26507419

  16. Development of post-pericardiotomy syndrome is preceded by an increase in pro-inflammatory and a decrease in anti-inflammatory serological markers

    PubMed Central

    2012-01-01

    The post-pericardiotomy syndrome (PPS) is a common complication after cardiac surgery, occuring in 10-40% of patients. PPS may prolong hospitalization, and even serious complications like tamponade and constrictive pericarditis may occur. Early diagnosis and treatment may reduce morbidity. In 50 patients transferred to our hospital after cardiac surgery we found an increase in pro-inflammatory and a decrease in anti-inflammatory cytokines at admission in the patients later developing PPS compared to the patients who did not develop PPS. If confirmed in larger studies, these findings may prove useful in early identification of and targeted treatment in patients developing PPS. PMID:22824227

  17. Development of post-pericardiotomy syndrome is preceded by an increase in pro-inflammatory and a decrease in anti-inflammatory serological markers.

    PubMed

    Snefjellå, Nora; Lappegård, Knut Tore

    2012-01-01

    The post-pericardiotomy syndrome (PPS) is a common complication after cardiac surgery, occuring in 10-40% of patients. PPS may prolong hospitalization, and even serious complications like tamponade and constrictive pericarditis may occur. Early diagnosis and treatment may reduce morbidity. In 50 patients transferred to our hospital after cardiac surgery we found an increase in pro-inflammatory and a decrease in anti-inflammatory cytokines at admission in the patients later developing PPS compared to the patients who did not develop PPS. If confirmed in larger studies, these findings may prove useful in early identification of and targeted treatment in patients developing PPS. PMID:22824227

  18. Effect of plant extracts on H2O2-induced inflammatory gene expression in macrophages

    PubMed Central

    Pomari, Elena; Stefanon, Bruno; Colitti, Monica

    2014-01-01

    Background Arctium lappa (AL), Camellia sinensis (CS), Echinacea angustifolia, Eleutherococcus senticosus, Panax ginseng (PG), and Vaccinium myrtillus (VM) are plants traditionally used in many herbal formulations for the treatment of various conditions. Although they are well known and already studied for their anti-inflammatory properties, their effects on H2O2-stimulated macrophages are a novel area of study. Materials and methods Cell viability was tested after treatment with increasing doses of H2O2 and/or plant extracts at different times of incubation to identify the optimal experimental conditions. The messenger (m)RNA expression of TNFα, COX2, IL1β, NFκB1, NFκB2, NOS2, NFE2L2, and PPARγ was analyzed in macrophages under H2O2 stimulation. The same genes were also quantified after plant extract treatment on cells pre-stimulated with H2O2. Results A noncytotoxic dose (200 μM) of H2O2 induced active mRNA expression of COX2, IL1β, NFE2L2, NFκB1, NFκB2, NOS2, and TNFα, while PPARγ was depressed. The expression of all genes tested was significantly (P<0.001) regulated by plant extracts after pre-stimulation with H2O2. COX2 was downregulated by AL, PG, and VM. All extracts depressed IL1β expression, but upregulated NFE2L2. NFκB1, NFκB2, and TNFα were downregulated by AL, CS, PG, and VM. NOS2 was inhibited by CS, PG, and VM. PPARγ was decreased only after treatment with E. angustifolia and E. senticosus. Conclusion The results of the present study indicate that the stimulation of H2O2 on RAW267.4 cells induced the transcription of proinflammatory mediators, showing that this could be an applicable system by which to activate macrophages. Plant extracts from AL, CS, PG, and VM possess in vitro anti-inflammatory activity on H2O2-stimulated macrophages by modulating key inflammation mediators. Further in vitro and in vivo investigation into molecular mechanisms modulated by herbal extracts should be undertaken to shed light on the development of novel

  19. Topical Substance P Increases Inflammatory Cell Density in Genetically Diabetic Murine Wounds

    PubMed Central

    Scott, Jeffrey R; Tamura, Richard N.; Muangman, Pornprom; Isik, F. Frank; Xie, Chengyu; Gibran, Nicole S.

    2008-01-01

    The neuropeptide substance P (SP) is a known inflammatory mediator released from cutaneous peripheral nerve terminals. SP effects on cellular composition in the cutaneous response to injury remain unclear. Based on our previous observations about SP effects on wound repair, we hypothesized that topical SP increases inflammatory cell density infiltration early after injury. A full thickness 1.5×1.5 cm-square wound was created on the dorsum of 8–9 wk old C57BL/6J-m+Leprdb mice (db/db). Wounds were treated daily with 300μl of either normal saline (0.9% NaCl) or 10−9M SP for seven days. Three wounds from each group were harvested at 2,3,7,14, and 28 days. Samples underwent enzymatic digestion and were incubated with fluorescent-labeled antibodies. Using flow cytometry, cellular content and density for each sample was derived. Masson Trichrome stained histology specimens were prepared to confirm results. Cell density in the SP-treated wounds (11.3×107 cells/gram tissue, SD +/−1.5×107) was greater than in NaCl-treated wounds (7×107 cells/gram tissue, SD +/−2.3×107, p<.05) at day 7 post-wounding. Substance P significantly increased the density of leukocytes (2.1×107, SD +/−3.6×106 vs. 1.8×107, SD+/−4.9×105, p<.02) 3 days after wounding and the density of macrophages (2.9 ×107, SD+/−7.5×106 vs. 1.3×107, SD+/−1.4×106, p<.05) 7 days after wounding. There were no significant differences in endothelial cell, leukocyte or macrophage density at later time points. Topical SP treatment increases early inflammatory density in the healing wounds of db/db mice. These data support a role for nerve-mediated inflammation in cutaneous wound repair. PMID:18638272

  20. Increased complexity of gene structure and base composition in vertebrates.

    PubMed

    Wu, Ying; Yuan, Huizhong; Tan, Shengjun; Chen, Jian-Qun; Tian, Dacheng; Yang, Haiwang

    2011-07-20

    How the structure and base composition of genes changed with the evolution of vertebrates remains a puzzling question. Here we analyzed 895 orthologous protein-coding genes in six multicellular animals: human, chicken, zebrafish, sea squirt, fruit fly, and worm. Our analyses reveal that many gene regions, particularly intron and 3' UTR, gradually expanded throughout the evolution of vertebrates from their invertebrate ancestors, and that the number of exons per gene increased. Studies based on all protein-coding genes in each genome provide consistent results. We also find that GC-content increased in many gene regions (especially 5' UTR) in the evolution of endotherms, except in coding-exons. Analysis of individual genomes shows that 3' UTR demonstrated stronger length and GC-content correlation with intron than 5' UTR, and gene with large intron in all six species demonstrated relatively similar GC-content. Our data indicates a great increase in complexity in vertebrate genes and we propose that the requirement for morphological and functional changes is probably the driving force behind the evolution of structure and base composition complexity in multicellular animal genes. PMID:21777854

  1. Analysis of the contribution of HLA genes to genetic predisposition in inflammatory bowel disease

    SciTech Connect

    Naom, I.; Haris, I.; Hodgson, S.V.; Mathew, C.G.

    1996-07-01

    Crohn disease (CD) and ulcerative colitis (UC) are chronic inflammatory bowel diseases (IBDs) of unknown etiology. First-degree relatives of IBD patients have a 10-fold increase in risk of developing the same disease, and distinct associations between specific HLA types and both CD and UC have been reported. We have evaluated the contribution of genes at the HLA locus to susceptibility in IBD by linkage analysis of highly informative microsatellite polymorphisms in 43 families with multiple affected cases. No evidence for linkage of HLA to IBD was obtained under any of the four models tested. Analysis of HLA haplotype sharing in affected relatives indicated that the relative risk to a sibling conferred by the HLA locus was 1.11 in UC and 0.75 in CD, with upper (95%) confidence limits of 2.41 and 1.37, respectively. This suggests that other genetic or environmental factors are responsible for most of the familial aggregation in IBD. 31 refs., 1 fig., 2 tabs.

  2. IRF5:RelA Interaction Targets Inflammatory Genes in Macrophages

    PubMed Central

    Saliba, David G.; Heger, Andreas; Eames, Hayley L.; Oikonomopoulos, Spyros; Teixeira, Ana; Blazek, Katrina; Androulidaki, Ariadne; Wong, Daniel; Goh, Fui G.; Weiss, Miriam; Byrne, Adam; Pasparakis, Manolis; Ragoussis, Jiannis; Udalova, Irina A.

    2014-01-01

    Summary Interferon Regulatory Factor 5 (IRF5) plays a major role in setting up an inflammatory macrophage phenotype, but the molecular basis of its transcriptional activity is not fully understood. In this study, we conduct a comprehensive genome-wide analysis of IRF5 recruitment in macrophages stimulated with bacterial lipopolysaccharide and discover that IRF5 binds to regulatory elements of highly transcribed genes. Analysis of protein:DNA microarrays demonstrates that IRF5 recognizes the canonical IRF-binding (interferon-stimulated response element [ISRE]) motif in vitro. However, IRF5 binding in vivo appears to rely on its interactions with other proteins. IRF5 binds to a noncanonical composite PU.1:ISRE motif, and its recruitment is aided by RelA. Global gene expression analysis in macrophages deficient in IRF5 and RelA highlights the direct role of the RelA:IRF5 cistrome in regulation of a subset of key inflammatory genes. We map the RelA:IRF5 interaction domain and suggest that interfering with it would offer selective targeting of macrophage inflammatory activities. PMID:25159141

  3. Inflammatory gene expression in Coxsackievirus B-4-infected human islets of Langerhans.

    PubMed

    Olsson, Annika; Johansson, Ulrika; Korsgren, Olle; Frisk, Gun

    2005-05-01

    The event that triggers the autoimmune destruction of insulin-producing beta-cells in type 1 diabetes mellitus (T1DM) is still unknown. Enterovirus, especially Coxsackievirus, infections have long been associated with this disease. Cytokines and chemokines induced by an enterovirus infection may act to trigger the autoimmune reactions that produce T1DM. Gene expression was examined in isolated human islets infected with a Coxsackievirus-B4 (CBV-4) strain causing lytic infection (V89-4557) and in islets infected with a CBV-4 strain establishing persistent infection (VD2921). Microarray analysis indicated that infection with the CBV-4 strains resulted in specific induction of a number of inflammatory genes, including IL-1beta, IL-6, IL-8, MCP-1, and RANTES. Importantly, the inflammatory genes induced by the CBV-4 infections differed in the two strains, with more cytokines being induced by the non-lytic CBV-4 strain than by the lytic strain. These cytokines and chemokines have the potential to rapidly induce inflammatory reactions when expressed in vivo and could contribute to the autoimmune reactions associated with the development of T1DM. PMID:15796921

  4. MALT1 Protease Activity Controls the Expression of Inflammatory Genes in Keratinocytes upon Zymosan Stimulation.

    PubMed

    Schmitt, Anja; Grondona, Paula; Maier, Tabea; Brändle, Marc; Schönfeld, Caroline; Jäger, Günter; Kosnopfel, Corinna; Eberle, Franziska C; Schittek, Birgit; Schulze-Osthoff, Klaus; Yazdi, Amir S; Hailfinger, Stephan

    2016-04-01

    The protease activity of the paracaspase mucosa-associated lymphoid tissue lymphoma translocation gene 1 (MALT1) plays an important role in antigen receptor-mediated lymphocyte activation by controlling the activity of the transcription factor nuclear factor-κB and is thus essential for the expression of inflammatory target genes. MALT1 is not only present in cells of the hematopoietic lineage, but is ubiquitously expressed. Here we report that stimulation with zymosan or Staphylococcus aureus induced MALT1 protease activity in human primary keratinocytes. Inhibition of the Src family of kinases or novel protein kinase C isoforms as well as silencing of CARMA2 or BCL10 interfered with activation of MALT1 protease. Silencing or inhibition of MALT1 protease strongly decreased the expression of important inflammatory genes such as TNFα, IL-17C, CXCL8 and HBD-2. MALT1-inhibited cells were unable to mount an antimicrobial response upon zymosan stimulation or phorbolester/ionomycin treatment, demonstrating a central role of MALT1 protease activity in keratinocyte immunity and suggesting MALT1 as a potential target in inflammatory skin diseases. PMID:26767426

  5. Hepatic Expression Patterns of Inflammatory and Immune Response Genes Associated with Obesity and NASH in Morbidly Obese Patients

    PubMed Central

    Bertola, Adeline; Bonnafous, Stéphanie; Anty, Rodolphe; Patouraux, Stéphanie; Saint-Paul, Marie-Christine; Iannelli, Antonio; Gugenheim, Jean; Barr, Jonathan; Mato, José M.; Le Marchand-Brustel, Yannick; Tran, Albert; Gual, Philippe

    2010-01-01

    Background Obesity modulates inflammation and activation of immune pathways which can lead to liver complications. We aimed at identifying expression patterns of inflammatory and immune response genes specifically associated with obesity and NASH in the liver of morbidly obese patients. Methodology/Principal Findings Expression of 222 genes was evaluated by quantitative RT-PCR in the liver of morbidly obese patients with histologically normal liver (n = 6), or with severe steatosis without (n = 6) or with NASH (n = 6), and in lean controls (n = 5). Hepatic expression of 58 out of 222 inflammatory and immune response genes was upregulated in NASH patients. The most notable changes occurred in genes encoding chemokines and chemokine receptors involved in leukocyte recruitment, CD and cytokines involved in the T cell activation towards a Th1 phenotype, and immune semaphorins. This regulation seems to be specific for the liver since visceral adipose tissue expression and serum levels of MCP1, IP10, TNFα and IL6 were not modified. Importantly, 47 other genes were already upregulated in histologically normal liver (e.g. CRP, Toll-like receptor (TLR) pathway). Interestingly, serum palmitate, known to activate the TLR pathway, was increased with steatosis. Conclusion/Significance The liver of obese patients without histological abnormalities already displayed a low-grade inflammation and could be more responsive to activators of the TLR pathway. NASH was then characterized by a specific gene signature. These findings help to identify new potential actors of the pathogenesis of NAFLD. PMID:21042596

  6. Blueberry polyphenols attenuate kainic acid-induced decrements in cognition and alter inflammatory gene expression in rat hippocampus

    PubMed Central

    Shukitt-Hale, Barbara; Lau, Francis C.; Carey, Amanda N.; Galli, Rachel L.; Spangler, Edward L.; Ingram, Donald K.; Joseph, James A.

    2016-01-01

    Cognitive impairment in age-related neurodegenerative diseases such as Alzheimer's disease may be partly due to long-term exposure and increased susceptibility to inflammatory insults. In the current study, we investigated whether polyphenols in blueberries can reduce the deleterious effects of inflammation induced by central administration of kainic acid by altering the expression of genes associated with inflammation. To this end, 4-month-old male Fischer-344 (F344) rats were fed a control, 0.015% piroxicam (an NSAID) or 2% blueberry diet for 8 weeks before either Ringer's buffer or kainic acid was bilaterally micro-infused into the hippocampus. Two weeks later, following behavioral evaluation, the rats were killed and total RNA from the hippocampus was extracted and used in real-time quantitative RT-PCR (qRT-PCR) to analyze the expression of inflammation-related genes. Kainic acid had deleterious effects on cognitive behavior as kainic acid-injected rats on the control diet exhibited increased latencies to find a hidden platform in the Morris water maze compared to Ringer's buffer-injected rats and utilized non-spatial strategies during probe trials. The blueberry diet, and to a lesser degree the piroxicam diet, was able to improve cognitive performance. Immunohistochemical analyses of OX-6 expression revealed that kainic acid produced an inflammatory response by increasing the OX-6 positive areas in the hippocampus of kainic acid-injected rats. Kainic acid up-regulated the expression of the inflammatory cytokines IL-1β and TNF-α, the neurotrophic factor IGF-1, and the transcription factor NF-κB. Blueberry and piroxicam supplementations were found to attenuate the kainic acid-induced increase in the expression of IL-1β, TNF-α, and NF-κB, while only blueberry was able to augment the increased IGF-1 expression. These results indicate that blueberry polyphenols attenuate learning impairments following neurotoxic insult and exert anti-inflammatory actions

  7. Salt-inducible kinase 3 deficiency exacerbates lipopolysaccharide-induced endotoxin shock accompanied by increased levels of pro-inflammatory molecules in mice

    PubMed Central

    Sanosaka, Masato; Fujimoto, Minoru; Ohkawara, Tomoharu; Nagatake, Takahiro; Itoh, Yumi; Kagawa, Mai; Kumagai, Ayako; Fuchino, Hiroyuki; Kunisawa, Jun; Naka, Tetsuji; Takemori, Hiroshi

    2015-01-01

    Macrophages play important roles in the innate immune system during infection and systemic inflammation. When bacterial lipopolysaccharide (LPS) binds to Toll-like receptor 4 on macrophages, several signalling cascades co-operatively up-regulate gene expression of inflammatory molecules. The present study aimed to examine whether salt-inducible kinase [SIK, a member of the AMP-activated protein kinase (AMPK) family] could contribute to the regulation of immune signal not only in cultured macrophages, but also in vivo. LPS up-regulated SIK3 expression in murine RAW264.7 macrophages and exogenously over-expressed SIK3 negatively regulated the expression of inflammatory molecules [interleukin-6 (IL-6), nitric oxide (NO) and IL-12p40] in RAW264.7 macrophages. Conversely, these inflammatory molecule levels were up-regulated in SIK3-deficient thioglycollate-elicited peritoneal macrophages (TEPM), despite no impairment of the classical signalling cascades. Forced expression of SIK3 in SIK3-deficient TEPM suppressed the levels of the above-mentioned inflammatory molecules. LPS injection (10 mg/kg) led to the death of all SIK3-knockout (KO) mice within 48 hr after treatment, whereas only one mouse died in the SIK1-KO (n = 8), SIK2-KO (n = 9) and wild-type (n = 8 or 9) groups. In addition, SIK3-KO bone marrow transplantation increased LPS sensitivity of the recipient wild-type mice, which was accompanied by an increased level of circulating IL-6. These results suggest that SIK3 is a unique negative regulator that suppresses inflammatory molecule gene expression in LPS-stimulated macrophages. PMID:25619259

  8. Effects of low level laser therapy on inflammatory and angiogenic gene expression during the process of bone healing: A microarray analysis.

    PubMed

    Tim, Carla Roberta; Bossini, Paulo Sérgio; Kido, Hueliton Wilian; Malavazi, Iran; von Zeska Kress, Marcia Regina; Carazzolle, Marcelo Falsarella; Parizotto, Nivaldo Antonio; Rennó, Ana Cláudia

    2016-01-01

    The process of bone healing as well as the expression of inflammatory and angiogenic genes after low level laser therapy (LLLT) were investigated in an experimental model of bone defects. Sixty Wistar rats were distributed into control group and laser group (830nm, 30mW, 2,8J, 94seg). Histopathological analysis showed that LLLT was able to modulate the inflammatory process in the area of the bone defect and also to produce an earlier deposition of granulation tissue and newly formed bone tissue. Microarray analysis demonstrated that LLLT produced an up-regulation of the genes related to the inflammatory process (MMD, PTGIR, PTGS2, Ptger2, IL1, 1IL6, IL8, IL18) and the angiogenic genes (FGF14, FGF2, ANGPT2, ANGPT4 and PDGFD) at 36h and 3days, followed by the decrease of the gene expression on day 7. Immunohistochemical analysis revealed that the subjects that were treated presented a higher expression of COX-2 at 36h after surgery and an increased VEGF expression on days 3 and 7 after surgery. Our findings indicate that LLLT was efficient on accelerating the development of newly formed bone probably by modulating the inflammatory and angiogenic gene expression as well as COX2 and VEGF immunoexpression during the initial phase of bone healing. PMID:26599085

  9. Cohabitation with a sick partner increases allergic lung inflammatory response in mice.

    PubMed

    Hamasato, Eduardo Kenji; de Lima, Ana Paula Nascimento; de Oliveira, Ana Paula Ligeiro; dos Santos Franco, Adriana Lino; de Lima, Wothan Tavares; Palermo-Neto, João

    2014-11-01

    The bidirectional relationship between the nervous system and the immune system is relevant for homeostatic organism maintenance. Studies from our laboratory showed that 14days of cohabitation with a sick partner (injected with Ehrlich tumor cells-TAE) produced behavioral, neurochemical, endocrinological and immunological changes. This study analyzes the effects of cohabitation with an Ehrlich tumor-bearing animal on ovalbumin (OVA)-induced lung inflammatory response in mice. Pairs of male mice were divided into three groups: naïve, control and experimental. Animals of the naïve group were kept undisturbed being used for the assessment of basal parameters. One animal of each experimental and control pair of mice was immunized with OVA. On ED(0), these OVA-immunized animals received an OVA booster. At this day (D(0)) the experimental mice that were kept undisturbed were inoculated with 5×10(6) Ehrlich tumor cells; their immunized cage-mates were then referred as to CSP ("companion of sick partner"). The undisturbed mice of each control pair were i.p. treated on D(0) with 0.9% NaCl; their sensitized cage-mates were subsequently referred as CHP ("companion of health partner"). The OVA challenge was performed on CSP and CHP mice on ED(12) and ED(13); blood and tissue collection were performed on ED(14). Fourteen days after cohabitation, in comparison to the CHP mice, the CSP mice displayed the following: (1) an increased number of eosinophils and neutrophils in the BAL, (2) a decreased bone marrow cell count, (3) increased levels of IL-4 and IL-5 and decreased levels of IL-10 and IFN-γ in the BAL supernatant, (5) increased levels of IgG1-OVA, decreased levels of IgG2a-OVA and no changes in OVA-specific IgE in the peripheral blood, (6) increased expression of L-selectin in the BAL granulocytes, (7) decreased tracheal reactivity to methacholine measured in vitro, (8) no changes in plasma corticosterone levels and (9) increased levels of plasmatic noradrenaline. These

  10. The Case for Increased Physical Activity in Chronic Inflammatory Bowel Disease: A Brief Review.

    PubMed

    Shephard, R J

    2016-06-01

    Regular physical activity reduces the risk of colon cancer, but there is little information on the merits of such activity in the prevention and management of chronic inflammatory bowel disease (CIBD). The present systematic review thus documents current levels of habitual physical activity and aerobic and muscular function in CIBD, and examines the safety, practicality and efficacy of exercise programmes in countering the disease process, correcting functional deficits and enhancing quality of life. A systematic search of the Ovid/Medline database from January 1996 to May 2015 linked the terms physical activity/motor activity/physical fitness/physical training/physical education/training/exercise/exercise therapy with Crohn's disease/colitis/ulcerative colitis/inflammatory bowel disease, supplementing this information by a scanning of reference lists and personal files.12 of 16 published studies show a low level of habitual physical activity in CIBD, with sub-normal values for aerobic power, lean tissue mass and muscular strength. 3 of 4 studies suggest physical activity may reduce the risk of developing IBD, and 11 interventions all note that exercise programmes are well tolerated with some decreases of disease activity, and functional gains leading to an increased health-related quality of life. Moreover, programme compliance rates compare favourably with those seen in the treatment of other chronic conditions. More information on mechanisms is needed, but regular moderate aerobic and/or resistance exercise improves the health status of patients with CIBD both by modulating immune function and by improving physical function. A regular exercise programme should thus become an important component in the management of CIBD. PMID:27116344

  11. Inflammatory Markers Are Increased in Youth with Type 1 Diabetes: The SEARCH Case-Control Study

    PubMed Central

    Snell-Bergeon, Janet K.; West, Nancy A.; Mayer-Davis, Elizabeth J.; Liese, Angela D.; Marcovina, Santica M.; D'Agostino, Ralph B.; Hamman, Richard F.; Dabelea, Dana

    2010-01-01

    Context: Increased inflammation may contribute to type 1 diabetes (T1D) complications. Objective: The objective of the study was to investigate the association of inflammation with obesity, hyperglycemia and dyslipidemia in youth with T1D. Design: This was a cross-sectional study of youth with and without T1D. Setting: The study was conducted in Colorado and South Carolina. Patients: SEARCH Case-Control participants with T1D [n = 553, mean age 15 yr (range 10–22), median duration 2.7 yr] and without diabetes [n = 215, mean age 15 yr (range 10–22)]. Intervention: This was an observational study. Main Outcome Measures: IL-6, high-sensitivity C-reactive protein (hsCRP), fibrinogen, and leptin were measured. Results: Inflammatory markers were evaluated by diabetes status, quartiles of glycated hemoglobin, and obesity using multiple linear regression analyses, adjusted for age, sex, study site, race/ethnicity, T1D duration, body mass index, and pubertal status. Compared with controls, youth with T1D had higher IL-6 and fibrinogen levels at all levels of glycemia and obesity, and hsCRP levels were significantly higher in youth with T1D in the top three quartiles of glycated hemoglobin (≥7.2%) and among normal-weight subjects. Leptin was lower in youth with poor glycemic control. Higher hsCRP and fibrinogen were correlated with higher total and LDL cholesterol, and apolipoprotein B in youth with T1D, whereas higher fibrinogen was correlated with higher LDL and apolipoprotein B in controls. Conclusions: T1D is characterized by excess inflammation, independent of adiposity and glycemic control. Even T1D youth in good glycemic control had higher levels of IL-6 and fibrinogen than controls. Elevated inflammatory markers were associated with an atherogenic lipid profile, which may contribute to accelerated atherosclerosis in youth with T1D. PMID:20371668

  12. Anti-Inflammatory Effects of Modified Adenoviral Vectors for Gene Therapy: A View through Animal Models Tested.

    PubMed

    Castañeda-Lopez, M E; Garza-Veloz, I; Lopez-Hernandez, Y; Barbosa-Cisneros, O Y; Martinez-Fierro, M L

    2016-07-01

    The central dogma of gene therapy relies on the application of novel therapeutic genes to treat or prevent diseases. The main types of vectors used for gene transfer are adenovirus, retrovirus, lentivirus, liposome, and adeno-associated virus vectors. Gene therapy has emerged as a promising alternative for the treatment of inflammatory diseases. The main targets are cytokines, co-stimulatory molecules, and different types of cells from hematological and mesenchymal sources. In this review, we focus on molecules with anti-inflammatory effects used for in vivo gene therapy mediated by adenoviral gene transfer in the treatment of immune-mediated inflammatory diseases, with particular emphasis on autoinflammatory and autoimmune diseases. PMID:27245510

  13. Calpain activity and expression are increased in splenic inflammatory cells associated with experimental allergic encephalomyelitis.

    PubMed

    Shields, D C; Schaecher, K E; Goust, J M; Banik, N L

    1999-09-01

    Since calcium-activated neutral proteinase (calpain) activity and expression are significantly increased in activated glial/inflammatory cells in the central nervous system of animals with autoimmune demyelinating diseases, this enzyme may also play a role in peripheral organ systems in these diseases. In this study, the activity and expression of calpain and the endogenous inhibitor, calpastatin, were evaluated at transcriptional and translational levels in spleens of Lewis rats with acute experimental allergic encephalomyelitis (EAE) prior to the onset of clinical symptoms. Calpain activity and translational expression were increased by 475.5% and 44.3% respectively, on day 4 post-induction in adjuvant controls and animals with EAE. These levels remained elevated compared to normal controls on days 8 and 12. Calpastatin translational expression was similarly increased at these time points although transcriptional expression was not significantly altered at any time following induction of EAE. Likewise, transcriptional expression of mu-calpain was unchanged following induction, while small increases in m-calpain transcriptional expression were observed on days 2 and 8. Most calpain expression was observed in activated splenic macrophages at day 8 post-induction even though activated T cells were also calpain positive. In spinal cords of animals with EAE, calpain expression was significantly increased in rats with severe disease compared to those exhibiting only mild symptoms at day 12 post-induction. Thus, prior to symptomatic EAE, increased calpain activity and expression in peripheral lymphoid organs may play an important role in T cell migration and subsequent disease progression. PMID:10496171

  14. Characterization of genes with increased expression in human glioblastomas.

    PubMed

    Kavsan, V; Shostak, K; Dmitrenko, V; Zozulya, Yu; Rozumenko, V; Demotes-Mainard, J

    2005-01-01

    In the present study, we have used the gene expression data available in the SAGE database in an attempt to identify glioblastoma molecular markers. Of 129 genes with more than 5-fold difference found by comparison of nine glioblastoma with five normal brain SAGE libraries, 44 increased their expression in glioblastomas. Most corresponding proteins were involved in angiogenesis, host-tumor immune interplay, multidrug resistance, extracellular matrix (ECM) formation, IGF-signalling, or MAP-kinase pathway. Among them, 16 genes had a high expression both in glioblastomas and in glioblastoma cell lines suggesting their expression in transformed cells. Other 28 genes had an increased expression only in glioblastomas, not in glioblastoma cell lines suggesting an expression possibly originated from host cells. Many of these genes are among the top transcripts in activated macrophages, and involved in immune response and angiogenesis. This altered pattern of gene expression in both host and tumor cells, can be viewed as a molecular marker in the analysis of malignant progression of astrocytic tumors, and as possible clues for the mechanism of disease. Moreover, several genes overexpressed in glioblastomas produce extracellular proteins, thereby providing possible therapeutic targets. Further characterization of these genes will thus allow them to be exploited in molecular classification of glial tumors, diagnosis, prognosis, and anticancer therapy. PMID:16396319

  15. Calcium Gluconate in Phosphate Buffered Saline Increases Gene Delivery with Adenovirus Type 5

    PubMed Central

    Ahonen, Marko T.; Diaconu, Iulia; Pesonen, Sari; Kanerva, Anna; Baumann, Marc; Parviainen, Suvi T.; Spiller, Brad

    2010-01-01

    Background Adenoviruses are attractive vectors for gene therapy because of their stability in vivo and the possibility of production at high titers. Despite exciting preclinical data with various approaches, there are only a few examples of clear efficacy in clinical trials. Effective gene delivery to target cells remains the key variable determining efficacy and thus enhanced transduction methods are important. Methods/Results We found that heated serum could enhance adenovirus 5 mediated gene delivery up to twentyfold. A new protein-level interaction was found between fiber knob and serum transthyretin, but this was not responsible for the observed effect. Instead, we found that heating caused the calcium and phosphate present in the serum mix to precipitate, and this was responsible for enhanced gene delivery. This finding could have relevance for designing preclinical experiments with adenoviruses, since calcium and phosphate are present in many solutions. To translate this into an approach potentially testable in patients, we used calcium gluconate in phosphate buffered saline, both of which are clinically approved, to increase adenoviral gene transfer up to 300-fold in vitro. Gene transfer was increased with or without heating and in a manner independent from the coxsackie-adenovirus receptor. In vivo, in mouse studies, gene delivery was increased 2-, 110-, 12- and 13-fold to tumors, lungs, heart and liver and did not result in increased pro-inflammatory cytokine induction. Antitumor efficacy of a replication competent virus was also increased significantly. Conclusion In summary, adenoviral gene transfer and antitumor efficacy can be enhanced by calcium gluconate in phosphate buffered saline. PMID:20927353

  16. Silver nanoparticles induce pro-inflammatory gene expression and inflammasome activation in human monocytes.

    PubMed

    Murphy, A; Casey, A; Byrne, G; Chambers, G; Howe, O

    2016-10-01

    A complete cytotoxic profile of exposure to silver (AgNP) nanoparticles investigating their biological effects on the innate immune response of circulating white blood cells is required to form a complete understanding of the risk posed. This was explored by measuring AgNP-stimulated gene expression of the pro-inflammatory cytokines interleukin-1 (IL-1), interleukin-6 (IL-6) and tumour necrosis factor-alpha (TNF-α) in THP-1 monocytes. A further study, on human monocytes extracted from a cohort of blood samples, was carried out to compare with the AgNP immune response in THP-1 cells along with the detection of pro-IL-1β which is a key mediator of the inflammasome complex. The aims of the study were to clearly demonstrate that AgNP can significantly up-regulate pro-inflammatory cytokine gene expression of IL-1, IL-6 and TNF-α in both THP-1 cells and primary blood monocytes thus indicating a rapid response to AgNP in circulation. Furthermore, a role for the inflammasome in AgNP response was indicated by pro-IL-1β cleavage and release. These results highlight the potential inflammatory effects of AgNP exposure and the responses evoked should be considered with respect to the potential harm that exposure may cause. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26968431

  17. The elongation factor Spt5 facilitates transcription initiation for rapid induction of inflammatory-response genes

    PubMed Central

    Diamant, Gil; Bahat, Anat; Dikstein, Rivka

    2016-01-01

    A subset of inflammatory-response NF-κB target genes is activated immediately following pro-inflammatory signal. Here we followed the kinetics of primary transcript accumulation after NF-κB activation when the elongation factor Spt5 is knocked down. While elongation rate is unchanged, the transcript synthesis at the 5′-end and at the earliest time points is delayed and reduced, suggesting an unexpected role in early transcription. Investigating the underlying mechanism reveals that the induced TFIID–promoter association is practically abolished by Spt5 depletion. This effect is associated with a decrease in promoter-proximal H3K4me3 and H4K5Ac histone modifications that are differentially required for rapid transcriptional induction. In contrast, the displacement of TFIIE and Mediator, which occurs during promoter escape, is attenuated in the absence of Spt5. Our findings are consistent with a central role of Spt5 in maintenance of TFIID–promoter association and promoter escape to support rapid transcriptional induction and re-initiation of inflammatory-response genes. PMID:27180651

  18. Prepartal dietary energy level affects peripartal bovine blood neutrophil metabolic, antioxidant, and inflammatory gene expression.

    PubMed

    Zhou, Z; Bu, D P; Vailati Riboni, M; Khan, M J; Graugnard, D E; Luo, J; Cardoso, F C; Loor, J J

    2015-08-01

    During the dry period, cows can easily overconsume higher-grain diets, a scenario that could impair immune function during the peripartal period. Objectives were to investigate the effects of energy overfeeding on expression profile of genes associated with inflammation, lipid metabolism, and neutrophil function, in 12 multiparous Holstein cows (n=6/dietary group) fed control [CON, 1.34 Mcal/kg of dry matter (DM)] or higher-energy (HE, 1.62 Mcal/kg of DM) diets during the last 45 d of pregnancy. Blood was collected to evaluate 43 genes in polymorphonuclear neutrophil leukocytes (PMNL) isolated at -14, 7, and 14 d relative to parturition. We detected greater expression of inflammatory-related cytokines (IL1B, STAT3, NFKB1) and eicosanoid synthesis (ALOX5AP and PLA2G4A) in HE cows than in CON cows. Around parturition, all cows had a close balance in mRNA expression of the pro-inflammatory IL1B and the anti-inflammatory IL10, with greater expression of both in cows fed HE than CON. The expression of CCL2, LEPR, TLR4, IL6, and LTC4S was undetectable. Cows in the HE group had greater expression of genes involved in PMNL adhesion, motility, migration, and phagocytosis, which was similar to expression of genes related to the pro-inflammatory cytokine. This response suggests that HE cows experienced a chronic state of inflammation. The greater expression of G6PD in HE cows could have been associated with the greater plasma insulin, which would have diverted glucose to other tissues. Cows fed the HE diet also had greater expression of transcription factors involved in metabolism of long-chain fatty acids (PPARD, RXRA), suggesting that immune cells might be predisposed to use endogenous ligands such as nonesterified fatty acids available in the circulation when glucose is in high demand for milk synthesis. The lower overall expression of SLC2A1 postpartum than prepartum supports this suggestion. Targeting interleukin-1β signaling might be of value in terms of controlling

  19. Moutan Cortex Radicis inhibits inflammatory changes of gene expression in lipopolysaccharide-stimulated gingival fibroblasts.

    PubMed

    Yun, Cheol-Sang; Choi, Yeong-Gon; Jeong, Mi-Young; Lee, Je-Hyun; Lim, Sabina

    2013-07-01

    Moutan Cortex Radicis (MCR), the root bark of Paeonia suffruticosa Andrews (Paeoniaceae), is found in the traditional Chinese medicinal formulae which were used to treat periodontal diseases. This study investigated the changes in gene expression by MCR treatment when stimulated with lipopolysaccharide (LPS) in cultured human gingival fibroblasts (HGFs). A genome-wide expression GeneChip was used for the gene array analysis, and real-time reverse transcription polymerase chain reaction (RT-PCR) analysis was also performed to confirm the gene expression. It was shown that 42 of the 643 genes up-regulated by LPS, when compared to the control, were down-regulated by the MCR treatment. Of these 42 genes, the inflammation and immune response-related genes were especially noted, which indicates that MCR inhibits the induction of inflammation by LPS stimulation. In addition, 33 of the 519 genes down-regulated by LPS, when compared to the control, were up-regulated by the MCR treatment. The expression patterns of some representative genes by real-time RT-PCR correlated with those of the genes shown in the microarray. In addition, the MCR extract contained paeonol and paeoniflorin, which are known to have the anti-inflammatory effect as the major phenolic components of MCR. This study showed that the MCR extract could comprehensively inhibit a wide variety of activations of inflammation-related genes, which may be due to paeonol and paeoniflorin. It is, thus, suggested that MCR may be applied to alleviate the inflammation of periodontal diseases. PMID:23086154

  20. Macrophage-derived human resistin is induced in multiple helminth infections and promotes inflammatory monocytes and increased parasite burden.

    PubMed

    Jang, Jessica C; Chen, Gang; Wang, Spencer H; Barnes, Mark A; Chung, Josiah I; Camberis, Mali; Le Gros, Graham; Cooper, Philip J; Steel, Cathy; Nutman, Thomas B; Lazar, Mitchell A; Nair, Meera G

    2015-01-01

    Parasitic helminth infections can be associated with lifelong morbidity such as immune-mediated organ failure. A better understanding of the host immune response to helminths could provide new avenues to promote parasite clearance and/or alleviate infection-associated morbidity. Murine resistin-like molecules (RELM) exhibit pleiotropic functions following helminth infection including modulating the host immune response; however, the relevance of human RELM proteins in helminth infection is unknown. To examine the function of human resistin (hResistin), we utilized transgenic mice expressing the human resistin gene (hRetnTg+). Following infection with the helminth Nippostrongylus brasiliensis (Nb), hResistin expression was significantly upregulated in infected tissue. Compared to control hRetnTg- mice, hRetnTg+ mice suffered from exacerbated Nb-induced inflammation characterized by weight loss and increased infiltration of inflammatory monocytes in the lung, along with elevated Nb egg burdens and delayed parasite expulsion. Genome-wide transcriptional profiling of the infected tissue revealed that hResistin promoted expression of proinflammatory cytokines and genes downstream of toll-like receptor signaling. Moreover, hResistin preferentially bound lung monocytes, and exogenous treatment of mice with recombinant hResistin promoted monocyte recruitment and proinflammatory cytokine expression. In human studies, increased serum resistin was associated with higher parasite load in individuals infected with soil-transmitted helminths or filarial nematode Wuchereria bancrofti, and was positively correlated with proinflammatory cytokines. Together, these studies identify human resistin as a detrimental factor induced by multiple helminth infections, where it promotes proinflammatory cytokines and impedes parasite clearance. Targeting the resistin/proinflammatory cytokine immune axis may provide new diagnostic or treatment strategies for helminth infection and associated

  1. Macrophage-Derived Human Resistin Is Induced in Multiple Helminth Infections and Promotes Inflammatory Monocytes and Increased Parasite Burden

    PubMed Central

    Jang, Jessica C.; Chen, Gang; Wang, Spencer H.; Barnes, Mark A.; Chung, Josiah I.; Camberis, Mali; Le Gros, Graham; Cooper, Philip J.; Steel, Cathy; Nutman, Thomas B.; Lazar, Mitchell A.; Nair, Meera G.

    2015-01-01

    Parasitic helminth infections can be associated with lifelong morbidity such as immune-mediated organ failure. A better understanding of the host immune response to helminths could provide new avenues to promote parasite clearance and/or alleviate infection-associated morbidity. Murine resistin-like molecules (RELM) exhibit pleiotropic functions following helminth infection including modulating the host immune response; however, the relevance of human RELM proteins in helminth infection is unknown. To examine the function of human resistin (hResistin), we utilized transgenic mice expressing the human resistin gene (hRetnTg+). Following infection with the helminth Nippostrongylus brasiliensis (Nb), hResistin expression was significantly upregulated in infected tissue. Compared to control hRetnTg− mice, hRetnTg+ mice suffered from exacerbated Nb-induced inflammation characterized by weight loss and increased infiltration of inflammatory monocytes in the lung, along with elevated Nb egg burdens and delayed parasite expulsion. Genome-wide transcriptional profiling of the infected tissue revealed that hResistin promoted expression of proinflammatory cytokines and genes downstream of toll-like receptor signaling. Moreover, hResistin preferentially bound lung monocytes, and exogenous treatment of mice with recombinant hResistin promoted monocyte recruitment and proinflammatory cytokine expression. In human studies, increased serum resistin was associated with higher parasite load in individuals infected with soil-transmitted helminths or filarial nematode Wuchereria bancrofti, and was positively correlated with proinflammatory cytokines. Together, these studies identify human resistin as a detrimental factor induced by multiple helminth infections, where it promotes proinflammatory cytokines and impedes parasite clearance. Targeting the resistin/proinflammatory cytokine immune axis may provide new diagnostic or treatment strategies for helminth infection and associated

  2. Association of tumor necrosis factor-α and -β gene polymorphisms in inflammatory bowel disease.

    PubMed

    Al-Meghaiseeb, Ebtissam Saleh; Al-Robayan, Abdulrahman A; Al-Otaibi, Mulfi Mubarak; Arfin, Misbahul; Al-Asmari, Abdulrahman K

    2016-01-01

    Inflammatory bowel disease (IBD) is a complex, multifactorial, chronic inflammatory disorder of the gastrointestinal tract in which immune dysregulation caused by genetic and/or environmental factors plays an important role. The aim of this case-control study was to evaluate the association of tumor necrosis factor-alpha (TNF-α) (308) and -β (+252) polymorphisms with susceptibility of IBD. A total of 379 Saudi subjects including 179 IBD patients (ulcerative colitis (UC) =84 and Crohn's disease (CD) =95) and 200 age- and sex-matched healthy controls were recruited. TNF-α and TNF-β genes were amplified using an amplification refractory mutation systems polymerase chain reaction methodology to detect TNF-α (-308) and -β (+252) polymorphisms. The frequency of the GA genotype of TNF-α (-308G/A) was higher, and the frequencies of the GG and AA genotypes were significantly lower in IBD patients compared with those in controls, indicating that genotype GA-positive individuals are susceptible to IBD and that the GG and AA genotypes exert a protective effect. The frequency of allele A of TNF-α (-308G/A) was significantly higher and that of allele G was lower in IBD patients compared with those in controls, indicating an association of allele A with IBD risk in Saudi patients. On stratification of IBD patients into UC and CD, an almost similar pattern was noticed in both the groups. The results of TNF-β (+252A/G) polymorphisms showed a significant increase in the frequency of the GG genotype in IBD patients, suggesting a positive association of GG genotype with IBD risk. On stratification of IBD patients into UC and CD, the genotype GG of TNF-β was associated with susceptibility risk to UC but not CD. The frequencies of alleles and genotypes of both TNF-α and-β polymorphisms are not affected by sex or type of IBD (familial or sporadic). TNF-α (-308G/A) and TNF-β (+252A/G) polymorphisms are associated with risk of developing IBD in Saudi population. PMID:27382325

  3. Association of tumor necrosis factor-α and -β gene polymorphisms in inflammatory bowel disease

    PubMed Central

    Al-Meghaiseeb, Ebtissam Saleh; Al-Robayan, Abdulrahman A; Al-Otaibi, Mulfi Mubarak; Arfin, Misbahul; Al-Asmari, Abdulrahman K

    2016-01-01

    Inflammatory bowel disease (IBD) is a complex, multifactorial, chronic inflammatory disorder of the gastrointestinal tract in which immune dysregulation caused by genetic and/or environmental factors plays an important role. The aim of this case–control study was to evaluate the association of tumor necrosis factor-alpha (TNF-α) (308) and -β (+252) polymorphisms with susceptibility of IBD. A total of 379 Saudi subjects including 179 IBD patients (ulcerative colitis (UC) =84 and Crohn’s disease (CD) =95) and 200 age- and sex-matched healthy controls were recruited. TNF-α and TNF-β genes were amplified using an amplification refractory mutation systems polymerase chain reaction methodology to detect TNF-α (−308) and -β (+252) polymorphisms. The frequency of the GA genotype of TNF-α (−308G/A) was higher, and the frequencies of the GG and AA genotypes were significantly lower in IBD patients compared with those in controls, indicating that genotype GA-positive individuals are susceptible to IBD and that the GG and AA genotypes exert a protective effect. The frequency of allele A of TNF-α (−308G/A) was significantly higher and that of allele G was lower in IBD patients compared with those in controls, indicating an association of allele A with IBD risk in Saudi patients. On stratification of IBD patients into UC and CD, an almost similar pattern was noticed in both the groups. The results of TNF-β (+252A/G) polymorphisms showed a significant increase in the frequency of the GG genotype in IBD patients, suggesting a positive association of GG genotype with IBD risk. On stratification of IBD patients into UC and CD, the genotype GG of TNF-β was associated with susceptibility risk to UC but not CD. The frequencies of alleles and genotypes of both TNF-α and-β polymorphisms are not affected by sex or type of IBD (familial or sporadic). TNF-α (−308G/A) and TNF-β (+252A/G) polymorphisms are associated with risk of developing IBD in Saudi population

  4. Interleukin-17A Differentially Induces Inflammatory and Metabolic Gene Expression in the Adipose Tissues of Lean and Obese Mice

    PubMed Central

    Qu, Yine; Zhang, Qiuyang; Ma, Siqi; Liu, Sen; Chen, Zhiquan; Mo, Zhongfu; You, Zongbing

    2016-01-01

    The functions of interleukin-17A (IL-17A) in adipose tissues and adipocytes have not been well understood. In the present study, male mice were fed with a regular diet (n = 6, lean mice) or a high-fat diet (n = 6, obese mice) for 30 weeks. Subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) were analyzed for IL-17A levels. SAT and VAT were treated with IL-17A and analyzed for inflammatory and metabolic gene expression. Mouse 3T3-L1 pre-adipocytes were differentiated into adipocytes, followed with IL-17A treatment and analysis for inflammatory and metabolic gene expression. We found that IL-17A levels were higher in obese SAT than lean SAT; the basal expression of inflammatory and metabolic genes was different between SAT and VAT and between lean and obese adipose tissues. IL-17A differentially induced expression of inflammatory and metabolic genes, such as tumor necrosis factor α, Il-6, Il-1β, leptin, and glucose transporter 4, in adipose tissues of lean and obese mice. IL-17A also differentially induced expression of inflammatory and metabolic genes in pre-adipocytes and adipocytes, and IL-17A selectively activated signaling pathways in adipose tissues and adipocytes. These findings suggest that IL-17A differentially induces inflammatory and metabolic gene expression in the adipose tissues of lean and obese mice. PMID:27070576

  5. Interleukin-17A Differentially Induces Inflammatory and Metabolic Gene Expression in the Adipose Tissues of Lean and Obese Mice.

    PubMed

    Qu, Yine; Zhang, Qiuyang; Ma, Siqi; Liu, Sen; Chen, Zhiquan; Mo, Zhongfu; You, Zongbing

    2016-01-01

    The functions of interleukin-17A (IL-17A) in adipose tissues and adipocytes have not been well understood. In the present study, male mice were fed with a regular diet (n = 6, lean mice) or a high-fat diet (n = 6, obese mice) for 30 weeks. Subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) were analyzed for IL-17A levels. SAT and VAT were treated with IL-17A and analyzed for inflammatory and metabolic gene expression. Mouse 3T3-L1 pre-adipocytes were differentiated into adipocytes, followed with IL-17A treatment and analysis for inflammatory and metabolic gene expression. We found that IL-17A levels were higher in obese SAT than lean SAT; the basal expression of inflammatory and metabolic genes was different between SAT and VAT and between lean and obese adipose tissues. IL-17A differentially induced expression of inflammatory and metabolic genes, such as tumor necrosis factor α, Il-6, Il-1β, leptin, and glucose transporter 4, in adipose tissues of lean and obese mice. IL-17A also differentially induced expression of inflammatory and metabolic genes in pre-adipocytes and adipocytes, and IL-17A selectively activated signaling pathways in adipose tissues and adipocytes. These findings suggest that IL-17A differentially induces inflammatory and metabolic gene expression in the adipose tissues of lean and obese mice. PMID:27070576

  6. Inflammatory Eicosanoids Increase Amyloid Precursor Protein Expression via Activation of Multiple Neuronal Receptors

    PubMed Central

    Herbst-Robinson, Katie J.; Liu, Li; James, Michael; Yao, Yuemang; Xie, Sharon X.; Brunden, Kurt R.

    2015-01-01

    Senile plaques comprised of Aβ peptides are a hallmark of Alzheimer’s disease (AD) brain, as are activated glia that release inflammatory molecules, including eicosanoids. Previous studies have demonstrated that amyloid precursor protein (APP) and Aβ levels can be increased through activation of thromboxane A2-prostanoid (TP) receptors on neurons. We demonstrate that TP receptor regulation of APP expression depends on Gαq-signaling and conventional protein kinase C isoforms. Importantly, we discovered that Gαq-linked prostaglandin E2 and leukotriene D4 receptors also regulate APP expression. Prostaglandin E2 and thromboxane A2, as well as total APP levels, were found to be elevated in the brains of aged 5XFAD transgenic mice harboring Aβ plaques and activated glia, suggesting that increased APP expression resulted from eicosanoid binding to Gαq-linked neuronal receptors. Notably, inhibition of eicosanoid synthesis significantly lowered brain APP protein levels in aged 5XFAD mice. These results provide new insights into potential AD therapeutic strategies. PMID:26672557

  7. Do non-steroidal anti-inflammatory drugs increase colonic permeability?

    PubMed Central

    Jenkins, A P; Trew, D R; Crump, B J; Nukajam, W S; Foley, J A; Menzies, I S; Creamer, B

    1991-01-01

    Urinary excretion of orally administered lactulose and 51 chromium labelled ethylenediamine tetra-acetate (51Cr-EDTA) was measured in 12 healthy adult subjects and in six patients with ileostomies to assess intestinal permeability. In normal subjects, 24 hour urinary recovery of 51Cr-EDTA was significantly greater than that of lactulose (mean (SEM) 2.27 (0.15) v 0.50 (0.08)% oral dose; p less than 0.001), but in ileostomy patients recovery of the two markers was the same. In normal subjects, therefore, the difference between the two markers may arise from bacterial break-down of lactulose but not of 51Cr-EDTA in the distal bowel, urinary excretion of lactulose representing small intestinal permeation and that of 51Cr-EDTA representing both small and large intestinal permeation. The markers were then given simultaneously to nine patients receiving non-steroidal anti-inflammatory drugs (NSAIDs) for rheumatoid arthritis and osteoarthritis. The 24 hour urinary recovery of 51Cr-EDTA in the patients was significantly greater than normal (4.64 (1.20) v 2.27 (0.15)% oral dose; p less than 0.01), but that of lactulose was not significantly affected. Moreover, the increase in 51Cr-EDTA recovery was most noticeable in the later urine collections. Both of these findings suggest that NSAIDs may increase colonic permeability. PMID:1899408

  8. Gene-microbiota interactions contribute to the pathogenesis of inflammatory bowel disease.

    PubMed

    Chu, Hiutung; Khosravi, Arya; Kusumawardhani, Indah P; Kwon, Alice H K; Vasconcelos, Anilton C; Cunha, Larissa D; Mayer, Anne E; Shen, Yue; Wu, Wei-Li; Kambal, Amal; Targan, Stephan R; Xavier, Ramnik J; Ernst, Peter B; Green, Douglas R; McGovern, Dermot P B; Virgin, Herbert W; Mazmanian, Sarkis K

    2016-05-27

    Inflammatory bowel disease (IBD) is associated with risk variants in the human genome and dysbiosis of the gut microbiome, though unifying principles for these findings remain largely undescribed. The human commensal Bacteroides fragilis delivers immunomodulatory molecules to immune cells via secretion of outer membrane vesicles (OMVs). We reveal that OMVs require IBD-associated genes, ATG16L1 and NOD2, to activate a noncanonical autophagy pathway during protection from colitis. ATG16L1-deficient dendritic cells do not induce regulatory T cells (T(regs)) to suppress mucosal inflammation. Immune cells from human subjects with a major risk variant in ATG16L1 are defective in T(reg) responses to OMVs. We propose that polymorphisms in susceptibility genes promote disease through defects in "sensing" protective signals from the microbiome, defining a potentially critical gene-environment etiology for IBD. PMID:27230380

  9. Modulation of immunity and inflammatory gene expression in the gut, in inflammatory diseases of the gut and in the liver by probiotics.

    PubMed

    Plaza-Diaz, Julio; Gomez-Llorente, Carolina; Fontana, Luis; Gil, Angel

    2014-11-14

    The potential for the positive manipulation of the gut microbiome through the introduction of beneficial microbes, as also known as probiotics, is currently an active area of investigation. The FAO/WHO define probiotics as live microorganisms that confer a health benefit to the host when administered in adequate amounts. However, dead bacteria and bacterial molecular components may also exhibit probiotic properties. The results of clinical studies have demonstrated the clinical potential of probiotics in many pathologies, such as allergic diseases, diarrhea, inflammatory bowel disease and viral infection. Several mechanisms have been proposed to explain the beneficial effects of probiotics, most of which involve gene expression regulation in specific tissues, particularly the intestine and liver. Therefore, the modulation of gene expression mediated by probiotics is an important issue that warrants further investigation. In the present paper, we performed a systematic review of the probiotic-mediated modulation of gene expression that is associated with the immune system and inflammation. Between January 1990 to February 2014, PubMed was searched for articles that were published in English using the MeSH terms "probiotics" and "gene expression" combined with "intestines", "liver", "enterocytes", "antigen-presenting cells", "dendritic cells", "immune system", and "inflammation". Two hundred and five original articles matching these criteria were initially selected, although only those articles that included specific gene expression results (77) were later considered for this review and separated into three major topics: the regulation of immunity and inflammatory gene expression in the gut, in inflammatory diseases of the gut and in the liver. Particular strains of Bifidobacteria, Lactobacilli, Escherichia coli, Propionibacterium, Bacillus and Saccharomyces influence the gene expression of mucins, Toll-like receptors, caspases, nuclear factor-κB, and interleukins

  10. Modulation of immunity and inflammatory gene expression in the gut, in inflammatory diseases of the gut and in the liver by probiotics

    PubMed Central

    Plaza-Diaz, Julio; Gomez-Llorente, Carolina; Fontana, Luis; Gil, Angel

    2014-01-01

    The potential for the positive manipulation of the gut microbiome through the introduction of beneficial microbes, as also known as probiotics, is currently an active area of investigation. The FAO/WHO define probiotics as live microorganisms that confer a health benefit to the host when administered in adequate amounts. However, dead bacteria and bacterial molecular components may also exhibit probiotic properties. The results of clinical studies have demonstrated the clinical potential of probiotics in many pathologies, such as allergic diseases, diarrhea, inflammatory bowel disease and viral infection. Several mechanisms have been proposed to explain the beneficial effects of probiotics, most of which involve gene expression regulation in specific tissues, particularly the intestine and liver. Therefore, the modulation of gene expression mediated by probiotics is an important issue that warrants further investigation. In the present paper, we performed a systematic review of the probiotic-mediated modulation of gene expression that is associated with the immune system and inflammation. Between January 1990 to February 2014, PubMed was searched for articles that were published in English using the MeSH terms “probiotics" and "gene expression" combined with “intestines", "liver", "enterocytes", "antigen-presenting cells", "dendritic cells", "immune system", and "inflammation". Two hundred and five original articles matching these criteria were initially selected, although only those articles that included specific gene expression results (77) were later considered for this review and separated into three major topics: the regulation of immunity and inflammatory gene expression in the gut, in inflammatory diseases of the gut and in the liver. Particular strains of Bifidobacteria, Lactobacilli, Escherichia coli, Propionibacterium, Bacillus and Saccharomyces influence the gene expression of mucins, Toll-like receptors, caspases, nuclear factor-κB, and

  11. Increased Membrane Cholesterol in Lymphocytes Diverts T-Cells toward an Inflammatory Response

    PubMed Central

    Surls, Jacqueline; Nazarov-Stoica, Cristina; Kehl, Margaret; Olsen, Cara; Casares, Sofia; Brumeanu, Teodor-D.

    2012-01-01

    Cell signaling for T-cell growth, differentiation, and apoptosis is initiated in the cholesterol-rich microdomains of the plasma membrane known as lipid rafts. Herein, we investigated whether enrichment of membrane cholesterol in lipid rafts affects antigen-specific CD4 T-helper cell functions. Enrichment of membrane cholesterol by 40–50% following squalene administration in mice was paralleled by an increased number of resting CD4 T helper cells in periphery. We also observed sensitization of the Th1 differentiation machinery through co-localization of IL-2Rα, IL-4Rα, and IL-12Rβ2 subunits with GM1 positive lipid rafts, and increased STAT-4 and STAT-5 phosphorylation following membrane cholesterol enrichment. Antigen stimulation or CD3/CD28 polyclonal stimulation of membrane cholesterol-enriched, resting CD4 T-cells followed a path of Th1 differentiation, which was more vigorous in the presence of increased IL-12 secretion by APCs enriched in membrane cholesterol. Enrichment of membrane cholesterol in antigen-specific, autoimmune Th1 cells fostered their organ-specific reactivity, as confirmed in an autoimmune mouse model for diabetes. However, membrane cholesterol enrichment in CD4+ Foxp3+ T-reg cells did not alter their suppressogenic function. These findings revealed a differential regulatory effect of membrane cholesterol on the function of CD4 T-cell subsets. This first suggests that membrane cholesterol could be a new therapeutic target to modulate the immune functions, and second that increased membrane cholesterol in various physiopathological conditions may bias the immune system toward an inflammatory Th1 type response. PMID:22723880

  12. Equine herpesvirus type 1 modulates inflammatory host immune response genes in equine endothelial cells.

    PubMed

    Johnstone, Stephanie; Barsova, Jekaterina; Campos, Isabel; Frampton, Arthur R

    2016-08-30

    Equine herpesvirus myeloencephalopathy (EHM), a disease caused by equine herpesvirus type 1 (EHV-1), is characterized by severe inflammation, thrombosis, and hypoxia in central nervous system (CNS) endothelial cells, which can result in a spectrum of clinical signs including urinary incontinence, ataxia, and paralysis. Strains of EHV-1 that contain a single point mutation within the viral DNA polymerase (nucleotide A2254>G2254: amino acid N752→D752) are isolated from EHM afflicted horses at higher frequencies than EHV-1 strains that do not harbor this mutation. Due to the correlation between the DNA Pol mutation and EHM disease, EHV-1 strains that contain the mutation have been designated as neurologic. In this study, we measured virus replication, cell to cell spread efficacy, and host inflammatory responses in equine endothelial cells infected with 12 different strains of EHV-1. Two strains, T953 (Ohio 2003) (neurologic) and Kentucky A (KyA) (non-neurologic), have well described disease phenotypes while the remaining strains used in this study are classified as neurologic or non-neurologic based solely on the presence or absence of the DNA pol mutation, respectively. Results show that the neurologic strains do not replicate better or spread more efficiently in endothelial cells. Also, the majority of the host inflammatory genes were modulated similarly regardless of EHV-1 genotype. Analyses of host gene expression showed that a subset of pro-inflammatory cytokines, including the CXCR3 ligands CXCL9, CXCL10, and CXCL11, as well as CCL5, IL-6 and TNF-α were consistently up-regulated in endothelial cells infected with each EHV-1 strain. The identification of specific pro-inflammatory cytokines in endothelial cells that are modulated by EHV-1 provides further insight into the factors that contribute to the immunopathology observed after infection and may also reveal new targets for disease intervention. PMID:27527764

  13. Induction of pro-inflammatory gene expression by Escherichia coli and mycotoxin zearalenone contamination and protection by a Lactobacillus mixture in porcine IPEC-1 cells.

    PubMed

    Taranu, Ionelia; Marin, Daniela Eliza; Pistol, Gina Cecilia; Motiu, Monica; Pelinescu, Diana

    2015-04-01

    This work investigated the effect of Escherichia coli K88 and zearalenone contamination on pro-inflammatory gene expression (Toll like receptors, cytokines) and signalling molecules and the protective activity of a mixture of Lactobacilli sp. (Lactobacillus plantarum, Lactobacillus acidofilus and Lactobacillus paracasei) in porcine intestinal epithelial cells as part of the local immune system. IPEC-1 cell monolayer was exposed for 1 h to the individual or combined action of E. coli, zearalenone and lactobacilli mixture. Our results showed that TLRs (1-10) and cytokine (IL-1,-6,-8,-10, TNF-α, IFN-γ) genes expressed early (after 1 h of culture) in IPEC-1 cells. E. coli alone increased the TLRs mRNA expression, especially TLR4 and the inflammatory cytokines while ZEA alone showed either no effect or a marginally effect on TLRs, cytokines, and signalling genes when compared to untreated cells. The combined actions of the two contaminants lead to a synergistically up-regulation of key cytokines (IFN-γ, IL-10 and TNF-α) and TLRs (-2,-3,-4,-6, and -10). The live lactobacilli mixture was able to attenuate the pathogen and mycotoxin-induced response by downregulated the majority of inflammatory related genes suggesting that this mixture has an immunomodulatory potential and may be used to lower the inflammatory response. PMID:25640651

  14. Inflammatory Gene Expression Upon TGF-β1-Induced p38 Activation in Primary Dupuytren's Disease Fibroblasts

    PubMed Central

    Bujak, Maro; Ratkaj, Ivana; Markova-Car, Elitza; Jurišić, Davor; Horvatić, Anita; Vučinić, Srđan; Lerga, Jonatan; Baus-Lončar, Mirela; Pavelić, Krešimir; Kraljević Pavelić, Sandra

    2015-01-01

    Objectives: Inflammation is an underlying mechanism behind fibrotic processes and differentiation of cells into myofibroblasts. Presented study therefore provides new data on activation of autoimmune and inflammatory immune response genes that accompany activation of p38 and cell differentiation in primary cells derived from Dupuytren's disease (DD) patients. Methods: Primary non-Dupuytren's disease cells (ND) were isolated from macroscopically unaffected palmar fascia adjacent to diseased tissue obtained from patients diagnosed with the last stage of DD and cultured in vitro. Gene expression, collagen gel contraction assay and analysis of secreted proteins were performed in ND cells treated with TGF-β1 and/or inhibitor of p38 phosphorylation. Results: During differentiation of ND fibroblasts, increased expression of immune response genes PAI-1, TIMP-1, CCL11, and IL-6 was found. These changes were accompanied by increased cell contractility and activation of p38 and its target kinase MK2. Inhibition of p38 phosphorylation reversed these processes in vitro. Conclusions: TGF-β1 induced p38 phosphorylation in ND cells grown from macroscopically unaffected palmar fascia adjacent to diseased tissue from DD patients. This was accompanied by activation of the cytokine genes CCL-11 and IL-6 and secretion of extracellular matrix regulatory proteins PAI-1 and TIMP-1. A combined approach directed toward inflammation and p38 MAPK-mediated processes in DD might be considered for improving management of DD patients and prevention of recurrence. PMID:26697433

  15. Knockout of the Bcmo1 gene results in an inflammatory response in female lung, which is suppressed by dietary beta-carotene

    PubMed Central

    van Helden, Yvonne G. J.; Heil, Sandra G.; van Schooten, Frederik J.; Kramer, Evelien; Hessel, Susanne; Amengual, Jaume; Ribot, Joan; Teerds, Katja; Wyss, Adrian; Lietz, Georg; Bonet, M. Luisa; von Lintig, Johannes; Godschalk, Roger W. L.

    2010-01-01

    Beta-carotene 15,15′-monooxygenase 1 knockout (Bcmo1−/−) mice accumulate beta-carotene (BC) similarly to humans, whereas wild-type (Bcmo1+/+) mice efficiently cleave BC. Bcmo1−/− mice are therefore suitable to investigate BC-induced alterations in gene expression in lung, assessed by microarray analysis. Bcmo1−/− mice receiving control diet had increased expression of inflammatory genes as compared to BC-supplemented Bcmo1−/− mice and Bcmo1+/+ mice that received either control or BC-supplemented diets. Differential gene expression in Bcmo1−/− mice was confirmed by real-time quantitative PCR. Histochemical analysis indeed showed an increase in inflammatory cells in lungs of control Bcmo1−/− mice. Supported by metabolite and gene-expression data, we hypothesize that the increased inflammatory response is due to an altered BC metabolism, resulting in an increased vitamin A requirement in Bcmo1−/− mice. This suggests that effects of BC may depend on inter-individual variations in BC-metabolizing enzymes, such as the frequently occurring human polymorphisms in BCMO1. PMID:20372966

  16. Analysis of the dissociated steroid RU24858 does not exclude a role for inducible genes in the anti-inflammatory actions of glucocorticoids.

    PubMed

    Chivers, Joanna E; Gong, Wei; King, Elizabeth M; Seybold, Joachim; Mak, Judith C; Donnelly, Louise E; Holden, Neil S; Newton, Robert

    2006-12-01

    Although repression of inflammatory gene expression makes glucocorticoids powerful anti-inflammatory agents, side effects limit usage and drive the search for improved glucocorticoid receptor (GR) ligands. In A549 pulmonary cells, dexamethasone and the prototypical dissociated ligand RU24858 (Mol Endocrinol 11:1245-1255, 1997) repress interleukin (IL)-1beta-induced expression of cyclooxygenase (COX)-2 and IL-8. Although RU24858 is a weaker GR ligand, both glucocorticoids showed similar efficacies on transrepression of nuclear factor kappaB (NF-kappaB)-dependent transcription, whereas RU24858 yielded less than 12% of the response to dexamethasone on a classic glucocorticoid response element (GRE) reporter (transactivation). Modest NF-kappaB-dependent transrepression ( approximately 40%), along with analysis of IL-8 transcription rate and the accumulation of unspliced nuclear RNA, indicates that transrepression does not fully account for the repression of genes such as IL-8. This was confirmed by the finding that mRNA degradation is increased by both dexamethasone and RU24858. Analysis of IL-1beta-induced steady-state mRNA levels for IL-8 and COX-2 show that dexamethasone- and RU24858-dependent repression of these genes is attenuated by inhibitors of transcription and protein synthesis. Because similar effects were observed with respect to COX-2 and IL-8 protein expression, we conclude that glucocorticoid-dependent gene expression is necessary for repression by both glucocorticoids. Despite RU24858 being defective at classic GRE-dependent transactivation, both dexamethasone and RU24858 induced the expression of potentially anti-inflammatory genes and metabolic genes, suggesting the importance of nontraditional glucocorticoid-dependent gene expression. Thus, classic transactivation- and transrepressionbased screens for anti-inflammatory "dissociated" GR ligands may be flawed because they may not reflect the effects on real glucocorticoid-inducible genes. PMID:16988013

  17. Peptidoglycan recognition protein-peptidoglycan complexes increase monocyte/macrophage activation and enhance the inflammatory response.

    PubMed

    De Marzi, Mauricio C; Todone, Marcos; Ganem, María B; Wang, Qian; Mariuzza, Roy A; Fernández, Marisa M; Malchiodi, Emilio L

    2015-07-01

    Peptidoglycan recognition proteins (PGRP) are pattern recognition receptors that can bind or hydrolyse peptidoglycan (PGN). Four human PGRP have been described: PGRP-S, PGRP-L, PGRP-Iα and PGRP-Iβ. Mammalian PGRP-S has been implicated in intracellular destruction of bacteria by polymorphonuclear cells, PGRP-Iα and PGRP-Iβ have been found in keratinocytes and epithelial cells, and PGRP-L is a serum protein that hydrolyses PGN. We have expressed recombinant human PGRP and observed that PGRP-S and PGRP-Iα exist as monomer and disulphide dimer proteins. The PGRP dimers maintain their biological functions. We detected the PGRP-S dimer in human serum and polymorphonuclear cells, from where it is secreted after degranulation; these cells being a possible source of serum PGRP-S. Recombinant PGRP do not act as bactericidal or bacteriostatic agents in the assayed conditions; however, PGRP-S and PGRP-Iα cause slight damage in the bacterial membrane. Monocytes/macrophages increase Staphylococcus aureus phagocytosis in the presence of PGRP-S, PGRP-Iα and PGRP-Iβ. All PGRP bind to monocyte/macrophage membranes and are endocytosed by them. In addition, all PGRP protect cells from PGN-induced apoptosis. PGRP increase THP-1 cell proliferation and enhance activation by PGN. PGRP-S-PGN complexes increase the membrane expression of CD14, CD80 and CD86, and enhance secretion of interleukin-8, interleukin-12 and tumour necrosis factor-α, but reduce interleukin-10, clearly inducing an inflammatory profile. PMID:25752767

  18. Reversibility of increased intestinal permeability to 51Cr-EDTA in patients with gastrointestinal inflammatory diseases

    SciTech Connect

    Jenkins, R.T.; Jones, D.B.; Goodacre, R.L.; Collins, S.M.; Coates, G.; Hunt, R.H.; Bienenstock, J.

    1987-11-01

    Intestinal permeability in adults with inflammatory gastrointestinal diseases was investigated by measuring the 24-h urinary excretion of orally administered /sup 51/Cr-EDTA. Eighty controls along with 100 patients with Crohn's disease, 46 patients with ulcerative colitis, 20 patients with gluten-sensitive enteropathy, and 18 patients with other diseases were studied. In controls, the median 24-h excretion was 1.34%/24 h of the oral dose. Patients with Crohn's disease (median 2.96%/24 h), ulcerative colitis (median 2.12%/24 h), and untreated gluten-sensitive enteropathy (median 3.56%/24 h) had significantly elevated urinary excretion of the probe compared to controls (p less than 0.0001). Increased 24-h urinary excretion of /sup 51/Cr-EDTA had a high association with intestinal inflammation (p less than 0.0001). Test specificity and sensitivity were 96% and 57%, respectively. A positive test has a 96% probability of correctly diagnosing the presence of intestinal inflammation, whereas a negative test has a 50% probability of predicting the absence of disease.

  19. Dietary DHA reduces downstream endocannabinoid and inflammatory gene expression and epididymal fat mass while improving aspects of glucose use in muscle in C57BL/6J mice

    PubMed Central

    Kim, J; Carlson, M E; Kuchel, G A; Newman, J W; Watkins, B A

    2016-01-01

    Objectives: Endocannabinoid system (ECS) overactivation is associated with increased adiposity and likely contributes to type 2 diabetes risk. Elevated tissue cannabinoid receptor 1 (CB1) and circulating endocannabinoids (ECs) derived from the n-6 polyunsaturated acid (PUFA) arachidonic acid (AA) occur in obese and diabetic patients. Here we investigate whether the n-3 PUFA docosahexaenoic acid (DHA) in the diet can reduce ECS overactivation (that is, action of ligands, receptors and enzymes of EC synthesis and degradation) to influence glycemic control. This study targets the ECS tonal regulation of circulating glucose uptake by skeletal muscle as its primary end point. Design: Male C57BL/6J mice were fed a semipurified diet containing DHA or the control lipid. Serum, skeletal muscle, epididymal fat pads and liver were collected after 62 and 118 days of feeding. Metabolites, genes and gene products associated with the ECS, glucose uptake and metabolism and inflammatory status were measured. Results: Dietary DHA enrichment reduced epididymal fat pad mass and increased ECS-related genes, whereas it reduced downstream ECS activation markers, indicating that ECS activation was diminished. The mRNA of glucose-related genes and proteins elevated in mice fed the DHA diet with increases in DHA-derived and reductions in AA-derived EC and EC-like compounds. In addition, DHA feeding reduced plasma levels of various inflammatory cytokines, 5-lipoxygenase-dependent inflammatory mediators and the vasoconstrictive 20-HETE. Conclusions: This study provides evidence that DHA feeding altered ECS gene expression to reduce CB1 activation and reduce fat accretion. Furthermore, the DHA diet led to higher expression of genes associated with glucose use by muscle in mice, and reduced those associated with systemic inflammatory status. PMID:26219414

  20. Gene Expression Analysis of Peripheral Cells for Subclassification of Pediatric Inflammatory Bowel Disease in Remission

    PubMed Central

    van Lierop, Pieter P. E.; Swagemakers, Sigrid M.; de Bie, Charlotte I.; Middendorp, Sabine; van Baarlen, Peter; Samsom, Janneke N.; van IJcken, Wilfred F. J.; Escher, Johanna C.; van der Spek, Peter J.; Nieuwenhuis, Edward E. S.

    2013-01-01

    Objective In current clinical practice, optimal treatment of inflammatory bowel disease (IBD) aims at the induction and maintenance of clinical remission. Clinical remission is apparent when laboratory markers of inflammation are normal and clinical symptoms are absent. However, sub-clinical inflammation can still be present. A detailed analysis of the immune status during this inactive state of disease may provide a useful tool to categorize patients with clinical remission into subsets with variable states of immune activation. Design By using Affymetrix GeneChips, we analysed RNA gene expression profiles of peripheral blood leukocytes from pediatric IBD patients in clinical remission and controls. We performed (un)supervised clustering analysis of IBD-associated genes and applied Ingenuity® pathway software to identify specific molecular profiles between patients. Results Pediatric IBD patients with disease in clinical remission display heterogeneously distributed gene expression profiles that are significantly distinct from controls. We identified three clusters of IBD patients, each displaying specific expression profiles of IBD-associated genes. Conclusion The expression of immune- and IBD-associated genes in peripheral blood leukocytes from pediatric IBD patients in clinical remission was different from healthy controls, indicating that sub-clinical immune mechanisms are still active during remission. As such, RNA profiling of peripheral blood may allow for non-invasive patient subclassification and new perspectives in treatment regimes of IBD patients in the future. PMID:24260248

  1. A natural formulation (imoviral™) increases macrophage resistance to LPS-induced oxidative and inflammatory stress in vitro.

    PubMed

    Menghini, L; Leporini, L; Pintore, G; Ferrante, C; Recinella, L; Orlando, G; Vacca, M; Brunetti, L

    2014-01-01

    Imoviral™ is a natural product formulation containing a mixture of uncaria, shiitake and ribes extracts. All ingredients are recognized as antioxidant, anti-inflammatory agent and immunomodulant. In order to evaluate the rational basis of extract mixture as immunomodulatory agent, we tested the effect of Imoviral™ formulation on macrophage response to lipopolysaccharide (LPS)-induced stress. The effect was evaluated as variation of reactive oxygen species (ROS) and prostaglandin E2 (PGE2) production and as cytokine gene expression. The extract did not affect cell viability up to 250 μg/ml. Treatment with extract (10-150 μg/ml) reduced ROS and PGE2 production as well as IL-8 and TNF-α gene expression. A pre-treatment with extract blunted LPS-induced production of ROS and PGE2, markers of oxidative and inflammatory stress, as well as the gene expression of all cytokines tested, indicators, in vitro, of immune response activation. In conclusion, we demonstrated that Imoviral™ formulation could be a useful tool to modulate the immune function, reducing the oxidative and inflammatory markers related to bacterial attack. Experimental data suggest that Imoviral™ extract mixture could also represent a preventive pharmacological strategy to enhance cell resistance to bacterial infections. PMID:25620186

  2. Individuals with increased inflammatory response to ozone demonstrate muted signaling of immune cell trafficking pathways

    EPA Science Inventory

    Background Exposure to ozone activates innate immune function and causes neutrophilic (PMN) airway inflammation that in some individuals is robustly elevated. The interplay between immunoinflammatory function and genomic signaling in those with heightened inflammatory responsive...

  3. Astragaloside IV Inhibits NF-κB Activation and Inflammatory Gene Expression in LPS-Treated Mice

    PubMed Central

    Zhang, Wei-Jian; Frei, Balz

    2015-01-01

    In this study we investigated the role of astragaloside IV (AS-IV), one of the major active constituents purified from the Chinese medicinal herb Astragalus membranaceus, in LPS-induced acute inflammatory responses in mice in vivo and examined possible underlying mechanisms. Mice were assigned to four groups: vehicle-treated control animals; AS-IV-treated animals (10 mg/kg b.w. AS-IV daily i.p. injection for 6 days); LPS-treated animals; and AS-IV plus LPS-treated animals. We found that AS-IV treatment significantly inhibited LPS-induced increases in serum levels of MCP-1 and TNF by 82% and 49%, respectively. AS-IV also inhibited LPS-induced upregulation of inflammatory gene expression in different organs. Lung mRNA levels of cellular adhesion molecules, MCP-1, TNFα, IL-6, and TLR4 were significantly attenuated, and lung neutrophil infiltration and activation were strongly inhibited, as reflected by decreased myeloperoxidase content, when the mice were pretreated with AS-IV. Similar results were observed in heart, aorta, kidney, and liver. Furthermore, AS-IV significantly suppressed LPS-induced NF-κB and AP-1 DNA-binding activities in lung and heart. In conclusion, our data provide new in vivo evidence that AS-IV effectively inhibits LPS-induced acute inflammatory responses by modulating NF-κB and AP-1 signaling pathways. Our results suggest that AS-IV may be useful for the prevention or treatment of inflammatory diseases. PMID:25960613

  4. Inflammatory Pain Promotes Increased Opioid Self-Administration: Role of Dysregulated Ventral Tegmental Area μ Opioid Receptors

    PubMed Central

    Hipólito, Lucia; Wilson-Poe, Adrianne; Campos-Jurado, Yolanda; Zhong, Elaine; Gonzalez-Romero, Jose; Virag, Laszlo; Whittington, Robert; Comer, Sandra D.; Carlton, Susan M.; Walker, Brendan M.; Bruchas, Michael R.

    2015-01-01

    Pain management in opioid abusers engenders ethical and practical difficulties for clinicians, often resulting in pain mismanagement. Although chronic opioid administration may alter pain states, the presence of pain itself may alter the propensity to self-administer opioids, and previous history of drug abuse comorbid with chronic pain promotes higher rates of opioid misuse. Here, we tested the hypothesis that inflammatory pain leads to increased heroin self-administration resulting from altered mu opioid receptor (MOR) regulation of mesolimbic dopamine (DA) transmission. To this end, the complete Freund's adjuvant (CFA) model of inflammation was used to assess the neurochemical and functional changes induced by inflammatory pain on MOR-mediated mesolimbic DA transmission and on rat intravenous heroin self-administration under fixed ratio (FR) and progressive ratio (PR) schedules of reinforcement. In the presence of inflammatory pain, heroin intake under an FR schedule was increased for high, but attenuated for low, heroin doses with concomitant alterations in mesolimbic MOR function suggested by DA microdialysis. Consistent with the reduction in low dose FR heroin self-administration, inflammatory pain reduced motivation for a low dose of heroin, as measured by responding under a PR schedule of reinforcement, an effect dissociable from high heroin dose PR responding. Together, these results identify a connection between inflammatory pain and loss of MOR function in the mesolimbic dopaminergic pathway that increases intake of high doses of heroin. These findings suggest that pain-induced loss of MOR function in the mesolimbic pathway may promote opioid dose escalation and contribute to opioid abuse-associated phenotypes. SIGNIFICANCE STATEMENT This study provides critical new insights that show that inflammatory pain alters heroin intake through a desensitization of MORs located within the VTA. These findings expand our knowledge of the interactions between

  5. Epigenetic regulation of inflammatory cytokines and associated genes in human malignancies.

    PubMed

    Yasmin, Rehana; Siraj, Sami; Hassan, Amjad; Khan, Abdul Rehman; Abbasi, Rashda; Ahmad, Nafees

    2015-01-01

    Inflammation is a multifaceted defense response of immune system against infection. Chronic inflammation has been implicated as an imminent threat for major human malignancies and is directly linked to various steps involved in tumorigenesis. Inflammatory cytokines, interleukins, interferons, transforming growth factors, chemokines, and adhesion molecules have been associated with chronic inflammation. Numerous cytokines are reported to be aberrantly regulated by different epigenetic mechanisms like DNA methylation and histone modifications in tumor tissues, contributing to pathogenesis of tumor in multiple ways. Some of these cytokines also work as epigenetic regulators of other crucial genes in tumor biology, either directly or indirectly. Such regulations are reported in lung, breast, cervical, gastric, colorectal, pancreatic, prostate, and head and neck cancers. Epigenetics of inflammatory mediators in cancer is currently subject of extensive research. These investigations may help in understanding cancer biology and to develop effective therapeutic strategies. The purpose of this paper is to have a brief view of the aberrant regulation of inflammatory cytokines in human malignancies. PMID:25814785

  6. Epigenetic Regulation of Inflammatory Cytokines and Associated Genes in Human Malignancies

    PubMed Central

    Yasmin, Rehana; Hassan, Amjad; Khan, Abdul Rehman; Abbasi, Rashda; Ahmad, Nafees

    2015-01-01

    Inflammation is a multifaceted defense response of immune system against infection. Chronic inflammation has been implicated as an imminent threat for major human malignancies and is directly linked to various steps involved in tumorigenesis. Inflammatory cytokines, interleukins, interferons, transforming growth factors, chemokines, and adhesion molecules have been associated with chronic inflammation. Numerous cytokines are reported to be aberrantly regulated by different epigenetic mechanisms like DNA methylation and histone modifications in tumor tissues, contributing to pathogenesis of tumor in multiple ways. Some of these cytokines also work as epigenetic regulators of other crucial genes in tumor biology, either directly or indirectly. Such regulations are reported in lung, breast, cervical, gastric, colorectal, pancreatic, prostate, and head and neck cancers. Epigenetics of inflammatory mediators in cancer is currently subject of extensive research. These investigations may help in understanding cancer biology and to develop effective therapeutic strategies. The purpose of this paper is to have a brief view of the aberrant regulation of inflammatory cytokines in human malignancies. PMID:25814785

  7. Effect of quercetin and its metabolites isorhamnetin and quercetin-3-glucuronide on inflammatory gene expression: role of miR-155.

    PubMed

    Boesch-Saadatmandi, Christine; Loboda, Agnieszka; Wagner, Anika E; Stachurska, Anna; Jozkowicz, Alicja; Dulak, Jozef; Döring, Frank; Wolffram, Siegfried; Rimbach, Gerald

    2011-03-01

    In the present study the effect of quercetin and its major metabolites quercetin-3-glucuronide (Q3G) and isorhamnetin on inflammatory gene expression was determined in murine RAW264.7 macrophages stimulated with lipopolysaccharide. Quercetin and isorhamnetin but not Q3G significantly decreased mRNA and protein levels of tumor necrosis factor alpha. Furthermore a significant decrease in mRNA levels of interleukin 1β, interleukin 6, macrophage inflammatory protein 1α and inducible nitric oxide synthase was evident in response to the quercetin treatment. However Q3G did not affect inflammatory gene expression. Anti-inflammatory properties of quercetin and isorhamnetin were accompanied by an increase in heme oxygenase 1 protein levels, a downstream target of the transcription factor Nrf2, known to antagonize chronic inflammation. Furthermore, proinflammatory microRNA-155 was down-regulated by quercetin and isorhamnetin but not by Q3G. Finally, anti-inflammatory properties of quercetin were confirmed in vivo in mice fed quercetin-enriched diets (0.1 mg quercetin/g diet) over 6 weeks. PMID:20579867

  8. Nonsteroidal anti-inflammatory drug activated gene-1 (NAG-1) modulators from natural products as anti-cancer agents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Natural products are rich source of gene modulators for prevention and treatment of cancer. In recent days, nonsteroidal anti-inflammatory drug (NSAID) activated gene-1 (NAG-1) has been focused as a new target of diverse cancers like colorectal, pancreatic, prostate, and breast. A variety of natural...

  9. Systemic inflammatory changes and increased oxidative stress in rural Indian women cooking with biomass fuels

    SciTech Connect

    Dutta, Anindita; Ray, Manas Ranjan; Banerjee, Anirban

    2012-06-15

    The study was undertaken to investigate whether regular cooking with biomass aggravates systemic inflammation and oxidative stress that might result in increase in the risk of developing cardiovascular disease (CVD) in rural Indian women compared to cooking with a cleaner fuel like liquefied petroleum gas (LPG). A total of 635 women (median age 36 years) who cooked with biomass and 452 age-matched control women who cooked with LPG were enrolled. Serum interleukin-6 (IL-6), C-reactive protein (CRP), tumor necrosis factor-alpha (TNF-α) and interleukin-8 (IL-8) were measured by ELISA. Generation of reactive oxygen species (ROS) by leukocytes was measured by flow cytometry, and erythrocytic superoxide dismutase (SOD) was measured by spectrophotometry. Hypertension was diagnosed following the Seventh Report of the Joint Committee. Tachycardia was determined as pulse rate > 100 beats per minute. Particulate matter of diameter less than 10 and 2.5 μm (PM{sub 10} and PM{sub 2.5}, respectively) in cooking areas was measured using real-time aerosol monitor. Compared with control, biomass users had more particulate pollution in indoor air, their serum contained significantly elevated levels of IL-6, IL-8, TNF-α and CRP, and ROS generation was increased by 37% while SOD was depleted by 41.5%, greater prevalence of hypertension and tachycardia compared to their LPG-using neighbors. PM{sub 10} and PM{sub 2.5} levels were positively associated with markers of inflammation, oxidative stress and hypertension. Inflammatory markers correlated with raised blood pressure. Cooking with biomass exacerbates systemic inflammation, oxidative stress, hypertension and tachycardia in poor women cooking with biomass fuel and hence, predisposes them to increased risk of CVD development compared to the controls. Systemic inflammation and oxidative stress may be the mechanistic factors involved in the development of CVD. -- Highlights: ► Effect of chronic biomass smoke exposure on

  10. Beyond gene discovery in inflammatory bowel disease: the emerging role of epigenetics.

    PubMed

    Ventham, Nicholas T; Kennedy, Nicholas A; Nimmo, Elaine R; Satsangi, Jack

    2013-08-01

    In the past decade, there have been fundamental advances in our understanding of genetic factors that contribute to the inflammatory bowel diseases (IBDs) Crohn's disease and ulcerative colitis. The latest international collaborative studies have brought the number of IBD susceptibility gene loci to 163. However, genetic factors account for only a portion of overall disease variance, indicating a need to better explore gene-environment interactions in the development of IBD. Epigenetic factors can mediate interactions between the environment and the genome; their study could provide new insight into the pathogenesis of IBD. We review recent progress in identification of genetic factors associated with IBD and discuss epigenetic mechanisms that could affect development and progression of IBD. PMID:23751777

  11. Increased concentrations of inflammatory mediators in unstable angina: correlation with serum troponin T

    PubMed Central

    Mazzone, A; De Servi, S; Mazzucchelli, I; Bossi, I; Ottini, E; Vezzoli, M; Meloni, F; Lotzinker, M; Mariani, G

    2001-01-01

    OBJECTIVE—To measure plasma interferon γ, monocyte chemotactic protein-1 (MCP-1), and interleukin 6 and to assess their correlation with cardiac troponin T in unstable angina.
DESIGN—Blood sampling in patients undergoing coronary arteriography for known or suspected ischaemic heart disease.
PATIENTS—76 patients divided in three groups: 29 with unstable angina (group 1), 28 with stable angina (group 2), and 19 without ischaemic heart disease and with angiographically normal coronary arteries (group 3).
MAIN OUTCOME MEASURES—Plasma interleukin 6, interferon γ, MCP-1, and troponin T in the three groups of patients.
RESULTS—Interleukin 6 was increased in group 1 (median 2.19 (range 0.53-50.84) pg/ml) compared with the control group (1.62 (0.79-3.98) pg/ml) (p < 0.005), whereas interferon γ was higher in group 1 (range 0-5.51 pg/ml) than in the other two groups (range 0-0.74 pg/ml and 0-0.37 pg/ml; p < 0.005 and p < 0.001, respectively). Patients with unstable angina (group 1) and positive troponin T had higher concentrations of interferon γ than those with negative troponin T (0-5.51 pg/ml v 0-0.60 pg/ml, p < 0.001). Plasma MCP-1 was also higher in group 1 (median 267 (range 6-8670) pg/ml) than in the other two groups (134 (19-890) pg/ml and 84.5 (5-325) pg/ml; p < 0.005 and p < 0.001, respectively), and among group 1 patients with a positive troponin T assay than in those with normal troponin T (531 (14.5-8670) pg/ml v 69 (6-3333) pg/ml; p < 0.01). There was no difference in plasma interleukin 6 in group 1 patients between those with and without raised troponin T.
CONCLUSIONS—The inflammatory cytokines interferon γ and MCP-1 are increased in patients with unstable angina, particularly in those with raised concentrations of troponin T, suggesting that they are probably related to myocardial cell damage or to plaque rupture and thrombus formation.


Keywords: inflammatory cytokines; troponin

  12. Is the prevalence of colonic neuroendocrine tumors increased in patients with inflammatory bowel disease?

    PubMed

    Derikx, Lauranne A A P; Vierdag, Wouter-Michiel A M; Kievit, Wietske; Bosch, Steven; Hoentjen, Frank; Nagtegaal, Iris D

    2016-08-01

    Inflammatory bowel disease (IBD) patients may bear an increased neuroendocrine tumor (NET) risk. These tumors are mostly reported as coincidental findings during surgery. We aimed to determine the prevalence of colonic NET in a Dutch nationwide IBD cohort and calculate the prevalence rate ratios (PRR) compared with the general Dutch population. Our second aim was to investigate whether a high bowel surgery rate in IBD could result in a high PRR for NET. The Dutch Pathology Registry (PALGA) was searched to identify all IBD patients with colonic NET in The Netherlands between 1991 and 2011. We determined the prevalence and PRR of colonic NET in a 20-year period. For our second aim, we compared NET prevalence in colonic resection specimens between IBD cases and non-IBD controls (diverticulitis and ischemia). We identified 51 IBD patients who developed colonic NET resulting in a prevalence of 60.4-89.3 per 100,000 patients in a 20-year period with a PRR of 2.8-4.1. However, adjusted for resection type, sex and age, a higher NET prevalence was shown in diverticulitis (OR 5.52, 95% CI 3.47-8.78) and ischemia (OR 1.97, 95% CI 1.09-3.58) compared with IBD. Our key finding is that NET are more prevalent in IBD patients compared with the general population (PRR 2.8-4.1). This might be attributed to a high rate of incidental NET as IBD patients frequently undergo intestinal surgery. A lower adjusted NET prevalence in colonic resection specimens for IBD compared to ischemia and diverticulitis supports this hypothesis. PMID:26992110

  13. Gene Silencing and Haploinsufficiency of Csk Increase Blood Pressure

    PubMed Central

    Kim, Sung-Moon; Ji, Su-Min; Park, So-Yon; Kim, Marina E.; Jigden, Baigalmaa; Lim, Ji Eun; Hwang, Sue-Yun; Lee, Young-Ho; Oh, Bermseok

    2016-01-01

    Objective Recent genome-wide association studies have identified 33 human genetic loci that influence blood pressure. The 15q24 locus is one such locus that has been confirmed in Asians and Europeans. There are 21 genes in the locus within a 1-Mb boundary, but a functional link of these genes to blood pressure has not been reported. We aimed to identify a causative gene for blood pressure change in the 15q24 locus. Methods and Results CSK and ULK3 were selected as candidate genes based on eQTL analysis studies that showed the association between gene transcript levels and the lead SNP (rs1378942). Injection of siRNAs for mouse homologs Csk, Ulk3, and Cyp1a2 (negative control) showed reduced target gene mRNA levels in vivo. However, Csk siRNA only increased blood pressure while Ulk3 and Cyp1a2 siRNA did not change it. Further, blood pressure in Csk+/- heterozygotes was higher than in wild-type, consistent with what we observed in Csk siRNA-injected mice. We confirmed that haploinsufficiency of Csk increased the active form of Src in Csk+/- mice aorta. We also showed that inhibition of Src by PP2, a Src inhibitor decreased high blood pressure in Csk+/- mice and the active Src in Csk+/- mice aorta and in Csk knock-down vascular smooth muscle cells, suggesting blood pressure regulation by Csk through Src. Conclusions Our study demonstrates that Csk is a causative gene in the 15q24 locus and regulates blood pressure through Src, and these findings provide a novel therapeutic target for the treatment of hypertension. PMID:26751575

  14. The Injectable-Only Contraceptive Medroxyprogesterone Acetate, Unlike Norethisterone Acetate and Progesterone, Regulates Inflammatory Genes in Endocervical Cells via the Glucocorticoid Receptor

    PubMed Central

    Govender, Yashini; Avenant, Chanel; Verhoog, Nicolette J. D.; Ray, Roslyn M.; Grantham, Nicholas J.; Africander, Donita; Hapgood, Janet P.

    2014-01-01

    Clinical studies suggest that the injectable contraceptive medroxyprogesterone acetate (MPA) increases susceptibility to infections such as HIV-1, unlike the injectable contraceptive norethisterone enanthate (NET-EN). We investigated the differential effects, molecular mechanism of action and steroid receptor involvement in gene expression by MPA as compared to NET and progesterone (P4) in the End1/E6E7 cell line model for the endocervical epithelium, a key point of entry for pathogens in the female genital mucosa. MPA, unlike NET-acetate (NET-A) and P4, increases mRNA expression of the anti-inflammatory GILZ and IκBα genes. Similarly, MPA unlike NET-A, decreases mRNA expression of the pro-inflammatory IL-6, IL-8 and RANTES genes, and IL-6 and IL-8 protein levels. The predominant steroid receptor expressed in the End1/E6E7 and primary endocervical epithelial cells is the glucocorticoid receptor (GR), and GR knockdown experiments show that the anti-inflammatory effects of MPA are mediated by the GR. Chromatin-immunoprecipitation results suggest that MPA, unlike NET-A and P4, represses pro-inflammatory cytokine gene expression in cervical epithelial cells via a mechanism involving recruitment of the GR to cytokine gene promoters, like the GR agonist dexamethasone. This is at least in part consistent with direct effects on transcription, without a requirement for new protein synthesis. Dose response analysis shows that MPA has a potency of ∼24 nM for transactivation of the anti-inflammatory GILZ gene and ∼4–20 nM for repression of the pro-inflammatory genes, suggesting that these effects are likely to be relevant at injectable contraceptive doses of MPA. These findings suggest that in the context of the genital mucosa, these GR-mediated glucocorticoid-like effects of MPA in cervical epithelial cells are likely to play a critical role in discriminating between the effects on inflammation caused by different progestins and P4 and hence susceptibility to genital

  15. Effects of α-linolenic acid-enriched diets on gene expression of key inflammatory mediators in immune and milk cells obtained from Holstein dairy cows.

    PubMed

    Rezamand, Pedram; Hatch, Brent P; Carnahan, Kevin G; McGuire, Mark A

    2016-02-01

    Immune system and inflammatory responses are affected by α-linolenic acid (αLA: 18:3 ω-3). The objective of this study was to determine the effects of αLA-enriched rations on gene expression of systemic (blood) and local (mammary gland) inflammatory markers in Holstein dairy cattle. Further, the effect of dietary treatments was evaluated on the concentration of αLA in serum phospholipids. Camelina (Camelina sativa) meal (containing 24·2% αLA) was fed at 0, 3, 6, and 9% (dry matter basis) replacing canola meal (rich in 18:1 ω-9) to provide rations with incremental concentrations of αLA. Lactating primiparous Holstein cows (n = 18) were randomly assigned to a treatment sequence in a 4 × 4 Latin square design. Each period lasted 16 d and milk and blood samples were collected during the final 2 d of each period. Peripheral blood mononuclear cells (PBMC) and milk cells (MC) were harvested, and RNA extracted and converted to complementary DNA for quantitative real time PCR analysis. The effect of dietary treatments (αLA) on the relative abundance of pro- and anti-inflammatory genes in the PBMC and MC was tested by the MIXED procedure of SAS. Expression of pro-inflammatory tumour necrosis factor (TNF)-α in MC was linearly reduced (up to 40%) as dietary αLA increased. Expression of pro-inflammatory markers interleukin (IL)-1β, IL-8, and TNF-α was reduced (29, 20, and 27%, respectively) in PBMC isolated from cows fed 6% camelina meal ration as compared with cows fed 0% (control). Expression of IL-6 was, however, increased with inclusion of camelina meal. Greater dietary αLA linearly increased serum phospholipids αLA contents, and when fed up to 6% DM down-regulated expression of some of the local (milk) and systemic (blood) pro-inflammatory markers in vivo. PMID:26869108

  16. Gene deleted live attenuated Leishmania vaccine candidates against visceral leishmaniasis elicit pro-inflammatory cytokines response in human PBMCs.

    PubMed

    Avishek, Kumar; Kaushal, Himanshu; Gannavaram, Sreenivas; Dey, Ranadhir; Selvapandiyan, Angamuthu; Ramesh, V; Negi, Narender Singh; Dubey, Uma S; Nakhasi, Hira L; Salotra, Poonam

    2016-01-01

    Currently no effective vaccine is available for human visceral leishmaniasis(VL) caused by Leishmania donovani. Previously, we showed that centrin1 and p27gene deleted live attenuated Leishmania parasites (LdCen1(-/-) and Ldp27(-/-)) are safe, immunogenic and protective in animal models. Here, to assess the correlates of protection, we evaluated immune responses induced by LdCen1(-/-) and Ldp27(-/-) in human blood samples obtained from healthy, healed VL (HVL), post kala-azar dermal leishmaniasis(PKDL) and VL subjects. Both parasites infected human macrophages, as effectively as the wild type parasites. Further, LdCen1(-/-) and Ldp27(-/-) strongly stimulated production of pro-inflammatory cytokines including, IL-12, IFN-γ, TNF-α, IL-2, IL-6 and IL-17 in the PBMCs obtained from individuals with a prior exposure to Leishmania (HVL and PKDL). There was no significant stimulation of anti-inflammatory cytokines (IL-4 and IL-10). Induction of Th1 biased immune responses was supported by a remarkable increase in IFN-γ secreting CD4(+) and CD8(+) T cells and IL-17 secreting CD4(+) cells in PBMCs from HVL cases with no increase in IL-10 secreting T cells. Hence, LdCen1(-/-) and Ldp27(-/-) are promising as live vaccine candidates against VL since they elicit strong protective immune response in human PBMCs from HVL, similar to the wild type parasite infection, mimicking a naturally acquired protection following cure. PMID:27624408

  17. High glucose driven expression of pro-inflammatory cytokine and chemokine genes in lymphocytes: molecular mechanisms of IL-17 family gene expression.

    PubMed

    Kumar, Prabhakaran; Natarajan, Kartiga; Shanmugam, Narkunaraja

    2014-03-01

    High glucose is an independent risk factor that alters the expression pattern of cytokines/chemokine leading to leukocyte activation in diabetes. Fluctuation of cytokine milieu in lymphocytes may lead to differentiation into a particular subset. Our objectives were to profile high glucose induced inflammatory gene expression in lymphocytes, to examine in vivo relevance in diabetes and to identify the key transcription factors and signaling pathways involved. Cytokine gene arrays and T-helper (Th1/Th2/Th17) cytokine profiler RT(2)-PCR arrays used for cytokine expression profiling followed by validation using Real Time-qPCR and relative RT-PCR in Jurkat T-lymphocytes, peripheral blood lymphocytes (PBLCs) from normal and diabetes subjects. Luciferase reporter plasmid, pharmacological inhibitors and mutant plasmids were used for promoter activation and signaling pathway studies. High glucose induced gene profiling in Jurkat T-lymphocytes showed significantly increased expression of 64 proinflammatory genes including IL-6 and IL-17A and most of these genes were Nuclear Factor (NF)-κB and AP-1 regulated. RT(2)-PCR array results suggested the transcriptional activation of IL-17 and its downstream signaling in Jurkat T-lymphocytes upon high glucose treatment. Candidate genes like Interleukin (IL)-17A, IL-17E IL-17F and IL-6 were up-regulated in both Jurkat T-lymphocytes and PBLCs from normal and diabetes subjects. This high glucose induced cytokine expression was due to promoter activation. Pharmacology inhibitor studies showed the involvement of NF-κB, protein kinase-C, p38 Mitogen activated protein kinase; Janus activated kinase-signal transducer and activator of transcription and extracellular regulated kinase signaling pathways. Further, high glucose treatment increased the adhesion of lymphocytes to human umbilical vein endothelial cells. These results show that IL-17 cytokines are induced by high glucose via key signaling pathways leading to lymphocyte activation

  18. Use of Aspirin or Nonsteroidal Anti-inflammatory Drugs Increases Risk for Diverticulitis and Diverticular Bleeding

    PubMed Central

    Strate, Lisa L.; Liu, Yan L.; Huang, Edward S.; Giovannucci, Edward L.; Chan, Andrew T.

    2011-01-01

    BACKGROUND & AIMS Nonsteroidal Anti-inflammatory Drugs (NSAIDs), including aspirin, have been implicated in diverticular complications. We examined the influence of aspirin and NSAID use on risk of diverticulitis and diverticular bleeding in a large prospective cohort. METHODS We studied 47,210 US men in the Health Professionals Follow-up Study cohort who were 40–75 years old at baseline, in 1986. We assessed use of aspirin, non-aspirin NSAIDs, and other risk factors biennially. We identified men with diverticulitis or diverticular bleeding based on responses to biennial and supplemental questionnaires. RESULTS We documented 939 cases of diverticulitis and 256 cases of diverticular bleeding during a 22-year period of follow-up. After adjustment for risk factors, men who used aspirin regularly (≥2 times per week) had a multivariable relative risk (RR) of 1.25 (95% confidence interval [CI], 1.05–1.47) for diverticulitis and RR of 1.70 (95% CI, 1.21–2.39) for diverticular bleeding, compared with non-users of aspirin and NSAIDs. Use of aspirin at intermediate doses (2–5.9 standard, 325 mg, tablets per week) and frequency (4–6 days per week) were associated with the highest risk of bleeding (multivariable RR=2.32; 95% CI, 1.34–4.02, and multivariable RR=3.13; 95% CI, 1.82–5.38, respectively). Regular users of non-aspirin NSAIDs also had an increased risk of diverticulitis (multivariable RR=1.72; 95% CI, 1.40–2.11) and diverticular bleeding (multivariable RR=1.74; 95% CI, 1.15–2.64), compared with men who denied use of these medications. CONCLUSIONS Regular use of aspirin or NSAIDs is associated with an increased risk for diverticulitis and diverticular bleeding. Patients at risk of diverticular complications should carefully consider the potential risks and benefits of using these medications. PMID:21320500

  19. Sonicated Protein Fractions of Mycoplasma hyopneumoniae Induce Inflammatory Responses and Differential Gene Expression in a Murine Alveolar Macrophage Cell Line.

    PubMed

    Damte, Dereje; Lee, Seung-Jin; Birhanu, Biruk Tesfaye; Suh, Joo-Won; Park, Seung-Chun

    2015-12-28

    Mycoplasma hyopneumoniae is known to cause porcine enzootic pneumonia (EP), an important disease in swine production. The objective of this study was to examine the effects of sonicated protein fractions of M. hyopneumoniae on inflammatory response and gene expression in the murine alveolar macrophage MH-S cell line. The effects of sonicated protein fractions and intact M. hyopneumoniae on the gene expression of cytokines and iNOS were assessed using RT-PCR. The Annealing Control Primer (ACP)-based PCR method was used to screen differentially expressed genes. Increased transcription of interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, COX-2, and iNOS mRNA was observed after exposure to the supernatant (SPT), precipitant (PPT), and intact M. hyopneumoniae protein. A time-dependent analysis of the mRNA expression revealed an upregulation after 4 h for IL-6 and iNOS and after 12 h for IL-1β and TNF-α, for both SPT and PPT; the fold change in COX-2 expression was less. A dose- and time-dependent correlation was observed in nitrite (NO) production for both protein fractions; however, there was no significant difference between the effects of the two protein fractions. In a differential gene analysis, PCR revealed differential expression for nine gene bands after 3 h of stimulation - only one gene was downregulated, while the remaining eight were upregulated. The results of this study provide insights that help improve our understanding of the mechanisms underlying the pathogenesis of and macrophage defenses against M. hyopneumoniae assault, and suggest targets for future studies on therapeutic interventions for M. hyopneumoniae infections. PMID:26370797

  20. A FOXO3/IRF7 gene regulatory circuit limits inflammatory sequelae of antiviral responses

    PubMed Central

    Litvak, Vladimir; Ratushny, Alexander V.; Lampano, Aaron E.; Schmitz, Frank; Huang, Albert C.; Raman, Ayush; Rust, Alistair G.; Bergthaler, Andreas; Aitchison, John D.; Aderem, Alan

    2013-01-01

    Antiviral responses must be tightly regulated to rapidly defend against infection while minimizing inflammatory damage. Type 1 interferons (IFN-I) are crucial mediators of antiviral responses1 and their transcription is regulated by a variety of transcription factors2; principal amongst these is the family of interferon regulatory factors (IRFs)3. The IRF gene regulatory networks are complex and contain multiple feedback loops. The tools of systems biology are well suited to elucidate the complex interactions that give rise to precise coordination of the interferon response. Here we have used an unbiased systems approach to predict that a member of the forkhead family of transcription factors, FOXO3, is a negative regulator of a subset of antiviral genes. This prediction was validated using macrophages isolated from Foxo3-null mice. Genome-wide location analysis combined with gene deletion studies identified the Irf7 gene as a critical target of FOXO3. FOXO3 was identified as a negative regulator of Irf7 transcription and we have further demonstrated that FOXO3, IRF7 and IFN-I form a coherent feed-forward regulatory circuit. Our data suggest that the FOXO3-IRF7 regulatory circuit represents a novel mechanism for establishing the requisite set points in the interferon pathway that balances the beneficial effects and deleterious sequelae of the antiviral response. PMID:22982991

  1. Increased circulating pro-inflammatory cytokines and imbalanced regulatory T-cell cytokines production in chronic idiopathic urticaria.

    PubMed

    Dos Santos, Juliana Cristina; Azor, Mayce Helena; Nojima, Viviane Yoshimi; Lourenço, Francinelson Duarte; Prearo, Erica; Maruta, Celina Wakisaka; Rivitti, Evandro Ararigbóia; da Silva Duarte, Alberto José; Sato, Maria Notomi

    2008-10-01

    The immunologic characterization of chronic idiopathic urticaria (CIU), mainly regarding cytokine profile needs more investigation. We examined circulating inflammatory cytokine levels, T-cell induced secretion, and cytokine mRNA expression in patients with CIU subjected to the intradermal autologous serum skin test (ASST). Increased levels of circulating pro-inflammatory cytokines, such as TNF-alpha, IL-1beta, IL-12p70, and IL-6 have been observed in most of patients with CIU, together with an enhancement of IL-2 secretion following T-cell stimulation. Highlighting the inflammatory profile in CIU found in ASST positive, is the enhanced B-cell proliferative responsiveness and increased IL-17 secretion levels. ASST-positive patients also exhibited impaired IL-4 secretion associated with increased IL-10 production. Altered cytokine expression in patients with ASST-negative, was the down-modulation of spontaneous IL-10 mRNA expression levels in peripheral blood mononuclear cells. Our findings support the concept of immunologic dysregulation in CIU, revealing a systemic inflammatory profile associated with disturbed cytokine production by T cells, mainly related to IL-17 and IL-10 production. PMID:18586117

  2. Celecoxib can suppress expression of genes associated with PGE2 pathway in chondrocytes under inflammatory conditions

    PubMed Central

    Sun, Tian-Wen; Wu, Zhi-Hong; Weng, Xi-Sheng

    2015-01-01

    This study aimed to investigate the effect of a selective cyclooxygenase-2 (COX-2) inhibitor (celecoxib) on the expression of arachidonate-associated inflammatory genes in cultured human normal chondrocytes. Normal chondrocytes were obtained from the cartilage of three different amputated patients without osteoarthritis (OA). Affymetrix Human microarray was used to assess the alterations in gene expression in three groups of cells: untreated cells (negative control group), cells treated with interleukin-1β (IL-1β) (positive control group), and cells treated with IL-1β and celecoxib. The patterns of up-regulation and down-regulation of gene expression were further validated by real-time PCR. A total of 1091 up-regulated genes and 1252 down-regulated genes were identified in the positive control group compared with the negative control group. Among them, PTGS2, ADAMTS5, PTGER2, mPTGES and PTGER4 are known to be involved in chondrocyte inflammation, while VEGFA, BCL2, TRAF1, CYR61, BMP6, DAPK1, DUSP7, IL1RN, MMP13 and TNFSF10 were reported being associated with cytokine and chemokine signaling. 189 up-regulated genes and 177 down-regulated genes were identified in the positive control group compared with intervention group. PTGS1, PTGS2, ADAMTS5, PTGER2, mPTGES and PTGER4 were among the genes down-regulated upon the treatment with celecoxib. Our results demonstrated that the OA chondrocytes are the site of active eicosanoid production. IL-1β can activate inflammation in chondrocytes and trigger the production of various proteins involved in cyclooxygenase pathway. The expression of genes corresponding to these proteins can be down-regulated by celecoxib. The findings indicate that the therapy with prostaglandin E2 (PGE2)-blocking agents may decrease the PGE2 production not only by direct inhibition of COX-2 activity, but also by down-regulating the expression of genes encoding for COX-2, microsomal prostaglandin-endoperoxide synthase 1 (mPGES-1) and prostaglandin

  3. Decitabine Increases Fetal Hemoglobin in P. Anubis by Increasing γ-globin Gene Transcription

    PubMed Central

    Akpan, Imo; Banzon, Virryan; Ibanez, Vinzon; Vaitkus, Kestis; DeSimone, Joseph; Lavelle, Donald

    2014-01-01

    1) Objective The mechanism responsible for increased fetal hemoglobin (HbF) levels following decitabine treatment remains controversial. These experiments were performed to evaluate the role of transcriptional versus translational mechanisms in the ability of decitabine to increase HbF levels in vivo. 2) Methods Three normal, nonanemic baboons were treated with decitabine subcutaneously (0.5mg/kg/d) for 10 days. The effect of decitabine on globin chain synthesis and globin mRNA levels was measured in pre- and post-treatment bone marrow (BM) aspirates by biosynthetic radiolabelling with [3H] leucine followed by separation of globin chains by HPLC, and real time PCR, respectively. The effect on DNA methylation of the ε- and γ-globin gene promoters was determined by bisulfite sequence analysis. 3) Results Decitabine treatment of normal, nonanemic baboons induced similar increases in the γ/γ+β chain synthetic ratio and the γ/total β-like globin RNA ratio and also increased expression of ε-globin transcripts. Increased expression of ε- and γ-globin was associated with decreased DNA methylation of the ε- and γ-globin gene promoters. 4) Conclusion Decitabine increases HbF in vivo by transcriptional activation of the γ-globin gene. PMID:20713129

  4. [Induction of NAG-1 gene expression in colon cancer cells by non-steroidal anti-inflammatory drugs].

    PubMed

    Wang, Chunhui; Ouyang, Qin; Tang, Chengwei; Liu, Rui; Huang, Minghui

    2007-08-01

    This study was conducted to evaluate the growth and NAG-1 gene expression effected by Non-steroidal anti-inflammatory drug (NSAID) on colon cancer cell lines in vitro. The proliferation of colon cancer cells were determined by MTT assay and COX-2 protein expression were detected by Western blot. Total RNA was isolated from three kinds of colon cancer cell lines; the expressions of NAG-1 mRNA in the cells treated with or without NSAIDs were assessed by semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) assay. Celecoxib, meloxicam and aspirin were able to inhibit the growth of HT-29, SW480 and LS174-T cells in dose-dependent manner. COX-2 protein expressed in HT-29 and LS174-T, but not in SW480 cells. All of colon cancer cells expressed NAG-1 gene and the level of LS174-T was lower than that of the other two cell lines. NAG-1 expression was increased by treatment with some NSAIDs in all three kinds of colon cancer cells. NSAIDs were able to potentially inhibit the growth of colon cell lines. Induction of NAG-1 gene expression by NSAID was not consistent with COX-2 expression. PMID:17899765

  5. Prediction of survival of diffuse large B-cell lymphoma patients via the expression of three inflammatory genes.

    PubMed

    Zhao, Shuangtao; Bai, Nan; Cui, Jianlin; Xiang, Rong; Li, Na

    2016-08-01

    Currently, several gene-expression signatures that were used to predict survival of diffuse large B-cell lymphoma (DLBCL) patients, showed a restriction on the practical work for lack of convenient operation. In this study, we screened inflammatory genes whose expression correlated with survival of DLBCL and established a predictive model including IL6, IL1A and CSF3 through multivariate Cox regression based on the expression of these three genes. We validated the model at protein level in our clinical serum cohort composed of 101 patients of DLBCL and 50 healthy controls and 534 DLBCL patients at mRNA level from three independent Gene Expression Omnibus (GEO) data sets. We found our model to be independent of the International Prognostic Index (IPI), moreover, it can augment the predictive power of IPI. In summary, our three-gene model is sufficient to predict survival of DLBCL patients via measuring the concentration of three inflammatory cytokines in peripheral blood. PMID:27394196

  6. Mutation of cysteine 46 in IKK-beta increases inflammatory responses

    PubMed Central

    Jiang, Zhi Hong; Jiang, Shui Ping; Liu, Yan; Wang, Ting Yu; Yao, Xiao Jun; Su, Xiao Hui; Yan, Feng Gen; Liu, Juan; Leung, Elaine Lai-Han; Yi, Xiao Qin; Wong, Yuen Fan; Zhou, Hua; Liu, Liang

    2015-01-01

    Activation of IκB kinase β (IKK-β) and nuclear factor (NF)-κB signaling contributes to cancer pathogenesis and inflammatory disease; therefore, the IKK-β−NF-κB signaling pathway is a potential therapeutic target. Current drug design strategies focus on blocking NF-κB signaling by binding to specific cysteine residues on IKK-β. However, mutations in IKK-β have been found in patients who may eventually develop drug resistance. For these patients, a new generation of IKK-β inhibitors are required to provide novel treatment options. We demonstrate in vitro that cysteine-46 (Cys-46) is an essential residue for IKK-β kinase activity. We then validate the role of Cys-46 in the pathogenesis of inflammation using delayed-type hypersensitivity (DTH) and an IKK-βC46A transgenic mouse model. We show that a novel IKK-β inhibitor, dihydromyricetin (DMY), has anti-inflammatory effects on WT DTH mice but not IKK-βC46A transgenic mice. These findings reveal the role of Cys-46 in the promotion of inflammatory responses, and suggest that Cys-46 is a novel drug-binding site for the inhibition of IKK-β. PMID:26378659

  7. Mutation of cysteine 46 in IKK-beta increases inflammatory responses.

    PubMed

    Li, Ting; Wong, Vincent Kam Wai; Jiang, Zhi Hong; Jiang, Shui Ping; Liu, Yan; Wang, Ting Yu; Yao, Xiao Jun; Su, Xiao Hui; Yan, Feng Gen; Liu, Juan; Leung, Elaine Lai-Han; Yi, Xiao Qin; Wong, Yuen Fan; Zhou, Hua; Liu, Liang

    2015-10-13

    Activation of IκB kinase β (IKK-β) and nuclear factor (NF)-κB signaling contributes to cancer pathogenesis and inflammatory disease; therefore, the IKK-β-NF-κB signaling pathway is a potential therapeutic target. Current drug design strategies focus on blocking NF-κB signaling by binding to specific cysteine residues on IKK-β. However, mutations in IKK-β have been found in patients who may eventually develop drug resistance. For these patients, a new generation of IKK-β inhibitors are required to provide novel treatment options. We demonstrate in vitro that cysteine-46 (Cys-46) is an essential residue for IKK-β kinase activity. We then validate the role of Cys-46 in the pathogenesis of inflammation using delayed-type hypersensitivity (DTH) and an IKK-β C46A transgenic mouse model. We show that a novel IKK-β inhibitor, dihydromyricetin (DMY), has anti-inflammatory effects on WT DTH mice but not IKK-β C46A transgenic mice. These findings reveal the role of Cys-46 in the promotion of inflammatory responses, and suggest that Cys-46 is a novel drug-binding site for the inhibition of IKK-β. PMID:26378659

  8. Protein Subcellular Relocalization Increases the Retention of Eukaryotic Duplicate Genes

    PubMed Central

    Byun, S. Ashley; Singh, Sarabdeep

    2013-01-01

    Gene duplication is widely accepted as a key evolutionary process, leading to new genes and novel protein functions. By providing the raw genetic material necessary for functional expansion, the mechanisms that involve the retention and functional diversification of duplicate genes are one of the central topics in evolutionary and comparative genomics. One proposed source of retention and functional diversification is protein subcellular relocalization (PSR). PSR postulates that changes in the subcellular location of eukaryotic duplicate proteins can positively modify function and therefore be beneficial to the organism. As such, PSR would promote retention of those relocalized duplicates and result in significantly lower death rates compared with death rates of nonrelocalized duplicate pairs. We surveyed both relocalized and nonrelocalized duplicate proteins from the available genomes and proteomes of 59 eukaryotic species and compared their relative death rates over a Ks range between 0 and 1. Using the Cox proportional hazard model, we observed that the death rates of relocalized duplicate pairs were significantly lower than the death rates of the duplicates without relocalization in most eukaryotic species examined in this study. These observations suggest that PSR significantly increases retention of duplicate genes and that it plays an important, but currently underappreciated, role in the evolution of eukaryotic genomes. PMID:24265504

  9. Fish oil induced increase in walking distance, but not ankle brachial pressure index, in peripheral arterial disease is dependent on both body mass index and inflammatory genotype.

    PubMed

    Madden, Jacqueline; Brunner, Andreas; Dastur, Neville D; Tan, Rebecca M; Nash, Gerard B; Rainger, G Ed; Shearman, Cliff P; Calder, Philip C; Grimble, Robert F

    2007-06-01

    Peripheral arterial disease (PAD) is an atherosclerotic disease. Evidence suggests that atherosclerosis is an inflammatory condition and long chain n-3 fatty acids, found in oily fish and fish oils, have been shown to reduce inflammation. Genetic and lifestyle factors such as body mass index (BMI) also influence inflammation. In this study we have examined the effect of fish oil in patients with claudication secondary to PAD. Fish oil supplementation, providing 1g EPA and 0.7 g DHA per day for 12 weeks, increased walking distance on a treadmill set at 3.2 km/h with a 7% incline. Walking distance to first pain increased from 76.2+/-8.5 m before fish oil to 140.6+/-25.5 m after fish oil (mean+/-SEM, p=0.004) and total distance walked increased from 160.0+/-21.5 m before fish oil to 242.1+/-34.5 m after fish oil (p=0.002). Fish oil supplementation also improved ankle brachial pressure index (ABPI) from 0.599+/-0.017 before fish oil to 0.776+/-0.030 after fish oil (p<0.001). The increase in walking distance was dependent on both BMI and genotype for single nucleotide polymorphisms in the genes encoding the pro-inflammatory cytokines tumour necrosis factor-alpha and interleukin (IL)-1beta and the anti-inflammatory cytokine IL-10 (detected using amplification refractory mutation system polymerase chain reaction). Neither BMI nor any of the genotypes examined affected the ability of fish oil to increase ABPI. The mechanisms by which fish oil affects walking distance and ABPI do not appear to be the same. PMID:17600695

  10. Low-dose oral interferon modulates expression of inflammatory and autoimmune genes in cattle.

    PubMed

    Mamber, Stephen W; Lins, Jeremy; Gurel, Volkan; Hutcheson, David P; Pinedo, Pablo; Bechtol, David; Krakowka, Steven; Fields-Henderson, Rachel; Cummins, Joseph M

    2016-04-01

    While the safety and efficacy profiles of orally administered bovine interferon (IFN) alpha have been documented, the mechanism(s) that result in clinical benefits remain elusive. One approach to delineating the molecular pathways of IFN efficacy is through the use of gene expression profiling technologies. In this proof-of-concept study, different (0, 50, 200 and 800 units) oral doses of natural bovine IFN (type I) were tested in cattle to determine if oral IFN altered the expression of genes that may be pivotal to the development of systemic resistance to viral infections such as foot-and-mouth disease (FMD). Oral IFN was administered twice: Time 0 and 8h later. Blood was collected at 0, 8 and 24h after the first IFN administration, and DNA isolated from peripheral blood mononuclear cells (PBMCs) was employed in quantitative polymerase chain reaction (qPCR) microarray assays. Within 8h, 50 and 200 units of oral IFN induced significant (P<0.05) changes in expression of 41 of 92 tested autoimmune and inflammatory response-associated genes. These data suggest that orally administered IFN is a viable approach for providing short-term antiviral immunity to livestock exposed to viruses such as FMD virus (FMDV) until such a time that an effective vaccine can be produced and distributed to producers. PMID:27032505

  11. The IL-33 gene is related to increased susceptibility to systemic sclerosis.

    PubMed

    Koca, Suleyman Serdar; Pehlivan, Yavuz; Kara, Murat; Alibaz-Oner, Fatma; Oztuzcu, Serdar; Yilmaz, Neslihan; Cetin, Gozde Yildirim; Kisacik, Bunyamin; Ozgen, Metin; Pamuk, Omer Nuri; Direskeneli, Haner; Sayarlioglu, Mehmet; Onat, Ahmet Mesut

    2016-04-01

    Systemic sclerosis (SSc) is a chronic inflammatory disease characterized by widespread fibrosis of the skin and several visceral organs. The pro-fibrotic potential of interleukin (IL)-33 has been demonstrated by in both in vitro and in vivo settings; moreover, increased level of IL-33 has also been reported in patients with SSc. Therefore, the aim of the present study was to detect the potential association of IL-33 gene polymorphisms on the susceptibility of SSc. A total of 300 SSc patients and 280 healthy controls (HC) were enrolled in this multicentric preliminary candidate gene study. DNA samples were harvested using an appropriate commercial DNA isolation kit. Four single nucleotide polymorphisms (SNPs) of IL-33 gene (rs7044343, rs1157505, rs11792633 and rs1929992) were genotyped using the appropriate commercial primer/probe sets on real-time PCR. There was no significant difference in terms of the allelic distributions and minor allele frequencies of evaluated four IL-33 polymorphisms between the SSc and HC groups (P > 0.05 for all). Moreover, the genotypic distributions of rs1157505, rs11792633 and rs1929992 polymorphisms were not significantly different (P > 0.05 for all). However, CC genotype of rs7044343 SNP was significantly higher in the SSc group compared to the HC group (P = 0.013, OR 1.75, 95 % CI 1.12-2.72). This preliminary candidate gene study demonstrates that rs7044343 polymorphism of IL-33 gene is associated with the susceptibility to the SSc in Turkish population. It may be suggested that IL-33 gene may be a candidate gene to research in SSc. PMID:26743213

  12. Deletion of Rictor in brain and fat alters peripheral clock gene expression and increases blood pressure.

    PubMed

    Drägert, Katja; Bhattacharya, Indranil; Pellegrini, Giovanni; Seebeck, Petra; Azzi, Abdelhalim; Brown, Steven A; Georgiopoulou, Stavroula; Held, Ulrike; Blyszczuk, Przemyslaw; Arras, Margarete; Humar, Rok; Hall, Michael N; Battegay, Edouard; Haas, Elvira

    2015-08-01

    The mammalian target of rapamycin complex 2 (mTORC2) contains the essential protein RICTOR and is activated by growth factors. mTORC2 in adipose tissue contributes to the regulation of glucose and lipid metabolism. In the perivascular adipose tissue, mTORC2 ensures normal vascular reactivity by controlling expression of inflammatory molecules. To assess whether RICTOR/mTORC2 contributes to blood pressure regulation, we applied a radiotelemetry approach in control and Rictor knockout (Rictor(aP2KO)) mice generated using adipocyte protein-2 gene promoter-driven CRE recombinase expression to delete Rictor. The 24-hour mean arterial pressure was increased in Rictor(aP2KO) mice, and the physiological decline in mean arterial pressure during the dark period was impaired. In parallel, heart rate and locomotor activity were elevated during the dark period with a pattern similar to blood pressure changes. This phenotype was associated with mild cardiomyocyte hypertrophy, decreased cardiac natriuretic peptides, and their receptor expression in adipocytes. Moreover, clock gene expression was reduced or phase-shifted in perivascular adipose tissue. No differences in clock gene expression were observed in the master clock suprachiasmatic nucleus, although Rictor gene expression was also lower in brain of Rictor(aP2KO) mice. Thus, this study highlights the importance of RICTOR/mTORC2 for interactions between vasculature, adipocytes, and brain to tune physiological outcomes, such as blood pressure and locomotor activity. PMID:26101345

  13. Effect of Cyperus Rotundus on Cytokine Gene Expression in Experimental Inflammatory Bowel Disease

    PubMed Central

    Johari, Sarika; Joshi, Chaitanya; Gandhi, Tejal

    2016-01-01

    Background: The protective effect of the chloroform extract of Cyperus rotundus (CHCR) is attributed to its anti-inflammatory and antioxidant activities. Cytokines, important regulators of inflammation and repair, play a key role in the pathogenesis of inflammatory bowel disease (IBD). Targeting these cytokines can effectively ameliorate the symptoms of IBD. The aim of the present study was to unravel the molecular mechanism through cytokine regulation in rats in experimental IBD. Methods: Sprague Dawley rats were randomly allocated to 5 groups (n=6). Group I served as the normal control. Group II served as the vehicle control and received 50% ethanol intracolonically on day 11 of the study. Group III served as the model control. Group IV and Group V were given standard drug 5-aminosalicylic acid (100 mg/kg) and CHCR (800 mg/kg), respectively, for 18 days once a day orally. Colitis was induced with dinitrobenzene sulfonic acid (180 mg/kg in 50% ethanol) intracolonically in groups III–V on day 11 of the study. On day 18, the rats were euthanized and colon tissues were removed for IL-4, IL-6, IL-12, and IFN-gamma gene expression studies using quantitative RT-PCR. Results: The expression levels of proinflammatory cytokines IL-4, IL-6, IL-12, and IFN-gamma were upregulated in the model control rats. Pretreatment with 5-aminosalicylic acid (100 mg/kg) and CHCR (800 mg/kg) significantly decreased the fold of the expression of the above cytokines. Conclusion: CHCR acts as a molecular brake and downregulates the expression of proinflammatory cytokine genes; this is beneficial for reducing the severity of the experimental IBD. Thus, Cyperus rotundus is a safe, economical, and effective alternative for the treatment of patients with IBD. PMID:27582588

  14. Selenium Deficiency-Induced Inflammation and Increased Expression of Regulating Inflammatory Cytokines in the Chicken Gastrointestinal Tract.

    PubMed

    Gao, Xuejiao; Zhang, Ziwei; Xing, Houjuan; Yu, Jiao; Zhang, Naisheng; Xu, Shiwen

    2016-09-01

    Selenium (Se), a nutritionally essential trace element, plays an important role in various aspects of health for a wide range of species, including birds. Se deficiency inhibits the growth of immune organs and decreases immune function, leading to many inflammatory diseases. The present study determined the effects and mechanism of dietary Se deficiency on gastrointestinal tract tissue inflammation. The histopathological changes showed that Se deficiency induced inflammatory lesions in the gastrointestinal tract tissues (glandular stomach, gizzard, duodenum, small intestine, and rectum). The expression levels of PTGE (prostagland E synthase), COX-2 (cyclooxygenase-2), TNF-α (tumor necrosis factor α), and NF-κB (nuclear transfer factor κB) in the gastrointestinal tract tissues (glandular stomach, gizzard, duodenum, small intestine, and rectum) were determined by qPCR on days 15, 25, 35, 45, and 55, respectively. The results showed that Se deficiency induced high expression levels of PTGE, COX-2, TNF-α, and NF-κB in the gastrointestinal tract tissues. The effects were more obvious in the duodenum and small intestine than those in the glandular stomach, gizzard, and rectum. In addition, the expression levels of these proteins in the gastrointestinal tract tissue increased in a time-dependent manner with Se deficiency feeding time. Furthermore, Se deficiency induced the production of pro-inflammatory factors, thus aggravating inflammatory lesions in the gastrointestinal tract. The effect of Se deficiency on inflammation and other gastrointestinal tract diseases should be further studied. PMID:26899319

  15. The CD14+CD16+ Inflammatory Monocyte Subset Displays Increased Mitochondrial Activity and Effector Function During Acute Plasmodium vivax Malaria

    PubMed Central

    Antonelli, Lis R. V.; Leoratti, Fabiana M. S.; Costa, Pedro A. C.; Rocha, Bruno C.; Diniz, Suelen Q.; Tada, Mauro S.; Pereira, Dhelio B.; Teixeira-Carvalho, Andrea; Golenbock, Douglas T.; Gonçalves, Ricardo; Gazzinelli, Ricardo T.

    2014-01-01

    Infection with Plasmodium vivax results in strong activation of monocytes, which are important components of both the systemic inflammatory response and parasite control. The overall goal of this study was to define the role of monocytes during P. vivax malaria. Here, we demonstrate that P. vivax–infected patients display significant increase in circulating monocytes, which were defined as CD14+CD16− (classical), CD14+CD16+ (inflammatory), and CD14loCD16+ (patrolling) cells. While the classical and inflammatory monocytes were found to be the primary source of pro-inflammatory cytokines, the CD16+ cells, in particular the CD14+CD16+ monocytes, expressed the highest levels of activation markers, which included chemokine receptors and adhesion molecules. Morphologically, CD14+ were distinguished from CD14lo monocytes by displaying larger and more active mitochondria. CD14+CD16+ monocytes were more efficient in phagocytizing P. vivax-infected reticulocytes, which induced them to produce high levels of intracellular TNF-α and reactive oxygen species. Importantly, antibodies specific for ICAM-1, PECAM-1 or LFA-1 efficiently blocked the phagocytosis of infected reticulocytes by monocytes. Hence, our results provide key information on the mechanism by which CD14+CD16+ cells control parasite burden, supporting the hypothesis that they play a role in resistance to P. vivax infection. PMID:25233271

  16. The CD14+CD16+ inflammatory monocyte subset displays increased mitochondrial activity and effector function during acute Plasmodium vivax malaria.

    PubMed

    Antonelli, Lis R V; Leoratti, Fabiana M S; Costa, Pedro A C; Rocha, Bruno C; Diniz, Suelen Q; Tada, Mauro S; Pereira, Dhelio B; Teixeira-Carvalho, Andrea; Golenbock, Douglas T; Gonçalves, Ricardo; Gazzinelli, Ricardo T

    2014-09-01

    Infection with Plasmodium vivax results in strong activation of monocytes, which are important components of both the systemic inflammatory response and parasite control. The overall goal of this study was to define the role of monocytes during P. vivax malaria. Here, we demonstrate that P. vivax-infected patients display significant increase in circulating monocytes, which were defined as CD14(+)CD16- (classical), CD14(+)CD16(+) (inflammatory), and CD14loCD16(+) (patrolling) cells. While the classical and inflammatory monocytes were found to be the primary source of pro-inflammatory cytokines, the CD16(+) cells, in particular the CD14(+)CD16(+) monocytes, expressed the highest levels of activation markers, which included chemokine receptors and adhesion molecules. Morphologically, CD14(+) were distinguished from CD14lo monocytes by displaying larger and more active mitochondria. CD14(+)CD16(+) monocytes were more efficient in phagocytizing P. vivax-infected reticulocytes, which induced them to produce high levels of intracellular TNF-α and reactive oxygen species. Importantly, antibodies specific for ICAM-1, PECAM-1 or LFA-1 efficiently blocked the phagocytosis of infected reticulocytes by monocytes. Hence, our results provide key information on the mechanism by which CD14(+)CD16(+) cells control parasite burden, supporting the hypothesis that they play a role in resistance to P. vivax infection. PMID:25233271

  17. LincRNA-Cox2 Promotes Late Inflammatory Gene Transcription in Macrophages through Modulating SWI/SNF-Mediated Chromatin Remodeling.

    PubMed

    Hu, Guoku; Gong, Ai-Yu; Wang, Yang; Ma, Shibin; Chen, Xiqiang; Chen, Jing; Su, Chun-Jen; Shibata, Annemarie; Strauss-Soukup, Juliane K; Drescher, Kristen M; Chen, Xian-Ming

    2016-03-15

    Long intergenic noncoding RNAs (lincRNAs) are long noncoding transcripts (>200 nt) from the intergenic regions of annotated protein-coding genes. One of the most highly induced lincRNAs in macrophages upon TLR ligation is lincRNA-Cox2, which was recently shown to mediate the activation and repression of distinct classes of immune genes in innate immune cells. We report that lincRNA-Cox2, located at chromosome 1 proximal to the PG-endoperoxide synthase 2 (Ptgs2/Cox2) gene, is an early-primary inflammatory gene controlled by NF-κB signaling in murine macrophages. Functionally, lincRNA-Cox2 is required for the transcription of NF-κB-regulated late-primary inflammatory response genes stimulated by bacterial LPS. Specifically, lincRNA-Cox2 is assembled into the switch/sucrose nonfermentable (SWI/SNF) complex in cells after LPS stimulation. This resulting lincRNA-Cox2/SWI/SNF complex can modulate the assembly of NF-κB subunits to the SWI/SNF complex, and ultimately, SWI/SNF-associated chromatin remodeling and transactivation of the late-primary inflammatory-response genes in macrophages in response to microbial challenge. Therefore, our data indicate a new regulatory role for NF-κB-induced lincRNA-Cox2 as a coactivator of NF-κB for the transcription of late-primary response genes in innate immune cells through modulation of epigenetic chromatin remodeling. PMID:26880762

  18. Inhibition of Inflammatory Gene Expression in Keratinocytes Using a Composition Containing Carnitine, Thioctic Acid and Saw Palmetto Extract

    PubMed Central

    Chittur, Sridar; Parr, Brian; Marcovici, Geno

    2011-01-01

    Chronic inflammation of the hair follicle (HF) is considered a contributing factor in the pathogenesis of androgenetic alopecia (AGA). Previously, we clinically tested liposterolic extract of Serenoa repens (LSESr) and its glycoside, β-sitosterol, in subjects with AGA and showed a highly positive response to treatment. In this study, we sought to determine whether blockade of inflammation using a composition containing LSESr as well as two anti-inflammatory agents (carnitine and thioctic acid) could alter the expression of molecular markers of inflammation in a well-established in vitro system. Using a well-validated assay representative of HF keratinocytes, specifically, stimulation of cultured human keratinocyte cells in vitro, we measured changes in gene expression of a spectrum of well-known inflammatory markers. Lipopolysaccharide (LPS) provided an inflammatory stimulus. In particular, we found that the composition effectively suppressed LPS-activated gene expression of chemokines, including CCL17, CXCL6 and LTB(4) associated with pathways involved in inflammation and apoptosis. Our data support the hypothesis that the test compound exhibits anti-inflammatory characteristics in a well-established in vitro assay representing HF keratinocyte gene expression. These findings suggest that 5-alpha reductase inhibitors combined with blockade of inflammatory processes could represent a novel two-pronged approach in the treatment of AGA with improved efficacy over current modalities. PMID:19692448

  19. Liver failure induces a systemic inflammatory response. Prevention by recombinant N-terminal bactericidal/permeability-increasing protein.

    PubMed Central

    Boermeester, M. A.; Houdijk, A. P.; Meyer, S.; Cuesta, M. A.; Appelmelk, B. J.; Wesdorp, R. I.; Hack, C. E.; Van Leeuwen, P. A.

    1995-01-01

    The observed increased susceptibility of patients with fulminant hepatic failure for local and systemic infections has been hypothesized to be due to a failure for the hepatic clearance function and subsequent leaking of endogenous endotoxins into the systemic circulation. However, experimental evidence for such a systemic inflammation during liver failure due to endogenous endotoxemia is lacking. Therefore, we designed a study to clarify whether circulating endotoxins due to liver failure could lead to the development of systemic inflammations. In a rat model for liver failure induced by a two-thirds partial hepatectomy, we evaluated the course of circulating tumor necrosis factor and interleukin-6, changes in blood chemistry and hemodynamics, and histopathological changes in the lungs. Partially hepatectomized animals, but not sham-operated animals, demonstrated cardiac failure, increased levels of creatinin and urea, metabolic acidosis, high plasma levels of tumor necrosis factor and interleukin-6, and an influx of PMNs in the lungs-together indicating the development of a systemic inflammatory response. Continuous infusion of recombinant N-terminal bactericidal/permeability-increasing protein (rBPI23), a well described endotoxin-neutralizing protein, prevented these inflammatory reactions. Ex vivo experiments with rat plasma samples confirmed the presence of circulating endotoxins in partially hepatectomized rats as opposed to those treated with rBPI23. Thus, our results indicate that the early phase of liver failure induces a systemic inflammatory response triggered by circulating endotoxins, which can be prevented by perioperative infusion of rBPI23. Images Figure 2 PMID:7485405

  20. A single gene mutation that increases maize seed weight

    SciTech Connect

    Giroux, M.J.; Shaw, J.; Hannah, L.C. |

    1996-06-11

    The maize endosperm-specific gene shrunken2 (Sh2) encodes the large subunit of the heterotetrameric starch synthetic enzyme adenosine diphosphoglucose pyrophosphorylase (AGP; EC 2.7.7.27). Here we exploit an in vivo, site-specific mutagenesis system to create short insertion mutations in a region of the gene known to be involved in the allosteric regulation of AGP. The site-specific mutagen is the transposable element dissociation (Ds). Approximately one-third (8 of 23) of the germinal revertants sequenced restored the wild-type sequence, whereas the remaining revertants contained insertions of 3 or 6 bp. All revertants retained the original reading frame 3 feet to the insertion site and involved the addition of tyrosine and/or serine. Each insertion revertant reduced total AGP activity and the amount of the SH2 protein. The revertant containing additional tyrosine and serine residues increased seed weight 11-18% without increasing or decreasing the percentage of starch. Other insertion revertants lacking an additional serine reduced seed weight. Reduced sensitivity to phosphate, a long-known inhibitor of AGP, was found in the high seed-weight revertant. This alteration is likely universally important since insertion of tyrosine and serine in the potato large subunit of AGP at the comparable position and expression in Escherichia coli also led to a phosphate-insensitive enzyme. These results show that single gene mutations giving rise to increased seed weight, and therefore perhaps yield, are clearly possible in a plant with a long history of intensive and successful breeding efforts. 20 refs., 5 figs., 5 tabs.

  1. Intestinal CCL25 expression is increased in colitis and correlates with inflammatory activity.

    PubMed

    Trivedi, Palak J; Bruns, Tony; Ward, Stephen; Mai, Martina; Schmidt, Carsten; Hirschfield, Gideon M; Weston, Chris J; Adams, David H

    2016-04-01

    CCL25-mediated activation of CCR9 is critical for mucosal lymphocyte recruitment to the intestine. In immune-mediated liver injury complicating inflammatory bowel disease, intrahepatic activation of this pathway allows mucosal lymphocytes to be recruited to the liver, driving hepatobiliary destruction in primary sclerosing cholangitis (PSC). However, in mice and healthy humans CCL25 expression is restricted to the small bowel, whereas few data exist on activation of this pathway in the inflamed colon despite the vast majority of PSC patients having ulcerative colitis. Herein, we show that colonic CCL25 expression is not only upregulated in patients with active colitis, but strongly correlates with endoscopic Mayo score and mucosal TNFα expression. Moreover, approximately 90% (CD4(+)) and 30% (CD8(+)) of tissue-infiltrating T-cells in colitis were identified as CCR9(+) effector lymphocytes, compared to <10% of T-cells being CCR9(+) in normal colon. Sorted CCR9(+) lymphocytes also demonstrated enhanced cellular adhesion to stimulated hepatic sinusoidal endothelium compared with their CCR9(-) counterparts when under flow. Collectively, these results suggest that CCR9/CCL25 interactions are not only involved in colitis pathogenesis but also correlate with colonic inflammatory burden; further supporting the existence of overlapping mucosal lymphocyte recruitment pathways between the inflamed colon and liver. PMID:26873648

  2. Intestinal CCL25 expression is increased in colitis and correlates with inflammatory activity

    PubMed Central

    Trivedi, Palak J.; Bruns, Tony; Ward, Stephen; Mai, Martina; Schmidt, Carsten; Hirschfield, Gideon M.; Weston, Chris J.; Adams, David H.

    2016-01-01

    CCL25-mediated activation of CCR9 is critical for mucosal lymphocyte recruitment to the intestine. In immune-mediated liver injury complicating inflammatory bowel disease, intrahepatic activation of this pathway allows mucosal lymphocytes to be recruited to the liver, driving hepatobiliary destruction in primary sclerosing cholangitis (PSC). However, in mice and healthy humans CCL25 expression is restricted to the small bowel, whereas few data exist on activation of this pathway in the inflamed colon despite the vast majority of PSC patients having ulcerative colitis. Herein, we show that colonic CCL25 expression is not only upregulated in patients with active colitis, but strongly correlates with endoscopic Mayo score and mucosal TNFα expression. Moreover, approximately 90% (CD4+) and 30% (CD8+) of tissue-infiltrating T-cells in colitis were identified as CCR9+ effector lymphocytes, compared to <10% of T-cells being CCR9+ in normal colon. Sorted CCR9+ lymphocytes also demonstrated enhanced cellular adhesion to stimulated hepatic sinusoidal endothelium compared with their CCR9– counterparts when under flow. Collectively, these results suggest that CCR9/CCL25 interactions are not only involved in colitis pathogenesis but also correlate with colonic inflammatory burden; further supporting the existence of overlapping mucosal lymphocyte recruitment pathways between the inflamed colon and liver. PMID:26873648

  3. Reduction of Inflammatory Bowel Disease-induced Tumor Development in IL-10 Knockout Mice with Soluble Epoxide Hydrolase Gene Deficiency

    PubMed Central

    Zhang, Wanying; Liao, Jie; Li, Haonan; Dong, Hua; Bai, Han; Yang, Allison; Hammock, Bruce D.; Yang, Guang-Yu

    2012-01-01

    Soluble epoxide hydrolase (sEH) quickly inactivates anti-inflammatory epoxyeicosatrienoic acids (EETs) by converting them to dihydroxyeicosatrienoic acids (DHETs). Inhibition of sEH has shown effects against inflammation, but little is studied about the role of sEH in inflammatory bowel disease (IBD) and its induced carcinogenesis. In the present study, the effect of sEH gene deficiency on the development of IBD-induced tumor development was determined in IL-10 knockout mice combined with sEH gene deficiency. Tumor development in the bowel was examined at the age of 25 weeks for male mice and 35 weeks for female mice. Compared to IL-10(−/−) mice, sEH (−/−)/IL-10 (−/−) mice exhibited a significant decrease of tumor multiplicity (2 ± 0.9 vs. 1 ± 0.3 tumors/mouse) and tumor size (344.55±71.73 vs. 126.94±23.18 mm3), as well as a marked decrease of precancerous dysplasia. The significantly lower inflammatory scores were further observed in the bowel in sEH(−/−)/IL-10(−/−) mice as compared to IL-10(−/−) mice, including parameters of inflammation-involved area (0.70±0.16 vs 1.4±0.18), inflammation cell infiltration (1.55±0.35 vs 2.15±0.18), and epithelial hyperplasia (0.95±0.21 vs 1.45±0.18), as well as larger ulcer formation. qPCR and western blotting assays demonstrated a significant down-regulation of cytokines/chemokines (TNFα, MCP1, and IL-12, 17 and 23) and NF-kB signals. Eicosanoid acid metabolic profiling revealed a significant increase of ratios of EETs to DHETs and EpOMEs to DiOMEs. These results indicate that sEH plays an important role in IBD and its-induced carcinogenesis and could serve as a highly potential target of chemoprevention and treatment for IBD. PMID:22517541

  4. Gene expression profiling of the effects of organic dust in lung epithelial and THP-1 cells reveals inductive effects on inflammatory and immune response genes.

    PubMed

    Boggaram, Vijay; Loose, David S; Gottipati, Koteswara R; Natarajan, Kartiga; Mitchell, Courtney T

    2016-04-01

    The intensification and concentration of animal production operations expose workers to high levels of organic dusts in the work environment. Exposure to organic dusts is a risk factor for the development of acute and chronic respiratory symptoms and diseases. Lung epithelium plays important roles in the control of immune and inflammatory responses to environmental agents to maintain lung health. To better understand the effects of organic dust on lung inflammatory responses, we characterized the gene expression profiles of A549 alveolar and Beas2B bronchial epithelial and THP-1 monocytic cells influenced by exposure to poultry dust extract by DNA microarray analysis using Illumina Human HT-12 v4 Expression BeadChip. We found that A549 alveolar and Beas2B bronchial epithelial and THP-1 cells responded with unique changes in the gene expression profiles with regulation of genes encoding inflammatory cytokines, chemokines, and other inflammatory proteins being common to all the three cells. Significantly induced genes included IL-8, IL-6, IL-1β, ICAM-1, CCL2, CCL5, TLR4, and PTGS2. Validation by real-time qRT-PCR, ELISA, Western immunoblotting, and immunohistochemical staining of lung sections from mice exposed to dust extract validated DNA microarray results. Pathway analysis indicated that dust extract induced changes in gene expression influenced functions related to cellular growth and proliferation, cell death and survival, and cellular development. These data show that a broad range of inflammatory mediators produced in response to poultry dust exposure can modulate lung immune and inflammatory responses. This is the first report on organic dust induced changes in expression profiles in lung epithelial and THP-1 monocytic cells. PMID:26884459

  5. Disease-Regulated Gene Therapy with Anti-Inflammatory Interleukin-10 Under the Control of the CXCL10 Promoter for the Treatment of Rheumatoid Arthritis.

    PubMed

    Broeren, Mathijs G A; de Vries, Marieke; Bennink, Miranda B; Arntz, Onno J; Blom, Arjen B; Koenders, Marije I; van Lent, Peter L E M; van der Kraan, Peter M; van den Berg, Wim B; van de Loo, Fons A J

    2016-03-01

    Disease-inducible promoters for the treatment of rheumatoid arthritis (RA) have the potential to provide regulated expression of therapeutic proteins in arthritic joints. In this study, we set out to identify promoters of human genes that are upregulated during RA and are suitable to drive the expression of relevant amounts of anti-inflammatory interleukin (IL)-10. Microarray analysis of RA synovial biopsies compared with healthy controls yielded a list of 22 genes upregulated during RA. Of these genes, CXCL10 showed the highest induction in lipopolysaccharide-stimulated synovial cells. The CXCL10 promoter was obtained from human cDNA and cloned into a lentiviral vector carrying firefly luciferase to determine the promoter inducibility in primary synovial cells and in THP-1 cells. The promoter activation was strongest 8-12 hr after stimulation with the proinflammatory cytokine tumor necrosis factor (TNF)-α and was reinducible after 96 hr. In addition, the CXCL10 promoter showed a significant response to RA patient serum, compared with sera from healthy individuals. The luciferase gene was replaced with IL-10 to determine the therapeutic properties of the CXCL10p-IL10 lentiviral vector. Primary synovial cells transduced with CXCL10p-IL10 showed a great increase in IL-10 production after stimulation, which reduced the release of proinflammatory cytokines TNF-α and IL-1β. We conclude that the selected proximal promoter of the CXCL10 gene responds to inflammatory mediators present in the serum of patients with RA and that transduction with the lentiviral CXCL10p-IL10 vector reduces inflammatory cytokine production by primary synovial cells from patients with RA. CXCL10 promoter-regulated IL-10 overexpression can thus provide disease-inducible local gene therapy suitable for RA. PMID:26711533

  6. Combinatorial gene therapy renders increased survival in cirrhotic rats

    PubMed Central

    2010-01-01

    Background Liver fibrosis ranks as the second cause of death in México's productive-age population. This pathology is characterized by acummulation of fibrillar proteins in hepatic parenchyma causing synthetic and metabolic disfunction. Remotion of excessive fibrous proteins might result in benefit for subjects increasing survival index. The goal of this work was to find whether the already known therapeutical effect of human urokinase Plasminogen Activator and human Matrix Metalloprotease 8 extends survival index in cirrhotic animals. Methods Wistar rats (80 g) underwent chronic intoxication with CCl4: mineral oil for 8 weeks. Cirrhotic animals were injected with a combined dose of Ad-delta-huPA plus Ad-MMP8 (3 × 1011 and 1.5 × 1011 vp/Kg, respectively) or with Ad-beta-Gal (4.5 × 1011) and were killed after 2, 4, 6, 8 and 10 days. Then, liver and serum were collected. An additional set of cirrhotic animals injected with combined gene therapy was also monitored for their probability of survival. Results Only the cirrhotic animals treated with therapeutical genes (Ad-delta-huPA+Ad-MMP-8) showed improvement in liver fibrosis. These results correlated with hydroxyproline determinations. A significant decrement in alpha-SMA and TGF-beta1 gene expression was also observed. Cirrhotic rats treated with Ad-delta-huPA plus Ad-MMP8 had a higher probability of survival at 60 days with respect to Ad-beta-Gal-injected animals. Conclusion A single administration of Ad-delta-huPA plus Ad-MMP-8 is efficient to induce fibrosis regression and increase survival in experimental liver fibrosis. PMID:20509929

  7. Differential Gene Expression Analysis of Placentas with Increased Vascular Resistance and Pre-Eclampsia Using Whole-Genome Microarrays

    PubMed Central

    Centlow, M.; Wingren, C.; Borrebaeck, C.; Brownstein, M. J.; Hansson, S. R.

    2011-01-01

    Pre-eclampsia is a pregnancy complication characterized by hypertension and proteinuria. There are several factors associated with an increased risk of developing pre-eclampsia, one of which is increased uterine artery resistance, referred to as “notching”. However, some women do not progress into pre-eclampsia whereas others may have a higher risk of doing so. The placenta, central in pre-eclampsia pathology, may express genes associated with either protection or progression into pre-eclampsia. In order to search for genes associated with protection or progression, whole-genome profiling was performed. Placental tissue from 15 controls, 10 pre-eclamptic, 5 pre-eclampsia with notching, and 5 with notching only were analyzed using microarray and antibody microarrays to study some of the same gene product and functionally related ones. The microarray showed 148 genes to be significantly altered between the four groups. In the preeclamptic group compared to notch only, there was increased expression of genes related to chemotaxis and the NF-kappa B pathway and decreased expression of genes related to antigen processing and presentation, such as human leukocyte antigen B. Our results indicate that progression of pre-eclampsia from notching may involve the development of inflammation. Increased expression of antigen-presenting genes, as seen in the notch-only placenta, may prevent this inflammatory response and, thereby, protect the patient from developing pre-eclampsia. PMID:21490790

  8. Minimal asbestos exposure in germline BAP1 heterozygous mice is associated with deregulated inflammatory response and increased risk of mesothelioma.

    PubMed

    Napolitano, A; Pellegrini, L; Dey, A; Larson, D; Tanji, M; Flores, E G; Kendrick, B; Lapid, D; Powers, A; Kanodia, S; Pastorino, S; Pass, H I; Dixit, V; Yang, H; Carbone, M

    2016-04-14

    Germline BAP1 mutations predispose to several cancers, in particular malignant mesothelioma. Mesothelioma is an aggressive malignancy generally associated with professional exposure to asbestos. However, to date, we found that none of the mesothelioma patients carrying germline BAP1 mutations were professionally exposed to asbestos. We hypothesized that germline BAP1 mutations might influence the asbestos-induced inflammatory response that is linked to asbestos carcinogenesis, thereby increasing the risk of developing mesothelioma after minimal exposure. Using a BAP1(+/-) mouse model, we found that, compared with their wild-type littermates, BAP1(+/-) mice exposed to low-dose asbestos fibers showed significant alterations of the peritoneal inflammatory response, including significantly higher levels of pro-tumorigenic alternatively polarized M2 macrophages, and lower levels of several chemokines and cytokines. Consistent with these data, BAP1(+/-) mice had a significantly higher incidence of mesothelioma after exposure to very low doses of asbestos, doses that rarely induced mesothelioma in wild-type mice. Our findings suggest that minimal exposure to carcinogenic fibers may significantly increase the risk of malignant mesothelioma in genetically predisposed individuals carrying germline BAP1 mutations, possibly via alterations of the inflammatory response. PMID:26119930

  9. Danaparoid sodium attenuates the increase in inflammatory cytokines and preserves organ function in endotoxemic rats

    PubMed Central

    Iba, Toshiaki; Miyasho, Taku

    2008-01-01

    Introduction Anticoagulant therapy attracts much attention for the treatment of severe sepsis since recent studies have revealed that some anticoagulants have the ability to regulate the inflammatory response. The purpose of this study was to examine whether danaparoid sodium (DA) is effective for the treatment of organ dysfunction in sepsis. Methods Sixty-four Wistar rats were intravenously injected with 5.0 mg/kg of lipopolysaccharide (LPS) and then divided into two groups: the DA group and the control group (n = 32 each). The DA group was injected intravenously with 400 U/kg of DA immediately after LPS injection, whereas the control group received saline. Blood samples were drawn at 1, 6, 12, and 24 hours after LPS injection, and organ damage markers and coagulation markers were measured. In the other series, 10 rats treated with LPS were divided into DA and control groups (n = 5 each). Blood samples were collected at 1, 3, and 6 hours after LPS injection and served for the cytokine measurements. Results The elevation of the organ damage markers, such as alanine aminotransferase and lactate dehydrogenase, was significantly suppressed in the DA group. Coagulation markers, such as AT activity and fibrinogen levels, were maintained better in the DA group at 6 hours. The elevation of proinflammatory cytokines such as tumor necrosis factor-alpha, interleukin (IL)-1, and IL-6 was significantly suppressed in the DA group. On the other hand, there was no significant difference in anti-inflammatory cytokines such as IL-4 and IL-10. Conclusion DA preserves the organ dysfunction in LPS-challenged rats. Although the mechanism is not fully elucidated, not only the improvement of coagulation disorder but also the regulation of circulating levels of proinflammatory cytokines may play a role in the mechanism. PMID:18601748

  10. Expression of Inflammatory and Cell Death Program Genes and Comet DNA Damage Assay Induced by Escherichia coli in Layer Hens

    PubMed Central

    Mehaisen, Gamal M. K.; Eshak, Mariam G.; El Sabry, M. I.; Abass, Ahmed O.

    2016-01-01

    Modern methods of industrial poultry and egg production systems involve stressful practices that stimulate Escherichia coli (E. coli) activity causing endotoxic shock. This investigation was conducted to evaluate the expression of pro-inflammatory cytokines and cell death program genes and DNA damage induced by E. coli in the brain and liver tissues of laying hens. A total of two hundred and ten H&N brown layer hens with 20 week age, were used in this research. First, preliminary experiments were designed (60 hens in total) to establish the optimal exposure dose of E. coli and to determine the nearest time of notable response to be used in the remainder studies of this research. At 35-wk of age, 150 hens were randomly assigned into 2 groups with 3 replicates of 25 birds each; the first group was injected in the brachial wing vein with 107 E. coli colony/hen, while the second group was injected with saline and served as a control. The body temperature and plasma corticosterone concentration were measured 3 hr after injection. Specimens of liver and brain were obtained from each group and the gene expression of p38 mitogen-activated protein kinase, interlukin-1β (IL-1β), tumor necrosis factor alpha (TNF-α), Bax, and caspase-3 genes were measured by quantitative real-time PCR. DNA damage in the brain and liver tissues were also measured by comet assay. Hens treated with E. coli showed significant (P<0.05) increase of body temperature and plasma corticosterone (42.6°C and 14.5 ng/ml, respectively) compared to the control group (41.1°C and 5.5 ng/ml, respectively). Additional remarkable over-inflammation gene expression of p38, IL-1β and TNF-α.genes were also detected in the brain (2.2-fold, 2.0-fold and 3.3-fold, respectively) and the liver (2.1-fold, 1.9-fold and 3.0-fold, respectively) tissues of the infected chickens. It is also important to note that hens injected with E. coli showed an increase in DNA damage in the brain and liver cells (P<0.05). These

  11. A polymorphism of the CC16 gene is associated with an increased risk of asthma.

    PubMed Central

    Laing, I A; Goldblatt, J; Eber, E; Hayden, C M; Rye, P J; Gibson, N A; Palmer, L J; Burton, P R; Le Souëf, P N

    1998-01-01

    Several quantitative traits associated with the asthma phenotype have been linked to markers on chromosome 11q13, although the gene responsible has yet to be well established. The gene for Clara cell secretory protein (CC16) is an ideal candidate for involvement in an inherited predisposition to asthma because of its chromosomal location, the role of the CC16 protein in controlling airway inflammation, and differences in levels of the protein between asthmatics and healthy controls. All three CC16 exons were screened in an unselected population of 266 subjects from 76 families and a cohort of 52 severely asthmatic children. A combination of single strand conformational polymorphism (SSCP) analysis, heteroduplex analysis, DNA sequencing, and restriction digestion was used. Mutation detection methods identified an adenine to guanine substitution in the CC16 gene at position 38 (A38G) downstream from the transcription initiation site within the non-coding region of exon 1. In the unselected population, 43.6% were homozygous for the polymorphic sequence (38GG) and 46.2% were heterozygous (38AG). All the asthmatic and unaffected children from both populations were selected for an unmatched case control analysis consisting of 67 asthmatic and 46 unaffected subjects. Those homozygous for the published sequence (38AA) had a 6.9-fold increased risk of developing asthma (p=0.049) and heterozygotes (38AG) a 4.2-fold increased risk (p=0.028). Modelling of genotype as a continuous covariate indicated evidence of a significant linear trend across the three genotypes (odds ratio=2.84 per unit increase in genotype code, p=0.018). These associations were independent of age, gender, and tobacco smoke exposure. These data and the known anti-inflammatory role of CC16 in the respiratory tract suggest that alteration to the gene at position 38 may contribute to asthma. Images PMID:9643286

  12. Folate transport gene inactivation in mice increases sensitivity to colon carcinogenesis.

    PubMed

    Ma, David W L; Finnell, Richard H; Davidson, Laurie A; Callaway, Evelyn S; Spiegelstein, Ofer; Piedrahita, Jorge A; Salbaum, J Michael; Kappen, Claudia; Weeks, Brad R; James, Jill; Bozinov, Daniel; Lupton, Joanne R; Chapkin, Robert S

    2005-02-01

    Low dietary folate intake is associated with an increased risk for colon cancer; however, relevant genetic animal models are lacking. We therefore investigated the effect of targeted ablation of two folate transport genes, folate binding protein 1 (Folbp1) and reduced folate carrier 1 (RFC1), on folate homeostasis to elucidate the molecular mechanisms of folate action on colonocyte cell proliferation, gene expression, and colon carcinogenesis. Targeted deletion of Folbp1 (Folbp1(+/-) and Folbp1(-/-)) significantly reduced (P < 0.05) colonic Folbp1 mRNA, colonic mucosa, and plasma folate concentration. In contrast, subtle changes in folate homeostasis resulted from targeted deletion of RFC1 (RFC1(+/-)). These animals had reduced (P < 0.05) colonic RFC1 mRNA and exhibited a 2-fold reduction in the plasma S-adenosylmethionine/S-adenosylhomocysteine. Folbp1(+/-) and Folbp1(-/-) mice had larger crypts expressed as greater (P < 0.05) numbers of cells per crypt column relative to Folbp1(+/+) mice. Colonic cell proliferation was increased in RFC1(+/-) mice relative to RFC1(+/+) mice. Microarray analysis of colonic mucosa showed distinct changes in gene expression specific to Folbp1 or RFC1 ablation. The effect of folate transporter gene ablation on colon carcinogenesis was evaluated 8 and 38 weeks post-azoxymethane injection in wild-type and heterozygous mice. Relative to RFC1(+/+) mice, RFC1(+/-) mice developed increased (P < 0.05) numbers of aberrant crypt foci at 8 weeks. At 38 weeks, RFC1(+/-) mice developed local inflammatory lesions with or without epithelial dysplasia as well as adenocarcinomas, which were larger relative to RFC1(+/+) mice. In contrast, Folbp1(+/-) mice developed 4-fold (P < 0.05) more lesions relative to Folbp1(+/+) mice. In conclusion, Folbp1 and RFC1 genetically modified mice exhibit distinct changes in colonocyte phenotype and therefore have utility as models to examine the role of folate homeostasis in colon cancer development. PMID:15705887

  13. Resuscitation with Valproic Acid Alters Inflammatory Genes in a Porcine Model of Combined Traumatic Brain Injury and Hemorrhagic Shock.

    PubMed

    Bambakidis, Ted; Dekker, Simone E; Sillesen, Martin; Liu, Baoling; Johnson, Craig N; Jin, Guang; de Vries, Helga E; Li, Yongqing; Alam, Hasan B

    2016-08-15

    Traumatic brain injury and hemorrhagic shock (TBI+HS) elicit a complex inflammatory response that contributes to secondary brain injury. There is currently no proven pharmacologic treatment for TBI+HS, but modulation of the epigenome has been shown to be a promising strategy. The aim of this study was to investigate whether valproic acid (VPA), a histone deacetylase inhibitor, modulates the expression of cerebral inflammatory gene profiles in a large animal model of TBI+HS. Ten Yorkshire swine were subjected to computer-controlled TBI+HS (40% blood volume). After 2 h of shock, animals were resuscitated with Hextend (HEX) or HEX+VPA (300 mg/kg, n = 5/group). Six hours after resuscitation, brains were harvested, RNA was isolated, and gene expression profiles were measured using a porcine microarray. Ingenuity Pathway Analysis® (IPA), gene ontology (GO), Parametric Gene Set Enrichment Analysis (PGSEA), and DAVID (Database for Annotation, Visualization, and Integrated Discovery) were used for pathway analysis. Key microarray findings were verified using real-time polymerase chain reaction (PCR). IPA analysis revealed that VPA significantly down-regulated the complement system (p < 0.001), natural killer cell communication (p < 0.001), and dendritic cell maturation (p < 0.001). DAVID analysis indicated that a cluster of inflammatory pathways held the highest rank and gene enrichment score. Real-time PCR data confirmed that VPA significantly down-expressed genes that ultimately regulate nuclear factor-kB (NF-kB)-mediated production of cytokines, such as TYROBP, TREM2, CCR1, and IL-1β. This high-throughput analysis of cerebral gene expression shows that addition of VPA to the resuscitation protocol significantly modulates the expression of inflammatory pathways in a clinically realistic model of TBI+HS. PMID:26905959

  14. MGMT-B gene promoter hypermethylation in patients with inflammatory bowel disease - a novel finding.

    PubMed

    Mokarram, Pooneh; Kavousipour, Soudabeh; Sarabi, Mostafa Moradi; Mehrabani, Golnosh; Fahmidehkar, Mohammad Ali; Shamsdin, Seyedeh Azra; Alipour, Abbas; Naini, Mahvash Alizade

    2015-01-01

    Inflammatory bowel disease (IBD) is a disease strongly associated with colorectal cancer (CRC) as a well-known precancerous condition. Alterations in DNA methylation and mutation in K-ras are believed to play an early etiopathogenic role in CRC and may also an initiating event through deregulation of molecular signaling. Epigenetic silencing of APC and SFRP2 in the WNT signaling pathway may also be involved in IBD-CRC. The role of aberrant DNA methylation in precancerous state of colorectal cancer (CRC) is under intensive investigation worldwide. The aim of this study was to investigate the status of promoter methylation of MGMT-B, APC1A and SFRP2 genes, in inflamed and normal colon tissues of patients with IBD compared with control normal tissues. A total of 52 IBD tissues as well as corresponding normal tissues and 30 samples from healthy participants were obtained. We determined promoter methylation status of MGMT-B, SFRP2 and APC1A genes by chemical treatment with sodium bisulfite and subsequent MSP. The most frequently methylated locus was MGMT-B (71%; 34 of 48), followed by SFRP2 (66.6 %; 32 of 48), and APC1A (43.7%; 21 of 48). Our study demonstrated for the first time that hypermethylation of the MGMT-B and the SFRP2 gene promoter regions might be involved in IBD development. Methylation of MGMT-B and SFRP2 in IBD patients may provide a method for early detection of IBD-associated neoplasia. PMID:25773792

  15. Intake of red wine in different meals modulates oxidized LDL level, oxidative and inflammatory gene expression in healthy people: a randomized crossover trial.

    PubMed

    Di Renzo, Laura; Carraro, Alberto; Valente, Roberto; Iacopino, Leonardo; Colica, Carmen; De Lorenzo, Antonino

    2014-01-01

    Several studies have found that adherence to the Mediterranean Diet, including consumption of red wine, is associated with beneficial effects on oxidative and inflammatory conditions. We evaluate the outcome of consumption of a McDonald's Meal (McD) and a Mediterranean Meal (MM), with and without the additive effect of red wine, in order to ascertain whether the addition of the latter has a positive impact on oxidized (ox-) LDL and on expression of oxidative and inflammatory genes. A total of 24 subjects were analyzed for ox-LDL, CAT, GPX1, SOD2, SIRT2, and CCL5 gene expression levels, before and after consumption of the 4 different meal combinations with washout intervals between each meal. When red wine is associated with McD or MM, values of ox-LDL are lowered (P < 0.05) and expression of antioxidant genes is increased, while CCL5 expression is decreased (P < 0.05). SIRT2 expression after MM and fasting with red wine is significantly correlated with downregulation of CCL5 and upregulation of CAT (P < 0.001). GPX1 increased significantly in the comparison between baseline and all conditions with red wine. We highlighted for the first time the positive effect of red wine intake combined with different but widely consumed meal types on ox-LDL and gene expression. Trial Registration. This trial is registered with ClinicalTrials.gov NCT01890070. PMID:24876915

  16. Intake of Red Wine in Different Meals Modulates Oxidized LDL Level, Oxidative and Inflammatory Gene Expression in Healthy People: A Randomized Crossover Trial

    PubMed Central

    Di Renzo, Laura; Valente, Roberto; Colica, Carmen

    2014-01-01

    Several studies have found that adherence to the Mediterranean Diet, including consumption of red wine, is associated with beneficial effects on oxidative and inflammatory conditions. We evaluate the outcome of consumption of a McDonald's Meal (McD) and a Mediterranean Meal (MM), with and without the additive effect of red wine, in order to ascertain whether the addition of the latter has a positive impact on oxidized (ox-) LDL and on expression of oxidative and inflammatory genes. A total of 24 subjects were analyzed for ox-LDL, CAT, GPX1, SOD2, SIRT2, and CCL5 gene expression levels, before and after consumption of the 4 different meal combinations with washout intervals between each meal. When red wine is associated with McD or MM, values of ox-LDL are lowered (P < 0.05) and expression of antioxidant genes is increased, while CCL5 expression is decreased (P < 0.05). SIRT2 expression after MM and fasting with red wine is significantly correlated with downregulation of CCL5 and upregulation of CAT (P < 0.001). GPX1 increased significantly in the comparison between baseline and all conditions with red wine. We highlighted for the first time the positive effect of red wine intake combined with different but widely consumed meal types on ox-LDL and gene expression. Trial Registration. This trial is registered with ClinicalTrials.gov NCT01890070. PMID:24876915

  17. HPV16 E2 enhances the expression of NF-κB and STAT3 target genes and potentiates NF-κB activation by inflammatory mediators.

    PubMed

    Prabhavathy, Devan; Vijayalakshmi, Ramprasath; Kanchana, M Padhmanaban; Karunagaran, Devarajan

    2014-01-01

    HPV-transformed cells exhibit activation of NF-κB and STAT3 (mediators of inflammation), but very little is known about their regulation under inflammatory conditions before HPV integration. This study reports that cervical tissues with stromal inflammation and intact HPV16 E2 gene show increased expression of target genes of NF-κB and/or STAT3 which can regulate cell survival (cyclin D1, c-Myc, survivin and Bcl2) and inflammatory responses (TNF-α, IL-1β, IL-6, IL-8 and CCR2). Increased expression of RelA, p-IκBα, STAT3, p-STAT3 (Ser727), Pin1 (peptidyl-prolyl cis/trans isomerase) and MCM2 in the squamous epithelia of cervices with stromal inflammation supports early activation of NF-κB-STAT3. Furthermore, HPV16 E2 potentiated NF-κB activation induced by inflammatory mediators, IL-1β and SDF-1α, in HEK293 cells. These results reveal a novel role for E2 in regulating the activities of NF-κB and STAT3 that may have implications in carcinogenic progression of HPV16-infected cells under conditions of stromal inflammation. PMID:25460081

  18. Wnt11 Gene Therapy with Adeno-associated Virus 9 Improves Recovery from Myocardial Infarction by Modulating the Inflammatory Response

    PubMed Central

    Morishita, Yoshihiro; Kobayashi, Koichi; Klyachko, Ekaterina; Jujo, Kentaro; Maeda, Kengo; Losordo, Douglas W.; Murohara, Toyoaki

    2016-01-01

    Acute myocardial infarction induces activation of the acute phase response and infiltration of leukocytes to the infarcted area. Moreover, myocardium that is remote from ischemic area also becomes inflamed. Inflammatory reaction clears dead cells and matrix debris, while prolongation or expansion of the inflammatory response results in dysfunction following myocardial infarction. Wnt glycolipoproteins are best characterized as regulators of embryonic development. Recently several reports suggest that they also contribute to the inflammatory response in adult animals. However, the effects of Wnt proteins on myocardial infarction have not been explored. Here we show that Wnt11 expression leads to significant improvements of survival and cardiac function by suppressing infiltration of multiple kinds of inflammatory cells in infarcted heart. Wnt11 protein suppresses gene expression of inflammatory cytokines through the modulation of NF-κB in vitro. These results reveal a novel function of Wnt11 in the regulation of inflammatory response and provide a rationale for the use of Wnt11 to manipulate human diseases that are mediated by inflammation. PMID:26882996

  19. Umbilical cord gene expression reveals the molecular architecture of the fetal inflammatory response in extremely preterm newborns

    PubMed Central

    Costa, Daniel; Castelo, Robert

    2016-01-01

    Background: The fetal inflammatory response (FIR) in placental membranes to an intrauterine infection often precedes premature birth raising neonatal mortality and morbidity. However, the precise molecular events behind FIR still remain largely unknown, and little has been investigated at gene expression level. Methods: We collected publicly available microarray expression data profiling umbilical cord (UC) tissue derived from the cohort of extremely low gestational age newborns (ELGANs) and interrogate them for differentially expressed (DE) genes between FIR and non–FIR-affected ELGANs. Results: We found a broad and complex FIR UC gene expression signature, changing up to 19% (3,896/20,155) of all human genes at 1% false discovery rate. Significant changes of a minimum 50% magnitude (1,097/3,896) affect the upregulation of many inflammatory pathways and molecules, such as cytokines, toll-like receptors, and calgranulins. Remarkably, they also include the downregulation of neurodevelopmental pathways and genes, such as Fragile-X mental retardation 1 (FMR1), contactin 1 (CNTN1), and adenomatous polyposis coli (APC). Conclusion: The FIR expression signature in UC tissue contains molecular clues about signaling pathways that trigger FIR, and it is consistent with an acute inflammatory response by fetal innate and adaptive immune systems, which participate in the pathogenesis of neonatal brain damage. PMID:26539667

  20. Venezuelan equine encephalitis virus infection causes modulation of inflammatory and immune response genes in mouse brain

    PubMed Central

    Sharma, Anuj; Bhattacharya, Bhaskar; Puri, Raj K; Maheshwari, Radha K

    2008-01-01

    Background Neurovirulent Venezuelan equine encephalitis virus (VEEV) causes lethal encephalitis in equines and is transmitted to humans by mosquitoes. VEEV is highly infectious when transmitted by aerosol and has been developed as a bio-warfare agent, making it an important pathogen to study from a military and civilian standpoint. Molecular mechanisms of VEE pathogenesis are poorly understood. To study these, the gene expression profile of VEEV infected mouse brains was investigated. Changes in gene expression were correlated with histological changes in the brain. In addition, a molecular framework of changes in gene expression associated with progression of the disease was studied. Results Our results demonstrate that genes related to important immune pathways such as antigen presentation, inflammation, apoptosis and response to virus (Cxcl10, CxCl11, Ccl5, Ifr7, Ifi27 Oas1b, Fcerg1,Mif, Clusterin and MHC class II) were upregulated as a result of virus infection. The number of over-expressed genes (>1.5-fold level) increased as the disease progressed (from 197, 296, 400, to 1086 at 24, 48, 72 and 96 hours post infection, respectively). Conclusion Identification of differentially expressed genes in brain will help in the understanding of VEEV-induced pathogenesis and selection of biomarkers for diagnosis and targeted therapy of VEEV-induced neurodegeneration. PMID:18558011

  1. Increase developmental plasticity of human keratinocytes with gene suppression.

    PubMed

    Li, Shengwen Calvin; Jin, Yangsun; Loudon, William G; Song, Yahui; Ma, Zhiwei; Weiner, Leslie P; Zhong, Jiang F

    2011-08-01

    Recent evidence indicates that p53 suppression increased the efficiency of induced pluripotent stem cell (iPSC) generation. This occurred even with the enforced expression of as few as two canonical transcription factors, Oct4 and Sox2. In this study, primary human keratinocytes were successfully induced into a stage of plasticity by transient inactivation of p53, without enforced expression of any of the transcription factors previously used in iPSC generation. These cells were later redifferentiated into neural lineages. The gene suppression plastic cells were morphologically indistinguishable from human ES cells. Gene suppression plastic cells were alkaline phosphatase-positive, had normal karyotypes, and expressed p53. Together with the accumulating evidence of similarities and overlapping mechanisms between iPSC generation and cancer formation, this finding sheds light on the emerging picture of p53 sitting at the crossroads between two intricate cellular potentials: stem cell vs. cancer cell generation. This finding further supports the crucial role played by p53 in cellular reprogramming and suggests an alternative method to switch the lineage identity of human cells. This reported method offers the potential for directed lineage switching with the goal of generating autologous cell populations for novel clinical applications for neurodegenerative diseases. PMID:21768375

  2. Polymorphisms in the interleukin-10 gene cluster are possibly involved in the increased risk for major depressive disorder

    PubMed Central

    Traks, Tanel; Koido, Kati; Eller, Triin; Maron, Eduard; Kingo, Külli; Vasar, Veiko; Vasar, Eero; Kõks, Sulev

    2008-01-01

    Background Innate immune inflammatory response is suggested to have a role in the pathogenesis of major depressive disorder (MDD). Interleukin (IL)-10 family cytokines IL-10, IL-19, IL-20, and IL-24 are all implicated in the inflammatory processes and polymorphisms in respective genes have been associated with various immunopathological conditions. This study was carried out to investigate whether single-nucleotide polymorphisms (SNPs) in these genes are also associated with MDD. Methods Case-control association study was performed with seven SNPs from the IL10 gene cluster. 153 patients with MDD and 277 healthy control individuals were recruited. Results None of the selected SNPs were individually associated with MDD. The linkage disequilibrium (LD) analysis indicated the existence of two recombination sites in the IL10 gene cluster, thus confirming the formerly established LD pattern of this genomic region. This also created two haplotype blocks, both consisting of three SNPs. Additionally, the haplotype analysis detected a significantly higher frequency of block 2 (IL20 and IL24 genes) haplotype TGC in the patients group compared to healthy control individuals (P = 0.0097). Conclusion Our study established increased risk for MDD related to the IL20 and IL24 haplotype and suggests that cytokines may contribute to the pathogenesis of MDD. Since none of the block 2 SNPs were individually associated with MDD, it is possible that other polymorphisms linked to them contribute to the disease susceptibility. Future studies are needed to confirm the results and to find the possible functional explanation. PMID:19087313

  3. Increasing Patient Activation Could Improve Outcomes for Patients with Inflammatory Bowel Disease.

    PubMed

    Shah, Shawn L; Siegel, Corey A

    2015-12-01

    Inflammatory bowel disease (IBD) is a complex disease process that often requires the integration of skills from various health care providers to adequately meet the needs of patients with IBD. The medical and surgical treatment options for IBD have become more complicated and are frequently a source of angst for both the patient and provider. However, it has become more important than ever to engage patients in navigating the treatment algorithm. Although novel in the IBD world, the concept of patients' becoming more active and effective managers of their care has been well studied in other disease processes such as diabetes mellitus and mental illness. This idea of patient activation refers to a patient understanding his or her role in the care process and having the skill sets and self-reliance necessary to manage his or her own health care. Over the past decade, evidence supporting the role of patient activation in chronic illness has grown, revealing improved health outcomes, enhanced patient experiences, and lower overall costs. Patient activation can be measured, and interventions have been shown to improve levels of activation over time and influence outcomes. A focus on patient activation is very appropriate for patients with IBD because this may potentially serve as a tool for IBD providers to not only improve patient outcomes and experience but also reduce health care costs. PMID:26422517

  4. Dissecting Inflammatory Complications in Critically Injured Patients by Within-Patient Gene Expression Changes: A Longitudinal Clinical Genomics Study

    PubMed Central

    Leek, Jeffrey T.; Maier, Ronald V.; Tompkins, Ronald G.; Storey, John D.

    2011-01-01

    Background Trauma is the number one killer of individuals 1–44 y of age in the United States. The prognosis and treatment of inflammatory complications in critically injured patients continue to be challenging, with a history of failed clinical trials and poorly understood biology. New approaches are therefore needed to improve our ability to diagnose and treat this clinical condition. Methods and Findings We conducted a large-scale study on 168 blunt-force trauma patients over 28 d, measuring ∼400 clinical variables and longitudinally profiling leukocyte gene expression with ∼800 microarrays. Marshall MOF (multiple organ failure) clinical score trajectories were first utilized to organize the patients into five categories of increasingly poor outcomes. We then developed an analysis framework modeling early within-patient expression changes to produce a robust characterization of the genomic response to trauma. A quarter of the genome shows early expression changes associated with longer-term post-injury complications, captured by at least five dynamic co-expression modules of functionally related genes. In particular, early down-regulation of MHC-class II genes and up-regulation of p38 MAPK signaling pathway were found to strongly associate with longer-term post-injury complications, providing discrimination among patient outcomes from expression changes during the 40–80 h window post-injury. Conclusions The genomic characterization provided here substantially expands the scope by which the molecular response to trauma may be characterized and understood. These results may be instrumental in furthering our understanding of the disease process and identifying potential targets for therapeutic intervention. Additionally, the quantitative approach we have introduced is potentially applicable to future genomics studies of rapidly progressing clinical conditions. Trial Registration ClinicalTrials.gov NCT00257231 Please see later in the article for the Editors

  5. Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer

    PubMed Central

    Bernardes de Jesus, Bruno; Vera, Elsa; Schneeberger, Kerstin; Tejera, Agueda M; Ayuso, Eduard; Bosch, Fatima; Blasco, Maria A

    2012-01-01

    A major goal in aging research is to improve health during aging. In the case of mice, genetic manipulations that shorten or lengthen telomeres result, respectively, in decreased or increased longevity. Based on this, we have tested the effects of a telomerase gene therapy in adult (1 year of age) and old (2 years of age) mice. Treatment of 1- and 2-year old mice with an adeno associated virus (AAV) of wide tropism expressing mouse TERT had remarkable beneficial effects on health and fitness, including insulin sensitivity, osteoporosis, neuromuscular coordination and several molecular biomarkers of aging. Importantly, telomerase-treated mice did not develop more cancer than their control littermates, suggesting that the known tumorigenic activity of telomerase is severely decreased when expressed in adult or old organisms using AAV vectors. Finally, telomerase-treated mice, both at 1-year and at 2-year of age, had an increase in median lifespan of 24 and 13%, respectively. These beneficial effects were not observed with a catalytically inactive TERT, demonstrating that they require telomerase activity. Together, these results constitute a proof-of-principle of a role of TERT in delaying physiological aging and extending longevity in normal mice through a telomerase-based treatment, and demonstrate the feasibility of anti-aging gene therapy. PMID:22585399

  6. Cutaneous antigen priming via gene gun leads to skin-selective Th2 immune-inflammatory responses.

    PubMed

    Alvarez, David; Harder, Greg; Fattouh, Ramzi; Sun, Jiangfeng; Goncharova, Susanna; Stämpfli, Martin R; Coyle, Anthony J; Bramson, Jonathan L; Jordana, Manel

    2005-02-01

    It is becoming increasingly evident that the compartmentalization of immune responses is governed, in part, by tissue-selective homing instructions imprinted during T cell differentiation. In the context of allergic diseases, the fact that "disease" primarily manifests in particular tissue sites, despite pervasive allergen exposure, supports this notion. However, whether the original site of Ag exposure distinctly privileges memory Th2 immune-inflammatory responses to the same site, while sparing remote tissue compartments, remains to be fully investigated. We examined whether skin-targeted delivery of plasmid DNA encoding OVA via gene-gun technology in mice could generate allergic sensitization and give rise to Th2 effector responses in the skin as well as in the lung upon subsequent Ag encounter. Our data show that cutaneous Ag priming induced OVA-specific serum IgE and IgG1, robust Th2-cytokine production, and late-phase cutaneous responses and systemic anaphylactic shock upon skin and systemic Ag recall, respectively. However, repeated respiratory exposure to aerosolized OVA failed to instigate airway inflammatory responses in cutaneous Ag-primed mice, but not in mice initially sensitized to OVA via the respiratory mucosa. Importantly, these contrasting airway memory responses correlated with the occurrence of Th2 differentiation events at anatomically separate sites: indeed cutaneous Ag priming resulted in Ag-specific proliferative responses and Th2 differentiation in skin-, but not thoracic-, draining lymph nodes. These data indicate that Ag exposure to the skin leads to Th2 differentiation within skin-draining lymph nodes and subsequent Th2 immunity that is selectively manifested in the skin. PMID:15661930

  7. Methyl-CpG binding protein 2 regulates microglia and macrophage gene expression in response to inflammatory stimuli

    PubMed Central

    Cronk, James C.; Derecki, Noël C.; Ji, Emily; Xu, Yang; Lampano, Aaron E.; Smirnov, Igor; Baker, Wendy; Norris, Geoffrey T.; Marin, Ioana; Coddington, Nathan; Wolf, Yochai; Turner, Stephen D.; Aderem, Alan; Klibanov, Alexander L.; Harris, Tajie H.; Jung, Steffen; Litvak, Vladimir; Kipnis, Jonathan

    2015-01-01

    Summary Mutations in MECP2, encoding the epigenetic regulator methyl-CpG-binding protein 2, are the predominant cause of Rett syndrome, a disease characterized by both neurological symptoms and systemic abnormalities. Microglial dysfunction is thought to contribute to disease pathogenesis, and here we found microglia become activated and subsequently lost with disease progression in Mecp2-null mice. Mecp2 was found to be expressed in peripheral macrophage and monocyte populations, several of which also became depleted in Mecp2-null mice. RNA-seq revealed increased expression of glucocorticoid- and hypoxia-induced transcripts in Mecp2-null microglia and peritoneal macrophages. Furthermore, Mecp2 was found to regulate inflammatory gene transcription in response to TNF stimulation. Postnatal re-expression of Mecp2 using Cx3cr1creER increased the lifespan of otherwise Mecp2-null mice. These data suggest Mecp2 regulates microglia and macrophage responsiveness to environmental stimuli to promote homeostasis. Dysfunction of tissue-resident macrophages may contribute to the systemic pathologies observed in Rett syndrome. PMID:25902482

  8. Comprehensive mutation screening for 10 genes in Chinese patients suffering very early onset inflammatory bowel disease

    PubMed Central

    Xiao, Yuan; Wang, Xin-Qiong; Yu, Yi; Guo, Yan; Xu, Xu; Gong, Ling; Zhou, Tong; Li, Xiao-Qin; Xu, Chun-Di

    2016-01-01

    AIM: To perform sequencing analysis in patients with very early-onset inflammatory bowel disease (VEO-IBD) to determine the genetic basis for VEO-IBD in Chinese pediatric patients. METHODS: A total of 13 Chinese pediatric patients with VEO-IBD were diagnosed from May 2012 and August 2014. The relevant clinical characteristics of these patients were analyzed. Then DNA in the peripheral blood from patients was extracted. Next generation sequencing (NGS) based on an Illumina-Miseq platform was used to analyze the exons in the coding regions of 10 candidate genes: IL-10, IL-10RA, IL-10RB, NOD2, FUT2, IL23R, GPR35, GPR65, TNFSF15, and ADAM30. The Sanger sequencing was used to verify the variations detected in NGS. RESULTS: Out of the 13 pediatric patients, ten were diagnosed with Crohn’s disease, and three diagnosed with ulcerative colitis. Mutations in IL-10RA and IL-10RB were detected in five patients. There were four patients who had single nucleotide polymorphisms associated with IBD. Two patients had IL-10RA and FUT2 polymorphisms, and two patients had IL-10RB and FUT2 polymorphisms. Gene variations were not found in the rest four patients. Children with mutations had lower percentile body weight (1.0% vs 27.5%, P = 0.002) and hemoglobin (87.4 g/L vs 108.5 g/L, P = 0.040) when compared with children without mutations. Although the age of onset was earlier, height was shorter, and the response to treatment was poorer in the mutation group, there was no significant difference in these factors between groups. CONCLUSION: IL-10RA and IL-10RB mutations are common in Chinese children with VEO-IBD. Patients with mutations have an earlier disease onset, lower body weight and hemoglobin, and poorer prognosis. PMID:27350736

  9. Expression and regulation of the macrophage inflammatory protein-1 alpha gene by nicotine in rat alveolar macrophages.

    PubMed

    Chong, Inn-Wen; Lin, Shiu-Ru; Hwang, Jhi-Jhu; Huang, Ming-Shyan; Wang, Tung-Heng; Hung, Jen-Yu; Paulauskis, Joseph D

    2002-01-01

    Cigarette smoking causes inflammation mainly confined to the airway and lung. Nicotine is one of the primary constituents in cigarette smoke. Alveolar macrophages apparently play a pivotal role in mediating pulmonary inflammation via the production of chemokines. Macrophage inflammatory protein-1 alpha (MIP-1 alpha), a member of CC chemokines, has been shown to contribute to monocyte/macrophage and neutrophil chemotaxis and activation. Our previous work demonstrated that MIP-1 alpha mRNA expression in macrophages is induced by a variety of stimuli. In the present study, we further investigate whether nicotine can regulate the gene expression of MIP-1 alpha in macrophages and determine the mechanism leading to increased expression. A rat alveolar macrophage (RAM) cell line, NR8383, was treated with nicotine at a dose of 3.1, 31, 310 microM, or 3.1 mM. Northern blot analysis showed that the induction of MIP-1 alpha mRNA expression was dose-dependent. To define the time course of the inflammatory response, RAM cells were exposed to 31 microM nicotine, MIP-1 alpha mRNA was induced as early as 1 h after treatment, was maximally expressed at 4 and 6 hours, and reduced by 8 hours. Western blot analysis demonstrated a single band with an estimated molecular weight of 10 kD for MIP-1 alpha which was induced after nicotine treatment, suggesting that expression of MIP-1 alpha mRNA could reflect in protein synthesis. In addition. the increase in MIP-1 alpha mRNA expression induced by nicotine was attenuated by co-treatment with the antioxidant N-acetylcysteine (NAC), at doses of 10 and 20 mM, suggesting that the induction of MIP-1 alpha mRNA is mediated via the generation of reactive oxygen species (ROS). To further investigate transcriptional regulation of the MIP-1 alpha gene expression, RAM cells were exposed to nicotine. MIP-1 alpha mRNA levels were significantly increased in nuclear RNA preparations, indicating that transcriptional activation is involved in increased

  10. Bone Morphogenetic Protein Receptor Type II Deficiency and Increased Inflammatory Cytokine Production. A Gateway to Pulmonary Arterial Hypertension

    PubMed Central

    Soon, Elaine; Crosby, Alexi; Southwood, Mark; Yang, Peiran; Tajsic, Tamara; Toshner, Mark; Appleby, Sarah; Shanahan, Catherine M.; Bloch, Kenneth D.; Pepke-Zaba, Joanna; Upton, Paul

    2015-01-01

    Rationale: Mutations in bone morphogenetic protein receptor type II (BMPR-II) underlie most cases of heritable pulmonary arterial hypertension (PAH). However, disease penetrance is only 20–30%, suggesting a requirement for additional triggers. Inflammation is emerging as a key disease-related factor in PAH, but to date there is no clear mechanism linking BMPR-II deficiency and inflammation. Objectives: To establish a direct link between BMPR-II deficiency, a consequentially heightened inflammatory response, and development of PAH. Methods: We used pulmonary artery smooth muscle cells from Bmpr2+/− mice and patients with BMPR2 mutations and compared them with wild-type controls. For the in vivo model, we used mice heterozygous for a null allele in Bmpr2 (Bmpr2+/−) and wild-type littermates. Measurements and Main Results: Acute exposure to LPS increased lung and circulating IL-6 and KC (IL-8 analog) levels in Bmpr2+/− mice to a greater extent than in wild-type controls. Similarly, pulmonary artery smooth muscle cells from Bmpr2+/− mice and patients with BMPR2 mutations produced higher levels of IL-6 and KC/IL-8 after lipopolysaccharide stimulation compared with controls. BMPR-II deficiency in mouse and human pulmonary artery smooth muscle cells was associated with increased phospho-STAT3 and loss of extracellular superoxide dismutase. Chronic lipopolysaccharide administration caused pulmonary hypertension in Bmpr2+/− mice but not in wild-type littermates. Coadministration of tempol, a superoxide dismutase mimetic, ameliorated the exaggerated inflammatory response and prevented development of PAH. Conclusions: This study demonstrates that BMPR-II deficiency promotes an exaggerated inflammatory response in vitro and in vivo, which can instigate development of pulmonary hypertension. PMID:26073741

  11. Reduced inflammatory response and increased microcirculatory disturbances during hepatic ischemia-reperfusion injury in steatotic livers of ob/ob mice

    PubMed Central

    Hasegawa, Tadashi; Ito, Yoshiya; Wijeweera, Jayanthika; Liu, Jie; Malle, Ernst; Farhood, Anwar; McCuskey, Robert S.; Jaeschke, Hartmut

    2016-01-01

    Steatosis is a major risk factor for complications after liver surgery. Since neutrophil cytotoxicity is critical for ischemia-reperfusion injury in normal livers, the aim of the present study was to evaluate whether an exaggerated inflammatory response could cause the increased injury in steatotic livers. In C57Bl/6 mice, 60 min of warm hepatic ischemia triggered a gradual increase in hepatic neutrophil accumulation during reperfusion with peak levels of 100-fold over baseline at 12 h of reperfusion. Neutrophil extravasation and a specific neutrophil-induced oxidant stress (immunostaining for hypochlorous acid-modified epitopes) started at 6 h of reperfusion and peaked at 12–24 h. Ob/ob mice, which had a severe macrovesicular steatosis, suffered significantly higher injury (alanine transaminase activity: 18,000 ± 2,100 U/l; 65% necrosis) compared with lean littermates (alanine transaminase activity: 4,900 ± 720 U/l; 24% necrosis) at 6 h of reperfusion. However, 62% fewer neutrophils accumulated in steatotic livers. This correlated with an attenuated increase in mRNA levels of several proinflammatory genes in ob/ob mice during reperfusion. In contrast, sham-operated ob/ob mice had a 50% reduction in liver blood flow and 35% fewer functional sinusoids compared with lean littermates. These deficiencies in liver blood flow and the microcirculation were further aggravated only in ob/ob mice during reperfusion. The attenuated inflammatory response and reduced neutrophil-induced oxidant stress observed in steatotic livers during reperfusion cannot be responsible for the dramatically increased injury in ob/ob mice. In contrast, the aggravated injury appears to be mediated by ischemic necrosis due to massive impairment of blood and oxygen supply in the steatotic livers. PMID:17307725

  12. Reduced inflammatory response and increased microcirculatory disturbances during hepatic ischemia-reperfusion injury in steatotic livers of ob/ob mice.

    PubMed

    Hasegawa, Tadashi; Ito, Yoshiya; Wijeweera, Jayanthika; Liu, Jie; Malle, Ernst; Farhood, Anwar; McCuskey, Robert S; Jaeschke, Hartmut

    2007-05-01

    Steatosis is a major risk factor for complications after liver surgery. Since neutrophil cytotoxicity is critical for ischemia-reperfusion injury in normal livers, the aim of the present study was to evaluate whether an exaggerated inflammatory response could cause the increased injury in steatotic livers. In C57Bl/6 mice, 60 min of warm hepatic ischemia triggered a gradual increase in hepatic neutrophil accumulation during reperfusion with peak levels of 100-fold over baseline at 12 h of reperfusion. Neutrophil extravasation and a specific neutrophil-induced oxidant stress (immunostaining for hypochlorous acid-modified epitopes) started at 6 h of reperfusion and peaked at 12-24 h. Ob/ob mice, which had a severe macrovesicular steatosis, suffered significantly higher injury (alanine transaminase activity: 18,000 +/- 2,100 U/l; 65% necrosis) compared with lean littermates (alanine transaminase activity: 4,900 +/- 720 U/l; 24% necrosis) at 6 h of reperfusion. However, 62% fewer neutrophils accumulated in steatotic livers. This correlated with an attenuated increase in mRNA levels of several proinflammatory genes in ob/ob mice during reperfusion. In contrast, sham-operated ob/ob mice had a 50% reduction in liver blood flow and 35% fewer functional sinusoids compared with lean littermates. These deficiencies in liver blood flow and the microcirculation were further aggravated only in ob/ob mice during reperfusion. The attenuated inflammatory response and reduced neutrophil-induced oxidant stress observed in steatotic livers during reperfusion cannot be responsible for the dramatically increased injury in ob/ob mice. In contrast, the aggravated injury appears to be mediated by ischemic necrosis due to massive impairment of blood and oxygen supply in the steatotic livers. PMID:17307725

  13. Maternal Supplementation with Oligofructose (10%) during Pregnancy and Lactation Leads to Increased Pro-Inflammatory Status of the 21-D-Old Offspring

    PubMed Central

    Mennitti, Laís Vales; Oyama, Lila Missae; de Oliveira, Juliana Lopez; Hachul, Ana Claudia Losinskas; Santamarina, Aline Boveto; de Santana, Aline Alves; Okuda, Marcos Hiromu; Ribeiro, Eliane Beraldi; Oller do Nascimento, Claudia Maria da Penha; Pisani, Luciana Pellegrini

    2015-01-01

    Previously, we showed that oligofructose (10%) supplementation during pregnancy and lactation increased endotoxemia in 21-d-old pups. The present study evaluated the effect of 10% oligofructose diet supplementation during pregnancy and lactation in the presence or absence of hydrogenated vegetable fat on the pro-inflammatory status of 21-d-old offspring. On the first day of pregnancy, female Wistar rats were divided into the following groups: control diet (C), control diet supplemented with 10% oligofructose (CF), diet enriched with hydrogenated vegetable fat (T) or diet enriched with hydrogenated vegetable fat supplemented with 10% oligofructose (TF). Diets were maintained during pregnancy and lactation. Serum TNF-α (tumor necrosis factor alpha) was assessed using a specific kit. Protein expression was determined by Western Blotting, and the relative mRNA levels were analyzed by RT-PCR (real-time polymerase chain reaction). We observed that 10% oligofructose supplementation during pregnancy and lactation increased offspring’s IL-6R (interleukin-6 receptor) mRNA levels in the liver and RET (retroperitoneal white adipose tissue) and decreased ADIPOR2 (adiponectin receptor 2) and ADIPOR1 (adiponectin receptor 1) gene expression in liver and EDL (extensor digital longus)/ SOL (soleus) muscles of CF group. Additionally, TF group presented with increased serum TNF-α, protein expression of p-NFκBp65 (phosphorylated form of nuclear factor kappa B p65 subunit) in liver and IL-6R mRNA levels in RET. These findings were accompanied by decreased levels of ADIPOR1 mRNA in the EDL and SOL muscles of the TF group. In conclusion, supplementing the dam’s diet with 10% of oligofructose during pregnancy and lactation, independent of hydrogenated vegetable fat addition, contributes to the increased pro-inflammatory status of 21-d-old offspring, possibly through the activation of the TLR4 (toll like receptor 4) pathway. PMID:26147005

  14. ALK-positive inflammatory myofibroblastic tumor harboring ALK gene rearrangement, occurring after allogeneic stem cell transplant in an adult male.

    PubMed

    Vroobel, Katherine; Judson, Ian; Dainton, Melissa; McCormick, Alison; Fisher, Cyril; Thway, Khin

    2016-08-01

    Inflammatory myofibroblastic tumor arose as a defined neoplasm from the disparate group of tumors (both neoplastic and inflammatory) originally described as inflammatory pseudotumors. The morphologic features are well described, and 50-60% of cases are associated with fusions of the anaplastic lymphoma kinase (ALK) gene. We describe an inflammatory myofibroblastic tumor in the lower abdominal wall of an adult male, which occurred 88days after he received an allogeneic stem cell transplant for T-lymphoblastic lymphoma, and which was positive for ALK immunohistochemistry and showed ALK gene rearrangement by fluorescence in situ hybridization. Two other cases are reported in the post-stem cell transplant setting, but both occurred in children and did not have molecular analysis performed. The etiology remains unclear, but may be due to immune dysregulation caused by any combination of prior chemotherapy, radiotherapy and immune suppression. These neoplasms should be considered as a rare consequence of allogeneic stem cell transplantation and referral to a specialist sarcoma center for further management may be required. PMID:27155927

  15. Expression and Sequence Variants of Inflammatory Genes; Effects on Plasma Inflammation Biomarkers Following a 6-Week Supplementation with Fish Oil

    PubMed Central

    Cormier, Hubert; Rudkowska, Iwona; Lemieux, Simone; Couture, Patrick; Vohl, Marie-Claude

    2016-01-01

    (1) Background: A growing body of literature suggest that polymorphisms (SNPs) from inflammation-related genes could possibly play a role in cytokine production and then interact with dietary n-3 fatty acids (FAs) to modulate inflammation. The aim of the present study was to test whether gene expression of selected inflammatory genes was altered following an n-3 PUFA supplementation and to test for gene–diet interactions modulating plasma inflammatory biomarker levels. (2) Methods: 191 subjects completed a 6-week n-3 FA supplementation with 5 g/day of fish oil. Gene expression of TNF-α and IL6 was assessed in peripheral blood mononuclear cells (PBMCs) using the TaqMan technology. Genotyping of 20 SNPs from the TNF-LTA gene cluster, IL1β, IL6 and CRP genes was performed. (3) Results: There was no significant reduction of plasma IL-6, TNF-α and C-reactive protein (CRP) levels after the 6-week fish oil supplementation. TNF-α and IL6 were slightly overexpressed in PBMCs after the supplementation (fold changes of 1.05 ± 0.38 and 1.18 ± 0.49, respectively (n = 191)), but relative quantification (RQ) within the −0.5 to 2.0 fold are considered as nonbiologically significant. In a MIXED model for repeated measures adjusted for the effects of age, sex and BMI, gene by supplementation interaction effects were observed for rs1143627, rs16944, rs1800797, and rs2069840 on IL6 levels, for rs2229094 on TNF-α levels and for rs1800629 on CRP levels (p < 0.05 for all). (4) Conclusions: This study shows that a 6-week n-3 FA supplementation with 5 g/day of fish oil did not alter gene expression levels of TNF-α and IL6 in PBMCs and did not have an impact on inflammatory biomarker levels. However, gene–diet interactions were observed between SNPs within inflammation-related genes modulating plasma inflammatory biomarker levels. PMID:26999109

  16. SerpinB2 Deficiency Results in a Stratum Corneum Defect and Increased Sensitivity to Topically Applied Inflammatory Agents.

    PubMed

    Schroder, Wayne A; Anraku, Itaru; Le, Thuy T; Hirata, Thiago D C; Nakaya, Helder I; Major, Lee; Ellis, Jonathan J; Suhrbier, Andreas

    2016-06-01

    SerpinB2 (plasminogen activator inhibitor type 2) is constitutively expressed at high levels by differentiating keratinocytes in mice and humans; however, the physiological function of keratinocyte SerpinB2 remains unclear. Herein, we show that SerpinB2(-/-) mice are more susceptible to contact dermatitis after topical application of dinitrofluorobenzene, and show enhanced inflammatory lesions after topical applications of phorbol ester. Untreated SerpinB2(-/-) mice showed no overt changes in epithelial structure, and we were unable to find evidence for a role for keratinocyte SerpinB2 in regulating immunity, apoptosis, IL-1β production, proteasomal activity, or wound healing. Instead, the phenotype was associated with impaired skin barrier function and a defective stratum corneum, with SerpinB2(-/-) mice showing increased transepidermal water loss, increased overt loss of stratum corneum in inflammatory lesions, and impaired stratum corneum thickening after phorbol ester treatment. Immunoblotting suggested that SerpinB2 (cross-linked into the cornified envelope) is present in the stratum corneum and retains the ability to form covalent inhibitory complexes with urokinase. Data suggest that the function of keratinocyte SerpinB2 is protection of the stratum corneum from proteolysis via inhibition of urokinase, thereby maintaining the integrity and barrier function of the stratum corneum, particularly during times of skin inflammation. Implications for studies involving genetically modified mice treated with topical agents and human dermatological conditions, such as contact dermatitis, are discussed. PMID:27109612

  17. Effect of non-steroidal anti-inflammatory drugs on the increasing the incidence of colonic anastomosis in rats

    PubMed Central

    Ji, Chengdong; Xiong, Yuanchang; Pan, Xin; Guo, Xuan; Li, Zhen; Qian, Shuwen; Xu, Chang; Yu, De-Hua; Liao, Wan-Qing

    2015-01-01

    Background: Anastomotic leakage is one of serious complications of colorectal surgery. Research is inconsistent about whether non-steroidal anti-inflammatory drugs influence the healing of colorectal anastomoses and increase the incidence of anastomotic leakage. Objective: To study the influence of NSAIDs on the healing of rat colonic anastomoses. Design: This was an animal randomized-control trial. This study was approved by the ethical committee of Yangpu Hospital, Tongji University. Intervention: 90 healthy Sprague-Dawley rats were randomly divided into 6 groups of 15 rats/group. Trail was performed in C (cotrol group) with no drugs, group M with morphine for analgesia, group F with flurbiprofen axeil, group L with lornoxicam, and group P with parecoxib sodium. Main outcome measures: The main outcomes measures were serological indexes including vascular endothelial growth factor, prostaglandin E2, hydroxyproline, and C reactive protein; histological specimens from the anastomotic stoma tissue including the collagen proportion, and hydroxyproline, cycloxygenase-2, and vascular endothelial growth factor content; physical indicators, including stoma fracture pressure, fracture strength and anastomotic leakage. Results: No significant difference was observed among the indices of each group (P > 0.05). A significant difference occurred after operation (P < 0.05), with the data for groups K and M being dramatically higher than those for group F. Limitation: The study was nonblinded. Conclusion: The postoperative usages of non-steroidal anti-inflammatory drugs can decrease the strength of anastomotic tissue, and increase the incidence of anastomotic leakage. PMID:26261490

  18. Developmental expression of STATs, nuclear factor-κB and inflammatory genes in the jejunum of piglets during weaning.

    PubMed

    Yi, Hongbo; Jiang, Denghu; Zhang, Lin; Xiong, Haitao; Han, Feifei; Wang, Yizhen

    2016-07-01

    The signal transducer and activator of transcription (STAT) proteins play essential roles in apoptosis, proliferation and survival. However, the role of STATs in intestinal inflammation during weaning is unclear. This study aimed to investigate developmental expression of STATs, nuclear factor-κB (NF-κB) and inflammatory genes in the jejunum of piglets during weaning. Thirty-two piglets were weaned at 21d and sacrificed at 0, 1, 7, or 14d (n=8) after weaning. Villus height and the villus height/crypt depth ratio were decreased, whereas crypt depth was increased in the jejunum at 7 and 14d after weaning. In addition, the mRNA levels of interferon-γ (IFN-γ), inducible nitric oxide synthase (iNOS), IL-6, IL-8, IL-12 and IL-22 were increased in the jejunum at 7 and 14d after weaning, whereas transforming growth factor-β (TGF-β), suppressor of cytokine signaling 3 (SCOS3) and arginase-1 was decreased. Neutrophil infiltration was increased in the mucosa of the jejunum after weaning. Moreover, phosphorylation of IκB-α, NF-κB, AKT and STAT-3 was increased. However, the phosphorylation of STAT-1 (at 7 and 14d) and STAT-6 (at 1 and 7d) was suppressed in the jejunum after weaning. Treatment of porcine jejunal epithelial (IPEC-J2) cells with the STAT inhibitors fludarabine, niclosamide and teriflunomide, which inhibit the phosphorylation of STAT-1, STAT-3 and STAT-6, respectively, weakened the defense capacity of these cells against bacterial infection. In conclusion, weaning caused severe inflammation associated with activation of the NF-κB and STAT-3 pathways and suppression of STAT-1 and STAT-6 in the jejunum of piglets. PMID:27160867

  19. Temporal gene expression in the hippocampus and peripheral organs to endoxin-induced systemic inflammatory response in caspase-1 deficient mice

    PubMed Central

    Mastronardi, Claudio Alberto; Paz-Filho, Gilberto; Zanoni, Martina; Molano-González, Nicolas; Arcos-Burgos, Mauricio; Licinio, Julio; Wong, Ma-Li

    2015-01-01

    Objectives Caspase-1 (casp1), a key protease involved during systemic inflammatory response syndrome (SIRS), controls the brain expression of a set of eight genes: Nos2 and Ptgs2 (nitric oxide synthase 2 and prostaglandin-endoperoxide synthase 2, two inducible enzymes), Cxcl1 and Cxcl10 (C-X-C motif chemokine ligand 1 and ligand 10), Tgtp and Gbp2 (T cell specific GTPase 1 and guanylate binding protein 2, two GTPases), Adamts1 (a disintegrin-like and metallopeptidase with thrombospondin type 1 motif, 1, a metalloprotease), and Il1rn (interleukin (IL)-1 receptor antagonist). Our objective was to ascertain whether casp1 also controlled the peripheral expression of these genes and, if so, to compare their central vs. peripheral patterns of gene expression in immune and endocrine tissues during SIRS. Methods Wild-type (wt) and casp1 knockout (casp1−/−) mice were injected with either saline or a high dose of endotoxin/lypopolysaccharide (LPS; 800μg/mice i.p). Saline-injected mice were immediately euthanized after injection, whereas LPS-injected mice were sacrificed 6 and 12h after LPS administration. Hippocampal, splenic and adrenal gene expressions were determined by real-time PCR. Results Overall, casp1−/− mice showed a lower inflammatory response than wt mice. The expression level of powerful proinflammatory factors such as Nos2 and Ptgs2 was reduced in casp1−/− mice. Moreover, a hierarchical clustering analysis aimed at studying patterns of gene co-expression revealed large alterations in the hippocampal pattern of casp1−/− mice. Surprisingly, the expression of Adamts1was increased in the hippocampus and adrenals of casp1−/− mice. Conclusions The resilience of casp1−/− mice to SIRS lethality is associated with a lower inflammatory response, loss of hippocampal gene co-expression patterns, and increased hippocampal Adamts1 gene expression. The latter might be beneficial for casp1−/− mice, since ADAMTS1 is likely to play a role in neuronal

  20. Selection for pro-inflammatory mediators yields chickens with increased resistance against Salmonella enterica serovar Enteritidis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella are a leading cause of foodborne illness and can be transmitted through consumption of contaminated poultry; therefore, increasing a flocks’ natural resistance to Salmonella could improve food safety. Previously, we characterized the heterophil-mediated innate immune response of two pare...

  1. The Inflammatory Response to Social Defeat is Increased in Older Mice

    PubMed Central

    Kinsey, Steven G.; Bailey, Michael T.; Sheridan, John F.; Padgett, David A.

    2009-01-01

    Previous research indicates that repeated social defeat of mice causes increased lymphocyte trafficking to the spleen, elevated proinflammatory cytokine production, and induced glucocorticoid insensitivity in splenocytes. Social defeat also causes increases in anxiety-like behavior. This study investigated whether repeated social defeat results in similar immunoregulatory and behavioral changes in older mice as those seen previously in young adult mice. The data revealed that, regardless of age, defeated mice had significantly more splenic CD11b+ Gr-1+ monocytes and neutrophils than controls. Supernatants harvested from cultured splenocytes from older mice contained comparatively higher IL-6 and TNF-α than supernatants from younger animals. In addition, those same cells derived from older defeated mice were hypersensitive to lipopolysaccharide (LPS) and insensitive to glucocorticoids in vitro. As seen previously in young adult mice, social defeat caused an increase in anxiety-like behavior in the open field test, but had no effect on learned helplessness in the forced swim test. These data indicated that repeated social defeat results in a proinflammatory state that is exacerbated in older mice. The implications of these data are noteworthy, given the strong role of inflammation in many age-related diseases. PMID:18068740

  2. Increase in cholinergic modulation with pyridostigmine induces anti-inflammatory cell recruitment soon after acute myocardial infarction in rats.

    PubMed

    Rocha, Juraci Aparecida; Ribeiro, Susan Pereira; França, Cristiane Miranda; Coelho, Otávio; Alves, Gisele; Lacchini, Silvia; Kallás, Esper Georges; Irigoyen, Maria Cláudia; Consolim-Colombo, Fernanda M

    2016-04-15

    We tested the hypothesis that an increase in the anti-inflammatory cholinergic pathway, when induced by pyridostigmine (PY), may modulate subtypes of lymphocytes (CD4+, CD8+, FOXP3+) and macrophages (M1/M2) soon after myocardial infarction (MI) in rats. Wistar rats, randomly allocated to receive PY (40 mg·kg(-1)·day(-1)) in drinking water or to stay without treatment, were followed for 4 days and then were subjected to ligation of the left coronary artery. The groups-denominated as the pyridostigmine-treated infarcted (IP) and infarcted control (I) groups-were submitted to euthanasia 3 days after MI; the heart was removed for immunohistochemistry, and the peripheral blood and spleen were collected for flow cytometry analysis. Noninfarcted and untreated rats were used as controls (C Group). Echocardiographic measurements were registered on the second day after MI, and heart rate variability was measured on the third day after MI. The infarcted groups had similar MI areas, degrees of systolic dysfunction, blood pressures, and heart rates. Compared with the I Group, the IP Group showed a significant higher parasympathetic modulation and a lower sympathetic modulation, which were associated with a small, but significant, increase in diastolic function. The IP Group showed a significant increase in M2 macrophages and FOXP3(+)cells in the infarcted and peri-infarcted areas, a significantly higher frequency of circulating Treg cells (CD4(+)CD25(+)FOXP3(+)), and a less extreme decrease in conventional T cells (CD25(+)FOXP3(-)) compared with the I Group. Therefore, increasing cholinergic modulation with PY induces greater anti-inflammatory cell recruitment soon after MY in rats. PMID:26791829

  3. Unilateral renal ischaemia in rats induces a rapid secretion of inflammatory markers to renal lymph and increased capillary permeability.

    PubMed

    Bivol, Liliana Monica; Iversen, Bjarne Magnus; Hultström, Michael; Wallace, Paal William; Reed, Rolf Kåre; Wiig, Helge; Tenstad, Olav

    2016-03-15

    A better understanding of the inflammatory process associated with renal ischaemia-reperfusion (IR) injury may be clinically important. In this study we examined the role of the kidney in production of inflammatory mediators by analysing renal lymph after 30 min unilateral occlusion of renal artery followed by 120 min reperfusion, as well as the effect of IR on size selectivity for proteins in both glomerular and peritubular capillaries. All measured mediators increased dramatically in renal hilar lymph, plasma and renal cortical tissue samples and returned to control levels after 120 min reperfusion. The responses were differentiated; interleukin-1β, monocyte chemoattractant protein-1 and leptin were markedly increased in plasma before reperfusion, reflecting an extrarenal response possibly induced by afferent renal nerve activity from the ischaemic kidney. Tumour necrosis factor-α was the only mediator showing elevated lymph-to-plasma ratio following 30 min reperfusion, indicating that most cytokines were released directly into the bloodstream. The IR-induced rise in cytokine levels was paralleled by a significant increase in high molecular weight plasma proteins in both lymph and urine. The latter was shown as a 14- to 166-fold increase in glomerular sieving coefficient of plasma proteins assessed by a novel proteomic approach, and indicated a temporarily reduced size selectivity of both glomerular and peritubular capillaries. Collectively, our data suggest that cytokines from the ischaemic kidney explain most of the rise in plasma concentration, and that the locally produced substances enter the systemic circulation through transport directly to plasma and not via the interstitium to lymph. PMID:26584508

  4. Sucrose Counteracts the Anti-Inflammatory Effect of Fish Oil in Adipose Tissue and Increases Obesity Development in Mice

    PubMed Central

    Ma, Tao; Liaset, Bjørn; Hao, Qin; Petersen, Rasmus Koefoed; Fjære, Even; Ngo, Ha Thi; Lillefosse, Haldis Haukås; Ringholm, Stine; Sonne, Si Brask; Treebak, Jonas Thue; Pilegaard, Henriette; Frøyland, Livar; Kristiansen, Karsten; Madsen, Lise

    2011-01-01

    Background Polyunsaturated n-3 fatty acids (n-3 PUFAs) are reported to protect against high fat diet-induced obesity and inflammation in adipose tissue. Here we aimed to investigate if the amount of sucrose in the background diet influences the ability of n-3 PUFAs to protect against diet-induced obesity, adipose tissue inflammation and glucose intolerance. Methodology/Principal Findings We fed C57BL/6J mice a protein- (casein) or sucrose-based high fat diet supplemented with fish oil or corn oil for 9 weeks. Irrespective of the fatty acid source, mice fed diets rich in sucrose became obese whereas mice fed high protein diets remained lean. Inclusion of sucrose in the diet also counteracted the well-known anti-inflammatory effect of fish oil in adipose tissue, but did not impair the ability of fish oil to prevent accumulation of fat in the liver. Calculation of HOMA-IR indicated that mice fed high levels of proteins remained insulin sensitive, whereas insulin sensitivity was reduced in the obese mice fed sucrose irrespectively of the fat source. We show that a high fat diet decreased glucose tolerance in the mice independently of both obesity and dietary levels of n-3 PUFAs and sucrose. Of note, increasing the protein∶sucrose ratio in high fat diets decreased energy efficiency irrespective of fat source. This was accompanied by increased expression of Ppargc1a (peroxisome proliferator-activated receptor, gamma, coactivator 1 alpha) and increased gluconeogenesis in the fed state. Conclusions/Significance The background diet influence the ability of n-3 PUFAs to protect against development of obesity, glucose intolerance and adipose tissue inflammation. High levels of dietary sucrose counteract the anti-inflammatory effect of fish oil in adipose tissue and increases obesity development in mice. PMID:21738749

  5. Resveratrol post-transcriptionally regulates pro-inflammatory gene expression via regulation of KSRP RNA binding activity.

    PubMed

    Bollmann, Franziska; Art, Julia; Henke, Jenny; Schrick, Katharina; Besche, Verena; Bros, Matthias; Li, Huige; Siuda, Daniel; Handler, Norbert; Bauer, Florian; Erker, Thomas; Behnke, Felix; Mönch, Bettina; Härdle, Lorena; Hoffmann, Markus; Chen, Ching-Yi; Förstermann, Ulrich; Dirsch, Verena M; Werz, Oliver; Kleinert, Hartmut; Pautz, Andrea

    2014-11-10

    Resveratrol shows beneficial effects in inflammation-based diseases like cancer, cardiovascular and chronic inflammatory diseases. Therefore, the molecular mechanisms of the anti-inflammatory resveratrol effects deserve more attention. In human epithelial DLD-1 and monocytic Mono Mac 6 cells resveratrol decreased the expression of iNOS, IL-8 and TNF-α by reducing mRNA stability without inhibition of the promoter activity. Shown by pharmacological and siRNA-mediated inhibition, the observed effects are SIRT1-independent. Target-fishing and drug responsive target stability experiments showed selective binding of resveratrol to the RNA-binding protein KSRP, a central post-transcriptional regulator of pro-inflammatory gene expression. Knockdown of KSRP expression prevented resveratrol-induced mRNA destabilization in human and murine cells. Resveratrol did not change KSRP expression, but immunoprecipitation experiments indicated that resveratrol reduces the p38 MAPK-related inhibitory KSRP threonine phosphorylation, without blocking p38 MAPK activation or activity. Mutation of the p38 MAPK target site in KSRP blocked the resveratrol effect on pro-inflammatory gene expression. In addition, resveratrol incubation enhanced KSRP-exosome interaction, which is important for mRNA degradation. Finally, resveratrol incubation enhanced its intra-cellular binding to the IL-8, iNOS and TNF-α mRNA. Therefore, modulation of KSRP mRNA binding activity and, thereby, enhancement of mRNA degradation seems to be the common denominator of many anti-inflammatory effects of resveratrol. PMID:25352548

  6. Deletion of the DNA Ligase IV Gene in Candida glabrata Significantly Increases Gene-Targeting Efficiency

    PubMed Central

    Cen, Yuke; Fiori, Alessandro

    2015-01-01

    Candida glabrata is reported as the second most prevalent human opportunistic fungal pathogen in the United States. Over the last decades, its incidence increased, whereas that of Candida albicans decreased slightly. One of the main reasons for this shift is attributed to the inherent tolerance of C. glabrata toward the commonly used azole antifungal drugs. Despite a close phylogenetic distance to Saccharomyces cerevisiae, homologous recombination works with poor efficiency in C. glabrata compared to baker's yeast, in fact limiting targeted genetic alterations of the pathogen's genome. It has been shown that nonhomologous DNA end joining is dominant over specific gene targeting in C. glabrata. To improve the homologous recombination efficiency, we have generated a strain in which the LIG4 gene has been deleted, which resulted in a significant increase in correct gene targeting. The very specific function of Lig4 in mediating nonhomologous end joining is the reason for the absence of clear side effects, some of which affect the ku80 mutant, another mutant with reduced nonhomologous end joining. We also generated a LIG4 reintegration cassette. Our results show that the lig4 mutant strain may be a valuable tool for the C. glabrata research community. PMID:26048009

  7. Expression and Contributions of TRPM7 and KCa2.3/SK3 Channels to the Increased Migration and Invasion of Microglia in Anti-Inflammatory Activation States

    PubMed Central

    Ferreira, Roger; Wong, Raymond; Schlichter, Lyanne C.

    2014-01-01

    Microglia rapidly respond to CNS injury and disease and can assume a spectrum of activation states. While changes in gene expression and production of inflammatory mediators have been extensively described after classical (LPS-induced) and alternative (IL4-induced) microglial activation, less is known about acquired de-activation in response to IL10. It is important to understand how microglial activation states affect their migration and invasion; crucial functions after injury and in the developing CNS. We reported that LPS-treated rat microglia migrate very poorly, while IL4-treated cells migrate and invade much better. Having discovered that the lamellum of migrating microglia contains a large ring of podosomes – microscopic structures that are thought to mediate adhesion, migration and invasion – we hypothesized that IL4 and IL10 would differentially affect podosome expression, gene induction, migration and invasion. Further, based on the enrichment of the KCa2.3/SK3 Ca2+-activated potassium channel in microglial podosomes, we predicted that it regulates migration and invasion. We found both similarities and differences in gene induction by IL4 and IL10 and, while both cytokines increased migration and invasion, only IL10 affected podosome expression. KCa2.3 currents were recorded in microglia under all three activation conditions and KCNN3 (KCa2.3) expression was similar. Surprisingly then, of three KCa2.3 inhibitors (apamin, tamapin, NS8593), only NS8593 abrogated the increased migration and invasion of IL4 and IL10-treated microglia (and invasion of unstimulated microglia). This discrepancy was explained by the observed block of TRPM7 currents in microglia by NS8593, which occurred under all three activation conditions. A similar inhibition of both migration and invasion was seen with a TRPM7 inhibitor (AA-861) that does not block KCa2.3 channels. Thus, we conclude that TRPM7 (not KCa2.3) contributes to the enhanced ability of microglia to migrate and

  8. A mutant gene that increases gibberellin production in Brassica

    SciTech Connect

    Rood, S.B. ); Williams, P.H. ); Pearce, D.; Pharis, R.P. ); Murofushi, Noboru ); Mander, L.N. )

    1990-07-01

    A single gene mutant (elongated internode (ein/ein)) with accelerated shoot elongation was identified from a rapid cycling line of Brassica rapa. Relative to normal plants, mutant plants had slightly accelerated floral development, greater stem dry weights, and particularly, increased internode and inflorescence elongation. The application of the triazole plant growth retardant, paclobutrazol, inhibited shoot elongation, returning ein to a more normal phenotype. Conversely, exogenous gibberellin A{sub 3} (GA{sub 3}) can convert normal genotypes to a phenotype resembling ein. The content of endogenous GA{sub 1} and GA{sub 3} were estimated by gas chromatography-selected ion monitoring using ({sup 2}H)GA{sub 1} as a quantitative internal standard and at day 14 were 1.5- and 12.1-fold higher per stem, respectively, in ein than in normal plants, although GA concentrations were more similar. The endogenous levels of GA{sub 20} and GA{sub 1}, and the rate of GA{sub 19} metabolism were simultaneously analyzed. Levels of GA{sub 1} and GA{sub 20} were 4.6- and 12.9-fold higher, respectively, and conversions to GA{sub 20} and GA{sub 1} were 8.3 and 1.3 times faster in ein than normal plants. Confirming the enhanced rate of GA{sub 1} biosynthesis in ein, the conversion of ({sup 3}H)GA{sub 20} to ({sup 3}H) GA{sub 1} was also faster in ein than in the normal genotype. Thus, the ein allele results in accelerated GA{sub 1} biosynthesis and an elevated content of endogenous GAs, including the dihydroxylated GAs A{sub 1} and A{sub 3}.

  9. Anti-inflammatory Lactobacillus rhamnosus CNCM I-3690 strain protects against oxidative stress and increases lifespan in Caenorhabditis elegans.

    PubMed

    Grompone, Gianfranco; Martorell, Patricia; Llopis, Silvia; González, Núria; Genovés, Salvador; Mulet, Ana Paula; Fernández-Calero, Tamara; Tiscornia, Inés; Bollati-Fogolín, Mariela; Chambaud, Isabelle; Foligné, Benoit; Montserrat, Agustín; Ramón, Daniel

    2012-01-01

    Numerous studies have shown that resistance to oxidative stress is crucial to stay healthy and to reduce the adverse effects of aging. Accordingly, nutritional interventions using antioxidant food-grade compounds or food products are currently an interesting option to help improve health and quality of life in the elderly. Live lactic acid bacteria (LAB) administered in food, such as probiotics, may be good antioxidant candidates. Nevertheless, information about LAB-induced oxidative stress protection is scarce. To identify and characterize new potential antioxidant probiotic strains, we have developed a new functional screening method using the nematode Caenorhabditis elegans as host. C. elegans were fed on different LAB strains (78 in total) and nematode viability was assessed after oxidative stress (3 mM and 5 mM H(2)O(2)). One strain, identified as Lactobacillus rhamnosus CNCM I-3690, protected worms by increasing their viability by 30% and, also, increased average worm lifespan by 20%. Moreover, transcriptomic analysis of C. elegans fed with this strain showed that increased lifespan is correlated with differential expression of the DAF-16/insulin-like pathway, which is highly conserved in humans. This strain also had a clear anti-inflammatory profile when co-cultured with HT-29 cells, stimulated by pro-inflammatory cytokines, and co-culture systems with HT-29 cells and DC in the presence of LPS. Finally, this Lactobacillus strain reduced inflammation in a murine model of colitis. This work suggests that C. elegans is a fast, predictive and convenient screening tool to identify new potential antioxidant probiotic strains for subsequent use in humans. PMID:23300685

  10. Moderate exercise training provides modest protection against adipose tissue inflammatory gene expression in response to high-fat feeding.

    PubMed

    Linden, Melissa A; Pincu, Yair; Martin, Stephen A; Woods, Jeffrey A; Baynard, Tracy

    2014-01-01

    As white adipose tissue (WAT) expands under obesogenic conditions, local WAT hypoxia may contribute to the chronic low-grade inflammation observed in obesity. Aerobic exercise training is beneficial in treating WAT inflammation after obesity is established, but it remains unknown whether exercise training, while on a concomitant high-fat (HF) diet, influences WAT inflammation during the development of obesity. We sought to determine the effects of 4, 8, and 12 weeks of HF feeding and/or moderate intensity treadmill exercise training (EX) on the relationship between inflammatory and hypoxic gene expression within mouse WAT. Male C57Bl6/J mice (n = 113) were randomized into low-fat (LF)/sedentary (SED), LF/EX, HF/SED, or HF/EX groups. The low-fat and high-fat diets contained 10% and 60% energy from fat, respectively. Exercise training consisted of treadmill running 5 days/week at 12 m/min, 8% incline, 40 min/day. Quantitative real-time PCR was used to assess gene expression. HF diet impaired glucose regulation, and upregulated WAT gene expression of inflammation (IL-1β, IL-1ra, TNFα), macrophage recruitment and infiltration (F4/80 and monocyte chemoattractant protein), and M1 (CD11c) and M2 (CD206 and Arginase-1) macrophage polarization markers. Treadmill training resulted in a modest reduction of WAT macrophage and inflammatory gene expression. HF diet had little effect on hypoxia-inducible factor-1α and vascular endothelial growth factor, suggesting that WAT inflammatory gene expression may not be driven by hypoxia within the adipocytes. Treadmill training may provide protection by preventing WAT expansion and macrophage recruitment. PMID:25347855