Science.gov

Sample records for increases glucose metabolism

  1. Causes and consequences of increased glucose metabolism of cancers.

    PubMed

    Gillies, Robert J; Robey, Ian; Gatenby, Robert A

    2008-06-01

    In this review we examine the mechanisms (causes) underlying the increased glucose consumption observed in tumors within a teleological context (consequences). In other words, we will ask not only "How do cancers have high glycolysis?" but also, "Why?" We believe that the insights gained from answering the latter question support the conclusion that elevated glucose consumption is a necessary component of carcinogenesis. Specifically we propose that glycolysis is elevated because it produces acid, which provides an evolutionary advantage to cancer cells vis-à-vis normal parenchyma into which they invade. PMID:18523064

  2. Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism

    PubMed Central

    Lundgaard, Iben; Li, Baoman; Xie, Lulu; Kang, Hongyi; Sanggaard, Simon; Haswell, John Douglas R; Sun, Wei; Goldman, Siri; Blekot, Solomiya; Nielsen, Michael; Takano, Takahiro; Deane, Rashid; Nedergaard, Maiken

    2015-01-01

    Metabolically, the brain is a highly active organ that relies almost exclusively on glucose as its energy source. According to the astrocyte-to-neuron lactate shuttle hypothesis, glucose is taken up by astrocytes and converted to lactate, which is then oxidized by neurons. Here we show, using 2-photon imaging of a near-infrared 2-deoxyglucose analogue (2DG-IR), that glucose is taken up preferentially by neurons in awake behaving mice. Anesthesia suppressed neuronal 2DG-IR uptake and sensory stimulation was associated with a sharp increase in neuronal, but not astrocytic, 2DG-IR uptake. Moreover, hexokinase, which catalyze the first enzymatic steps in glycolysis, was highly enriched in neurons compared with astrocytes, in mouse as well as in human cortex. These observations suggest that brain activity and neuronal glucose metabolism are directly linked, and identifies the neuron as the principal locus of glucose uptake as visualized by functional brain imaging. PMID:25904018

  3. Ascorbic acid recycling by cultured beta cells: effects of increased glucose metabolism.

    PubMed

    Steffner, Robert J; Wu, Lan; Powers, Alvin C; May, James M

    2004-11-15

    Ascorbic acid is necessary for optimal insulin secretion from pancreatic islets. We evaluated ascorbate recycling and whether it is impaired by increased glucose metabolism in the rat beta-cell line INS-1. INS-1 cells, engineered with the potential for overexpression of glucokinase under the control of a tetracycline-inducible gene expression system, took up and reduced dehydroascorbic acid to ascorbate in a concentration-dependent manner that was optimal in the presence of physiologic D-glucose concentrations. Ascorbate uptake did not affect intracellular GSH concentrations. Whereas depletion of GSH in culture to levels about 25% of normal also did not affect the ability of the cells to reduce dehydroascorbic acid, more severe acute GSH depletion to less than 10% of normal levels did impair dehydroascorbic acid reduction. Culture of inducible cells in 11.8 mM D-glucose and doxycycline for 48 h enhanced glucokinase activity, increased glucose utilization, abolished D-glucose-dependent insulin secretion, and increased generation of reactive oxygen species. The latter may have contributed to subsequent decreases in the ability of the cells both to maintain intracellular ascorbate and to recycle it from dehydroascorbic acid. Cultured beta cells have a high capacity to recycle ascorbate, but this is sensitive to oxidant stress generated by increased glucose metabolism due to culture in high glucose concentrations and increased glucokinase expression. Impaired ascorbate recycling as a result of increased glucose metabolism may have implications for the role of ascorbate in insulin secretion in diabetes mellitus and may partially explain glucose toxicity in beta cells. PMID:15477012

  4. Increased response to insulin of glucose metabolism in the 6-day unloaded rat soleus muscle

    NASA Technical Reports Server (NTRS)

    Henriksen, Erik J.; Tischler, Marc E.; Johnson, David G.

    1986-01-01

    Hind leg muscles of female rats were unloaded by tail cast suspension for 6 days. In the fresh-frozen unloaded soleus, the significantly greater concentration of glycogen correlated with a lower activity ratio of glycogen phosphorylase (p less than 0.02). The activity ratio of glycogen synthase also was lower (p less than 0.001), possibly due to the higher concentration of glycogen. In isolated unloaded soleus, insulin (0.1 milliunit/ml) increased the oxidation of D(U-C-14) glucose, release of lactate and pyruvate, incorporation of D-(U-C-14) glucose into glycogen, and the concentration of glucose 6-phosphate more (p less than 0.05) than in the weight-bearing soleus. At physiological doses of insulin, the percent of maximal uptake of 2-deoxy-D-(1,2-H-3) glucose/muscle also was greater in the unloaded soleus. Unloading of the soleus increased, by 50 percent the concentration of insuling receptors, due to no decrease in total receptor number during muscle atrophy. This increase may account for the greater response of glucose metabolism to insulin in this muscle. The extensor digitorum longus, which generally shows little response to unloading, displayed no differential response of glucose metabolism to insulin.

  5. Acute alcohol intoxication decreases glucose metabolism but increases acetate uptake in the human brain.

    PubMed

    Volkow, Nora D; Kim, Sung Won; Wang, Gene-Jack; Alexoff, David; Logan, Jean; Muench, Lisa; Shea, Colleen; Telang, Frank; Fowler, Joanna S; Wong, Christopher; Benveniste, Helene; Tomasi, Dardo

    2013-01-01

    Alcohol intoxication results in marked reductions in brain glucose metabolism, which we hypothesized reflect not just its GABAergic enhancing effects but also the metabolism of acetate as an alternative brain energy source. To test this hypothesis we separately assessed the effects of alcohol intoxication on brain glucose and acetate metabolism using Positron Emission Tomography (PET). We found that alcohol intoxication significantly decreased whole brain glucose metabolism (measured with FDG) with the largest decrements in cerebellum and occipital cortex and the smallest in the thalamus. In contrast, alcohol intoxication caused a significant increase in [1-(11)C]acetate brain uptake (measured as standard uptake value, SUV), with the largest increases occurring in the cerebellum and the smallest in the thalamus. In heavy alcohol drinkers [1-(11)C]acetate brain uptake during alcohol challenge tended to be higher than in occasional drinkers (p<0.06) and the increases in [1-(11)C]acetate uptake in cerebellum with alcohol were positively associated with the reported amount of alcohol consumed (r=0.66, p<0.01). Our findings corroborate a reduction of brain glucose metabolism during intoxication and document an increase in brain acetate uptake. The opposite changes observed between regional brain metabolic decrements and regional increases in [1-(11)C]acetate uptake support the hypothesis that during alcohol intoxication the brain may rely on acetate as an alternative brain energy source and provides preliminary evidence that heavy alcohol exposures may facilitate the use of acetate as an energy substrate. These findings raise the question of the potential therapeutic benefits that increasing plasma acetate concentration (i.e. ketogenic diets) may have in alcoholics undergoing alcohol detoxification. PMID:22947541

  6. Transient focal cortical increase of interictal glucose metabolism in Sturge-Weber syndrome: Implications for epileptogenesis

    PubMed Central

    Alkonyi, Bálint; Chugani, Harry T.; Juhász, Csaba

    2011-01-01

    SUMMARY Purpose To investigate clinical correlates and longitudinal course of interictal focal cortical glucose hypermetabolism in children with Sturge-Weber syndrome (SWS). Methods FDG PET scans of 60 children (age range: 3 months-15.2 years) with Sturge-Weber syndrome and epilepsy were assessed prospectively and serially for focal hypo- or hypermetabolism. Thirty-two patients had two or more consecutive PET scans. Age, seizure variables and the occurrence of epilepsy surgery were compared between patients with and without focal hypermetabolism. The severity of focal hypermetabolism was also assessed and correlated with seizure variables. Key Findings Interictal cortical glucose hypermetabolism, ipsilateral to the angioma, was seen in 9 patients, with the most common location in the frontal lobe. Age was lower in patients with hypermetabolism than in those without (p=0.022). In addition, time difference between the onset of first seizure and the first PET scan was much shorter in children with increased glucose metabolism than in those without (mean: 1.0 vs. 3.6 years; p=0.019). Increased metabolism was transient and switched to hypometabolism in all five children where follow-up scans were available. Focal glucose hypermetabolism occurred in 28 % of children under the age of two years. Children with transient hypermetabolism had a higher rate of subsequent epilepsy surgery as compared to those without hypermetabolism (p=0.039). Significance Interictal glucose hypermetabolism in young children with SWS is most often seen within a short time before or after the onset of first clinical seizures, i.e., the presumed period of epileptogenesis. Increased glucose metabolism detected by PET predicts future demise of the affected cortex based on a progressive loss of metabolism and may be an imaging marker of the most malignant cases of intractable epilepsy requiring surgery in SWS. PMID:21480889

  7. Epigallocatechin gallate affects glucose metabolism and increases fitness and lifespan in Drosophila melanogaster

    PubMed Central

    Wagner, Anika E.; Piegholdt, Stefanie; Rabe, Doerte; Baenas, Nieves; Schloesser, Anke; Eggersdorfer, Manfred; Stocker, Achim; Rimbach, Gerald

    2015-01-01

    In this study, we tested whether a standardized epigallocatechin-3-gallate (EGCG) rich green tea extract (comprising > 90% EGCG) affects fitness and lifespan as well as parameters of glucose metabolism and energy homeostasis in the fruit fly, Drosophila melanogaster. Following the application of the green tea extract a significant increase in the mean lifespan (+ 3.3 days) and the 50% survival (+ 4.3 days) as well as improved fitness was detected. These effects went along an increased expression of Spargel, the homolog of mammalian PGC1α, which has been reported to affect lifespan in flies. Intriguingly, in flies, treatment with the green tea extract decreased glucose concentrations, which were accompanied by an inhibition of α-amylase and α-glucosidase activity. Computational docking analysis proved the potential of EGCG to dock into the substrate binding pocket of α-amylase and to a greater extent into α-glucosidase. Furthermore, we demonstrate that EGCG downregulates insulin-like peptide 5 and phosphoenolpyruvate carboxykinase, major regulators of glucose metabolism, as well as the Drosophila homolog of leptin, unpaired 2. We propose that a decrease in glucose metabolism in connection with an upregulated expression of Spargel contribute to the better fitness and the extended lifespan in EGCG-treated flies. PMID:26375250

  8. Metformin decreases glucose oxidation and increases the dependency of prostate cancer cells on reductive glutamine metabolism

    PubMed Central

    Fendt, Sarah-Maria; Bell, Eric L.; Keibler, Mark A.; Davidson, Shawn M.; Wirth, Gregory J.; Fiske, Brian; Mayers, Jared R.; Schwab, Matthias; Bellinger, Gary; Csibi, Alfredo; Patnaik, Akash; Jose Blouin, Marie; Cantley, Lewis C.; Guarente, Leonard; Blenis, John; Pollak, Michael N.; Olumi, Aria F.

    2013-01-01

    Metformin inhibits cancer cell proliferation and epidemiology studies suggest an association with increased survival in cancer patients taking metformin, however, the mechanism by which metformin improves cancer outcomes remains controversial. To explore how metformin might directly affect cancer cells, we analyzed how metformin altered the metabolism of prostate cancer cells and tumors. We found that metformin decreased glucose oxidation and increased dependency on reductive glutamine metabolism in both cancer cell lines and in a mouse model of prostate cancer. Inhibition of glutamine anaplerosis in the presence of metformin further attenuated proliferation while increasing glutamine metabolism rescued the proliferative defect induced by metformin. These data suggest that interfering with glutamine may synergize with metformin to improve outcomes in patients with prostate cancer. PMID:23687346

  9. Resistance to the tyrosine kinase inhibitor axitinib is associated with increased glucose metabolism in pancreatic adenocarcinoma.

    PubMed

    Hudson, C D; Hagemann, T; Mather, S J; Avril, N

    2014-01-01

    Alterations in energy (glucose) metabolism are key events in the development and progression of cancer. In pancreatic adenocarcinoma (PDAC) cells, we investigated changes in glucose metabolism induced by resistance to the receptor tyrosine kinase inhibitor (RTKI) axitinib. Here, we show that human cell lines and mouse PDAC cell lines obtained from the spontaneous pancreatic cancer mouse model (Kras(G12D)Pdx1-cre) were sensitive to axitinib. The anti-proliferative effect was due to a G2/M block resulting in loss of 70-75% cell viability in the most sensitive PDAC cell line. However, a surviving sub-population showed a 2- to 3-fold increase in [C-14]deoxyglucose ([C-14]DG) uptake. This was sustained in axitinib-resistant cell lines, which were derived from parental PDAC. In addition to the axitinib-induced increase in [C-14]DG uptake, we observed a translocation of glucose transporter-1 (Glut-1) transporters from cytosolic pools to the cell surface membrane and a 2-fold increase in glycolysis rates measured by the extracellular acidification rate (ECAR). We demonstrated an axitinib-induced increase in phosphorylated Protein Kinase B (pAkt) and by blocking pAkt with a phosphatidylinositol-3 kinase (PI3K) inhibitor we reversed the Glut-1 translocation and restored sensitivity to axitinib treatment. Combination treatment with both axitinib and Akt inhibitor in parental pancreatic cell line resulted in a decrease in cell viability beyond that conferred by single therapy alone. Our study shows that PDAC resistance to axitinib results in increased glucose metabolism mediated by activated Akt. Combining axitinib and an Akt inhibitor may improve treatment in PDAC. PMID:24722285

  10. Increased fetal myocardial sensitivity to insulin-stimulated glucose metabolism during ovine fetal growth restriction.

    PubMed

    Barry, James S; Rozance, Paul J; Brown, Laura D; Anthony, Russell V; Thornburg, Kent L; Hay, William W

    2016-04-01

    Unlike other visceral organs, myocardial weight is maintained in relation to fetal body weight in intrauterine growth restriction (IUGR) fetal sheep despite hypoinsulinemia and global nutrient restriction. We designed experiments in fetal sheep with placental insufficiency and restricted growth to determine basal and insulin-stimulated myocardial glucose and oxygen metabolism and test the hypothesis that myocardial insulin sensitivity would be increased in the IUGR heart. IUGR was induced by maternal hyperthermia during gestation. Control (C) and IUGR fetal myocardial metabolism were measured at baseline and under acute hyperinsulinemic/euglycemic clamp conditions at 128-132 days gestation using fluorescent microspheres to determine myocardial blood flow. Fetal body and heart weights were reduced by 33% (P = 0.008) and 30% (P = 0.027), respectively. Heart weight to body weight ratios were not different. Basal left ventricular (LV) myocardial blood flow per gram of LV tissue was maintained in IUGR fetuses compared to controls. Insulin increased LV myocardial blood flow by ∼38% (P < 0.01), but insulin-stimulated LV myocardial blood flow in IUGR fetuses was 73% greater than controls. Similar to previous reports testing acute hypoxia, LV blood flow was inversely related to arterial oxygen concentration (r(2 )= 0.71) in both control and IUGR animals. Basal LV myocardial glucose delivery and uptake rates were not different between IUGR and control fetuses. Insulin increased LV myocardial glucose delivery (by 40%) and uptake (by 78%) (P < 0.01), but to a greater extent in the IUGR fetuses compared to controls. During basal and hyperinsulinemic-euglycemic clamp conditions LV myocardial oxygen delivery, oxygen uptake, and oxygen extraction efficiency were not different between groups. These novel results demonstrate that the fetal heart exposed to nutrient and oxygen deprivation from placental insufficiency appears to maintain myocardial energy supply

  11. Effect of systemically increasing human full-length Klotho on glucose metabolism in db/db mice.

    PubMed

    Forsberg, E A; Olauson, H; Larsson, T; Catrina, S B

    2016-03-01

    The metabolic effects of antiaging Klotho were previously investigated in vivo by genetic manipulation. We have here studied the metabolic effect of physiologic levels of circulating full length Klotho in db/db mice. Increasing the full-length human Klotho levels has a positive effect on blood glucose through increasing insulin secretion. PMID:26806457

  12. Reduced cerebral glucose metabolism and increased brain capillary permeability following high-dose methotrexate chemotherapy: a positron emission tomographic study

    SciTech Connect

    Phillips, P.C.; Dhawan, V.; Strother, S.C.; Sidtis, J.J.; Evans, A.C.; Allen, J.C.; Rottenberg, D.A.

    1987-01-01

    Regional glucose metabolic rate constants and blood-to-brain transport of rubidium were estimated using positron emission tomography in an adolescent patient with a brain tumor, before and after chemotherapy with intravenous high-dose methotrexate. Widespread depression of cerebral glucose metabolism was apparent 24 hours after drug administration, which may reflect reduced glucose phosphorylation, and the influx rate constant for /sup 82/Rb was increased, indicating a drug-induced alteration in blood-brain barrier function. Associated changes in neuropsychological performance, electroencephalogram, and plasma amino acid concentration were identified in the absence of evidence of systemic methotrexate toxicity, suggesting primary methotrexate neurotoxicity.

  13. Activation of nuclear receptor NR5A2 increases Glut4 expression and glucose metabolism in muscle cells

    SciTech Connect

    Bolado-Carrancio, A.; Riancho, J.A.; Sainz, J.; Rodríguez-Rey, J.C.

    2014-04-04

    Highlights: • NR5A2 expression in C2C12 is associated with myotube differentiation. • DLPC induces an increase in GLUT4 levels and glucose uptake in C2C12 myotubes. • In high glucose conditions the activation of NR5A2 inhibits fatty acids oxidation. - Abstract: NR5A2 is a nuclear receptor which regulates the expression of genes involved in cholesterol metabolism, pluripotency maintenance and cell differentiation. It has been recently shown that DLPC, a NR5A2 ligand, prevents liver steatosis and improves insulin sensitivity in mouse models of insulin resistance, an effect that has been associated with changes in glucose and fatty acids metabolism in liver. Because skeletal muscle is a major tissue in clearing glucose from blood, we studied the effect of the activation of NR5A2 on muscle metabolism by using cultures of C2C12, a mouse-derived cell line widely used as a model of skeletal muscle. Treatment of C2C12 with DLPC resulted in increased levels of expression of GLUT4 and also of several genes related to glycolysis and glycogen metabolism. These changes were accompanied by an increased glucose uptake. In addition, the activation of NR5A2 produced a reduction in the oxidation of fatty acids, an effect which disappeared in low-glucose conditions. Our results suggest that NR5A2, mostly by enhancing glucose uptake, switches muscle cells into a state of glucose preference. The increased use of glucose by muscle might constitute another mechanism by which NR5A2 improves blood glucose levels and restores insulin sensitivity.

  14. Alcohol Decreases Baseline Brain Glucose Metabolism More in Heavy Drinkers Than Controls But Has No Effect on Stimulation-Induced Metabolic Increases

    PubMed Central

    Wang, Gene-Jack; Shokri Kojori, Ehsan; Fowler, Joanna S.; Benveniste, Helene; Tomasi, Dardo

    2015-01-01

    During alcohol intoxication, the human brain increases metabolism of acetate and decreases metabolism of glucose as energy substrate. Here we hypothesized that chronic heavy drinking facilitates this energy substrate shift both for baseline and stimulation conditions. To test this hypothesis, we compared the effects of alcohol intoxication (0.75 g/kg alcohol vs placebo) on brain glucose metabolism during video stimulation (VS) versus when given with no stimulation (NS), in 25 heavy drinkers (HDs) and 23 healthy controls, each of whom underwent four PET-18FDG scans. We showed that resting whole-brain glucose metabolism (placebo-NS) was lower in HD than controls (13%, p = 0.04); that alcohol (compared with placebo) decreased metabolism more in HD (20 ± 13%) than controls (9 ± 11%, p = 0.005) and in proportion to daily alcohol consumption (r = 0.36, p = 0.01) but found that alcohol did not reduce the metabolic increases in visual cortex from VS in either group. Instead, VS reduced alcohol-induced decreases in whole-brain glucose metabolism (10 ± 12%) compared with NS in both groups (15 ± 13%, p = 0.04), consistent with stimulation-related glucose metabolism enhancement. These findings corroborate our hypothesis that heavy alcohol consumption facilitates use of alternative energy substrates (i.e., acetate) for resting activity during intoxication, which might persist through early sobriety, but indicate that glucose is still favored as energy substrate during brain stimulation. Our findings are consistent with reduced reliance on glucose as the main energy substrate for resting brain metabolism during intoxication (presumably shifting to acetate or other ketones) and a priming of this shift in HDs, which might make them vulnerable to energy deficits during withdrawal. PMID:25698759

  15. Alcohol decreases baseline brain glucose metabolism more in heavy drinkers than controls but has no effect on stimulation-induced metabolic increases

    DOE PAGESBeta

    Volkow, Nora D.; Fowler, Joanna S.; Wang, Gene-Jack; Kojori, Eshan Shokri; Benveniste, Helene; Tomasi, Dardo

    2015-02-18

    During alcohol intoxication the human brain increases metabolism of acetate and decreases metabolism of glucose as energy substrate. Here we hypothesized that chronic heavy drinking facilitates this energy substrate shift both for baseline and stimulation conditions. To test this hypothesis we compared the effects of alcohol intoxication (0.75g/kg alcohol versus placebo) on brain glucose metabolism during video-stimulation (VS) versus when given with no-stimulation (NS), in 25 heavy drinkers (HD) and 23 healthy controls each of whom underwent four PET-¹⁸FDG scans. We showed that resting whole-brain glucose metabolism (placebo-NS) was lower in HD than controls (13%, p=0.04); that alcohol (compared tomore » placebo) decreased metabolism more in HD (20±13%) than controls (9±11%, p=0.005) and in proportion to daily alcohol consumption (r=0.36, p=0.01) but found that alcohol did not reduce the metabolic increases in visual cortex from VS in either group. Instead, VS reduced alcohol-induced decreases in whole-brain glucose metabolism (10±12%) compared to NS in both groups (15±13%, p=0.04), consistent with stimulation-related glucose metabolism enhancement. These findings corroborate our hypothesis that heavy alcohol consumption facilitates use of alternative energy substrates (i.e. acetate) for resting activity during intoxication, which might persist through early sobriety, but indicate that glucose is still favored as energy substrate during brain stimulation. Our findings are consistent with reduced reliance on glucose as the main energy substrate for resting brain metabolism during intoxication (presumably shifting to acetate or other ketones) and a priming of this shift in heavy drinkers, which might make them vulnerable to energy deficits during withdrawal.« less

  16. Alcohol decreases baseline brain glucose metabolism more in heavy drinkers than controls but has no effect on stimulation-induced metabolic increases

    SciTech Connect

    Volkow, Nora D.; Fowler, Joanna S.; Wang, Gene-Jack; Kojori, Eshan Shokri; Benveniste, Helene; Tomasi, Dardo

    2015-02-18

    During alcohol intoxication the human brain increases metabolism of acetate and decreases metabolism of glucose as energy substrate. Here we hypothesized that chronic heavy drinking facilitates this energy substrate shift both for baseline and stimulation conditions. To test this hypothesis we compared the effects of alcohol intoxication (0.75g/kg alcohol versus placebo) on brain glucose metabolism during video-stimulation (VS) versus when given with no-stimulation (NS), in 25 heavy drinkers (HD) and 23 healthy controls each of whom underwent four PET-¹⁸FDG scans. We showed that resting whole-brain glucose metabolism (placebo-NS) was lower in HD than controls (13%, p=0.04); that alcohol (compared to placebo) decreased metabolism more in HD (20±13%) than controls (9±11%, p=0.005) and in proportion to daily alcohol consumption (r=0.36, p=0.01) but found that alcohol did not reduce the metabolic increases in visual cortex from VS in either group. Instead, VS reduced alcohol-induced decreases in whole-brain glucose metabolism (10±12%) compared to NS in both groups (15±13%, p=0.04), consistent with stimulation-related glucose metabolism enhancement. These findings corroborate our hypothesis that heavy alcohol consumption facilitates use of alternative energy substrates (i.e. acetate) for resting activity during intoxication, which might persist through early sobriety, but indicate that glucose is still favored as energy substrate during brain stimulation. Our findings are consistent with reduced reliance on glucose as the main energy substrate for resting brain metabolism during intoxication (presumably shifting to acetate or other ketones) and a priming of this shift in heavy drinkers, which might make them vulnerable to energy deficits during withdrawal.

  17. Cardiac Energy Dependence on Glucose Increases Metabolites Related to Glutathione and Activates Metabolic Genes Controlled by Mechanistic Target of Rapamycin

    PubMed Central

    Schisler, Jonathan C.; Grevengoed, Trisha J.; Pascual, Florencia; Cooper, Daniel E.; Ellis, Jessica M.; Paul, David S.; Willis, Monte S.; Patterson, Cam; Jia, Wei; Coleman, Rosalind A.

    2015-01-01

    Background Long chain acyl‐CoA synthetases (ACSL) catalyze long‐chain fatty acids (FA) conversion to acyl‐CoAs. Temporal ACSL1 inactivation in mouse hearts (Acsl1H−/−) impaired FA oxidation and dramatically increased glucose uptake, glucose oxidation, and mTOR activation, resulting in cardiac hypertrophy. We used unbiased metabolomics and gene expression analyses to elucidate the cardiac cellular response to increased glucose use in a genetic model of inactivated FA oxidation. Methods and Results Metabolomics analysis identified 60 metabolites altered in Acsl1H−/− hearts, including 6 related to glucose metabolism and 11 to cysteine and glutathione pathways. Concurrently, global cardiac transcriptional analysis revealed differential expression of 568 genes in Acsl1H−/− hearts, a subset of which we hypothesized were targets of mTOR; subsequently, we measured the transcriptional response of several genes after chronic mTOR inhibition via rapamycin treatment during the period in which cardiac hypertrophy develops. Hearts from Acsl1H−/− mice increased expression of several Hif1α‐responsive glycolytic genes regulated by mTOR; additionally, expression of Scl7a5, Gsta1/2, Gdf15, and amino acid‐responsive genes, Fgf21, Asns, Trib3, Mthfd2, were strikingly increased by mTOR activation. Conclusions The switch from FA to glucose use causes mTOR‐dependent alterations in cardiac metabolism. We identified cardiac mTOR‐regulated genes not previously identified in other cellular models, suggesting heart‐specific mTOR signaling. Increased glucose use also changed glutathione‐related pathways and compensation by mTOR. The hypertrophy, oxidative stress, and metabolic changes that occur within the heart when glucose supplants FA as a major energy source suggest that substrate switching to glucose is not entirely benign. PMID:25713290

  18. Glucose metabolism and cardiac hypertrophy

    PubMed Central

    Kolwicz, Stephen C.; Tian, Rong

    2011-01-01

    The most notable change in the metabolic profile of hypertrophied hearts is an increased reliance on glucose with an overall reduced oxidative metabolism, i.e. a reappearance of the foetal metabolic pattern. In animal models, this change is attributed to the down-regulation of the transcriptional cascades promoting gene expression for fatty acid oxidation and mitochondrial oxidative phosphorylation in adult hearts. Impaired myocardial energetics in cardiac hypertrophy also triggers AMP-activated protein kinase (AMPK), leading to increased glucose uptake and glycolysis. Aside from increased reliance on glucose as an energy source, changes in other glucose metabolism pathways, e.g. the pentose phosphate pathway, the glucosamine biosynthesis pathway, and anaplerosis, are also noted in the hypertrophied hearts. Studies using transgenic mouse models and pharmacological compounds to mimic or counter the switch of substrate preference in cardiac hypertrophy have demonstrated that increased glucose metabolism in adult heart is not harmful and can be beneficial when it provides sufficient fuel for oxidative metabolism. However, improvement in the oxidative capacity and efficiency rather than the selection of the substrate is likely the ultimate goal for metabolic therapies. PMID:21502371

  19. Antihypertensive drugs and glucose metabolism

    PubMed Central

    Rizos, Christos V; Elisaf, Moses S

    2014-01-01

    Hypertension plays a major role in the development and progression of micro- and macrovascular disease. Moreover, increased blood pressure often coexists with additional cardiovascular risk factors such as insulin resistance. As a result the need for a comprehensive management of hypertensive patients is critical. However, the various antihypertensive drug categories have different effects on glucose metabolism. Indeed, angiotensin receptor blockers as well as angiotensin converting enzyme inhibitors have been associated with beneficial effects on glucose homeostasis. Calcium channel blockers (CCBs) have an overall neutral effect on glucose metabolism. However, some members of the CCBs class such as azelnidipine and manidipine have been shown to have advantageous effects on glucose homeostasis. On the other hand, diuretics and β-blockers have an overall disadvantageous effect on glucose metabolism. Of note, carvedilol as well as nebivolol seem to differentiate themselves from the rest of the β-blockers class, being more attractive options regarding their effect on glucose homeostasis. The adverse effects of some blood pressure lowering drugs on glucose metabolism may, to an extent, compromise their cardiovascular protective role. As a result the effects on glucose homeostasis of the various blood pressure lowering drugs should be taken into account when selecting an antihypertensive treatment, especially in patients which are at high risk for developing diabetes. PMID:25068013

  20. Impairment of vesicular ATP release affects glucose metabolism and increases insulin sensitivity

    PubMed Central

    Sakamoto, Shohei; Miyaji, Takaaki; Hiasa, Miki; Ichikawa, Reiko; Uematsu, Akira; Iwatsuki, Ken; Shibata, Atsushi; Uneyama, Hisayuki; Takayanagi, Ryoichi; Yamamoto, Akitsugu; Omote, Hiroshi; Nomura, Masatoshi; Moriyama, Yoshinori

    2014-01-01

    Neuroendocrine cells store ATP in secretory granules and release it along with hormones that may trigger a variety of cellular responses in a process called purinergic chemical transmission. Although the vesicular nucleotide transporter (VNUT) has been shown to be involved in vesicular storage and release of ATP, its physiological relevance in vivo is far less well understood. In Vnut knockout (Vnut−/−) mice, we found that the loss of functional VNUT in adrenal chromaffin granules and insulin granules in the islets of Langerhans led to several significant effects. Vesicular ATP accumulation and depolarization-dependent ATP release were absent in the chromaffin granules of Vnut−/− mice. Glucose-responsive ATP release was also absent in pancreatic β-cells in Vnut−/− mice, while glucose-responsive insulin secretion was enhanced to a greater extent than that in wild-type tissue. Vnut−/− mice exhibited improved glucose tolerance and low blood glucose upon fasting due to increased insulin sensitivity. These results demonstrated an essential role of VNUT in vesicular storage and release of ATP in neuroendocrine cells in vivo and suggest that vesicular ATP and/or its degradation products act as feedback regulators in catecholamine and insulin secretion, thereby regulating blood glucose homeostasis. PMID:25331291

  1. Impairment of vesicular ATP release affects glucose metabolism and increases insulin sensitivity.

    PubMed

    Sakamoto, Shohei; Miyaji, Takaaki; Hiasa, Miki; Ichikawa, Reiko; Uematsu, Akira; Iwatsuki, Ken; Shibata, Atsushi; Uneyama, Hisayuki; Takayanagi, Ryoichi; Yamamoto, Akitsugu; Omote, Hiroshi; Nomura, Masatoshi; Moriyama, Yoshinori

    2014-01-01

    Neuroendocrine cells store ATP in secretory granules and release it along with hormones that may trigger a variety of cellular responses in a process called purinergic chemical transmission. Although the vesicular nucleotide transporter (VNUT) has been shown to be involved in vesicular storage and release of ATP, its physiological relevance in vivo is far less well understood. In Vnut knockout (Vnut(-/-)) mice, we found that the loss of functional VNUT in adrenal chromaffin granules and insulin granules in the islets of Langerhans led to several significant effects. Vesicular ATP accumulation and depolarization-dependent ATP release were absent in the chromaffin granules of Vnut(-/-) mice. Glucose-responsive ATP release was also absent in pancreatic β-cells in Vnut(-/-) mice, while glucose-responsive insulin secretion was enhanced to a greater extent than that in wild-type tissue. Vnut(-/-) mice exhibited improved glucose tolerance and low blood glucose upon fasting due to increased insulin sensitivity. These results demonstrated an essential role of VNUT in vesicular storage and release of ATP in neuroendocrine cells in vivo and suggest that vesicular ATP and/or its degradation products act as feedback regulators in catecholamine and insulin secretion, thereby regulating blood glucose homeostasis. PMID:25331291

  2. Mice Deficient in Sfrp1 Exhibit Increased Adiposity, Dysregulated Glucose Metabolism, and Enhanced Macrophage Infiltration

    PubMed Central

    Henchey, Elizabeth M.; Wyman, Josephine; Bentley, Brooke; Brown, Melissa; Shimono, Akihiko; Schneider, Sallie S.

    2013-01-01

    The molecular mechanisms involved in the development of obesity and related complications remain unclear. Wnt signaling plays an important role in preadipocyte differentiation and adipogenesis. The expression of a Wnt antagonist, secreted frizzled related protein 1 (SFRP1), is increased in response to initial weight gain, then levels are reduced under conditions of extreme obesity in both humans and animals. Here we report that loss of Sfrp1 exacerbates weight gain, glucose homeostasis and inflammation in mice in response to diet induced obesity (DIO). Sfrp1-/- mice fed a high fat diet (HFD) exhibited an increase in body mass accompanied by increases in body fat percentage, visceral white adipose tissue (WAT) mass, and adipocyte size. Moreover, Sfrp1 deficiency increases the mRNA levels of key de novo lipid synthesis genes (Fasn, Acaca, Acly, Elovl, Scd1) and the transcription factors that regulate their expression (Lxr-α, Srebp1, Chreb, and Nr1h3) in WAT. Fasting glucose levels are elevated, glucose clearance is impaired, hepatic gluconeogenesis regulators are aberrantly upregulated (G6pc and Pck1), and glucose transporters are repressed (Slc2a2 and Slc2a4) in Sfrp1-/- mice fed a HFD. Additionally, we observed increased steatosis in the livers of Sfrp1-/- mice. When there is an expansion of adipose tissue there is a sustained inflammatory response accompanied by adipokine dysregulation, which leads to chronic subclinical inflammation. Thus, we assessed the inflammatory state of different tissues and revealed that Sfrp1-/- mice fed a HFD exhibited increased macrophage infiltration and expression of pro-inflammatory markers including IL-6, Nmnat, Tgf-β2, and SerpinE1. Our findings demonstrate that the expression of Sfrp1 is a critical factor required for maintaining appropriate cellular signaling in response to the onset of obesity. PMID:24339864

  3. High Glucose-Induced PC12 Cell Death by Increasing Glutamate Production and Decreasing Methyl Group Metabolism

    PubMed Central

    Chen, Minjiang; Zheng, Hong; Wei, Tingting; Wang, Dan; Xia, Huanhuan; Zhao, Liangcai; Ji, Jiansong

    2016-01-01

    Objective. High glucose- (HG-) induced neuronal cell death is responsible for the development of diabetic neuropathy. However, the effect of HG on metabolism in neuronal cells is still unclear. Materials and Methods. The neural-crest derived PC12 cells were cultured for 72 h in the HG (75 mM) or control (25 mM) groups. We used NMR-based metabolomics to examine both intracellular and extracellular metabolic changes in HG-treated PC12 cells. Results. We found that the reduction in intracellular lactate may be due to excreting more lactate into the extracellular medium under HG condition. HG also induced the changes of other energy-related metabolites, such as an increased succinate and creatine phosphate. Our results also reveal that the synthesis of glutamate from the branched-chain amino acids (isoleucine and valine) may be enhanced under HG. Increased levels of intracellular alanine, phenylalanine, myoinositol, and choline were observed in HG-treated PC12 cells. In addition, HG-induced decreases in intracellular dimethylamine, dimethylglycine, and 3-methylhistidine may indicate a downregulation of methyl group metabolism. Conclusions. Our metabolomic results suggest that HG-induced neuronal cell death may be attributed to a series of metabolic changes, involving energy metabolism, amino acids metabolism, osmoregulation and membrane metabolism, and methyl group metabolism. PMID:27413747

  4. High Glucose-Induced PC12 Cell Death by Increasing Glutamate Production and Decreasing Methyl Group Metabolism.

    PubMed

    Chen, Minjiang; Zheng, Hong; Wei, Tingting; Wang, Dan; Xia, Huanhuan; Zhao, Liangcai; Ji, Jiansong; Gao, Hongchang

    2016-01-01

    Objective. High glucose- (HG-) induced neuronal cell death is responsible for the development of diabetic neuropathy. However, the effect of HG on metabolism in neuronal cells is still unclear. Materials and Methods. The neural-crest derived PC12 cells were cultured for 72 h in the HG (75 mM) or control (25 mM) groups. We used NMR-based metabolomics to examine both intracellular and extracellular metabolic changes in HG-treated PC12 cells. Results. We found that the reduction in intracellular lactate may be due to excreting more lactate into the extracellular medium under HG condition. HG also induced the changes of other energy-related metabolites, such as an increased succinate and creatine phosphate. Our results also reveal that the synthesis of glutamate from the branched-chain amino acids (isoleucine and valine) may be enhanced under HG. Increased levels of intracellular alanine, phenylalanine, myoinositol, and choline were observed in HG-treated PC12 cells. In addition, HG-induced decreases in intracellular dimethylamine, dimethylglycine, and 3-methylhistidine may indicate a downregulation of methyl group metabolism. Conclusions. Our metabolomic results suggest that HG-induced neuronal cell death may be attributed to a series of metabolic changes, involving energy metabolism, amino acids metabolism, osmoregulation and membrane metabolism, and methyl group metabolism. PMID:27413747

  5. Paradoxical effects of increased expression of PGC-1α on muscle mitochondrial function and insulin-stimulated muscle glucose metabolism

    PubMed Central

    Choi, Cheol Soo; Befroy, Douglas E.; Codella, Roberto; Kim, Sheene; Reznick, Richard M.; Hwang, Yu-Jin; Liu, Zhen-Xiang; Lee, Hui-Young; Distefano, Alberto; Samuel, Varman T.; Zhang, Dongyan; Cline, Gary W.; Handschin, Christoph; Lin, Jiandie; Petersen, Kitt F.; Spiegelman, Bruce M.; Shulman, Gerald I.

    2008-01-01

    Peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α has been shown to play critical roles in regulating mitochondria biogenesis, respiration, and muscle oxidative phenotype. Furthermore, reductions in the expression of PGC-1α in muscle have been implicated in the pathogenesis of type 2 diabetes. To determine the effect of increased muscle-specific PGC-1α expression on muscle mitochondrial function and glucose and lipid metabolism in vivo, we examined body composition, energy balance, and liver and muscle insulin sensitivity by hyperinsulinemic-euglycemic clamp studies and muscle energetics by using 31P magnetic resonance spectroscopy in transgenic mice. Increased expression of PGC-1α in muscle resulted in a 2.4-fold increase in mitochondrial density, which was associated with an ≈60% increase in the unidirectional rate of ATP synthesis. Surprisingly, there was no effect of increased muscle PGC-1α expression on whole-body energy expenditure, and PGC-1α transgenic mice were more prone to fat-induced insulin resistance because of decreased insulin-stimulated muscle glucose uptake. The reduced insulin-stimulated muscle glucose uptake could most likely be attributed to a relative increase in fatty acid delivery/triglyceride reesterfication, as reflected by increased expression of CD36, acyl-CoA:diacylglycerol acyltransferase1, and mitochondrial acyl-CoA:glycerol-sn-3-phosphate acyltransferase, that may have exceeded mitochondrial fatty acid oxidation, resulting in increased intracellular lipid accumulation and an increase in the membrane to cytosol diacylglycerol content. This, in turn, caused activation of PKCθ, decreased insulin signaling at the level of insulin receptor substrate-1 (IRS-1) tyrosine phosphorylation, and skeletal muscle insulin resistance. PMID:19066218

  6. Glucose Metabolism in Neisseria gonorrhoeae

    PubMed Central

    Morse, Stephen A.; Stein, Stefanie; Hines, James

    1974-01-01

    The metabolism of glucose was examined in several clinical isolates of Neisseria gonorrhoeae. Radiorespirometric studies revealed that growing cells metabolized glucose by a combination on the Entner-Doudoroff and pentose phosphate pathways. A portion of the glyceraldehyde-3-phosphate formed via the Entner-Doudoroff pathway was recycled by conversion to glucose-6-phosphate. Subsequent catabolism of this glucose-6-phosphate by either the Entner-Doudoroff or pentose phosphate pathways yielded CO2 from the original C6 of glucose. Enzyme analyses confirmed the presence of all enzymes of the Entner-Doudoroff, pentose phosphate, and Embden-Meyerhof-Parnas pathways. There was always a high specific activity of glucose-6-phosphate dehydrogenase (EC 1.1.1.49) relative to that of 6-phosphogluconate dehydrogenase (EC 1.1.1.44). The glucose-6-phosphate dehydrogenase utilized either nicotinamide adenine dinucleotide phosphate or nicotinamide adenine dinucleotide as electron acceptor. Acetate was the only detectable nongaseous end product of glucose metabolism. Following the disappearance of glucose, acetate was metabolized by the tricarboxylic acid cycle as evidenced by the preferential oxidation of [1-14C]acetate over that of [2-14C]acetate. When an aerobically grown log-phase culture was subjected to anaerobic conditions, lactate and acetate were formed from glucose. Radiorespirometric studies showed that under these conditions, glucose was dissimilated entirely by the Entner-Doudoroff pathway. Further studies determined that this anaerobic dissimilation of glucose was not growth dependent. PMID:4156358

  7. Glucose Transporters in Cardiac Metabolism and Hypertrophy

    PubMed Central

    Shao, Dan; Tian, Rong

    2016-01-01

    The heart is adapted to utilize all classes of substrates to meet the high-energy demand, and it tightly regulates its substrate utilization in response to environmental changes. Although fatty acids are known as the predominant fuel for the adult heart at resting stage, the heart switches its substrate preference toward glucose during stress conditions such as ischemia and pathological hypertrophy. Notably, increasing evidence suggests that the loss of metabolic flexibility associated with increased reliance on glucose utilization contribute to the development of cardiac dysfunction. The changes in glucose metabolism in hypertrophied hearts include altered glucose transport and increased glycolysis. Despite the role of glucose as an energy source, changes in other nonenergy producing pathways related to glucose metabolism, such as hexosamine biosynthetic pathway and pentose phosphate pathway, are also observed in the diseased hearts. This article summarizes the current knowledge regarding the regulation of glucose transporter expression and translocation in the heart during physiological and pathological conditions. It also discusses the signaling mechanisms governing glucose uptake in cardiomyocytes, as well as the changes of cardiac glucose metabolism under disease conditions. PMID:26756635

  8. Increased airway glucose increases airway bacterial load in hyperglycaemia

    PubMed Central

    Gill, Simren K.; Hui, Kailyn; Farne, Hugo; Garnett, James P.; Baines, Deborah L.; Moore, Luke S.P.; Holmes, Alison H.; Filloux, Alain; Tregoning, John S.

    2016-01-01

    Diabetes is associated with increased frequency of hospitalization due to bacterial lung infection. We hypothesize that increased airway glucose caused by hyperglycaemia leads to increased bacterial loads. In critical care patients, we observed that respiratory tract bacterial colonisation is significantly more likely when blood glucose is high. We engineered mutants in genes affecting glucose uptake and metabolism (oprB, gltK, gtrS and glk) in Pseudomonas aeruginosa, strain PAO1. These mutants displayed attenuated growth in minimal medium supplemented with glucose as the sole carbon source. The effect of glucose on growth in vivo was tested using streptozocin-induced, hyperglycaemic mice, which have significantly greater airway glucose. Bacterial burden in hyperglycaemic animals was greater than control animals when infected with wild type but not mutant PAO1. Metformin pre-treatment of hyperglycaemic animals reduced both airway glucose and bacterial load. These data support airway glucose as a critical determinant of increased bacterial load during diabetes. PMID:27273266

  9. Increased airway glucose increases airway bacterial load in hyperglycaemia.

    PubMed

    Gill, Simren K; Hui, Kailyn; Farne, Hugo; Garnett, James P; Baines, Deborah L; Moore, Luke S P; Holmes, Alison H; Filloux, Alain; Tregoning, John S

    2016-01-01

    Diabetes is associated with increased frequency of hospitalization due to bacterial lung infection. We hypothesize that increased airway glucose caused by hyperglycaemia leads to increased bacterial loads. In critical care patients, we observed that respiratory tract bacterial colonisation is significantly more likely when blood glucose is high. We engineered mutants in genes affecting glucose uptake and metabolism (oprB, gltK, gtrS and glk) in Pseudomonas aeruginosa, strain PAO1. These mutants displayed attenuated growth in minimal medium supplemented with glucose as the sole carbon source. The effect of glucose on growth in vivo was tested using streptozocin-induced, hyperglycaemic mice, which have significantly greater airway glucose. Bacterial burden in hyperglycaemic animals was greater than control animals when infected with wild type but not mutant PAO1. Metformin pre-treatment of hyperglycaemic animals reduced both airway glucose and bacterial load. These data support airway glucose as a critical determinant of increased bacterial load during diabetes. PMID:27273266

  10. Metabolomic analysis of long-term spontaneous exercise in mice suggests increased lipolysis and altered glucose metabolism when animals are at rest.

    PubMed

    Monleon, Daniel; Garcia-Valles, Rebeca; Morales, Jose Manuel; Brioche, Thomas; Olaso-Gonzalez, Gloria; Lopez-Grueso, Raul; Gomez-Cabrera, Mari Carmen; Viña, Jose

    2014-11-15

    Exercise has been associated with several beneficial effects and is one of the major modulators of metabolism. The working muscle produces and releases substances during exercise that mediate the adaptation of the muscle but also improve the metabolic flexibility of the complete organism, leading to adjustable substrate utilization. Metabolomic studies on physical exercise are scarce and most of them have been focused on the effects of intense exercise in professional sportsmen. The aim of our study was to determine plasma metabolomic adaptations in mice after a long-term spontaneous exercise intervention study (18 mo). The metabolic changes induced by long-term spontaneous exercise were sufficient to achieve complete discrimination between groups in the principal component analysis scores plot. We identified plasma indicators of an increase in lipolysis (elevated unsaturated fatty acids and glycerol), a decrease in glucose and insulin plasma levels and in heart glucose consumption (by PET), and altered glucose metabolism (decreased alanine and lactate) in the wheel running group. Collectively these data are compatible with an increase in skeletal muscle insulin sensitivity in the active mice. We also found an increase in amino acids involved in catecholamine synthesis (tyrosine and phenylalanine), in the skeletal muscle pool of creatine phosphate and taurine, and changes in phospholipid metabolism (phosphocholine and choline in lipids) between the sedentary and the active mice. In conclusion, long-term spontaneous wheel running induces significant plasma and tissue (heart) metabolic responses that remain even when the animal is at rest. PMID:25190738

  11. Metabolic block at early stages of the glycolytic pathway activates the Rcs phosphorelay system via increased synthesis of dTDP-glucose in Escherichia coli.

    PubMed

    El-Kazzaz, Waleed; Morita, Teppei; Tagami, Hideaki; Inada, Toshifumi; Aiba, Hiroji

    2004-02-01

    A mutational block in the early stages of the glycolytic pathway facilitates the degradation of the ptsG mRNA encoding the major glucose transporter IICBGlc in Escherichia coli. The degradation is RNase E dependent and is correlated with the accumulation of either glucose-6-P or fructose-6-P (Kimata et al., 2001, EMBO J 20: 3587-3595; Morita et al., 2003, J Biol Chem 278: 15608-15614). In this paper, we investigate additional physiological effects resulting from the accumulation of glucose-6-P caused by a mutation in pgi encoding phosphoglucose isomerase, focusing on changes in gene expression. The addition of glucose to the pgi strain caused significant growth inhibition, in particular in the mlc background. Cell growth then gradually resumed as the level of IICBGlc decreased. We found that the transcription of the cps operon, encoding a series of proteins responsible for the synthesis of colanic acid, was markedly but transiently induced under this metabolic stress. Both genetic and biochemical studies revealed that the metabolic stress induces cps transcription by activating the RcsC/YojN/RcsB signal transduction system. Overexpression of glucose-6-P dehydrogenase eliminated both growth inhibition and cps induction by reducing the glucose-6-P level. Mutations in genes responsible for the synthesis of glucose-1-P and/or dTDP-glucose eliminated the activation of the Rcs system by the metabolic stress. Taken together, we conclude that an increased synthesis of dTDP-glucose activates the Rcs phosphorelay system, presumably by affecting the synthesis of oligosaccharides for enterobacterial common antigen and O-antigen. PMID:14763984

  12. Glucose metabolism in diabetic blood vessels

    SciTech Connect

    Brown, B.J.; Crass, M.F. III

    1986-03-05

    Since glycolysis appears to be coupled to active ion transport in vascular smooth muscle, alterations in glucose metabolism may contribute to cellular dysfunction and angiopathy in diabetes. Uptake and utilization of glucose were studied in perfused blood vessels in which pulsatile flow and perfusion pressure were similar to those measured directly in vivo. Thoracic aortae isolated from 8-wk alloxan diabetic (D) and nondiabetic control rabbits were cannulated, tethered, and perfused with oxygenated buffer containing 7 or 25 mM glucose and tracer amounts of glucose-U/sup -14/ C. Norepinephrine (NE) (10/sup -6/ M) and/or insulin (I) (150 ..mu..U/ml) and albumin (0.2%) were added. NE-induced tension development increased glucose uptake 39% and /sup 14/CO/sub 2/ and lactate production 2.3-fold. With 7 mM glucose, marked decreases in glucose uptake (74%), /sup 14/CO/sub 2/ (68%), lactate (30%), total tissue glycogen (75%), and tissue phospholipids (70%) were observed in D. Addition of I or elevation of exogenous glucose to 25 mM normalized glucose uptake, but had differential effects on the pattern of substrate utilization. Thus, in D, there was a marked depression of vascular glucose metabolism that was partially reversed by addition of low concentrations of insulin or D levels of glucose.

  13. Fetal rat metabonome alteration by prenatal caffeine ingestion probably due to the increased circulatory glucocorticoid level and altered peripheral glucose and lipid metabolic pathways

    SciTech Connect

    Liu, Yansong; Xu, Dan; Feng, Jianghua; Kou, Hao; Liang, Gai; Yu, Hong; He, Xiaohua; Zhang, Baifang; Chen, Liaobin; Magdalou, Jacques; Wang, Hui

    2012-07-15

    The aims of this study were to clarify the metabonome alteration in fetal rats after prenatal caffeine ingestion and to explore the underlying mechanism pertaining to the increased fetal circulatory glucocorticoid (GC). Pregnant Wistar rats were daily intragastrically administered with different doses of caffeine (0, 20, 60 and 180 mg/kg) from gestational days (GD) 11 to 20. Metabonome of fetal plasma and amniotic fluid on GD20 were analyzed by {sup 1}H nuclear magnetic resonance-based metabonomics. Gene and protein expressions involved in the GC metabolism, glucose and lipid metabolic pathways in fetal liver and gastrocnemius were measured by real-time RT-PCR and immunohistochemistry. Fetal plasma metabonome were significantly altered by caffeine, which presents as the elevated α- and β‐glucose, reduced multiple lipid contents, varied apolipoprotein contents and increased levels of a number of amino acids. The metabonome of amniotic fluids showed a similar change as that in fetal plasma. Furthermore, the expressions of 11β-hydroxysteroid dehydrogenase 2 (11β-HSD-2) were decreased, while the level of blood GC and the expressions of 11β-HSD-1 and glucocorticoid receptor (GR) were increased in fetal liver and gastrocnemius. Meanwhile, the expressions of insulin-like growth factor 1 (IGF-1), IGF-1 receptor and insulin receptor were decreased, while the expressions of adiponectin receptor 2, leptin receptors and AMP-activated protein kinase α2 were increased after caffeine treatment. Prenatal caffeine ingestion characteristically change the fetal metabonome, which is probably attributed to the alterations of glucose and lipid metabolic pathways induced by increased circulatory GC, activated GC metabolism and enhanced GR expression in peripheral metabolic tissues. -- Highlights: ► Prenatal caffeine ingestion altered the metabonome of IUGR fetal rats. ► Caffeine altered the glucose and lipid metabolic pathways of IUGR fetal rats. ► Prenatal caffeine

  14. Estimation of liver glucose metabolism after refeeding

    SciTech Connect

    Rognstad, R.

    1987-05-01

    Refeeding or infusing glucose to rats fasted for 24 hr or more causes rapid liver glycogen synthesis, the carbon source now considered to be largely from gluconeogenesis. While substrate cycling between plasma glucose and liver glucose-6P is known to occur, this cycling has apparently been ignored when calculations are made of % contribution of direct and indirect pathways to liver glycogen synthesis, or when hepatic glucose output is calculated from glucose turnover minus the glucose infusion rate. They show that, isotopically, an estimate of the fluxes of liver glucokinase and glucose-6-phosphatase is required to quantitate sources of carbon for liver glycogen synthesis, and to measure hepatic glucose output (or uptake). They propose a method to estimate these fluxes, involving a short infusion of a /sup 14/C labelled gluconeogenic precursor plus (6T)glucose, with determination of isotopic yields in liver glycogen and total glucose. Given also the rate of liver glycogen synthesis, this procedure permits the estimation of net gluconeogenesis and hepatic glucose output or uptake. Also, in vitro evidence against the notion of a drastic zonation of liver carbohydrate metabolism is presented, e.g. raising the glucose concentration from 10 to 25 mM increases the /sup 14/C yield from H/sup 14/CO/sub 3//sup -/ in lactate, with the increased pyruvate kinase flux and decreased gluconeogenesis occurring in the same cell type, not opposing pathways in different hepatocyte types (as has been postulated by some to occur in vivo after refeeding.

  15. Regulation of Blood Glucose by Hypothalamic Pyruvate Metabolism

    NASA Astrophysics Data System (ADS)

    Lam, Tony K. T.; Gutierrez-Juarez, Roger; Pocai, Alessandro; Rossetti, Luciano

    2005-08-01

    The brain keenly depends on glucose for energy, and mammalians have redundant systems to control glucose production. An increase in circulating glucose inhibits glucose production in the liver, but this negative feedback is impaired in type 2 diabetes. Here we report that a primary increase in hypothalamic glucose levels lowers blood glucose through inhibition of glucose production in rats. The effect of glucose requires its conversion to lactate followed by stimulation of pyruvate metabolism, which leads to activation of adenosine triphosphate (ATP)-sensitive potassium channels. Thus, interventions designed to enhance the hypothalamic sensing of glucose may improve glucose homeostasis in diabetes.

  16. Glucose metabolism in rat retinal pigment epithelium.

    PubMed

    Coffe, Víctor; Carbajal, Raymundo C; Salceda, Rocío

    2006-01-01

    The retinal pigment epithelium (RPE) is the major transport pathway for exchange of metabolites and ions between choroidal blood supply and the neural retina. To gain insight into the mechanisms controlling glucose metabolism in RPE and its possible relationship to retinopathy, we studied the influence of different glucose concentrations on glycogen and lactate levels and CO(2) production in RPE from normal and streptozotocin-treated diabetic rats. Incubation of normal RPE in the absence of glucose caused a decrease in lactate production and glycogen content. In normal RPE, increasing glucose concentrations from 5.6 mM to 30 mM caused a four-fold increase in glucose accumulation and CO(2) yield, as well as reduction in lactate and glycogen production. In RPE from diabetic rats glucose accumulation did not increase in the presence of high glucose substrate, but it showed a four- and a seven-fold increase in CO(2) production through the mitochondrial and pentose phosphate pathways, respectively. We found high glycogen levels in RPE which can be used as an energy reserve for RPE itself and/or neural retina. Findings further show that the RPE possesses a high oxidative capacity. The large increase in glucose shunting to the pentose phosphate pathway in diabetic retina exposed to high glucose suggests a need for reducing capacity, consistent with increased oxidative stress. PMID:16475003

  17. Circadian control of glucose metabolism

    PubMed Central

    Kalsbeek, Andries; la Fleur, Susanne; Fliers, Eric

    2014-01-01

    The incidence of obesity and type 2 diabetes mellitus (T2DM) has risen to epidemic proportions. The pathophysiology of T2DM is complex and involves insulin resistance, pancreatic β-cell dysfunction and visceral adiposity. It has been known for decades that a disruption of biological rhythms (which happens the most profoundly with shift work) increases the risk of developing obesity and T2DM. Recent evidence from basal studies has further sparked interest in the involvement of daily rhythms (and their disruption) in the development of obesity and T2DM. Most living organisms have molecular clocks in almost every tissue, which govern rhythmicity in many domains of physiology, such as rest/activity rhythms, feeding/fasting rhythms, and hormonal secretion. Here we present the latest research describing the specific role played by the molecular clock mechanism in the control of glucose metabolism and speculate on how disruption of these tissue clocks may lead to the disturbances in glucose homeostasis. PMID:24944897

  18. Sleep Control, GPCRs, and Glucose Metabolism.

    PubMed

    Tsuneki, Hiroshi; Sasaoka, Toshiyasu; Sakurai, Takeshi

    2016-09-01

    Modern lifestyles prolong daily activities into the nighttime, disrupting circadian rhythms, which may cause sleep disturbances. Sleep disturbances have been implicated in the dysregulation of blood glucose levels and reported to increase the risk of type 2 diabetes (T2D) and diabetic complications. Sleep disorders are treated using anti-insomnia drugs that target ionotropic and G protein-coupled receptors (GPCRs), including γ-aminobutyric acid (GABA) agonists, melatonin agonists, and orexin receptor antagonists. A deeper understanding of the effects of these medications on glucose metabolism and their underlying mechanisms of action is crucial for the treatment of diabetic patients with sleep disorders. In this review we focus on the beneficial impact of sleep on glucose metabolism and suggest a possible strategy for therapeutic intervention against sleep-related metabolic disorders. PMID:27461005

  19. [Glucose metabolic changes in stress].

    PubMed

    Foia, L; Costuleanu, N; Trandafirescu, M; Saila, V; Pavel, M

    1999-01-01

    Provision of a better understanding of the pathogenic pathways underlying injured sugar metabolism during stress should ideally translate into a more rational approach to the provision of nutritional support. Patients with burns, trauma, severe injuries or infections commonly develop a hypermetabolic state that is associated with several changes in carbohydrate metabolism. The hypermetabolic state is induced either by the area of injury and by organs involved in the immunologic response to stress; further it determines a glycemic milieu which will be directed toward satisfaction of the requirements for glucose as an energy support. PMID:10756928

  20. Glucose metabolism in patients with Cushing's syndrome.

    PubMed

    Bowes, S B; Benn, J J; Scobie, I N; Umpleby, A M; Lowy, C; Sönksen, P H

    1991-04-01

    Glucose intolerance, sometimes severe enough to cause frank diabetes mellitus, is a frequent feature of Cushing's syndrome. The primary cause of the hyperglycaemia, whether due to glucose over-production or under-utilization, remains unresolved. We therefore measured glucose turnover using an intravenous bolus of 3-3H glucose in 14 normoglycaemic patients with Cushing's syndrome and 14 control subjects. Seven of the patients with Cushing's syndrome were also restudied post-operatively. Plasma glucose concentrations were similar in all three groups whereas glucose metabolic clearance rate (MCR) (1.80 +/- 0.06 ml/min/kg) and glucose turnover rate (9.09 +/- 0.36 mumol/min/kg) were significantly reduced in patients with Cushing's syndrome compared to normal subjects (2.21 +/- 0.1; P less than 0.001; 10.90 +/- 0.50; P less than 0.01) and rose post-operatively to normal values (2.35 +/- 0.14 ml/min/kg; 11.07 +/- 0.48 mumol/min/kg). We conclude from these results that the hyperglycaemia sometimes found in Cushing's syndrome may be primarily due to decreased utilization rather than increased glucose production. PMID:1879061

  1. Dexamethasone increases glucose cycling, but not glucose production, in healthy subjects

    SciTech Connect

    Wajngot, A.; Khan, A.; Giacca, A.; Vranic, M.; Efendic, S. )

    1990-11-01

    We established that measurement of glucose fluxes through glucose-6-phosphatase (G-6-Pase; hepatic total glucose output, HTGO), glucose cycling (GC), and glucose production (HGP), reveals early diabetogenic changes in liver metabolism. To elucidate the mechanism of the diabetogenic effect of glucocorticoids, we treated eight healthy subjects with oral dexamethasone (DEX; 15 mg over 48 h) and measured HTGO with (2-3H)glucose and HGP with (6-3H)glucose postabsorptively and during a 2-h glucose infusion (11.1 mumol.kg-1.min-1). (2-3H)- minus (6-3H)glucose equals GC. DEX significantly increased plasma glucose, insulin, C peptide, and HTGO, while HGP was unchanged. In controls and DEX, glucose infusion suppressed HTGO (82 vs. 78%) and HGP (87 vs. 91%). DEX increased GC postabsorptively (three-fold) P less than 0.005 and during glucose infusion (P less than 0.05) but decreased metabolic clearance and glucose uptake (Rd), which eventually normalized, however. Because DEX increased HTGO (G-6-Pase) and not HGP (glycogenolysis + gluconeogenesis), we assume that DEX increases HTGO and GC in humans by activating G-6-Pase directly, rather than by expanding the glucose 6-phosphate pool. Hyperglycemia caused by peripheral effects of DEX can also contribute to an increase in GC by activating glucokinase. Therefore, measurement of glucose fluxes through G-6-Pase and GC revealed significant early effects of DEX on hepatic glucose metabolism, which are not yet reflected in HGP.

  2. Modeling Glucose Metabolism in the Kidney.

    PubMed

    Chen, Ying; Fry, Brendan C; Layton, Anita T

    2016-06-01

    The mammalian kidney consumes a large amount of energy to support the reabsorptive work it needs to excrete metabolic wastes and to maintain homeostasis. Part of that energy is supplied via the metabolism of glucose. To gain insights into the transport and metabolic processes in the kidney, we have developed a detailed model of the renal medulla of the rat kidney. The model represents water and solute flows, transmural fluxes, and biochemical reactions in the luminal fluid of the nephrons and vessels. In particular, the model simulates the metabolism of oxygen and glucose. Using that model, we have identified parameters concerning glucose transport and basal metabolism that yield predicted blood glucose concentrations that are consistent with experimental measurements. The model predicts substantial axial gradients in blood glucose levels along various medullary structures. Furthermore, the model predicts that in the inner medulla, owing to the relatively limited blood flow and low tissue oxygen tension, anaerobic metabolism of glucose dominates. PMID:27371260

  3. Sex steroids and glucose metabolism.

    PubMed

    Allan, Carolyn A

    2014-01-01

    Testosterone levels are lower in men with metabolic syndrome and type 2 diabetes mellitus (T2DM) and also predict the onset of these adverse metabolic states. Body composition (body mass index, waist circumference) is an important mediator of this relationship. Sex hormone binding globulin is also inversely associated with insulin resistance and T2DM but the data regarding estrogen are inconsistent. Clinical models of androgen deficiency including Klinefelter's syndrome and androgen deprivation therapy in the treatment of advanced prostate cancer confirm the association between androgens and glucose status. Experimental manipulation of the insulin/glucose milieu and suppression of endogenous testicular function suggests the relationship between androgens and insulin sensitivity is bidirectional. Androgen therapy in men without diabetes is not able to differentiate the effect on insulin resistance from that on fat mass, in particular visceral adiposity. Similarly, several small clinical studies have examined the efficacy of exogenous testosterone in men with T2DM, however, the role of androgens, independent of body composition, in modifying insulin resistance is uncertain. PMID:24457840

  4. Glucose metabolism and hexosamine pathway regulate oncogene-induced senescence.

    PubMed

    Gitenay, D; Wiel, C; Lallet-Daher, H; Vindrieux, D; Aubert, S; Payen, L; Simonnet, H; Bernard, D

    2014-01-01

    Oncogenic stress-induced senescence (OIS) prevents the ability of oncogenic signals to induce tumorigenesis. It is now largely admitted that the mitogenic effect of oncogenes requires metabolic adaptations to respond to new energetic and bio constituent needs. Yet, whether glucose metabolism affects OIS response is largely unknown. This is largely because of the fact that most of the OIS cellular models are cultivated in glucose excess. In this study, we used human epithelial cells, cultivated without glucose excess, to study alteration and functional role of glucose metabolism during OIS. We report a slowdown of glucose uptake and metabolism during OIS. Increasing glucose metabolism by expressing hexokinase2 (HK2), which converts glucose to glucose-6-phosphate (G6P), favors escape from OIS. Inversely, expressing a glucose-6-phosphatase, [corrected] pharmacological inhibition of HK2, or adding nonmetabolizable glucose induced a premature senescence. Manipulations of various metabolites covering G6P downstream pathways (hexosamine, glycolysis, and pentose phosphate pathways) suggest an unexpected role of the hexosamine pathway in controlling OIS. Altogether, our results show that decreased glucose metabolism occurs during and participates to OIS. PMID:24577087

  5. [Glucose Metabolism: Stress Hyperglycemia and Glucose Control].

    PubMed

    Tanaka, Katsuya; Tsutsumi, Yasuo M

    2016-05-01

    It is important for the anesthesiologists to understand pathophysiology of perioperative stress hyperglycemia, because it offers strategies for treatment of stress hyperglycemia. The effect of glucose tolerance is different in the choice of the anesthetic agent used in daily clinical setting. Specifically, the volatile anesthetics inhibit insulin secretion after glucose load and affects glucose tolerance. During minor surgery by the remifentanil anesthesia, the stress reaction is hard to be induced, suggesting that we should consider low-dose glucose load. Finally it is necessary to perform the glycemic control of the patients who fell into stress hyperglycemia depending on the individual patient. However, there are a lot of questions to be answered in the future. The prognosis of the perioperative patients is more likely to be greatly improved if we can control stress hyperglycemia. PMID:27319094

  6. Hyperosmolar sodium chloride is toxic to cultured neurons and causes reduction of glucose metabolism and ATP levels, an increase in glutamate uptake, and a reduction in cytosolic calcium.

    PubMed

    Morland, Cecilie; Pettersen, Mi Nguyen; Hassel, Bjørnar

    2016-05-01

    Elevation of serum sodium, hypernatremia, which may occur during dehydration or treatment with sodium chloride, may cause brain dysfunction and damage, but toxic mechanisms are poorly understood. We found that exposure to excess NaCl, 10-100mmol/L, for 20h caused cell death in cultured cerebellar granule cells (neurons). Toxicity was due to Na(+), since substituting excess Na(+) with choline reduced cell death to control levels, whereas gluconate instead of excess Cl(-) did not. Prior to cell death from hyperosmolar NaCl, glucose consumption and lactate formation were reduced, and intracellular aspartate levels were elevated, consistent with reduced glycolysis or glucose uptake. Concomitantly, the level of ATP became reduced. Pyruvate, 10mmol/L, reduced NaCl-induced cell death. The extracellular levels of glutamate, taurine, and GABA were concentration-dependently reduced by excess NaCl; high-affinity glutamate uptake increased. High extracellular [Na(+)] caused reduction in intracellular free [Ca(2+)], but a similar effect was seen with mannitol, which was not neurotoxic. We suggest that inhibition of glucose metabolism with ensuing loss of ATP is a neurotoxic mechanism of hyperosmolar sodium, whereas increased uptake of extracellular neuroactive amino acids and reduced intracellular [Ca(2+)] may, if they occur in vivo, contribute to the cerebral dysfunction and delirium described in hypernatremia. PMID:26994581

  7. Persistent impaired glucose metabolism in a zebrafish hyperglycemia model.

    PubMed

    Capiotti, Katiucia Marques; Antonioli, Régis; Kist, Luiza Wilges; Bogo, Maurício Reis; Bonan, Carla Denise; Da Silva, Rosane Souza

    2014-05-01

    Diabetes mellitus (DM) affects over 10% of the world's population. Hyperglycemia is the main feature for the diagnosis of this disease. The zebrafish (Danio rerio) is an established model organism for the study of various metabolic diseases. In this paper, hyperglycemic zebrafish, when immersed in a 111 mM glucose solution for 14 days, developed increased glycation of proteins from the eyes, decreased mRNA levels of insulin receptors in the muscle, and a reversion of high blood glucose level after treatment with anti-diabetic drugs (glimepiride and metformin) even after 7 days of glucose withdrawal. Additionally, hyperglycemic zebrafish developed an impaired response to exogenous insulin, which was recovered after 7 days of glucose withdrawal. These data suggest that the exposure of adult zebrafish to high glucose concentration is able to induce persistent metabolic changes probably underlined by a hyperinsulinemic state and impaired peripheral glucose metabolism. PMID:24704522

  8. Fast Food Intake Increases the Incidence of Metabolic Syndrome in Children and Adolescents: Tehran Lipid and Glucose Study.

    PubMed

    Asghari, Golaleh; Yuzbashian, Emad; Mirmiran, Parvin; Mahmoodi, Behnaz; Azizi, Fereidoun

    2015-01-01

    The aim of the study was to evaluate the association between fast food consumption and incidence of metabolic syndrome (MetS) and its components among children and adolescents over a 3.6 year follow-up. Dietary data of 424 healthy subjects, aged 6-18 years, was collected using a valid and reliable food frequency questionnaire. Metabolic syndrome was defined according to the Cook et al criteria. Consumption of fast foods including hamburgers, sausages, bologna (beef), and fried potatoes was calculated and further categorized to quartiles. Multiple logistic regression models were used to estimate the incidence of MetS and its components in each quartile of fast food intake. The incidence of MetS was 11.3% after a 3.6 year follow up. In the fully adjusted model, compared to the lowest quartile of fast food intake, individuals in the highest had odds ratios of 2.96 (95% CI: 1.02-8.63; P for trend<0.001), 2.82 (95% CI: 1.01-7.87; P for trend = 0.037), and 2.58 (95% CI: 1.01-6.61; P for trend = 0.009) for incidence of MetS, hypertriglyceridemia, and abdominal obesity, respectively. No significant association was found between fast food intakes and other components of MetS. Fast food consumption is associated with the incidence of MetS, abdominal obesity, and hypertriglyceridemia in Tehranian children and adolescents. PMID:26447855

  9. Fast Food Intake Increases the Incidence of Metabolic Syndrome in Children and Adolescents: Tehran Lipid and Glucose Study

    PubMed Central

    Asghari, Golaleh; Yuzbashian, Emad; Mirmiran, Parvin; Mahmoodi, Behnaz; Azizi, Fereidoun

    2015-01-01

    The aim of the study was to evaluate the association between fast food consumption and incidence of metabolic syndrome (MetS) and its components among children and adolescents over a 3.6 year follow-up. Dietary data of 424 healthy subjects, aged 6–18 years, was collected using a valid and reliable food frequency questionnaire. Metabolic syndrome was defined according to the Cook et al criteria. Consumption of fast foods including hamburgers, sausages, bologna (beef), and fried potatoes was calculated and further categorized to quartiles. Multiple logistic regression models were used to estimate the incidence of MetS and its components in each quartile of fast food intake. The incidence of MetS was 11.3% after a 3.6 year follow up. In the fully adjusted model, compared to the lowest quartile of fast food intake, individuals in the highest had odds ratios of 2.96 (95% CI: 1.02–8.63; P for trend<0.001), 2.82 (95% CI: 1.01–7.87; P for trend = 0.037), and 2.58 (95% CI: 1.01–6.61; P for trend = 0.009) for incidence of MetS, hypertriglyceridemia, and abdominal obesity, respectively. No significant association was found between fast food intakes and other components of MetS. Fast food consumption is associated with the incidence of MetS, abdominal obesity, and hypertriglyceridemia in Tehranian children and adolescents. PMID:26447855

  10. Impaired glucose metabolism treatment and carcinogenesis

    PubMed Central

    MATYSZEWSKI, ARTUR; CZARNECKA, ANNA; KAWECKI, MACIEJ; KORZEŃ, PIOTR; SAFIR, ILAN J.; KUKWA, WOJCIECH; SZCZYLIK, CEZARY

    2015-01-01

    Carbohydrate metabolism disorders increase the risk of carcinogenesis. Diabetes mellitus alters numerous physiological processes that may encourage cancer growth. However, treating impaired glucose homeostasis may actually promote neoplasia; maintaining proper glucose plasma concentrations reduces metabolic stresses, however, certain medications may themselves result in oncogenic effects. A number of previous studies have demonstrated that metformin reduces the cancer risk. However, the use of sulfonylurea derivatives correlates with an increased risk of developing a malignancy. Another form of treatment, insulin therapy, involves using various forms of insulin that differ in pharmacodynamics, pharmacokinetics and efficacy. Previous studies have indicated that certain insulin variants also affect the cancer risk. The results from analyses that address the safety of long-lasting insulin types raise the most concern regarding the increased risk of malignancy. Rapid development of novel diabetic medications and their widespread use carries the risk of potentially increased rates of cancer, unnoticeable in limited, randomized, controlled trials. In the present review, the results of clinical and epidemiological studies are evaluated to assess the safety of anti-hyperglycemic medications and their effect on cancer risk and outcomes. PMID:26622538

  11. Brain glucose metabolism in an animal model of depression.

    PubMed

    Detka, J; Kurek, A; Kucharczyk, M; Głombik, K; Basta-Kaim, A; Kubera, M; Lasoń, W; Budziszewska, B

    2015-06-01

    An increasing number of data support the involvement of disturbances in glucose metabolism in the pathogenesis of depression. We previously reported that glucose and glycogen concentrations in brain structures important for depression are higher in a prenatal stress model of depression when compared with control animals. A marked rise in the concentrations of these carbohydrates and glucose transporters were evident in prenatally stressed animals subjected to acute stress and glucose loading in adulthood. To determine whether elevated levels of brain glucose are associated with a change in its metabolism in this model, we assessed key glycolytic enzymes (hexokinase, phosphofructokinase and pyruvate kinase), products of glycolysis, i.e., pyruvate and lactate, and two selected enzymes of the tricarboxylic acid cycle (pyruvate dehydrogenase and α-ketoglutarate dehydrogenase) in the hippocampus and frontal cortex. Additionally, we assessed glucose-6-phosphate dehydrogenase activity, a key enzyme in the pentose phosphate pathway (PPP). Prenatal stress increased the levels of phosphofructokinase, an important glycolytic enzyme, in the hippocampus and frontal cortex. However, prenatal stress had no effect on hexokinase or pyruvate kinase levels. The lactate concentration was elevated in prenatally stressed rats in the frontal cortex, and pyruvate levels remained unchanged. Among the tricarboxylic acid cycle enzymes, prenatal stress decreased the level of pyruvate dehydrogenase in the hippocampus, but it had no effect on α-ketoglutarate dehydrogenase. Like in the case of glucose and its transporters, also in the present study, differences in markers of glucose metabolism between control animals and those subjected to prenatal stress were not observed under basal conditions but in rats subjected to acute stress and glucose load in adulthood. Glucose-6-phosphate dehydrogenase activity was not reduced by prenatal stress but was found to be even higher in animals exposed to

  12. MicroRNA 33 Regulates Glucose Metabolism

    PubMed Central

    Ramírez, Cristina M.; Goedeke, Leigh; Rotllan, Noemi; Yoon, Je-Hyun; Cirera-Salinas, Daniel; Mattison, Julie A.; Suárez, Yajaira; de Cabo, Rafael; Gorospe, Myriam

    2013-01-01

    Metabolic diseases are characterized by the failure of regulatory genes or proteins to effectively orchestrate specific pathways involved in the control of many biological processes. In addition to the classical regulators, recent discoveries have shown the remarkable role of small noncoding RNAs (microRNAs [miRNAs]) in the posttranscriptional regulation of gene expression. In this regard, we have recently demonstrated that miR-33a and miR33b, intronic miRNAs located within the sterol regulatory element-binding protein (SREBP) genes, regulate lipid metabolism in concert with their host genes. Here, we show that miR-33b also cooperates with SREBP1 in regulating glucose metabolism by targeting phosphoenolpyruvate carboxykinase (PCK1) and glucose-6-phosphatase (G6PC), key regulatory enzymes of hepatic gluconeogenesis. Overexpression of miR-33b in human hepatic cells inhibits PCK1 and G6PC expression, leading to a significant reduction of glucose production. Importantly, hepatic SREBP1c/miR-33b levels correlate inversely with the expression of PCK1 and G6PC upon glucose infusion in rhesus monkeys. Taken together, these results suggest that miR-33b works in concert with its host gene to ensure a fine-tuned regulation of lipid and glucose homeostasis, highlighting the clinical potential of miR-33a/b as novel therapeutic targets for a range of metabolic diseases. PMID:23716591

  13. Glucose and fructose metabolism in Zymomonas anaerobia

    PubMed Central

    McGill, D. J.; Dawes, E. A.

    1971-01-01

    Isotopic and enzymic evidence indicates that Zymomonas anaerobia ferments glucose via the Entner–Doudoroff pathway. The molar growth yields with glucose (5.89) and fructose (5.0) are lower than those for the related organism Zymomonas mobilis and the observed linear growth suggests that energetically uncoupled growth occurs. A survey of enzymes of carbohydrate metabolism revealed the presence of weak phosphofructokinase and fructose 1,6-diphosphate aldolase activities but phosphoketolase, transketolase and transaldolase were not detected. Fermentation balances for glucose and fructose are reported; acetaldehyde accumulated in both fermentations, to a greater extent with fructose which also yielded glycerol and dihydroxyacetone as minor products. PMID:4259336

  14. Role of glucose signaling in yeast metabolism

    SciTech Connect

    Dam, K. van

    1996-10-05

    The conversion of glucose to ethanol and carbon dioxide by yeast was the first biochemical pathway to be studied in detail. The initial observation that this process is catalyzed by an extract of yeast led to the discovery of enzymes and coenzymes and laid the foundation for modern biochemistry. In this article, knowledge concerning the relation between uptake of and signaling by glucose in the yeast Saccharomyces cerevisiae is reviewed and compared to the analogous process in prokaryotes. It is concluded that (much) more fundamental knowledge concerning these processes is required before rational redesign of metabolic fluxes from glucose in yeast can be achieved.

  15. Patterns of human local cerebral glucose metabolism during epileptic seizures

    SciTech Connect

    Engel, J. Jr.; Kuhl, D.E.; Phelps, M.E.

    1982-10-01

    Ictal patterns of local cerebral metabolic rate have been studied in epileptic patients by positron computed tomography with /sup 18/F-labeled 2-fluoro-2-deoxy-D-glucose. Partial seizures were associated with activation of anatomic structures unique to each patient studied. Ictal increases and decreases in local cerebral metabolism were observed. Scans performed during generalized convulsions induced by electroshock demonstrated a diffuse ictal increase and postictal decrease in cerebral metabolism. Petit mal absences were associated with a diffuse increase in cerebral metabolic rate. The ictal fluorodeoxyglucose patterns obtained from patients do not resemble autoradiographic patterns obtained from common experimental animal models of epilepsy.

  16. Hepatic glucose and lipid metabolism.

    PubMed

    Jones, John G

    2016-06-01

    The liver has a central role in the regulation of systemic glucose and lipid fluxes during feeding and fasting and also relies on these substrates for its own energy needs. These parallel requirements are met by coordinated control of carbohydrate and lipid fluxes into and out of the Krebs cycle, which is highly tuned to nutrient availability and heavily regulated by insulin and glucagon. During progression of type 2 diabetes, hepatic carbohydrate and lipid biosynthesis fluxes become elevated, thus contributing to hyperglycaemia and hypertriacylglycerolaemia. Over this interval there are also significant fluctuations in hepatic energy state. To date, it is not known to what extent abnormal glucose and lipid fluxes are causally linked to altered energy states. Recent evidence that the glucose-lowering effects of metformin appear to be mediated by attenuation of hepatic energy generation places an additional spotlight on the interdependence of hepatic biosynthetic and oxidative fluxes. The transition from fasting to feeding results in a significant re-direction of hepatic glucose and lipid fluxes and may also incur a temporary hepatic energy deficit. At present, it is not known to what extent these variables are additionally modified by type 2 diabetes and/or non-alcoholic fatty liver disease. Thus, there is a compelling need to measure fluxes through oxidative, gluconeogenic and lipogenic pathways and determine their relationship with hepatic energy state in both fasting and fed conditions. New magnetic resonance-based technologies allow these variables to be non-invasively studied in animal models and humans. This review summarises a presentation given at the symposium entitled 'The liver in focus' at the 2015 annual meeting of the EASD. It is accompanied by two other reviews on topics from this symposium (by Kenneth Cusi, DOI: 10.1007/s00125-016-3952-1 , and by Hannele Yki-Järvinen, DOI: 10.1007/s00125-016-3944-1 ) and a commentary by the Session Chair, Michael

  17. 1-deoxynojirimycin inhibits glucose absorption and accelerates glucose metabolism in streptozotocin-induced diabetic mice

    PubMed Central

    Li, You-Gui; Ji, Dong-Feng; Zhong, Shi; Lin, Tian-Bao; Lv, Zhi-Qiang; Hu, Gui-Yan; Wang, Xin

    2013-01-01

    We investigated the role of 1-deoxynojirimycin (DNJ) on glucose absorption and metabolism in normal and diabetic mice. Oral and intravenous glucose tolerance tests and labeled 13C6-glucose uptake assays suggested that DNJ inhibited intestinal glucose absorption in intestine. We also showed that DNJ down-regulated intestinal SGLT1, Na+/K+-ATP and GLUT2 mRNA and protein expression. Pretreatment with DNJ (50 mg/kg) increased the activity, mRNA and protein levels of hepatic glycolysis enzymes (GK, PFK, PK, PDE1) and decreased the expression of gluconeogenesis enzymes (PEPCK, G-6-Pase). Assays of protein expression in hepatic cells and in vitro tests with purified enzymes indicated that the increased activity of glucose glycolysis enzymes was resulted from the relative increase in protein expression, rather than from direct enzyme activation. These results suggest that DNJ inhibits intestinal glucose absorption and accelerates hepatic glucose metabolism by directly regulating the expression of proteins involved in glucose transport systems, glycolysis and gluconeogenesis enzymes. PMID:23536174

  18. Perturbed Glucose Metabolism: Insights into Multiple Sclerosis Pathogenesis

    PubMed Central

    Mathur, Deepali; López-Rodas, Gerardo; Casanova, Bonaventura; Marti, Maria Burgal

    2014-01-01

    Multiple sclerosis (MS) is a complex debilitating disease of the central nervous system (CNS) perceived to result from the autoimmune effect of T cells in damaging myelin sheath. However, the exact pathogenesis of the disease remains elusive. Initial studies describing the possibility of defective pyruvate metabolism in MS were performed in 1950s. The group observed elevated blood pyruvate level in both fasting and postprandial times in MS patients with relapse. Similarly, other investigators also reported increased fasting pyruvate level in this disease. These reports hint to a possible abnormality of pyruvate metabolism in MS patients. In addition, increase in levels of Krebs cycle acids like alpha-ketoglutarate in fasting and citrate after glucose intake in MS patients further strengthened the connection of disturbed pyruvate metabolism with MS progression. These studies led the investigators to explore the role of disturbed glucose metabolism in pathophysiological brain function. Under normal circumstances, complex molecules are metabolized into simpler molecules through their respective pathways. Differential expression of genes encoding enzymes of the glucose metabolic pathway in CNS may result in neurological deficits. In this review article, we discuss the studies related to disturbed carbohydrate metabolism in MS and other neurodegenerative diseases. These observations open new perspectives for the understanding of metabolic dynamics in MS yet many puzzling aspects and critical questions need to be addressed. Much more research is required to fully unravel the disease mechanism, and a proper understanding of the disease could eventually lead to new treatments. PMID:25520698

  19. Maternal inheritance of severe hypertriglyceridemia impairs glucose metabolism in offspring.

    PubMed

    Ma, Ya-Hong; Yu, Caiguo; Kayoumu, Abudurexiti; Guo, Xin; Ji, Zhili; Liu, George

    2015-04-01

    Maternally inherited familial hypercholesterolemia (FH) impairs glucose metabolism and increases cardiovascular risks in the offspring to a greater degree than paternal inherited FH. However, it remains unknown whether hypertriglyceridemia affects glucose metabolism via inheritance. In this study, we sought to compare the impact of maternally and paternally inherited hypertriglyceridemia on glucose and lipid metabolism in mice. ApoCIII transgenic mice with severe hypertriglyceridemia were mated with non-transgenic control mice to obtain 4 types of offspring: maternal non-transgenic control and maternal transgenic offspring, and paternal control and paternal transgenic offspring. Plasma triglycerides (TG), total cholesterol (TC), fasting plasma glucose (FPG) and fasting insulin (FINS) were measured. ApoCIII overexpression caused severe hypertriglyceridemia, but the transgenic female mice had unaltered fertility with normal pregnancy and birth of pups. The 4 groups of offspring had similar birth weight and growth rate. The plasma TG of maternal and paternal transgenic offspring were nearly 40-fold higher than maternal and paternal control mice, but there was no difference in plasma TG between maternal and paternal transgenic offspring. Although the FPG of the 4 groups of animals had no difference, the maternal transgenic mice showed impaired glucose tolerance, increased FINS levels and higher homeostasis model assessment insulin resistance index (HOMA-IR) than the other 3 groups. In conclusion, maternally inherited hypertriglyceridemia in ApoCIII transgenic mice displayed impaired glucose tolerance, hyperinsulinemia and increased HOMA-R, while paternally inherited hypertriglyceridemia did not have such impacts. PMID:25859267

  20. Metabolic Profiling of the Response to an Oral Glucose Tolerance Test Detects Subtle Metabolic Changes

    PubMed Central

    Wopereis, Suzan; Rubingh, Carina M.; van Erk, Marjan J.; Verheij, Elwin R.; van Vliet, Trinette; Cnubben, Nicole H. P.; Smilde, Age K.; van der Greef, Jan; van Ommen, Ben; Hendriks, Henk F. J.

    2009-01-01

    Background The prevalence of overweight is increasing globally and has become a serious health problem. Low-grade chronic inflammation in overweight subjects is thought to play an important role in disease development. Novel tools to understand these processes are needed. Metabolic profiling is one such tool that can provide novel insights into the impact of treatments on metabolism. Methodology To study the metabolic changes induced by a mild anti-inflammatory drug intervention, plasma metabolic profiling was applied in overweight human volunteers with elevated levels of the inflammatory plasma marker C-reactive protein. Liquid and gas chromatography mass spectrometric methods were used to detect high and low abundant plasma metabolites both in fasted conditions and during an oral glucose tolerance test. This is based on the concept that the resilience of the system can be assessed after perturbing a homeostatic situation. Conclusions Metabolic changes were subtle and were only detected using metabolic profiling in combination with an oral glucose tolerance test. The repeated measurements during the oral glucose tolerance test increased statistical power, but the metabolic perturbation also revealed metabolites that respond differentially to the oral glucose tolerance test. Specifically, multiple metabolic intermediates of the glutathione synthesis pathway showed time-dependent suppression in response to the glucose challenge test. The fact that this is an insulin sensitive pathway suggests that inflammatory modulation may alter insulin signaling in overweight men. PMID:19242536

  1. Glucose metabolism in cultured trophoblasts from human placenta

    SciTech Connect

    Moe, A.J.; Farmer, D.R.; Nelson, D.M.; Smith, C.H. )

    1990-02-26

    The development of appropriate placental trophoblast isolation and culture techniques enables the study of pathways of glucose utilization by this important cell layer in vitro. Trophoblasts from normal term placentas were isolated and cultured 24 hours and 72 hours in uncoated polystyrene culture tubes or tubes previously coated with a fibrin matrix. Trophoblasts cultured on fibrin are morphologically distinct from those cultured on plastic or other matrices and generally resemble in vivo syncytium. Cells were incubated up to 3 hours with {sup 14}C-labeled glucose and reactions were stopped by addition of perchloric acid. {sup 14}CO{sub 2} production by trophoblasts increased linearly with time however the largest accumulation of label was in organic acids. Trophoblasts cultured in absence of fibrin utilized more glucose and accumulated more {sup 14}C in metabolic products compared to cells cultured on fibrin. Glucose oxidation to CO{sub 2} by the phosphogluconate (PG) pathway was estimated from specific yields of {sup 14}CO{sub 2} from (1-{sup 14}C)-D-glucose and (6-{sup 14}C)-D-glucose. Approximately 6% of glucose oxidation was by the PG pathway when cells were cultured on fibrin compared to approximately 1% by cells cultured in the absence of fibrin. The presence of a fibrin growth matrix appears to modulate the metabolism of glucose by trophoblast from human placenta in vitro.

  2. Glucose metabolism and effect of acetate in ovine adipocytes.

    PubMed

    Yang, Y T; White, L S; Muir, L A

    1982-08-01

    Isolated ovine adipocytes were incubated in vitro with specifically labeled 14C-glucose in the presence or absence of acetate. The flux patterns of glucose carbon through major metabolic pathways were estimated. When glucose was added as the sole substrate, approximately equal portions of glucose carbon (10%) were oxidized to CO2 in the pentose phosphate pathway, in the pyruvate dehydrogenase reaction and in the citrate cycle. Fifteen percent of the glucose carbon was incorporated into fatty acids and 43% was released as lactate and pyruvate. Addition of acetate to the medium increased glucose carbon uptake by 1.5-fold. Most of this increase was accounted for by a sevenfold increase in the activity of the pentose phosphate pathway. Acetate increased glucose carbon fluxes via pentose phosphate pathway to triose phosphates, from triose phosphate to pyruvate, into glyceride glycerol, into lactate and pyruvate and into pyruvate dehydrogenase and citrate cycle CO2. Glucose carbon incorporated into fatty acids was decreased 50% by acetate while, carbon fluxes through the phosphofructokinase-aldolase reactions were not significantly increased. Results of this study suggest that, when glucose is the sole substrate, the conversion of glucose to fatty acids in ovine adipocytes may not be limited by the maximum capacity of hexokinase, the pentose phosphate pathway or enzymes involved in the conversion of triose phosphates to pyruvate and of pyruvate to fatty acid. Acetate increased glucose utilization apparently by increasing activity of the pentose phosphate pathway as a result of enhanced NADPH utilization for fatty acid synthesis. PMID:7142048

  3. A computer model simulating human glucose absorption and metabolism in health and metabolic disease states

    PubMed Central

    Naftalin, Richard J.

    2016-01-01

    A computer model designed to simulate integrated glucose-dependent changes in splanchnic blood flow with small intestinal glucose absorption, hormonal and incretin circulation and hepatic and systemic metabolism in health and metabolic diseases e.g. non-alcoholic fatty liver disease, (NAFLD), non-alcoholic steatohepatitis, (NASH) and type 2 diabetes mellitus, (T2DM) demonstrates how when glucagon-like peptide-1, (GLP-1) is synchronously released into the splanchnic blood during intestinal glucose absorption, it stimulates superior mesenteric arterial (SMA) blood flow and by increasing passive intestinal glucose absorption, harmonizes absorption with its distribution and metabolism. GLP-1 also synergises insulin-dependent net hepatic glucose uptake (NHGU). When GLP-1 secretion is deficient post-prandial SMA blood flow is not increased and as NHGU is also reduced, hyperglycaemia follows. Portal venous glucose concentration is also raised, thereby retarding the passive component of intestinal glucose absorption.   Increased pre-hepatic sinusoidal resistance combined with portal hypertension leading to opening of intrahepatic portosystemic collateral vessels are NASH-related mechanical defects that alter the balance between splanchnic and systemic distributions of glucose, hormones and incretins.The model reveals the latent contribution of portosystemic shunting in development of metabolic disease. This diverts splanchnic blood content away from the hepatic sinuses to the systemic circulation, particularly during the glucose absorptive phase of digestion, resulting in inappropriate increases in insulin-dependent systemic glucose metabolism.  This hastens onset of hypoglycaemia and thence hyperglucagonaemia. The model reveals that low rates of GLP-1 secretion, frequently associated with T2DM and NASH, may be also be caused by splanchnic hypoglycaemia, rather than to intrinsic loss of incretin secretory capacity. These findings may have therapeutic implications on GLP

  4. Positive Correlation between Severity of Blepharospasm and Thalamic Glucose Metabolism.

    PubMed

    Murai, Hideki; Suzuki, Yukihisa; Kiyosawa, Motohiro; Wakakura, Masato; Mochizuki, Manabu; Ishiwata, Kiichi; Ishii, Kenji

    2011-01-01

    A 43-year-old woman with drug-related blepharospasm was followed up for 22 months. She had undergone etizolam treatment for 19 years for indefinite complaints. We examined her cerebral glucose metabolism 5 times (between days 149 and 688 since presentation), using positron emission tomography, and identified regions of interest in the thalamus, caudate nucleus, putamen, and primary somatosensory area on both sides. The severity of the blepharospasm was evaluated by PET scanning using the Wakakura classification. Sixteen women (mean age 42.4 ± 11.7 years) were examined as normal controls. The thalamic glucose metabolism in our patient was significantly increased on days 149, 212, and 688. The severity of the blepharospasm was positively correlated with the thalamic glucose metabolism, suggesting that the severity of blepharospasms reflects thalamic activity. PMID:22110436

  5. Positive Correlation between Severity of Blepharospasm and Thalamic Glucose Metabolism

    PubMed Central

    Murai, Hideki; Suzuki, Yukihisa; Kiyosawa, Motohiro; Wakakura, Masato; Mochizuki, Manabu; Ishiwata, Kiichi; Ishii, Kenji

    2011-01-01

    A 43-year-old woman with drug-related blepharospasm was followed up for 22 months. She had undergone etizolam treatment for 19 years for indefinite complaints. We examined her cerebral glucose metabolism 5 times (between days 149 and 688 since presentation), using positron emission tomography, and identified regions of interest in the thalamus, caudate nucleus, putamen, and primary somatosensory area on both sides. The severity of the blepharospasm was evaluated by PET scanning using the Wakakura classification. Sixteen women (mean age 42.4 ± 11.7 years) were examined as normal controls. The thalamic glucose metabolism in our patient was significantly increased on days 149, 212, and 688. The severity of the blepharospasm was positively correlated with the thalamic glucose metabolism, suggesting that the severity of blepharospasms reflects thalamic activity. PMID:22110436

  6. Altered glucose metabolism in mouse and humans conceived by IVF.

    PubMed

    Chen, Miaoxin; Wu, Linda; Zhao, Junli; Wu, Fang; Davies, Michael J; Wittert, Gary A; Norman, Robert J; Robker, Rebecca L; Heilbronn, Leonie K

    2014-10-01

    In vitro fertilization (IVF) may influence the metabolic health of children. However, in humans, it is difficult to separate out the relative contributions of genetics, environment, or the process of IVF, which includes ovarian stimulation (OS) and embryo culture. Therefore, we examined glucose metabolism in young adult humans and in adult male C57BL/6J mice conceived by IVF versus natural birth under energy-balanced and high-fat-overfeeding conditions. In humans, peripheral insulin sensitivity, as assessed by hyperinsulinemic-euglycemic clamp (80 mU/m(2)/min), was lower in IVF patients (n = 14) versus control subjects (n = 20) after 3 days of an energy-balanced diet (30% fat). In response to 3 days of overfeeding (+1,250 kcal/day, 45% fat), there was a greater increase in systolic blood pressure in IVF versus controls (P = 0.02). Mice conceived after either OS alone or IVF weighed significantly less at birth versus controls (P < 0.01). However, only mice conceived by IVF displayed increased fasting glucose levels, impaired glucose tolerance, and reduced insulin-stimulated Akt phosphorylation in the liver after 8 weeks of consuming either a chow or high-fat diet (60% fat). Thus, OS impaired fetal growth in the mouse, but only embryo culture resulted in changes in glucose metabolism that may increase the risk of the development of metabolic diseases later in life, in both mice and humans. PMID:24760136

  7. Glucose regulates lipid metabolism in fasting king penguins.

    PubMed

    Bernard, Servane F; Orvoine, Jord; Groscolas, René

    2003-08-01

    This study aims to determine whether glucose intervenes in the regulation of lipid metabolism in long-term fasting birds, using the king penguin as an animal model. Changes in the plasma concentration of various metabolites and hormones, and in lipolytic fluxes as determined by continuous infusion of [2-3H]glycerol and [1-14C]palmitate, were examined in vivo before, during, and after a 2-h glucose infusion under field conditions. All the birds were in the phase II fasting status (large fat stores, protein sparing) but differed by their metabolic and hormonal statuses, being either nonstressed (NSB; n = 5) or stressed (SB; n = 5). In both groups, glucose infusion at 5 mg.kg-1.min-1 induced a twofold increase in glycemia. In NSB, glucose had no effect on lipolysis (maintenance of plasma concentrations and rates of appearance of glycerol and nonesterified fatty acids) and no effect on the plasma concentrations of triacylglycerols (TAG), glucagon, insulin, or corticosterone. However, it limited fatty acid (FA) oxidation, as indicated by a 25% decrease in the plasma level of beta-hydroxybutyrate (beta-OHB). In SB, glucose infusion induced an approximately 2.5-fold decrease in lipolytic fluxes and a large decrease in FA oxidation, as reflected by a 64% decrease in the plasma concentration of beta-OHB. There were also a 35% decrease in plasma TAG, a 6.5- and 2.8-fold decrease in plasma glucagon and corticosterone, respectively, and a threefold increase in insulinemia. These data show that in fasting king penguins, glucose regulates lipid metabolism (inhibition of lipolysis and/or of FA oxidation) and affects hormonal status differently in stressed vs. nonstressed individuals. The results also suggest that in birds, as in humans, the availability of glucose, not of FA, is an important determinant of the substrate mix (glucose vs. FA) that is oxidized for energy production. PMID:12738609

  8. Glucose metabolism in cachectic patients with colorectal cancer.

    PubMed

    Holroyde, C P; Skutches, C L; Boden, G; Reichard, G A

    1984-12-01

    We have studied a defined group of 12 weight-losing patients with metastatic colorectal cancer to evaluate the occurrence of and possible relationship between those determinants of carbohydrate metabolism which have been reported to occur commonly in cancer cachexia. The rates of endogenous glucose production and recycling via lactate (Cori cycle) were measured following an infusion of 50 to 100 microCi of [1-14C]glucose. Compared to an age-related group of control subjects without cancer, significantly elevated rates of glucose production [136.4 +/- 9.0 (S.E.) versus 101.0 +/- 4.6 mg/kg/hr; p less than 0.01] and recycling (43.0 +/- 7.2 versus 15.4 mg/kg/hr; p less than 0.01) were observed. Values for glucose production and recycling ranged from normal to markedly elevated. Glucose tolerance was then determined following a p.o. glucose load of 40 g/sq m in 10 of the 12 patients. Compared to control subjects, all showed a significantly delayed clearance of glucose (p less than 0.01) and a blunted insulin-secretory responsiveness (p less than 0.025). Increased glucose production and recycling was only observed in the presence of carbohydrate intolerance, but the latter occurred in a manner which seemed independent of the rate of glucose turnover. In order to obtain an estimate of hepatic glycogen reserves, glucagon, 15 ng/kg/min, was infused over 40 min in seven subjects. A significantly blunted glycemic response was observed in the cancer patients compared to controls (delta 25.0 +/- 6.9 versus 57.8 +/- 8.5 mg/dl; p less than 0.025). Neither the rate of glucose production nor the glycemic response to glucagon appeared to correlate with the immediate antecedent caloric intake. An apparent relationship was observed, however, between increased glucose production and recycling and a lack of response to infused glucagon, probably reflecting decreased glycogen stores in the face of an increased glucose requirement by the patient. We have shown that diverse abnormalities

  9. Cerebral glucose metabolism in the course of subacute sclerosing panencephalitis

    SciTech Connect

    Huber, M.; Herholz, K.; Pawlik, G.; Szelies, B.; Juergens, R.H.; Heiss, W.D.

    1989-01-01

    Regional cerebral glucose metabolism was studied in a 15-year-old boy with subacute sclerosing panencephalitis before and after therapy with human interferon beta, using positron emission tomography of fluorine 18-2-fluoro-2-deoxyglucose. At first examination, metabolism was symmetrically decreased in the thalamus, cerebellum, and all cortical areas except prerolandic motor cortex, but increased in lentiform nucleus. A computed tomographic scan was normal. Six months later, bilateral focal necrosis centered in the previously hypermetabolic putamen was demonstrated by computed tomography and magnetic resonance imaging. The caudate nucleus and the superoposterior part of the putamen were spared, still showing increased metabolism. Corresponding with some clinical improvement, cortical glucose consumption rates had returned to a normal level.

  10. Leukemia inhibitory factor increases glucose uptake in mouse skeletal muscle.

    PubMed

    Brandt, Nina; O'Neill, Hayley M; Kleinert, Maximilian; Schjerling, Peter; Vernet, Erik; Steinberg, Gregory R; Richter, Erik A; Jørgensen, Sebastian B

    2015-07-15

    Members of the IL-6 family, IL-6 and ciliary neurotrophic factor (CNTF), have been shown to increase glucose uptake and fatty acid oxidation in skeletal muscle. However, the metabolic effects of another family member, leukemia inhibitory factor (LIF), are not well characterized. Effects of LIF on skeletal muscle glucose uptake and palmitate oxidation and signaling were investigated in ex vivo incubated mouse soleus and EDL muscles from muscle-specific AMPKα2 kinase-dead, muscle-specific SOCS3 knockout, and lean and high-fat-fed mice. Inhibitors were used to investigate involvement of specific signaling pathways. LIF increased muscle glucose uptake in dose (50-5,000 pM/l) and time-dependent manners with maximal effects at the 30-min time point. LIF increased Akt Ser(473) phosphorylation (P) in soleus and EDL, whereas AMPK Thr(172) P was unaffected. Incubation with parthenolide abolished LIF-induced glucose uptake and STAT3 Tyr(705) P, whereas incubation with LY-294002 and wortmannin suppressed both basal and LIF-induced glucose uptake and Akt Ser(473) P, indicating that JAK and PI 3-kinase signaling is required for LIF-stimulated glucose uptake. Incubation with rapamycin and AZD8055 indicated that mammalian target of rapamycin complex (mTORC)2, but not mTORC1, also is required for LIF-stimulated glucose uptake. In contrast to CNTF, LIF stimulation did not alter palmitate oxidation. LIF-stimulated glucose uptake was maintained in EDL from obese insulin-resistant mice, whereas soleus developed LIF resistance. Lack of SOCS3 and AMPKα2 did not affect LIF-stimulated glucose uptake. In conclusion, LIF acutely increased muscle glucose uptake by a mechanism potentially involving the PI 3-kinase/mTORC2/Akt pathway and is not impaired in EDL muscle from obese insulin-resistant mice. PMID:25968579

  11. Quantification of serial tumor glucose metabolism

    SciTech Connect

    Wu, Hsiao-Ming; Hoh, C.K.; Huang, Sung-Cheng; Yao, Wei-Jen

    1996-03-01

    We developed a method to improve the quantitative precision of FDG-PET scans in cancer patients. The total-lesion evaluation method generates a correlation coefficient (r) constrained Patlak parametric image of the lesion together with three calculated glucose metabolic indices: (a) the total-lesion metabolic index ({open_quotes}K{sub T-tie}{close_quotes}, ml/min/lesion); (b) the total-lesion voxel index ({open_quotes}V{sub T-tie}{close_quotes}, voxels/lesion); and (c) the global average metabolic index ({open_quotes}K{sub V-tie}{close_quotes}, ml/min/voxel). The glucose metabolic indices obtained from conventional region of interest (ROI) and multiplane evaluation were used as standards to evaluate the accuracy of the total-lesion evaluation method. Computer simulations and four patients with metastatic melanoma before and after chemotherapy were studied. Computer simulations showed that the total-lesion evaluation method has improved precision (%s.d. <0.6%) and accuracy ({approximately}10% error) compared with the conventional ROI method (%S.d. {approximately}5%; {approximately}25% error). The K{sub T-tie} and V{sub T-tie} indices from human FDG-PET studies using the total-lesion evaluation method showed excellent correlations with the corresponding values obtained from the conventional ROI methods and multiplane evaluation (r{approximately}1.0) and CT lesion volume measurements. This method is a simple but reliable way to quantitatively monitor tumor FDG uptake. The method has several advantages over the conventional ROI method: (a) less sensitive to the ROI definition, (b) no need for image registration of serial scan data and (c) includes tumor volume changes in the global tumor metabolism. 18 refs., 8 figs., 4 tabs.

  12. Enzymes of glucose metabolism in Frankia sp.

    PubMed

    Lopez, M F; Torrey, J G

    1985-04-01

    Enzymes of glucose metabolism were assayed in crude cell extracts of Frankia strains HFPArI3 and HFPCcI2 as well as in isolated vesicle clusters from Alnus rubra root nodules. Activities of the Embden-Meyerhof-Parnas pathway enzymes glucokinase, phosphofructokinase, and pyruvate kinase were found in Frankia strain HFPArI3 and glucokinase and pyruvate kinase were found in Frankia strain HFPCcI2 and in the vesicle clusters. An NADP+-linked glucose 6-phosphate dehydrogenase and an NAD-linked 6-phosphogluconate dehydrogenase were found in all of the extracts, although the role of these enzymes is unclear. No NADP+-linked 6-phosphogluconate dehydrogenase was found. Both dehydrogenases were inhibited by adenosine 5-triphosphate, and the apparent Km's for glucose 6-phosphate and 6-phosphogluconate were 6.86 X 10(-4) and 7.0 X 10(-5) M, respectively. In addition to the enzymes mentioned above, an NADP+-linked malic enzyme was detected in the pure cultures but not in the vesicle clusters. In contrast, however, the vesicle clusters had activity of an NAD-linked malic enzyme. The possibility that this enzyme resulted from contamination from plant mitochondria trapped in the vesicle clusters could not be discounted. None of the extracts showed activities of the Entner-Doudoroff enzymes or the gluconate metabolism enzymes gluconate dehydrogenase or gluconokinase. Propionate- versus trehalose-grown cultures of strain HFPArI3 showed similar activities of most enzymes except malic enzyme, which was higher in the cultures grown on the organic acid. Nitrogen-fixing cultures of strain HFPArI3 showed higher specific activities of glucose 6-phosphate and 6-phosphogluconate dehydrogenases and phosphofructokinase than ammonia-grown cultures. PMID:3980434

  13. Posterior Cingulate Glucose Metabolism, Hippocampal Glucose Metabolism, and Hippocampal Volume in Cognitively Normal, Late-Middle-Aged Persons at 3 Levels of Genetic Risk for Alzheimer Disease

    PubMed Central

    Protas, Hillary D.; Chen, Kewei; Langbaum, Jessica B. S.; Fleisher, Adam S.; Alexander, Gene E.; Lee, Wendy; Bandy, Daniel; de Leon, Mony J.; Mosconi, Lisa; Buckley, Shannon; Truran-Sacrey, Diana; Schuff, Norbert; Weiner, Michael W.; Caselli, Richard J.; Reiman, Eric M.

    2013-01-01

    Objective To characterize and compare measurements of the posterior cingulate glucose metabolism, the hippocampal glucose metabolism, and hippocampal volume so as to distinguish cognitively normal, late-middle-aged persons with 2, 1, or 0 copies of the apolipoprotein E (APOE) ε4 allele, reflecting 3 levels of risk for late-onset Alzheimer disease. Design Cross-sectional comparison of measurements of cerebral glucose metabolism using 18F-fluorodeoxy-glucose positron emission tomography and measurements of brain volume using magnetic resonance imaging in cognitively normal ε4 homozygotes, ε4 heterozygotes, and noncarriers. Setting Academic medical center. Participants A total of 31 ε4 homozygotes, 42 ε4 heterozygotes, and 76 noncarriers, 49 to 67 years old, matched for sex, age, and educational level. Main Outcome Measures The measurements of posterior cingulate and hippocampal glucose metabolism were characterized using automated region-of-interest algorithms and normalized for whole-brain measurements. The hippocampal volume measurements were characterized using a semiautomated algorithm and normalized for total intracranial volume. Results Although there were no significant differences among the 3 groups of participants in their clinical ratings, neuropsychological test scores, hippocampal volumes (P=.60), or hippocampal glucose metabolism measurements (P = .12), there were significant group differences in their posterior cingulate glucose metabolism measurements (P=.001). The APOE ε4 gene dose was significantly associated with posterior cingulate glucose metabolism (r=0.29, P=.0003), and this association was significantly greater than those with hippocampal volume or hippocampal glucose metabolism (P<.05, determined by use of pairwise Fisher z tests). Conclusions Although our findings may depend in part on the analysis algorithms used, they suggest that a reduction in posterior cingulate glucose metabolism precedes a reduction in hippocampal volume or

  14. Serotonin modulation of cerebral glucose metabolism: sex and age effects.

    PubMed

    Munro, Cynthia A; Workman, Clifford I; Kramer, Elisse; Hermann, Carol; Ma, Yilong; Dhawan, Vijay; Chaly, Thomas; Eidelberg, David; Smith, Gwenn S

    2012-11-01

    The serotonin system is implicated in a variety of psychiatric disorders whose clinical presentation and response to treatment differ between males and females, as well as with aging. However, human neurobiological studies are limited. Sex differences in the cerebral metabolic response to an increase in serotonin concentrations were measured, as well as the effect of aging, in men compared to women. Thirty-three normal healthy individuals (14 men/19 women, age range 20-79 years) underwent two resting positron emission tomography studies with the radiotracer [18F]-2-deoxy-2-fluoro-D-glucose ([(18)F]-FDG) after placebo and selective serotonin reuptake inhibitor (SSRI, citalopram) infusions on two separate days. Results indicated that women demonstrated widespread areas of increased cortical glucose metabolism with fewer areas of decrease in metabolism in response to citalopram. Men, in contrast, demonstrated several regions of decreased cortical metabolism, but no regions of increased metabolism. Age was associated with greater increases in women and greater decreases in men in most brain regions. These results support prior studies indicating that serotonin function differs in men and women across the lifespan. Future studies aimed at characterizing the influences of age and sex on the serotonin system in patients with psychiatric disorders are needed to elucidate the relationship between sex and age differences in brain chemistry and associated differences in symptom presentation and treatment response. PMID:22836227

  15. Circadian System and Glucose Metabolism: Implications for Physiology and Disease.

    PubMed

    Qian, Jingyi; Scheer, Frank A J L

    2016-05-01

    The circadian system serves one of the most fundamental properties present in nearly all organisms: it generates 24-h rhythms in behavioral and physiological processes and enables anticipating and adapting to daily environmental changes. Recent studies indicate that the circadian system is important in regulating the daily rhythm in glucose metabolism. Disturbance of this circadian control or of its coordination relative to the environmental/behavioral cycle, such as in shift work, eating late, or due to genetic changes, results in disturbed glucose control and increased type 2 diabetes risk. Therefore, an in-depth understanding of the mechanisms underlying glucose regulation by the circadian system and its disturbance may help in the development of therapeutic interventions against the deleterious health consequences of circadian disruption. PMID:27079518

  16. Genes in Glucose Metabolism and Association With Spina Bifida

    PubMed Central

    Davidson, Christina M.; Northrup, Hope; King, Terri M.; Fletcher, Jack M.; Townsend, Irene; Tyerman, Gayle H.

    2008-01-01

    The authors tested single nucleotide polymorphisms (SNPs) in coding sequences of candidate genes involved in glucose metabolism and obesity for associations with spina bifida (SB). Coding SNPs on 12 candidate genes was investigated. Genotyping was performed on 507 children with SB and their parents plus anonymous control DNAs from Hispanic and Caucasian individuals. The transmission disequilibrium test was performed to test for genetic associations between transmission of alleles and SB in the offspring (P < .05). A statistically significant association between Lys481 of HK1 (G allele), Arg109Lys of LEPR (G allele), and Pro196 of GLUT1 (A allele) was found (P = .019, .039 and .040, respectively). Three SNPs on 3 genes involved with glucose metabolism and obesity may be associated with increased susceptibility to SB. PMID:18212354

  17. Energetics of Glucose Metabolism: A Phenomenological Approach to Metabolic Network Modeling

    PubMed Central

    Diederichs, Frank

    2010-01-01

    A new formalism to describe metabolic fluxes as well as membrane transport processes was developed. The new flux equations are comparable to other phenomenological laws. Michaelis-Menten like expressions, as well as flux equations of nonequilibrium thermodynamics, can be regarded as special cases of these new equations. For metabolic network modeling, variable conductances and driving forces are required to enable pathway control and to allow a rapid response to perturbations. When applied to oxidative phosphorylation, results of simulations show that whole oxidative phosphorylation cannot be described as a two-flux-system according to nonequilibrium thermodynamics, although all coupled reactions per se fulfill the equations of this theory. Simulations show that activation of ATP-coupled load reactions plus glucose oxidation is brought about by an increase of only two different conductances: a [Ca2+] dependent increase of cytosolic load conductances, and an increase of phosphofructokinase conductance by [AMP], which in turn becomes increased through [ADP] generation by those load reactions. In ventricular myocytes, this feedback mechanism is sufficient to increase cellular power output and O2 consumption several fold, without any appreciable impairment of energetic parameters. Glucose oxidation proceeds near maximal power output, since transformed input and output conductances are nearly equal, yielding an efficiency of about 0.5. This conductance matching is fulfilled also by glucose oxidation of β-cells. But, as a price for the metabolic mechanism of glucose recognition, β-cells have only a limited capability to increase their power output. PMID:21152283

  18. Microcalorimetric Measurements of Glucose Metabolism by Marine Bacterium Vibrio alginolyticus

    PubMed Central

    Gordon, Andrew S.; Millero, Frank J.; Gerchakov, Sol M.

    1982-01-01

    Microcalorimetric measurements of heat production from glucose by Vibrio alginolyticus were made to assess the viability of calorimetry as a technique for studying the metabolism of marine bacteria at organic nutrient concentrations found in marine waters. The results show that the metabolism of glucose by this bacterium can be measured by calorimetry at submicromolar concentrations. A linear correlation between glucose concentration and total heat production was observed over a concentration range of 8 mM to 0.35 μM. It is suggested that these data indicate a constant efficiency of metabolism for this bacterium over the wide range of glucose concentrations studied. PMID:16346131

  19. Advances in glucose metabolism research in colorectal cancer

    PubMed Central

    Fang, Sitian; Fang, Xiao

    2016-01-01

    Cancer cells uptake glucose at a higher rate and produce lactic acid rather than metabolizing pyruvate through the tricarboxylic acid cycle. This adaptive metabolic shift is termed the Warburg effect. Recently progress had been made regarding the mechanistic understanding of glucose metabolism and associated diagnostic and therapeutic methods, which have been investigated in colorectal cancer. The majority of novel mechanisms involve important glucose metabolism associated genes and miRNA regulation. The present review discusses the contribution of these research results to facilitate with the development of novel diagnosis and anticancer treatment options. PMID:27602209

  20. Thiamin deficiency impairs endotoxin-induced increases in hepatic glucose output.

    PubMed

    Molina, P E; Yousef, K A; Smith, R M; Tepper, P G; Lang, C H; Abumrad, N N

    1994-05-01

    We addressed the role of thiamin, a cofactor for several enzymes involved in glucose metabolism, in the glucose metabolic response to endotoxin. Characterized by hyperglycemia, increased hepatic glucose production exceeding elevated rates of whole-body glucose utilization, this response is mediated by hormones and cytokines and is dependent on the immune and nutritional status of the host. We hypothesized that a thiamin-deficient state would impair the metabolic response to endotoxin. Rats were fed a thiamin-deficient or control diet for 6 wk before in vivo assessment of glucose kinetics. In control rats, Escherichia coli endotoxin increased the rate of glucose appearance (+76%), disappearance (+70%), and metabolic clearance (+50%). Thiamin deficiency resulted in increased plasma glucose (18%) and lactate (3- to 4-fold) as well as in a 30% decrease in insulin and an increase in glucagon (2.6-fold) and corticosterone (3.6-fold). Thiamin deficiency inhibited the endotoxin-induced hyperglycemia and the rise in hepatic glucose production, glucose utilization, and metabolic clearance rate. PMID:8172089

  1. Interaction between Glucose and Lipid Metabolism: More than Diabetic Dyslipidemia

    PubMed Central

    2015-01-01

    Glucose and lipid metabolism are linked to each other in many ways. The most important clinical manifestation of this interaction is diabetic dyslipidemia, characterized by elevated triglycerides, low high density lipoprotein cholesterol (HDL-C), and predominance of small-dense LDL particles. However, in the last decade we have learned that the interaction is much more complex. Hypertriglyceridemia and low HDL-C cannot only be the consequence but also the cause of a disturbed glucose metabolism. Furthermore, it is now well established that statins are associated with a small but significant increase in the risk for new onset diabetes. The underlying mechanisms are not completely understood but modulation of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG CoA)-reductase may play a central role as genetic data indicate that mutations resulting in lower HMG CoA-reductase activity are also associated with obesity, higher glucose concentrations and diabetes. Very interestingly, this statin induced increased risk for new onset type 2 diabetes is not detectable in subjects with familial hypercholesterolemia. Furthermore, patients with familial hypercholesterolemia seem to have a lower risk for type 2 diabetes, a phenomenon which seems to be dose-dependent (the higher the low density lipoprotein cholesterol, the lower the risk). Whether there is also an interaction between lipoprotein(a) and diabetes is still a matter of debate. PMID:26566492

  2. Glucose infusion does not suppress increased lipolysis after abdominal surgery.

    PubMed

    Schricker, T; Carli, F; Lattermann, R; Wachter, U; Georgieff, M

    2001-02-01

    The purpose of this study was to investigate the effect of glucose infusion on lipid metabolism after abdominal surgery. Patients (n = 6) with non-metastasized colorectal carcinoma were investigated on the second day after surgery and healthy volunteers were studied after an overnight fast. The rates of glycerol appearance (R(a) glycerol), i.e., lipolysis rates, were assessed by primed continuous infusion of [1,1,2,3,3,-5H2]glycerol before and after 3 h of glucose infusion (4 mg x kg(-1) x min(-1)). Plasma concentrations of glycerol, free fatty acids, glucose, lactate, insulin, and glucagon were determined. Fasting R(a) glycerol was higher in patients than in volunteers (7.7 +/- 1.8 versus 1.9 +/- 0.3 micromol x kg(-1) x min(-1), P < 0.05). Glucose infusion suppressed the R(a) glycerol in volunteers to 1.0 +/- 0.2 micromol x kg(-1) x min(-1) (P < 0.05), whereas lipolysis was not affected in patients. Plasma concentrations of glycerol and free fatty acids similarly decreased during glucose administration by 50% in both groups (P < 0.05). In contrast to the patients, a significant correlation (r = 0.78, P < 0.05) between the R(a) glycerol and plasma glycerol concentration was observed in normal subjects. The hyperglycemic response to glucose infusion was significantly more pronounced (P < 0.05) in patients (10.7 +/- 0.7 mmol/L) than in volunteers (7.1 +/- 0.4 mmol/L), whereas the plasma insulin increased to the same extent in the two groups (P < 0.001). In conclusion, lipolysis rates are increased after abdominal surgery and glucose administration, most likely due to insulin resistance, and fail to inhibit stimulated whole-body lipolysis. PMID:11240333

  3. Acute intravenous leptin infusion increases glucose turnover but not skeletal muscle glucose uptake in ob/ob mice.

    PubMed

    Burcelin, R; Kamohara, S; Li, J; Tannenbaum, G S; Charron, M J; Friedman, J M

    1999-06-01

    The mouse ob gene encodes leptin, an adipocyte hormone that regulates body weight and energy expenditure. Leptin has potent metabolic effects on fat and glucose metabolism. A mutation of the ob gene results in mice with severe hereditary obesity and diabetes that can be corrected by treatment with the hormone. In lean mice, leptin acutely increases glucose metabolism in an insulin-independent manner, which could account, at least in part, for some of the antidiabetic effect of the hormone. To investigate further the acute effect of leptin on glucose metabolism in insulin-resistant obese diabetic mice, leptin (40 ng x g(-1) x h(-1)) was administered intravenously for 6 h in C57Bl/6J ob/ob mice. Leptin increased glucose turnover and stimulated glucose uptake in brown adipose tissue (BAT), brain, and heart with no increase in heart rate. A slight increase in all splanchnic tissues was also noticed. Conversely, no increase in skeletal muscle or white adipose tissue (WAT) glucose uptake was observed. Plasma insulin concentration increased moderately but neither glucose, glucagon, thyroid hormones, growth hormone, nor IGF-1 levels were different from phosphate-buffered saline-infused C57Bl/6J ob/ob mice. In addition, leptin stimulated hepatic glucose production, which was associated with increased glucose-6-phosphatase activity. Conversely, PEPCK activity was rather diminished. Interestingly, hepatic insulin receptor substrate (IRS)1-associated phosphatidylinositol 3-kinase activity was slightly elevated, but neither the content of glucose transporter GLUT2 nor the phosphorylation state of the insulin receptor and IRS-1 were changed by acute leptin treatment. Hepatic lipid metabolism was not stimulated during the acute leptin infusion, since the content of triglycerides, glycerol, and citrate was unchanged. These findings suggest that in ob/ob mice, the antidiabetic antiobesity effect of leptin could be the result of a profound alteration of glucose metabolism in liver

  4. Polysaccharides from Enteromorpha prolifera Improve Glucose Metabolism in Diabetic Rats

    PubMed Central

    Lin, Wenting; Wang, Wenxiang; Liao, Dongdong; Chen, Damiao; Zhu, Pingping; Cai, Guoxi; Kiyoshi, Aoyagi

    2015-01-01

    This study investigated the effects of polysaccharides from Enteromorpha prolifera (PEP) on glucose metabolism in a rat model of diabetes mellitus (DM). PEP (0, 150, 300, and 600 mg/kg) was administered intragastrically to rats for four weeks. After treatment, fasting blood glucose (FBG) and insulin (INS) levels were measured, and the insulin sensitivity index (ISI) was calculated. The morphopathological changes in the pancreas were observed. Serum samples were collected to measure the oxidant-antioxidant status. The mRNA expression levels of glucokinase (GCK) and insulin receptor (InsR) in liver tissue and glucose transporter type 4 (GLUT-4) and adiponectin (APN) in adipose tissue were determined. Compared with the model group, the FBG and INS levels were lower, the ISI was higher, and the number of islet β-cells was significantly increased in all the PEP groups. In the medium- and high-dose PEP groups, MDA levels decreased, and the enzymatic activities of SOD and GSH-Px increased. The mRNA expression of InsR and GCK increased in all the PEP groups; APN mRNA expression increased in the high-dose PEP group, and GLUT-4 mRNA expression increased in adipose tissue. These findings suggest that PEP is a potential therapeutic agent that can be utilized to treat DM. PMID:26347892

  5. A link between hepatic glucose production and peripheral energy metabolism via hepatokines

    PubMed Central

    Abdul-Wahed, Aya; Gautier-Stein, Amandine; Casteras, Sylvie; Soty, Maud; Roussel, Damien; Romestaing, Caroline; Guillou, Hervé; Tourette, Jean-André; Pleche, Nicolas; Zitoun, Carine; Gri, Blandine; Sardella, Anne; Rajas, Fabienne; Mithieux, Gilles

    2014-01-01

    Type 2 diabetes is characterized by a deterioration of glucose tolerance, which associates insulin resistance of glucose uptake by peripheral tissues and increased endogenous glucose production. Here we report that the specific suppression of hepatic glucose production positively modulates whole-body glucose and energy metabolism. We used mice deficient in liver glucose-6 phosphatase that is mandatory for endogenous glucose production. When they were fed a high fat/high sucrose diet, they resisted the development of diabetes and obesity due to the activation of peripheral glucose metabolism and thermogenesis. This was linked to the secretion of hepatic hormones like fibroblast growth factor 21 and angiopoietin-like factor 6. Interestingly, the deletion of hepatic glucose-6 phosphatase in previously obese and insulin-resistant mice resulted in the rapid restoration of glucose and body weight controls. Therefore, hepatic glucose production is an essential lever for the control of whole-body energy metabolism during the development of obesity and diabetes. PMID:25061558

  6. Cell Based Metabolic Barriers to Glucose Diffusion: Macrophages and Continuous Glucose Monitoring

    PubMed Central

    Klueh, Ulrike; Frailey, Jackman; Qiao, Yi; Antar, Omar; Kreutzer, Donald L.

    2014-01-01

    It is assumed that MQ are central to glucose sensor bio-fouling and therefore have a major negative impact on continuous glucose monitoring (CGM) performance in vivo. However to our knowledge there is no data in the literature to directly support or refute this assumption. Since glucose and oxygen (O2) are key to glucose sensor function in vivo, understanding and controlling glucose and O2 metabolic activity of MQ is likely key to successful glucose sensor performance. We hypothesized that the accumulation of MQ at the glucose sensor-tissue interface will act as “Cell Based Metabolic Barriers” (CBMB) to glucose diffusing from the interstitial tissue compartment to the implanted glucose sensor and as such creating an artificially low sensor output, thereby compromising sensor function and CGM. Our studies demonstrated that 1) direct injections of MQ at in vivo sensor implantation sites dramatically decreased sensor output (measured in nA), 2) addition of MQ to glucose sensors in vitro resulted in a rapid and dramatic fall in sensor output and 3) lymphocytes did not affect sensor function in vitro or in vivo. These data support our hypothesis that MQ can act as metabolic barriers to glucose and O2 diffusion in vivo and in vitro. PMID:24461328

  7. Glucosensing in the gastrointestinal tract: Impact on glucose metabolism.

    PubMed

    Fournel, Audren; Marlin, Alysson; Abot, Anne; Pasquio, Charles; Cirillo, Carla; Cani, Patrice D; Knauf, Claude

    2016-05-01

    The gastrointestinal tract is an important interface of exchange between ingested food and the body. Glucose is one of the major dietary sources of energy. All along the gastrointestinal tube, e.g., the oral cavity, small intestine, pancreas, and portal vein, specialized cells referred to as glucosensors detect variations in glucose levels. In response to this glucose detection, these cells send hormonal and neuronal messages to tissues involved in glucose metabolism to regulate glycemia. The gastrointestinal tract continuously communicates with the brain, especially with the hypothalamus, via the gut-brain axis. It is now well established that the cross talk between the gut and the brain is of crucial importance in the control of glucose homeostasis. In addition to receiving glucosensing information from the gut, the hypothalamus may also directly sense glucose. Indeed, the hypothalamus contains glucose-sensitive cells that regulate glucose homeostasis by sending signals to peripheral tissues via the autonomous nervous system. This review summarizes the mechanisms by which glucosensors along the gastrointestinal tract detect glucose, as well as the results of such detection in the whole body, including the hypothalamus. We also highlight how disturbances in the glucosensing process may lead to metabolic disorders such as type 2 diabetes. A better understanding of the pathways regulating glucose homeostasis will further facilitate the development of novel therapeutic strategies for the treatment of metabolic diseases. PMID:26939867

  8. Glucose Metabolism Disorders, HIV and Antiretroviral Therapy among Tanzanian Adults

    PubMed Central

    Maganga, Emmanuel; Smart, Luke R.; Kalluvya, Samuel; Kataraihya, Johannes B.; Saleh, Ahmed M.; Obeid, Lama; Downs, Jennifer A.; Fitzgerald, Daniel W.; Peck, Robert N.

    2015-01-01

    Introduction Millions of HIV-infected Africans are living longer due to long-term antiretroviral therapy (ART), yet little is known about glucose metabolism disorders in this group. We aimed to compare the prevalence of glucose metabolism disorders among HIV-infected adults on long-term ART to ART-naïve adults and HIV-negative controls, hypothesizing that the odds of glucose metabolism disorders would be 2-fold greater even after adjusting for possible confounders. Methods In this cross-sectional study conducted between October 2012 and April 2013, consecutive adults (>18 years) attending an HIV clinic in Tanzania were enrolled in 3 groups: 153 HIV-negative controls, 151 HIV-infected, ART-naïve, and 150 HIV-infected on ART for ≥ 2 years. The primary outcome was the prevalence of glucose metabolism disorders as determined by oral glucose tolerance testing. We compared glucose metabolism disorder prevalence between each HIV group vs. the control group by Fisher’s exact test and used multivariable logistic regression to determine factors associated with glucose metabolism disorders. Results HIV-infected adults on ART had a higher prevalence of glucose metabolism disorders (49/150 (32.7%) vs.11/153 (7.2%), p<0.001) and frank diabetes mellitus (27/150 (18.0%) vs. 8/153 (5.2%), p = 0.001) than HIV-negative adults, which remained highly significant even after adjusting for age, gender, adiposity and socioeconomic status (OR = 5.72 (2.78–11.77), p<0.001). Glucose metabolism disorders were significantly associated with higher CD4+ T-cell counts. Awareness of diabetes mellitus was <25%. Conclusions HIV-infected adults on long-term ART had 5-fold greater odds of glucose metabolism disorders than HIV-negative controls but were rarely aware of their diagnosis. Intensive glucose metabolism disorder screening and education are needed in HIV clinics in sub-Saharan Africa. Further research should determine how glucose metabolism disorders might be related to immune

  9. Drug-Induced Diabetes Mellitus: Evidence for Statins and Other Drugs Affecting Glucose Metabolism.

    PubMed

    Anyanwagu, U; Idris, I; Donnelly, R

    2016-04-01

    Abnormalities of glucose metabolism and glucose tolerance, either because of a reduction in tissue sensitivity to insulin (e.g., in liver, skeletal muscle, and adipose tissues) and/or a reduction in pancreatic insulin secretion, are associated with a number of unwanted health outcomes. Even small increases in circulating glucose levels (often described as dysglycemia or prediabetes) may confer an increased risk of cardiovascular (CV) disease and progression to overt type 2 diabetes. A number of drug therapies, many of them used long term in chronic disease management, have adverse effects on glucose metabolism, diabetes risk, and glycemic control among patients with preexisting diabetes. In this study, we review the evidence, underlying mechanisms, and the clinical significance of drug-related adverse effects on glucose metabolism. PMID:26440603

  10. Peritoneal Dialysate Glucose Load and Systemic Glucose Metabolism in Non-Diabetics: Results from the GLOBAL Fluid Cohort Study

    PubMed Central

    Chess, James; Do, Jun-Young; Noh, Hyunjin; Lee, Hi-Bahl; Kim, Yong-Lim; Summers, Angela; Williams, Paul Ford; Davison, Sara; Dorval, Marc

    2016-01-01

    Background and Objectives Glucose control is a significant predictor of mortality in diabetic peritoneal dialysis (PD) patients. During PD, the local toxic effects of intra-peritoneal glucose are well recognized, but despite large amounts of glucose being absorbed, the systemic effects of this in non-diabetic patients are not clear. We sought to clarify whether dialysate glucose has an effect upon systemic glucose metabolism. Methods and Materials We analysed the Global Fluid Study cohort, a prospective, observational cohort study initiated in 2002. A subset of 10 centres from 3 countries with high data quality were selected (368 incident and 272 prevalent non-diabetic patients), with multilevel, multivariable analysis of the reciprocal of random glucose levels, and a stratified-by-centre Cox survival analysis. Results The median follow up was 5.6 and 6.4 years respectively in incident and prevalent patients. On multivariate analysis, serum glucose increased with age (β = -0.007, 95%CI -0.010, -0.004) and decreased with higher serum sodium (β = 0.002, 95%CI 0.0005, 0.003) in incident patients and increased with dialysate glucose (β = -0.0002, 95%CI -0.0004, -0.00006) in prevalent patients. Levels suggested undiagnosed diabetes in 5.4% of prevalent patients. Glucose levels predicted death in unadjusted analyses of both incident and prevalent groups but in an adjusted survival analysis they did not (for random glucose 6–10 compared with <6, Incident group HR 0.92, 95%CI 0.58, 1.46, Prevalent group HR 1.42, 95%CI 0.86, 2.34). Conclusions In prevalent non-diabetic patients, random glucose levels at a diabetic level are under-recognised and increase with dialysate glucose load. Random glucose levels predict mortality in unadjusted analyses, but this association has not been proven in adjusted analyses. PMID:27249020

  11. Regional glucose metabolism using PETT in normal and psychiatric populations

    SciTech Connect

    Brodie, J.D.; Wolf, A.P.; Volkow, N.

    1982-01-01

    The metabolism of /sup 18/F-2-deoxy-2-fluoro-D-glucose (/sup 18/FDG) in 150 subjects including normals, schizophrenics, senile dementias, and primary affective disorders was studied. Some of the data analyzed to date are discussed.

  12. Glucose metabolism in pregnant sheep when placental growth is restricted

    SciTech Connect

    Owens, J.A.; Falconer, J.; Robinson, J.S. )

    1989-08-01

    The effect of restricting placental growth on glucose metabolism in pregnant sheep in late gestation was determined by primed constant infusions of D-(U-{sup 14}C)- and D-(2-{sup 3}H)glucose and antipyrine into fetuses of six control sheep and six sheep from which endometrial caruncles had been removed before pregnancy (caruncle sheep). In the latter, placental and fetal weights were reduced, as was the concentration of glucose in fetal arterial blood. Fetal glucose turnover in caruncle sheep was only 52-59% of that in controls, largely because of lower umbilical loss of glucose back to the placenta (38-39% of control) and lower fetal glucose utilization (61-74% of control). However, fetal glucose utilization on a weight-specific basis was similar in control and caruncle sheep. Significant endogenous glucose production occurred in control and caruncle fetal sheep. Maternal glucose production and partition of glucose between the gravid uterus and other maternal tissues were similar in control and caruncle sheep. In conclusion, when placental and fetal growth are restricted, fetal glucose utilization is maintained by reduced loss of glucose back to the placenta and mother and by maintaining endogenous glucose production.

  13. Glucose Metabolism: A Sweet Relief of Alzheimer's Disease.

    PubMed

    Duran-Aniotz, Claudia; Hetz, Claudio

    2016-09-12

    Patients and individuals at risk for Alzheimer's disease show reduced glucose metabolism in the brain. A new study takes advantage of a fly model of Alzheimer's disease to demonstrate that enhancing glucose uptake in neurons has strong neuroprotective effects involving improved proteostasis. PMID:27623263

  14. Regulation of glucose metabolism from a liver-centric perspective

    PubMed Central

    Han, Hye-Sook; Kang, Geon; Kim, Jun Seok; Choi, Byeong Hoon; Koo, Seung-Hoi

    2016-01-01

    Glucose homeostasis is tightly regulated to meet the energy requirements of the vital organs and maintain an individual's health. The liver has a major role in the control of glucose homeostasis by controlling various pathways of glucose metabolism, including glycogenesis, glycogenolysis, glycolysis and gluconeogenesis. Both the acute and chronic regulation of the enzymes involved in the pathways are required for the proper functioning of these complex interwoven systems. Allosteric control by various metabolic intermediates, as well as post-translational modifications of these metabolic enzymes constitute the acute control of these pathways, and the controlled expression of the genes encoding these enzymes is critical in mediating the longer-term regulation of these metabolic pathways. Notably, several key transcription factors are shown to be involved in the control of glucose metabolism including glycolysis and gluconeogenesis in the liver. In this review, we would like to illustrate the current understanding of glucose metabolism, with an emphasis on the transcription factors and their regulators that are involved in the chronic control of glucose homeostasis. PMID:26964834

  15. Upregulation of glucose metabolism by granulocyte-monocyte colony-stimulating factor

    SciTech Connect

    Schuler, A.; Spolarics, Z.; Lang, C.H.; Bagby, G.J.; Nelson, S.; Spitzer, J.J. )

    1991-01-01

    Alterations of glucose metabolism were investigated for 6 hours following an intraarterial injection of murine recombinant granulocyte-monocyte colony-stimulating factor (GM-CSF). GM-CSF resulted in a transient elevation of plasma glucose. The rate of whole body glucose appearance, as measured by infusion of (6-{sup 3}H)glucose, was increased by about 10% between 0.5 and 3 hours following GM-CSF injection. In vivo glucose utilization of individual tissues was investigated by the tracer 2-deoxyglucose technique. At 30 min, GM-CSF increased glucose utilization by 80-90% in liver and lung, and 50-60% in skin and spleen. At 3 and 6 hours, glucose utilization by these tissues returned toward control levels except for lung. There was a 40-50% increase in glucose utilization by skeletal muscle 30 min after GM-CSF which was sustained for 6 hours. Glucose utilization of testis, ileum and kidney did not change significantly. Plasma concentrations of insulin, glucagon and tumor necrosis factor were not altered in response to GM-CSF. These findings indicate that some of the acute metabolic effects of a short-term administration of GM-CSF are observed in macrophage-rich tissues, and suggest that GM-CSF may be involved in the metabolic upregulation of immunologically active tissues.

  16. Comparison of cerebral glucose metabolic rates measured with fluorodeoxyglucose and glucose labeled in the 1, 2, 3-4, and 6 positions using double label quantitative digital autoradiography

    SciTech Connect

    Lear, J.L.; Ackermann, R.F.

    1988-08-01

    We compared local cerebral glucose metabolic rates (LCMRglu) that were determined with (/sup 18/F)fluorodeoxyglucose (FDG) and (/sup 14/C)glucose labeled in the 1, 2, 3-4, and 6 positions. Double label digital autoradiography was used with published kinetic models to determine LCMRglu for FDG and glucose in the same animals. Glucose showed metabolic rate dependent underestimation of LCMRglu compared to FDG, which worsened with increasing experimental times. The least underestimation occurred with glucose labeled in the 6 position at 6 min, reaching 10% in areas of high metabolism. Labeling in the 1 position, the 2 position and the 3-4 position caused progressively worse underestimation at all times. In addition, some structures showed differences not directly related to metabolic rate, indicating regional variations in relationships between individual kinetic constants of FDG and glucose.

  17. Cerebral glucose metabolism in childhood-onset obsessive-compulsive disorder

    SciTech Connect

    Swedo, S.E.; Schapiro, M.B.; Grady, C.L.; Cheslow, D.L.; Leonard, H.L.; Kumar, A.; Friedland, R.; Rapoport, S.I.; Rapoport, J.L.

    1989-06-01

    The cerebral metabolic rate for glucose was studied in 18 adults with childhood-onset obsessive-compulsive disorder (OCD) and in age- and sex-matched controls using positron emission tomography and fludeoxyglucose F 18. Both groups were scanned during rest, with reduced auditory and visual stimulation. The group with OCD showed an increased glucose metabolism in the left orbital frontal, right sensorimotor, and bilateral prefrontal and anterior cingulate regions as compared with controls. Ratios of regional activity to mean cortical gray matter metabolism were increased for the right prefrontal and left anterior cingulate regions in the group with OCD as a whole. Correlations between glucose metabolism and clinical assessment measures showed a significant relationship between metabolic activity and both state and trait measurements of OCD and anxiety as well as the response to clomipramine hydrochloride therapy. These results are consistent with the suggestion that OCD may result from a functional disturbance in the frontal-limbic-basal ganglia system.

  18. Differential control of glucoregulatory hormone response and glucose metabolism by NMDA and kainate.

    PubMed

    Yousef, K A; Tepper, P G; Molina, P E; Abumrad, N N; Lang, C H

    1994-01-14

    The aim of the present study was to elucidate the effect of kainate and N-methyl-D-aspartate (NMDA), two different excitatory amino acid (EAA) agonists, on glucoregulatory hormone production and whole body glucose metabolism. Rates of hepatic glucose production (HGP) and peripheral glucose utilization (GU) were assessed in overnight fasted, catheterized, conscious rats using [3-3H]glucose. At the highest dose of kainate examined (16 mg/kg), glucose levels increased 97% after 1 h; thereafter, glucose fell towards basal values but was still elevated 25% at the end of the 3 h experiment. This hyperglycemia resulted from a rapid increase in HGP that exceeded an increased rate of GU. Both HGP and GU were elevated 86% throughout the final 2 h of the experiment. NMDA induced changes in glucose flux that were qualitatively similar, yet of smaller magnitude and of shorter duration, than those produced by kainate. Kainate-induced increases in glucose metabolism were associated with an early transient hyperinsulinemia followed by a period of insulinopenia, and sustained increases in the plasma concentrations of glucagon, corticosterone, epinephrine and norepinephrine. In contrast, sustained increases in glucagon and catecholamines, as well as the late hypoinsulinemia were not detected in NMDA-treated rats. Adrenergic blockade attenuated the kainate- but not the NMDA-induced increase in glucose metabolism. These results indicate that EAA agonists that bind preferentially to different receptor subtypes produce qualitatively similar changes in glucose metabolism. Whereas the increased HGP in kainate-injected rats was associated with sustained elevations in glucagon, catecholamines and corticosterone, NMDA only transiently elevated circulating glucocorticoid levels, suggesting a different mechanism of action. These data, support the involvement of EAA in various aspects of glucoregulation. PMID:8156383

  19. Reduced CD300LG mRNA tissue expression, increased intramyocellular lipid content and impaired glucose metabolism in healthy male carriers of Arg82Cys in CD300LG: a novel genometabolic cross-link between CD300LG and common metabolic phenotypes

    PubMed Central

    Støy, Julie; Kampmann, Ulla; Mengel, Annette; Magnusson, Nils E; Jessen, Niels; Grarup, Niels; Rungby, Jørgen; Stødkilde-Jørgensen, Hans; Brandslund, Ivan; Christensen, Cramer; Hansen, Torben; Pedersen, Oluf; Møller, Niels

    2015-01-01

    Background CD300LG rs72836561 (c.313C>T, p.Arg82Cys) has in genetic-epidemiological studies been associated with the lipoprotein abnormalities of the metabolic syndrome. CD300LG belongs to the CD300-family of membrane-bound molecules which have the ability to recognize and interact with extracellular lipids. We tested whether this specific polymorphism results in abnormal lipid accumulation in skeletal muscle and liver and other indices of metabolic dysfunction. Methods 40 healthy men with a mean age of 55 years were characterized metabolically including assessment of insulin sensitivity by the hyperinsulinemic euglycemic clamp, intrahepatic lipid content (IHLC) and intramyocellular lipid content (IMCL) by MR spectroscopy, and β-cell function by an intravenous glucose tolerance test. Changes in insulin signaling and CD300LG mRNA expression were determined by western blotting and quantitative PCR in muscle and adipose tissue. Results Compared with the 20 controls (CC carriers), the 20 CT carriers (polymorphism carriers) had higher IMCL (p=0.045), a reduced fasting forearm glucose uptake (p=0.011), a trend toward lower M-values during the clamp; 6.0 mg/kg/min vs 7.1 (p=0.10), and higher IHLC (p=0.10). CT carriers had lower CD300LG mRNA expression and CD300LG expression in muscle correlated with IMCL (β=−0.35, p=0.046), forearm glucose uptake (β=0.37, p=0.03), and tended to correlate with the M-value (β=0.33, p=0.06), independently of CD300LG genotype. β-cell function was unaffected. Conclusions The CD300LG polymorphism was associated with decreased CD300LG mRNA expression in muscle and adipose tissue, increased IMCL, and abnormalities of glucose metabolism. CD300LG mRNA levels correlated with IMCL and forearm glucose uptake. These findings link a specific CD300LG polymorphism with features of the metabolic syndrome suggesting a role for CD300LG in the regulation of common metabolic traits. Trial registration number NCT01571609. PMID:26336608

  20. [Metabolism of labeled exogenous glucose in fiber flax tissues].

    PubMed

    Chikov, V I; Avvakumova, N Iu; Bakirova, G G; Khamidullina, L A

    2005-01-01

    A labeled glucose solution was introduced into cut fiber flax plants (45-50 cm high) using a special unit under a pressure of 0.1 atm for 30 min, 1, and 2 h. The highest quantities of labeled carbon were revealed in the woody tissue. Sucrose made up a considerable proportion in low molecular weight products of [ [2-14C]-glucose transformation (23.5%). Metabolism of labeled glucose in the leaves exposed to sunlight yielded a set of metabolites similar to products of 14CO2 photoassimilation. In the shade, the pattern of 14C distribution in labeled compounds of the water/alcohol soluble fraction remained similar in mature leaves, while in juvenile leaves, 14C content decreased in sucrose and increased in organic and amino acids. In the shade, the incorporation of 14C into starch and hot water soluble polysaccharides increased at the expense of the acetone fraction (lipids and pigments), water/salt soluble proteins, and cellulose. Low light conditions increased the radioactivity ratio of sparingly soluble (KOH and Triton X-100 soluble) proteins to albumins and globulins. We propose that the synthesis of components of the photosynthetic apparatus in juvenile leaves is directly powered by photosynthesis and the photosynthesis of glucose and the polymers compete for ATP energy. Appearance of sucrose in the woody tissue is due to its release from the phloem to the stem apoplast and the radial transfer to the xylem, where it is transported to the upper shoot with the transpiration flow. PMID:16004260

  1. Direct effect of incretin hormones on glucose and glycerol metabolism and hemodynamics.

    PubMed

    Karstoft, Kristian; Mortensen, Stefan P; Knudsen, Sine H; Solomon, Thomas P J

    2015-03-01

    The objective of this study was to assess the insulin-independent effects of incretin hormones on glucose and glycerol metabolism and hemodynamics under euglycemic and hyperglycemic conditions. Young, healthy men (n=10) underwent three trials in a randomized, controlled, crossover study. Each trial consisted of a two-stage (euglycemia and hyperglycemia) pancreatic clamp (using somatostatin to prevent endogenous insulin secretion). Glucose and lipid metabolism was measured via infusion of stable glucose and glycerol isotopic tracers. Hemodynamic variables (femoral, brachial, and common carotid artery blood flow and flow-mediated dilation of the brachial artery) were also measured. The three trials differed as follows: 1) saline [control (CON)], 2) glucagon-like peptide (GLP-1, 0.5 pmol·kg(-1)·min(-1)), and 3) glucose-dependent insulinotropic polypeptide (GIP, 1.5 pmol·kg(-1)·min(-1)). No between-trial differences in glucose infusion rates (GIR) or glucose or glycerol kinetics were seen during euglycemia, whereas hyperglycemia resulted in increased GIR and glucose rate of disappearance during GLP-1 compared with CON and GIP (P<0.01 for all). However, when normalized to insulin levels, no differences between trials were seen for GIR or glucose rate of disappearance. Besides a higher femoral blood flow during hyperglycemia with GIP (vs. CON and GLP-1, P<0.001), no between-trial differences were seen for the hemodynamic variables. In conclusion, GLP-1 and GIP have no direct effect on whole body glucose metabolism or hemodynamics during euglycemia. On the contrary, during hyperglycemia, GIP increases femoral artery blood flow with no effect on glucose metabolism, whereas GLP-1 increases glucose disposal, potentially due to increased insulin levels. PMID:25564476

  2. Oligodendroglial NMDA Receptors Regulate Glucose Import and Axonal Energy Metabolism.

    PubMed

    Saab, Aiman S; Tzvetavona, Iva D; Trevisiol, Andrea; Baltan, Selva; Dibaj, Payam; Kusch, Kathrin; Möbius, Wiebke; Goetze, Bianka; Jahn, Hannah M; Huang, Wenhui; Steffens, Heinz; Schomburg, Eike D; Pérez-Samartín, Alberto; Pérez-Cerdá, Fernando; Bakhtiari, Davood; Matute, Carlos; Löwel, Siegrid; Griesinger, Christian; Hirrlinger, Johannes; Kirchhoff, Frank; Nave, Klaus-Armin

    2016-07-01

    Oligodendrocytes make myelin and support axons metabolically with lactate. However, it is unknown how glucose utilization and glycolysis are adapted to the different axonal energy demands. Spiking axons release glutamate and oligodendrocytes express NMDA receptors of unknown function. Here we show that the stimulation of oligodendroglial NMDA receptors mobilizes glucose transporter GLUT1, leading to its incorporation into the myelin compartment in vivo. When myelinated optic nerves from conditional NMDA receptor mutants are challenged with transient oxygen-glucose deprivation, they show a reduced functional recovery when returned to oxygen-glucose but are indistinguishable from wild-type when provided with oxygen-lactate. Moreover, the functional integrity of isolated optic nerves, which are electrically silent, is extended by preincubation with NMDA, mimicking axonal activity, and shortened by NMDA receptor blockers. This reveals a novel aspect of neuronal energy metabolism in which activity-dependent glutamate release enhances oligodendroglial glucose uptake and glycolytic support of fast spiking axons. PMID:27292539

  3. Peripheral glucose metabolism and insulin sensitivity in Alzheimer's disease.

    PubMed

    Kilander, L; Boberg, M; Lithell, H

    1993-04-01

    Twenty-four patients with Alzheimer's disease and matched controls were examined with reference to metabolic parameters such as peripheral insulin and glucose metabolism, serum lipid concentrations and blood pressure levels. Blood glucose levels and insulin response were measured during an intravenous glucose tolerance test and peripheral insulin sensitivity was estimated with the hyperinsulinemic euglycemic clamp technique. There were no differences recorded between the two groups in glucose metabolism, triglyceride, cholesterol or HDL-cholesterol levels. The patients with Alzheimer's disease had significantly lower blood pressure levels, which partly could be explained by ongoing treatment with neuroleptics and antidepressives. Previous findings of higher insulin levels in Alzheimer's disease could not be verified. PMID:8503259

  4. Immune system and glucose metabolism interaction in schizophrenia: a chicken-egg dilemma.

    PubMed

    Steiner, Johann; Bernstein, Hans-Gert; Schiltz, Kolja; Müller, Ulf J; Westphal, Sabine; Drexhage, Hemmo A; Bogerts, Bernhard

    2014-01-01

    Impaired glucose metabolism and the development of metabolic syndrome contribute to a reduction in the average life expectancy of individuals with schizophrenia. It is unclear whether this association simply reflects an unhealthy lifestyle or whether weight gain and impaired glucose tolerance in patients with schizophrenia are directly attributable to the side effects of atypical antipsychotic medications or disease-inherent derangements. In addition, numerous previous studies have highlighted alterations in the immune system of patients with schizophrenia. Increased concentrations of interleukin (IL)-1, IL-6, and transforming growth factor-beta (TGF-β) appear to be state markers, whereas IL-12, interferon-gamma (IFN-γ), tumor necrosis factor-alpha (TNF-α), and soluble IL-2 receptor (sIL-2R) appear to be trait markers of schizophrenia. Moreover, the mononuclear phagocyte system (MPS) and microglial activation are involved in the early course of the disease. This review illustrates a "chicken-egg dilemma", as it is currently unclear whether impaired cerebral glucose utilization leads to secondary disturbances in peripheral glucose metabolism, an increased risk of cardiovascular complications, and accompanying pro-inflammatory changes in patients with schizophrenia or whether immune mechanisms may be involved in the initial pathogenesis of schizophrenia, which leads to disturbances in glucose metabolism such as metabolic syndrome. Alternatively, shared underlying factors may be responsible for the co-occurrence of immune system and glucose metabolism disturbances in schizophrenia. PMID:23085507

  5. Alteration of the regional cerebral glucose metabolism in healthy subjects by glucose loading.

    PubMed

    Ishibashi, Kenji; Wagatsuma, Kei; Ishiwata, Kiichi; Ishii, Kenji

    2016-08-01

    High plasma glucose (PG) levels can reduce fluorine-18-labeled fluorodeoxyglucose ((18) F-FDG) uptake, especially in the Alzheimer's disease (AD)-related regions. This fact is supported by studies showing that the resting-state activity in diabetes can be altered in the default mode network (DMN)-related regions, which considerably overlap with the AD-related regions. In order to expand the current knowledge, we aimed to investigate the relationship between increasing PG levels and the regional cerebral metabolic rates for glucose (CMRglc ) as a direct index of brain activity. We performed dynamic (18) F-FDG positron emission tomography with arterial blood sampling once each in the fasting and glucose-loading conditions on 12 young, healthy volunteers without cognitive impairment or insulin resistance. The absolute CMRglc values were calculated for the volume-of-interest (VOI) analysis, and normalized CMRglc maps were generated for the voxelwise analysis. The normalized measurement is known to have smaller intersubject variability than the absolute measurement, and may, thus, lead to greater statistical power. In VOI analysis, no regional difference in the CMRglc was found between the two conditions. In exploratory voxelwise analysis, however, significant clusters were identified in the precuneus, posterior cingulate, lateral parietotemporal, and medial prefrontal regions where the CMRglc decreased upon glucose loading (P < 0.05, corrected). These regions include the representative components of both the DMN and AD pathology. Taken together with the previous knowledge on the relationships between the DMN, AD, and diabetes, it may be inferred that glucose loading induces hypometabolism in the AD-related and DMN-related regions. Hum Brain Mapp 37:2823-2832, 2016. © 2016 Wiley Periodicals, Inc. PMID:27061859

  6. The Role of Glucose and Lipid Metabolism in Growth and Survival of Cancer Cells.

    PubMed

    Brault, Charlene; Schulze, Almut

    2016-01-01

    One of the prerequisites for cell growth and proliferation is the synthesis of macromolecules, including proteins, nucleic acids and lipids. Cells have to alter their metabolism to allow the production of metabolic intermediates that are the precursors for biomass production. It is now evident that oncogenic signalling pathways target metabolic processes on several levels and metabolic reprogramming has emerged as a hallmark of cancer. The increased metabolic demand of cancer cells also produces selective dependencies that could be targeted for therapeutic intervention. Understanding the role of glucose and lipid metabolism in supporting cancer cell growth and survival is crucial to identify essential processes that could provide therapeutic windows for cancer therapy. PMID:27557532

  7. The role of osteocalcin in human glucose metabolism: marker or mediator?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing evidence supports an association between the skeleton and energy metabolism. These interactions are mediated by a variety of hormones, cytokines, and nutrients. Here, the evidence for a role of osteocalcin in the regulation of glucose metabolism in humans is reviewed. Osteocalcin is a bon...

  8. Regional cerebral glucose metabolism in patients with alcoholic Korsakoff's syndrome

    SciTech Connect

    Kessler, R.M.; Parker, E.S.; Clark, C.M.; Martin, P.R.; George, D.T.; Weingartner, H.; Sokoloff, L.; Ebert, M.H.; Mishkin, M.

    1985-05-01

    Seven alcoholic male subjects diagnosed as having Korsakoff's syndrome and eight age-matched male normal volunteers were studied with /sup 18/F 2-fluoro-2-deoxy-D-glucose (2/sup 18/FDG). All subjects were examined at rest with eyes covered in a quiet, darkened room. Serial plasma samples were obtained following injection of 4 to 5 mCi of 2/sup 18/FDG. Tomographic slices spaced at 10mm axial increments were obtained (in-plane resolution = 1.75 cm, axial resolution = 1.78 cm). Four planes were selected from each subject, and a total of 46 regions of interest were sampled and glucose metabolic rates for each region calculated. The mean glucose metalbolic rate for the 46 regions in the Korsakoff subjects was significantly lower than that in the normal controls (5.17 +- .43 versus 6.6 +- 1.31). A Q-component analysis, which examined each subject's regional rates relative to his mean rate, revealed two distinct patterns in the Korsakoff group. Glucose metabolism was significantly reduced in 37 of the 46 regions sampled. Reduced cerebral glucose metabolism in a nondemented group of subjects has not previously been reported. The reduction in cortical metabolism may be the result of damage to sub-cortical projecting systems. The differing patterns of cerebral metabolism in Korsakoff's syndrome suggests subgroups with differing neuropathology. Regions implicated in memory function, medial temporal, thalamic and medial prefrontal were among the regions reduced in metabolism.

  9. Jejunal epithelial glucose metabolism: effects of Na+ replacement.

    PubMed

    Mallet, R T; Jackson, M J; Kelleher, J K

    1986-11-01

    The objective of this study was to characterize the effects of replacement of extracellular Na+ with a nontransportable cation, N-methyl-D-glucamine (NMDG+) on jejunal epithelial glucose metabolism. Jejunal epithelium isolated from male Sprague-Dawley rats was incubated in media containing 5 mM glucose, 0.5 mM glutamine, 0.5 mM beta-hydroxybutyrate, and 0.3 mM acetoacetate as the principal carbon sources. O2 consumption and total glucose utilization were reduced 30 and 50%, respectively, when Na+ was replaced with NMDG+. In both media, approximately 75% of utilized glucose carbon was converted to lactate. The rate of glucose metabolism via the hexose monophosphate shunt, as evaluated using specific 14CO2 yields from [1-14C]glucose and [6-14C]glucose, was not appreciably altered by Na+ replacement. Tricarboxylic acid (TCA) cycle flux was evaluated using 14CO2 production from [14C]glucose and [14C]pyruvate radioisotopes. Approximately 50% of TCA cycle flux was shunted into products other than CO2 in both media. The majority of the acetyl-CoA oxidized in the TCA cycle was derived from cytosolic pyruvate. It is concluded that removal of Na+ from the bathing medium substantially reduced glucose utilization via the Embden-Meyerhof pathway and TCA cycle in the jejunal epithelium. PMID:3777159

  10. Cerebral glucose metabolism in Wernicke's, Broca's, and conduction aphasia

    SciTech Connect

    Metter, E.J.; Kempler, D.; Jackson, C.; Hanson, W.R.; Mazziotta, J.C.; Phelps, M.E.

    1989-01-01

    Cerebral glucose metabolism was evaluated in patients with either Wernicke's (N = 7), Broca's (N = 11), or conduction (N = 10) aphasia using /sup 18/F-2-fluoro-2-deoxy-D-glucose with positron emission tomography. The three aphasic syndromes differed in the degree of left-to-right frontal metabolic asymmetry, with Broca's aphasia showing severe asymmetry and Wernicke's aphasia mild-to-moderate metabolic asymmetry, while patients with conduction aphasia were metabolically symmetric. On the other hand, the three syndromes showed the same degree of metabolic decline in the left temporal region. The parietal region appeared to separate conduction aphasia from both Broca's and Wernicke's aphasias. Common aphasic features in the three syndromes appear to be due to common changes in the temporal region, while unique features were associated with frontal and parietal metabolic differences.

  11. Age-related metabolic fatigue during low glucose conditions in rat hippocampus

    PubMed Central

    Galeffi, Francesca; Shetty, Pavan K.; Sadgrove, Matthew P.; Turner, Dennis A.

    2015-01-01

    Previous reports have indicated that with aging, intrinsic brain tissue changes in cellular bioenergetics may hamper the brain’s ability to cope with metabolic stress. Therefore, we analyzed the effects of age on neuronal sensitivity to glucose deprivation by monitoring changes in field excitatory postsynaptic potentials (fEPSPs), tissue Po2, and NADH fluorescence imaging in the CA1 region of hippocampal slices obtained from F344 rats (1–2, 3–6, 12–20, and >22 months). Forty minutes of moderate low glucose (2.5 mM) led to approximately 80% decrease of fEPSP amplitudes and NADH decline in all 4 ages that reversed after reintroduction of 10 mM glucose. However, tissue slices from 12 to 20 months and >22-month-old rats were more vulnerable to low glucose: fEPSPs decreased by 50% on average 8 minutes faster compared with younger slices. Tissue oxygen utilization increased after onset of 2.5 mM glucose in all ages of tissue slices, which persisted for 40 minutes in younger tissue slices. But, in older tissue slices the increased oxygen utilization slowly faded and tissue Po2 levels increased toward baseline values after approximately 25 minutes of glucose deprivation. In addition, with age the ability to regenerate NADH after oxidation was diminished. The NAD+/NADH ratio remained relatively oxidized after low glucose, even during recovery. In young slices, glycogen levels were stable throughout the exposure to low glucose. In contrast, with aging utilization of glycogen stores was increased during low glucose, particularly in hippocampal slices from >22 months old rats, indicating both inefficient metabolism and increased demand for glucose. Lactate addition (20 mM) improved oxidative metabolism by directly supplementing the mitochondrial NADH pool and maintained fEPSPs in young as well as aged tissue slices, indicating that inefficient metabolism in the aging tissue can be improved by directly enhancing NADH regeneration. PMID:25443286

  12. Correlations Between Abnormal Glucose Metabolism and Bone Mineral Density or Bone Metabolism.

    PubMed

    Qu, Yang; Kang, Ming-Yang; Dong, Rong-Peng; Zhao, Jian-Wu

    2016-01-01

    BACKGROUND The aim of this meta-analysis was to explore the correlations of abnormal glucose metabolism (AGM) with bone mineral density (BMD) and bone metabolism. MATERIAL AND METHODS Relevant studies were identified using computerized and manual search strategies. The included studies were in strict accordance with inclusion and exclusion criteria. Statistical analyses were conducted with the Comprehensive Meta-analysis 2.0 (Biostat Inc., Englewood, NJ, USA). RESULTS Our present meta-analysis initially searched 844 studies, and 7 studies were eventually incorporated in the present meta-analysis. These 7 cohort studies included 1123 subjects altogether (560 patients with AGM and 563 healthy controls). The results showed that bone mass index (BMI), insulin, and insulin resistance (IR) of patients with AGM were significantly higher than that of the population with normal glucose metabolism (BMI: SMD=1.658, 95% CI=0.663~2.654, P=0.001; insulin: SMD=0.544, 95% CI=0.030~1.058, P=0.038; IR: SMD=8.767, 95% CI=4.178~13.356, P<0.001). However, the results also indicated there was no obvious difference in osteocalcin (OC) and BMD in patients with AGM and the population with normal glucose metabolism (OC: SMD=0.293, 95% CI=-0.023~0.609, P=0.069; BMD: SMD=0.805, 95% CI=-0. 212~1.821, P=0.121). CONCLUSIONS Our meta-analysis results suggest that AGM might lead to increased BMI, insulin, and IR, while it has no significant correlation with BMD or bone metabolism. PMID:26970713

  13. Correlations Between Abnormal Glucose Metabolism and Bone Mineral Density or Bone Metabolism

    PubMed Central

    Qu, Yang; Kang, Ming-Yang; Dong, Rong-Peng; Zhao, Jian-Wu

    2016-01-01

    Background The aim of this meta-analysis was to explore the correlations of abnormal glucose metabolism (AGM) with bone mineral density (BMD) and bone metabolism. Material/Methods Relevant studies were identified using computerized and manual search strategies. The included studies were in strict accordance with inclusion and exclusion criteria. Statistical analyses were conducted with the Comprehensive Meta-analysis 2.0 (Biostat Inc., Englewood, NJ, USA). Results Our present meta-analysis initially searched 844 studies, and 7 studies were eventually incorporated in the present meta-analysis. These 7 cohort studies included 1123 subjects altogether (560 patients with AGM and 563 healthy controls). The results showed that bone mass index (BMI), insulin, and insulin resistance (IR) of patients with AGM were significantly higher than that of the population with normal glucose metabolism (BMI: SMD=1.658, 95% CI=0.663~2.654, P=0.001; insulin: SMD=0.544, 95% CI=0.030~1.058, P=0.038; IR: SMD=8.767, 95% CI=4.178~13.356, P<0.001). However, the results also indicated there was no obvious difference in osteocalcin (OC) and BMD in patients with AGM and the population with normal glucose metabolism (OC: SMD=0.293, 95% CI=−0.023~0.609, P=0.069; BMD: SMD=0.805, 95% CI=−0. 212~1.821, P=0.121). Conclusions Our meta-analysis results suggest that AGM might lead to increased BMI, insulin, and IR, while it has no significant correlation with BMD or bone metabolism. PMID:26970713

  14. Metabolism of tritiated D-glucose in rat erythrocytes

    SciTech Connect

    Manuel y Keenoy, B.; Malaisse-Lagae, F.; Malaisse, W.J. )

    1991-09-01

    The metabolism of D-(U-14C)glucose, D-(1-14C)glucose, D-(6-14C)glucose, D-(1-3H)glucose, D-(2-3H)glucose, D-(3-3H)glucose, D-(3,4-3H)glucose, D-(5-3H)glucose, and D-(6-3H)glucose was examined in rat erythrocytes. There was a fair agreement between the rate of 3HOH production from either D-(3-3H)glucose and D-(5-3H)glucose, the decrease in the 2,3-diphosphoglycerate pool, its fractional turnover rate, the production of 14C-labeled lactate from D-(U-14C)glucose, and the total lactate output. The generation of both 3HOH and tritiated acidic metabolites from D-(3,4-3H)glucose indicated incomplete detritiation of the C4 during interconversion of fructose-1,6-bisphosphate and triose phosphates. Erythrocytes unexpectedly generated 3HOH from D-(6-3H)glucose, a phenomenon possibly attributable to the detritiation of (3-3H)pyruvate in the reaction catalyzed by glutamate pyruvate transaminase. The production of 3HOH from D-(2-3H)glucose was lower than that from D-(5-3H)glucose, suggesting enzyme-to-enzyme tunneling of glycolytic intermediates in the hexokinase/phosphoglucoisomerase/phosphofructokinase sequence. The production of 3HOH from D-(1-3H)glucose largely exceeded that of 14CO2 from D-(1-14C)glucose, a situation tentatively ascribed to the generation of 3HOH in the phosphomannoisomerase reaction. It is further speculated that the adjustment in specific radioactivity of D-(1-3H)glucose-6-phosphate cannot simultaneously match the vastly different degrees of isotopic discrimination in velocity at the levels of the reactions catalyzed by either glucose-6-phosphate dehydrogenase or phosphoglucoisomerase. The interpretation of the present findings thus raises a number of questions, which are proposed as a scope for further investigations.

  15. Remodeling of Glucose Metabolism Precedes Pressure Overload -Induced Left Ventricular Hypertrophy: Review of a Hypothesis

    PubMed Central

    Kundu, Bijoy K.; Zhong, Min; Sen, Shiraj; Davogustto, Giovanni; Keller, Susanna R.; Taegtmeyer, Heinrich

    2015-01-01

    When subjected to pressure overload, the ventricular myocardium shifts from fatty acids to glucose as its main source for energy provision and frequently increases its mass. Here, we review the evidence in support of the concept that metabolic remodeling, measured as increased myocardial glucose uptake using dynamic positron emission tomography (PET) with the glucose analogue 2-deoxy-2-[18F]-fluoro-D-glucose (FDG), precedes the onset of left ventricular hypertrophy (LVH) and heart failure. Consistent with this, early intervention with propranolol, which attenuates glucose uptake, prevents the maladaptive metabolic response and preserves cardiac function in vivo. We also review ex vivo studies suggesting a link between dysregulated myocardial glucose metabolism, intracellular accumulation of glucose 6-phosphate (G6P) and contractile dysfunction of the heart. G6P levels correlate with activation of mTOR (mechanistic target of rapamycin) and endoplasmic reticulum stress. This sequence of events could be prevented by pre-treatment with rapamycin (mTOR inhibition) or metformin (enzyme 5′-AMP-activated protein kinase activation ). In conclusion, we propose that metabolic imaging with FDG PET may provide a novel approach to guide the treatment of patients with hypertension-induced LVH. PMID:25791172

  16. Brain metabolism is significantly impaired at blood glucose below 6 mM and brain glucose below 1 mM in patients with severe traumatic brain injury

    PubMed Central

    2010-01-01

    Introduction The optimal blood glucose target following severe traumatic brain injury (TBI) must be defined. Cerebral microdialysis was used to investigate the influence of arterial blood and brain glucose on cerebral glucose, lactate, pyruvate, glutamate, and calculated indices of downstream metabolism. Methods In twenty TBI patients, microdialysis catheters inserted in the edematous frontal lobe were dialyzed at 1 μl/min, collecting samples at 60 minute intervals. Occult metabolic alterations were determined by calculating the lactate- pyruvate (L/P), lactate- glucose (L/Glc), and lactate- glutamate (L/Glu) ratios. Results Brain glucose was influenced by arterial blood glucose. Elevated L/P and L/Glc were significantly reduced at brain glucose above 1 mM, reaching lowest values at blood and brain glucose levels between 6-9 mM (P < 0.001). Lowest cerebral glutamate was measured at brain glucose 3-5 mM with a significant increase at brain glucose below 3 mM and above 6 mM. While L/Glu was significantly increased at low brain glucose levels, it was significantly decreased at brain glucose above 5 mM (P < 0.001). Insulin administration increased brain glutamate at low brain glucose, but prevented increase in L/Glu. Conclusions Arterial blood glucose levels appear to be optimal at 6-9 mM. While low brain glucose levels below 1 mM are detrimental, elevated brain glucose are to be targeted despite increased brain glutamate at brain glucose >5 mM. Pathogenity of elevated glutamate appears to be relativized by L/Glu and suggests to exclude insulin- induced brain injury. PMID:20141631

  17. Heritability of metabolic response to the intravenous glucose tolerance test in German Holstein Friesian bulls.

    PubMed

    Pieper, Laura; Staufenbiel, Rudolf; Christ, Jana; Panicke, Lothar; Müller, Uwe; Brockmann, Gudrun A

    2016-09-01

    Selection for improved health and welfare in farm animals is of increasing interest worldwide. Peripartum energy balance is a key factor for pathogenesis of diseases in dairy cows. The intravenous glucose tolerance test (ivGTT) can be used to study the metabolic response to a glucose stimulus. The aim of this study was to estimate heritability of ivGTT traits in German Holstein bulls. A total of 541 Holstein bulls aged 7 to 17 mo from 2 breeding stations were subjected to the ivGTT. Serum glucose concentrations were measured at 0, 7, 14, 21, 28, 35, 42, 49, 56, and 63 min relative to glucose infusion. The maximum increase in blood glucose concentration, glucose area equivalent, and blood glucose half-life period were calculated. Heritabilities were estimated using a univariate animal model including station-year-season and age as fixed effects, and animal additive genetic and residual as random effects. The estimated heritabilities were 0.19 for fasting glucose concentration, 0.43 for glucose area equivalent, 0.40 for glucose half-life period, 0.14 for the peak glucose concentration, and 0.12 for the maximum increase of blood glucose concentration. Correlations between ivGTT traits and breeding values for milk yield and composition were not found. The results indicate that heritability for response to glucose is high, which warrants further investigation of this trait for genetic improvement of metabolic disorders. Research is necessary to determine the target levels of ivGTT traits and potential associations between ivGTT traits in breeding bulls and periparturient diseases in their offspring. PMID:27394937

  18. Monoamines, glucose metabolism, aggression towards self and others.

    PubMed

    Roy, A; Virkkunen, M; Linnoila, M

    1988-08-01

    The evidence is reviewed that violent and suicidal behavior is associated with a deficiency of the serotonin system and that individuals with poor impulse control tend to become hypoglycemic during an oral glucose tolerance test, and have low levels of 5-hydroxyindole acetic acid in the cerebrospinal fluid. It is postulated that serotonergic deficits may predispose individuals to poor impulse control, disturbance of glucose metabolism, alcohol abuse, violent behavior and suicide. PMID:2460415

  19. Return of the glucoreceptor: Glucose activates the glucose-sensing receptor T1R3 and facilitates metabolism in pancreatic β-cells.

    PubMed

    Kojima, Itaru; Nakagawa, Yuko; Ohtsu, Yoshiaki; Hamano, Kunihisa; Medina, Johan; Nagasawa, Masahiro

    2015-05-01

    Subunits of the sweet taste receptor, namely T1R2 and T1R3, are expressed in mouse pancreatic islets. Quantitatively, the expression of messenger ribonucleic acid for T1R2 is much lower than that of T1R3, and immunoreactive T1R2 is in fact undetectable. Presumably, a homodimer of T1R3 could function as a signaling receptor. Activation of this receptor by adding an artificial sweetener, sucralose, leads to an increase in intracellular adenosine triphosphate ([ATP]c). This increase in [ATP]c is observed in the absence of ambient glucose. Sucralose also augments elevation of [ATP]c induced by methylsuccinate, a substrate for mitochondria. Consequently, activation of T1R3 promotes metabolism in mitochondria and increases [ATP]c. 3-O-Methylglucose, a non-metabolizable analog of glucose, also increases [ATP]c. Conversely, knockdown of T1R3 attenuates elevation of [ATP]c induced by glucose. Hence, glucose promotes its own metabolism by activating T1R3 and augmenting ATP production. Collectively, a homodimer of T1R3 functions as a cell surface glucose-sensing receptor and participates in the action of glucose on insulin secretion. The glucose-sensing receptor T1R3 might be the putative glucoreceptor proposed decades ago by Niki et al. The glucose-sensing receptor is involved in the action of glucose and modulates glucose metabolism in pancreatic β-cells. PMID:25969708

  20. Return of the glucoreceptor: Glucose activates the glucose-sensing receptor T1R3 and facilitates metabolism in pancreatic β-cells

    PubMed Central

    Kojima, Itaru; Nakagawa, Yuko; Ohtsu, Yoshiaki; Hamano, Kunihisa; Medina, Johan; Nagasawa, Masahiro

    2015-01-01

    Subunits of the sweet taste receptor, namely T1R2 and T1R3, are expressed in mouse pancreatic islets. Quantitatively, the expression of messenger ribonucleic acid for T1R2 is much lower than that of T1R3, and immunoreactive T1R2 is in fact undetectable. Presumably, a homodimer of T1R3 could function as a signaling receptor. Activation of this receptor by adding an artificial sweetener, sucralose, leads to an increase in intracellular adenosine triphosphate ([ATP]c). This increase in [ATP]c is observed in the absence of ambient glucose. Sucralose also augments elevation of [ATP]c induced by methylsuccinate, a substrate for mitochondria. Consequently, activation of T1R3 promotes metabolism in mitochondria and increases [ATP]c. 3-O-Methylglucose, a non-metabolizable analog of glucose, also increases [ATP]c. Conversely, knockdown of T1R3 attenuates elevation of [ATP]c induced by glucose. Hence, glucose promotes its own metabolism by activating T1R3 and augmenting ATP production. Collectively, a homodimer of T1R3 functions as a cell surface glucose-sensing receptor and participates in the action of glucose on insulin secretion. The glucose-sensing receptor T1R3 might be the putative glucoreceptor proposed decades ago by Niki et al. The glucose-sensing receptor is involved in the action of glucose and modulates glucose metabolism in pancreatic β-cells. PMID:25969708

  1. Impaired glucose and lipid metabolism in ageing aryl hydrocarbon receptor deficient mice

    PubMed Central

    Biljes, Daniel; Hammerschmidt-Kamper, Christiane; Kadow, Stephanie; Diel, Patrick; Weigt, Carmen; Burkart, Volker; Esser, Charlotte

    2015-01-01

    Disturbed homeostasis of glucose and lipid metabolism are dominant features of the so-called metabolic syndrome (MetS) and can increase the risk for the development of type 2 diabetes (T2D), a severe metabolic disease. T2D prevalence increases with age. The aryl hydrocarbon receptor (AHR) is a sensor of small molecules including dietary components. AHR has been identified as potential regulator of glucose homeostasis and lipid metabolism. Epidemiologically, exposure to xenobiotic AHR ligands such as polycyclic aromatic hydrocarbons is linked to T2D. We assess here the potential role of the AHR in disturbances of glucose and lipid metabolism in young (age 2-5 months) and old (age > 1,5 years) AHR-deficient (AHR KO) mice. Fasted young wildtype (WT) and AHR-KO mice displayed similar blood glucose kinetics after challenge with intra-peritoneal glucose injection. However, old AHR-KO mice showed lower tolerance than WT to i.p. administered glucose, i.e. glucose levels rose higher and returned more slowly to normal levels. Old mice had overall higher insulin levels than young mice, and old AHR-KO had a somewhat disturbed insulin kinetic in the serum after glucose challenge. Surprisingly, young AHR-KO mice had significantly lower triglycerides, cholesterol, high density lipoprotein values than WT, i.e., a dyslipidemic profile. With ageing, AHR-KO and WT mice did not differ in these lipid levels, except for slightly reduced levels of triglycerides and cholesterol. In conclusion, our findings in AHR KO mice suggest that AHR expression is relevant for the maintenance of glucose and lipid homeostasis in old mice. PMID:26664351

  2. Glutamine and glucose metabolism in enterocytes of the neonatal pig.

    PubMed

    Wu, G; Knabe, D A; Yan, W; Flynn, N E

    1995-02-01

    Glutamine and glucose metabolism was studied in 0- to 21-day-old pig enterocytes. Cells were incubated at 37 degrees C for 30 min in Krebs-Henseleit bicarbonate buffer (pH 7.4) in the presence of 2 mM [U-14C]glutamine with or without 5 mM glucose, or 5 mM [U-14C]glucose with or without 2 mM glutamine. Glutamine was metabolized to ammonia, glutamate, alanine, aspartate, CO2, citrulline, ornithine, and proline, whereas glucose was converted to lactate, pyruvate, and CO2 in pig enterocytes. CO2 production from glutamine accounted for 32-36% and 3-4% of utilized glutamine carbons in 0- to 7-day-old and 14- to 21-day-old pigs, respectively. The rates of O2 consumption and metabolism of glutamine and glucose decreased in enterocytes from 2- to 14-day-old pigs compared with 0-day-old pigs. By day 14 after birth, the oxidation of glutamine and glucose as well as citrulline production had decreased by 90-95%. Arginine synthesis from glutamine occurred in cells from 0- to 7-day-old pigs but not 14- to 21-day-old ones. Glucose (5 mM) had no effect on glutamine utilization and oxidation or the production of glutamate and arginine but stimulated the formation of alanine, citrulline, and proline at the expense of aspartate. In contrast, glutamine (2 mM) inhibited glycolysis and glucose oxidation in cells from 0- to 7-day-old pigs and had no effects in 14- to 21-day-old pigs. As a result, glutamine contributed approximately 2-fold greater amounts of ATP to 0- to 7-day-old pig enterocytes than glucose.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7864226

  3. Fuel metabolism in Canada geese: effects of glucagon on glucose kinetics

    PubMed Central

    Weber, Jean-Michel

    2015-01-01

    During prolonged fasting, birds must rely on glucose mobilization to maintain normoglycemia. Glucagon is known to modulate avian energy metabolism during prolonged fasting, but the metabolic effects of this hormone on long-distance migrant birds have never been investigated. Our goal was to determine whether glucagon regulates the mobilization of the main lipid and carbohydrate fuels in migrant birds. Using the Canada goose (Branta canadensis) as a model species, we looked for evidence of fuel mobilization via changes in metabolite concentrations. No changes could be found for any lipid fraction, but glucagon elicited a strong increase in glucose concentration. Therefore, we aimed to quantify the effects of this hormone on glucose kinetics using continuous infusion of 6-[3H]-d-glucose. Glucagon was found to cause a 50% increase in glucose mobilization (from 22.2 ± 2.4 μmol·kg−1·min−1 to 33.5 ± 3.3 μmol·kg−1·min−1) and, together with an unchanged rate of carbohydrate oxidation, led to a 90% increase in plasma glucose concentration. This hormone also led to a twofold increase in plasma lactate concentration. No changes in plasma lipid concentration or composition were observed. This study is the first to demonstrate how glucagon modulates glucose kinetics in a long-distance migrant bird and to quantify its rates of glucose mobilization. PMID:26108869

  4. Pulsatile hyperglucagonemia fails to increase hepatic glucose production in normal man

    SciTech Connect

    Paolisso, G.; Scheen, A.J.; Luyckx, A.S.; Lefebvre, P.J.

    1987-01-01

    To study the metabolic effects of pulsatile glucagon administration, six male volunteers were submitted to a 260-min glucose-controlled glucose intravenous infusion using the Biostator. The endogenous secretion of the pancreatic hormones was inhibited by somatostatin, basal insulin secretion was replaced by a continuous insulin infusion, and glucagon was infused intravenously in two conditions at random: either continuously or intermittently. Blood glucose levels and glucose infusion rate were monitored continuously by the Biostator, and classical methodology using a D-(3-/sup 3/H)glucose infusion allowed the authors to study glucose turnover. While basal plasma glucagon levels were similar in both conditions, they plateaued at 189 +/- 38 pg ml/sup -1/ during continuous infusion and varied between 95 and 501 pg x ml/sup -1/ during pulsatile infusion. When compared with continuous administration, pulsatile glucagon infusion 1) initially induced a similar increase in endogenous (hepatic) glucose production and blood glucose, 2) did not prevent the so-called evanescent effect of glucagon on blood glucose, and 3) after 3 h tended to reduce rather than increase hepatic glucose production. In conclusion, in vivo pulsatile hyperglucanemia in normal man fails to increase hepatic glucose production.

  5. TAp63 is a master transcriptional regulator of lipid and glucose metabolism.

    PubMed

    Su, Xiaohua; Gi, Young Jin; Chakravarti, Deepavali; Chan, Io Long; Zhang, Aijun; Xia, Xuefeng; Tsai, Kenneth Y; Flores, Elsa R

    2012-10-01

    TAp63 prevents premature aging, suggesting a link to genes that regulate longevity. Further characterization of TAp63-/- mice revealed that these mice develop obesity, insulin resistance, and glucose intolerance similar to those seen in mice lacking two key metabolic regulators, Silent information regulator T1 (Sirt1) and AMPK. While the roles of Sirt1 and AMPK in metabolism have been well studied, their upstream regulators are not well understood. We found that TAp63 is important in regulating energy metabolism by accumulating in response to metabolic stress and transcriptionally activating Sirt1, AMPKα2, and LKB1, resulting in increased fatty acid synthesis and decreased fatty acid oxidation. Moreover, we found that TAp63 lowers blood glucose levels in response to metformin. Restoration of Sirt1, AMPKα2, and LKB1 in TAp63-/- mice rescued some of the metabolic defects of the TAp63-/- mice. Our study defines a role for TAp63 in metabolism and weight control. PMID:23040072

  6. Quantitative PET imaging of bone marrow glucose metabolic response to hematopoietic cytokines

    SciTech Connect

    Yao, W.J.; Hoh, C.K.; Hawkins, R.A.

    1995-05-01

    To evaluate the effects of hematopoietic cytokines on bone marrow glucose metabolism noninvasively, the authors studied serial quantitative FDG-PET images in 18 patients with metastic melanoma and normal bone marrow who were undergoing granulocyte-macrophage colony-stimulating factor (GMCSF) or macrophage colony-stimulating factor (MCSF) administration as an adjunct to chemotherapy. All patients received 14 days of cytokine therapy in three groups; four patients were treated with GMCSF (5 {mu}g/kg/d SQ), eight patients were treated with GMCSF (5 {mu}g/kg/d SQ) and monoclonal antibody (MAbR24) and six patients were treated with MCSF (80 {mu}g/kg/d IVCI) and MAbR24. Dynamic FDG-PET imaging was performed over the lower thoracic or upper lumbar spine at four time points in each patient. Baseline glucose metabolic rates in the bone marrow of these three groups of patients were similar (5.2 {plus_minus} 0.7, 4.4 {plus_minus} 0.8 and 4.8 {plus_minus} 1.2 {mu}g/min/g as mean value and standard deviations, respectively). In both GMCSF and GMCSF + R24 groups, rapid increases in bone marrow glucose metabolic rates were observed during therapy. After GMCSF was stopped, bone marrow glucose metabolic rates rapdily decreased in both groups. The glucose metabolic response in these two groups was not significantly different by pooled t-statistics (p = 0.105). In the MCSF + R24 group, the increase of glucose metabolic rate on Days 3 and 10 was 35% and 31% above baseline on the average, but was not significant. The results support the use of parametric FDG-PET imaging for noninvasive quantitation of bone marrow glucose metabolic changes to hematopoietic cytokines in vivo. 32 refs., 2 figs., 2 tabs.

  7. Polychlorinated biphenyl 126 exposure in L6 myotubes alters glucose metabolism: a pilot study.

    PubMed

    Mauger, Jean-François; Nadeau, Lucien; Caron, Audrey; Chapados, Natalie Ann; Aguer, Céline

    2016-04-01

    Polychlorinated biphenyls (PCBs) are increasingly recognized as metabolic disruptors. Due to its mass, skeletal muscle is the major site of glucose disposal. While muscle mitochondrial dysfunction and oxidative stress have been shown to play a central role in metabolic disease development, no studies to date have investigated the effect of PCB exposure on muscle energy metabolism and oxidative stress. In this pilot study, we tested the effect of exposure to PCB126 in L6 myotubes (from 1 to 2500 nM for 24 h) on mitochondrial function, glucose metabolism, and oxidative stress. Exposure to PCB126 had no apparent effect on resting, maximal, and proton leak-dependent oxygen consumption rate in intact L6 myotubes. However, basal glucose uptake and glycolysis were inhibited by 20-30 % in L6 myotubes exposed to PCB126. Exposure to PCB126 did not appear to alter skeletal muscle anti-oxidant defense or oxidative stress. In conclusion, our study shows for the first time that exposure to a dioxin-like PCB adversely affects skeletal muscle glucose metabolism. Given the importance of skeletal muscle in the maintenance of glucose homeostasis, PCB126 could play an important role in the development of metabolic disorders. PMID:26936477

  8. Low non-oxidative glucose metabolism and violent offending: an 8-year prospective follow-up study.

    PubMed

    Virkkunen, Matti; Rissanen, Aila; Franssila-Kallunki, Anja; Tiihonen, Jari

    2009-06-30

    Violent offenders have abnormalities in their glucose metabolism as indicated by decreased glucose uptake in their prefrontal cortex and a low blood glucose nadir in the glucose tolerance test. We tested the hypothesis that low non-oxidative glucose metabolism (NOG) predicts forthcoming violent offending among antisocial males. Glucose metabolism was measured using the insulin clamp method among 49 impulsive, violent, antisocial offenders during a forensic psychiatric examination. Those offenders who committed at least one new violent crime during the 8-year follow-up had a mean NOG of 1.4 standard deviations lower than non-recidivistic offenders. In logistic regression analysis, NOG alone explained 27% of the variation in the recidivistic offending. Low non-oxidative metabolism may be a crucial component in the pathophysiology of habitually violent behavior among subjects with antisocial personality disorder. This might suggest that substances increasing glycogen formation and decreasing the risk of hypoglycemia might be potential treatments for impulsive violent behavior. PMID:19446886

  9. Subcellular Localization of Hexokinases I and II Directs the Metabolic Fate of Glucose

    PubMed Central

    John, Scott; Weiss, James N.; Ribalet, Bernard

    2011-01-01

    Background The first step in glucose metabolism is conversion of glucose to glucose 6-phosphate (G-6-P) by hexokinases (HKs), a family with 4 isoforms. The two most common isoforms, HKI and HKII, have overlapping tissue expression, but different subcellular distributions, with HKI associated mainly with mitochondria and HKII associated with both mitochondrial and cytoplasmic compartments. Here we tested the hypothesis that these different subcellular distributions are associated with different metabolic roles, with mitochondrially-bound HK's channeling G-6-P towards glycolysis (catabolic use), and cytoplasmic HKII regulating glycogen formation (anabolic use). Methodology/Principal Findings To study subcellular translocation of HKs in living cells, we expressed HKI and HKII linked to YFP in CHO cells. We concomitantly recorded the effects on glucose handling using the FRET based intracellular glucose biosensor, FLIPglu-600 mM, and glycogen formation using a glycogen-associated protein, PTG, tagged with GFP. Our results demonstrate that HKI remains strongly bound to mitochondria, whereas HKII translocates between mitochondria and the cytosol in response to glucose, G-6-P and Akt, but not ATP. Metabolic measurements suggest that HKI exclusively promotes glycolysis, whereas HKII has a more complex role, promoting glycolysis when bound to mitochondria and glycogen synthesis when located in the cytosol. Glycogen breakdown upon glucose removal leads to HKII inhibition and dissociation from mitochondria, probably mediated by increases in glycogen-derived G-6-P. Conclusions/Significance These findings show that the catabolic versus anabolic fate of glucose is dynamically regulated by extracellular glucose via signaling molecules such as intracellular glucose, G-6-P and Akt through regulation and subcellular translocation of HKII. In contrast, HKI, which activity and regulation is much less sensitive to these factors, is mainly committed to glycolysis. This may be an

  10. Glucose metabolism in different regions of the rat brain under hypokinetic stress influence

    NASA Technical Reports Server (NTRS)

    Konitzer, K.; Voigt, S.

    1980-01-01

    Glucose metabolism in rats kept under long term hypokinetic stress was studied in 7 brain regions. Determination was made of the regional levels of glucose, lactate, glutamate, glutamine, aspartate, gamma-aminobutyrate and the incorporation of C-14 from plasma glucose into these metabolites, in glycogen and protein. From the content and activity data the regional glucose flux was approximated quantitatively. Under normal conditions the activity gradient cortex and frontal pole cerebellum, thalamus and mesencephalon, hypothalamus and pons and medulla is identical with that of the regional blood supply (measured with I131 serum albumin as the blood marker). Within the first days of immobilization a functional hypoxia occurred in all brain regions and the utilization of cycle amino acids for protein synthesis was strongly diminished. After the first week of stress the capillary volumes of all regions increased, aerobic glucose metabolism was enhanced (factors 1.3 - 2.0) and the incorporation of glucose C-14 via cycle amino acids into protein was considerably potentiated. The metabolic parameters normalized between the 7th and 11th week of stress. Blood supply and metabolic rate increased most in the hypothalamus.

  11. Glucose metabolic phenotype of pancreatic cancer

    PubMed Central

    Chan, Anthony KC; Bruce, Jason IE; Siriwardena, Ajith K

    2016-01-01

    AIM: To construct a global “metabolic phenotype” of pancreatic ductal adenocarcinoma (PDAC) reflecting tumour-related metabolic enzyme expression. METHODS: A systematic review of the literature was performed using OvidSP and PubMed databases using keywords “pancreatic cancer” and individual glycolytic and mitochondrial oxidative phosphorylation (MOP) enzymes. Both human and animal studies investigating the oncological effect of enzyme expression changes and inhibitors in both an in vitro and in vivo setting were included in the review. Data reporting changes in enzyme expression and the effects on PDAC cells, such as survival and metastatic potential, were extracted to construct a metabolic phenotype. RESULTS: Seven hundred and ten papers were initially retrieved, and were screened to meet the review inclusion criteria. 107 unique articles were identified as reporting data involving glycolytic enzymes, and 28 articles involving MOP enzymes in PDAC. Data extraction followed a pre-defined protocol. There is consistent over-expression of glycolytic enzymes and lactate dehydrogenase in keeping with the Warburg effect to facilitate rapid adenosine-triphosphate production from glycolysis. Certain isoforms of these enzymes were over-expressed specifically in PDAC. Altering expression levels of HK, PGI, FBA, enolase, PK-M2 and LDA-A with metabolic inhibitors have shown a favourable effect on PDAC, thus identifying these as potential therapeutic targets. However, the Warburg effect on MOP enzymes is less clear, with different expression levels at different points in the Krebs cycle resulting in a fundamental change of metabolite levels, suggesting that other essential anabolic pathways are being stimulated. CONCLUSION: Further characterisation of the PDAC metabolic phenotype is necessary as currently there are few clinical studies and no successful clinical trials targeting metabolic enzymes. PMID:27022229

  12. Diurnal variation in glucose and leucine metabolism in non-insulin-dependent diabetes.

    PubMed

    Umpleby, A M; Scobie, I N; Boroujerdi, M A; Carson, E R; Sonksen, P H

    1990-04-01

    Glucose and leucine metabolism were investigated in 5 poorly controlled non-insulin-dependent diabetics (NIDDM) following an i.v. injection of 3-[3H]glucose and 1-[14C]leucine in the morning and evening. In the morning glucose concentration (11.2 +/- 0.8 mmol/l) (mean +/- SEM) and production rate (14.2 +/- 1.3 mumol/min/kg) were significantly greater (P less than 0.001, P less than 0.05) and glucose metabolic clearance rate (MCR) (1.3 +/- 0.2 ml/min/kg) significantly lower (P less than 0.05) than in a group of control subjects. Glucose concentration was lower in the evening (P less than 0.05) as a result of a decrease in glucose production rate (P less than 0.05). Leucine concentration and production rate were not significantly different from normal but leucine oxidation rate was increased (P less than 0.05). There was no diurnal variation in leucine metabolism. Since leucine production is a measure of protein breakdown, the higher morning glucose production rate was not due to an increased supply of gluconeogenic precursors from protein catabolism. PMID:2190784

  13. Metabolic responses to prolonged consumption of glucose- and fructose-sweetened beverages are not associated with postprandial or 24-hour glucose and insulin excursions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It has been proposed that the adverse metabolic effects of chronic consumption of sugar-sweetened beverages which contain both glucose and fructose are a consequence of increased circulating glucose and insulin excursions, i.e dietary glycemic index (GI). Objective: We determined if the greater adv...

  14. Increased sensitivity to glucose starvation correlates with downregulation of glycogen phosphorylase isoform PYGB in tumor cell lines resistant to 2-deoxy-d-glucose

    PubMed Central

    Philips, Katherine B.; Kurtoglu, Metin; Leung, Howard J.; Liu, Huaping; Gao, Ningguo; Lehrman, Mark A.; Murray, Timothy G.

    2015-01-01

    Background As tumors evolve, they upregulate glucose metabolism while also encountering intermittent periods of glucose deprivation. Here, we investigate mechanisms by which pancreatic cancer cells respond to therapeutic (2-deoxy-d-glucose, 2-DG) and physiologic (glucose starvation, GS) forms of glucose restriction. Methods From a tumor cell line (1420) that is unusually sensitive to 2-DG under normoxia, low (14DG2)- and high (14DG5)-dose resistant cell lines were selected and used to probe the metabolic pathways involved with their response to different forms of glucose deprivation. Results Muted induction of the unfolded protein response was found to correlate with resistance to 2-DG. Additionally, 14DG2 displayed reduced 2-DG uptake, while 14DG5 was cross-resistant to tunicamycin, suggesting it has enhanced ability to manage glycosylation defects. Conversely, 2-DG-resistant cell lines were more sensitive than their parental cell line to GS, which coincided with lowered levels of glycogen phosphorylase (PYGB) and reduced breakdown of glycogen to glucose in the 2-DG-resistant cell lines. Moreover, by inhibiting PYGB in the parental cell line, sensitivity to GS was increased. Conclusions Overall, the data demonstrate that the manner in which glucose is restricted in tumor cells, i.e., therapeutic or physiologic, leads to differential biological responses involving distinct glucose metabolic pathways. Moreover, in evolving tumors where glucose restriction occurs, the identification of PYGB as a metabolic target may have clinical application. PMID:24292700

  15. Impaired fasting glucose is associated with increased regional cerebral amyloid.

    PubMed

    Morris, Jill K; Vidoni, Eric D; Wilkins, Heather M; Archer, Ashley E; Burns, Nicole C; Karcher, Rainer T; Graves, Rasinio S; Swerdlow, Russell H; Thyfault, John P; Burns, Jeffrey M

    2016-08-01

    The Alzheimer's disease risk gene apolipoprotein E epsilon 4 (APOE ε4) is associated with increased cerebral amyloid. Although impaired glucose metabolism is linked to Alzheimer's disease risk, the relationship between impaired glycemia and cerebral amyloid is unclear. To investigate the independent effects of APOE ε4 and impaired glycemia on cerebral amyloid, we stratified nondemented subjects (n = 73) into 4 groups: normal glucose, APOE ε4 noncarrier (control [CNT]; n = 31), normal glucose, APOE ε4 carrier (E4 only; n = 14) impaired glycemia, APOE ε4 noncarrier (IG only; n = 18), and impaired glycemia, APOE ε4 carrier (IG+E4; n = 10). Cerebral amyloid differed both globally (p = 0.023) and regionally; precuneus (p = 0.007), posterior cingulate (PCC; p = 0.020), superior parietal cortex (SPC; p = 0.029), anterior cingulate (p = 0.027), and frontal cortex (p = 0.018). Post hoc analyses revealed that E4 only subjects had increased cerebral amyloid versus CNT globally and regionally in the precuneus, PCC, SPC, anterior cingulate, and frontal cortex. In IG only subjects, increased cerebral amyloid compared with CNT was restricted to precuneus, PCC, and SPC. IG+E4 subjects exhibited higher cerebral amyloid only in the precuneus relative to CNT. These results indicate that impaired glycemia and APOE ε4 genotype are independent risk factors for regional cerebral amyloid deposition. However, APOE ε4 and impaired glycemia did not have an additive effect on cerebral amyloid. PMID:27318141

  16. Glycolysis-induced discordance between glucose metabolic rates measured with radiolabeled fluorodeoxyglucose and glucose

    SciTech Connect

    Ackermann, R.F.; Lear, J.L. )

    1989-12-01

    We have developed an autoradiographic method for estimating the oxidative and glycolytic components of local CMRglc (LCMRglc), using sequentially administered ({sup 18}F)fluorodeoxyglucose (FDG) and ({sup 14}C)-6-glucose (GLC). FDG-6-phosphate accumulation is proportional to the rate of glucose phosphorylation, which occurs before the divergence of glycolytic (GMg) and oxidative (GMo) glucose metabolism and is therefore related to total cerebral glucose metabolism GMt: GMg + GMo = GMt. With oxidative metabolism, the {sup 14}C label of GLC is temporarily retained in Krebs cycle-related substrate pools. We hypothesize that with glycolytic metabolism, however, a significant fraction of the {sup 14}C label is lost from the brain via lactate production and efflux from the brain. Thus, cerebral GLC metabolite concentration may be more closely related to GMo than to GMt. If true, the glycolytic metabolic rate will be related to the difference between FDG- and GLC-derived LCMRglc. Thus far, we have studied normal awake rats, rats with limbic activation induced by kainic acid (KA), and rats visually stimulated with 16-Hz flashes. In KA-treated rats, significant discordance between FDG and GLC accumulation, which we attribute to glycolysis, occurred only in activated limbic structures. In visually stimulated rats, significant discordance occurred only in the optic tectum.

  17. Glycolysis-induced discordance between glucose metabolic rates measured with radiolabeled fluorodeoxyglucose and glucose.

    PubMed

    Ackermann, R F; Lear, J L

    1989-12-01

    We have developed an autoradiographic method for estimating the oxidative and glycolytic components of local CMRglc (LCMRglc), using sequentially administered [18F]fluorodeoxyglucose (FDG) and [14C]-6-glucose (GLC). FDG-6-phosphate accumulation is proportional to the rate of glucose phosphorylation, which occurs before the divergence of glycolytic (GMg) and oxidative (GMo) glucose metabolism and is therefore related to total cerebral glucose metabolism GMt: GMg + GMo = GMt. With oxidative metabolism, the 14C label of GLC is temporarily retained in Krebs cycle-related substrate pools. We hypothesize that with glycolytic metabolism, however, a significant fraction of the 14C label is lost from the brain via lactate production and efflux from the brain. Thus, cerebral GLC metabolite concentration may be more closely related to GMo than to GMt. If true, the glycolytic metabolic rate will be related to the difference between FDG- and GLC-derived LCMRglc. Thus far, we have studied normal awake rats, rats with limbic activation induced by kainic acid (KA), and rats visually stimulated with 16-Hz flashes. In KA-treated rats, significant discordance between FDG and GLC accumulation, which we attribute to glycolysis, occurred only in activated limbic structures. In visually stimulated rats, significant discordance occurred only in the optic tectum. PMID:2584274

  18. Microbial Regulation of Glucose Metabolism and Cell-Cycle Progression in Mammalian Colonocytes

    PubMed Central

    Donohoe, Dallas R.; Wali, Aminah; Brylawski, Bruna P.; Bultman, Scott J.

    2012-01-01

    A prodigious number of microbes inhabit the human body, especially in the lumen of the gastrointestinal (GI) tract, yet our knowledge of how they regulate metabolic pathways within our cells is rather limited. To investigate the role of microbiota in host energy metabolism, we analyzed ATP levels and AMPK phosphorylation in tissues isolated from germfree and conventionally-raised C57BL/6 mice. These experiments demonstrated that microbiota are required for energy homeostasis in the proximal colon to a greater extent than other segments of the GI tract that also harbor high densities of bacteria. This tissue-specific effect is consistent with colonocytes utilizing bacterially-produced butyrate as their primary energy source, whereas most other cell types utilize glucose. However, it was surprising that glucose did not compensate for butyrate deficiency. We measured a 3.5-fold increase in glucose uptake in germfree colonocytes. However, 13C-glucose metabolic-flux experiments and biochemical assays demonstrated that they shifted their glucose metabolism away from mitochondrial oxidation/CO2 production and toward increased glycolysis/lactate production, which does not yield enough ATPs to compensate. The mechanism responsible for this metabolic shift is diminished pyruvate dehydrogenase (PDH) levels and activity. Consistent with perturbed PDH function, the addition of butyrate, but not glucose, to germfree colonocytes ex vivo stimulated oxidative metabolism. As a result of this energetic defect, germfree colonocytes exhibited a partial block in the G1-to-S-phase transition that was rescued by a butyrate-fortified diet. These data reveal a mechanism by which microbiota regulate glucose utilization to influence energy homeostasis and cell-cycle progression of mammalian host cells. PMID:23029553

  19. Pear Bud Metabolism: Seasonal Changes in Glucose Utilization

    PubMed Central

    Zimmerman, Richard H.; Faust, Miklos

    1969-01-01

    Utilization of glucose, uracil and valine by flower and leaf buds of seedling pear trees (Pyrus calleryana Decne.) from the time of flower bud initiation to flowering was investigated. A very high rate of glucose utilization through the pentose phosphate pathway was observed throughout the development of buds. There was no difference in the type of glucose metabolism between flower and leaf buds except immediately before flowering, when the metabolism in flower buds was shifted toward the glycolytic pathway. Such a shift did not occur in leaf buds. The incorporation of uracil and valine into the nucleic acid and protein fraction of buds, respectively, was high throughout bud development, perhaps indicating a high rate of turnover in the resting buds. Incorporation of both compounds decreased when buds started to expand prior to flowering. PMID:16657202

  20. Glucose consumption of inflammatory cells masks metabolic deficits in the brain

    PubMed Central

    Backes, Heiko; Walberer, Maureen; Ladwig, Anne; Rueger, Maria A.; Neumaier, Bernd; Endepols, Heike; Hoehn, Mathias; Fink, Gereon R.; Schroeter, Michael; Graf, Rudolf

    2016-01-01

    Inflammatory cells such as microglia need energy to exert their functions and to maintain their cellular integrity and membrane potential. Subsequent to cerebral ischemia, inflammatory cells infiltrate tissue with limited blood flow where neurons and astrocytes died due to insufficient supply with oxygen and glucose. Using dual tracer positron emission tomography (PET), we found that concomitant with the presence of inflammatory cells, transport and consumption of glucose increased up to normal levels but returned to pathological levels as soon as inflammatory cells disappeared. Thus, inflammatory cells established sufficient glucose supply to satisfy their energy demands even in regions with insufficient supply for neurons and astrocytes to survive. Our data suggest that neurons and astrocytes died from oxygen deficiency and inflammatory cells metabolized glucose non-oxidatively in regions with residual availability. As a consequence, glucose metabolism of inflammatory cells can mask metabolic deficits in neurodegenerative diseases. We further found that the PET tracer did not bind to inflammatory cells in severely hypoperfused regions and thus only a part of the inflammation was detected. We conclude that glucose consumption of inflammatory cells should be taken into account when analyzing disease-related alterations of local cerebral metabolism. PMID:26747749

  1. Glucose consumption of inflammatory cells masks metabolic deficits in the brain.

    PubMed

    Backes, Heiko; Walberer, Maureen; Ladwig, Anne; Rueger, Maria A; Neumaier, Bernd; Endepols, Heike; Hoehn, Mathias; Fink, Gereon R; Schroeter, Michael; Graf, Rudolf

    2016-03-01

    Inflammatory cells such as microglia need energy to exert their functions and to maintain their cellular integrity and membrane potential. Subsequent to cerebral ischemia, inflammatory cells infiltrate tissue with limited blood flow where neurons and astrocytes died due to insufficient supply with oxygen and glucose. Using dual tracer positron emission tomography (PET), we found that concomitant with the presence of inflammatory cells, transport and consumption of glucose increased up to normal levels but returned to pathological levels as soon as inflammatory cells disappeared. Thus, inflammatory cells established sufficient glucose supply to satisfy their energy demands even in regions with insufficient supply for neurons and astrocytes to survive. Our data suggest that neurons and astrocytes died from oxygen deficiency and inflammatory cells metabolized glucose non-oxidatively in regions with residual availability. As a consequence, glucose metabolism of inflammatory cells can mask metabolic deficits in neurodegenerative diseases. We further found that the PET tracer did not bind to inflammatory cells in severely hypoperfused regions and thus only a part of the inflammation was detected. We conclude that glucose consumption of inflammatory cells should be taken into account when analyzing disease-related alterations of local cerebral metabolism. PMID:26747749

  2. Glucose Regulates Hypothalamic Long-chain Fatty Acid Metabolism via AMP-activated Kinase (AMPK) in Neurons and Astrocytes*

    PubMed Central

    Taïb, Bouchra; Bouyakdan, Khalil; Hryhorczuk, Cécile; Rodaros, Demetra; Fulton, Stephanie; Alquier, Thierry

    2013-01-01

    Hypothalamic controls of energy balance rely on the detection of circulating nutrients such as glucose and long-chain fatty acids (LCFA) by the mediobasal hypothalamus (MBH). LCFA metabolism in the MBH plays a key role in the control of food intake and glucose homeostasis, yet it is not known if glucose regulates LCFA oxidation and esterification in the MBH and, if so, which hypothalamic cell type(s) and intracellular signaling mechanisms are involved. The aim of this study was to determine the impact of glucose on LCFA metabolism, assess the role of AMP-activated Kinase (AMPK), and to establish if changes in LCFA metabolism and its regulation by glucose vary as a function of the kind of LCFA, cell type, and brain region. We show that glucose inhibits palmitate oxidation via AMPK in hypothalamic neuronal cell lines, primary hypothalamic astrocyte cultures, and MBH slices ex vivo but not in cortical astrocytes and slice preparations. In contrast, oleate oxidation was not affected by glucose or AMPK inhibition in MBH slices. In addition, our results show that glucose increases palmitate, but not oleate, esterification into neutral lipids in neurons and MBH slices but not in hypothalamic astrocytes. These findings reveal for the first time the metabolic fate of different LCFA in the MBH, demonstrate AMPK-dependent glucose regulation of LCFA oxidation in both astrocytes and neurons, and establish metabolic coupling of glucose and LCFA as a distinguishing feature of hypothalamic nuclei critical for the control of energy balance. PMID:24240094

  3. Education-Associated Cortical Glucose Metabolism during Sustained Attention

    PubMed Central

    Eisenberg, Daniel P.; London, Edythe D.; Matochik, John A.; Derbyshire, Stuart; Cohen, Lisa J.; Steinfeld, Matthew; Prosser, James; Galynker, Igor I.

    2007-01-01

    Despite research suggesting that education may mitigate cognitive sequelae of neural injury, little is known about interactions between education and regional brain function. We examined whether educational experience is associated with relative glucose metabolism in brain regions that are important for sustained attention and learning. Fourteen healthy adults, with twelve to eighteen years of schooling, underwent positron emission tomography (PET) scanning with 18F-fluorodeoxyglucose (FDG) during an auditory continuous discrimination task. Years of education correlated positively with relative glucose metabolism in the lingual gyri (bilaterally), left posterior cingulate gyrus, and left precuneus. Previously, these structures have shown early impairment in dementia. Further investigation should explore whether metabolic changes in these regions contribute to the possible protective effect of education on cognition. PMID:16110274

  4. Downregulation of CPPED1 expression improves glucose metabolism in vitro in adipocytes.

    PubMed

    Vaittinen, Maija; Kaminska, Dorota; Käkelä, Pirjo; Eskelinen, Matti; Kolehmainen, Marjukka; Pihlajamäki, Jussi; Uusitupa, Matti; Pulkkinen, Leena

    2013-11-01

    We have previously demonstrated that the expression of calcineurin-like phosphoesterase domain containing 1 (CPPED1) decreases in adipose tissue (AT) after weight reduction. However, the function of CPPED1 in AT is unknown. Therefore, we investigated whether the change in CPPED1 expression is connected to changes in adipocyte glucose metabolism. First, we confirmed that the expression of CPPED1 decreased after weight loss in subcutaneous AT. Second, the expression of CPPED1 did not change during adipocyte differentiation. Third, CPPED1 knockdown with small interfering RNA increased expression of genes involved in glucose metabolism (adiponectin, adiponectin receptor 1, and GLUT4) and improved insulin-stimulated glucose uptake. To conclude, CPPED1 is a novel molecule involved in AT biology, and CPPED1 is involved in glucose uptake in adipocytes. PMID:23939394

  5. Downregulation of CPPED1 Expression Improves Glucose Metabolism In Vitro in Adipocytes

    PubMed Central

    Vaittinen, Maija; Kaminska, Dorota; Käkelä, Pirjo; Eskelinen, Matti; Kolehmainen, Marjukka; Pihlajamäki, Jussi; Uusitupa, Matti; Pulkkinen, Leena

    2013-01-01

    We have previously demonstrated that the expression of calcineurin-like phosphoesterase domain containing 1 (CPPED1) decreases in adipose tissue (AT) after weight reduction. However, the function of CPPED1 in AT is unknown. Therefore, we investigated whether the change in CPPED1 expression is connected to changes in adipocyte glucose metabolism. First, we confirmed that the expression of CPPED1 decreased after weight loss in subcutaneous AT. Second, the expression of CPPED1 did not change during adipocyte differentiation. Third, CPPED1 knockdown with small interfering RNA increased expression of genes involved in glucose metabolism (adiponectin, adiponectin receptor 1, and GLUT4) and improved insulin-stimulated glucose uptake. To conclude, CPPED1 is a novel molecule involved in AT biology, and CPPED1 is involved in glucose uptake in adipocytes. PMID:23939394

  6. Fasting and postabsorptive hepatic glucose and insulin metabolism in hyperthyroidism.

    PubMed

    Raboudi, N; Arem, R; Jones, R H; Chap, Z; Pena, J; Chou, J; Field, J B

    1989-01-01

    The effect of thyroid hormone excess on hepatic glucose balances and fractional hepatic extraction of insulin and glucagon was examined in six conscious dogs with catheters in the portal vein, hepatic vein, and femoral artery and Doppler flow probes on the portal vein and hepatic artery. An oral glucose tolerance test was performed before and after the animals were made hyperthyroid by intramuscular thyroxine administration (100 micrograms.kg-1.day-1) for 10 days. In the basal state and after oral glucose, insulin and glucagon levels in the three vessels and the basal fractional hepatic extraction of insulin and glucagon were not significantly modified by thyroid hormone. These results suggest that in short-term thyrotoxicosis insulin secretion is not impaired, and the rise in fasting plasma glucose and increased hepatic glucose production could reflect hepatic insulin resistance, increased availability of precursors for gluconeogenesis, or increased glycogenolysis. Hyperthyroidism significantly increased basal flows in the portal vein (14.7 +/- 0.6 vs. 12.9 +/- 0.5 ml.kg-1.min-1), the hepatic artery (4.8 +/- 0.3 vs. 3.9 +/- 0.2 ml.kg-1.min-1) and vein (19.6 +/- 0.7 vs. 16.9 +/- 0.4 ml.kg-1.min-1), the fasting plasma glucose concentration (104 +/- 3 vs. 92 +/- 2 mg/dl), and basal hepatic glucose output (2.1 +/- 0.2 vs. 1.5 +/- 0.2 mg.kg-1.min-1). It did not alter the nonhepatic splanchnic uptake of glucose, the percent of orally administered glucose that appeared in the portal vein (47 +/- 2 vs. 45 +/- 11%), the percent of hepatic uptake of glucose (59 +/- 11 vs. 74 +/- 22%), or the shape of the glucose tolerance test. PMID:2643338

  7. Regulation of glucose and glycogen metabolism during and after exercise.

    PubMed

    Jensen, Thomas E; Richter, Erik A

    2012-03-01

    Utilization of carbohydrate in the form of intramuscular glycogen stores and glucose delivered from plasma becomes an increasingly important energy substrate to the working muscle with increasing exercise intensity. This review gives an update on the molecular signals by which glucose transport is increased in the contracting muscle followed by a discussion of glycogen mobilization and synthesis by the action of glycogen phosphorylase and glycogen synthase, respectively. Finally, this review deals with the signalling relaying the well-described increased sensitivity of glucose transport to insulin in the post-exercise period which can result in an overshoot of intramuscular glycogen resynthesis post exercise (glycogen supercompensation). PMID:22199166

  8. Regulation of glucose and glycogen metabolism during and after exercise

    PubMed Central

    Jensen, Thomas E; Richter, Erik A

    2012-01-01

    Utilization of carbohydrate in the form of intramuscular glycogen stores and glucose delivered from plasma becomes an increasingly important energy substrate to the working muscle with increasing exercise intensity. This review gives an update on the molecular signals by which glucose transport is increased in the contracting muscle followed by a discussion of glycogen mobilization and synthesis by the action of glycogen phosphorylase and glycogen synthase, respectively. Finally, this review deals with the signalling relaying the well-described increased sensitivity of glucose transport to insulin in the post-exercise period which can result in an overshoot of intramuscular glycogen resynthesis post exercise (glycogen supercompensation). PMID:22199166

  9. Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B-cells

    PubMed Central

    Le, Anne; Lane, Andrew N.; Hamaker, Max; Bose, Sminu; Gouw, Arvin; Barbi, Joseph; Tsukamoto, Takashi; Rojas, Camilio J.; Slusher, Barbara S.; Zhang, Haixia; Zimmerman, Lisa J.; Liebler, Daniel C.; Slebos, Robbert J.C.; Lorkiewicz, Pawel K.; Higashi, Richard M.; Fan, Teresa W. M.; Dang, Chi V.

    2012-01-01

    Summary Because MYC plays a causal role in many human cancers, including those with hypoxic and nutrient-poor tumor microenvironments, we have determined the metabolic responses of a MYC-inducible human Burkitt lymphoma model P493 cell line to aerobic and hypoxic conditions, and to glucose deprivation, using Stable Isotope Resolved Metabolomics. Using [U-13C]-glucose as the tracer, both glucose consumption and lactate production were increased by MYC expression and hypoxia. Using [U-13C,15N]-glutamine as the tracer, glutamine import and metabolism through the TCA cycle persisted under hypoxia, and glutamine contributed significantly to citrate carbons. Under glucose deprivation, glutamine-derived fumarate, malate, and citrate were significantly increased. Their 13C labeling patterns demonstrate an alternative energy-generating glutaminolysis pathway involving a glucose-independent TCA cycle. The essential role of glutamine metabolism in cell survival and proliferation under hypoxia and glucose deficiency, makes them susceptible to the glutaminase inhibitor BPTES, and hence could be targeted for cancer therapy. PMID:22225880

  10. Mechanism of bile acid-regulated glucose and lipid metabolism in duodenal-jejunal bypass

    PubMed Central

    Chai, Jie; Zou, Lei; Li, Xirui; Han, Dali; Wang, Shan; Hu, Sanyuan; Guan, Jie

    2015-01-01

    Bile acid plays an important role in regulating blood glucose, lipid and energy metabolism. The present study was implemented to determine the effect of duodenal-jejunal bypass (DJB) on FXR, TGR-5expression in terminal ileum and its bile acid-related mechanism on glucose and lipid metabolism. Immunohistochemistry was used to detect relative gene or protein expression in liver and intestine. Firstly, we found that expression of FXR in liver and terminal ileum of DJB group was significantly higher than that in S-DJB group (P<0.05). In addition, DJB dramatically increased the activation of TGR-5 in the liver of rats. Furthermore, PEPCK, G6Pase, FBPase 1 and GLP-1 were up-regulated by DJB. In conclusion, these results showed that bile acid ameliorated glucose and lipid metabolism through bile acid-FXR and bile acid- TGR-5 signaling pathway. PMID:26884847

  11. Honeybee retinal glial cells transform glucose and supply the neurons with metabolic substrate

    SciTech Connect

    Tsacopoulos, M.; Evequoz-Mercier, V.; Perrottet, P.; Buchner, E.

    1988-11-01

    The retina of the honeybee drone is a nervous tissue in which glial cells and photoreceptor cells (sensory neurons) constitute two distinct metabolic compartments. Retinal slices incubated with 2-deoxy(/sup 3/H)glucose convert this glucose analogue to 2-deoxy(/sup 3/H)glucose 6-phosphate, but this conversion is made only in the glial cells. Hence, glycolysis occurs only in glial cells. In contrast, the neurons consume O/sub 2/ and this consumption is sustained by the hydrolysis of glycogen, which is contained in large amounts in the glia. During photostimulation the increased oxidative metabolism of the neurons is sustained by a higher supply of carbohydrates from the glia. This clear case of metabolic interaction between neurons and glial cells supports Golgi's original hypothesis, proposed nearly 100 years ago, about the nutritive function of glial cells in the nervous system.

  12. Uric acid as a modulator of glucose and lipid metabolism.

    PubMed

    Lima, William Gustavo; Martins-Santos, Maria Emília Soares; Chaves, Valéria Ernestânia

    2015-09-01

    In humans, uric acid is the final oxidation product of purine catabolism. The serum uric acid level is based on the balance between the absorption, production and excretion of purine. Uric acid is similarly produced in the liver, adipose tissue and muscle and is primarily excreted through the urinary tract. Several factors, including a high-fructose diet and the use of xenobiotics and alcohol, contribute to hyperuricaemia. Hyperuricaemia belongs to a cluster of metabolic and haemodynamic abnormalities, called metabolic syndrome, characterised by abdominal obesity, glucose intolerance, insulin resistance, dyslipidaemia and hypertension. Hyperuricaemia reduction in the Pound mouse or fructose-fed rats, as well as hyperuricaemia induction by uricase inhibition in rodents and studies using cell culture have suggested that uric acid plays an important role in the development of metabolic syndrome. These studies have shown that high uric acid levels regulate the oxidative stress, inflammation and enzymes associated with glucose and lipid metabolism, suggesting a mechanism for the impairment of metabolic homeostasis. Humans lacking uricase, the enzyme responsible for uric acid degradation, are susceptible to these effects. In this review, we summarise the current knowledge of the effects of uric acid on the regulation of metabolism, primarily focusing on liver, adipose tissue and skeletal muscle. PMID:26133655

  13. Alterations of hippocampal glucose metabolism by even versus uneven medium chain triglycerides

    PubMed Central

    McDonald, Tanya S; Tan, Kah Ni; Hodson, Mark P; Borges, Karin

    2014-01-01

    Medium chain triglycerides (MCTs) are used to treat neurologic disorders with metabolic impairments, including childhood epilepsy and early Alzheimer's disease. However, the metabolic effects of MCTs in the brain are still unclear. Here, we studied the effects of feeding even and uneven MCTs on brain glucose metabolism in the mouse. Adult mice were fed 35% (calories) of trioctanoin or triheptanoin (the triglycerides of octanoate or heptanoate, respectively) or a matching control diet for 3 weeks. Enzymatic assays and targeted metabolomics by liquid chromatography tandem mass spectrometry were used to quantify metabolites in extracts from the hippocampal formations (HFs). Both oils increased the levels of β-hydroxybutyrate, but no other significant metabolic alterations were observed after triheptanoin feeding. The levels of glucose 6-phosphate and fructose 6-phosphate were increased in the HF of mice fed trioctanoin, whereas levels of metabolites further downstream in the glycolytic pathway and the pentose phosphate pathway were reduced. This indicates that trioctanoin reduces glucose utilization because of a decrease in phosphofructokinase activity. Trioctanoin and triheptanoin showed similar anticonvulsant effects in the 6 Hz seizure model, but it remains unknown to what extent the anticonvulsant mechanism(s) are shared. In conclusion, triheptanoin unlike trioctanoin appears to not alter glucose metabolism in the healthy brain. PMID:24169853

  14. Alterations of hippocampal glucose metabolism by even versus uneven medium chain triglycerides.

    PubMed

    McDonald, Tanya S; Tan, Kah Ni; Hodson, Mark P; Borges, Karin

    2014-01-01

    Medium chain triglycerides (MCTs) are used to treat neurologic disorders with metabolic impairments, including childhood epilepsy and early Alzheimer's disease. However, the metabolic effects of MCTs in the brain are still unclear. Here, we studied the effects of feeding even and uneven MCTs on brain glucose metabolism in the mouse. Adult mice were fed 35% (calories) of trioctanoin or triheptanoin (the triglycerides of octanoate or heptanoate, respectively) or a matching control diet for 3 weeks. Enzymatic assays and targeted metabolomics by liquid chromatography tandem mass spectrometry were used to quantify metabolites in extracts from the hippocampal formations (HFs). Both oils increased the levels of β-hydroxybutyrate, but no other significant metabolic alterations were observed after triheptanoin feeding. The levels of glucose 6-phosphate and fructose 6-phosphate were increased in the HF of mice fed trioctanoin, whereas levels of metabolites further downstream in the glycolytic pathway and the pentose phosphate pathway were reduced. This indicates that trioctanoin reduces glucose utilization because of a decrease in phosphofructokinase activity. Trioctanoin and triheptanoin showed similar anticonvulsant effects in the 6 Hz seizure model, but it remains unknown to what extent the anticonvulsant mechanism(s) are shared. In conclusion, triheptanoin unlike trioctanoin appears to not alter glucose metabolism in the healthy brain. PMID:24169853

  15. MicroRNA-26a regulates insulin sensitivity and metabolism of glucose and lipids

    PubMed Central

    Fu, Xianghui; Dong, Bingning; Tian, Yan; Lefebvre, Philippe; Meng, Zhipeng; Wang, Xichun; Pattou, François; Han, Weidong; Wang, Xiaoqiong; Lou, Fang; Jove, Richard; Staels, Bart; Moore, David D.; Huang, Wendong

    2015-01-01

    Type 2 diabetes (T2D) is characterized by insulin resistance and increased hepatic glucose production, yet the molecular mechanisms underlying these abnormalities are poorly understood. MicroRNAs (miRs) are a class of small, noncoding RNAs that have been implicated in the regulation of human diseases, including T2D. miR-26a is known to play a critical role in tumorigenesis; however, its function in cellular metabolism remains unknown. Here, we determined that miR-26a regulates insulin signaling and metabolism of glucose and lipids. Compared with lean individuals, overweight humans had decreased expression of miR-26a in the liver. Moreover, miR-26 was downregulated in 2 obese mouse models compared with control animals. Global or liver-specific overexpression of miR-26a in mice fed a high-fat diet improved insulin sensitivity, decreased hepatic glucose production, and decreased fatty acid synthesis, thereby preventing obesity-induced metabolic complications. Conversely, silencing of endogenous miR-26a in conventional diet–fed mice impaired insulin sensitivity, enhanced glucose production, and increased fatty acid synthesis. miR-26a targeted several key regulators of hepatic metabolism and insulin signaling. These findings reveal miR-26a as a regulator of liver metabolism and suggest miR-26a should be further explored as a potential target for the treatment of T2D. PMID:25961460

  16. Metabolic Impact of Increased NADH Availability in Saccharomyces cerevisiae▿

    PubMed Central

    Hou, Jin; Scalcinati, Gionata; Oldiges, Marco; Vemuri, Goutham N.

    2010-01-01

    Engineering the level of metabolic cofactors to manipulate metabolic flux is emerging as an attractive strategy for bioprocess applications. We present the metabolic consequences of increasing NADH in the cytosol and the mitochondria of Saccharomyces cerevisiae. In a strain that was disabled in formate metabolism, we either overexpressed the native NAD+-dependent formate dehydrogenase in the cytosol or directed it into the mitochondria by fusing it with the mitochondrial signal sequence encoded by the CYB2 gene. Upon exposure to formate, the mutant strains readily consumed formate and induced fermentative metabolism even under conditions of glucose derepression. Cytosolic overexpression of formate dehydrogenase resulted in the production of glycerol, while when this enzyme was directed into the mitochondria, we observed glycerol and ethanol production. Clearly, these results point toward different patterns of compartmental regulation of redox homeostasis. When pulsed with formate, S. cerevisiae cells growing in a steady state on glucose immediately consumed formate. However, formate consumption ceased after 20 min. Our analysis revealed that metabolites at key branch points of metabolic pathways were affected the most by the genetic perturbations and that the intracellular concentrations of sugar phosphates were specifically affected by time. In conclusion, the results have implications for the design of metabolic networks in yeast for industrial applications. PMID:20023106

  17. Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides

    NASA Astrophysics Data System (ADS)

    Birsoy, Kıvanç; Possemato, Richard; Lorbeer, Franziska K.; Bayraktar, Erol C.; Thiru, Prathapan; Yucel, Burcu; Wang, Tim; Chen, Walter W.; Clish, Clary B.; Sabatini, David M.

    2014-04-01

    As the concentrations of highly consumed nutrients, particularly glucose, are generally lower in tumours than in normal tissues, cancer cells must adapt their metabolism to the tumour microenvironment. A better understanding of these adaptations might reveal cancer cell liabilities that can be exploited for therapeutic benefit. Here we developed a continuous-flow culture apparatus (Nutrostat) for maintaining proliferating cells in low-nutrient media for long periods of time, and used it to undertake competitive proliferation assays on a pooled collection of barcoded cancer cell lines cultured in low-glucose conditions. Sensitivity to low glucose varies amongst cell lines, and an RNA interference (RNAi) screen pinpointed mitochondrial oxidative phosphorylation (OXPHOS) as the major pathway required for optimal proliferation in low glucose. We found that cell lines most sensitive to low glucose are defective in the OXPHOS upregulation that is normally caused by glucose limitation as a result of either mitochondrial DNA (mtDNA) mutations in complex I genes or impaired glucose utilization. These defects predict sensitivity to biguanides, antidiabetic drugs that inhibit OXPHOS, when cancer cells are grown in low glucose or as tumour xenografts. Notably, the biguanide sensitivity of cancer cells with mtDNA mutations was reversed by ectopic expression of yeast NDI1, a ubiquinone oxidoreductase that allows bypass of complex I function. Thus, we conclude that mtDNA mutations and impaired glucose utilization are potential biomarkers for identifying tumours with increased sensitivity to OXPHOS inhibitors.

  18. Glucose metabolic flux distribution of Lactobacillus amylophilus during lactic acid production using kitchen waste saccharified solution

    PubMed Central

    Liu, Jianguo; Wang, Qunhui; Zou, Hui; Liu, Yingying; Wang, Juan; Gan, Kemin; Xiang, Juan

    2013-01-01

    The 13C isotope tracer method was used to investigate the glucose metabolic flux distribution and regulation in Lactobacillus amylophilus to improve lactic acid production using kitchen waste saccharified solution (KWSS). The results demonstrate that L. amylophilus is a homofermentative bacterium. In synthetic medium, 60.6% of the glucose entered the Embden–Meyerhof–Parnas (EMP) to produce lactic acid, whereas 36.4% of the glucose entered the pentose phosphate metabolic pathway (HMP). After solid–liquid separation of the KWSS, the addition of Fe3+ during fermentation enhanced the NADPH production efficiency and increased the NADH content. The flux to the EMP was also effectively increased. Compared with the control (60.6% flux to EMP without Fe3+ addition), the flux to the EMP with the addition of Fe3+ (74.3%) increased by 23.8%. In the subsequent pyruvate metabolism, Fe3+ also increased lactate dehydrogenase activity, and inhibited alcohol dehydrogenase, pyruvate dehydrogenase and pyruvate carboxylase, thereby increasing the lactic acid production to 9.03 g l−1, an increase of 8% compared with the control. All other organic acid by-products were lower than in the control. However, the addition of Zn2+ showed an opposite effect, decreasing the lactic acid production. In conclusion it is feasible and effective means using GC-MS, isotope experiment and MATLAB software to integrate research the metabolic flux distribution of lactic acid bacteria, and the results provide the theoretical foundation for similar metabolic flux distribution. PMID:23489617

  19. Glucose metabolism during fasting is altered in experimental porphobilinogen deaminase deficiency.

    PubMed

    Collantes, María; Serrano-Mendioroz, Irantzu; Benito, Marina; Molinet-Dronda, Francisco; Delgado, Mercedes; Vinaixa, María; Sampedro, Ana; Enríquez de Salamanca, Rafael; Prieto, Elena; Pozo, Miguel A; Peñuelas, Iván; Corrales, Fernando J; Barajas, Miguel; Fontanellas, Antonio

    2016-04-01

    Porphobilinogen deaminase (PBGD) haploinsufficiency (acute intermittent porphyria, AIP) is characterized by neurovisceral attacks when hepatic heme synthesis is activated by endogenous or environmental factors including fasting. While the molecular mechanisms underlying the nutritional regulation of hepatic heme synthesis have been described, glucose homeostasis during fasting is poorly understood in porphyria. Our study aimed to analyse glucose homeostasis and hepatic carbohydrate metabolism during fasting in PBGD-deficient mice. To determine the contribution of hepatic PBGD deficiency to carbohydrate metabolism, AIP mice injected with a PBGD-liver gene delivery vector were included. After a 14 h fasting period, serum and liver metabolomics analyses showed that wild-type mice stimulated hepatic glycogen degradation to maintain glucose homeostasis while AIP livers activated gluconeogenesis and ketogenesis due to their inability to use stored glycogen. The serum of fasted AIP mice showed increased concentrations of insulin and reduced glucagon levels. Specific over-expression of the PBGD protein in the liver tended to normalize circulating insulin and glucagon levels, stimulated hepatic glycogen catabolism and blocked ketone body production. Reduced glucose uptake was observed in the primary somatosensorial brain cortex of fasted AIP mice, which could be reversed by PBGD-liver gene delivery. In conclusion, AIP mice showed a different response to fasting as measured by altered carbohydrate metabolism in the liver and modified glucose consumption in the brain cortex. Glucose homeostasis in fasted AIP mice was efficiently normalized after restoration of PBGD gene expression in the liver. PMID:26908609

  20. Glucose deprivation activates a metabolic and signaling amplification loop leading to cell death

    PubMed Central

    Graham, Nicholas A; Tahmasian, Martik; Kohli, Bitika; Komisopoulou, Evangelia; Zhu, Maggie; Vivanco, Igor; Teitell, Michael A; Wu, Hong; Ribas, Antoni; Lo, Roger S; Mellinghoff, Ingo K; Mischel, Paul S; Graeber, Thomas G

    2012-01-01

    The altered metabolism of cancer can render cells dependent on the availability of metabolic substrates for viability. Investigating the signaling mechanisms underlying cell death in cells dependent upon glucose for survival, we demonstrate that glucose withdrawal rapidly induces supra-physiological levels of phospho-tyrosine signaling, even in cells expressing constitutively active tyrosine kinases. Using unbiased mass spectrometry-based phospho-proteomics, we show that glucose withdrawal initiates a unique signature of phospho-tyrosine activation that is associated with focal adhesions. Building upon this observation, we demonstrate that glucose withdrawal activates a positive feedback loop involving generation of reactive oxygen species (ROS) by NADPH oxidase and mitochondria, inhibition of protein tyrosine phosphatases by oxidation, and increased tyrosine kinase signaling. In cells dependent on glucose for survival, glucose withdrawal-induced ROS generation and tyrosine kinase signaling synergize to amplify ROS levels, ultimately resulting in ROS-mediated cell death. Taken together, these findings illustrate the systems-level cross-talk between metabolism and signaling in the maintenance of cancer cell homeostasis. PMID:22735335

  1. Metabolic Networks and Metabolites Underlie Associations Between Maternal Glucose During Pregnancy and Newborn Size at Birth.

    PubMed

    Scholtens, Denise M; Bain, James R; Reisetter, Anna C; Muehlbauer, Michael J; Nodzenski, Michael; Stevens, Robert D; Ilkayeva, Olga; Lowe, Lynn P; Metzger, Boyd E; Newgard, Christopher B; Lowe, William L

    2016-07-01

    Maternal metabolites and metabolic networks underlying associations between maternal glucose during pregnancy and newborn birth weight and adiposity demand fuller characterization. We performed targeted and nontargeted gas chromatography/mass spectrometry metabolomics on maternal serum collected at fasting and 1 h following glucose beverage consumption during an oral glucose tolerance test (OGTT) for 400 northern European mothers at ∼28 weeks' gestation in the Hyperglycemia and Adverse Pregnancy Outcome Study. Amino acids, fatty acids, acylcarnitines, and products of lipid metabolism decreased and triglycerides increased during the OGTT. Analyses of individual metabolites indicated limited maternal glucose associations at fasting, but broader associations, including amino acids, fatty acids, carbohydrates, and lipids, were found at 1 h. Network analyses modeling metabolite correlations provided context for individual metabolite associations and elucidated collective associations of multiple classes of metabolic fuels with newborn size and adiposity, including acylcarnitines, fatty acids, carbohydrates, and organic acids. Random forest analyses indicated an improved ability to predict newborn size outcomes by using maternal metabolomics data beyond traditional risk factors, including maternal glucose. Broad-scale association of fuel metabolites with maternal glucose is evident during pregnancy, with unique maternal metabolites potentially contributing specifically to newborn birth weight and adiposity. PMID:27207545

  2. Polydatin improves glucose and lipid metabolism in experimental diabetes through activating the Akt signaling pathway.

    PubMed

    Hao, Jie; Chen, Cheng; Huang, Kaipeng; Huang, Junying; Li, Jie; Liu, Peiqing; Huang, Heqing

    2014-12-15

    Recently, the effect of polydatin on lipid regulation has gained considerable attention. And previous study has demonstrated that polydatin has hypoglycemic effect on experimental diabetic rats. Repressed Akt pathway contributes to glucose and lipid disorders in diabetes. Thus, whether polydatin regulates glucose and lipid metabolism in experimental diabetic models through the Akt pathway arouses interest. The purpose was to explore the regulatory mechanism of polydain on glucose and lipid through Akt pathway. We used a diabetic rat model induced by high-fat and -sugar diet with low-dose of streptozocin and an insulin resistant HepG2 cell model induced by palmitic acid to clarify the role of polydatin on glucose and lipid metabolism. Here, we found that polydatin significantly attenuated fasting blood–glucose, glycosylated hemoglobin, glycosylated serum protein, total cholesterol, triglyceride, and low-density lipoprotein cholesterol in diabetic rats. Furthermore, polydatin significantly increased glucose uptake and consumption and decreased lipid accumulation in insulin resistant HepG2 cells. Polydatin markedly increased serum insulin levels in diabetic rats, and obviously activated the Akt signaling pathway in diabetic rat livers and insulin resistant HepG2 cells. Polydatin markedly increased phosphorylated GSK-3β, decreased the protein levels of G6Pase and SREBP-1c, and increased protein levels of GCK, LDLR, and phosphorylated IRS in livers and HepG2 cells. Overall, the results indicate that polydatin regulates glucose and lipid metabolism in experimental diabetic models, the underlying mechanism is probably associated with regulating the Akt pathway. The effect of polydatin on increased Akt phosphorylation is independent of prompting insulin secretion, but dependent of increasing IRS phosphorylation. PMID:25310908

  3. Type 2 Diabetes Dysregulates Glucose Metabolism in Cardiac Progenitor Cells.

    PubMed

    Salabei, Joshua K; Lorkiewicz, Pawel K; Mehra, Parul; Gibb, Andrew A; Haberzettl, Petra; Hong, Kyung U; Wei, Xiaoli; Zhang, Xiang; Li, Qianhong; Wysoczynski, Marcin; Bolli, Roberto; Bhatnagar, Aruni; Hill, Bradford G

    2016-06-24

    Type 2 diabetes is associated with increased mortality and progression to heart failure. Recent studies suggest that diabetes also impairs reparative responses after cell therapy. In this study, we examined potential mechanisms by which diabetes affects cardiac progenitor cells (CPCs). CPCs isolated from the diabetic heart showed diminished proliferation, a propensity for cell death, and a pro-adipogenic phenotype. The diabetic CPCs were insulin-resistant, and they showed higher energetic reliance on glycolysis, which was associated with up-regulation of the pro-glycolytic enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3). In WT CPCs, expression of a mutant form of PFKFB, which mimics PFKFB3 activity and increases glycolytic rate, was sufficient to phenocopy the mitochondrial and proliferative deficiencies found in diabetic cells. Consistent with activation of phosphofructokinase in diabetic cells, stable isotope carbon tracing in diabetic CPCs showed dysregulation of the pentose phosphate and glycero(phospho)lipid synthesis pathways. We describe diabetes-induced dysregulation of carbon partitioning using stable isotope metabolomics-based coupling quotients, which relate relative flux values between metabolic pathways. These findings suggest that diabetes causes an imbalance in glucose carbon allocation by uncoupling biosynthetic pathway activity, which could diminish the efficacy of CPCs for myocardial repair. PMID:27151219

  4. Comparison of glucose and lipid metabolic gene expressions between fat and lean lines of rainbow trout after a glucose load.

    PubMed

    Jin, Junyan; Médale, Françoise; Kamalam, Biju Sam; Aguirre, Peyo; Véron, Vincent; Panserat, Stéphane

    2014-01-01

    Two experimental rainbow trout lines developed through divergent selection for low (Lean 'L' line) or high (Fat 'F' line) muscle fat content were used as models to study the genetic determinism of fat depots. Previous nutritional studies suggested that the F line had a better capability to use glucose than the L line during feeding trials. Based on that, we put forward the hypothesis that F line has a greater metabolic ability to clear a glucose load effectively, compared to L line. In order to test this hypothesis, 250 mg/kg glucose was intraperitoneally injected to the two rainbow trout lines fasted for 48 h. Hyperglycemia was observed after glucose treatment in both lines without affecting the phosphorylation of AMPK (cellular energy sensor) and Akt-TOR (insulin signaling) components. Liver glucokinase and glucose-6-phosphate dehydrogenase expression levels were increased by glucose, whereas mRNA levels of β-oxidation enzymes (CPT1a, CPT1b, HOAD and ACO) were down-regulated in the white skeletal muscle of both lines. Regarding the genotype effect, concordant with normoglycemia at 12 h after glucose treatment, higher muscle glycogen was found in F line compared to L line which exhibited hyperglycemia. Moreover, mRNA levels of hepatic glycolytic enzymes (GK, 6PFK and PK), gluconeogenic enzyme PEPCK and muscle fatty acid oxidation enzymes (CPT1a, CPT1b and HOAD) were concurrently higher in the F line. Overall, these findings suggest that F line may have a better ability to maintain glucose homeostasis than L line. PMID:25141351

  5. [GLUCOSE METABOLISM IN SURFACTANTS PRODUCER NOCARDIA VACCINII IMV B-7405].

    PubMed

    Pirog, T P; Shevchuk, T A; Beregova, K A

    2015-01-01

    Key enzymes of glucose metabolism were detected in the cells of surfactants producer Nocardia vaccinii IMV B-7405 grown on this substrate. It has been established that glucose catabolism is performed through gluconate (FAD(+)-dependent glucose dehydrogenase activity 698 ± 35 nmol x min(-1) x mg(-1) of protein). Oxidation of gluconate to 6-phosphogluconate is catalised by gluconokinase (178 ± 9 nmol x min(-1) x mg(-1) of protein). 6-Phosphogluconate was involved into pentose phosphate cycle by constitutive NADP(+)-dependent 6-phosphogluconate dehydrogenase (activity 357 ± 17 nmol x min(-1) x mg(-1) of protein). The data obtained serve as the basis for theoretical calculations of optimal molar ratio of concentrations of energetically nonequivalent substrates for intensifying the surfactants synthesis on their mixture. PMID:26638479

  6. Quantifying the Contribution of the Liver to Glucose Homeostasis: A Detailed Kinetic Model of Human Hepatic Glucose Metabolism

    PubMed Central

    König, Matthias; Bulik, Sascha; Holzhütter, Hermann-Georg

    2012-01-01

    Despite the crucial role of the liver in glucose homeostasis, a detailed mathematical model of human hepatic glucose metabolism is lacking so far. Here we present a detailed kinetic model of glycolysis, gluconeogenesis and glycogen metabolism in human hepatocytes integrated with the hormonal control of these pathways by insulin, glucagon and epinephrine. Model simulations are in good agreement with experimental data on (i) the quantitative contributions of glycolysis, gluconeogenesis, and glycogen metabolism to hepatic glucose production and hepatic glucose utilization under varying physiological states. (ii) the time courses of postprandial glycogen storage as well as glycogen depletion in overnight fasting and short term fasting (iii) the switch from net hepatic glucose production under hypoglycemia to net hepatic glucose utilization under hyperglycemia essential for glucose homeostasis (iv) hormone perturbations of hepatic glucose metabolism. Response analysis reveals an extra high capacity of the liver to counteract changes of plasma glucose level below 5 mM (hypoglycemia) and above 7.5 mM (hyperglycemia). Our model may serve as an important module of a whole-body model of human glucose metabolism and as a valuable tool for understanding the role of the liver in glucose homeostasis under normal conditions and in diseases like diabetes or glycogen storage diseases. PMID:22761565

  7. Cerebral metabolism of glucose in benign hereditary chorea

    SciTech Connect

    Suchowersky, O.; Hayden, M.R.; Martin, W.R.; Stoessl, A.J.; Hildebrand, A.M.; Pate, B.D.

    1986-01-01

    Benign hereditary chorea (BHC) is an autosomal dominant disorder characterized by chorea of early onset with little or no progression. There is marked clinical variability in this disease with some subjects having onset in infancy and others with onset in early adulthood. In contrast to Huntington's disease (HD), there is no dementia. Computed tomography is normal in all subjects with no evidence of caudate nucleus atrophy. We present the results of positron emission tomography using YF-2-fluorodeoxyglucose on three patients with this disorder from two families. Cerebral glucose metabolism in one patient was decreased in the caudate nucleus, as previously reported in HD. The other two persons from a second family showed a relative decrease in metabolic rates of glucose in the caudate when compared with the thalamus. It appears that caudate hypometabolism is not specific for HD. These findings suggest that the caudate nucleus may play a significant role in the pathophysiology of some persons with BHC.

  8. Glucose metabolism in gastric cancer: The cutting-edge

    PubMed Central

    Yuan, Lian-Wen; Yamashita, Hiroharu; Seto, Yasuyuki

    2016-01-01

    Glucose metabolism in gastric cancer cells differs from that of normal epithelial cells. Upregulated aerobic glycolysis (Warburg effect) in gastric cancer meeting the demands of cell proliferation is associated with genetic mutations, epigenetic modification and proteomic alteration. Understanding the mechanisms of aerobic glycolysis may contribute to our knowledge of gastric carcinogenesis. Metabolomic studies offer novel, convenient and practical tools in the search for new biomarkers for early detection, diagnosis, prognosis, and chemosensitivity prediction of gastric cancer. Interfering with the process of glycolysis in cancer cells may provide a new and promising therapeutic strategy for gastric cancer. In this article, we present a brief review of recent studies of glucose metabolism in gastric cancer, with primary focus on the clinical applications of new biomarkers and their potential therapeutic role in gastric cancer. PMID:26877609

  9. Regional cerebral glucose metabolic rate in human sleep assessed by positron emission tomography

    SciTech Connect

    Buchsbaum, M.S.; Wu, J.; Hazlett, E.; Sicotte, N.; Bunney, W.E. Jr. ); Gillin, J.C. )

    1989-01-01

    The cerebral metabolic rate of glucose was measured during nighttime sleep in 36 normal volunteers using positron emission tomography and fluorine-18-labeled 2-deoxyglucose (FDG). In comparison to waking controls, subjects given FDG during non-rapid eye movement (NREM) sleep showed about a 23% reduction in metabolic rate across the entire brain. This decrease was greater for the frontal than temporal or occipital lobes, and greater for basal ganglia and thalamus than cortex. Subjects in rapid eye movement (REM) sleep tended to have higher cortical metabolic rates than walking subjects. The cingulate gyrus was the only cortical structure to show a significant increase in glucose metabolic rate in REM sleep in comparison to waking. The basal ganglia were relatively more active on the right in REM sleep and symmetrical in NREM sleep.

  10. Reproducibility of cerebral glucose metabolic measurements in resting human subjects.

    PubMed

    Bartlett, E J; Brodie, J D; Wolf, A P; Christman, D R; Laska, E; Meissner, M

    1988-08-01

    Positron emission tomography with 11C-2-deoxyglucose was used to determine the test-retest variability of regional cerebral glucose metabolism in 22 young normal right-handed men scanned twice in a 24-h period under baseline (resting) conditions. To assess the effects of scan order and time of day on variability, 12 subjects were scanned in the morning and afternoon of the same day (a.m.-p.m.) and 10 in the reverse order (p.m.-a.m.) with a night in between. The effect of anxiety on metabolism was also assessed. Seventy-three percent of the total subject group showed changes in whole brain metabolism from the first to the second measurement of 10% or less, with comparable changes in various cortical and subcortical regions. When a scaling factor was used to equate the whole brain metabolism in the two scans for each individual, the resulting average regional changes for each group were no more than 1%. This suggests that the proportion of the whole brain metabolism utilized regionally is stable in a group of subjects over time. Both groups of subjects had lower morning than afternoon metabolism, but the differences were slight in the p.m.-a.m. group. One measure of anxiety (pulse at run 1) was correlated with run 1 metabolism and with the percentage of change from run 1 to run 2. No significant run 2 correlations were observed. This is the first study to measure test-retest variability in cerebral glucose metabolism in a large sample of young normal subjects. It demonstrates that the deoxyglucose method yields low intrasubject variability and high stability over a 24-h period. PMID:3260593

  11. Glucose and glycogen metabolism in erythrocytes from normal and glycogen storage disease type III subjects

    PubMed Central

    Moses, Shimon W.; Chayoth, Reuben; Levin, Stanley; Lazarovitz, Ela; Rubinstein, David

    1968-01-01

    Active glycogen metabolism has been demonstrated in both normal and glycogen-rich erythrocytes taken from patients with type III glycogen storage disease. Activity of all enzymes catalyzing the reactions required for the synthesis and degradation of glycogen have been demonstrated in the mature erythrocytes. Uniformly labeled glucose-14C is incorporated into glycogen in intact cells of both types during incubation. Replacement of the glucose-14C by unlabeled glucose in the medium resulted in a significant loss of radioactivity from cellular glycogen. In the absence of the substrate a progressive shortening of outer branches occurred during incubation of intact glucogen-rich cells. Using cells from patients with type III glycogen storage disease, which have sufficient glycogen content to be analyzed by β-amylolysis, we demonstrated that the glucosyl units are first incorporated in the outer tiers, then transferred to the core where they tend to accumulate due to the absence of amylo-1,6-glucosidase. The glycogen-rich cells have a more rapid rate of glucose utilization upon incubation which is not reflected by a higher lactate production. The increased rate of glucose utilization did not result from an increased rate of glucose incorporation into glycogen in affected cells. The rate of 14CO2 production from glucose-1-14C during incubation was not significantly different in the two types of cells unless methylene blue was added as an electron acceptor, in which case the glycogen-rich cells oxidized glucose to CO2 more rapidly. PMID:5240360

  12. Accumulation of d-glucose from pentoses by metabolically engineered Escherichia coli.

    PubMed

    Xia, Tian; Han, Qi; Costanzo, William V; Zhu, Yixuan; Urbauer, Jeffrey L; Eiteman, Mark A

    2015-05-15

    Escherichia coli that is unable to metabolize d-glucose (with knockouts in ptsG, manZ, and glk) accumulates a small amount of d-glucose (yield of about 0.01 g/g) during growth on the pentoses d-xylose or l-arabinose as a sole carbon source. Additional knockouts in the zwf and pfkA genes, encoding, respectively, d-glucose-6-phosphate 1-dehydrogenase and 6-phosphofructokinase I (E. coli MEC143), increased accumulation to greater than 1 g/liter d-glucose and 100 mg/liter d-mannose from 5 g/liter d-xylose or l-arabinose. Knockouts of other genes associated with interconversions of d-glucose-phosphates demonstrate that d-glucose is formed primarily by the dephosphorylation of d-glucose-6-phosphate. Under controlled batch conditions with 20 g/liter d-xylose, MEC143 generated 4.4 g/liter d-glucose and 0.6 g/liter d-mannose. The results establish a direct link between pentoses and hexoses and provide a novel strategy to increase carbon backbone length from five to six carbons by directing flux through the pentose phosphate pathway. PMID:25746993

  13. Accumulation of d-Glucose from Pentoses by Metabolically Engineered Escherichia coli

    PubMed Central

    Xia, Tian; Han, Qi; Costanzo, William V.; Zhu, Yixuan; Urbauer, Jeffrey L.

    2015-01-01

    Escherichia coli that is unable to metabolize d-glucose (with knockouts in ptsG, manZ, and glk) accumulates a small amount of d-glucose (yield of about 0.01 g/g) during growth on the pentoses d-xylose or l-arabinose as a sole carbon source. Additional knockouts in the zwf and pfkA genes, encoding, respectively, d-glucose-6-phosphate 1-dehydrogenase and 6-phosphofructokinase I (E. coli MEC143), increased accumulation to greater than 1 g/liter d-glucose and 100 mg/liter d-mannose from 5 g/liter d-xylose or l-arabinose. Knockouts of other genes associated with interconversions of d-glucose-phosphates demonstrate that d-glucose is formed primarily by the dephosphorylation of d-glucose-6-phosphate. Under controlled batch conditions with 20 g/liter d-xylose, MEC143 generated 4.4 g/liter d-glucose and 0.6 g/liter d-mannose. The results establish a direct link between pentoses and hexoses and provide a novel strategy to increase carbon backbone length from five to six carbons by directing flux through the pentose phosphate pathway. PMID:25746993

  14. The Lin28/let-7 axis regulates glucose metabolism.

    PubMed

    Zhu, Hao; Shyh-Chang, Ng; Segrè, Ayellet V; Shinoda, Gen; Shah, Samar P; Einhorn, William S; Takeuchi, Ayumu; Engreitz, Jesse M; Hagan, John P; Kharas, Michael G; Urbach, Achia; Thornton, James E; Triboulet, Robinson; Gregory, Richard I; Altshuler, David; Daley, George Q

    2011-09-30

    The let-7 tumor suppressor microRNAs are known for their regulation of oncogenes, while the RNA-binding proteins Lin28a/b promote malignancy by inhibiting let-7 biogenesis. We have uncovered unexpected roles for the Lin28/let-7 pathway in regulating metabolism. When overexpressed in mice, both Lin28a and LIN28B promote an insulin-sensitized state that resists high-fat-diet induced diabetes. Conversely, muscle-specific loss of Lin28a or overexpression of let-7 results in insulin resistance and impaired glucose tolerance. These phenomena occur, in part, through the let-7-mediated repression of multiple components of the insulin-PI3K-mTOR pathway, including IGF1R, INSR, and IRS2. In addition, the mTOR inhibitor, rapamycin, abrogates Lin28a-mediated insulin sensitivity and enhanced glucose uptake. Moreover, let-7 targets are enriched for genes containing SNPs associated with type 2 diabetes and control of fasting glucose in human genome-wide association studies. These data establish the Lin28/let-7 pathway as a central regulator of mammalian glucose metabolism. PMID:21962509

  15. Effect of interstitial irradiation and glucose metabolism and methionine uptake in glioma patients

    SciTech Connect

    Pietrzyk, U.; Herholz, K.; Wueker, M.

    1994-05-01

    Interstitial radiation by stereotactic I-125 seed implants is an established therapy for brain glioma. We studied its effect on tissue glucose metabolism and methionine uptake because of its relevance for therapy planning and monitoring. Six patients with gliomas of histological grade 2 or 3 received permanent CT-guided stereotactic implants of 100 to 490 MBq I-125. FDG PET, and in 3 subjects also C-11-methionine PET, was performed before and one year after seed implantation on a Siemens ECAT EXACT. All scans were 3-D matched to CT, isodose volumes were determined, and changes of glucose metabolism and methionine uptake were evaluated in tumor and brain tissue as a function of radiation dose. There was a consistent dose-dependent decrease of methionine uptake after one year: less than 20% change for cumulated doses {<=}60 Gy, then a decline down to a reduction by 30-70% for doses {>=}150 Gy. Glucose metabolism showed a much more variable response without clear dose dependency. Average maximum reduction was 23% (S.D. 24%), and an increase of glucose metabolic rates in irradiated tissue up to 43% was noted in 5 patients. In one case recurrent tumor outside of the 170 Gy isodose was most clearly seen by increased methionin uptake. In conclusion, C-11-methionine appears suited for monitoring of therapeutic radiation effects, whereas FDG shows a more variable response and often increased glycolysis in irradiated tissue.

  16. Retinoblastoma Protein Knockdown Favors Oxidative Metabolism and Glucose and Fatty Acid Disposal in Muscle Cells.

    PubMed

    Petrov, Petar D; Ribot, Joan; López-Mejía, Isabel C; Fajas, Lluís; Palou, Andreu; Bonet, M Luisa

    2016-03-01

    Deficiency in the retinoblastoma protein (Rb) favors leanness and a healthy metabolic profile in mice largely attributed to activation of oxidative metabolism in white and brown adipose tissues. Less is known about Rb modulation of skeletal muscle metabolism. This was studied here by transiently knocking down Rb expression in differentiated C2C12 myotubes using small interfering RNAs. Compared with control cells transfected with non-targeting RNAs, myotubes silenced for Rb (by 80-90%) had increased expression of genes related to fatty acid uptake and oxidation such as Cd36 and Cpt1b (by 61% and 42%, respectively), increased Mitofusin 2 protein content (∼2.5-fold increase), increased mitochondrial to nuclear DNA ratio (by 48%), increased oxygen consumption (by 65%) and decreased intracellular lipid accumulation. Rb silenced myotubes also displayed up-regulated levels of glucose transporter type 4 expression (∼5-fold increase), increased basal glucose uptake, and enhanced insulin-induced Akt phosphorylation. Interestingly, exercise in mice led to increased Rb phosphorylation (inactivation) in skeletal muscle as evidenced by immunohistochemistry analysis. In conclusion, the silencing of Rb enhances mitochondrial oxidative metabolism and fatty acid and glucose disposal in skeletal myotubes, and changes in Rb status may contribute to muscle physiological adaptation to exercise. PMID:26241807

  17. Fructose Alters Intermediary Metabolism of Glucose in Human Adipocytes and Diverts Glucose to Serine Oxidation in the One–Carbon Cycle Energy Producing Pathway

    PubMed Central

    Varma, Vijayalakshmi; Boros, László G.; Nolen, Greg T.; Chang, Ching-Wei; Wabitsch, Martin; Beger, Richard D.; Kaput, Jim

    2015-01-01

    Increased consumption of sugar and fructose as sweeteners has resulted in the utilization of fructose as an alternative metabolic fuel that may compete with glucose and alter its metabolism. To explore this, human Simpson-Golabi-Behmel Syndrome (SGBS) preadipocytes were differentiated to adipocytes in the presence of 0, 1, 2.5, 5 or 10 mM of fructose added to a medium containing 5 mM of glucose representing the normal blood glucose concentration. Targeted tracer [1,2-13C2]-d-glucose fate association approach was employed to examine the influence of fructose on the intermediary metabolism of glucose. Increasing concentrations of fructose robustly increased the oxidation of [1,2-13C2]-d-glucose to 13CO2 (p < 0.000001). However, glucose-derived 13CO2 negatively correlated with 13C labeled glutamate, 13C palmitate, and M+1 labeled lactate. These are strong markers of limited tricarboxylic acid (TCA) cycle, fatty acid synthesis, pentose cycle fluxes, substrate turnover and NAD+/NADP+ or ATP production from glucose via complete oxidation, indicating diminished mitochondrial energy metabolism. Contrarily, a positive correlation was observed between glucose-derived 13CO2 formed and 13C oleate and doses of fructose which indicate the elongation and desaturation of palmitate to oleate for storage. Collectively, these results suggest that fructose preferentially drives glucose through serine oxidation glycine cleavage (SOGC pathway) one-carbon cycle for NAD+/NADP+ production that is utilized in fructose-induced lipogenesis and storage in adipocytes. PMID:26087138

  18. UCP2 mRNA expression is dependent on glucose metabolism in pancreatic islets

    SciTech Connect

    Dalgaard, Louise T.

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer UCP2 mRNA levels are decreased in islets of Langerhans from glucokinase deficient mice. Black-Right-Pointing-Pointer UCP2 mRNA up-regulation by glucose is dependent on glucokinase. Black-Right-Pointing-Pointer Absence of UCP2 increases GSIS of glucokinase heterozygous pancreatic islets. Black-Right-Pointing-Pointer This may protect glucokinase deficient mice from hyperglycemic damages. -- Abstract: Uncoupling Protein 2 (UCP2) is expressed in the pancreatic {beta}-cell, where it partially uncouples the mitochondrial proton gradient, decreasing both ATP-production and glucose-stimulated insulin secretion (GSIS). Increased glucose levels up-regulate UCP2 mRNA and protein levels, but the mechanism for UCP2 up-regulation in response to increased glucose is unknown. The aim was to examine the effects of glucokinase (GK) deficiency on UCP2 mRNA levels and to characterize the interaction between UCP2 and GK with regard to glucose-stimulated insulin secretion in pancreatic islets. UCP2 mRNA expression was reduced in GK+/- islets and GK heterozygosity prevented glucose-induced up-regulation of islet UCP2 mRNA. In contrast to UCP2 protein function UCP2 mRNA regulation was not dependent on superoxide generation, but rather on products of glucose metabolism, because MnTBAP, a superoxide dismutase mimetic, did not prevent the glucose-induced up-regulation of UCP2. Glucose-stimulated insulin secretion was increased in UCP2-/- and GK+/- islets compared with GK+/- islets and UCP2 deficiency improved glucose tolerance of GK+/- mice. Accordingly, UCP2 deficiency increased ATP-levels of GK+/- mice. Thus, the compensatory down-regulation of UCP2 is involved in preserving the insulin secretory capacity of GK mutant mice and might also be implicated in limiting disease progression in MODY2 patients.

  19. An in vitro assessment of the effect of Athrixia phylicoides DC. aqueous extract on glucose metabolism.

    PubMed

    Chellan, N; Muller, C J F; de Beer, D; Joubert, E; Page, B J; Louw, J

    2012-06-15

    Athrixia phylicoides DC. is an aromatic shrub indigenous to the eastern parts of Southern Africa. Indigenous communities brew "bush tea" from dried twigs and leaves of A. phylicoides, which is consumed as a beverage and used for its medicinal properties. Plant polyphenols have been shown to be beneficial to Type 2 diabetes mellitus (T2D) and obesity. Aqueous extracts of the plant have been shown to be rich in polyphenols, in particular phenolic acids, which may enhance glucose uptake and metabolism. The aim of this study was to determine the phenolic composition of a hot water A. phylicoides extract and assess its in vitro effect on cellular glucose utilisation. The most abundant phenolic compounds in the extract were 6-hydroxyluteolin-7-O-glucoside, chlorogenic acid, protocatechuic acid, a di-caffeoylquinic acid and a methoxy-flavonol derivative. The extract increased glucose uptake in C2C12, Chang and 3T3-L1 cells, respectively. Intracellular glucose was utilised by both oxidation (C2C12 myocytes and Chang cells; p < 0.01 and p < 0.05, respectively) and by increased glycogen storage (Chang cells; p < 0.05). No cytotoxicity was observed in Chang cells at the concentrations tested. The effects of the extract were not dose-dependent. A. phylicoides aqueous extract stimulated in vitro glucose uptake and metabolism, suggesting that consumption of this phenolic-rich extract could potentially ameliorate metabolic disorders related to obesity and T2D. PMID:22516895

  20. Recovery of glucose metabolism in reperfused canine myocardium demonstrated by positron-CT (PCT)

    SciTech Connect

    Schwaiger, M.; Sochor, H.; Parodi, O.; Grover, M.; Hansen, H.W.; Selin, C.; Schelbert, H.R.

    1984-01-01

    The authors previously examined with PCT in chronic dogs the long term metabolic recovery during reperfusion after a 3 hr ischemic insult. Increased regional glucose utilization at 24 hrs of R accurately identified reversible tissue injury documented by late improvement in segmental function by ultrasonic crystals. To define the early metabolic events after a 3 hr LAD balloon occlusion, regional blood flow and glucose utilization was studied in 8 dogs with PCT, N-13 ammonia (NA) and F-18 deoxyglucose (FDG) at 2 hrs and at 24 hrs after R. The dogs were then thoracotomized and MBF by microspheres, arterio-venous differences for glucose, lactate and O/sub 2/ across the reperfused segment (LAD vein) and the left ventricle (coronary sinus) measured. Immediately after reperfusion, MBF and FDG uptake were 27 +- 24% and 21 +- 48% lower in the reperfused territory (RT) than in control myocardium (C). At 24 hrs, MBF by microspheres was and 22 +- 25% lower and FDG uptake 175 +- 73% higher in RT than in C. In the RT, consumption of glucose (by Fick method) was 202 +- 107% higher, of lactate 96 +- 85% lower and of O/sub 2/ 42 +- 26% lower than in the entire LV. PCT measured FDG uptake correlated with glucose consumption (r=0.94) and confirmed that the segmentally increased FDG uptake at 24 hrs reflected increased glucose utilization that, as indicated by the reduced lactate consumption, was partly anaerobic. The authors conclude that initially after R, glucose metabolism is depressed but increases above C within 24 hrs, a time course that now can be determined noninvasively with PCT and is useful for predicting functional recovery.

  1. Dietary patterns in men and women are simultaneously determinants of altered glucose metabolism and bone metabolism.

    PubMed

    Langsetmo, Lisa; Barr, Susan I; Dasgupta, Kaberi; Berger, Claudie; Kovacs, Christopher S; Josse, Robert G; Adachi, Jonathan D; Hanley, David A; Prior, Jerilynn C; Brown, Jacques P; Morin, Suzanne N; Davison, Kenneth S; Goltzman, David; Kreiger, Nancy

    2016-04-01

    We hypothesized that diet would have direct effects on glucose metabolism with direct and indirect effects on bone metabolism in a cohort of Canadian adults. We assessed dietary patterns (Prudent [fruit, vegetables, whole grains, fish, and legumes] and Western [soft drinks, potato chips, French fries, meats, and desserts]) from a semiquantitative food frequency questionnaire. We used fasting blood samples to measure glucose, insulin, homeostatic model assessment insulin resistance (HOMA-IR), 25-hydroxyvitamin D (25OHD), parathyroid hormone, bone-specific alkaline phosphatase (a bone formation marker), and serum C-terminal telopeptide (CTX; a bone resorption marker). We used multivariate regression models adjusted for confounders and including/excluding body mass index. In a secondary analysis, we examined relationships through structural equations models. The Prudent diet was associated with favorable effects on glucose metabolism (lower insulin and HOMA-IR) and bone metabolism (lower CTX in women; higher 25OHD and lower parathyroid hormone in men). The Western diet was associated with deleterious effects on glucose metabolism (higher glucose, insulin, and HOMA-IR) and bone metabolism (higher bone-specific alkaline phosphatase and lower 25OHD in women; higher CTX in men). Body mass index adjustment moved point estimates toward the null, indicating partial mediation. The structural equation model confirmed the hypothesized linkage with strong effects of Prudent and Western diet on metabolic risk, and both direct and indirect effects of a Prudent diet on bone turnover. In summary, a Prudent diet was associated with lower metabolic risk with both primary and mediated effects on bone turnover, suggesting that it is a potential target for reducing fracture risk. PMID:27001278

  2. [Investigation of a compound, compatibility of Rhodiola crenulata, Cordyceps militaris, and Rheum palmatum, on metabolic syndrome treatment. V--Mechanisms on improving glucose metabolic disorders].

    PubMed

    Wang, Li; Zhang, Xiao-Lin; Li, Mo-Han; Tian, Jin-Ying; Zhang, Pei-Cheng; Ye, Fei

    2013-06-01

    To investigate the mechanisms of a compound (FF16), compatibility of Rhodiola crenulata, Cordyceps militaris, and Rheum palmatum, on glucose metabolic disorders, the IRF mice charactered with insulin resistance and glucose metabolic disorders induced by high-fat diet in C57BL/6J mice were randomly divided into 3 groups; IRF, rosiglitazone (Rosi) and FF16. The glucose metabolism was evaluated by fasting blood glucose (FBG) levels and intraperitoneal glucose tolerance test (IPGTT). The insulin sensitivity was estimated by insulin tolerance test (ITT), fasting serum insulin levels and the index of HOMA-IR. The expressions of Akt and its phosphorylation levels, GSK3beta and its phosphorylation levels in liver were detected by Western Blot. The results showed that FF16 significantly improved the glucose metabolic disorders through reducing FBG by 15.1%, decreasing AUC values in glucose tolerance tests by 22.3%. FF16 significantly improved the insulin sensitivity through decreasing AUC values in insulin tolerance tests by 22.1%, reducing the levels of serum insulin by 42.9% and of HOMA-IR by 49.5%, comparing with model control, respectively. After the treatment with FF16, the levels of p-Akt and p-GSK3beta were increased by 116.4% and 24.9%, respectively, in the liver of IRF mice. In conclusion, compound FF16 could improve glucose metabolic disorders in IRF mice through enhancing the glyconeogenesis. PMID:24066594

  3. Brain glucose metabolism during hypoglycemia in type 1 diabetes: insights from functional and metabolic neuroimaging studies.

    PubMed

    Rooijackers, Hanne M M; Wiegers, Evita C; Tack, Cees J; van der Graaf, Marinette; de Galan, Bastiaan E

    2016-02-01

    Hypoglycemia is the most frequent complication of insulin therapy in patients with type 1 diabetes. Since the brain is reliant on circulating glucose as its main source of energy, hypoglycemia poses a threat for normal brain function. Paradoxically, although hypoglycemia commonly induces immediate decline in cognitive function, long-lasting changes in brain structure and cognitive function are uncommon in patients with type 1 diabetes. In fact, recurrent hypoglycemia initiates a process of habituation that suppresses hormonal responses to and impairs awareness of subsequent hypoglycemia, which has been attributed to adaptations in the brain. These observations sparked great scientific interest into the brain's handling of glucose during (recurrent) hypoglycemia. Various neuroimaging techniques have been employed to study brain (glucose) metabolism, including PET, fMRI, MRS and ASL. This review discusses what is currently known about cerebral metabolism during hypoglycemia, and how findings obtained by functional and metabolic neuroimaging techniques contributed to this knowledge. PMID:26521082

  4. Simvastatin Inhibits Glucose Metabolism and Legumain Activity in Human Myotubes

    PubMed Central

    Smith, Robert; Solberg, Rigmor; Jacobsen, Linn Løkken; Voreland, Anette Larsen; Rustan, Arild Christian; Thoresen, G. Hege; Johansen, Harald Thidemann

    2014-01-01

    Simvastatin, a HMG-CoA reductase inhibitor, is prescribed worldwide to patients with hypercholesterolemia. Although simvastatin is well tolerated, side effects like myotoxicity are reported. The mechanism for statin-induced myotoxicity is still poorly understood. Reports have suggested impaired mitochondrial dysfunction as a contributor to the observed myotoxicity. In this regard, we wanted to study the effects of simvastatin on glucose metabolism and the activity of legumain, a cysteine protease. Legumain, being the only known asparaginyl endopeptidase, has caspase-like properties and is described to be involved in apoptosis. Recent evidences indicate a regulatory role of both glucose and statins on cysteine proteases in monocytes. Satellite cells were isolated from the Musculus obliquus internus abdominis of healthy human donors, proliferated and differentiated into polynuclear myotubes. Simvastatin with or without mevalonolactone, farnesyl pyrophosphate or geranylgeranyl pyrophosphate were introduced on day 5 of differentiation. After 48 h, cells were either harvested for immunoblotting, ELISA, cell viability assay, confocal imaging or enzyme activity analysis, or placed in a fuel handling system with [14C]glucose or [3H]deoxyglucose for uptake and oxidation studies. A dose-dependent decrease in both glucose uptake and oxidation were observed in mature myotubes after exposure to simvastatin in concentrations not influencing cell viability. In addition, simvastatin caused a decrease in maturation and activity of legumain. Dysregulation of glucose metabolism and decreased legumain activity by simvastatin points out new knowledge about the effects of statins on skeletal muscle, and may contribute to the understanding of the myotoxicity observed by statins. PMID:24416446

  5. Abnormal Glucose Tolerance Is Associated with a Reduced Myocardial Metabolic Flexibility in Patients with Dilated Cardiomyopathy.

    PubMed

    Tricò, Domenico; Baldi, Simona; Frascerra, Silvia; Venturi, Elena; Marraccini, Paolo; Neglia, Danilo; Natali, Andrea

    2016-01-01

    Dilated cardiomyopathy (DCM) is characterized by a metabolic shift from fat to carbohydrates and failure to increase myocardial glucose uptake in response to workload increments. We verified whether this pattern is influenced by an abnormal glucose tolerance (AGT). In 10 patients with DCM, 5 with normal glucose tolerance (DCM-NGT) and 5 with AGT (DCM-AGT), and 5 non-DCM subjects with AGT (N-AGT), we measured coronary blood flow and arteriovenous differences of oxygen and metabolites during Rest, Pacing (at 130 b/min), and Recovery. Myocardial lactate exchange and oleate oxidation were also measured. At Rest, DCM patients showed a reduced nonesterified fatty acids (NEFA) myocardial uptake, while glucose utilization increased only in DCM-AGT. In response to Pacing, glucose uptake promptly rose in N-AGT (from 72 ± 21 to 234 ± 73 nmol/min/g, p < 0.05), did not change in DCM-AGT, and slowly increased in DCM-NGT. DCM-AGT sustained the extra workload by increasing NEFA oxidation (from 1.3 ± 0.2 to 2.9 ± 0.1 μmol/min/gO2 equivalents, p < 0.05), while DCM-NGT showed a delayed increase in glucose uptake. Substrate oxidation rates paralleled the metabolites data. The presence of AGT in patients with DCM exacerbates both the shift from fat to carbohydrates in resting myocardial metabolism and the reduced myocardial metabolic flexibility in response to an increased workload. This trial is registered with ClinicalTrial.gov NCT02440217. PMID:26798650

  6. Abnormal Glucose Tolerance Is Associated with a Reduced Myocardial Metabolic Flexibility in Patients with Dilated Cardiomyopathy

    PubMed Central

    Tricò, Domenico; Baldi, Simona; Frascerra, Silvia; Venturi, Elena; Marraccini, Paolo; Neglia, Danilo; Natali, Andrea

    2016-01-01

    Dilated cardiomyopathy (DCM) is characterized by a metabolic shift from fat to carbohydrates and failure to increase myocardial glucose uptake in response to workload increments. We verified whether this pattern is influenced by an abnormal glucose tolerance (AGT). In 10 patients with DCM, 5 with normal glucose tolerance (DCM-NGT) and 5 with AGT (DCM-AGT), and 5 non-DCM subjects with AGT (N-AGT), we measured coronary blood flow and arteriovenous differences of oxygen and metabolites during Rest, Pacing (at 130 b/min), and Recovery. Myocardial lactate exchange and oleate oxidation were also measured. At Rest, DCM patients showed a reduced nonesterified fatty acids (NEFA) myocardial uptake, while glucose utilization increased only in DCM-AGT. In response to Pacing, glucose uptake promptly rose in N-AGT (from 72 ± 21 to 234 ± 73 nmol/min/g, p < 0.05), did not change in DCM-AGT, and slowly increased in DCM-NGT. DCM-AGT sustained the extra workload by increasing NEFA oxidation (from 1.3 ± 0.2 to 2.9 ± 0.1 μmol/min/gO2 equivalents, p < 0.05), while DCM-NGT showed a delayed increase in glucose uptake. Substrate oxidation rates paralleled the metabolites data. The presence of AGT in patients with DCM exacerbates both the shift from fat to carbohydrates in resting myocardial metabolism and the reduced myocardial metabolic flexibility in response to an increased workload. This trial is registered with ClinicalTrial.gov NCT02440217. PMID:26798650

  7. Effect of Antibiotics on Gut Microbiota, Gut Hormones and Glucose Metabolism

    PubMed Central

    Mikkelsen, Kristian H.; Frost, Morten; Bahl, Martin I.; Licht, Tine R.; Jensen, Ulrich S.; Rosenberg, Jacob; Pedersen, Oluf; Hansen, Torben; Rehfeld, Jens F.; Holst, Jens J.; Vilsbøll, Tina; Knop, Filip K.

    2015-01-01

    Objective The gut microbiota has been designated as an active regulator of glucose metabolism and metabolic phenotype in a number of animal and human observational studies. We evaluated the effect of removing as many bacteria as possible by antibiotics on postprandial physiology in healthy humans. Methods Meal tests with measurements of postprandial glucose tolerance and postprandial release of insulin and gut hormones were performed before, immediately after and 6 weeks after a 4-day, broad-spectrum, per oral antibiotic cocktail (vancomycin 500 mg, gentamycin 40 mg and meropenem 500 mg once-daily) in a group of 12 lean and glucose tolerant males. Faecal samples were collected for culture-based assessment of changes in gut microbiota composition. Results Acute and dramatic reductions in the abundance of a representative set of gut bacteria was seen immediately following the antibiotic course, but no changes in postprandial glucose tolerance, insulin secretion or plasma lipid concentrations were found. Apart from an acute and reversible increase in peptide YY secretion, no changes were observed in postprandial gut hormone release. Conclusion As evaluated by selective cultivation of gut bacteria, a broad-spectrum 4-day antibiotics course with vancomycin, gentamycin and meropenem induced shifts in gut microbiota composition that had no clinically relevant short or long-term effects on metabolic variables in healthy glucose-tolerant males. Trial Registration clinicaltrials.gov NCT01633762 PMID:26562532

  8. Ozone induces glucose intolerance and systemic metabolic effects in young and aged brown Norway rats

    SciTech Connect

    Bass, V.; Gordon, C.J.; Jarema, K.A.; MacPhail, R.C.; Cascio, W.E.; Phillips, P.M.; Ledbetter, A.D.; Schladweiler, M.C.; Andrews, D.; Miller, D.; Doerfler, D.L.; Kodavanti, U.P.

    2013-12-15

    Air pollutants have been associated with increased diabetes in humans. We hypothesized that ozone would impair glucose homeostasis by altering insulin signaling and/or endoplasmic reticular (ER) stress in young and aged rats. One, 4, 12, and 24 month old Brown Norway (BN) rats were exposed to air or ozone, 0.25 or 1.0 ppm, 6 h/day for 2 days (acute) or 2 d/week for 13 weeks (subchronic). Additionally, 4 month old rats were exposed to air or 1.0 ppm ozone, 6 h/day for 1 or 2 days (time-course). Glucose tolerance tests (GTT) were performed immediately after exposure. Serum and tissue biomarkers were analyzed 18 h after final ozone for acute and subchronic studies, and immediately after each day of exposure in the time-course study. Age-related glucose intolerance and increases in metabolic biomarkers were apparent at baseline. Acute ozone caused hyperglycemia and glucose intolerance in rats of all ages. Ozone-induced glucose intolerance was reduced in rats exposed for 13 weeks. Acute, but not subchronic ozone increased α{sub 2}-macroglobulin, adiponectin and osteopontin. Time-course analysis indicated glucose intolerance at days 1 and 2 (2 > 1), and a recovery 18 h post ozone. Leptin increased day 1 and epinephrine at all times after ozone. Ozone tended to decrease phosphorylated insulin receptor substrate-1 in liver and adipose tissues. ER stress appeared to be the consequence of ozone induced acute metabolic impairment since transcriptional markers of ER stress increased only after 2 days of ozone. In conclusion, acute ozone exposure induces marked systemic metabolic impairments in BN rats of all ages, likely through sympathetic stimulation. - Highlights: • Air pollutants have been associated with increased diabetes in humans. • Acute ozone exposure produces profound metabolic alterations in rats. • Age influences metabolic risk factors in aging BN rats. • Acute metabolic effects are reversible and repeated exposure reduces these effects. • Ozone

  9. Non-Classical Gluconeogenesis-Dependent Glucose Metabolism in Rhipicephalus microplus Embryonic Cell Line BME26

    PubMed Central

    da Silva, Renato Martins; Della Noce, Bárbara; Waltero, Camila Fernanda; Costa, Evenilton Pessoa; de Abreu, Leonardo Araujo; Githaka, Naftaly Wang’ombe; Moraes, Jorge; Gomes, Helga Fernandes; Konnai, Satoru; da Silva Vaz, Itabajara; Ohashi, Kazuhiko; Logullo, Carlos

    2015-01-01

    In this work we evaluated several genes involved in gluconeogenesis, glycolysis and glycogen metabolism, the major pathways for carbohydrate catabolism and anabolism, in the BME26 Rhipicephalus microplus embryonic cell line. Genetic and catalytic control of the genes and enzymes associated with these pathways are modulated by alterations in energy resource availability (primarily glucose). BME26 cells in media were investigated using three different glucose concentrations, and changes in the transcription levels of target genes in response to carbohydrate utilization were assessed. The results indicate that several genes, such as glycogen synthase (GS), glycogen synthase kinase 3 (GSK3), phosphoenolpyruvate carboxykinase (PEPCK), and glucose-6 phosphatase (GP) displayed mutual regulation in response to glucose treatment. Surprisingly, the transcription of gluconeogenic enzymes was found to increase alongside that of glycolytic enzymes, especially pyruvate kinase, with high glucose treatment. In addition, RNAi data from this study revealed that the transcription of gluconeogenic genes in BME26 cells is controlled by GSK-3. Collectively, these results improve our understanding of how glucose metabolism is regulated at the genetic level in tick cells. PMID:25594873

  10. A new application of electrical impedance spectroscopy for measuring glucose metabolism: a phantom study

    NASA Astrophysics Data System (ADS)

    Dhurjaty, Sreeram; Qiu, Yuchen; Tan, Maxine; Liu, Hong; Zheng, Bin

    2015-03-01

    Glucose metabolism relates to biochemical processes in living organisms and plays an important role in diabetes and cancer-metastasis. Although many methods are available for measuring glucose metabolism-activities, from simple blood tests to positron emission tomography, currently there is no robust and affordable device that enables monitoring of glucose levels in real-time. In this study we tested feasibility of applying a unique resonance-frequency based electronic impedance spectroscopy (REIS) device that has been, recently developed to measure and monitor glucose metabolism levels using a phantom study. In this new testing model, a multi-frequency electrical signal sequence is applied and scanned through the subject. When the positive reactance of an inductor inside the device cancels out the negative reactance of the capacitance of the subject, the electrical impedance reaches a minimum value and this frequency is defined as the resonance frequency. The REIS system has a 24-bit analog-to-digital signal convertor and a frequency-resolution of 100Hz. In the experiment, two probes are placed inside a 100cc container initially filled with distilled water. As we gradually added liquid-glucose in increments of 1cc (250mg), we measured resonance frequencies and minimum electrical signal values (where A/D was normalized to a full scale of 1V). The results showed that resonance frequencies monotonously decreased from 243kHz to 178kHz, while the minimum voltages increased from 405mV to 793mV as the added amount of glucose increased from 0 to 5cc. The study demonstrated the feasibility of applying this new REIS technology to measure and/or monitor glucose levels in real-time in future.

  11. High glucose levels reduce fatty acid oxidation and increase triglyceride accumulation in human placenta.

    PubMed

    Visiedo, Francisco; Bugatto, Fernando; Sánchez, Viviana; Cózar-Castellano, Irene; Bartha, Jose L; Perdomo, Germán

    2013-07-15

    Placentas of women with gestational diabetes mellitus (GDM) exhibit an altered lipid metabolism. The mechanism by which GDM is linked to alterations in placental lipid metabolism remains obscure. We hypothesized that high glucose levels reduce mitochondrial fatty acid oxidation (FAO) and increase triglyceride accumulation in human placenta. To test this hypothesis, we measured FAO, fatty acid esterification, de novo fatty acid synthesis, triglyceride levels, and carnitine palmitoyltransferase activities (CPT) in placental explants of women with GDM or no pregnancy complication. In women with GDM, FAO was reduced by ~30% without change in mitochondrial content, and triglyceride content was threefold higher than in the control group. Likewise, in placental explants of women with no complications, high glucose levels reduced FAO by ~20%, and esterification increased linearly with increasing fatty acid concentrations. However, de novo fatty acid synthesis remained unchanged between high and low glucose levels. In addition, high glucose levels increased triglyceride content approximately twofold compared with low glucose levels. Furthermore, etomoxir-mediated inhibition of FAO enhanced esterification capacity by ~40% and elevated triglyceride content 1.5-fold in placental explants of women, with no complications. Finally, high glucose levels reduced CPT I activity by ~70% and phosphorylation levels of acetyl-CoA carboxylase by ~25% in placental explants of women, with no complications. We reveal an unrecognized regulatory mechanism on placental fatty acid metabolism by which high glucose levels reduce mitochondrial FAO through inhibition of CPT I, shifting flux of fatty acids away from oxidation toward the esterification pathway, leading to accumulation of placental triglycerides. PMID:23673156

  12. Deletion of Cyclophilin D Impairs β-Oxidation and Promotes Glucose Metabolism

    PubMed Central

    Tavecchio, Michele; Lisanti, Sofia; Bennett, Michael J.; Languino, Lucia R.; Altieri, Dario C.

    2015-01-01

    Cyclophilin D (CypD) is a mitochondrial matrix protein implicated in cell death, but a potential role in bioenergetics is not understood. Here, we show that loss or depletion of CypD in cell lines and mice induces defects in mitochondrial bioenergetics due to impaired fatty acid β-oxidation. In turn, CypD loss triggers a global compensatory shift towards glycolysis, with transcriptional upregulation of effectors of glucose metabolism, increased glucose consumption and higher ATP production. In vivo, the glycolytic shift secondary to CypD deletion is associated with expansion of insulin-producing β-cells, mild hyperinsulinemia, improved glucose tolerance, and resistance to high fat diet-induced liver damage and weight gain. Therefore, CypD is a novel regulator of mitochondrial bioenergetics, and unexpectedly controls glucose homeostasis, in vivo. PMID:26515038

  13. Enhanced muscle glucose metabolism after exercise in the rat: the two phases.

    PubMed

    Garetto, L P; Richter, E A; Goodman, M N; Ruderman, N B

    1984-06-01

    Thirty minutes after a treadmill run, glucose utilization and glycogen synthesis in perfused rat skeletal muscle are enhanced due to an increase in insulin sensitivity (Richter et al., J. Clin. Invest. 69: 785-793, 1982). The exercise used in these studies was of moderate intensity, and muscle glycogen was substantially repleted at the time (30 min postexercise) that glucose metabolism was examined. When rats were run at twice the previous rate (36 m/min), muscle glycogen was still substantially diminished 30 min after the run. At this time the previously noted increase in insulin sensitivity was still observed in perfused muscle; however, glucose utilization was also increased in the absence of added insulin (1.5 vs. 4.2 mumol X g-1 X h-1). In contrast 2.5 h after the run, muscle glycogen had returned to near preexercise values, and only the insulin-induced increase in glucose utilization was evident. The data suggest that the restoration of muscle glycogen after exercise occurs in two phases. In phase I, muscle glycogen is depleted and insulin-stimulated glucose utilization and glucose utilization in the absence of added insulin may both be enhanced. In phase II glycogen levels have returned to near base-line values and only the increase in insulin sensitivity persists. It is proposed that phase I corresponds to the period of rapid glycogen repletion that immediately follows exercise and phase II to the period of supercompensation. PMID:6377909

  14. Response of C2C12 Myoblasts to Hypoxia: The Relative Roles of Glucose and Oxygen in Adaptive Cellular Metabolism

    PubMed Central

    Li, Wei; Hu, Zhen-Fu; Chen, Bin; Ni, Guo-Xin

    2013-01-01

    Background. Oxygen and glucose are two important nutrients for mammalian cell function. In this study, the effect of glucose and oxygen concentrations on C2C12 cellular metabolism was characterized with an emphasis on detecting whether cells show oxygen conformance (OC) in response to hypoxia. Methods. After C2C12 cells being cultured in the levels of glucose at 0.6 mM (LG), 5.6 mM (MG), or 23.3 mM(HG) under normoxic or hypoxic (1% oxygen) condition, cellular oxygen consumption, glucose consumption, lactate production, and metabolic status were determined. Short-term oxygen consumption was measured with a novel oxygen biosensor technique. Longer-term measurements were performed with standard glucose, lactate, and cell metabolism assays. Results. It was found that oxygen depletion in normoxia is dependent on the glucose concentration in the medium. Cellular glucose uptake and lactate production increased significantly in hypoxia than those in normoxia. In hypoxia the cellular response to the level of glucose was different to that in normoxia. The metabolic activities decreased while glucose concentration increased in normoxia, while in hypoxia, metabolic activity was reduced in LG and MG, but unchanged in HG condition. The OC phenomenon was not observed in the present study. Conclusions. Our findings suggested that a combination of low oxygen and low glucose damages the viability of C2C12 cells more seriously than low oxygen alone. In addition, when there is sufficient glucose, C2C12 cells will respond to hypoxia by upregulating anaerobic respiration, as shown by lactate production. PMID:24294605

  15. Relationship between insulin-mediated glucose disposal and lipid metabolism in man.

    PubMed Central

    Lillioja, S; Bogardus, C; Mott, D M; Kennedy, A L; Knowler, W C; Howard, B V

    1985-01-01

    To assess the possible effects of lipid metabolism on insulin-mediated glucose disposal, 18 nondiabetic Pima Indian women (age 18-35 yr) were studied using 1-14C-palmitate infusion to measure free fatty acid turnover rate followed by a euglycemic clamp (clamp) to measure in vivo insulin-mediated glucose disposal (M). Indirect calorimetry was performed in the basal state and during the clamp. This was used to assess glucose oxidation rate, lipid oxidation rate, and to calculate nonoxidative glucose disposal (storage). Basal and clamp lipid oxidation rate correlated with basal plasma free fatty acid concentration (r = 0.81, P less than or equal to 0.0001, r = 0.67, P less than 0.003, respectively). The fall in lipid oxidation was highly correlated with the increase in glucose oxidation during the insulin infusion (r = 0.96, P less than or equal to 0.0001). The clamp lipid oxidation rate negatively correlated with the glucose oxidation rate (r = -0.85, P less than 0.0001) and with the M value (r = -0.60, P less than 0.01) but was not correlated with the clamp glucose storage (r = -0.2, P = 0.4). On the other hand, glucose storage appeared to make a greater contribution to the difference in M value between the upper and lower extremes of M than did glucose oxidation, as evidenced by an increase in glucose storage of 0.59 mg/kg fat-free mass times minute per 1 mg/kg fat-free mass times minute increase in glucose disposal. The M value was negatively correlated with obesity as measured by percent body fat (r = -0.64, P less than 0.004), but neither basal free fatty acid concentration, basal free fatty acid turnover, basal lipid oxidation, nor clamp lipid oxidation correlated with percent body fat. We conclude that an interaction of lipid and glucose metabolism in a glucose fatty acid cycle, as proposed by Randle et al. (1), may be operative in the regulation of glucose oxidation in man. The disposal of glucose however has two components. The storage component does not

  16. The Role of Glucose Metabolism and Glucose-Associated Signalling in Cancer

    PubMed Central

    Wittig, Rainer; Coy, Johannes F.

    2007-01-01

    Aggressive carcinomas ferment glucose to lactate even in the presence of oxygen. This particular metabolism, termed aerobic glycolysis, the glycolytic phenotype, or the Warburg effect, was discovered by Nobel laureate Otto Warburg in the 1920s. Since these times, controversial discussions about the relevance of the fermentation of glucose by tumours took place; however, a majority of cancer researchers considered the Warburg effect as a non-causative epiphenomenon. Recent research demonstrated, that several common oncogenic events favour the expression of the glycolytic phenotype. Moreover, a suppression of the phenotypic features by either substrate limitation, pharmacological intervention, or genetic manipulation was found to mediate potent tumour-suppressive effects. The discovery of the transketolase-like 1 (TKTL1) enzyme in aggressive cancers may deliver a missing link in the interpretation of the Warburg effect. TKTL1-activity could be the basis for a rapid fermentation of glucose in aggressive carcinoma cells via the pentose phosphate pathway, which leads to matrix acidification, invasive growth, and ultimately metastasis. TKTL1 expression in certain non-cancerous tissues correlates with aerobic formation of lactate and rapid fermentation of glucose, which may be required for the prevention of advanced glycation end products and the suppression of reactive oxygen species. There is evidence, that the activity of this enzyme and the Warburg effect can be both protective or destructive for the organism. These results place glucose metabolism to the centre of pathogenesis of several civilisation related diseases and raise concerns about the high glycaemic index of various food components commonly consumed in western diets. PMID:19812737

  17. Fluorodeoxyglucose rate constants, lumped constant, and glucose metabolic rate in rabbit heart

    SciTech Connect

    Krivokapich, J.; Huang, S.C.; Selin, C.E.; Phelps, M.E.

    1987-04-01

    The isolated arterial perfused rabbit interventricular septum was used to measure myocardial metabolic rate for glucose (MMRGlc) and rate constants and lumped constant (LC) for the glucose analogue (/sup 18/F)fluorodeoxyglucose (FDG) using a tracer kinetic model. FDG was delivered by constant infusion during coincidence counting of tissue /sup 18/F radioactivity. The MMRGlc was measured by the Fick method. Control septa were paced at 72 beats/min and perfused at 1.5 ml/min with oxygenated perfusate containing 5.6 mM glucose and 5 mU/ml insulin. The following conditions were tested: 3.0 and 4.5 ml/min; insulin increased to 25 mU/ml; insulin omitted; 2.8 mM and 11.2 mM glucose; 144 beats/min and 96 paired stimuli/min; and anoxia. Under all conditions studied the phosphorylation (hexokinase) reaction was rate limiting relative to transport. Compared with control conditions, the phosphorylation rate constant was significantly increased with 2.8 mM glucose as well as in anoxia. With 4.5 ml/min and 11.2 mM glucose, conditions that should increase glucose flux into tissue without increasing demand, the phosphorylation rate constant decreased significantly. With 11.2 mM glucose, 96 paired stimuli/min, and anoxia without insulin, a significant increase in the hydrolysis rate of FDG 6-phosphate was observed and suggests that hydrolysis is also an important mechanism for regulating the MMRGlc. Increased transport rate constants were observed with increased flow rates, 96 paired stimuli/min, and anoxia at 96 beats/min. The LC was not significantly different from control in 11 of 14 conditions studied. Therefore, under most conditions in average LC can be used to calculate MMRGlc estimates.

  18. Metabolic, enzymatic and gene involvement in cerebral glucose dysmetabolism after traumatic brain injury.

    PubMed

    Amorini, Angela Maria; Lazzarino, Giacomo; Di Pietro, Valentina; Signoretti, Stefano; Lazzarino, Giuseppe; Belli, Antonio; Tavazzi, Barbara

    2016-04-01

    In this study, the metabolic, enzymatic and gene changes causing cerebral glucose dysmetabolism following graded diffuse traumatic brain injury (TBI) were evaluated. TBI was induced in rats by dropping 450g from 1 (mild TBI; mTBI) or 2m height (severe TBI; sTBI). After 6, 12, 24, 48, and 120h gene expressions and enzymatic activities of glycolysis and pentose phosphate pathway (PPP) enzymes, and levels of lactate, ATP, ADP, ATP/ADP (indexing mitochondrial phosphorylating capacity), NADP(+), NADPH and GSH were determined in whole brain extracts (n=9 rats at each time for both TBI levels). Sham-operated animals (n=9) were used as controls. Results demonstrated that mTBI caused a late increase (48-120h post injury) of glycolytic gene expression and enzymatic activities, concomitantly with mitochondrial functional recovery (ATP and ATP/ADP normalization). No changes in lactate and PPP genes and enzymes, were accompanied by transient decrease in GSH, NADP(+), NADPH and NADPH/NADP(+). Animals following sTBI showed early increase (6-24h post injury) of glycolytic gene expression and enzymatic activities, occurring during mitochondrial malfunctioning (50% decrease in ATP and ATP/ADP). Higher lactate and lower GSH, NADP(+), NADPH, NADPH/NADP(+) than controls were recorded at anytime post injury (p<0.01). Both TBI levels caused metabolic and gene changes affecting glucose metabolism. Following mTBI, increased glucose flux through glycolysis is coupled to mitochondrial glucose oxidation. "True" hyperglycolysis occurs only after sTBI, where metabolic changes, caused by depressed mitochondrial phosphorylating capacity, act on genes causing net glycolytic flux increase uncoupled from mitochondrial glucose oxidation. PMID:26844378

  19. Impaired glucose metabolism and exercise capacity with muscle-specific glycogen synthase 1 (gys1) deletion in adult mice

    PubMed Central

    Xirouchaki, Chrysovalantou E.; Mangiafico, Salvatore P.; Bate, Katherine; Ruan, Zheng; Huang, Amy M.; Tedjosiswoyo, Bing Wilari; Lamont, Benjamin; Pong, Wynne; Favaloro, Jenny; Blair, Amy R.; Zajac, Jeffrey D.; Proietto, Joseph; Andrikopoulos, Sofianos

    2016-01-01

    Objective Muscle glucose storage and muscle glycogen synthase (gys1) defects have been associated with insulin resistance. As there are multiple mechanisms for insulin resistance, the specific role of glucose storage defects is not clear. The aim of this study was to examine the effects of muscle-specific gys1 deletion on glucose metabolism and exercise capacity. Methods Tamoxifen inducible and muscle specific gys-1 KO mice were generated using the Cre/loxP system. Mice were subjected to glucose tolerance tests, euglycemic/hyperinsulinemic clamps and exercise tests. Results gys1-KO mice showed ≥85% reduction in muscle gys1 mRNA and protein concentrations, 70% reduction in muscle glycogen levels, postprandial hyperglycaemia and hyperinsulinaemia and impaired glucose tolerance. Under insulin-stimulated conditions, gys1-KO mice displayed reduced glucose turnover and muscle glucose uptake, indicative of peripheral insulin resistance, as well as increased plasma and muscle lactate levels and reductions in muscle hexokinase II levels. gys1-KO mice also exhibited markedly reduced exercise and endurance capacity. Conclusions Thus, muscle-specific gys1 deletion in adult mice results in glucose intolerance due to insulin resistance and reduced muscle glucose uptake as well as impaired exercise and endurance capacity. In brief This study demonstrates why the body prioritises muscle glycogen storage over liver glycogen storage despite the critical role of the liver in supplying glucose to the brain in the fasting state and shows that glycogen deficiency results in impaired glucose metabolism and reduced exercise capacity. PMID:26977394

  20. Deoxyglucose method for the estimation of local myocardial glucose metabolism with positron computed tomography

    SciTech Connect

    Ratib, O.; Phelps, M.E.; Huang, S.C.; Henze, E.; Selin, C.E.; Schelbert, H.R.

    1981-01-01

    The deoxyglucose method originally developed for measurements of the local cerebral metabolic rate for glucose has been investigated in terms of its application to studies of the heart with positron computed tomography (PCT) and FDG. Studies were performed in dogs to measure the tissue kinetics of FDG with PCT and by direct arterial-venous sampling. The operational equation developed in our laboratory as an extension of the Sokoloff model was used to analyze the data. The FDG method accurately predicted the true MMRGlc even when the glucose metabolic rate was normal but myocardial blood flow (MBF) was elevated 5 times the control value or when metabolism was reduced to 10% of normal and MBF increased 5 times normal. Improvements in PCT resolution are required to improve the accuracy of the estimates of the rate constants and the MMRGlc.

  1. Functional integration changes in regional brain glucose metabolism from childhood to adulthood.

    PubMed

    Trotta, Nicola; Archambaud, Frédérique; Goldman, Serge; Baete, Kristof; Van Laere, Koen; Wens, Vincent; Van Bogaert, Patrick; Chiron, Catherine; De Tiège, Xavier

    2016-08-01

    The aim of this study was to investigate the age-related changes in resting-state neurometabolic connectivity from childhood to adulthood (6-50 years old). Fifty-four healthy adult subjects and twenty-three pseudo-healthy children underwent [(18) F]-fluorodeoxyglucose positron emission tomography at rest. Using statistical parametric mapping (SPM8), age and age squared were first used as covariate of interest to identify linear and non-linear age effects on the regional distribution of glucose metabolism throughout the brain. Then, by selecting voxels of interest (VOI) within the regions showing significant age-related metabolic changes, a psychophysiological interaction (PPI) analysis was used to search for age-induced changes in the contribution of VOIs to the metabolic activity in other brain areas. Significant linear or non-linear age-related changes in regional glucose metabolism were found in prefrontal cortices (DMPFC/ACC), cerebellar lobules, and thalamo-hippocampal areas bilaterally. Decreases were found in the contribution of thalamic, hippocampal, and cerebellar regions to DMPFC/ACC metabolic activity as well as in the contribution of hippocampi to preSMA and right IFG metabolic activities. Increases were found in the contribution of the right hippocampus to insular cortex and of the cerebellar lobule IX to superior parietal cortex metabolic activities. This study evidences significant linear or non-linear age-related changes in regional glucose metabolism of mesial prefrontal, thalamic, mesiotemporal, and cerebellar areas, associated with significant modifications in neurometabolic connectivity involving fronto-thalamic, fronto-hippocampal, and fronto-cerebellar networks. These changes in functional brain integration likely represent a metabolic correlate of age-dependent effects on sensory, motor, and high-level cognitive functional networks. Hum Brain Mapp 37:3017-3030, 2016. © 2016 Wiley Periodicals, Inc. PMID:27133021

  2. GSM mobile phone radiation suppresses brain glucose metabolism

    PubMed Central

    Kwon, Myoung Soo; Vorobyev, Victor; Kännälä, Sami; Laine, Matti; Rinne, Juha O; Toivonen, Tommi; Johansson, Jarkko; Teräs, Mika; Lindholm, Harri; Alanko, Tommi; Hämäläinen, Heikki

    2011-01-01

    We investigated the effects of mobile phone radiation on cerebral glucose metabolism using high-resolution positron emission tomography (PET) with the 18F-deoxyglucose (FDG) tracer. A long half-life (109 minutes) of the 18F isotope allowed a long, natural exposure condition outside the PET scanner. Thirteen young right-handed male subjects were exposed to a pulse-modulated 902.4 MHz Global System for Mobile Communications signal for 33 minutes, while performing a simple visual vigilance task. Temperature was also measured in the head region (forehead, eyes, cheeks, ear canals) during exposure. 18F-deoxyglucose PET images acquired after the exposure showed that relative cerebral metabolic rate of glucose was significantly reduced in the temporoparietal junction and anterior temporal lobe of the right hemisphere ipsilateral to the exposure. Temperature rise was also observed on the exposed side of the head, but the magnitude was very small. The exposure did not affect task performance (reaction time, error rate). Our results show that short-term mobile phone exposure can locally suppress brain energy metabolism in humans. PMID:21915135

  3. GSM mobile phone radiation suppresses brain glucose metabolism.

    PubMed

    Kwon, Myoung Soo; Vorobyev, Victor; Kännälä, Sami; Laine, Matti; Rinne, Juha O; Toivonen, Tommi; Johansson, Jarkko; Teräs, Mika; Lindholm, Harri; Alanko, Tommi; Hämäläinen, Heikki

    2011-12-01

    We investigated the effects of mobile phone radiation on cerebral glucose metabolism using high-resolution positron emission tomography (PET) with the (18)F-deoxyglucose (FDG) tracer. A long half-life (109 minutes) of the (18)F isotope allowed a long, natural exposure condition outside the PET scanner. Thirteen young right-handed male subjects were exposed to a pulse-modulated 902.4 MHz Global System for Mobile Communications signal for 33 minutes, while performing a simple visual vigilance task. Temperature was also measured in the head region (forehead, eyes, cheeks, ear canals) during exposure. (18)F-deoxyglucose PET images acquired after the exposure showed that relative cerebral metabolic rate of glucose was significantly reduced in the temporoparietal junction and anterior temporal lobe of the right hemisphere ipsilateral to the exposure. Temperature rise was also observed on the exposed side of the head, but the magnitude was very small. The exposure did not affect task performance (reaction time, error rate). Our results show that short-term mobile phone exposure can locally suppress brain energy metabolism in humans. PMID:21915135

  4. Cerebral glucose metabolic abnormality in patients with congenital scoliosis.

    PubMed

    Park, Weon Wook; Suh, Kuen Tak; Kim, Jeung Il; Ku, Ja Gyung; Lee, Hong Seok; Kim, Seong-Jang; Kim, In-Ju; Kim, Yong-Ki; Lee, Jung Sub

    2008-07-01

    A possible association between congenital scoliosis and low mental status has been recognized, but there are no reports describing the mental status or cerebral metabolism in patients with congenital scoliosis in detail. We investigated the mental status using a mini-mental status exam as well as the cerebral glucose metabolism using F-18 fluorodeoxyglucose brain positron emission tomography in 12 patients with congenital scoliosis and compared them with those of 14 age-matched patients with adolescent idiopathic scoliosis. The mean mini-mental status exam score in the congenital scoliosis group was significantly lower than that in the adolescent idiopathic scoliosis group. Group analysis found that various brain areas of patients with congenital scoliosis showed glucose hypometabolisms in the left prefrontal cortex (Brodmann area 10), right orbitofrontal cortex (Brodmann area 11), left dorsolateral prefrontal cortex (Brodmann area 9), left anterior cingulate gyrus (Brodmann area 24) and pulvinar of the left thalamus. From this study, we could find the metabolic abnormalities of brain in patients with congenital scoliosis and suggest the possible role of voxel-based analysis of brain fluorodeoxyglucose positron emission tomography. PMID:18446384

  5. Fractional uptake value as a good indicator for glucose metabolism

    SciTech Connect

    Nishizawa, S.; Yonekura, Y.; Mukai, T. |

    1995-05-01

    In a previous paper, we demonstrated that hyperglycemia enhanced brain tumor detection in FDG-PET studies. However, the autoradiographic method underestimated cerebral glucose metabolism (CMRglc) in hyperglycemia, while dynamic PET scans are often not feasible due to patient`s condition. For such situations, we propose the use of the fractional uptake value (FUV) which is given by Ci(t)/{integral}Ca(t)dt where Ci(t) and Ca(t) are radio-activities in brain and plasma. In this study, we tested FUV as an indicator of the net clearance coefficient of FDG (K*) over a side range of plasma glucose levels. Seven patients with brain tumor underwent FDG-PET studies in normoglycemia (mean: 5.2 mM) and hyperglycemia (mean: 14.6 mM) on separate days. Dynamic PET scan was performed for 40 min with arterial sampling after an i.v. injection of 160-370 MBq of FDG. Data analysis was carried out on cortices contralateral of the tumor. The rate constants (K1*,k2*,k3*, and k4*) and cerebral blood volume of a 3 compartment model were estimated by non-linear least squared optimization. K* was defined as K*=K1*,k3*/(k2*+k3*). FUV was calculated using 4-min scan data from 36 to 40 min of the dynamic scan. The FUV demonstrated a good relationship with K value over a wide range of plasma glucose level (K*=2.0 10{sup -3} +1.02 FUV r=0.99), and proved to be a good indicator for cerebral glucose metabolism.

  6. End products of glucose and glutamine metabolism by L929 cells.

    PubMed

    Lanks, K W

    1987-07-25

    Products of glucose and glutamine metabolism by L929 cells were detected and quantitated by gas chromatography and mass spectrometry of the oxime-trimethylsilyl derivatives. This method allowed detection and identification of all major carboxylic and amino acids produced in the system. Although lactic acid was expected to be the major product, alanine, citric, glutamic, aspartic, and pyruvic acids were also released into the culture medium at significant rates. Incorporation of labeled carbon from D-[U-13C]glucose showed that the alanine, lactic, and pyruvic acids were derived from glucose as was one-third of the citric acid carbon. The rate of glucose utilization for production of these end products was 29-fold greater than the rate of glucose oxidation to CO2, and calculated ATP production from alanine and pyruvate synthesis exceeded that from lactate synthesis by nearly 2-fold. Utilization of glutamine for synthesis of aspartic, glutamic, and citric acids also exceeded the rate of glutamine oxidation, thereby making end-product synthesis from glucose and glutamine the dominant cellular metabolic activity. In the absence of glucose, synthesis and intracellular levels of aspartic and glutamic acids increased, whereas synthesis and cell content of the other acids decreased markedly. This response is consistent with the metabolic pattern proposed by Moreadith and Lehninger (Moreadith, R.W., and Lehninger, A.L. (1984) J. Biol. Chem. 259, 6215-6221) in which much of the glutamine used by these cells is converted to aspartate in the absence of a pyruvate source and to aspartate or citrate in the presence of pyruvate. PMID:3611053

  7. GLUCOSE METABOLISM AND INSULIN SENSITIVITY WERE UNAFFECTED BY DIETARY FRUCTOSE INTAKE (AND GLYCEMIC INDEX) IN OBESE AND LEAN ADOLESCENTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is growing concern that the increased consumption of fructose has detrimental effects on carbohydrate metabolism in adolescents. This study was designed to determine whether a high dietary fructose intake consumed over the short term adversely affects glucose metabolism, insulin secretion or ...

  8. Experimental type II diabetes and related models of impaired glucose metabolism differentially regulate glucose transporters at the proximal tubule brush border membrane.

    PubMed

    Chichger, Havovi; Cleasby, Mark E; Srai, Surjit K; Unwin, Robert J; Debnam, Edward S; Marks, Joanne

    2016-06-01

    What is the central question of this study? Although SGLT2 inhibitors represent a promising treatment for patients suffering from diabetic nephropathy, the influence of metabolic disruption on the expression and function of glucose transporters is largely unknown. What is the main finding and its importance? In vivo models of metabolic disruption (Goto-Kakizaki type II diabetic rat and junk-food diet) demonstrate increased expression of SGLT1, SGLT2 and GLUT2 in the proximal tubule brush border. In the type II diabetic model, this is accompanied by increased SGLT- and GLUT-mediated glucose uptake. A fasted model of metabolic disruption (high-fat diet) demonstrated increased GLUT2 expression only. The differential alterations of glucose transporters in response to varying metabolic stress offer insight into the therapeutic value of inhibitors. SGLT2 inhibitors are now in clinical use to reduce hyperglycaemia in type II diabetes. However, renal glucose reabsorption across the brush border membrane (BBM) is not completely understood in diabetes. Increased consumption of a Western diet is strongly linked to type II diabetes. This study aimed to investigate the adaptations that occur in renal glucose transporters in response to experimental models of diet-induced insulin resistance. The study used Goto-Kakizaki type II diabetic rats and normal rats rendered insulin resistant using junk-food or high-fat diets. Levels of protein kinase C-βI (PKC-βI), GLUT2, SGLT1 and SGLT2 were determined by Western blotting of purified renal BBM. GLUT- and SGLT-mediated d-[(3) H]glucose uptake by BBM vesicles was measured in the presence and absence of the SGLT inhibitor phlorizin. GLUT- and SGLT-mediated glucose transport was elevated in type II diabetic rats, accompanied by increased expression of GLUT2, its upstream regulator PKC-βI and SGLT1 protein. Junk-food and high-fat diet feeding also caused higher membrane expression of GLUT2 and its upstream regulator PKC

  9. Improvement of glucose metabolism in patients with type II diabetes after treatment with a hemodialysate.

    PubMed

    Jacob, S; Dietze, G J; Machicao, F; Kuntz, G; Augustin, H J

    1996-03-01

    Insulin resistance of skeletal muscle glucose uptake is a prominent feature of Type II diabetes (NIDDM); therefore, pharmacological intervention should aim to improve insulin sensitivity. Previous studies have shown that Actovegin, a hemodialysate of calf blood, which has been used for treatment of circulatory disorders for many years, improves glucose tolerance in NIDDM without affecting insulin levels; in vitro studies found an improvement of insulin-stimulated glucose uptake in adipocytes. This pilot study was initiated to see whether this compound augments insulin sensitivity after repeated treatment. Ten patients with NIDDM received the hemodialysate (Actovegin 2.000 pro infusions, 500 ml as daily infusions) over a period of 10 days. A hyperinsulinaemic, isoglycaemic glucose-clamp was done on day 0 and day 11; oral glucose tolerance test (oGTT) was done on day -4 and day 12. Parenteral administration of the hemodialysate markedly augmented insulin stimulated glucose disposal (glucose infusion rate and metabolic clearance rate) by more than 80% (p < 0.003 day 11 vs. day 0). Although tested 44 h after the last infusion, oGTT also improved significantly, as documented by the diminished area under the curve (AUC) for glucose, whereas the AUC for insulin remained unchanged. This is the first clinical study to show that parenteral administration of the tested hemodialysate results in a significant increase of insulin-stimulated glucose disposal in NIDDM. The exact mode of action of the hemodialysate in improving insulin sensitivity is currently not known. The hemodialysate possibly acts via a supplementation of inositol-phosphate-oligosaccharides (IPO), as in experimental studies IPOs isolated from the hemodialysate improved glucose uptake in adipocytes in an insulin-independent manner. Further studies are needed to elucidate the underlying mechanisms. PMID:8901147

  10. Effect of enoxacin, felbinac, and sparfloxacin on fatty acid metabolism and glucose concentrations in rat tissues.

    PubMed

    Kasuya, Fumiyo; Miwa, Yasushi; Kazumi, Maya; Inoue, Hiroyuki; Ohta, Hiroyuki

    2011-05-01

    Multiple changes in metabolic levels could be useful for understanding physiological toxicity. To explore further risk factors for the convulsions induced by the interaction of nonsteroidal anti-inflammatory and new quinolone antimicrobial drugs, the effect of sparfloxacin, enoxacin, and felbinac on fatty acid metabolism and glucose concentrations in the liver, brain, and blood of rats was investigated. The levels of long-chain acyl-CoAs (C(18:1) and C(20:4)) in the liver and brain were decreased at the onset of convulsions induced by the coadministration of enoxacin with felbinac. Then, glucose concentrations in the liver and blood were decreased, whereas they were increased in a dose-dependant manner in the brain. However, the formation of acyl-CoAs and glucose levels in the liver, brain, and blood was not significantly influenced by enoxacin, felbinac, and sparfloxacin alone, respectively. The disturbance of both fatty acid metabolism and glucose levels might be associated with the increased susceptibility to convulsions, which may contribute to further understanding of the toxic effects associated with these drugs. PMID:21633127

  11. Energy balance and metabolic changes with sodium-glucose co-transporter 2 inhibition.

    PubMed

    Rajeev, S P; Cuthbertson, D J; Wilding, J P H

    2016-02-01

    Sodium-glucose co-transporter 2 (SGLT2) inhibitors are the latest addition to the class of oral glucose-lowering drugs. They have been rapidly adopted into clinical practice because of therapeutic advantages, including weight loss and reduction in blood pressure, in addition to glycaemic benefits and a low intrinsic risk of hypoglycaemia. Although there are extensive data on the clinical effects of SGLT2 inhibition, the metabolic effects of inhibiting renal glucose reabsorption have not been fully described. Recent studies have identified compensatory metabolic effects, such as an increase in endogenous glucose production, and have also shown an increase in glucagon secretion during SGLT2 inhibition. In addition, there is a discrepancy between the expected and observed weight loss found in clinical studies on SGLT2 inhibitors, probably as a result of changes in energy balance with this treatment approach. SGLT2 inhibition is likely to have intriguing effects on whole body metabolism which have not been fully elucidated, and which, if explained, might help optimize the use of this new class of medicines. PMID:26403227

  12. Effect of Peripheral 5-HT on Glucose and Lipid Metabolism in Wether Sheep

    PubMed Central

    Watanabe, Hitoshi; Saito, Ryo; Nakano, Tatsuya; Takahashi, Hideyuki; Takahashi, Yu; Sumiyoshi, Keisuke; Sato, Katsuyoshi; Chen, Xiangning; Okada, Natsumi; Iwasaki, Shunsuke; Harjanti, Dian W.; Sekiguchi, Natsumi; Sano, Hiroaki; Kitazawa, Haruki; Rose, Michael T.; Ohwada, Shyuichi; Watanabe, Kouichi; Aso, Hisashi

    2014-01-01

    In mice, peripheral 5-HT induces an increase in the plasma concentrations of glucose, insulin and bile acids, and a decrease in plasma triglyceride, NEFA and cholesterol concentrations. However, given the unique characteristics of the metabolism of ruminants relative to monogastric animals, the physiological role of peripheral 5-HT on glucose and lipid metabolism in sheep remains to be established. Therefore, in this study, we investigated the effect of 5-HT on the circulating concentrations of metabolites and insulin using five 5-HT receptor (5HTR) antagonists in sheep. After fasting for 24 h, sheep were intravenously injected with 5-HT, following which-, plasma glucose, insulin, triglyceride and NEFA concentrations were significantly elevated. In contrast, 5-HT did not affect the plasma cholesterol concentration, and it induced a decrease in bile acid concentrations. Increases in plasma glucose and insulin concentrations induced by 5-HT were attenuated by pre-treatment with Methysergide, a 5HTR 1, 2 and 7 antagonist. Additionally, decreased plasma bile acid concentrations induced by 5-HT were blocked by pre-treatment with Ketanserin, a 5HTR 2A antagonist. However, none of the 5HTR antagonists inhibited the increase in plasma triglyceride and NEFA levels induced by 5-HT. On the other hand, mRNA expressions of 5HTR1D and 1E were observed in the liver, pancreas and skeletal muscle. These results suggest that there are a number of differences in the physiological functions of peripheral 5-HT with respect to lipid metabolism between mice and sheep, though its effect on glucose metabolism appears to be similar between these species. PMID:24505376

  13. Insulin signalling and the regulation of glucose and lipid metabolism

    NASA Astrophysics Data System (ADS)

    Saltiel, Alan R.; Kahn, C. Ronald

    2001-12-01

    The epidemic of type 2 diabetes and impaired glucose tolerance is one of the main causes of morbidity and mortality worldwide. In both disorders, tissues such as muscle, fat and liver become less responsive or resistant to insulin. This state is also linked to other common health problems, such as obesity, polycystic ovarian disease, hyperlipidaemia, hypertension and atherosclerosis. The pathophysiology of insulin resistance involves a complex network of signalling pathways, activated by the insulin receptor, which regulates intermediary metabolism and its organization in cells. But recent studies have shown that numerous other hormones and signalling events attenuate insulin action, and are important in type 2 diabetes.

  14. A mechanistic study to increase understanding of titanium dioxide nanoparticles-increased plasma glucose in mice.

    PubMed

    Hu, Hailong; Li, Li; Guo, Qian; Jin, Sanli; Zhou, Ying; Oh, Yuri; Feng, Yujie; Wu, Qiong; Gu, Ning

    2016-09-01

    Titanium dioxide nanoparticle (TiO2 NP) is an authorized food additive. Previous studies determined oral administration of TiO2 NPs increases plasma glucose in mice via inducing insulin resistance. An increase in reactive oxygen species (ROS) has been considered the possible mechanism of increasing plasma glucose. However, persistently high plasma glucose is also a mechanism of increasing ROS. This study aims to explore whether TiO2 NPs increase plasma glucose via ROS. We found after oral administration of TiO2 NPs, an increase in ROS preceded an increase in plasma glucose. Subsequently, mice were treated with two antioxidants (resveratrol and vitamin E) at the same time as oral administration of TiO2 NPs. Results showed resveratrol and vitamin E reduced TiO2 NPs-increased ROS. An increase in plasma glucose was also inhibited. Further research showed resveratrol and vitamin E inhibited the secretion of TNF-α and IL-6, and the phosphorylation of JNK and p38 MAPK, resulting in improved insulin resistance. These results suggest TiO2 NPs increased ROS levels, and then ROS activated inflammatory cytokines and phosphokinases, and thus induced insulin resistance, resulting in an increase in plasma glucose. Resveratrol and vitamin E can reduce TiO2 NPs-increased ROS and thereby inhibit an increase in plasma glucose in mice. PMID:27430421

  15. Changes in rat adipocyte and liver glucose metabolism following repeated restraint stress.

    PubMed

    Zhou, J; Shi, M X; Mitchell, T D; Smagin, G N; Thomas, S R; Ryan, D H; Harris, R B

    2001-04-01

    Rats exposed to repeated restraint weigh less than controls even 8 weeks after stress. Stress-induced weight loss is lean tissue, but the post-stress difference in weight between control and restrained rats is lean and fat mass. Whole-body glucose clearance is enhanced 1 day after stress, but adipocyte glucose utilization is inhibited and muscle glucose transport is unchanged. The studies described here demonstrated that glucose transport was increased in both restrained and pair-fed rats, but that glycogen synthesis was increased only in restrained rats, which may account for the improved whole-body glucose clearance. Adipocyte glucose transport was inhibited and adipose plasma membrane beta-adrenergic receptor number was increased 1 day post-stress in restrained rats when weight loss was lean tissue, but were not different from control rats 5 days post-stress, when both fat and lean tissue were reduced. Thus, repeated restraint induces reversible changes in adipocyte metabolism that may represent a transition from the catabolic state of stress to a new energetic equilibrium in rats that maintain a reduced body weight for an extended period of time. PMID:11368423

  16. Relationship between pancreatic hormones and glucose metabolism: A cross-sectional study in patients after acute pancreatitis.

    PubMed

    Pendharkar, Sayali A; Asrani, Varsha M; Xiao, Amy Y; Yoon, Harry D; Murphy, Rinki; Windsor, John A; Petrov, Maxim S

    2016-07-01

    Abnormal glucose metabolism is present in almost 40% of patients after acute pancreatitis, but its pathophysiology has been poorly investigated. Pancreatic hormone derangements have been sparingly studied to date, and their relationship with abnormal glucose metabolism is largely unknown. The aim was to investigate the associations between pancreatic hormones and glucose metabolism after acute pancreatitis, including the effect of potential confounders. This was a cross-sectional study of 83 adult patients after acute pancreatitis. Fasting venous blood was collected from all patients and used for analysis of insulin, glucagon, pancreatic polypeptide, amylin, somatostatin, C-peptide, glucose, and hemoglobin A1c. Statistical analyses were conducted using the modified Poisson regression, multivariable linear regression, and Spearman's correlation. Age, sex, body mass index, recurrence of acute pancreatitis, duration from first attack, severity, and etiology were adjusted for. Increased insulin was significantly associated with abnormal glucose metabolism after acute pancreatitis, in both unadjusted (P = 0.038) and adjusted (P = 0.001) analyses. Patients with abnormal glucose metabolism also had significantly decreased pancreatic polypeptide (P = 0.001) and increased amylin (P = 0.047) in adjusted analyses. Somatostatin, C-peptide, and glucagon were not changed significantly in both unadjusted and adjusted analyses. Increased insulin resistance and reduced insulin clearance may be important components of hyperinsulinemic compensation in patients after acute pancreatitis. Increased amylin and reduced pancreatic polypeptide fasting levels characterize impaired glucose homeostasis. Clinical studies investigating islet-cell hormonal responses to mixed-nutrient meal testing and euglycemic-hyperinsulinemic clamps are now warranted for further insights into the role of pancreatic hormones in glucose metabolism derangements secondary to pancreatic diseases. PMID:27173509

  17. Insulin sensitizes FGF21 in glucose and lipid metabolisms via activating common AKT pathway.

    PubMed

    Yu, Dan; Ye, Xianlong; Wu, Qiang; Li, Shujie; Yang, Yongbi; He, Jinjiao; Liu, Yunye; Zhang, Xiaoyu; Yuan, Qingyan; Liu, Mingyao; Li, Deshan; Ren, Guiping

    2016-06-01

    Previous studies reveal that fibroblast growth factor 21 (FGF21) sensitizes insulin to achieve a synergy in regulating glucose metabolism. Here, we report that insulin sensitizes FGF21 in regulating both glucose and lipid metabolisms. db/db diabetic mice were subcutaneously administrated once a day for 6 weeks. Effective dose of insulin (1 U) could control blood glucose level of the db/db mice for maximum of 2 h, increased the body weight of the db/db mice and did not improve serum lipid parameters. In contrast, effective dose of FGF21 (0.5 mg/kg) could maintain blood glucose of the db/db mice at normal level for at least 24 h, repressed the weight gain of the mice and significantly improved lipid parameters. Ineffective doses of FGF21 (0.125 mg/kg) and insulin had no effect on blood glucose level of the db/db mice after 24 h administration, body weight or lipid parameters. However, combination of the two ineffective doses could maintain blood glucose level of the db/db mice for at least 24 h, suppressed weight gain and significantly improved lipid parameters. These results suggest that insulin sensitizes FGF21 in regulating both glucose and lipid metabolism. The results aimed to study the molecular basis of FGF21 sensitization indicates that combination of the two ineffective doses increased the mRNA expression of glut1, glut4, β-Klotho, sirt1, pgc-1α, ucp-1 and AKT phosphorylation, decreased fasn. The results demonstrate that insulin sensitizes FGF21 through elevating the phosphorylation of common gene Akt and amplifying FGF21 downstream signaling, including increasing expression of glut1 sirt1, pgc-1α, ucp-1, and decreasing fasn expression. In summary, we reports herein for the first time that insulin sensitizes FGF21 to achieve a synergy in regulating glucose and lipid metabolism. Along with previous studies, we conclude that the synergistic effect between FGF21 and insulin is realized through mutual sensitization. PMID:26607153

  18. Exercise effects on postprandial glucose metabolism in type 1 diabetes: a triple-tracer approach

    PubMed Central

    Mallad, Ashwini; Hinshaw, Ling; Schiavon, Michele; Dalla Man, Chiara; Dadlani, Vikash; Basu, Rita; Lingineni, Ravi; Cobelli, Claudio; Johnson, Matthew L.; Carter, Rickey; Kudva, Yogish C.

    2015-01-01

    To determine the effects of exercise on postprandial glucose metabolism and insulin action in type 1 diabetes (T1D), we applied the triple tracer technique to study 16 T1D subjects on insulin pump therapy before, during, and after 75 min of moderate-intensity exercise (50% V̇o2max) that started 120 min after a mixed meal containing 75 g of labeled glucose. Prandial insulin bolus was administered as per each subject's customary insulin/carbohydrate ratio adjusted for meal time meter glucose and the level of physical activity. Basal insulin infusion rates were not altered. There were no episodes of hypoglycemia during the study. Plasma dopamine and norepinephrine concentrations rose during exercise. During exercise, rates of endogenous glucose production rose rapidly to baseline levels despite high circulating insulin and glucose concentrations. Interestingly, plasma insulin concentrations increased during exercise despite no changes in insulin pump infusion rates, implying increased mobilization of insulin from subcutaneous depots. Glucagon concentrations rose before and during exercise. Therapeutic approaches for T1D management during exercise will need to account for its effects on glucose turnover, insulin mobilization, glucagon, and sympathetic response and possibly other blood-borne feedback and afferent reflex mechanisms to improve both hypoglycemia and hyperglycemia. PMID:25898950

  19. Evolution of E. coli on [U-13C]Glucose Reveals a Negligible Isotopic Influence on Metabolism and Physiology

    PubMed Central

    Sandberg, Troy E.; Long, Christopher P.; Gonzalez, Jacqueline E.; Feist, Adam M.; Antoniewicz, Maciek R.; Palsson, Bernhard O.

    2016-01-01

    13C-Metabolic flux analysis (13C-MFA) traditionally assumes that kinetic isotope effects from isotopically labeled compounds do not appreciably alter cellular growth or metabolism, despite indications that some biochemical reactions can be non-negligibly impacted. Here, populations of Escherichia coli were adaptively evolved for ~1000 generations on uniformly labeled 13C-glucose, a commonly used isotope for 13C-MFA. Phenotypic characterization of these evolved strains revealed ~40% increases in growth rate, with no significant difference in fitness when grown on either labeled (13C) or unlabeled (12C) glucose. The evolved strains displayed decreased biomass yields, increased glucose and oxygen uptake, and increased acetate production, mimicking what is observed after adaptive evolution on unlabeled glucose. Furthermore, full genome re-sequencing revealed that the key genetic changes underlying these phenotypic alterations were essentially the same as those acquired during adaptive evolution on unlabeled glucose. Additionally, glucose competition experiments demonstrated that the wild-type exhibits no isotopic preference for unlabeled glucose, and the evolved strains have no preference for labeled glucose. Overall, the results of this study indicate that there are no significant differences between 12C and 13C-glucose as a carbon source for E. coli growth. PMID:26964043

  20. Cellular pathways of energy metabolism in the brain: is glucose used by neurons or astrocytes?

    PubMed

    Nehlig, Astrid; Coles, Jonathan A

    2007-09-01

    Most techniques presently available to measure cerebral activity in humans and animals, i.e. positron emission tomography (PET), autoradiography, and functional magnetic resonance imaging, do not record the activity of neurons directly. Furthermore, they do not allow the investigator to discriminate which cell type is using glucose, the predominant fuel provided to the brain by the blood. Here, we review the experimental approaches aimed at determining the percentage of glucose that is taken up by neurons and by astrocytes. This review is integrated in an overview of the current concepts on compartmentation and substrate trafficking between astrocytes and neurons. In the brain in vivo, about half of the glucose leaving the capillaries crosses the extracellular space and directly enters neurons. The other half is taken up by astrocytes. Calculations suggest that neurons consume more energy than do astrocytes, implying that astrocytes transfer an intermediate substrate to neurons. Experimental approaches in vitro on the honeybee drone retina and on the isolated vagus nerve also point to a continuous transfer of intermediate metabolites from glial cells to neurons in these tissues. Solid direct evidence of such transfer in the mammalian brain in vivo is still lacking. PET using [(18)F]fluorodeoxyglucose reflects in part glucose uptake by astrocytes but does not indicate to which step the glucose taken up is metabolized within this cell type. Finally, the sequence of metabolic changes occurring during a transient increase of electrical activity in specific regions of the brain remains to be clarified. PMID:17659529

  1. High Environmental Temperature Increases Glucose Requirement in the Developing Chicken Embryo

    PubMed Central

    Molenaar, Roos; van den Borne, Joost J. G. C.; Hazejager, Ewoud; Kristensen, Niels B.; Heetkamp, Marcel J. W.; Meijerhof, Ron; Kemp, Bas; van den Brand, Henry

    2013-01-01

    Environmental conditions during the perinatal period influence metabolic and developmental processes in mammals and avian species, which could impact pre- and postnatal survival and development. The current study investigated the effect of eggshell temperature (EST) on glucose metabolism in broiler chicken embryos. Broiler eggs were incubated at a high (38.9°C) or normal (37.8°C) EST from day 10.5 of incubation onward and were injected with a bolus of [U-13C]glucose in the chorio-allantoic fluid at day 17.5 of incubation. After [U-13C]glucose administration, 13C enrichment was determined in intermediate pools and end-products of glucose metabolism. Oxidation of labeled glucose occurred for approximately 3 days after injection. Glucose oxidation was higher in the high than in the normal EST treatment from day 17.6 until 17.8 of incubation. The overall recovery of 13CO2 tended to be 4.7% higher in the high than in the normal EST treatment. An increase in EST (38.9°C vs 37.8°C) increased 13C enrichment in plasma lactate at day 17.8 of incubation and 13C in hepatic glycogen at day 18.8 of incubation. Furthermore, high compared to normal EST resulted in a lower yolk-free body mass at day 20.9 (−2.74 g) and 21.7 (−3.81 g) of incubation, a lower hepatic glycogen concentration at day 18.2 (−4.37 mg/g) and 18.8 (−4.59 mg/g) of incubation, and a higher plasma uric acid concentration (+2.8 mg/mL/+43%) at day 21.6 of incubation. These results indicate that the glucose oxidation pattern is relatively slow, but the intensity increased consistently with an increase in developmental stage of the embryo. High environmental temperatures in the perinatal period of chicken embryos increased glucose oxidation and decreased hepatic glycogen prior to the hatching process. This may limit glucose availability for successful hatching and could impact body development, probably by increased gluconeogenesis from glucogenic amino acids to allow anaerobic glycolysis. PMID:23560054

  2. Transcriptional and metabolic effects of glucose on Streptococcus pneumoniae sugar metabolism

    PubMed Central

    Paixão, Laura; Caldas, José; Kloosterman, Tomas G.; Kuipers, Oscar P.; Vinga, Susana; Neves, Ana R.

    2015-01-01

    Streptococcus pneumoniae is a strictly fermentative human pathogen that relies on carbohydrate metabolism to generate energy for growth. The nasopharynx colonized by the bacterium is poor in free sugars, but mucosa lining glycans can provide a source of sugar. In blood and inflamed tissues glucose is the prevailing sugar. As a result during progression from colonization to disease S. pneumoniae has to cope with a pronounced shift in carbohydrate nature and availability. Thus, we set out to assess the pneumococcal response to sugars found in glycans and the influence of glucose (Glc) on this response at the transcriptional, physiological, and metabolic levels. Galactose (Gal), N-acetylglucosamine (GlcNAc), and mannose (Man) affected the expression of 8 to 14% of the genes covering cellular functions including central carbon metabolism and virulence. The pattern of end-products as monitored by in vivo 13C-NMR is in good agreement with the fermentation profiles during growth, while the pools of phosphorylated metabolites are consistent with the type of fermentation observed (homolactic vs. mixed) and regulation at the metabolic level. Furthermore, the accumulation of α-Gal6P and Man6P indicate metabolic bottlenecks in the metabolism of Gal and Man, respectively. Glc added to cells actively metabolizing other sugar(s) was readily consumed and elicited a metabolic shift toward a homolactic profile. The transcriptional response to Glc was large (over 5% of the genome). In central carbon metabolism (most represented category), Glc exerted mostly negative regulation. The smallest response to Glc was observed on a sugar mix, suggesting that exposure to varied sugars improves the fitness of S. pneumoniae. The expression of virulence factors was negatively controlled by Glc in a sugar-dependent manner. Overall, our results shed new light on the link between carbohydrate metabolism, adaptation to host niches and virulence. PMID:26500614

  3. Transcriptional and metabolic effects of glucose on Streptococcus pneumoniae sugar metabolism.

    PubMed

    Paixão, Laura; Caldas, José; Kloosterman, Tomas G; Kuipers, Oscar P; Vinga, Susana; Neves, Ana R

    2015-01-01

    Streptococcus pneumoniae is a strictly fermentative human pathogen that relies on carbohydrate metabolism to generate energy for growth. The nasopharynx colonized by the bacterium is poor in free sugars, but mucosa lining glycans can provide a source of sugar. In blood and inflamed tissues glucose is the prevailing sugar. As a result during progression from colonization to disease S. pneumoniae has to cope with a pronounced shift in carbohydrate nature and availability. Thus, we set out to assess the pneumococcal response to sugars found in glycans and the influence of glucose (Glc) on this response at the transcriptional, physiological, and metabolic levels. Galactose (Gal), N-acetylglucosamine (GlcNAc), and mannose (Man) affected the expression of 8 to 14% of the genes covering cellular functions including central carbon metabolism and virulence. The pattern of end-products as monitored by in vivo (13)C-NMR is in good agreement with the fermentation profiles during growth, while the pools of phosphorylated metabolites are consistent with the type of fermentation observed (homolactic vs. mixed) and regulation at the metabolic level. Furthermore, the accumulation of α-Gal6P and Man6P indicate metabolic bottlenecks in the metabolism of Gal and Man, respectively. Glc added to cells actively metabolizing other sugar(s) was readily consumed and elicited a metabolic shift toward a homolactic profile. The transcriptional response to Glc was large (over 5% of the genome). In central carbon metabolism (most represented category), Glc exerted mostly negative regulation. The smallest response to Glc was observed on a sugar mix, suggesting that exposure to varied sugars improves the fitness of S. pneumoniae. The expression of virulence factors was negatively controlled by Glc in a sugar-dependent manner. Overall, our results shed new light on the link between carbohydrate metabolism, adaptation to host niches and virulence. PMID:26500614

  4. The role of hepatic mitochondria in the regulation of glucose metabolism in BHE rats

    SciTech Connect

    Kim, M.J.C.

    1988-01-01

    The interacting effects of dietary fat source and thyroxine treatment on the hepatic mitochondrial function and glucose metabolism were studied. In the first study, three different sources of dietary fatty acids and thyroxine treatment were used to investigate the hepatic mitochondrial thermotropic behavior in two strains of rat. The NIDDM BHE and Sprague-Dawley rats were used. Feeding coconut oil increased serum T{sub 4} levels and T{sub 4} treatment increased serum T{sub 3} levels in the BHE rats. In the mitochondria from BHE rats fed coconut oil and treated with T{sub 4}, the transition temperature disappeared due to a decoupling of succinate supported respiration. This was not observed in the Sprague-Dawley rats. In the second study, two different sources of dietary fat and T{sub 4} treatment were used to investigate hepatic mitochondrial function. Coconut oil feeding increased Ca{sup ++}Mg{sup ++}ATPase and Mg{sup ++}ATPase. T{sub 4} treatment had potentiated this effect. T{sub 4} increased the malate-aspartate shuttle and {alpha}-glycerophosphate shuttle activities. In the third study, the glucose turnover rate from D-({sup 14}C-U)/(6-{sup 3}H)-glucose and gluconeogeneis from L-({sup 14}C-U)-alanine was examined. Dietary fat or T{sub 4} did not affect the glucose mass. T{sub 4} increased the irreversible fractional glucose turnover rate.

  5. Glucose metabolic flux distribution of Lactobacillus amylophilus during lactic acid production using kitchen waste saccharified solution.

    PubMed

    Liu, Jianguo; Wang, Qunhui; Zou, Hui; Liu, Yingying; Wang, Juan; Gan, Kemin; Xiang, Juan

    2013-11-01

    The (13) C isotope tracer method was used to investigate the glucose metabolic flux distribution and regulation in Lactobacillus amylophilus to improve lactic acid production using kitchen waste saccharified solution (KWSS). The results demonstrate that L. amylophilus is a homofermentative bacterium. In synthetic medium, 60.6% of the glucose entered the Embden-Meyerhof-Parnas (EMP) to produce lactic acid, whereas 36.4% of the glucose entered the pentose phosphate metabolic pathway (HMP). After solid-liquid separation of the KWSS, the addition of Fe(3+) during fermentation enhanced the NADPH production efficiency and increased the NADH content. The flux to the EMP was also effectively increased. Compared with the control (60.6% flux to EMP without Fe(3+) addition), the flux to the EMP with the addition of Fe(3+) (74.3%) increased by 23.8%. In the subsequent pyruvate metabolism, Fe(3+) also increased lactate dehydrogenase activity, and inhibited alcohol dehydrogenase, pyruvate dehydrogenase and pyruvate carboxylase, thereby increasing the lactic acid production to 9.03 g l(-1) , an increase of 8% compared with the control. All other organic acid by-products were lower than in the control. However, the addition of Zn(2+) showed an opposite effect, decreasing the lactic acid production. In conclusion it is feasible and effective means using GC-MS, isotope experiment and MATLAB software to integrate research the metabolic flux distribution of lactic acid bacteria, and the results provide the theoretical foundation for similar metabolic flux distribution. PMID:23489617

  6. Xylose-induced dynamic effects on metabolism and gene expression in engineered Saccharomyces cerevisiae in anaerobic glucose-xylose cultures.

    PubMed

    Alff-Tuomala, Susanne; Salusjärvi, Laura; Barth, Dorothee; Oja, Merja; Penttilä, Merja; Pitkänen, Juha-Pekka; Ruohonen, Laura; Jouhten, Paula

    2016-01-01

    Xylose is present with glucose in lignocellulosic streams available for valorisation to biochemicals. Saccharomyces cerevisiae has excellent characteristics as a host for the bioconversion, except that it strongly prefers glucose to xylose, and the co-consumption remains a challenge. Further, since xylose is not a natural substrate of S. cerevisiae, the regulatory response it induces in an engineered strain cannot be expected to have evolved for its utilisation. Xylose-induced effects on metabolism and gene expression during anaerobic growth of an engineered strain of S. cerevisiae on medium containing both glucose and xylose medium were quantified. The gene expression of S. cerevisiae with an XR-XDH pathway for xylose utilisation was analysed throughout the cultivation: at early cultivation times when mainly glucose was metabolised, at times when xylose was co-consumed in the presence of low glucose concentrations, and when glucose had been depleted and only xylose was being consumed. Cultivations on glucose as a sole carbon source were used as a control. Genome-scale dynamic flux balance analysis models were simulated to analyse the metabolic dynamics of S. cerevisiae. The simulations quantitatively estimated xylose-dependent flux dynamics and challenged the utilisation of the metabolic network. A relative increase in xylose utilisation was predicted to induce the bi-directionality of glycolytic flux and a redox challenge even at low glucose concentrations. Remarkably, xylose was observed to specifically delay the glucose-dependent repression of particular genes in mixed glucose-xylose cultures compared to glucose cultures. The delay occurred at a cultivation time when the metabolic flux activities were similar in the both cultures. PMID:26454869

  7. Chronic central leptin infusion modulates the glycemia response to insulin administration in male rats through regulation of hepatic glucose metabolism.

    PubMed

    Burgos-Ramos, Emma; Canelles, Sandra; Rodríguez, Amaia; Gómez-Ambrosi, Javier; Frago, Laura M; Chowen, Julie A; Frühbeck, Gema; Argente, Jesús; Barrios, Vicente

    2015-11-01

    Leptin and insulin use overlapping signaling mechanisms to modify hepatic glucose metabolism, which is critical in maintaining normal glycemia. We examined the effect of an increase in central leptin and insulin on hepatic glucose metabolism and its influence on serum glucose levels. Chronic leptin infusion increased serum leptin and reduced hepatic SH-phosphotyrosine phosphatase 1, the association of suppressor of cytokine signaling 3 to the insulin receptor in liver and the rise in glycemia induced by central insulin. Leptin also decreased hepatic phosphoenolpyruvate carboxykinase levels and increased insulin's ability to phosphorylate insulin receptor substrate-1, Akt and glycogen synthase kinase on Ser9 and to stimulate glucose transporter 2 and glycogen levels. Peripheral leptin treatment reproduced some of these changes, but to a lesser extent. Our data indicate that leptin increases the hepatic response to a rise in insulin, suggesting that pharmacological manipulation of leptin targets may be of interest for controlling glycemia. PMID:26296906

  8. TAp63 is a master transcriptional regulator of lipid and glucose metabolism

    PubMed Central

    Su, Xiaohua; Gi, Young Jin; Chakravarti, Deepavali; Chan, Io Long; Zhang, Aijun; Xia, Xuefeng; Tsai, Kenneth Y.; Flores, Elsa R.

    2012-01-01

    SUMMARY TAp63 prevents premature aging suggesting a link to genes that regulate longevity. Further characterization of TAp63−/− mice revealed that these mice develop obesity, insulin resistance, and glucose intolerance, similar to those seen in mice lacking two key metabolic regulators, Silent information regulator T1 (Sirt1) and AMPK. While the roles of Sirt1 and AMPK in metabolism have been well studied, their upstream regulators are not well understood. We found that TAp63 is important in regulating energy metabolism by accumulating in response to metabolic stress and transcriptionally activating Sirt1, AMPKα2, and LKB1 resulting in increased fatty acid synthesis and decreased fatty acid oxidation. Moreover, we found that TAp63 lowers blood glucose levels in response to metformin. Restoration of Sirt1, AMPKα2, and LKB1 in TAp63−/− mice rescued some of the metabolic defects of the TAp63−/− mice. Our study defines a role for TAp63 in metabolism and weight control. PMID:23040072

  9. MicroRNA-26a regulates glucose metabolism by direct targeting PDHX in colorectal cancer cells

    PubMed Central

    2014-01-01

    Background Reprogramming energy metabolism has been an emerging hallmark of cancer cells. MicroRNAs play important roles in glucose metabolism. Methods The targets of microRNA-26a (miR-26a) were predicted by bioinformatics tools. The efficacy of miR-26a binding the 3′-untranslated region (UTR) of pyruvate dehydrogenase protein X component (PDHX) mRNA was evaluated using a dual-luciferase reporter assay. The PDHX expression at the mRNA and protein level in several colon cancer cell lines was quantified with real-time PCR and Western blot analysis respectively. The effects of miR-26a on glucose metabolism were determined by detecting the content of glucose consumption, production of lactate, pyruvate, and acetyl-coenzyme A. Results The expression of miR-26a is inversely associated with the level of its targeting protein PDHX in several colon cancer cell lines with different malignancy potentials. MiR-26a inhibits PDHX expression by direct targeting the 3′-UTR of PDHX mRNA. The glucose consumption and lactate concentration were both greatly increased in colon cancer cells than the normal colon mucosal epithelia under physiological conditions. The overexpression of miR-26a in HCT116 cells efficiently improved the accumulation of pyruvate and decreased the production of acetyl coenzyme A. Meanwhile the inhibition of miR-26a expression induced inverse biological effects. Conclusions MiR-26a regulates glucose metabolism of colorectal cancer cells by direct targeting the PDHX, which inhibits the conversion of pyruvate to acetyl coenzyme A in the citric acid cycle. PMID:24935220

  10. Increased maternal nighttime cortisol concentrations in late gestation alter glucose and insulin in the neonatal lamb

    PubMed Central

    Antolic, Andrew; Feng, Xiaodi; Wood, Charles E; Richards, Elaine M; Keller-Wood, Maureen

    2015-01-01

    Previous studies in our laboratory have shown that a modest chronic increase in maternal cortisol concentrations impairs maternal glucose metabolism and increases the incidence of perinatal stillbirth. The dramatic outcomes prevented our ability to study the effects of maternal hypercortisolemia on neonatal growth, glucose metabolism, and hypothalamo–pituitary–adrenal axis response. Therefore, we developed a model in which pregnant ewes are infused for 12 h/day at 0.5 mg·kg–1·day–1 from day 115 of gestation until delivery (˜145), elevating nighttime plasma cortisol concentrations. This pattern of elevation of cortisol mimics that in patients with elevated evening cortisol concentrations, as in Cushing’s syndrome or chronic depression. Plasma cortisol, glucose, insulin, and electrolytes were measured during pregnancy and postpartum in control and cortisol-infused ewes and their postnatal lambs for the first 14 days after delivery. Neonatal growth and plasma ACTH, aldosterone, renin activity, and electrolytes, and organ weights at 14 days of age were also measured. Infusion of cortisol increased maternal plasma cortisol during pregnancy but not postpartum, and did not alter neonatal ACTH or cortisol. Although maternal glucose and insulin concentrations were not changed by the maternal infusion of cortisol, neonatal plasma glucose was increased and plasma insulin was decreased compared to those in the control group. Neonatal ponderal index and kidney weight were reduced, left ventricular wall thickness was increased, and plasma sodium and creatinine were increased after maternal cortisol infusion. These results suggest that excess maternal cortisol concentrations in late gestation alter growth, glucose and insulin regulation, and organ maturation in the neonate. PMID:26371232

  11. Insulin Stimulates S100B Secretion and These Proteins Antagonistically Modulate Brain Glucose Metabolism.

    PubMed

    Wartchow, Krista Minéia; Tramontina, Ana Carolina; de Souza, Daniela F; Biasibetti, Regina; Bobermin, Larissa D; Gonçalves, Carlos-Alberto

    2016-06-01

    Brain metabolism is highly dependent on glucose, which is derived from the blood circulation and metabolized by the astrocytes and other neural cells via several pathways. Glucose uptake in the brain does not involve insulin-dependent glucose transporters; however, this hormone affects the glucose influx to the brain. Changes in cerebrospinal fluid levels of S100B (an astrocyte-derived protein) have been associated with alterations in glucose metabolism; however, there is no evidence whether insulin modulates glucose metabolism and S100B secretion. Herein, we investigated the effect of S100B on glucose metabolism, measuring D-(3)H-glucose incorporation in two preparations, C6 glioma cells and acute hippocampal slices, and we also investigated the effect of insulin on S100B secretion. Our results showed that: (a) S100B at physiological levels decreases glucose uptake, through the multiligand receptor RAGE and mitogen-activated protein kinase/ERK signaling, and (b) insulin stimulated S100B secretion via PI3K signaling. Our findings indicate the existence of insulin-S100B modulation of glucose utilization in the brain tissue, and may improve our understanding of glucose metabolism in several conditions such as ketosis, streptozotocin-induced dementia and pharmacological exposure to antipsychotics, situations that lead to changes in insulin signaling and extracellular levels of S100B. PMID:26875731

  12. Metabolic alterations in lung cancer-associated fibroblasts correlated with increased glycolytic metabolism of the tumor

    PubMed Central

    Chaudhri, Virendra K.; Salzler, Gregory G.; Dick, Salihah A.; Buckman, Melanie S.; Sordella, Raffaella; Karoly, Edward D.; Mohney, Robert; Stiles, Brendon M.; Elemento, Olivier; Altorki, Nasser K.; McGraw, Timothy E.

    2013-01-01

    SUMMARY Cancer cells undergo a metabolic reprogramming but little is known about metabolic alterations of other cells within tumors. We use mass spectrometry-based profiling and a metabolic pathway-based systems analysis to compare 21 primary human lung tumor cancer-associated fibroblast lines (CAFs) to “normal” fibroblast lines (NFs) generated from adjacent non-neoplastic lung tissue. CAFs are pro-tumorigenic, although the mechanisms by which CAFs support tumors have not been elucidated. We have identified several pathways whose metabolite abundance globally distinguished CAFs from NFs, suggesting that metabolic alterations are not limited to cancer cells. In addition, we found metabolic differences between CAFs from high and low glycolytic tumors that might reflect distinct roles of CAFs related to the tumor’s glycolytic capacity. One such change was an increase of dipeptides in CAFs. Dipeptides primarily arise from the breakdown of proteins. We found in CAFs an increase in basal macroautophagy which likely accounts for the increase in dipeptides. Furthermore, we demonstrate a difference between CAFs and NFs in the induction of autophagy promoted by reduced glucose. In sum, our data suggest increased autophagy may account for metabolic differences between CAFs and NFs and may play additional as yet undetermined roles in lung cancer. PMID:23475953

  13. Kinetics of metabolism of glucose, propionate and CO2 in steers as affected by injecting phlorizin and feeding propionate

    SciTech Connect

    Veenhuizen, J.J.; Russell, R.W.; Young, J.W.

    1988-11-01

    Effects of injecting phlorizin subcutaneously and/or feeding propionate on metabolism of glucose, propionate and CO2 were determined for four steers used in a 4 x 4 Latin square design. Isotope dilution techniques were used to determine a four-pool kinetic solution for the flux of carbon among plasma glucose, rumen propionate, blood CO2 and rumen CO2. Injecting 1 g of phlorizin twice daily for 19 d resulted in 7.1 mol glucose C/d being excreted in urine. The basal glucose production of 13.4 mol C/d was increased to 17.9 mol C/d with phlorizin. There was no change in glucose oxidation or propionate production. The percentage of plasma glucose derived from propionate was unaffected by phlorizin, but 54 +/- 0.4% of total propionate was converted to plasma glucose during phlorizin treatment versus 40 +/- 0.6% during the basal treatment. When propionate was fed (18.3 mol C/d) glucose production increased to 21.2 mol C/d from the basal value of 13.4 mol C/d, and propionate oxidation to CO2 increased to 14.9 mol C/d from the basal value of 4.1 mol C/d. Glucose derived from propionate was 43 +/- 5% for the basal treatment and 67 +/- 3% during propionate feeding. The percentage of propionate converted to plasma glucose and blood and rumen CO2 was not affected by feeding propionate. An increased need for glucose, because of glucose excretion during phlorizin treatment, caused an increased utilization of propionate for gluconeogenesis, but an increased availability of propionate caused an increase in glucose production without affecting the relative distribution of carbon from propionate.

  14. Chemical and genetic evidence for the involvement of Wnt antagonist Dickkopf2 in regulation of glucose metabolism

    PubMed Central

    Li, Xiaofeng; Shan, Jufang; Chang, Woochul; Kim, Ingyu; Bao, Ju; Lee, Ho-Jin; Zhang, Xinxin; Samuel, Varman T.; Shulman, Gerald I.; Liu, Dakai; Zheng, Jie J.; Wu, Dianqing

    2012-01-01

    Mutations in Wnt receptor LRP5/6 and polymorphism in Wnt-regulated transcription factor TCF7L2 are associated with dysregulation of glucose metabolism. However, it is not clear whether Wnt antagonist Dickkopf (Dkk) has a significant role in the regulation of glucose metabolism. Here, we identified small-molecule inhibitors of Wnt antagonist Dkk through molecular modeling, computation-based virtual screens, and biological assays. One of the Dkk inhibitors reduced basal blood-glucose concentrations and improved glucose tolerance in mice. This Dkk inhibitor appeared to act through DKK2 because the inhibitor exerted no additional effects on glucose metabolism in the Dkk2−/− mice. Our study of Dkk2−/− mice showed that DKK2 deficiency was associated with increased hepatic glycogen accumulation and decreased hepatic glucose output. DKK2 deficiency did not cause in increase in insulin production but resulted in increased Wnt activity and GLP1 production in the intestines. Given that the Dkk inhibitor improved glucose tolerance in a murine model of type 2 diabetes (db/db), we suggest that DKK2 may be a potential therapeutic target for treating type 2 diabetes. PMID:22733757

  15. Type 2 Diabetes and Breast Cancer: The Interplay between Impaired Glucose Metabolism and Oxidant Stress

    PubMed Central

    Ferroni, Patrizia; Riondino, Silvia; Buonomo, Oreste; Palmirotta, Raffaele; Guadagni, Fiorella; Roselli, Mario

    2015-01-01

    Metabolic disorders, especially type 2 diabetes and its associated complications, represent a growing public health problem. Epidemiological findings indicate a close relationship between diabetes and many types of cancer (including breast cancer risk), which regards not only the dysmetabolic condition, but also its underlying risk factors and therapeutic interventions. This review discusses the advances in understanding of the mechanisms linking metabolic disorders and breast cancer. Among the proposed mechanisms to explain such an association, a major role is played by the dysregulated glucose metabolism, which concurs with a chronic proinflammatory condition and an associated oxidative stress to promote tumour initiation and progression. As regards the altered glucose metabolism, hyperinsulinaemia, both endogenous due to insulin-resistance and drug-induced, appears to promote tumour cell growth through the involvement of innate immune activation, platelet activation, increased reactive oxygen species, exposure to protumorigenic and proangiogenic cytokines, and increased substrate availability to neoplastic cells. In this context, understanding the relationship between metabolic disorders and cancer is becoming imperative, and an accurate analysis of these associations could be used to identify biomarkers able to predict disease risk and/or prognosis and to help in the choice of proper evidence-based diagnostic and therapeutic protocols. PMID:26171112

  16. Sex-Specific Differences in Lipid and Glucose Metabolism

    PubMed Central

    Varlamov, Oleg; Bethea, Cynthia L.; Roberts, Charles T.

    2014-01-01

    Energy metabolism in humans is tuned to distinct sex-specific functions that potentially reflect the unique requirements in females for gestation and lactation, whereas male metabolism may represent a default state. These differences are the consequence of the action of sex chromosomes and sex-specific hormones, including estrogens and progesterone in females and androgens in males. In humans, sex-specific specialization is associated with distinct body-fat distribution and energy substrate-utilization patterns; i.e., females store more lipids and have higher whole-body insulin sensitivity than males, while males tend to oxidize more lipids than females. These patterns are influenced by the menstrual phase in females, and by nutritional status and exercise intensity in both sexes. This minireview focuses on sex-specific mechanisms in lipid and glucose metabolism and their regulation by sex hormones, with a primary emphasis on studies in humans and the most relevant pre-clinical model of human physiology, non-human primates. PMID:25646091

  17. Tumor glucose metabolism imaged in vivo in small animals with whole-body photoacoustic computed tomography

    NASA Astrophysics Data System (ADS)

    Chatni, Muhammad Rameez; Xia, Jun; Sohn, Rebecca; Maslov, Konstantin; Guo, Zijian; Zhang, Yu; Wang, Kun; Xia, Younan; Anastasio, Mark; Arbeit, Jeffrey; Wang, Lihong V.

    2012-07-01

    With the increasing use of small animals for human disease studies, small-animal whole-body molecular imaging plays an important role in biomedical research. Currently, none of the existing imaging modalities can provide both anatomical and glucose molecular information, leading to higher costs of building dual-modality systems. Even with image co-registration, the spatial resolution of the molecular imaging modality is not improved. Utilizing a ring-shaped confocal photoacoustic computed tomography system, we demonstrate, for the first time, that both anatomy and glucose uptake can be imaged in a single modality. Anatomy was imaged with the endogenous hemoglobin contrast, and glucose metabolism was imaged with a near-infrared dye-labeled 2-deoxyglucose.

  18. Tumor glucose metabolism imaged in vivo in small animals with whole-body photoacoustic computed tomography

    PubMed Central

    Chatni, Muhammad Rameez; Xia, Jun; Sohn, Rebecca; Maslov, Konstantin; Guo, Zijian; Zhang, Yu; Wang, Kun; Xia, Younan; Anastasio, Mark; Arbeit, Jeffrey

    2012-01-01

    Abstract. With the increasing use of small animals for human disease studies, small-animal whole-body molecular imaging plays an important role in biomedical research. Currently, none of the existing imaging modalities can provide both anatomical and glucose molecular information, leading to higher costs of building dual-modality systems. Even with image co-registration, the spatial resolution of the molecular imaging modality is not improved. Utilizing a ring-shaped confocal photoacoustic computed tomography system, we demonstrate, for the first time, that both anatomy and glucose uptake can be imaged in a single modality. Anatomy was imaged with the endogenous hemoglobin contrast, and glucose metabolism was imaged with a near-infrared dye-labeled 2-deoxyglucose. PMID:22894495

  19. Tumor glucose metabolism imaged in vivo in small animals with whole-body photoacoustic computed tomography.

    PubMed

    Chatni, Muhammad Rameez; Xia, Jun; Sohn, Rebecca; Maslov, Konstantin; Guo, Zijian; Zhang, Yu; Wang, Kun; Xia, Younan; Anastasio, Mark; Arbeit, Jeffrey; Wang, Lihong V

    2012-07-01

    With the increasing use of small animals for human disease studies, small-animal whole-body molecular imaging plays an important role in biomedical research. Currently, none of the existing imaging modalities can provide both anatomical and glucose molecular information, leading to higher costs of building dual-modality systems. Even with image co-registration, the spatial resolution of the molecular imaging modality is not improved. Utilizing a ring-shaped confocal photoacoustic computed tomography system, we demonstrate, for the first time, that both anatomy and glucose uptake can be imaged in a single modality. Anatomy was imaged with the endogenous hemoglobin contrast, and glucose metabolism was imaged with a near-infrared dye-labeled 2-deoxyglucose. PMID:22894495

  20. PPARγ-mediated increase in glucose availability sustains chronic Brucella abortus infection in alternatively activated macrophages

    PubMed Central

    Xavier, Mariana N.; Winter, Maria G.; Spees, Alanna M.; den Hartigh, Andreas B.; Nguyen, Kim; Roux, Christelle M.; Silva, Teane M. A.; Atluri, Vidya L.; Kerrinnes, Tobias; Keestra, A. Marijke; Monack, Denise M.; Luciw, Paul A.; Eigenheer, Richard A.; Bäumler, Andreas J.; Santos, Renato L.; Tsolis, Renée M.

    2013-01-01

    SUMMARY Eradication of persistent intracellular bacterial pathogens with antibiotic therapy is often slow or incomplete. However, strategies to augment antibiotics are hampered by our poor understanding of the nutritional environment that sustains chronic infection. Here we show that the intracellular pathogen Brucella abortus survives and replicates preferentially in alternatively activated macrophages (AAM), which are more abundant during chronic infection. A metabolic shift induced by peroxisome proliferator activated receptor γ (PPARγ), which increases intracellular glucose availability, is identified as a causal mechanism promoting enhanced bacterial survival in AAM. Glucose uptake was crucial for increased replication of B. abortus in AAM, and chronic infection, as inactivation of the bacterial glucose transporter gluP reduced both intracellular survival in AAM and persistence in mice. Thus, a shift in intracellular nutrient availability induced by PPARγ promotes chronic persistence of B. abortus within AAM and targeting this pathway may aid in eradicating chronic infection. PMID:23954155

  1. PPARγ-mediated increase in glucose availability sustains chronic Brucella abortus infection in alternatively activated macrophages.

    PubMed

    Xavier, Mariana N; Winter, Maria G; Spees, Alanna M; den Hartigh, Andreas B; Nguyen, Kim; Roux, Christelle M; Silva, Teane M A; Atluri, Vidya L; Kerrinnes, Tobias; Keestra, A Marijke; Monack, Denise M; Luciw, Paul A; Eigenheer, Richard A; Bäumler, Andreas J; Santos, Renato L; Tsolis, Renée M

    2013-08-14

    Eradication of persistent intracellular bacterial pathogens with antibiotic therapy is often slow or incomplete. However, strategies to augment antibiotics are hampered by our poor understanding of the nutritional environment that sustains chronic infection. Here we show that the intracellular pathogen Brucella abortus survives and replicates preferentially in alternatively activated macrophages (AAMs), which are more abundant during chronic infection. A metabolic shift induced by peroxisome proliferator-activated receptor γ (PPARγ), which increases intracellular glucose availability, is identified as a causal mechanism promoting enhanced bacterial survival in AAMs. Glucose uptake was crucial for increased replication of B. abortus in AAMs, and for chronic infection, as inactivation of the bacterial glucose transporter gluP reduced both intracellular survival in AAMs and persistence in mice. Thus, a shift in intracellular nutrient availability induced by PPARγ promotes chronic persistence of B. abortus within AAMs, and targeting this pathway may aid in eradicating chronic infection. PMID:23954155

  2. Emerging role of the brain in the homeostatic regulation of energy and glucose metabolism

    PubMed Central

    Roh, Eun; Song, Do Kyeong; Kim, Min-Seon

    2016-01-01

    Accumulated evidence from genetic animal models suggests that the brain, particularly the hypothalamus, has a key role in the homeostatic regulation of energy and glucose metabolism. The brain integrates multiple metabolic inputs from the periphery through nutrients, gut-derived satiety signals and adiposity-related hormones. The brain modulates various aspects of metabolism, such as food intake, energy expenditure, insulin secretion, hepatic glucose production and glucose/fatty acid metabolism in adipose tissue and skeletal muscle. Highly coordinated interactions between the brain and peripheral metabolic organs are critical for the maintenance of energy and glucose homeostasis. Defective crosstalk between the brain and peripheral organs contributes to the development of obesity and type 2 diabetes. Here we comprehensively review the above topics, discussing the main findings related to the role of the brain in the homeostatic regulation of energy and glucose metabolism. PMID:26964832

  3. Emerging role of the brain in the homeostatic regulation of energy and glucose metabolism.

    PubMed

    Roh, Eun; Song, Do Kyeong; Kim, Min-Seon

    2016-01-01

    Accumulated evidence from genetic animal models suggests that the brain, particularly the hypothalamus, has a key role in the homeostatic regulation of energy and glucose metabolism. The brain integrates multiple metabolic inputs from the periphery through nutrients, gut-derived satiety signals and adiposity-related hormones. The brain modulates various aspects of metabolism, such as food intake, energy expenditure, insulin secretion, hepatic glucose production and glucose/fatty acid metabolism in adipose tissue and skeletal muscle. Highly coordinated interactions between the brain and peripheral metabolic organs are critical for the maintenance of energy and glucose homeostasis. Defective crosstalk between the brain and peripheral organs contributes to the development of obesity and type 2 diabetes. Here we comprehensively review the above topics, discussing the main findings related to the role of the brain in the homeostatic regulation of energy and glucose metabolism. PMID:26964832

  4. Lipopolysaccharide markedly changes glucose metabolism and mitochondrial function in the longissimus muscle of pigs.

    PubMed

    Sun, H; Huang, Y; Yin, C; Guo, J; Zhao, R; Yang, X

    2016-07-01

    Most previous studies on the effects of lipopolysaccharide (LPS) in pigs focused on the body's immune response, and few reports paid attention to body metabolism changes. To better understand the glucose metabolism changes in skeletal muscle following LPS challenge and to clarify the possible mechanism, 12 growing pigs were employed. Animals were treated with either 2 ml of saline or 15 µg/kg BW LPS, and samples were collected 6 h later. The glycolysis status and mitochondrial function in the longissimus dorsi (LD) muscle of pigs were analyzed. The results showed that serum lactate content and NADH content in LD muscle significantly increased compared with the control group. Most glycolysis-related genes expression, as well as hexokinase, pyruvate kinase and lactic dehydrogenase activity, in LD muscle was significantly higher compared with the control group. Mitochondrial complexes I and IV significantly increased, while mitochondrial ATP concentration markedly decreased. Significantly increased calcium content in the mitochondria was observed, and endoplasm reticulum (ER) stress has been demonstrated in the present study. The results showed that LPS treatment markedly changes glucose metabolism and mitochondrial function in the LD muscle of pigs, and increased calcium content induced by ER stress was possibly involved. The results provide new clues for clarifying metabolic diseases in muscle induced by LPS. PMID:26863995

  5. Administration of MPTP acutely increases glucose utilization in the substantia nigra of primates.

    PubMed

    Palombo, E; Porrino, L J; Bankiewicz, K S; Crane, A M; Kopin, I J; Sokoloff, L

    1988-06-21

    The quantitative 2-[14C]deoxyglucose autoradiographic method was used to map the regional distribution of the acute effects of administration of the neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), on local cerebral glucose utilization in rhesus monkeys. Metabolic activity was increased (+80%) in the substantia nigra pars compacta, which has been shown to be the main target site of MPTP toxicity. Metabolic activity was also increased in the nucleus paranigralis, nucleus parabrachialis pigmentosus, and ventral lamella of the inferior olive. In contrast, substantial decreases in glucose utilization were found diffusely distributed throughout many of the other structures examined, most prominently in portions of the cerebral cortex, thalamus, and cerebellum. PMID:3261197

  6. In vivo stimulation of oestrogen receptor α increases insulin-stimulated skeletal muscle glucose uptake

    PubMed Central

    Gorres, Brittany K; Bomhoff, Gregory L; Morris, Jill K; Geiger, Paige C

    2011-01-01

    Abstract Previous studies suggest oestrogen receptor α (ERα) is involved in oestrogen-mediated regulation of glucose metabolism and is critical for maintenance of whole body insulin action. Despite this, the effect of direct ERα modulation in insulin-responsive tissues is unknown. The purpose of the current study was to determine the impact of ERα activation, using the ER subtype-selective ligand propylpyrazoletriyl (PPT), on skeletal muscle glucose uptake. Two-month-old female Sprague–Dawley rats, ovariectomized for 1 week, were given subcutaneous injections of PPT (10 mg kg−1), oestradiol benzoate (EB; 20 μg kg−1), the ERβ agonist diarylpropionitrile (DPN, 10 mg kg−1) or vehicle every 24 h for 3 days. On the fourth day, insulin-stimulated skeletal muscle glucose uptake was measured in vitro and insulin signalling intermediates were assessed via Western blotting. Activation of ERα with PPT resulted in increased insulin-stimulated glucose uptake into the slow-twitch soleus and fast-twitch extensor digitorum longus (EDL) muscles, activation of insulin signalling intermediates (as measured by phospho-Akt (pAkt) and pAkt substrate (PAS)) and phosphorylation of AMP-activated protein kinase (AMPK). GLUT4 protein was increased only in the EDL muscle. Rats treated with EB or DPN for 3 days did not show an increase in insulin-stimulated skeletal muscle glucose uptake compared to vehicle-treated animals. These new findings reveal that direct activation of ERα positively mediates glucose uptake and insulin action in skeletal muscle. Evidence that oestrogens and ERα stimulate glucose uptake has important implications for understanding mechanisms of glucose homeostasis, particularly in postmenopausal women. PMID:21486807

  7. The effect of insulin on glucose and protein metabolism in the forearm of cancer patients.

    PubMed

    Newman, E; Heslin, M J; Wolf, R F; Pisters, P W; Brennan, M F

    1992-08-01

    This study was designed to study the effect of systemic hyperinsulinaemia (INS) on glucose and protein metabolism in cancer patients. Sixteen cancer patients (8 > 10% weight loss (WL); 8 < 10% weight loss (NWL)) were compared with 12 healthy controls. Glucose uptake (GU) and phenylalanine (PHE) exchange kinetics were measured across the forearm in the postabsorptive state (PA) and in response to INS (71 +/- 5 microU ml-1). At steady state in response to INS, the negative PA PHE net balance became significantly positive, and GU significantly increased, for cancer and control groups, with no significant differences between the two groups. Subset analysis of NWL cancer vs. WL cancer found no difference between WL and NWL for the change in PHE balance from PA and INS, however GU increased significantly only for the NWL group between PA and INS. These data indicate that cancer patients are not resistant to the anabolic effect of INS on protein metabolism, regardless of weight loss, but are resistant to the effect of INS on glucose metabolism when further along in the disease process as evident by more significant weight loss. This differential response to the effect of INS can be exploited in an attempt to promote protein accrual in weight-losing cancer patients. PMID:1341259

  8. Prolonged Sleep Restriction Affects Glucose Metabolism in Healthy Young Men

    PubMed Central

    van Leeuwen, Wessel M. A.; Hublin, Christer; Sallinen, Mikael; Härmä, Mikko; Hirvonen, Ari; Porkka-Heiskanen, Tarja

    2010-01-01

    This study identifies the effects of sleep restriction and subsequent recovery sleep on glucose homeostasis, serum leptin levels, and feelings of subjective satiety. Twenty-three healthy young men were allocated to a control group (CON) or an experimental (EXP) group. After two nights of 8 h in bed (baseline, BL), EXP spent 4 h in bed for five days (sleep restriction, SR), followed by two nights of 8 h (recovery, REC). CON spent 8 h in bed throughout the study. Blood samples were taken after the BL, SR, and REC period. In EXP, insulin and insulin-to-glucose ratio increased after SR. IGF-1 levels increased after REC. Leptin levels were elevated after both SR and REC; subjective satiety remained unaffected. No changes were observed in CON. The observed increase of serum IGF-1 and insulin-to-glucose ratio indicates that sleep restriction may result in an increased risk to develop type 2 diabetes. PMID:20414467

  9. Effects of nicotine on regional cerebral glucose metabolism in awake resting tobacco smokers.

    PubMed

    Domino, E F; Minoshima, S; Guthrie, S K; Ohl, L; Ni, L; Koeppe, R A; Cross, D J; Zubieta, J

    2000-01-01

    Eleven healthy tobacco smoking adult male volunteers of mixed race were tobacco abstinent overnight for this study. In each subject, positron emission tomographic images of regional cerebral metabolism of glucose with [18F]fluorodeoxyglucose were obtained in two conditions in the morning on different days: about 3min after approximately 1-2mg of nasal nicotine spray and after an equivalent volume of an active placebo spray of oleoresin of pepper in a random counterbalanced design. A Siemens/CTI 931/08-12 scanner with the capability of 15 horizontal brain slices was used. The images were further converted into a standard uniform brain format in which the mean data of all 11 subjects were obtained. Images were analysed in stereotactic coordinates using pixel-wise t statistics and a smoothed Gaussian model. Peak plasma nicotine levels varied three-fold and the areas under the curve(0-30min) varied seven-fold among the individual subjects. Nicotine caused a small overall reduction in global cerebral metabolism of glucose but, when the data were normalized, several brain regions showed relative increases in activity. Cerebral structures specifically activated by nicotine (nicotine minus pepper, Z score >4.0) included: left inferior frontal gyrus, left posterior cingulate gyrus and right thalamus. The visual cortex, including the right and left cuneus and left lateral occipito-temporal gyrus fusiformis, also showed an increase in regional cerebral metabolism of glucose with Z scores >3. 6. Structures with a decrease in regional cerebral metabolism of glucose (pepper minus nicotine) were the left insula and right inferior occipital gyrus, with Z scores >3.5. Especially important is the fact that the thalamus is activated by nicotine. This is consistent with the high density of nicotinic cholinoceptors in that brain region. However, not all brain regions affected by nicotine are known to have many nicotinic cholinoceptors. The results are discussed in relation to the

  10. D-(U-11C)glucose uptake and metabolism in the brain of insulin-dependent diabetic subjects

    SciTech Connect

    Gutniak, M.; Blomqvist, G.; Widen, L.; Stone-Elander, S.; Hamberger, B.; Grill, V. )

    1990-05-01

    We used D-(U-11C)glucose to evaluate transport and metabolism of glucose in the brain in eight nondiabetic and six insulin-dependent diabetes mellitus (IDDM) subjects. IDDM subjects were treated by continuous subcutaneous insulin infusion. Blood glucose was regulated by a Biostator-controlled glucose infusion during a constant insulin infusion. D-(U-11C)-glucose was injected for positron emission tomography studies during normoglycemia as well as during moderate hypoglycemia (arterial plasma glucose 2.74 +/- 0.14 in nondiabetic and 2.80 +/- 0.26 mmol/l (means +/- SE) in IDDM subjects). Levels of free insulin were constant and similar in both groups. The tracer data were analyzed using a three-compartment model with a fixed correction for 11CO2 egression. During normoglycemia the influx rate constant (k1) and blood-brain glucose flux did not differ between the two groups. During hypoglycemia k1 increased significantly and similarly in both groups (from 0.061 +/- 0.007 to 0.090 +/- 0.006 in nondiabetic and from 0.061 +/- 0.006 to 0.093 +/- 0.013 ml.g-1.min-1 in IDDM subjects). During normoglycemia the tracer-calculated metabolism of glucose was higher in the whole brain in the nondiabetic than in the diabetic subjects (22.0 +/- 1.9 vs. 15.6 +/- 1.1 mumol.100 g-1.min-1, P less than 0.01). During hypoglycemia tracer-calculated metabolism was decreased by 40% in nondiabetic subjects and by 28% in diabetic subjects. The results indicate that uptake of glucose is normal, but some aspect of glucose metabolism is abnormal in a group of well-controlled IDDM subjects.

  11. Metabolic fate of fructose ingested with and without glucose in a mixed meal.

    PubMed

    Theytaz, Fanny; de Giorgi, Sara; Hodson, Leanne; Stefanoni, Nathalie; Rey, Valentine; Schneiter, Philippe; Giusti, Vittorio; Tappy, Luc

    2014-07-01

    Ingestion of pure fructose stimulates de novo lipogenesis and gluconeogenesis. This may however not be relevant to typical nutritional situations, where fructose is invariably ingested with glucose. We therefore assessed the metabolic fate of fructose incorporated in a mixed meal without or with glucose in eight healthy volunteers. Each participant was studied over six hours after the ingestion of liquid meals containing either 13C-labelled fructose, unlabeled glucose, lipids and protein (Fr + G) or 13C-labelled fructose, lipids and protein, but without glucose (Fr), or protein and lipids alone (ProLip). After Fr + G, plasma 13C-glucose production accounted for 19.0% ± 1.5% and 13CO2 production for 32.2% ± 1.3% of 13C-fructose carbons. After Fr, 13C-glucose production (26.5% ± 1.4%) and 13CO2 production (36.6% ± 1.9%) were higher (p < 0.05) than with Fr + G. 13C-lactate concentration and very low density lipoprotein VLDL 13C-palmitate concentrations increased to the same extent with Fr + G and Fr, while chylomicron 13C-palmitate tended to increase more with Fr + G. These data indicate that gluconeogenesis, lactic acid production and both intestinal and hepatic de novo lipogenesis contributed to the disposal of fructose carbons ingested together with a mixed meal. Co-ingestion of glucose decreased fructose oxidation and gluconeogenesis and tended to increase 13C-pamitate concentration in gut-derived chylomicrons, but not in hepatic-borne VLDL-triacylglycerol (TG). This trial was approved by clinicaltrial. gov. Identifier is NCT01792089. PMID:25029210

  12. Metabolic flux profiling of recombinant protein secreting Pichia pastoris growing on glucose:methanol mixtures

    PubMed Central

    2012-01-01

    Background The methylotrophic yeast Pichia pastoris has emerged as one of the most promising yeast hosts for the production of heterologous proteins. Mixed feeds of methanol and a multicarbon source instead of methanol as sole carbon source have been shown to improve product productivities and alleviate metabolic burden derived from protein production. Nevertheless, systematic quantitative studies on the relationships between the central metabolism and recombinant protein production in P. pastoris are still rather limited, particularly when growing this yeast on mixed carbon sources, thus hampering future metabolic network engineering strategies for improved protein production. Results The metabolic flux distribution in the central metabolism of P. pastoris growing on a mixed feed of glucose and methanol was analyzed by Metabolic Flux Analysis (MFA) using 13C-NMR-derived constraints. For this purpose, we defined new flux ratios for methanol assimilation pathways in P. pastoris cells growing on glucose:methanol mixtures. By using this experimental approach, the metabolic burden caused by the overexpression and secretion of a Rhizopus oryzae lipase (Rol) in P. pastoris was further analyzed. This protein has been previously shown to trigger the unfolded protein response in P. pastoris. A series of 13C-tracer experiments were performed on aerobic chemostat cultivations with a control and two different Rol producing strains growing at a dilution rate of 0.09 h−1 using a glucose:methanol 80:20 (w/w) mix as carbon source. The MFA performed in this study reveals a significant redistristribution of carbon fluxes in the central carbon metabolism when comparing the two recombinant strains vs the control strain, reflected in increased glycolytic, TCA cycle and NADH regeneration fluxes, as well as higher methanol dissimilation rates. Conclusions Overall, a further 13C-based MFA development to characterise the central metabolism of methylotrophic yeasts when growing on mixed

  13. Glucose and amino acid metabolism in rat brain during sustained hypoglycemia

    SciTech Connect

    Wong, K.L.; Tyce, G.M.

    1983-04-01

    The metabolism of glucose in brains during sustained hypoglycemia was studied. (U-/sup 14/C)Glucose (20 microCi) was injected into control rats, and into rats at 2.5 hr after a bolus injection of 2 units of insulin followed by a continuous infusion of 0.2 units/100 g rat/hr. This regimen of insulin injection was found to result in steady-state plasma glucose levels between 2.5 and 3.5 mumol per ml. In the brains of control rats carbon was transferred rapidly from glucose to glutamate, glutamine, gamma-aminobutyric acid and aspartate and this carbon was retained in the amino acids for at least 60 min. In the brains of hypoglycemic rats, the conversion of carbon from glucose to amino acids was increased in the first 15 min after injection. After 15 min, the specific activity of the amino acids decreased in insulin-treated rats but not in the controls. The concentrations of alanine, glutamate, and gamma-amino-butyric acid decreased, and the concentration of aspartate increased, in the brains of the hypoglycemic rats. The concentration of pyridoxal-5'-phosphate, a cofactor in many of the reactions whereby these amino acids are formed from tricarboxylic acid cycle intermediates, was less in the insulin-treated rats than in the controls. These data provide evidence that glutamate, glutamine, aspartate, and GABA can serve as energy sources in brain during insulin-induced hypoglycemia.

  14. Specific inactivation of glucose metabolism from eucaryotic cells by pentalenolactone.

    PubMed

    Duszenko, M; Balla, H; Mecke, D

    1982-02-01

    Pentalenolactone, an antibiotic related to the class of the sesquiterpene-lactones and produced by the strain Streptomyces arenae Tü-469, inhibits specifically the glucose metabolism by inactivation of the enzyme glyceraldehyde-3-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate: NAD oxidoreductase (phosphorylating) ED 1.2.1.1.2). The sensitivity of several eucaryotic cell-systems for pentalenolactone was shown under in vivo conditions. The glycolytic as well as the gluconeogenetic pathway of mammalian cells can be completely inhibited with low concentrations of the antibiotic. In all cases, the minimum inhibitory concentration is dependent on cell density. The inhibitory effect in vivo and in vitro does not seem to be species-specific. In erythrocytes from rats, in Ehrlich-ascites tumor cells and in Plasmodium vinckei infected erythrocytes from mice glycolysis can be inhibited with concentrations of 18--90 micrometers pentalenolactone. In hepatocytes, glycolysis as well as gluconeogenesis in prevented by the same concentrations. In contrast to these results, in yeast the inhibition depends on growth conditions. The inhibition in glucose medium is cancelled by precultivation on acetate-containing medium. PMID:7034785

  15. Failure of Hyperglycemia and Hyperinsulinemia to Compensate for Impaired Metabolic Response to an Oral Glucose Load

    PubMed Central

    Hussain, M; Janghorbani, M; Schuette, S; Considine, RV; Chisholm, RL; Mather, KJ

    2014-01-01

    Objective To evaluate whether the augmented insulin and glucose response to a glucose challenge is sufficient to compensate for defects in glucose utilization in obesity and type 2 diabetes, using a breath test measurement of integrated glucose metabolism. Methods Non-obese, obese normoglycemic and obese Type 2 diabetic subjects were studied on 2 consecutive days. A 75g oral glucose load spiked with 13C-glucose was administered, measuring exhaled breath 13CO2 as an integrated measure of glucose metabolism and oxidation. A hyperinsulinemic euglycemic clamp was performed, measuring whole body glucose disposal rate. Body composition was measured by DEXA. Multivariable analyses were performed to evaluate the determinants of the breath 13CO2. Results Breath 13CO2 was reduced in obese and type 2 diabetic subjects despite hyperglycemia and hyperinsulinemia. The primary determinants of breath response were lean mass, fat mass, fasting FFA concentrations, and OGTT glucose excursion. Multiple approaches to analysis showed that hyperglycemia and hyperinsulinemia were not sufficient to compensate for the defect in glucose metabolism in obesity and diabetes. Conclusions Augmented insulin and glucose responses during an OGTT are not sufficient to overcome the underlying defects in glucose metabolism in obesity and diabetes. PMID:25511878

  16. Effect of tangeretin, a polymethoxylated flavone on glucose metabolism in streptozotocin-induced diabetic rats.

    PubMed

    Sundaram, Ramalingam; Shanthi, Palanivelu; Sachdanandam, Panchanatham

    2014-05-15

    The present study was designed to evaluate the antihyperglycemic potential of tangeretin on the activities of key enzymes of carbohydrate and glycogen metabolism in control and streptozotocin induced diabetic rats. The daily oral administration of tangeretin (100mg/kg body weight) to diabetic rats for 30 days resulted in a significant reduction in the levels of plasma glucose, glycosylated hemoglobin (HbA1c) and increase in the levels of insulin and hemoglobin. The altered activities of the key enzymes of carbohydrate metabolism such as hexokinase, pyruvate kinase, lactate dehydrogenase, glucose-6-phosphatase, fructose-1,6-bisphosphatase, glucose-6-phosphate dehydrogenase, glycogen synthase and glycogen phosphorylase in liver of diabetic rats were significantly reverted to near normal levels by the administration of tangeretin. Further, tangeretin administration to diabetic rats improved hepatic glycogen content suggesting the antihyperglycemic potential of tangeretin in diabetic rats. The effect produced by tangeretin on various parameters was comparable to that of glibenclamide - a standard oral hypoglycemic drug. Thus, these results show that tangeretin modulates the activities of hepatic enzymes via enhanced secretion of insulin and decreases the blood glucose in streptozotocin induced diabetic rats by its antioxidant potential. PMID:24629597

  17. Gut microbe-derived extracellular vesicles induce insulin resistance, thereby impairing glucose metabolism in skeletal muscle

    PubMed Central

    Choi, Youngwoo; Kwon, Yonghoon; Kim, Dae-Kyum; Jeon, Jinseong; Jang, Su Chul; Wang, Taejun; Ban, Minjee; Kim, Min-Hye; Jeon, Seong Gyu; Kim, Min-Sun; Choi, Cheol Soo; Jee, Young-Koo; Gho, Yong Song; Ryu, Sung Ho; Kim, Yoon-Keun

    2015-01-01

    Gut microbes might influence host metabolic homeostasis and contribute to the pathogenesis of type 2 diabetes (T2D), which is characterized by insulin resistance. Bacteria-derived extracellular vesicles (EVs) have been suggested to be important in the pathogenesis of diseases once believed to be non-infectious. Here, we hypothesize that gut microbe-derived EVs are important in the pathogenesis of T2D. In vivo administration of stool EVs from high fat diet (HFD)-fed mice induced insulin resistance and glucose intolerance compared to regular diet (RD)-fed mice. Metagenomic profiling of stool EVs by 16S ribosomal DNA sequencing revealed an increased amount of EVs derived from Pseudomonas panacis (phylum Proteobacteria) in HFD mice compared to RD mice. Interestingly, P. panacis EVs blocked the insulin signaling pathway in both skeletal muscle and adipose tissue. Moreover, isolated P. panacis EVs induced typical diabetic phenotypes, such as glucose intolerance after glucose administration or systemic insulin injection. Thus, gut microbe-derived EVs might be key players in the development of insulin resistance and impairment of glucose metabolism promoted by HFD. PMID:26510393

  18. Phylloquinone intake is associated with glucose metabolism in middle- and older-aged men and women

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Animal and metabolic studies suggest that vitamin K may have a beneficial role in glucose homeostasis. The aim of this study was to examine the association between vitamin K intake and measures of glucose metabolism in a community-based sample of healthy adults. We assessed the cross-sectional assoc...

  19. Preweaning cocaine exposure alters brain glucose metabolic rates following repeated amphetamine administration in the adult rat.

    PubMed

    Melnick, Susan M; Torres-Reveron, Annelyn; Dow-Edwards, Diana L

    2004-10-15

    Developmental cocaine exposure produces long-term alterations in function of many neuronal circuits. This study examined glucose metabolic rates following repeated amphetamine administration in adult male and female rats pretreated with cocaine during postnatal days (PND) 11-20. PND11-20 cocaine increased the response to amphetamine in many components of the motor system and the dorsal caudate-putamen, in particular, and decreased the metabolic response in the hypothalamus. While amphetamine alone produced widespread increases in metabolism, there were no cocaine-related effects in the mesolimbic, limbic or sensory structures. These data suggest that a brief cocaine exposure during development can alter ontogeny and result in abnormal neuronal responses to repeated psychostimulant administration in adulthood. PMID:15464226

  20. Dynamic relationships between age, amyloid-β deposition, and glucose metabolism link to the regional vulnerability to Alzheimer's disease.

    PubMed

    Oh, Hwamee; Madison, Cindee; Baker, Suzanne; Rabinovici, Gil; Jagust, William

    2016-08-01

    = 10.62, P < 0.001), but, only the Pittsburgh compound B-positive cognitively normal older subjects group showed significantly higher Pittsburgh compound B retention in the highest compared to the lowest glucose metabolism regions defined in young adults (T = 2.05, P < 0.05). Regional differences in age and amyloid-β-dependent changes in glucose metabolism were found such that frontal glucose metabolism was reduced with age, while glucose metabolism in the precuneus was maintained across the lifespan (right hemisphere: F = 7.69, P < 0.001; left hemisphere: F = 8.69, P < 0.001). Greater Alzheimer's disease-related hypometabolism was observed in brain regions that showed both age-invariance and amyloid-β-related increases in glucose metabolism. Our results indicate that although early and life-long regional variation in glucose metabolism relates to the regional vulnerability to amyloid-β accumulation, Alzheimer's disease-related hypometabolism is more specific to brain regions showing age-invariant glucose metabolism and amyloid-β-related hypermetabolism. PMID:27190008

  1. Glucose metabolism ontogenesis in rainbow trout (Oncorhynchus mykiss) in the light of the recently sequenced genome: new tools for intermediary metabolism programming.

    PubMed

    Marandel, Lucie; Véron, Vincent; Surget, Anne; Plagnes-Juan, Élisabeth; Panserat, Stéphane

    2016-03-01

    The rainbow trout (Oncorhynchus mykiss), a carnivorous fish species, displays a 'glucose-intolerant' phenotype when fed a high-carbohydrate diet. The importance of carbohydrate metabolism during embryogenesis and the timing of establishing this later phenotype are currently unclear. In addition, the mechanisms underlying the poor ability of carnivorous fish to use dietary carbohydrates as a major energy substrate are not well understood. It has recently been shown in trout that duplicated genes involved in glucose metabolism may participate in establishing the glucose-intolerant phenotype. The aim of this study was therefore to provide new understanding of glucose metabolism during ontogenesis and nutritional transition, taking into consideration the complexity of the trout genome. Trout were sampled at several stages of development from fertilization to hatching, and alevins were then fed a non-carbohydrate or a high-carbohydrate diet during first feeding. mRNA levels of all glucose metabolism-related genes increased in embryos during the setting up of the primitive liver. After the first meal, genes rapidly displayed expression patterns equivalent to those observed in the livers of juveniles. g6pcb2.a (a glucose 6-phosphatase-encoding gene) was up-regulated in alevins fed a high-carbohydrate diet, mimicking the expression pattern of gck genes. The g6pcb2.a gene may contribute to the non-inhibition of the last step of gluconeogenesis and thus to establishing the glucose-intolerant phenotype in trout fed a high-carbohydrate diet as early as first feeding. This information is crucial for nutritional programming investigations as it suggests that first feeding would be too late to programme glucose metabolism in the long term. PMID:26747908

  2. Silver nanoparticles affect glucose metabolism in hepatoma cells through production of reactive oxygen species

    PubMed Central

    Lee, Mi Jin; Lee, Seung Jun; Yun, Su Jin; Jang, Ji-Young; Kang, Hangoo; Kim, Kyongmin; Choi, In-Hong; Park, Sun

    2016-01-01

    The silver nanoparticle (AgNP) is a candidate for anticancer therapy because of its effects on cell survival and signaling. Although numerous reports are available regarding their effect on cell death, the effect of AgNPs on metabolism is not well understood. In this study, we investigated the effect of AgNPs on glucose metabolism in hepatoma cell lines. Lactate release from both HepG2 and Huh7 cells was reduced with 5 nm AgNPs as early as 1 hour after treatment, when cell death did not occur. Treatment with 5 nm AgNPs decreased glucose consumption in HepG2 cells but not in Huh7 cells. Treatment with 5 nm AgNPs reduced nuclear factor erythroid 2-like 2 expression in both cell types without affecting its activation at the early time points after AgNPs’ treatment. Increased reactive oxygen species (ROS) production was detected 1 hour after 5 nm AgNPs’ treatment, and lactate release was restored in the presence of an ROS scavenger. Our results suggest that 5 nm AgNPs affect glucose metabolism by producing ROS. PMID:26730190

  3. Glucose metabolism in isolated uteri of immature rats. Influence of prostaglandins and nitric oxide.

    PubMed

    Finkelberg, Ana Beatriz; Linares, Jorge; Goldraij, Adolfo

    2006-01-01

    We studied the contractile activity and glucose metabolism, in terms of production of 14CO2 from [14C] glucose, in isolated uteri of immature rats. Immaturity was due to age or exposure to a restricted diet. The contractile activity in both prepubertal groups persisted for a period of 60 minutes and fell when indomethacin was added to the KRB medium. The production of 14CO2 was greater than for adult rats and fell as a result of the addition of indomethacin. The metabolism of [14C] arachidonic acid showed that the percentage of eicosanoids released in age related immature uteri was greater than that in restricted diet related immature uteri. In animals that are immature as a result of exposure to a restricted diet, 14CO2 fell due to the effect of NAME. Sodium nitroprusside and L-arginine increased the production of 14CO2. This effect was reverted by NAME and indomethacin. Conversely, the uteri of age related prepubertal rats were not affected. The level of activity of nitric oxide synthase was higher in restricted diet related immature animals and fell following the addition of NS-398. We may conclude that in rats exposed to a restricted diet, NO and COX-2 participate in glucose metabolism whereas they would not be involved in age related prepubertal animals. PMID:16438910

  4. Energizing eukaryotic cell-free protein synthesis with glucose metabolism.

    PubMed

    Anderson, Mark J; Stark, Jessica C; Hodgman, C Eric; Jewett, Michael C

    2015-07-01

    Eukaryotic cell-free protein synthesis (CFPS) is limited by the dependence on costly high-energy phosphate compounds and exogenous enzymes to power protein synthesis (e.g., creatine phosphate and creatine kinase, CrP/CrK). Here, we report the ability to use glucose as a secondary energy substrate to regenerate ATP in a Saccharomyces cerevisiae crude extract CFPS platform. We observed synthesis of 3.64±0.35 μg mL(-1) active luciferase in batch reactions with 16 mM glucose and 25 mM phosphate, resulting in a 16% increase in relative protein yield (μg protein/$ reagents) compared to the CrP/CrK system. Our demonstration provides the foundation for development of cost-effective eukaryotic CFPS platforms. PMID:26054976

  5. Thyroid hormone’s role in regulating brain glucose metabolism and potentially modulating hippocampal cognitive processes

    PubMed Central

    Jahagirdar, V; McNay, EC

    2012-01-01

    Cognitive performance is dependent on adequate glucose supply to the brain. Insulin, which regulates systemic glucose metabolism, has been recently shown both to regulate hippocampal metabolism and to be a mandatory component of hippocampally-mediated cognitive performance. Thyroid hormones (TH) regulate systemic glucose metabolism and may also be involved in regulation of brain glucose metabolism. Here we review potential mechanisms for such regulation. Importantly, TH imbalance is often encountered in combination with metabolic disorders, such as diabetes, and may cause additional metabolic dysregulation and hence worsening of disease states. TH’s potential as a regulator of brain glucose metabolism is heightened by interactions with insulin signaling, but there have been relatively few studies on this topic or on the actions of TH in a mature brain. This review discusses evidence for mechanistic links between TH, insulin, cognitive function, and brain glucose metabolism, and suggests that TH is a good candidate to be a modulator of memory processes, likely at least in part by modulation of central insulin signaling and glucose metabolism. PMID:22437199

  6. Changes in metabolism during a fasting period and a subsequent vegetarian diet with particular reference to glucose metabolism.

    PubMed

    Lithell, H; Vessby, B; Hellsing, K; Ljunghall, K; Höglund, N J; Werner, I; Bruce, A

    1983-01-01

    During an investigation on the effect of fasting and a vegetarian diet on the symptoms and signs in chronic cutaneous and arthritic diseases studies were made of glucose metabolism, liver function and the plasma concentration and urine excretion of some minerals. The study was performed on 27 patients who stayed as in-patients on a metabolic ward for five weeks. After the fasting period the blood glucose and serum insulin concentrations were lower (p less than 0.01) than before the fast. At the end of the period on the vegetarian (vegan) diet (three weeks) the insulin/glucose ratio was lower than at the start of the fast. Serum enzyme concentrations reflecting liver function increased during the fast, but normalized during the vegan diet. The intake of vitamin B12 and of selenium due to the vegan diets was very low, which may give reason for some concern during long-term use of this type of vegetarian diet. PMID:6359625

  7. Implications of Hydrogen Sulfide in Glucose Regulation: How H2S Can Alter Glucose Homeostasis through Metabolic Hormones

    PubMed Central

    Pichette, Jennifer

    2016-01-01

    Diabetes and its comorbidities continue to be a major health problem worldwide. Understanding the precise mechanisms that control glucose homeostasis and their dysregulation during diabetes are a major research focus. Hydrogen sulfide (H2S) has emerged as an important regulator of glucose homeostasis. This is achieved through its production and action in several metabolic and hormone producing organs including the pancreas, liver, and adipose. Of importance, H2S production and signaling in these tissues are altered during both type 1 and type 2 diabetes mellitus. This review first examines how H2S is produced both endogenously and by gastrointestinal microbes, with a particular focus on the altered production that occurs during obesity and diabetes. Next, the action of H2S on the metabolic organs with key roles in glucose homeostasis, with a particular focus on insulin, is described. Recent work has also suggested that the effects of H2S on glucose homeostasis goes beyond its role in insulin secretion. Several studies have demonstrated important roles for H2S in hepatic glucose output and adipose glucose uptake. The mechanism of H2S action on these metabolic organs is described. In the final part of this review, future directions examining the roles of H2S in other metabolic and glucoregulatory hormone secreting tissues are proposed. PMID:27478532

  8. Implications of Hydrogen Sulfide in Glucose Regulation: How H2S Can Alter Glucose Homeostasis through Metabolic Hormones.

    PubMed

    Pichette, Jennifer; Gagnon, Jeffrey

    2016-01-01

    Diabetes and its comorbidities continue to be a major health problem worldwide. Understanding the precise mechanisms that control glucose homeostasis and their dysregulation during diabetes are a major research focus. Hydrogen sulfide (H2S) has emerged as an important regulator of glucose homeostasis. This is achieved through its production and action in several metabolic and hormone producing organs including the pancreas, liver, and adipose. Of importance, H2S production and signaling in these tissues are altered during both type 1 and type 2 diabetes mellitus. This review first examines how H2S is produced both endogenously and by gastrointestinal microbes, with a particular focus on the altered production that occurs during obesity and diabetes. Next, the action of H2S on the metabolic organs with key roles in glucose homeostasis, with a particular focus on insulin, is described. Recent work has also suggested that the effects of H2S on glucose homeostasis goes beyond its role in insulin secretion. Several studies have demonstrated important roles for H2S in hepatic glucose output and adipose glucose uptake. The mechanism of H2S action on these metabolic organs is described. In the final part of this review, future directions examining the roles of H2S in other metabolic and glucoregulatory hormone secreting tissues are proposed. PMID:27478532

  9. Effects of sleep disruption and high fat intake on glucose metabolism in mice.

    PubMed

    Ho, Jacqueline M; Barf, R Paulien; Opp, Mark R

    2016-06-01

    Poor sleep quality or quantity impairs glycemic control and increases risk of disease under chronic conditions. Recovery sleep may offset adverse metabolic outcomes of accumulated sleep debt, but the extent to which this occurs is unclear. We examined whether recovery sleep improves glucose metabolism in mice subjected to prolonged sleep disruption, and whether high fat intake during sleep disruption exacerbates glycemic control. Adult male C57BL/6J mice were subjected to 18-h sleep fragmentation daily for 9 days, followed by 1 day of recovery. During sleep disruption, one group of mice was fed a high-fat diet (HFD) while another group was fed standard laboratory chow. Insulin sensitivity and glucose tolerance were assessed by insulin and glucose tolerance testing at baseline, after 3 and 7 days of sleep disruption, and at the end of the protocol after 24h of undisturbed sleep opportunity (recovery). To characterize changes in sleep architecture that are associated with sleep debt and recovery, we quantified electroencephalogram (EEG) recordings during sleep fragmentation and recovery periods from an additional group of mice. We now report that 9 days of 18-h daily sleep fragmentation significantly reduces rapid eye movement sleep (REMS) and non-rapid eye movement sleep (NREMS). Mice respond with increases in REMS, but not NREMS, during the daily 6-h undisturbed sleep opportunity. However, both REMS and NREMS increase significantly during the 24-h recovery period. Although sleep disruption alone has no effect in this protocol, high fat feeding in combination with sleep disruption impairs glucose tolerance, effects that are reversed by recovery sleep. Insulin sensitivity modestly improves after 3 days of sleep fragmentation and after 24h of recovery, with significantly greater improvements in mice exposed to HFD during sleep disruption. Improvements in both glucose tolerance and insulin sensitivity are associated with NREMS rebound, raising the possibility that this

  10. Cocoa and Whey Protein Differentially Affect Markers of Lipid and Glucose Metabolism and Satiety.

    PubMed

    Campbell, Caroline L; Foegeding, E Allen; Harris, G Keith

    2016-03-01

    Food formulation with bioactive ingredients is a potential strategy to promote satiety and weight management. Whey proteins are high in leucine and are shown to decrease hunger ratings and increase satiety hormone levels; cocoa polyphenolics moderate glucose levels and slow digestion. This study examined the effects of cocoa and whey proteins on lipid and glucose metabolism and satiety in vitro and in a clinical trial. In vitro, 3T3-L1 preadipocytes were treated with 0.5-100 μg/mL cocoa polyphenolic extract (CPE) and/or 1-15 mM leucine (Leu) and assayed for lipid accumulation and leptin production. In vivo, a 6-week clinical trial consisted of nine panelists (age: 22.6 ± 1.7; BMI: 22.3 ± 2.1) consuming chocolate-protein beverages once per week, including placebo, whey protein isolate (WPI), low polyphenolic cocoa (LP), high polyphenolic cocoa (HP), LP-WPI, and HP-WPI. Measurements included blood glucose and adiponectin levels, and hunger ratings at baseline and 0.5-4.0 h following beverage consumption. At levels of 50 and 100 μg/mL, CPE significantly inhibited preadipocyte lipid accumulation by 35% and 50%, respectively, and by 22% and 36% when combined with 15 mM Leu. Leu treatment increased adipocyte leptin production by 26-37%. In the clinical trial, all beverages significantly moderated blood glucose levels 30 min postconsumption. WPI beverages elicited lowest peak glucose levels and HP levels were significantly lower than LP. The WPI and HP beverage treatments significantly increased adiponectin levels, but elicited no significant changes in hunger ratings. These trends suggest that combinations of WPI and cocoa polyphenols may improve markers of metabolic syndrome and satiety. PMID:26987021

  11. Regulation of pyruvate dehydrogenase activity and glucose metabolism in post-ischaemic myocardium.

    PubMed

    Schöder, H; Knight, R J; Kofoed, K F; Schelbert, H R; Buxton, D B

    1998-02-27

    Pyruvate dehydrogenase (PDH) is regulated both by covalent modification and through modulation of the active enzyme by metabolites. In the isolated heart, post-ischaemic inhibition of PDH, leading to uncoupling of glycolysis and glucose oxidation and a decrease in cardiac efficiency, has been described. In vivo, post-ischaemic reperfusion leads to metabolic abnormalities consistent with PDH inhibition, but the effects of ischaemia/reperfusion on PDH are not well characterized. We therefore investigated PDH regulation following transient ischaemia in vivo. In 33 open-chest dogs, the left anterior descending (LAD) was occluded for 20 min followed by 4 h reperfusion. In 17 dogs, dichloroacetate (DCA) was injected prior to reperfusion, while 16 dogs served as controls. In dogs without DCA, glucose oxidation and lactate uptake were lower in reperfused than in remote tissue, suggesting reduced flux through PDH. However, percent active and total PDH measured in myocardial biopsies were similar in both territories, excluding covalent enzyme modification or loss of functional enzyme. DCA activated PDH activity similarly in both regions and abolished differences in glucose oxidation and lactate uptake. Thus, decreased PDH flux in reperfused myocardium does not result from covalent modification or loss of total enzyme activity, but more likely from metabolite inhibition of the active enzyme. DCA leads to essentially complete activation of PDH, increases overall glucose utilization and abolishes post-ischaemic inhibition of glucose oxidation. PMID:9545535

  12. Cattle temperament influences metabolism: metabolic response to glucose tolerance and insulin sensitivity tests in beef steers.

    PubMed

    Burdick Sanchez, N C; Carroll, J A; Broadway, P R; Hughes, H D; Roberts, S L; Richeson, J T; Schmidt, T B; Vann, R C

    2016-07-01

    Cattle temperament, defined as the reactivity of cattle to humans or novel environments, can greatly influence several physiological systems in the body, including immunity, stress, and most recently discovered, metabolism. Greater circulating concentrations of nonesterified fatty acids (NEFAs) found in temperamental cattle suggest that temperamental cattle are metabolically different than calm cattle. Further, elevated NEFA concentrations have been reported to influence insulin sensitivity. Therefore, the objective of this study was to determine whether cattle temperament would influence the metabolic response to a glucose tolerance test (GTT) and insulin sensitivity test (IST). Angus-cross steers (16 calm and 15 temperamental; 216 ± 6 kg BW) were selected based on temperament score measured at weaning. On day 1, steers were moved into indoor stanchions to allow measurement of individual ad libitum feed intake. On day 6, steers were fitted with indwelling rectal temperature probes and jugular catheters. At 9 AM on day 7, steers received the GTT (0.5-mL/kg BW of a 50% dextrose solution), and at 2 PM on day 7, steers received the IST (2.5 IU bovine insulin/kg BW). Blood samples were collected and serum isolated at -60, -45, -30, -15, 0, 10, 20, 30, 45, 60, 90, 120, and 150 min relative to each challenge. Serum was stored at -80°C until analyzed for cortisol, glucose, NEFA, and blood urea nitrogen concentrations. All variables changed over time (P < 0.01). For the duration of the study, temperamental steers maintained greater (P < 0.01) serum NEFA and less (P ≤ 0.01) serum blood urea nitrogen and insulin sensitivity (calculated using Revised Quantitative Insulin Sensitivity Check Index) compared with calm steers. During the GTT, temperamental steers had greater (P < 0.01) serum glucose, yet decreased (P = 0.03) serum insulin and (P < 0.01) serum insulin: serum glucose compared to calm cattle. During the IST, temperamental steers had greater (P < 0.01) serum

  13. Trace glucose and lipid metabolism in high androgen and high-fat diet induced polycystic ovary syndrome rats

    PubMed Central

    2012-01-01

    Background There is a high prevalence of diabetes mellitus (DM) and dyslipidemia in women with polycystic ovary syndrome (PCOS). The purpose of this study was to investigate the role of different metabolic pathways in the development of diabetes mellitus in high-androgen female mice fed with a high-fat diet. Methods Female Sprague-Dawley rats were divided into 3 groups: the control group(C), n = 10; the andronate-treated group (Andronate), n = 10 (treated with andronate, 1 mg/100 g body weight/day for 8 weeks); and the andronate-treated and high-fat diet group (Andronate+HFD), n = 10. The rate of glucose appearance (Ra of glucose), gluconeogenesis (GNG), and the rate of glycerol appearance (Ra of glycerol) were assessed with a stable isotope tracer. The serum sex hormone levels, insulin levels, glucose concentration, and the lipid profile were also measured. Results Compared with control group, both andronate-treated groups exhibited obesity with higher insulin concentrations (P < 0.05) but similar blood glucose concentrations. Of the two andronate-treated groups, the andronate+HFD group had the most serious insulin resistance (IR). Estrus cycles were completely acyclic, with polycystic ovaries and elevated serum lipid profiles in the andronate+HFD group (P < 0.05). Ra of glucose and GNG increased significantly in the andronate+HFD rats. However, the Ra of glycerol was similar in the three groups. Conclusions Andronate with HFD rat model showed ovarian and metabolic features of PCOS, significant increase in glucose Ra, GNG, and lipid profiles, as well as normal blood glucose levels. Therefore, aberrant IR, increased glucose Ra, GNG, and lipid metabolism may represent the early-stage of glucose and lipid kinetics disorder, thereby might be used as potential early-stage treatment targets for PCOS. PMID:22276997

  14. Creatine supplementation increases glucose oxidation and AMPK phosphorylation and reduces lactate production in L6 rat skeletal muscle cells

    PubMed Central

    Ceddia, Rolando B; Sweeney, Gary

    2004-01-01

    Recent observations have suggested that creatine supplementation might have a beneficial effect on glucoregulation in skeletal muscle. However, conclusive studies on the direct effects of creatine on glucose uptake and metabolism are lacking. The objective of this study was to investigate the effects of creatine supplementation on basal and insulin-stimulated glucose transporter (GLUT4) translocation, glucose uptake, glycogen content, glycogen synthesis, lactate production, glucose oxidation and AMP-activated protein kinase (AMPK) phosphorylation in L6 rat skeletal muscle cells. Four treatment groups were studied: control, insulin (100 nm), creatine (0.5 mm) and creatine + insulin. After 48 h of creatine supplementation the creatine and phosphocreatine contents of L6 myoblasts increased by ∼9.3- and ∼5.1-fold, respectively, but the ATP content of the cells was not affected. Insulin significantly increased 2-deoxyglucose uptake (∼1.9-fold), GLUT4 translocation (∼1.8-fold), the incorporation of D-[U-14C]glucose into glycogen (∼2.3-fold), lactate production (∼1.5-fold) and 14CO2 production (∼1.5-fold). Creatine neither altered the glycogen and GLUT4 contents of the cells nor the insulin-stimulated rates of 2-DG uptake, GLUT4 translocation, glycogen synthesis and glucose oxidation. However, creatine significantly reduced by ∼42% the basal rate of lactate production and increased by ∼40% the basal rate of 14CO2 production. This is in agreement with the ∼35% increase in citrate synthase activity and also with the ∼2-fold increase in the phosphorylation of both α-1 and α-2 isoforms of AMPK after creatine supplementation. We conclude that 48 h of creatine supplementation does not alter insulin-stimulated glucose uptake and glucose metabolism; however, it activates AMPK, shifts basal glucose metabolism towards oxidation and reduces lactate production in L6 rat skeletal muscle cells. PMID:14724211

  15. Impaired glucose metabolism in HIV-infected pregnant women: a retrospective analysis.

    PubMed

    Moore, Rebecca; Adler, Hugh; Jackson, Valerie; Lawless, Mairead; Byrne, Maria; Eogan, Maeve; Lambert, John S

    2016-06-01

    Metabolic complications, including diabetes mellitus, have been increasingly recognised in HIV-infected individuals since the introduction of antiretroviral therapy, particularly protease inhibitors (PIs). Pregnancy is also a risk factor for impaired glucose metabolism, and previous studies have given conflicting results regarding the contribution of PIs to impaired glucose tolerance (IGT) and gestational diabetes mellitus (GDM) in pregnant HIV-infected women. We conducted a retrospective review of all HIV-infected women attending a combined infectious disease and antenatal clinic between 2007 and 2013 who underwent a 100 g oral glucose tolerance test (OGTT) at 24-28 weeks. We grouped the patients based on whether their OGTT result was normal or abnormal, and compared the groups using standard parametric tests (t-test and Fisher's exact test). Of 263 women with HIV who attended the clinic, 142 (53.9%) attended for OGTT and were eligible for inclusion. The mean age was 31 years (SD 5.37), all women were of European or African origin and 33.7% had a body mass index ≥30 kg/m(2) About 93.7% were on PI-based regimens. At delivery, the mean CD4 count was 526 cells/µL, and 13% of patients had a detectable viraemia. The prevalence of IGT was 2.8%, while the prevalence of GDM was 2.1%. Also, 71.4% (n = 5) of women with abnormal glucose metabolism were taking PIs versus 94.8% (n = 128) of normoglycaemic women (p = 0.06). We did not confirm an increased rate of GDM in HIV-infected women in our patient population and found no association between PI use and GDM. PMID:25999164

  16. HIF prolyl 4-hydroxylase-2 inhibition improves glucose and lipid metabolism and protects against obesity and metabolic dysfunction.

    PubMed

    Rahtu-Korpela, Lea; Karsikas, Sara; Hörkkö, Sohvi; Blanco Sequeiros, Roberto; Lammentausta, Eveliina; Mäkelä, Kari A; Herzig, Karl-Heinz; Walkinshaw, Gail; Kivirikko, Kari I; Myllyharju, Johanna; Serpi, Raisa; Koivunen, Peppi

    2014-10-01

    Obesity is a major public health problem, predisposing subjects to metabolic syndrome, type 2 diabetes, and cardiovascular diseases. Specific prolyl 4-hydroxylases (P4Hs) regulate the stability of the hypoxia-inducible factor (HIF), a potent governor of metabolism, with isoenzyme 2 being the main regulator. We investigated whether HIF-P4H-2 inhibition could be used to treat obesity and its consequences. Hif-p4h-2-deficient mice, whether fed normal chow or a high-fat diet, had less adipose tissue, smaller adipocytes, and less adipose tissue inflammation than their littermates. They also had improved glucose tolerance and insulin sensitivity. Furthermore, the mRNA levels of the HIF-1 targets glucose transporters, glycolytic enzymes, and pyruvate dehydrogenase kinase-1 were increased in their tissues, whereas acetyl-CoA concentration was decreased. The hepatic mRNA level of the HIF-2 target insulin receptor substrate-2 was higher, whereas that of two key enzymes of fatty acid synthesis was lower. Serum cholesterol levels and de novo lipid synthesis were decreased, and the mice were protected against hepatic steatosis. Oral administration of an HIF-P4H inhibitor, FG-4497, to wild-type mice with metabolic dysfunction phenocopied these beneficial effects. HIF-P4H-2 inhibition may be a novel therapy that not only protects against the development of obesity and its consequences but also reverses these conditions. PMID:24789921

  17. Decreased Insulin Receptors but Normal Glucose Metabolism in Duchenne Muscular Dystrophy

    NASA Astrophysics Data System (ADS)

    de Pirro, Roberto; Lauro, Renato; Testa, Ivano; Ferretti, Ginofabrizio; de Martinis, Carlo; Dellantonio, Renzo

    1982-04-01

    Compared to matched controls, 17 patients with Duchenne muscular dystrophy showed decreased insulin binding to monocytes due to decreased receptor concentration. These patients showed no signs of altered glucose metabolism and retrospective analysis of the clinical records of a further 56 such patients revealed no modification in carbohydrate metabolism. These data suggest that reduced insulin receptor number does not produce overt modifications of glucose metabolism in Duchenne muscular dystrophy.

  18. Resistance to chemotherapy is associated with altered glucose metabolism in acute myeloid leukemia

    PubMed Central

    SONG, KUI; LI, MIN; XU, XIAOJUN; XUAN, LI; HUANG, GUINIAN; LIU, QIFA

    2016-01-01

    Altered glucose metabolism has been described as a cause of chemoresistance in multiple tumor types. The present study aimed to identify the expression profile of glucose metabolism in drug-resistant acute myeloid leukemia (AML) cells and provide potential strategies for the treatment of drug-resistant AML. Bone marrow and serum samples were obtained from patients with AML that were newly diagnosed or had relapsed. The messenger RNA expression of hypoxia inducible factor (HIF)-1α, glucose transporter (GLUT)1, and hexokinase-II was measured by quantitative polymerase chain reaction. The levels of LDH and β subunit of human F1-F0 adenosine triphosphate synthase (β-F1-ATPase) were detected by enzyme-linked immunosorbent and western blot assays. The HL-60 and HL-60/ADR cell lines were used to evaluate glycolytic activity and effect of glycolysis inhibition on cellular proliferation and apoptosis. Drug-resistant HL-60/ADR cells exhibited a significantly increased level of glycolysis compared with the drug-sensitive HL-60 cell line. The expression of HIF-1α, hexokinase-II, GLUT1 and LDH were increased in AML patients with no remission (NR), compared to healthy control individuals and patients with complete remission (CR) and partial remission. The expression of β-F1-ATPase in patients with NR was decreased compared with the expression in the CR group. Treatment of HL-60/ADR cells with 2-deoxy-D-glucose or 3-bromopyruvate increased in vitro sensitivity to Adriamycin (ADR), while treatment of HL-60 cells did not affect drug cytotoxicity. Subsequent to treatment for 24 h, apoptosis in these two cell lines showed no significant difference. However, glycolytic inhibitors in combination with ADR increased cellular necrosis. These findings indicate that increased glycolysis and low efficiency of oxidative phosphorylation may contribute to drug resistance. Targeting glycolysis is a viable strategy for modulating chemoresistance in AML. PMID:27347147

  19. Critical Role of Glucose Metabolism in Rheumatoid Arthritis Fibroblast-like Synoviocytes

    PubMed Central

    Garcia-Carbonell, Ricard; Divakaruni, Ajit S.; Lodi, Alessia; Vicente-Suarez, Ildefonso; Saha, Arindam; Cheroutre, Hilde; Boss, Gerry R.; Tiziani, Stefano; Murphy, Anne N.; Guma, Monica

    2016-01-01

    Objective Up-regulation of glucose metabolism has been implicated not only in tumor cell growth but also in immune cells upon activation. However, little is known about the metabolite profile in rheumatoid arthritis (RA), particularly in fibroblast-like synoviocytes (FLS). This study was undertaken to evaluate whether changes in glucose metabolism in RA FLS could play a role in inflammation and joint damage. Methods Synovium and FLS were obtained from patients with RA and patients with osteoarthritis (OA). The rate of glycolysis after stimulation of FLS with lipopolysaccharide and platelet-derived growth factor BB was measured using glycolysis stress test technology. FLS function was evaluated using a glycolysis inhibitor, 2-deoxy-D-glucose (2-DG). After stimulation of the FLS, a migration scratch assay, MTT assay, and enzyme-linked immunosorbent assay were performed to measure the effect of 2-DG on FLS migration, viability of the FLS, and cytokine secretion, respectively. IRDye 800CW 2-DG was used to assess glucose uptake in the arthritic joints and stromal cells of mice after K/BxN mouse serum transfer. The mice were injected daily, intraperitoneally, with 3-bromopyruvate (BrPa; 5 mg/kg) to assess the effect of inhibition of glycolysis in vivo. Results Compared to human OA FLS, the balance between glycolysis and oxidative phosphorylation was shifted toward glycolysis in RA FLS. Glucose transporter 1 (GLUT1) messenger RNA (mRNA) expression correlated with baseline functions of the RA FLS. Glucose deprivation or incubation of the FLS with glycolytic inhibitors impaired cytokine secretion and decreased the rate of proliferation and migration of the cells. In a mouse model of inflammatory arthritis, GLUT1 mRNA expression in the synovial lining cells was observed, and increased levels of glucose uptake and glycolytic gene expression were detected in the stromal compartment of the arthritic mouse joints. Inhibition of glycolysis by BrPa, administered in vivo

  20. Insulin-dependent glucose metabolism in dairy cows with variable fat mobilization around calving.

    PubMed

    Weber, C; Schäff, C T; Kautzsch, U; Börner, S; Erdmann, S; Görs, S; Röntgen, M; Sauerwein, H; Bruckmaier, R M; Metges, C C; Kuhla, B; Hammon, H M

    2016-08-01

    Dairy cows undergo significant metabolic and endocrine changes during the transition from pregnancy to lactation, and impaired insulin action influences nutrient partitioning toward the fetus and the mammary gland. Because impaired insulin action during transition is thought to be related to elevated body condition and body fat mobilization, we hypothesized that over-conditioned cows with excessive body fat mobilization around calving may have impaired insulin metabolism compared with cows with low fat mobilization. Nineteen dairy cows were grouped according to their average concentration of total liver fat (LFC) after calving in low [LLFC; LFC <24% total fat/dry matter (DM); n=9] and high (HLFC; LFC >24.4% total fat/DM; n=10) fat-mobilizing cows. Blood samples were taken from wk 7 antepartum (ap) to wk 5 postpartum (pp) to determine plasma concentrations of glucose, insulin, glucagon, and adiponectin. We applied euglycemic-hyperinsulinemic (EGHIC) and hyperglycemic clamps (HGC) in wk 5 ap and wk 3 pp to measure insulin responsiveness in peripheral tissue and pancreatic insulin secretion during the transition period. Before and during the pp EGHIC, [(13)C6] glucose was infused to determine the rate of glucose appearance (GlucRa) and glucose oxidation (GOx). Body condition, back fat thickness, and energy-corrected milk were greater, but energy balance was lower in HLFC than in LLFC. Plasma concentrations of glucose, insulin, glucagon, and adiponectin decreased at calving, and this was followed by an immediate increase of glucagon and adiponectin after calving. Insulin concentrations ap were higher in HLFC than in LLFC cows, but the EGHIC indicated no differences in peripheral insulin responsiveness among cows ap and pp. However, GlucRa and GOx:GlucRa during the pp EGHIC were greater in HLFC than in LLFC cows. During HGC, pancreatic insulin secretion was lower, but the glucose infusion rate was higher pp than ap in both groups. Plasma concentrations of nonesterified

  1. Effects of growth hormone on glucose, lipid, and protein metabolism in human subjects.

    PubMed

    Møller, Niels; Jørgensen, Jens Otto Lunde

    2009-04-01

    In evolutionary terms, GH and intracellular STAT 5 signaling is a very old regulatory system. Whereas insulin dominates periprandially, GH may be viewed as the primary anabolic hormone during stress and fasting. GH exerts anabolic effects directly and through stimulation of IGF-I, insulin, and free fatty acids (FFA). When subjects are well nourished, the GH-induced stimulation of IGF-I and insulin is important for anabolic storage and growth of lean body mass (LBM), adipose tissue, and glycogen reserves. During fasting and other catabolic states, GH predominantly stimulates the release and oxidation of FFA, which leads to decreased glucose and protein oxidation and preservation of LBM and glycogen stores. The most prominent metabolic effect of GH is a marked increase in lipolysis and FFA levels. In the basal state, the effects of GH on protein metabolism are modest and include increased protein synthesis and decreased breakdown at the whole body level and in muscle together with decreased amino acid degradation/oxidation and decreased hepatic urea formation. During fasting and stress, the effects of GH on protein metabolism become more pronounced; lack of GH during fasting increases protein loss and urea production rates by approximately 50%, with a similar increase in muscle protein breakdown. GH is a counterregulatory hormone that antagonizes the hepatic and peripheral effects of insulin on glucose metabolism via mechanisms involving the concomitant increase in FFA flux and uptake. This ability of GH to induce insulin resistance is significant for the defense against hypoglycemia, for the development of "stress" diabetes during fasting and inflammatory illness, and perhaps for the "Dawn" phenomenon (the increase in insulin requirements in the early morning hours). Adult patients with GH deficiency are insulin resistant-probably related to increased adiposity, reduced LBM, and impaired physical performance-which temporarily worsens when GH treatment is initiated

  2. Metabolic network analysis of Bacillus clausii on minimal and semirich medium using (13)C-labeled glucose.

    PubMed

    Christiansen, Torben; Christensen, Bjarke; Nielsen, Jens

    2002-04-01

    Using (13)C-labeled glucose fed to the facultative alkalophilic Bacillus clausii producing the alkaline serine protease Savinase, the intracellular fluxes were quantified in continuous cultivation and in batch cultivation on a minimal medium. The flux through the pentose phosphate pathway was found to increase with increasing specific growth rate but at a much lower level than previously reported for Bacillus subtilis. Two futile cycles in the pyruvate metabolism were included in the metabolic network. A substantial flux in the futile cycle involving malic enzyme was estimated, whereas only a very small or zero flux through PEP carboxykinase was estimated, indicating that the latter enzyme was not active during growth on glucose. The uptake of the amino acids in a semirich medium containing 15 of the 20 amino acids normally present in proteins was estimated using fully labeled glucose in batch cultivations. It was found that leucine, isoleucine, and phenylalanine were taken up from the medium and not synthesized de novo from glucose. In contrast, serine and threonine were completely synthesized from other metabolites and not taken up from the medium. Valine, proline, and lysine were partly taken up from the medium and partly synthesized from glucose. The metabolic network analysis was extended to include analysis of growth on the semirich medium containing amino acids, and the metabolic flux distribution on this medium was estimated and compared with growth on minimal medium. PMID:12009795

  3. Decreased carbon shunting from glucose towards oxidative metabolism in diet-induced ketotic rat brain

    PubMed Central

    Zhang, Yifan; Zhang, Shenghui; Marin-Valencia, Isaac; Puchowicz, Michelle A.

    2014-01-01

    The mechanistic link of ketosis to neuroprotection under certain pathological conditions continues to be explored. We investigated whether chronic ketosis induced by ketogenic diet results in the partitioning of ketone bodies towards oxidative metabolism in brain. We hypothesized that diet-induced ketosis results in increased shunting of ketone bodies towards citric acid cycle (CAC) and amino acids with decreased carbon shunting from glucose. Rats were fed standard (STD) or ketogenic (KG) diets for 3.5 weeks and then infused with [U-13C]glucose or [U-13C]acetoacetate tracers. Concentrations and 13C-labeling pattern of CAC intermediates and amino acids were analyzed from brain homogenates using stable isotopomer mass spectrometry analysis. The contribution of [U-13C]glucose to acetyl-CoA and amino acids decreased by ~30% in the KG group vs STD, whereas [U-13C]acetoacetate contributions were more than 2-fold higher. The concentration of GABA remained constant across all groups; however, the 13C-labeling of GABA was markedly increased in the KG group infused with [U-13C]acetoacetate compared to STD. This study reveals that there is a significant contribution of ketone bodies to oxidative metabolism and GABA in diet-induced ketosis. We propose that this represents a fundamental mechanism of neuroprotection under pathological conditions. PMID:25314677

  4. Decreased carbon shunting from glucose toward oxidative metabolism in diet-induced ketotic rat brain.

    PubMed

    Zhang, Yifan; Zhang, Shenghui; Marin-Valencia, Isaac; Puchowicz, Michelle A

    2015-02-01

    The mechanistic link of ketosis to neuroprotection under certain pathological conditions continues to be explored. We investigated whether chronic ketosis induced by ketogenic diet results in the partitioning of ketone bodies toward oxidative metabolism in brain. We hypothesized that diet-induced ketosis results in increased shunting of ketone bodies toward citric acid cycle and amino acids with decreased carbon shunting from glucose. Rats were fed standard (STD) or ketogenic (KG) diets for 3.5 weeks and then infused with [U-(13) C]glucose or [U-(13) C]acetoacetate tracers. Concentrations and (13) C-labeling pattern of citric acid cycle intermediates and amino acids were analyzed from brain homogenates using stable isotopomer mass spectrometry analysis. The contribution of [U-(13) C]glucose to acetyl-CoA and amino acids decreased by ~ 30% in the KG group versus STD, whereas [U-(13) C]acetoacetate contributions were more than two-fold higher. The concentration of GABA remained constant across groups; however, the (13) C labeling of GABA was markedly increased in the KG group infused with [U-(13) C]acetoacetate compared to STD. This study reveals that there is a significant contribution of ketone bodies to oxidative metabolism and GABA in diet-induced ketosis. We propose that this represents a fundamental mechanism of neuroprotection under pathological conditions. PMID:25314677

  5. miR-184 Regulates Pancreatic β-Cell Function According to Glucose Metabolism.

    PubMed

    Tattikota, Sudhir G; Rathjen, Thomas; Hausser, Jean; Khedkar, Aditya; Kabra, Uma D; Pandey, Varun; Sury, Matthias; Wessels, Hans-Hermann; Mollet, Inês G; Eliasson, Lena; Selbach, Matthias; Zinzen, Robert P; Zavolan, Mihaela; Kadener, Sebastian; Tschöp, Matthias H; Jastroch, Martin; Friedländer, Marc R; Poy, Matthew N

    2015-08-14

    In response to fasting or hyperglycemia, the pancreatic β-cell alters its output of secreted insulin; however, the pathways governing this adaptive response are not entirely established. Although the precise role of microRNAs (miRNAs) is also unclear, a recurring theme emphasizes their function in cellular stress responses. We recently showed that miR-184, an abundant miRNA in the β-cell, regulates compensatory proliferation and secretion during insulin resistance. Consistent with previous studies showing miR-184 suppresses insulin release, expression of this miRNA was increased in islets after fasting, demonstrating an active role in the β-cell as glucose levels lower and the insulin demand ceases. Additionally, miR-184 was negatively regulated upon the administration of a sucrose-rich diet in Drosophila, demonstrating strong conservation of this pathway through evolution. Furthermore, miR-184 and its target Argonaute2 remained inversely correlated as concentrations of extracellular glucose increased, underlining a functional relationship between this miRNA and its targets. Lastly, restoration of Argonaute2 in the presence of miR-184 rescued suppression of miR-375-targeted genes, suggesting these genes act in a coordinated manner during changes in the metabolic context. Together, these results highlight the adaptive role of miR-184 according to glucose metabolism and suggest the regulatory role of this miRNA in energy homeostasis is highly conserved. PMID:26152724

  6. [Relationships of glucose transporter 4 with cognitive changes induced by high fat diet and glucose metabolism in hippocampus].

    PubMed

    Zhang, Yun-Li; Wang, Lin

    2016-06-25

    The hippocampus not only plays a role in appetite and energy balance, but also is particularly important in learning and memory. Figuring out the relationships of hippocampal glucose transporter 4 (GLUT4) with hippocampal glucose metabolism and hippocampus-dependent cognitive function is very important to clearly understand the pathophysiological basis of nutritional obesity and diabetes-related diseases, and treat obesity and cognitive dysfunction. Therefore, this study reviewed recent researches conducted on hippocampal GLUT4, hippocampal glucose metabolism, and hippocampus-dependent cognitive function. In this review, we mainly discussed: (1) The structure of GLUT4 and the distribution and function of GLUT4 in the hippocampus; (2) The translocation of GLUT4 in the hippocampus; (3) The relationships of the PI3K-Akt-GLUT4 signaling pathway with the high fat diet-induced changes of cognitive function and the glucose metabolism in the hippocampus; (4) The associations of the PI3K-Akt-GLUT4 signaling pathway with the diabetes-related cognitive dysfunction in the hippocampus; (5) The potential mechanisms of cognitive dysfunction induced by glucose metabolic disorder. PMID:27350206

  7. Carbon Disulfide (CS2) Interference in Glucose Metabolism from Unconventional Oil and Gas Extraction and Processing Emissions

    PubMed Central

    Rich, Alisa L.; Patel, Jay T.; Al-Angari, Samiah S.

    2016-01-01

    Carbon disulfide (CS2) has been historically associated with the manufacturing of rayon, cellophane, and carbon tetrachloride production. This study is one of the first to identify elevated atmospheric levels of CS2 above national background levels and its mechanisms to dysregulate normal glucose metabolism. Interference in glucose metabolism can indirectly cause other complications (diabetes, neurodegenerative disease, and retinopathy), which may be preventable if proper precautions are taken. Rich et al found CS2 and 12 associated sulfide compounds present in the atmosphere in residential areas where unconventional shale oil and gas extraction and processing operations were occurring. Ambient atmospheric concentrations of CS2 ranged from 0.7 parts per billion by volume (ppbv) to 103 ppbv over a continuous 24-hour monitoring period. One-hour ambient atmospheric concentrations ranged from 3.4 ppbv to 504.6 ppbv. Using the U.S. Environmental Protection Agency Urban Air Toxic Monitoring Program study as a baseline comparison for atmospheric CS2 concentrations found in this study, it was determined that CS2 atmospheric levels were consistently elevated in areas where unconventional oil and gas extraction and processing occurred. The mechanisms by which CS2 interferes in normal glucose metabolism by dysregulation of the tryptophan metabolism pathway are presented in this study. The literature review found an increased potential for alteration of normal glucose metabolism in viscose rayon occupational workers exposed to CS2. Occupational workers in the energy extraction industry exposed to CS2 and other sulfide compounds may have an increased potential for glucose metabolism interference, which has been an indicator for diabetogenic effect and other related health impacts. The recommendation of this study is for implementation of regular monitoring of blood glucose levels in CS2-exposed populations as a preventative health measure. PMID:27042092

  8. The oncoprotein HBXIP promotes glucose metabolism reprogramming via downregulating SCO2 and PDHA1 in breast cancer

    PubMed Central

    You, Xiaona; Liu, Yunxia; Li, Yinghui; Wang, Zhen; Wang, Yue

    2015-01-01

    The glucose metabolism reprogramming is a hallmark of cancer. The oncoprotein hepatitis B X-interacting protein (HBXIP) functions in the development of breast cancer. In this study, we supposed that HBXIP might be involved in the glucose metabolism reprogramming in breast cancer. We showed that HBXIP led to increases in generation of intracellular glucose and lactate, as well as decreases in generation of reactive oxygen species. Expression of synthesis of cytochrome c oxidase 2 (SCO2) and pyruvate dehydrogenase alpha 1 (PDHA1), two factors of metabolic switch from oxidative phosphorylation to aerobic glycolysis, was suppressed by HBXIP. In addition, miR-183/182 and miR-96 directly inhibited the expression of SCO2 and PDHA1 through targeting their mRNA coding sequences (CDSs), respectively. Interestingly, HBXIP elevated the miR-183/96/182 cluster expression through hypoxia-inducible factor 1α (HIF1α). The stability of HIF1α was enhanced by HBXIP through disassociating interaction of von Hippel-Lindau protein (pVHL) with HIF1α. Moreover, miR-183 increased the levels of HIF1α protein through directly targeting CDS of VHL mRNA, forming a feedback loop of HIF1α/miR-183/pVHL/HIF1α. In function, HBXIP-elevated miR-183/96/182 cluster enhanced the glucose metabolism reprogramming in vitro. HBXIP-triggered glucose metabolism reprogramming promoted the growth of breast cancer in vivo. Thus, we conclude that the oncoprotein HBXIP enhances glucose metabolism reprogramming through suppressing SCO2 and PDHA1 in breast cancer. PMID:26309161

  9. Carbon Disulfide (CS2) Interference in Glucose Metabolism from Unconventional Oil and Gas Extraction and Processing Emissions.

    PubMed

    Rich, Alisa L; Patel, Jay T; Al-Angari, Samiah S

    2016-01-01

    Carbon disulfide (CS2) has been historically associated with the manufacturing of rayon, cellophane, and carbon tetrachloride production. This study is one of the first to identify elevated atmospheric levels of CS2 above national background levels and its mechanisms to dysregulate normal glucose metabolism. Interference in glucose metabolism can indirectly cause other complications (diabetes, neurodegenerative disease, and retinopathy), which may be preventable if proper precautions are taken. Rich et al found CS2 and 12 associated sulfide compounds present in the atmosphere in residential areas where unconventional shale oil and gas extraction and processing operations were occurring. Ambient atmospheric concentrations of CS2 ranged from 0.7 parts per billion by volume (ppbv) to 103 ppbv over a continuous 24-hour monitoring period. One-hour ambient atmospheric concentrations ranged from 3.4 ppbv to 504.6 ppbv. Using the U.S. Environmental Protection Agency Urban Air Toxic Monitoring Program study as a baseline comparison for atmospheric CS2 concentrations found in this study, it was determined that CS2 atmospheric levels were consistently elevated in areas where unconventional oil and gas extraction and processing occurred. The mechanisms by which CS2 interferes in normal glucose metabolism by dysregulation of the tryptophan metabolism pathway are presented in this study. The literature review found an increased potential for alteration of normal glucose metabolism in viscose rayon occupational workers exposed to CS2. Occupational workers in the energy extraction industry exposed to CS2 and other sulfide compounds may have an increased potential for glucose metabolism interference, which has been an indicator for diabetogenic effect and other related health impacts. The recommendation of this study is for implementation of regular monitoring of blood glucose levels in CS2-exposed populations as a preventative health measure. PMID:27042092

  10. Dichloroacetate increases glucose use and decreases lactate in developing rat brain

    SciTech Connect

    Miller, A.L.; Hatch, J.P.; Prihoda, T.J. )

    1990-12-01

    Dichloroacetate (DCA) activates pyruvate dehydrogenase (PDH) by inhibiting PDH kinase. Neutralized DCA (100 mg/kg) or saline was intravenously administered to 20 to 25-day-old rats (50-75g). Fifteen minutes later a mixture of {sup 6-14}C glucose and {sup 3}H fluorodeoxyglucose (FDG) was administered intravenously and the animals were sacrificed by microwave irradiation (2450 MHz, 8.0 kW, 0.6-0.8 sec) after 2 or 5 min. Brain regional rates of glucose use and metabolite levels were determined. DCA-treated rats had increased rates of glucose use in all regions studied (cortex, thalamus, striatum, and brain stem), with an average increase of 41%. Lactate levels were lower in all regions, by an average of 35%. There were no significant changes in levels of ATP, creatine phosphate, or glycogen in any brain region. Blood levels of lactate did not differ significantly between the DCA- and the saline-treated groups. Blood glucose levels were higher in the DCA group. In rats sacrificed by freeze-blowing, DCA treatment caused lower brain levels of both lactate and pyruvate. These results cannot be explained by any systemic effect of DCA. Rather, it appears that in the immature rat, DCA treatment results in activation of brain PDH, increased metabolism of brain pyruvate and lactate, and a resulting increase in brain glycolytic rate.

  11. Effects of novel neuroprotective and neurorestorative multifunctional drugs on iron chelation and glucose metabolism.

    PubMed

    Pollak, Yulia; Mechlovich, Danit; Amit, Tamar; Bar-Am, Orit; Manov, Irena; Mandel, Silvia A; Weinreb, Orly; Meyron-Holtz, Esther G; Iancu, Theodore C; Youdim, Moussa B H

    2013-01-01

    Iron accumulation and iron-related oxidative stress are involved in several pathological conditions and provide a rationale for the development of iron chelators as novel promising therapeutic strategies. Thus, we have recently synthesized multifunctional non-toxic, brain permeable iron chelating compounds, M30 and HLA20, possessing the neuroprotective N-propargyl moiety of the anti-Parkinsonian drug, monoamine oxidase (MAO)-B inhibitor, rasagiline and the antioxidant-iron chelating moiety of an 8-hydroxyquinoline derivative of the iron chelator, VK28. Here, we examined the hepatic regulatory effects of these novel compounds using two experimental approaches: chelation activity and glucose metabolism parameters. The present study demonstrated that M30 and HLA20 significantly decreased intracellular iron content and reduced ferritin expression levels in iron-loaded hepatoma Hep3B cells. In electron microscopy analysis, M30 was shown to reduce the electron-dense deposits of siderosomes by ~30 %, as well as down-regulate cytosolic ferritin particles observed in iron-overloaded cells. In vivo studies demonstrated that M30 administration (1 mg/kg, P.O. three times a week) reduced hepatic ferritin levels; increased hepatic insulin receptor and glucose transporter-1 levels and improved glucose tolerance in C57BL/6 mice and in a mouse model of type-2 diabetes, the ob/ob (leptin(-/-)). The results clearly indicate that the novel multifunctional drugs, especially M30, display significant capacity of chelating intracellular iron and regulating glucose metabolism parameters. Such effects can have therapeutic significance in conditions with abnormal local or systemic iron metabolism, including neurological diseases. PMID:22446839

  12. Effects of Excess Energy Intake on Glucose and Lipid Metabolism in C57BL/6 Mice

    PubMed Central

    Huang, Xiuqing; Cui, Ju; Gong, Huan; Zhang, Tiemei

    2016-01-01

    Excess energy intake correlates with the development of metabolic disorders. However, different energy-dense foods have different effects on metabolism. To compare the effects of a high-fat diet, a high-fructose diet and a combination high-fat/high-fructose diet on glucose and lipid metabolism, male C57BL/6 mice were fed with one of four different diets for 3 months: standard chow; standard diet and access to fructose water; a high fat diet; and a high fat diet with fructose water. After 3 months of feeding, the high-fat and the combined high-fat/high-fructose groups showed significantly increased body weights, accompanied by hyperglycemia and insulin resistance; however, the high-fructose group was not different from the control group. All three energy-dense groups showed significantly higher visceral fat weights, total cholesterol concentrations, and low-density lipoprotein cholesterol concentrations compared with the control group. Assays of basal metabolism showed that the respiratory quotient of the high-fat, the high-fructose, and the high-fat/high-fructose groups decreased compared with the control group. The present study confirmed the deleterious effect of high energy diets on body weight and metabolism, but suggested that the energy efficiency of the high-fructose diet was much lower than that of the high-fat diet. In addition, fructose supplementation did not worsen the detrimental effects of high-fat feeding alone on metabolism in C57BL/6 mice. PMID:26745179

  13. Experimental evidence and isotopomer analysis of mixotrophic glucose metabolism in the marine diatom Phaeodactylum tricornutum

    PubMed Central

    2013-01-01

    Background Heterotrophic fermentation using simple sugars such as glucose is an established and cost-effective method for synthesizing bioproducts from bacteria, yeast and algae. Organisms incapable of metabolizing glucose have limited applications as cell factories, often despite many other advantageous characteristics. Therefore, there is a clear need to investigate glucose metabolism in potential cell factories. One such organism, with a unique metabolic network and a propensity to synthesize highly reduced compounds as a large fraction of its biomass, is the marine diatom Phaeodactylum tricornutum (Pt). Although Pt has been engineered to metabolize glucose, conflicting lines of evidence leave it unresolved whether Pt can natively consume glucose. Results Isotope labeling experiments in which Pt was mixotrophically grown under light on 100% U-13C glucose and naturally abundant (~99% 12C) dissolved inorganic carbon resulted in proteinogenic amino acids with an average 13C-enrichment of 88%, thus providing convincing evidence of glucose uptake and metabolism. The dissolved inorganic carbon was largely incorporated through anaplerotic rather than photosynthetic fixation. Furthermore, an isotope labeling experiment utilizing 1-13C glucose and subsequent metabolic pathway analysis indicated that (i) the alternative Entner-Doudoroff and Phosphoketolase glycolytic pathways are active during glucose metabolism, and (ii) during mixotrophic growth, serine and glycine are largely synthesized from glyoxylate through photorespiratory reactions rather than from 3-phosphoglycerate. We validated the latter result for mixotrophic growth on glycerol by performing a 2-13C glycerol isotope labeling experiment. Additionally, gene expression assays showed that known, native glucose transporters in Pt are largely insensitive to glucose or light, whereas the gene encoding cytosolic fructose bisphosphate aldolase 3, an important glycolytic enzyme, is overexpressed in light but

  14. Upregulation of glucose metabolism by NF-kappa B2/p52 mediates enzalutamide resistance in castration resistant prostate cancer cells

    PubMed Central

    Cui, Yuanyuan; Nadiminty, Nagalakshmi; Liu, Chengfei; Lou, Wei; Schwartz, Chad T.; Gao, Allen C.

    2014-01-01

    Cancer cells reprogram their metabolic pathways to facilitate fast proliferation. Previous studies have shown that overexpression of NF-kappa B2/p52 (p52) in prostate cancer cells promotes cell growth and leads to castration resistance through aberrant activation of androgen receptor. In addition, these cells become resistant to enzalutamide. In this study, we investigated the effects of p52 activation on glucose metabolism and on response to enzalutamide therapy. Data analysis of gene expression arrays showed that genes including Glut1, PKM2, G6PD, and ME1 involved in regulating glucose metabolism were altered in LNCaP cells overexpressing p52 compared to the parental LNCaP cells. We demonstrated an increased amount of glucose flux in the glycolysis pathway, as well as the pentose phosphate pathway (PPP) upon p52 activation. The p52 overexpressing cells increase glucose uptake and are capable of higher ATP and lactate production compared to the parental LNCaP cells. The growth of p52 overexpressing cells depends on glucose in the culture media and is sensitive to glucose deprivation compared to the parental LNCaP cells. Targeting glucose metabolism by glucose analog 2-Deocxy-D-Glucose (2-DG) synergistically inhibits cell growth when combined with enzalutamide, and re-sensitizes p52 overexpressing cells to enzalutamide treatment. These results suggest that p52 modulates glucose metabolism, enhances glucose flux to glycolysis and pentose phosphate pathway, thus facilitating fast proliferation of the cells. Co-targeting glucose metabolism together with androgen receptor axis synergistically inhibits cell growth, and restores enzalutamide-resistant cells to enzalutamide treatment. PMID:24659479

  15. Upregulation of glucose metabolism by NF-κB2/p52 mediates enzalutamide resistance in castration-resistant prostate cancer cells.

    PubMed

    Cui, Yuanyuan; Nadiminty, Nagalakshmi; Liu, Chengfei; Lou, Wei; Schwartz, Chad T; Gao, Allen C

    2014-06-01

    Cancer cells reprogram their metabolic pathways to facilitate fast proliferation. Previous studies have shown that overexpression of NF-κB2/p52 (p52) in prostate cancer cells promotes cell growth and leads to castration resistance through aberrant activation of androgen receptor (AR). In addition, these cells become resistant to enzalutamide. In this study, we investigated the effects of p52 activation on glucose metabolism and on response to enzalutamide therapy. Data analysis of gene expression arrays showed that genes including GLUT1 (SLC2A1), PKM2, G6PD, and ME1 involved in the regulation of glucose metabolism were altered in LNCaP cells overexpressing p52 compared with the parental LNCaP cells. We demonstrated an increased amount of glucose flux in the glycolysis pathway, as well as the pentose phosphate pathway (PPP) upon p52 activation. The p52-overexpressing cells increase glucose uptake and are capable of higher ATP and lactate production compared with the parental LNCaP cells. The growth of p52-overexpressing cells depends on glucose in the culture media and is sensitive to glucose deprivation compared with the parental LNCaP cells. Targeting glucose metabolism by the glucose analog 2-deoxy-d-glucose synergistically inhibits cell growth when combined with enzalutamide, and resensitizes p52-overexpressing cells to enzalutamide treatment. These results suggest that p52 modulates glucose metabolism, enhances glucose flux to glycolysis and PPPs, thus facilitating fast proliferation of the cells. Co-targeting glucose metabolism together with AR axis synergistically inhibits cell growth and restores enzalutamide-resistant cells to enzalutamide treatment. PMID:24659479

  16. Thalamic, brainstem, and cerebellar glucose metabolism in the hemiplegic monkey

    SciTech Connect

    Shimoyama, I.; Dauth, G.W.; Gilman, S.; Frey, K.A.; Penney, J.B. Jr.

    1988-12-01

    Unilateral ablation of cerebral cortical areas 4 and 6 of Brodmann in the macaque monkey results in a contralateral hemiplegia that resolves partially with time. During the phase of dense hemiplegia, local cerebral metabolic rate for glucose (1CMRG1c) is decreased significantly in most of the thalamic nuclei ipsilateral to the ablation, and there are slight contralateral decreases. The lCMRGlc is reduced bilaterally in most of the brainstem nuclei and bilaterally in the deep cerebellar nuclei, but only in the contralateral cerebellar cortex. During the phase of partial motor recovery, lCMRGlc is incompletely restored in many of the thalamic nuclei ipsilateral to the ablation and completely restored in the contralateral nuclei. In the brainstem and deep cerebellar nuclei, poor to moderate recovery occurs bilaterally. Moderate recovery occurs in the contralateral cerebellar cortex. The findings demonstrate that a unilateral cerebral cortical lesion strongly affects lCMRGlc in the thalamus ipsilaterally and in the cerebellar cortex contralaterally, but in the brainstem bilaterally. Partial recovery of lCMRGlc accompanies the progressive motor recovery. The structures affected include those with direct, and also those with indirect, connections to the areas ablated.

  17. Cyclin D1-CDK4 Controls Glucose Metabolism Independently of Cell Cycle Progression

    PubMed Central

    Lee, Yoonjin; Dominy, John E.; Choi, Yoon Jong; Jurczak, Michael; Tolliday, Nicola; Camporez, Joao Paulo; Chim, Helen; Lim, Ji-Hong; Ruan, Hai-Bin; Yang, Xiaoyong; Vazquez, Francisca; Sicinski, Piotr; Shulman, Gerald I.; Puigserver, Pere

    2014-01-01

    Insulin constitutes a major evolutionarily conserved hormonal axis for maintaining glucose homeostasis1-3; dysregulation of this axis causes diabetes2,4. PGC-1α links insulin signaling to the expression of glucose and lipid metabolic genes5-7. GCN5 acetylates PGC-1α and suppresses its transcriptional activity, whereas SIRT1 deacetylates and activates PGC-1α8,9. Although insulin is a mitogenic signal in proliferative cells10,11, whether components of the cell cycle machinery contribute to insulin’s metabolic action is poorly understood. Herein, we report that insulin activates cyclin D1-CDK4, which, in turn, increases GCN5 acetyltransferase activity and suppresses hepatic glucose production independently of cell cycle progression. Through a cell-based high throughput chemical screen, we identified a CDK4 inhibitor that potently decreases PGC-1α acetylation. Insulin/GSK3β signaling induces cyclin D1 protein stability via sequestering cyclin D1 in the nucleus. In parallel, dietary amino acids increase hepatic cyclin D1 mRNA transcripts. Activated cyclin D1-CDK4 kinase phosphorylates and activates GCN5, which then acetylates and inhibits PGC-1α activity on gluconeogenic genes. Loss of hepatic cyclin D1 results in increased gluconeogenesis and hyperglycemia. In diabetic models, cyclin D1-CDK4 is chronically elevated and refractory to fasting/feeding transitions; nevertheless further activation of this kinase normalizes glycemia. Our findings show that insulin uses components of the cell cycle machinery in post-mitotic cells to control glucose homeostasis independently of cell division. PMID:24870244

  18. Cyclin D1-Cdk4 controls glucose metabolism independently of cell cycle progression.

    PubMed

    Lee, Yoonjin; Dominy, John E; Choi, Yoon Jong; Jurczak, Michael; Tolliday, Nicola; Camporez, Joao Paulo; Chim, Helen; Lim, Ji-Hong; Ruan, Hai-Bin; Yang, Xiaoyong; Vazquez, Francisca; Sicinski, Piotr; Shulman, Gerald I; Puigserver, Pere

    2014-06-26

    Insulin constitutes a principal evolutionarily conserved hormonal axis for maintaining glucose homeostasis; dysregulation of this axis causes diabetes. PGC-1α (peroxisome-proliferator-activated receptor-γ coactivator-1α) links insulin signalling to the expression of glucose and lipid metabolic genes. The histone acetyltransferase GCN5 (general control non-repressed protein 5) acetylates PGC-1α and suppresses its transcriptional activity, whereas sirtuin 1 deacetylates and activates PGC-1α. Although insulin is a mitogenic signal in proliferative cells, whether components of the cell cycle machinery contribute to its metabolic action is poorly understood. Here we report that in mice insulin activates cyclin D1-cyclin-dependent kinase 4 (Cdk4), which, in turn, increases GCN5 acetyltransferase activity and suppresses hepatic glucose production independently of cell cycle progression. Through a cell-based high-throughput chemical screen, we identify a Cdk4 inhibitor that potently decreases PGC-1α acetylation. Insulin/GSK-3β (glycogen synthase kinase 3-beta) signalling induces cyclin D1 protein stability by sequestering cyclin D1 in the nucleus. In parallel, dietary amino acids increase hepatic cyclin D1 messenger RNA transcripts. Activated cyclin D1-Cdk4 kinase phosphorylates and activates GCN5, which then acetylates and inhibits PGC-1α activity on gluconeogenic genes. Loss of hepatic cyclin D1 results in increased gluconeogenesis and hyperglycaemia. In diabetic models, cyclin D1-Cdk4 is chronically elevated and refractory to fasting/feeding transitions; nevertheless further activation of this kinase normalizes glycaemia. Our findings show that insulin uses components of the cell cycle machinery in post-mitotic cells to control glucose homeostasis independently of cell division. PMID:24870244

  19. Acid sphingomyelinase regulates glucose and lipid metabolism in hepatocytes through AKT activation and AMP-activated protein kinase suppression

    PubMed Central

    Osawa, Yosuke; Seki, Ekihiro; Kodama, Yuzo; Suetsugu, Atsushi; Miura, Kouichi; Adachi, Masayuki; Ito, Hiroyasu; Shiratori, Yoshimune; Banno, Yoshiko; Olefsky, Jerrold M.; Nagaki, Masahito; Moriwaki, Hisataka; Brenner, David A.; Seishima, Mitsuru

    2011-01-01

    Acid sphingomyelinase (ASM) regulates the homeostasis of sphingolipids, including ceramides and sphingosine-1-phosphate (S1P). Because sphingolipids regulate AKT activation, we investigated the role of ASM in hepatic glucose and lipid metabolism. Initially, we overexpressed ASM in the livers of wild-type and diabetic db/db mice by adenovirus vector (Ad5ASM). In these mice, glucose tolerance was improved, and glycogen and lipid accumulation in the liver were increased. Using primary cultured hepatocytes, we confirmed that ASM increased glucose uptake, glycogen deposition, and lipid accumulation through activation of AKT and glycogen synthase kinase-3β. In addition, ASM induced up-regulation of glucose transporter 2 accompanied by suppression of AMP-activated protein kinase (AMPK) phosphorylation. Loss of sphingosine kinase-1 (SphK1) diminished ASM-mediated AKT phosphorylation, but exogenous S1P induced AKT activation in hepatocytes. In contrast, SphK1 deficiency did not affect AMPK activation. These results suggest that the SphK/S1P pathway is required for ASM-mediated AKT activation but not for AMPK inactivation. Finally, we found that treatment with high-dose glucose increased glycogen deposition and lipid accumulation in wild-type hepatocytes but not in ASM−/− cells. This result is consistent with glucose intolerance in ASM−/− mice. In conclusion, ASM modulates AKT activation and AMPK inactivation, thus regulating glucose and lipid metabolism in the liver.—Osawa, Y., Seki, E., Kodama, Y., Suetsugu, A., Miura, K., Adachi, M., Ito, H., Shiratori, Y., Banno, Y., Olefsky, J. M., Nagaki, M., Moriwaki, H., Brenner, D. A., Seishima, M. Acid sphingomyelinase regulates glucose and lipid metabolism in hepatocytes through AKT activation and AMP-activated protein kinase suppression. PMID:21163859

  20. MicroRNA-194 Modulates Glucose Metabolism and Its Skeletal Muscle Expression Is Reduced in Diabetes

    PubMed Central

    Latouche, Celine; Natoli, Alaina; Reddy-Luthmoodoo, Medini; Heywood, Sarah E.; Armitage, James A.; Kingwell, Bronwyn A.

    2016-01-01

    Background The regulation of microRNAs (miRNAs) at different stages of the progression of type 2 diabetes mellitus (T2DM) and their role in glucose homeostasis was investigated. Methods Microarrays were used to assess miRNA expression in skeletal muscle biopsies taken from healthy individuals and patients with pre-diabetes or T2DM, and insulin resistant offspring of rat dams fed a high fat diet during pregnancy. Results Twenty-three miRNAs were differentially expressed in patients with T2DM, and 7 in the insulin resistant rat offspring compared to their controls. Among these, only one miRNA was similarly regulated: miR-194 expression was significantly reduced by 25 to 50% in both the rat model and in human with pre-diabetes and established diabetes. Knockdown of miR-194 in L6 skeletal muscle cells induced an increase in basal and insulin-stimulated glucose uptake and glycogen synthesis. This occurred in conjunction with an increased glycolysis, indicated by elevated lactate production. Moreover, oxidative capacity was also increased as we found an enhanced glucose oxidation in presence of the mitochondrial uncoupler FCCP. When miR-194 was down-regulated in vitro, western blot analysis showed an increased phosphorylation of AKT and GSK3β in response to insulin, and an increase in expression of proteins controlling mitochondrial oxidative phosphorylation. Conclusions Type 2 diabetes mellitus is associated with regulation of several miRNAs in skeletal muscle. Interestingly, miR-194 was a unique miRNA that appeared regulated across different stages of the disease progression, from the early stages of insulin resistance to the development of T2DM. We have shown miR-194 is involved in multiple aspects of skeletal muscle glucose metabolism from uptake, through to glycolysis, glycogenesis and glucose oxidation, potentially via mechanisms involving AKT, GSK3 and oxidative phosphorylation. MiR-194 could be down-regulated in patients with early features of diabetes as an

  1. Effect of Oxygen on Glucose Metabolism: Utilization of Lactate in Staphylococcus Aureus as Revealed by In Vivo NMR Studies

    PubMed Central

    Gaspar, Paula; Pinho, Mariana G.; Neves, Ana Rute

    2013-01-01

    The ability to successfully adapt to changing host conditions is crucial for full virulence of bacterial pathogens. Staphylococcus aureus has to cope with fluctuating oxygen concentrations during the course of infection. Hence, we studied the effect of oxygen on glucose metabolism in non-growing S. aureus COL-S cells by in vivo 13C-NMR. Glucose catabolism was probed at different oxygen concentrations in suspensions of cells grown aerobically (direct effects on metabolism) or anaerobically (transcriptional adjustment to oxygen deprivation). In aerobically-grown cells, the rate of glucose consumption diminished progressively with decreasing oxygen concentrations. Additionally, oxygen deprivation resulted in biphasic glucose consumption, with the second phase presenting a higher rate. The fructose-1,6-bisphosphate pool peaked while glucose was still abundant, but the transient maximum varied with the oxygen concentration. As oxygen became limiting mannitol/mannitol-1-phosphate were detected as products of glucose catabolism. Under anoxic conditions, accumulation of mannitol-1-phosphate ceased with the switch to higher glucose consumption rates, which implies the activation of a more efficient means by which NAD+ can be regenerated. The distribution of end-products deriving from glucose catabolism was dramatically affected by oxygen: acetate increased and lactate decreased with the oxygen concentration; ethanol was formed only anaerobically. Moreover, oxygen promoted the energetically favourable conversion of lactate into acetate, which was particularly noticeable under fully oxygenated conditions. Interestingly, under aerobiosis growing S. aureus cells also converted lactate to acetate, used simultaneously glucose and lactate as substrates for growth, and grew considerably well on lactate-medium. We propose that the efficient lactate catabolism may endow S. aureus with a metabolic advantage in its ecological niche. PMID:23472168

  2. Effect of acetoacetate on glucose metabolism in the soleus and extensor digitorum longus muscles of the rat.

    PubMed Central

    Maizels, E Z; Ruderman, N B; Goodman, M N; Lau, D

    1977-01-01

    1. The effect of acetoacetate on glucose metabolism was compared in the soleus, a slow-twitch red muscle, and the extensor digitorum longus, a muscle composed of 50% fast-twitch red and 50% white fibres. 2. When incubated for 2h in a medium containing 5 mM-glucose and 0.1 unit of insulin/ml, rates of glucose uptake, lactate release and glucose oxidation in the soleus were 19.6, 18.6 and 1.47 micronmol/h per g respectively. Acetoacetate (1.7 mM) diminished all three rates by 25-50%; however, it increased glucose conversion into glycogen. In addition, it caused increases in tissue glucose, glucose 6-phosphate and fructose 6-phosphate, suggesting inhibition of phosphofructokinase. The concentrations of citrate, an inhibitor of phosphofructokinase, and of malate were also increased. 3. Rates of glucose uptake and lactate release in the extensor digitorum longus were 50-80% of those in the soleus. Acetoacetate caused moderate increases in tissue glucose 6-phosphate and possibly citrate, but it did not decrease glucose uptake or lactate release. 4. The rate of glycolysis in the soleus was approximately five times that previously observed in the perfused rat hindquarter, a muscle preparation in which acetoacetate inhibits glucose oxidation, but does not alter glucose uptake or glycolysis. A similar rate of glycolysis was observed when the soleus was incubated with a glucose-free medium. Under these conditions, tissue malate and the lactate/pyruvate ratio in the medium were decreased, and acetoacetate did not decrease lactate release or increase tissue citrate or glucose 6-phosphate. An intermediate rate of glycolysis, which was not decreased by acetoacetate, was observed when the soleus was incubated with glucose, but not insulin. 5. The data suggest that acetoacetate glucose inhibits uptake and glycolysis in red muscle under conditions that resemble mild to moderate exercise. They also suggest that the accumulation of citrate in these circumstances is linked to the rate

  3. Regional brain glucose metabolism in patients with brain tumors before and after radiotherapy

    SciTech Connect

    Wang, G.J.; Volkow, N.D.; Lau, Y.H.

    1994-05-01

    This study was performed to measure regional glucose metabolism in nonaffected brain regions of patients with primary or metastatic brain tumors. Seven female and four male patients (mean age 51.5{plus_minus}14.0 years old) were compared with eleven age and sex matched normal subjects. None of the patients had hydrocephalus and/or increased intracranial pressure. Brain glucose metabolism was measured using FDG-PET scan. Five of the patients were reevaluated one week after receiving radiation treatment (RT) to the brain. Patients were on Decadron and/or Dilantin at the time of both scan. PET images were analyzed with a template of 115 nonoverlapping regions of interest and then grouped into eight gray matter regions on each hemisphere. Brain regions with tumors and edema shown in MR imaging were excluded. Z scores were used to compare individual patients` regional values with those of normal subjects. The number of regional values with Z scores of less than - 3.0 were considered abnormal and were quantified. The mean global glucose metabolic rate (mean of all regions) in nonaffected brain regions of patients was significantly lower than that of normal controls (32.1{plus_minus}9.0 versus 44.8{plus_minus}6.3 {mu}mol/100g/min, p<0.001). Analyses of individual subjects revealed that none of the controls and 8 of the 11 patients had at least one abnormal region. In these 8 patients the regions which were abnormal were most frequently localized in right (n=5) and left occipital (n=6) and right orbital frontal cortex (n=7) whereas the basal ganglia was not affected. Five of the patients who had repeated scans following RT showed decrements in tumor metabolism (41{plus_minus}20.5%) and a significant increase in whole brain metabolism (8.6{plus_minus}5.3%, p<0.001). The improvement in whole brain metabolism after RT suggests that the brain metabolic decrements in the patients were related to the presence of tumoral tissue and not just a medication effect.

  4. Overexpression of SIRT1 in Mouse Forebrain Impairs Lipid/Glucose Metabolism and Motor Function

    PubMed Central

    Wu, Dongmei; Qiu, Yifu; Gao, Xiang; Yuan, Xiao-Bing; Zhai, Qiwei

    2011-01-01

    SIRT1 plays crucial roles in glucose and lipid metabolism, and has various functions in different tissues including brain. The brain-specific SIRT1 knockout mice display defects in somatotropic signaling, memory and synaptic plasticity. And the female mice without SIRT1 in POMC neuron are more sensitive to diet-induced obesity. Here we created transgenic mice overexpressing SIRT1 in striatum and hippocampus under the control of CaMKIIα promoter. These mice, especially females, exhibited increased fat accumulation accompanied by significant upregulation of adipogenic genes in white adipose tissue. Glucose tolerance of the mice was also impaired with decreased Glut4 mRNA levels in muscle. Moreover, the SIRT1 overexpressing mice showed decreased energy expenditure, and concomitantly mitochondria-related genes were decreased in muscle. In addition, these mice showed unusual spontaneous physical activity pattern, decreased activity in open field and rotarod performance. Further studies demonstrated that SIRT1 deacetylated IRS-2, and upregulated phosphorylation level of IRS-2 and ERK1/2 in striatum. Meanwhile, the neurotransmitter signaling in striatum and the expression of endocrine hormones in hypothalamus and serum T3, T4 levels were altered. Taken together, our findings demonstrate that SIRT1 in forebrain regulates lipid/glucose metabolism and motor function. PMID:21738790

  5. Glucose metabolism in obese and lean adolescents with polycystic ovary syndrome.

    PubMed

    Poomthavorn, Preamrudee; Chaya, Weerapong; Mahachoklertwattana, Pat; Sukprasert, Matchuporn; Weerakiet, Sawaek

    2013-01-01

    Data on glucose metabolism in Asian adolescents with polycystic ovary syndrome (PCOS) are limited. Glucose metabolism assessment using an oral glucose tolerance test (OGTT) in obese and lean Thai adolescents with PCOS, and a comparison between the two groups were done. Thirty-one patients (19 obese, 12 lean) were enrolled. Their median (range) age was 14.9 (11.0-21.0) years. Eighteen patients had abnormal glucose metabolism (13 hyperinsulinemia, 4 impaired glucose tolerance, and 1 diabetes). Compared between obese [median (range) BMI Z-score, 1.6 (1.2-2.6)] and lean [median (range) BMI Z-score, 0.1 (-1.4 to 0.6)] patients, the frequencies of each abnormal OGTT category, areas under the curves of glucose and insulin levels, and insulinogenic index were not different; however, insulin resistance was greater in the obese group. In conclusion, a high proportion of our adolescents with PCOS had abnormal glucose metabolism. Therefore, OGTT should be performed in adolescents with PCOS for the early detection of abnormal glucose metabolism. PMID:23314524

  6. Plasma Lactate Levels Increase during Hyperinsulinemic Euglycemic Clamp and Oral Glucose Tolerance Test.

    PubMed

    Berhane, Feven; Fite, Alemu; Daboul, Nour; Al-Janabi, Wissam; Msallaty, Zaher; Caruso, Michael; Lewis, Monique K; Yi, Zhengping; Diamond, Michael P; Abou-Samra, Abdul-Badi; Seyoum, Berhane

    2015-01-01

    Insulin resistance, which plays a central role in the pathogenesis of type 2 diabetes (T2D), is an early indicator that heralds the occurrence of T2D. It is imperative to understand the metabolic changes that occur at the cellular level in the early stages of insulin resistance. The objective of this study was to determine the pattern of circulating lactate levels during oral glucose tolerance test (OGTT) and hyperinsulinemic euglycemic clamp (HIEC) study in normal nondiabetic subjects. Lactate and glycerol were determined every 30 minutes during OGTT and HIEC on 22 participants. Lactate progressively increased throughout the HIEC study period (P < 0.001). Participants with BMI < 30 had significantly higher mean M-values compared to those with BMI ≥ 30 at baseline (P < 0.05). This trend also continued throughout the OGTT. In addition, those with impaired glucose tolerance test (IGT) had significantly higher mean lactate levels compared to those with normal glucose tolerance (P < 0.001). In conclusion, we found that lactate increased during HIEC study, which is a state of hyperinsulinemia similar to the metabolic milieu seen during the early stages in the development of T2D. PMID:25961050

  7. Cerebral metabolic rates for glucose in mood disorders. Studies with positron emission tomography and fluorodeoxyglucose F 18

    SciTech Connect

    Baxter, L.R. Jr.; Phelps, M.E.; Mazziotta, J.C.; Schwartz, J.M.; Gerner, R.H.; Selin, C.E.; Sumida, R.M.

    1985-05-01

    Cerebral metabolic rates for glucose were examined in patients with unipolar depression (N = 11), bipolar depression (N = 5), mania (N = 5), bipolar mixed states (N = 3), and in normal controls (N = 9) using positron emission tomography and fluorodeoxyglucose F 18. All subjects were studied supine under ambient room conditions with eyes open. Bipolar depressed and mixed patients had supratentorial whole brain glucose metabolic rates that were significantly lower than those of the other comparison groups. The whole brain metabolic rates for patients with bipolar depression increased going from depression or a mixed state to a euthymic or manic state. Patients with unipolar depression showed a significantly lower ratio of the metabolic rate of the caudate nucleus, divided by that of the hemisphere as a whole, when compared with normal controls and patients with bipolar depression.

  8. Role of sleep duration in the regulation of glucose metabolism and appetite

    PubMed Central

    Morselli, Lisa; Leproult, Rachel; Balbo, Marcella

    2010-01-01

    Sleep curtailment has become a common behavior in modern society. This review summarizes the current laboratory evidence indicating that sleep loss may contribute to the pathophysiology of diabetes mellitus and obesity. Experimentally-induced sleep loss in healthy volunteers decreases insulin sensitivity without adequate compensation in beta-cell function, resulting in impaired glucose tolerance and increased diabetes risk. Lack of sleep also down-regulates the satiety hormone leptin, up-regulates the appetite-stimulating hormone ghrelin, and increases hunger and food intake. Taken together with the epidemiologic evidence for an association between short sleep and the prevalence or incidence of diabetes mellitus and/or obesity, these results support a role for reduced sleep duration in the current epidemic of these metabolic disorders. Screening for habitual sleep patterns in patients with “diabesity” is therefore of great importance. Studies are warranted to investigate the putative therapeutic impact of extending sleep in habitual short sleepers with metabolic disorders. PMID:21112019

  9. Drosophila glucome screening identifies Ck1alpha as a regulator of mammalian glucose metabolism

    PubMed Central

    Ugrankar, Rupali; Berglund, Eric; Akdemir, Fatih; Tran, Christopher; Kim, Min Soo; Noh, Jungsik; Schneider, Rebekka; Ebert, Benjamin; Graff, Jonathan M.

    2015-01-01

    Circulating carbohydrates are an essential energy source, perturbations in which are pathognomonic of various diseases, diabetes being the most prevalent. Yet many of the genes underlying diabetes and its characteristic hyperglycaemia remain elusive. Here we use physiological and genetic interrogations in D. melanogaster to uncover the ‘glucome', the complete set of genes involved in glucose regulation in flies. Partial genomic screens of ∼1,000 genes yield ∼160 hyperglycaemia ‘flyabetes' candidates that we classify using fat body- and muscle-specific knockdown and biochemical assays. The results highlight the minor glucose fraction as a physiological indicator of metabolism in Drosophila. The hits uncovered in our screen may have conserved functions in mammalian glucose homeostasis, as heterozygous and homozygous mutants of Ck1alpha in the murine adipose lineage, develop diabetes. Our findings demonstrate that glucose has a role in fly biology and that genetic screenings carried out in flies may increase our understanding of mammalian pathophysiology. PMID:25994086

  10. Metabolic Control of Type 2 Diabetes by Targeting the GLUT4 Glucose Transporter: Intervention Approaches.

    PubMed

    Alam, Fahmida; Islam, Md Asiful; Khalil, Md Ibrahim; Gan, Siew Hua

    2016-01-01

    Type 2 diabetes mellitus (T2DM), the most common form of diabetes, is characterized by insulin resistance in the hepatic and peripheral tissues. Glucose transporter 4 (GLUT4) plays a major role in the pathophysiology of T2DM. Its defective expression or translocation to the peripheral cell plasma membrane in T2DM patients hinders the entrance of glucose into the cell for energy production. In addition to suitable drugs, an appropriate diet and/or exercise can be implemented to target the increase in GLUT4 expression, GLUT4 concentrations and GLUT4 translocation to the cell surface when managing the glucose metabolism of T2DM patients. In this review, we discussed successful intervention strategies that were individually administered or coupled with diet and/or exercise and affected the expression and translocation of GLUT4 in T2DM while reducing the excess glucose load from the blood. Additionally, some potentially good synthetic and natural compounds, which can activate the insulin-independent GLUT4 signaling pathways for the efficient management of T2DM, are highlighted as possible targets or emerging alternative sources for future anti-diabetic drug development. PMID:26951104

  11. Glucose Metabolism Effects of Vitamin D in Prediabetes: The VitDmet Randomized Placebo-Controlled Supplementation Study

    PubMed Central

    Tuomainen, Tomi-Pekka; Virtanen, Jyrki K.; Voutilainen, Sari; Nurmi, Tarja; Mursu, Jaakko; de Mello, Vanessa D. F.; Schwab, Ursula; Hakumäki, Martti; Pulkki, Kari

    2015-01-01

    Epidemiological evidence suggests a role for vitamin D in type 2 diabetes prevention. We investigated the effects of vitamin D3 supplementation on glucose metabolism and inflammation in subjects with prediabetes. A 5-month randomized, double-blind, placebo-controlled intervention with three arms (placebo, 40 μg/d, or 80 μg/d vitamin D3) was carried out among sixty-eight overweight (BMI 25–35) and aging (≥60 years) subjects from Finland, with serum 25-hydroxyvitamin D3 [25(OH)D3] < 75 nmol/L and either impaired fasting glucose or impaired glucose tolerance. Analyses included 66 subjects who completed the trial. Glucose metabolism was evaluated by fasting and 2-hour oral glucose tolerance test-derived indices and glycated hemoglobin. Inflammation was evaluated by high-sensitive C-reactive protein and five cytokines. Although a dose-dependent increase in serum 25(OH)D3 over the supplementation period was observed (P trend < 0.001), there were no other statistically significant differences in changes in the 13 glucose homeostasis indicators between the study groups other than increase in the 120 min glucose concentration (P trend = 0.021) and a decreasing trend both in 30 min plasma insulin (P trend = 0.030) and glycated hemoglobin (P trend = 0.024) concentrations. A borderline statistically significant decreasing trend in interleukin-1 receptor antagonist concentration was observed (P = 0.070). Vitamin D3 supplementation does not improve glucose metabolism in ageing subjects with prediabetes but may have modest anti-inflammatory effects. PMID:26106626

  12. Focal adhesion kinase-promoted tumor glucose metabolism is associated with a shift of mitochondrial respiration to glycolysis.

    PubMed

    Zhang, J; Gao, Q; Zhou, Y; Dier, U; Hempel, N; Hochwald, S N

    2016-04-14

    Cancer cells often gains a growth advantage by taking up glucose at a high rate and undergoing aerobic glycolysis through intrinsic cellular factors that reprogram glucose metabolism. Focal adhesion kinase (FAK), a key transmitter of growth factor and anchorage stimulation, is aberrantly overexpressed or activated in most solid tumors, including pancreatic ductal adenocarcinomas (PDACs). We determined whether FAK can act as an intrinsic driver to promote aerobic glycolysis and tumorigenesis. FAK inhibition decreases and overexpression increases intracellular glucose levels during unfavorable conditions, including growth factor deficiency and cell detachment. Amplex glucose assay, fluorescence and carbon-13 tracing studies demonstrate that FAK promotes glucose consumption and glucose-to-lactate conversion. Extracellular flux analysis indicates that FAK enhances glycolysis and decreases mitochondrial respiration. FAK increases key glycolytic proteins, including enolase, pyruvate kinase M2 (PKM2), lactate dehydrogenase and monocarboxylate transporter. Furthermore, active/tyrosine-phosphorylated FAK directly binds to PKM2 and promotes PKM2-mediated glycolysis. On the other hand, FAK-decreased levels of mitochondrial complex I can result in reduced oxidative phosphorylation (OXPHOS). Attenuation of FAK-enhanced glycolysis re-sensitizes cancer cells to growth factor withdrawal, decreases cell viability and reduces growth of tumor xenografts. These observations, for the first time, establish a vital role of FAK in cancer glucose metabolism through alterations in the OXPHOS-to-glycolysis balance. Broadly targeting the common phenotype of aerobic glycolysis and more specifically FAK-reprogrammed glucose metabolism will disrupt the bioenergetic and biosynthetic supply for uncontrolled growth of tumors, particularly glycolytic PDAC. PMID:26119934

  13. Fibroblast growth factor receptor 4 (FGFR4) deficiency improves insulin resistance and glucose metabolism under diet-induced obesity conditions.

    PubMed

    Ge, Hongfei; Zhang, Jun; Gong, Yan; Gupte, Jamila; Ye, Jay; Weiszmann, Jennifer; Samayoa, Kim; Coberly, Suzanne; Gardner, Jonitha; Wang, Huilan; Corbin, Tim; Chui, Danny; Baribault, Helene; Li, Yang

    2014-10-31

    The role of fibroblast growth factor receptor 4 (FGFR4) in regulating bile acid synthesis has been well defined; however, its reported role on glucose and energy metabolism remains unresolved. Here, we show that FGFR4 deficiency in mice leads to improvement in glucose metabolism, insulin sensitivity, and reduction in body weight under high fat conditions. Mechanism of action studies in FGFR4-deficient mice suggest that the effects are mediated in part by increased plasma levels of adiponectin and the endocrine FGF factors FGF21 and FGF15, the latter of which increase in response to an elevated bile acid pool. Direct actions of increased bile acids on bile acid receptors, and other potential indirect mechanisms, may also contribute to the observed metabolic changes. The results described herein suggest that FGFR4 antagonists alone, or in combination with other agents, could serve as a novel treatment for diabetes. PMID:25204652

  14. Uncoupling of fatty acid and glucose metabolism in malignant lymphoma: a PET study.

    PubMed

    Nuutinen, J; Minn, H; Bergman, J; Haaparanta, M; Ruotasalainen, U; Laine, H; Knuuti, J

    1999-05-01

    Increased use of glucose through glycolysis is characteristic for neoplastic growth while the significance of serum-free fatty acids for regulation of energy metabolism in cancer is poorly understood. We studied whether serum-free fatty acids (FFA) interfere with glycolytic metabolism of lymphoproliferative neoplasms as assessed with 2-F18-fluoro-2-deoxy-D-glucose ([F18]FDG) and positron emission tomography (PET). Twelve patients with newly diagnosed non-Hodgkin's lymphoma (n = 9) or Hodgkin's disease (n = 3) participated in this study before start of oncologic treatment. Each patient underwent two [F18]FDG PET studies within 1 week after overnight fast: once during high fasting serum FFA concentrations and once after reduction of serum FFA by administration of acipimox. Acipimox is a nicotinic acid derivative that inhibits lipolysis in peripheral tissues and induces a striking reduction in circulating FFA concentration. In all cases, dynamic PET imaging over the tumour area was performed for 60 min after injection of [F18]FDG. Both graphical analysis (rMR(FDG)) and single scan approach (SUV) were used to compare tumour uptake of [F18]FDG under high fasting FFA concentrations and after pharmacologically decreased FFA concentrations. Serum FFA concentrations were reduced significantly from 0.92+/-0.42 mmol I(-1)at baseline to 0.26+/-0.31 mmol I(-1) after acipimox administration (P = 0.0003). Plasma glucose, serum insulin and lactate concentrations were similar during both approaches. The retention of glucose analogue [F18]FDG in tumour was similar between baseline and acipimox studies. Median rMR(FDG) of a total of 12 involved lymph nodes in 12 patients was 21.9 micromol 100 g(-1) min(-1) (range 8.7-82.5) at baseline and 20.1 micromol 100 g(-1) min(-1)(range 10.7-81.7) after acipimox. The respective values for median SUV were 7.8 (range 3.6-18.6) and 6.0 (range 4.1-20.2). As expected, [F18]FDG uptake in myocardium was clearly enhanced by acipimox due to reduction of

  15. Oxytocin increases extrapancreatic glucagon secretion and glucose production in pancreatectomized dogs

    SciTech Connect

    Altszuler, N.; Puma, F.; Winkler, B.; Fontan, N.; Saudek, C.D.

    1986-05-01

    Infusion of oxytocin into normal dogs increases plasma levels of insulin and glucagon and glucose production and uptake. To determine whether infused oxytocin also increases glucagon secretion from extrapancreatic sites, pancreatectomized dogs, off insulin of 18 hr, were infused with oxytocin and plasma glucagon, and glucose production and uptake were measured using the (6-/sup 3/H)glucose primer-infusion technique. The diabetic dogs, in the control period, had elevated plasma glucose and glucagon levels, an increased rate of glucose production, and a relative decrease in glucose uptake (decreased clearance). Infusion of oxytocin (500 ..mu..U/kg/min) caused a rise in plasma glucagon and glucose levels, increased glucose production, and further decreased glucose clearance. it is concluded that oxytocin can stimulate secretion of extrapancreatic glucagon, which contributes to the increased glucose production.

  16. Differential effect of saturated and polyunsaturated fatty acids on hepatic glucose metabolism in humans.

    PubMed

    Clore, John N; Stillman, Julie S; Li, Jing; O'Keefe, Stephen J D; Levy, James R

    2004-08-01

    Prolonged infusions of lipid and heparin that achieve high physiological free fatty acid (FFA) concentrations inhibit hepatic (and peripheral) insulin sensitivity in humans. These infusions are composed largely of polyunsaturated fatty acids (PUFA; linoleic and linolenic). It is not known whether fatty acid composition per se affects hepatic glucose metabolism in humans. To address this issue, we examined the impact of enteral infusions of either palm oil (48% palmitic, 35% oleic, and 8% linoleic acids) or safflower oil (6% palmitic, 12% oleic, 74% linoleic acids) in 14 obese nondiabetic subjects. (2)H(2)O was administered to determine the contribution of gluconeogenesis to endogenous glucose production (EGP), and a primed continuous infusion of [6,6-(2)H]glucose was administered to assess glucose appearance. As a result of the lipid infusions, plasma FFA concentrations increased significantly in both the palm oil (507.5 +/- 47.4 to 939.3 +/- 61.3 micromol/l, P < 0.01) and safflower oil (588.2.0 +/- 43.0 to 857.8 +/- 68.7 micromol/l, P < 0.01) groups after 4 h. EGP was similar at baseline (12.4 +/- 1.8 vs. 11.2 +/- 1.0 micromol x kg FFM(-1) x min(-1)). During a somatostatin-insulin clamp, the glucose infusion rate was significantly lower (AUC glucose infusion rate 195.8 +/- 50.7 vs. 377.8 +/- 38.0 micromol/kg FFM, P < 0.01), and rates of EGP were significantly higher (10.7 +/- 1.4 vs. 6.5 +/- 1.5 micromol x kg FFM(-1) x min(-1), P < 0.01) after palm oil compared with safflower oil, respectively. Baseline rates of gluconeogenesis and glycogenolysis were also similar. However, after lipid infusion, rates of glycogenolysis were suppressed by safflower oil but not by palm oil. Thus these studies demonstrate, for the first time in humans, a differential effect of saturated fatty acids and PUFA on hepatic glucose metabolism. PMID:15082421

  17. Glucose metabolism in the amygdala in depression: relationship to diagnostic subtype and plasma cortisol levels.

    PubMed

    Drevets, Wayne C; Price, Joseph L; Bardgett, Mark E; Reich, Theodore; Todd, Richard D; Raichle, Marcus E

    2002-03-01

    In a previous positron emission tomography (PET) study of major depression, we demonstrated that cerebral blood flow was increased in the left amygdala in unipolar depressives with familial pure depressive disease (FPDD) relative to healthy controls [J. Neurosci. 12 (1992) 3628.]. These measures were obtained from relatively low-resolution PET images using a stereotaxic method based upon skull X-ray landmarks. The current experiments aimed to replicate and extend these results using higher-resolution glucose metabolism images and magnetic resonance imaging (MRI)-based region-of-interest (ROI) analysis. The specificity of this finding to FPDD was also investigated by assessing depressed samples with bipolar disorder (BD-D) and depression spectrum disease (DSD). Finally, the relationship between amygdala metabolism and plasma cortisol levels obtained during the scanning procedure was assessed. Glucose metabolism was measured using PET and 18F-fluorodeoxyglucose (18FDG) in healthy control (n=12), FPDD (n=12), DSD (n=9) and BD-D (n=7) samples in the amygdala and the adjacent hippocampus. The left amygdala metabolism differed across groups (P<.001), being increased in both the FPDD and BD-D groups relative to the control group. The left amygdala metabolism was positively correlated with stressed plasma cortisol levels in both the unipolar (r=.69; P<.005) and the bipolar depressives (r=0.68;.1metabolism in the right amygdala or the hippocampus. Preliminary assessment of BD subjects imaged during remission suggested that amygdala metabolism is also elevated in remitted subjects who are not taking mood-stabilizing drugs, but within the normal range in subjects taking mood stabilizers. These data confirm our previous finding that neurophysiological activity is abnormally increased in FPDD, and extend it to BD-D. These

  18. Characterization of glucose-related metabolic pathways in differentiated rat oligodendrocyte lineage cells.

    PubMed

    Amaral, Ana I; Hadera, Mussie G; Tavares, Joana M; Kotter, Mark R N; Sonnewald, Ursula

    2016-01-01

    Although oligodendrocytes constitute a significant proportion of cells in the central nervous system (CNS), little is known about their intermediary metabolism. We have, therefore, characterized metabolic functions of primary oligodendrocyte precursor cell cultures at late stages of differentiation using isotope-labelled metabolites. We report that differentiated oligodendrocyte lineage cells avidly metabolize glucose in the cytosol and pyruvate derived from glucose in the mitochondria. The labelling patterns of metabolites obtained after incubation with [1,2-(13)C]glucose demonstrated that the pentose phosphate pathway (PPP) is highly active in oligodendrocytes (approximately 10% of glucose is metabolized via the PPP as indicated by labelling patterns in phosphoenolpyruvate). Mass spectrometry and magnetic resonance spectroscopy analyses of metabolites after incubation of cells with [1-(13)C]lactate or [1,2-(13)C]glucose, respectively, demonstrated that anaplerotic pyruvate carboxylation, which was thought to be exclusive to astrocytes, is also active in oligodendrocytes. Using [1,2-(13)C]acetate, we show that oligodendrocytes convert acetate into acetyl CoA which is metabolized in the tricarboxylic acid cycle. Analysis of labelling patterns of alanine after incubation of cells with [1,2-(13)C]acetate and [1,2-(13)C]glucose showed catabolic oxidation of malate or oxaloacetate. In conclusion, we report that oligodendrocyte lineage cells at late differentiation stages are metabolically highly active cells that are likely to contribute considerably to the metabolic activity of the CNS. PMID:26352325

  19. Persistence of disturbed thalamic glucose metabolism in a case of Wernicke-Korsakoff syndrome.

    PubMed

    Fellgiebel, Andreas; Scheurich, Armin; Siessmeier, Thomas; Schmidt, Lutz G; Bartenstein, Peter

    2003-10-30

    We report the case of a 40-year-old alcoholic male patient, hospitalized with an acute ataxia of stance and gait, ocular muscle weakness with nystagmus and a global apathetic-confusional state. After admission, an amnestic syndrome with confabulation was also observed and diagnosis of Wernicke-Korsakoff syndrome was made. Under treatment with intravenous thiamine, the patient recovered completely from gaze weakness and ataxia, whereas a severe amnestic syndrome persisted. Fluorodeoxyglucose (FDG) positron emission tomography (PET) showed bilateral thalamic and severe bilateral temporal-parietal hypometabolism resembling a pattern typical for Alzheimer's disease. Longitudinal assessment of the alcohol-abstinent and thiamine-substituted patient revealed improvements of clinical state and neuropsychological performance that were paralleled by recovered cerebral glucose metabolism. In contrast to metabolic rates that increased between 7.1% (anterior cingulate, left) and 23.5% (parietal, left) in cortical areas during a 9-month remission period, thalamic glucose metabolism remained severely disturbed over time (change: left +0.2%, right +0.3%). PMID:14561428

  20. Glucose homeostasis and the enteroinsular axis in the horse: a possible role in equine metabolic syndrome.

    PubMed

    de Graaf-Roelfsema, Ellen

    2014-01-01

    One of the principal components of equine metabolic syndrome (EMS) is hyperinsulinaemia combined with insulin resistance. It has long been known that hyperinsulinaemia occurs after the development of insulin resistance. But it is also known that hyperinsulinaemia itself can induce insulin resistance and obesity and might play a key role in the development of metabolic syndrome. This review focuses on the physiology of glucose and insulin metabolism and the pathophysiological mechanisms in glucose homeostasis in the horse (compared with what is already known in humans) in order to gain insight into the pathophysiological principles underlying EMS. The review summarizes new insights on the oral uptake of glucose by the gut and the enteroinsular axis, the role of diet in incretin hormone and postprandial insulin responses, the handling of glucose by the liver, muscle and fat tissue, and the production and secretion of insulin by the pancreas under healthy and disrupted glucose homeostatic conditions in horses. PMID:24287206

  1. Local overexpression of the myostatin propeptide increases glucose transporter expression and enhances skeletal muscle glucose disposal

    PubMed Central

    Jarmin, S.; Eilers, W.; Elashry, M.; Andersen, D. K.; Dickson, G.; Foster, K.

    2014-01-01

    Insulin resistance (IR) in skeletal muscle is a prerequisite for type 2 diabetes and is often associated with obesity. IR also develops alongside muscle atrophy in older individuals in sarcopenic obesity. The molecular defects that underpin this syndrome are not well characterized, and there is no licensed treatment. Deletion of the transforming growth factor-β family member myostatin, or sequestration of the active peptide by overexpression of the myostatin propeptide/latency-associated peptide (ProMyo) results in both muscle hypertrophy and reduced obesity and IR. We aimed to establish whether local myostatin inhibition would have a paracrine/autocrine effect to enhance glucose disposal beyond that simply generated by increased muscle mass, and the mechanisms involved. We directly injected adeno-associated virus expressing ProMyo in right tibialis cranialis/extensor digitorum longus muscles of rats and saline in left muscles and compared the effects after 17 days. Both test muscles were increased in size (by 7 and 11%) and showed increased radiolabeled 2-deoxyglucose uptake (26 and 47%) and glycogen storage (28 and 41%) per unit mass during an intraperitoneal glucose tolerance test. This was likely mediated through increased membrane protein levels of GLUT1 (19% higher) and GLUT4 (63% higher). Interestingly, phosphorylation of phosphoinositol 3-kinase signaling intermediates and AMP-activated kinase was slightly decreased, possibly because of reduced expression of insulin-like growth factor-I in these muscles. Thus, myostatin inhibition has direct effects to enhance glucose disposal in muscle beyond that expected of hypertrophy alone, and this approach may offer potential for the therapy of IR syndromes. PMID:24473441

  2. Impact of switching from lopinavir/ritonavir to boosted and un-boosted atazanavir on glucose metabolism: the ATAzanavir & GLUcose metabolism (ATAGLU) study.

    PubMed

    d'Ettorre, Gabriella; Ceccarelli, Giancarlo; Zaccarelli, Mauro; Ascoli-Bartoli, Tommaso; Bianchi, Luigi; Bellelli, Valeria; De Girolamo, Gabriella; Serafino, Sara; Giustini, Noemi; Mastroianni, Claudio M; Vullo, Vincenzo

    2016-07-01

    Previous studies have reported that protease inhibitors (PIs) can contribute to glycaemic alterations. However, there are few trials examining the direct effect of a single PI. The objective of the study was to evaluate the modifications of glucose and lipid profiles after a switch from lopinavir/ritonavir (LPV/r) to atazanavir, used as ritonavir-boosted (ATV/r) or un-boosted. We conducted a retrospective observational cohort study on the effect of ATV/(r) on glycaemic metabolism (ATAGLU) in patients with undetectable levels of HIV-RNA who switched from LPV/r. In total, 235 patients treated for 48 weeks with LPV/r plus two nucleoside reverse transcriptase inhibitors (NRTIs) and with undetectable HIV-RNA were included: 134 continued LPV/r after the initial 48 weeks and 101 switched to ATV(/r) (18.3% to ATV; 24.7% to ATV/r). A significant decrease in mean glucose level and insulin resistance was observed in patients who switched to ATV(/r). The mean cholesterol triglyceride levels increased in the LPV/r group and decreased among the patients who switched. A significant increase of CD4 T cells with undetectable levels of HIV-RNA was observed in all groups. The long-term results obtained in this real-life study suggest that patients who have achieved initial suppression on a regimen including LPV/r + two NRTIs can switch to ATV/(r) + two NRTIs with an improvement in lipid and glycaemic metabolism. PMID:26068963

  3. Per-Arnt-Sim Kinase (PASK): An Emerging Regulator of Mammalian Glucose and Lipid Metabolism

    PubMed Central

    Zhang, Dan-dan; Zhang, Ji-gang; Wang, Yu-zhu; Liu, Ying; Liu, Gao-lin; Li, Xiao-yu

    2015-01-01

    Per-Arnt-Sim Kinase (PASK) is an evolutionarily-conserved nutrient-responsive protein kinase that regulates lipid and glucose metabolism, mitochondrial respiration, phosphorylation, and gene expression. Recent data suggests that mammalian PAS kinase is involved in glucose metabolism and acts on pancreatic islet α/β cells and glycogen synthase (GS), affecting insulin secretion and blood glucose levels. In addition, PASK knockout mice (PASK-/-) are protected from obesity, liver triglyceride accumulation, and insulin resistance when fed a high-fat diet, implying that PASK may be a new target for metabolic syndrome (MetS) treatment as well as the cellular nutrients and energy sensors—adenosine monophosphate (AMP)-activated protein kinase (AMPK) and the targets of rapamycin (m-TOR). In this review, we will briefly summarize the regulation of PASK on mammalian glucose and lipid metabolism and its possible mechanism, and further explore the potential targets for MetS therapy. PMID:26371032

  4. Assessment of regional glucose metabolism in aging brain and dementia with positron-emission tomography

    SciTech Connect

    Reivich, M.; Alavi, A.; Ferris, S.; Christman, D.; Fowler, J.; MacGregor, R.; Farkas, T.; Greenberg, J.; Dann, R.; Wolf, A.

    1981-01-01

    This paper explores the alterations in regional glucose metabolism that occur in elderly subjects and those with senile dementia compared to normal young volunteers. Results showed a tendency for the frontal regions to have a lower metabolic rate in patients with dementia although this did not reach the level of significance when compared to the elderly control subjects. The changes in glucose metabolism were symmetrical in both the left and right hemispheres. There was a lack of correlation between the mean cortical metabolic rates for glucose and the global mental function in the patients with senile dementia. This is at variance with most of the regional cerebral blood flow data that has been collected. This may be partly related to the use of substrates other than glucose by the brain in elderly and demented subjects. (PSB)

  5. Roles of Chlorogenic Acid on Regulating Glucose and Lipids Metabolism: A Review

    PubMed Central

    Meng, Shengxi; Cao, Jianmei; Feng, Qin; Peng, Jinghua; Hu, Yiyang

    2013-01-01

    Intracellular glucose and lipid metabolic homeostasis is vital for maintaining basic life activities of a cell or an organism. Glucose and lipid metabolic disorders are closely related with the occurrence and progression of diabetes, obesity, hepatic steatosis, cardiovascular disease, and cancer. Chlorogenic acid (CGA), one of the most abundant polyphenol compounds in the human diet, is a group of phenolic secondary metabolites produced by certain plant species and is an important component of coffee. Accumulating evidence has demonstrated that CGA exerts many biological properties, including antibacterial, antioxidant, and anticarcinogenic activities. Recently, the roles and applications of CGA, particularly in relation to glucose and lipid metabolism, have been highlighted. This review addresses current studies investigating the roles of CGA in glucose and lipid metabolism. PMID:24062792

  6. Breast cancer-secreted miR-122 reprograms glucose metabolism in pre-metastatic niche to promote metastasis

    PubMed Central

    Fong, Miranda Y.; Zhou, Weiying; Liu, Liang; Alontaga, Aileen Y.; Chandra, Manasa; Ashby, Jonathan; Chow, Amy; O’Connor, Sean Timothy Francis; Li, Shasha; Chin, Andrew R.; Somlo, George; Palomares, Melanie; Li, Zhuo; Tremblay, Jacob R.; Tsuyada, Akihiro; Sun, Guoqiang; Reid, Michael A.; Wu, Xiwei; Swiderski, Piotr; Ren, Xiubao; Shi, Yanhong; Kong, Mei; Zhong, Wenwan; Chen, Yuan; Wang, Shizhen Emily

    2015-01-01

    Reprogrammed glucose metabolism as a result of increased glycolysis and glucose uptake is a hallmark of cancer. Here we show that cancer cells can suppress glucose uptake by non-tumour cells in the pre-metastatic niche, by secreting vesicles that carry high levels of the miR-122 microRNA. High miR-122 levels in the circulation have been associated with metastasis in breast cancer patients and we show that cancer-cell-secreted miR-122 facilitates metastasis by increasing nutrient availability in the pre-metastatic niche. Mechanistically cancer-cell-derived miR-122 suppresses glucose uptake by niche cells in vitro and in vivo by downregulating the glycolytic enzyme pyruvate kinase (PKM). In vivo inhibition of miR-122 restores glucose uptake in distant organs, including brain and lungs, and decreases the incidence of metastasis. These results demonstrate that by modifying glucose utilization by recipient pre-metastatic niche cells, cancer-derived extracellular miR-122 is able to reprogram systemic energy metabolism to facilitate disease progression. PMID:25621950

  7. Protective effects of epoxypukalide on pancreatic β-cells and glucose metabolism in STZ-induced diabetic mice

    PubMed Central

    López-Acosta, Jose F; Villa-Pérez, Pablo; Fernández-Díaz, Cristina M; Román, Daniel de Luis; Díaz-Marrero, Ana R; Cueto, Mercedes; Perdomo, Germán; Cózar-Castellano, Irene

    2015-01-01

    Diabetes is a consequence of a decrease on functional β-cell mass. We have recently demonstrated that epoxypukalide (Epoxy) is a natural compound with beneficial effects on primary cultures of rat islets. In this study, we extend our previous investigations to test the hypothesis that Epoxy protects β-cells and improves glucose metabolism in STZ-induced diabetic mice. We used 3-months old male mice that were treated with Epoxy at 200 μg/kg body weight. Glucose intolerance was induced by multiple intraperitoneal low-doses of streptozotocin (STZ) on 5 consecutive days. Glucose homeostasis was evaluated measuring plasma insulin levels and glucose tolerance. Histomorphometry was used to quantify the number of pancreatic β-cells per islet. β-cell proliferation was assessed by BrdU incorporation, and apoptosis by TUNEL staining. Epoxy treatment significantly improved glucose tolerance and plasma insulin levels. These metabolic changes were associated with increased β-cell numbers, as a result of a two-fold increase in β-cell proliferation and a 50% decrease in β-cell death. Our results demonstrate that Epoxy improves whole-body glucose homeostasis by preventing pancreatic β-cell death due to STZ-induced toxicity in STZ-treated mice. PMID:26406478

  8. Glucose and fat metabolism in adipose tissue of acetyl-CoA carboxylase 2 knockout mice

    PubMed Central

    Oh, WonKeun; Abu-Elheiga, Lutfi; Kordari, Parichher; Gu, Zeiwei; Shaikenov, Tattym; Chirala, Subrahmanyam S.; Wakil, Salih J.

    2005-01-01

    Acc2-/- mutant mice, when fed a high-fat/high-carbohydrate (HF/HC) diet, were protected against diet-induced obesity and diabetes. To investigate the role of acetyl-CoA carboxylase 2 (ACC2) in the regulation of energy metabolism in adipose tissues, we studied fatty acid and glucose oxidation in primary cultures of adipocytes isolated from wild-type and Acc2-/- mutant mice fed either normal chow or a HF/HC diet. When fed normal chow, oxidation of [14C]palmitate in adipocytes of Acc2-/- mutant mice was ≈80% higher than in adipocytes of WT mice, and it remained significantly higher in the presence of insulin. Interestingly, in addition to increased fatty acid oxidation, we also observed increased glucose oxidation in adipocytes of Acc2-/- mutant mice compared with that of WT mice. When fed a HF/HC diet for 4-5 months, adipocytes of Acc2-/- mutant mice maintained a 25% higher palmitate oxidation and a 2-fold higher glucose oxidation than WT mice. The mRNA level of glucose transporter 4 (GLUT4) decreased several fold in the adipose tissue of WT mice fed a HF/HC diet; however, in the adipose tissue of Acc2-/- mutant mice, it was 7-fold higher. Moreover, lipolysis activity was higher in adipocytes of Acc2-/- mutant mice compared with that in WT mice. These findings suggest that continuous fatty acid oxidation in the adipocytes of Acc2-/- mutant mice, combined with a higher level of glucose oxidation and a higher rate of lipolysis, are major factors leading to efficient maintenance of insulin sensitivity and leaner Acc2-/- mutant mice. PMID:15677334

  9. Interactions of glucagon and free fatty acids with insulin in control of glucose metabolism

    SciTech Connect

    Chambrier, C.; Picard, S.; Vidal, H.; Cohen, R.; Riou, J.P.; Beylot, M. )

    1990-09-01

    To study the interactions of physiological glucagon and free fatty acids (FFA) concentrations with insulin in the control of glucose metabolism, we determined in normal subjects the response of endogenous glucose production (EGP) and glucose utilization (Rd) to a progressive and moderate increase of insulinemia in the presence of glucagon and FFA levels either decreased (somatostatin (SRIF) and insulin infusion, C test) or maintained to normal postabsorptive values isolated (SRIF + insulin + glucagon infusion, G test; SRIF + insulin + Intralipid infusion, IL test) or in association (SRIF + insulin + glucagon + Intralipid infusion, IL + G test). Compared with the C test, maintenance of glucagon level had only small and inconsistent effects on glucose Rd, but induced a shift to the right of the dose-response curve to insulin of EGP (apparent ED50: C test, 10.9 mU.L-1; G test, 15.2 mU.L-1). Intralipid infusion resulted, whether glucagon was substituted or not, in a near total suppression of the insulin-induced increase of glucose Rd (Rd at the end of the tests: C test, 6.13 +/- 0.85 mg.kg-1.min-1; G test, 7.29 +/- 0.87 mg.kg-1.min-1; IL test, 3.30 +/- 0.65 mg.kg-1.min-1; IL + G test, 3.57 +/- 0.42 mg.kg-1.min-1). In the absence of glucagon, substitution Intralipid infusion also antagonized the action of insulin on EGP. However, this effect was no longer apparent when glucagon was replaced (dose-response curve to insulin of EGP during the G and the IL + G test were comparable).

  10. Glucagon-like peptide-1 (GLP-1) and glucose metabolism in human myocytes.

    PubMed

    Luque, M A; González, N; Márquez, L; Acitores, A; Redondo, A; Morales, M; Valverde, I; Villanueva-Peñacarrillo, M L

    2002-06-01

    Glucagon-like peptide-1 (GLP-1) has been shown to have insulin-like effects upon the metabolism of glucose in rat liver, muscle and fat, and on that of lipids in rat and human adipocytes. These actions seem to be exerted through specific receptors which, unlike that of the pancreas, are not - at least in liver and muscle - cAMP-associated. Here we have investigated the effect, its characteristics, and possible second messengers of GLP-1 on the glucose metabolism of human skeletal muscle, in tissue strips and primary cultured myocytes. In muscle strips, GLP-1, like insulin, stimulated glycogen synthesis, glycogen synthase a activity, and glucose oxidation and utilization, and inhibited glycogen phosphorylase a activity, all of this at physiological concentrations of the peptide. In cultured myotubes, GLP-1 exerted, from 10(-13) mol/l, a dose-related increase of the D-[U-(14)C]glucose incorporation into glycogen, with the same potency as insulin, together with an activation of glycogen synthase a; the effect of 10(-11) mol/l GLP-1 on both parameters was additive to that induced by the equimolar amount of insulin. Synthase a was still activated in cells after 2 days of exposure to GLP-1, as compared with myotubes maintained in the absence of peptide. In human muscle cells, exendin-4 and its truncated form 9-39 amide (Ex-9) are both agonists of the GLP-1 effect on glycogen synthesis and synthase a activity; but while neither GLP-1 nor exendin-4 affected the cellular cAMP content after 5-min incubation in the absence of 3-isobutyl-1-methylxantine (IBMX), an increase was detected with Ex-9. GLP-1, exendin-4, Ex-9 and insulin all induced the prompt hydrolysis of glycosylphosphatidylinositols (GPIs). This work shows a potent stimulatory effect of GLP-1 on the glucose metabolism of human skeletal muscle, and supports the long-term therapeutic value of the peptide. Further evidence for a GLP-1 receptor in this tissue, different from that of the pancreas, is also illustrated

  11. Afamin promotes glucose metabolism in papillary thyroid carcinoma.

    PubMed

    Shen, Chen-Tian; Wei, Wei-Jun; Qiu, Zhong-Ling; Song, Hong-Jun; Luo, Quan-Yong

    2016-10-15

    Circulating afamin (AFM) concentrations have been investigated as a tumor biomarker in various types of carcinomas. However, suitable cell lines expressing human afamin have not yet been reported and current knowledge of the functions of afamin, particularly at the mechanistic molecular level, is very limited. In the current study, thyroid cancer cell lines 8505c and K1 were used to investigate the potential functions of afamin. AFM over-expression models and vector controls of 8505c (8505c + AFM and 8505c + NC) and K1 (K1 + AFM and K1 + NC) were successfully established by Lenti-LV5-AFM and Lenti-LV5-NC transfection. The change of gene expression was detected by qRT-PCR and western blotting analysis. (18)F-FDG imaging in xenografts model was performed using a micro PET/CT. We found that protein level of GAPDH, GLUT1, HK2, p-AKT, AKT, p-mTOR and PARP1 were up-regulated in K1 + AFM cells when compared to K1 and K1 + NC. While in 8505c, 8505c + NC and 8505c cells, the expression level of these genes were not significantly changed. (18)F-FDG uptake was much higher in K1 + AFM cells when compared to K1 and K1 + NC in vitro and in vivo. In conclusion, afamin could promote glycometabolism by up-regulating the glucose metabolism key enzymes in papillary thyroid carcinoma. These findings reveal new clues of the molecular function of AFM. PMID:27329154

  12. Alterations in Glucose Metabolism on Cognition: A Possible Link Between Diabetes and Dementia.

    PubMed

    González-Reyes, Rodrigo E; Aliev, Gjumrakch; Ávila-Rodrigues, Marco; Barreto, George E

    2016-01-01

    The use of the carbohydrate glucose as an energetic source is essential for an adequate function of the human body. The complex regulation of this molecule involves the coordinated action of various organs such as pancreas, liver and brain. Any disruption of this physiological balance may result in a dangerous compromise of general metabolic activities increasing the possibility of developing T1DM, T2DM and possibly AD. Astrocytes convert glucose into lactate and transfer it to neurons. This lactate is essential for neuronal metabolism and for various processes including the formation of synapses, dendrites and the expression of genes involved in memory. The brain is highly susceptible to variations in glucose blood levels, and both hypoglycemia and hyperglycemia can be dangerous. Pathological hyperglycemia induces changes in plasmatic osmotic pressure, mitochondrial production of free radicals, oxidative stress and activation of neuronal apoptosis, among others. Both AD and diabetes are chronic diseases having age as an important risk factor. As the brain ages, it seems to become much more susceptible to cellular damage induced by excess of circulating glucose and this could explain the appearance of cognitive changes observed in some patients with diabetes. Excessive circulation of pro-inflammatory agents has been observed in insulin resistance and is likely that some of these mediators may cross the bloodbrain barrier and induce abnormal neuroinflammation. GSK-3 is overexpressed in diabetes and also has been reported to regulate tau phosphorylation and production of Aβ peptides in the brain. Currently, diabetes (hyperglycemia) is considered as a risk factor for the development of AD. A novel therapeutic approach, using intranasal insulin and anti-diabetic medications in patients suffering from AD is being explored and is discussed in this review. PMID:26648470

  13. Effects of dehydroepiandrosterone (DHEA) on glucose metabolism in isolated hepatocytes from Zucker rats

    SciTech Connect

    Finan, A.; Cleary, M.P.

    1986-03-05

    DHEA has been shown to competitively inhibit the pentose phosphate shunt (PPS) enzyme glucose-6-phosphate dehydrogenase (G6PD) when added in vitro to supernatants or homogenates prepared from mammalian tissues. However, no consistent effect on G6PD activity has been determined in tissue removed from DHEA-treated rats. To explore the effects of DHEA on PPS, glucose utilization was measured in hepatocytes from lean and obese male Zucker rats (8 wks of age) following 1 wk of DHEA treatment (0.6% in diet). Incubation of isolated hepatocytes from treated lean Zucker rats with either (1-/sup 14/C) glucose or (6-/sup 14/C) glucose resulted in significant decreases in CO/sub 2/ production and total glucose utilization. DHEA-lean rats also had lowered fat pad weights. In obese rats, there was no effect of 1 wk of treatment on either glucose metabolism or fat pad weight. The calculated percent contribution of the PPS to glucose metabolism in hepatocytes was not changed for either DHEA-lean or obese rats when compared to control rats. In conclusion, 1 wk of DHEA treatment lowered overall glucose metabolism in hepatocytes of lean Zucker rats, but did not selectively affect the PPS. The lack of an effect of short-term treatment in obese rats may be due to differences in their metabolism or storage/release of DHEA in tissues in comparison to lean rats.

  14. Decoding Alzheimer's disease from perturbed cerebral glucose metabolism: implications for diagnostic and therapeutic strategies.

    PubMed

    Chen, Zhichun; Zhong, Chunjiu

    2013-09-01

    Alzheimer's disease (AD) is an age-related devastating neurodegenerative disorder, which severely impacts on the global economic development and healthcare system. Though AD has been studied for more than 100 years since 1906, the exact cause(s) and pathogenic mechanism(s) remain to be clarified. Also, the efficient disease-modifying treatment and ideal diagnostic method for AD are unavailable. Perturbed cerebral glucose metabolism, an invariant pathophysiological feature of AD, may be a critical contributor to the pathogenesis of this disease. In this review, we firstly discussed the features of cerebral glucose metabolism in physiological and pathological conditions. Then, we further reviewed the contribution of glucose transportation abnormality and intracellular glucose catabolism dysfunction in AD pathophysiology, and proposed a hypothesis that multiple pathogenic cascades induced by impaired cerebral glucose metabolism could result in neuronal degeneration and consequently cognitive deficits in AD patients. Among these pathogenic processes, altered functional status of thiamine metabolism and brain insulin resistance are highly emphasized and characterized as major pathogenic mechanisms. Finally, considering the fact that AD patients exhibit cerebral glucose hypometabolism possibly due to impairments of insulin signaling and altered thiamine metabolism, we also discuss some potential possibilities to uncover diagnostic biomarkers for AD from abnormal glucose metabolism and to develop drugs targeting at repairing insulin signaling impairment and correcting thiamine metabolism abnormality. We conclude that glucose metabolism abnormality plays a critical role in AD pathophysiological alterations through the induction of multiple pathogenic factors such as oxidative stress, mitochondrial dysfunction, and so forth. To clarify the causes, pathogeneses and consequences of cerebral hypometabolism in AD will help break the bottleneck of current AD study in finding

  15. Glucose transport and glucose transporter GLUT4 are regulated by product(s) of intermediary metabolism in cardiomyocytes.

    PubMed Central

    Fischer, Y; Böttcher, U; Eblenkamp, M; Thomas, J; Jüngling, E; Rösen, P; Kammermeier, H

    1997-01-01

    Alternative substrates of energy metabolism are thought to contribute to the impairment of heart and muscle glucose utilization in insulin-resistant states. We have investigated the acute effects of substrates in isolated rat cardiomyocytes. Exposure to lactate, pyruvate, propionate, acetate, palmitate, beta-hydroxybutyrate or alpha-oxoglutarate led to the depression of glucose transport by up to 50%, with lactate, pyruvate and propionate being the most potent agents. The percentage inhibition was greater in cardiomyocytes in which glucose transport was stimulated with the alpha-adrenergic agonist phenylephrine or with a submaximal insulin concentration than in basal or fully insulin-stimulated cells. Cardiomyocytes from fasted or diabetic rats displayed a similar sensitivity to substrates as did cells from control animals. On the other hand, the amination product of pyruvate (alanine), as well as valine and the aminotransferase inhibitors cycloserine and amino-oxyacetate, stimulated glucose transport about 2-fold. In addition, the effect of pyruvate was counteracted by cycloserine. Since reversible transamination reactions are known to affect the pool size of the citrate cycle, the influence of substrates, amino acids and aminotransferase inhibitors on citrate, malate and glutamate content was examined. A significant negative correlation was found between alterations in glucose transport and the levels of citrate (P < 0.01) or malate (P < 0.01), and there was a positive correlation between glucose transport and glutamate levels (P < 0.05). In contrast, there was no correlation with changes in [1-(14)C]pyruvate oxidation or in glucose-6-phosphate levels. Finally, pyruvate decreased the abundance of GLUT4 glucose transporters at the surface of phenylephrine- or insulin-stimulated cells by 34% and 27 % respectively, as determined by using the selective photoaffinity label [3H]ATB-BMPA [[3H]2-N-[4-(1-azi-2,2,2-trifluoroethyl)benzoyl]-1,3-bis-(D-man nos-4-yloxy

  16. Butyrate and glucose metabolism by colonocytes in experimental colitis in mice

    PubMed Central

    Ahmad, M; Krishnan, S; Ramakrishna, B; Mathan, M; Pulimood, A; Murthy, S

    2000-01-01

    BACKGROUND/AIMS—Impaired colonocyte metabolism of butyrate has been implicated in the aetiopathogenesis of ulcerative colitis. Colonocyte butyrate metabolism was investigated in experimental colitis in mice.
METHODS—Colitis was induced in Swiss outbred white mice by oral administration of 4% dextran sulphate sodium (DSS). Colonocytes isolated from colitic and normal control mice were incubated with [14C]butyrate or glucose, and production of 14CO2, as well as of intermediate metabolites (acetoacetate, β-hydroxybutyrate and lactate), was measured. The effect of different substrate concentrations on oxidation was also examined.
RESULTS—Butyrate oxidation (µmol/h per mg protein; mean (SEM)) was significantly reduced in DSS colitis, values on day 7 of DSS administration being 0.177 (0.007) compared with 0.406 (0.035) for control animals (p<0.001). Glucose oxidation (µmol/h per mg protein; mean (SEM)) on day 7 of DSS administration was significantly higher than in controls (0.06 (0.006) v 0.027 (0.004), p<0.001). Production of β-hydroxybutyrate was decreased and production of lactate increased in DSS colitis compared with controls. Increasing butyrate concentration from 10 to 80 mM enhanced oxidation in DSS colitis (0.036 (0.002) to 0.285 (0.040), p<0.001), although it continued to remain lower than in controls. Surface and crypt epithelial cells showed similar ratios of butyrate to glucose oxidation. When 1 mM DSS was added to normal colonocytes in vitro, it did not alter butyrate oxidation. The initial histological lesion of DSS administration was very patchy and involved crypt cells. Abnormal butyrate oxidation became apparent only after six days of DSS administration, at which time histological abnormalities were more widespread.
CONCLUSIONS—Colonocyte metabolism of butyrate, but not of glucose, is impaired in DSS colitis, and may be important in pathophysiology. Histological abnormalities preceded measurable defects in butyrate

  17. Glucose and Glycogen Metabolism in Brugia malayi Is Associated with Wolbachia Symbiont Fitness

    PubMed Central

    Voronin, Denis; Bachu, Saheed; Shlossman, Michael; Unnasch, Thomas R.; Ghedin, Elodie; Lustigman, Sara

    2016-01-01

    Wolbachia are endosymbiotic bacteria found in the majority of arthropods and filarial nematodes of medical and veterinary importance. They have evolved a wide range of symbiotic associations. In filarial nematodes that cause human lymphatic filariasis (Wuchereria bancrofti, Brugia malayi) or onchocerciasis (Onchocerca volvulus), Wolbachia are important for parasite development, reproduction and survival. The symbiotic bacteria rely in part on nutrients and energy sources provided by the host. Genomic analyses suggest that the strain of Wolbachia found in B. malayi (wBm) lacks the genes for two glycolytic enzymes—6-phosphofructokinase and pyruvate kinase—and is thus potentially unable to convert glucose into pyruvate, an important substrate for energy generation. The Wolbachia surface protein, wBm00432, is complexed to six B. malayi glycolytic enzymes, including aldolase. In this study we characterized two B. malayi aldolase isozymes and found that their expression is dependent on Wolbachia fitness and number. We confirmed by immuno-transmission electron microscopy that aldolase is associated with the Wolbachia surface. RNAi experiments suggested that aldolase-2 plays a significant role in both Wolbachia survival and embryogenesis in B. malayi. Treatment with doxycycline reduced Wolbachia fitness and increased the amount of both glucose and glycogen detected in the filarial parasite, indicating that glucose metabolism and glycogen storage in B. malayi are associated with Wolbachia fitness. This metabolic co-dependency between Wolbachia and its filarial nematode indicates that glycolysis could be a shared metabolic pathway between the bacteria and B. malayi, and thus a potential new target for anti-filarial therapy. PMID:27078260

  18. Glucose and Glycogen Metabolism in Brugia malayi Is Associated with Wolbachia Symbiont Fitness.

    PubMed

    Voronin, Denis; Bachu, Saheed; Shlossman, Michael; Unnasch, Thomas R; Ghedin, Elodie; Lustigman, Sara

    2016-01-01

    Wolbachia are endosymbiotic bacteria found in the majority of arthropods and filarial nematodes of medical and veterinary importance. They have evolved a wide range of symbiotic associations. In filarial nematodes that cause human lymphatic filariasis (Wuchereria bancrofti, Brugia malayi) or onchocerciasis (Onchocerca volvulus), Wolbachia are important for parasite development, reproduction and survival. The symbiotic bacteria rely in part on nutrients and energy sources provided by the host. Genomic analyses suggest that the strain of Wolbachia found in B. malayi (wBm) lacks the genes for two glycolytic enzymes--6-phosphofructokinase and pyruvate kinase--and is thus potentially unable to convert glucose into pyruvate, an important substrate for energy generation. The Wolbachia surface protein, wBm00432, is complexed to six B. malayi glycolytic enzymes, including aldolase. In this study we characterized two B. malayi aldolase isozymes and found that their expression is dependent on Wolbachia fitness and number. We confirmed by immuno-transmission electron microscopy that aldolase is associated with the Wolbachia surface. RNAi experiments suggested that aldolase-2 plays a significant role in both Wolbachia survival and embryogenesis in B. malayi. Treatment with doxycycline reduced Wolbachia fitness and increased the amount of both glucose and glycogen detected in the filarial parasite, indicating that glucose metabolism and glycogen storage in B. malayi are associated with Wolbachia fitness. This metabolic co-dependency between Wolbachia and its filarial nematode indicates that glycolysis could be a shared metabolic pathway between the bacteria and B. malayi, and thus a potential new target for anti-filarial therapy. PMID:27078260

  19. Metabolic engineering of Corynebacterium glutamicum to produce GDP-L-fucose from glucose and mannose.

    PubMed

    Chin, Young-Wook; Park, Jin-Byung; Park, Yong-Cheol; Kim, Kyoung Heon; Seo, Jin-Ho

    2013-06-01

    Wild-type Corynebacterium glutamicum was metabolically engineered to convert glucose and mannose into guanosine 5'-diphosphate (GDP)-L-fucose, a precursor of fucosyl-oligosaccharides, which are involved in various biological and pathological functions. This was done by introducing the gmd and wcaG genes of Escherichia coli encoding GDP-D-mannose-4,6-dehydratase and GDP-4-keto-6-deoxy-D-mannose-3,5-epimerase-4-reductase, respectively, which are known as key enzymes in the production of GDP-L-fucose from GDP-D-mannose. Coexpression of the genes allowed the recombinant C. glutamicum cells to produce GDP-L-fucose in a minimal medium containing glucose and mannose as carbon sources. The specific product formation rate was much higher during growth on mannose than on glucose. In addition, the specific product formation rate was further increased by coexpressing the endogenous phosphomanno-mutase gene (manB) and GTP-mannose-1-phosphate guanylyl-transferase gene (manC), which are involved in the conversion of mannose-6-phosphate into GDP-D-mannose. However, the overexpression of manA encoding mannose-6-phosphate isomerase, catalyzing interconversion of mannose-6-phosphate and fructose-6-phosphate showed a negative effect on formation of the target product. Overall, coexpression of gmd, wcaG, manB and manC in C. glutamicum enabled production of GDP-L-fucose at the specific rate of 0.11 mg g cell(-1) h(-1). The specific GDP-L-fucose content reached 5.5 mg g cell(-1), which is a 2.4-fold higher than that of the recombinant E. coli overexpressing gmd, wcaG, manB and manC under comparable conditions. Well-established metabolic engineering tools may permit optimization of the carbon and cofactor metabolisms of C. glutamicum to further improve their production capacity. PMID:23404100

  20. Effects of Treatment for Tobacco Dependence on Resting Cerebral Glucose Metabolism

    PubMed Central

    Costello, Matthew R; Mandelkern, Mark A; Shoptaw, Stephen; Shulenberger, Stephanie; Baker, Stephanie K; Abrams, Anna L; Xia, Catherine; London, Edythe D; Brody, Arthur L

    2010-01-01

    While bupropion HCl and practical group counseling (PGC) are commonly used treatments for tobacco dependence, the effects of these treatments on brain function are not well established. For this study, 54 tobacco-dependent cigarette smokers underwent resting 18F-fluorodeoxyglucose–positron emission tomography (FDG–PET) scanning before and after 8 weeks of treatment with bupropion HCl, PGC, or pill placebo. Using Statistical Parametric Mapping (SPM 2), changes in cerebral glucose metabolism from before to after treatment were compared between treatment groups and correlations were determined between amount of daily cigarette usage and cerebral glucose metabolism. Compared with placebo, the two active treatments (bupropion HCl and PGC) had reductions in glucose metabolism in the posterior cingulate gyrus. Further analysis suggested that PGC had a greater effect than bupropion HCl on glucose metabolism in this region. We also found positive correlations between daily cigarette use and glucose metabolism in the left occipital gyrus and parietal–temporal junction. There were no significant negative correlations between daily cigarette use and glucose metabolism. Our findings suggest that bupropion HCl and PGC reduce neural activity much as the performance of a goal-oriented task does in the default mode network of the brain, including the posterior cingulate gyrus. Thus, this study supports the theory that active treatments for tobacco dependence move the brain into a more goal-oriented state. PMID:19865076

  1. Cold adaptation increases rates of nutrient flow and metabolic plasticity during cold exposure in Drosophila melanogaster.

    PubMed

    Williams, Caroline M; McCue, Marshall D; Sunny, Nishanth E; Szejner-Sigal, Andre; Morgan, Theodore J; Allison, David B; Hahn, Daniel A

    2016-09-14

    Metabolic flexibility is an important component of adaptation to stressful environments, including thermal stress and latitudinal adaptation. A long history of population genetic studies suggest that selection on core metabolic enzymes may shape life histories by altering metabolic flux. However, the direct relationship between selection on thermal stress hardiness and metabolic flux has not previously been tested. We investigated flexibility of nutrient catabolism during cold stress in Drosophila melanogaster artificially selected for fast or slow recovery from chill coma (i.e. cold-hardy or -susceptible), specifically testing the hypothesis that stress adaptation increases metabolic turnover. Using (13)C-labelled glucose, we first showed that cold-hardy flies more rapidly incorporate ingested carbon into amino acids and newly synthesized glucose, permitting rapid synthesis of proline, a compound shown elsewhere to improve survival of cold stress. Second, using glucose and leucine tracers we showed that cold-hardy flies had higher oxidation rates than cold-susceptible flies before cold exposure, similar oxidation rates during cold exposure, and returned to higher oxidation rates during recovery. Additionally, cold-hardy flies transferred compounds among body pools more rapidly during cold exposure and recovery. Increased metabolic turnover may allow cold-adapted flies to better prepare for, resist and repair/tolerate cold damage. This work illustrates for the first time differences in nutrient fluxes associated with cold adaptation, suggesting that metabolic costs associated with cold hardiness could invoke resource-based trade-offs that shape life histories. PMID:27605506

  2. High consumption of pulses is associated with lower risk of abnormal glucose metabolism in women in Mauritius

    PubMed Central

    Wennberg, M.; Söderberg, S.; Uusitalo, U.; Tuomilehto, J.; Shaw, J. E.; Zimmet, P. Z.; Kowlessur, S.; Pauvaday, V.; Magliano, D. J.

    2014-01-01

    Aims To investigate if consumption of pulses was associated with a reduced risk of developing abnormal glucose metabolism, increases in body weight and increases in waist circumference in a multi-ethnic cohort in Mauritius. Methods Population-based surveys were performed in Mauritius in 1992 and in 1998. Pulse consumption was estimated from a food frequency questionnaire in 1992 and outcomes were measured in 1998. At both time points, anthropometry was undertaken and an oral glucose tolerance test was performed. Results Mauritian women with the highest consumption of pulses (highest tertile) had a reduced risk of developing abnormal glucose metabolism [odds ratio 0.52; 95% CI 0.27, 0.99) compared with those with the lowest consumption, and also after multivariable adjustments. In women, a high consumption of pulses was associated with a smaller increase in BMI. Conclusions High consumption of pulses was associated with a reduced risk of abnormal glucose metabolism and a smaller increase in BMI in Mauritian women. Promotion of pulse consumption could be an important dietary intervention for the prevention of Type 2 diabetes and obesity in Mauritius and should be examined in other populations and in clinical trials. PMID:25346062

  3. Effects of CDP-choline on neurologic deficits and cerebral glucose metabolism in a rat model of cerebral ischemia

    SciTech Connect

    Kakihana, M.; Fukuda, N.; Suno, M.; Nagaoka, A.

    1988-02-01

    The effects of cytidine 5'-diphosphocholine (CDP-choline) on neurologic deficits and cerebral glucose metabolism were studied in a rat model of transient cerebral ischemia. Cerebral ischemia was induced by occluding both common carotid arteries for 20 or 30 minutes 24 hours after the vertebral arteries were permanently occluded by electrocautery. CDP-choline was administered intraperitoneally twice daily for 4 days after reestablishing carotid blood flow. CDP-choline at two dosages (50 and 250 mg/kg) shortened the time required for recovery of spontaneous motor activity in a dose-related manner; recovery time was measured early after reperfusion. Neurologic signs were observed for 10 days. High-dose CDP-choline improved neurologic signs in the rats within 20-30 minutes of ischemia. When cerebral glucose metabolism was assessed on Day 4, increases in the levels of glucose and pyruvate were accompanied by decreases in the synthesis of labeled acetylcholine from uniformly labeled (/sup 14/C)glucose measured in the cerebral cortex of rats with 30 minutes of ischemia. High-dose CDP-choline also attenuated changes in these variables. CDP-(1,2-/sup 14/C)choline injected intravenously 10 minutes after reperfusion was used for membrane lipid biosynthesis. These results indicate that CDP-choline has beneficial effects on brain dysfunction induced by cerebral ischemia, which may be due in part to the restorative effects of CDP-choline on disturbed cerebral glucose metabolism, probably by stimulating phospholipid biosynthesis.

  4. Investigation of Metabolism of Exogenous Glucose at the Early Stage and Onset of Diabetes Mellitus in Otsuka Long-Evans Tokushima Fatty Rats Using [1, 2, 3-13C]Glucose Breath Tests

    PubMed Central

    Kijima, Sho; Tanaka, Hideki

    2016-01-01

    This study aimed to evaluate changes in glucose metabolism at the early stage and onset of diabetes in Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Specifically, after the oral administration of [1, 2, 3-13C]glucose, the levels of exhaled 13CO2, which most likely originated from pyruvate decarboxylation and tricarboxylic acid, were measured. Eight OLETF rats and eight control rats (Long-Evans Tokushima Otsuka [LETO]) were administered 13C-glucose. Three types of 13C-glucose breath tests were performed thrice in each period at 2-week intervals. [3-13C]glucose results in a 13C isotope at position 1 in the pyruvate molecule, which provides 13CO2. The 13C at carbons 1 and 2 of glucose is converted to 13C at carbons 2 and 1 of acetate, respectively, which produce 13CO2. Based on metabolic differences of the labeled sites, glucose metabolism was evaluated using the results of three breath tests. The increase in 13CO2 excretion in OLETF rats was delayed in all three breath tests compared to that in control rats, suggesting that OLETF rats had a lower glucose metabolism than control rats. In addition, overall glucose metabolism increased with age in both groups. The utilization of [2-13C]glucose was suppressed in OLETF rats at 6–12 weeks of age, but they showed higher [3-13C]glucose oxidation than control rats at 22–25 weeks of age. In the [1-13C]glucose breath test, no significant differences in the area under the curve until 180 minutes (AUC180) were observed between OLETF and LETO rats of any age. Glucose metabolism kinetics were different between the age groups and two groups of rats; however, these differences were not significant based on the overall AUC180 of [1-13C]glucose. We conclude that breath 13CO2 excretion is reduced in OLETF rats at the primary stage of prediabetes, indicating differences in glucose oxidation kinetics between OLETF and LETO rats. PMID:27483133

  5. MAPK14/p38α-dependent modulation of glucose metabolism affects ROS levels and autophagy during starvation

    PubMed Central

    Desideri, Enrico; Vegliante, Rolando; Cardaci, Simone; Nepravishta, Ridvan; Paci, Maurizio; Ciriolo, Maria Rosa

    2014-01-01

    Increased glycolytic flux is a common feature of many cancer cells, which have adapted their metabolism to maximize glucose incorporation and catabolism to generate ATP and substrates for biosynthetic reactions. Indeed, glycolysis allows a rapid production of ATP and provides metabolic intermediates required for cancer cells growth. Moreover, it makes cancer cells less sensitive to fluctuations of oxygen tension, a condition usually occurring in a newly established tumor environment. Here, we provide evidence for a dual role of MAPK14 in driving a rearrangement of glucose metabolism that contributes to limiting reactive oxygen species (ROS) production and autophagy activation in condition of nutrient deprivation. We demonstrate that MAPK14 is phosphoactivated during nutrient deprivation and affects glucose metabolism at 2 different levels: on the one hand, it increases SLC2A3 mRNA and protein levels, resulting in a higher incorporation of glucose within the cell. This event involves the MAPK14-mediated enhancement of HIF1A protein stability. On the other hand, MAPK14 mediates a metabolic shift from glycolysis to the pentose phosphate pathway (PPP) through the modulation of PFKFB3 (6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase 3) degradation by the proteasome. This event requires the presence of 2 distinct degradation sequences, KEN box and DSG motif Ser273, which are recognized by 2 different E3 ligase complexes. The mutation of either motif increases PFKFB3 resistance to starvation-induced degradation. The MAPK14-driven metabolic reprogramming sustains the production of NADPH, an important cofactor for many reduction reactions and for the maintenance of the proper intracellular redox environment, resulting in reduced levels of ROS. The final effect is a reduced activation of autophagy and an increased resistance to nutrient deprivation. PMID:25046111

  6. Morning cortisol levels and glucose metabolism parameters in moderate and severe obstructive sleep apnea patients.

    PubMed

    Bozic, Josko; Galic, Tea; Supe-Domic, Daniela; Ivkovic, Natalija; Ticinovic Kurir, Tina; Valic, Zoran; Lesko, Josip; Dogas, Zoran

    2016-09-01

    Obstructive sleep apnea (OSA) has been associated with dysregulation of the hypothalamic-pituitary-adrenal axis and alterations in glucose metabolism with increased risk for type 2 diabetes. The aim of the current study was to compare morning plasma cortisol levels and glucose metabolism parameters between moderate (apnea-hypopnea index (AHI): 15-30 events/h) and severe OSA patients (AHI >30 events/h), with respective controls. A total of 56 male OSA patients, 24 moderate (AHI = 21.1 ± 5.3) and 32 severe (AHI = 49.7 ± 18.1), underwent a full-night polysomnography, oral glucose tolerance test (OGTT), and measurement of morning plasma cortisol levels. These groups were compared to 20 matched subjects in a control group. Morning plasma cortisol levels were statistically lower in severe OSA group than in moderate OSA and control groups (303.7 ± 93.5 vs. 423.9 ± 145.1 vs. 417.5 ± 99.8 pmol/L, P < 0.001). Significant negative correlations were found between morning plasma cortisol levels and AHI (r = -0.444, P = 0.002), as well as oxygen desaturation index (r = -0.381, P = 0.011). Fasting plasma glucose (5.0 ± 0.5 vs. 5.4 ± 0.7 vs. 4.9 ± 0.6 mmol/L, P = 0.009) was higher in the severe OSA group compared to moderate OSA and controls. Homeostasis model assessment insulin resistance (HOMA-IR) was higher in the severe OSA group compared to moderate OSA and controls (4.6 ± 3.7 vs. 2.7 ± 2.0 and 2.2 ± 1.8, respectively, P = 0.006). In conclusion, our study showed that morning plasma cortisol levels measured at 8 a.m. were significantly lower in severe OSA patients than those in moderate OSA group and controls. Morning plasma cortisol levels showed a negative correlation with AHI and oxygen desaturation index. Additionally, this study confirmed the evidence of glucose metabolism impairment in moderate and severe OSA patients, with more pronounced effect in the severe OSA patients group. PMID:27000083

  7. Increased in vivo glucose utilization in 30-day-old obese Zucker rat: Role of white adipose tissue

    SciTech Connect

    Krief, S.; Bazin, R.; Dupuy, F.; Lavau, M. )

    1988-03-01

    In vivo whole-body glucose utilization and uptake in multiple individual tissues were investigated in conscious 30-day-old Zucker rats, which when obese are hyperphagic, hyperinsulinemic, and normoglycemic. Whole-body glucose metabolism (assessed by (3-{sup 3}H)glucose) was 40% higher in obese (fa/fa) than in lean (Fa/fa) rats, suggesting that obese rats were quite responsive to their hyperinsulinemia. In obese compared with lean rats, tissue glucose uptake was increased by 15, 12, and 6 times in dorsal, inguinal, perigonadal white depots, respectively; multiplied by 2.5 in brown adipose tissue; increased by 50% in skin from inguinal region but not in that from cranial, thoracic, or dorsal area; and increased twofold in diaphragm but similar in heart in proximal intestine, and in total muscular mass of limbs. The data establish that in young obese rats the hypertrophied white adipose tissue was a major glucose-utilizing tissue whose capacity for glucose disposal compared with that of half the muscular mass. Adipose tissue could therefore play an important role in the homeostasis of glucose in obese rats in the face of their increased carbohydrate intake.

  8. SCAP links glucose to lipid metabolism in cancer cells

    PubMed Central

    Guo, Deliang

    2016-01-01

    We recently uncovered that glucose is a critical activator of sterol regulatory element-binding proteins (SREBPs). Glucose promotes SREBP-cleavage activating protein (SCAP)/SREBP complex trafficking from the ER to the Golgi and subsequent SREBP activation via N-glycosylation of SCAP. Our study also demonstrated that SCAP plays a critical role in tumor growth. PMID:27065222

  9. Flavin containing monooxygenase 3 exerts broad effects on glucose and lipid metabolism and atherosclerosis.

    PubMed

    Shih, Diana M; Wang, Zeneng; Lee, Richard; Meng, Yonghong; Che, Nam; Charugundla, Sarada; Qi, Hannah; Wu, Judy; Pan, Calvin; Brown, J Mark; Vallim, Thomas; Bennett, Brian J; Graham, Mark; Hazen, Stanley L; Lusis, Aldons J

    2015-01-01

    We performed silencing and overexpression studies of flavin containing monooxygenase (FMO) 3 in hyperlipidemic mouse models to examine its effects on trimethylamine N-oxide (TMAO) levels and atherosclerosis. Knockdown of hepatic FMO3 in LDL receptor knockout mice using an antisense oligonucleotide resulted in decreased circulating TMAO levels and atherosclerosis. Surprisingly, we also observed significant decreases in hepatic lipids and in levels of plasma lipids, ketone bodies, glucose, and insulin. FMO3 overexpression in transgenic mice, on the other hand, increased hepatic and plasma lipids. Global gene expression analyses suggested that these effects of FMO3 on lipogenesis and gluconeogenesis may be mediated through the PPARα and Kruppel-like factor 15 pathways. In vivo and in vitro results were consistent with the concept that the effects were mediated directly by FMO3 rather than trimethylamine/TMAO; in particular, overexpression of FMO3 in the human hepatoma cell line, Hep3B, resulted in significantly increased glucose secretion and lipogenesis. Our results indicate a major role for FMO3 in modulating glucose and lipid homeostasis in vivo, and they suggest that pharmacologic inhibition of FMO3 to reduce TMAO levels would be confounded by metabolic interactions. PMID:25378658

  10. Flavin containing monooxygenase 3 exerts broad effects on glucose and lipid metabolism and atherosclerosis[S

    PubMed Central

    Shih, Diana M.; Wang, Zeneng; Lee, Richard; Meng, Yonghong; Che, Nam; Charugundla, Sarada; Qi, Hannah; Wu, Judy; Pan, Calvin; Brown, J. Mark; Vallim, Thomas; Bennett, Brian J.; Graham, Mark; Hazen, Stanley L.; Lusis, Aldons J.

    2015-01-01

    We performed silencing and overexpression studies of flavin containing monooxygenase (FMO) 3 in hyperlipidemic mouse models to examine its effects on trimethylamine N-oxide (TMAO) levels and atherosclerosis. Knockdown of hepatic FMO3 in LDL receptor knockout mice using an antisense oligonucleotide resulted in decreased circulating TMAO levels and atherosclerosis. Surprisingly, we also observed significant decreases in hepatic lipids and in levels of plasma lipids, ketone bodies, glucose, and insulin. FMO3 overexpression in transgenic mice, on the other hand, increased hepatic and plasma lipids. Global gene expression analyses suggested that these effects of FMO3 on lipogenesis and gluconeogenesis may be mediated through the PPARα and Kruppel-like factor 15 pathways. In vivo and in vitro results were consistent with the concept that the effects were mediated directly by FMO3 rather than trimethylamine/TMAO; in particular, overexpression of FMO3 in the human hepatoma cell line, Hep3B, resulted in significantly increased glucose secretion and lipogenesis. Our results indicate a major role for FMO3 in modulating glucose and lipid homeostasis in vivo, and they suggest that pharmacologic inhibition of FMO3 to reduce TMAO levels would be confounded by metabolic interactions. PMID:25378658

  11. Association between markers of glucose metabolism and risk of colorectal cancer

    PubMed Central

    Xu, Jinming; Ye, Yao; Wu, Han; Duerksen-Hughes, Penelope; Zhang, Honghe; Li, Peiwei; Huang, Jian; Yang, Jun; Wu, Yihua; Xia, Dajing

    2016-01-01

    Objectives Independent epidemiological studies have evaluated the association between markers of glucose metabolism (including fasting glucose, fasting insulin, homeostasis model of risk assessment-insulin resistance (HOMA-IR), glycated haemoglobin (HbA1c) and C peptide) and the risk of colorectal cancer (CRC). However, such associations have not been systematically analysed and no clear conclusions have been drawn. Therefore, we addressed this issue using a meta-analysis approach. Design Systematic review and meta-analysis. Data sources PubMed and EMBASE were searched up to May 2015. Primary and secondary outcome measures Either a fixed-effects or random-effects model was adopted to estimate overall ORs for the association between markers of glucose metabolism and the risk of CRC. In addition, dose–response, meta-regression, subgroup and publication bias analyses were conducted. Results 35 studies involving 25 566 patients and 5 706 361 participants were included. Higher levels of fasting glucose, fasting insulin, HOMA-IR, HbA1c and C peptide were all significantly associated with increased risk of CRC (fasting glucose, pooled OR=1.12, 95% CI 1.06 to 1.18; fasting insulin, pooled OR=1.42, 95% CI 1.19 to 1.69; HOMA-IR, pooled OR=1.47, 95% CI 1.24 to 1.74; HbA1c, pooled OR=1.22, 95% CI 1.02 to 1.47 (with borderline significance); C peptide, pooled OR=1.27, 95% CI 1.08 to 1.49). Subgroup analysis suggested that a higher HOMA-IR value was significantly associated with CRC risk in all subgroups, including gender, study design and geographic region. For the relative long-term markers, the association was significant for HbA1c in case–control studies, while C peptide was significantly associated with CRC risk in both the male group and colon cancer. Conclusions The real-time composite index HOMA-IR is a better indicator for CRC risk than are fasting glucose and fasting insulin. The relative long-term markers, HbA1c and C peptide, are also valid predictors for

  12. Enhancement of Glucose Metabolism via PGC-1α Participates in the Cardioprotection of Chronic Intermittent Hypobaric Hypoxia

    PubMed Central

    Li, Xuyi; Liu, Yan; Ma, Huijie; Guan, Yue; Cao, Yue; Tian, Yanming; Zhang, Yi

    2016-01-01

    Background and Aims: Previous studies demonstrated that energy metabolism disturbance impairs cardiac function and chronic intermittent hypobaric hypoxia (CIHH) protects heart against ischemia/reperfusion injury. The present study aimed to test the hypothesis that CIHH protects the heart against ischemia/reperfusion (I/R) injury via improvement of cardiac glucose metabolism. Methods: Male Sprague-Dawley rats received CIHH treatment simulating 5000-m altitude for 28 days, 6 h per day in a hypobaric chamber or no treatment (control). Body weight, fasting blood glucose, blood lipid and glucose tolerance were measured. The left ventricular function of isolated hearts was evaluated during 30 min of ischemia and 60 min of reperfusion using Langendorff method. The mRNA and protein expression involved in cardiac energy metabolism was determined using quantitative PCR and Western blot techniques. Results: 1. There was no difference of body weight, fast blood glucose, blood lipid and glucose tolerance between control and CIHH rats under baseline condition (p > 0.05). 2. The recovery of left ventricular function after I/R was improved significantly in CIHH rats compared to control rats (p < 0.05). 3. The expression of cardiac GLUT4 and PGC-1α was increased but PDK4 gene expression was decreased by CIHH treatment at both mRNA and protein level. Also p-AMPK/AMPK ratio was increased in CIHH rats (p < 0.05). Conclusion: CIHH ameliorates I/R injury through improving cardiac glucose metabolism via upregulation of GLUT4, p-AMPK, and PGC-1α expressions, but downregulation of cardiacPDK4 expression. PMID:27375497

  13. Delivery-Corrected Imaging of Fluorescently-Labeled Glucose Reveals Distinct Metabolic Phenotypes in Murine Breast Cancer

    PubMed Central

    Frees, Amy E.; Rajaram, Narasimhan; McCachren, Samuel S.; Fontanella, Andrew N.; Dewhirst, Mark W.; Ramanujam, Nimmi

    2014-01-01

    When monitoring response to cancer therapy, it is important to differentiate changes in glucose tracer uptake caused by altered delivery versus a true metabolic shift. Here, we propose an optical imaging method to quantify glucose uptake and correct for in vivo delivery effects. Glucose uptake was measured using a fluorescent D-glucose derivative 2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)Amino)-2-deoxy-D-glucose (2-NBDG) in mice implanted with dorsal skin flap window chambers. Additionally, vascular oxygenation (SO2) was calculated using only endogenous hemoglobin contrast. Results showed that the delivery factor proposed for correction, “RD”, reported on red blood cell velocity and injected 2-NBDG dose. Delivery-corrected 2-NBDG uptake (2-NBDG60/RD) inversely correlated with blood glucose in normal tissue, indicating sensitivity to glucose demand. We further applied our method in metastatic 4T1 and nonmetastatic 4T07 murine mammary adenocarcinomas. The ratio 2-NBDG60/RD was increased in 4T1 tumors relative to 4T07 tumors yet average SO2 was comparable, suggesting a shift toward a “Warburgian” (aerobic glycolysis) metabolism in the metastatic 4T1 line. In heterogeneous regions of both 4T1 and 4T07, 2-NBDG60/RD increased slightly but significantly as vascular oxygenation decreased, indicative of the Pasteur effect in both tumors. These data demonstrate the utility of delivery-corrected 2-NBDG and vascular oxygenation imaging for differentiating metabolic phenotypes in vivo. PMID:25526261

  14. Comparison of clinical types of Wilson's disease and glucose metabolism in extrapyramidal motor brain regions.

    PubMed

    Hermann, W; Barthel, H; Hesse, S; Grahmann, F; Kühn, H-J; Wagner, A; Villmann, T

    2002-07-01

    In Wilson's disease a disturbed glucose metabolism especially in striatal and cerebellar areas has been reported. This is correlated with the severity of extrapyramidal motor symptoms (EPS). These findings are only based on a small number of patients. Up to now it is unknown whether EPS are caused by various patterns of disturbed basal ganglia glucose metabolism. We investigated 37 patients and 9 normal volunteers to characterize the disturbed glucose metabolism in Wilson's disease more precisely. The glucose metabolism was determined in 5 cerebellar and cerebral areas (putamen, caput nuclei caudati, cerebellum, midbrain and thalamic area) by using (18)F-Fluorodesoxyglucose-Positron-Emission-Tomography ( [(18)F]FDG-PET). The database was evaluated by a cluster analysis. Additionally, the severity extrapyramidal motor symptoms were judged by a clinical score system. Three characteristic patterns of glucose metabolism in basal ganglia were obtained. Two of them may be assigned to patients with neurological symptoms whereas the third cluster corresponds to most patients without EPS or normal volunteers. The clusters can be identified by characteristic consumption rates in this 5 brain areas. The severity of EPS can not clearly be assigned to one of the clusters with disturbed glucose metabolism. However, the most severe cases are characterized by the lowest consumption in the striatal area. When there is marked improvement of EPS impaired glucose consumption reveals a persistent brain lesion. Finally, the neurological symptoms in Wilson's disease are caused by (at least) two different patterns of disturbed glucose metabolism in basal ganglia and cerebellum. The severity of EPS seems to be determined by a disturbed consumption in the striatal area. PMID:12140675

  15. The drs tumor suppressor regulates glucose metabolism via lactate dehydrogenase-B.

    PubMed

    Tambe, Yukihiro; Hasebe, Masahiro; Kim, Chul Jang; Yamamoto, Akitsugu; Inoue, Hirokazu

    2016-01-01

    Previously, we showed that drs contributes to suppression of malignant tumor formation in drs-knockout (KO) mice. In this study, we demonstrate the regulation of glucose metabolism by drs using comparisons of drs-KO and wild-type (WT) mouse embryonic fibroblasts (MEFs). Extracellular acidification, lactate concentration, and glucose consumption in drs-KO cells were significantly greater than those in WT cells. Metabolomic analyses also confirmed enhanced glycolysis in drs-KO cells. Among glycolysis-regulating proteins, expression of lactate dehydrogenase (LDH)-B was upregulated at the post-transcriptional level in drs-KO cells and increased LDH-B expression, LDH activity, and acidification of culture medium in drs-KO cells were suppressed by retroviral rescue of drs, indicating that LDH-B plays a critical role for glycolysis regulation mediated by drs. In WT cells transformed by activated K-ras, expression of endogenous drs mRNA was markedly suppressed and LDH-B expression was increased. In human cancer cell lines with low drs expression, LDH-B expression was increased. Database analyses also showed the correlation between downregulation of drs and upregulation of LDH-B in human colorectal cancer and lung adenocarcinoma tissues. Furthermore, an LDH inhibitor suppressed anchorage-independent growth of human cancer cells and MEF cells transformed by activated K-ras. These results indicate that drs regulates glucose metabolism via LDH-B. Downregulating drs may contribute to the Warburg effect, which is closely associated with malignant progression of cancer cells. PMID:25620379

  16. 1-Deoxynojirimycin Alleviates Liver Injury and Improves Hepatic Glucose Metabolism in db/db Mice.

    PubMed

    Liu, Qingpu; Li, Xuan; Li, Cunyu; Zheng, Yunfeng; Wang, Fang; Li, Hongyang; Peng, Guoping

    2016-01-01

    The present study investigated the effect of 1-Deoxynojirimycin (DNJ) on liver injury and hepatic glucose metabolism in db/db mice. Mice were divided into five groups: normal control, db/db control, DNJ-20 (DNJ 20 mg·kg(-1)·day(-1)), DNJ-40 (DNJ 40 mg·kg(-1)·day(-1)) and DNJ-80 (DNJ 80 mg·kg(-1)·day(-1)). All doses were treated intravenously by tail vein for four weeks. DNJ was observed to significantly reduce the levels of serum triglyceride (TG), total cholesterol (TC), low density lipoprotein cholesterol (LDL-C) and liver TG, as well as activities of serum alanine aminotransferase (ALT), and aspartate transaminase (AST); DNJ also alleviated macrovesicular steatosis and decreased tumor necrosis factor α (TNF-α), interleukin-1 (IL-1), interleukin-6 (IL-6) levels in liver tissue. Furthermore, DNJ treatment significantly increased hepatic glycogen content, the activities of hexokinase (HK), pyruvate kinase (PK) in liver tissue, and decreased the activities of glucose-6-phosphatase (G6Pase), glycogen phosphorylase (GP), and phosphoenolpyruvate carboxykinase (PEPCK). Moreover, DNJ increased the phosphorylation of phosphatidylinositol 3 kinase (PI3K) on p85, protein kinase B (PKB) on Ser473, glycogen synthase kinase 3β (GSK-3β) on Ser9, and inhibited phosphorylation of glycogen synthase (GS) on Ser645 in liver tissue of db/db mice. These results demonstrate that DNJ can increase hepatic insulin sensitivity via strengthening of the insulin-stimulated PKB/GSK-3β signal pathway and by modulating glucose metabolic enzymes in db/db mice. Moreover, DNJ also can improve lipid homeostasis and attenuate hepatic steatosis in db/db mice. PMID:26927057

  17. Effects of Chinese herbal medicine on plasma glucose, protein and energy metabolism in sheep

    PubMed Central

    2013-01-01

    Background The use of antibiotics in animal diets is facing negative feedback due to the hidden danger of drug residues to human health. Traditional Chinese herbal medicine has been used to replace antibiotics in the past two decades and played an increasingly important role in livestock production. The present study was carried out to assess the feeding effects of a traditional nourishing Chinese herbal medicine mixture on kinetics of plasma glucose, protein and energy metabolism in sheep. Ruminal fermentation characteristics were also determined. Methods Four sheep were fed on either mixed hay (MH-diet) or MH-diet supplemented with 2% of Chinese herbal medicine (mixture of Astragalus root, Angelica root and Atractylodes rhizome; CHM-diet) over two 35-day periods using a crossover design. The turnover rate of plasma glucose was measured with an isotope dilution method using [U-13C]glucose. The rates of plasma leucine turnover and leucine oxidation, whole body protein synthesis (WBPS) and metabolic heat production were measured using the [1-13C]leucine dilution and open circuit calorimetry. Results Body weight gain of sheep was higher (P = 0.03) for CHM-diet than for MH-diet. Rumen pH was lower (P = 0.02), concentration of rumen total volatile fatty acid tended to be higher (P = 0.05) and acetate was higher (P = 0.04) for CHM-diet than for MH-diet. Turnover rates of plasma glucose and leucine did not differ between diets. Oxidation rate of leucine tended to be higher (P = 0.06) for CHM-diet than for MH-diet, but the WBPS did not differ between diets. Metabolic heat production tended to be greater (P = 0.05) for CHM-diet than for MH-diet. Conclusions The sheep fed on CHM-diet had a higher body weight gain and showed positive impacts on rumen fermentation and energy metabolism without resulting in any adverse response. Therefore, these results suggested that the Chinese herbal medicine mixture should be considered as a potential feed additive

  18. The use of /sup 11/C-glucose and positron emission tomography to measure brain glucose metabolism

    SciTech Connect

    Mintun, M.A.; Raichle, M.E.; Welch, M.J.; Kilbourn, M.R.

    1985-05-01

    To measure regional cerebral metabolism of glucose (CMRGlu) with positron emission tomography (PET), but avoid the potential problems inherent in the use of /sup 18/F-fluoro-deoxyglucose, (e.g. regional variation in regional rate constants and instability of the ''lumped constant''), the authors have developed a method using uniformly labeled /sup 11/C-glucose. The method employs a 4-compartment model that accounts for vascular tracer, transport of tracer in and out of the extravascular space, metabolism of tracer, and the production of labeled carbon dioxide, which is free to leave the tissue with blood flow. The differential equations for this model, when solved for CMRGlu, yield CMRGlu=k/sub 1/ . k/sub 3/ . CBF . C/sub B//(k/sub 1/ . k/sub 3/+CBF/CBV . (k/sub 2/+k/sub 3/)) where CBF and CBV are cerebral blood flow and volume, C/sub B/ is unlabeled blood glucose content, k/sub 1/ and k/sub 2/ are transport rate constants and k/sub 3/ is the metabolism rate constant. The authors have begun implementing this technique in baboons and human subjects by first measuring regional CBV and CBF with extant PET methods, then after injection of 20-40mCi of U-/sup 11/C-glucose, estimating the rate constants from 40 sequential PET scans taken over 20 minutes. Resulting white-to-gray matter range in CMRGlu for one typical human subject was 2.9 to 6.3 mg/(min . 100 mg). Oxygen metabolism (CMRO/sub 2/) was also measured at the same sitting with PET and the molar ratio of CMRO/sub 2//CMRGlu ranged from 5.8 to 6.4 as would be expected. These results demonstrate that it may be feasible to avoid the difficulties of an analogue tracer in the measurement of CMRGlu by using /sup 11/C-glucose.

  19. Histochemical research on metabolic pathways of glucose in some species of Mollusca Gastropoda.

    PubMed

    Bolognani Fantin, A M; Bolognani, L; Ottaviani, E; Franchini, A

    1987-01-01

    The metabolic pathways of glucose were studied by histochemical reactions in some species of gastropods living in different habitats. The glycolytic pathway is histochemically indicated by positive results for glucose-6-phosphate isomerase, fructose-1,6-biphosphate aldolase, glyceraldehyde-3-phosphate dehydrogenase, and D-lactate dehydrogenase. The enzymes of the Krebs cycle gave different responses: isocitrate dehydrogenase and L-malate dehydrogenase were positive, whilst succinate dehydrogenase was constantly negative. Malate synthetase activity was also demonstrated. Despite L-glutamate dehydrogenase is undetectable, the presence of transaminase indicates the gluconeogenetic route. Phosphoglucomutase and glucose-6-phosphate phosphatase appear also positive. The metabolic meaning of our results were discussed. PMID:3111150

  20. Effects of Cr methionine on glucose metabolism, plasma metabolites, meat lipid peroxidation, and tissue chromium in Mahabadi goat kids.

    PubMed

    Emami, A; Ganjkhanlou, M; Zali, A

    2015-03-01

    This study was designed to investigate the effects of chromium methionine (Cr-Met) on glucose metabolism, blood metabolites, meat lipid peroxidation, and tissue chromium (Cr) in Mahabadi goat kids. Thirty-two male kids (16.5 ± 2.8 kg BW, 4-5 months of age) were fed for 90 days in a completely randomized design with four treatments. Treatments were supplemented with 0 (control), 0.5, 1, and 1.5 mg Cr as Cr-Met/animal/daily. Blood samples were collected via heparin tubes from the jugular vein on 0, 21, 42, 63, and 90 days of experiment. On day 70, an intravenous glucose tolerance test (IVGTT) was conducted. At the end of the feeding trial, the kids were slaughtered, and the liver, kidney, and longissimus dorsi (LD) muscle samples were collected. Plasma glucose, insulin, and triglyceride concentrations were decreased by Cr supplementation (P < 0.05). LD muscle malondialdehyde (MDA) decreased, and plasma and tissue Cr contents increased with increasing supplemental Cr levels (P < 0.05). Plasma glucose concentrations at 30 and 60 min after glucose infusion were lower in the kids fed 1.5 mg Cr diet than the kids fed control diet (P < 0.05). The IVGTT indicated that the kids supplemented with 1.5 mg Cr had higher glucose clearance rate (K) and lower glucose half-life (T½; P < 0.05). Glucose area under the response curve (AUC) from 0 to 180 min after glucose infusion was decreased linearly (P < 0.01) by supplemental Cr. The results suggested that supplemental Cr may improve glucose utilization and lipid oxidation of meat in fattening kid. PMID:25476000

  1. Model-guided metabolic gene knockout of gnd for enhanced succinate production in Escherichia coli from glucose and glycerol substrates.

    PubMed

    Mienda, Bashir Sajo; Shamsir, Mohd Shahir; Illias, Rosli Md

    2016-04-01

    The metabolic role of 6-phosphogluconate dehydrogenase (gnd) under anaerobic conditions with respect to succinate production in Escherichia coli remained largely unspecified. Herein we report what are to our knowledge the first metabolic gene knockout of gnd to have increased succinic acid production using both glucose and glycerol substrates in E. coli. Guided by a genome scale metabolic model, we engineered the E. coli host metabolism to enhance anaerobic production of succinic acid by deleting the gnd gene, considering its location in the boundary of oxidative and non-oxidative pentose phosphate pathway. This strategy induced either the activation of malic enzyme, causing up-regulation of phosphoenolpyruvate carboxylase (ppc) and down regulation of phosphoenolpyruvate carboxykinase (ppck) and/or prevents the decarboxylation of 6 phosphogluconate to increase the pool of glyceraldehyde-3-phosphate (GAP) that is required for the formation of phosphoenolpyruvate (PEP). This approach produced a mutant strain BMS2 with succinic acid production titers of 0.35gl(-1) and 1.40gl(-1) from glucose and glycerol substrates respectively. This work further clearly elucidates and informs other studies that the gnd gene, is a novel deletion target for increasing succinate production in E. coli under anaerobic condition using glucose and glycerol carbon sources. The knowledge gained in this study would help in E. coli and other microbial strains development for increasing succinate production and/or other industrial chemicals. PMID:26878126

  2. Increase of glucose consumption in basal ganglia, thalamus and frontal cortex of patients with spasmodic torticollis

    SciTech Connect

    Grassi, F.; Bressi, S.; Antoni, M.

    1994-05-01

    The pathophysiology of spasmodic torticollis, a focal dystonia involving neck muscles, is still unclear. Positron emission tomography (PET) studies showed either an increase as well as a decrease of regional cerebral metabolic rate of glucose (rCMRglu) in basal ganglia. In the present study, [18F]FDG and PET was used to measure rCMRglu in 10 patients with spasmodic torticollis (mean age 50.37 {plus_minus} 11.47) and 10 age matched controls. All cases with a short disease duration, were untreated. A factorial analysis of variance revealed a significant bilateral increase of glucose consumption in caudate nucleus and pallidum/putamen complex (p>0.004) and in the cerebellum (p>0.001). The rCMRglu increase in the motor/premotor cortex and in the thalamus reached a trend towards significance (p<0.05). These preliminary data show enhanced metabolism in basal ganglia and cerebellum as the functional correlate of focal dystonia. A recently proposed model suggests that dystonia would be the consequence of a putaminal hyperactivity, leading to the breakdown of the pallidal inhibitory control on thalamus and thalamo-cortical projections.

  3. Glucose metabolism: focus on gut microbiota, the endocannabinoid system and beyond.

    PubMed

    Cani, P D; Geurts, L; Matamoros, S; Plovier, H; Duparc, T

    2014-09-01

    The gut microbiota is now considered as a key factor in the regulation of numerous metabolic pathways. Growing evidence suggests that cross-talk between gut bacteria and host is achieved through specific metabolites (such as short-chain fatty acids) and molecular patterns of microbial membranes (lipopolysaccharides) that activate host cell receptors (such as toll-like receptors and G-protein-coupled receptors). The endocannabinoid (eCB) system is an important target in the context of obesity, type 2 diabetes (T2D) and inflammation. It has been demonstrated that eCB system activity is involved in the control of glucose and energy metabolism, and can be tuned up or down by specific gut microbes (for example, Akkermansia muciniphila). Numerous studies have also shown that the composition of the gut microbiota differs between obese and/or T2D individuals and those who are lean and non-diabetic. Although some shared taxa are often cited, there is still no clear consensus on the precise microbial composition that triggers metabolic disorders, and causality between specific microbes and the development of such diseases is yet to be proven in humans. Nevertheless, gastric bypass is most likely the most efficient procedure for reducing body weight and treating T2D. Interestingly, several reports have shown that the gut microbiota is profoundly affected by the procedure. It has been suggested that the consistent postoperative increase in certain bacterial groups such as Proteobacteria, Bacteroidetes and Verrucomicrobia (A. muciniphila) may explain its beneficial impact in gnotobiotic mice. Taken together, these data suggest that specific gut microbes modulate important host biological systems that contribute to the control of energy homoeostasis, glucose metabolism and inflammation in obesity and T2D. PMID:24631413

  4. Glucose Availability and AMP-Activated Protein Kinase Link Energy Metabolism and Innate Immunity in the Bovine Endometrium

    PubMed Central

    Turner, Matthew L.; Cronin, James G.; Noleto, Pablo G.; Sheldon, I. Martin

    2016-01-01

    Defences against the bacteria that usually infect the endometrium of postpartum cattle are impaired when there is metabolic energy stress, leading to endometritis and infertility. The endometrial response to bacteria depends on innate immunity, with recognition of pathogen-associated molecular patterns stimulating inflammation, characterised by secretion of interleukin (IL)-1β, IL-6 and IL-8. How metabolic stress impacts tissue responses to pathogens is unclear, but integration of energy metabolism and innate immunity means that stressing one system might affect the other. Here we tested the hypothesis that homeostatic pathways integrate energy metabolism and innate immunity in bovine endometrial tissue. Glucose deprivation reduced the secretion of IL-1β, IL-6 and IL-8 from ex vivo organ cultures of bovine endometrium challenged with the pathogen-associated molecular patterns lipopolysaccharide and bacterial lipopeptide. Endometrial inflammatory responses to lipopolysaccharide were also reduced by small molecules that activate or inhibit the intracellular sensor of energy, AMP-activated protein kinase (AMPK). However, inhibition of mammalian target of rapamycin, which is a more global metabolic sensor than AMPK, had little effect on inflammation. Similarly, endometrial inflammatory responses to lipopolysaccharide were not affected by insulin-like growth factor-1, which is an endocrine regulator of metabolism. Interestingly, the inflammatory responses to lipopolysaccharide increased endometrial glucose consumption and induced the Warburg effect, which could exacerbate deficits in glucose availability in the tissue. In conclusion, metabolic energy stress perturbed inflammatory responses to pathogen-associated molecular patterns in bovine endometrial tissue, and the most fundamental regulators of cellular energy, glucose availability and AMPK, had the greatest impact on innate immunity. PMID:26974839

  5. Glucose Availability and AMP-Activated Protein Kinase Link Energy Metabolism and Innate Immunity in the Bovine Endometrium.

    PubMed

    Turner, Matthew L; Cronin, James G; Noleto, Pablo G; Sheldon, I Martin

    2016-01-01

    Defences against the bacteria that usually infect the endometrium of postpartum cattle are impaired when there is metabolic energy stress, leading to endometritis and infertility. The endometrial response to bacteria depends on innate immunity, with recognition of pathogen-associated molecular patterns stimulating inflammation, characterised by secretion of interleukin (IL)-1β, IL-6 and IL-8. How metabolic stress impacts tissue responses to pathogens is unclear, but integration of energy metabolism and innate immunity means that stressing one system might affect the other. Here we tested the hypothesis that homeostatic pathways integrate energy metabolism and innate immunity in bovine endometrial tissue. Glucose deprivation reduced the secretion of IL-1β, IL-6 and IL-8 from ex vivo organ cultures of bovine endometrium challenged with the pathogen-associated molecular patterns lipopolysaccharide and bacterial lipopeptide. Endometrial inflammatory responses to lipopolysaccharide were also reduced by small molecules that activate or inhibit the intracellular sensor of energy, AMP-activated protein kinase (AMPK). However, inhibition of mammalian target of rapamycin, which is a more global metabolic sensor than AMPK, had little effect on inflammation. Similarly, endometrial inflammatory responses to lipopolysaccharide were not affected by insulin-like growth factor-1, which is an endocrine regulator of metabolism. Interestingly, the inflammatory responses to lipopolysaccharide increased endometrial glucose consumption and induced the Warburg effect, which could exacerbate deficits in glucose availability in the tissue. In conclusion, metabolic energy stress perturbed inflammatory responses to pathogen-associated molecular patterns in bovine endometrial tissue, and the most fundamental regulators of cellular energy, glucose availability and AMPK, had the greatest impact on innate immunity. PMID:26974839

  6. miR-182 Regulates Metabolic Homeostasis by Modulating Glucose Utilization in Muscle.

    PubMed

    Zhang, Duo; Li, Yan; Yao, Xuan; Wang, Hui; Zhao, Lei; Jiang, Haowen; Yao, Xiaohan; Zhang, Shengjie; Ye, Cheng; Liu, Wei; Cao, Hongchao; Yu, Shuxian; Wang, Yu-Cheng; Li, Qiong; Jiang, Jingjing; Liu, Yi; Zhang, Ling; Liu, Yun; Iwai, Naoharu; Wang, Hui; Li, Jingya; Li, Jia; Li, Xihua; Jin, Zi-Bing; Ying, Hao

    2016-07-19

    Understanding the fiber-type specification and metabolic switch in skeletal muscle provides insights into energy metabolism in physiology and diseases. Here, we show that miR-182 is highly expressed in fast-twitch muscle and negatively correlates with blood glucose level. miR-182 knockout mice display muscle loss, fast-to-slow fiber-type switching, and impaired glucose metabolism. Mechanistic studies reveal that miR-182 modulates glucose utilization in muscle by targeting FoxO1 and PDK4, which control fuel selection via the pyruvate dehydrogenase complex (PDHC). Short-term high-fat diet (HFD) feeding reduces muscle miR-182 levels by tumor necrosis factor α (TNFα), which contributes to the upregulation of FoxO1/PDK4. Restoration of miR-182 expression in HFD-fed mice induces a faster muscle phenotype, decreases muscle FoxO1/PDK4 levels, and improves glucose metabolism. Together, our work establishes miR-182 as a critical regulator that confers robust and precise controls on fuel usage and glucose homeostasis. Our study suggests that a metabolic shift toward a faster and more glycolytic phenotype is beneficial for glucose control. PMID:27396327

  7. Relationship of impaired brain glucose metabolism to learning deficit in the senescence-accelerated mouse.

    PubMed

    Ohta, H; Nishikawa, H; Hirai, K; Kato, K; Miyamoto, M

    1996-10-11

    The relationship between brain glucose metabolism and learning deficit was examined in the senescence-accelerated-prone mouse (SAMP) 8, which has been proven to be a useful murine model of age-related behavioral disorders. SAMP8, 7 months old, exhibited marked learning impairment in the passive avoidance task, as compared with the control strain, senescence-accelerated-resistant mice (SAMR) 1. SAMP8 also exhibited a reduction in brain glucose metabolism, as indicated by a reduction in [14C]2-deoxyglucose accumulation in the brain following the intravenous injection impaired glucose metabolism correlated significantly with the learning impairment in all brain regions in SAMR1 and SAMP8. In the SAMP8, a significant correlation was observed in the posterior half of the cerebral cortex. These results suggest that the SAMP8 strain is a useful model of not only age-related behavioral disorders, but also glucose hypometabolism observed in aging and dementias. PMID:8905734

  8. Abomasal amino acid infusion in postpartum dairy cows: Effect on whole-body, splanchnic, and mammary glucose metabolism.

    PubMed

    Galindo, C; Larsen, M; Ouellet, D R; Maxin, G; Pellerin, D; Lapierre, H

    2015-11-01

    Nine Holstein cows fitted with rumen cannulas and indwelling catheters in splanchnic blood vessels were used to study the effects of supplementing AA on milk lactose secretion, whole-body rate of appearance (WB-Ra) of glucose, and tissue metabolism of glucose, lactate, glycerol, and β-OH-butyrate (BHBA) in postpartum dairy cows according to a generalized randomized incomplete block design with repeated measures in time. At calving, cows were blocked according to parity (second and third or greater) and were allocated to 2 treatments: abomasal infusion of water (n=4) or abomasal infusion of free AA with casein profile (AA-CN; n=5) in addition to the same basal diet. The AA-CN infusion started with half the maximal dose at 1 d in milk (DIM) and then steadily decreased from 791 to 226 g/d from DIM 2 to 29 to cover the estimated essential AA deficit. On DIM 5, 15, and 29, D[6,6-(2)H2]-glucose (23.7 mmol/h) was infused into a jugular vein for 5h, and 6 blood samples were taken from arterial, portal, hepatic, and mammary sources at 45-min intervals, starting 1h after the initiation of the D[6,6-(2)H2]glucose infusion. Trans-organ fluxes were calculated as veno-arterial differences times plasma flow (splanchnic: downstream dilution of deacetylated para-aminohippurate; mammary: Fick principle using Phe+Tyr). Energy-corrected milk and lactose yields increased on average with AA-CN by 6.4 kg/d and 353 g/d, respectively, with no DIM × treatment interaction. Despite increased AA supply and increased demand for lactose secretion with AA-CN, net hepatic release of glucose remained unchanged, but WB-Ra of glucose tended to increase with AA-CN. Portal true flux of glucose increased with AA-CN and represented, on average, 17% of WB-Ra. Splanchnic true flux of glucose was unaltered by treatments and was numerically equivalent to WB-Ra, averaging 729 and 741 mmol/h, respectively. Mammary glucose utilization increased with AA-CN infusion, averaging 78% of WB-Ra, and increased

  9. Effects of thyrotoxicosis and selective hepatic autonomic denervation on hepatic glucose metabolism in rats.

    PubMed

    Klieverik, Lars P; Sauerwein, Hans P; Ackermans, Mariëtte T; Boelen, Anita; Kalsbeek, Andries; Fliers, Eric

    2008-03-01

    Thyrotoxicosis is known to induce a broad range of changes in carbohydrate metabolism. Recent studies have identified the sympathetic and parasympathetic nervous system as major regulators of hepatic glucose metabolism. The present study aimed to investigate the pathogenesis of altered endogenous glucose production (EGP) in rats with mild thyrotoxicosis. Rats were treated with methimazole in drinking water and l-thyroxine (T(4)) from osmotic minipumps to either reinstate euthyroidism or induce thyrotoxicosis. Euthyroid and thyrotoxic rats underwent either a sham operation, a selective hepatic sympathetic denervation (Sx), or a parasympathetic denervation (Px). After 10 days of T(4) administration, all animals were submitted to a hyperinsulinemic euglycemic clamp combined with stable isotope dilution to measure EGP. Plasma triiodothyronine (T(3)) showed a fourfold increase in thyrotoxic compared with euthyroid animals. EGP was increased by 45% in thyrotoxic compared with euthyroid rats and correlated significantly with plasma T(3). In thyrotoxic rats, hepatic PEPCK mRNA expression was increased 3.5-fold. Relative suppression of EGP during hyperinsulinemia was 34% less in thyrotoxic than in euthyroid rats, indicating hepatic insulin resistance. During thyrotoxicosis, Sx attenuated the increase in EGP, whereas Px resulted in increased plasma insulin with unaltered EGP compared with intact animals, compatible with a further decrease in hepatic insulin sensitivity. We conclude that chronic, mild thyrotoxicosis in rats increases EGP, whereas it decreases hepatic insulin sensitivity. Sympathetic hepatic innervation contributes only to a limited extent to increased EGP during thyrotoxicosis, whereas parasympathetic hepatic innervation may function to restrain EGP in this condition. PMID:18182466

  10. Cerebral glucose metabolism in corticobasal degeneration comparison with progressive supranuclear palsy using statistical mapping analysis.

    PubMed

    Juh, Rahyeong; Pae, Chi-Un; Kim, Tae-Suk; Lee, Chang-Uk; Choe, Boyoung; Suh, Taesuk

    This study measured the cerebral glucose metabolism in patients suffering from corticobasal degeneration (CBD) and progressive supranuclear palsy (PSP). The aim was to determine if there is a different metabolic pattern using (18)F-labeled 2-deoxyglucose ((18)F-FDG) positron emission tomography (PET). The regional cerebral glucose metabolism was examined in 8 patients diagnosed clinically with CBD (mean age 69.6 +/- 7.8 years; male/female: 5/3), 8 patients with probable PSP (mean age 67.8 +/- 4.5 years; male/female: 4/4) and 22 healthy controls. The regional cerebral glucose metabolism between the three groups was compared using statistical parametric mapping (SPM) with a voxel-by-voxel approach (p < 0.001, 200-voxel level). Compared with the normal controls, asymmetry in the regional glucose metabolism was observed in the parietal, frontal and cingulate in the CBD patients. In the PSP patients, the glucose metabolism was lower in the orbitofrontal, middle frontal, cingulate, thalamus and mid-brain than their age matched normal controls. A comparison of the two patient groups demonstrated relative hypometabolism in the thalamus, the mid-brain in the PSP patients and the parietal lobe in CBD patients. These results suggest that when making a differential diagnosis of CBD and PSP, voxel-based analysis of the (18)F-FDG PET images using a SPM might be a useful tool in clinical examinations. PMID:15936506

  11. Neuron Specific Metabolic Adaptations Following Multi-Day Exposures to Oxygen Glucose Deprivation

    PubMed Central

    Zeiger, Stephanie L. H.; McKenzie, Jennifer R.; Stankowski, Jeannette N.; Martin, Jacob A.; Cliffel, David E.; McLaughlin, BethAnn

    2010-01-01

    Prior exposure to sub toxic insults can induce a powerful endogenous neuroprotective program known as ischemic preconditioning. Current models typically rely on a single stress episode to induce neuroprotection whereas the clinical reality is that patients may experience multiple transient ischemic attacks (TIAs) prior to suffering a stroke. We sought to develop a neuron enriched preconditioning model using multiple oxygen glucose deprivation (OGD) episodes to assess the endogenous protective mechanisms neurons implement at the metabolic and cellular level for stress adaptations. We found that neurons exposed to a five minute period of glucose deprivation recovered oxygen utilization and lactate production using novel microphysiometry techniques. Using the non-toxic and energetically favorable five minute exposure, we developed a preconditioning paradigm where neurons are exposed to this brief OGD for three consecutive days. These cells experienced 45% greater survival following an otherwise lethal event and exhibited a longer lasting window of protection in comparison to our previous in vitro preconditioning model using a single stress. As in other models, preconditioned cells exhibited mild caspase activation, an increase in oxidized proteins and a requirement for reactive oxygen species for neuroprotection. Heat shock protein 70 was upregulated during preconditioning, yet the majority of this protein was released extracellularly. We believe coupling this neuron enriched multiday model with microphysiometry will allow us to assess neuronal specific real-time metabolic adaptations necessary for preconditioning. PMID:20656023

  12. Modulatory Role of Shorea robusta Bark on Glucose-metabolizing Enzymes in Diethylnitrosamine Induced Hepatocellular Carcinoma in Rats

    PubMed Central

    Kalaiselvan, A.; Anand, T.; Gokulakrishnan, K.; Kamaraj, M. C.; Velavan, S.

    2015-01-01

    Introduction: The modulations of glucose-metabolizing enzyme activities play a vital rolein the depletion of energy metabolism and leads to inhibition of cancer growth. Objective: To find the effect of shorearobusta bark extract on glucose-metbolizing enzymes in diethylnitrosamine (DEN) induced hepatocellular carcinoma rats. Materials and Methods: Biochemical evaluation of glucose metabolizing enzyme were done in before and after shorearobusta bark extract (500mg/kg) treatment in DEN induced rats. Results: A significant increasein the activities of the key glycolytic enzymes viz., hexokinase and phosphoglucoisomerase, with a significant decrease in the gluconeogenic enzymes glucose-6-phosphatase and fructose-1,6-bisphosphatasewere observed in HCC bearing rats, when compared with the control. Administration of shorearobusta extract caused a significant decrease in theactivities of glycolytic enzymes and an increase in the gluconeogenic enzymes activities to near normal values. Conclusion: The current findings suggest that the S. robusta extract has a definite modulating role on the key enzymes ofglucose-metabolism in HCC. The modulatory effect may be due to the phytoactive constituents present in the extract of S. robusta. SUMMARY Administration of shorea robusta bark extract caused a significant decrease in the activities of glycolytic enzymes and an increase in the gluconeogenic enzymes activities to near normal values. The S. robusta extract has modulatory activity on the carbohydrate metabolism in DEN-induced HCC bearing rats through a mechanism that which does not provoke any acute biochemical disturbances in the metabolic pathways of glycolysis and gluconeogenesis. The modulatory effect of S. robusta extract may be attributed to the presence of active compounds such as polyphenols and flavonoids. Abbreviations used: HCC: Hepatocellular Carcinoma, SRBE: Shorearobusta bark extract; HEX: Hexokinase; PGI: Phosphoglucoisomerase; DEN: Diethylnitrosamine. PMID

  13. Pancreatic islet function in omega3 fatty acid-depleted rats: Glucose metabolism and nutrient-stimulated insulin release.

    PubMed

    Oguzhan, Berrin; Zhang, Ying; Louchami, Karim; Courtois, Philippe; Portois, Laurence; Chardigny, Jean-Michel; Malaisse, Willy J; Carpentier, Yvon A; Sener, Abdullah

    2006-06-01

    In order to gain information on the determinism of the perturbation of fuel homeostasis in situations characterized by a depletion in long-chain polyunsaturated omega3 fatty acids (omega3), the metabolic and hormonal status of omega3-depleted rats (second generation) was examined. When required, these rats were injected intravenously 120 min before sacrifice with a novel medium-chain triglyceride-fish oil emulsion able to provoke a rapid and sustained increase of the omega3 content in cell phospholipids. The measurement of plasma glucose, insulin, phospholipid, triglyceride, and unesterified fatty acid concentration indicated modest insulin resistance in the omega3-depleted rats. The plasma triglyceride and phospholipid concentrations were decreased in the omega3-depleted rats with abnormally low contribution of omega3 in both circulating and pancreatic islet lipids. The protein, insulin, and lipid content of the islets, as well as their intracellular and extracellular spaces, were little affected in the omega3-depleted rats. The metabolism of D-glucose in the islets of omega3-depleted rats was characterized by a lesser increase in D-[5-3H]glucose utilization and D-[U-14C]glucose oxidation in response to a given rise in hexose concentration and an abnormally low ratio between D-glucose oxidation and utilization. These abnormalities could be linked to an increased metabolism of endogenous fatty acids with resulting alteration of glucokinase kinetics. The release of insulin evoked by D-glucose, at a close-to-physiological concentration (8.3 mM), was increased in the omega3-depleted rats, this being considered as consistent with their insulin resistance. Relative to such a release, that evoked by a further rise in D-glucose concentration or by non-glucidic nutrients was abnormally high in omega3-depleted rats, and restored to a normal level after of the intravenous injection of the omega3-rich medium-chain triglyceride-fish oil emulsion. Because the latter procedure

  14. Age differences in intercorrelations between regional cerebral metabolic rates for glucose

    SciTech Connect

    Horwitz, B.; Duara, R.; Rapoport, S.I.

    1986-01-01

    Patterns of cerebral metabolic intercorrelations were compared in the resting state in 15 healthy young men (ages 20 to 32 years) and 15 healthy elderly men (ages 64 to 83 years). Controlling for whole-brain glucose metabolism, partial correlation coefficients were determined between pairs of regional cerebral metabolic rates for glucose determined by positron emission tomography using (18F)fluorodeoxyglucose and obtained in 59 brain regions. Compared with the young men, the elderly men had fewer statistically significant correlations, with the most notable reductions observed between the parietal lobe regions, and between the parietal and frontal lobe regions. These results suggest that cerebral functional interactions are reduced in healthy elderly men.

  15. SIRT3 participates in glucose metabolism interruption and apoptosis induced by BH3 mimetic S1 in ovarian cancer cells.

    PubMed

    Xiang, Xi-Yan; Kang, Jin-Song; Yang, Xiao-Chun; Su, Jing; Wu, Yao; Yan, Xiao-Yu; Xue, Ya-Nan; Xu, Ye; Liu, Yu-He; Yu, Chun-Yan; Zhang, Zhi-Chao; Sun, Lian-Kun

    2016-08-01

    The Bcl-2 antiapoptotic proteins are important cancer therapy targets; however, their role in cancer cell metabolism remains unclear. We found that the BH3-only protein mimetic S1, a novel pan Bcl-2 inhibitor, simultaneously interrupted glucose metabolism and induced apoptosis in human SKOV3 ovarian cancer cells, which was related to the activation of SIRT3, a stress-responsive deacetylase. S1 interrupted the cellular glucose metabolism mainly through causing damage to mitochondrial respiration and inhibiting glycolysis. Moreover, S1 upregulated the gene and protein expression of SIRT3, and induced the translocation of SIRT3 from the nucleus to mitochondria. SIRT3 silencing reversed the effects of S1 on glucose metabolism and apoptosis through increasing the level of HK-II localized to the mitochondria, while a combination of the glycolysis inhibitor 2-DG and S1 intensified the cytotoxicity through further upregulation of SIRT3 expression. This study underscores an essential role of SIRT3 in the antitumor effect of Bcl-2 inhibitors in human ovarian cancer through regulating both metabolism and apoptosis. The manipulation of Bcl-2 inhibitors combined with the use of classic glycolysis inhibitors may be rational strategies to improve ovarian cancer therapy. PMID:27277143

  16. Brain metabolism in autism. Resting cerebral glucose utilization rates as measured with positron emission tomography

    SciTech Connect

    Rumsey, J.M.; Duara, R.; Grady, C.; Rapoport, J.L.; Margolin, R.A.; Rapoport, S.I.; Cutler, N.R.

    1985-05-01

    The cerebral metabolic rate for glucose was studied in ten men (mean age = 26 years) with well-documented histories of infantile autism and in 15 age-matched normal male controls using positron emission tomography and (F-18) 2-fluoro-2-deoxy-D-glucose. Positron emission tomography was completed during rest, with reduced visual and auditory stimulation. While the autistic group as a whole showed significantly elevated glucose utilization in widespread regions of the brain, there was considerable overlap between the two groups. No brain region showed a reduced metabolic rate in the autistic group. Significantly more autistic, as compared with control, subjects showed extreme relative metabolic rates (ratios of regional metabolic rates to whole brain rates and asymmetries) in one or more brain regions.

  17. Program for PET image alignment: Effects on calculated differences in cerebral metabolic rates for glucose

    SciTech Connect

    Phillips, R.L.; London, E.D.; Links, J.M.; Cascella, N.G. )

    1990-12-01

    A program was developed to align positron emission tomography images from multiple studies on the same subject. The program allowed alignment of two images with a fineness of one-tenth the width of a pixel. The indications and effects of misalignment were assessed in eight subjects from a placebo-controlled double-blind crossover study on the effects of cocaine on regional cerebral metabolic rates for glucose. Visual examination of a difference image provided a sensitive and accurate tool for assessing image alignment. Image alignment within 2.8 mm was essential to reduce variability of measured cerebral metabolic rates for glucose. Misalignment by this amount introduced errors on the order of 20% in the computed metabolic rate for glucose. These errors propagate to the difference between metabolic rates for a subject measured in basal versus perturbed states.

  18. Metabolic enhancement and increase of alveolar macrophages induced by ozone

    SciTech Connect

    Mochitate, K.; Miura, T.

    1989-06-01

    Male Wistar rats were exposed to 0.2 ppm ozone (O3) for 14 days and at intervals alveolar macrophages were collected by bronchoalveolar lavage to examine the effects of O3. The specific activities of glucose-6-phosphate dehydrogenase and glutathione peroxidase of alveolar macrophages increased to 1.6-fold (on the 3rd day) and 1.5-fold (on the 5th day), respectively, those of the control values. Similarly, the specific activities of pyruvate kinase, lactate dehydrogenase, and hexokinase also increased to 1.6-fold, 1.4-fold, and 1.2-fold, respectively, those of the control values on the 3rd day. The activities of all enzymes tested were maintained at significantly higher levels until the 14th day. Furthermore, the incorporation of (14C)thymidine into alveolar macrophages increased twice the control values on the 1st and 3rd days and was almost completely inhibited by the addition of 1.23 x 10(-4) M aphidicolin, a competitive inhibitor of DNA polymerase alpha. The number of alveolar macrophages collected from exposed animals also increased to 1.5-fold that of the control value on the 3rd day and was maintained at significantly higher level until the 14th day. It was noted that alveolar macrophages of small size preferentially increased between the 5th and 14th days. These results show that exposures to 0.2 ppm O3 induced a metabolic enhancement of the peroxidative metabolism, glycolysis, and DNA synthesis in alveolar macrophages and increased the macrophages of small size.

  19. Coordinated balancing of muscle oxidative metabolism through PGC-1{alpha} increases metabolic flexibility and preserves insulin sensitivity

    SciTech Connect

    Summermatter, Serge; Santos, Gesa

    2011-04-29

    Highlights: {yields} PGC-1{alpha} enhances muscle oxidative capacity. {yields} PGC-1{alpha} promotes concomitantly positive and negative regulators of lipid oxidation. {yields} Regulator abundance enhances metabolic flexibility and balances oxidative metabolism. {yields} Balanced oxidation prevents detrimental acylcarnitine and ROS generation. {yields} Absence of detrimental metabolites preserves insulin sensitivity -- Abstract: The peroxisome proliferator-activated receptor {gamma} coactivator 1{alpha} (PGC-1{alpha}) enhances oxidative metabolism in skeletal muscle. Excessive lipid oxidation and electron transport chain activity can, however, lead to the accumulation of harmful metabolites and impair glucose homeostasis. Here, we investigated the effect of over-expression of PGC-1{alpha} on metabolic control and generation of insulin desensitizing agents in extensor digitorum longus (EDL), a muscle that exhibits low levels of PGC-1{alpha} in the untrained state and minimally relies on oxidative metabolism. We demonstrate that PGC-1{alpha} induces a strictly balanced substrate oxidation in EDL by concomitantly promoting the transcription of activators and inhibitors of lipid oxidation. Moreover, we show that PGC-1{alpha} enhances the potential to uncouple oxidative phosphorylation. Thereby, PGC-1{alpha} boosts elevated, yet tightly regulated oxidative metabolism devoid of side products that are detrimental for glucose homeostasis. Accordingly, PI3K activity, an early phase marker for insulin resistance, is preserved in EDL muscle. Our findings suggest that PGC-1{alpha} coordinately coactivates the simultaneous transcription of gene clusters implicated in the positive and negative regulation of oxidative metabolism and thereby increases metabolic flexibility. Thus, in mice fed a normal chow diet, over-expression of PGC-1{alpha} does not alter insulin sensitivity and the metabolic adaptations elicited by PGC-1{alpha} mimic the beneficial effects of endurance training

  20. Dynamic changes in glucose metabolism accompanying the expression of the neural phenotype after differentiation in PC12 cells.

    PubMed

    Waki, A; Yano, R; Yoshimoto, M; Sadato, N; Yonekura, Y; Fujibayashi, Y

    2001-03-01

    To assess what properties of glucose metabolism are most closely related to expression of the neural phenotype, some parameters of glucose metabolism in PC12 cells before (tumor-type) and after differentiation (neuron-type) were investigated. Neuron-type cells exhibited a 2.7-fold higher level of [3H]DG retention than tumor-type cells, accompanied by a higher glucose transport rate and higher levels of hexokinase activity. [14C]CO2 production from [U-14C]glucose in neuron-type was also more than four-times greater than that in tumor-type cells. The levels of [14C]carbon in macromolecules from [14C]glucose in neuron-type cells were also much higher (10.6-fold) than those in tumor-type cells, and the levels of incorporation of [14C]carbon were almost as high as those of [14C]CO2. From the metabolite analysis, amino acids appeared to be the major compounds converted from glucose. On the other hand, the uptakes of [35S]methionine-[35S]cysteine and [3H]uridine in neuron-type cells were lower than those in tumor-type cells. Following depolarization with 50 mM potassium, [14C]CO2 production increased, but the retention of [14C]carbon was not changed in neuron-type cells. The largest change accompanied by acquisition of the neural phenotype was carbon incorporation into the macromolecules derived from glucose. This property may be important for the expression of the neural phenotype as well as the higher levels of both glucose uptake and oxygen consumption. PMID:11245818

  1. Shiftwork and impaired glucose metabolism: a 14-year cohort study on 7104 male workers.

    PubMed

    Suwazono, Yasushi; Dochi, Mirei; Oishi, Mitsuhiro; Tanaka, Kumihiko; Kobayashi, Etsuko; Sakata, Kouichi

    2009-07-01

    The aim of this study was to assess the effect of shiftwork on hemoglobin A1c (HbA1c) level, as an index of glucose metabolism. A 14 yr prospective cohort study was conducted on day (n = 4219) and alternating shiftworkers (n = 2885) who received annual health checkups between 1991 and 2005 at a Japanese steel company. The endpoints were either a 10%, 15%, 20%, 25%, or 30% increase in HbA1c during the period of observation, compared to HbA1c at entry to the study. The association between the type of job schedule and increase in HbA1c was investigated after adjusting for age, body mass index, mean arterial pressure, total serum cholesterol, creatinine, alanine aminotransferase, gamma-glutamyl transpeptidase, uric acid, drinking habit, smoking habit, and habitual exercise using multivariate pooled logistic regression analyses. Shiftwork was significantly associated with the various HbA1c endpoints (> or =10% HbA1c increase, odds ratio 1.35 [95% confidence interval 1.26-1.44]; > or =15% HbA1c increase, odds ratio 1.29 [95% confidence interval, 1.19-1.40]; > or =20% HbA1c increase, odds ratio 1.23 [95% confidence interval 1.11-1.37]; and > or =25% HbA1c increase, odds ratio 1.19 [95% confidence interval 1.03-1.36]). Age, body mass index, alanine aminotransferase, and gamma-glutamyl transpeptidase were associated positively with all five HbA1c endpoints. Uric acid was associated negatively with all five HbA1c endpoints. Our study on male Japanese workers revealed alternating shiftwork (in addition to other established factors, such as age and body mass index) was a consistent risk factor for impaired glucose metabolism. PMID:19637051

  2. Metabolic and hormonal responses during repeated bouts of brief and intense exercise: effects of pre-exercise glucose ingestion.

    PubMed

    Wouassi, D; Mercier, J; Ahmaidi, S; Brun, J F; Mercier, B; Orsetti, A; Préfaut, C

    1997-01-01

    We investigated metabolic and hormonal responses during repeated bouts of brief and intense exercise (a force-velocity test; Fv test) and examined the effect of glucose ingestion on these responses and on exercise performance. The test was performed twice by seven subjects [27 (2) years] according to a double-blind randomized crossover protocol. During the experimental trial (GLU), the subjects ingested 500 ml of glucose polymer solution containing 25 g glucose 15 min before starting the exercise. During the control trial (CON), the subjects received an equal volume of sweet placebo (aspartame). Exercise performance was assessed by calculating peak anaerobic power (W(an,peak)). Venous plasma lactate concentration increased significantly during the Fv test (P < 0.001), but no difference was found between CON and GLU. Blood glucose first decreased significantly from the beginning of exercise up to the 6-kg load (P < 0.001) and then increased significantly at W(an,peak) and for up to 10 min during the recovery period (P < 0.001) in both CON and GLU. Insulin concentrations decreased significantly in both groups, but were higher at W(an,peak) in GLU compared with CON (P < 0.05). Glucagon and epinephrine did not change significantly in either group, but epinephrine was significantly lower in GLU after glucose ingestion (P < 0.05) and at W(an,peak) (P < 0.05). W(an,peak) was not significantly different between CON and GLU. In conclusion, blood glucose and insulin concentrations decreased during repeated bouts of brief and intense exercise, while blood lactate concentration increased markedly without any significant change in glucagon and epinephrine concentrations. Glucose ingestion altered metabolic and hormonal responses during the Fv test, but the performance as measured by W(an,peak) was not changed. PMID:9286597

  3. Characterization of the role of sphingomyelin synthase 2 in glucose metabolism in whole-body and peripheral tissues in mice.

    PubMed

    Sugimoto, Masayuki; Shimizu, Yoichi; Zhao, Songji; Ukon, Naoyuki; Nishijima, Ken-ichi; Wakabayashi, Masato; Yoshioka, Takeshi; Higashino, Kenichi; Numata, Yoshito; Okuda, Tomohiko; Tamaki, Nagara; Hanamatsu, Hisatoshi; Igarashi, Yasuyuki; Kuge, Yuji

    2016-08-01

    Sphingomyelin synthase 2 (SMS2) is a proposed potential therapeutic target for obesity and insulin resistance. However, the contributions of SMS2 to glucose metabolism in tissues and its possible therapeutic mechanisms remain unclear. Thus, to determine whole-body glucose utilization and the contributions of each insulin-targeted tissue to glucose uptake, we performed a glucose kinetics study, using the radiolabeled glucose analog (18)F-2-fluoro-2-deoxy-D-glucose ((18)F-FDG), in wild-type (WT) and SMS2 knockout (KO) mice. Insulin signaling was enhanced in the liver, white adipose tissue and skeletal muscle of SMS2 KO mice compared with those of WT mice. In addition, compared with in WT mice, blood clearance of (18)F-FDG was accelerated in SMS2 KO mice when they were fed either a normal or a high fat diet. (18)F-FDG uptake was also increased in insulin-targeted tissues such as skeletal muscle in the SMS2 KO mice. Whereas skeletal muscle sphingolipid content was not clearly affected, plasma levels of very long-chain fatty acid (VLCFA)-containing ceramides were markedly increased in SMS2 KO mice, compared with in WT mice. We also generated liver-conditional SMS2 KO mice and performed glucose and insulin tolerance tests on mice with a high fat diet. However, no significant effect was observed. Thus, our study provided evidence that genetic inhibition of SMS2 elevated glucose clearance through activation of glucose uptake into insulin-targeted tissues such as skeletal muscle by a mechanism independent of hepatic SMS2. Our findings further indicate that this occurs, at least in part, via indirect mechanisms such as elevation of VLCFA-containing ceramides. PMID:27151272

  4. Quercetin ameliorates glucose and lipid metabolism and improves antioxidant status in postnatally monosodium glutamate-induced metabolic alterations.

    PubMed

    Seiva, Fábio R F; Chuffa, Luiz Gustavo A; Braga, Camila Pereira; Amorim, João Paulo A; Fernandes, Ana Angélica H

    2012-10-01

    We reported the effects of quercetin on metabolic and hormonal profile as well as serum antioxidant activities in a model of MSG (monosodium glutamate)-induced obesity. Rats were divided into 4 groups: MSG group, submitted to neonatal treatment with high doses of MSG, administrated subcutaneously during 10 days, from 2 day-old; control groups, which received the same volume of saline. After completing 30 day-old, these groups were subdivided into 4 groups: control and MSG groups treated and non-treated with quercetin at doses of 75 mg/kg body weight (i.p.) over 42 days. BW gain and food consumption were higher in MSG treated rats and quercetin significantly reduced BW by 25%. While MSG increased triacylglycerol, total cholesterol and fractions, and reduced HDL concentrations, administration of quercetin normalized HDL-cholesterol and reduced others lipids. Insulin, leptin, glucose and creatinine levels were raised in MSG-treated rats and reduced after quercetin treatment. Alanine transaminase, aspartate transaminase, lactate dehydrogenase and alkaline phosphatase activities were lower after MSG-quercetin combination compared to rats given only MSG. MSG-quercetin combination augmented total protein and urea levels as well as glutathione peroxidase and superoxide dismutase activities in contrast to MSG-treated animals. Quercetin normalized serum lipid and glucose profile and minimized the MSG-related toxic effects, which was associated to its antioxidant properties. PMID:22809473

  5. Retinal lipid and glucose metabolism dictates angiogenesis through lipid sensor Ffar1

    PubMed Central

    Joyal, Jean-Sébastien; Sun, Ye; Gantner, Marin L.; Shao, Zhuo; Evans, Lucy P.; Saba, Nicholas; Fredrick, Thomas; Burnim, Samuel; Kim, Jin Sung; Patel, Gauri; Juan, Aimee M.; Hurst, Christian G.; Hatton, Colman J.; Cui, Zhenghao; Pierce, Kerry A.; Bherer, Patrick; Aguilar, Edith; Powner, Michael B.; Vevis, Kristis; Boisvert, Michel; Fu, Zhongjie; Levy, Emile; Fruttiger, Marcus; Packard, Alan; Rezende, Flavio A.; Maranda, Bruno; Sapieha, Przemyslaw; Chen, Jing; Friedlander, Martin; Clish, Clary B.; Smith, Lois E.H.

    2016-01-01

    Tissues with high metabolic rates often use lipid as well as glucose for energy, conferring a survival advantage during feast and famine.1 Current dogma suggests that high-energy consuming photoreceptors depend on glucose.2,3 Here we show that retina also uses fatty acids (FA) β-oxidation for energy. Moreover, we identify a lipid sensor Ffar1 that curbs glucose uptake when FA are available. Very low-density lipoprotein receptor (VLDLR), expressed in tissues with a high metabolic rate, facilitates the uptake of triglyceride-derived FA.4,5 Vldlr is present in photoreceptors.6 In Vldlr−/− retinas, Ffar1, sensing high circulating lipid levels despite decreased FA uptake5, suppresses glucose transporter Glut1. This impaired glucose entry into photoreceptors results in a dual lipid/glucose fuel shortage and reduction in the Krebs cycle intermediate α-ketoglutarate (KG). Low α-KG levels promote hypoxia-induced factor-1α (Hif1a) stabilization and vascular endothelial growth factor (Vegfa) secretion by starved Vldlr−/− photoreceptors, attracting neovessels to supply fuel. These aberrant vessels invading normally avascular photoreceptors in Vldlr−/− retinas are reminiscent of retinal angiomatous proliferation (RAP), a subset of neovascular age-related macular degeneration (AMD)7, associated with high vitreous VEGF levels in humans. Dysregulated lipid and glucose photoreceptor energy metabolism may therefore be a driving force in neovascular AMD and other retinal diseases. PMID:26974308

  6. The influence of processing corn grain on glucose metabolism in ewes.

    PubMed

    Landau, S; Nitsan, Z; Zoref, Z; Madar, Z

    1992-01-01

    Glucose metabolism was studied in ewes fed 800 g chopped alfalfa hay (H) or 400 g alfalfa hay and 400 g corn grain given in whole (HWC), ground (HGC) or extruded (HEC) form. Daily intake of metabolisable energy and crude protein were: 5.8 MJ, 109 g; 9.0 MJ, 84 g; 9.5 MJ, 84 g and 8.5 MJ, 88 g in H, HWC, HGC and HEC, respectively. In situ ruminal degradability ranked whole, ground, and extruded corn in ascending order. Ruminal pH and concentration of acetic acid were lower and of propionic acid higher (P less than 0.05) in HEC than in HGC and HWC groups. Plasma level of glucose (P less than 0.10), insulin (P less than 0.05), and the ratio of insulin to non-esterified fatty acids (NEFA) (P less than 0.01) were higher in HEC than in other groups. Glucose irreversible loss (GILR) and entry rate (GER), recycling (GRec) and reentry (GRee) were determined by double isotope dilution procedure. GER, but not GILR, was higher in HWC than in H and HGC (6.98 mg/min/kg BW0.75 vs 3.97 and 4.24 mg/min/kg BW0.75, respectively; P less than 0.05) and than in HEC (4.84 mg/min/kg BW0.75; P less than 0.10). GRec and GRee were higher in HWC than in the other treatments. Grinding or extruding the grain increased ruminal degradability and decreased glucose entry rate. PMID:1449607

  7. Plant Oils Were Associated with Low Prevalence of Impaired Glucose Metabolism in Japanese Workers

    PubMed Central

    Kurotani, Kayo; Kochi, Takeshi; Nanri, Akiko; Tsuruoka, Hiroko; Kuwahara, Keisuke; Pham, Ngoc Minh; Kabe, Isamu; Mizoue, Tetsuya

    2013-01-01

    Fatty acid has been suggested to be involved in development of diabetes. However, its association is unclear among Japanese populations, which consume large amounts of fish rich in n-3 polyunsaturated fatty acids. The present cross-sectional study examined the association of individual dietary fatty acids and dietary fatty acid patterns with abnormal glucose metabolism among 1065 Japanese employees, aged 18–69 years. Impaired glucose metabolism is defined if a person has a history of diabetes, current use of anti-diabetic drug, fasting plasma glucose of 110 mg/dl (≥6.1 mmol/L) or greater, or hemoglobin A1C of 6.0% (≥42 mmol/mol) or greater. Dietary intake was assessed with a self-administered diet history questionnaire. Dietary fatty acid patterns were extracted by principal component analysis. Odds ratios of impaired glucose metabolism according to tertile categories of each fatty acids and dietary fatty acid patterns were estimated using logistic regression with adjustment for potential confounding variables. A higher intake of polyunsaturated fatty acid, n-6 fatty acid, linoleic acid, and oleic acid were significantly associated with a decreased prevalence of impaired glucose metabolism (P for trend = 0.03, 0.01, 0.02, and 0.04, respectively). Alpha-linolenic acid was marginally significantly associated with a decreased prevalence of impaired glucose metabolism (P for trend = 0.12). Of three fatty acid patterns identified, a higher plant oil pattern score, which characterized by high intake of alpha-linolenic acid, linoleic acid, and oleic acid, was associated with a decreased prevalence of impaired glucose metabolism (P for trend = 0.03). No association was observed for other patterns. In conclusion, plant source fatty acids might be protectively associated with development of diabetes in Japanese adults. PMID:23741386

  8. Plant oils were associated with low prevalence of impaired glucose metabolism in Japanese workers.

    PubMed

    Kurotani, Kayo; Kochi, Takeshi; Nanri, Akiko; Tsuruoka, Hiroko; Kuwahara, Keisuke; Pham, Ngoc Minh; Kabe, Isamu; Mizoue, Tetsuya

    2013-01-01

    Fatty acid has been suggested to be involved in development of diabetes. However, its association is unclear among Japanese populations, which consume large amounts of fish rich in n-3 polyunsaturated fatty acids. The present cross-sectional study examined the association of individual dietary fatty acids and dietary fatty acid patterns with abnormal glucose metabolism among 1065 Japanese employees, aged 18-69 years. Impaired glucose metabolism is defined if a person has a history of diabetes, current use of anti-diabetic drug, fasting plasma glucose of 110 mg/dl (≥6.1 mmol/L) or greater, or hemoglobin A1C of 6.0% (≥42 mmol/mol) or greater. Dietary intake was assessed with a self-administered diet history questionnaire. Dietary fatty acid patterns were extracted by principal component analysis. Odds ratios of impaired glucose metabolism according to tertile categories of each fatty acids and dietary fatty acid patterns were estimated using logistic regression with adjustment for potential confounding variables. A higher intake of polyunsaturated fatty acid, n-6 fatty acid, linoleic acid, and oleic acid were significantly associated with a decreased prevalence of impaired glucose metabolism (P for trend = 0.03, 0.01, 0.02, and 0.04, respectively). Alpha-linolenic acid was marginally significantly associated with a decreased prevalence of impaired glucose metabolism (P for trend = 0.12). Of three fatty acid patterns identified, a higher plant oil pattern score, which characterized by high intake of alpha-linolenic acid, linoleic acid, and oleic acid, was associated with a decreased prevalence of impaired glucose metabolism (P for trend = 0.03). No association was observed for other patterns. In conclusion, plant source fatty acids might be protectively associated with development of diabetes in Japanese adults. PMID:23741386

  9. The effect of vagal nerve blockade using electrical impulses on glucose metabolism in nondiabetic subjects

    PubMed Central

    Sathananthan, Matheni; Ikramuddin, Sayeed; Swain, James M; Shah, Meera; Piccinini, Francesca; Dalla Man, Chiara; Cobelli, Claudio; Rizza, Robert A; Camilleri, Michael; Vella, Adrian

    2014-01-01

    Purpose Vagal interruption causes weight loss in humans and decreases endogenous glucose production in animals. However, it is unknown if this is due to a direct effect on glucose metabolism. We sought to determine if vagal blockade using electrical impulses alters glucose metabolism in humans. Patients and methods We utilized a randomized, cross-over study design where participants were studied after 2 weeks of activation or inactivation of vagal nerve blockade (VNB). Seven obese subjects with impaired fasting glucose previously enrolled in a long-term study to examine the effect of VNB on weight took part. We used a standardized triple-tracer mixed meal to enable measurement of the rate of meal appearance, endogenous glucose production, and glucose disappearance. The 550 kcal meal was also labeled with 111In-diethylene triamine pentaacetic acid (DTPA) to measure gastrointestinal transit. Insulin action and β-cell responsivity indices were estimated using the minimal model. Results Integrated glucose, insulin, and glucagon concentrations did not differ between study days. This was also reflected in a lack of effect on β-cell responsivity and insulin action. Furthermore, fasting and postprandial endogenous glucose production, integrated meal appearance, and glucose disposal did not differ in the presence or absence of VNB. Similarly, gastric emptying and colonic transit were unchanged by VNB. Conclusion In this pilot study in nondiabetic humans, electrical vagal blockade had no acute effects on glucose metabolism, insulin secretion and action, or gastric emptying. It remains to be determined if more pronounced effects would be observed in diabetic subjects. PMID:25050073

  10. Insulin/glucose induces natriuretic peptide clearance receptor in human adipocytes: a metabolic link with the cardiac natriuretic pathway.

    PubMed

    Bordicchia, M; Ceresiani, M; Pavani, M; Minardi, D; Polito, M; Wabitsch, M; Cannone, V; Burnett, J C; Dessì-Fulgheri, P; Sarzani, R

    2016-07-01

    Cardiac natriuretic peptides (NP) are involved in cardiorenal regulation and in lipolysis. The NP activity is largely dependent on the ratio between the signaling receptor NPRA and the clearance receptor NPRC. Lipolysis increases when NPRC is reduced by starving or very-low-calorie diet. On the contrary, insulin is an antilipolytic hormone that increases sodium retention, suggesting a possible functional link with NP. We examined the insulin-mediated regulation of NP receptors in differentiated human adipocytes and tested the association of NP receptor expression in visceral adipose tissue (VAT) with metabolic profiles of patients undergoing renal surgery. Differentiated human adipocytes from VAT and Simpson-Golabi-Behmel Syndrome (SGBS) adipocyte cell line were treated with insulin in the presence of high-glucose or low-glucose media to study NP receptors and insulin/glucose-regulated pathways. Fasting blood samples and VAT samples were taken from patients on the day of renal surgery. We observed a potent insulin-mediated and glucose-dependent upregulation of NPRC, through the phosphatidylinositol 3-kinase pathway, associated with lower lipolysis in differentiated adipocytes. No effect was observed on NPRA. Low-glucose medium, used to simulate in vivo starving conditions, hampered the insulin effect on NPRC through modulation of insulin/glucose-regulated pathways, allowing atrial natriuretic peptide to induce lipolysis and thermogenic genes. An expression ratio in favor of NPRC in adipose tissue was associated with higher fasting insulinemia, HOMA-IR, and atherogenic lipid levels. Insulin/glucose-dependent NPRC induction in adipocytes might be a key factor linking hyperinsulinemia, metabolic syndrome, and higher blood pressure by reducing NP effects on adipocytes. PMID:27101299

  11. Discovery of a novel glucose metabolism in cancer: The role of endoplasmic reticulum beyond glycolysis and pentose phosphate shunt

    PubMed Central

    Marini, Cecilia; Ravera, Silvia; Buschiazzo, Ambra; Bianchi, Giovanna; Orengo, Anna Maria; Bruno, Silvia; Bottoni, Gianluca; Emionite, Laura; Pastorino, Fabio; Monteverde, Elena; Garaboldi, Lucia; Martella, Roberto; Salani, Barbara; Maggi, Davide; Ponzoni, Mirco; Fais, Franco; Raffaghello, Lizzia; Sambuceti, Gianmario

    2016-01-01

    Cancer metabolism is characterized by an accelerated glycolytic rate facing reduced activity of oxidative phosphorylation. This “Warburg effect” represents a standard to diagnose and monitor tumor aggressiveness with 18F-fluorodeoxyglucose whose uptake is currently regarded as an accurate index of total glucose consumption. Studying cancer metabolic response to respiratory chain inhibition by metformin, we repeatedly observed a reduction of tracer uptake facing a marked increase in glucose consumption. This puzzling discordance brought us to discover that 18F-fluorodeoxyglucose preferentially accumulates within endoplasmic reticulum by exploiting the catalytic function of hexose-6-phosphate-dehydrogenase. Silencing enzyme expression and activity decreased both tracer uptake and glucose consumption, caused severe energy depletion and decreased NADPH content without altering mitochondrial function. These data document the existence of an unknown glucose metabolism triggered by hexose-6-phosphate-dehydrogenase within endoplasmic reticulum of cancer cells. Besides its basic relevance, this finding can improve clinical cancer diagnosis and might represent potential target for therapy. PMID:27121192

  12. Discovery of a novel glucose metabolism in cancer: The role of endoplasmic reticulum beyond glycolysis and pentose phosphate shunt.

    PubMed

    Marini, Cecilia; Ravera, Silvia; Buschiazzo, Ambra; Bianchi, Giovanna; Orengo, Anna Maria; Bruno, Silvia; Bottoni, Gianluca; Emionite, Laura; Pastorino, Fabio; Monteverde, Elena; Garaboldi, Lucia; Martella, Roberto; Salani, Barbara; Maggi, Davide; Ponzoni, Mirco; Fais, Franco; Raffaghello, Lizzia; Sambuceti, Gianmario

    2016-01-01

    Cancer metabolism is characterized by an accelerated glycolytic rate facing reduced activity of oxidative phosphorylation. This "Warburg effect" represents a standard to diagnose and monitor tumor aggressiveness with (18)F-fluorodeoxyglucose whose uptake is currently regarded as an accurate index of total glucose consumption. Studying cancer metabolic response to respiratory chain inhibition by metformin, we repeatedly observed a reduction of tracer uptake facing a marked increase in glucose consumption. This puzzling discordance brought us to discover that (18)F-fluorodeoxyglucose preferentially accumulates within endoplasmic reticulum by exploiting the catalytic function of hexose-6-phosphate-dehydrogenase. Silencing enzyme expression and activity decreased both tracer uptake and glucose consumption, caused severe energy depletion and decreased NADPH content without altering mitochondrial function. These data document the existence of an unknown glucose metabolism triggered by hexose-6-phosphate-dehydrogenase within endoplasmic reticulum of cancer cells. Besides its basic relevance, this finding can improve clinical cancer diagnosis and might represent potential target for therapy. PMID:27121192

  13. Simultaneous utilization of glucose and gluconate in Penicillium chrysogenum during overflow metabolism.

    PubMed

    Schmitz, Katja; Peter, Vivien; Meinert, Sabine; Kornfeld, Georg; Hardiman, Timo; Wiechert, Wolfgang; Noack, Stephan

    2013-12-01

    The filamentous fungus Penicillium chrysogenum is one of the most important production organism for β-lactam antibiotics, especially penicillin. A specific feature of P. chrysogenum is the formation of gluconate as the primary overflow metabolite under non-limiting growth on glucose. Gluconate can be formed extracellularly by the enzyme glucose oxidase (GOD) that shows high activities under glucose excess conditions. Currently, it is assumed that under these conditions glucose is the preferred carbon substrate for P. chrysogenum and gluconate consumption first starts after glucose becomes limiting. Here, we specifically address this hypothesis by combining batch cultivation experiments on defined glucose media, time-dependent GOD activity measurements, and (13)C-tracer studies. Our data prove that both substrates are metabolized simultaneously independent from the actual glucose concentration and therefore suggest that no distinct mechanism of carbon catabolite repression exists for gluconate in P. chrysogenum. Moreover, gluconate consumption does not interfere with penicillin V production by repression of the penicillin genes. Finally, by following a model-driven approach the specific uptake rates for glucose and gluconate were quantified and found to be significantly higher for gluconate. In summary, our results show that P. chrysogenum metabolizes gluconate directly and at high rates making it an interesting alternative carbon source for production purposes. PMID:23775209

  14. Glucose Metabolism Disorder Is Associated with Pulmonary Tuberculosis in Individuals with Respiratory Symptoms from Brazil

    PubMed Central

    Castro, Simone; Cafezeiro, Aparecida S.; Daltro, Carla; Netto, Eduardo M.; Kornfeld, Hardy; Andrade, Bruno B.

    2016-01-01

    Background Diabetes mellitus (DM) has been associated with increased risk for pulmonary tuberculosis (PTB) in endemic settings but it is unknown whether PTB risk is also increased by pre-DM. Here, we prospectively examined the association between glucose metabolism disorder (GMD) and PTB in patients with respiratory symptoms at a tuberculosis primary care reference center in Brazil. Methods Oral glucose tolerance test was performed and levels of fasting plasma glucose and glycohemoglobin (HbA1c) were measured in a cohort of 892 individuals presenting with respiratory symptoms of more than two weeks duration. Patients were also tested for PTB with sputum cultures. Prevalence of pre-DM and DM (based on HbA1c) was estimated and tested for association with incident PTB. Other TB risk factors including smoking history were analyzed. Results The majority of the study population (63.1%) exhibited GMD based on HbA1c ≥5.7%. Patients with GMD had higher prevalence of PTB compared to normoglycemic patients. Individuals with DM exhibited increased frequency of TB-related symptoms and detection of acid-fast bacilli in sputum smears. Among patients with previous DM diagnosis, sustained hyperglycemia (HbA1c ≥7.0%) was associated with increased TB prevalence. Smoking history alone was not significantly associated with TB in our study population but the combination of smoking and HbA1c ≥7.0% was associated with 6 times higher odds for PTB. Conclusions Sustained hyperglycemia and pre-DM are independently associated with active PTB. This evidence raises the question whether improving glycemic control in diabetic TB patients would reduce the risk of TB transmission and simultaneously reduce the clinical burden of disease. A better understanding of mechanisms underlying these associations, especially those suggesting that pre-DM may be a factor driving susceptibility to TB is warranted. PMID:27078026

  15. ROS-mediated glucose metabolic reprogram induces insulin resistance in type 2 diabetes.

    PubMed

    Dong, Kelei; Ni, Hua; Wu, Meiling; Tang, Ziqing; Halim, Michael; Shi, Dongyun

    2016-08-01

    Oxidative stress is known to contribute to insulin resistance in diabetes, however the mechanism is not clear. Here we show that reactive oxygen species (ROS) could reprogram the glucose metabolism through upregulating the pentose pathway so as to induce insulin resistance in type 2 diabetes (T2DM). By using streptozotocin-high fat diet (STZ-HFD) induced T2DM in rats, we show that diabetic rats exhibited high level of oxidative stress accompanied with insulin resistance. Hypoxia inducible factor (HIF-1α) protein expression as well as its downstream target glucokinase (GK), were upregulated; The glycogen synthesis increased accordingly; However the glycolysis was inhibited as indicated by decreased phosphofructokinase-1 (PFK-1), pyruvate kinase (PK), phospho-PFK-2/PFK-2 (p-PFK-2/PFK-2) ratio, lactate dehydrogenase (LDH) and pyruvate dehydrogenase kinase (PDK); Pyruvate dehydrogenase (PDH) which promotes pyruvate to generate acetyl-CoA declined as well. While phospho-acetyl-CoA carboxylase/acetyl-CoA carboxylase (p-ACC/ACC) ratio increased, meaning that lipid beta-oxidation increased. The pentose pathway was activated as indicated by increased G6PD activity and NADPH level. Our results suggest that diabetic rats countervail ROS stress through increasing pentose pathway, and reprogram the energy metabolic pathway from glycolysis into lipid oxidation in order to compensate the ATP requirement of the body, which causes insulin resistance. PMID:27207834

  16. 2-deoxy-D-glucose-induced metabolic stress enhances resistance to Listeria monocytogenes infection in mice

    NASA Technical Reports Server (NTRS)

    Miller, E. S.; Bates, R. A.; Koebel, D. A.; Fuchs, B. B.; Sonnenfeld, G.

    1998-01-01

    Exposure to different forms of psychological and physiological stress can elicit a host stress response, which alters normal parameters of neuroendocrine homeostasis. The present study evaluated the influence of the metabolic stressor 2-deoxy-D-glucose (2-DG; a glucose analog, which when administered to rodents, induces acute periods of metabolic stress) on the capacity of mice to resist infection with the facultative intracellular bacterial pathogen Listeria monocytogenes. Female BDF1 mice were injected with 2-DG (500 mg/kg b. wt.) once every 48 h prior to, concurrent with, or after the onset of a sublethal dose of virulent L. monocytogenes. Kinetics of bacterial growth in mice were not altered if 2-DG was applied concurrently or after the start of the infection. In contrast, mice exposed to 2-DG prior to infection demonstrated an enhanced resistance to the listeria challenge. The enhanced bacterial clearance in vivo could not be explained by 2-DG exerting a toxic effect on the listeria, based on the results of two experiments. First, 2-DG did not inhibit listeria replication in trypticase soy broth. Second, replication of L. monocytogenes was not inhibited in bone marrow-derived macrophage cultures exposed to 2-DG. Production of neopterin and lysozyme, indicators of macrophage activation, were enhanced following exposure to 2-DG, which correlated with the increased resistance to L. monocytogenes. These results support the contention that the host response to 2-DG-induced metabolic stress can influence the capacity of the immune system to resist infection by certain classes of microbial pathogens.

  17. Transport and metabolism of fumaric acid in Saccharomyces cerevisiae in aerobic glucose-limited chemostat culture.

    PubMed

    Shah, Mihir V; van Mastrigt, Oscar; Heijnen, Joseph J; van Gulik, Walter M

    2016-04-01

    Currently, research is being focused on the industrial-scale production of fumaric acid and other relevant organic acids from renewable feedstocks via fermentation, preferably at low pH for better product recovery. However, at low pH a large fraction of the extracellular acid is present in the undissociated form, which is lipophilic and can diffuse into the cell. There have been no studies done on the impact of high extracellular concentrations of fumaric acid under aerobic conditions in S. cerevisiae, which is a relevant issue to study for industrial-scale production. In this work we studied the uptake and metabolism of fumaric acid in S. cerevisiae in glucose-limited chemostat cultures at a cultivation pH of 3.0 (pH < pK). Steady states were achieved with different extracellular levels of fumaric acid, obtained by adding different amounts of fumaric acid to the feed medium. The experiments were carried out with the wild-type S. cerevisiae CEN.PK 113-7D and an engineered S. cerevisiae ADIS 244 expressing a heterologous dicarboxylic acid transporter (DCT-02) from Aspergillus niger, to examine whether it would be capable of exporting fumaric acid. We observed that fumaric acid entered the cells most likely via passive diffusion of the undissociated form. Approximately two-thirds of the fumaric acid in the feed was metabolized together with glucose. From metabolic flux analysis, an increased ATP dissipation was observed only at high intracellular concentrations of fumarate, possibly due to the export of fumarate via an ABC transporter. The implications of our results for the industrial-scale production of fumaric acid are discussed. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26683700

  18. HexR Controls Glucose-Responsive Genes and Central Carbon Metabolism in Neisseria meningitidis

    PubMed Central

    Antunes, Ana; Golfieri, Giacomo; Ferlicca, Francesca; Giuliani, Marzia M.; Scarlato, Vincenzo

    2015-01-01

    ABSTRACT Neisseria meningitidis, an exclusively human pathogen and the leading cause of bacterial meningitis, must adapt to different host niches during human infection. N. meningitidis can utilize a restricted range of carbon sources, including lactate, glucose, and pyruvate, whose concentrations vary in host niches. Microarray analysis of N. meningitidis grown in a chemically defined medium in the presence or absence of glucose allowed us to identify genes regulated by carbon source availability. Most such genes are implicated in energy metabolism and transport, and some are implicated in virulence. In particular, genes involved in glucose catabolism were upregulated, whereas genes involved in the tricarboxylic acid cycle were downregulated. Several genes encoding surface-exposed proteins, including the MafA adhesins and Neisseria surface protein A, were upregulated in the presence of glucose. Our microarray analysis led to the identification of a glucose-responsive hexR-like transcriptional regulator that controls genes of the central carbon metabolism of N. meningitidis in response to glucose. We characterized the HexR regulon and showed that the hexR gene is accountable for some of the glucose-responsive regulation; in vitro assays with the purified protein showed that HexR binds to the promoters of the central metabolic operons of the bacterium. Based on DNA sequence alignment of the target sites, we propose a 17-bp pseudopalindromic consensus HexR binding motif. Furthermore, N. meningitidis strains lacking hexR expression were deficient in establishing successful bacteremia in an infant rat model of infection, indicating the importance of this regulator for the survival of this pathogen in vivo. IMPORTANCE Neisseria meningitidis grows on a limited range of nutrients during infection. We analyzed the gene expression of N. meningitidis in response to glucose, the main energy source available in human blood, and we found that glucose regulates many genes

  19. Experimental Identification and Quantification of Glucose Metabolism in Seven Bacterial Species†

    PubMed Central

    Fuhrer, Tobias; Fischer, Eliane; Sauer, Uwe

    2005-01-01

    The structurally conserved and ubiquitous pathways of central carbon metabolism provide building blocks and cofactors for the biosynthesis of cellular macromolecules. The relative uses of pathways and reactions, however, vary widely among species and depend upon conditions, and some are not used at all. Here we identify the network topology of glucose metabolism and its in vivo operation by quantification of intracellular carbon fluxes from 13C tracer experiments. Specifically, we investigated Agrobacterium tumefaciens, two pseudomonads, Sinorhizobium meliloti, Rhodobacter sphaeroides, Zymomonas mobilis, and Paracoccus versutus, which grow on glucose as the sole carbon source, represent fundamentally different metabolic lifestyles (aerobic, anaerobic, photoheterotrophic, and chemoheterotrophic), and are phylogenetically distinct (firmicutes, γ-proteobacteria, and α-proteobacteria). Compared to those of the model bacteria Escherichia coli and Bacillus subtilis, metabolisms of the investigated species differed significantly in several respects: (i) the Entner-Doudoroff pathway was the almost exclusive catabolic route; (ii) the pentose phosphate pathway exhibited exclusively biosynthetic functions, in many cases also requiring flux through the nonoxidative branch; (iii) all aerobes exhibited fully respiratory metabolism without significant overflow metabolism; and (iv) all aerobes used the pyruvate bypass of the malate dehydrogenase reaction to a significant extent. Exclusively, Pseudomonas fluorescens converted most glucose extracellularly to gluconate and 2-ketogluconate. Overall, the results suggest that metabolic data from model species with extensive industrial and laboratory history are not representative of microbial metabolism, at least not quantitatively. PMID:15716428

  20. Neuroendocrinology: Electromagnetogenetic Control over Feeding and Glucose Metabolism.

    PubMed

    Ruud, Johan; Brüning, Jens C

    2016-06-01

    Cutting-edge experiments show a new means to control the activity of specifically genetically targeted neurons in the hypothalamus using electromagnetic force. At the flip of a switch, the system bidirectionally regulates feeding behavior and glucose homeostasis, demonstrating wireless control over deep brain regions and their strong influence over energy balance. PMID:27269725

  1. Deletion of GPR40 Impairs Glucose-Induced Insulin Secretion In Vivo in Mice Without Affecting Intracellular Fuel Metabolism in Islets

    SciTech Connect

    Alquier, Thierry; Peyot, Marie-Line; Latour, M. G.; Kebede, Melkam; Sorensen, Christina M.; Gesta, Stephane; Kahn, C. R.; Smith, Richard D.; Jetton, Thomas L.; Metz, Thomas O.; Prentki, Marc; Poitout, Vincent J.

    2009-11-01

    The G protein-coupled receptor GPR40 mediates fatty-acid potentiation of glucose-stimulated insulin secretion, but its contribution to insulin secretion in vivo and mechanisms of action remain uncertain. This study was aimed to ascertain whether GPR40 controls insulin secretion in vivo and modulates intracellular fuel metabolism in islets. We observed that glucose- and arginine-stimulated insulin secretion, assessed by hyperglycemic clamps, was decreased by approximately 60% in GPR40 knock-out (KO) fasted and fed mice, without changes in insulin sensitivity assessed by hyperinsulinemic-euglycemic clamps. Glucose and palmitate metabolism were not affected by GPR40 deletion. Lipid profiling revealed a similar increase in triglyceride and decrease in lysophosphatidylethanolamine species in WT and KO islets in response to palmitate. These results demonstrate that GPR40 regulates insulin secretion in vivo not only in response to fatty acids but also to glucose and arginine, without altering intracellular fuel metabolism.

  2. Opioid effects on glucose and eicosanoid metabolism in isolated uterus of ovariectomized and non-ovariectomized restricted diet rats.

    PubMed

    Campos, M L; Casalino-Matsuda, S M; Linares, J A; Goldraij, A

    2001-09-01

    The effect of a 25-day restricted diet (50% of the normal food intake) on uterine glucose metabolism of ovariectomized (25 days) and non-ovariectomized rats, was studied. Underfeeding reduces (14)CO(2) production from U(14)C-glucose in intact animal. However, in spayed rats, results are the opposite. In intact rats receiving a low food intake, the effect of the addition to the KRB medium of various agonist opioids, was studied. Dinorphin A did not bring about any change. On the other hand, beta endorphin increased glucose metabolism. Also, the addition of Dago and Dadle increased (14)CO(2) production, while their corresponding specific blockers, beta-FNA and Naltrindole, reversed it. Ovariectomized rats subjected to food restriction are not affected by opioid agonists. In vitro morphine, like endogenous opioids, increased (14)CO(2) in intact restricted diet rats. Arachidonic acid metabolism in these rats show that underfeeding brings about a decrease in PGF(2 alpha) and PGE(2), but the addition of morphine does not alter this situation, for which eicosanoids metabolites are not related to the effect of morphine. The morphine effect was not altered by naloxone. The subcutaneous injection of morphine increased glucose metabolism in intact underfed animals, while naloxone reduced (14)CO(2) in spayed rats subjected to underfeeding. It can be concluded that uteri from ovariectomized rats receiving a restricted diet are influenced by a mechanism of upregulation related to endogenous opioids. These likely originate in other tissues, and so prevent us from seeing the morphine effect. PMID:11728161

  3. Computational model of cellular metabolic dynamics: effect of insulin on glucose disposal in human skeletal muscle

    PubMed Central

    Li, Yanjun; Solomon, Thomas P. J.; Haus, Jacob M.; Saidel, Gerald M.; Cabrera, Marco E.

    2010-01-01

    Identifying the mechanisms by which insulin regulates glucose metabolism in skeletal muscle is critical to understanding the etiology of insulin resistance and type 2 diabetes. Our knowledge of these mechanisms is limited by the difficulty of obtaining in vivo intracellular data. To quantitatively distinguish significant transport and metabolic mechanisms from limited experimental data, we developed a physiologically based, multiscale mathematical model of cellular metabolic dynamics in skeletal muscle. The model describes mass transport and metabolic processes including distinctive processes of the cytosol and mitochondria. The model simulated skeletal muscle metabolic responses to insulin corresponding to human hyperinsulinemic-euglycemic clamp studies. Insulin-mediated rate of glucose disposal was the primary model input. For model validation, simulations were compared with experimental data: intracellular metabolite concentrations and patterns of glucose disposal. Model variations were simulated to investigate three alternative mechanisms to explain insulin enhancements: Model 1 (M.1), simple mass action; M.2, insulin-mediated activation of key metabolic enzymes (i.e., hexokinase, glycogen synthase, pyruvate dehydrogenase); or M.3, parallel activation by a phenomenological insulin-mediated intracellular signal that modifies reaction rate coefficients. These simulations indicated that models M.1 and M.2 were not sufficient to explain the experimentally measured metabolic responses. However, by application of mechanism M.3, the model predicts metabolite concentration changes and glucose partitioning patterns consistent with experimental data. The reaction rate fluxes quantified by this detailed model of insulin/glucose metabolism provide information that can be used to evaluate the development of type 2 diabetes. PMID:20332360

  4. An analogue of atrial natriuretic peptide (C-ANP4-23) modulates glucose metabolism in human differentiated adipocytes.

    PubMed

    Ruiz-Ojeda, Francisco Javier; Aguilera, Concepción María; Rupérez, Azahara Iris; Gil, Ángel; Gomez-Llorente, Carolina

    2016-08-15

    The present study was undertaken to investigate the effects of C-atrial natriuretic peptide (C-ANP4-23) in human adipose-derived stem cells differentiated into adipocytes over 10 days (1 μM for 4 h). The intracellular cAMP, cGMP and protein kinase A levels were determined by ELISA and gene and protein expression were determined by qRT-PCR and Western blot, respectively, in the presence or absence of C-ANP4-23. The levels of lipolysis and glucose uptake were also determined. C-ANP4-23 treatment significantly increased the intracellular cAMP levels and the gene expression of glucose transporter type 4 (GLUT4) and protein kinase, AMP-activated, alpha 1 catalytic subunit (AMPK). Western blot showed a significant increase in GLUT4 and phosphor-AMPKα levels. Importantly, the adenylate cyclase inhibitor SQ22536 abolished these effects. Additionally, C-ANP4-23 increased glucose uptake by 2-fold. Our results show that C-ANP4-23 enhances glucose metabolism and might contribute to the development of new peptide-based therapies for metabolic diseases. PMID:27181211

  5. Effects of heated hydrotherapy on muscle HSP70 and glucose metabolism in old and young vervet monkeys.

    PubMed

    Kavanagh, Kylie; Davis, Ashely T; Jenkins, Kurt A; Flynn, D Mickey

    2016-07-01

    Increasing heat shock protein 70 (HSP70) in aged and/or insulin-resistant animal models confers benefits to healthspan and lifespan. Heat application to increase core temperature induces HSPs in metabolically important tissues, and preliminary human and animal data suggest that heated hydrotherapy is an effective method to achieve increased HSPs. However, safety concerns exist, particularly in geriatric medicine where organ and cardiovascular disease commonly will preexist. We evaluated young vervet monkeys compared to old, insulin-resistant vervet monkeys (Chlorocebus aethiops sabaeus) in their core temperatures, glucose tolerance, muscle HSP70 level, and selected safety biomarkers after 10 sessions of hot water immersions administered twice weekly. Hot water immersion robustly induced the heat shock response in muscles. We observed that heat-treated old and young monkeys have significantly higher muscle HSP70 than control monkeys and treatment was without significant adverse effects on organ or cardiovascular health. Heat therapy improved pancreatic responses to glucose challenge and tended to normalize glucose excursions. A trend for worsened blood pressure and glucose values in the control monkeys and improved values in heat-treated monkeys were seen to support further investigation into the safety and efficacy of this intervention for metabolic syndrome or diabetes in young or old persons unable to exercise. PMID:27188431

  6. A Physiology-Based Model Describing Heterogeneity in Glucose Metabolism

    PubMed Central

    Maas, Anne H.; Rozendaal, Yvonne J. W.; van Pul, Carola; Hilbers, Peter A. J.; Cottaar, Ward J.; Haak, Harm R.; van Riel, Natal A. W.

    2014-01-01

    Background: Current diabetes education methods are costly, time-consuming, and do not actively engage the patient. Here, we describe the development and verification of the physiological model for healthy subjects that forms the basis of the Eindhoven Diabetes Education Simulator (E-DES). E-DES shall provide diabetes patients with an individualized virtual practice environment incorporating the main factors that influence glycemic control: food, exercise, and medication. Method: The physiological model consists of 4 compartments for which the inflow and outflow of glucose and insulin are calculated using 6 nonlinear coupled differential equations and 14 parameters. These parameters are estimated on 12 sets of oral glucose tolerance test (OGTT) data (226 healthy subjects) obtained from literature. The resulting parameter set is verified on 8 separate literature OGTT data sets (229 subjects). The model is considered verified if 95% of the glucose data points lie within an acceptance range of ±20% of the corresponding model value. Results: All glucose data points of the verification data sets lie within the predefined acceptance range. Physiological processes represented in the model include insulin resistance and β-cell function. Adjusting the corresponding parameters allows to describe heterogeneity in the data and shows the capabilities of this model for individualization. Conclusion: We have verified the physiological model of the E-DES for healthy subjects. Heterogeneity of the data has successfully been modeled by adjusting the 4 parameters describing insulin resistance and β-cell function. Our model will form the basis of a simulator providing individualized education on glucose control. PMID:25526760

  7. Dibenzoylmethane Exerts Metabolic Activity through Regulation of AMP-Activated Protein Kinase (AMPK)-Mediated Glucose Uptake and Adipogenesis Pathways

    PubMed Central

    Kim, Nami; Kim, Hong Min; Lee, Eun Soo; Lee, Jung Ok; Lee, Hye Jeong; Lee, Soo Kyung; Moon, Ji Wook; Kim, Ji Hae; Kim, Joong Kwan; Kim, Su Jin; Park, Sun Hwa; Chung, Choon Hee; Kim, Hyeon Soo

    2015-01-01

    Dibenzoylmethane (DBM) has been shown to exert a variety of beneficial effects on human health. However, the mechanism of action is poorly understood. In this study, DBM increased phosphorylation of AMP-activated protein kinase (AMPK) and stimulated glucose uptake in a skeletal muscle cell line. Both knockdown of AMPK with siRNA and inhibition with AMPK inhibitor blocked DBM-induced glucose uptake. DBM increased the concentration of intracellular calcium and glucose uptake due to DBM was abolished by STO-609 (a calcium/calmodulin-dependent protein kinase inhibitor). DBM stimulated phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK), which was blocked by pretreatment with compound C, an AMPK inhibitor. The expression of glucose transporter type 4 (GLUT4) was increased by DBM. The translocation of GLUT4 to the plasma membrane was also increased by DBM in AMPK dependently. In addition, DBM suppressed weight gain and prevented fat accumulation in the liver and abdomen in mice fed a high-fat diet. In pre-adipocyte cells, DBM decreased the activity of acetyl-CoA carboxylase (ACC), the rate-limiting enzyme of fatty acid synthesis. Expression of the adipogenic gene, fatty acid synthase (FAS), was suppressed by DBM in an AMPK-dependent manner. These results showed that the beneficial metabolic effects of DBM might be due to regulation of glucose uptake via AMPK in skeletal muscle and inhibition of adipogenesis in pre-adipocytes. PMID:25756788

  8. Dibenzoylmethane exerts metabolic activity through regulation of AMP-activated protein kinase (AMPK)-mediated glucose uptake and adipogenesis pathways.

    PubMed

    Kim, Nami; Kim, Hong Min; Lee, Eun Soo; Lee, Jung Ok; Lee, Hye Jeong; Lee, Soo Kyung; Moon, Ji Wook; Kim, Ji Hae; Kim, Joong Kwan; Kim, Su Jin; Park, Sun Hwa; Chung, Choon Hee; Kim, Hyeon Soo

    2015-01-01

    Dibenzoylmethane (DBM) has been shown to exert a variety of beneficial effects on human health. However, the mechanism of action is poorly understood. In this study, DBM increased phosphorylation of AMP-activated protein kinase (AMPK) and stimulated glucose uptake in a skeletal muscle cell line. Both knockdown of AMPK with siRNA and inhibition with AMPK inhibitor blocked DBM-induced glucose uptake. DBM increased the concentration of intracellular calcium and glucose uptake due to DBM was abolished by STO-609 (a calcium/calmodulin-dependent protein kinase inhibitor). DBM stimulated phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK), which was blocked by pretreatment with compound C, an AMPK inhibitor. The expression of glucose transporter type 4 (GLUT4) was increased by DBM. The translocation of GLUT4 to the plasma membrane was also increased by DBM in AMPK dependently. In addition, DBM suppressed weight gain and prevented fat accumulation in the liver and abdomen in mice fed a high-fat diet. In pre-adipocyte cells, DBM decreased the activity of acetyl-CoA carboxylase (ACC), the rate-limiting enzyme of fatty acid synthesis. Expression of the adipogenic gene, fatty acid synthase (FAS), was suppressed by DBM in an AMPK-dependent manner. These results showed that the beneficial metabolic effects of DBM might be due to regulation of glucose uptake via AMPK in skeletal muscle and inhibition of adipogenesis in pre-adipocytes. PMID:25756788

  9. Carbon Metabolism of Soil microorganisms at Low Temperatures: Position-Specific 13C Labeled Glucose Reveals the Story

    NASA Astrophysics Data System (ADS)

    Apostel, C.; Bore, E. K.; Halicki, S.; Kuzyakov, Y.; Dippold, M.

    2015-12-01

    Metabolic pathway activities at low temperature are not well understood, despite the fact that the processes are relevant for many soils globally and seasonally. To analyze soil metabolism at low temperature, isotopomeres of position-specifically 13C labeled glucose were applied at three temperature levels; +5, -5 -20 oC. In additon, one sterilization treatment with sodium azide at +5 oC was also performed. Soils were incubated for 1, 3 and 10 days while soil samples at -20 oC were additionally sampled after 30 days. The 13C from individual molecule position in respired CO2 was quantifed. Incorporation of 13C in bulk soil, extractable microbial biomass by chloroform fumigation extraction (CFE) and cell membranes of different microbial communities classified by 13C phospholipid fatty acid analysis (PLFA) was carried out. Our 13CO2 data showed a dominance of C-1 respiration at +5 °C for treatments with and without sodium azide, but total respiration for sodium azide inhibited treatments increased by 14%. In contrast, at -5 and -20 oC metabolic behavior showed intermingling of preferential respiration of the glucose C-4 and C-1 positions. Therefore, at +5 °C, pentose phosphate pathway activity is a dominant metabolic pathway used by microorganisms to metabolize glucose. The respiration increase due to NaN3 inhibition was attributed to endoenzymes released from dead organisms that are stabilized at the soil matrix and have access to suitable substrate and co-factors to permit their funtions. Our PLFA analysis showed that incorporation of glucose 13C was higher in Gram negative bacteria than other microbial groups as they are most competitive for LMWOS. Only a limited amount of microbial groups maintained their glucose utilizing activity at -5 and -20 °C and they strongly shifted towards a metabolization of glucose via both glycolysis and pentose phosphate pathways indicating both growth and cellular maintenance. This study revealed a remarkable microbial acitivity

  10. Depressive symptoms linked to 1-h plasma glucose concentrations during the oral glucose tolerance test in men and women with the metabolic syndrome

    PubMed Central

    Birnbaum-Weitzman, O.; Goldberg, R.; Hurwitz, B. E.; Llabre, M. M.; Gellman, M. D.; Gutt, M.; McCalla, J. R.; Mendez, A. J.; Schneiderman, N.

    2014-01-01

    Aims The addition of the 1-h plasma glucose concentration measure from an oral glucose tolerance test to prediction models of future Type 2 diabetes has shown to significantly strengthen their predictive power. The present study examined the relationship between severity of depressive symptoms and hyperglycaemia, focusing on the 1-h glucose concentration vs. fasting and 2-h oral glucose tolerance test glucose measures. Methods Participants included 140 adults with the metabolic syndrome and without diabetes who completed a baseline psychobiological assessment and a 2-h oral glucose tolerance test, with measurements taken every 30 min. Depressive symptoms were assessed using the Beck Depression Inventory. Results Multivariate linear regression revealed that higher levels of depressive symptoms were associated with higher levels of 1-h plasma glucose concentrations after adjusting for age, gender, ethnicity, BMI, antidepressant use and high-sensitivity C-reactive protein. Results were maintained after controlling for fasting glucose as well as for indices of insulin resistance and secretion. Neither fasting nor 2-h plasma glucose concentrations were significantly associated with depressive symptoms. Conclusions Elevated depressive symptoms in persons with the metabolic syndrome were associated with greater glycaemic excursion 1-h following a glucose load that was not accounted for by differences in insulin secretory function or insulin sensitivity. Consistent with previous findings, this study highlights the value of the 1-h oral glucose tolerance test plasma glucose measurement in the relation between depressive symptoms and glucose metabolism as an indicator of metabolic abnormalities not visible when focusing on fasting and 2-h post-oral glucose tolerance test measurements alone. PMID:24344735

  11. Angiotensin-converting enzyme inhibition increases glucose-induced insulin secretion in response to acute restraint.

    PubMed

    Schweizer, Júnia R O L; Miranda, Paulo A C; Fóscolo, Rodrigo B; Lemos, Joao P M; Paula, Luciano F; Silveira, Warley C; Santos, Robson A S; Pinheiro, Sérgio V B; Coimbra, Candido C; Ribeiro-Oliveira, Antônio

    2012-12-01

    There is increasing evidence suggesting involvement of the renin-angiotensin system (RAS) in carbohydrate metabolism and its response to stress. Thus, the aim of the present study was to evaluate the effects of chronic inhibition of the RAS on glucose and insulin levels during acute restraint stress. Male Holtzman rats were treated with 10 mg/kg per day enalapril solution or vehicle for 14 days. After 14 days, rats were divided into three experimental groups: enalapril + restraint (ER), vehicle + restraint (VR) and enalapril + saline (ES). Rats in the restraint groups were subjected to 30 min restraint stress, whereas rats in the ES groups were given saline infusion instead. Blood samples were collected at baseline and after 5, 10, 20 and 30 min restraint stress or saline infusion. After restraint, a hyperglycaemic response was observed in the ER and VR groups that peaked at 20 and 10 min, respectively (P < 0.05 compared with baseline). The area under the glucose curve was markedly increased in the ER and VR groups compared with that in the ES group (P < 0.05 for both). Importantly, restraint induced a marked increase in insulin secretion in the ER group compared with only a mild elevation in the VR group; insulin secretion in both groups peaked at 20 min (P < 0.05 compared with baseline). Analysis of the area under the insulin curve confirmed an increase in insulin secretion in the ER compared with the VR and ES groups (P < 0.05 for both). The results of the present study reinforce that the RAS is involved in modulating responses to stress and suggest that RAS inhibition with enalapril may increase glucose-induced insulin secretion in response to acute restraint. PMID:23734984

  12. Compartmentalized Acyl-CoA Metabolism in Skeletal Muscle Regulates Systemic Glucose Homeostasis

    PubMed Central

    Li, Lei O.; Grevengoed, Trisha J.; Paul, David S.; Ilkayeva, Olga; Koves, Timothy R.; Pascual, Florencia; Newgard, Christopher B.; Muoio, Deborah M.

    2015-01-01

    The impaired capacity of skeletal muscle to switch between the oxidation of fatty acid (FA) and glucose is linked to disordered metabolic homeostasis. To understand how muscle FA oxidation affects systemic glucose, we studied mice with a skeletal muscle–specific deficiency of long-chain acyl-CoA synthetase (ACSL)1. ACSL1 deficiency caused a 91% loss of ACSL-specific activity and a 60–85% decrease in muscle FA oxidation. Acsl1M−/− mice were more insulin sensitive, and, during an overnight fast, their respiratory exchange ratio was higher, indicating greater glucose use. During endurance exercise, Acsl1M−/− mice ran only 48% as far as controls. At the time that Acsl1M−/− mice were exhausted but control mice continued to run, liver and muscle glycogen and triacylglycerol stores were similar in both genotypes; however, plasma glucose concentrations in Acsl1M−/− mice were ∼40 mg/dL, whereas glucose concentrations in controls were ∼90 mg/dL. Excess use of glucose and the likely use of amino acids for fuel within muscle depleted glucose reserves and diminished substrate availability for hepatic gluconeogenesis. Surprisingly, the content of muscle acyl-CoA at exhaustion was markedly elevated, indicating that acyl-CoAs synthesized by other ACSL isoforms were not available for β-oxidation. This compartmentalization of acyl-CoAs resulted in both an excessive glucose requirement and severely compromised systemic glucose homeostasis. PMID:25071025

  13. Positron emission tomography assessment of effects of benzodiazepines on regional glucose metabolic rate in patients with anxiety disorder

    SciTech Connect

    Buchsbaum, M.S.; Wu, J.; Haier, R.; Hazlett, E.; Ball, R.; Katz, M.; Sokolski, K.; Lagunas-Solar, M.; Langer, D.

    1987-06-22

    Patients with generalized anxiety disorder (n = 18) entered a 21-day, double-blind, placebo-controlled random assignment trial of clorazepate. Positron emission tomography with YF-deoxyglucose was carried out before and after treatment. Decreases in glucose metabolic rate in visual cortex and relative increases in the basal ganglia and thalamus were found. A correlation between regional changes in metabolic rate and regional benzodiazepine receptor binding density from other human autopsy studies was observed; brain regions highest in receptor density showed the greatest decrease in rate.

  14. Effects of glucose metabolism during in vitro maturation on cytoplasmic maturation of mouse oocytes.

    PubMed

    Xie, Hong-Li; Wang, Yan-Bo; Jiao, Guang-Zhong; Kong, De-Ling; Li, Qing; Li, Hong; Zheng, Liang-Liang; Tan, Jing-He

    2016-01-01

    Although there are many reports on the effect of glucose metabolism on oocyte nuclear maturation, there are few studies on its effect on ooplasmic maturation. By manipulating glucose metabolism pathways using a maturation medium that could support oocyte nuclear maturation but only a limited blastocyst formation without glucose, this study determined effects of glucose metabolism pathways on ooplasmic maturation. During maturation of cumulus-oocyte-complexes (COCs) with glucose, the presence of PPP inhibitor, DHEA or glycolysis inhibitor, iodoacetate significantly decreased blastocyst rates, intraoocyte glutathione and ATP. While blastocyst rates, GSH/GSSG ratio and NADPH were higher, ROS was lower significantly in COCs matured with iodoacetate than with DHEA. Fructose-6-phosphate overcame the inhibitory effect of DHEA on PPP. During maturation of COCs with pyruvate, electron transport inhibitor, rotenone or monocarboxylate transfer inhibitor, 4-CIN significantly decreased blastocyst rates. Cumulus-denuded oocytes had a limited capacity to use glucose or lactate, but they could use pyruvate to support maturation. In conclusion, whereas glycolysis promoted ooplasmic maturation mainly by supplying energy, PPP facilitated ooplasmic maturation to a greater extent by both reducing oxidative stress and supplying energy through providing fructose-6-phosphate for glycolysis. Pyruvate was transferred by monocarboxylate transporters and utilized through mitochondrial electron transport to sustain ooplasmic maturation. PMID:26857840

  15. Three Peptides from Soy Glycinin Modulate Glucose Metabolism in Human Hepatic HepG2 Cells.

    PubMed

    Lammi, Carmen; Zanoni, Chiara; Arnoldi, Anna

    2015-01-01

    Ile-Ala-Val-Pro-Gly-Glu-Val-Ala (IAVPGEVA), Ile-Ala-Val-Pro-Thr-Gly-Val-Ala (IAVPTGVA) and Leu-Pro-Tyr-Pro (LPYP), three peptides deriving from soy glycinin hydrolysis, are known to regulate cholesterol metabolism in human hepatic HepG2 cells. We have recently demonstrated that the mechanism of action involves the activation of adenosine monophosphate-activated protein kinase (AMPK). This fact suggested a potential activity of the same peptides on glucose metabolism that prompted us to also investigate this aspect in the same cells. After treatment with IAVPGEVA, IAVPTGVA and LPYP, HepG2 cells were analyzed using a combination of molecular techniques, including western blot analysis, glucose uptake experiments and fluorescence microscopy evaluation. The results showed that these peptides are indeed able to enhance the capacity of HepG2 cells to uptake glucose, via glucose transporter 1 GLUT1 and glucose transporter 4 GLUT4 activation, through the stimulation of protein kinase B Akt and adenosine monophosphate-activated protein kinase AMPK pathways, both involved in glucose metabolism. PMID:26580610

  16. Three Peptides from Soy Glycinin Modulate Glucose Metabolism in Human Hepatic HepG2 Cells

    PubMed Central

    Lammi, Carmen; Zanoni, Chiara; Arnoldi, Anna

    2015-01-01

    Ile-Ala-Val-Pro-Gly-Glu-Val-Ala (IAVPGEVA), Ile-Ala-Val-Pro-Thr-Gly-Val-Ala (IAVPTGVA) and Leu-Pro-Tyr-Pro (LPYP), three peptides deriving from soy glycinin hydrolysis, are known to regulate cholesterol metabolism in human hepatic HepG2 cells. We have recently demonstrated that the mechanism of action involves the activation of adenosine monophosphate-activated protein kinase (AMPK). This fact suggested a potential activity of the same peptides on glucose metabolism that prompted us to also investigate this aspect in the same cells. After treatment with IAVPGEVA, IAVPTGVA and LPYP, HepG2 cells were analyzed using a combination of molecular techniques, including western blot analysis, glucose uptake experiments and fluorescence microscopy evaluation. The results showed that these peptides are indeed able to enhance the capacity of HepG2 cells to uptake glucose, via glucose transporter 1 GLUT1 and glucose transporter 4 GLUT4 activation, through the stimulation of protein kinase B Akt and adenosine monophosphate-activated protein kinase AMPK pathways, both involved in glucose metabolism. PMID:26580610

  17. Intermittent administration of brain-derived neurotrophic factor ameliorates glucose metabolism in obese diabetic mice.

    PubMed

    Ono, M; Itakura, Y; Nonomura, T; Nakagawa, T; Nakayama, C; Taiji, M; Noguchi, H

    2000-01-01

    We have previously shown that brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, interacts with the endocrine system in obese diabetic mice, and systemic peripheral administration of BDNF regulates glucose metabolism in this model. Results from the present study show that the hypoglycemic effect induced by 2 weeks' daily administration of BDNF (20 mg/kg/d) to db/db mice lasts for several weeks after treatment cessation, irrespective of food reduction. On the other hand, the antidiabetic agent, metformin had no lasting effect. This duration of the BDNF hypoglycemic action prompted us to examine the efficacy of BDNF intermittent administration on glucose metabolism. BDNF administered once or twice per week (70 mg/kg/wk) to db/db mice for 3 weeks significantly reduced blood glucose concentrations and hemoglobin A(1c), (HbA(1c)) as compared with ad libitum-fed phosphate-buffered saline (PBS)-treated and pair-fed PBS-treated groups. This suggests that BDNF not only temporarily reduced blood glucose concentrations but also ameliorated systemic glucose balance in this obese diabetic mouse model during the experimental period. Our results indicate that BDNF could be a novel hypoglycemic agent with an exceptional ability to normalize glucose metabolism even with treatment as infrequently as once per week. PMID:10647076

  18. Effects of glucose metabolism during in vitro maturation on cytoplasmic maturation of mouse oocytes

    PubMed Central

    Xie, Hong-Li; Wang, Yan-Bo; Jiao, Guang-Zhong; Kong, De-Ling; Li, Qing; Li, Hong; Zheng, Liang-Liang; Tan, Jing-He

    2016-01-01

    Although there are many reports on the effect of glucose metabolism on oocyte nuclear maturation, there are few studies on its effect on ooplasmic maturation. By manipulating glucose metabolism pathways using a maturation medium that could support oocyte nuclear maturation but only a limited blastocyst formation without glucose, this study determined effects of glucose metabolism pathways on ooplasmic maturation. During maturation of cumulus-oocyte-complexes (COCs) with glucose, the presence of PPP inhibitor, DHEA or glycolysis inhibitor, iodoacetate significantly decreased blastocyst rates, intraoocyte glutathione and ATP. While blastocyst rates, GSH/GSSG ratio and NADPH were higher, ROS was lower significantly in COCs matured with iodoacetate than with DHEA. Fructose-6-phosphate overcame the inhibitory effect of DHEA on PPP. During maturation of COCs with pyruvate, electron transport inhibitor, rotenone or monocarboxylate transfer inhibitor, 4-CIN significantly decreased blastocyst rates. Cumulus-denuded oocytes had a limited capacity to use glucose or lactate, but they could use pyruvate to support maturation. In conclusion, whereas glycolysis promoted ooplasmic maturation mainly by supplying energy, PPP facilitated ooplasmic maturation to a greater extent by both reducing oxidative stress and supplying energy through providing fructose-6-phosphate for glycolysis. Pyruvate was transferred by monocarboxylate transporters and utilized through mitochondrial electron transport to sustain ooplasmic maturation. PMID:26857840

  19. Perinatal Exposure to Perfluorooctane Sulfonate Affects Glucose Metabolism in Adult Offspring

    PubMed Central

    Wan, Hin T.; Zhao, Yin G.; Leung, Pik Y.; Wong, Chris K. C.

    2014-01-01

    Perfluoroalkyl acids (PFAAs) are globally present in the environment and are widely distributed in human populations and wildlife. The chemicals are ubiquitous in human body fluids and have a long serum elimination half-life. The notorious member of PFAAs, perfluorooctane sulfonate (PFOS) is prioritized as a global concerning chemical at the Stockholm Convention in 2009, due to its harmful effects in mammals and aquatic organisms. PFOS is known to affect lipid metabolism in adults and was found to be able to cross human placenta. However the effects of in utero exposure to the susceptibility of metabolic disorders in offspring have not yet been elucidated. In this study, pregnant CD-1 mice (F0) were fed with 0, 0.3 or 3 mg PFOS/kg body weight/day in corn oil by oral gavage daily throughout gestational and lactation periods. We investigated the immediate effects of perinatal exposure to PFOS on glucose metabolism in both maternal and offspring after weaning (PND 21). To determine if the perinatal exposure predisposes the risk for metabolic disorder to the offspring, weaned animals without further PFOS exposure, were fed with either standard or high-fat diet until PND 63. Fasting glucose and insulin levels were measured while HOMA-IR index and glucose AUCs were reported. Our data illustrated the first time the effects of the environmental equivalent dose of PFOS exposure on the disturbance of glucose metabolism in F1 pups and F1 adults at PND 21 and 63, respectively. Although the biological effects of PFOS on the elevated levels of fasting serum glucose and insulin levels were observed in both pups and adults of F1, the phenotypes of insulin resistance and glucose intolerance were only evident in the F1 adults. The effects were exacerbated under HFD, highlighting the synergistic action at postnatal growth on the development of metabolic disorders. PMID:24498028

  20. Elevated White Blood Cell Count Is Associated with Higher Risk of Glucose Metabolism Disorders in Middle-Aged and Elderly Chinese People

    PubMed Central

    Jiang, Hua; Yan, Wen-Hua; Li, Chan-Juan; Wang, An-Ping; Dou, Jing-Tao; Mu, Yi-Ming

    2014-01-01

    White blood cell (WBC) count has been associated with diabetic risk, but whether the correlation is independent of other risk factors has hardly been studied. Moreover, very few such studies with large sample sizes have been conducted in Chinese. Therefore, we investigated the relationship between WBC count and glucose metabolism in china. We also examined the relevant variables of WBC count. A total of 9,697 subjects (mean age, 58.0 ± 9.1 years) were recruited. The subjects were classified into four groups, including subjects with normal glucose tolerance, isolated impaired fasting glucose, impaired glucose tolerance and type 2 diabetes mellitus (T2DM). We found that WBC count increased as glucose metabolism disorders exacerbated. WBC count was also positively correlated with waist hip ratio, body mass index, smoking, triglycerides, glycosylated haemoglobin A1c (HbA1c) and 2-h postprandial glucose. In addition, high density lipoprotein and the female gender were inversely correlated with WBC levels. In patients with previously diagnosed T2DM, the course of T2DM was not correlated with WBC count. Our findings indicate that elevated WBC count is independently associated with worsening of glucose metabolism in middle-aged and elderly Chinese. In addition, loss of weight, smoking cessation, lipid-modifying therapies, and control of postprandial plasma glucose and HbA1c may ameliorate the chronic low-grade inflammation. PMID:24852600

  1. A Flux Balance of Glucose Metabolism Clarifies the Requirements of the Warburg Effect.

    PubMed

    Dai, Ziwei; Shestov, Alexander A; Lai, Luhua; Locasale, Jason W

    2016-09-01

    The Warburg effect, or aerobic glycolysis, is marked by the increased metabolism of glucose to lactate in the presence of oxygen. Despite its widespread prevalence in physiology and cancer biology, the causes and consequences remain incompletely understood. Here, we show that a simple balance of interacting fluxes in glycolysis creates constraints that impose the necessary conditions for glycolytic flux to generate lactate as opposed to entering into the mitochondria. These conditions are determined by cellular redox and energy demands. By analyzing the constraints and sampling the feasible region of the model, we further study how cell proliferation rate and mitochondria-associated NADH oxidizing and ATP producing fluxes are interlinked. Together this analysis illustrates the simplicity of the origins of the Warburg effect by identifying the flux distributions that are necessary for its instantiation. PMID:27602736

  2. Metabolism of glucose, glutamine, long-chain fatty acids and ketone bodies by murine macrophages.

    PubMed Central

    Newsholme, P; Curi, R; Gordon, S; Newsholme, E A

    1986-01-01

    Maximum activities of some key enzymes of metabolism were studied in elicited (inflammatory) macrophages of the mouse and lymph-node lymphocytes of the rat. The activity of hexokinase in the macrophage is very high, as high as that in any other major tissue of the body, and higher than that of phosphorylase or 6-phosphofructokinase, suggesting that glucose is a more important fuel than glycogen and that the pentose phosphate pathway is also important in these cells. The latter suggestion is supported by the high activities of both glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase. However, the rate of glucose utilization by 'resting' macrophages incubated in vitro is less than the 10% of the activity of 6-phosphofructokinase: this suggests that the rate of glycolysis is increased dramatically during phagocytosis or increased secretory activity. The macrophages possess higher activities of citrate synthase and oxoglutarate dehydrogenase than do lymphocytes, suggesting that the tricarboxylic acid cycle may be important in energy generation in these cells. The activity of 3-oxoacid CoA-transferase is higher in the macrophage, but that of 3-hydroxybutyrate dehydrogenase is very much lower than those in the lymphocytes. The activity of carnitine palmitoyltransferase is higher in macrophages, suggesting that fatty acids as well as acetoacetate could provide acetyl-CoA as substrate for the tricarboxylic acid cycle. No detectable rate of acetoacetate or 3-hydroxybutyrate utilization was observed during incubation of resting macrophages, but that of oleate was 1.0 nmol/h per mg of protein or about 2.2% of the activity of palmitoyltransferase. The activity of glutaminase is about 4-fold higher in macrophages than in lymphocytes, which suggests that the rate of glutamine utilization could be very high. The rate of utilization of glutamine by resting incubated macrophages was similar to that reported for rat lymphocytes, but was considerably lower than the

  3. Energy Dense, Protein Restricted Diet Increases Adiposity and Perturbs Metabolism in Young, Genetically Lean Pigs

    PubMed Central

    Fisher, Kimberly D.; Scheffler, Tracy L.; Kasten, Steven C.; Reinholt, Brad M.; van Eyk, Gregory R.; Escobar, Jeffery; Scheffler, Jason M.; Gerrard, David E.

    2013-01-01

    Animal models of obesity and metabolic dysregulation during growth (or childhood) are lacking. Our objective was to increase adiposity and induce metabolic syndrome in young, genetically lean pigs. Pre-pubertal female pigs, age 35 d, were fed a high-energy diet (HED; n = 12), containing 15% tallow, 35% refined sugars and 9.1–12.9% crude protein, or a control corn-based diet (n = 11) with 12.2–19.2% crude protein for 16 wk. Initially, HED pigs self-regulated energy intake similar to controls