Science.gov

Sample records for increases ozone pollution

  1. Tropospheric Ozone Increases over the Southern Africa Region: Bellwether for Rapid Growth in Southern Hemisphere Pollution?

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Balashov, Nikolay V.; Witte, J. C.; Coetzee, J. G. R.; Thouret, V.; Posny, F.

    2014-01-01

    Increases in free-tropospheric (FT) ozone based on ozonesonde records from the early 1990s through 2008 over two subtropical stations, Irene (near Pretoria, South Africa) and Réunion (21 deg. S, 55 deg. E; approx. 2800 km NE of Irene in the Indian Ocean), have been reported. Over Irene a large increase in the urban-influenced boundary layer (BL, 1.5-4 km) was also observed during the 18-year period, equivalent to 30%decade-1. Here we show that the Irene BL trend is at least partly due to a gradual change in the sonde launch times from early morning to the midday period. The FT ozone profiles over Irene in 1990-2007 are re-examined, filling in a 1995-1999 gap with ozone profiles taken during the Measurements of Ozone by Airbus In-service Aircraft (MOZAIC) project over nearby Johannesburg. A multivariate regression model that accounts for the annual ozone cycle, El Niño-Southern Oscillation (ENSO) and possible tropopause changes was applied to monthly averaged Irene data from 4 to 11 km and to 1992-2011 Réunion sonde data from 4 to 15 km. Statistically significant trends appear predominantly in the middle and upper troposphere (UT; 4-11 km over Irene, 4-15 km over Réunion) in winter (June-August), with increases 1 ppbv yr(exp. -1) over Irene and approx. 2 ppbv yr(exp. -1) over Réunion. These changes are equivalent to approx. 25 and 35-45%decade( exp. -1), respectively. Both stations also display smaller positive trends in summer, with a 45%decade(exp. -1) ozone increase near the tropopause over Réunion in December. To explain the ozone increases, we investigated a time series of dynamical markers, e.g., potential vorticity (PV) at 330-350 K. PV affects UT ozone over Irene in November-December but displays little relationship with ozone over Réunion. A more likely reason for wintertime FT ozone increases over Irene and Réunion appears to be long-range transport of growing pollution in the Southern Hemisphere. The ozone increases are consistent with trajectory

  2. Tropospheric ozone increases over the southern Africa region: bellwether for rapid growth in Southern Hemisphere pollution?

    NASA Astrophysics Data System (ADS)

    Thompson, A. M.; Balashov, N. V.; Witte, J. C.; Coetzee, J. G. R.; Thouret, V.; Posny, F.

    2014-09-01

    Increases in free-tropospheric (FT) ozone based on ozonesonde records from the early 1990s through 2008 over two subtropical stations, Irene (near Pretoria, South Africa) and Réunion (21° S, 55° E; ~2800 km NE of Irene in the Indian Ocean), have been reported. Over Irene a large increase in the urban-influenced boundary layer (BL, 1.5-4 km) was also observed during the 18-year period, equivalent to 30% decade-1. Here we show that the Irene BL trend is at least partly due to a gradual change in the sonde launch times from early morning to the midday period. The FT ozone profiles over Irene in 1990-2007 are re-examined, filling in a 1995-1999 gap with ozone profiles taken during the Measurements of Ozone by Airbus In-service Aircraft (MOZAIC) project over nearby Johannesburg. A multivariate regression model that accounts for the annual ozone cycle, El Niño-Southern Oscillation (ENSO) and possible tropopause changes was applied to monthly averaged Irene data from 4 to 11 km and to 1992-2011 Réunion sonde data from 4 to 15 km. Statistically significant trends appear predominantly in the middle and upper troposphere (UT; 4-11 km over Irene, 4-15 km over Réunion) in winter (June-August), with increases ~1 ppbv yr-1 over Irene and ~2 ppbv yr-1 over Réunion. These changes are equivalent to ~25 and 35-45% decade-1, respectively. Both stations also display smaller positive trends in summer, with a 45% decade-1 ozone increase near the tropopause over Réunion in December. To explain the ozone increases, we investigated a time series of dynamical markers, e.g., potential vorticity (PV) at 330-350 K. PV affects UT ozone over Irene in November-December but displays little relationship with ozone over Réunion. A more likely reason for wintertime FT ozone increases over Irene and Réunion appears to be long-range transport of growing pollution in the Southern Hemisphere. The ozone increases are consistent with trajectory origins of air parcels sampled by the sondes and

  3. China's air pollution reduction efforts may result in an increase in surface ozone levels in highly polluted areas.

    PubMed

    Anger, Annela; Dessens, Olivier; Xi, Fengming; Barker, Terry; Wu, Rui

    2016-03-01

    China, as a fast growing fossil-fuel-based economy, experiences increasing levels of air pollution. To tackle air pollution, China has taken the first steps by setting emission-reduction targets for nitrogen oxides (NO x ) and sulphur dioxide (SO2) in the 11th and 12th Five Year Plans. This paper uses two models-the Energy-Environment-Economy Model at the Global level (E3MG) and the global Chemistry Transport Model pTOMCAT-to test the effects of these policies. If the policy targets are met, then the maximum values of 32 % and 45 % reductions below 'business as usual' in the monthly mean NO x and SO2 concentrations, respectively, will be achieved in 2015. However, a decrease in NO x concentrations in some highly polluted areas of East, North-East and South-East China can lead to up to a 10% increase in the monthly mean concentrations in surface ozone in 2015. Our study demonstrates an urgent need for the more detailed analysis of the impacts and designs of air pollution reduction guidelines for China. PMID:26409886

  4. Has the sensitivity of soybean cultivars to ozone pollution increased with time? An analysis of published dose-response data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rising trend in concentrations of ground-level ozone (O3) – a common air pollutant and phytotoxin – currently being experienced in some world regions represents a threat to agricultural yield. Soybean (Glycine max (L.) Merr.) is an O3-sensitive crop species, and is experiencing increasing globa...

  5. Kudzu (Pueraria montana) invasion doubles emissions of nitric oxide and increases ozone pollution

    PubMed Central

    Hickman, Jonathan E.; Mickley, Loretta J.; Lerdau, Manuel T.

    2010-01-01

    The nitrogen-fixing legume kudzu (Pueraria montana) is a widespread invasive plant in the southeastern United States with physiological traits that may lead to important impacts on ecosystems and the atmosphere. Its spread has the potential to raise ozone levels in the region by increasing nitric oxide (NO) emissions from soils as a consequence of increasing nitrogen (N) inputs and cycling in soils. We studied the effects of kudzu invasions on soils and trace N gas emissions at three sites in Madison County, Georgia in 2007 and used the results to model the effects of kudzu invasion on regional air quality. We found that rates of net N mineralization increased by up to 1,000%, and net nitrification increased by up to 500% in invaded soils in Georgia. Nitric oxide emissions from invaded soils were more than 100% higher (2.81 vs. 1.24 ng NO-N cm−2 h−1). We used the GEOS-Chem chemical transport model to evaluate the potential impact of kudzu invasion on regional atmospheric chemistry and air quality. In an extreme scenario, extensive kudzu invasion leads directly to an increase in the number of high ozone events (above 70 ppb) of up to 7 days each summer in some areas, up from 10 to 20 days in a control scenario with no kudzu invasion. These results establish a quantitative link between a biological invasion and ozone formation and suggest that in this extreme scenario, kudzu invasion can overcome some of the air quality benefits of legislative control. PMID:20479252

  6. Has the sensitivity of soybean cultivars to ozone pollution increased with time? An analysis of published dose-response data.

    PubMed

    Osborne, Stephanie A; Mills, Gina; Hayes, Felicity; Ainsworth, Elizabeth A; Büker, Patrick; Emberson, Lisa

    2016-09-01

    The rising trend in concentrations of ground-level ozone (O3 ) - a common air pollutant and phytotoxin - currently being experienced in some world regions represents a threat to agricultural yield. Soybean (Glycine max (L.) Merr.) is an O3 -sensitive crop species and is experiencing increasing global demand as a dietary protein source and constituent of livestock feed. In this study, we collate O3 exposure-yield data for 49 soybean cultivars, from 28 experimental studies published between 1982 and 2014, to produce an updated dose-response function for soybean. Different cultivars were seen to vary considerably in their sensitivity to O3 , with estimated yield loss due to O3 ranging from 13.3% for the least sensitive cultivar to 37.9% for the most sensitive, at a 7-h mean O3 concentration (M7) of 55 ppb - a level frequently observed in regions of the USA, India and China in recent years. The year of cultivar release, country of data collection and type of O3 exposure used were all important explanatory variables in a multivariate regression model describing soybean yield response to O3 . The data show that the O3 sensitivity of soybean cultivars increased by an average of 32.5% between 1960 and 2000, suggesting that selective breeding strategies targeting high yield and high stomatal conductance may have inadvertently selected for greater O3 sensitivity over time. Higher sensitivity was observed in data from India and China compared to the USA, although it is difficult to determine whether this effect is the result of differential cultivar physiology, or related to local environmental factors such as co-occurring pollutants. Gaining further understanding of the underlying mechanisms that govern the sensitivity of soybean cultivars to O3 will be important in shaping future strategies for breeding O3 -tolerant cultivars. PMID:27082950

  7. Foreign versus Domestic Contributions to China's Ozone Air Pollution

    NASA Astrophysics Data System (ADS)

    Ni, Ruijing; Lin, Jintai; Lin, Weili; Yan, Yingying

    2016-04-01

    Ozone is a critical air pollutant because it damages human health and vegetation. Previous studies for the United States and Europe have shown large influences of foreign emissions on domestic ozone levels, whereas the relative contributions of foreign versus domestic emissions are much less clear for China' ozone pollution. Here, we use the global chemical transport model (GEOS-Chem) simulations to quantify the contributions of ozone transport from regions with large anthropogenic emissions to China. Our results indicate considerable influences of foreign anthropogenic pollution on China's ozone air quality. Of all ozone over China produced by global anthropogenic emissions, foreign anthropogenic emissions contribute 40% near the surface, and the foreign contribution increases with altitude and reaches up to 70% in the upper troposphere. The contributions by North America and Europe reach maximum levels in spring, in which season Chinese influence on the western United States also peaks. The springtime maxima are associated with strong westerly winds and frequent cyclonic activities favorable to the long-range transport. European anthropogenic pollution enhanced surface ozone concentrations by 1~4 ppbv over Western and Northern China in spring and winter. Despite much longer transport distance, the contribution from North America is distinctly greater than that from Europe due to the nearly tripled VOC emissions. Ozone contributed by Foreign Asian countries peaks in summer and autumn, widely dispersed to the upper troposphere over Southern China with strong upwelling. Therefore, although China produces large amounts of ozone precursor emissions, its domestic ozone pollution is still contributed significantly by foreign anthropogenic emissions. Our study is relevant to Chinese ozone pollution control and global collaboration.

  8. Ozone pollution and ozone biomonitoring in European cities Part II. Ozone-induced plant injury and its relationship with descriptors of ozone pollution

    NASA Astrophysics Data System (ADS)

    Klumpp, Andreas; Ansel, Wolfgang; Klumpp, Gabriele; Vergne, Phillippe; Sifakis, Nicolas; Sanz, María José; Rasmussen, Stine; Ro-Poulsen, Helge; Ribas, Àngela; Peñuelas, Josep; Kambezidis, Harry; He, Shang; Garrec, Jean Pierre; Calatayud, Vicent

    Within the scope of a biomonitoring study conducted in twelve urban agglomerations in eight European countries, the ozone-sensitive bioindicator plant Nicotiana tabacum cv. Bel-W3 was employed in order to assess the occurrence of phytotoxic ozone effects at urban, suburban, rural and traffic-exposed sites. The tobacco plants were exposed to ambient air for biweekly periods at up to 100 biomonitoring sites from 2000 to 2002. Special emphasis was placed upon methodological standardisation of plant cultivation, field exposure and injury assessment. Ozone-induced leaf injury showed a clearly increasing gradient from northern and northwestern Europe to central and southern European locations. The strongest ozone impact occurred at the exposure sites in Lyon and Barcelona, while in Edinburgh, Sheffield, Copenhagen and Düsseldorf only weak to moderate ozone effects were registered. Between-site differences within local networks were relatively small, but seasonal and inter-annual differences were strong due to the variability of meteorological conditions and related ozone concentrations. The 2001 data revealed a significant relationship between foliar injury degree and various descriptors of ozone pollution such as mean value, AOT20 and AOT40. Examining individual sites of the local monitoring networks separately, however, yielded noticeable differences. Some sites showed no association between ozone pollution and ozone-induced effects, whereas others featured almost linear relationships. This is because the actual ozone flux into the leaf, which is modified by various environmental factors, rather than ambient ozone concentration determines the effects on plants. The advantage of sensitive bioindicators like tobacco Bel-W3 is that the impact of the effectively absorbed ozone dose can directly be measured.

  9. Southern California ozone pollution declining and changing

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2013-07-01

    Many studies have documented the decline in ozone pollution and its precursors in the Los Angeles air basin over the past several decades. Now Pollack et al. have analyzed new data from research aircraft, along with archived data from roadside monitors and ground-based instruments, to provide a synthesis of concentrations and emissions ratios of ozone, other secondary pollutants, and their precursors from 1960 to 2010.

  10. [Ozone decline and UV increase].

    PubMed

    Winkler, P; Trepte, S

    2004-02-01

    The following results have been obtained from long-term observations on the ozone layer and UV at the Meteorological Observatory Hohenpeigenberg:The seasonally varying decline of the ozone layer determines the maximum exposure to UV. Since ozone decline shows the highest rates in the spring months the UV exposure has most strongly increased in this time of the year. This is especially important because in spring the human skin is not adapted to UV exposure. Weather changes from day to day can induce rapid ozone reductions in spring about -30% which in turn is followed by an increase in UV of about 40%. Clouds, especially the transparent cirrus clouds (high clouds consisting of ice particles) have increased in frequency during spring and fall while a decrease is observed in summer. This change in cloudiness reduces the daily UV dose in spring and fall while it is enhanced in summer. With increasing height above sea level UV rises by roughly 10% per 1000 m (rule of thumb). Snow reflects the UV-radiation by up to 80% enhancing the UV-doses at relevant conditions. Strong volcano eruptions destroy ozone in the stratosphere additionally during 1-2 years after the eruption. Therafter the ozone layer recovers. In April 1993, after the eruption of Mt. Pinatubo (1991), the UV burden was still 40% higher than average. Miniholes and streamers can appear unexpected on a short-time scale and cross over Central Europe within 1-2 days, thus enhancing UV irradiation. The human skin reacts to UV exposure depending on the type of skin. The campaign "Sonne(n) mit Verstand" of the Bavarian Ministries for Environment, for Health and for Education informs about the danger of UV radiation (see www.sonne-mit-ver-stand.de). The German Weather Service informs the public on present developments of the ozone layer and relevant topics byits ozone bulletin, which is also available via internet under (www.dwd.de/deFundE/Observator/MOHp/hp2/ozon/bulletin.htm). PMID:14770335

  11. Tropospheric Ozone Pollution from Space: New Views from the TOMS (Total Ozone Mapping Spectrometer) Instrument

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Hudson, Robert D.; Frolov, Alexander D.; Witte, Jacquelyn C.; Kucsera, Tom L.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    New products from the TOMS (Total Ozone Mapping Spectrometer) >satellite instrument can resolve pollution events in tropical and mid-latitudes, Over the past several years, we have developed tropospheric ozone data sets by two methods. The modified-residual technique [Hudson and Thompson, 1998; Thompson and Hudson, 1999] uses v. 7 TOMS total ozone and is applicable to tropical regimes in which the wave-one pattern in total ozone is observed. The TOMSdirect method [Hudson et at., 2000] represents a new algorithm that uses TOMS radiances to extract tropospheric ozone in regions of constant stratospheric ozone and tropospheric ozone displaying high mixing ratios and variability characteristic of pollution, Absorbing aerosols (dust and smoke; Herman et at., 1997 Hsu et al., 1999), a standard TOMS product, provide transport and/or source marker information to interpret tropospheric ozone. For the Nimbus 7/TOMS observing period (1979-1992), modified-residual TTO (tropical tropospheric ozone) appears as two maps/month at I-degree latitude 2-degree longitude resolution at a homepage and digital data are available (20S to 20N) by ftp at http://metosrv2. umd.edu/tropo/ 14y_data.d. Preliminary modified-residual TTO data from the operational Earth-Probe/TOMS (1996- present) are posted in near-real-time at the same website. Analyses with the new tropospheric ozone and aerosol data are illustrated by the following (I)Signals in tropical tropospheric ozone column and smoke amount during ENSO (El Nino-Southern Oscillation) events, e.g. 1982-1983 and the intense ENSO induced biomass fires of 1997-1998 over the Indonesian region [Thompson et a[, 2000a, Thompson and Hudson, 1999]. (2) Trends in tropospheric ozone and smoke aerosols in various tropical regions (Atlantic, Pacific, Africa, Brazil). No significant trends were found for ozone from1980-1990 [Thompson and Hudson, 19991 although smoke aerosols increased during the period [Hsu et al.,1999]. (3) Temporal and spatial offsets

  12. Atmospheric chemistry: Ozone pollution from near and far

    NASA Astrophysics Data System (ADS)

    Doherty, Ruth M.

    2015-09-01

    Tropospheric ozone is generated from precursor pollutants, but can be blown far afield. Satellite observations show rising ozone levels over China -- and almost stable levels over western North America despite stricter regulations.

  13. How is ozone pollution reducing our food supply?

    PubMed

    Wilkinson, Sally; Mills, Gina; Illidge, Rosemary; Davies, William J

    2012-01-01

    Ground-level ozone pollution is already decreasing global crop yields (from ∼2.2-5.5% for maize to 3.9-15% and 8.5-14% for wheat and soybean, respectively), to differing extents depending on genotype and environmental conditions, and this problem is predicted to escalate given climate change and increasing ozone precursor emissions in many areas. Here a summary is provided of how ozone pollution affects yield in a variety of crops, thus impacting global food security. Ozone causes visible injury symptoms to foliage; it induces early senescence and abscission of leaves; it can reduce stomatal aperture and thereby carbon uptake, and/or directly reduce photosynthetic carbon fixation; it can moderate biomass growth via carbon availability or more directly; it can decrease translocation of fixed carbon to edible plant parts (grains, fruits, pods, roots) due either to reduced availability at source, redirection to synthesis of chemical protectants, or reduced transport capabilities via phloem; decreased carbon transport to roots reduces nutrient and water uptake and affects anchorage; ozone can moderate or bring forward flowering and induce pollen sterility; it induces ovule and/or grain abortion; and finally it reduces the ability of some genotypes to withstand other stresses such as drought, high vapour pressure deficit, and high photon flux density via effects on stomatal control. This latter point is emphasized here, given predictions that atmospheric conditions conducive to drought formation that also give rise to intense precursor emission events will become more severe over the coming decades. PMID:22016429

  14. Ozone pollution: What can we see from space? A case study

    NASA Astrophysics Data System (ADS)

    Foret, G.; Eremenko, M.; Cuesta, J.; Sellitto, P.; Barré, J.; Gaubert, B.; Coman, A.; Dufour, G.; Liu, X.; Joly, M.; Doche, C.; Beekmann, M.

    2014-07-01

    Due to its impact on environment, tropospheric ozone received particular attention since several decades. Ground-based networks associated with regional chemical transport models are used to monitor and forecast surface ozone concentrations, but coverage, representativeness, and accuracy issues remain important. Recent satellite observations have demonstrated the capacity to probe tropospheric ozone, but there has been no explicit attempt to quantify their ability to measure ozone pollution near ground. We propose here to assess the ability of ozone sounders to detect a photochemical ozone pollution event that is supposed to be a favorable situation for satellite detection. We have chosen ozone pollution event over Europe associated with a warm conveyor belt that efficiently transports photochemically produced ozone upward. Ozone satellite products from Global Ozone Monitoring Experiment-2, Infrared Atmospheric Sounding Interferometer (IASI), and Ozone Monitoring Instrument are analyzed here for their capacity to capture such an event. Also, in situ observations and regional chemical-transport models show increasing ozone concentrations in the continental and Mediterranean boundary layer and further transport to central Europe and Scandinavia associated with upward transport. Satellite observations do not detect high ozone concentrations within the boundary layer due the weak sensitivity near the surface. Nevertheless, we have shown that the IR sounder IASI was able to detect, qualitatively and quantitatively, the ozone plume transported upward by the warm conveyor belt, suggesting that a quantification of upward transport of ozone pollution could be possible using current satellite observations. This should encourage us to further explore approaches more sensitive to surface ozone (such as the multispectral approach) and to prepare the next generation of still more sensitive spaceborne instruments.

  15. Increasing Springtime Ozone Mixing Ratios in the Free Troposphere Over Western North America

    NASA Technical Reports Server (NTRS)

    Cooper, O. R.; Parrish, D. D.; Stohl, A.; Trainer, M.; Nedelec, P.; Thouret, V.; Cammas, J. P.; Oltmans, S. J.; Johnson, B. J.; Tarasick, D.; Leblanc, T.; McDermid, I. S.; Jaffe, D.; Gao, R.; Stith, J.; Ryerson, T.; Aikin, K.; Campos, T.; Weinheimer, A.; Avery, M. A.

    2010-01-01

    In the lowermost layer of the atmosphere - the troposphere - ozone is an important source of the hydroxyl radical, an oxidant that breaks down most pollutants and some greenhouse gases. High concentrations of tropospheric ozone are toxic, however, and have a detrimental effect on human health and ecosystem productivity1. Moreover, tropospheric ozone itself acts as an effective greenhouse gas. Much of the present tropospheric ozone burden is a consequence of anthropogenic emissions of ozone precursors resulting in widespread increases in ozone concentrations since the late 1800s. At present, east Asia has the fastest-growing ozone precursor emissions. Much of the springtime east Asian pollution is exported eastwards towards western North America. Despite evidence that the exported Asian pollution produces ozone, no previous study has found a significant increase in free tropospheric ozone concentrations above the western USA since measurements began in the late 1970s. Here we compile springtime ozone measurements from many different platforms across western North America. We show a strong increase in springtime ozone mixing ratios during 1995-2008 and we have some additional evidence that a similar rate of increase in ozone mixing ratio has occurred since 1984. We find that the rate of increase in ozone mixing ratio is greatest when measurements are more heavily influenced by direct transport from Asia. Our result agrees with previous modelling studies, which indicate that global ozone concentrations should be increasing during the early part of the twenty-first century as a result of increasing precursor emissions, especially at northern mid-latitudes, with western North America being particularly sensitive to rising Asian emissions. We suggest that the observed increase in springtime background ozone mixing ratio may hinder the USA s compliance with its ozone air quality standard.

  16. Exacerbations of childhood asthma and ozone pollution in Atlanta

    SciTech Connect

    White, M.C.; Etzel, R.A.; Lloyd, C. ); Wilcox, W.D. )

    1994-04-01

    Asthma prevalence and mortality due to asthma have been increasing during the last decade, and both the rates and the increases in rates have been higher for blacks than whites and higher for children than adults. Whether environmental factors such as air pollution contribute to these increases is unknown. The purpose of this study was to examine the relationship between emergency visits to a hospital for childhood asthma and exposure to ozone in an indigent, predominantly black population. Data were collected by abstracting clinical records for all children with asthma or reactive airway disease in one public hospital during the summer of 1990. From June 1, 1990, to August 31, 1990, 609 visits were made by children aged 1 to 16 years to an emergency clinic for treatment of asthma or reactive airway disease. Monitoring data indicated that maximum ozone levels equalled or exceeded 0.11 ppm on 6 days during the study period. The average number of visits for asthma or reactive airway disease was 37% higher on the days after those 6 days (from 6:00 PM to 6:00 PM the next day) than on other days (95% Cl, RR = 1.02-1.73). The results of the study suggest that among black children from low-income families, asthma may be exacerbated following periods of high ozone pollution. 45 refs., 1 fig., 4 tabs.

  17. Discoveries about Tropospheric Ozone Pollution from Satellite and Sounding

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.

    2004-01-01

    We have been producing near-real time tropospheric ozone satellite maps from the TOMS (Total Ozone Mapping Spectrometer) sensor since 1997. This is most readily done for the tropics, where the stratospheric and tropospheric ozone column amounts can be discriminated readily. Maps for 1996-2000 for the operational Earth-Probe instrument reside at: chttp://www.atmos.umd.edu/-trope>. Pollution in the tropics is influenced by biomass burning and by transport patterns that favor recirculation and in other cases reflect climate variability like the El-Nino-Southern Oscillation [Thompson et al., 2001]. Time permitting, examples of mid-latitude, intercontinental transport of ozone pollution sensed by TOMS will be shown. The satellite view of chemical-dynamical interactions in tropospheric ozone is not adequate to capture vertical variability. Thus, in 1998, NASA's Goddard Space Flight Center and a team of international sponsors established the SHADOZ (Southern Hemisphere ADditional OZonesondes) project to address the gap in tropical ozone soundings. SHADOZ augments launches and provides a public archive of ozonesonde data from twelve tropical stations at http://croc.gsfc.nasa.gov/shadoz. Further insights into the role of chemical and dynamical influences have emerged from the first 4-5 years of SHADOZ data (less than 2000 ozone profiles): (a) highly variable tropospheric ozone; (b) a zonal wave-one pattern in tropospheric column ozone; (c) convective variability affects tropospheric ozone over the Indian and Pacific Ocean; (d) a "tropical Atlantic Paradox" appears in December-January-February.

  18. Ozone Exposure Increases Circulating Stress Hormones and Lipid Metabolites in Humans

    EPA Science Inventory

    RATIONALE: Air pollution has been associated with increased prevalence of type 2 diabetes; however, the mechanisms remain unknown. We have shown that acute ozone exposure in rats induces release of stress hormones, hyperglycemia, leptinemia, and gluoose intolerance that are assoc...

  19. Discoveries about Tropospheric Ozone Pollution from Satellite and Soundings

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.

    2004-01-01

    We have been producing near-red time tropospheric ozone satellite maps from the TOMS (Total Ozone Mapping Spectrometer) sensor since 1997. Maps for 1996-2000 for the operational Earth-Probe instrument are at:. Pollution in the tropics is influenced by biomass burning and by transport patterns that favor recirculation and in other cases reflect climate variability like the El-Nino-Southern Oscillation [Thompson et al., 2001]. The satellite view of chemical-dynamical interactions in tropospheric ozone is not adequate to capture vertical gradients in pollution. Thus, in 1998, NASA's Goddard Space Flight Center and a team of international sponsors established the SHADOZ (Southern Hemisphere ADditional OZonesondes) project to address the gap in tropical ozone soundings. SHADOZ augments launches and provides a public archive of ozonesonde data from twelve tropical stations at http://croc.gsfc.nasa.gov/shadoz. Further insights into the role of chemical and dynamical influences have emerged from the first 4-5 years of SHADOZ data (more than 2000 ozone profiles). Highly variable tropospheric ozone and a zonal wave-one pattern in tropospheric ozone suggest that dynamics is as important as pollution in determining tropical ozone distributions.

  20. Ozone

    MedlinePlus

    ... reactive form of oxygen. In the upper atmosphere, ozone forms a protective layer that shields us from the sun’s ultraviolet rays. At ground level, ozone is a harmful air pollutant and a primary ...

  1. Solar photo-ozonation: A novel treatment method for the degradation of water pollutants.

    PubMed

    Chávez, Ana M; Rey, Ana; Beltrán, Fernando J; Álvarez, Pedro M

    2016-11-01

    The decomposition of aqueous ozone by UV-vis radiation has been investigated with focus on the impact of ozone photolysis on the degradation of water pollutants during solar ozonation processes. The apparent first-order rate constants of the decomposition of ozone (kobs) have been determined at various pHs in the 4-9 range using radiation of different wavelengths in the UV-vis range. It was found that UVA-visible radiation (λ>320nm) highly enhanced ozone decomposition, especially at pH 4, for which kobs was three-folded with respect to the process in the absence of radiation. Hydrogen peroxide was identified as a main intermediate of ozone photo-decomposition at pH 4. Experiments of degradation of oxalic acid by ozone showed that solar irradiation brings about an increase in the hydroxyl radical to ozone exposures ratio (Rct). Finally, photo-ozonation (λ>300nm) was shown advantageous over single ozonation in the mineralization of a selection of emerging contaminants (metoprolol, ibuprofen, N,N-diethyl-meta-toluamide and clofibric acid) in both ultrapure water and a synthetic secondary effluent. Thus, TOC removal in 2-h treatments increased from 10 to 25% in the absence of radiation to about 50% in the presence of radiation. PMID:27258212

  2. Health Effects of Ozone and Particle Pollution

    MedlinePlus

    ... and air pollution . Disparities in the Impact of Air Pollution The burden of air pollution is not evenly shared. Poorer people and some ... exposure to pollutants. Learn more about disparities and air pollution . Living Near Highways Being in heavy traffic, or ...

  3. Increase in ozone due to the use of biodiesel fuel rather than diesel fuel.

    PubMed

    Thang, Phan Quang; Muto, Yusuke; Maeda, Yasuaki; Trung, Nguyen Quang; Itano, Yasuyuki; Takenaka, Norimichi

    2016-09-01

    The consumption of fuel by vehicles emits nitrogen oxides (NOx) and non-methane hydrocarbons (NMHCs) into the atmosphere, which are important ozone precursors. Ozone is formed as a secondary pollutant via photochemical processes and is not emitted directly into the atmosphere. In this paper, the ozone increase resulting from the use of biodiesel and diesel fuels was investigated, and the different ozone formation trends were experimentally evaluated. Known amounts of exhaust gas from a power generator operated using biodiesel and diesel fuels were added to ambient air. The quality of the ambient air, such as the initial NMHC and NOx concentrations, and the irradiation intensity have an effect on the ozone levels. When 30 cm(3) of biodiesel fuel exhaust gas (BFEG) or diesel fuel exhausted gas (DFEG) was added to 18 dm(3) of ambient air, the highest ratios of ozone increase from BFEG compared with DFEG in Japan and Vietnam were 31.2 and 42.8%, respectively, and the maximum ozone increases resulting from DFEG and BFEG compared with the ambient air in Japan were 17.4 and 26.4 ppb, respectively. The ozone increase resulting from the use of BFEG was large and significant compared to that from DFEG under all experimental conditions. The ozone concentration increased as the amount of added exhaust gas increased. The ozone increase from the Jatropha-BFEG was slightly higher than that from waste cooking oil-BFEG. PMID:27396671

  4. Unequivocal detection of ozone recovery in the Antarctic Ozone Hole through significant increases in atmospheric layers with minimum ozone

    NASA Astrophysics Data System (ADS)

    de Laat, Jos; van Weele, Michiel; van der A, Ronald

    2015-04-01

    An important new landmark in present day ozone research is presented through MLS satellite observations of significant ozone increases during the ozone hole season that are attributed unequivocally to declining ozone depleting substances. For many decades the Antarctic ozone hole has been the prime example of both the detrimental effects of human activities on our environment as well as how to construct effective and successful environmental policies. Nowadays atmospheric concentrations of ozone depleting substances are on the decline and first signs of recovery of stratospheric ozone and ozone in the Antarctic ozone hole have been observed. The claimed detection of significant recovery, however, is still subject of debate. In this talk we will discuss first current uncertainties in the assessment of ozone recovery in the Antarctic ozone hole by using multi-variate regression methods, and, secondly present an alternative approach to identify ozone hole recovery unequivocally. Even though multi-variate regression methods help to reduce uncertainties in estimates of ozone recovery, great care has to be taken in their application due to the existence of uncertainties and degrees of freedom in the choice of independent variables. We show that taking all uncertainties into account in the regressions the formal recovery of ozone in the Antarctic ozone hole cannot be established yet, though is likely before the end of the decade (before 2020). Rather than focusing on time and area averages of total ozone columns or ozone profiles, we argue that the time evolution of the probability distribution of vertically resolved ozone in the Antarctic ozone hole contains a better fingerprint for the detection of ozone recovery in the Antarctic ozone hole. The advantages of this method over more tradition methods of trend analyses based on spatio-temporal average ozone are discussed. The 10-year record of MLS satellite measurements of ozone in the Antarctic ozone hole shows a

  5. High winter ozone pollution from carbonyl photolysis in an oil and gas basin.

    PubMed

    Edwards, Peter M; Brown, Steven S; Roberts, James M; Ahmadov, Ravan; Banta, Robert M; deGouw, Joost A; Dubé, William P; Field, Robert A; Flynn, James H; Gilman, Jessica B; Graus, Martin; Helmig, Detlev; Koss, Abigail; Langford, Andrew O; Lefer, Barry L; Lerner, Brian M; Li, Rui; Li, Shao-Meng; McKeen, Stuart A; Murphy, Shane M; Parrish, David D; Senff, Christoph J; Soltis, Jeffrey; Stutz, Jochen; Sweeney, Colm; Thompson, Chelsea R; Trainer, Michael K; Tsai, Catalina; Veres, Patrick R; Washenfelder, Rebecca A; Warneke, Carsten; Wild, Robert J; Young, Cora J; Yuan, Bin; Zamora, Robert

    2014-10-16

    The United States is now experiencing the most rapid expansion in oil and gas production in four decades, owing in large part to implementation of new extraction technologies such as horizontal drilling combined with hydraulic fracturing. The environmental impacts of this development, from its effect on water quality to the influence of increased methane leakage on climate, have been a matter of intense debate. Air quality impacts are associated with emissions of nitrogen oxides (NOx = NO + NO2) and volatile organic compounds (VOCs), whose photochemistry leads to production of ozone, a secondary pollutant with negative health effects. Recent observations in oil- and gas-producing basins in the western United States have identified ozone mixing ratios well in excess of present air quality standards, but only during winter. Understanding winter ozone production in these regions is scientifically challenging. It occurs during cold periods of snow cover when meteorological inversions concentrate air pollutants from oil and gas activities, but when solar irradiance and absolute humidity, which are both required to initiate conventional photochemistry essential for ozone production, are at a minimum. Here, using data from a remote location in the oil and gas basin of northeastern Utah and a box model, we provide a quantitative assessment of the photochemistry that leads to these extreme winter ozone pollution events, and identify key factors that control ozone production in this unique environment. We find that ozone production occurs at lower NOx and much larger VOC concentrations than does its summertime urban counterpart, leading to carbonyl (oxygenated VOCs with a C = O moiety) photolysis as a dominant oxidant source. Extreme VOC concentrations optimize the ozone production efficiency of NOx. There is considerable potential for global growth in oil and gas extraction from shale. This analysis could help inform strategies to monitor and mitigate air quality impacts

  6. High winter ozone pollution from carbonyl photolysis in an oil and gas basin

    NASA Astrophysics Data System (ADS)

    Edwards, Peter M.; Brown, Steven S.; Roberts, James M.; Ahmadov, Ravan; Banta, Robert M.; Degouw, Joost A.; Dubé, William P.; Field, Robert A.; Flynn, James H.; Gilman, Jessica B.; Graus, Martin; Helmig, Detlev; Koss, Abigail; Langford, Andrew O.; Lefer, Barry L.; Lerner, Brian M.; Li, Rui; Li, Shao-Meng; McKeen, Stuart A.; Murphy, Shane M.; Parrish, David D.; Senff, Christoph J.; Soltis, Jeffrey; Stutz, Jochen; Sweeney, Colm; Thompson, Chelsea R.; Trainer, Michael K.; Tsai, Catalina; Veres, Patrick R.; Washenfelder, Rebecca A.; Warneke, Carsten; Wild, Robert J.; Young, Cora J.; Yuan, Bin; Zamora, Robert

    2014-10-01

    The United States is now experiencing the most rapid expansion in oil and gas production in four decades, owing in large part to implementation of new extraction technologies such as horizontal drilling combined with hydraulic fracturing. The environmental impacts of this development, from its effect on water quality to the influence of increased methane leakage on climate, have been a matter of intense debate. Air quality impacts are associated with emissions of nitrogen oxides (NOx = NO + NO2) and volatile organic compounds (VOCs), whose photochemistry leads to production of ozone, a secondary pollutant with negative health effects. Recent observations in oil- and gas-producing basins in the western United States have identified ozone mixing ratios well in excess of present air quality standards, but only during winter. Understanding winter ozone production in these regions is scientifically challenging. It occurs during cold periods of snow cover when meteorological inversions concentrate air pollutants from oil and gas activities, but when solar irradiance and absolute humidity, which are both required to initiate conventional photochemistry essential for ozone production, are at a minimum. Here, using data from a remote location in the oil and gas basin of northeastern Utah and a box model, we provide a quantitative assessment of the photochemistry that leads to these extreme winter ozone pollution events, and identify key factors that control ozone production in this unique environment. We find that ozone production occurs at lower NOx and much larger VOC concentrations than does its summertime urban counterpart, leading to carbonyl (oxygenated VOCs with a C = O moiety) photolysis as a dominant oxidant source. Extreme VOC concentrations optimize the ozone production efficiency of NOx. There is considerable potential for global growth in oil and gas extraction from shale. This analysis could help inform strategies to monitor and mitigate air quality impacts

  7. The climate benefits of high-sugar grassland may be compromised by ozone pollution.

    PubMed

    Hewitt, D K L; Mills, G; Hayes, F; Davies, W

    2016-09-15

    High sugar ryegrasses (HSG) have been developed to improve the uptake, digestion and nitrogen (N)-utilisation of grazing stock, with the potential to increase production yields and benefit climate by reducing methane (CH4) and nitrous oxide (N2O) emissions from livestock farming. In this study, the effects of tropospheric ozone pollution on the seasonal growth dynamics of HSG pasture mesocosms containing Lolium perenne cv. AberMagic and Trifolium repens cv. Crusader were investigated. Species-specific ozone (O3) dose-response relationships (seasonal means: 35, 41, 47, 51, 59 & 67ppb) based on the Phytotoxic Ozone Dose (PODy) were constructed for above and below ground biomass, injury, N-fixation and forage quality. The dynamics of effects of ozone exposure on HSG pasture changed over the course of a season, with the strongest responses occurring in the first 4-8weeks. Overall, strong negative responses to ozone flux were found for root biomass, root nodule mass and N-fixation rates, and ozone adversely impacted a range of forage quality parameters including total sugar content and relative and consumable food values. These results indicate that increasing ozone pollution could decrease the N-use efficiency and reduce the sugar content of managed pasture, and thereby partially detract from some of the suggested benefits of HSG. PMID:27161131

  8. Exposure to ozone modulates human airway protease/antiprotease balance contributing to increased influenza A infection

    EPA Science Inventory

    Exposure to oxidant air pollution is associated with Increased respiratory morbiditses and susceptibility to Infections Ozone is a commonly encountered oxidant air pollutant, yet Its effects on influenza infections in humans are not known ‘the greater Mexico City area was the pri...

  9. Indoor secondary pollutants from cleaning product and air freshener use in the presence of ozone

    NASA Astrophysics Data System (ADS)

    Singer, Brett C.; Coleman, Beverly K.; Destaillats, Hugo; Hodgson, Alfred T.; Lunden, Melissa M.; Weschler, Charles J.; Nazaroff, William W.

    This study investigated the formation of secondary pollutants resulting from household product use in the presence of ozone. Experiments were conducted in a 50-m 3 chamber simulating a residential room. The chamber was operated at conditions relevant to US residences in polluted areas during warm-weather seasons: an air exchange rate of 1.0 h -1 and an inlet ozone concentration of approximately 120 ppb, when included. Three products were used in separate experiments. An orange oil-based degreaser and a pine oil-based general-purpose cleaner were used for surface cleaning applications. A plug-in scented-oil air freshener (AFR) was operated for several days. Cleaning products were applied realistically with quantities scaled to simulate residential use rates. Concentrations of organic gases and secondary organic aerosol from the terpene-containing consumer products were measured with and without ozone introduction. In the absence of reactive chemicals, the chamber ozone level was approximately 60 ppb. Ozone was substantially consumed following cleaning product use, mainly by homogeneous reaction. For the AFR, ozone consumption was weaker and heterogeneous reaction with sorbed AFR-constituent VOCs was of similar magnitude to homogeneous reaction with continuously emitted constituents. Formaldehyde generation resulted from product use with ozone present, increasing indoor levels by the order of 10 ppb. Cleaning product use in the presence of ozone generated substantial fine particle concentrations (more than 100 μg m -3) in some experiments. Ozone consumption and elevated hydroxyl radical concentrations persisted for 10-12 h following brief cleaning events, indicating that secondary pollutant production can persist for extended periods.

  10. Process design for wastewater treatment: catalytic ozonation of organic pollutants.

    PubMed

    Derrouiche, S; Bourdin, D; Roche, P; Houssais, B; Machinal, C; Coste, M; Restivo, J; Orfão, J J M; Pereira, M F R; Marco, Y; Garcia-Bordeje, E

    2013-01-01

    Emerging micropollutants have been recently the target of interest for their potential harmful effects in the environment and their resistance to conventional water treatments. Catalytic ozonation is an advanced oxidation process consisting of the formation of highly reactive radicals from the decomposition of ozone promoted by a catalyst. Nanocarbon materials have been shown to be effective catalysts for this process, either in powder form or grown on the surface of a monolithic structure. In this work, carbon nanofibers grown on the surface of a cordierite honeycomb monolith are tested as catalyst for the ozonation of five selected micropollutants: atrazine (ATZ), bezafibrate, erythromycin, metolachlor, and nonylphenol. The process is tested both in laboratorial and real conditions. Later on, ATZ was selected as a target pollutant to further investigate the role of the catalytic material. It is shown that the inclusion of a catalyst improves the mineralization degree compared to single ozonation. PMID:24056437

  11. Ozone and other air pollutants from photocopying machines

    SciTech Connect

    Hansen, T.B.; Andersen, B.

    1986-10-01

    The ozone emission from 69 different photocopying machines was determined by a described standard procedure. The emission rates were in the range of 0 to 1350 ..mu..g/min. The concentration in the breathing zone of 19 operators was found to be between less than or equal to 0.001 and 0.15 ppm. Technical conditions for the amount of ozone generated by photocopiers are described, as well as conditions for the rate of decomposition of ozone. The efficiencies of three different types of ozone filters were tested: activated carbon granulate; polyester; and polyurethane impregnated with activated carbon. Other pollutants levels from the copying process (selenium and cadmium) were less than the limit of detection. Dust concentrations (toner) in the air exhausted from photocopies were found in the same magnitude as normal dust concentrations in offices. Vapors from the resin in the toner were often present in concentrations and gave operators an unpleasant feeling.

  12. N-fixation in legumes--An assessment of the potential threat posed by ozone pollution.

    PubMed

    Hewitt, D K L; Mills, G; Hayes, F; Norris, D; Coyle, M; Wilkinson, S; Davies, W

    2016-01-01

    The growth, development and functioning of legumes are often significantly affected by exposure to tropospheric ozone (O3) pollution. However, surprisingly little is known about how leguminous Nitrogen (N) fixation responds to ozone, with a scarcity of studies addressing this question in detail. In the last decade, ozone impacts on N-fixation in soybean, cowpea, mung bean, peanut and clover have been shown for concentrations which are now commonly recorded in ambient air or are likely to occur in the near future. We provide a synthesis of the existing literature addressing this issue, and also explore the effects that may occur on an agroecosystem scale by predicting reductions in Trifolium (clovers) root nodule biomass in United Kingdom (UK) pasture based on ozone concentration data for a "high" (2006) and "average" ozone year (2008). Median 8% and 5% reductions in clover root nodule biomass in pasture across the UK were predicted for 2006 and 2008 respectively. Seasonal exposure to elevated ozone, or short-term acute concentrations >100 ppb, are sufficient to reduce N-fixation and/or impact nodulation, in a range of globally-important legumes. However, an increasing global burden of CO2, the use of artificial fertiliser, and reactive N-pollution may partially mitigate impacts of ozone on N-fixation. PMID:26385644

  13. An Ozone Increase in the Antarctic Summer Stratosphere: A Dynamical Response to the Ozone Hole

    NASA Technical Reports Server (NTRS)

    Stolarski, R. S.; Douglass, A. R.; Gupta, M.; Newman, P. A.; Pawson, S.; Schoeberl, M. R.; Nielsen, J. E.

    2007-01-01

    Profiles of ozone concentration retrieved from the SBUV series of satellites show an increase between 1979 and 1997 in the summertime Antarctic middle stratosphere (approx. 25-10 hPa). Data over the South Pole from ozone sondes confirm the increase. A similar ozone increase is produced in a chemistry climate model that allows feedback between constituent changes and the stratospheric circulation through radiative heating. A simulation that excludes the radiative coupling between predicted ozone and the circulation does not capture this ozone increase. We show that the ozone increase in our model simulations is caused by a dynamical feedback in response to the changes in the stratospheric wind fields forced by the radiative perturbation associated with the Antarctic ozone hole.

  14. Relationship between ozone and the air pollutants in Peninsular Malaysia for 2003 retrieved from SCIAMACHY

    NASA Astrophysics Data System (ADS)

    Tan, K. C.; Lim, H. S.; Mat Jafri, M. Z.

    2013-05-01

    Since few decades ago, air pollution has become a hot topic of environmental and atmospheric research due to the impact of air pollution on human health. Ozone is one of the important chemical constituent of the atmosphere, which plays a key role in atmospheric energy budget and chemistry, air quality and global change. Results from the analysis of the retrieved monthly data from Scanning Imaging Absorption Spectrometer for Atmospheric CHartographY (SCIAMACHY) were utilized, in order to analyze the impact of air pollutants (CO2, CH4, H2O, and NO2) on the ozone in Peninsular Malaysia for 2003 using multiple regression analysis. SCIAMACHY onboard ENVISAT as part of the atmospheric chemistry payload of the third European Space Agency (ESA) Earth observation, is the first satellite instrument whose measurements is enough precise and sensitive for all the greenhouse gases to make observation at all atmospheric altitude levels down to the Earth's surface. Among the four pollutants, ozone was most affected by water vapor (H2O vapor), indicated by a strong beta coefficient (-0.769 - 0.997), depends on the seasonal variety. In addition, CO2 also shows a strong Beta coefficient (-0.654 - 0.717) and also affected by the seasonal variation. The variation of pollutants on the average explains change 50.1% of the ozone. This means that about 50.1% of the ozone is attributed to these pollutant gases. The SCIAMACHY data and the satellite measurements successfully identify the increase of the atmospheric air pollutants over the study area.

  15. Convection links biomass burning to increased tropical ozone - However, models will tend to overpredict O3

    NASA Technical Reports Server (NTRS)

    Chatfield, Robert B.; Delany, Anthony C.

    1990-01-01

    Biomass burning throughout the inhabited portions of the tropics generates precursors which lead to significant local atmospheric ozone pollution. Several simulations show how this smog could be only an easily observed, local manifestation of a much broader increase in tropospheric ozone. The basic processes are illustrated with a one-dimensional time-dependent model that is closer to true meteorological motions than commonly used eddy diffusion models. Its application to a representative region of South America gives reasonable simulations of the local pollutants measured there. Three illustrative simulations indicate the importance of dilution, principally due to vertical transport, in increasing the efficiency of ozone production, possibly enough for high ozone to be apparent on a very large, intercontinental scale.

  16. Rapid increases in tropospheric ozone production and export from China

    NASA Astrophysics Data System (ADS)

    Verstraeten, Willem W.; Neu, Jessica L.; Williams, Jason E.; Bowman, Kevin W.; Worden, John R.; Boersma, K. Folkert

    2015-09-01

    Rapid population growth and industrialization have driven substantial increases in Asian ozone precursor emissions over the past decade, with highly uncertain impacts on regional and global tropospheric ozone levels. According to ozonesonde measurements, tropospheric ozone concentrations at two Asian sites have increased by 1 to 3% per year since 2000, an increase thought to contribute to positive trends in the ozone levels observed at North America’s West Coast. However, model estimates of the Asian contribution to North American ozone levels are not well-constrained by observations. Here we interpret Aura satellite measurements of tropospheric concentrations of ozone and its precursor NO2, along with its largest natural source, stratospheric ozone, using the TM5 global chemistry-transport model. We show that tropospheric ozone concentrations over China have increased by about 7% between 2005 and 2010 in response to two factors: a rise in Chinese emissions by about 21% and increased downward transport of stratospheric ozone. Furthermore, we find that transport from China of ozone and its precursors has offset about 43% of the 0.42 DU reduction in free-tropospheric ozone over the western United States that was expected between 2005 and 2010 as a result of emissions reductions associated with federal, state and local air quality policies. We conclude that global efforts may be required to address regional air quality and climate change.

  17. Impacts of ozonation on the competition between organic micro-pollutants and effluent organic matter in powdered activated carbon adsorption.

    PubMed

    Zietzschmann, F; Mitchell, R-L; Jekel, M

    2015-11-01

    This study investigates if ozonation of wastewater treatment plant (WWTP) effluent can reduce the negative impacts of effluent organic matter (EfOM) on the adsorption of organic micro-pollutants (OMP) onto powdered activated carbon (PAC). Pre-treatment of the water included membrane filtration for the removal of suspended/colloidal organics, ozonation with various specific ozone consumptions, and subsequent OMP spiking to comparable initial concentrations in all of the ozonated waters. This approach allowed for comparative PAC adsorption tests. Adsorption analyses show that the adsorbability of EfOM decreases with increasing specific ozone consumptions. This is also reflected by liquid chromatography with online carbon and UV254 detection (LC-OCD) which shows the ozone-induced disintegration of large EfOM into smaller fragments. Also, small organic neutrals are decreased while the small organic acids peak continuously increases with rising specific ozone consumptions. UV254 demonstrates that the aromaticity of all LC-OCD fractions continuously declines together with increasing specific O3 consumptions. This explains the varying EfOM adsorbabilities that occur due to ozonation. The ozone-induced decrease of EfOM adsorbability directly translates into reduced adsorption competition against the adsorption of OMP. With higher specific ozone consumptions, OMP removal and OMP loadings increase. The reduced adsorption competition is reflected in the outputs from equivalent background compound (EBC) modeling. In each of the ozonated waters, correlations between the OMP removals and the UV254 removal were found. PMID:26231581

  18. Allocating anthropogenic pollutant emissions over space: application to ozone pollution management.

    PubMed

    Diem, J E; Comrie, A C

    2001-12-01

    An inventory of volatile organic compound (VOC) and nitrogen oxides (NOx) emissions is an important tool for the management of ground-level ozone pollution. This paper has two broad aims: it illustrates the potential of a geographic information system (GIS) for enhancing an existing spatially-aggregated, anthropogenic emissions inventory (EI) for Tucson, AZ, and it discusses the ozone-specific management implications of the resulting spatially-disaggregated EI. The main GIS-related methods include calculating emissions for specific features, spatially disaggregating region-wide emissions totals for area sources, and adding emissions from various point sources. In addition, temporal allocation factors enable the addition of a multi-temporal component to the inventory. The resulting inventory reveals that on-road motor vehicles account for approximately 50% of VOC and NOx emissions annually. On-road motor vehicles and residential wood combustion are the largest VOC sources in the summer and winter months, respectively. On-road motor vehicles are always the largest NOx sources. The most noticeable weekday vs. weekend VOC emissions differences are triggered by increased residential wood combustion and increased lawn and garden equipment use on weekends. Concerning the EI's uncertainties and errors, on-road mobile, construction equipment, and lawn and garden equipment are identified as sources in the most need of further investigation. Overall, the EIs spatial component increases its utility as a management tool, which might involve visualization-driven analyses and air quality modeling. PMID:11826724

  19. Tropospheric Ozone Pollution Transport Traced from the TOMS (Total Ozone Mapping Spectrometer) Instrument During the Nashville-1999 Campaign

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Frolov, A. D.; Hudson, R. D.; Witte, J. C.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Over the past several years, we have developed two new tropospheric ozone retrievals from the TOMS (Total Ozone Mapping Spectrometer) satellite instrument that are of sufficient resolution to follow pollution episodes. The modified-residual technique [Hudson and Thompson, 1998; Thompson and Hudson, 1999] uses v. 7 TOMS total ozone and is applicable to tropical regimes in which the wave-one pattern in total ozone is observed. The TOMS-direct method [("TDOT" = TOMS Direct Ozone in the Troposphere; Frolov et al., 2000] represents a new algorithm that uses TOMS radiances directly (i.e., not previously processed for TOMS ozone) to extract tropospheric ozone in regions of constant stratospheric ozone and tropospheric ozone displaying high mixing ratios and variability characteristic of pollution. These events tend to occur in certain meteorological regimes. For example, mid-latitude pollution usually occurs on the backside of subtropical fronts, as low pv, usually moist air intrudes to the extra-tropics. July 1999 was a month characterized by robust pollution in the eastern US, with high ozone, as detected by TOMS, originating over south central states and moving up the Atlantic seaboard. This corresponds to 50-80 DU in tropospheric ozone column depth. In most cases, further transport occurred to the North Atlantic, with ozone plumes traveling to western Europe in 4-5 days. Examples of high ozone and transit across boundaries within the US, as well as US->Europe, give a regional context for model results and field measurements taken in the SE US during the Nashville-1999 campaign period. Validation of the TDOT maps is made with ozonesondes taken during that time. TDOT maps also show ozone pollution from Asia traveling to the western US in July 1999.

  20. Significant increase of surface ozone at a rural site, north of eastern China

    NASA Astrophysics Data System (ADS)

    Ma, Zhiqiang; Xu, Jing; Quan, Weijun; Zhang, Ziyin; Lin, Weili; Xu, Xiaobin

    2016-03-01

    Ozone pollution in eastern China has become one of the top environmental issues. Quantifying the temporal trend of surface ozone helps to assess the impacts of the anthropogenic precursor reductions and the likely effects of emission control strategies implemented. In this paper, ozone data collected at the Shangdianzi (SDZ) regional atmospheric background station from 2003 to 2015 are presented and analyzed to obtain the variation in the trend of surface ozone in the most polluted region of China, north of eastern China or the North China Plain. A modified Kolmogorov-Zurbenko (KZ) filter method was performed on the maximum daily average 8 h (MDA8) concentrations of ozone to separate the contributions of different factors from the variation of surface ozone and remove the influence of meteorological fluctuations on surface ozone. Results reveal that the short-term, seasonal and long-term components of ozone account for 36.4, 57.6 and 2.2 % of the total variance, respectively. The long-term trend indicates that the MDA8 has undergone a significant increase in the period of 2003-2015, with an average rate of 1.13 ± 0.01 ppb year-1 (R2 = 0.92). It is found that meteorological factors did not significantly influence the long-term variation of ozone and the increase may be completely attributed to changes in emissions. Furthermore, there is no significant correlation between the long-term O3 and NO2 trends. This study suggests that emission changes in VOCs might have played a more important role in the observed increase of surface ozone at SDZ.

  1. Ozone

    MedlinePlus

    ... Earth's surface. It shields us from the sun's ultraviolet rays. Part of the good ozone layer is ... enough good ozone, people may get too much ultraviolet radiation. This may increase the risk of skin ...

  2. The Impact of Increasing Carbon Dioxide on Ozone Recovery

    NASA Technical Reports Server (NTRS)

    Rosenfield, Joan E.; Douglass, Anne R.; Considine, David B.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    We have used the GSFC coupled two-dimensional (2D) model to study the impact of increasing carbon dioxide from 1980 to 2050 on the recovery of ozone to its pre-1980 amounts. We find that the changes in temperature and circulation arising from increasing CO2 affect ozone recovery in a manner which varies greatly with latitude, altitude, and time of year. Middle and upper stratospheric ozone recovers faster at all latitudes due to a slowing of the ozone catalytic loss cycles. In the lower stratosphere, the recovery of tropical ozone is delayed due to a decrease in production and a speed up in the overturning circulation. The recovery of high northern latitude lower stratospheric ozone is delayed in spring and summer due to an increase in springtime heterogeneous chemical loss, and is speeded up in fall and winter due to increased downwelling. The net effect on the higher northern latitude column ozone is to slow down the recovery from late March to late July, while making it faster at other times. In the high southern latitudes, the impact of CO2 cooling is negligible. Annual mean column ozone is predicted to recover faster at all latitudes, and globally averaged ozone is predicted to recover approximately ten years faster as a result of increasing CO2.

  3. Synergistic effects of air pollutants: Ozone plus a respirable aerosol

    SciTech Connect

    Last, J.A. )

    1991-01-01

    Rats were concurrently exposed to mixtures of ozone or nitrogen dioxide and respirable-sized aerosols of sulfuric acid, ammonium sulfate, or sodium chloride, or to each pollutant individually. Their responses to such exposures were evaluated by various quantitative biochemical analyses of lung tissue or lavage fluids, or by morphometric analyses. Such studies were performed in the acute time frame, generally involving exposures of from one to nine days, depending on the assays used. Correlations between the biochemical and morphometric results were examined over a wide range of pollutant concentrations in the exposure chambers. Good correlations were found between the most sensitive biochemical indicators of lung damage--the protein content of lung lavage fluid or whole lung tissue and the rate of lung collagen synthesis--and the morphometric estimation of volume density or volume percent of the centriacinar lung lesion characteristically observed in animals exposed to ozone. Synergistic interaction between ozone and sulfuric acid aerosol was demonstrated to occur at environmentally relevant concentrations of both pollutants by several of the analytical methods used. Such interactions were demonstrated at concentrations of ozone as low as 0.12 parts per million (ppm)2 and of sulfuric acid aerosol at concentrations as low as 5 to 20 micrograms/m3. The acidity of the aerosol is a necessary (and apparently a sufficient) condition for such a synergistic interaction between an oxidant gas and a respirable aerosol to occur. A hitherto unexpected synergistic interaction between nitrogen dioxide and sodium chloride aerosol was found during these studies; it is hypothesized that this was due to formation of their acidic (anhydride) reaction product, nitrosyl chloride, in the chambers during exposure to the mixture.

  4. The negative feedback between anthropogenic ozone pollution and enhanced ocean emissions of iodine

    NASA Astrophysics Data System (ADS)

    Cuevas, Carlos A.; Prados-Roman, Cristina; Fernandez, Rafael P.; Kinnison, Douglas E.; Lamarque, Jean-Francois; Saiz-Lopez, Alfonso

    2015-04-01

    Natural emissions of iodine compounds from the oceans efficiently destroy atmospheric ozone reducing its positive radiative forcing effects in the troposphere. Emissions of inorganic iodine have been experimentally shown to depend on the deposition to the oceans of tropospheric ozone, whose concentrations have significantly increased (40%) since 1850 as a result of human activities. In this work a chemistry-climate model is used to quantify the current ocean emissions of inorganic iodine and evaluate the impact that the anthropogenic increase of tropospheric ozone has had on the natural cycle of iodine in the marine environment since pre-industrial times. Our results indicate that the human driven enhancement of tropospheric ozone has doubled the oceanic inorganic iodine emissions following the reaction of ozone with iodide at the sea surface. The consequent build-up of atmospheric iodine, with maximum enhancements of up to 70% with respect to preindustrial times in continental pollution outflow regions, has in turn accelerated the ozone chemical loss over the oceans with strong spatial patterns. We suggest that this ocean-atmosphere interaction represents a negative geochemical feedback loop by which current ocean emissions of iodine act as a natural buffer for ozone pollution and its radiative forcing in the global marine environment. This feedback represents a potentially important link between climate change and tropospheric O3 since the oceanic emissions of iodine are not only linked to surface O3, but also to SST and wind speed and might also be linked to climatically driven changes in the state of the world oceans.

  5. The global consequences of increasing tropospheric ozone concentrations

    NASA Technical Reports Server (NTRS)

    Fishman, Jack

    1989-01-01

    Recent analyses of long term records of tropospheric ozone measurements in the Northern Hemisphere suggest that it is increasing at a rate of 1 to 2 percent per year. Because of this, it is argued that the amount of atmospheric warming due to increasing tropospheric ozone is comparable to, or possibly even greater than, the amount of warming due to the increase of carbon dioxide. Unlike all other climatically important trace gases, ozone is toxic, and increases in its concentration will result in serious environmental damage, as well as impairment of human health.

  6. The global consequences of increasing tropospheric ozone concentrations

    NASA Technical Reports Server (NTRS)

    Fishman, Jack

    1991-01-01

    Recent analyses of long-term records of tropospheric ozone measurements in the Northern Hemisphere suggest that it is increasing at a rate of 1 to 2 percent per year. Because of this, it is argued that the amount of atmospheric warming due to increasing tropospheric ozone is comparable to, or possibly even greater than, the amount of warming due to the increase of carbon dioxide. Unlike all other climatically important trace gases, ozone is toxic, and increases in its concentration will result in serious environmental damage, as well as impairment of human health.

  7. Haze and ozone pollution effects on the land carbon sink in China

    NASA Astrophysics Data System (ADS)

    Yue, X.; Unger, N.; Harper, K.

    2015-12-01

    Atmospheric pollutants have both beneficial and detrimental effects on carbon assimilation by land ecosystems. Aerosols promote carbon uptake by increasing diffuse radiation, while ozone damages leaf photosynthesis by oxidizing plant cells. As the world's largest emitter of air pollutants, China experiences frequent haze episodes. In this study, we apply coupled chemistry-carbon-climate simulations using the Yale Interactive Terrestrial Biosphere Model that is embedded in the NASA ModelE2 global chemistry-climate model to quantify the combined effects of ozone and aerosol pollution on land carbon assimilation for the present and future world. The simulated land carbon cycle has been extensively evaluated at 145 FLUXNET sites globally. The aerosol optical depth (AOD) and surface ozone are validated with satellite data and air quality monitoring data from a network of 188 Chinese sites. In the present day, we find that air pollution in China reduces net primary productivity (NPP) by 0.47 Pg C a-1 (10.8%), resulting from an increase of 0.13 Pg C a-1 (3.1%) by aerosol diffuse radiation fertilization and a decrease of 0.60 Pg C a-1 (13.9%) by ozone vegetation damage. Sensitivity simulations indicate that the effects are dominated by anthropogenic emissions. Simulations using natural precursor emissions only show minor changes in NPP. The IPCC RCP8.5 future world predicts an 18% reduction in SO2 emissions but increases of 17% in NOx and 15% in volatile organic compound emissions in 2030 relative to 2010. The emissions changes lead to reduced AOD but enhanced surface ozone over eastern China in 2030. For this future projection, we estimate a stronger NPP reduction of 0.62 Pg C a-1 (12.5%) due to air pollution in 2030. The increased future damage is a consequence of the opposing sign effects of aerosol diffuse radiation fertilization (0.13 Pg C a-1; 2.6%) and larger ozone inhibition (0.75 Pg C a-1; 15.1%).

  8. Exposure to ozone modulates human airway protease/antiprotease balance contributing to increased influenza A infection.

    PubMed

    Kesic, Matthew J; Meyer, Megan; Bauer, Rebecca; Jaspers, Ilona

    2012-01-01

    Exposure to oxidant air pollution is associated with increased respiratory morbidities and susceptibility to infections. Ozone is a commonly encountered oxidant air pollutant, yet its effects on influenza infections in humans are not known. The greater Mexico City area was the primary site for the spring 2009 influenza A H1N1 pandemic, which also coincided with high levels of environmental ozone. Proteolytic cleavage of the viral membrane protein hemagglutinin (HA) is essential for influenza virus infectivity. Recent studies suggest that HA cleavage might be cell-associated and facilitated by the type II transmembrane serine proteases (TTSPs) human airway trypsin-like protease (HAT) and transmembrane protease, serine 2 (TMPRSS2), whose activities are regulated by antiproteases, such as secretory leukocyte protease inhibitor (SLPI). Based on these observations, we sought to determine how acute exposure to ozone may modulate cellular protease/antiprotease expression and function, and to define their roles in a viral infection. We utilized our in vitro model of differentiated human nasal epithelial cells (NECs) to determine the effects of ozone on influenza cleavage, entry, and replication. We show that ozone exposure disrupts the protease/antiprotease balance within the airway liquid. We also determined that functional forms of HAT, TMPRSS2, and SLPI are secreted from human airway epithelium, and acute exposure to ozone inversely alters their expression levels. We also show that addition of antioxidants significantly reduces virus replication through the induction of SLPI. In addition, we determined that ozone-induced cleavage of the viral HA protein is not cell-associated and that secreted endogenous proteases are sufficient to activate HA leading to a significant increase in viral replication. Our data indicate that pre-exposure to ozone disrupts the protease/antiprotease balance found in the human airway, leading to increased influenza susceptibility. PMID

  9. Is tropospheric ozone over southern Africa really increasing? Evidence from sonde and aircraft profiles

    NASA Astrophysics Data System (ADS)

    Thompson, A. M.; Balashov, N. V.; Witte, J. C.; Coetzee, J. G. R.; Thouret, V.; Posny, F.

    2014-04-01

    Ozonesonde records from the early 1990's through 2008 over two subtropical stations, Irene (near Pretoria, South Africa) and Réunion Island (21° S, 55° W, ~3500 km NE of Irene in the Indian Ocean) were reported to exhibit free tropospheric (FT) ozone increases. Over Irene a large increase in the urban-influenced boundary layer (BL, 1.5-4 km) was also observed during the 18 year period, equivalent to 30% decade-1. Here we show that the Irene BL trend is at least partly due to a gradual change in the sonde launch times from early morning to the midday period. The FT ozone profiles over Irene in 1990-2007 are re-examined, filling in a 1995-1999 gap with ozone profiles taken by Measurements of Ozone by Airbus In-service Aircraft (MOZAIC) over nearby Johannesburg. A multivariate regression model that accounts for the annual ozone cycle, ENSO and possible tropopause changes was applied to monthly averaged Irene data from 4-11 km and to 1992-2011 Réunion sonde data from 4-15 km. Statistically significant trends appear predominantly in the middle and upper troposphere (UT, 4-11 km over Irene, 5-13 km over Réunion) in winter (June-August), with increases ~1 ppbv yr-1 over Irene and ~2 ppbv yr-1 over Réunion. These changes are equivalent to ~25% and 40-50% decade-1, respectively. Both stations also display smaller positive trends in summer with a 50% decade-1 ozone increase near the tropopause over Réunion in December. To explain the ozone increases, we investigated a time series of dynamical markers, e.g., potential vorticity (PV) at 330-350 K. PV affects UT ozone over Irene in November-December but displays little relationship to ozone over Réunion. A more likely reason for wintertime FT ozone increases over Irene and Réunion appears to be long-range transport of growing pollution in the Southern Hemisphere. The ozone increases are consistent with trajectory origins of air parcels sampled by the sondes and with recent NOx emissions trends estimated for Africa

  10. Ozone Inhalation Leads to a Dose-Dependent Increase of Cytogenetic Damage in Human Lymphocytes

    PubMed Central

    Holland, Nina; Davé, Veronica; Venkat, Subha; Wong, Hofer; Donde, Aneesh; Balmes, John R; Arjomandi, Mehrdad

    2014-01-01

    Ozone is an important constituent of ambient air pollution and represents a major public health concern. Oxidative injury due to ozone inhalation causes the generation of reactive oxygen species and can be genotoxic. To determine whether ozone exposure causes genetic damage in peripheral blood lymphocytes, we employed a well-validated cytokinesis-block micronucleus Cytome assay. Frequencies of micronuclei (MN) and nucleoplasmic bridges (NB) were used as indicators of cytogenetic damage. Samples were obtained from 22 non-smoking healthy subjects immediately before and 24-hr after controlled 4-hr exposures to filtered air, 100 ppb, and 200 ppb ozone while exercising in a repeated-measure study design. Inhalation of ozone at different exposure levels was associated with a significant dose-dependent increase in MN frequency (P < 0.0001) and in the number of cells with more than 1 MN per cell (P < 0.0005). Inhalation of ozone also caused an increase in the number of apoptotic cells (P = 0.002). Airway neutrophilia was associated with an increase in MN frequency (P = 0.033) independent of the direct effects of ozone exposure (P < 0.0001). We also observed significant increases in both MN and NB frequencies after exercise in filtered air, suggesting that physical activity is also an important inducer of oxidative stress. These results corroborate our previous findings that cytogenetic damage is associated with ozone exposure, and show that damage is dose-dependent. Further study of ozone-induced cytogenetic damage in airway epithelial cells could provide evidence for the role of oxidative injury in lung carcinogenesis, and help to address the potential public health implications of exposures to oxidant environments. PMID:25451016

  11. Geospatial interpolation and mapping of tropospheric ozone pollution using geostatistics.

    PubMed

    Kethireddy, Swatantra R; Tchounwou, Paul B; Ahmad, Hafiz A; Yerramilli, Anjaneyulu; Young, John H

    2014-01-01

    Tropospheric ozone (O3) pollution is a major problem worldwide, including in the United States of America (USA), particularly during the summer months. Ozone oxidative capacity and its impact on human health have attracted the attention of the scientific community. In the USA, sparse spatial observations for O3 may not provide a reliable source of data over a geo-environmental region. Geostatistical Analyst in ArcGIS has the capability to interpolate values in unmonitored geo-spaces of interest. In this study of eastern Texas O3 pollution, hourly episodes for spring and summer 2012 were selectively identified. To visualize the O3 distribution, geostatistical techniques were employed in ArcMap. Using ordinary Kriging, geostatistical layers of O3 for all the studied hours were predicted and mapped at a spatial resolution of 1 kilometer. A decent level of prediction accuracy was achieved and was confirmed from cross-validation results. The mean prediction error was close to 0, the root mean-standardized-prediction error was close to 1, and the root mean square and average standard errors were small. O3 pollution map data can be further used in analysis and modeling studies. Kriging results and O3 decadal trends indicate that the populace in Houston-Sugar Land-Baytown, Dallas-Fort Worth-Arlington, Beaumont-Port Arthur, San Antonio, and Longview are repeatedly exposed to high levels of O3-related pollution, and are prone to the corresponding respiratory and cardiovascular health effects. Optimization of the monitoring network proves to be an added advantage for the accurate prediction of exposure levels. PMID:24434594

  12. Geospatial Interpolation and Mapping of Tropospheric Ozone Pollution Using Geostatistics

    PubMed Central

    Kethireddy, Swatantra R.; Tchounwou, Paul B.; Ahmad, Hafiz A.; Yerramilli, Anjaneyulu; Young, John H.

    2014-01-01

    Tropospheric ozone (O3) pollution is a major problem worldwide, including in the United States of America (USA), particularly during the summer months. Ozone oxidative capacity and its impact on human health have attracted the attention of the scientific community. In the USA, sparse spatial observations for O3 may not provide a reliable source of data over a geo-environmental region. Geostatistical Analyst in ArcGIS has the capability to interpolate values in unmonitored geo-spaces of interest. In this study of eastern Texas O3 pollution, hourly episodes for spring and summer 2012 were selectively identified. To visualize the O3 distribution, geostatistical techniques were employed in ArcMap. Using ordinary Kriging, geostatistical layers of O3 for all the studied hours were predicted and mapped at a spatial resolution of 1 kilometer. A decent level of prediction accuracy was achieved and was confirmed from cross-validation results. The mean prediction error was close to 0, the root mean-standardized-prediction error was close to 1, and the root mean square and average standard errors were small. O3 pollution map data can be further used in analysis and modeling studies. Kriging results and O3 decadal trends indicate that the populace in Houston-Sugar Land-Baytown, Dallas-Fort Worth-Arlington, Beaumont-Port Arthur, San Antonio, and Longview are repeatedly exposed to high levels of O3-related pollution, and are prone to the corresponding respiratory and cardiovascular health effects. Optimization of the monitoring network proves to be an added advantage for the accurate prediction of exposure levels. PMID:24434594

  13. The effect of increased carbon dioxide concentrations on stratospheric ozone

    NASA Technical Reports Server (NTRS)

    Boughner, R. E.

    1978-01-01

    Consideration is given to the influence on ozone of an increased carbon dioxide concentration, for which a measurable growth has been observed in the recent past. Increased carbon dioxide can indirectly affect ozone by perturbing atmospheric temperatures, which will alter ozone production, whose rate displays a fairly strong temperature dependence. This paper presents one-dimensional model results for the steady state ozone behavior when the CO2 concentration is twice its ambient level; the results account for coupling between chemistry and temperature. When the CO2 level doubled, the total ozone burden increased in relation to the ambient burden by 1.2-2.5%, depending on the vertical diffusion coefficient used. Above 30 km, ozone concentrations were larger than the ambient values, a maximum increase of 16% being reached at 43 km. In this region the relative variations were insensitive to the choice of diffusion coefficient. Below 30 km, ozone concentrations were smaller than the unperturbed values and were sensitive to the vertical diffusion profile in this region (10-30 km).

  14. Air pollutants degrade floral scents and increase insect foraging times

    NASA Astrophysics Data System (ADS)

    Fuentes, Jose D.; Chamecki, Marcelo; Roulston, T.'ai; Chen, Bicheng; Pratt, Kenneth R.

    2016-09-01

    Flowers emit mixtures of scents that mediate plant-insect interactions such as attracting insect pollinators. Because of their volatile nature, however, floral scents readily react with ozone, nitrate radical, and hydroxyl radical. The result of such reactions is the degradation and the chemical modification of scent plumes downwind of floral sources. Large Eddy Simulations (LES) are developed to investigate dispersion and chemical degradation and modification of floral scents due to reactions with ozone, hydroxyl radical, and nitrate radical within the atmospheric surface layer. Impacts on foraging insects are investigated by utilizing a random walk model to simulate insect search behavior. Results indicate that even moderate air pollutant levels (e.g., ozone mixing ratios greater than 60 parts per billion on a per volume basis, ppbv) substantially degrade floral volatiles and alter the chemical composition of released floral scents. As a result, insect success rates of locating plumes of floral scents were reduced and foraging times increased in polluted air masses due to considerable degradation and changes in the composition of floral scents. Results also indicate that plant-pollinator interactions could be sensitive to changes in floral scent composition, especially if insects are unable to adapt to the modified scentscape. The increase in foraging time could have severe cascading and pernicious impacts on the fitness of foraging insects by reducing the time devoted to other necessary tasks.

  15. Ozone solubilizes elastin and increases its susceptibility to elastase

    SciTech Connect

    Winters, R.S.; Johnson, D.A. )

    1991-03-11

    Ozone is a powerful oxidant gas that may contribute to lung diseases such as emphysema. Because the hallmark of emphysema is destruction of the elastin rich alveoli of the lung, ozonization of elastin was studied in vitro to examine the effects of ozone on elastin structure and susceptibility to proteolysis. Samples of bovine ligamentum nuchae elastin were suspended in 15 ml PBS and bubbled with 13.7 ppm ozone in argon at a flow rate of 3.5 ml/min. Ozone treatment resulted in the solubilization of elastin as evidenced by a visual decrease in turbidity and an increase in the 225 nm absorbance of the supernatant fraction after centrifugation to pellet the insoluble elastin. Insoluble elastin recovered from exposed suspensions was examined for proteolytic susceptibility with human neutrophil elastase (HNE), by incubating 600 {mu}g samples in 1 ml of 50 mM Tris-HCl, 200 mM NaCl, pH 8.0 with 3 {mu}g HNE for various times at room temp. Elastin proteolysis was followed by measuring the 225 nm absorbance of solubilized peptides in supernatant fractions. Ozone exposed elastin, which had been previously ozonized to 5% solubility was found to be approximately twice as susceptible to proteolysis as native elastin.

  16. Impact of ozonation in removing organic micro-pollutants in primary and secondary municipal wastewater: effect of process parameters.

    PubMed

    Mecha, Achisa C; Onyango, Maurice S; Ochieng, Aoyi; Momba, Maggy N B

    2016-01-01

    The study investigates the influence of process parameters on the effectiveness of ozonation in the removal of organic micro-pollutants from wastewater. Primary and secondary municipal wastewater containing phenol was treated. The effect of operating parameters such as initial pH, ozone dosage, and initial contaminant concentration was studied. An increase in contaminant decomposition with pH (3-11) was observed. The contaminant removal efficiencies increased with an increase in ozone dose rate (5.5-36.17 mg L(-1) min(-1)). Furthermore, the ultraviolet absorbance (UV 254 nm) of the wastewater decreased during ozonation indicating the breakdown of complex organic compounds into low molecular weight organics. Along the reaction, the pH of wastewater decreased from 11 to around 8.5 due to the formation of intermediate acidic species. Moreover, the biodegradability of wastewaters, measured as biological and chemical oxygen demand (BOD5/COD), increased from 0.22 to 0.53. High ozone utilization efficiencies of up to 95% were attained thereby increasing the process efficiency; and they were dependent on the ozone dosage and pH of solution. Ozonation of secondary wastewater attained the South African water standards in terms of COD required for wastewater discharge and dissolved organic carbon in drinking water and increased significantly the biodegradability of primary wastewater. PMID:27508381

  17. The characterization of an air pollution episode using satellite total ozone measurements

    NASA Technical Reports Server (NTRS)

    Fishman, Jack; Shipham, Mark C.; Vukovich, Fred M.; Cahoon, Donald R.

    1987-01-01

    A case study is presented which demonstrates that measurements of total ozone from a space-based platform can be used to study a widespread air pollution episode over the southeastern U.S. In particular, the synoptic-scale distribution of surface-level ozone obtained from an independent analysis of ground-based monitoring stations appears to be captured by the synoptic-scale distribution of total ozone, even though about 90 percent of the total ozone is in the stratosphere. Additional analyses of upper air meteorological data, other satellite imagery, and in situ aircraft measurements of ozone likewise support the fact that synoptic-scale variability of tropospheric ozone is primarily responsible for the observed variability in total ozone under certain conditions. The use of the type of analysis discussed in this study may provide an important technique for understanding the global budget of tropospheric ozone.

  18. Ozone depletion, related UVB changes and increased skin cancer incidence

    NASA Astrophysics Data System (ADS)

    Kane, R. P.

    1998-03-01

    Stratospheric ozone at middle latitudes shows a seasonal variation of about +/-20%, a quasi-biennial oscillation of 1-10% range and a long-term variation in which the level was almost steady up to about 1979 and declined thereafter to the present day by about 10%. These variations are expected to be reflected in solar UVB observed at the ground, but in an opposite direction. Thus UVB should have had a long-term increase of about 10-20%, which should cause an increase in skin cancer incidence of about 20-40%. Skin cancer incidence has increased all over the world, e.g. about 90% in USA during 1974-1990. It is popularly believed that this increase in skin cancer incidence is related to the recent ozone depletion. This seems to be incorrect, for two reasons. Firstly, the observed skin cancer increase is too large (90%) compared with the expected value (40%) from ozone depletion. Secondly, cancer does not develop immediately after exposure to solar UVB. The sunburns may occur within hours; but cancer development and detection may take years, even decades. Hence the observed skin cancer increase since 1974 (no data available for earlier periods) must have occurred due to exposure to solar UVB in the 1950s and 1960s, when there was no ozone depletion. Thus, the skin cancer increase must be attributed to harmful solar UVB levels existing even in the 1960s, accentuated later not by ozone depletion (which started only much later, by 1979) but by other causes, such as a longer human life span, better screening, increasing tendencies of sunbathing at beaches, etc., in affluent societies. On the other hand, the recent ozone depletion and the associated UVB increases will certainly take their toll; only that the effects will not be noticed now but years or decades from now. The concern for the future expressed in the Montreal Protocol for reducing ozone depletion by controlling CFC production is certainly justified, especially because increased UVB is harmful to animal and

  19. Increasing surface ozone concentrations in the background atmosphere of Southern China, 1994-2007

    NASA Astrophysics Data System (ADS)

    Wang, T.; Wei, X. L.; Ding, A. J.; Poon, C. N.; Lam, K. S.; Li, Y. S.; Chan, L. Y.; Anson, M.

    2009-08-01

    Tropospheric ozone is of great importance with regard to air quality, atmospheric chemistry, and climate change. In this paper we report the first continuous record of surface ozone in the background atmosphere of South China. The data were obtained from 1994 to 2007 at a coastal site in Hong Kong, which is strongly influenced by the outflow of Asian continental air during the winter and the inflow of maritime air from the subtropics in the summer. Three methods are used to derive the rate of change in ozone. A linear fit to the 14-year record shows that the ozone concentration increased by 0.58 ppbv/yr, whereas comparing means in years 1994-2000 and 2001-2007 gives an increase of 0.87 ppbv/yr for a 7-year period. The ozone changes in air masses from various source regions are also examined. Using local wind and carbon monoxide (CO) data to filter out local influence, we find that ozone increased by 0.94 ppbv/yr from 1994-2000 to 2001-2007 in air masses from Eastern China, with similar changes in the other two continent-influenced air-mass groups, but no statistically significant change in the marine air. An examination of the nitrogen dioxide (NO2) column obtained from GOME and SCIAMACHY reveals an increase in atmospheric NO2 in China's three fastest developing coastal regions, whereas NO2 in other parts of Asia decreased during the same period, and no obvious trend over the main shipping routes in the South China Sea was indicated. Thus the observed increase in background ozone in Hong Kong is most likely due to the increased emissions of NO2 (and possibly volatile organic compounds (VOCs) as well) in the upwind coastal regions of mainland China. The CO data at Hok Tsui showed less definitive changes compared to the satellite NO2 column. The increase in background ozone likely made a strong contribution (81%) to the rate of increase in "total ozone" at an urban site in Hong Kong, suggesting the need to consider distant sources when developing long-term strategies

  20. Maternal Diesel Inhalation Increases Airway Hyperreactivity in Ozone Exposed Offspring

    EPA Science Inventory

    Air pollutant exposure is linked with childhood asthma incidence and exacerbations, and maternal exposure to airborne pollutants during pregnancy increases airway hyperreactivity (ARR) in offspring. To determine if exposure to diesel exhaust during pregnancy worsened postnatal oz...

  1. Significance of pollutant concentration distribution in the response of 'Red Kidney' beans to ozone

    SciTech Connect

    Musselman, R.C.; Oshima, R.J.; Gallavan, R.E.

    1983-01-01

    Bean plants (Phaseolus vulgaris L. cv. red kidney) exposed to ozone with a simulated ambient concentration distribution showed significantly more injury, less growth, and lower yield than those exposed to an equivalent dose of ozone with a uniform concentration distribution. The concentration distribution did not alter the type of biological response of red kidney beans to ozone, an indication that uniform concentration distribution fumigations are appropriate for investigations of mode of action of pollutants on plants. However, this study suggests that research using a uniform concentration distribution of pollutants may underestimate the magnitude of growth and yield responses to ambient pollutants. 26 references, 1 figure, 3 tables.

  2. Are recent Arctic ozone losses caused by increasing greenhouse gases?

    NASA Astrophysics Data System (ADS)

    Rieder, Harald E.; Polvani, Lorenzo M.

    2013-08-01

    has been suggested that the Arctic ozone losses observed in recent years might be a manifestation of climate change due to increasing greenhouse gases. We here offer evidence to the contrary, by focusing on the volume of polar stratospheric clouds (VPSC), a convenient proxy for polar ozone loss whose simplicity allows for easily reproducible results. First, we analyze the time series of VPSC in three reanalysis data sets and find no statistically significant trends in VPSC-nor changes in their probability density functions-over the period 1979-2011. Second, we analyze VPSC in a stratosphere-resolving chemistry-climate model forced uniquely with increasing greenhouse gases following the A1B scenario: here too, we find no significant changes in VPSC over the entire 21st century. Taken together, these results strongly suggest that the sporadic high ozone losses in recent years have not been caused by increasing greenhouse gases.

  3. Are recent Arctic ozone losses caused by increasing greenhouse gases?

    NASA Astrophysics Data System (ADS)

    Rieder, H.; Polvani, L. M.

    2013-12-01

    It has been suggested that the Arctic ozone losses observed in recent years might be a manifestation of climate change due to increasing greenhouse gases. We here offer evidence to the contrary, by focusing on the volume of polar stratospheric clouds (VPSC), a convenient proxy for polar ozone loss whose simplicity allows for easily reproducible results. First, we analyze the time series of VPSC in three reanalysis datasets and find no statistically significant trends in VPSC - nor changes in their probability density functions - over the period 1979-2011. Second, we analyze VPSC in a stratosphere-resolving chemistry-climate model forced uniquely with increasing greenhouse gases following the A1B scenario: here too, we find no significant changes in VPSC over the entire 21st century. Taken together, these results strongly suggest that the sporadic high ozone losses in recent years have not been caused by increasing greenhouse gases.

  4. Ozone Pollution, Transport and Variability: Examples from Satellite and In-Situ Observations

    NASA Technical Reports Server (NTRS)

    Thompson, Anne

    2003-01-01

    Regional and intercontinental transport of ozone has been observed from satellite, aircraft and sounding data. Over the past several years, we have developed new tropospheric ozone retrieval techniques from the TOMS (Total Ozone Mapping Spectrometer) satellite instrument that are of sufficient resolution to follow pollution episodes. The modified-residual technique uses Level 2 total ozone and was used to follow the 1997 fires in the wake of the El-Nino-related fires in southeast Asia and the Indonesian maritime continent. The TOMS-direct method ('TDOT' = TOMS Direct Ozone in the Troposphere) is a newer algorithm that uses TOMS radiances directly to extract tropospheric ozone. Ozonesonde data that have been taken in campaigns (e.g. TRACE-P) and more consistently in the SHADOZ (Southern Hemisphere Additional Ozonesondes) project, reveal layers of pollution traceable with trajectories. Examples will be shown of long-range transport and recirculation over Africa during SAFARI-2000.

  5. Evidence for an increase in the ozone photochemical lifetime in the eastern United States using a regional air quality model

    NASA Astrophysics Data System (ADS)

    Goldberg, Daniel L.; Vinciguerra, Timothy P.; Hosley, Kyle M.; Loughner, Christopher P.; Canty, Timothy P.; Salawitch, Ross J.; Dickerson, Russell R.

    2015-12-01

    Measures to control surface ozone rely on quantifying production attributable to local versus regional (upwind) emissions. Here we simulate the relative contribution of local (i.e., within a particular state) and regional sources of surface ozone in the eastern United States (66-94°W longitude) for July 2002, 2011, and 2018 using the Comprehensive Air-quality Model with Extensions (CAMx). To determine how emissions and chemistry within the domain affect the production, loss, lifetime, and transport of trace gases, we initialize our model with identical boundary conditions in each simulation. We find that the photochemical lifetime of ozone has increased as emissions have decreased. The contribution of ozone from outside the domain (boundary condition ozone, BCO3) to local surface mixing ratios increases in an absolute sense by 1-2 ppbv between 2002 and 2018 due to the longer lifetime of ozone. The photochemical lifetime of ozone lengthens because the two primary gas phase sinks for odd oxygen (Ox ≈ NO2 + O3)—attack by hydroperoxyl radicals (HO2) on ozone and formation of nitrate—weaken with decreasing pollutant emissions. The relative role of BCO3 will also increase. For example, BCO3 represents 34.5%, 38.8%, and 43.6% of surface ozone in the Baltimore, MD, region during July 2002, 2011, and 2018 means, respectively. This unintended consequence of air quality regulation impacts attainment of the National Ambient Air Quality Standard for surface ozone because the spatial and temporal scales of photochemical smog increase; the influence of pollutants transported between states and into the eastern U.S. will likely play a greater role in the future.

  6. [Direct removal of typical endocrine disruptors from heavily polluted river water by ozonation].

    PubMed

    Wang, Ling-yun; Zhang, Xi-hui; Song, Qian-wu

    2011-05-01

    Ozone was applied to study the removal of conventional pollutants and typical endocrine disrupters (EDs), including bisphenol A (BPA), 4-n-nonylphenol(NP), 4-tert-octylphenol (OP), estrone (E1), estradiol (E2), 17alpha-estradiol (17alpha-E2), estriol (E3) and ethinylestradiol (EE2) , from heavily polluted river water. The O3 dose was designed at 28 mg x L(-1) for 30 min and 42 mg x L(-1) for 80 min. Pollutants in terms of chemical oxygen demand (COD) and ammonia nitrogen can not be removed efficiently, ranged from 3% to 7%. The colority of the black water was quickly reduced in the first 5 minutes, while the turbidities increased first and then decreased gradually. It showed that three EDs with relatively high level including BPA, OP and EE2 could be removed efficiently in thirty minutes. Concentrations of E3 increased first then decreased to be lower than the detection limit. Removal efficiencies of E1 and E2 were 41%-70% and 62%-85% respectively. Extension of ozone exposure time can not improve the efficiency of EDs removal any more. PMID:21780591

  7. Membrane contactor/separator for an advanced ozone membrane reactor for treatment of recalcitrant organic pollutants in water

    SciTech Connect

    Chan, Wai Kit; Joueet, Justine; Heng, Samuel; Yeung, King Lun; Schrotter, Jean-Christophe

    2012-05-15

    An advanced ozone membrane reactor that synergistically combines membrane distributor for ozone gas, membrane contactor for pollutant adsorption and reaction, and membrane separator for clean water production is described. The membrane reactor represents an order of magnitude improvement over traditional semibatch reactor design and is capable of complete conversion of recalcitrant endocrine disrupting compounds (EDCs) in water at less than three minutes residence time. Coating the membrane contactor with alumina and hydrotalcite (Mg/Al=3) adsorbs and traps the organics in the reaction zone resulting in 30% increase of total organic carbon (TOC) removal. Large surface area coating that diffuses surface charges from adsorbed polar organic molecules is preferred as it reduces membrane polarization that is detrimental to separation. - Graphical abstract: Advanced ozone membrane reactor synergistically combines membrane distributor for ozone, membrane contactor for sorption and reaction and membrane separator for clean water production to achieve an order of magnitude enhancement in treatment performance compared to traditional ozone reactor. Highlights: Black-Right-Pointing-Pointer Novel reactor using membranes for ozone distributor, reaction contactor and water separator. Black-Right-Pointing-Pointer Designed to achieve an order of magnitude enhancement over traditional reactor. Black-Right-Pointing-Pointer Al{sub 2}O{sub 3} and hydrotalcite coatings capture and trap pollutants giving additional 30% TOC removal. Black-Right-Pointing-Pointer High surface area coating prevents polarization and improves membrane separation and life.

  8. Brown Cloud Pollution and Smog Ozone Transport 6,000 km to the Tropical Atlantic: Mechanism and Sensing

    NASA Technical Reports Server (NTRS)

    Chatfield, Robert B.; Thompson, Anne M.; Guan, Hong; Witte, Jacquelyn C.; Hudson, Robert D.

    2004-01-01

    We have found repeated illustrations in the maps of Total Tropospheric Ozone (TTO) of apparent transport of ozone from the Indian Ocean to the Equatorial Atlantic Ocean. Most interesting are examples that coincide with the INDOEX observations of late northern winter. Three soundings with the SHADOZ (Southern Hemisphere Additional Ozonesondes) network help confirm and quantify degree of influence of pollution, lightning, and stratospheric sources, suggesting that perhaps 40% of increased Atlantic ozone could be Asian pollution during periods of maximum identified in the TTO maps. This analysis also indicates a mechanism for such extended transport. We outline recurrent periods of apparent ozone transport from Indian to Atlantic Ocean regions outside the late-winter period. Clearly brown-cloud aerosol affects tropospheric ozone, both limiting its chemical production and also potentially obscuring its detection by the TOMS instrument. Introductory statistical studies will be presented, evaluating the role of tropopause meteorology, aerosol, and other factors in the modifying the relationship between true tropospheric ozone measured by SHADOZ and the TTO product, with suggestions for extending the product.

  9. Springtime daily variations in lower-tropospheric ozone over east Asia: the role of cyclonic activity and pollution as observed from space with IASI

    NASA Astrophysics Data System (ADS)

    Dufour, G.; Eremenko, M.; Cuesta, J.; Doche, C.; Foret, G.; Beekmann, M.; Cheiney, A.; Wang, Y.; Cai, Z.; Liu, Y.; Takigawa, M.; Kanaya, Y.; Flaud, J.-M.

    2015-09-01

    large polluted regions significantly contributes to the ozone enhancements observed in the lower troposphere via IASI. When low-pressure systems circulate over the NCP, stratospheric and pollution sources play a concomitant role in the ozone enhancement. IASI's 3-D observational capability allows the areas in which each source dominates to be determined. Moreover, the studied cut-off low system has enough potential convective capacity to uplift pollutants (ozone and CO) and to transport them to Japan. The increase in the enhancement ratio of ozone to CO from 0.16 on 12 May over the North China Plain to 0.28 over the Sea of Japan on 14 May indicates photochemical processing during the plume transport.

  10. Increasing surface ozone concentrations in the background atmosphere of southern China, 1994-2007

    NASA Astrophysics Data System (ADS)

    Wang, T.; Wei, X. L.; Ding, A. J.; Poon, C. N.; Lam, K. S.; Li, Y. S.; Chan, L. Y.; Anson, M.

    2009-04-01

    Tropospheric ozone is of great importance with regard to air quality, atmospheric chemistry, and climate change. In this paper we report the first continuous record of surface ozone in the background atmosphere of South China. The data were obtained from 1994 to 2007 at a coastal site in Hong Kong, which is strongly influenced by the outflow of Asian continental air during the winter and the inflow of maritime air from the subtropics in the summer. Overall, the ozone concentration increased by an averaged rate of 0.55 ppbv/yr, with a larger increase in autumn (0.68 ppbv/yr). We also examine the trend in air masses from various source regions in Asia. Using local wind and concurrently measured carbon monoxide (CO) data to filter out local emissions, the mean ozone in air masses from eastern China, using the pooled averaging method, increased by 0.64 ppbv/yr, while ozone levels in other air-mass groups showed a positive trend (0.29-0.67 ppbv/yr) but with lower levels of statistical significance. An examination of the nitrogen dioxide (NO2) column concentration data obtained from GOME and SCIAMACHY reveals an increase in atmospheric NO2 in the three fastest developing coastal regions of China, whereas NO2 in other parts of Asia decreased during the same period. It is believed that the observed increase in background ozone in Hong Kong is primarily due to the increased emissions of NO2 (and possibly volatile organic compounds (VOCs) as well) in the upwind coastal regions of mainland China, which is supported by the observed positive CO trend (5.23 ppbv/yr) at the site. The increase in background ozone contributed two thirds of the annual increase in ''total ozone'' in the downwind urban areas of Hong Kong, suggesting the need to consider distant sources when developing long-term strategies to mitigate local ozone pollution, although short-term strategies should be aimed at sources in Hong Kong and the adjacent Pearl River Delta.

  11. Interactions of nitrogenous air pollutants and ozone with California forests

    SciTech Connect

    Bytnerowicz, A.

    1994-12-31

    Ozone has been blamed for the decline of ponderosa and Jeffrey pines in Sierra Nevada and the San Bernardino Mountains. However, also other components of photochemical smog, and especially various nitrogenous compounds, play an important role in the observed changes in California forests. Gaseous nitric acid and peroxyacetyl nitrate may directly effects plants (development of foliar injury) or may predispose foliage to the deleterious effects of acidic wet deposition, elevated levels of the UV-B radiation or other stresses. In addition, the long-term deposition of nitrate and ammonium in wet precipitation, dry deposition of gaseous nitric acid, ammonia, nitrogen oxides, particulate nitrate and ammonium can significantly change nitrogen status of forests in California. Initially, changes in phenology of plants, higher rates of physiological processes, changed plant chemical composition, altered biochemical processes and improved growth can be observed. These changes may lead to increased susceptibility of plants to various abiotic and biotic stresses. After long periods of increased nitrogen deposition, deficiencies of calcium, magnesium, potassium, phosphorus, and other nutrients may develop. As a consequence of the elevated N deposition interacting with ozone phytotoxicity, perturbations in normal growth of plants and changes in species composition in forest stands may be taking place. Oversaturating forests with nitrogen may also result in increased nitrate content in ground water of the affected watersheds.

  12. Effects of trans-Eurasian transport of air pollutants on surface ozone concentrations over Western China

    NASA Astrophysics Data System (ADS)

    Li, Xiaoyuan; Liu, Junfeng; Mauzerall, Denise L.; Emmons, Louisa K.; Walters, Stacy; Horowitz, Larry W.; Tao, Shu

    2014-11-01

    Due to a lack of industrialization in Western China, surface air there was, until recently, believed to be relatively unpolluted. However, recent measurements and modeling studies have found high levels of ozone (O3) there. Based on the state-of-the-science global chemical transport model MOZART-4, we identify the origin, pathway, and mechanism of trans-Eurasian transport of air pollutants to Western China in 2000. MOZART-4 generally simulates well the observed surface O3 over inland areas of China. Simulations find surface ozone concentrations over Western China on average to be about 10 ppbv higher than Eastern China. Using sensitivity studies, we find that anthropogenic emissions from all Eurasian regions except China contribute 10-15 ppbv surface O3 over Western China, superimposed upon a 35-40 ppbv natural background. Transport from European anthropogenic sources to Northwestern China results in 2-6 ppbv O3 enhancements in spring and summer. Indian anthropogenic sources strongly influence O3 over the Tibetan Plateau during the summer monsoon. Transport of O3 originating from emissions in the Middle East occasionally reach Western China and increase surface ozone there by about 1-4 ppbv. These influences are of similar magnitude as trans-Pacific and transatlantic transport of O3 and its precursors, indicating the significance of trans-Eurasian ozone transport in hemispheric transport of air pollution. Our study further indicates that mitigation of anthropogenic emissions from Europe, the Indian subcontinent, and the Middle East could benefit public health and agricultural productivity in Western China.

  13. Effects of trans-Eurasian transport of anthropogenic pollutants on surface ozone concentrations over China

    NASA Astrophysics Data System (ADS)

    Liu, J.; Li, X.; Mauzerall, D. L.; Emmons, L. K.; Horowitz, L. W.; Guo, Y.; Tao, S.

    2015-12-01

    Due to a lack of industrialization in Western China, surface air there was, until recently, believed to be relatively unpolluted. However, recent measurements and modeling studies have found high levels of ozone (O3) there. Based on the state-of-the-science global chemical transport model MOZART-4, we identify the origin, pathway, and mechanism of trans-Eurasian transport of air pollutants to Western China in 2000. MOZART-4 generally simulates well the observed surface O3 over inland areas of China. Simulations find surface ozone concentrations over Western China on average to be about 10 ppbv higher than Eastern China. Using sensitivity studies as well as a fully-tagged approach, we find that anthropogenic emissions from all Eurasian regions except China contribute 10-15 ppbv surface O3 over Western China, superimposed upon a 35-40 ppbv natural background. Transport from European anthropogenic sources to Northwestern China results in 2-6 ppbv O3 enhancements in spring and summer. Indian anthropogenic sources strongly influence O3 over the Tibetan Plateau during the summer monsoon. Transport of O3 originating from emissions in the Middle East occasionally reach Western China and increase surface ozone there by about 1-4 ppbv. These influences are of similar magnitude as trans-Pacific and transatlantic transport of O3 and its precursors, indicating the significance of trans-Eurasian ozone transport in hemispheric transport of air pollution. Our study further indicates that mitigation of anthropogenic emissions from Europe, the Indian subcontinent, and the Middle East could benefit public health and agricultural productivity in Western China.

  14. Process Analysis of Typhoon Related Ozone Pollution over the Pearl River Delta during the PRIDE-PRD2006

    NASA Astrophysics Data System (ADS)

    Li, Y.; Wang, X.; Zhang, Y.

    2014-12-01

    There were two typhoon processes during Campaign PRIDE-PRD2006 in July 2006 and serious ozone pollution episodes occurred before the landing of the typhoons. Chemical transport model CMAQ was employed in this work to simulate the ozone pollution episode related by the typhoon KAEMI. According to the meteorological conditions, the pollution episode could be divided into three phases with the movement of the typhoon, which were (1) far away from the continent; (2) coming close to the continent; (3) before landing. Process analysis was applied to get the contributions of physical and chemical processes for the ozone. It revealed that transport process was dominant during this pollution episode, and the influence of chemical process increased in the second phase. Three typical regions, northern rural area, urban area and Hong Kong area, were selected to study the contribution of each chemical and physical process. In the first phase, the primary process in northern rural area and the urban area was vertical diffusion, accounting for 47% and 46% respectively. In the second phase, the primary process in northern rural area and the urban area was chemical process, accounting for 33% and 31% respectively. In the third phase, the region of high concentration ozone moved southward. For Hong Kong area, the western inflow was prominent as 40%. Sensitivity study showed that urban areas were VOCs-limited regime with decreased ozone concentration when reducing the emission of VOCs. On the contrary, the ozone concentration in downwind rural areas decreased with the reduction of NOx, and the reason may be the decrement of the accumulated precursors.

  15. Surface Ozone over California: The Influence of Pollution Inflow

    NASA Astrophysics Data System (ADS)

    Pfister, Gabriele; Edwards, David; Emmons, Louisa

    2010-05-01

    We present results from a study that quantifies the impacts of pollution inflow on surface ozone. The focus of the analysis is on the California region and on summer 2008, when the ARCTAS-CARB aircraft campaign, a joint program between NASA and the California Air Resources Board, took place. The study integrates the global chemistry transport model MOZART-V4 with the regional WRF-Chem model. Both models employ the same chemistry scheme and emissions allowing for a high level of synergy across model scales. The global model provides time and space varying boundary conditions for the regional simulations. Aircraft measurements from the field campaign will be used together with in-situ observations from ground (U.S. EPA Air Quality Monitoring System) as well as satellite retrievals (e.g. Aura/OMI NO2 and HCHO, Aura/TES CO and O3, Terra/MOPITT CO, IASI CO) for evaluating the model simulations and supporting the analysis.

  16. Vertical distribution of ozone and nitrogenous pollutants in an air quality class I area, the San Gorgonio wilderness, southern California.

    PubMed

    Alonso, Rocío; Bytnerowicz, Andrzej; Arbaugh, Michael

    2002-01-01

    Information about spatial and temporal distribution of air pollutants is essential for better understanding of environmental stresses affecting forests and estimation of potential risks associated with air pollutants. Ozone and nitrogenous air pollutants were monitored along an elevation gradient in the Class I San Gorgonio Wilderness area (San Bernardino Mountains, California, U.S.) during the summer of 2000 (mid-June to mid-October). Passive samplers were exposed for 2-week periods at six sampling sites located at 300 m intervals ranging from 1200 to 2700 m elevation. Elevated concentrations of ozone were found in this area with summer 24-h hourly means ranging from 53 to 59 ppb. The highest ozone concentrations were detected in the period July 25-August 8, reaching values of 64 to 72 ppb expressed as 2-week mean. Passive-sampler ozone data did not show a clear relationship with elevation, although during the periods with higher ozone levels, ozone concentrations were higher at those sites below 2000 m than at sites located above that elevation. All nitrogenous pollutants studied showed a consistent decrease of concentrations with elevation. Nitrogen dioxide (NO2) levels were low, decreasing with increasing elevation from 6.4 to 1.5 ppb summer means. Nitric oxide (NO) concentrations were around 1 to 2 ppb, which is within the range of the detection levels of the devices used. Nitric acid (HNO3) vapor concentrations were lower at higher elevations (summer means 1.9-2.5 microg m(-3) than at lower elevations (summer means 4.3-5.1 microg m(-3). Summer concentrations of ammonia (NH3) were slightly higher than nitric acid ranging from 6 microg m(-3) at the lowest site to 2.5 microg m(-3) registered at the highest elevation. Since complex interactions between ozone and nitrogenous air pollutants have already been described for forests, simultaneous information about the distribution of these pollutants is needed. This is particularly important in mountain terrain where

  17. Climate and Ozone Response to Increased Stratospheric Water Vapor

    NASA Technical Reports Server (NTRS)

    Shindell, Drew T.

    2001-01-01

    Stratospheric water vapor abundance affects ozone, surface climate, and stratospheric temperatures. From 30-50 km altitude, temperatures show global decreases of 3-6 K over recent decades. These may be a proxy for water vapor increases, as the Goddard Institute for Space Studies (GISS) climate model reproduces these trends only when stratospheric water vapor is allowed to increase. Observations suggest that stratospheric water vapor is indeed increasing, however, measurements are extremely limited in either spatial coverage or duration. The model results suggest that the observed changes may be part of a global, long-term trend. Furthermore, the required water vapor change is too large to be accounted for by increased production within the stratosphere, suggesting that ongoing climate change may be altering tropospheric input. The calculated stratospheric water vapor increase contributes an additional approximately equals 24% (approximately equals 0.2 W/m(exp 2)) to the global warming from well-mixed greenhouse gases over the past two decades. Observed ozone depletion is also better reproduced when destruction due to increased water vapor is included. If the trend continues, it could increase future global warming and impede stratospheric ozone recovery.

  18. Plant volatile organic compounds (VOCs) in ozone (O3) polluted atmospheres: the ecological effects.

    PubMed

    Pinto, Delia M; Blande, James D; Souza, Silvia R; Nerg, Anne-Marja; Holopainen, Jarmo K

    2010-01-01

    Tropospheric ozone (O3) is an important secondary air pollutant formed as a result of photochemical reactions between primary pollutants, such as nitrogen oxides (NOx), and volatile organic compounds (VOCs). O3 concentrations in the lower atmosphere (troposphere) are predicted to continue increasing as a result of anthropogenic activity, which will impact strongly on wild and cultivated plants. O3 affects photosynthesis and induces the development of visible foliar injuries, which are the result of genetically controlled programmed cell death. It also activates many plant defense responses, including the emission of phytogenic VOCs. Plant emitted VOCs play a role in many eco-physiological functions. Besides protecting the plant from abiotic stresses (high temperatures and oxidative stress) and biotic stressors (competing plants, micro- and macroorganisms), they drive multitrophic interactions between plants, herbivores and their natural enemies e.g., predators and parasitoids as well as interactions between plants (plant-to-plant communication). In addition, VOCs have an important role in atmospheric chemistry. They are O3 precursors, but at the same time are readily oxidized by O3, thus resulting in a series of new compounds that include secondary organic aerosols (SOAs). Here, we review the effects of O3 on plants and their VOC emissions. We also review the state of current knowledge on the effects of ozone on ecological interactions based on VOC signaling, and propose further research directions. PMID:20084432

  19. Impacts of interstate transport of pollutants on high ozone events over the Mid-Atlantic United States

    NASA Astrophysics Data System (ADS)

    Liao, Kuo-Jen; Hou, Xiangting; Baker, Debra Ratterman

    2014-02-01

    The impacts of interstate transport of anthropogenic nitrogen oxides (NOx) and volatile organic compound (VOC) emissions on peak ozone formation in four nonattainment areas (i.e., Baltimore, Philadelphia-Wilmington-Atlantic City, Pittsburgh-Beaver Valley and Washington, DC) in the Mid-Atlantic U.S. were quantified in this study. Regional air quality and sensitivities of ground-level ozone to emissions from four regions in the eastern U.S. were simulated for three summer months (June, July and August) in 2007 using the U.S. EPA's Community Multiscale Air Quality model with the decoupled direct method 3D. The emissions inventory used in this study was the 2007 Mid-Atlantic Regional Air Management Association Level 2 inventory, developed for State Implementation Plan screening modeling for the Ozone Transport Commission region. The modeling results show that responses of peak ozone levels at specific locations to emissions from EGU (i.e., electric generating unit) and non-EGU sources could be different. Therefore, emissions from EGU and non-EGU sources should be considered as two different control categories when developing regional air pollution mitigation strategies. Based on the emission inventories used in this study, reductions in anthropogenic NOx emissions (including those from EGU and non-EGU sources) from the Great Lake region as well as northeastern and southeastern U.S. would be effective for decreasing area-mean peak ozone concentrations during the summer of 2007 in the Mid-Atlantic ozone air quality nonattainment areas. The results also show that reductions in anthropogenic VOC emissions from the northeastern U.S. would also be effective for decreasing area-mean peak ozone concentrations over the Mid-Atlantic U.S. In some cases, reductions in anthropogenic NOx emissions from the Great Lake and northeastern U.S. could slightly increase area-mean peak ozone concentrations at some ozone monitors in the Pittsburgh-Beaver Valley and Washington, DC areas

  20. Ozone pollution regimes modeled for a summer season in California’s San Joaquin Valley: A cluster analysis

    NASA Astrophysics Data System (ADS)

    Jin, Ling; Harley, Robert A.; Brown, Nancy J.

    2011-09-01

    This study demonstrates an application of cluster analysis to model simulation data for California's San Joaquin Valley (SJV) for the purpose of identifying meteorologically representative pollution regimes. Principal component analysis is employed to facilitate exploring and visualizing temporal variations in highly resolved gridded model data. Six regimes are clustered according to the spatial distribution of SJV 8 h ozone maxima. Meteorological effects (temperature and winds) are shown to explain the observed ozone spatial distributions in the SJV, and their relationship to those in upwind San Francisco Bay Area air basin (SFB) under certain prevailing wind flow patterns. In general, average ozone levels in the SJV increase with temperature, while their spatial distributions depend on flow regimes, especially the strength of sea breezes and upslope flows. More ventilated flow regimes, associated with stronger sea breeze and upslope flows, cause eastward transport of pollutants, increasing ozone in the southeastern SJV and decreasing it in the northwest SJV. The opposite occurs during the most stagnant conditions associated with the weakest sea breeze and upslope flows. The two most prominent relationships between the SFB and SJV were found to be associated with the most ventilated and the most stagnant conditions, respectively, indicating a strong inter-basin transport (or the lack thereof) event. Spatial representativeness of existing measurement sites and the confounding influences of emission changes on clustering results are also investigated. Existing measurement sites are able to capture ozone spatial patterns in the SFB and Sacramento Valley (SV), whereas those along the western side of the SJV are under-represented. Differences in day-of-week emissions produce minor effects on spatial ozone distributions and the clusters are largely stable under these changes.

  1. OZONE BYPRODUCT FORMATION

    EPA Science Inventory

    The use of ozone for water treatment has been increasing as ozone has great potential for degrading water pollutants and inactivating viruses, Giardia cysts, and Cryptosporidium oocysts. Although it appears that ozone generates less undesirable disinfection by-products (DBPs) th...

  2. Lusaka, Zambia during SAFARI-2000: A Collection Point for Ozone Pollution

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Witte, Jacquelyn C.; Freiman, M. Tal; Phahlane, N. Agnes; Coetzee, G. J. R.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    In August and September, throughout south central Africa, seasonal clearing of dry vegetation and other fire-related activities lead to intense smoke haze and ozone formation. The first ozone soundings in the heart of the southern African burning region were taken at Lusaka, Zambia (155 deg S, 28 deg E) in early September 2000. Over 90 ppbv ozone was recorded at the surface (1.3 km elevation) and column tropospheric ozone was greater than 50 DU during a stagnant period. These values are much higher than concurrent measurements over Nairobi (1 deg S, 38 deg E) and Irene (25 deg S, 28 deg E, near Pretoria). The heaviest ozone pollution layer (800-500 hPa) over Lusaka is due to recirculated trans-boundary ozone. Starting out over Zambia, Angola, and Namibia, ozone heads east to the Indian Ocean, before turning back over Mozambique and Zimbabwe, heading toward Lusaka. Thus, Lusaka is a collection point for pollution, consistent with a picture of absolutely stable layers recirculating in a gyre over southern Africa.

  3. Threat to future global food security from climate change and ozone air pollution

    NASA Astrophysics Data System (ADS)

    Tai, Amos P. K.; Martin, Maria Val; Heald, Colette L.

    2014-09-01

    Future food production is highly vulnerable to both climate change and air pollution with implications for global food security. Climate change adaptation and ozone regulation have been identified as important strategies to safeguard food production, but little is known about how climate and ozone pollution interact to affect agriculture, nor the relative effectiveness of these two strategies for different crops and regions. Here we present an integrated analysis of the individual and combined effects of 2000-2050 climate change and ozone trends on the production of four major crops (wheat, rice, maize and soybean) worldwide based on historical observations and model projections, specifically accounting for ozone-temperature co-variation. The projections exclude the effect of rising CO2, which has complex and potentially offsetting impacts on global food supply. We show that warming reduces global crop production by >10% by 2050 with a potential to substantially worsen global malnutrition in all scenarios considered. Ozone trends either exacerbate or offset a substantial fraction of climate impacts depending on the scenario, suggesting the importance of air quality management in agricultural planning. Furthermore, we find that depending on region some crops are primarily sensitive to either ozone (for example, wheat) or heat (for example, maize) alone, providing a measure of relative benefits of climate adaptation versus ozone regulation for food security in different regions.

  4. Growth of continental-scale metro-agro-plexes, regional ozone pollution, and world food production

    SciTech Connect

    Chameides, W.L.; Kasibhatla, P.S. ); Yienger, J.; Levy, H. II )

    1994-04-01

    Three regions of the northern mid-latitudes, the continental-scale metro-agro-plexes, presently dominate global industrial and agricultural productivity. Although these regions cover only 23 percent of the Earth's continents, they account for most of the world's commercial energy consumption, fertilizer use, food-crop production, and food exports. They also account for more than half of the world's atmospheric nitrogen oxide (NO[sub x]) emissions and, as a result, are prone to ground-level ozone (O[sub 3]) pollution during the summer months. On the basis of a global simulation of atmospheric reactive nitrogen compounds, it is estimated that about 10 to 35 percent of the world's grain production may occur in parts of these regions where ozone pollution may reduce crop yields. Exposure to yield-reducing ozone pollution may triple by 2025 if rising anthropogenic NO[sub x] emissions are not abated.

  5. Growth of Continental-Scale Metro-Agro-Plexes, Regional Ozone Pollution, and World Food Production

    NASA Astrophysics Data System (ADS)

    Chameides, W. L.; Kasibhatla, P. S.; Yienger, J.; Levy, H., II

    1994-04-01

    Three regions of the northern mid-latitudes, the continental-scale metro-agro-plexes, presently dominate global industrial and agricultural productivity. Although these regions cover only 23 percent of the Earth's continents, they account for most of the world's commercial energy consumption, fertilizer use, food-crop production, and food exports. They also account for more than half of the world's atmospheric nitrogen oxide (NO_x) emissions and, as a result, are prone to ground-level ozone (O_3) pollution during the summer months. On the basis of a global simulation of atmospheric reactive nitrogen compounds, it is estimated that about 10 to 35 percent of the world's grain production may occur in parts of these regions where ozone pollution may reduce crop yields. Exposure to yield-reducing ozone pollution may triple by 2025 if rising anthropogenic NO_x emissions are not abated.

  6. Environmental Pollutant Ozone Causes Damage to Lung Surfactant Protein B (SP-B).

    PubMed

    Hemming, Joanna M; Hughes, Brian R; Rennie, Adrian R; Tomas, Salvador; Campbell, Richard A; Hughes, Arwel V; Arnold, Thomas; Botchway, Stanley W; Thompson, Katherine C

    2015-08-25

    Lung surfactant protein B (SP-B) is an essential protein found in the surfactant fluid at the air-water interface of the lung. Exposure to the air pollutant ozone could potentially damage SP-B and lead to respiratory distress. We have studied two peptides, one consisting of the N-terminus of SP-B [SP-B(1-25)] and the other a construct of the N- and C-termini of SP-B [SP-B(1-25,63-78)], called SMB. Exposure to dilute levels of ozone (~2 ppm) of monolayers of each peptide at the air-water interface leads to a rapid reaction, which is evident from an increase in the surface tension. Fluorescence experiments revealed that this increase in surface tension is accompanied by a loss of fluorescence from the tryptophan residue at the interface. Neutron and X-ray reflectivity experiments show that, in contrast to suggestions in the literature, the peptides are not solubilized upon oxidation but rather remain at the interface with little change in their hydration. Analysis of the product material reveals that no cleavage of the peptides occurs, but a more hydrophobic product is slowly formed together with an increased level of oligomerization. We attributed this to partial unfolding of the peptides. Experiments conducted in the presence of phospholipids reveal that the presence of the lipids does not prevent oxidation of the peptides. Our results strongly suggest that exposure to low levels of ozone gas will damage SP-B, leading to a change in its structure. The implication is that the oxidized protein will be impaired in its ability to interact at the air-water interface with negatively charged phosphoglycerol lipids, thus compromising what is thought to be its main biological function. PMID:26270023

  7. Environmental Pollutant Ozone Causes Damage to Lung Surfactant Protein B (SP-B)

    PubMed Central

    2015-01-01

    Lung surfactant protein B (SP-B) is an essential protein found in the surfactant fluid at the air–water interface of the lung. Exposure to the air pollutant ozone could potentially damage SP-B and lead to respiratory distress. We have studied two peptides, one consisting of the N-terminus of SP-B [SP-B(1–25)] and the other a construct of the N- and C-termini of SP-B [SP-B(1–25,63–78)], called SMB. Exposure to dilute levels of ozone (∼2 ppm) of monolayers of each peptide at the air–water interface leads to a rapid reaction, which is evident from an increase in the surface tension. Fluorescence experiments revealed that this increase in surface tension is accompanied by a loss of fluorescence from the tryptophan residue at the interface. Neutron and X-ray reflectivity experiments show that, in contrast to suggestions in the literature, the peptides are not solubilized upon oxidation but rather remain at the interface with little change in their hydration. Analysis of the product material reveals that no cleavage of the peptides occurs, but a more hydrophobic product is slowly formed together with an increased level of oligomerization. We attributed this to partial unfolding of the peptides. Experiments conducted in the presence of phospholipids reveal that the presence of the lipids does not prevent oxidation of the peptides. Our results strongly suggest that exposure to low levels of ozone gas will damage SP-B, leading to a change in its structure. The implication is that the oxidized protein will be impaired in its ability to interact at the air–water interface with negatively charged phosphoglycerol lipids, thus compromising what is thought to be its main biological function. PMID:26270023

  8. The Influence of European Pollution on Ozone in the Near East and Northern Africa

    NASA Technical Reports Server (NTRS)

    Duncan, B. N.; West, J. J.; Yoshida, Y.; Fiore, A. M.; Ziemke, J. R.

    2008-01-01

    We present a modeling study of the long-range transport of pollution from Europe, showing that European emissions regularly elevate surface ozone by as much as 20 ppbv in summer in northern Africa and the Near East. European emissions cause 50-150 additional violations per year (i.e. above those that would occur without European pollution) of the European health standard for ozone (8-h average greater than 120 micrograms per cubic meters or approximately 60 ppbv) in northern Africa and the Near East. We estimate that European ozone pollution is responsible for 50 000 premature mortalities globally each year, of which the majority occurs outside of Europe itself, including 37% (19 000) in northern Africa and the Near East. Much of the pollution from Europe is exported southward at low altitudes in summer to the Mediterranean Sea, northern Africa and the Near East, regions with favorable photochemical environments for ozone production. Our results suggest that assessments of the human health benefits of reducing ozone precursor emissions in Europe should include effects outside of Europe, and that comprehensive planning to improve air quality in northern Africa and the Near East likely needs to address European emissions.

  9. Global health benefits of mitigating ozone pollution with methane emission controls

    NASA Astrophysics Data System (ADS)

    West, J. Jason; Fiore, Arlene M.; Horowitz, Larry W.; Mauzerall, Denise L.

    2006-03-01

    Methane (CH4) contributes to the growing global background concentration of tropospheric ozone (O3), an air pollutant associated with premature mortality. Methane and ozone are also important greenhouse gases. Reducing methane emissions therefore decreases surface ozone everywhere while slowing climate warming, but although methane mitigation has been considered to address climate change, it has not for air quality. Here we show that global decreases in surface ozone concentrations, due to methane mitigation, result in substantial and widespread decreases in premature human mortality. Reducing global anthropogenic methane emissions by 20% beginning in 2010 would decrease the average daily maximum 8-h surface ozone by 1 part per billion by volume globally. By using epidemiologic ozone-mortality relationships, this ozone reduction is estimated to prevent 30,000 premature all-cause mortalities globally in 2030, and 370,000 between 2010 and 2030. If only cardiovascular and respiratory mortalities are considered, 17,000 global mortalities can be avoided in 2030. The marginal cost-effectiveness of this 20% methane reduction is estimated to be 420,000 per avoided mortality. If avoided mortalities are valued at 1 million each, the benefit is 240 per tonne of CH4 (12 per tonne of CO2 equivalent), which exceeds the marginal cost of the methane reduction. These estimated air pollution ancillary benefits of climate-motivated methane emission reductions are comparable with those estimated previously for CO2. Methane mitigation offers a unique opportunity to improve air quality globally and can be a cost-effective component of international ozone management, bringing multiple benefits for air quality, public health, agriculture, climate, and energy. human health | mortality | tropospheric ozone | air quality


  10. Reduction in soybean seed yields by ozone air pollution

    SciTech Connect

    Heggestad, H.E.

    1988-08-01

    The National Crop Loss Assessment Network (NCLAN) determined that soybeans were more sensitive to ozone than other major agricultural crops, including corn, wheat, and cotton. The estimated production losses for soybeans at ambient levels of ozone ranged from 7.9 to 18.6 percent compared to 0.6 to 3.1 percent for corn. The research on soybeans was conducted in Illinois, North Carolina, Maryland, and New York. The loss estimates were obtained from field experiments using open-top chambers with charcoal-filtered (CF) air, nonfiltered (NF) air, and NF air with the addition of two or more increments of ozone. However, New Jersey scientists in two recent reports question the validity of the NCLAN results since the utilization of a different method to assess the impact of exposure of ambient O/sub 3/ on soybeans failed to show significant yield losses.

  11. Increased CCL24/eotaxin-2 with postnatal ozone exposure in allergen-sensitized infant monkeys is not associated with recruitment of eosinophils to airway mucosa

    SciTech Connect

    Chou, Debbie L.; Gerriets, Joan E.; Schelegle, Edward S.; Hyde, Dallas M.; Miller, Lisa A.

    2011-12-15

    Epidemiology supports a causal link between air pollutant exposure and childhood asthma, but the mechanisms are unknown. We have previously reported that ozone exposure can alter the anatomic distribution of CD25+ lymphocytes in airways of allergen-sensitized infant rhesus monkeys. Here, we hypothesized that ozone may also affect eosinophil trafficking to allergen-sensitized infant airways. To test this hypothesis, we measured blood, lavage, and airway mucosa eosinophils in 3-month old monkeys following cyclical ozone and house dust mite (HDM) aerosol exposures. We also determined if eotaxin family members (CCL11, CCL24, CCL26) are associated with eosinophil location in response to exposures. In lavage, eosinophil numbers increased in animals exposed to ozone and/or HDM. Ozone + HDM animals showed significantly increased CCL24 and CCL26 protein in lavage, but the concentration of CCL11, CCL24, and CCL26 was independent of eosinophil number for all exposure groups. In airway mucosa, eosinophils increased with exposure to HDM alone; comparatively, ozone and ozone + HDM resulted in reduced eosinophils. CCL26 mRNA and immunofluorescence staining increased in airway mucosa of HDM alone animals and correlated with eosinophil volume. In ozone + HDM animal groups, CCL24 mRNA and immunofluorescence increased along with CCR3 mRNA, but did not correlate with airway mucosa eosinophils. Cumulatively, our data indicate that ozone exposure results in a profile of airway eosinophil migration that is distinct from HDM mediated pathways. CCL24 was found to be induced only by combined ozone and HDM exposure, however expression was not associated with the presence of eosinophils within the airway mucosa. -- Highlights: Black-Right-Pointing-Pointer Ozone can modulate the localization of eosinophils in infant allergic airways. Black-Right-Pointing-Pointer Expression of eotaxins within the lung is affected by ozone and allergen exposure. Black-Right-Pointing-Pointer CCL24 induction by

  12. Climate Response to the Increase in Tropospheric Ozone since Preindustrial Times: A Comparison between Ozone and Equivalent CO2 Forcings

    NASA Technical Reports Server (NTRS)

    Mickley L. J.; Jacob, D. J.; Field, B. D.; Rind, D.

    2004-01-01

    We examine the characteristics of the climate response to anthropogenic changes in tropospheric ozone. Using a general circulation model, we have carried out a pair of equilibrium climate simulations with realistic present-day and preindustrial ozone distributions. We find that the instantaneous radiative forcing of 0.49 W m(sup -2) due to the increase in tropospheric ozone since preindustrial times results in an increase in global mean surface temperature of 0.28 C. The increase is nearly 0.4 C in the Northern Hemisphere and about 0.2 C in the Southern Hemisphere. The largest increases (greater than 0.8 C) are downwind of Europe and Asia and over the North American interior in summer. In the lower stratosphere, global mean temperatures decrease by about 0.2 C due to the diminished upward flux of radiation at 9.6 micrometers. The largest stratospheric cooling, up to 1.0 C, occurs over high northern latitudes in winter, with possibly important implications for the formation of polar stratospheric clouds. To identify the characteristics of climate forcing unique to tropospheric ozone, we have conducted two additional climate equilibrium simulations: one in which preindustrial tropospheric ozone concentrations were increased everywhere by 18 ppb, producing the same global radiative forcing as present-day ozone but without the heterogeneity; and one in which CO2 was decreased by 25 ppm relative to present day, with ozone at present-day values, to again produce the same global radiative forcing but with the spectral signature of CO2 rather than ozone. In the first simulation (uniform increase of ozone), the global mean surface temperature increases by 0.25 C, with an interhemispheric difference of only 0.03 C, as compared with nearly 0.2 C for the heterogeneous ozone increase. In the second simulation (equivalent CO2), the global mean surface temperature increases by 0.36 C, 30% higher than the increase from tropospheric ozone. The stronger surface warming from CO2 is

  13. How do increasing background concentrations of tropospheric ozone affect peatland plant growth and carbon gas exchange?

    NASA Astrophysics Data System (ADS)

    Williamson, Jennifer L.; Mills, Gina; Hayes, Felicity; Jones, Timothy; Freeman, Chris

    2016-02-01

    In this study we have demonstrated that plants originating from upland peat bogs are sensitive to increasing background concentrations of ozone. Peatland mesocosms from an upland peat bog in North Wales, UK were exposed to eight levels of elevated background ozone in solardomes for 4 months from May to August, with 24 h mean ozone concentrations ranging from 16 to 94 ppb and cumulative AOT024hr ranging from 45.98 ppm h to 259.63 ppm h. Our results show that plant senescence increased with increasing exposure to ozone, although there was no significant effect of increasing ozone on plant biomass. Assessments of carbon dioxide and methane fluxes from the mesocosms suggests that there was no change in carbon dioxide fluxes over the 4 month exposure period but that methane fluxes increased as cumulative ozone exposure increased to a maximum AOT 024hr of approximately 120 ppm h and then decreased as cumulative ozone exposure increased further.

  14. Flixweed Is More Competitive than Winter Wheat under Ozone Pollution: Evidences from Membrane Lipid Peroxidation, Antioxidant Enzymes and Biomass

    PubMed Central

    Li, Yong; Zheng, Yan-Hai; Jiang, Gao-Ming

    2013-01-01

    To investigate the effects of ozone on winter wheat and flixweed under competition, two species were exposed to ambient, elevated and high [O3] for 30 days, planted singly or in mixculture. Eco-physiological responses were examined at different [O3] and fumigating time. Ozone reduced the contents of chlorophyll, increased the accumulation of H2O2 and malondialdehyde in both wheat and flixweed. The effects of competition on chlorophyll content of wheat emerged at elevated and high [O3], while that of flixweed emerged only at high [O3]. The increase of H2O2 and malondialdehyde of flixweed was less than that of wheat under the same condition. Antioxidant enzyme activities of wheat and flixweed were seriously depressed by perennial and serious treatment using O3. However, short-term and moderate fumigation increased the activities of SOD and POD of wheat, and CAT of flixweed. The expression levels of antioxidant enzymes related genes provided explanation for these results. Furthermore, the increase of CAT expression of flixweed was much higher than that of SOD and POD expression of wheat. Ozone and competition resulted in significant reductions in biomass and grain yield in both winter wheat and flixweed. However, the negative effects on flixweed were less than wheat. Our results demonstrated that winter wheat is more sensitive to O3 and competition than flixweed, providing valuable data for further investigation on responses of winter wheat to ozone pollution, in particular combined with species competition. PMID:23533669

  15. The impact of observing characteristics on the ability to predict ozone under varying polluted photochemical regimes

    NASA Astrophysics Data System (ADS)

    Hamer, P. D.; Bowman, K. W.; Henze, D.; Attié, J.-L.; Marécal, V.

    2015-02-01

    We conduct a variety of analyses to assess how the characteristics of observations of ozone and its precursors affect their ability to support air quality forecasting and research. To carry out this investigation we use a photochemical box model and its adjoint integrated with a Lagrangian 4-D-variational data assimilation system. Using this framework in conjunction with various sets of pseudo observations we perform a ozone precursor source inversion and estimate surface emissions. We then assess the resulting improvement in ozone air quality forecasting and prediction. We use an analytical model as our principle method of conducting uncertainty analyses, which is the primary focus of this work. Using this analytical tool we address some simple but key questions regarding how the characteristics of observations affect our framework's ability to constrain ozone precursor emissions and in turn to predict ozone. These questions include what the effect is of choosing which species to observe, of varying amounts of observation noise, of changing the observing frequency and the observation time during the diurnal cycle, and of how these different scenarios interact with different photochemical regimes. These questions are designed to examine how different types of observing platform, e.g., geostationary satellites or ground monitoring networks, could support future air quality research and forecasting. In our investigation we use three observed species scenarios: CO and NO2; ozone, CO, and NO2; and HCHO, CO and NO2. The photochemical model was setup to simulate a range of summertime polluted environments spanning NOx (NO and NO2) limited to volatile organic compound (VOC) limited conditions. We find that as the photochemical regime changes the relative importance of trace gas observations to constrain emission estimates and subsequent ozone forecasts varies. For example, adding ozone observations to an NO2 and CO observing system is found to decrease ozone prediction

  16. Lusaka, Zambia, during SAFARI-2000: Convergence of local and imported ozone pollution

    NASA Astrophysics Data System (ADS)

    Thompson, Anne M.; Witte, Jacquelyn C.; Freiman, M. Tal; Phahlane, N. Agnes; Coetzee, Gert J. R.

    2002-10-01

    In August and September, throughout south central Africa, seasonal clearing of dry vegetation and other fire-related activities lead to intense smoke haze and ozone formation. The first ozone soundings in the heart of the southern African burning region were taken at Lusaka, Zambia (15.5S, 28E) in early September 2000. Maximum surface ozone was over 90 ppbv and column tropospheric ozone exceeded 50 DU. These values are higher than concurrent measurements over Nairobi (1S, 38E) and Irene (25S, 28E, near Pretoria). At least 30% of Lusaka surface ozone appears to be from local sources. A layer at 800-500 hPa has ozone >120 ppbv and originates from trans-boundary recirculation. Starting out over Zambia, Angola, and Namibia, ozone-rich air travels east to the Indian Ocean, before heading back toward Mozambique, Zimbabwe and Zambia. Thus, Lusaka collects local and imported pollution, consistent with its location within the southern African gyre.

  17. Sensitivity analysis of ozone formation and transport for a Central California air pollution episode

    SciTech Connect

    Jin, Ling; Tonse, Shaheen; Cohan, Daniel S.; Mao, Xiaoling; Harley, Robert A.; Brown, Nancy J.

    2009-05-15

    CMAQ-HDDM is used to determine spatial and temporal variations in ozone limiting reagents and local vs upwind source contributions for an air pollution episode in Central California. We developed a first- and second- order sensitivity analysis approach with the Decoupled Direct Method to examine spatial and temporal variations of ozone-limiting reagents and the importance of local vs upwind emission sources in the San Joaquin Valley of central California for a five-day ozone episode (29th July-3rd Aug, 2000). Despite considerable spatial variations, nitrogen oxides (NO{sub x}) emission reductions are overall more effective than volatile organic compound (VOC) control for attaining the 8-hr ozone standard in this region for this episode, in contrast to the VOC control that works better for attaining the prior 1-hr ozone standard. Inter-basin source contributions of NO{sub x} emissions are limited to the northern part of the SJV, while anthropogenic VOC (AVOC) emissions, especially those emitted at night, influence ozone formation in the SJV further downwind. Among model input parameters studied here, uncertainties in emissions of NO{sub x} and AVOC, and the rate coefficient of the OH + NO{sub 2} termination reaction, have the greatest effect on first-order ozone responses to changes in NO{sub x} emissions. Uncertainties in biogenic VOC emissions only have a modest effect because they are generally not collocated with anthropogenic sources in this region.

  18. Laboratory measurement of secondary pollutant yields from ozone reaction with HVAC filters.

    SciTech Connect

    Destaillats, Hugo; Chen, Wenhao; Apte, Michael; Li, Nuan; Spears, Michael; Almosni, Jérémie; Zhang, Jianshun; Fisk, William J.

    2009-09-09

    We used Proton Transfer Reaction - Mass Spectrometry (PTR-MS) and conventional sampling methods to monitor and identify trace level organic pollutants formed in heterogeneous reactions between ozone and HVAC filters in real time. Experiments were carried out using a bench-scale flow tube reactor operating with dry air and humidified air (50% RH), at realistically high ozone concentrations (150 ppbv). We explored different filter media (i.e., fiberglass and cotton/polyester blends) and different particle loadings (i.e., clean filter and filters loaded with particles for 3 months at the Lawrence Berkeley National Laboratory and the Port of Oakland, CA). Detailed emission dynamics of very low levels of certain organic pollutants from filter media upon ozone exposure in the presence of moisture have been obtained and analyzed.

  19. Cardiovascular effects of diesel exhaust and ozone in a multi-pollutant context

    EPA Science Inventory

    The cardiovascular effects of two common pollutants, diesel exhaust (DE) and ozone (O3), were examined alone and in combination. Healthy subjects (n=15) were exposed for 2 hrs with intermittent, moderate exercise on Day 1 to 0.3 ppm O3, 300 µg/m3 DE, both O3 and DE, or fil...

  20. Web-Based Tools for Modelling and Analysis of Multivariate Data: California Ozone Pollution Activity

    ERIC Educational Resources Information Center

    Dinov, Ivo D.; Christou, Nicolas

    2011-01-01

    This article presents a hands-on web-based activity motivated by the relation between human health and ozone pollution in California. This case study is based on multivariate data collected monthly at 20 locations in California between 1980 and 2006. Several strategies and tools for data interrogation and exploratory data analysis, model fitting…

  1. Ozone pollution effects on the land carbon sink in the future greenhouse world

    NASA Astrophysics Data System (ADS)

    Unger, N.; Yue, X.

    2015-12-01

    Ozone pollution has huge impacts on the carbon balance in the United States, Europe and China. While terrestrial ecosystems provide an important sink for surface ozone through stomatal uptake, this process damages photosynthesis, reduces plant growth and biomass accumulation, and affects stomatal control over plant transpiration of water vapor. Effective mitigation of climate change by stabilizing atmospheric carbon dioxide concentrations requires improved understanding of ozone effects on the land carbon sink. Future effects of ozone pollution on the land carbon sink are largely unknown. We apply multiple observational datasets in combination with the Yale Interactive Terrestrial Biosphere (YIBs) model to quantify ozone vegetation damage in the present climatic state and for a broad range of possible futures. YIBs includes a mechanistic ozone damage model that affects both photosynthetic rate and stomatal conductance for low or high ozone plant sensitivity. YIBs is embedded in the NASA GISS ModelE2 global chemistry-climate model to allow a uniquely informed integration of plant physiology, atmospheric chemistry, and climate. The YIBs model has been extensively evaluated using land carbon flux measurements from 145 flux tower sites and multiple satellite products. Chronic ozone exposure in the present day reduces GPP by 11-23%, NPP by 8-16%, stomatal conductance by 8-17% and leaf area index by 2-5% in the summer time eastern United States. Similar response magnitudes are found in Europe but almost doubled damage effects occur in hotspots in eastern China. We investigate future ozone vegetation damage within the context of multiple global change drivers (physical climate change, carbon dioxide fertilization, human energy and agricultural emissions, human land use) at 2050 following the IPCC RCP2.6 and RCP8.5 scenarios. In the RCP8.5 world at 2050, growing season average GPP and NPP are reduced by 20-40% in China and 5-20% in the United States due to the global rise

  2. Investigation of Ground-Level Ozone and High-Pollution Episodes in a Megacity of Eastern China.

    PubMed

    Zhao, Heng; Wang, Shanshan; Wang, Wenxin; Liu, Rui; Zhou, Bin

    2015-01-01

    Differential Optical Absorption Spectroscopy (DOAS) was used for the long-term observation of ground-level ozone (O3) from March 2010 to March 2013 over Shanghai, China. The 1-hour average concentration of O3 was 27.2 ± 17.0 ppbv. O3 level increased during spring, reached the peak in late spring and early summer, and then decreased in autumn and finally dropped to the bottom in winter. The highest monthly average O3 concentration in June (41.1 ppbv) was nearly three times as high as the lowest level recorded in December (15.2 ppbv). In terms of pollution episodes, 56 hourly samples (on 14 separate days) in 2010 exceeded the 1-hour ozone limit of 200 μg/m3 specified by the Grade II of the Chinese Ambient Air Quality Standards (CAAQS, revised GB 3095-2012). Utilizing the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model, the primary contribution to high ozone days (HODs) was identified as the regional transportation of volatile organic compounds (VOC) and high concentrations of O3 from the chemical industrial zone in the Jinshan district of Shanghai. HODs showed higher concentrations of HONO and NO2 than non-episode conditions, implying that HONO at high concentration during HODs was capable of increasing the O3 concentration. The photolysis rate of HONO was estimated, suggesting that the larger number of OH radicals resulting from high concentrations of HONO have a considerable impact on ozone concentrations. PMID:26121146

  3. Investigation of Ground-Level Ozone and High-Pollution Episodes in a Megacity of Eastern China

    PubMed Central

    Zhao, Heng; Wang, Shanshan; Wang, Wenxin; Liu, Rui; Zhou, Bin

    2015-01-01

    Differential Optical Absorption Spectroscopy (DOAS) was used for the long-term observation of ground-level ozone (O3) from March 2010 to March 2013 over Shanghai, China. The 1-hour average concentration of O3 was 27.2 ± 17.0 ppbv. O3 level increased during spring, reached the peak in late spring and early summer, and then decreased in autumn and finally dropped to the bottom in winter. The highest monthly average O3 concentration in June (41.1 ppbv) was nearly three times as high as the lowest level recorded in December (15.2 ppbv). In terms of pollution episodes, 56 hourly samples (on 14 separate days) in 2010 exceeded the 1-hour ozone limit of 200 μg/m3 specified by the Grade II of the Chinese Ambient Air Quality Standards (CAAQS, revised GB 3095-2012). Utilizing the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model, the primary contribution to high ozone days (HODs) was identified as the regional transportation of volatile organic compounds (VOC) and high concentrations of O3 from the chemical industrial zone in the Jinshan district of Shanghai. HODs showed higher concentrations of HONO and NO2 than non-episode conditions, implying that HONO at high concentration during HODs was capable of increasing the O3 concentration. The photolysis rate of HONO was estimated, suggesting that the larger number of OH radicals resulting from high concentrations of HONO have a considerable impact on ozone concentrations. PMID:26121146

  4. Impacts of Climate Change on Surface Ozone and Intercontinental Ozone Pollution: A Multi-Model Study

    NASA Technical Reports Server (NTRS)

    Doherty, R. M.; Wild, O.; Shindell, D. T.; Zeng, G.; MacKenzie, I. A.; Collins, W. J.; Fiore, A. M.; Stevenson, D. S.; Dentener, F. J.; Schultz, M. G.; Hess, P.; Derwent, R. G.; Keating, T. J.

    2013-01-01

    The impact of climate change between 2000 and 2095 SRES A2 climates on surface ozone (O)3 and on O3 source-receptor (S-R) relationships is quantified using three coupled climate-chemistry models (CCMs). The CCMs exhibit considerable variability in the spatial extent and location of surface O3 increases that occur within parts of high NOx emission source regions (up to 6 ppbv in the annual average and up to 14 ppbv in the season of maximum O3). In these source regions, all three CCMs show a positive relationship between surface O3 change and temperature change. Sensitivity simulations show that a combination of three individual chemical processes-(i) enhanced PAN decomposition, (ii) higher water vapor concentrations, and (iii) enhanced isoprene emission-largely reproduces the global spatial pattern of annual-mean surface O3 response due to climate change (R2 = 0.52). Changes in climate are found to exert a stronger control on the annual-mean surface O3 response through changes in climate-sensitive O3 chemistry than through changes in transport as evaluated from idealized CO-like tracer concentrations. All three CCMs exhibit a similar spatial pattern of annual-mean surface O3 change to 20% regional O3 precursor emission reductions under future climate compared to the same emission reductions applied under present-day climate. The surface O3 response to emission reductions is larger over the source region and smaller downwind in the future than under present-day conditions. All three CCMs show areas within Europe where regional emission reductions larger than 20% are required to compensate climate change impacts on annual-mean surface O3.

  5. Time and Spatially Dependent Estimates of Pollutant Trace Gas Emissions and Their Effect on Tropospheric Ozone

    NASA Astrophysics Data System (ADS)

    Dignon, Jane Elizabeth

    Statistical models have been developed to relate the rate of pollutant emissions from fossil fuel combustion to the rate of fuel consumption. These models have been used to estimate global emissions of nitrogen and sulfur oxides in fossil fuel combustion since the year 1860. When averaged over the 1860 to 1980 period, global sulfur emissions increased at a rate of 2.9 percent per year, and the nitrogen emissions increased a rate of 3.4 percent per year. Using these statistical models along with population distribution estimates, high resolution geographical maps of emissions can be produced for each year which fuel consumption data are available. Global emissions of NO_ {x} and SO_{x} emissions for 1966 and 1980 are illustrated on a latitude-longitude grid appropriate for general circulation models of the atmosphere. Emissions of carbon monoxide from fossil fuel, wood and biomass fuel, and open burning of vegetation, as well as emissions of nitrogen and sulfur oxides from wood and biomass fuel burning, are estimated for 1980 using emission factor methods. These trace gas sources are also mapped globally. The impact of increasing emissions of NO _{x} on tropospheric ozone abundance is estimated by calculations with a one-dimensional (latitudinal) model which includes coupled tropospheric photo-chemistry and diffusive meridional transport. Steady-state photochemical calculations with the prescribed NO_{x } emissions appropriate for 1966 and 1980 indicate an ozone increase of 8 to 11 percent in the Northern Hemisphere, a result which is compatible with the rise of about 12 percent between 1970 and 1981 suggested by recent observations.

  6. Statistical evaluation of the impact of shale gas activities on ozone pollution in North Texas.

    PubMed

    Ahmadi, Mahdi; John, Kuruvilla

    2015-12-01

    Over the past decade, substantial growth in shale gas exploration and production across the US has changed the country's energy outlook. Beyond its economic benefits, the negative impacts of shale gas development on air and water are less well known. In this study the relationship between shale gas activities and ground-level ozone pollution was statistically evaluated. The Dallas-Fort Worth (DFW) area in north-central Texas was selected as the study region. The Barnett Shale, which is one the most productive and fastest growing shale gas fields in the US, is located in the western half of DFW. Hourly meteorological and ozone data were acquired for fourteen years from monitoring stations established and operated by the Texas Commission on Environmental Quality (TCEQ). The area was divided into two regions, the shale gas region (SGR) and the non-shale gas (NSGR) region, according to the number of gas wells in close proximity to each monitoring site. The study period was also divided into 2000-2006 and 2007-2013 because the western half of DFW has experienced significant growth in shale gas activities since 2007. An evaluation of the raw ozone data showed that, while the overall trend in the ozone concentration was down over the entire region, the monitoring sites in the NSGR showed an additional reduction of 4% in the annual number of ozone exceedance days than those in the SGR. Directional analysis of ozone showed that the winds blowing from areas with high shale gas activities contributed to higher ozone downwind. KZ-filtering method and linear regression techniques were used to remove the effects of meteorological variations on ozone and to construct long-term and short-term meteorologically adjusted (M.A.) ozone time series. The mean value of all M.A. ozone components was 8% higher in the sites located within the SGR than in the NSGR. These findings may be useful for understanding the overall impact of shale gas activities on the local and regional ozone

  7. Evaluation of emission control strategies to reduce ozone pollution in the Paso del Norte region using a photochemical air quality modeling system

    NASA Astrophysics Data System (ADS)

    Valenzuela, Victor Hugo

    Air pollution emissions control strategies to reduce ozone precursor pollutants are analyzed by applying a photochemical modeling system. Simulations of air quality conditions during an ozone episode which occurred in June, 2006 are undertaken by increasing or reducing area source emissions in Ciudad Juarez, Chihuahua, Mexico. Two air pollutants are primary drivers in the formation of tropospheric ozone. Oxides of nitrogen (NOx) and volatile organic compounds (VOC) undergo multiple chemical reactions under favorable meteorological conditions to form ozone, which is a secondary pollutant that irritates respiratory systems in sensitive individuals especially the elderly and young children. The U.S. Environmental Protection Agency established National Ambient Air Quality Standards (NAAQS) to limit ambient air pollutants such as ozone by establishing an 8-hour average concentration of 0.075 ppm as the threshold at which a violation of the standard occurs. Ozone forms primarily due reactions in the troposphere of NOx and VOC emissions generated primarily by anthropogenic sources in urban regions. Data from emissions inventories indicate area sources account for ˜15 of NOx and ˜45% of regional VOC emissions. Area sources include gasoline stations, automotive paint bodyshops and nonroad mobile sources. Multiplicity of air pollution emissions sources provides an opportunity to investigate and potentially implement air quality improvement strategies to reduce emissions which contribute to elevated ozone concentrations. A baseline modeling scenario was established using the CAMx photochemical air quality model from which a series of sensitivity analyses for evaluating air quality control strategies were conducted. Modifications to area source emissions were made by varying NOx and / or VOC emissions in the areas of particular interest. Model performance was assessed for each sensitivity analysis. Normalized bias (NB) and normalized error (NE) were used to identify

  8. Ozone in the Atmosphere: II. The Lower Atmosphere.

    ERIC Educational Resources Information Center

    Phillips, Paul; Pickering, Pam

    1991-01-01

    Described are the problems caused by the increased concentration of ozone in the lower atmosphere. Photochemical pollution, mechanisms of ozone production, ozone levels in the troposphere, effects of ozone on human health and vegetation, ozone standards, and control measures are discussed. (KR)

  9. Identifying sources of ozone to three rural locations in Nevada, USA, using ancillary gas pollutants, aerosol chemistry, and mercury.

    PubMed

    Miller, Matthieu B; Fine, Rebekka; Pierce, Ashley M; Gustin, Mae S

    2015-10-15

    Ozone (O3) is a secondary air pollutant of long standing and increasing concern for environmental and human health, and as such, the US Environmental Protection Agency will revise the National Ambient Air Quality Standard of 75 ppbv to ≤ 70 ppbv. Long term measurements at the Great Basin National Park (GBNP) indicate that O3 in remote areas of Nevada will exceed a revised standard. As part of the Nevada Rural Ozone Initiative, measurements of O3 and other air pollutants were made at 3 remote sites between February 2012 and March 2014, GBNP, Paradise Valley (PAVA), and Echo Peak (ECHO). Exceptionally high concentrations of each air pollutant were defined relative to each site as mixing ratios that exceeded the 90th percentile of all hourly data. Case studies were analyzed for all periods during which mean daily O3 exceeded the 90th percentile concurrently with a maximum 8-h average (MDA8) O3 that was "exceptionally high" for the site (65 ppbv at PAVA, 70 ppbv at ECHO and GBNP), and of potential regulatory significance. An MDA8 ≥ 65 ppbv occurred only five times at PAVA, whereas this occurred on 49 and 65 days at GBNP and ECHO, respectively. The overall correlation between O3 and other pollutants was poor, consistent with the large distance from significant primary emission sources. Mean CO at these locations exceeded concentrations reported for background sites in 2000. Trajectory residence time calculations and air pollutant concentrations indicate that exceedances at GBNP and ECHO were promoted by air masses originating from multiple sources, including wildfires, transport of pollution from southern California and the marine boundary layer, and transport of Asian pollution plumes. Results indicate that the State of Nevada will exceed a revised O3 standard due to sources that are beyond their control. PMID:25957787

  10. Ozone: An Air Pollutant Acting as a Plant-Signaling Molecule

    NASA Astrophysics Data System (ADS)

    Sandermann, Heinrich, Jr.

    The air pollutant ozone has recently been found to trigger plant signal transduction chains resembling those induced by fungal and viral pathogens. Chloroplast-related functions are generally inhibited, while genes of antioxidative and pathogen defense are activated. The resulting perturbation of plant metabolism leads to higher susceptibility (or in certain cases higher tolerance) for other abiotic and biotic stressors. This mechanism of action links ozone by some criteria to "novel" forest decline and to agricultural crop loss. Further progress appears to depend on coordinated long-term laboratory and field experiments.

  11. Ozone and increased nitrogen supply effects on the yield and nutritive quality of Trifolium subterraneum

    NASA Astrophysics Data System (ADS)

    Sanz, J.; Muntifering, R. B.; Bermejo, V.; Gimeno, B. S.; Elvira, S.

    The influence of ambient ozone (O 3) concentrations and nitrogen (N) fertilization, singly and in combination, on the growth and nutritive quality of Trifolium subterraneum was assessed. This is an important O 3-sensitive species of great pastoral value in Mediterranean areas. Plant material was enclosed in open-top chambers (OTCs). Three O 3 levels were established: Filtered air with O 3 concentrations below 15 ppb (CFA), non-filtered air with O 3 concentrations in the range of ambient levels (NFA), and non-filtered air supplemented with 40 ppb O 3 over ambient levels (NFA+). Similarly, three N levels were defined: 5, 15 and 30 kg ha -1. The increase in O 3 exposure induced a reduction of the clover aerial green biomass and an increase of senescent biomass. Ozone effects were more adverse in the root system, inducing an impairment of the aerial/subterranean biomass ratio. Compared with the CFA treatment, nutritive quality of aerial biomass was 10 and 20% lower for NFA and NFA+ treatments, respectively, due to increased concentrations of acid detergent fiber, neutral detergent fiber and lignin. The latter effect appears to be related to senescence acceleration. The increment in N supplementation enhanced the increase of ADF concentrations in those plants simultaneously exposed to ambient and above-ambient O 3 concentrations, and reduced the incremental rate of foliar senescence induced by the pollutant.

  12. Urban and Rural Ozone Pollution Over Lusaka (Zambia, 15.5S, 25E) During SAFARI-2000 (September 2000)

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Herman, J. R.; Witte, J. C.; Phahlane, A.; Coetzee, G. J. R.; Mukula, C.; Hudson, R. D.; Frolov, A. D.; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    In early September, throughout south central Africa, seasonal clearing of dry vegetation and the production of charcoal for cooking leads to intense smoke haze and ozone formation. Ozone soundings made over Lusaka during a six-day period in early September 2000 recorded layers of high ozone (greater than 125 ppbv at 5 km) during two stagnant periods, interspersed by a frontal passage that reduced boundary layer ozone by 30 percent. Smoke aerosol column variations aloft and total ozone were monitored by a sun photometer. During the 6-day measurement period, surface ozone concentrations ranged from 50-95 ppbv and integrated tropospheric ozone from the soundings was 39- 54 Dobson Units (note 1.3 km elevation at the launch site). High ozone concentrations above the mixed and inversion layers were advected from rural burning regions in western Zambia where SAFARI aircraft and ground-based instruments observed intense biomass fires and elevated aerosol and trace gas amounts. TOMS tropospheric ozone and smoke aerosols products show the distribution of biomass burning and associated pollution throughout southern Africa in September 2000. Animations of satellite images and trajectories confirm pollutant recirculation over south central African fires, exit of ozone from Mozambique and Tanzania to the Indian Ocean and the characteristic buildup of tropospheric ozone over the Atlantic from western African outflow.

  13. The impact of air pollutant and methane emission controls on tropospheric ozone and radiative forcing: CTM calculations for the period 1990-2030

    NASA Astrophysics Data System (ADS)

    Dentener, F.; Stevenson, D.; Cofala, J.; Mechler, R.; Amann, M.; Bergamaschi, P.; Raes, F.; Derwent, R.

    2004-12-01

    To explore the relationship between tropospheric ozone and radiative forcing with changing emissions, we compiled two sets of global scenarios for the emissions of the ozone precursors methane (CH4), carbon monoxide (CO), non-methane volatile organic compounds (NMVOC) and nitrogen oxides (NOx) up to the year 2030 and implemented them in two global Chemistry Transport Models. The "Current Legislation" (CLE) scenario reflects the current perspectives of individual countries on future economic development and takes the anticipated effects of presently decided emission control legislation in the individual countries into account. In addition, we developed a "Maximum technically Feasible Reduction" (MFR) scenario that outlines the scope for emission reductions offered by full implementation of the presently available emission control technologies, while maintaining the projected levels of anthropogenic activities. Whereas the resulting projections of methane emissions lie within the range suggested by other greenhouse gas projections, the recent pollution control legislation of many Asian countries, requiring introduction of catalytic converters for vehicles, leads to significantly lower growth in emissions of the air pollutants NOx, NMVOC and CO than was suggested by the widely used IPCC (Intergovernmental Panel on Climate Change) SRES (Special Report on Emission Scenarios) scenarios (Nakicenovic et al., 2000). With the TM3 and STOCHEM models we performed several long-term integrations (1990-2030) to assess global, hemispheric and regional changes in CH4, CO, hydroxyl radicals, ozone and the radiative climate forcings resulting from these two emission scenarios. Both models reproduce realistically the observed trends in background ozone, CO, and CH4 concentrations from 1990 to 2002. For the "current legislation" case, both models indicate an increase of the annual average ozone levels in the Northern hemisphere by 5 ppbv, and up to 15 ppbv over the Indian sub

  14. Increasing global agricultural production by reducing ozone damages via methane emission controls and ozone-resistant cultivar selection

    PubMed Central

    Avnery, Shiri; Mauzerall, Denise L; Fiore, Arlene M

    2013-01-01

    Meeting the projected 50% increase in global grain demand by 2030 without further environmental degradation poses a major challenge for agricultural production. Because surface ozone (O3) has a significant negative impact on crop yields, one way to increase future production is to reduce O3-induced agricultural losses. We present two strategies whereby O3 damage to crops may be reduced. We first examine the potential benefits of an O3 mitigation strategy motivated by climate change goals: gradual emission reductions of methane (CH4), an important greenhouse gas and tropospheric O3 precursor that has not yet been targeted for O3 pollution abatement. Our second strategy focuses on adapting crops to O3 exposure by selecting cultivars with demonstrated O3 resistance. We find that the CH4 reductions considered would increase global production of soybean, maize, and wheat by 23–102 Mt in 2030 – the equivalent of a ∼2–8% increase in year 2000 production worth $3.5–15 billion worldwide (USD2000), increasing the cost effectiveness of this CH4 mitigation policy. Choosing crop varieties with O3 resistance (relative to median-sensitivity cultivars) could improve global agricultural production in 2030 by over 140 Mt, the equivalent of a 12% increase in 2000 production worth ∼$22 billion. Benefits are dominated by improvements for wheat in South Asia, where O3-induced crop losses would otherwise be severe. Combining the two strategies generates benefits that are less than fully additive, given the nature of O3 effects on crops. Our results demonstrate the significant potential to sustainably improve global agricultural production by decreasing O3-induced reductions in crop yields. PMID:23504903

  15. [Ozone source apportionment at urban area during a typical photochemical pollution episode in the summer of 2013 in the Yangtze River Delta].

    PubMed

    Li, Hao; Li, Li; Huang, Cheng; An, Jing-yu; Yan, Ru-sha; Huang, Hai-ying; Wang, Yang-jun; Lu, Qing; Wang, Qian; Lou, Sheng-rong; Wang, Hong-li; Zhou, Min; Tao, Shi-kang; Qiao, Li-ping; Chen, Ming-hua

    2015-01-01

    With the fast development of urbanization, industrialization and mobilization, the air pollutant emissions with photochemical reactivity become more obvious, causing a severe photochemical pollution with the characteristics of high ozone concentration. However, the ozone source identification is very complicated due to the high non linearity between ozone and its precursors. Thus, ways to reduce ozone is still not clear. A high ozone pollution episode occurred during July, 2013, which lasted for a long period, with large influence area and high intensity. In this paper, we selected this episode to do a case study with the application of ozone source apportionment technology(OSAT) coupled within the CAMx air quality model. In this study, 4 source regions(including Shanghai, north Zhejiang, South Jiangsu and long range transport), 7 source categories (including power plants, industrial process, industrial boilers and kilns, residential, mobile source, volatile source and biogenic emissions) are analyzed to study their contributions to surface O3 in Shanghai, Suzhou and Zhejiang. Results indicate that long range transport contribution to the surface ozone in the YRD is around 20 x 10(-9) - 40 x 10(-9) (volume fraction). The O3 concentrations can increased to 40 x 10(-9) - 100 x 10(-9) (volume fraction) due to precursors emissions in Shanghai, Jiangsu and Zhejiang. As for the regional contribution to 8 hour ozone, long range transport constitutes 42.79% +/- 10.17%, 48.57% +/- 9.97% and 60.13% +/- 7.11% of the surface ozone in Shanghai, Suzhou and Hangzhou, respectively. Regarding the high O3 in Shanghai, local contribution is 28.94% +/- 8.49%, north Zhejiang constitutes 19.83% +/- 10.55%. As for surface O3 in Suzhou, the contribution from south Jiangsu is 26.41% +/- 6.80%. Regarding the surface O3 in Hangzhou, the major regional contributor is north Zhejiang (29.56% +/- 8.33%). Contributions from the long range transport to the daily maximum O3 concentrations are

  16. Ozone Bioindicator Gardens: an Educational Tool to Raise Awareness about Environmental Pollution and its Effects on Living Systems

    NASA Astrophysics Data System (ADS)

    Lapina, K.; Lombardozzi, D.

    2014-12-01

    High concentrations of ground-level ozone cause health problems in humans and a number of negative effects on plants, from reduced yield for major agricultural crops to reduced amounts of carbon stored in trees. The Denver Metro/Colorado Front Range is exceeding the National Ambient Air Quality Standard for ozone on a regular basis in summer and the efforts to reduce the ozone levels are hampered by the presence of diverse pollution sources and complex meteorology in the region. To raise public awareness of air quality in the Colorado Front Range and to educate all age groups about ground-level ozone, two ozone bioindicator gardens were planted in Boulder in Spring 2014. The gardens contain ozone-sensitive plants that develop a characteristic ozone injury when exposed to high levels of ozone. The ozone gardens are providing the general public with a real-life demonstration of the negative effects of ozone pollution through observable plant damage. Additionally, the gardens are useful in teaching students how to collect and analyze real-world scientific data.

  17. Metabolic enhancement and increase of alveolar macrophages induced by ozone

    SciTech Connect

    Mochitate, K.; Miura, T.

    1989-06-01

    Male Wistar rats were exposed to 0.2 ppm ozone (O3) for 14 days and at intervals alveolar macrophages were collected by bronchoalveolar lavage to examine the effects of O3. The specific activities of glucose-6-phosphate dehydrogenase and glutathione peroxidase of alveolar macrophages increased to 1.6-fold (on the 3rd day) and 1.5-fold (on the 5th day), respectively, those of the control values. Similarly, the specific activities of pyruvate kinase, lactate dehydrogenase, and hexokinase also increased to 1.6-fold, 1.4-fold, and 1.2-fold, respectively, those of the control values on the 3rd day. The activities of all enzymes tested were maintained at significantly higher levels until the 14th day. Furthermore, the incorporation of (14C)thymidine into alveolar macrophages increased twice the control values on the 1st and 3rd days and was almost completely inhibited by the addition of 1.23 x 10(-4) M aphidicolin, a competitive inhibitor of DNA polymerase alpha. The number of alveolar macrophages collected from exposed animals also increased to 1.5-fold that of the control value on the 3rd day and was maintained at significantly higher level until the 14th day. It was noted that alveolar macrophages of small size preferentially increased between the 5th and 14th days. These results show that exposures to 0.2 ppm O3 induced a metabolic enhancement of the peroxidative metabolism, glycolysis, and DNA synthesis in alveolar macrophages and increased the macrophages of small size.

  18. Web-based tools for modelling and analysis of multivariate data: California ozone pollution activity

    PubMed Central

    Dinov, Ivo D.; Christou, Nicolas

    2014-01-01

    This article presents a hands-on web-based activity motivated by the relation between human health and ozone pollution in California. This case study is based on multivariate data collected monthly at 20 locations in California between 1980 and 2006. Several strategies and tools for data interrogation and exploratory data analysis, model fitting and statistical inference on these data are presented. All components of this case study (data, tools, activity) are freely available online at: http://wiki.stat.ucla.edu/socr/index.php/SOCR_MotionCharts_CAOzoneData. Several types of exploratory (motion charts, box-and-whisker plots, spider charts) and quantitative (inference, regression, analysis of variance (ANOVA)) data analyses tools are demonstrated. Two specific human health related questions (temporal and geographic effects of ozone pollution) are discussed as motivational challenges. PMID:24465054

  19. Houston's rapid ozone increases: preconditions and geographic origins.

    PubMed

    Couzo, Evan; Jeffries, Harvey E; Vizuete, William

    2013-06-28

    Many of Houston's highest 8-h ozone (O3) peaks are characterised by increases in concentrations of at least 40 ppb in 1 h, or 60 ppb in 2 h. These rapid increases are called non-typical O3 changes (NTOCs). In 2004, the Texas Commission on Environmental Quality (TCEQ) developed a novel emissions control strategy aimed at eliminating NTOCs. The strategy limited routine and short-term emissions of ethene, propene, 1,3-butadiene and butene isomers, collectively called highly reactive volatile organic compounds (HRVOCs), which are released from petrochemical facilities. HRVOCs have been associated with NTOCs through field campaigns and modelling studies. This study analysed wind measurements and O3, formaldehyde (HCHO) and sulfur dioxide (SO2) concentrations from 2000 to 2011 at 25 ground monitors in Houston. NTOCs almost always occurred when monitors were downwind of petrochemical facilities. Rapid O3 increases were associated with low wind speeds; 75 % of NTOCs occurred when the 3-h average wind speed preceding the event was less than 6.5 km h(-1). Statistically significant differences in HCHO concentrations were seen between days with and without NTOCs. Early afternoon HCHO concentrations were greater on NTOC days. In the morning before an observed NTOC event, however, there were no significant differences in HCHO concentrations between days with and without NTOCs. Hourly SO2 concentrations also increased rapidly, exhibiting behaviour similar to NTOCs. Oftentimes, the SO2 increases preceded a NTOC. These findings show that, despite the apparent success of targeted HRVOC emission controls, further restrictions may be needed to eliminate the remaining O3 events. PMID:24014080

  20. Ozone

    MedlinePlus

    Ozone is a gas. It can be good or bad, depending on where it is. "Good" ozone occurs naturally about 10 to 30 miles above ... the sun's ultraviolet rays. Part of the good ozone layer is gone. Man-made chemicals have destroyed ...

  1. Economic damages of ozone air pollution to crops using combined air quality and GIS modelling

    NASA Astrophysics Data System (ADS)

    Vlachokostas, Ch.; Nastis, S. A.; Achillas, Ch.; Kalogeropoulos, K.; Karmiris, I.; Moussiopoulos, N.; Chourdakis, E.; Banias, G.; Limperi, N.

    2010-09-01

    This study aims at presenting a combined air quality and GIS modelling methodological approach in order to estimate crop damages from photochemical air pollution, depict their spatial resolution and assess the order of magnitude regarding the corresponding economic damages. The analysis is conducted within the Greater Thessaloniki Area, Greece, a Mediterranean territory which is characterised by high levels of photochemical air pollution and considerable agricultural activity. Ozone concentration fields for 2002 and for specific emission reduction scenarios for the year 2010 were estimated with the Ozone Fine Structure model in the area under consideration. Total economic damage to crops turns out to be significant and estimated to be approximately 43 M€ for the reference year. Production of cotton presents the highest economic loss, which is over 16 M€, followed by table tomato (9 M€), rice (4.2 M€), wheat (4 M€) and oilseed rape (2.8 M€) cultivations. Losses are not spread uniformly among farmers and the major losses occur in areas with valuable ozone-sensitive crops. The results are very useful for highlighting the magnitude of the total economic impacts of photochemical air pollution to the area's agricultural sector and can potentially be used for comparison with studies worldwide. Furthermore, spatial analysis of the economic damage could be of importance for governmental authorities and decision makers since it provides an indicative insight, especially if the economic instruments such as financial incentives or state subsidies to farmers are considered.

  2. Hyperthyroidism increases the risk of ozone-induced lung toxicity in rats.

    PubMed

    Huffman, L J; Judy, D J; Brumbaugh, K; Frazer, D G; Reynolds, J S; McKinney, W G; Goldsmith, W T

    2001-05-15

    The risk of lung injury from ozone exposure has been well documented. It is also known that various factors may significantly influence the susceptibility of animals to the toxic effects of ozone. In the present study, we investigated the possibility that hyperthyroidism might be associated with increases in ozone-induced pulmonary toxicity. To create a hyperthyroid condition, mature male Sprague--Dawley rats were given injections of thyroxine (dose range: 0.1 to 1 mg/kg body wt daily for 7 days). Control rats received vehicle injections. The animals were then exposed to air or ozone (dose range: 0.5 to 3 ppm for 3 h). At 18 h postexposure, bronchoalveolar lavage fluid and cells were harvested. In hyperthyroid animals, ozone exposure was associated with three- to sixfold increases in bronchoalveolar lavage fluid lactate dehydrogenase activities and albumin levels as well as the number of polymorphonuclear leukocytes harvested by bronchoalveolar lavage above levels observed in ozone-exposed control rats. Additional results from the present study suggest that these thyroid hormone-linked effects cannot be fully explained by differences in whole-body metabolic rate or changes in the inhaled dose of ozone. These findings indicate that the risk of ozone-induced lung toxicity is substantially increased in a hyperthyroid state and suggest that the susceptibility of the lung to damage from ozone exposure may be significantly influenced by individual thyroid hormone status. PMID:11350211

  3. Improving pollutants removal by microalgae Chlorella PY-ZU1 with 15% CO2 from undiluted anaerobic digestion effluent of food wastes with ozonation pretreatment.

    PubMed

    Cheng, Jun; Ye, Qing; Xu, Jiao; Yang, Zongbo; Zhou, Junhu; Cen, Kefa

    2016-09-01

    In order to purify various pollutants (3108mg COD/L, 2120mg NH3-N/L) in the undiluted anaerobic digestion effluent of food wastes (UADEFW), ozonation pretreatment was employed to improve pollutants removal by microalgae mutant Chlorella PY-ZU1 with 15% CO2. Ozonation pretreatment broke CC bonds and benzene rings of refractory organics such as unsaturated fatty acids and phenols in UADEFW and degraded them into low-molecular-weight organics such as methanoic acid and methanal, but excessive ozone induced the accumulation of toxic by-products. The microalgal growth rate and biomass yield markedly increased to the peaks of 456mg/L/d and 4.3g/L, respectively, when the UADEFW was pretreated with 2mg-O3/mg-C of ozone. The removal efficiencies of NH3-N, TP and COD reached 99%, 99% and 68%, respectively. The lipid and carbohydrate contents of microalgal biomass increased because of the relative lack of nitrogen when microalgae was cultured with 15% CO2 to purify the UADEFW with ozonation pretreatment. PMID:27243605

  4. The impact of observing characteristics on the ability to predict ozone under varying polluted photochemical regimes

    NASA Astrophysics Data System (ADS)

    Hamer, P. D.; Bowman, K. W.; Henze, D. K.; Attié, J.-L.; Marécal, V.

    2015-09-01

    We conduct analyses to assess how characteristics of observations of ozone and its precursors affect air quality forecasting and research. To carry out this investigation, we use a photochemical box model and its adjoint integrated with a Lagrangian 4D-variational data assimilation system. Using this framework in conjunction with pseudo-observations, we perform an ozone precursor source inversion and estimate surface emissions. We then assess the resulting improvement in ozone air quality prediction. We use an analytical model to conduct uncertainty analyses. Using this analytical tool, we address some key questions regarding how the characteristics of observations affect ozone precursor emission inversion and in turn ozone prediction. These questions include what the effect is of choosing which species to observe, of varying amounts of observation noise, of changing the observing frequency and the observation time during the diurnal cycle, and of how these different scenarios interact with different photochemical regimes. In our investigation we use three observed species scenarios: CO and NO2; ozone, CO, and NO2; and HCHO, CO and NO2. The photochemical model was set up to simulate a range of summertime polluted environments spanning NOx-(NO and NO2)-limited to volatile organic compound (VOC)-limited conditions. We find that as the photochemical regime changes, here is a variation in the relative importance of trace gas observations to be able to constrain emission estimates and to improve the subsequent ozone forecasts. For example, adding ozone observations to an NO2 and CO observing system is found to decrease ozone prediction error under NOx- and VOC-limited regimes, and complementing the NO2 and CO system with HCHO observations would improve ozone prediction in the transitional regime and under VOC-limited conditions. We found that scenarios observing ozone and HCHO with a relative observing noise of lower than 33 % were able to achieve ozone prediction

  5. Ultraviolet B radiation was increased at ground level in scotland during a period of ozone depletion.

    PubMed

    Moseley, H; Mackie, R M

    1997-07-01

    The potentially harmful effects associated with stratospheric ozone depletion are widely acknowledged. As the ozone layer principally absorbs ultraviolet (UV) radiation of wavelengths below 290 nm, reductions in stratospheric ozone levels are likely to result in increased UVB at the earth's surface, with the risk of increased incidence of skin cancer. Measuring the sun's spectrum at ground level requires sophisticated and reliable spectral instruments. Results are reported for this for the first time in the U.K. using spectral instruments, showing a significant increase in short wavelength UV radiation at a time of depleted stratospheric ozone. If this trend increases, future ozone depletion could contribute to known risks for cutaneous malignancies of all types. PMID:9274633

  6. Alteration of extracellular enzymes in pinto bean leaves upon exposure to air pollutants, ozone and sulfur dioxide

    SciTech Connect

    Peters, J.L.; Castillo, F.J.; Heath, R.L. )

    1989-01-01

    Diamine oxidase and peroxidase, associated with the wall in pinto bean (Phaseolus vulgaris L. var Pinto) leaves, can be washed out by vacuum infiltration and assayed without grinding the leaf. The diamine oxidase activity is inhibited in vivo by exposure of the plants to ozone (dose of 0.6 microliters per liter {times} hour), whereas the peroxidase activity associated with the wall space is stimulated. This dose does not cause obvious necrosis or chlorosis of the leaf. These alterations are greater when the dose of ozone exposure is given as a triangular pulse (a slow rise to a peak of 0.24 microliters per liter followed by a slow fall) compared to that given as a constant square wave pulse of 0.15 microliters per liter for the same 4 hour period. Exposure of the plants to sulfur dioxide (at a concentration of 0.4 microliters per liter for 4 hours) does not result in any change in the diamine oxidase or peroxidase activities, yet the total sulfhydryl content of the leaf is increased, demonstrating the entry of sulfur dioxide. These two pollutants, with different chemical reactivities, affect the activities of the extracellular enzymes in different manners. In the case of ozone exposure, the inhibition of extracellular diamine oxidase could profoundly alter the movements of polyamines from cell to cell.

  7. A New Satellite Measurement Capability for Assessing Damage to Crops from Regional Scale Ozone Pollution

    NASA Astrophysics Data System (ADS)

    Fishman, J. J.; Creilson, J. K.; Parker, P. A.; Ainsworth, E. A.; Vining, G. G.; Szarka, J. L.

    2009-05-01

    High concentrations of ground-level ozone are frequently measured over farmland regions in many parts of the world. Since laboratory data show that ozone can significantly impact crop productivity if levels above a threshold concentration are reached, there is a consensus that crop yield should be impacted now and that the effects will become even more detrimental as global background concentrations continue to rise, as suggested by the latest IPCC report. Using the long-term record of tropospheric ozone derived from satellite measurements (http://asd-www.larc.nasa.gov/TOR/data.html), we present a methodology that can be used to assess the impact of regional ozone pollution on crop productivity. In this study, we use soybean crop yield data during a 5-year period over the Midwest of the United States and analyze the results using multiple linear regression statistical models. The results are consistent with findings using conventional ground-based measurements and with results obtained from an open-air experimental facility SoyFACE (Soybean Free Air Concentration Enrichment) in central Illinois. Our analysis suggests that the cost to the farmers globally is substantial, and supports other studies that calculate an economic loss to the farming community of more than 10 billion dollars annually.

  8. Chemical Diversity and Defence Metabolism: How Plants Cope with Pathogens and Ozone Pollution

    PubMed Central

    Iriti, Marcello; Faoro, Franco

    2009-01-01

    Chemical defences represent a main trait of the plant innate immune system. Besides regulating the relationship between plants and their ecosystems, phytochemicals are involved both in resistance against pathogens and in tolerance towards abiotic stresses, such as atmospheric pollution. Plant defence metabolites arise from the main secondary metabolic routes, the phenylpropanoid, the isoprenoid and the alkaloid pathways. In plants, antibiotic compounds can be both preformed (phytoanticipins) and inducible (phytoalexins), the former including saponins, cyanogenic glycosides and glucosinolates. Chronic exposure to tropospheric ozone (O3) stimulates the carbon fluxes from the primary to the secondary metabolic pathways to a great extent, inducing a shift of the available resources in favour of the synthesis of secondary products. In some cases, the plant defence responses against pathogens and environmental pollutants may overlap, leading to the unspecific synthesis of similar molecules, such as phenylpropanoids. Exposure to ozone can also modify the pattern of biogenic volatile organic compounds (BVOC), emitted from plant in response to herbivore feeding, thus altering the tritrophic interaction among plant, phytophagy and their natural enemies. Finally, the synthesis of ethylene and polyamines can be regulated by ozone at level of S-adenosylmethionine (SAM), the biosynthetic precursor of both classes of hormones, which can, therefore, mutually inhibit their own biosynthesis with consequence on plant phenotype. PMID:20111684

  9. Indoor Secondary Pollutants from Household Product Emissions inthe Presence of Ozone: A Bench-Scale Chamber Study

    SciTech Connect

    Destaillats, Hugo; Lunden, Melissa M.; Singer, Brett C.; Coleman,Beverly K.; Hodgson, Alfred T.; Weschler, Charles J.; Nazaroff, William W.

    2005-10-01

    Ozone-driven chemistry is a major source of indoor secondary pollutants of health concern. This study investigates secondary air pollutants formed from reactions between constituents of household products and ozone. Gas-phase product emissions were introduced along with ozone at constant rates into a 198-L Teflon-lined reaction chamber. Gas-phase concentrations of reactive terpenoids and oxidation products were measured. Formaldehyde was a predominant oxidation byproduct for the three studied products, with yields under most conditions of 20-30% with respect to ozone consumed. Acetaldehyde, acetone, glycolaldehyde, formic acid and acetic acid were each also detected for two or three of the products. Immediately upon mixing of reactants, a scanning mobility particle sizer detected particle nucleation events that were followed by a significant degree of ultrafine particle growth. The production of secondary gaseous pollutants and particles depended primarily on the ozone level and was influenced by other parameters such as the air-exchange rate. Hydroxyl radical concentrations in the range 0.04-200 x 10{sup 5} molecules cm{sup -3} were measured. OH concentrations were observed to vary strongly with residual ozone level in the chamber, which was in the range 1-25 ppb, as is consistent with expectations from a simplified kinetic model. In a separate test, we exposed the dry residue of two products to ozone in the chamber and observed the formation of gas-phase and particle-phase secondary oxidation products.

  10. Convective Lofting Links Indian Ocean Air Pollution to Paradoxical South Atlantic Ozone Maxima

    NASA Technical Reports Server (NTRS)

    Chatfield, Robert B.; Guan, Hong; Thompson, Anne M.; Witte, Jacquelyn C.

    2003-01-01

    We describe a broad resolution of the "Atlantic Paradox" concerning the seasonal and geographic distribution of tropical tropospheric ozone. We describe periods of significant maximum tropospheric O3 for Jan.-April, 1999, exploiting satellite estimates and SHADOZ (Southern Hemisphere Additional Ozonesondes). Trajectory analyses connecting sondes and Total Tropospheric Ozone (TTO)O3 maps suggest a complex influence from the Indian Ocean: beginning with mixed combustion sources, then low level transport, cumulonimbus venting, and finally high-level transport to the west, with possible mixing over Africa. For the Jan.- March highest column-O3 periods in the Atlantic, distinct sounding peaks trace to specific NO sources, especially lightning, while in the same episodes, recurring every 30 or 60 days, more diffuse buildups of Indian-to-Atlantic pollution make important contributions.

  11. Convective lofting links Indian Ocean air pollution to paradoxical South Atlantic ozone maxima

    NASA Technical Reports Server (NTRS)

    Chatfield, R. B.; Guan, H.; Thompson, A. M.; Witte, J. C.

    2005-01-01

    We describe a broad resolution of the Atlantic Parado concerning the seasonal and geographic distribution, of tropical tropospheric ozone. We highlight periods of significant maximum tropospheric O3 for Jan.- April, 1999, exploiting satellite estimates and SHADOZ (Southern Hemisphere Additional Ozonesondes). Trajectory analyses connecting sondes and Total Tropospheric Ozone (TTO) maps suggest a complex influence from the Indian Ocean: beginning with mixed combustion sources, then low level transport, cumulonimbus venting, possible stratospheric input, and finally high-level transport to the west, with possible mixing over Africa. For the Jan.-March highest column-O3 periods in the Atlantic, distinct sounding peaks trace to specific NO sources, especially lightning, while in the same episodes, recurring every 20-50 days, more diffuse buildups of Indian-to-Atlantic pollution make important contributions.

  12. Chlorophyll content of soybean foliage in relation to seed yield and ambient ozone pollution

    SciTech Connect

    Brennan, E.; Leone, I.; Greenhalgh, B.; Smith, G.

    1987-12-01

    A field test was conducted to determine if ozone pollution adversely affected the chlorophyll content and seed yield of soybean. Eight soybean cultivars were grown to maturity in test plots in central New Jersey; one-half of the plots was treated with an antioxidant (ethylene-diurea) to protect the plants from the effects of ambient ozone and one half was left untreated. Periodic chlorophyll measurements revealed no significant difference between EDU-treated and untreated plots during the major part of plant growth. The absence of a yield effect predicated on the normal chlorophyll contents was corroborated by actual total seed measurement. Our results did not support predictive models that forecast a significant yield reduction from a 7-h seasonal mean of 0.058 ppm 0/sub 3/, but agreed with results obtained previously in Maryland and Georgia.

  13. Effects of Asian air pollution transport and photochemistry on carbon monoxide variability and ozone production in subtropical coastal south China

    NASA Astrophysics Data System (ADS)

    Chan, C. Y.; Chan, L. Y.; Lam, K. S.; Li, Y. S.; Harris, J. M.; Oltmans, S. J.

    2002-12-01

    Surface ozone and carbon monoxide (CO) measured from a relatively remote coastal station in Hong Kong are analyzed to study the effects of pollutant transport and associated ozone production on CO and ozone variations in the subtropical south China region. CO and ozone concentrations show a common minimum in summer and in the maritime air masses from the South China Sea and Pacific Ocean. They have higher values in other seasons and in the continental air masses that have passed over mainland Asia and the East Asian coast. CO shows the maximum monthly median of 457-552 ppbv in winter while ozone shows a maximum of 40-50 ppbv in autumn and a distinct peak of 41-43 ppbv in spring. The CO concentrations especially in the continental air masses (median of 277 to 428 ppbv) are very high when compared with measurements in most parts of the world. This suggests that the south China region is under the strong influence of pollutant transport from the Asian continent and East Asian coast. Ozone and CO show strong positive correlations in the polluted maritime air masses and from late spring to early autumn (May-September) with the linear regression slopes of the ozone-CO plot from 0.08 to 0.22 (with respective standard errors from 0.01 to 0.03). The strong correlations and slopes plus the high CO levels indicate that there is substantial ozone production from pollution in the polluted maritime air masses and in the late spring to early autumn period.

  14. [Modeling Study of A Typical Summer Ozone Pollution Event over Yangtze River Delta].

    PubMed

    Zhang, Liang; Zhu, Bin; Gao, Jin-hui; Kang, Han-qing; Yang, Peng; Wang, Hong-lei; Li, Yue-e; Shao, Ping

    2015-11-01

    WRF/Chem model was used to analyze the temporal and spatial distribution characteristics and physical and chemical mechanism of a typical summer ozone pollution event over Yangtze River Delta (YRD). The result showed that the model was capable of reproducing the temporal and spatial distribution and evolution characteristics of the typical summer ozone pollution event over YRD. The YRD region was mainly affected by the subtropical high-pressure control, and the weather conditions of sunshine, high temperature and small wind were favorable for the formation of photochemical pollution on August 10-18, 2013. The results of simulation showed that the spatial and temporal distribution of O3 was obviously affected by the meteorological fields, geographic location, regional transport and chemical formation over YRD. The sensitivity experiment showed that the O3 concentration affected by maritime airstream was low in Shanghai, but the impact of Shanghai emissions on the spatial and temporal distribution of O3 concentration over YRD was significant; The main contribution of the high concentration of O3 in Nanjing surface was chemical generation ( alkene and aromatic) and the vertical transport from high-altitude O3, whereas the main contribution of the high concentration of O3 in Hangzhou and Suzhou was physics process. The influence of the 15:00 peak concentration of O3 over YRD was very obvious when O3 precursor was reduced at the maximum O3 formation rate (11-13 h). PMID:26910981

  15. Pulsed corona discharge: the role of ozone and hydroxyl radical in aqueous pollutants oxidation.

    PubMed

    Preis, S; Panorel, I C; Kornev, I; Hatakka, H; Kallas, J

    2013-01-01

    Ozone and hydroxyl radical are the most active oxidizing species in water treated with gas-phase pulsed corona discharge (PCD). The ratio of the species dependent on the gas phase composition and treated water contact surface was the objective for the experimental research undertaken for aqueous phenol (fast reaction) and oxalic acid (slow reaction) solutions. The experiments were carried out in the reactor, where aqueous solutions showered between electrodes were treated with 100-ns pulses of 20 kV voltage and 400 A current amplitude. The role of ozone increased with increasing oxygen concentration and the oxidation reaction rate. The PCD treatment showed energy efficiency surpassing that of conventional ozonation. PMID:24135102

  16. Effects of stratospheric ozone recovery on photochemistry and ozone air quality in the troposphere

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Wu, S.; Huang, Y.; Wang, Y.

    2014-04-01

    There has been significant stratospheric ozone depletion since the late 1970s due to ozone-depleting substances (ODSs). With the implementation of the Montreal Protocol and its amendments and adjustments, stratospheric ozone is expected to recover towards its pre-1980 level in the coming decades. In this study, we examine the implications of stratospheric ozone recovery for the tropospheric chemistry and ozone air quality with a global chemical transport model (GEOS-Chem). With a full recovery of the stratospheric ozone, the projected increases in ozone column range from 1% over the low latitudes to more than 10% over the polar regions. The sensitivity factor of troposphere ozone photolysis rate, defined as the percentage changes in surface ozone photolysis rate for 1% increase in stratospheric ozone column, shows significant seasonal variation but is always negative with absolute value larger than one. The expected stratospheric ozone recovery is found to affect the tropospheric ozone destruction rates much more than the ozone production rates. Significant decreases in surface ozone photolysis rates due to stratospheric ozone recovery are simulated. The global average tropospheric OH decreases by 1.7%, and the global average lifetime of tropospheric ozone increases by 1.5%. The perturbations to tropospheric ozone and surface ozone show large seasonal and spatial variations. General increases in surface ozone are calculated for each season, with increases by up to 0.8 ppbv in the remote areas. Increases in ozone lifetime by up to 13% are found in the troposphere. The increased lifetimes of tropospheric ozone in response to stratospheric ozone recovery enhance the intercontinental transport of ozone and global pollution, in particular for the summertime. The global background ozone attributable to Asian emissions is calculated to increase by up to 15% or 0.3 ppbv in the Northern Hemisphere in response to the projected stratospheric ozone recovery.

  17. Investigating performance and lung function in a hot, humid and ozone-polluted environment.

    PubMed

    Gomes, Elisa Couto; Stone, Vicki; Florida-James, Geraint

    2010-09-01

    Large urbanized areas, where sports events take place, have a polluted environment and can also reach high temperatures and humidity levels. The aim of this study was to investigate the impact of a hot, humid and ozone-polluted (O(3)) environment on (1) performance of an 8 km time trial run, (2) pulmonary function, and (3) subjective respiratory symptoms in endurance-trained runners. Using crossover randomized design, 10 male participants (mean V(O)₂(max)= 64.4 mlO(2) kg(-1) min(-1), SD = 4.4) took part in a time trial run under four different conditions: 20 degrees C + 50% relative humidity (rh) (Control), 20 degrees C + 50% rh + 0.10 ppm O(3) (Control + O(3)), 31 degrees C + 70% rh (Heat), 31 degrees C + 70% rh + 0.10 ppm O(3) (Heat + O(3)). Heart rate, ratings of perceived exertion and minute ventilation were collected during the run. Lung function was measured pre and post-exercise. The runners completed a respiratory symptoms questionnaire after each trial. The completion time of both the Heat (32 min 35 s) and Heat + O(3) (33 min 09 s) trials were significantly higher (P < 0.0001) when compared to the Control + O(3) (30 min 27 s) and Control (30 min 15 s) trials. There were no significant changes between pre/post lung function measures or between trials. The effective dose of ozone simulated in the present study did not affect the performance and therefore, ozone-pollution, at an environmentally relevant concentration, did not compound the impairment in performance beyond that induced by a hot, humid environment. PMID:20449752

  18. Diesel exhaust but not ozone increases fraction of exhaled nitric oxide in a randomized controlled experimental exposure study of healthy human subjects

    PubMed Central

    2013-01-01

    Background Fraction of exhaled nitric oxide (FENO) is a promising non-invasive index of airway inflammation that may be used to assess respiratory effects of air pollution. We evaluated FENO as a measure of airway inflammation after controlled exposure to diesel exhaust or ozone. Methods Healthy volunteers were exposed to either diesel exhaust (particle concentration 300 μg/m3) and filtered air for one hour, or ozone (300 ppb) and filtered air for 75 minutes. FENO was measured in duplicate at expiratory flow rates of 10, 50, 100 and 270 mL/s before, 6 and 24 hours after each exposure. Results Exposure to diesel exhaust increased FENO at 6 hours compared with air at expiratory flow rates of 10 mL/s (p = 0.01) and at 50 mL/s (p = 0.011), but FENO did not differ significantly at higher flow rates. Increases in FENO following diesel exhaust were attenuated at 24 hours. Ozone did not affect FENO at any flow rate or time point. Conclusions Exposure to diesel exhaust, but not ozone, increased FENO concentrations in healthy subjects. Differences in the induction of airway inflammation may explain divergent responses to diesel exhaust and ozone, with implications for the use of FENO as an index of exposure to air pollution. PMID:23602059

  19. Who is more affected by ozone pollution? A systematic review and meta-analysis.

    PubMed

    Bell, Michelle L; Zanobetti, Antonella; Dominici, Francesca

    2014-07-01

    Ozone is associated with adverse health; however, less is known about vulnerable/sensitive populations, which we refer to as sensitive populations. We systematically reviewed epidemiologic evidence (1988-2013) regarding sensitivity to mortality or hospital admission from short-term ozone exposure. We performed meta-analysis for overall associations by age and sex; assessed publication bias; and qualitatively assessed sensitivity to socioeconomic indicators, race/ethnicity, and air conditioning. The search identified 2,091 unique papers, with 167 meeting inclusion criteria (73 on mortality and 96 on hospitalizations and emergency department visits, including 2 examining both mortality and hospitalizations). The strongest evidence for ozone sensitivity was for age. Per 10-parts per billion increase in daily 8-hour ozone concentration, mortality risk for younger persons, at 0.60% (95% confidence interval (CI): 0.40, 0.80), was statistically lower than that for older persons, at 1.27% (95% CI: 0.76, 1.78). Findings adjusted for publication bias were similar. Limited/suggestive evidence was found for higher associations among women; mortality risks were 0.39% (95% CI: -0.22, 1.00) higher than those for men. We identified strong evidence for higher associations with unemployment or lower occupational status and weak evidence of sensitivity for racial/ethnic minorities and persons with low education, in poverty, or without central air conditioning. Findings show that some populations, especially the elderly, are particularly sensitive to short-term ozone exposure. PMID:24872350

  20. North America as a Source and Receptor of Hemispheric Ozone Pollution: Seasonal Variability, Uncertainties, and Policy Implications

    NASA Astrophysics Data System (ADS)

    Fiore, A. M.; Dentener, F. J.; Cuvelier, K.; Schultz, M. G.; Wild, O.; Keating, T. J.; Zuber, A.; Wu, S.; Modellers, T.

    2008-05-01

    Under the Task Force on Hemispheric Transport of Air Pollution (TF HTAP), 21 global and hemispheric chemical transport models used 2001 meteorology to simulate the impact of 20% decreases in "conventional" ozone precursor emissions (NOx, NMVOC, and CO) from East Asia (EA), Europe (EU), North America (NA) and South Asia (SA) on surface ozone in the same four regions. The NA source region exerts a larger influence on surface ozone over EU than any other source (or source-receptor pair) in all seasons. The model ensemble mean influence of NA on both EA and SA is often larger than the influence of those regions on each other. The model ensemble mean surface ozone response to foreign emissions over NA is largest in spring and late fall. All models indicate that surface ozone over NA is least influenced by SA, but the relative importance of EU versus EA varies; this variability may partially reflect the large spread in model anthropogenic NMVOC emissions over EU. Comparison with surface ozone observations reveals a model ensemble median overestimate (>10 ppb) over much of the eastern United States in the late summer and early fall of 2001, suggesting that estimates of both export and import of hemispheric pollution are more uncertain during this season when regional ozone production peaks. From an additional simulation with global atmospheric methane reduced by 20%, we infer that inclusion of anthropogenic methane emissions in a multi-species control strategy to reduce background ozone in the northern hemisphere could double the surface ozone decrease attained by controlling the conventional ozone precursors.

  1. Simple model for estimating dry deposition velocity of ozone and its destruction in a polluted nocturnal boundary layer

    NASA Astrophysics Data System (ADS)

    Lin, Ching-Ho; Lai, Chin-Hsing; Wu, Yee-Lin; Chen, Ming-Jen

    2010-11-01

    Determining the destructions of both ozone and odd oxygen, O x, in the nocturnal boundary layer (NBL) is important to evaluate the regional ozone budget and overnight ozone accumulation. This work develops a simple method to determine the dry deposition velocity of ozone and its destruction at a polluted nocturnal boundary layer. The destruction of O x can also be determined simultaneously. The method is based on O 3 and NO 2 profiles and their surface measurements. Linkages between the dry deposition velocities of O 3 and NO 2 and between the dry deposition loss of O x and its chemical loss are constructed and used. Field measurements are made at an agricultural site to demonstrate the application of the model. The model estimated nocturnal O 3 dry deposition velocities from 0.13 to 0.19 cm s -1, very close to those previously obtained for similar land types. Additionally, dry deposition and chemical reactions account for 60 and 40% of the overall nocturnal ozone loss, respectively; ozone dry deposition accounts for 50% of the overall nocturnal loss of O x, dry deposition of NO 2 accounts for another 20%, and chemical reactions account for the remaining 30%. The proposed method enables the use of measurements made in typical ozone field studies to evaluate various nocturnal destructions of O 3 and O x in a polluted environment.

  2. Anthropogenic emissions in Nigeria and implications for atmospheric ozone pollution: A view from space

    NASA Astrophysics Data System (ADS)

    Marais, E. A.; Jacob, D. J.; Wecht, K.; Lerot, C.; Zhang, L.; Yu, K.; Kurosu, T. P.; Chance, K.; Sauvage, B.

    2014-12-01

    Nigeria has a high population density and large fossil fuel resources but very poorly managed energy infrastructure. Satellite observations of formaldehyde (HCHO) and glyoxal (CHOCHO) reveal very large sources of anthropogenic nonmethane volatile organic compounds (NMVOCs) from the Lagos megacity and oil/gas operations in the Niger Delta. This is supported by aircraft observations over Lagos and satellite observations of methane in the Niger Delta. Satellite observations of carbon monoxide (CO) and nitrogen dioxide (NO2) show large seasonal emissions from open fires in December-February (DJF). Ventilation of central Nigeria is severely restricted at that time of year, leading to very poor ozone air quality as observed from aircraft (MOZAIC) and satellite (TES). Simulations with the GEOS-Chem chemical transport model (CTM) suggest that maximum daily 8-h average (MDA8) ozone exceeds 70 ppbv over the region on a seasonal mean basis, with significant contributions from both open fires (15-20 ppbv) and fuel/industrial emissions (7-9 ppbv). The already severe ozone pollution in Nigeria could worsen in the future as a result of demographic and economic growth, although this would be offset by a decrease in open fires.

  3. Generation of sub-micron particles and secondary pollutants from building materials by ozone reaction

    NASA Astrophysics Data System (ADS)

    Aoki, Taisuke; Tanabe, Shin-ichi

    This study reports results from two different experiments examining reactions between ozone and common building materials that can lead to the formation of secondary products and particulate-phase materials. Monitored species include sub-micron particles and volatile organic compounds (VOCs). In the first set of experiments, various building materials were placed in a 20 L stainless-steel chamber and exposed to ozone. The materials included expanded polystyrene, a natural rubber adhesive, cedar board, Japanese Cyprus board and silver fir board, as well as d-limonene, which is a known constituent of certain woods and cleaning products. The combination of ozone and either d-limonene, cedar board or cypress board produced sub-micron particles, with most of the increase occurring in the size range of 0.01- 0.5μm diameter. This was not observed for the other materials. In the case of cedar board, the consequence of ozone exposure over an extended time interval was monitored. As the exposure time elapsed, the concentration of sub-micron particles moderately decreased. In the second set of experiments, unwaxed or waxed plastic tiles were placed in the 20 L chamber and exposed to ozone. Sub-micron particles and organic compounds were measured during the course of the experiments. In the case of the waxed tile, the number of 0.01- 1.0μm size particles grew about 50×108particlesm-3; particle growth was significantly less for the un-waxed tile. For both the waxed and un-waxed tiles, the emission rates of heptane, nonane, nonanal, and decanal increased after ozone was added to the supply air. (However, it is not clear if some or all of this production was due to ozone reacting with the sorbent used for sampling or with compounds captured by the sorbent.) This study provides further evidence that ozone-initiated reactions with building materials can be a significant source of both sub-micron particles and secondary organic compounds in indoor environments.

  4. The potential impact on atmospheric ozone and temperature of increasing trace gas concentrations

    NASA Technical Reports Server (NTRS)

    Brasseur, G.; Derudder, A.

    1987-01-01

    The response of the atmosphere to emissions of chlorofluorocarbons (CFCs) and other chlorocarbons, and to increasing concentrations of other radiatively active trace gases such as CO2, CH4, and N2O is calculated by a coupled chemical-radiative transport one-dimensional model. It is shown that significant reductions in the ozone concentration and in the temperature are expected in the upper stratosphere as a result of increasing concentrations of active chlorine produced by photodecomposition of the CFCs. The ozone content is expected to increase in the troposphere, as a consequence of increasing concentrations of methane and nitrogen oxides. Due to enhanced greenhouse effects, the Earth's surface should warm up by several degrees. The amplitude and even the sign of future changes in the ozone column are difficult to predict as they are strongly scenario-dependent. An early detection system to prevent noticeable ozone changes as a result of increasing concentrations of source gases should thus be based on a continuous monitoring of the ozone amount in the upper stratosphere rather than on measurements of the ozone column only. Measurements of NOx, Clx, and HOx are also required for unambiguous trend detection and interpretation.

  5. Air Pollution Information System, Increasing Usability Through Automation

    ERIC Educational Resources Information Center

    Renner, Fred; And Others

    1971-01-01

    The conversion of an information system containing air pollution related documents from manual to automatic computer-based operation is outlined with emphasis on the increased services to system users which resulted from the conversion. (Author)

  6. Ozone exposure increases eosinophilic airway response induced by previous allergen challenge.

    PubMed

    Vagaggini, Barbara; Taccola, Mauro; Cianchetti, Silvana; Carnevali, Stefano; Bartoli, Maria Laura; Bacci, Elena; Dente, Federico L; Di Franco, Antonella; Giannini, Daniele; Paggiaro, Pier Luigi

    2002-10-15

    We investigated whether exposure to ozone (O(3)) 24 hours after an allergen challenge test would increase airway eosinophilia induced by allergen in subjects with mild asthma with late airway response. Twelve subjects with mild atopic asthma participated in a randomized, single-blind study. Subjects underwent allergen challenge 24 hours before a 2 hour exposure to O(3) (0.27 ppm) or filtered air. Pulmonary function was monitored during the allergen challenge and after the exposure to O(3) or air. Six hours later, induced sputum was collected. After 4 weeks, the experiment was repeated with the same subjects. Allergen induced a comparable late airway response in both challenges. O(3) exposure induced a significant decrease in FVC, FEV(1), and vital capacity, and was associated with a significant increase in total symptom score compared with air exposure. The percentage of eosinophils, but not the percentage of neutrophils, in induced sputum was significantly higher after exposure to O(3) than after exposure to air (p = 0.04). These results indicate that O(3) exposure after a late airway response elicited by allergen challenge can potentiate the eosinophilic inflammatory response induced by the allergen challenge itself in subjects with mild atopic asthma. This observation may help explain the synergistic effect of air pollution and allergen exposure in the exacerbation of asthma. PMID:12379550

  7. Ozone exposure of human tracheal epithelial cells inactivates cyclooxygenase and increases 15-HETE production.

    PubMed

    Alpert, S E; Walenga, R W

    1995-12-01

    We assessed the immediate and prolonged effects of ozone on arachidonic acid (AA) metabolism by primary cultured human tracheal epithelial (TE) cells. TE monolayers were exposed at a gas-fluid interface to air or 0.1, 0.25, or 0.5 ppm ozone (15 min air, then 45 min air/ozone), and serially collected effluents were analyzed by thin-layer chromatography (TLC) and/or high-performance liquid chromatography. Release of prostaglandin E2 (PGE2) and AA, but not 15-hydroxyeicosatetraenoic acid (15-HETE) or its metabolites, was detected from cultures prelabeled with [14C]AA. PGE2 production, measured by immunoassay, was nearly constant during air exposure. In contrast, PGE2 increased two- to threefold during the first 15-min exposure to all concentrations of ozone, but then progressively declined to 78 +/- 17, 57 +/- 12 (P < or = 0.05), and 45 +/- 15% (P < or = 0.05) of air controls after exposure to 0.1, 0.25, and 0.5 ppm ozone. Ozone did not induce a new spectrum of AA metabolites; only PGE2, lesser amounts of PGF2 alpha, and 15-HETE were present in media and cell extracts of air- or ozone-exposed cultures provided with 30 microM exogenous AA. However, cyclooxygenase (CO) activity (PGE2 produced from 30 microM AA) decreased to 82 +/- 9, 53 +/- 8 (P < or = 0.05), and 28 +/- 6% (P < or = 0.05) vs. controls after 0.1, 0.25, and 0.5 ppm ozone, whereas 15-HETE production was unimpaired. When cells exposed to 0.5 ppm ozone were maintained for up to 6 h in 5% CO2-air, spontaneous PGE2 production remained decreased and recovery of CO activity was extremely slow. TLC analysis of lipid extracts from [14C]AA-labeled cells revealed a nearly twofold increase in free intracellular 15-HETE, and hydrolysis of phospholipids demonstrated increased esterified 15-HETE. Exposure of human TE cells to ozone leads to a transient increase followed by prolonged decrease in PGE2 production and increased intracellular retention of 15-HETE. Loss of the bronchodilator and anti-inflammatory properties

  8. Subtropical Potential Vorticity Intrusion Drives Increasing Tropospheric Ozone over the Tropical Central Pacific

    PubMed Central

    Nath, Debashis; Chen, Wen; Graf, Hans-F.; Lan, Xiaoqing; Gong, Hainan; Nath, Reshmita; Hu, Kaiming; Wang, Lin

    2016-01-01

    Drawn from multiple reanalysis datasets, an increasing trend and westward shift in the number of Potential Vorticity intrusion events over the Pacific are evident. The increased frequency can be linked to a long-term trend in upper tropospheric equatorial westerly wind and subtropical jets during boreal winter to spring. These may be resulting from anomalous warming and cooling over the western Pacific warm pool and the tropical eastern Pacific, respectively. The intrusions brought dry and ozone rich air of stratospheric origin deep into the tropics. In the tropical upper troposphere, interannual ozone variability is mainly related to convection associated with El Niño/Southern Oscillation. Zonal mean stratospheric overturning circulation organizes the transport of ozone rich air poleward and downward to the high and midlatitudes leading there to higher ozone concentration. In addition to these well described mechanisms, we observe a long-term increasing trend in ozone flux over the northern hemispheric outer tropical (10–25°N) central Pacific that results from equatorward transport and downward mixing from the midlatitude upper troposphere and lower stratosphere during PV intrusions. This increase in tropospheric ozone flux over the Pacific Ocean may affect the radiative processes and changes the budget of atmospheric hydroxyl radicals. PMID:26868836

  9. Subtropical Potential Vorticity Intrusion Drives Increasing Tropospheric Ozone over the Tropical Central Pacific.

    PubMed

    Nath, Debashis; Chen, Wen; Graf, Hans-F; Lan, Xiaoqing; Gong, Hainan; Nath, Reshmita; Hu, Kaiming; Wang, Lin

    2016-01-01

    Drawn from multiple reanalysis datasets, an increasing trend and westward shift in the number of Potential Vorticity intrusion events over the Pacific are evident. The increased frequency can be linked to a long-term trend in upper tropospheric equatorial westerly wind and subtropical jets during boreal winter to spring. These may be resulting from anomalous warming and cooling over the western Pacific warm pool and the tropical eastern Pacific, respectively. The intrusions brought dry and ozone rich air of stratospheric origin deep into the tropics. In the tropical upper troposphere, interannual ozone variability is mainly related to convection associated with El Niño/Southern Oscillation. Zonal mean stratospheric overturning circulation organizes the transport of ozone rich air poleward and downward to the high and midlatitudes leading there to higher ozone concentration. In addition to these well described mechanisms, we observe a long-term increasing trend in ozone flux over the northern hemispheric outer tropical (10-25°N) central Pacific that results from equatorward transport and downward mixing from the midlatitude upper troposphere and lower stratosphere during PV intrusions. This increase in tropospheric ozone flux over the Pacific Ocean may affect the radiative processes and changes the budget of atmospheric hydroxyl radicals. PMID:26868836

  10. Subtropical Potential Vorticity Intrusion Drives Increasing Tropospheric Ozone over the Tropical Central Pacific

    NASA Astrophysics Data System (ADS)

    Nath, Debashis; Chen, Wen; Graf, Hans-F.; Lan, Xiaoqing; Gong, Hainan; Nath, Reshmita; Hu, Kaiming; Wang, Lin

    2016-02-01

    Drawn from multiple reanalysis datasets, an increasing trend and westward shift in the number of Potential Vorticity intrusion events over the Pacific are evident. The increased frequency can be linked to a long-term trend in upper tropospheric equatorial westerly wind and subtropical jets during boreal winter to spring. These may be resulting from anomalous warming and cooling over the western Pacific warm pool and the tropical eastern Pacific, respectively. The intrusions brought dry and ozone rich air of stratospheric origin deep into the tropics. In the tropical upper troposphere, interannual ozone variability is mainly related to convection associated with El Niño/Southern Oscillation. Zonal mean stratospheric overturning circulation organizes the transport of ozone rich air poleward and downward to the high and midlatitudes leading there to higher ozone concentration. In addition to these well described mechanisms, we observe a long-term increasing trend in ozone flux over the northern hemispheric outer tropical (10-25°N) central Pacific that results from equatorward transport and downward mixing from the midlatitude upper troposphere and lower stratosphere during PV intrusions. This increase in tropospheric ozone flux over the Pacific Ocean may affect the radiative processes and changes the budget of atmospheric hydroxyl radicals.

  11. Secondary Pollutants from Ozone Reaction with Ventilation Filters and Degradation of Filter Media Additives

    SciTech Connect

    Destaillats, Hugo; Chen, Wenhao; Apte, Michael; Li, Nuan; Spears, Michael; Almosni, Jérémie; Brunner, Gregory; Zhang, Jianshun; Fisk, William J.

    2011-05-01

    , rather than ozonolysis, is the main formaldehyde source in those filters. Emission rates of formaldehyde and acetaldehyde were not found to be large enough to substantially increase indoor concentrations in typical building scenarios. Nevertheless, ozone reactions on HVAC filters cannot be ignored as a source of low levels of indoor irritants.

  12. Air pollution and watershed research in the central Sierra Nevada of California: nitrogen and ozone.

    PubMed

    Hunsaker, Carolyn; Bytnerowicz, Andrzej; Auman, Jessica; Cisneros, Ricardo

    2007-01-01

    Maintaining healthy forests is the major objective for the Forest Service scientists and managers working for the U.S. Department of Agriculture. Air pollution, specifically ozone (O3) and nitrogenous (N) air pollutants, may severely affect the health of forest ecosystems in the western U.S. Thus, the monitoring of air pollution concentration and deposition levels, as well as studies focused on understanding effects mechanisms, are essential for evaluation of risks associated with their presence. Such information is essential for development of proper management strategies for maintaining clean air, clean water, and healthy ecosystems on land managed by the Forest Service. We report on two years of research in the central Sierra Nevada of California, a semi-arid forest at elevations of 1100-2700 m. Information on O3 and N air pollutants is obtained from a network of 18 passive samplers. We relate the atmospheric N concentration to N concentrations in streams, shallow soil water, and bulk deposition collectors within the Kings River Experimental Watershed. This watershed also contains an intensive site that is part of a recent Forest Service effort to calculate critical loads for N, sulfur, and acidity to forest ecosystems. The passive sampler design allows for extensive spatial measurements while the watershed experiment provides intensive spatial data for future analysis of ecosystem processes. PMID:17450299

  13. Catalytic ozonation of organic pollutants from bio-treated dyeing and finishing wastewater using recycled waste iron shavings as a catalyst: Removal and pathways.

    PubMed

    Wu, Jin; Ma, Luming; Chen, Yunlu; Cheng, Yunqin; Liu, Yan; Zha, Xiaosong

    2016-04-01

    Catalytic ozonation of organic pollutants from actual bio-treated dyeing and finishing wastewater (BDFW) with iron shavings was investigated. Catalytic ozonation effectively removed organic pollutants at initial pH values of 7.18-7.52, and the chemical oxygen demand (COD) level decreased from 142 to 70 mg·L(-1) with a discharge limitation of 80 mg·L(-1). A total of 100% and 42% of the proteins and polysaccharides, respectively, were removed with a decrease in their contribution to the soluble COD from 76% to 41%. Among the 218 organic species detected by liquid chromatography-mass spectrometry, 58, 77, 79 and 4 species were completely removed, partially removed, increased and newly generated, respectively. Species including textile auxiliaries and dye intermediates were detected by gas chromatography-mass spectrometry. The inhibitory effect decreased from 51% to 33%, suggesting a reduction in the acute toxicity. The enhanced effect was due to hydroxyl radical (OH) oxidation, co-precipitation and oxidation by other oxidants. The proteins were removed by OH oxidation (6%), by direct ozonation, co-precipitation and oxidation by other oxidants (94%). The corresponding values for polysaccharides were 21% and 21%, respectively. In addition, the iron shavings behaved well in successive runs. These results indicated that the process was favorable for engineering applications for removal of organic pollutants from BDFW. PMID:26849317

  14. The impact of air pollutant and methane emission controls on tropospheric ozone and radiative forcing: CTM calculations for the period 1990-2030

    NASA Astrophysics Data System (ADS)

    Dentener, F.; Stevenson, D.; Cofala, J.; Mechler, R.; Amann, M.; Bergamaschi, P.; Raes, F.; Derwent, R.

    2005-07-01

    To explore the relationship between tropospheric ozone and radiative forcing with changing emissions, we compiled two sets of global scenarios for the emissions of the ozone precursors methane (CH4), carbon monoxide (CO), non-methane volatile organic compounds (NMVOC) and nitrogen oxides (NOx) up to the year 2030 and implemented them in two global Chemistry Transport Models. The "Current Legislation" (CLE) scenario reflects the current perspectives of individual countries on future economic development and takes the anticipated effects of presently decided emission control legislation in the individual countries into account. In addition, we developed a "Maximum technically Feasible Reduction" (MFR) scenario that outlines the scope for emission reductions offered by full implementation of the presently available emission control technologies, while maintaining the projected levels of anthropogenic activities. Whereas the resulting projections of methane emissions lie within the range suggested by other greenhouse gas projections, the recent pollution control legislation of many Asian countries, requiring introduction of catalytic converters for vehicles, leads to significantly lower growth in emissions of the air pollutants NOx, NMVOC and CO than was suggested by the widely used and more pessimistic IPCC (Intergovernmental Panel on Climate Change) SRES (Special Report on Emission Scenarios) scenarios (Nakicenovic et al., 2000), which made Business-as-Usual assumptions regarding emission control technology. With the TM3 and STOCHEM models we performed several long-term integrations (1990-2030) to assess global, hemispheric and regional changes in CH4, CO, hydroxyl radicals, ozone and the radiative climate forcings resulting from these two emission scenarios. Both models reproduce broadly the observed trends in CO, and CH4 concentrations from 1990 to 2002.

    For the "current legislation" case, both models indicate an increase of the

  15. Observing lowermost tropospheric ozone pollution with a new multispectral synergic approach of IASI infrared and GOME-2 ultraviolet satellite measurements

    NASA Astrophysics Data System (ADS)

    Cuesta, Juan; Foret, Gilles; Dufour, Gaëlle; Eremenko, Maxim; Coman, Adriana; Gaubert, Benjamin; Beekmann, Matthias; Liu, Xiong; Cai, Zhaonan; Von Clarmann, Thomas; Spurr, Robert; Flaud, Jean-Marie

    2014-05-01

    Tropospheric ozone is currently one of the air pollutants posing greatest threats to human health and ecosystems. Monitoring ozone pollution at the regional, continental and global scale is a crucial societal issue. Only spaceborne remote sensing is capable of observing tropospheric ozone at such scales. The spatio-temporal coverage of new satellite-based instruments, such as IASI or GOME-2, offer a great potential for monitoring air quality by synergism with regional chemistry-transport models, for both inter-validation and full data assimilation. However, current spaceborne observations using single-band either UV or IR measurements show limited sensitivity to ozone in the atmospheric boundary layer, which is the major concern for air quality. Very recently, we have developed an innovative multispectral approach, so-called IASI+GOME-2, which combines IASI and GOME-2 observations, respectively in the IR and UV. This unique multispectral approach has allowed the observation of ozone plumes in the lowermost troposphere (LMT, below 3 km of altitude) over Europe, for the first time from space. Our first analyses are focused on typical ozone pollution events during the summer of 2009 over Europe. During these events, LMT ozone plumes at different regions are produced photo-chemically in the boundary layer, transported upwards to the free troposphere and also downwards from the stratosphere. We have analysed them using IASI+GOME-2 observations, in comparison with single-band methods (IASI, GOME-2 and OMI). Only IASI+GOME-2 depicts ozone plumes located below 3 km of altitude (both over land and ocean). Indeed, the multispectral sensitivity in the LMT is greater by 40% and it peaks at 2 to 2.5 km of altitude over land, thus at least 0.8 to 1 km below that for all single-band methods. Over Europe during the summer of 2009, IASI+GOME-2 shows 1% mean bias and 21% precision for direct comparisons with ozonesondes and also good agreement with CHIMERE model simulations

  16. Increased lung resistance after diesel particulate and ozone co-exposure not associated with enhanced lung inflammation in allergic mice*

    EPA Science Inventory

    Exposure to diesel exhaust particle matter (DEP) exacerbates asthma. Likewise, similar effects have been reported with exposure to the oxidizing air pollutant ozone (03) . Since levels of both pollutants in ambient air tend to be simultaneously elevated, we investigated the possi...

  17. Air Pollution

    MedlinePlus

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, ... Ozone, a gas, is a major part of air pollution in cities. When ozone forms air pollution, it's ...

  18. Ozone, Tropospheric

    NASA Technical Reports Server (NTRS)

    Fishman, Jack

    1995-01-01

    In the early part of the 20th century, ground-based and balloon-borne measurements discovered that most of atmosphere's ozone is located in the stratosphere with highest concentrations located between 15 and 30 km (9,3 and 18.6 miles). For a long time, it was believed that tropospheric ozone originated from the stratosphere and that most of it was destroyed by contact with the earth's surface. Ozone, O3, was known to be produced by the photo-dissociation of molecular oxygen, O2, a process that can only occur at wavelengths shorter than 242 nm. Because such short-wave-length radiation is present only in the stratosphere, no tropospheric ozone production is possible by this mechanism. In the 1940s, however, it became obvious that production of ozone was also taking place in the troposphere. The overall reaction mechanism was eventually identified by Arie Haagen-Smit of the California Institute of Technology, in highly polluted southern California. The copious emissions from the numerous cars driven there as a result of the mass migration to Los Angeles after World War 2 created the new unpleasant phenomenon of photochemical smog, the primary component of which is ozone. These high levels of ozone were injuring vegetable crops, causing women's nylons to run, and generating increasing respiratory and eye-irritation problems for the populace. Our knowledge of tropospheric ozone increased dramatically in the early 1950s as monitoring stations and search centers were established throughout southern California to see what could be done to combat this threat to human health and the environment.

  19. Characterizing ozone pollution in a petrochemical industrial area in Beijing, China: a case study using a chemical reaction model.

    PubMed

    Wei, Wei; Lv, Zhaofeng; Cheng, Shuiyuan; Wang, Lili; Ji, Dongsheng; Zhou, Ying; Han, Lihui; Wang, Litao

    2015-06-01

    This study selected a petrochemical industrial complex in Beijing, China, to understand the characteristics of surface ozone (O3) in this industrial area through the on-site measurement campaign during the July-August of 2010 and 2011, and to reveal the response of local O3 to its precursors' emissions through the NCAR-Master Mechanism model (NCAR-MM) simulation. Measurement results showed that the O3 concentration in this industrial area was significantly higher, with the mean daily average of 124.6 μg/m(3) and mean daily maximum of 236.8 μg/m(3), which are, respectively, 90.9 and 50.6 % higher than those in Beijing urban area. Moreover, the diurnal O3 peak generally started up early in 11:00-12:00 and usually remained for 5-6 h, greatly different with the normal diurnal pattern of urban O3. Then, we used NCAR-MM to simulate the average diurnal variation of photochemical O3 in sunny days of August 2010 in both industrial and urban areas. A good agreement in O3 diurnal variation pattern and in O3 relative level was obtained for both areas. For example of O3 daily maximum, the calculated value in the industrial area was about 51 % higher than in the urban area, while measured value in the industrial area was approximately 60 % higher than in the urban area. Finally, the sensitivity analysis of photochemical O3 to its precursors was conducted based on a set of VOCs/NOx emissions cases. Simulation results implied that in the industrial area, the response of O3 to VOCs was negative and to NOx was positive under the current conditions, with the sensitivity coefficients of -0.16~-0.43 and +0.04~+0.06, respectively. By contrast, the urban area was within the VOCs-limitation regime, where ozone enhancement in response to increasing VOCs emissions and to decreasing NOx emission. So, we think that the VOCs emissions control for this petrochemical industrial complex will increase the potential risk of local ozone pollution aggravation, but will be helpful to inhibit the

  20. Biogenic 2-methyl-3-buten-2-ol increases regional ozone and HOx sources

    NASA Astrophysics Data System (ADS)

    Steiner, Allison L.; Tonse, Shaheen; Cohen, Ronald C.; Goldstein, Allen H.; Harley, Robert A.

    2007-08-01

    We present the first regional-scale chemistry simulation investigating the effects of biogenic 2-methyl-3-buten-2-ol (MBO) emissions on air quality. In a central California model domain, MBO emissions have a distinctly different regional pattern than isoprene but have similar daily maxima of about 5 mg m-2 hr-1. MBO oxidation causes an increase in ozone, formaldehyde, acetone and consequently hydrogen radical production (PHOx). The addition of MBO increases the daily maximum ozone as much as 3 ppb near source regions (2-5% in rural areas) and as much as 1 ppb in the Central Valley. Formaldehyde concentrations increase by as much as 1 ppb (40%) over the Sierra Nevada Mountains, increasing the production of HOx by 10-20% and accelerating local chemistry. This indicates that inclusion of MBO and other biogenic oxygenated emissions in regional simulations in the western and southeastern United States is essential for accurate representation of ozone and HOx.

  1. Increased transforming growth factor beta 1 expression mediates ozone-induced airway fibrosis in mice

    PubMed Central

    Katre, Ashwini; Ballinger, Carol; Akhter, Hasina; Fanucchi, Michelle; Kim, Dae-Kee; Postlethwait, Edward; Liu, Rui-Ming

    2013-01-01

    Ozone (O3), a commonly encountered environmental pollutant, has been shown to induce pulmonary fibrosis in different animal models; the underlying mechanism, however, remains elusive. To investigate the molecular mechanism underlying O3-induced pulmonary fibrosis, 6- to 8-week-old C57BL/6 male mice were exposed to a cyclic O3 exposure protocol consisting of 2 days of filtered air and 5 days of O3 exposure (0.5 ppm, 8 h/day) for 5 and 10 cycles with or without intraperitoneal injection of IN-1233, a specific inhibitor of the type 1 receptor of transforming growth factor beta (TGF-β), the most potent profibrogenic cytokine. The results showed that O3 exposure for 5 or 10 cycles increased the TGF-β protein level in the epithelial lining fluid (ELF), associated with an increase in the expression of plasminogen activator inhibitor 1 (PAI-1), a TGF-β-responsive gene that plays a critical role in the development of fibrosis under various pathological conditions. Cyclic O3 exposure also increased the deposition of collagens and alpha smooth muscle actin (α-SMA) in airway walls. However, these fibrotic changes were not overt until after 10 cycles of O3 exposure. Importantly, blockage of the TGF-β signaling pathway with IN-1233 suppressed O3-induced Smad2/3 phosphorylation, PAI-1 expression, as well as collagens and α-SMA deposition in the lung. Our data demonstrate for the first time that O3 exposure increases TGF-β expression and activates TGF-β signaling pathways, which mediates O3-induced lung fibrotic responses in vivo. PMID:21689010

  2. Arctic stratospheric ozone depletion and increased UVB radiation: potential impacts to human health.

    PubMed

    De Fabo, Edward C

    2005-12-01

    Contrary to popular belief, stratospheric ozone depletion, and the resultant increase in solar UV-B (280-320 nm), are unlikely to fully recover soon. Notwithstanding the success of the Montreal Protocol in reducing the amount of ozone destroying chemicals into the stratosphere, the life-times of these compounds are such that even with full compliance with the Protocol by all countries, it will be decades before stratospheric ozone could return to pre-1980 levels. This raises the question, therefore, of what will happen to biological processes essential to the maintenance of life on earth which are sensitive to damage by increased UV-B radiation, particularly those involved with human health? The polar regions, because of the vagaries of climate and weather, are the bellwether for stratospheric ozone depletion and will, therefore, be the first to experience impacts due to increases in solar UV-B radiation. The impacts of these are incompletely understood and cannot be predicted with certainty. While some UV-B impacts on human health are recognized, much is unknown, unclear and uncertain. Thus, this paper attempts, as a first approximation, to point out potential impacts to the health and welfare of human inhabitants of the Arctic due to increased solar UV-B radiation associated with stratospheric ozone depletion. As will be seen, much more data is critically needed before adequate risk assessment can occur. PMID:16440613

  3. Pollution prevention and stratospheric ozone layer protection through innovative procurement methods: The chiller basic ordering agreement

    SciTech Connect

    Snyder, R.E.; Coyle, J.E.; Guice, J.R. Jr.; Kale, S.H.

    1997-12-31

    The Department of Energy (DOE) and the General Services Administration (GSA) have devised an affirmative procurement vehicle to encourage replacement of chillers using chlorofluorocarbon (CFC) refrigerants harmful to the Earth`s stratospheric ozone layer. Procurement selections are based on lowest life cycle cost. Linked with a DOE-developed Equipment Specification for 100 to 2,000 ton chillers that is crafted broadly enough to address about 90% of the Federal water-cooled chiller procurements, the Basic Ordering Agreement (BOA) process significantly reduces redundant design, procurement, and other costs associated with Federal purchasing of chillers through the cutting of red tape associated with buying industrial equipment. While serving to minimize the release of ozone-depleting substances (about six million tons of CFCs) to the environment, the installation of more energy-efficient chillers also promotes environmental stewardship in that reduced energy consumption translates into reduced emissions of noxious gases from the generation of electricity. Use of the BOA to purchase chillers consistent with Federal energy efficiency standards will contribute to reductions of almost a million tons annually of nitrous oxides, sulfur dioxide, and other pollutants from power plant emissions. Reduced electricity consumption of approximately 1.5 billion kilowatt hours per year by switching to more efficient chillers equates to an annual monetary savings of $75 million.

  4. Radiative forcing perturbation due to observed increases in tropospheric ozone at Hohenpeissenberg

    NASA Technical Reports Server (NTRS)

    Wang, Wei-Chyung; Bojkov, Rumen D.; Zhuang, Yi-Cheng

    1994-01-01

    The effect on surface temperature due to changes in atmospheric O3 depends highly on the latitude where the change occurs. Previous sensitivity calculations indicate that ozone changes in the upper troposphere and lower stratosphere are more effective in causing surface temperature change (Wang et al., 1980). Long term ground-based observations show that tropospheric ozone, especially at the tropopause region, has been increasing at middle and high latitudes in the Northern Hemisphere (NATO, 1988; Quadrennial Ozone Symposium, 1992). These increases will enhance the greenhouse effect and increase the radiative forcing to the troposphere-surface system, which is opposite to the negative radiative forcing calculated from the observed stratospheric ozone depletion recently reported in WMO (1992). We used more than two thousands regularly measured ozonesondes providing reliable vertical O3 distribution at Hohenpeissenberg (47N; 11E) for the 1967-1990 to study the instantaneous solar and longwave radiative forcing the two decades 1971-1990 and compare the forcing with those caused by increasing CO2, CH4, N2O, and CFCs. Calculations are also made to compare the O3 radiative forcing between stratospheric depletion and tropospheric increase. Results indicate that the O3 changes will induce a positive radiative forcing dominated by tropospheric O3 increase and the magnitude of the forcing is comparable to that due to CO2 increases during the two decades. The significant implications of the tropospheric O3 increase to the global climate are discussed.

  5. Long-term trends and weekday-to-weekend differences in ozone, its precursors, and other secondary pollutants in Atlanta, Georgia

    NASA Astrophysics Data System (ADS)

    Pollack, I. B.; Ryerson, T. B.; Baumann, K.; Edgerton, E. S.; De Gouw, J. A.; Gilman, J.; Graus, M.; Holloway, J.; Lerner, B. M.; Neuman, J. A.; Roberts, J. M.; Veres, P. R.; Warneke, C.; Trainer, M.; Parrish, D. D.

    2013-12-01

    In an environment rich in biogenic volatile organic compounds (VOCs), decreasing concentrations of ozone (-1.3 % yr-1) and other secondary pollutants (-8.2 % yr-1 for nitric acid, HNO3; and -7.9 % yr-1 for peroxyacetyl nitrate, PAN) in Atlanta, Georgia over the past fifteen years are primarily attributed to decreases in local emissions of nitrogen oxides (NOx=NO+NO2). Large reductions in abundances of NOx in the Southeast U.S. over the years (-8.0 % yr-1 for total reactive nitrogen, NOy) are the direct result of control strategies implemented to reduced emissions from electric-power generation plants and on-road motor vehicles. Here, we compile an extensive historical data set of trace gas measurements spanning fifteen years between 1998 and 2013 from a surface monitoring network site in downtown Atlanta (i.e. the SEARCH network Jefferson Street site) and research aircraft (e.g. the 2013 Southeast Atmosphere Study and 1999 Southern Oxidants Study aboard the NOAA P-3 aircraft). With this data set we confirm and extend long-term trends and weekday-to-weekend differences in ozone, its precursors, and other secondary pollutants during summertime in Atlanta. Long-term changes in abundances and enhancement ratios of secondary oxidation products indicate changes in pollutant formation chemistry in Atlanta resulting from the significant decrease in NOx precursor emissions over the past fifteen years. The most noteworthy changes include: 1) an increase in enhancement ratios of odd oxygen (Ox=O3+NO2) to (PAN+HNO3) of +5.5 % yr-1 indicating an increase in ozone production efficiency by a factor of 2 over the fifteen year period, 2) no significant change in the fraction of oxidized NOx out of NOy over time indicating little change in the extent of photochemical processing of the NOx emissions, and 3) a flip in observed ozone concentrations from higher average ozone on weekends to higher average ozone on weekdays after 2004. The observations for Atlanta will also be contrasted

  6. Ozone

    SciTech Connect

    Not Available

    1988-06-01

    The author discusses the debate over whether concern about a hole in the ozone layer in Antarctic is real or science fiction. There is a growing consensus that efforts must be taken to protect the ozone layer. The issue now is not whether chlorofluorocarbons (CFCs) should be controlled and regulated but how much and how soon. The United States has urged that the production of dangerous CFCs, and any other chemicals that affect the ozone layer, be restricted immediately to current levels and that their use be reduced 95 percent over the next decade. The American position was too strong for many European nations and the Japanese. Negotiations at an international conference on the matter broke down. The breakdown is due in part to a more acute concern for environmental matters in the United States than exists in many countries. Meanwhile CFCs are linked to another environmental problem that equally threatens the world - the Greenhouse Effect. The earth is in a natural warming period, but man could be causing it to become even warmer. The Greenhouse Effect could have a catastrophic impact on mankind, although nothing has been proven yet.

  7. Indomethacin does not inhibit the ozone-induced increase in bronchial responsiveness in human subjects

    SciTech Connect

    Ying, R.L.; Gross, K.B.; Terzo, T.S.; Eschenbacher, W.L. )

    1990-10-01

    Exposure of human subjects to sufficiently high levels of ozone can result in reversible changes in lung function (restrictive in nature) and increases in nonspecific airway responsiveness. Several studies have implicated products of cyclooxygenase metabolism in the mediation of these changes. The purpose of this study was to determine if indomethacin (a cyclooxygenase inhibitor) would alter the changes in the ozone-induced increase in responsiveness to methacholine or the ozone-induced decrease in lung function. Thirteen male subjects underwent three randomly assigned 2-h exposure to 0.4 ppm ozone with alternating 15-min periods of rest and exercise on a cycle ergometer (30 L/min/m2, body surface area). For the 4 days before each of the exposures, the subjects received either indomethacin (150 mg/day) or placebo, or no modification. Of the 13 subjects, only seven had both detectable indomethacin serum levels on the indomethacin Study Day and a significant increase in bronchial responsiveness to methacholine on the No Medication Day. For this group of seven subjects, we found that indomethacin did not alter the ozone-induced increase in bronchial responsiveness to methacholine (decrease in PC100SRaw for the different study days: no medication, -78.4 +/- 5.3% (mean +/- SEM); placebo, -48.9 +/- 12.2%; indomethacin, -64.5 +/- 6.3%; p greater than 0.2), although indomethacin did attenuate the ozone-induced decrease in lung function. The decrease in the FEV1 for the different study days was as follows: no medication, -20.7 +/- 5.0% (mean +/- SEM); placebo, -19.2 +/- 6.3%; indomethacin, -4.8 +/- 3.7% (p less than 0.001).

  8. Ecosystem Consequences of Prolonged Ozone Pollution in the Southern Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Cousins, S.; Battles, J. J.; Cisneros, R.; Esperanza, A.; Swenson, D.

    2015-12-01

    While acute O3 exposure is widely known to damage plant tissues, the chronic effects on long lived organisms such as trees remain unclear. In the southern Sierra Nevada, O3 pollution has afflicted pine-dominated forests for over 40 years. Here we report the results of a long-term study of O3 impact on tree injury, growth, and mortality. Our study employed a network of forest plots along a gradient of O3 pollution with recurring measurements from 1991-2012. Over the same period and locations, summer O3 was monitored via partnership with USNPS and USFS, making this one of the longest known ecosystem studies of O3 pollution and its effects. We found that exposure at the most polluted sites declined 33%, from a W126 index of 20.12 ppm-hrs in 1992 to 13.5 ppm-hrs in 2012. The severity of foliar pollution damage at these sites also declined, from 43.9 on the 0-100 Ozone Injury Index (OII) scale to 34.2, a drop of 22%. At locations with lower O3 exposure, damage declined from OII of 16.9 to 9.2. Mean annual tree mortality rates over the 20 year period, calculated with a profile likelihood approach, were 0.5%/yr (95% CI 0.3 to 0.8 %/yr). This rate is similar to that of healthy canopy trees in similar unpolluted stands. However, low and declining tree growth rates reveal possible ecosystem impacts of prolonged exposure to pollution. Across affected sites, mean relative growth rates were 1.1%/yr in 1991-2000, and just 0.9%/yr in 2000-2011, a decline of 15.6% in the second decade. Initial analyses suggest that tree damage is positively correlated with June-October O3, as indicated by previous studies. Further analysis will explore the drivers of ecosystem impacts and roles of other natural and anthropogenic stressors, including variation in climatic water deficit. Understanding the consequences of prolonged O3 exposure on both individual trees and complex forest ecosystems helps identify the hidden environmental costs of tropospheric O3 and potential benefits of cleaner air.

  9. Ozone-CO relationships in plumes carrying North American pollution and boreal biomass burning emissions through the central North Atlantic lower free troposphere

    NASA Astrophysics Data System (ADS)

    Honrath, R. E.; Owen, R. C.; Val Martín, M.; Reid, J. S.; Lapina, K.; Kleissl, J. P.; Fialho, P.

    2004-12-01

    North American anthropogenic activities and biomass burning are both significant sources of nitrogen oxides emissions. Recent studies have indicated changes in the NOx\\ to CO emission ratio in U.S. urban regions, and amplified response to global climate change in boreal regions is expected to result (and may already have resulted) in increased frequency of large boreal fires. The PICO-NARE mountaintop (2.2~km altitude) station in the Azores Islands is well situated to probe the overall impact of both processes on lower tropospheric O3\\ levels. Measurements made there during the summers of 2001--2003 have been analyzed to assess these impacts. The relationship between CO and O3\\ in North American pollution outflow was found to be significantly steeper than expected, with a slope (d[O3]/d[ CO]) averaging 1.0 ppbv/ppbv, implying significantly more ozone formation per unit CO emissions than observed in prior measurements over eastern North America and in the nearby downwind region. Potential reasons for this difference, including changes in eastern North American emissions of ozone precursors, airmass history, and NOx,y\\ export, will be discussed. In contrast to the moderate CO enhancements in North American outflow, we find that boreal fires in Siberia and North America result in the highest CO levels observed, produce ozone enhancements comparable to those in North American pollution outflow, and play a major role in interannual variability of CO. It has been suggested that the magnitude of boreal fires may be increasing as a result of changing boreal climate; these findings imply that such an increase could significantly impact hemispheric scale ozone, CO, and nitrogen oxides levels.

  10. Ozone increases susceptibility to antigen inhalation in allergic dogs

    SciTech Connect

    Yanai, M.; Ohrui, T.; Aikawa, T.; Okayama, H.; Sekizawa, K.; Maeyama, K.; Sasaki, H.; Takishima, T. )

    1990-06-01

    To determine whether O3 exposure increased airway responsiveness to antigen inhalation, we studied airway responsiveness to acetylcholine (ACh) and Ascaris suum antigen (AA) before and after O3 in dogs both sensitive and insensitive to AA. Airway responsiveness was assessed by determining the provocative concentration of ACh and AA aerosols that increased respiratory resistance (Rrs) to twice the base-line value. O3 (3 parts per million) increased airway responsiveness to ACh in dogs both sensitive and insensitive to AA, and it significantly decreased the ACh provocation concentration from 0.541 +/- 0.095 to 0.102 +/- 0.047 (SE) mg/ml (P less than 0.01; n = 10). AA aerosols, even at the highest concentration in combination with O3, did not increase Rrs in dogs insensitive to AA. However, O3 increased airway responsiveness to AA in AA-sensitive dogs and significantly decreased log AA provocation concentration from 2.34 +/- 0.22 to 0.50 +/- 0.17 (SE) log protein nitrogen units/ml (P less than 0.01; n = 7). O3-induced hyperresponsiveness to ACh returned to the base-line level within 2 wk, but hyperresponsiveness to AA continued for greater than 2 wk. The plasma histamine concentration after AA challenge was significantly higher after than before O3 (P less than 0.01). Intravenous infusion of OKY-046 (100 micrograms.kg-1.min-1), an inhibitor of thromboxane synthesis, inhibited the O3-induced increase in responsiveness to ACh, but it had no effects on the O3-induced increase in responsiveness to AA and the increase in the plasma histamine concentration. These results suggest that O3 increases susceptibility to the antigen in sensitized dogs via a different mechanism from that of O3-induced muscarinic hyperresponsiveness.

  11. Artificial light pollution increases nocturnal vigilance in peahens

    PubMed Central

    Chisholm, Sarah; Byerley, Sydney D; Coy, Jeanee R.; Aziz, Aisyah; Wolf, Jamie A.; Gnerlich, Amanda C.

    2015-01-01

    Artificial light pollution is drastically changing the sensory environments of animals. Even though many animals are now living in these changed environments, the effect light pollution has on animal behavior is poorly understood. We investigated the effect of light pollution on nocturnal vigilance in peahens (Pavo cristatus). Captive peahens were exposed to either artificial lighting or natural lighting at night. We employed a novel method to record their vigilance behavior by attaching accelerometers to their heads and continuously monitoring their large head movements. We found that light pollution significantly increases nocturnal vigilance in peahens. Furthermore, the birds faced a trade-off between vigilance and sleep at night: peahens that were more vigilant spent less time sleeping. Given the choice, peahens preferred to roost away from high levels of artificial lighting but showed no preference for roosting without artificial lighting or with low levels of artificial lighting. Our study demonstrates that light pollution can have a substantial impact on animal behavior that can potentially result in fitness consequences. PMID:26339552

  12. Springtime variability of lower tropospheric ozone over Eastern Asia: contributions of cyclonic activity and pollution as observed from space with IASI

    NASA Astrophysics Data System (ADS)

    Dufour, G.; Eremenko, M.; Cuesta, J.; Doche, C.; Foret, G.; Beekmann, M.; Cheiney, A.; Wang, Y.; Cai, Z.; Liu, Y.; Takigawa, M.; Kanaya, Y.; Flaud, J.-M.

    2015-03-01

    We use satellite observations from IASI (Infrared Atmospheric Sounding Interferometer) on board the MetOp-A satellite to evaluate the springtime daily variability of lower tropospheric ozone at the scale of Eastern Asia. Lower tropospheric partial columns from surface to 6 km are retrieved from IASI with a maximum of sensitivity between 3 and 4 km. We focus our analysis on the month of May 2008 for which tropospheric ozone presents typically amongst the largest concentrations along the year. We combine IASI observations with meteorological reanalyses from ERA-Interim in order to investigate the processes that control the spatial and temporal distribution of lower tropospheric ozone, especially in case of ozone enhancement. The succession of low- and high-pressure systems drives the day-to-day variability of lower tropospheric ozone over North East Asia. The analysis of two episodes with ozone enhancement at the synoptic scale of East Asia shows that the reversible subsiding and ascending ozone transfers in the UTLS region occurring in the vicinity of low-pressure systems and related to tropopause height affect the upper and lower tropospheric ozone over large regions, especially north to 40° N and largely explain the ozone enhancement observed with IASI for these latitudes. Irreversible downward transport of ozone-rich air masses from the UTLS to the lower troposphere occurs more locally. Its contribution to the lower tropospheric ozone column is difficult to dissociate from the tropopause perturbations induced by the weather systems. For regions south to 40° N, a significant correlation between lower tropospheric ozone and carbon monoxide (CO) observations from IASI has been found, especially over North China Plain (NCP). Considering carbon monoxide observations as pollutant tracer, the O3-CO correlation indicates that the photochemical production of ozone from primary pollutants emitted over such large polluted regions significantly contributes to the ozone

  13. Hybrid modelling approach for effective simulation of reactive pollutants like Ozone

    NASA Astrophysics Data System (ADS)

    Sharma, Sumit; Sharma, Prateek; Khare, Mukesh

    2013-12-01

    Prediction of air quality is an important component of any air quality management programme. Broadly, two approaches are used to predict the ambient air quality - the deterministic and the statistical approach, with each approach having its own merits and demerits. While the models based on the deterministic approach accurately predict the concentrations of air pollutants in the middle percentile range, the statistical models provide a better estimate of concentrations in the extreme percentile ranges. However, the statistical models are site specific and are not able generate ‘what-if' scenarios; the deterministic models on the other hand are general in character and useful in creating alternative scenarios. An alternative approach - hybrid modelling is a technique which aggregates the benefits of the two techniques and predicts the ‘entire range' of the distribution. While in the past there were attempts to predict the concentrations of inert pollutants using hybrid modelling approach, this paper shows the hybrid model applications for reactive secondary pollutants like ground level Ozone (GLO). This study presents the development of a hybrid model that concatenates the results of CMAQ (community multi-scale air quality model) as its deterministic component with statistical distribution model (based on the specific area category and timeframe) to predict the entire range of GLO concentrations. Predictions have been made using both purely deterministic and hybrid approaches at a receptor location near a major traffic intersection. The performance of the model has been found to improve from an index of agreement from 0.77 (deterministic model) to 0.91 (hybrid model). In order to assess the predictive capability of the hybrid approach, the model has been tested at an entirely different location for different set of temporal data. The results show an improvement in the predictions using the hybrid model over the deterministic model.

  14. The possible influences of the increasing anthropogenic emissions in India on tropospheric ozone and OH

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Li, Weiliang; Zhou, Xiuji; Isaksen, I. S. A.; Sundet, J. K.; He, Jinhai

    2003-11-01

    A 3-D chemical transport model (OSLO CTM2) is used to investigate the influences of the increasing anthropogenic emission in India. The model is capable of reproducing the observational results of the INDOEX experiment and the measurements in summer over India well. The model results show that when NO x and CO emissions in India are doubled, ozone concentration increases, and global average OH decreases a little. Under the effects of the Indian summer monsoon, NO x and CO in India are efficiently transported into the middle and upper troposphere by the upward current and the convective activities so that the NO x , CO, and ozone in the middle and upper troposphere significantly increase with the increasing NO x and CO emissions. These increases extensively influence a part of Asia, Africa, and Europe, and persist from June to September.

  15. Nitryl chloride as a 'new' radical source and its role in production of ozone in polluted troposphere: an overview of the results from four field campaigns in China

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Tham, Yee Jun; Xue, Likun; Wang, Zhe; Wang, Xinfeng; Wang, Weihao; Wang, Hao; Yun, Hui; Lu, Keding; Shao, Min; Louie, Peter K. K.; Blake, Donald R.; Brown, Steven S.; Zhang, Yuanhang

    2016-04-01

    Nitryl chloride (ClNO2) - a trace gas produced from heterogeneous reactions of dinitrogen pentoxide (N2O5) on aerosols containing chorine - can significantly affect radical budget and concentrations of ozone and other secondary pollutants. However, the abundance, formation kinetics, and impact of ClNO2are not fully understood under different environmental conditions. This presentation gives an overview of recent field campaigns of ClNO2 and related chemical constituents in China, including one at a mountain top (957 m a.s.l) in Hong Kong of South China in winter 2013 and three in North China (urban Ji'nan, semi-rural Wangdu, and Mt Tai (1534 m a.s.l)) in summer 2014. ClNO2 and N2O5 were measured with a chemical ionization mass spectrometry (CIMS) system with iodide as the primary ions. Ambient concentrations of several hundreds ppts and up to 4.7 ppbv of ClNO2were observed in these locations, suggesting existence of elevated ClNO2 in both coastal and inland atmospheres of China. Measurements in North China exhibited generally low concentrations of N2O5, indicative of its fast uptake of on aerosols under aerosol and humid conditions. Indications of anthropogenic sources of chloride were observed at all these sites. The impact of photolysis of ClNO2 on radical budget and ozone enhancement was assessed with a MCM model which was updated with detailed chlorine chemistry and constrained by measurement data for the southern and a northern site. The results show that the ClNO2 could increase ozone production by 2-16% in the following day. Overall, our study re-affirms the need to include ClNO2 related reactions in photochemical models for prediction of ground-level ozone in polluted environments.

  16. [Effects of ozone pollution on the accumulation and distribution of dry matter and biomass carbon of different varieties of wheat].

    PubMed

    Kou, Tai-ji; Yu, Wei-wei; Zhu, Jian-guo; Zhu, Xin-kai

    2012-08-01

    Effects of surface ozone pollution on the terrestrial ecosystem and plant growth have drawn great attention. With the support of the free-air ozone concentration enrichment (O3-FACE) system located in Jiangdu City, Jiangsu Province, the effects of elevated atmospheric ozone (pO3) on the accumulation and distribution of dry matter and biomass carbon as well as the C/N ratio of crop residue of five wheat (Tritcium aestivum L.) varieties (Yangmai 15, Yangmai 16, Yannong 19, Yangfumai 2 and Jiaxing 002) were investigated in the Yangtze River delta, the target pO3 of which was 50% higher than the ambient pO3. The results showed that the accumulation and distribution of different wheat varieties responded differently to elevated pO3. Elevated pO3 decreased the biomass of Yangmai 15 and Jiaxing 002, increased the Yangfumai 2 biomass, and had no effects on the total biomass of Yangmai 16 and Yannog 19, among which a significant difference was found for Jiaxing 002. Elevated pO3 significantly increased the ratios of root to shoot for Yangmai 15 and Jiaxing 002 and significantly decreased the root/shoot ratios of Yannong 19 and Yangfumai 2, but had no effect on Yangmai 16, leading to an obvious difference in dry matter distributed among aboveground and belowground parts. O3 enrichment decreased the wheatear weight of Yangmai 15, Yangmai 16 and Jiaxing 002, and had no effect on that of Yannong 19 and Yangfumai 2. Elevated pO3 significantly decreased the proportion of grain weight to ear weight by 8.2%-15.5% for Jiaxing 002, Yannong 19 and Yangfumai 2, whereas the proportion was increased for Yangmai 15 and not affected for Yangmai 16, suggesting that O3 enrichment lead to different decreases in the yield of Jiaxing 002, Yannong 19, Yangfumai 2 and Yangmai 16. Elevated pO3 significantly increased the straw carbon of Yannong 19 and Yanfumai 2 by 14.1%-22.9% and significantly decreased the straw C/N ratio by 10.9%-29.1%. The rising pO3 significantly decreased the straw carbon of

  17. Multi-model Estimates of Intercontinental Source-Receptor Relationships for Ozone Pollution

    SciTech Connect

    Fiore, A M; Dentener, F J; Wild, O; Cuvelier, C; Schultz, M G; Hess, P; Textor, C; Schulz, M; Doherty, R; Horowitz, L W; MacKenzie, I A; Sanderson, M G; Shindell, D T; Stevenson, D S; Szopa, S; Van Dingenen, R; Zeng, G; Atherton, C; Bergmann, D; Bey, I; Carmichael, G; Collins, W J; Duncan, B N; Faluvegi, G; Folberth, G; Gauss, M; Gong, S; Hauglustaine, D; Holloway, T; Isaksen, I A; Jacob, D J; Jonson, J E; Kaminski, J W; Keating, T J; Lupu, A; Marmer, E; Montanaro, V; Park, R; Pitari, G; Pringle, K J; Pyle, J A; Schroeder, S; Vivanco, M G; Wind, P; Wojcik, G; Wu, S; Zuber, A

    2008-10-16

    Understanding the surface O{sub 3} response over a 'receptor' region to emission changes over a foreign 'source' region is key to evaluating the potential gains from an international approach to abate ozone (O{sub 3}) pollution. We apply an ensemble of 21 global and hemispheric chemical transport models to estimate the spatial average surface O{sub 3} response over East Asia (EA), Europe (EU), North America (NA) and South Asia (SA) to 20% decreases in anthropogenic emissions of the O{sub 3} precursors, NO{sub x}, NMVOC, and CO (individually and combined), from each of these regions. We find that the ensemble mean surface O{sub 3} concentrations in the base case (year 2001) simulation matches available observations throughout the year over EU but overestimates them by >10 ppb during summer and early fall over the eastern U.S. and Japan. The sum of the O{sub 3} responses to NO{sub x}, CO, and NMVOC decreases separately is approximately equal to that from a simultaneous reduction of all precursors. We define a continental-scale 'import sensitivity' as the ratio of the O{sub 3} response to the 20% reductions in foreign versus 'domestic' (i.e., over the source region itself) emissions. For example, the combined reduction of emissions from the 3 foreign regions produces an ensemble spatial mean decrease of 0.6 ppb over EU (0.4 ppb from NA), less than the 0.8 ppb from the reduction of EU emissions, leading to an import sensitivity ratio of 0.7. The ensemble mean surface O{sub 3} response to foreign emissions is largest in spring and late fall (0.7-0.9 ppb decrease in all regions from the combined precursor reductions in the 3 foreign regions), with import sensitivities ranging from 0.5 to 1.1 (responses to domestic emission reductions are 0.8-1.6 ppb). High O{sub 3} values are much more sensitive to domestic emissions than to foreign emissions, as indicated by lower import sensitivities of 0.2 to 0.3 during July in EA, EU, and NA when O{sub 3} levels are typically highest

  18. Multimodel estimates of intercontinental source-receptor relationships for ozone pollution

    NASA Astrophysics Data System (ADS)

    Fiore, A. M.; Dentener, F. J.; Wild, O.; Cuvelier, C.; Schultz, M. G.; Hess, P.; Textor, C.; Schulz, M.; Doherty, R. M.; Horowitz, L. W.; MacKenzie, I. A.; Sanderson, M. G.; Shindell, D. T.; Stevenson, D. S.; Szopa, S.; van Dingenen, R.; Zeng, G.; Atherton, C.; Bergmann, D.; Bey, I.; Carmichael, G.; Collins, W. J.; Duncan, B. N.; Faluvegi, G.; Folberth, G.; Gauss, M.; Gong, S.; Hauglustaine, D.; Holloway, T.; Isaksen, I. S. A.; Jacob, D. J.; Jonson, J. E.; Kaminski, J. W.; Keating, T. J.; Lupu, A.; Marmer, E.; Montanaro, V.; Park, R. J.; Pitari, G.; Pringle, K. J.; Pyle, J. A.; Schroeder, S.; Vivanco, M. G.; Wind, P.; Wojcik, G.; Wu, S.; Zuber, A.

    2009-02-01

    Understanding the surface O3 response over a "receptor" region to emission changes over a foreign "source" region is key to evaluating the potential gains from an international approach to abate ozone (O3) pollution. We apply an ensemble of 21 global and hemispheric chemical transport models to estimate the spatial average surface O3 response over east Asia (EA), Europe (EU), North America (NA), and south Asia (SA) to 20% decreases in anthropogenic emissions of the O3 precursors, NOx, NMVOC, and CO (individually and combined), from each of these regions. We find that the ensemble mean surface O3 concentrations in the base case (year 2001) simulation matches available observations throughout the year over EU but overestimates them by >10 ppb during summer and early fall over the eastern United States and Japan. The sum of the O3 responses to NOx, CO, and NMVOC decreases separately is approximately equal to that from a simultaneous reduction of all precursors. We define a continental-scale "import sensitivity" as the ratio of the O3 response to the 20% reductions in foreign versus "domestic" (i.e., over the source region itself) emissions. For example, the combined reduction of emissions from the three foreign regions produces an ensemble spatial mean decrease of 0.6 ppb over EU (0.4 ppb from NA), less than the 0.8 ppb from the reduction of EU emissions, leading to an import sensitivity ratio of 0.7. The ensemble mean surface O3 response to foreign emissions is largest in spring and late fall (0.7-0.9 ppb decrease in all regions from the combined precursor reductions in the three foreign regions), with import sensitivities ranging from 0.5 to 1.1 (responses to domestic emission reductions are 0.8-1.6 ppb). High O3 values are much more sensitive to domestic emissions than to foreign emissions, as indicated by lower import sensitivities of 0.2 to 0.3 during July in EA, EU, and NA when O3 levels are typically highest and by the weaker relative response of annual

  19. Removal of pollutant compounds from water supplies using ozone, ultraviolet light, and a counter, current packed column. Master's thesis

    SciTech Connect

    Kelly, E.L.

    1991-01-01

    Many water pollutants are determined to be carcinogenic and often appear in very low concentrations and still pose a health risk. Conventional water treatment processes cannot remove these contaminants and there is a great demand for the development of alternative removal technologies. The use of ozone and ultraviolet light in a counter current packed column could prove to be an effective treatment process to remove these contaminants.

  20. Meteorology-induced variations in the spatial behavior of summer ozone pollution in Central California

    SciTech Connect

    Jin, Ling; Harley, Robert A.; Brown, Nancy J.

    2010-06-23

    Cluster analysis was applied to daily 8 h ozone maxima modeled for a summer season to characterize meteorology-induced variations in the spatial distribution of ozone. Principal component analysis is employed to form a reduced dimension set to describe and interpret ozone spatial patterns. The first three principal components (PCs) capture {approx}85% of total variance, with PC1 describing a general spatial trend, and PC2 and PC3 each describing a spatial contrast. Six clusters were identified for California's San Joaquin Valley (SJV) with two low, three moderate, and one high-ozone cluster. The moderate ozone clusters are distinguished by elevated ozone levels in different parts of the valley: northern, western, and eastern, respectively. The SJV ozone clusters have stronger coupling with the San Francisco Bay area (SFB) than with the Sacramento Valley (SV). Variations in ozone spatial distributions induced by anthropogenic emission changes are small relative to the overall variations in ozone amomalies observed for the whole summer. Ozone regimes identified here are mostly determined by the direct and indirect meteorological effects. Existing measurement sites are sufficiently representative to capture ozone spatial patterns in the SFB and SV, but the western side of the SJV is under-sampled.

  1. Increased mortality in Philadelphia associated with daily air pollution concentrations

    SciTech Connect

    Schwartz, J.; Dockery, D.W. )

    1992-03-01

    Cause-specific deaths by day for the years 1973 to 1980 in Philadelphia, Pennsylvania, were extracted from National Center for Health Statistics mortality tapes. Death from accidents (International Classification of Disease, Revision 9 greater than or equal to 800) and deaths outside of the city were excluded. Daily counts of deaths were regressed using Poisson regression on total suspended particulate (TSP) and/or SO2 on the same day and on the preceding day, controlling for year, season, temperature, and humidity. A significant positive association was found between total mortality (mean of 48 deaths/day) and both TSP (second highest daily mean, 222 micrograms/m3) and SO2 (second highest daily mean, 299 micrograms/m3). The strongest associations were found with the mean pollution of the current and the preceding days. Total mortality was estimated to increase by 7% (95% CI, 4 to 10%) with each 100-micrograms/m3 increase in TSP, and 5% (95% CI, 3 to 7%) with each 100-micrograms/m3 increase in SO2. When both pollutants were considered simultaneously, the SO2 association was no longer significant. Mortality increased monotonically with TSP. The effect of 100 micrograms/m3 TSP was stronger in subjects older than 65 yr of age (10% increase) compared with those younger than 65 yr of age (3% increase). Cause-specific mortality was also associated with a 100-micrograms/m3 increase in TSP: chronic obstructive pulmonary disease (ICD9 490-496), +19% (95% CI, 0 to 42%), pneumonia (ICD9 480-486 and 507), +11% (95% CI, -3 to +27%), and cardiovascular disease (ICD9 390-448), +10% (95% CI, 6 to 14%). These results are somewhat higher than previously reported associations, and they add to the body of evidence showing that particulate pollution is associated with increased daily mortality at current levels in the United States.

  2. Air pollution and childhood respiratory health: Exposure to sulfate and ozone in 10 Canadian Rural Communities

    SciTech Connect

    Stern, B.R.; Raizenne, M.E.; Burnett, R.T.; Jones, L.; Kearney, J.; Franklin, C.A. )

    1994-08-01

    This study was designed to examine differences in the respiratory health status of preadolescent school children, aged 7-11 years, who resided in 10 rural Canadian communities in areas of moderate and low exposure to regional sulfate and ozone pollution. Five of the communities were located in central Saskatchewan, a low-exposure region, and five were located in southwestern Ontario, an area with moderately elevated exposures resulting from long-range atmospheric transport of polluted air masses. In this cross-sectional study, the child's respiratory symptoms and illness history were evaluated using a parent-completed questionnaire, administered in September 1985. Respiratory function was assessed once for each child in the schools between October 1985 and March 1986, by the measurement of pulmonary function for forced vital capacity (FVC), forced expiratory volume in 1 sec (FEV[sub 1.0]), peak expiratory flow rate (PEFR), mean forced expiratory flow rate during the middle half of the FVC curve (FEF[sub 25-75]), and maximal expiratory flow at 50% of the expired vital capacity (V[sub 50]max). After controlling for the effects of age, sex, parental smoking, parental education and gas cooking, no significant regional differences were observed in rates of chronic cough or phlegm, persistent wheeze, current asthma, bronchitis in the past year, or any chest illness that kept the child at home for 3 or more consecutive days during the previous year. Children living in southwestern Ontario had statistically significant (P < 0.01) mean decrements of 1.7% in FVC and 1.3% in FEV[sub 1.0] compared with Saskatchewan children, after adjusting for age, sex, weight, standing height, parental smoking, and gas cooking. There were no statistically significant regional differences in the pulmonary flow parameters (P > 0.05). 54 refs., 1 fig., 7 tabs.

  3. Photochemical age of air pollutants, ozone, and secondary organic aerosol in transboundary air observed on Fukue Island, Nagasaki, Japan

    NASA Astrophysics Data System (ADS)

    Irei, Satoshi; Takami, Akinori; Sadanaga, Yasuhiro; Nozoe, Susumu; Yonemura, Seiichiro; Bandow, Hiroshi; Yokouchi, Yoko

    2016-04-01

    Study in summer 2002. The similarity may imply the production of similar SOA component, possibly humic-like substances. Meanwhile, the comparison of t[OH] with O3 mixing ratio showed that there was a strong proportional relationship between O3 mixing ratio and t[OH]. A first approximation gave the increasing rate and background mixing ratio of ozone as (3.48 ± 0.06) × 10-7 × [OH] ppbv h-1 and 30.7 ppbv, respectively. The information given here can be used for prediction of secondary pollution magnitude in the outflow from the Asian continent.

  4. Interactions of fire emissions and urban pollution over California: Ozone formation and air quality simulations

    NASA Astrophysics Data System (ADS)

    Singh, H. B.; Cai, C.; Kaduwela, A.; Weinheimer, A.; Wisthaler, A.

    2012-09-01

    An instrumented DC-8 aircraft was employed to perform airborne observations in rural and urban environs of California during the summer 2008 NASA ARCTAS-CARB campaign. The fortuitous occurrence of large wildfire episodes in Northern California allowed for studies of fire emissions, their composition, and their interactions with rural and urban air. Relative to CO, emissions of HCN were shown to vary non-linearly with fire characteristics while those of CH3CN were nearly unchanged, making the latter a superior quantitative tracer of biomass combustion. Although some fire plumes over California contained little NOx and virtually no O3 enhancement, others contained ample VOCs and sufficient NOx, largely from urban influences, to result in significant ozone formation. The highest observed O3 mixing ratios (170 ppb) were also in fire-influenced urban air masses. Attempts to simulate these interactions using CMAQ, a high-resolution state of the art air quality model, were only minimally successful and indicated several shortcomings in simulating fire emission influences on urban smog formation. A variety of secondary oxidation products (e.g. O3, PAN, HCHO) were substantially underestimated in fire-influenced air masses. Available data involving fire plumes and anthropogenic pollution interactions are presently quite sparse and additional observational and mechanistic studies are needed.

  5. UV dosage levels in summer: increased risk of ozone loss from convectively injected water vapor.

    PubMed

    Anderson, James G; Wilmouth, David M; Smith, Jessica B; Sayres, David S

    2012-08-17

    The observed presence of water vapor convectively injected deep into the stratosphere over the United States can fundamentally change the catalytic chlorine/bromine free-radical chemistry of the lower stratosphere by shifting total available inorganic chlorine into the catalytically active free-radical form, ClO. This chemical shift markedly affects total ozone loss rates and makes the catalytic system extraordinarily sensitive to convective injection into the mid-latitude lower stratosphere in summer. Were the intensity and frequency of convective injection to increase as a result of climate forcing by the continued addition of CO(2) and CH(4) to the atmosphere, increased risk of ozone loss and associated increases in ultraviolet dosage would follow. PMID:22837384

  6. Asian Outflow and Trans-Pacific Transport of Carbon Monoxide and Ozone Pollution: An Integrated Satellite, Aircraft, and Model Perspective

    NASA Technical Reports Server (NTRS)

    Heald, Colette L.; Jacob, Daniel J.; Fiore, Arlene M.; Emmons, Louisa K.; Gille, John C.; Deeter, Merritt N.; Warner, Ju-Ying; Edwards, David P.; Crawford, James H.; Hamlin, Amy J.

    2003-01-01

    Satellite observations of carbon monoxide (CO) from the Measurements of Pollution in the Troposphere (MOPITT) instrument are combined with measurements from the Transport and Chemical Evolution Over the Pacific (TRACE-P) aircraft mission over the northwest Pacific and with a global three-dimensional chemical transport model (GEOS-CHEM) to quantify Asian pollution outflow and its trans-Pacific transport during spring 2001. Global CO column distributions in MOPITT and GEOS-CHEM are highly correlated (R(exp 2) = 0.87), with no significant model bias. The largest regional bias is over Southeast Asia, where the model is 18% too high. A 60% decrease of regional biomass burning emissions in the model (to 39 Tg/yr) would correct the discrepancy; this result is consistent with TRACE-P observations. MOPITT and TRACE-P also give consistent constraints on the Chinese source of CO from fuel combustion (181 Tg CO/yr). Four major events of trans-Pacific transport of Asian pollution in spring 2001 were seen by MOPITT, in situ platforms, and GEOS-CHEM. One of them was sampled by TRACE-P (26-27 February) as a succession of pollution layers over the northeast Pacific. These layers all originated from one single event of Asian outflow that split into northern and southern plumes over the central Pacific. The northern plume (sampled at 6-8 km off California) had no ozone enhancement. The southern subsiding plume (sampled at 2-4 km west of Hawaii) contained a 8 - 17 ppbv ozone enhancement, driven by decomposition of peroxyacetylnitrate (PAN) to nitrogen oxides (NOx). This result suggests that PAN decomposition in trans-Pacific pollution plumes subsiding over the United States could lead to significant enhancements of surface ozone.

  7. Impact of Local and Non-local Sources of Pollution on Background US ozone: Potential Role of the Atmospheric Composition Constellation of Geostationary Sounders

    NASA Astrophysics Data System (ADS)

    Bowman, K. W.; Lee, M.

    2014-12-01

    Dramatic changes in the global distribution of emissions over the last decade have fundamentally altered source-receptor pollution impacts. The projected deployment of the European Space Agency Sentinel 4, Korean Geostationary Environment Monitoring Spectrometer (GEMS), National Aeronautics and Space Administration Geostationary GEOstationary Coastal and Air Pollution Events (GEO-CAPE) and Tropospheric Emissions: Monitoring of Pollution (TEMPO) sounders provides a unique opportunity to quantify the current and future trajectory of emissions and their impact on global pollution. We examine the potential of this constellation of air quality sounders to quantify the role of local and non-local sources of pollution on background ozone in the US. Based upon an adjoint sensitivity method, we compute the role of synoptic scale transport of spatially-resolved non-US pollution on US background ozone over months representative of different source-receptor relationships. This analysis allows us to compute potential emission trajectories of megacities, e.g. Beijing, or regions, e.g., western China, on downwind ozone. We subsequently explore how reductions of emission uncertainties from constellation observations could improve attribution of local versus non-local contributors to US background ozone. These results show how this unprecedented new international ozone observing system can monitor the changing structure of emissions and their impact on global pollution.

  8. Field Observations of Increased Isoprene Emissions Under Ozone Fumigation: Implications for Tropospheric Chemistry?

    NASA Astrophysics Data System (ADS)

    Sparks, J. P.; Greenberg, J. P.; Harley, P. C.; Guenther, A. B.

    2003-12-01

    Isoprene is the most abundant biogenic hydrocarbon released from vegetation and plays a key role in the chemistry of the lower atmosphere. Isoprene is produced and emitted by many plant species, yet the reason plants produce this seemingly wasteful carbon compound is still in debate in the plant physiology community. It has been proposed that isoprene may protect plant leaves from thermal damage or damage from oxidant exposure by stabilizing cellular and chloroplast membranes or by direct reactions between exogenous isoprene and oxidative species. As part of the Chemical Emission, Loss, Transformation and Interactions within Canopies (CELTIC) study held at Duke Forest during the summer of 2003, we used dynamic cuvette systems to fumigate leaves of sweet gum (Liquidambar styraciflua) with ozone at partial pressures ranging from 0 to 300 ppbv. During fumigations, the effluent air was monitored using infrared gas analysis, on-line proton-transfer-reaction mass spectrometry (PTR-MS) and gas chromatography to quantify changes in partial pressure of CO2, water vapor, isoprene and other volatile organics. At fumigations above 100 ppbv ozone, leaf-isoprene emission increased 20-35% compared to pre-fumigation. To our knowledge, this is the first reported observation of increased isoprene emission under ozone fumigation. Over the timescale of our measurements (several hours), isoprene emissions, once elevated, did not decrease even after fumigation levels were reduced. The increase in isoprene emission could potentially be due to upregulation of the isoprene synthase gene or simply an increase in the production (or reallocation) of subcellular isoprene precursor species. However, our measurements did not elucidate or eliminate a particular mechanism. If increases in isoprene emission in response to ozone are common among isoprene emitting species, the feedback implications for the atmosphere could be large. Both a mechanistic understanding of the upregulation process and

  9. Effects of ozone and other pollutants on the pulmonary function of adult hikers.

    PubMed Central

    Korrick, S A; Neas, L M; Dockery, D W; Gold, D R; Allen, G A; Hill, L B; Kimball, K D; Rosner, B A; Speizer, F E

    1998-01-01

    This study evaluated the acute effects of ambient ozone (O3), fine particulate matter (PM2.5), and strong aerosol acidity on the pulmonary function of exercising adults. During the summers of 1991 and 1992, volunteers (18-64 years of age) were solicited from hikers on Mt. Washington, New Hampshire. Volunteer nonsmokers with complete covariates (n = 530) had pulmonary function measured before and after their hikes. We calculated each hiker's posthike percentage change in forced expiratory volume in 1 sec (FEV1), forced vital capacity (FVC), the ratio of these two (FEV1/FVC), forced expiratory flow between 25 and 75% of FVC(FEF25-75%), and peak expiratory flow rate (PEFR). Average O3 exposures ranged from 21 to 74 ppb. After adjustment for age,sex, smoking status (former versus never), history of asthma or wheeze, hours hiked, ambient temperature, and other covariates, there was a 2.6% decline in FEV1 [95% confidence interval (CI), 0.4-4.7; p = 0.02] and a 2.2% decline in FVC (CI, 0.8-3.5; p =0.003) for each 50 ppb increment in mean O3. There were consistent associations of decrements in both FVC (0.4% decline; CI,0.2-0.6, p = 0.001) and PEFR (0.8% decline; CI, 0.01-1.6; p = 0.05) with PM2.5 and of decrements in PEFR (0.4% decline; CI, 0.1-0.7; p = 0.02) with strong aerosol acidity across the interquartile range of these exposures. Hikers with asthma or a history of wheeze (n = 40) had fourfold greater responsiveness to ozone than others. With prolonged outdoor exercise, low-level exposures to O3, PM2.5, and strong aerosol acidity were associated with significant effects on pulmonary function among adults. Hikers with a history of asthma or wheeze had significantly greater air pollution-related changes in pulmonary function. Images Figure 1 Figure 2 PMID:9435151

  10. Rapid increases in tropospheric ozone production and export from China: A view from AURA and TM5

    NASA Astrophysics Data System (ADS)

    Verstraeten, W. W.; Neu, J. L.; Williams, J. E.; Bowman, K. W.; Worden, J. R.; Boersma, K. F.

    2015-12-01

    Eastern Asia has the fastest growing anthropogenic emissions in the world, possibly affecting both the pollution in the local troposphere as well as in the trans-Pacific region. Local measurements over Asia show that tropospheric ozone (O3) has increased by 1 to 3% per year since the start of the millennium. This increase is often invoked to explain positive tropospheric O3 trends observed in western US, but to date there is no unambiguous evidence showing that enhanced Asian pollution is responsible for these trends. In this research we use observations of tropospheric O3 from TES (Tropospheric Emission Spectrometer, onboard AURA), tropospheric NO2 measurements from OMI (Ozone Monitoring Instrument, onboard AURA) and lower stratospheric observations of O3 from MLS (Microwave Limb Sounder, onboard AURA) in combination with the TM5 CTM. Satellite-based studies focusing on tropospheric O3 and NO2 have the potential to close the gap left by previous studies on air quality since spaceborne data provide large-scale observational evidence that both O3 precursor concentrations and tropospheric O3 levels are rapidly changing over source receptor areas. We show the increased ability of TM5 to reproduce the 2005-2010 observed rapid rise in free tropospheric O3 of 7% over China from TES, once OMI NO2 measurements were implemented in TM5 to update NOX emissions. MLS observations on lower stratospheric O3 have the potential to improve the stratosphere-troposphere exchange (STE) estimate in TM5 which is mainly driven by ECMWF meteorological fields. Constraining the TM5 modelled trend of the STE contribution to the 3-9 km partial O3 column using MLS observations of stratospheric O3 lead to a better explanation of the sources of the free tropospheric O3 trends over China. Based on the OMI inferred TM5 updates in NOX emissions, the impact of Asian O3 and its precursors on the free troposphere (3-9 km) over the western US could be quantified. Large import from China offsets the

  11. Increase in Ozone hole and hence UV-B Preceding Earthquakes

    NASA Astrophysics Data System (ADS)

    Mukherjee, A.; Mukherjee, S.

    2007-05-01

    Before the occurrence of earthquake, the change has been observed in ozone hole as well as UV-B flux in the atmosphere of the earth. After earthquake the UV-B flux reduces, which is correlated with the fluctuation in atmospheric temperature as well as Electron flux in Sun-Earth environment. Actual measurement show a linear relationship in between Coronal Mass Ejection and increase in Solar UV- B before the earthquakes in various parts of India.

  12. Reducing Nitrogen Pollution while Decreasing Farmers' Costs and Increasing Fertilizer Industry Profits.

    PubMed

    Kanter, David R; Zhang, Xin; Mauzerall, Denise L

    2015-03-01

    Nitrogen (N) pollution is emerging as one of the most important environmental issues of the 21st Century, contributing to air and water pollution, climate change, and stratospheric ozone depletion. With agriculture being the dominant source, we tested whether it is possible to reduce agricultural N pollution in a way that benefits the environment, reduces farmers' costs, and increases fertilizer industry profitability, thereby creating a "sweet spot" for decision-makers that could significantly increase the viability of improved N management initiatives. Although studies of the economic impacts of improved N management have begun to take into account farmers and the environment, this is the first study to consider the fertilizer industry. Our "sweet spot" hypothesis is evaluated via a cost-benefit analysis of moderate and ambitious N use efficiency targets in U.S. and China corn sectors over the period 2015-2035. We use a blend of publicly available crop and energy price projections, original time-series modeling, and expert elicitation. The results present a mixed picture: although the potential for a "sweet spot" exists in both countries, it is more likely that one occurs in China due to the currently extensive overapplication of fertilizer, which creates a greater potential for farmers and the fertilizer industry to gain economically from improved N management. Nevertheless, the environmental benefits of improving N management consistently dwarf the economic impacts on farmers and the fertilizer industry in both countries, suggesting that viable policy options could include incentives to farmers and the fertilizer industry to increase their support for N management policies. PMID:26023952

  13. An Assessment of Forest Pollutant Exposure Using Back Trajectories, Anthropogenic Emissions, and Ambient Ozone and Carbon Monoxide Measurements

    NASA Astrophysics Data System (ADS)

    Carroll, M.; Ocko, I. B.; McNeal, F.; Weremijewicz, J.; Hogg, A. J.; Opoku, N.; Bertman, S. B.; Neil, L.; Fortner, E.; Thornberry, T.; Town, M. S.; Yip, G.; Yageman, L.

    2008-12-01

    Measurements of ozone (O3) and carbon monoxide (CO) have been made above a Mixed Hardwood Forest in northern Michigan as part of the Program for Research on Oxidants: PHotochemistry, Emissions, and Transport (PROPHET) since 1997. Back trajectories calculated using the NOAA HYSPLIT Model have been used to classify air masses reaching the site into five flow regimes named according to the air mass source regions: north and northwesterly; south and southwesterly; westerly; east and southeasterly; and northeasterly. On an annual basis, air masses reaching the site came from the north and northwest, south and southwest, west, and east and southeast 28-35%, 22-25%, 9-14%, and 4 - 5% of the time, respectively. Pollutant levels in these air masses vary significantly with O3 typically 20 - 30 ppbv in north and northwesterly flow and 60 - 100 ppbv in south and southwesterly flow. In order to assess forest pollutant exposure, regional pollutant emissions were analyzed for each of the five flow regimes, the decadal record of ozone measurements were examined for temporal trends, and regression analyses of the O3 and CO data were performed. Nitrogen oxides (NOx), CO, and anthropogenic Volatile Organic Compound (VOC) exposure levels were estimated to be 18.0, 82.0, and 14.0 kg/km2/OSD (Ozone Season Day), respectively, for the south and southwesterly flow regime; 10.2, 57.4, and 9.3 kg/ km2/OSD, respectively, for the east and southeasterly flow regime; 6.9, 29.5, and 5.0 kg/ km2/OSD, respectively, for the westerly flow regime; 0.8, 3.8, and 0.5 kg/km2/OSD, respectively, for the northeasterly flow regime; and 0.4, 1.8, and 0.3 kg/ km2/OSD, respectively, for the north and northwesterly flow regime. In the search for temporal trends, in ambient ozone, arithmetic means and 90th percentiles were examined. A significant decrease is observed in ozone for data obtained during summer (June through August) during the most photochemically active time of day (1300 - 1600 Local Time

  14. Ozone Enhancement in the Lower Troposphere over East Asia Observed by OMI: Evidence of Transboundary Pollution Transport from China to Korea and Japan

    NASA Astrophysics Data System (ADS)

    Hayashida, S.; Ono, A.; Liu, X.; Yang, K.; Kanaya, Y.; Chance, K.

    2014-12-01

    Liu et al. (2010) developed an algorithm to retrieve ozone profiles from the ground to ~60 km from OMI ultraviolet radiances using the optimal estimation technique (Rogers, 2000). This algorithm is for derivation of an ozone profile divided into 24 layers, with three layers in the troposphere (0-3km, 3-6km, 6-9km). In this study, we report results for the analysis of lower tropospheric ozone over CEC using the OMI ozone profiles mentioned above. First, we show good correlation of OMI-derived ozone with aircraft measurements and ozonesonde measurements. Second, we show significant enhancement of ozone derived from OMI over CEC. To interpret this remarkable enhancement of ozone, we show correlation of ozone with carbon monoxide (CO) and hotspot numbers suggesting the effects of crop burning on ozone enhancement. Third, we also show complementary data obtained in the field campaign at Mt. Tai in 2005 and 2006 (Kayana et al., 2013) to demonstrate ozone enhancement in June every year and show the relationship with residue burning in fields over Shandong and Hebei Provinces. Finally, we show important evidence of transboundary pollution transport from China to Korea and Japan.References:Kanaya, Y., et al. (2013), Atmos. Chem. Phys., 13(16), 8265-8283.Liu, X., et al. (2010), Atmos. Chem. Phys., 10(5), 2521-2537.Rodgers, C. D. (2000), Inverse methods for atmospheric sounding: Theory and practice, World Scientific Publishing, Singapore.

  15. Ozone Modulation/Membrane Introduction Mass Spectrometry for Analysis of Hydrocarbon Pollutants in Air

    NASA Astrophysics Data System (ADS)

    Atkinson, D. B.

    2001-12-01

    Modulation of volatile hydrocarbons in two-component mixtures is demonstrated using an ozonolysis pretreatment with membrane introduction mass spectrometry (MIMS). The MIMS technique allows selective introduction of volatile and semivolatile analytes into a mass spectrometer via processes known collectively as pervaporation [Kotiaho and Cooks, 1992]. A semipermeable polymer membrane acts as an interface between the sample (vapor or solution) and the vacuum of the mass spectrometer. This technique has been demonstrated to allow for sensitive analysis of hydrocarbons and other non-polar volatile organic compounds (VOC`s) in air samples[Cisper et al., 1995] . The methodology has the advantages of no sample pretreatment and short analysis time, which are promising for online monitoring applications but the chief disadvantage of lack of a separation step for the different analytes in a mixture. Several approaches have been investigated to overcome this problem including use of selective chemical ionization [Bier and Cooks, 1987] and multivariate calibration techniques[Ketola et al., 1999] . A new approach is reported for the quantitative measurement of VOCs in complex matrices. The method seeks to reduce the complexity of mass spectra observed in hydrocarbon mixture analysis by selective pretreatment of the analyte mixture. In the current investigation, the rapid reaction of ozone with alkenes is used, producing oxygenated compounds which are suppressed by the MIMS system. This has the effect of removing signals due to unsaturated analytes from the compound mass spectra, and comparison of the spectra before and after the ozone treatment reveals the nature of the parent compounds. In preliminary investigations, ozone reacted completely with cyclohexene from a mixture of cylohexene and cyclohexane, and with β -pinene from a mixture of toluene and β -pinene, suppressing the ion signals from the olefins. A slight attenuation of the cyclohexane and toluene in those

  16. Insights Into Mega-City Ozone Pollution From the IONS (INTEX Ozonesonde Network Study, 2004 and 2006) Ozonesonde Network

    NASA Astrophysics Data System (ADS)

    Thompson, A. M.; Witte, J. C.; Kucsera, T. L.; Yorks, J. E.; Miller, S. K.; Long, R. B.; Taubman, B. F.; Loucks, A. L.; Oltmans, S. J.; Cooper, O. R.; Lefer, B. L.; Rappenglueck, B.; Morris, G. A.; Ladino, L.; Hernandez, A.; Baumgardner, D. G.; Grutter, M.; Joseph, E.; Merrill, J. T.; Newchurch, M. J.

    2007-05-01

    We have used ozone and radiosonde profile data from strategically designed networks (IONS-04, IONS-06; SHADOZ) for better interpretation of atmospheric chemistry and dynamics in the tropics, sub-tropics and mid- latitudes and in critical regions: the urban boundary layer, at the tropopause, free troposphere and at urban-non- urban interfaces. A consistent finding from mega-city regions is how variable ozone is throughout boundary layer and free troposphere - within individual soundings and at a given site over a 3-4 -week campaign. The variability is due to complex interactions between meteorological and chemical factors and between natural and anthropogenic contributions to the ozone budget. Stratospheric influences and lightning influences in the free troposphere are robust. The variability is illustrated by Mexico City ozone soundings trajectories and tracers during INTEX-B (Intercontinental Transport Experiment - 2006) and Milagro/MIRAGE-Mex (Megacity Impacts of Regional and Global Environments) and by Houston, Hunstville, suburban Washington DC (Beltsville, Maryland) and Narragansett in IONS-04 and IONS-06. Trans-boundary pollution within mega-cities (eg. Washington to Boston corridor, Mexico City), is mediated by phenomena like the low-level jet and terrain impacts. Images of the soundings and meteorological information for IONS are at http:croc.gsfc.nasa.gov/intex/ions; http:croc.gsfc.nasa.gov/intexb/ions06.

  17. Tropospheric Ozone Increases in the TTL over the Southern African Region (1990-2007): Insights from Sonde and Aircraft Profiles

    NASA Astrophysics Data System (ADS)

    Balashov, N. V.; Thompson, A. M.; Kollonige, D. E.; Coetzee, G.; Thouret, V.; Posny, F.

    2013-12-01

    Ozonesonde records from the early 1990s through 2007 over two subtropical stations, Irene (near Pretoria, South Africa) and Réunion Island (21S, 55W, ~3500 km NE of Irene in the southwest Indian Ocean) have been reported to exhibit free tropospheric (FT) ozone increases. We re-analyzed FT ozone in the1990-2007 Irene sondes, filling in mid-1990s gaps with ozone profiles taken by Measurements of Ozone by Airbus In-service Aircraft (MOZAIC) over nearby Johannesburg. We applied a multivariate regression model to monthly averaged data from the combined dataset as well as to 1992-2011 FT and TTL ozone from Réunion sondes. Taking into account terms for the seasonal cycle, ENSO, and potential vorticity (PV) anomalies, we found that: (1) Statistically significant trends appear predominantly in the middle troposphere up to the tropopause layer (6-11 km over Irene, 6-15 km over Réunion) in winter (June-August), with an increase ~ 1 ppbv/yr over Irene and ~2 ppbv/yr over Réunion. Both stations display a less intense ozone increase above 7 km in November-December. (2) Variability in TTL dynamics and stratosphere-troposphere interactions were considered as plausible explanations for the Irene ozone increases. For the spring, there is a pronounced sensitivity to PV anomalies (+ 70 ppbv ozone/PV unit). We compare these results to our prior study of TTL wave activity at Irene and Réunion and relationships among waves, TTL ozone variability and oscillations like the ENSO. Trend (change in ppbv ozone/year) computed from multivariate regression model for 4-15 km, profiles from Réunion sondes, 1992-2011. Diagonal shading denotes statistical significance.

  18. Simulation of increasing UV radiation as a consequence of ozone depletion

    NASA Astrophysics Data System (ADS)

    Diaz, Susana B.; Camilion, Carolina; Lacoste, Karine; Escobar, Julio; Demers, Serge; Gianesella, Sonia M. F.; Roy, Suzanne

    2003-11-01

    UV plays a key roll in several biological functions. As consequence of the ozone depletion investigations to study the effects of UV radiation on human health and terrestrial and aquatic ecosystems have been carried out in laboratories and in the field. Experiments performed in laboratories, irradiating samples with lamps often present the inconvenience that light sources do not reproduce properly the solar spectrum. Field experiments are usually carried out comparing samples exposed to ambient irradiance (normal or increased) against 100% UV-B screened samples. This scenario also differs from the real situation of normal irradiance against UV-B increased irradiance. Some authors have solved this problem performing studies under ambient conditions, simulating the ozone depletion by supplementation of the UV-B radiation with lamps. As part of the IAI CNR-26, "Enhanced Ultraviolet-B Radiation in Natural Ecosystems as an added Perturbation due to Ozone Depletion," mesocosms experiments were performed at Rimouski, Canada), Ubatuba (Brasil) and Ushuaia, Argentina) using the supplementing methodology. In this paper we introduce the design of the measurements and lamps setting and the methodology used to calculate the attenuation constant and the irradiance at the water column at the mesocosms during the experiment, emphasizing on the Ubatuba campaign.

  19. Distribution of ozone and other air pollutants in forests of the Carpathian Mountains in central Europe.

    PubMed

    Bytnerowicz, A; Godzik, B; Fraczek, W; Grodzińska, K; Krywult, M; Badea, O; Barancok, P; Blum, O; Cerny, M; Godzik, S; Mankovska, B; Manning, W; Moravcik, P; Musselman, R; Oszlanyi, J; Postelnicu, D; Szdźuj, J; Varsavova, M; Zota, M

    2002-01-01

    Ozone (O3) concentrations were monitored during the 1997-1999 growing seasons in 32 forest sites of the Carpathian Mountains. At all sites (elevation between 450 and 1320 m) concentrations of O3, nitrogen dioxide (NO2), and sulfur dioxide (SO2) were measured with passive samplers. In addition, in two western Carpathian locations, Vychodna and Gubalówka, ozone was continuously monitored with ultraviolet (UV) absorption monitors. Highest average hourly O3 concentrations in the Vychodna and Gubałówka sites reached 160 and 200 microg/m3 (82 and 102 ppb), respectively (except for the AOT40 values, ozone concentrations are presented as microg/m3; and at 25 degrees C and 760 mm Hg, 1 microg O3/m3 = 0.51 ppb O3). These sites showed drastically different patterns of diurnal 03 distribution, one with clearly defined peaks in the afternoon and lowest values in the morning, the other with flat patterns during the entire 24-h period. On two elevational transects, no effect of elevation on O3 levels was seen on the first one, while on the other a significant increase of O3 levels with elevation occurred. Concentrations of O3 determined with passive samplers were significantly different between individual monitoring years, monitoring periods, and geographic location of the monitoring sites. Results of passive sampler monitoring showed that high O3 concentrations could be expected in many parts of the Carpathian range, especially in its western part, but also in the eastern and southern ranges. More than four-fold denser network of monitoring sites is required for reliable estimates of O3 distribution in forests over the entire Carpathian range (140 points). Potential phytotoxic effects of O3 on forest trees and understory vegetation are expected on almost the entire territory of the Carpathian Mountains. This assumption is based on estimates of the AOT40 indices for forest trees and natural vegetation. Concentrations of NO2 and SO2 in the entire Carpathian range were typical

  20. Application of photochemical indicators to evaluate ozone nonlinear chemistry and pollution control countermeasure in China

    NASA Astrophysics Data System (ADS)

    Xie, Min; Zhu, Kuanguang; Wang, Tijian; Yang, Haoming; Zhuang, Bingliang; Li, Shu; Li, Minggao; Zhu, Xinsheng; Ouyang, Yan

    2014-12-01

    Ozone sensitivity in China was investigated by using a comprehensive three-dimensional air quality model system WRF-CALGRID. A real case and two cases with 35% emission reduction for either NOx or VOC were conducted for the period of March in 2010. The simulation results of O3 agreed fairly well with the observation data. Based on the meaning of O3 sensitivity, the ratio Ra was defined, with the transition value of 1 to distinguish NOx-sensitive region from VOC-sensitive region. With the aid of Ra, VOC- and NOx-sensitive regions in China were preliminary located. The transition ranges for some photochemical indicators were quantified. Only those of H2O2/NOz and H2O2/HNO3 met the requirement that the 95th percentile VOC-sensitive value should be equal to or lower than the 5th percentile NOx-sensitive value. 0.16-0.40 for H2O2/HNO3 and 0.14-0.28 for H2O2/NOz were adopted to distinguish different O3 sensitivity in China. The results showed that the VOC-sensitive regions are primarily distributed over the urban centers and the developed industrial areas in eastern and southern China, while the NOx-sensitive regions are mainly located in the remote areas of northern and western China. High correlation between Ra and indicators was found, and a new approach to quantify the transition values of indicators was proposed. These indicators can play an important role in the air complex pollution control of urban clusters over East Asia.

  1. Enhanced nitrogen deposition exacerbates the negative effect of increasing background ozone in Dactylis glomerata, but not Ranunculus acris.

    PubMed

    Wyness, Kirsten; Mills, Gina; Jones, Laurence; Barnes, Jeremy D; Jones, Davey L

    2011-10-01

    The combined impacts of simulated increased nitrogen (N) deposition (75 kg Nha(-1)yr (-1)) and increasing background ozone (O(3)) were studied using two mesotrophic grassland species (Dactylis glomerata and Ranunculus acris) in solardomes, by means of eight O(3) treatments ranging from 15.5 ppb to 92.7 ppb (24h average mean). A-C(i) curves were constructed for each species to gauge effects on photosynthetic efficiency and capacity, and effects on biomass partitioning were determined after 14 weeks. Increasing the background concentration of O(3) reduced the healthy above ground and root biomass of both species, and increased senesced biomass. N fertilisation increased biomass production in D. glomerata, and a significantly greater than additive effect of O(3) and N on root biomass was evident. In contrast, R. acris biomass was not affected by high N. The study shows the combined effects of these pollutants have differential implications for carbon allocation patterns in common grassland species. PMID:21741736

  2. Alternative ozone metrics and daily mortality in Suzhou: the China Air Pollution and Health Effects Study (CAPES).

    PubMed

    Yang, Chunxue; Yang, Haibing; Guo, Shu; Wang, Zongshuang; Xu, Xiaohui; Duan, Xiaoli; Kan, Haidong

    2012-06-01

    Controversy remains regarding the relationship between various metrics of ozone (O(3)) and mortality. In China, the largest developing country, there have been few studies investigating the acute effect of O(3) on death. We used three exposure metrics of O(3) (1-hour maximum, maximum 8-hour average and 24-hour average) to examine its short-term association with daily mortality in Suzhou, China. We used a Generalized Additive Model (GAM) with penalized splines to analyze the mortality, O(3), and covariate data. We examined the association by season, age group, sex and educational level. We found that the current level of O(3) in Suzhou is associated with death rates from all causes and cardiovascular diseases. Among various metrics of O(3), maximum 8-hour average and 1-hour maximum concentrations seem to be more strongly associated with increased mortality rate compared to 24-hour average concentrations. Using maximum 8-hour average, an inter-quartile range increase of 2-day average O(3) (lag 01) corresponds to 2.15% (95%CI, 0.36 to 3.93), 4.47% (95%CI, 1.43 to 7.51), -1.85% (95%CI, -6.91 to 3.22) increase in all-cause, cardiovascular, and respiratory mortality, respectively. The associations between O(3) and daily mortality appeared to be more evident in the cool season than in the warm season. In conclusion, maximum 8-hour average and 1-hour maximum concentrations of O(3) are associated with daily mortality in Suzhou. Our analyses strengthen the rationale for further limiting levels of O(3) pollution in the city. PMID:22521098

  3. Ozone Levels in the North and South of Jordan: Effects of Transboundary Air Pollution

    NASA Astrophysics Data System (ADS)

    Alsawair, Jihad Khalaf

    The first phase of this work sought to assess the causes of air quality deterioration in the south of the region over the Red Sea near the resort areas of Eilat and Aqaba. Accordingly, a coordinated Jordanian-Israeli study was performed during the month of November 2007 along the boarder of the two countries. The Jordanian measurements were made at a fixed monitoring location in the city of Aqaba, while the Israeli measurements were made using a mobile laboratory at kibbutz Eilot some 3 km north of the coastal city of Eilat. The results indicated that pollution episodes are highly dependent on wind direction, where southerly winds carry local transportation (i.e., ship, trucks) and possibly some industrial emissions towards the north end of the Red Sea, while northerly winds are associated with the transport of regional O 3. The results revealed that under the prevailing (˜90% of the time) northerly wind flows, the quality of the air is relatively good for all primary pollutants but O3 was elevated, indicative of the downwind regional transport of this secondary species from the Mediterranean coast. However, during days with southerly air flow the air quality was significantly deteriorated with elevated levels of sulfur dioxide (SO2) and nitrogen oxides (NOx). The second phase of this work, which also involved Jordanian and Israeli scientists, was undertaken in the northern part of the region for a two-week period in May/June 2009. This part of the research was aimed at examining previous modeling results that indicated that elevated O3 levels should occur in Northern Jordan from emissions in Northern Israel that are transported a distance of more than 100 km. Ozone and other pollutants were monitored at five sites in Israel (Haifa, Neve Shanan, Kiryat Tivon, Afula, and Maoz Haim) and two in Jordan (Taiba and Irbid). The sites were located along the prevailing wind direction that presumably moves air-masses eastward from the Mediterranean coast, over the Israel

  4. The predicted impact of increased formaldehyde emissions from industrial flares on ozone concentrations in Houston, TX.

    NASA Astrophysics Data System (ADS)

    Wang, C. T.; Vizuete, W.

    2015-12-01

    Houston features one of the largest concentrations of the petrochemical industry in all of North America and flares are widely used there as the final treatment process for unwanted volatile organic compounds. These flares have the potential to produce formaldehyde as the result of incomplete combustion. Formaldehyde emissions are an important precursor to producing hydroxyl radicals and thus can impact atmospheric chemistry and the formation of ozone. Formaldehyde emissions from flares, however, are difficult to measure in situ. Recently, alternative measurement techniques have been developed, like open path optical methods, that allow the direct measurement of flare emissions from the facility's fence line (Johansson et al., 2014; Pikelnaya, Flynn, Tsai, & Stutz, 2013). This observational data indicates that the emission rate of formaldehyde from flares is about 10-20 times greater than those found in the regulatory models developed by the Texas Commission on Environmental Quality's (TCEQ). This research will use air quality models to quantify the impact that increased formaldehyde emission from flares will have on Houston ozone concentrations. This study relies on the CAMx model (version 6.1) and emission data developed by Alpine Geophysics LLC (AG) and Climate & Atmospheric Research Associates (CARA) based on the combined databases from TCEQ, U.S. Environmental Protection Agency (EPA), and National Emission Inventory (NEI2008). This model also used meteorology data from the results of WRF-ARW dynamics. The CAMx generated process analysis data will also be used to quantify changes in radical budgets and NOx budgets critical to ozone production.

  5. Air quality models and unusually large ozone increases: Identifying model failures, understanding environmental causes, and improving modeled chemistry

    NASA Astrophysics Data System (ADS)

    Couzo, Evan A.

    Several factors combine to make ozone (O3) pollution in Houston, Texas, unique when compared to other metropolitan areas. These include complex meteorology, intense clustering of industrial activity, and significant precursor emissions from the heavily urbanized eight-county area. Decades of air pollution research have borne out two different causes, or conceptual models, of O 3 formation. One conceptual model describes a gradual region-wide increase in O3 concentrations "typical" of many large U.S. cities. The other conceptual model links episodic emissions of volatile organic compounds to spatially limited plumes of high O3, which lead to large hourly increases that have exceeded 100 parts per billion (ppb) per hour. These large hourly increases are known to lead to violations of the federal O 3 standard and impact Houston's status as a non-attainment area. There is a need to further understand and characterize the causes of peak O 3 levels in Houston and simulate them correctly so that environmental regulators can find the most cost-effective pollution controls. This work provides a detailed understanding of unusually large O 3 increases in the natural and modeled environments. First, we probe regulatory model simulations and assess their ability to reproduce the observed phenomenon. As configured for the purpose of demonstrating future attainment of the O3 standard, the model fails to predict the spatially limited O3 plumes observed in Houston. Second, we combine ambient meteorological and pollutant measurement data to identify the most likely geographic origins and preconditions of the concentrated O3 plumes. We find evidence that the O3 plumes are the result of photochemical activity accelerated by industrial emissions. And, third, we implement changes to the modeled chemistry to add missing formation mechanisms of nitrous acid, which is an important radical precursor. Radicals control the chemical reactivity of atmospheric systems, and perturbations to

  6. Understanding high wintertime ozone pollution events in an oil- and natural gas-producing region of the western US

    NASA Astrophysics Data System (ADS)

    Ahmadov, R.; McKeen, S.; Trainer, M.; Banta, R.; Brewer, A.; Brown, S.; Edwards, P. M.; de Gouw, J. A.; Frost, G. J.; Gilman, J.; Helmig, D.; Johnson, B.; Karion, A.; Koss, A.; Langford, A.; Lerner, B.; Olson, J.; Oltmans, S.; Peischl, J.; Pétron, G.; Pichugina, Y.; Roberts, J. M.; Ryerson, T.; Schnell, R.; Senff, C.; Sweeney, C.; Thompson, C.; Veres, P. R.; Warneke, C.; Wild, R.; Williams, E. J.; Yuan, B.; Zamora, R.

    2015-01-01

    Recent increases in oil and natural gas (NG) production throughout the western US have come with scientific and public interest in emission rates, air quality and climate impacts related to this industry. This study uses a regional-scale air quality model (WRF-Chem) to simulate high ozone (O3) episodes during the winter of 2013 over the Uinta Basin (UB) in northeastern Utah, which is densely populated by thousands of oil and NG wells. The high-resolution meteorological simulations are able qualitatively to reproduce the wintertime cold pool conditions that occurred in 2013, allowing the model to reproduce the observed multi-day buildup of atmospheric pollutants and the accompanying rapid photochemical ozone formation in the UB. Two different emission scenarios for the oil and NG sector were employed in this study. The first emission scenario (bottom-up) was based on the US Environmental Protection Agency (EPA) National Emission Inventory (NEI) (2011, version 1) for the oil and NG sector for the UB. The second emission scenario (top-down) was based on estimates of methane (CH4) emissions derived from in situ aircraft measurements and a regression analysis for multiple species relative to CH4 concentration measurements in the UB. Evaluation of the model results shows greater underestimates of CH4 and other volatile organic compounds (VOCs) in the simulation with the NEI-2011 inventory than in the case when the top-down emission scenario was used. Unlike VOCs, the NEI-2011 inventory significantly overestimates the emissions of nitrogen oxides (NOx), while the top-down emission scenario results in a moderate negative bias. The model simulation using the top-down emission case captures the buildup and afternoon peaks observed during high O3 episodes. In contrast, the simulation using the bottom-up inventory is not able to reproduce any of the observed high O3 concentrations in the UB. Simple emission reduction scenarios show that O3 production is VOC sensitive and NOx

  7. Increasing CO2 Coupled with Other Anthropogenic Perturbations: Effects on Ozone and Other Trace Gases

    NASA Technical Reports Server (NTRS)

    Rosenfield, J. E.; Douglass, A. R.

    1999-01-01

    The GSFC 2D interactive chemistry-radiation-dynamics model has been used to study the effects on stratospheric trace gases of past and future CO2 increases coupled with changes in CFC'S, methane, and nitrous oxide. Previous simulations with the GSFC model showed that the stratospheric cooling calculated to result from doubling atmospheric CO2 would lead, in the absence of a growth of other anthropogenic gases, to a decrease in upper stratospheric NO(y) of roughly 15%. This work has been extended to simulate changes in stratospheric chemistry and dynamics occurring between the years 1960 and 2050. The simulations have been carried out with and without changes in CO2. In the low latitude upper stratosphere ozone is predicted to be 10% greater in 2050 than in 1990 when increased CO2 is included, compared with an increase of only 2% without the inclusion of CO2. In the low latitude lower stratosphere, ozone is predicted to decrease by about 1% between 1990 and 2050 when CO2 changes are taken into account, in contrast to an approximate 3% increase when they are not. The simulated behavior of water vapor is another example of the coupled responses. Between 1990 and 2050 low latitude water vapor is predicted to increase by 4% and 2% in the upper and lower stratosphere, respectively, without the inclusion of CO2 increases. with the inclusion of CO2 changes, the water vapor increases are predicted to be roughly 12% and 8%, for the upper and lower stratosphere, respectively.

  8. Photochemical Pollution Modeling of Ozone at Metropolitan Area of Porto Alegre - RS/Brazil using WRF/Chem

    NASA Astrophysics Data System (ADS)

    Cuchiara, G. C.; Carvalho, J.

    2013-05-01

    One of the main problems related to air pollution in urban areas is caused by photochemical oxidants, particularly troposphere ozone (O3), which is considered a harmful substance. The O3 precursors (carbon monoxide CO, nitrogen oxides NOx and hydrocarbons HCs) are predominantly of anthropogenic origin in these areas, and vehicles are the main emission sources. Due to the increased urbanization and industrial development in recent decades, air pollutant emissions have increased likewise, mainly by mobile sources in the highly urbanized and developed areas, such as the Metropolitan Area of Porto Alegre-RS (MAPA). According to legal regulations implemented in Brazil in 2005, which aimed at increasing the fraction of biofuels in the national energy matrix, 2% biodiesel were supposed to be added to the fuel mixture within three years, and up to 5% after eight years of implementation of these regulations. Our work performs an analysis of surface concentrations for O3, NOx, CO, and HCs through numerical simulations with WRF/Chem (Weather Research and Forecasting model with Chemistry). The model is validated against observational data obtained from the local urban air quality network for the period from January 5 to 9, 2009 (96 hours). One part of the study focused on the comparison of simulated meteorological variables, to observational data from two stations in MAPA. The results showed that the model simulates well the diurnal evolution of pressure and temperature at the surface, but is much less accurate for wind speed. Another part included the evaluation of model results of WRF/Chem for O3 versus observed data at air quality stations Esteio and Porto Alegre. Comparisons between simulated and observed O3 revealed that the model simulates well the evolution of the observed values, but on many occasions the model did not reproduce well the maximum and minimum concentrations. Finally, a preliminary quantitative sensitivity study on the impact of biofuel on the

  9. The impact of decreases in air temperature and increases in ozone on markers of endothelial function in individuals having type-2 diabetes.

    PubMed

    Lanzinger, Stefanie; Breitner, Susanne; Neas, Lucas; Cascio, Wayne; Diaz-Sanchez, David; Hinderliter, Alan; Peters, Annette; Devlin, Robert B; Schneider, Alexandra

    2014-10-01

    Several studies have reported an association between air pollution and endothelial dysfunction, especially in individuals having diabetes. However, very few studies have examined the impact of air temperature on endothelial function. The objective of this analysis was to investigate short-term effects of temperature and ozone on endothelial function in individuals having diabetes. Moreover, we investigated interactive effects between air temperature and air pollution on markers of endothelial function. Between November 2004 and December 2005 flow-mediated dilatation (FMD), nitroglycerin-mediated dilatation (NTGMD) and several blood markers representing endothelial function were measured using brachial artery ultrasound on four consecutive days in 22 individuals with type-2 diabetes mellitus in Chapel Hill, North Carolina (USA). Daily measurements of meteorological parameters, ozone and particulate matter with an aerodynamic diameter ≤2.5 µm (PM2.5) were obtained from fixed monitoring sites. We used additive mixed-models adjusting for time trend, day of the week, relative humidity and barometric pressure to assess temperature and ozone associations with endothelial function. A 1 °C decrease in the 24-h temperature average was associated with a decrease in mean FMD on the same day (-2.2% (95%-confidence interval:[-4.7;0.3%])) and with a delay of one and four days. A temperature decrement also led to an immediate (-1.7%[-3.3;-0.04]) decrease in NTGMD. Moreover, we observed an immediate (-14.6%[-26.3;-2.9%]) and a one day delayed (-13.5%[-27.0; 0.04%]) decrease in FMD in association with a 0.01 ppm increase in the maximum 8-h moving average of ozone. Temperature effects on FMD strengthened when PM2.5 and ozone concentrations were high. The associations were similar during winter and summer. We detected an association between temperature decreases and ozone increases on endothelial dysfunction in individuals having diabetes. We conclude that endothelial dysfunction

  10. Overt and Latent Cardiac Effects of Ozone Inhalation in Rats: Evidence for Autonomic Modulation and Increased Myocardial Vulnerability

    EPA Science Inventory

    Background: Ozone (03) is a well-documented respiratory oxidant, but increasing epidemiologic evidence points to extra-pulmonary effects including positive associations between ambient 03 concentrations and cardiovascular morbidity/mortality. Objectives: With preliminary reports ...

  11. Influence of ozone air pollution on plant-herbivore interactions. Part 2: Effects of ozone on feeding preference, growth and consumption rates of monarch butterflies (Danaus plexippus).

    PubMed

    Bolsinger, M; Lier, M E; Hughes, P R

    1992-01-01

    Effects of ozone fumigation of Asclepias curassavica L. and A. syriaca L. on feeding preference, growth, development, and nutritional indices of monarch larvae were investigated in conjunction with changes in specific leaf metabolites. While foliar chemistry was quite variable, fumigation generally decreased sugars and proteins, and increased amino acids and phenolics in A. curassavica. Effects were similar in A. syriaca except that sugars were generally increased while amino acids were usually not affected. On A. curassavica, 3rd instar larvae preferred ozone-treated leaves while 4th instars showed no preference; conversely, on A. syriaca, 3rd instars showed no preference while 4th instars preferred control leaves. Relative growth rate and relative consumption rate of 5th instars were greater on fumigated plants of both species, but other nutritional indices were unaffected. Larvae developed more rapidly on intact fumigated plants of both species than on the respective controls. The results suggest that enhanced feeding stimulation may be the primary cause of the altered behavior and performance on ozone-fumigated plants. PMID:15091975

  12. Exposure information in environmental health research: Current opportunities and future directions for particulate matter, ozone, and toxic air pollutants

    SciTech Connect

    McKone, Thomas E.; Ryan, P. Barry; Ozkaynak, Haluk

    2007-02-01

    Understanding and quantifying outdoor and indoor sources of human exposure are essential but often not adequately addressed in health-effects studies for air pollution. Air pollution epidemiology, risk assessment, health tracking and accountability assessments are examples of health-effects studies that require but often lack adequate exposure information. Recent advances in exposure modeling along with better information on time-activity and exposure factors data provide us with unique opportunities to improve the assignment of exposures for both future and ongoing studies linking air pollution to health impacts. In September 2006, scientists from the US Environmental Protection Agency (EPA) and the Centers for Disease Control and Prevention (CDC) along with scientists from the academic community and state health departments convened a symposium on air pollution exposure and health in order to identify, evaluate, and improve current approaches for linking air pollution exposures to disease. This manuscript presents the key issues, challenges and recommendations identified by the exposure working group, who used cases studies of particulate matter, ozone, and toxic air pollutant exposure to evaluate health-effects for air pollution. One of the over-arching lessons of this workshop is that obtaining better exposure information for these different health-effects studies requires both goal-setting for what is needed and mapping out the transition pathway from current capabilities to meeting these goals. Meeting our long-term goals requires definition of incremental steps that provide useful information for the interim and move us toward our long-term goals. Another over-arching theme among the three different pollutants and the different health study approaches is the need for integration among alternate exposure assessment approaches. For example, different groups may advocate exposure indicators, biomonitoring, mapping methods (GIS), modeling, environmental media

  13. Rising ozone concentrations decrease soybean evapotranspiration and water use efficiency whilst increasing canopy temperature.

    PubMed

    VanLoocke, Andy; Betzelberger, Amy M; Ainsworth, Elizabeth A; Bernacchi, Carl J

    2012-07-01

    • Here, we investigated the effects of increasing concentrations of ozone ([O(3)]) on soybean canopy-scale fluxes of heat and water vapor, as well as water use efficiency (WUE), at the Soybean Free Air Concentration Enrichment (SoyFACE) facility. • Micrometeorological measurements were made to determine the net radiation (R(n)), sensible heat flux (H), soil heat flux (G(0)) and latent heat flux (λET) of a commercial soybean (Glycine max) cultivar (Pioneer 93B15), exposed to a gradient of eight daytime average ozone concentrations ranging from approximately current (c. 40 ppb) to three times current (c. 120 ppb) levels. • As [O(3)] increased, soybean canopy fluxes of λET decreased and H increased, whereas R(n) and G(0) were not altered significantly. Exposure to increased [O(3)] also resulted in warmer canopies, especially during the day. The lower λET decreased season total evapotranspiration (ET) by c. 26%. The [O(3)]-induced relative decline in ET was half that of the relative decline in seed yield, driving a 50% reduction in seasonal WUE. • These results suggest that rising [O(3)] will alter the canopy energy fluxes that drive regional climate and hydrology, and have a negative impact on productivity and WUE, key ecosystem services. PMID:22524697

  14. Calculations of increased solar UV fluxes and DUV doses due to stratospheric-ozone depletions

    SciTech Connect

    Zardecki, A.; Gerstl, S.A.W.

    1982-02-01

    Accurate radiative transfer calculations are performed in the middle ultraviolet spectral region for aerosol-loaded atmospheres with the goal of determining the solar irradiance at the ground and quantifying the irradiance perturbations due to the presence of aerosols and various ozone depletions. The extent of the increase of UV-B radiation as a function of wave-length and solar zenith angle is calculated for five model atmospheres. In addition, the damaging ultraviolet dose rates and radiation amplification factors are evaluated at different latitudes and seasons for erythemal and DNA action spectra.

  15. Climate Impacts of Ozone and Sulfate Air Pollution from Specific Emissions Sectors and Regions

    NASA Astrophysics Data System (ADS)

    Unger, N.; Koch, D. M.; Shindell, D. T.; Streets, D. G.

    2006-12-01

    The secondary air pollutants ozone (O3) and sulfate aerosol are generated by human activities and affect the Earth's climate system. The global mean radiative forcings of these short-lived species depend on the location of the precursor gas emissions, which has so far prevented their incorporation into climate-motivated policy agreements. O3 and sulfate aerosol are strongly coupled through tropospheric photochemistry and yet air quality control efforts consider each species separately. Previous modeling work to assess climate impacts of O3 has focused on individual precursors, such as nitrogen oxides, even though policy action would target a particular sector. We use the G-PUCCINI atmospheric composition-climate model to isolate the O3 and sulfate direct radiative forcing impacts of 6 specific emissions sectors (industry, transport, power, domestic biofuel, domestic fossil fuel and biomass burning) from 7 geographic regions (North America, Europe, South Asia, East Asia, North Africa and the Middle East, Central and South Africa and South America) for the near future 2030 atmosphere. The goal of the study is to identify specific source sectors and regions that present the most effective opportunities to mitigate global warming. At 2030, the industry and power sectors dominate the sulfate forcing across all regions, with East Asia, South Asia and North Africa and Middle East contributing the largest sulfate forcings (-100 to 120 mWm-2). The transport sector represents an important O3 forcing from all regions ranging from 5 mWm-2 (Europe) to 12 mWm-2 (East Asia). Domestic biofuel O3 forcing is important for the East Asia (13 mWm-2), South Asia (7 mWm-2) and Central and South Africa (10 mWm-2) regions. Biomass burning contributes large O3 forcings for the Central and South Africa (15 mWm-2) and South America (11 mWm-2) regions. In addition, the power sector O3 forcings from East Asia (14 mWm-2) and South Asia (8 mWm-2) are also substantial. Considering the sum of the O

  16. Nitrogen management is essential to prevent tropical oil palm plantations from causing ground-level ozone pollution

    NASA Astrophysics Data System (ADS)

    Hewitt, Nick; Lee, James

    2010-05-01

    More than half the world's rainforest has been lost to agriculture since the Industrial Revolution. Among the most widespread tropical crops is oil palm (Elaeis guineensis): global production now exceeds 35 million tonnes per year. In Malaysia, for example, 13% of land area is now oil palm plantation, compared with 1% in 1974. There are enormous pressures to increase palm oil production for food, domestic products, and, especially, biofuels. Greater use of palm oil for biofuel production is predicated on the assumption that palm oil is an ‘‘environmentally friendly'' fuel feedstock. Here we show, using measurements and models, that oil palm plantations in Malaysia directly emit more oxides of nitrogen and volatile organic compounds than rainforest. These compounds lead to the production of ground-level ozone (O3), an air pollutant that damages human health, plants, and materials, reduces crop productivity, and has effects on the Earth's climate. Our measurements show that, at present, O3 concentrations do not differ significantly over rainforest and adjacent oil palm plantation landscapes. However, our model calculations predict that if concentrations of oxides of nitrogen in Borneo are allowed to reach those currently seen over rural North America and Europe, ground-level O3 concentrations will reach 100 parts per billion (109) volume (ppbv) and exceed levels known to be harmful to human health. Our study provides an early warning of the urgent need to develop policies that manage nitrogen emissions if the detrimental effects of palm oil production on air quality and climate are to be avoided.

  17. Plant resistance mechanisms to air pollutants: rhythms in ascorbic acid production during growth under ozone stress

    SciTech Connect

    Lee, E.H. )

    1991-01-01

    Relationships between ozone (O3) tolerance and leaf ascorbic acid concentrations in O3-susceptible (O3-S) 'Hark' and O3-resistant (O3-R) 'Hood' soybean, Glycine max (L.) Merr., cultivars were examined with high-performance liquid chromatography (HPLC). Leaf samples were analyzed at 4 intervals during a 24 h period. Soybean cultivars grown in the greenhouse with charcoal filtered (CF) and nonfiltered (NF) air showed daily oscillations in ascorbic acid production. Highest ascorbic acid levels in leaves during light coincided with highest concentrations of photochemical oxidants in the atmosphere at 2:00 p.m. The resistant genotype produced more ascorbic acid in its trifoliate leaves than did the corresponding susceptible genotype. Under CF air (an O3-reduced environment) O3-S and O3-R cultivars showed rhythms in ascorbic acid production. In NF air (an O3 stress environment) the O3-R cultivar alone showed rhythms in ascorbic acid production. Results indicated that superior O3 tolerance in the Hood soybean cultivar (compared with Hark) was associated with a greater increase in endogenous levels of ascorbic acid. Ascorbic acid may scavenge free radicals and thereby protect cells from injury by O3 or other oxyradical products. Plants defend themselves against photochemical oxidant stress, such as O3, by several mechanisms. Experimental evidence indicates that antioxidant defense systems existing in plant tissues may function to protect cellular components from deleterious effects of photochemical oxidants through endogenous and exogenous controls.

  18. Soybean yield in New Jersey relative to antioxidant application and ozone pollution

    SciTech Connect

    Smith, G.; Justin, J.; Greenhalgh, B.; Brennan, E.

    1985-01-01

    Williams and Cutler 71 soybean seeds inoculated with Rhizobium japonicum were planted in loam soil (pH 6.0) at the Vegetable Research Farm in New Brunswick. Two treatments, plus and minus EDU, were applied to each cultivar in plots consisting of three or five 20-ft rows replicated four times in a randomized or sytematic block design. The amount of ozone injury observed on the soybean foliage varied from 10 to 15% in the minus EDU plots, compared to 2 to 10% in the plus EDU plots. There was not a marked difference in the degree of visual injury to either cultivar with the addition of the antioxidant. The total yield of Williams seed was not statistically different in the + and - EDU plots in any of the four years, nor did EDU consistently give even a slight increase that might have been established as significant had a greater number of plots been included in the experiment. The yearly variation in Williams and Cutler 71 seed yield was greater than the differences between + and ( - EDU treatments in any given year.

  19. Coarse Particulate Air Pollution Associated with Increased Risk of Hospital Admissions for Respiratory Diseases in a Tropical City, Kaohsiung, Taiwan.

    PubMed

    Cheng, Meng-Hsuan; Chiu, Hui-Fen; Yang, Chun-Yuh

    2015-10-01

    This study was undertaken to determine whether there was an association between coarse particles (PM₂.₅-₁₀) levels and frequency of hospital admissions for respiratory diseases (RD) in Kaohsiung, Taiwan. Hospital admissions for RD including chronic obstructive pulmonary disease (COPD), asthma, and pneumonia, and ambient air pollution data levels for Kaohsiung were obtained for the period from 2006 to 2010. The relative risk of hospital admissions for RD was estimated using a case-crossover approach, controlling for weather variables, day of the week, seasonality, and long-term time trends. For the single pollutant model (without adjustment for other pollutants), increased rate of admissions for RD were significantly associated with higher coarse PM levels only on cool days (<25 °C), with a 10 µg/m³ elevation in PM₂.₅-₁₀ concentrations associated with a 3% (95% CI = 1%-5%) rise in COPD admissions, 4% (95% CI = 1%-7%) increase in asthma admissions, and 3% (95% CI = 2%-4%) rise in pneumonia admissions. No significant associations were found between coarse particle levels and the number of hospital admissions for RD on warm days. In the two-pollutant models, PM₂.₅-₁₀ levels remained significantly correlated with higher rate of RD admissions even controlling for sulfur dioxide, nitrogen dioxide, carbon monoxide, or ozone on cool days. This study provides evidence that higher levels of PM₂.₅-₁₀ enhance the risk of hospital admissions for RD on cool days. PMID:26501308

  20. Regional-scale transport of air pollutants: impacts of southern California emissions on Phoenix ground-level ozone concentrations

    NASA Astrophysics Data System (ADS)

    Li, J.; Georgescu, M.; Hyde, P.; Mahalov, A.; Moustaoui, M.

    2015-03-01

    In this study, WRF-Chem is utilized at high-resolution (1.333 km grid spacing for the innermost domain) to investigate impacts of southern California anthropogenic emissions (SoCal) on Phoenix ground-level ozone concentrations ([O3]) for a pair of recent exceedance episodes. First, WRF-Chem Control simulations are conducted to evaluate model performance. Compared with surface observations of hourly ozone, CO, NOx, and wind fields, the Control simulations reproduce observed variability well. Simulated [O3] are within acceptance ranges recommended by the Environmental Protection Agency (EPA) that characterize skillful experiments. Next, the relative contribution of SoCal and Arizona local anthropogenic emissions (AZ) to ozone exceedance within the Phoenix metropolitan area is investigated via a trio of sensitivity simulations: (1) SoCal emissions are excluded, with all other emissions as in Control; (2) AZ emissions are excluded with all other emissions as in Control; and (3) SoCal and AZ emissions are excluded (i.e., all anthropogenic emissions are eliminated) to account only for biogenic emissions [BEO]. Results for the selected events indicate the impacts of AZ emissions are dominant on daily maximum 8 h average (DMA8) [O3] in Phoenix. SoCal contributions to DMA8 [O3] for the Phoenix metropolitan area range from a few ppbv to over 30 ppbv (10-30% relative to Control experiments). [O3] from SoCal and AZ emissions exhibit the expected diurnal characteristics that are determined by physical and photochemical processes, while BEO contributions to DMA8 [O3] in Phoenix also play a key role. Finally, ozone transport processes and pathways within the lower troposphere are investigated. During daytime, pollutants (mainly ozone) near the southern California coasts are pumped into the planetary boundary-layer over the southern California desert through the mountain chimney and pass channel effects, aiding eastward transport along the desert air basins in southern California

  1. Regional-scale transport of air pollutants: impacts of Southern California emissions on Phoenix ground-level ozone concentrations

    NASA Astrophysics Data System (ADS)

    Li, J.; Georgescu, M.; Hyde, P.; Mahalov, A.; Moustaoui, M.

    2015-08-01

    In this study, WRF-Chem is utilized at high resolution (1.333 km grid spacing for the innermost domain) to investigate impacts of southern California anthropogenic emissions (SoCal) on Phoenix ground-level ozone concentrations ([O3]) for a pair of recent exceedance episodes. First, WRF-Chem control simulations, based on the US Environmental Protection Agency (EPA) 2005 National Emissions Inventories (NEI05), are conducted to evaluate model performance. Compared with surface observations of hourly ozone, CO, NOX, and wind fields, the control simulations reproduce observed variability well. Simulated [O3] are comparable with the previous studies in this region. Next, the relative contribution of SoCal and Arizona local anthropogenic emissions (AZ) to ozone exceedances within the Phoenix metropolitan area is investigated via a trio of sensitivity simulations: (1) SoCal emissions are excluded, with all other emissions as in Control; (2) AZ emissions are excluded with all other emissions as in Control; and (3) SoCal and AZ emissions are excluded (i.e., all anthropogenic emissions are eliminated) to account only for Biogenic emissions and lateral boundary inflow (BILB). Based on the USEPA NEI05, results for the selected events indicate the impacts of AZ emissions are dominant on daily maximum 8 h average (DMA8) [O3] in Phoenix. SoCal contributions to DMA8 [O3] for the Phoenix metropolitan area range from a few ppbv to over 30 ppbv (10-30 % relative to Control experiments). [O3] from SoCal and AZ emissions exhibit the expected diurnal characteristics that are determined by physical and photochemical processes, while BILB contributions to DMA8 [O3] in Phoenix also play a key role. Finally, ozone transport processes and pathways within the lower troposphere are investigated. During daytime, pollutants (mainly ozone) near the Southern California coasts are pumped into the planetary boundary-layer over the Southern California desert through the mountain chimney and pass

  2. Projected changes in high ozone pollution events over the Eastern United States over the 21st century

    NASA Astrophysics Data System (ADS)

    Fiore, A. M.; Rieder, H.; Horowitz, L. W.; Naik, V.

    2013-12-01

    Over the past few decades, thresholds for the United States (US) National Ambient Air Quality Standard (NAAQS) for ozone (O3), established to protect public health and welfare, have been lowered repeatedly. We recently applied methods from extreme value theory (EVT) to maximum daily 8-hour average ozone (MDA8 O3) observed by the Clean Air Status and Trends Network (CASTNet) to quantify the significant decline in both frequency and magnitude of high O3 pollution events over the Eastern US from 1988 to 2009. These improvements to Eastern US air quality have been reported in prior studies and result from changes in air quality regulations and subsequent control measures (e.g., the 'NOx SIP Call') as demonstrated by our analysis of 1-year and 5-year return levels. Here we extend this analysis to future projections of high O3 pollution events spanning the course of the 21st century. To this aim, we analyze simulations from the GFDL CM3 chemistry-climate model under selected Representative Concentration Pathway (RCP) scenarios: RCP4.5 and RCP8.5 (representing a moderate and strong climate warming with a global mean temperature change by 2100 compared to present day of +2.3K and +4.5K, respectively). Under both scenarios, NOx emissions decrease by ~80% over North America by 2100 under the assumption of aggressive ozone pollution controls. A third scenario, termed RCP4.5_WMGG, in which well-mixed greenhouse gases follow the RCP4.5 scenario but O3 and aerosol precursor emissions are held at 2005 levels, enables us to isolate the role of climate change from that of emission reductions. As we find a positive bias in GFDL CM3 MDA8 O3 compared to the Eastern US CASTNet O3 measurements during summer (a common feature in the current generation of models), we develop a correction method based on quantile-mapping. This bias correction effectively removes the model bias while preserving the temporal changes in MDA8 O3 as simulated under different RCPs over the course of the 21st

  3. Projected changes in high ozone pollution events over the Eastern United States over the 21st century

    NASA Astrophysics Data System (ADS)

    Rieder, Harald E.; Fiore, Arlene M.; Horrowitz, Larry W.; Naik, Vaishali

    2014-05-01

    Over the past few decades, thresholds for the United States (US) National Ambient Air Quality Standard (NAAQS) for ozone (O3), established to protect public health and welfare, have been lowered repeatedly. We recently applied methods from extreme value theory (EVT) to maximum daily 8-hour average ozone (MDA8 O3) observed by the Clean Air Status and Trends Network (CASTNet) to quantify the significant decline in both frequency and magnitude of high O3 pollution events over the Eastern US from 1988 to 2009. These improvements to Eastern US air quality have been reported in prior studies and result from changes in air quality regulations and subsequent control measures (e.g., the "NOx SIP Call") as demonstrated by our analysis of 1-year and 5-year return levels. Here we extend this analysis to future projections of high O3 pollution events spanning the course of the 21st century. To this aim, we analyze simulations from the GFDL CM3 chemistry-climate model under selected Representative Concentration Pathway (RCP) scenarios: RCP4.5 and RCP8.5 (representing a moderate and strong climate warming with a global mean temperature change by 2100 compared to present day of +2.3K and +4.5K, respectively). Under both scenarios, NOx emissions decrease by ~80% over North America by 2100 under the assumption of aggressive ozone pollution controls. A third scenario, termed RCP4.5_WMGG, in which well-mixed greenhouse gases follow the RCP4.5 scenario but O3 and aerosol precursor emissions are held at 2005 levels, enables us to isolate the role of climate change from that of emission reductions. As we find a positive bias in GFDL CM3 MDA8 O3 compared to the Eastern US CASTNet O3 measurements during summer (a common feature in the current generation of models), we develop a correction method based on quantile-mapping. This bias correction effectively removes the model bias while preserving the temporal changes in MDA8 O3 as simulated under different RCPs over the course of the 21st

  4. Global crop yield reductions due to surface ozone exposure: 2. Year 2030 potential crop production losses and economic damage under two scenarios of O 3 pollution

    NASA Astrophysics Data System (ADS)

    Avnery, Shiri; Mauzerall, Denise L.; Liu, Junfeng; Horowitz, Larry W.

    2011-04-01

    We examine the potential global risk of increasing surface ozone (O 3) exposure to three key staple crops (soybean, maize, and wheat) in the near future (year 2030) according to two trajectories of O 3 pollution: the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (IPCC SRES) A2 and B1 storylines, which represent upper- and lower-boundary projections, respectively, of most O 3 precursor emissions in 2030. We use simulated hourly O 3 concentrations from the Model for Ozone and Related Chemical Tracers version 2.4 (MOZART-2), satellite-derived datasets of agricultural production, and field-based concentration:response relationships to calculate crop yield reductions resulting from O 3 exposure. We then calculate the associated crop production losses and their economic value. We compare our results to the estimated impact of O 3 on global agriculture in the year 2000, which we assessed in our companion paper [Avnery et al., 2011]. In the A2 scenario we find global year 2030 yield loss of wheat due to O 3 exposure ranges from 5.4 to 26% (a further reduction in yield of +1.5-10% from year 2000 values), 15-19% for soybean (reduction of +0.9-11%), and 4.4-8.7% for maize (reduction of +2.1-3.2%) depending on the metric used, with total global agricultural losses worth 17-35 billion USD 2000 annually (an increase of +6-17 billion in losses from 2000). Under the B1 scenario, we project less severe but still substantial reductions in yields in 2030: 4.0-17% for wheat (a further decrease in yield of +0.1-1.8% from 2000), 9.5-15% for soybean (decrease of +0.7-1.0%), and 2.5-6.0% for maize (decrease of + 0.3-0.5%), with total losses worth 12-21 billion annually (an increase of +1-3 billion in losses from 2000). Because our analysis uses crop data from the year 2000, which likely underestimates agricultural production in 2030 due to the need to feed a population increasing from approximately 6 to 8 billion people between 2000 and 2030, our

  5. Intercontinental Transport of Air Pollution

    NASA Technical Reports Server (NTRS)

    Rogers, David; Whung, Pai-Yei; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The development of the global economy goes beyond raising our standards of living. We are in an ear of increasing environmental as well as economic interdependence. Long-range transport of anthropogenic atmospheric pollutants such as ozone, ozone precursors, airborne particles, heavy metals (such as mercury) and persistent organic pollutants are the four major types of pollution that are transported over intercontinental distances and have global environmental effects. The talk includes: 1) an overview of the international agreements related to intercontinental transport of air pollutants, 2) information needed for decision making, 3) overview of the past research on intercontinental transport of air pollutants - a North American's perspective, and 4) future research needs.

  6. Air Pollution

    MedlinePlus

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, dust, ... a gas, is a major part of air pollution in cities. When ozone forms air pollution, it's ...

  7. Co-exposure to ultrafine particulate matter and ozone causes electrocardiogram changes indicative of increased arrhythmia risk in mice

    EPA Science Inventory

    Numerous studies have shown a relationship between acute air pollution exposure and increased risk for cardiovascular morbidity and mortality. Due to the inherent complexity of air pollution, recent studies have focused on co-exposures to better understand potential interactions....

  8. Surface Ozone Background in the United States: Canadian and Mexican Pollution Influences

    EPA Science Inventory

    We use a global chemical transport model (GEOS-Chem) with 1° x 1° horizontal resolution to quantify the effects of anthropogenic emissions from Canada, Mexico, and outside North America on daily maximum 8-h average ozone concentrations in U.S.surface air.

  9. Development of pollution reduction strategies for Mexico City: Estimating cost and ozone reduction effectiveness

    SciTech Connect

    Thayer, G.R.; Hardie, R.W.; Barrera-Roldan, A.

    1993-12-31

    This reports on the collection and preparation of data (costs and air quality improvement) for the strategic evaluation portion of the Mexico City Air Quality Research Initiative (MARI). Reports written for the Mexico City government by various international organizations were used to identify proposed options along with estimates of cost and emission reductions. Information from appropriate options identified by SCAQMD for Southem California were also used in the analysis. A linear optimization method was used to select a group of options or a strategy to be evaluated by decision analysis. However, the reduction of ozone levels is not a linear function of the reduction of hydrocarbon and NO{sub x} emissions. Therefore, a more detailed analysis was required for ozone. An equation for a plane on an isopleth calculated with a trajectory model was obtained using two endpoints that bracket the expected total ozone precursor reductions plus the starting concentrations for hydrocarbons and NO{sub x}. The relationship between ozone levels and the hydrocarbon and NO{sub x} concentrations was assumed to lie on this plane. This relationship was used in the linear optimization program to select the options comprising a strategy.

  10. Quantifying the effects of ozone on plant reproductive growth and development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tropospheric ozone is a harmful air pollutant that can negatively impact plant growth and development. Current ozone concentrations negatively impact forest productivity and crop yields, and future ozone concentrations will increase if current emission rates continue. However, the specific effects o...

  11. Regional ozone impacts of increased natural gas use in the Texas power sector and development in the Eagle Ford shale.

    PubMed

    Pacsi, Adam P; Kimura, Yosuke; McGaughey, Gary; McDonald-Buller, Elena C; Allen, David T

    2015-03-17

    The combined emissions and air quality impacts of electricity generation in the Texas grid and natural gas production in the Eagle Ford shale were estimated at various natural gas price points for the power sector. The increased use of natural gas in the power sector, in place of coal-fired power generation, drove reductions in average daily maximum 8 h ozone concentration of 0.6-1.3 ppb in northeastern Texas for a high ozone episode used in air quality planning. The associated increase in Eagle Ford upstream oil and gas production nitrogen oxide (NOx) emissions caused an estimated local increase, in south Texas, of 0.3-0.7 ppb in the same ozone metric. In addition, the potential ozone impacts of Eagle Ford emissions on nearby urban areas were estimated. On the basis of evidence from this work and a previous study on the Barnett shale, the combined ozone impact of increased natural gas development and use in the power sector is likely to vary regionally and must be analyzed on a case by case basis. PMID:25723953

  12. Possible effects of CO2 increase on the high-speed civil transport impact on ozone

    SciTech Connect

    Pitari, G.; Visconti, G.

    1994-08-01

    The role of heterogeneous chemistry on the potential impact on ozone of a commerical fleet of high speed civil transport aircraft (HSCT) has been recently studied with assessment models. Here an attempt is made to model the effects of the carbon dioxide increase which is predicted in the furture atmosphere when HSCT should be operational. For this purpose we have first used a three-dimensional model for the radiative and dynamical calculations and then a photochemical two-dimensional model including an explicit gas-particle interaction in the process of aerosol formation. The denoxification and denitrification associated with the formation of nitric acid trihydrate (NAT) aerosols is shown to significantly affect the partition of chemical families. The radiative perturbation introduced by the CO2 increase is shown to perturb the stratospheric dynamics in such a way that the lower stratospheric residual circulation is enhanced. This has the effect of reducing by about 15% the stratospheric residence time of odd nitrogen injected by the aircraft, so that the overall perturbation of stratospheric chemistry due to HSCT is mitigated with respect to the reference case in which CO2 is kept at the present level. Another effect is found to be produced by the stratospheric temperature cooling following the CO2 increase. Our model predicts a large enhancement of the surface area density of NAT aerosols in the arctic region, so that the additional denitrification produces a further decrease of the relative role of the NO(X) catalytic cycle for ozone destruction in the lower stratosphere.

  13. Changes in the frequency and return level of high ozone pollution events over the eastern United States following emission controls

    NASA Astrophysics Data System (ADS)

    Rieder, H. E.; Fiore, A. M.; Polvani, L. M.; Lamarque, J.-F.; Fang, Y.

    2013-03-01

    In order to quantify the impact of recent efforts to abate surface ozone (O3) pollution, we analyze changes in the frequency and return level of summertime (JJA) high surface O3 events over the eastern United States (US) from 1988-1998 to 1999-2009. We apply methods from extreme value theory (EVT) to maximum daily 8-hour average ozone (MDA8 O3) observed by the Clean Air Status and Trends Network (CASTNet) and define O3 extremes as days on which MDA8 O3 exceeds a threshold of 75 ppb (MDA8 O3>75). Over the eastern US, we find that the number of summer days with MDA8 O3>75 declined on average by about a factor of two from 1988-1998 to 1999-2009. The applied generalized Pareto distribution (GPD) fits the high tail of MDA8 O3 much better than a Gaussian distribution and enables the derivation of probabilistic return levels (describing the probability of exceeding a value x within a time window T) for high O3 pollution events. This new approach confirms the significant decline in both frequency and magnitude of high O3 pollution events over the eastern US during recent years reported in prior studies. Our analysis of 1-yr and 5-yr return levels at each station demonstrates the strong impact of changes in air quality regulations and subsequent control measures (e.g., the ‘NOx SIP Call’), as the 5-yr return levels of the period 1999-2009 correspond roughly to the 1-yr return levels of the earlier time period (1988-1998). Regionally, the return levels dropped between 1988-1998 and 1999-2009 by about 8 ppb in the Mid-Atlantic (MA) and Great Lakes (GL) regions, while the strongest decline, about 13 ppb, is observed in the Northeast (NE) region. Nearly all stations (21 out of 23) have 1-yr return levels well below 100 ppb and 5-yr return levels well below 110 ppb in 1999-2009. Decreases in eastern US O3 pollution are largest after full implementation of the nitrogen oxide (NOx) reductions under the ‘NOx SIP Call’. We conclude that the application of EVT methods

  14. [Removal characters of ozone-biological activated carbon process for typical pollutants in southern brooky regions of China].

    PubMed

    Lin, Tao; Chen, Wei; Wang, Lei-Lei

    2009-05-15

    The products of relative molecular weight (Mr) distribution, bromate (BrO3(-)) and trihalomethanes (THMs) were studied by ozone-biological activated carbon (O3-BAC) process for treating organic matters and bromide (Br(-)) in water source of southern brooky regions of China. The experimental results showed that dissolved organic matters (DOC) with Mr lower than 10(3) accounted for 80% of the total. The removal rate of DOC and SUVA (UV254/DOC) were 8% and 14% respectively by traditional treatment process with main removalonly for ones with Mr higher than 100 x 10(3). Only 30% of DOC and 31% of SUVA were decreased by O3-BAC process for the removal of ones with Mr between 10(3) and 5 x 10(3), in which the biotic degradation was certainly restricted by predominant organic matters of hydrophilic and Mr was lower than 1000. An obvious increase of BrO3(-) occurred in the effluent from ozone oxidation process when the dose of ozone beyond 2 mg/L which increased Br(-) concentration. This could increase the product of BrO3(-). A poor and unstable removal effect of BrO3(-) was observed in the effluent of BAC process during the experiment. Each species of THMs, decreasing 40% of total, was reduced by O3-BAC treatment compared with the traditional treatment process. But the products of brominated trihalomethanes, especially CHBr3 would be markedly increased by enhanced chlorine dosage and Br(-) concentration. PMID:19558108

  15. Does toxicity of aromatic pollutants increase under remote atmospheric conditions?

    PubMed Central

    Kroflič, Ana; Grilc, Miha; Grgić, Irena

    2015-01-01

    Aromatic compounds contribute significantly to the budget of atmospheric pollutants and represent considerable hazard to living organisms. However, they are only rarely included into atmospheric models which deviate substantially from field measurements. A powerful experimental-simulation tool for the assessment of the impact of low- and semi-volatile aromatic pollutants on the environment due to their atmospheric aqueous phase aging has been developed and introduced for the first time. The case study herein reveals that remote biotopes might be the most damaged by wet urban guaiacol-containing biomass burning aerosols. It is shown that only after the primary pollutant guaiacol has been consumed, its probably most toxic nitroaromatic product is largely formed. Revising the recent understanding of atmospheric aqueous phase chemistry, which is mostly concerned with the radical nitration mechanisms, the observed phenomenon is mainly attributed to the electrophilic nitrogen-containing reactive species. Here, their intriguing role is closely inspected and discussed from the ecological perspective. PMID:25748923

  16. Does toxicity of aromatic pollutants increase under remote atmospheric conditions?

    NASA Astrophysics Data System (ADS)

    Kroflič, Ana; Grilc, Miha; Grgić, Irena

    2015-03-01

    Aromatic compounds contribute significantly to the budget of atmospheric pollutants and represent considerable hazard to living organisms. However, they are only rarely included into atmospheric models which deviate substantially from field measurements. A powerful experimental-simulation tool for the assessment of the impact of low- and semi-volatile aromatic pollutants on the environment due to their atmospheric aqueous phase aging has been developed and introduced for the first time. The case study herein reveals that remote biotopes might be the most damaged by wet urban guaiacol-containing biomass burning aerosols. It is shown that only after the primary pollutant guaiacol has been consumed, its probably most toxic nitroaromatic product is largely formed. Revising the recent understanding of atmospheric aqueous phase chemistry, which is mostly concerned with the radical nitration mechanisms, the observed phenomenon is mainly attributed to the electrophilic nitrogen-containing reactive species. Here, their intriguing role is closely inspected and discussed from the ecological perspective.

  17. Understanding high wintertime ozone pollution events in an oil and natural gas producing region of the western US

    NASA Astrophysics Data System (ADS)

    Ahmadov, R.; McKeen, S.; Trainer, M.; Banta, R.; Brewer, A.; Brown, S.; Edwards, P. M.; de Gouw, J. A.; Frost, G. J.; Gilman, J.; Helmig, D.; Johnson, B.; Karion, A.; Koss, A.; Langford, A.; Lerner, B.; Olson, J.; Oltmans, S.; Peischl, J.; Pétron, G.; Pichugina, Y.; Roberts, J. M.; Ryerson, T.; Schnell, R.; Senff, C.; Sweeney, C.; Thompson, C.; Veres, P.; Warneke, C.; Wild, R.; Williams, E. J.; Yuan, B.; Zamora, R.

    2014-08-01

    Recent increases in oil and natural gas (NG) production throughout the western US have come with scientific and public interest in emission rates, air quality and climate impacts related to this industry. This study uses a regional scale air quality model WRF-Chem to simulate high ozone (O3) episodes during the winter of 2013 over the Uinta Basin (UB) in northeastern Utah, which is densely populated by thousands of oil and NG wells. The high resolution meteorological simulations are able to qualitatively reproduce the wintertime cold pool conditions that occurred in 2013, allowing the model to reproduce the observed multi-day buildup of atmospheric pollutants and accompanying rapid photochemical ozone formation in the UB. Two different emission scenarios for the oil and NG sector were employed in this study. The first emission scenario (bottom-up) was based on the US EPA National Emission Inventory (NEI) (2011, version 1) for the oil and NG sector for the UB. The second emission scenario (top-down) was based on the previously derived estimates of methane (CH4) emissions and a regression analysis for multiple species relative to CH4 concentration measurements in the UB. WRF-Chem simulations using the two emission data sets resulted in significant differences for concentrations of most gas-phase species. Evaluation of the model results shows greater underestimates of CH4 and other volatile organic compounds (VOCs) in the simulation with the NEI-2011 inventory than the case when the top-down emission scenario was used. Unlike VOCs, the NEI-2011 inventory significantly overestimates the emissions of nitrogen oxides (NOx), while the top-down emission scenario results in a moderate negative bias. Comparison of simulations using the two emission data sets reveals that the top-down case captures the high O3 episodes. In contrast, the simulation case using the bottom-up inventory is not able to reproduce any of the observed high O3 concentrations in the UB. A sensitivity

  18. Increase of exhaled nitric oxide in children exposed to low levels of ambient ozone.

    PubMed

    Nickmilder, Marc; de Burbure, Claire; Carbonnelle, Sylviane; Sylviane, Carbonnelle; Dumont, Xavier; Xavier, Dumont; Bernard, Alfred; Alfred, Bernard; Derouane, Alain; Alain, Derouane

    2007-02-01

    Ozone (O3) is known to induce lung function impairment and airways inflammation during episodes of photochemical smog. The aim of the present study was to assess the inflammatory effect of ambient O3 in healthy children using nitric oxide in exhaled air (eNO) as a noninvasive test. The study was performed on 6 groups of children (n = 11-15), aged 6.5 to 15 yr, who attended summer camps in rural areas of the south of Belgium in 2002. Ambient O3 concentrations continuously monitored in the camps ranged from 48 to 221 microg/m3 (1-h maximal concentration). Children remained outdoors during the experimental days, doing various recreational activities but no sports. Lung function tests (forced expiratory volume in 1 s [FEV1] and forced vital capacity [FVC]) and eNO were measured twice in each child in the morning and in the evening. While lung function tests did not show any consistent pattern of decrease at these O3 levels, a highly significant increase in eNO was found in all subjects from an ambient 1-h O3 level of 167 microg/m3. A multivariate analysis did not reveal any influence of age, gender, height, weight, and body mass index (BMI) of the children. The threshold for this O3-induced increase in eNO estimated benchmark dose analysis was 135 microg/m3 for 1-h exposure and 110 microg/m3 for 8-h exposure. These observations suggest that ambient ozone produces early inflammatory changes in the airways of children at levels slightly below current air quality standards. PMID:17365589

  19. Effect of climate change on surface ozone over North America, Europe, and East Asia

    NASA Astrophysics Data System (ADS)

    Schnell, Jordan L.; Prather, Michael J.; Josse, Beatrice; Naik, Vaishali; Horowitz, Larry W.; Zeng, Guang; Shindell, Drew T.; Faluvegi, Greg

    2016-04-01

    The effect of future climate change on surface ozone over North America, Europe, and East Asia is evaluated using present-day (2000s) and future (2100s) hourly surface ozone simulated by four global models. Future climate follows RCP8.5, while methane and anthropogenic ozone precursors are fixed at year 2000 levels. Climate change shifts the seasonal surface ozone peak to earlier in the year and increases the amplitude of the annual cycle. Increases in mean summertime and high-percentile ozone are generally found in polluted environments, while decreases are found in clean environments. We propose that climate change augments the efficiency of precursor emissions to generate surface ozone in polluted regions, thus reducing precursor export to neighboring downwind locations. Even with constant biogenic emissions, climate change causes the largest ozone increases at high percentiles. In most cases, air quality extreme episodes become larger and contain higher ozone levels relative to the rest of the distribution.

  20. 40 CFR 125.67 - Increase in effluent volume or amount of pollutants discharged.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of pollutants discharged. 125.67 Section 125.67 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS CRITERIA AND STANDARDS FOR THE NATIONAL POLLUTANT DISCHARGE ELIMINATION... Water Act § 125.67 Increase in effluent volume or amount of pollutants discharged. (a) No...

  1. Changing ozone: Evidence for a perturbed atmosphere

    SciTech Connect

    Penkett, S.A. )

    1991-04-01

    There is much legitimate concern about the dramatic loss of ozone that is observed in the stratosphere over Antarctica in the Austral spring. There should be even more concern about the increasing losses of ozone observed recently in polar and midlatitude regions of the stratosphere in the northern hemisphere. In addition to the ozone losses occurring in the stratosphere, there is now compelling evidence that the ozone concentration in large parts of the northern hemisphere troposphere is increasing steadily. This is almost certainly caused by emissions of hydrocarbons, carbon monoxide, and nitrogen oxides from combustion processes of many kinds, but principally transport and biomass burning. It is hoped that these extensive studies of ozone in the background troposphere materialize and allow us to develop a clear quantitative link between emissions of pollutants and their effects. The changes already observed in the ozone concentrations throughout the atmosphere clearly demonstrate the capacity for human activity to influence the fundamental workings of the atmosphere.

  2. Does Pollution Increase School Absences? NBER Working Paper No. 13252

    ERIC Educational Resources Information Center

    Currie, Janet; Hanushek, Eric; Kahn, E. Megan; Neidell, Matthew; Rivkin, Steven

    2007-01-01

    We examine the effect of air pollution on school absences using unique administrative data for elementary and middle school children in the 39 largest school districts in Texas. These data are merged with information from monitors maintained by the Environmental Protection Agency. To control for potentially confounding factors, we adopt a…

  3. Age, Strain, and Gender as Factors for Increased Sensitivity of the Mouse Lung to Inhaled Ozone

    PubMed Central

    Vancza, Elizabeth M.; Galdanes, Karen; Gunnison, Al; Hatch, Gary; Gordon, Terry

    2009-01-01

    Ozone (O3) is a respiratory irritant that leads to airway inflammation and pulmonary dysfunction. Animal studies show that neonates are more sensitive to O3 inhalation than adults, and children represent a potentially susceptible population. This latter notion is not well established, and biological mechanisms underlying a predisposition to pollution-induced pulmonary effects are unknown. We examined age and strain as interactive factors affecting differential pulmonary responses to inhaled O3. Male and female adult mice (15 weeks old) and neonates (15–16 days old) from eight genetically diverse inbred strains were exposed to 0.8 ppm O3 for 5 h. Pulmonary injury and lung inflammation were quantified as total protein concentration and total polymorphonuclear neutrophil (PMN) number in lavage fluid recovered 24-h postexposure. Dose-response and time-course curves were generated using SJL/J pups, and 18O lung burden dose was assessed in additional mice. Interstrain differences in response to O3 were seen in neonatal mice: Balb/cJ and SJL/J being most sensitive and A/J and 129x1/SvJ most resistant. The PMN response to O3 was greater in neonates than in adults, specifically for SJL/J and C3H/HeJ strains, independent of dose. Small gender differences were also observed in adult mice. Variation in protein concentrations and PMN counts between adults and pups were strain dependent, suggesting that genetic determinants do play a role in age-related sensitivity to O3. Further research will help to determine what genetic factors contribute to these heightened responses, and to quantify the relative contribution of genes vs. environment in O3-induced health effects. PMID:19066396

  4. Total mineralization of sulfamethoxazole and aromatic pollutants through Fe2+-montmorillonite catalyzed ozonation.

    PubMed

    Shahidi, Dariush; Moheb, Amira; Abbas, Rabah; Larouk, Safa; Roy, René; Azzouz, Abdelkrim

    2015-11-15

    The catalytic activity and selectivity of montmorillonite exchanged with Na(+), Fe(2+), Co(2+), Ni(2+) and Cu(2+) cations were comparatively investigated in the ozonation of sulfamethoxazole (SMX). Chlorobenzene, benzoic acid, 4-nitrobenzoic acid, 3-hydroxybenzaldehyde, 4-nitrophenol and phenol were used as probe molecules having structural similarity with SMX oxidation intermediates. UV-vis spectrophometry and chemical oxygen demand (COD) measurements showed that Fe(II)-Mt and, to a lesser extent, Co(II)-Mt produce total mineralization of all organic substrates in less than 40 min. Combined HPLC-mass spectrometry revealed a reverse proportionality between the degradation time and molecular size of the organic substrates. Oxalic acid was recognized as a common bottleneck in the ozonation of any organic substrates. Ozonation initially obeyed a first order kinetics, but adsorption took place after 3-5 min, inducing changes in the mechanisms pathways. These findings may be useful for tailoring optimum oxidative treatment of waters without accumulation of hazardous derivatives. PMID:26118641

  5. DURATION OF INCREASED PULMONARY FUNCTION SENSITIVITY TO AN INITIAL OZONE EXPOSURE

    EPA Science Inventory

    The metabolic and pulmonary function effects were investigated in 6 non-smoking, young adults who were exposed for 2 hours (22 deg. WBGT) to: (1) Filtered air (FA), (2) 0.45 ppm ozone (DAY), and (3) Two days later to a second exposure to 0.45 ppm ozone exposure (DAY2). The subjec...

  6. A model investigation of the impact of increases in anthropogenic NOx emissions between 1967 and 1980 on tropospheric ozone

    NASA Technical Reports Server (NTRS)

    Dignon, J.; Hameed, S.

    1985-01-01

    The impact of anthropogenic NOx emission on tropospheric ozone has been investigated. Two statistical models were used for estimating annual global emissions of NOx and for driving the trend in the emission for the years 1966-1980. Both models show a steady increase in the NOx emission, except for two brief periods of leveling off: after 1973 and after 1978. The impact was estimated by calculating the rates of emissions as functions of latitude, longitude, and year, with a one-dimensional (latitudinal) model, which included coupled tropospheric photochemistry and diffusive meridional transport. Steady-state photochemical calculations with prescribed NOx emissions appropriate for 1966 and 1980 indicate an ozone increase of 8-11 percent in the Northern Hemisphere, a result compatible with the rise in ozone suggested by the observations.

  7. Tropospheric Ozone and Photochemical Smog

    NASA Astrophysics Data System (ADS)

    Sillman, S.

    2003-12-01

    The question of air quality in polluted regions represents one of the issues of geochemistry with direct implications for human well-being. Human health and well-being, along with the well-being of plants, animals, and agricultural crops, are dependent on the quality of air we breathe. Since the start of the industrial era, air quality has become a matter of major importance, especially in large cities or urbanized regions with heavy automobile traffic and industrial activity.Concern over air quality existed as far back as the 1600s. Originally, polluted air in cities resulted from the burning of wood or coal, largely as a source of heat. The industrial revolution in England saw a great increase in the use of coal in rapidly growing cities, both for industrial use and domestic heating. London suffered from devastating pollution events during the late 1800s and early 1900s, with thousands of excess deaths attributed to air pollution (Brimblecombe, 1987). With increasing use of coal, other instances also occurred in continental Europe and the USA. These events were caused by directly emitted pollutants (primary pollutants), including sulfur dioxide (SO2), carbon monoxide (CO), and particulates. They were especially acute in cities with northerly locations during fall and winter when sunlight is at a minimum. These original pollution events gave rise to the term "smog" (a combination of smoke and fog). Events of this type have become much less severe since the 1950s in Western Europe and the US, as natural gas replaced coal as the primary source of home heating, industrial smokestacks were designed to emit at higher altitudes (where dispersion is more rapid), and industries were required to install pollution control equipment.Beginning in the 1950s, a new type of pollution, photochemical smog, became a major concern. Photochemical smog consists of ozone (O3) and other closely related species ("secondary pollutants") that are produced photochemically from directly

  8. Ozone synthesis improves by increasing number density of plasma channels and lower voltage in a nonthermal plasma

    NASA Astrophysics Data System (ADS)

    Arif Malik, Muhammad; Hughes, David

    2016-04-01

    Improvements in ozone synthesis from air and oxygen by increasing the number density of plasma channels and lower voltage for the same specific input energy (SIE) were explored in a nonthermal plasma based on a sliding discharge. The number of plasma channels and energy per pulse increased in direct proportion to the increase in the effective length of the anode (the high voltage electrode). Decreasing the discharge gap increased the energy per pulse for the same length and allowed the installation of more electrode pairs in the same space. It allowed the increase of the number of plasma channels in the same space to achieve the same SIE at a lower peak voltage with less energy per plasma channel. The ozone concentration gradually increased to ~1500 ppmv (140 to 50 g kWh-1) from air and to ~6000 ppmv (400 to 200 g kWh-1) from oxygen with a gradual increase in the SIE to ~200 J L-1, irrespective of the variations in electrode geometry, applied voltage or flow rate of the feed gas. A gradual increase in SIE beyond 200 J L-1 gradually increased the ozone concentration to a certain maximum value followed by a decline, but the rate of increase and the maximum value was higher for the greater number of plasma channels and lower peak voltage combination. The maximum ozone concentration was ~5000 ppmv (~30 g kWh-1) from air and ~22 000 ppmv (~80 g kWh-1) from oxygen. The results are explained on the basis of characteristics of the plasma and ozone synthesis mechanism.

  9. Spatial Variability in Ozone and CO2 Flux during the Front Range Air Pollution and Photochemistry Experiment

    NASA Astrophysics Data System (ADS)

    Almand-Hunter, B.; Piedrahita, R.; Kaushik, A.; Noone, D. C.; Walker, J. T.; Hannigan, M.

    2014-12-01

    Air quality problems persist in the Northern Front-Range Metropolitan Area (NFRMA) of Colorado despite efforts to reduce emissions, and summertime ozone concentrations frequently exceed the NAAQS. Atmospheric modeling in the NFRMA is challenging due to the complex topography of the area, as well as diversity of pollutant sources (urban NOx and VOCs, power plants, oil and gas, agricultural emissions, biogenic emissions, and wildfires). An improved understanding of the local atmospheric chemistry will enable researchers to advance atmospheric models, which will subsequently be used to develop and test more effective air quality management strategies. The Front Range Air Pollution and Photochemistry Experiment (FRAPPE) investigates this problem through detailed examination of atmospheric chemistry in the NFRMA. Our project specifically explores the spatial variability in ozone (O3) concentration and dry deposition within the FRAPPE study area. One source of uncertainty in atmospheric models is O3 flux, which varies spatially due to local meteorology and variation in ambient concentration and deposition velocity. Model grid cells typically range in size from 10-100 km and 100-500 km, for regional and global models, respectively, and accurate representations of an entire grid cell cannot always be achieved. Large spatial variability within a model grid cell can lead to poor estimates of trace-gas flux and concentration. Our research addresses this issue by measuring spatial variability in O3 flux using low-cost dry-deposition flux chambers. We are measuring O3 and CO2 flux with 5 low-cost flux chambers and one eddy-covariance tower. The eddy-covariance tower is located at the Boulder Atmospheric Observatory in Erie, CO. All 5 chambers are within a 8.3 x 6 km square, with one chamber collocated with the eddy-covariance tower, and the other 4 chambers at distances of 0.33, 1.14, 3.22, and 7.55 km from the tower. The largest distance between any two chambers is 8.5 km. All

  10. CATALYTIC OXIDATION OF AIR POLLUTANTS FROM PULP AND PAPER INDUSTRY USING OZONE

    EPA Science Inventory

    Major pollutants from pulp and paper mills include volatile organic compounds (VOCs) such as methanol and total reduced sulfur compounds (TRS) such as dimethyl sulfide. The conventional treatment technologies including incineration or catalytic thermal oxidation are energy intens...

  11. Increasing spatiotemporal resolution of several major pollutant species in the Atlanta Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Brosius, A. L.; Luong, K. Y.

    2014-12-01

    The American Lung Association cited Atlanta, Georgia, as one of the top 20 most polluted U.S. cities in 2014. Heavy air and ground transportation traffic contribute to the production of carbon dioxide (CO2), particulate matter (PM), and tropospheric ozone (O3) for the Atlanta Metropolitan Area (AMA). Hartsfield-Jackson Atlanta International Airport contributes significantly to the emission of these pollutants and their precursors. This study focuses on enhancing spatiotemporal resolution of CO2, PM, and O3in near-surface (ground to 50m) air columns by using Arduino-based sensors. The city of Decatur, due to its proximity to the airport, is the study site for the investigation of target pollutant concentrations. The results of this study, combined with other metropolitan air quality data sets, can be used to verify projected trends and append seasonal data. An understanding of the pollutant concentration distributions throughout the near-surface air column is vital to providing insight into the fluctuation of urban area pollutants.

  12. Overt and Latent Cardiac Effects of Ozone Inhalation in Rats: Evidence for Autonomic Modulation and Increased Myocardial Vulnerability*

    EPA Science Inventory

    Ozone (O3) is a well-documented respiratory oxidant, but increasing epidemiologic evidence points to extra-pulmonary effects including positive associations between ambient O3 concentrations and cardiovascular morbidity/mortality. With preliminary reports linking O3 exposure wit...

  13. Air pollution and associated human mortality: the role of air pollutant emissions, climate change and methane concentration increases from the preindustrial period to present

    NASA Astrophysics Data System (ADS)

    Fang, Y.; Naik, V.; Horowitz, L. W.; Mauzerall, D. L.

    2013-02-01

    Increases in surface ozone (O3) and fine particulate matter (≤2.5 μm aerodynamic diameter, PM2.5) are associated with excess premature human mortalities. We estimate changes in surface O3 and PM2.5 from pre-industrial (1860) to present (2000) and the global present-day (2000) premature human mortalities associated with these changes. We extend previous work to differentiate the contribution of changes in three factors: emissions of short-lived air pollutants, climate change, and increased methane (CH4) concentrations, to air pollution levels and associated premature mortalities. We use a coupled chemistry-climate model in conjunction with global population distributions in 2000 to estimate exposure attributable to concentration changes since 1860 from each factor. Attributable mortalities are estimated using health impact functions of long-term relative risk estimates for O3 and PM2.5 from the epidemiology literature. We find global mean surface PM2.5 and health-relevant O3 (defined as the maximum 6-month mean of 1-h daily maximum O3 in a year) have increased by 8 ± 0.16 μg m-3 and 30 ± 0.16 ppbv (results reported as annual average ±standard deviation of 10-yr model simulations), respectively, over this industrial period as a result of combined changes in emissions of air pollutants (EMIS), climate (CLIM) and CH4 concentrations (TCH4). EMIS, CLIM and TCH4 cause global population-weighted average PM2.5 (O35) to change by +7.5 ± 0.19 μg m-3 (+25 ± 0.30 ppbv), +0.4 ± 0.17 μg m-3 (+0.5 ± 0.28 ppbv), and 0.04 ± 0.24 μg m-3 (+4.3 ± 0.33 ppbv), respectively. Total global changes in PM2.5 are associated with 1.5 (95% confidence interval, CI, 1.2-1.8) million cardiopulmonary mortalities and 95 (95% CI, 44-144) thousand lung cancer mortalities annually and changes in O3 are associated with 375 (95% CI, 129-592) thousand respiratory mortalities annually. Most air pollution mortality is driven by changes in emissions of short-lived air pollutants and their

  14. Ozone sensitivity to its precursor emissions in northeastern Mexico for a summer air pollution episode.

    PubMed

    Sierra, A; Vanoye, A Y; Mendoza, A

    2013-10-01

    A summer episode was modeled to address the expected response of ambient air O3 to hypothetical emission control scenarios in northeastern Mexico, and in particular in the Monterrey Metropolitan Area (MMA). This region is of interest because the MMA holds one of the worst air quality problems in the country and levels of air pollutants in the rest of northeastern Mexico are starting to be a concern. The MM5-SMOKE-CMAQ platform was used to conduct the numerical experiments. Twenty-four control scenarios were evaluated, combining the level of emission controls of O3 precursors (NO(x) and volatile organic compounds [VOCs]) from 0% to 50%. For the MMA, VOC-only controls result in the best option to reduce O3 concentrations, though the benefit is limited to the urban core. This same strategy results in negligible benefits for the rest of northeastern Mexico. NO(x) controls result in an increase in O3 concentration within the MMA of up to 20 ppbv and a decrease at downwind locations of up to 11 ppbv, with respect to the base-case scenario. Indicator ratios were also used to probe for NO(x)-sensitive and VOC-sensitive areas. Locations with an important influence of NO(x) point sources (i.e., Monclova and Nava/Acuña) are quite sensitive to changes in NO(x) emissions. Border cities in the Rio Bravo/Grande Valley tend to be marginally NO(x)-sensitive. Overall, the MMA seems to be dominated by a VOC-sensitive regime, while the rest of the region would tend to have a NO(x)-sensitive response. The results obtained serve to expand the current knowledge on the chemical regimes that dominate this region (VOC- or NO(x)-sensitive), and thus could help guide public policies related to emission regional control strategies. PMID:24282975

  15. Coarse Particulate Air Pollution Associated with Increased Risk of Hospital Admissions for Respiratory Diseases in a Tropical City, Kaohsiung, Taiwan

    PubMed Central

    Cheng, Meng-Hsuan; Chiu, Hui-Fen; Yang, Chun-Yuh

    2015-01-01

    This study was undertaken to determine whether there was an association between coarse particles (PM2.5–10) levels and frequency of hospital admissions for respiratory diseases (RD) in Kaohsiung, Taiwan. Hospital admissions for RD including chronic obstructive pulmonary disease (COPD), asthma, and pneumonia, and ambient air pollution data levels for Kaohsiung were obtained for the period from 2006 to 2010. The relative risk of hospital admissions for RD was estimated using a case-crossover approach, controlling for weather variables, day of the week, seasonality, and long-term time trends. For the single pollutant model (without adjustment for other pollutants), increased rate of admissions for RD were significantly associated with higher coarse PM levels only on cool days (<25 °C), with a 10 µg/m3 elevation in PM2.5–10 concentrations associated with a 3% (95% CI = 1%–5%) rise in COPD admissions, 4% (95% CI = 1%–7%) increase in asthma admissions, and 3% (95% CI = 2%–4%) rise in pneumonia admissions. No significant associations were found between coarse particle levels and the number of hospital admissions for RD on warm days. In the two-pollutant models, PM2.5–10 levels remained significantly correlated with higher rate of RD admissions even controlling for sulfur dioxide, nitrogen dioxide, carbon monoxide, or ozone on cool days. This study provides evidence that higher levels of PM2.5–10 enhance the risk of hospital admissions for RD on cool days. PMID:26501308

  16. Serum clara cell protein: a sensitive biomarker of increased lung epithelium permeability caused by ambient ozone.

    PubMed

    Broeckaert, F; Arsalane, K; Hermans, C; Bergamaschi, E; Brustolin, A; Mutti, A; Bernard, A

    2000-06-01

    Ozone in ambient air may cause various effects on human health, including decreased lung function, asthma exacerbation, and even premature mortality. These effects have been evidenced using various clinical indicators that, although sensitive, do not specifically evaluate the O(3)-increased lung epithelium permeability. In the present study, we assessed the acute effects of ambient O(3) on the pulmonary epithelium by a new approach relying on the assay in serum of the lung-specific Clara cell protein (CC16 or CC10). We applied this test to cyclists who exercised for 2 hr during episodes of photochemical smog and found that O(3) induces an early leakage of lung Clara cell protein. The protein levels increased significantly into the serum from exposure levels as low as 0.060-0.084 ppm. Our findings, confirmed in mice exposed to the current U.S. National Ambient Air Quality Standards for O(3) (0.08 ppm for 8 hr) indicate that above the present natural background levels, there is almost no safety margin for the effects of ambient O(3) on airway permeability. The assay of CC16 in the serum represents a new sensitive noninvasive test allowing the detection of early effects of ambient O(3) on the lung epithelial barrier. PMID:10856027

  17. Individuals with increased inflammatory response to ozone demonstrate muted signaling of immune cell trafficking pathways

    EPA Science Inventory

    Background Exposure to ozone activates innate immune function and causes neutrophilic (PMN) airway inflammation that in some individuals is robustly elevated. The interplay between immunoinflammatory function and genomic signaling in those with heightened inflammatory responsive...

  18. Projected Carbon Dioxide to Increase Grass Pollen and Allergen Exposure Despite Higher Ozone Levels

    PubMed Central

    Albertine, Jennifer M.; Manning, William J.; DaCosta, Michelle; Stinson, Kristina A.; Muilenberg, Michael L.; Rogers, Christine A.

    2014-01-01

    One expected effect of climate change on human health is increasing allergic and asthmatic symptoms through changes in pollen biology. Allergic diseases have a large impact on human health globally, with 10–30% of the population affected by allergic rhinitis and more than 300 million affected by asthma. Pollen from grass species, which are highly allergenic and occur worldwide, elicits allergic responses in 20% of the general population and 40% of atopic individuals. Here we examine the effects of elevated levels of two greenhouse gases, carbon dioxide (CO2), a growth and reproductive stimulator of plants, and ozone (O3), a repressor, on pollen and allergen production in Timothy grass (Phleum pratense L.). We conducted a fully factorial experiment in which plants were grown at ambient and/or elevated levels of O3 and CO2, to simulate present and projected levels of both gases and their potential interactive effects. We captured and counted pollen from flowers in each treatment and assayed for concentrations of the allergen protein, Phl p 5. We found that elevated levels of CO2 increased the amount of grass pollen produced by ∼50% per flower, regardless of O3 levels. Elevated O3 significantly reduced the Phl p 5 content of the pollen but the net effect of rising pollen numbers with elevated CO2 indicate increased allergen exposure under elevated levels of both greenhouse gases. Using quantitative estimates of increased pollen production and number of flowering plants per treatment, we estimated that airborne grass pollen concentrations will increase in the future up to ∼200%. Due to the widespread existence of grasses and the particular importance of P. pratense in eliciting allergic responses, our findings provide evidence for significant impacts on human health worldwide as a result of future climate change. PMID:25372614

  19. Examining the major contributors of ozone pollution in a rural area of the Yangtze River Delta region during harvest season

    NASA Astrophysics Data System (ADS)

    Pan, X.; Kanaya, Y.; Tanimoto, H.; Inomata, S.; Wang, Z.; Kudo, S.; Uno, I.

    2015-06-01

    Open biomass burning (OBB) emits significant amounts of non-methane hydrocarbons (NMHCs), and the mixing of OBB with urban plumes could exacerbate regional ozone (O3) pollution. In the present study, an observational field campaign was performed in a rural area at the northern edge of the Yangtze River Delta region (YRDR) from 15 May to 24 June 2010, during intensive open burning of wheat residues. The net photochemical production rate of oxidant (Ox = O3 + NO2) at the site was evaluated based on a box model (Regional Atmospheric Chemical Mechanism, Version 2) constrained by real-time ambient measurements (e.g., O3, volatile organic compounds (VOCs), NOx (NO2 + NO), J values). Our results showed that both in situ photochemistry and direct transport from urban areas in the YRDR were responsible for the high Ox concentration at the site. During an OBB-impact case, net photochemical production of Ox in the daytime was pronounced, with a 6 h averaged Ox production rate of 13 ± 4 ppbv h-1 (maximum value of 21 ppbv h-1 at 12:00 CST). Photochemical Oxproduction changed from VOC-limited in the morning to NOx-limited in the afternoon due to the rapid photochemical consumption of NOx during the day. A combined analysis with positive matrix factorization demonstrated that O3 pollution in the rural area of the YRDR was largely affected by urban emission, and OBB-related emissions also contributed to in situ photochemical production, particularly in the afternoon. Our study suggested that a joint effort in reducing both NMHCs (e.g., aromatics) and NOx emissions in the urban area, as well as local OBB activities, may be effective in eliminating high-O3 pollution risk in the rural areas of the YRDR.

  20. 2001 OZONE DESIGN VALUE

    EPA Science Inventory

    Ozone is generated by a complex atmoshperic chemical process. Industrial and automobile pollutants in the form of oxides of nitrogen and hydrocarbons react in the atmosphere when air is stagnant and temperatures are high to form ozone. Ozone is known to cause adverse health eff...

  1. 2020 OZONE DESIGN VALUE

    EPA Science Inventory

    Ozone is generated by a complex atmoshperic chemical process. Industrial and automobile pollutants in the form of oxides of nitrogen and hydrocarbons react in the atmosphere when air is stagnant and temperatures are high to form ozone. Ozone is known to cause adverse health eff...

  2. 40 CFR 125.67 - Increase in effluent volume or amount of pollutants discharged.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 22 2014-07-01 2013-07-01 true Increase in effluent volume or amount... Water Act § 125.67 Increase in effluent volume or amount of pollutants discharged. (a) No modified... projections of effluent volume and mass loadings for any pollutants to which the modification applies in...

  3. 40 CFR 125.67 - Increase in effluent volume or amount of pollutants discharged.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 22 2011-07-01 2011-07-01 false Increase in effluent volume or amount... Water Act § 125.67 Increase in effluent volume or amount of pollutants discharged. (a) No modified... projections of effluent volume and mass loadings for any pollutants to which the modification applies in...

  4. 40 CFR 125.67 - Increase in effluent volume or amount of pollutants discharged.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 23 2013-07-01 2013-07-01 false Increase in effluent volume or amount... Water Act § 125.67 Increase in effluent volume or amount of pollutants discharged. (a) No modified... projections of effluent volume and mass loadings for any pollutants to which the modification applies in...

  5. 40 CFR 125.67 - Increase in effluent volume or amount of pollutants discharged.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 23 2012-07-01 2012-07-01 false Increase in effluent volume or amount... Water Act § 125.67 Increase in effluent volume or amount of pollutants discharged. (a) No modified... projections of effluent volume and mass loadings for any pollutants to which the modification applies in...

  6. Increased outdoor recreation, diminished ozone layer pose ultraviolet radiation threat to eye

    SciTech Connect

    Not Available

    1989-02-24

    The long-term effects of ultraviolet (UV) light on the eye are of increasing concern as many people live longer and spend more of that time in outdoor recreation and as the diminishing ozone layer filters less UV light. Ultraviolet radiation is strongest at high altitude, low latitude, and open for reflective environments (sand, snow, or water). For people who lack an eye lens (aphakics), UV light is transmitted directly onto the retina. Cumulative exposure to the 300- to 400-nm range of UV light is one factor causing cataracts. Ophthalmologists say cataracts cause visual deficits for more than 3.5 million people in the United States. Cumulative UV exposure may lead to age-related macular degeneration. At a Research to Prevent Blindness conference in Arlington, VA, John S. Werner, PhD, professor of psychology and neurosciences at the University of Colorado, Boulder, described how his group demonstrated the effects of UV light on retinal cones. Different types of intraocular lenses were placed in each eye of eight patients who had undergone bilateral cataract surgery. After five years, retinal cones chronically exposured to UV radiation had less sensitivity for short wavelengths (440 nm) by a factor of 1.7.

  7. Surface recombination of oxygen atoms in O2 plasma at increased pressure: II. Vibrational temperature and surface production of ozone

    NASA Astrophysics Data System (ADS)

    Lopaev, D. V.; Malykhin, E. M.; Zyryanov, S. M.

    2011-01-01

    Ozone production in an oxygen glow discharge in a quartz tube was studied in the pressure range of 10-50 Torr. The O3 density distribution along the tube diameter was measured by UV absorption spectroscopy, and ozone vibrational temperature TV was found comparing the calculated ab initio absorption spectra with the experimental ones. It has been shown that the O3 production mainly occurs on a tube surface whereas ozone is lost in the tube centre where in contrast the electron and oxygen atom densities are maximal. Two models were used to analyse the obtained results. The first one is a kinetic 1D model for the processes occurring near the tube walls with the participation of the main particles: O(3P), O2, O2(1Δg) and O3 molecules in different vibrational states. The agreement of O3 and O(3P) density profiles and TV calculated in the model with observed ones was reached by varying the single model parameter—ozone production probability (\\gamma_{O_{3}}) on the quartz tube surface on the assumption that O3 production occurs mainly in the surface recombination of physisorbed O(3P) and O2. The phenomenological model of the surface processes with the participation of oxygen atoms and molecules including singlet oxygen molecules was also considered to analyse \\gamma_{O_{3}} data obtained in the kinetic model. A good agreement between the experimental data and the data of both models—the kinetic 1D model and the phenomenological surface model—was obtained in the full range of the studied conditions that allowed consideration of the ozone surface production mechanism in more detail. The important role of singlet oxygen in ozone surface production was shown. The O3 surface production rate directly depends on the density of physisorbed oxygen atoms and molecules and can be high with increasing pressure and energy inputted into plasma while simultaneously keeping the surface temperature low enough. Using the special discharge cell design, such an approach opens up the

  8. [Pollution characteristics and ozone formation potential of ambient VOCs in winter and spring in Xiamen].

    PubMed

    Xu, Hui; Zhang, Han; Xing, Zhen-yu; Deng, Jun-jun

    2015-01-01

    Air samples were collected at urban and rural sites in Xiamen from January to April 2014. The concentrations of 48 ambient volatile organic compounds (VOC) species were measured by the method of cryogenic pre-concentrator and gas chromatography-mass spectrometry (GC/MS). The ozone formation potential (OFP) of VOCs was also calculated with the method of maximum incremental reactivity (MIR). The results showed that the average mixing ratios of VOCs in winter were 11.13 x 10(-9) and 7.17 x 10(-9) at urban and rural sites, respectively, and those in spring were 24.88 x 10(-9) and 11.27 x 10(-9) at urban and rural sites, respectively. At both sites, alkanes contributed the most to VOCs, followed by aromatics and alkenes. The ratios of B/T showed that vehicle and solvent evaporation were the main sources of VOCs at urban site. While at rural site, transport of anthropogenic sources was another important source of VOCs besides local biomass emissions. Ten main components including propene, n-butane, i-butane, n-pentane, i-pentane, n-hexane, benzene, toluene, ethylbenzene and m/p-xylene accounted for 61.57% and 45.83% of total VOCs at urban and rural sites in winter, respectively, and 62.83% and 53.74% at urban and rural sites in spring, respectively. Aromatics contributed the most to total OFP, followed by alkenes. Alkanes contributed the least to OFP with the highest concentration. C3, C4 alkenes and aromatics were found to be the more reactive species with relatively high contributions to ozone formation in Xiamen. Comparing the average MIR of VOCs at the two sites, it was found that the reactivity of VOCs at rural site was higher than that at urban site. PMID:25898641

  9. Corticosteroid administration modifies ozone-induced increases in sheep airway blood flow

    SciTech Connect

    Gunther, R.A.; Yousef, M.A.; Schelegle, E.S.; Cross, C.E. )

    1992-09-01

    Recently, we have shown that exposure of intubated conscious sheep to 3 to 4 ppm ozone (O3) for 3 h increases bronchial blood flow (Qbr). The purpose of the present study was to assess the potential role of corticosteroids in modulating this increase. Six nasally intubated sheep were exposed to filtered room air, 3.5 ppm O3 on two separate occasions, and 3.5 ppm O3 plus methyl-prednisone, for 3 h. Qbr was measured using a chronically implanted 20 MHz pulsed Doppler flow probe. Qbr, mean aortic pressure, cardiac output, pulmonary artery pressure, arterial blood gases, and core temperature were monitored. After 3 h of 3.5 ppm O3, Qbr increased from 3.2 +/- 0.5 (mean +/- SEM) to 8.5 +/- 1.6 KHz, whereas bronchial vascular resistance (BVR) decreased from the baseline value of 43.6 +/- 8.0 to 15.0 +/- 3 mm Hg/KHz. With corticosteroids, baseline Qbr was 3.2 +/- 0.6 and BVR was 44.2 +/- 9.7; after 3 h of 3.5 ppm O3, Qbr was 3.3 +/- 0.5 KHz and BVR was 39.0 +/- 8.0 mm Hg/KHz. The two 3.5-ppm O3 exposures without corticosteroids were impressively reproducible. Except for Qbr and BVR, no other measured cardiovascular parameters were affected by O3. The results indicate that corticosteroids are capable of interfering with mediator, neurohumoral, or inflammatory cell mechanisms responsible for vasodilation of the airway microcirculation after O3 exposure, but do not specifically address the specific processes whereby this attenuation occurs.

  10. Increased site fertility and litter decomposition rate in high-pollution sites in the San Bernardino Mountains

    SciTech Connect

    Fenn, M. )

    1991-09-01

    Some possible factors causing enhanced litter decomposition in high-pollution sites in the San Bernardino Mountains of southern California were investigated. Nitrogen concentration of soil, as well as foliage and litter of ponderosa pine (Pinus ponderosa Laws.) and Jeffrey pine (Pinus jeffreyi Grev, and Balf.) were greater in high-pollution plots than in moderate- or low-pollution plots. Nitrogen concentration of soil, foliage, and litter of ponderosa pine (ozone-sensitive), and of the ozone-tolerant species, sugar pine (Pinus lambertiana Dougl.) and incense cedar (Calocedrus decurrens (Torr.) Florin.), were all higher at a higher pollution site than at a moderate-pollution site. The rate of litter decomposition for all three species was also greater at the high-pollution site. Results suggest than the primary factor causing enhanced decomposition of L-layer litter in high-pollution plots is greater site fertility, leading to the production of foliage and litter that is higher in N than litter from moderate- or low-pollution plots.

  11. Potential of the multispectral synergism for observing ozone pollution combining measurements of IASI-NG and UVNS onboard EPS-SG

    NASA Astrophysics Data System (ADS)

    Costantino, Lorenzo; Cuesta, Juan; Emili, Emanuele; Foret, Gilles; Dufour, Gaëlle; Eremenko, Maxim; Chailleux, Yohann; Beekmann, Matthias; Flaud, Jean-Marie

    2016-04-01

    Current and future satellite observations offer a great potential for monitoring air quality on daily and global basis. However, measurements from currently in orbit sensors offer a limited capacity to probe surface concentrations of gaseous pollutants such as tropospheric ozone. Using single-band approaches based on IASI spaceborne thermal infrared measurements, only ozone down to the lower troposphere (3-4 km of altitude at lowest) may be observed (Eremenko et al., 2008). A recent multispectral method combining IASI and GOME-2 (both onboard MetOp satellites) spectra, respectively from the IR and UV, has shown enhanced sensitivity for probing ozone at the lowermost troposphere, but with maximum sensitivity around 2 km at lowest (Cuesta et al., 2013). Future spatial missions will be launched in the upcoming years, such as EPS-SG, carrying new generation sensors like IASI-NG and UVNS that will enhance the capacity to observe ozone pollution, and particularly when combining them through a multispectral synergism. This work presents an analysis of the potential of the multispectral synergism of IASI-NG and UVNS future spaceborne measurements for observing ozone pollution, performed in the framework of SURVEYOZON project (funded by the French Space Agency, CNES). For this, we develop a simulator of synthetic multispectral retrievals or pseudo-observations (referred as OSSE, Observing System Simulation Experiment) derived from IASI-NG+UVNS that will be compared to those from IASI+GOME2. In the first step of the OSSE, we create a pseudo-reality with simulations from the chemical-transport model MOCAGE (provided by CERFACS laboratory), where real O3 data from IASI and surface network stations have been assimilated for a realistic representation of ozone variability at the surface and the free troposphere. We focus on the high pollution event occurred in Europe on 10 July 2010. We use the coupled algorithms KOPRA+VLIDORT to simulate the spectra emitted, scattered and

  12. Increasing risk of Amazonian drought due to decreasing aerosol pollution.

    PubMed

    Cox, Peter M; Harris, Phil P; Huntingford, Chris; Betts, Richard A; Collins, Matthew; Jones, Chris D; Jupp, Tim E; Marengo, José A; Nobre, Carlos A

    2008-05-01

    The Amazon rainforest plays a crucial role in the climate system, helping to drive atmospheric circulations in the tropics by absorbing energy and recycling about half of the rainfall that falls on it. This region (Amazonia) is also estimated to contain about one-tenth of the total carbon stored in land ecosystems, and to account for one-tenth of global, net primary productivity. The resilience of the forest to the combined pressures of deforestation and global warming is therefore of great concern, especially as some general circulation models (GCMs) predict a severe drying of Amazonia in the twenty-first century. Here we analyse these climate projections with reference to the 2005 drought in western Amazonia, which was associated with unusually warm North Atlantic sea surface temperatures (SSTs). We show that reduction of dry-season (July-October) rainfall in western Amazonia correlates well with an index of the north-south SST gradient across the equatorial Atlantic (the 'Atlantic N-S gradient'). Our climate model is unusual among current GCMs in that it is able to reproduce this relationship and also the observed twentieth-century multidecadal variability in the Atlantic N-S gradient, provided that the effects of aerosols are included in the model. Simulations for the twenty-first century using the same model show a strong tendency for the SST conditions associated with the 2005 drought to become much more common, owing to continuing reductions in reflective aerosol pollution in the Northern Hemisphere. PMID:18464740

  13. Revisiting the evidence of increasing springtime ozone mixing ratios in the free troposphere over western North America

    NASA Astrophysics Data System (ADS)

    Lin, Meiyun; Horowitz, Larry W.; Cooper, Owen R.; Tarasick, David; Conley, Stephen; Iraci, Laura T.; Johnson, Bryan; Leblanc, Thierry; Petropavlovskikh, Irina; Yates, Emma L.

    2015-10-01

    We present a 20 year time series of in situ free tropospheric ozone observations above western North America during springtime and interpret results using hindcast simulations (1980-2014) conducted with the Geophysical Fluid Dynamics Laboratory global chemistry-climate model (GFDL AM3). Revisiting the analysis of Cooper et al., we show that sampling biases can substantially influence calculated trends. AM3 cosampled in space and time with observations reproduces the observed ozone trend (0.65 ± 0.32 ppbv yr-1) over 1995-2008 (in simulations either with or without time-varying emissions), whereas AM3 "true median" with continuous temporal and spatial sampling indicates an insignificant trend (0.25 ± 0.32 ppbv yr-1). Extending this analysis to 1995-2014, we find a weaker ozone trend of 0.31 ± 0.21 ppbv yr-1 from observations and 0.36 ± 0.18 ppbv yr-1 from AM3 "true median." Rising Asian emissions and global methane contribute to this increase. While interannual variability complicates the attribution of ozone trends, multidecadal hindcasts can aid in the estimation of robust confidence limits for trends based on sparse observational records.

  14. Evaluation of the use of empirical ambient ozone pollutant modeling and subject activity logs as an indirect measurement of ozone exposure

    SciTech Connect

    Hopkins, L.P.; Fraser, M.P.; Ensor, K.B.; Rifai, H.S.

    1998-12-31

    The personal ozone exposure of women on the track team at Rice University was monitored using Harvard passive samplers over a period of six weeks during August and September of 1997. Each subject logged their location and activity in and around campus during the exposure period. A three-dimensional kriging model of ozone was developed to estimate the ozone exposure for each subject from ambient fixed site monitoring data. The ozone predictions from the model were combined with the activity and location information, adjusted for indoor environment when applicable, to estimate personal exposure concentrations for each subject. Using two independent approaches, the kriging model was proven to provide accurate spatial and temporal estimates of ozone at subject exposure points. The results from this work show that the method developed to estimate exposure through kriging over (x,y,t) to predict ozone concentrations at exposure points combined with subject activity/time logs produces exposure estimates within the error bounds of the analytical methods for personal monitoring.

  15. Ambient ozone causes upper airways inflammation in children

    SciTech Connect

    Frischer, T.M.; Kuehr, J.; Pullwitt, A.; Meinert, R.; Forster, J.; Studnicka, M.; Koren, H. )

    1993-10-01

    Ozone constitutes a major air pollutant in Western Europe. During the summer national air quality standards are frequently exceeded, which justifies concern about the health effects of ozone at ambient concentrations. We studied upper airways inflammation after ozone exposure in 44 children by repeated nasal lavages from May to October 1991. During this time period five to eight lavages were performed for each child. On 14 days following high ozone exposure (daily maximum > or = 180 micrograms/m3) 148 nasal lavages were performed, and on 10 days following low ozone exposure (daily maximum < or = 140 micrograms/m3) 106 nasal lavages were performed. A significant increase of intra-individual mean polymorphonuclear leukocytes (PMN) counts from low ozone days (median, 20.27 x 10(3)) to high ozone days (median, 27.38 x 10(3); p < 0.01) was observed. Concomitant with a decrease of ozone concentrations in the fall mean PMN counts showed a downward trend. Linear regression analysis of log-PMN counts yielded a significant effect for ozone (p = 0.017). In a subsample humoral markers of inflammation were measured for each child's highest and lowest exposure. A significant increase was observed for eosinophilic cationic protein (median, 77.39 micrograms/L on low ozone days versus 138.6 micrograms/L on high ozone days; p < 0.05). Thus we conclude that ozone at ambient concentrations initiates a reversible inflammatory response of the upper airways in normal children.

  16. Colorado Front Range Surface Ozone Analysis

    NASA Astrophysics Data System (ADS)

    McClure-Begley, A.; Petropavlovskikh, I. V.; Oltmans, S. J.; Kofler, J.; Petron, G.; Cothrel, H.

    2014-12-01

    The Colorado Front Range is a unique geographical region for air quality studies, including research of surface level ozone. Not only does surface ozone play a critical role in regulating the oxidation capacity of the atmosphere, but is a primary contributor to local smog and leads to public health complications and altered ecosystem functioning. The high frequency of sunny days, increasing population and pollution, and Mountain/Valley air dynamics of this region provide atmospheric conditions suitable for production and accumulation of ozone at the surface. This region of Colorado is currently in an ozone non-attainment status due to an assortment of contributing factors. Precursor emissions from pollution, wild-fires, and gas and oil production; along with stratosphere-troposphere exchange, can all result in high ozone episodes over the Colorado Front Range. To understand the dynamics of ozone accumulation in this region, Thermo-Scientific ozone monitors have been continuously sampling ozone from 4 different altitudes since the early 2000s. Analysis of ozone data in relation to Nitrogen Oxides (NOx), Methane (CH4), Carbon Monoxide (CO), wind-conditions and back-trajectory air mass origins help to address local ozone precursor emissions and resulting high ozone episodes. Increased ozone episodes are scrutinized with regards to dominant wind direction to determine main precursor emission sources. Analysis of this data reveals a strong influence of precursor emissions from the North-East wind sector, with roughly 50% of ozone exceedances originating from winds prevailing from this direction. Further, correlation with methane is enhanced when prevailing winds are from the North-East; indicative of influence from natural gas processes and feedlot activity. Similar analysis is completed for the North-West wind sector exceedances, with strong correlation to carbon monoxide; likely related to emissions from biomass burning events and forest fires. In depth analysis of

  17. Air Quality Guide for Ozone

    MedlinePlus

    ... is one of our nation’s most common air pollutants. Use the chart below to help reduce your ... human health. Ozone forms when two types of pollutants (VOCs and NOx) react in sunlight. These pollutants ...

  18. The Relationship between the Western North Pacific Subtropical High and the East Asian Surface Ozone

    NASA Astrophysics Data System (ADS)

    Wie, Jieun; Kim, Ga-Young; Moon, Byung-Kwon

    2016-04-01

    The tropospheric ozone is known as one of the short-lived climate pollutants and the greenhouse gases, but little is known about it. The purpose of this study is to diagnose the relationship between the western North Pacific subtropical high and the East Asian surface ozone. For the study, we used the trajectory enhanced tropospheric ozone residual (TTOR) for 9 years (2005-2013) and GEOS-Chem model data for 41 years (1971-2011). Despite the short period, the observation well shows the ozone concentration changes according to the WNPSH strength and the model as well. WNPSH enhances the convection along the East Asian monsoon band and the surface ozone concentration decreases. The ozone concentration increases in the area around the rainband. Depending on the location of the rain band, the ozone concentration changes. This study indicates that the ozone concentration is affected by not only the emission of ozone precursors and but also the meteorological condition.

  19. Potential sources of nitrous acid (HONO) and their impacts on ozone: A WRF-Chem study in a polluted subtropical region

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Wang, Tao; Zhang, Qiang; Zheng, Junyu; Xu, Zheng; Lv, Mengyao

    2016-04-01

    Current chemical transport models commonly undersimulate the atmospheric concentration of nitrous acid (HONO), which plays an important role in atmospheric chemistry, due to the lack or inappropriate representations of some sources in the models. In the present study, we parameterized up-to-date HONO sources into a state-of-the-art three-dimensional chemical transport model (Weather Research and Forecasting model coupled with Chemistry: WRF-Chem). These sources included (1) heterogeneous reactions on ground surfaces with the photoenhanced effect on HONO production, (2) photoenhanced reactions on aerosol surfaces, (3) direct vehicle and vessel emissions, (4) potential conversion of NO2 at the ocean surface, and (5) emissions from soil bacteria. The revised WRF-Chem was applied to explore the sources of the high HONO concentrations (0.45-2.71 ppb) observed at a suburban site located within complex land types (with artificial land covers, ocean, and forests) in Hong Kong. With the addition of these sources, the revised model substantially reproduced the observed HONO levels. The heterogeneous conversions of NO2 on ground surfaces dominated HONO sources contributing about 42% to the observed HONO mixing ratios, with emissions from soil bacterial contributing around 29%, followed by the oceanic source (~9%), photochemical formation via NO and OH (~6%), conversion on aerosol surfaces (~3%), and traffic emissions (~2%). The results suggest that HONO sources in suburban areas could be more complex and diverse than those in urban or rural areas and that the bacterial and/or ocean processes need to be considered in HONO production in forested and/or coastal areas. Sensitivity tests showed that the simulated HONO was sensitive to the uptake coefficient of NO2 on the surfaces. Incorporation of the aforementioned HONO sources significantly improved the simulations of ozone, resulting in increases of ground-level ozone concentrations by 6-12% over urban areas in Hong Kong and

  20. Sensitivity analysis of ground level ozone in India using WRF-CMAQ models

    NASA Astrophysics Data System (ADS)

    Sharma, Sumit; Chatani, Satoru; Mahtta, Richa; Goel, Anju; Kumar, Atul

    2016-04-01

    Ground level ozone is emerging as a pollutant of concern in India. Limited surface monitoring data reveals that ozone concentrations are well above the prescribed national standards. This study aims to simulate the regional and urban scale ozone concentrations in India using WRF-CMAQ models. Sector-specific emission inventories are prepared for the ozone precursor species at a finer resolution (36 × 36 km2) than used in previous studies. Meteorological fields developed using the WRF model are fed into the CMAQ model along with the precursor emissions to simulate ozone concentrations at a regional scale. The model is validated using observed ozone dataset. Sensitivity analysis is carried out to understand the effect of different precursor species and sources on prevailing ozone concentrations in India. The results show that NOx sensitive conditions prevail in India and control of NOx will result in more reduction in ozone than VOCs. However, further growth in the transport and power sector and decreasing VOC emissions from the residential sector may increase the sensitivity of VOCs towards ozone in the future. At the urban scale, presence of high NOx emissions form VOC limited conditions and reduction of NOx results in increase in ozone concentrations. However, this will help in improving regional scale ozone pollution in the downwind regions. A non-linear response has been observed while assessing the sectoral sensitivities of ozone formation. Transport sector is found to have the maximum potential for reducing ozone concentrations in India.

  1. Ozone, nitric acid, and ammonia air pollution is unhealthy for people and ecosystems in southern Sierra Nevada, California.

    PubMed

    Cisneros, Ricardo; Bytnerowicz, Andrzej; Schweizer, Donald; Zhong, Sharon; Traina, Samuel; Bennett, Deborah H

    2010-10-01

    Two-week average concentrations of ozone (O3), nitric acid vapor (HNO3) and ammonia (NH3) were measured with passive samplers during the 2002 summer season across the central Sierra Nevada Mountains, California, along the San Joaquin River drainage. Elevated concentrations of the pollutants were determined with seasonal means for individual sites ranging between 62 and 88 ppb for O3, 1.0-3.8 microg m(-3) for HNO3, and 2.6-5.2 microg m(-3) for NH3. Calculated O3 exposure indices were very high, reaching SUM00-191 ppm h, SUM60-151 ppm h, and W126-124 ppm h. Calculated nitrogen (N) dry deposition ranged from 1.4 to 15 kg N ha(-1) for maximum values, and 0.4-8 kg N ha(-1) for minimum values; potentially exceeding Critical Loads (CL) for nutritional N. The U.S., California, and European 8 h O3 human health standards were exceeded during 104, 108, and 114 days respectively, indicating high risk to humans from ambient O3. PMID:20708832

  2. Influence of high carbohydrate versus high fat diet in ozone induced pulmonary injury and systemic metabolic impairment in a Brown Norway (BN) rat model of healthy aging

    EPA Science Inventory

    Rationale: Air pollution has been recently linked to the increased prevalence of metabolic syndrome. It has been postulated that dietary risk factors might exacerbate air pollution-induced metabolic impairment. We have recently reported that ozone exposure induces acute systemic ...

  3. Age, strain, and gender as factors for increased sensitivity of the mouse lung to inhaled ozone

    EPA Science Inventory

    Ozone (O(3)) is a respiratory irritant that leads to airway inflammation and pulmonary dysfunction. Animal studies show that neonates are more sensitive to O(3) inhalation than adults, and children represent a potentially susceptible population. This latter notion is not well est...

  4. Duration of increased pulmonary function sensitivity to an initial ozone exposure

    SciTech Connect

    Bedi, J.F.; Drechsler-Parks, D.M.; Horvath, S.M.

    1985-12-01

    The metabolic and pulmonary function effects were investigated in six non-smoking young adults who were exposed for 2 hours (22 degrees C WBGT) to: filtered air (FA) 0.45 ppm ozone (DAY1); and two days later to a second exposure to 0.45 ppm ozone (DAY2). The subjects alternated 20-minute periods of rest and 20-minute periods of bicycle ergometer exercise at a workload predetermined to elicit a ventilatory minute volume (VE) of 27 L/min (BTPS). Functional residual capacity (FRC) was determined pre- and post-exposure. Forced vital capacity (FVC) was determined before and after exposure, as well as 5 minutes after each exercise period. Heart rate was monitored throughout the exposure, and VE, oxygen uptake (VO2), respiratory rate (fR), and tidal volume (VT) were measured during the last 2 minutes of each exercise period. There were no changes in any variable consequent to FA exposure. Both ozone exposures induced significant (P less than 0.05) decrements in FVC; FEV1.0 (forced expiratory volume in 1 second); FEV3.0 (forced expiratory volume in 3 seconds); FEF25-75% (average flow rate between 25% and 75% of FVC); and total lung capacity (TLC). The decrements following the DAY2 ozone exposure were significantly greater than following DAY1, and averaged 7.2 percentage points greater than those following the DAY1 exposure.

  5. Research Spotlight: Ozone hole shift exposed South America to increased ultraviolet light

    NASA Astrophysics Data System (ADS)

    Ofori, Leslie; Tretkoff, Ernie

    2010-12-01

    The ozone layer, which protects humans, plants, and animals from potentially damaging ultraviolet (UV) light from the Sun, develops a hole above Antarctica in September that typically lasts until early December. However, in November 2009, that hole shifted its position, leaving the southern tip of South America exposed to UV light at levels much greater than normal.

  6. High ozone increases soil perchlorate but does not affect foliar perchlorate content

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ozone (O3) is implicated in the natural source inventory of perchlorate (ClO4-), a hydrophilic salt that migrates to ground water and interferes with uptake of iodide in mammals, including humans. Tropospheric O3 is elevated in many areas. We previously showed (Grantz et al., 2013; Environmental Pol...

  7. INCREASED 8-HYDROXY GUANINE CONTENT OF CHLOROPLAST DNA FROM OZONE TREATED PLANTS

    EPA Science Inventory

    The mechanism of ozone-mediated plant injury is not know but has been postulated to involve oxygen free radicals. Hydroxyl free radicals react with DNA causing formation of many products, one of which is 8-hydroxyguanine. By using high performance liquid chromatography with elect...

  8. Assessment of rice yield loss due to exposure to ozone pollution in Southern Vietnam.

    PubMed

    Danh, Ngo Thanh; Huy, Lai Nguyen; Oanh, Nguyen Thi Kim

    2016-10-01

    The study domain covered the Eastern region of Southern of Vietnam that includes Ho Chi Minh City (HCMC) and five other provinces. Rice production in the domain accounted for 13% of the national total with three crop cycles per year. We assessed ozone (O3) induced rice production loss in the domain for 2010 using simulated hourly surface O3 concentrations (WRF/CAMx; 4km resolution). Simulated O3 was higher in January-February (largely overlaps the first crop) and September-December (third crop), and lower in March-June (second crop). Spatially, O3 was higher in downwind locations of HCMC and were comparable with observed data. Relative yield loss (RYL) was assessed for each crop over the respective growing period (105days) using three metrics: AOT40, M7 and flux-based O3 dose of POD10. Higher RYL was estimated for the downwind of HCMC. Overall, the rice production loss due to O3 exposure in the study domain in 2010 was the highest for the first crop (up to 25,800metrictons), the second highest for the third crop (up to 21,500tons) and the least for the second crop (up to 6800tons). The low RYL obtained for the second crop by POD10 may be due to the use of a high threshold value (Y=10nmolm(-2)s(-1)). Linear regression between non-null radiation POD0 and POD10 had similar slopes for the first and third crop when POD0 was higher and very low slope for the second crop when POD0 was low. The results of this study can be used for the rice crop planning to avoid the period of potential high RYL due to O3 exposure. PMID:27265741

  9. "OZONE SOURCE APPORTIONMENT IN CMAQ'

    EPA Science Inventory

    Ozone source attribution has been used to support various policy purposes including interstate transport (Cross State Air Pollution Rule) by U.S. EPA and ozone nonattainment area designations by State agencies. Common scientific applications include tracking intercontinental tran...

  10. Inquiry Based Projects Using Student Ozone Measurements and the Status of Using Plants as Bio-Indicators

    NASA Astrophysics Data System (ADS)

    Ladd, I. H.; Fishman, J.; Pippin, M.; Sachs, S.; Skelly, J.; Chappelka, A.; Neufeld, H.; Burkey, K.

    2006-05-01

    Students around the world work cooperatively with their teachers and the scientific research community measuring local surface ozone levels using a hand-held optical scanner and ozone sensitive chemical strips. Through the GLOBE (Global Learning and Observations to Benefit the Environment) Program, students measuring local ozone levels are connected with the chemistry of the air they breathe and how human activity impacts air quality. Educational tools have been developed and correlated with the National Science and Mathematics Standards to facilitate integrating the study of surface ozone with core curriculum. Ozone air pollution has been identified as the major pollutant causing foliar injury to plants when they are exposed to concentrations of surface ozone. The inclusion of native and agricultural plants with measuring surface ozone provides an Earth system approach to understanding surface ozone. An implementation guide for investigating ozone induced foliar injury has been developed and field tested. The guide, Using Sensitive Plants as Bio-Indicators of Ozone Pollution, provides: the background information and protocol for implementing an "Ozone Garden" with native and agricultural plants; and, a unique opportunity to involve students in a project that will develop and increase their awareness of surface ozone air pollution and its impact on plants.

  11. Influence of ozone air pollution on plant-herbivore interactions. Part 1: Biochemical changes in ornamental milkweed (Asclepias curassavica L.; asclepiadaceae) induced by ozone.

    PubMed

    Bolsinger, M; Lier, M E; Lansky, D M; Hughes, P R

    1991-01-01

    A series of fumigation experiments was conducted with bloodflower (Asclepias curassavica L.) in continuous-flow stirred reactors (CSTRs) to elucidate the effects of ozone on foliar concentrations of several primary and secondary plant metabolites relevant to herbivores. Plants 8 weeks of age were subjected to different ozone levels ranging from 0 to 134 nl liter(-1) for exposure periods up to 16 days. Leaves were analyzed for concentration of soluble carbohydrates, starch, free amino acids, soluble protein, total phenolics, and total cardenolides. Significant interactions between the linear effects of ozone concentration and exposure time were found for soluble carbohydrates, amino acids, cardenolides and phenolics. No significant treatment effects could be observed on foliar starch and protein concentration. The metabolic responses of plants to fumigation appeared to be altered by overall plant nutrition. It is possible that the metabolic changes observed in the host plant represent important changes in nutritional quality to insects. PMID:15092115

  12. Positive but variable sensitivity of August surface ozone to large-scale warming in the southeast United States

    NASA Astrophysics Data System (ADS)

    Fu, Tzung-May; Zheng, Yiqi; Paulot, Fabien; Mao, Jingqiu; Yantosca, Robert M.

    2015-05-01

    Surface ozone, a major air pollutant toxic to humans and damaging to ecosystems, is produced by the oxidation of volatile organic compounds in the presence of nitrogen oxides (NOx = NO + NO2) and sunlight. Climate warming may affect future surface ozone levels even in the absence of anthropogenic emission changes, but the direction of ozone change due to climate warming remains uncertain over the southeast US and other polluted forested areas. Here we use observations and simulations to diagnose the sensitivity of August surface ozone to large-scale temperature variations in the southeast US during 1988-2011. We show that the enhanced biogenic emissions and the accelerated photochemical reaction rates associated with warmer temperatures both act to increase surface ozone. However, the sensitivity of surface ozone to large-scale warming is highly variable on interannual and interdecadal timescales owing to variation in regional ozone advection. Our results have important implications for the prediction and management of future ozone air quality.

  13. Climate change, air pollution and extreme events leading to increasing prevalence of allergic respiratory diseases

    PubMed Central

    2013-01-01

    The prevalence of asthma and allergic diseases has increased dramatically during the past few decades not only in industrialized countries. Urban air pollution from motor vehicles has been indicated as one of the major risk factors responsible for this increase. Although genetic factors are important in the development of asthma and allergic diseases, the rising trend can be explained only in changes occurred in the environment. Despite some differences in the air pollution profile and decreasing trends of some key air pollutants, air quality is an important concern for public health in the cities throughout the world. Due to climate change, air pollution patterns are changing in several urbanized areas of the world, with a significant effect on respiratory health. The observational evidence indicates that recent regional changes in climate, particularly temperature increases, have already affected a diverse set of physical and biological systems in many parts of the world. Associations between thunderstorms and asthma morbidity in pollinosis subjects have been also identified in multiple locations around the world. Allergens patterns are also changing in response to climate change and air pollution can modify the allergenic potential of pollens especially in presence of specific weather conditions. The underlying mechanisms of all these interactions are not well known yet. The consequences on health vary from decreases in lung function to allergic diseases, new onset of diseases, and exacerbation of chronic respiratory diseases. Factor clouding the issue is that laboratory evaluations do not reflect what happens during natural exposition, when atmospheric pollution mixtures in polluted cities are inhaled. In addition, it is important to recall that an individual’s response to pollution exposure depends on the source and components of air pollution, as well as meteorological conditions. Indeed, some air pollution-related incidents with asthma aggravation do not

  14. Climate change, air pollution and extreme events leading to increasing prevalence of allergic respiratory diseases.

    PubMed

    D'Amato, Gennaro; Baena-Cagnani, Carlos E; Cecchi, Lorenzo; Annesi-Maesano, Isabella; Nunes, Carlos; Ansotegui, Ignacio; D'Amato, Maria; Liccardi, Gennaro; Sofia, Matteo; Canonica, Walter G

    2013-01-01

    The prevalence of asthma and allergic diseases has increased dramatically during the past few decades not only in industrialized countries. Urban air pollution from motor vehicles has been indicated as one of the major risk factors responsible for this increase.Although genetic factors are important in the development of asthma and allergic diseases, the rising trend can be explained only in changes occurred in the environment. Despite some differences in the air pollution profile and decreasing trends of some key air pollutants, air quality is an important concern for public health in the cities throughout the world.Due to climate change, air pollution patterns are changing in several urbanized areas of the world, with a significant effect on respiratory health.The observational evidence indicates that recent regional changes in climate, particularly temperature increases, have already affected a diverse set of physical and biological systems in many parts of the world. Associations between thunderstorms and asthma morbidity in pollinosis subjects have been also identified in multiple locations around the world.Allergens patterns are also changing in response to climate change and air pollution can modify the allergenic potential of pollens especially in presence of specific weather conditions.The underlying mechanisms of all these interactions are not well known yet. The consequences on health vary from decreases in lung function to allergic diseases, new onset of diseases, and exacerbation of chronic respiratory diseases.Factor clouding the issue is that laboratory evaluations do not reflect what happens during natural exposition, when atmospheric pollution mixtures in polluted cities are inhaled. In addition, it is important to recall that an individual's response to pollution exposure depends on the source and components of air pollution, as well as meteorological conditions. Indeed, some air pollution-related incidents with asthma aggravation do not depend

  15. Growth, physiological and biochemical response of ponderosa pine pinus ponderosa' to ozone. Final report

    SciTech Connect

    Temple, P.J.; Bytnerowicz, A.

    1993-11-01

    In 1989 and 1990, the effects of multi-year ozone exposures on growth, foliar injury and physiological responses in ponderosa pine were examined. Two-year old seedlings were exposed to four ozone treatments in open-top chambers: clean air (subambient levels of oxidants and particles); ambient ozone; twice-ambient ozone; or ambient air. The study was performed at Shirley Meadow in the southern Sierra Nevada. In both years, ambient ozone levels were representative of other forests in the region. While ozone is the most phytotoxic air pollutant, seedlings also experienced elevated concentrations of nitric acid and ammonia. In 1990, ambient ozone significantly increased injury to previous year needles. Premature senescence and alterations in physiological responses were also noted. Exposure to twice-ambient ozone reduced seedling biomass, increased injury and caused decreases in a variety of physiological responses.

  16. Energy efficiency for the removal of non-polar pollutants during ultraviolet irradiation, visible light photocatalysis and ozonation of a wastewater effluent.

    PubMed

    Santiago-Morales, Javier; Gómez, María José; Herrera-López, Sonia; Fernández-Alba, Amadeo R; García-Calvo, Eloy; Rosal, Roberto

    2013-10-01

    This study aims to assess the removal of a set of non-polar pollutants in biologically treated wastewater using ozonation, ultraviolet (UV 254 nm low pressure mercury lamp) and visible light (Xe-arc lamp) irradiation as well as visible light photocatalysis using Ce-doped TiO2. The compounds tracked include UV filters, synthetic musks, herbicides, insecticides, antiseptics and polyaromatic hydrocarbons. Raw wastewater and treated samples were analyzed using stir-bar sorptive extraction coupled with comprehensive two-dimensional gas chromatography (SBSE-CG × GC-TOF-MS). Ozone treatment could remove most pollutants with a global efficiency of over 95% for 209 μM ozone dosage. UV irradiation reduced the total concentration of the sixteen pollutants tested by an average of 63% with high removal of the sunscreen 2-ethylhexyl trans-4-methoxycinnamate (EHMC), the synthetic musk 7-acetyl-1,1,3,4,4,6-hexamethyltetrahydronaphthalene (tonalide, AHTN) and several herbicides. Visible light Ce-TiO2 photocatalysis reached ~70% overall removal with particularly high efficiency for synthetic musks. In terms of power usage efficiency expressed as nmol kJ(-1), the results showed that ozonation was by far the most efficient process, ten-fold over Xe/Ce-TiO2 visible light photocatalysis, the latter being in turn considerably more efficient than UV irradiation. In all cases the efficiency decreased along the treatments due to the lower reaction rate at lower pollutant concentration. The use of photocatalysis greatly improved the efficiency of visible light irradiation. The collector area per order decreased from 9.14 ± 5.11 m(2) m(-3) order(-1) for visible light irradiation to 0.16 ± 0.03 m(2) m(-3) order(-1) for Ce-TiO2 photocatalysis. The toxicity of treated wastewater was assessed using the green alga Pseudokirchneriella subcapitata. Ozonation reduced the toxicity of treated wastewater, while UV irradiation and visible light photocatalysis limited by 20-25% the algal growth due to

  17. Observed Increase of TTL Temperature and Water Vapor in Polluted Couds over Asia

    SciTech Connect

    Su, Hui; Jiang, Jonathan; Liu, Xiaohong; Penner, J.; Read, William G.; Massie, Steven T.; Schoeberl, Mark R.; Colarco, Peter; Livesey, Nathaniel J.; Santee, Michelle L.

    2011-06-01

    Aerosols can affect cloud particle size and lifetime, which impacts precipitation, radiation and climate. Previous studies1-4 suggested that reduced ice cloud particle size and fall speed due to the influence of aerosols may increase evaporation of ice crystals and/or cloud radiative heating in the tropical tropopause layer (TTL), leading to higher water vapor abundance in air entering the stratosphere. Observational substantiation of such processes is still lacking. Here, we analyze new observations from multiple NASA satellites to show the imprint of pollution influence on stratospheric water vapor. We focus our analysis on the highly-polluted South and East Asia region during boreal summer. We find that "polluted" ice clouds have smaller ice effective radius than "clean" clouds. In the TTL, the polluted clouds are associated with warmer temperature and higher specific humidity than the clean clouds. The water vapor difference between the polluted and clean clouds cannot be explained by other meteorological factors, such as updraft and detrainment strength. Therefore, the observed higher water vapor entry value into the stratosphere in the polluted clouds than in the clean clouds is likely a manifestation of aerosol pollution influence on stratospheric water vapor. Given the radiative and chemical importance of stratospheric water vapor, the increasing emission of aerosols over Asia may have profound impacts on stratospheric chemistry and global energy balance and water cycle.

  18. Regional transport of pollutants over the Bay of Biscay: analysis of an ozone episode under a blocking anticyclone in west-central Europe

    NASA Astrophysics Data System (ADS)

    Gangoiti, Gotzon; Alonso, Lucio; Navazo, Marino; Albizuri, Amaia; Perez-Landa, Gorka; Matabuena, Monica; Valdenebro, Veronica; Maruri, Mercedes; Antonio García, José; Millán, Millán M.

    This paper analyses an ozone episode recorded at the regional monitoring network of the Basque Country, located in northern Iberia. The synoptic weather pattern was characterized by the presence of a blocking anticyclone over the British Isles and its subsequent evolution eastwards. The blocking situation lasted for 4 days, and ozone concentrations throughout the whole network rose up to 100-160 μg m -3. The main objective is to investigate the origin of the polluted air masses in the area and search for the transport/dispersion mechanisms that gave rise to such a severe O 3 episode. A mesoscale model, operating with three nested grids down to a resolution of 3 km×3 km, was used to simulate the mesoscale processes. The model results were validated against the output of a wind profiler radar and the meteorological data recorded at the surface meteorological stations operated by the local and regional authorities. Both the single-particle Lagrangian back-trajectories and the results of a multiple-particle dispersion model suggest that during the peak pollution episode there were contributions from local sources as well as regional and long-range transport from foreign sources. The transport mechanisms depend on the position-evolution of the high-pressure system over Europe: during the last phase of the episode (15-16 June 1996), concurrent with the highest concentrations, we detected both a contribution of pollutants from southern France, which arrived at the Bay of Biscay with the north-easterly winds forced by the European anticyclone, as well as a contribution from night-time discharges of aged pollutants located in the residual layer over the Ebro valley. This layer accumulates pollutants from local sources located inside the Ebro valley (daytime convection and mixing during the previous day) and can also be a reservoir of pollutants transported from the western Mediterranean following the sea breeze regime.

  19. Summertime cyclones over the Great Lakes Storm Track from 1860-2100: variability, trends, and association with ozone pollution

    NASA Astrophysics Data System (ADS)

    Turner, A. J.; Fiore, A. M.; Horowitz, L. W.; Bauer, M.

    2013-01-01

    Prior work indicates that the frequency of summertime mid-latitude cyclones tracking across the Great Lakes Storm Track (GLST, bounded by: 70° W, 90° W, 40° N, and 50° N) are strongly anticorrelated with ozone (O3) pollution episodes over the Northeastern United States (US). We apply the MAP Climatology of Mid-latitude Storminess (MCMS) algorithm to 6-hourly sea level pressure fields from over 2500 yr of simulations with the GFDL CM3 global coupled chemistry-climate model. These simulations include (1) 875 yr with constant 1860 emissions and forcings (Pre-industrial Control), (2) five ensemble members for 1860-2005 emissions and forcings (Historical), and (3) future (2006-2100) scenarios following the Representative Concentration Pathways (RCP 4.5 and RCP 8.5) and a sensitivity simulation to isolate the role of climate warming from changes in O3 precursor emissions (RCP 4.5*). The GFDL CM3 Historical simulations capture the mean and variability of summertime cyclones traversing the GLST within the range determined from four reanalysis datasets. Over the 21st century (2006-2100), the frequency of summertime mid-latitude cyclones in the GLST decreases under the RCP 8.5 scenario and in the RCP 4.5 ensemble mean. These trends are significant when assessed relative to the variability in the Pre-industrial Control simulation. In addition, the RCP 4.5* scenario enables us to determine the relationship between summertime GLST cyclones and high-O3 events (> 95th percentile) in the absence of emission changes. The summertime GLST cyclone frequency explains less than 10% of the variability in high-O3 events over the Northeastern US in the model, implying that other factors play an equally important role in determining high-O3 events.

  20. An ozone episode over the Pearl River Delta in October 2008

    NASA Astrophysics Data System (ADS)

    Shen, Jin; Zhang, Yuanhang; Wang, Xuesong; Li, Jinfeng; Chen, Hao; Liu, Run; Zhong, Liuju; Jiang, Ming; Yue, Dingli; Chen, Duohong; Lv, Wei

    2015-12-01

    The north and east Pearl River Delta (PRD) is usually a clean, upwind area in autumn. Serious ozone pollution there in mid-late October 2008 was first discovered and then analyzed. Trajectory analysis, process analysis, ozone source apportionment technology, and sensitivity analysis were used to study this episode. Under the influence of a weak south wind, the precursors emitted in Guangzhou and Foshan were transported to the north and northeast PRD and formed ozone there, which resulted in high ozone concentration (>100 ppb). As the wind direction later transited to northerly, the precursors in the northeast PRD that originated from the central and west PRD were transported to the south, and caused severe ozone pollution in the southeast PRD. The ozone contributed by chemical processes reached >20 ppb/h in Jinguowan. More than 40 ppb ozone was contributed by the precursor emission in the central and west PRD during the episode. The ozone concentration was highly sensitive to the precursor emission in the PRD region in the high-ozone situations. This episode showed the complexity of regional pollution in the PRD. When the PRD is controlled by a low air pressure system and then cold air moves from northern China to the south, the risk of ozone pollution in the north and southeast PRD increases.

  1. No minimum threshold for ozone-induced changes in soybean canopy fluxes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tropospheric ozone concentrations [O3] are increasing at rates that exceed any other pollutant. This highly reactive gas drives reductions in plant productivity and canopy water use while also increasing canopy temperature and sensible heat flux. It is not clear whether a minimum threshold of ozone ...

  2. Formulating the relationship between ozone pollution features and the transition value of photochemical indicators

    NASA Astrophysics Data System (ADS)

    Chen, Tu-Fu; Chang, Ken-Hui

    Indicator transition value represents the value when O 3 sensitivity transfers from VOC-sensitive to NO x-sensitive conditions. The applicability of the indicator transition value for O 3 sensitivity is inconsistent in the past model studies. Thus, this study is undertaken to analyze the variation of the indicator transition value under different conditions. Initially, a three-dimensional (3D) Eulerian air quality model is adopted to predict spatial and temporary O 3 concentrations during a particular 4-day episode in Taiwan. The methodology for determining indicator transition values, which is different from those used in other studies, is as follows. First, the peak O 3 isopleth profile for each target grid cell in the modeling domain is established to determine the transition line based on 25 combinations of NO x and VOC emission reduction. The results are then compared with the isopleth profiles of concurrent indicator to determine the transition value of eight indicators for each target grid cell. The daily spatial distribution of indicator transition values for all grid cells in the modeling domain is different during the 4-day simulation period. Secondly, the ratio of NO z/NO y, NO y and O 3 are used to describe the pollution features of air mass, and then a set of equations is developed to illustrate their relationship with the indicator transition value. Finally, the capability of these equations to assess O 3 sensitivity is evaluated. The H 2O 2/HNO 3 ratio is found to be the best indicator among the eight indicators evaluated. The indicator transition value equation for air mass (ITVEAM) for H 2O 2/HNO 3 is then constructed and the results described well the spatial variation during the 4-day simulation period. The ITVEAM along with the observed H 2O 2/HNO 3 can be used to determine which precursor controls O 3 production, especially during the O 3 episode period. As a result, it can guide an emission reduction strategy to improve O 3 concentration.

  3. Three-D Simulation of the Origin of the Pollutant Ozone Maxima in the Great African Plume: New Meteorology, New Chemistry for TRACE-A

    NASA Technical Reports Server (NTRS)

    Chatfeild, Robert; Vastano, John; Singh, Hanwant; Chan, K. Roland (Technical Monitor)

    1996-01-01

    Burning in South Central Africa is primarily responsible for the vast buildup of ozone in the mid-Atlantic noticeable in the Belem, Brazil, ozonesondes, and also visible in analyses using the Total Ozone Mapping Spectrometer (TOMS). We report on full-scale chemistry simulations for the SAFARI/TRACE-A field period of September-October, 1992. These observational programs provided a wealth of comparison data, including spectacular depictions of the vertical structure of ozone and particulate pollution over Africa, South America, and the Equatorial Atlantic [Browell JGR, 1996, submitted] above and below the NASA DC-8 airplane path. These depictions provide strict tests on the ability of a 3-d simulation and its controlling input parameters, most notably the biomass burning emissions strength. We use meteorology from MM5 used as a synoptic assimilation model and our own GRACES Global Regional Air Chemistry Event Simulator. This report will focus on the unique meteorology of the Equatorial Atmosphere around the Gulf of Guinea during the TRACE-A period, which we describe as "the opening of the gate," "the Great African Plume," and the "African Recirculatory System." We expect to assess whether the ozone observed is primarily "transported African smog," the standard view, or whether "re-$NO_[x)$-ification" of the Central Atlantic troposphere (reduction of nitric acid to active nitrogen oxides in clouds or aerosol) may be required for "extended intercontinental ozone production." A status report on a second nitrogen problem, "lower-tropospheric missing NO(y)," in which we find a serious imbalance in the $NO_ {x }$ and $NO_{y}$ budgets when compared with similar atmospheric tracers, will be given. An elaboration of the concepts set off by quotation marks in this abstract will be given in the talk.

  4. Simultaneous ozonation kinetics of phenolic acids present in wastewaters

    SciTech Connect

    Benitez, F.J.; Beltran-Heredia, J.; Acero, J.L.; Pinilla, M.L.

    1996-12-31

    Among the several chemical processes conducted for the removal of organic matter present in wastewaters coming from some agro-industrial plants (wine distilleries, olive oil mills, etc), the oxidation by ozone has shown a great effectiveness in the destruction of specially refractory pollutants: it is demonstrated that the biodegradability of those wastewaters increases aflcer an ozonation pretreatment. Their great pollutant character is imputed to the presence of some organic compounds, like phenols and polyphenols, which are toxic and inhibit the latter biological treatments. In this research, a competitive kinetic procedure reported by Clurol and Nekouinaini is applied to determine the degradation rate constants by ozone of several phenolic acids which are present in the wastewaters from the olive oil obtaining process. The resulting kinetic expressions for the ozonation reactions are useful for the successful design and operation of ozone reactors in water and wastewaters treatment plants.

  5. Study of air pollution: Effects of ozone on neuropeptide-mediated responses in human subjects. Final report

    SciTech Connect

    Boushey, H.A.

    1991-11-01

    The study examined the hypothesis that ozone inactivates the enzyme, neutral endopeptidase, responsible for limiting the effects of neuropeptides released from afferent nerve endings. Cough response of capsaicin solution delivered from a nebulizer at 2 min. intervals until two or more coughs were produced. Other endpoints measured included irritative symptoms as rated by the subjects on a nonparametric scale, spirometry, of each concentration of ozone were compared to those of filtered air in a single-blind randomized sequence. The results indicate that a 2 h. exposure to 0.4 ppm of ozone with intermittent light exercise alters the sensitivity of airway nerves that mediate the cough response to inhaled materials. This dose of ozone also caused a change in FEV1. A lower level of ozone, 0.02 ppm, caused a change in neither cough threshold nor FEV1, even when the duration of exposure was extended to three hours. The findings are consistent with the author's hypothesis that ozone may sensitize nerve endings in the airways by inactivating neutral endopeptidase, an enzyme that regulates their activity, but they do not demonstrate that directly examining an effect directly mediated by airway nerves allows detection of effects of ozone at doses below those causing effects detected by standard tests of pulmonary function.

  6. The effects of increasing atmospheric ozone on biogenic monoterpene profiles and the formation of secondary aerosols

    NASA Astrophysics Data System (ADS)

    Pinto, Delia M.; Tiiva, Päivi; Miettinen, Pasi; Joutsensaari, Jorma; Kokkola, Harri; Nerg, Anne-Marja; Laaksonen, Ari; Holopainen, Jarmo K.

    Monoterpenes are biogenic volatile organic compounds (BVOCs) which play an important role in plant adaptation to stresses, atmospheric chemistry, plant-plant and plant-insect interactions. In this study, we determined whether ozonolysis can influence the monoterpenes in the headspace of cabbage. The monoterpenes were mixed with an air-flow enriched with 100, 200 or 400 ppbv of ozone (O 3) in a Teflon chamber. The changes in the monoterpene and O 3 concentrations, and the formation of secondary organic aerosols (SOA) were determined during ozonolysis. Furthermore, the monoterpene reactions with O 3 and OH were modelled using reaction kinetics equations. The results showed that all of the monoterpenes were unequally affected: α-thujene, sabinene and D-limonene were affected to the greatest extend, whereas the 1,8-cineole concentration did not change. In addition, plant monoterpene emissions reduced the O 3 concentration by 12-24%. The SOA formation was dependent on O 3 concentration. At 100 ppbv of O 3, virtually no new particles were formed but clear SOA formation was observed at the higher ozone concentrations. The modelled results showed rather good agreements for α-pinene and 1,8-cineole, whereas the measured concentrations were clearly lower compared to modelled values for sabinene and limonene. In summary, O 3-quenching by monoterpenes occurs beyond the boundary layer of leaves and results in a decreased O 3 concentration, altered monoterpene profiles and SOA formation.

  7. Urban influence on increasing ozone concentrations in a characteristic Mediterranean agglomeration

    NASA Astrophysics Data System (ADS)

    Escudero, M.; Lozano, A.; Hierro, J.; Valle, J. del; Mantilla, E.

    2014-12-01

    Air quality in cities has been extensively studied due to the high population density potentially exposed to high levels of pollutants. The main problems in urban areas have been related to particulate matter (PM) and NO2. Less attention has been directed towards O3 because urban levels are generally lower than those recorded in rural areas. The implementation of air quality plans, together with technological improvements, have resulted in reductions of PM and NO2 levels in many European cities. In contrast, urban O3 levels have experimented increases which may respond to declining NOx emission trends. It is therefore necessary to intensify the study of urban O3 and its potential relation with NOx variations. In the agglomeration of Zaragoza (NE Spain), traffic circulation through the centre has dropped by 28.3% since 2008 due to several factors such as the implementation of a mobility plan, the completion of major construction projects and the economic crisis in Spain. The study of this case offers a unique opportunity to evaluate the impact of reductions in NOx emissions on the levels of O3 in a characteristic Mediterranean city. This work analyses the variability and trends of ambient air levels of O3 and NOx in Zaragoza and the Ebro valley from 2007 to 2012. Results demonstrate that, although the main factor explaining O3 variability is still linked to meteorology, changes in NOx emissions strongly influence O3 variability and trends, mainly due to interaction with fresh NO. Specific analysis of the O3 "weekend effect" show a significant correlation (r2 = 0.81) between the drop of NO concentrations (associated to emissions) and the increment of O3 levels during weekends. Moreover, trend analyses reveal that the decline in NOx emissions in Zaragoza from 2007 to 2012 can be associated with significant increments in O3 levels.

  8. Possible effects of CO{sub 2} increase on the high-speed civil transport impact on ozone

    SciTech Connect

    Pitari, G.; Visconti, G.

    1994-08-20

    This paper discusses the possible impacts on stratospheric ozone abundance from the use of large fleets of high speed civil transport (HSCT) aircraft. An assessment is made of the potential impacts of injections of nitrous oxide, sulfur dioxide and water vapor directly into the lower stratosphere. A carbon dioxide increase is also predicted in the future atmosphere when HSCT would be operational. A three-dimensional model is presented for the radiative and dynamic calculations. For the process of aerosol formation, a two-dimensional photochemical model is presented. 24 refs., 24 figs., 4 tabs.

  9. Copper Pollution Increases the Relative Importance of Predation Risk in an Aquatic Food Web.

    PubMed

    Kwan, Christopher Kent; Sanford, Eric; Long, Jeremy

    2015-01-01

    Although the cascading impact of predators depends critically on the relative role of lethal predation and predation risk, we lack an understanding of how human-caused stressors may shift this balance. Emergent evidence suggests that pollution may increase the importance of predator consumptive effects by weakening the effects of fear perceived by prey. However, this oversimplification ignores the possibility that pollution may also alter predator consumptive effects. In particular, contaminants may impair the consumptive effects of predators by altering density-dependent interactions among prey conspecifics. No study has directly compared predator consumptive and non-consumptive effects in polluted versus non-polluted settings. We addressed this issue by using laboratory mesocosms to examine the impact of sublethal doses of copper on tri-trophic interactions among estuarine predator crabs Cancer productus, carnivorous whelk prey Urosalpinx cinerea, and the basal resource barnacles Balanus glandula. We investigated crab consumptive effects (whelks culled without crab chemical cues), non-consumptive effects (whelks not culled with crab chemical cues), and total effects (whelks culled with crab chemical cues) on whelks in copper polluted and non-polluted waters. Realistic copper concentrations suppressed the effects of simulated crab lethal predation (whelk culling) by removing density-dependent feeding by whelks. Specifically, reductions in conspecific density occurring in elevated copper levels did not trigger the normal increase in whelk consumption rates of barnacles. Weakened effects of fear were only observed at extremely high copper levels, suggesting consumptive effects were more sensitive to pollution. Thus, pollution may shape communities by altering the roles of predators and interactions among prey. PMID:26172044

  10. Copper Pollution Increases the Relative Importance of Predation Risk in an Aquatic Food Web

    PubMed Central

    Kwan, Christopher Kent; Sanford, Eric; Long, Jeremy

    2015-01-01

    Although the cascading impact of predators depends critically on the relative role of lethal predation and predation risk, we lack an understanding of how human-caused stressors may shift this balance. Emergent evidence suggests that pollution may increase the importance of predator consumptive effects by weakening the effects of fear perceived by prey. However, this oversimplification ignores the possibility that pollution may also alter predator consumptive effects. In particular, contaminants may impair the consumptive effects of predators by altering density-dependent interactions among prey conspecifics. No study has directly compared predator consumptive and non-consumptive effects in polluted versus non-polluted settings. We addressed this issue by using laboratory mesocosms to examine the impact of sublethal doses of copper on tri-trophic interactions among estuarine predator crabs Cancer productus, carnivorous whelk prey Urosalpinx cinerea, and the basal resource barnacles Balanus glandula. We investigated crab consumptive effects (whelks culled without crab chemical cues), non-consumptive effects (whelks not culled with crab chemical cues), and total effects (whelks culled with crab chemical cues) on whelks in copper polluted and non-polluted waters. Realistic copper concentrations suppressed the effects of simulated crab lethal predation (whelk culling) by removing density-dependent feeding by whelks. Specifically, reductions in conspecific density occurring in elevated copper levels did not trigger the normal increase in whelk consumption rates of barnacles. Weakened effects of fear were only observed at extremely high copper levels, suggesting consumptive effects were more sensitive to pollution. Thus, pollution may shape communities by altering the roles of predators and interactions among prey. PMID:26172044

  11. Ozone-Induced Metabolic Impairment is Attenuated in Adrenalectomized Wistar Kyoto Rats

    EPA Science Inventory

    Rationale: Air pollutants have been linked to increased incidence of metabolic syndrome however the mechanisms are poorly understood. We have recently shown that ozone exposure induces significant hyperglycemia together with elevated serum leptin and epinephrine in the Wistar Ky...

  12. Quantifying the contribution of inflow on surface ozone over California during summer 2008

    NASA Astrophysics Data System (ADS)

    Pfister, Gabriele G.; Walters, Stacy; Emmons, Louisa K.; Edwards, David P.; Avise, Jeremy

    2013-11-01

    pollution has been recognized as making a potentially strong impact on air quality in the western U.S., but large uncertainties remain in quantifying its contribution. Assessing the role of pollution transport in relation to local emissions and meteorology is especially important in light of possibly lower ozone standards and projected increases in transpacific pollution transport. We apply the Weather Research and Forecasting with Chemistry model to analyze the role of upwind pollution ("inflow") to surface ozone over California during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites campaign in June-July 2008 over California. Comparisons of the model to surface and aircraft observations, ozonesondes, and satellite retrievals show an overall good agreement; a low bias (~5 ppb) in free tropospheric ozone is attributed to low ozone at the boundaries and likely places our estimated inflow contribution on the lower side. Most other studies applied sensitivity analyses, while we use a synthetic ozone tracer, which provides a quantitative estimate of the budget. We estimate that on average 10 ± 9 ppb of surface afternoon ozone over California is attributed to ozone and ozone precursors entering the region from outside. This contribution features a significant spatial and temporal variability. While in most high ozone events, transported pollution plays a small role compared to local influences, for some instances, the impact can be substantial. Omitting data impacted by wildfires, we estimate the 90th percentile of the relative contribution of O3INFLOW to 8 h ozone >75 ppb as 10%. Our results also indicate that inflow might have a stronger impact on surface ozone in less polluted compared to polluted areas.

  13. Impact of increasing heat waves on U.S. ozone episodes in the 2050s: Results from a multimodel analysis using extreme value theory

    NASA Astrophysics Data System (ADS)

    Shen, L.; Mickley, L. J.; Gilleland, E.

    2016-04-01

    We develop a statistical model using extreme value theory to estimate the 2000-2050 changes in ozone episodes across the United States. We model the relationships between daily maximum temperature (Tmax) and maximum daily 8 h average (MDA8) ozone in May-September over 2003-2012 using a Point Process (PP) model. At ~20% of the sites, a marked decrease in the ozone-temperature slope occurs at high temperatures, defined as ozone suppression. The PP model sometimes fails to capture ozone-Tmax relationships, so we refit the ozone-Tmax slope using logistic regression and a generalized Pareto distribution model. We then apply the resulting hybrid-extreme value theory model to projections of Tmax from an ensemble of downscaled climate models. Assuming constant anthropogenic emissions at the present level, we find an average increase of 2.3 d a-1 in ozone episodes (>75 ppbv) across the United States by the 2050s, with a change of +3-9 d a-1 at many sites.

  14. Forests and ozone: productivity, carbon storage, and feedbacks

    PubMed Central

    Wang, Bin; Shugart, Herman H.; Shuman, Jacquelyn K.; Lerdau, Manuel T.

    2016-01-01

    Tropospheric ozone is a serious air-pollutant, with large impacts on plant function. This study demonstrates that tropospheric ozone, although it damages plant metabolism, does not necessarily reduce ecosystem processes such as productivity or carbon sequestration because of diversity change and compensatory processes at the community scale ameliorate negative impacts at the individual level. This study assesses the impact of ozone on forest composition and ecosystem dynamics with an individual-based gap model that includes basic physiology as well as species-specific metabolic properties. Elevated tropospheric ozone leads to no reduction of forest productivity and carbon stock and to increased isoprene emissions, which result from enhanced dominance by isoprene-emitting species (which tolerate ozone stress better than non-emitters). This study suggests that tropospheric ozone may not diminish forest carbon sequestration capacity. This study also suggests that, because of the often positive relationship between isoprene emission and ozone formation, there is a positive feedback loop between forest communities and ozone, which further aggravates ozone pollution. PMID:26899381

  15. Isoprene chemistry in pristine and polluted Amazon environments: Eulerian and Lagrangian model frameworks and the strong bearing they have on our understanding of surface ozone and predictions of rainforest exposure to this priority pollutant

    NASA Astrophysics Data System (ADS)

    Levine, J. G.; MacKenzie, A. R.; Squire, O. J.; Archibald, A. T.; Griffiths, P. T.; Abraham, N. L.; Pyle, J. A.; Oram, D. E.; Forster, G.; Brito, J. F.; Lee, J. D.; Hopkins, J. R.; Lewis, A. C.; Bauguitte, S. J. B.; Demarco, C. F.; Artaxo, P.; Messina, P.; Lathière, J.; Hauglustaine, D. A.; House, E.; Hewitt, C. N.; Nemitz, E.

    2015-09-01

    This study explores our ability to simulate the atmospheric chemistry stemming from isoprene emissions in pristine and polluted regions of the Amazon basin. We confront two atmospheric chemistry models - a global, Eulerian chemistry-climate model (UM-UKCA) and a trajectory-based Lagrangian model (CiTTyCAT) - with recent airborne measurements of atmospheric composition above the Amazon made during the SAMBBA campaign of 2012. The simulations with the two models prove relatively insensitive to the chemical mechanism employed; we explore one based on the Mainz Isoprene Mechanism, and an updated one that includes changes to the chemistry of first generation isoprene nitrates (ISON) and the regeneration of hydroxyl radicals via the formation of hydroperoxy-aldehydes (HPALDS) from hydroperoxy radicals (ISO2). In the Lagrangian model, the impact of increasing the spatial resolution of trace gas emissions employed from 3.75° × 2.5° to 0.1° × 0.1° varies from one flight to another, and from one chemical species to another. What consistently proves highly influential on our simulations, however, is the model framework itself - how the treatment of transport, and consequently mixing, differs between the two models. The lack of explicit mixing in the Lagrangian model yields variability in atmospheric composition more reminiscent of that exhibited by the measurements. In contrast, the combination of explicit (and implicit) mixing in the Eulerian model removes much of this variability but yields better agreement with the measurements overall. We therefore explore a simple treatment of mixing in the Lagrangian model that, drawing on output from the Eulerian model, offers a compromise between the two models. We use this Lagrangian/Eulerian combination, in addition to the separate Eulerian and Lagrangian models, to simulate ozone at a site in the boundary layer downwind of Manaus, Brazil. The Lagrangian/Eulerian combination predicts a value for an AOT40-like accumulated

  16. Ozone-induced bronchial hyperresponsiveness in the rat is not accompanied by neutrophil influx or increased vascular permeability in the trachea

    SciTech Connect

    Evans, T.W.; Brokaw, J.J.; Chung, K.F.; Nadel, J.A.; McDonald, D.M.

    1988-07-01

    We determined whether ozone-induced bronchial hyperresponsiveness in the rat is accompanied by neutrophil influx or increased vascular permeability in the trachea. Three groups of female Long-Evans rats were studied. One group was exposed to 4 ppm ozone for 2 h and studied immediately thereafter, another group was similarly exposed but was not studied until 24 h after the ozone exposure, and a third group consisted of control rats that breathed room air. Increases in total pulmonary resistance caused by acetylcholine aerosol were measured to assess bronchial responsiveness in these 3 groups. In parallel studies, neutrophil influx into the tracheal mucosa was quantified by counting cells within whole mounts of tracheas that were treated histochemically to stain the myeloperoxidase in neutrophils, and tracheal vascular permeability was quantified by measuring the amount of Evans blue dye extravasated into the trachea. In the rats studied immediately after the ozone exposure, the concentration of acetylcholine required to increase total pulmonary resistance to three-fold the baseline value was only 6% of that required in the controls. In the rats studied 24 h after the ozone exposure, this provocative acetylcholine concentration was not significantly different from that of the controls. Neither the number of neutrophils in the tracheal mucosa nor the amount of Evans blue dye extravasated into the trachea was significantly different from the corresponding control values at either time. We conclude that rats exposed to ozone develop bronchial hyperresponsiveness without detectable neutrophil influx or increased vascular permeability in the trachea.

  17. Pharmaceuticals and organic pollution mitigation in reclamation osmosis brines by UV/H2O2 and ozone.

    PubMed

    Justo, A; González, O; Aceña, J; Pérez, S; Barceló, D; Sans, C; Esplugas, S

    2013-12-15

    One significant disadvantage of using reverse osmosis (RO) for reclamation purposes is the need to dispose of the RO retentates. These retentates contain a high concentration of micropollutants, effluent organic matter (EfOM) and other inorganic constituents, which are recalcitrant to biological treatment and may impact the environment. The occurrence of 11 pharmaceuticals (concentrations ranging from 0.2 to 1.6 μg L(-1)) and their mitigation in RO retentates by a UV/H2O2 process and ozonation was studied using a wide range of oxidant dosages. Eleven pharmaceuticals were identified at. Initial observed kinetic constants (kobs) were calculated for the different pharmaceuticals. Other typical wastewater parameters were also monitored during the UV/H2O2 and ozonation reactions. The range for kobs was found to be 0.8-12.8L mmol O3(-1) and 9.7-29.9 L mmol H2O2(-1) for the ozonation and UV/H2O2 process, respectively. For ozonation, Atenolol, Carbamazepine, Codeine, Trimethoprim and Diclofenac showed the lowest initial kobs (in the order mentioned). Atenolol and Carbamazepine appeared as the most ozone resistant pharmaceuticals, exhibiting the lowest percentage of elimination at low ozone doses. On the other hand, despite the non-selectivity of HO, differences in the initial kobs were also observed during the UV/H2O2 process. Trimethoprim, Paroxetine and Sulfamethoxazole exhibited the lowest initial kobs values (in the order mentioned). Trimethoprim and Paroxetine also exhibited the lowest percentage removal when low H2O2 doses were assayed. The compounds that were identified as problematic during ozonation were more efficiently removed by the UV/H2O2 process. UV/H2O2 generally appeared to be a more efficient technology for removing pharmaceuticals from RO brines compared to ozonation. PMID:23768786

  18. Spatial distribution of tropospheric ozone in western Washington, USA

    USGS Publications Warehouse

    Cooper, S.M.; Peterson, D.L.

    2000-01-01

    We quantified the distribution of tropospheric ozone in topographically complex western Washington state, USA (total area a??6000 km2), using passive ozone samplers along nine river drainages to measure ozone exposure from near sea level to high-elevation mountain sites. Weekly average ozone concentrations were higher with increasing distance from the urban core and at higher elevations, increasing a mean of 1.3 ppbv per 100 m elevation gain for all mountain transects. Weekly average ozone concentrations were generally highest in Cascade Mountains drainages east and southeast of Seattle (maximum=55a??67 pbv) and in the Columbia River Gorge east of Portland (maximum=59 ppbv), and lowest in the western Olympic Peninsula (maximum=34 ppbv). Higher ozone concentrations in the Cascade Mountains and Columbia River locations downwind of large cities indicate that significant quantities of ozone and ozone precursors are being transported eastward toward rural wildland areas by prevailing westerly winds. In addition, temporal (week to week) variation in ozone distribution is synchronous within and between all drainages sampled, which indicates that there is regional coherence in air pollution detectable with weekly averages. These data provide insight on large-scale spatial variation of ozone distribution in western Washington, and will help regulatory agencies optimize future monitoring networks and identify locations where human health and natural resources could be at risk.

  19. Spatial distribution of tropospheric ozone in western Washington, USA.

    PubMed

    Cooper, S M; Peterson, D L

    2000-03-01

    We quantified the distribution of tropospheric ozone in topographically complex western Washington state, USA (total area approximately 6000 km(2)), using passive ozone samplers along nine river drainages to measure ozone exposure from near sea level to high-elevation mountain sites. Weekly average ozone concentrations were higher with increasing distance from the urban core and at higher elevations, increasing a mean of 1.3 ppbv per 100 m elevation gain for all mountain transects. Weekly average ozone concentrations were generally highest in Cascade Mountains drainages east and southeast of Seattle (maximum=55-67 pbv) and in the Columbia River Gorge east of Portland (maximum=59 ppbv), and lowest in the western Olympic Peninsula (maximum=34 ppbv). Higher ozone concentrations in the Cascade Mountains and Columbia River locations downwind of large cities indicate that significant quantities of ozone and ozone precursors are being transported eastward toward rural wildland areas by prevailing westerly winds. In addition, temporal (week to week) variation in ozone distribution is synchronous within and between all drainages sampled, which indicates that there is regional coherence in air pollution detectable with weekly averages. These data provide insight on large-scale spatial variation of ozone distribution in western Washington, and will help regulatory agencies optimize future monitoring networks and identify locations where human health and natural resources could be at risk. PMID:15092980

  20. Summertime cyclones over the Great Lakes Storm Track from 1860-2100: variability, trends, and association with ozone pollution

    NASA Astrophysics Data System (ADS)

    Turner, A. J.; Fiore, A. M.; Horowitz, L. W.; Naik, V.; Bauer, M.

    2012-08-01

    Prior work indicates that the frequency of summertime mid-latitude cyclones tracking across the Great Lakes Storm Track (GLST, bounded by: 70° W, 90° W, 40° N, and 50° N) are strongly anticorrelated with ozone (O3) pollution episodes over the Northeastern United States (US). We apply the MAP Climatology of Mid-latitude Storminess (MCMS) algorithm to 6-hourly sea level pressure fields from over 2500 yr of simulations with the GFDL CM3 global coupled chemistry-climate model. These simulations include (1) 875 yr with constant 1860 emissions and forcings (Pre-industrial Control), (2) five ensemble members for 1860-2005 emissions and forcings (Historical), and (3) future (2006-2100) scenarios following the Representative Concentration Pathways (RCP 8.5 (one member; extreme warming); RCP 4.5 (three members; moderate warming); RCP 4.5* (one member; a variation on RCP 4.5 in which only well-mixed greenhouse gases evolve along the RCP 4.5 trajectory)). The GFDL CM3 Historical simulations capture the mean and variability of summertime cyclones traversing the GLST within the range determined from four reanalysis datasets. Over the 21st century (2006-2100), the frequency of summertime mid-latitude cyclones in the GLST decreases under the RCP 8.5 scenario (m = -0.06 a-1, p < 0.01) and in the RCP 4.5 ensemble mean (m = -0.03 a-1, p < 0.01). These trends are significant when assessed relative to the variability in the Pre-industrial Control simulation (p > 0.06 for 100-yr sampling intervals; -0.01 a-1 < m < 0.02 a-1). In addition, the RCP 4.5* scenario enables us to determine the relationship between summertime GLST cyclones and high-O3 events (>95th percentile) in the absence of emission changes. The summertime GLST cyclone frequency explains less than 10% of the variability in high-O3 events over the Northeastern US in the model. Our findings imply that careful study is required prior to applying the strong relationship noted in earlier work to changes in storm counts.

  1. Bromate oxidized from bromide during sonolytic ozonation.

    PubMed

    Lu, Ning; Wu, Xue-Fei; Zhou, Ji-Zhi; Huang, Xin; Ding, Guo-Ji

    2015-01-01

    Sonolytic ozonation (US/O3) is an effective way to degrade many pollutants in drinking water as the elevated mass transfer rate of ozone gas and the enhanced forming of hydroxyl radicals (OH). This work investigated the formation of bromate (BrO3(-)) from bromide (Br(-)) in sonolytic ozonation. At neutral pH, the bromate conversion rate ([BrO3(-)]/[Br(-)]0) was increased to 60% by ultrasound at continuous ozone flow (0-0.2Lmin(-1)), much higher than that without ultrasound or without bubbling. This indicates that the promoting effect of sonolysis on BrO3(-) formation is mainly due to the sonolytic decomposition of ozone and the enhancement of gas-liquid transfer. The [BrO3(-)]/[Br(-)]0 was increased with increasing pH. In addition, the reduction of HOBr/OBr(-) with ultrasound demonstrates that bromate may be inhibited as the bromide was formed with the H2O2 generation under ultrasound. This suggests the competition between bromate and bromide during the US/O3 led to the inhibition of bromate formation at high ozone flow. Therefore, our result reveals that the bromate formation under ultrasound is improved remarkably in US/O3 in quick treatment with proper ozone flow (<0.2Lmin(-1)). PMID:24931426

  2. GSTM1 modulation of IL-8 expression in human epithelial cells exposed to ozone

    EPA Science Inventory

    Exposure to the major air pollutant ozone can aggravate asthma and other lung diseases. Our recent study in humanvolunteers hasshown that the glutathione S-transferase Mu 1(GSTMI)-null genotype is associated with increased airway neutrophilic inflammation induced by inhaled ozone...

  3. Pollution

    ERIC Educational Resources Information Center

    Rowbotham, N.

    1973-01-01

    Presents the material given in one class period in a course on Environmental Studies at Chesterfield School, England. The topics covered include air pollution, water pollution, fertilizers, and insecticides. (JR)

  4. The Antarctic Ozone Hole.

    ERIC Educational Resources Information Center

    Stolarski, Richard S.

    1988-01-01

    Discusses the Airborne Antarctic Ozone Experiment (1987) and the findings of the British Antarctic Survey (1985). Proposes two theories for the appearance of the hole in the ozone layer over Antarctica which appears each spring; air pollution and natural atmospheric shifts. Illustrates the mechanics of both. Supports worldwide chlorofluorocarbon…

  5. Ozone production in summer in the megacities of Tianjin and Shanghai, China: a comparative study

    NASA Astrophysics Data System (ADS)

    Ran, Liang; Zhao, Chunsheng

    2013-04-01

    Rapid economic growth has given rise to a significant increase in ozone precursor emissions in many regions of China, especially in the densely populated North China Plain (NCP) and Yangtze River Delta (YRD). Improved understanding of ozone formation in response to different precursor emissions is imperative to address the highly nonlinear ozone problem and to provide a solid scientific basis for efficient ozone abatement in these regions. A comparative study on ozone photochemical production in summer has thus been carried out in the megacities of Tianjin (NCP) and Shanghai (YRD). Two intensive field campaigns were carried out respectively at an urban and a suburban site of Tianjin, in addition to routine monitoring of trace gases in Shanghai, providing data sets of surface ozone and its precursors including nitrogen oxides (NOx) and various non-methane hydrocarbons (NMHCs). Ozone pollution in summer was found to be more severe in the Tianjin region than in the Shanghai region, based on either the frequency or the duration of high ozone events. High ozone concentrations (>80 ppbv) of long duration (>6h) were frequently encountered in both urban and suburban Tianjin, while the occurrence of high ozone concentrations lasted for a shorter period (usually <4h) and had a much lower frequency in Shanghai. Such differences might be attributed to the large amount of highly reactive NMHCs in Tianjin. Model simulations based on measurements also reveal similar dependence of ozone production rates upon NMHC reactivity. Industry related species like light alkenes were of particular importance in both urban and suburban Tianjin, while in Shanghai aromatics dominated. In general, the ozone problem in Shanghai is on an urban scale. Stringent control policies on local emissions would help reduce the occurrence of high ozone concentrations. By contrast, ozone pollution in Tianjin is probably a regional problem. Combined efforts to reduce ozone precursor emissions on a regional

  6. Ozone - Current Air Quality Index

    MedlinePlus

    ... reducing exposure to extremely high levels of particle pollution is available here . Fires: Current Conditions Click to ... Air Quality Basics Air Quality Index | Ozone | Particle Pollution | Smoke from fires | What You Can Do Health ...

  7. Estimating contribution of wildland fires to ambient ozone levels in National Parks in the Sierra Nevada, California.

    PubMed

    Preisler, Haiganoush K; Zhong, Shiyuan Sharon; Esperanza, Annie; Brown, Timothy J; Bytnerowicz, Andrzej; Tarnay, Leland

    2010-03-01

    Data from four continuous ozone and weather monitoring sites operated by the National Park Service in Sierra Nevada, California, are used to develop an ozone forecasting model and to estimate the contribution of wildland fires on ambient ozone levels. The analyses of weather and ozone data pointed to the transport of ozone precursors from the Central Valley as an important source of pollution in these National Parks. Comparisons of forecasted and observed values demonstrated that accurate forecasts of next-day hourly ozone levels may be achieved by using a time series model with historic averages, expected local weather and modeled PM values as explanatory variables. Results on fire smoke influence indicated occurrence of significant increases in average ozone levels with increasing fire activity. The overall effect on diurnal ozone values, however, was small when compared with the amount of variability attributed to sources other than fire. PMID:19914752

  8. Impacts of Oil and Gas Production on Winter Ozone Pollution in the Uintah Basin Using Model Source Apportionment

    NASA Astrophysics Data System (ADS)

    Tran, H. N. Q.; Tran, T. T.; Mansfield, M. L.; Lyman, S. N.

    2014-12-01

    Contributions of emissions from oil and gas activities to elevated ozone concentrations in the Uintah Basin - Utah were evaluated using the CMAQ Integrated Source Apportionment Method (CMAQ-ISAM) technique, and were compared with the results of traditional budgeting methods. Unlike the traditional budgeting method, which compares simulations with and without emissions of the source(s) in question to quantify its impacts, the CMAQ-ISAM technique assigns tags to emissions of each source and tracks their evolution through physical and chemical processes to quantify the final ozone product yield from the source. Model simulations were performed for two episodes in winter 2013 of low and high ozone to provide better understanding of source contributions under different weather conditions. Due to the highly nonlinear ozone chemistry, results obtained from the two methods differed significantly. The growing oil and gas industry in the Uintah Basin is the largest contributor to the elevated zone (>75 ppb) observed in the Basin. This study therefore provides an insight into the impact of oil and gas industry on the ozone issue, and helps in determining effective control strategies.

  9. Quantification of relative contribution of Antarctic ozone depletion to increased austral extratropical precipitation during 1979-2013

    NASA Astrophysics Data System (ADS)

    Bai, Kaixu; Chang, Ni-Bin; Gao, Wei

    2016-02-01

    Attributing the observed climate changes to relevant forcing factors is critical to predicting future climate change scenarios. Precipitation observations in the Southern Hemisphere indicate an apparent moistening pattern over the extratropics during the time period 1979 to 2013. To investigate the predominant forcing factor in triggering such an observed wetting climate pattern, precipitation responses to four climatic forcing factors, including Antarctic ozone, water vapor, sea surface temperature (SST), and carbon dioxide, were assessed quantitatively in sequence through an inductive approach. Coupled time-space patterns between the observed austral extratropical precipitation and each climatic forcing factor were firstly diagnosed by using the maximum covariance analysis (MCA). With the derived time series from each coupled MCA modes, statistical relationships were established between extratropical precipitation variations and each climatic forcing factor by using the extreme learning machine. Based on these established statistical relationships, sensitivity tests were conducted to estimate precipitation responses to each climatic forcing factor quantitatively. Quantified differential contribution with respect to those climatic forcing factors may explain why the observed austral extratropical moistening pattern is primarily driven by the Antarctic ozone depletion, while mildly modulated by the cooling effect of equatorial Pacific SST and the increased greenhouse gases, respectively.

  10. Ozone variability

    NASA Astrophysics Data System (ADS)

    Duetsch, H. U.

    1983-09-01

    The annual and long-term variations in the atmospheric ozone layer were examined on the basis of 55 yr of data taken at Aroya, Switzerland and 25 yr of data gathered by the global ozone network. Attention was given to annual and biennial variations, which showed that the midlatitude peak concentration was affected by a quasi-biennial variation of the tropical stratospheric circulation. Smaller scale circulation patterns were dominant in the lower stratosphere, although an observed negative trend of the total ozone was equally distributed between the troposphere and 24 km altitude. The global ozone increase detected in the 1960s was possible due to general circulation alterations, but may also have been influenced by injection of NO(x) into the atmosphere during atomic bomb testing.

  11. Ozone, skin cancer, and the SST

    SciTech Connect

    Singer, S.F.

    1994-07-01

    In 1971, the U.S. Congress cut off funding for development of supersonic transport aircraft prototypes when it was argued that the pollution created by SSTs could reduce the stratospheric ozone content and increase the incidence of skin cancer. At present, the theory of ozone depletion is in a rather uncertain state. Two examples of this are cited. First, ozone depletion may depend more on the availability of surfaces of aerosols and particles than on the content of chlorine. Second, it has been discovered that NO(x) can tie up active chlorine and thus reduce depletion from that source. We are therefore left with the paradoxical result that under certain circumstances SSTs flying in the lower stratospheric can actually counteract, at least partially, any ozone-depleting effects of CFCs. A recent study by scientists at the Brookhaven National Laboratory showed that melanoma rates would not be affected by changes in the ozone layer. If these results are confirmed, then much of the fear associated with ozone depletion disappears. It is difficult to tell how all this will affect a future supersonic transport program, since it is not clear whether a fleet of SSTs will increase or offset ozone depletion.

  12. Air Pollution

    MedlinePlus

    ... tobacco smoke. How is air pollution linked to climate change? While climate change is a global process, it ... ozone levels are also a concern. Impacts of Climate Change on Human Health in the United States: A ...

  13. Transpacific transport of mineral dust: Its impact in the United States and on sulfate, nitrate, and ozone in Asian pollution plumes

    NASA Astrophysics Data System (ADS)

    Fairlie, Thomas Duncan

    This thesis examines the transpacific transport of mineral dust from Asia, its impact on aerosol concentrations in the United States, and on nitrate, sulfate, and ozone in Asian pollution plumes. We use observations from ground stations, aircraft, and satellite platforms, interpreted using a global three-dimensional chemical transport model (GEOS-Chem) in which we have represented dust mobilization, transport, and deposition. We find that the best simulation of North American surface observations is achieved when we restrict dust sources to year-round arid areas, but include a significant wind threshold for mobilization. The model captures the seasonal cycle in surface dust concentrations over the northern Pacific, the outflow of dust from Asia in the free troposphere, and the timing and distribution of Asian dust outbreaks in the United States in spring 2001. We find that Asian dust persists in surface air in western states beyond these sudden spring outbreaks, and accounts for 40% of the worst visibility days due to dust in the West in 2001. Thus, state governments need to account for transpacific dust in setting attainable visibility goals. We have also represented the uptake of acid gases SO2, H 2SO4, and HNO3 on dust in the model, and used it to interpret aircraft observations of nitrate and sulfate partitioning in transpacific dust plumes during April-May 2006. The observations show that particulate nitrate was primarily associated with the dust, sulfate was primarily associated with ammonium, and that Asian dust remained alkaline across the Pacific. To reproduce this in the model requires that uptake of HNO3 and SO2 on dust is much weaker than assumed in previous model studies. The model overestimates gas-phase HNO3 by a factor of 2-3, typical of other models; we demonstrate that this cannot be corrected by uptake on dust. Dust remains alkaline in the model because the uptake of acid gases is slow relative to the lifetime of dust against deposition. This

  14. RESEARCH AREA -- MOBILE SOURCE OZONE PRECURSOR EMISSIONS CHARACTERIZATION AND MODELING (ATMOSPHERIC PROTECTION BRANCH - AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    The objective of this program is to characterize mobile source emissions which are one of the largest sources of tropospheric ozone precursor emissions (CO, NOx, and volatile organic compounds (VOCs) in the U.S. Due to the dynamic operation of motor vehicles, emissions are highl...

  15. Allergic diseases and air pollution

    PubMed Central

    Lee, Suh-Young; Chang, Yoon-Seok

    2013-01-01

    The prevalence of allergic diseases has been increasing rapidly, especially in developing countries. Various adverse health outcomes such as allergic disease can be attributed to rapidly increasing air pollution levels. Rapid urbanization and increased energy consumption worldwide have exposed the human body to not only increased quantities of ambient air pollution, but also a greater variety of pollutants. Many studies clearly demonstrate that air pollutants potently trigger asthma exacerbation. Evidence that transportation-related pollutants contribute to the development of allergies is also emerging. Moreover, exposure to particulate matter, ozone, and nitrogen dioxide contributes to the increased susceptibility to respiratory infections. This article focuses on the current understanding of the detrimental effects of air pollutants on allergic disease including exacerbation to the development of asthma, allergic rhinitis, and eczema as well as epigenetic regulation. PMID:23956961

  16. Surface Ozone in Kiev

    NASA Astrophysics Data System (ADS)

    Shavrina, A. V.; Mikulskaya, I. A.; Kiforenko, S. I.; Blum, O. B.; Sheminova, V. A.; Veles, A. A.

    The study of total ozone over Kiev and its concentration changes with height in the troposphere has been made on the base of ground-based observations with the infrared Fourier-spectrometer in the Main Astronomical Observatory of National Academy of Sciences of Ukraine (MAO NASU) as part of ESA-NIVR-KNMI project no 2907 "OMI validation by ground based remote sensing: ozone columns and atmospheric profiles "(2005-2008) [1,2,4]. Ground-level ozone in Kiev for an episode of its high concentrations in August 2000 was also simulated with the model of urban air pollution UAM-V [5,6]. In 2008 the satellite data Aura-OMI on profiles of ozone in the atmosphere OMO3PR became available (http://disc.sci.gsfc.nasa.gov/ Aura/data-holdings/OMI/ omo3pr_v003.shtml). They include ozone content in the lower layer of the atmosphere, beginning from 2005, which can be used to evaluate the ground-level ozone in all cities of Ukraine. The comparison of the data of ozone air pollution in Kiev (ozone - the pollutant of the first class of danger) and medical statistics data of of respiratory system (RS) diseases of the city population was carried out with the package "Statistica". A regression analysis, prognostic regression modelling, and retrospective prognosis of the epidemiological situation with respect to RS pathologies in Kiev in 2000-2006 were performed.

  17. Effect of ozone on respiratory responses in subjects with asthma

    SciTech Connect

    Koenig, J.Q.

    1995-03-01

    In the process of understanding the respiratory effects of individual air pollutants, it is useful to consider which populations seem to be most susceptible to the exposures. Ozone is the most ubiquitous air pollutant in the United States, and there is great interest in the extent of susceptibility to this air pollutant. This review presents evidence that individuals with asthma are more susceptible to adverse respiratory effects from ozone exposure than are nonasthmatic individuals under similar circumstances. In studies comparing patients with asthma to nonasthmatic subjects, research has shown increased pulmonary-function decrements, an increased frequency of bronchial hyperresponsiveness in ozone responders, increased signs of upper airway inflammation after ozone exposure, and an increased response to inhaled sulfur dioxide or allergen in the subjects with asthma. Subjects with asthma are indeed a population susceptible to the inhaled effects of ozone. These data need to be considered by regulators who are charged with setting air quality standards to protect even the most susceptible members of the population. They also underline the importance of strategies to reduce human exposure to ambient ozone. 16 refs., 1 fig.

  18. On the role of climate variability on tropospheric ozone

    NASA Astrophysics Data System (ADS)

    Lin, M.

    2014-12-01

    The response of tropospheric ozone to changing atmospheric circulation is poorly understood owing to a lack of reliable long-term observations. There is great current interest in quantifying the extent to which observed ozone trends over recent decades at northern mid-latitude sites are driven by changes in precursor emissions versus shifts in atmospheric circulation patterns. In this talk, I present a detailed analysis of the impact of interannual to decadal climate variability on tropospheric ozone, based on observations and a suite of chemistry-climate model hindcast simulations. Decadal shifts in circulation regimes modulate long-range transport of Asian pollution, leading to very different seasonal ozone trends at Mauna Loa Observatory in the subtropical Pacific Ocean. During autumn, the flow of ozone-rich air from Eurasia towards Hawaii strengthened in the mid-1990s onwards, as a result of the positive phase of the Pacific North American pattern, increasing ozone at Mauna Loa. During spring, weakening airflow from Asia in the 2000s, tied to La-Niña-like decadal cooling in the equatorial Pacific Ocean, offsets ozone increases at Mauna Loa that otherwise would have occurred due to rising Asian emissions. The circulation-driven variability in Asian pollution over the subtropical North Pacific regions manifests mainly as changes in the mean as opposed to in transport events. At high-elevation Western U.S. sites, intrusions of stratospheric ozone deep into the troposphere during spring exert a greater influence than Asian pollution, particularly on the high tail of observed surface ozone distribution. We show that year-to-year variability in springtime high-ozone episodes measured in Western U.S. surface air is tied to known modes of climate variability, which modulate meanders in the polar frontal jet conducive to deep stratospheric ozone intrusions. Specifically, the La Niña-related increase in the frequency of deep stratospheric intrusion events plays a

  19. An improved tropospheric ozone database retrieved from SCIAMACHY Limb-Nadir-Matching method

    NASA Astrophysics Data System (ADS)

    Jia, Jia; Rozanov, Alexei; Ladstätter-Weißenmayer, Annette; Ebojie, Felix; Rahpoe, Nabiz; Bötel, Stefan; Burrows, John

    2015-04-01

    Tropospheric ozone is one of the most important green-house gases and the main component of photochemical smog. It is either transported from the stratosphere or photochemically produced during pollution events in the troposphere that threaten the respiratory system. To investigate sources, transport mechanisms of tropospheric ozone in a global view, limb nadir matching (LNM) technique applied with SCIAMACHY instrument is used to retrieve tropospheric ozone. With the fact that 90% ozone is located in the stratosphere and only about 10% can be observed in the troposphere, the usage of satellite data requires highly qualified nadir and limb data. In this study we show an improvement of SCIAMACHY limb data as well as its influence on tropospheric ozone results. The limb nadir matching technique is also refined to increase the quality of the tropospheric ozone. The results are validated with ozone sonde measurements.

  20. Ozone distribution in remote ecologically vulnerable terrain of the southern Sierra Nevada, CA.

    PubMed

    Panek, Jeanne; Saah, David; Esperanza, Annie; Bytnerowicz, Andrzej; Fraczek, Witold; Cisneros, Ricardo

    2013-11-01

    Ozone concentration spatial patterns remain largely uncharacterized across the extensive wilderness areas of the Sierra Nevada, CA, despite being downwind of major pollution sources. These natural areas, including four national parks and four national forests, contain forest species that are susceptible to ozone injury. Forests stressed by ozone are also more vulnerable to other agents of mortality, including insects, pathogens, climate change, and ultimately fire. Here we analyze three years of passive ozone monitor data from the southern Sierra Nevada and interpolate landscape-scale spatial and temporal patterns during the summer-through-fall high ozone concentration period. Segmentation analysis revealed three types of ozone exposure sub-regions: high, low, and variable. Consistently high ozone exposure regions are expected to be most vulnerable to forest mortality. One high exposure sub-region has been documented elsewhere as being further vulnerable to increased drought and fire potential. Identifying such hot-spots of forest vulnerability has utility for prioritizing management. PMID:23974164

  1. A new interactive chemistry-climate model: 2. Sensitivity of the middle atmosphere to ozone depletion and increase in greenhouse gases and implications for recent stratospheric cooling

    NASA Astrophysics Data System (ADS)

    Manzini, E.; Steil, B.; Brühl, C.; Giorgetta, M. A.; Krüger, K.

    2003-07-01

    The sensitivity of the middle atmosphere circulation to ozone depletion and increase in greenhouse gases is assessed by performing multiyear simulations with a chemistry-climate model. Three simulations with fixed boundary conditions have been carried out: one simulation for the near-past (1960) and two simulations for the near-present (1990 and 2000) conditions, including changes in greenhouse gases, in total organic chlorine, and in average sea surface temperatures. Changes in ozone are simulated interactively by the coupled model. It is found that in the stratosphere, ozone decreases, and that in the Antarctic, the ozone hole develops in both the 1990 and the 2000 simulations but not in the 1960 simulation, as observed. The simulated temperature decreases in the stratosphere and mesosphere from the near past to the present, with the largest changes at the stratopause and at the South Pole in the lower stratosphere, in agreement with current knowledge of temperature trends. In the Arctic lower stratosphere, a cooling in March with respect to the 1960 simulation is found only for the 2000 simulation. Wave activity emerging from the troposphere is found to be comparable in the winters of the 1960 and 2000 simulations, suggesting that ozone depletion and greenhouse gases increase contribute to the 2000-1960 March cooling in the Arctic lower stratosphere. These results therefore provide support to the interpretation that the extreme low temperatures observed in March in the last decade can arise from radiative and chemical processes, although other factors cannot be ruled out. The comparison of the 1960 and 2000 simulations shows an increase in downwelling in the mesosphere at the time of cooling in the lower stratosphere (in March in the Arctic; in October in the Antarctic). The mesospheric increase in downwelling can be explained as the response of the gravity waves to the stronger winds associated with the cooling in the lower stratosphere. Planetary waves appear

  2. MODEL OF THE REGIONAL UPTAKE OF GASEOUS POLLUTANTS IN THE LUNG. 1. THE SENSITIVITY OF THE UPTAKE OF OZONE IN THE HUMAN LUNG TO LOWER RESPIRATORY TRACT SECRETIONS AND EXERCISE

    EPA Science Inventory

    A model of the Regional Uptake of Gaseous Pollutants in the Lung. I. The sensitivity of the Uptake of Ozone in the Human Lung to Lower Respiratory Tract Secretions and to Exercise. Miller, F.J., Overton, J.H., Jr., Jaskot, R.H., and Menzel, D.B. (1984). Toxicol. Appl. Pharmacol. ...

  3. Ozone risk for crops and pastures in present and future climates

    NASA Astrophysics Data System (ADS)

    Fuhrer, Jürg

    2009-02-01

    Ozone is the most important regional-scale air pollutant causing risks for vegetation and human health in many parts of the world. Ozone impacts on yield and quality of crops and pastures depend on precursor emissions, atmospheric transport and leaf uptake and on the plant’s biochemical defence capacity, all of which are influenced by changing climatic conditions, increasing atmospheric CO2 and altered emission patterns. In this article, recent findings about ozone effects under current conditions and trends in regional ozone levels and in climatic factors affecting the plant’s sensitivity to ozone are reviewed in order to assess implications of these developments for future regional ozone risks. Based on pessimistic IPCC emission scenarios for many cropland regions elevated mean ozone levels in surface air are projected for 2050 and beyond as a result of both increasing emissions and positive effects of climate change on ozone formation and higher cumulative ozone exposure during an extended growing season resulting from increasing length and frequency of ozone episodes. At the same time, crop sensitivity may decline in areas where warming is accompanied by drying, such as southern and central Europe, in contrast to areas at higher latitudes where rapid warming is projected to occur in the absence of declining air and soil moisture. In regions with rapid industrialisation and population growth and with little regulatory action, ozone risks are projected to increase most dramatically, thus causing negative impacts major staple crops such as rice and wheat and, consequently, on food security. Crop improvement may be a way to increase crop cross-tolerance to co-occurring stresses from heat, drought and ozone. However, the review reveals that besides uncertainties in climate projections, parameters in models for ozone risk assessment are also uncertain and model improvements are necessary to better define specific targets for crop improvements, to identify regions

  4. Progress in Assessing Air Pollutant Risks from In Vitro Exposures: Matching Ozone Dose and Effect in Human Airway Cells

    PubMed Central

    Hatch, Gary E.; Duncan, Kelly E.; Diaz-Sanchez, David; Schmitt, Michael T.; Ghio, Andrew J.; Carraway, Martha Sue; McKee, John; Dailey, Lisa A.; Berntsen, Jon; Devlin, Robert B.

    2014-01-01

    In vitro exposures to air pollutants could, in theory, facilitate a rapid and detailed assessment of molecular mechanisms of toxicity. However, it is difficult to ensure that the dose of a gaseous pollutant to cells in tissue culture is similar to that of the same cells during in vivo exposure of a living person. The goal of the present study was to compare the dose and effect of O3 in airway cells of humans exposed in vivo to that of human cells exposed in vitro. Ten subjects breathed labeled O3 (18O3, 0.3 ppm, 2 h) while exercising intermittently. Bronchial brush biopsies and lung lavage fluids were collected 1 h post exposure for in vivo data whereas in vitro data were obtained from primary cultures of human bronchial epithelial cells exposed to 0.25–1.0 ppm 18O3 for 2 h. The O3 dose to the cells was defined as the level of 18O incorporation and the O3 effect as the fold increase in expression of inflammatory marker genes (IL-8 and COX-2). Dose and effect in cells removed from in vivo exposed subjects were lower than in cells exposed to the same 18O3 concentration in vitro suggesting upper airway O3 scrubbing in vivo. Cells collected by lavage as well as previous studies in monkeys show that cells deeper in the lung receive a higher O3 dose than cells in the bronchus. We conclude that the methods used herein show promise for replicating and comparing the in vivo dose and effect of O3 in an in vitro system. PMID:24928893

  5. Total Ozone Mapping Spectrometer (TOMS) observations of increases in Asian aerosol in winter from 1979 to 2000

    SciTech Connect

    Massie, Steven T.; Torres, O.; Smith, Steven J.

    2004-12-01

    Emission inventories indicate that the largest increases in SO{sub 2} emissions have occurred in Asia during the last 20 years. By inference, largest increases in aerosol, produced primarily by the conversion of SO{sub 2} to sulfate, should have occurred in Asia during the same time period. Decadal changes in regional aerosol optical depths are calculated by analyzing Total Ozone Mapping Spectrometer (TOMS) vertical aerosol optical depths (converted to 550 nm) from 1979 to 2000 on a 1{sup o} by 1{sup o} global grid. The anthropogenic component of the TOMS aerosol record is maximized by examining the seasonal cycles of desert dust and Boreal fire smoke, and identifying the months of the year for which the desert dust and Boreal fire smoke are least conspicuous. Gobi and Taklimakan desert dust in Asia is prevalent in the TOMS record during spring, and eastern Siberian smoke from Boreal forest fires is prevalent during summer. Aerosol trends are calculated on a regional basis during winter (November-February) to maximize the anthropogenic component of the aerosol record. Large increases in aerosol optical depths between 1979 and 2000 are present over the China coastal plain and the Ganges river basin in India. Aerosol increased by 17% per decade during winter over the China coastal plain, while SO{sub 2} emissions over the same geographical region increased by 33% per decade.

  6. Impact of diatomite on the slightly polluted algae-containing raw water treatment process using ozone oxidation coupled with polyaluminum chloride coagulation.

    PubMed

    Hu, Wenchao; Wu, Chunde; Jia, Aiyin; Zhang, Zhilin; Chen, Fang

    2014-01-01

    The impact of adding diatomite on the treatment performance of slightly polluted algae-containing raw water using ozone pre-oxidation and polyaluminum chloride (PAC) coagulation was investigated. Results demonstrated that the addition of diatomite is advantageous due to reduction of the PAC dose (58.33%) and improvement of the removal efficiency of algae, turbidity, and dissolved organic matter (DOM) in raw water. When the ozone concentration was 1.0 mg L⁻¹ and the PAC dosage was 2.5 mg L⁻¹, the removal rates of algae, turbidity, UV254, and TOC were improved by 6.39%, 7.06%, 6.76%, and 4.03%, respectively, with the addition of 0.4 g L⁻¹ diatomite. It has been found that the DOM presented in the Pearl River raw water mainly consisted of small molecules (<1 kDa) and large ones (> 50 kDa). After adding diatomite (0.4 g L⁻¹), the additional removal of 5.77% TOC and 14.82% UV254 for small molecules (<1 kDa) of DOM, and 8.62% TOC and 7.33% UV254 for large ones (>50 kDa) could be achieved, respectively, at an ozone concentration of 1.0 mg L⁻¹ and a PAC dose of 2.5 mg L⁻¹. The growth of anabaena flos-aquae (A.F.) was observed by an atomic force microscope (AFM) before and after adding diatomite. AFM images demonstrate that diatomite may have a certain adsorption on A.F. PMID:25176300

  7. Air pollution problem in the Mexico City metropolitan zone: Photochemical pollution

    SciTech Connect

    Alvarez, H.B.; Alvarez, P.S.; Echeverria, R.S.; Jardon, R.T.

    1997-12-31

    Mexico City Metropolitan Zone (MCMZ) represents an example of a megacity where the air pollution problem has reached an important evolution in a very short time, causing a risk in the health of a population of more than 20 million inhabitants. The atmospheric pollution problem in the MCMZ, began several decades ago, but it increased drastically in the middle of the 80`s. It is important to recognize that in the 60`s, 70`s and the first half of the 80`s the main pollutants were sulfur dioxide and total suspended particles. However since the second half of the 80`s until now, ozone is the most important air pollutant besides of the suspended particles (PM{sub 10}) and other toxic pollutants (1--8). The purpose of this paper is to discuss the evolution of the ozone atmospheric pollution problem in the MCMZ, as well as to analyze the results of several implemented air pollution control strategies.

  8. Vitamin C Compound Mixtures Prevent Ozone-Induced Oxidative Damage in Human Keratinocytes as Initial Assessment of Pollution Protection

    PubMed Central

    Valacchi, Giuseppe; Sticozzi, Claudia; Belmonte, Giuseppe; Cervellati, Franco; Demaude, Julien; Chen, Nannan; Krol, Yevgeniy; Oresajo, Christian

    2015-01-01

    Introduction One of the main functions of cutaneous tissues is to protect our body from the outdoor insults. Ozone (O3) is among the most toxic stressors to which we are continuously exposed and because of its critical location, the skin is one of the most susceptible tissues to the oxidative damaging effect of O3. O3 is not able to penetrate the skin, and although it is not a radical per se, the damage is mainly a consequence of its ability to induce oxidative stress via the formation of lipid peroxidation products. Aim of Study In this study we investigated the protective effect of defined “antioxidant” mixtures against O3 induced oxidative stress damage in human keratinocytes and understand their underlying mechanism of action. Results Results showed that the mixtures tested were able to protect human keratinocytes from O3-induced cytotoxicity, inhibition of cellular proliferation, decrease the formation of HNE protein adducts, ROS, and carbonyls levels. Furthermore, we have observed the decreased activation of the redox sensitive transcription factor NF-kB, which is involved in transcribing pro-inflammatory cytokines and therefore constitutes one of the main players associated with O3 induced skin inflammation. Cells exposed to O3 demonstrated a dose dependent increase in p65 subunit nuclear expression as a marker of NF-kB activation, while pre-treatment with the mixtures abolished NF-kB nuclear translocation. In addition, a significant activation of Nrf2 in keratinocytes treated with the mixtures was also observed. Conclusion Overall this study was able to demonstrate a protective effect of the tested compounds versus O3-induced cell damage in human keratinocytes. Pre-treatment with the tested compounds significantly reduced the oxidative damage induced by O3 exposure and this protective effect was correlated to the abolishment of NF-kB nuclear translocation, as well as activation of Nrf2 nuclear translocation activating the downstream defence enzymes

  9. Tracking the sources of tropospheric ozone

    NASA Astrophysics Data System (ADS)

    Butler, T. M.; Churkina, G.; Coates, J.; Grote, R.; Mar, K.; von Schneidemesser, E.; Zhu, S.

    2013-12-01

    Tropospheric ozone is a harmful pollutant with adverse effects on human health and ecosystems. As well as these effects, tropospheric ozone is also a powerful greenhouse gas, with an anthropogenic radiative forcing one quarter of that of CO2. Along with methane and atmospheric aerosol, tropospheric ozone belongs to the so-called Short Lived Climate forcing Pollutants, or SLCP. Recent work has shown that efforts to reduce concentrations of SLCP in the atmosphere have the potential to slow the rate of near-term climate change, while simultaneously improving public health and reducing crop losses. Unlike many other SLCP, tropospehric ozone is not directly emitted, but is instead influenced by two distinct sources: transport of air from the ozone-rich stratosphere; and photochemical production in the troposphere from the emitted precursors NOx (oxides of nitrogen), CO (Carbon Monoxide), and VOC (volatile organic compounds, including methane). Better understanding of the relationship between ozone production and the emissions of its precursors is essential for the development of targeted emission reduction strategies. Several modeling methods have been employed to relate the production of tropospheric ozone to emissions of its precursors; emissions perturbation, tagging, and adjoint sensitivity methods all deliver complementary information about modelled ozone production. Most studies using tagging methods have focused on attribution of tropospheric ozone production to emissions of NOx, even though perturbation methods have suggested that tropospheric ozone is also sensitive to VOC, particularly methane. In this set of studies we examine the attribution of tropospheric ozone to emissions of VOC using a tagging approach, whereby each VOC oxidation intermediate in model chemical mechanisms is tagged with the identity of its primary emitted compound, allowing modelled ozone production to be directly attributed to all emitted VOCs in the model. Using a global model we

  10. Decomposition of trichloroethene on ozone-adsorbed high silica zeolites.

    PubMed

    Fujita, Hirotaka; Izumi, Jun; Sagehashi, Masaki; Fujii, Takao; Sakoda, Akiyoshi

    2004-01-01

    We developed a novel ozonation process for water treatment using high silica zeolites as an adsorptive concentrator of water-dissolved ozone and organic pollutants, resulting in a significant increase in reaction rate. In experiments involving trichloroethene (TCE) decomposition using a tubular flow reactor, TCE decomposition was much greater in the presence of ZSM-5 (SiO(2)/Al(2)O(3) ratio=3000) than in its absence, possibly due to the high concentrations of ozone and TCE inside the adsorbent. The TCE conversion obtained in our experiments was found to reach its theoretically maximum limit. PMID:14630114

  11. Immunosuppression of pulmonary natural killer activity by exposure to ozone

    SciTech Connect

    Burleson, G.R.; Keyes, L.L.; Stutzman, J.D. )

    1989-01-01

    Ozone is an oxidant gas and an ubiquitous oxidant air pollutant with the potential to adversely affect pulmonary immune function with a consequent increase in disease susceptibility. Pulmonary natural killer (NK) activity was measured in order to assess the pulmonary immunotoxicity of continuous ozone exposure. Continuous ozone exposures at 1.0 ppm were performed for 23.5 hours per day for either 1, 5, 7, or 10 consecutive days. Pulmonary immune function was assessed by measuring natural killer (NK) activity from whole-lung homogenates of male Fischer-344 rats. Results of this study indicated that continuous ozone exposure for 1, 5, or 7 days resulted in a significant decrease in pulmonary NK activity. This suppressed pulmonary NK activity returned to control levels after continuous exposure to ozone for 10 days. The suppressed pulmonary NK response was thus attenuated and returned to normal values in the continued presence of ozone gas. This attenuation process is dynamic, complex, and doubtless involves several cell types and/or products of these cells. Pulmonary NK activity was also suppressed at 0.5 ppm ozone, but not at 0.1 ppm ozone, following 23.5 hours of exposure. NK activity is important for defense against viral, bacterial, and neoplastic disease. The depressed NK activity resulting from continuous ozone exposure could therefore result in a compromised ability to defend against pulmonary diseases.

  12. Projecting policy-relevant metrics for high summertime ozone pollution events over the eastern United States due to climate and emission changes during the 21st century

    NASA Astrophysics Data System (ADS)

    Rieder, Harald E.; Fiore, Arlene M.; Horowitz, Larry W.; Naik, Vaishali

    2015-01-01

    the eastern United States (EUS), nitrogen oxides (NOx) emission controls have led to improved air quality over the past two decades, but concerns have been raised that climate warming may offset some of these gains. Here we analyze the effect of changing emissions and climate, in isolation and combination, on EUS summertime surface ozone (O3) over the recent past and the 21st century in an ensemble of simulations performed with the Geophysical Fluid Dynamics Laboratory CM3 chemistry-climate model. The simulated summertime EUS O3 is biased high but captures the structure of observed changes in regional O3 distributions following NOx emission reductions. We introduce a statistical bias correction, which allows derivation of policy-relevant statistics by assuming a stationary mean state bias in the model, but accurate simulation of changes at each quantile of the distribution. We contrast two different 21st century scenarios: (i) representative concentration pathway (RCP) 4.5 and (ii) simulations with well-mixed greenhouse gases (WMGG) following RCP4.5 but with emissions of air pollutants and precursors held fixed at 2005 levels (RCP4.5_WMGG). We find under RCP4.5 no exceedance of maximum daily 8 hour average ozone above 75 ppb by mid-21st century, reflecting the U.S. NOx emissions reductions projected in RCP4.5, while more than half of the EUS exceeds this level by the end of the 21st century under RCP4.5_WMGG. Further, we find a simple relationship between the changes in estimated 1 year return levels and regional NOx emission changes, implying that our results can be generalized to estimate changes in the frequency of EUS pollution events under different regional NOx emission scenarios.

  13. Late Holocene evolution and increasing pollution in Guanabara Bay, Rio de Janeiro, SE Brazil.

    PubMed

    Vilela, Claudia Gutterres; Figueira, Brígida Orioli; Macedo, Mariana Cardoso; Baptista Neto, José Antonio

    2014-02-15

    To detect changes during the Late Holocene and historical periods in Guanabara Bay, the paleoecological and ecological parameters from nine cores were analysed using foraminiferal assemblages and bioindicators. Using radiocarbon dates and sedimentation rates in the cores, it was possible to detect the first Europeans' arrival in the 16th century. Foraminiferal bioindicators of organic matter and human pollution were correlated with radiocarbon dates from the bottom and middle of the cores in each region and revealed an increase in pollution along the cores. The foraminiferal results were compared with total organic carbon (TOC) values before, during and after European settlement and showed a historical increase in organic matter. Pristine mangrove ecosystems are characterised by agglutinated species such as Ammotium salsum, and the presence of this organism also confirmed the extent of historical mangrove forests. Ammonia tepida, Buliminella elegantissima and Elphidium excavatum were the dominant species, but they presented distinct patterns over time. B. elegantissima was dominant before the European influence in older sediments with high organic matter content that were found at deeper intervals. A. tepida is dominant in younger sediments at upper intervals, as a bioindicator of human pollution. PMID:24373667

  14. [Effect of the increasing levels of soil radioactive pollution on the biochemical composition of plants].

    PubMed

    Gromova, V S; Pchelenok, O A; Kozlova, N M

    2012-01-01

    The study was undertaken to study a relationship between the changes of some parameters of the biochemical and mineral composition of different plants, such as rape, pods, and lentil, and the levels of soil radiation pollution, by using the conventional methods. Radioactive pollution of dark-grey forest soils was found to cause a change in the biochemical composition of plant seeds even at the level of cesium 137 (137Cs) within the present temporary permissible levels (TPL) (600 Bq/kg): there were elevated concentrations of salts of potassium, phosphorus, ammonia nitrogen, catechols, sucrose, and some amino acids. With the radioactive cesium level exceeding the TPL, biochemical changes in the seeds depended on the species of the plants: in the rape seeds, the additional formation of sucrose and amino acids continued, but less intensively than with its lower radiation; the pod beans were significantly positively correlated with the increasing amounts of catechols. PMID:22834257

  15. Outdoor air pollution and asthma

    PubMed Central

    Guarnieri, Michael; Balmes, John R.

    2015-01-01

    Traffic and power generation are the main sources of urban air pollution. The idea that outdoor air pollution can cause exacerbations of pre-existing asthma is supported by an evidence base that has been accumulating for several decades, with several studies suggesting a contribution to new-onset asthma as well. In this Series paper, we discuss the effects of particulate matter (PM), gaseous pollutants (ozone, nitrogen dioxide, and sulphur dioxide), and mixed traffic-related air pollution. We focus on clinical studies, both epidemiological and experimental, published in the previous 5 years. From a mechanistic perspective, air pollutants probably cause oxidative injury to the airways, leading to inflammation, remodelling, and increased risk of sensitisation. Although several pollutants have been linked to new-onset asthma, the strength of the evidence is variable. We also discuss clinical implications, policy issues, and research gaps relevant to air pollution and asthma. PMID:24792855

  16. A simulation of stratospheric ozone in response to the increased surface CFCs emissions

    NASA Astrophysics Data System (ADS)

    Shi, Chunhua

    2009-08-01

    To evaluate the stratospheric process in the response to the increased surface CFCs emissions, some simulations were carried out by the NCAR interactive chemical, dynamical and radioactive two-dimensional (SOCRATES) model. The investigation showed that when the surface CFCs emissions increased by 30%, these chemical components would be transported into the stratosphere and would play an important roles in stratospheric chemistry and radiation. In the layers from 40km to 48km, the relative variety of active component was ClOx by 20%, HOx by -2%, NOx by -2% and O3 by -5%, respectively. At the same time, temperature reduced by 0.6K.

  17. Rising ozone concentrations decrease soybean evapotranspiration and water use efficiency while increasing canopy temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We investigated the effects of increasing [O3] on soybean canopy scale fluxes of heat and water vapor as well as water use efficiency (WUE) at the Soybean Free Air Concentration Enrichment (SoyFACE) facility. Micrometeorological measurements were made to determine the net radiation (Rn) sensible hea...

  18. Introduction to the SONEX (Subsonic Assessment Ozone and Nitrogen Oxides Experiment) and POLINAT-2 (Pollution from Aircraft Emissions in the North Atlantic Flight Corridor) Special Issue

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Singh, Hanwant B.; Schlager, Hans; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Emissions of atmospheric species from the engines of subsonic aircraft at cruise altitude (roughly, above seven kilometers) are of concern to scientists, the aviation industry and policymakers for two reasons. First, water vapor, soot and sulfur oxides, and related heterogeneous processes, may modify clouds and aerosols enough to perturb radiative forcing in the UT/LS (upper troposphere/lower stratosphere). A discussion of these phenomena appears in Chapter 3 of the IPCC Aviation Assessment (1999). An airborne campaign conducted to evaluate aviation effects on contrail, cirrus and cloud formation, is described in Geophysical Research Letters. The second concern arises from subsonic aircraft emissions of nitrogen oxides (NO + NO2 = NO(sub x)), CO, and hydrocarbons. These species may add to the background mixture of photochemically reactive species that form ozone. In the UT/LS, ozone is a highly effective greenhouse gas. The impacts of subsonic aircraft emissions on tropospheric NO(sub x) and ozone budgets have been studied with models that focus on UT chemistry [e.g. see discussions of individual models in Brasseur et al., 1998; Friedl et al., 1997; IPCC, 1999]. Depending on the model used, projected increases in the global subsonic aircraft fleet from 1992 to 2015 will lead to a 50-100 pptv increase in UT/LS NO. at 12 km (compared to 50-150 pptv background) in northern hemisphere midlatitudes. The corresponding 12-km ozone increase is 7-11 ppbv, or 5-10% (Chapter 4 in IPCC, 1999). Two major sources of uncertainties in model estimates of aviation effects are: (1) the often limited degree to which global models - the scale required to evaluate aircraft emissions - realistically simulate atmospheric transport and other physical processes; (2) limited UT/LS observations of trace gases with which to evaluate model performance. In response to the latter deficiency, a number of airborne campaigns aimed at elucidating the effect of aircraft on atmospheric nitrogen oxides

  19. Influence of volatile terpenes on the capacity of leaves to uptake and detoxify ozone. (Invited)

    NASA Astrophysics Data System (ADS)

    Loreto, F.; Fares, S.

    2009-12-01

    Tropospheric ozone is considered the most dangerous air pollutant for plant ecosystems, and its concentration is increasing throughout the earth. Oxidative damage takes place when ozone penetrates inside the leaves through the stomata and the cuticles. The latest guidelines suggest considering the dose entering stomata to evaluate ozone risk on vegetation. We have shown that this metric may not consider important detoxification mechanisms activated by the production of volatile antioxidants, especially terpenes. We review here how volatile terpenes may increase ozone uptake by leaves yet reducing the risk of damage to internal leaf structures. We also argue that volatile terpene production by plants phases-in with episodes on high ozone whereas other detoxification mechanisms are phased-out. Our results suggests that volatile isoprenoids play a major role in determining the capacity of ozone removal and detoxification by vegetation.

  20. Subalpine grassland carbon dioxide fluxes indicate substantial carbon losses under increased nitrogen deposition, but not at elevated ozone concentration

    NASA Astrophysics Data System (ADS)

    Volk, Matthias; Obrist, Daniel; Novak, Kris; Giger, Robin; Bassin, Seraina; Fuhrer, Jürg

    2010-05-01

    Ozone (O3) and nitrogen (N) deposition affect plant carbon (C) dynamics and may thus change ecosystem C-sink/-source properties. We studied effects of increased background O3 concentrations (up to ambient x 2) and increased N deposition (up to +50 kg ha-1 a-1) on mature, subalpine grassland during the third treatment year. During ten days and 13 nights, covering the vegetation period of 2006, we measured ecosystem-level CO2 exchange using a steady state cuvette. Light dependency of gross primary production (GPP) and temperature dependency of ecosystem respiration rates (Reco) were established. Soil temperature, soil water content, and solar radiation were monitored. Using Reco and GPP values, we calculated seasonal net ecosystem production (NEP), based on hourly averages of global radiation and soil temperature. Differences in NEP were compared to differences in soil organic C after five years of treatment. Under high O3 and with unchanged aboveground biomass, both mean Reco and GPP decreased throughout the season. Thus, NEP indicated an unaltered growing season CO2-C balance. Under high N treatment, with a +31% increase in aboveground productivity, mean Reco, but not GPP increased. Consequently, seasonal NEP yielded a 53.9 g C m-2 (± 22.05) C loss compared to control. Independent of treatment, we observed a negative NEP of 146.4 g C m-2 (±15.3). This C loss was likely due to a transient management effect, equivalent to a shift from pasture to hay meadow and a drought effect, specific to the 2006 summer climate. We argue that this resulted from strongly intensified soil microbial respiration, following mitigation of nutrient limitation. There was no interaction between O3 and N treatments. Thus, during the 2006 growing season, the subalpine grassland lost >2% of total topsoil organic C as respired CO2, with increased N deposition responsible for one-third of that loss.

  1. Impact of increased vehicle emissions on the ozone concentrations around beach areas in summer using air quality modeling system

    NASA Astrophysics Data System (ADS)

    Song, S.; Kim, Y.; Shon, Z.; Kang, Y.; Jeong, J.

    2012-12-01

    The impact of pollutant emissions by the huge amount of road traffic around beaches on the ozone (O3) concentrations in the surrounding regions were evaluated using a numerical modeling approach during the beach opening period (BOP) (July to August). This analysis was performed based on two simulation conditions: 1) with mobile emissions during the BOP (i.e. BOP case); and 2) during the normal period (i.e. NOR case). On-road mobile emissions were estimated from the emission factors, vehicle kilometers traveled, and deterioration factors at several roads close to beaches in Busan, Korea during a 4-day observation period (29 and 31 July and 1 and 3 August) of the BOP in 2010. The emission data was then applied to the 3-D chemical transport model (i.e. the WRF-CMAQ modeling system). A process analysis (PA) was also used to assess the contributions of the individual physical and chemical processes to the production or loss of O3 in the study area. The model study suggested the possibility that road traffic emissions near the beach area can have a direct impact on the O3 concentrations in the source regions as well as their surrounding/downwind regions. The maximum negative impact of mobile emissions on the O3 concentrations between the BOP and NOR cases was predicted near the beach areas: by -4 ppb during the day due to the high NOx emissions with the high NOx/VOC ratio and -8 ppb during the late evening due to the fast titration of O3 by NO. The PA showed that the rate of O3 destruction due to the road traffic emissions around the beach areas decreased by -2.3 (weekend, 31 July) and -5.5 ppb h-1 (weekday, 3 August) during the day. Acknowledgments: This work was funded by the Korea Meteorological Administration Research and Development Program under Grant CATER_2012-6140. This work was also funded by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0021141).

  2. Methodological issues in studies of air pollution and reproductive health

    EPA Science Inventory

    In the past decade there have been an increasing number of scientific studies describing possible effects of air pollution on perinatal health. These papers have mostly focused on commonly monitored air pollutants, primarily ozone (O3), particulate matter (PM), sulfur dioxide (S...

  3. The study of ozone variations in the Las Vegas metropolitan area using remote sensing information and ground observations

    USGS Publications Warehouse

    Xian, G.; Crane, M.

    2006-01-01

    Urban development in the Las Vegas Valley, Nevada, has grown rapidly in the past fifty years. Associated with this growth has been a change in landscape from natural cover types to developed urban land mixed with planned vegetation canopy throughout in the metropolitan area. Air quality in the Las Vegas Valley has been affected by increases in anthropogenic emissions and concentrations of carbon monoxide, ozone, and criteria pollutants of particular matter. Ozone concentration in the region is generally influenced by synoptic and mesoscale meteorological conditions, as well as regional transport of pollutants from the western side of Las Vegas. Local influences from ground-level nitrogen oxide emissions and vegetation canopy coverage also affect ozone concentration. Multi-year observational data collected by a network of local air monitoring stations in Clark County, Nevada, indicate that ozone maximums develop in May and June, while minimums exist primarily from November to February. Ozone concentrations are high on the west and northwest sides of the valley. A nighttime ozone reduction in the urban area characterizes the heterogeneous features of spatial distribution for average ozone levels in the Las Vegas urban area. The urban vegetation canopy has a locally positive effect by reducing ozone in urban areas. Decreased ozone levels associated with increased urban development density suggests that the highest ozone concentrations are associated with medium- to low-density urban development in Las Vegas.

  4. Ozone production in the megacities of Tianjin and Shanghai, China: a comparative study

    NASA Astrophysics Data System (ADS)

    Ran, L.; Zhao, C. S.; Xu, W. Y.; Han, M.; Lu, X. Q.; Han, S. Q.; Lin, W. L.; Xu, X. B.; Gao, W.; Yu, Q.; Geng, F. H.; Ma, N.; Deng, Z. Z.; Chen, J.

    2012-04-01

    Rapid economic growth has given rise to a significant increase in ozone precursor emissions in many regions of China, especially in the densely populated North China Plain (NCP) and Yangtze River Delta (YRD). Improved understanding of ozone formation in response to different precursor emissions is imperative to address the highly nonlinear ozone problem and to provide a solid scientific basis for efficient ozone abatement in these regions. A comparative study on ozone photochemical production in summer has thus been carried out in the megacities of Tianjin (NCP) and Shanghai (YRD). Two intensive field campaigns were carried out respectively at an urban and a suburban site of Tianjin, in addition to routine monitoring of trace gases in Shanghai, providing data sets of surface ozone and its precursors including nitrogen oxides (NOx) and various volatile organic compounds (VOCs). Ozone pollution was found to be more severe in Tianjin than in Shanghai during the summer, either based on the frequency or the duration of high ozone events. Such differences might be attributed to the large amount of highly reactive VOC mixture in the Tianjin region. It is found that industry related species like light alkenes were of particular importance in both urban and suburban Tianjin, while in Shanghai aromatics dominate. In general, the ozone problem in Shanghai is on an urban scale. Stringent control policies on local emissions would help reduce the occurrence of high ozone concentrations. By contrast, ozone pollution in Tianjin is a regional problem. Combined efforts to reduce ozone precursor emissions on a regional scale must be undertaken to bring the ozone problem under control.

  5. Ozone production in summer in the megacities of Tianjin and Shanghai, China: a comparative study

    NASA Astrophysics Data System (ADS)

    Ran, L.; Zhao, C. S.; Xu, W. Y.; Han, M.; Lu, X. Q.; Han, S. Q.; Lin, W. L.; Xu, X. B.; Gao, W.; Yu, Q.; Geng, F. H.; Ma, N.; Deng, Z. Z.; Chen, J.

    2012-08-01

    Rapid economic growth has given rise to a significant increase in ozone precursor emissions in many regions of China, especially in the densely populated North China Plain (NCP) and Yangtze River Delta (YRD). Improved understanding of ozone formation in response to different precursor emissions is imperative to address the highly nonlinear ozone problem and to provide a solid scientific basis for efficient ozone abatement in these regions. A comparative study on ozone photochemical production in summer has thus been carried out in the megacities of Tianjin (NCP) and Shanghai (YRD). Two intensive field campaigns were carried out respectively at an urban and a suburban site of Tianjin, in addition to routine monitoring of trace gases in Shanghai, providing data sets of surface ozone and its precursors including nitrogen oxides (NOx) and various non-methane hydrocarbons (NMHCs). Ozone pollution in summer was found to be more severe in the Tianjin region than in the Shanghai region, based on either the frequency or the duration of high ozone events. Such differences might be attributed to the large amount of highly reactive NMHCs in Tianjin. Industry related species like light alkenes were of particular importance in both urban and suburban Tianjin, while in Shanghai aromatics dominated. In general, the ozone problem in Shanghai is on an urban scale. Stringent control policies on local emissions would help reduce the occurrence of high ozone concentrations. By contrast, ozone pollution in Tianjin is probably a regional problem. Combined efforts to reduce ozone precursor emissions on a regional scale must be undertaken to bring the ozone problem under control.

  6. In vitro ozone exposure increases release of arachidonic acid products from a human bronchial epithelial cell line

    SciTech Connect

    McKinnon, K.P.; Madden, M.C.; Noah, T.L.; Devlin, R.B. )

    1993-02-01

    Eicosanoids released after ozone exposure of a human bronchial epithelial cell line, BEAS-S6, were analyzed by high-pressure liquid chromatography (HPLC) of supernatants from exposed cells prelabeled with [3H]arachidonic acid. BEAS cells released thromboxane B2 (TxB2), prostaglandin E2 (PGE2), leukotriene C4 (LTC4), LTD4, LTE4, and 12-hydroxyheptadecatrienoic acid (HHT) after exposure to ozone at concentrations of 0.1, 0.25, 0.5, and 1.0 ppm. The eicosanoids were identified by coelution with authentic standards. The largest product from ozone-exposed BEAS cells was the most polar peak, designated Peak 1. Release of cyclooxygenase products such as TxB2, PGE2, and HHT was inhibited by acetylsalicylic acid. Peaks that migrated with authentic standards for LTB4, LTC4, and LTD4 were inhibited by the lipoxygenase inhibitor nordihydroguaiaretic acid. The leukotrienes LTB4 and LTC4/D4 could also be detected by immunoassay of concentrated peak fractions. Thus BEAS cells released eicosanoids from cyclooxygenase and lipoxygenase pathways of arachidonic acid metabolism following exposure to ozone. Airway epithelial cells may be an important source of eicosanoids following ozone stimulation in humans.

  7. Observational studies and a statistical early warning of surface ozone pollution in Tangshan, the largest heavy industry city of North China.

    PubMed

    Li, Pei; Xin, Jinyuan; Bai, Xiaoping; Wang, Yuesi; Wang, Shigong; Liu, Shixi; Feng, Xiaoxin

    2013-03-01

    Continuous measurements of surface ozone (O3) and nitrogen oxides (NOX) at an urban site (39°37'N, 118°09'E) in Tangshan, the largest heavy industry city of North China during summertime from 2008 to 2011 are presented. The pollution of O3 was serious in the city. The daily maximum 1 h means (O3_1-hr max) reached 157 ± 55, 161 ± 54, 120 ± 50, and 178 ± 75 μg/m3 corresponding to an excess over the standard rates of 21%, 27%, 10%, and 40% in 2008-2011, respectively. The total oxidant level (OX = O3 + NO2) was high, with seasonal average concentrations up to 100 μg/m3 in summer. The level of OX at a given location was made up of NOX-independent and NOX-dependent contributions. The independent part can be considered as a regional contribution and was about 100 μg/m3 in Tangshan. Statistical early warning analysis revealed that the O3 levels would exceed the standard rate by 50% on the day following a day when the daily average ozone concentration (O3_mean) exceeded 87 μg/m3 and the daily maximum temperature (T_max) exceeded 29 °C. The exceed-standard rate would reach 80% when O3_mean and T_max exceeded 113 μg/m3 and 31 °C. Similarly, the exceed-standard rate would reach 100% when O3_mean and T_max exceeded 127 μg/m3 and 33 °C, respectively. PMID:23485953

  8. Observational Studies and a Statistical Early Warning of Surface Ozone Pollution in Tangshan, the Largest Heavy Industry City of North China

    PubMed Central

    Li, Pei; Xin, Jinyuan; Bai, Xiaoping; Wang, Yuesi; Wang, Shigong; Liu, Shixi; Feng, Xiaoxin

    2013-01-01

    Continuous measurements of surface ozone (O3) and nitrogen oxides (NOX) at an urban site (39°37′N, 118°09′E) in Tangshan, the largest heavy industry city of North China during summertime from 2008 to 2011 are presented. The pollution of O3 was serious in the city. The daily maximum 1 h means (O3_1-hr max) reached 157 ± 55, 161 ± 54, 120 ± 50, and 178 ± 75 μg/m3 corresponding to an excess over the standard rates of 21%, 27%, 10%, and 40% in 2008–2011, respectively. The total oxidant level (OX = O3 + NO2) was high, with seasonal average concentrations up to 100 μg/m3 in summer. The level of OX at a given location was made up of NOX-independent and NOX-dependent contributions. The independent part can be considered as a regional contribution and was about 100 μg/m3 in Tangshan. Statistical early warning analysis revealed that the O3 levels would exceed the standard rate by 50% on the day following a day when the daily average ozone concentration (O3_mean) exceeded 87 μg/m3 and the daily maximum temperature (T_max) exceeded 29 °C. The exceed-standard rate would reach 80% when O3_mean and T_max exceeded 113 μg/m3 and 31 °C. Similarly, the exceed-standard rate would reach 100% when O3_mean and T_max exceeded 127 μg/m3 and 33 °C, respectively. PMID:23485953

  9. The effect of the Standard Nomenclature for Air Pollution (SNAP) categories on ozone and PM2.5 concentrations over Europe

    NASA Astrophysics Data System (ADS)

    Tagaris, Efthimios; Sotiropoulou, Rafaella-Eleni P.; Gounaris, Nikos; Andronopoulos, Spyros; Vlachogiannis, Diamando

    2015-04-01

    The objective of this study is to estimate the contribution of different anthropogenic emission sources on ozone and PM2.5 concentrations over Europe since anthropogenic activities (and the related emissions) are the reason of air quality degradation. Gridded yearly averaged anthropogenic emissions for the year 2006 over Europe are provided by TNO at a 0.1×0.1 degree resolution. Emission sources have been classified into different activities according to the Standard Nomenclature for Air Pollution (SNAP). The available data include annual total emissions of CH4, CO, NH3, NMVOC, NOx, PM10, PM2.5, and SO2 for both area and point sources in ten (10) SNAP categories: power generation, residential-commercial and other combustion, industrial combustion, industrial processes, extraction distribution of fossil fuels, solvent use, road transport, other mobile sources, waste treatment and disposal, agriculture. Mobile sources and road transport are the major sources of NOx emissions followed by power generation units. Power generation is also the major source for SO2 emissions followed by mobile sources. Agricultural activities dominate NH3 emissions while combustion sources followed by mobile sources and road transport are the main sources for primary PM2.5. Emissions are processed by the Sparse Matrix Operator Kernel Emissions (SMOKE) v2.6 modeling system to convert their resolution to the resolution needed by the air quality model The Community Multiscale Air Quality (CMAQ) v4.7 Modeling System with the Carbon Bond mechanism (CB05) is used for the regional air quality modeling over Europe at 35km grid spacing. Results quantify the contribution of each SNAP category on ozone and PM2.5 concentrations, locally, across Europe.

  10. Exposure Information in Environmental Health Research: Current Opportunities and Future Directions for Particulate Matter, Ozone, and Toxic Air Pollutants

    EPA Science Inventory

    In September 2006, scientists from the US Environmental Protection Agency (EPA) and the Centers for Disease Control and Prevention (CDC) along with scientists from the academic community and state health departments convened a symposium on air pollution exposure and health in ord...

  11. Impact of Model Resolution and Snow Cover Modification on the Performance of Weather Forecasting and Research (WRF) Models of Winter Conditions that Contribute to Ozone Pollution in the Uintah Basin, Eastern Utah, Winter 2013. Trang T. Tran, Marc Mansfield and Seth Lyman Bingham Research Center, Utah State University

    NASA Astrophysics Data System (ADS)

    Tran, T. T.; Mansfield, M. L.; Lyman, S.

    2013-12-01

    The Uintah Basin of Eastern Utah, USA, has experienced winter ozone pollution events with ozone concentrations exceeding the National Ambient Air Quality Standard of 75 ppb. With a total of four winter seasons of ozone sampling, winter 2013 is the worst on record for ozone pollution in the basin. Emissions of volatile organic compounds (VOCs) and nitrogen oxides (NOx) from oil and gas industries and other activities provide the precursors for ozone formation. The chemical mechanism of ozone formation is non-linear and complicated depending on the availability of VOCs and NOx. Moreover, meteorological conditions also play an important role in triggering ozone pollution. In the Uintah Basin, high albedo due to snow cover, a 'bowl-shaped' terrain, and strong inversions that trap precursors within the boundary layer are important factors contributing to ozone pollution. However, these local meteorological phenomena have been misrepresented by recent numerical modeling studies, probably due to misrepresenting the snow cover and complex terrain of the basin. In this study, Weather Research and Forecasting (WRF) simulations are performed on a model domain covering the entire Uintah Basin for winter 2013 (Dec 2012 - Mar 2013) to test the impacts of several grid resolutions (e.g., 4000, 1300 and 800m) and snow cover modification on performance of models of the local weather conditions of the basin. These sensitivity tests help to determine the best model configurations to produce appropriate meteorological input for air-quality simulations.

  12. Tackling pollution by organic farming is capable of increasing fortified foods.

    PubMed

    Navarro-Aviñó, J P; Navarro, J J Fernández; Castro, V Vargas; Ripoll, I Ilzarbe; Sahuquillo, M J Márquez

    2016-06-01

    The global pollution stage is poisoning the biosphere and causing global temperatures to rise, necessitating a drastic change in the way man is dealing with nature. One change that may produce many beneficial effects on the biosphere and human health is the use of specific organic farming to produce food in a more integrated way in nature and to increase the capacity of man's own response. Despite many experts' opinion another way to deal with environmental contamination is possible: organic farming, which can increase man's ability to fortify foods. After more than 20 years working under this discipline, Bodegas Dagon is able to achieve the highest stilbenes concentrations (as resveratrol). Versus 14.3 mg/l, "Bodegas Dagón" wines contain resveratrol (HPLC and UV-spectroscopy) up to 1611.73 ± 72.66 mg/l, standing as world's potentially healthiest wine reported to date. PMID:26374929

  13. An MCM modeling study of nitryl chloride (ClNO2) impacts on oxidation, ozone production and nitrogen oxide partitioning in polluted continental outflow

    NASA Astrophysics Data System (ADS)

    Riedel, T. P.; Wolfe, G. M.; Danas, K. T.; Gilman, J. B.; Kuster, W. C.; Bon, D. M.; Vlasenko, A.; Li, S.-M.; Williams, E. J.; Lerner, B. M.; Veres, P. R.; Roberts, J. M.; Holloway, J. S.; Lefer, B.; Brown, S. S.; Thornton, J. A.

    2013-11-01

    Nitryl chloride (ClNO2) is produced at night by reactions of dinitrogen pentoxide (N2O5) on chloride containing surfaces. ClNO2 is photolyzed during the morning hours after sunrise to liberate highly reactive chlorine atoms (Cl·). This chemistry takes place primarily in polluted environments where the concentrations of N2O5 precursors (nitrogen oxide radicals and ozone) are high, though it likely occurs in remote regions at lower intensities. Recent field measurements have illustrated the potential importance of ClNO2 as a daytime Cl· source and a nighttime NOx reservoir. However, the fate of the Cl· and the overall impact of ClNO2 on regional photochemistry remain unclear. To this end, we have incorporated ClNO2 production, photolysis, and subsequent Cl· reactions into an existing Master Chemical Mechanism (MCM version 3.2) box model framework using observational constraints from the CalNex 2010 field study. Cl· reactions with a set of alkenes and alcohols, and the simplified multiphase chemistry of N2O5, ClNO2, HOCl, ClONO2, and Cl2, none of which are currently part of the MCM, have been added to the mechanism. The presence of ClNO2 produces significant changes to oxidants, ozone, and nitrogen oxide partitioning, relative to model runs excluding ClNO2 formation. From a nighttime maximum of 1.5 ppbv ClNO2, the daytime maximum Cl· concentration reaches 1 × 105 atoms cm-3 at 7 a.m., reacting mostly with a large suite of volatile organic compounds (VOC) to produce 2.2 times more organic peroxy radicals in the morning than in the absence of ClNO2. In the presence of several ppbv of nitrogen oxide radicals (NOx = NO + NO2), these perturbations lead to similar enhancements in hydrogen oxide radicals (HOx = OH + HO2). Neglecting contributions from HONO, the total integrated daytime radical source is 17% larger when including ClNO2, which leads to a similar enhancement in integrated ozone production of 15%. Detectable levels (tens of pptv) of chlorine containing

  14. An MCM modeling study of nitryl chloride (ClNO2) impacts on oxidation, ozone production and nitrogen oxide partitioning in polluted continental outflow

    NASA Astrophysics Data System (ADS)

    Riedel, T. P.; Wolfe, G. M.; Danas, K. T.; Gilman, J. B.; Kuster, W. C.; Bon, D. M.; Vlasenko, A.; Li, S.-M.; Williams, E. J.; Lerner, B. M.; Veres, P. R.; Roberts, J. M.; Holloway, J. S.; Lefer, B.; Brown, S. S.; Thornton, J. A.

    2014-04-01

    Nitryl chloride (ClNO2) is produced at night by reactions of dinitrogen pentoxide (N2O5) on chloride containing surfaces. ClNO2 is photolyzed during the morning hours after sunrise to liberate highly reactive chlorine atoms (Cl·). This chemistry takes place primarily in polluted environments where the concentrations of N2O5 precursors (nitrogen oxide radicals and ozone) are high, though it likely occurs in remote regions at lower intensities. Recent field measurements have illustrated the potential importance of ClNO2 as a daytime Cl· source and a nighttime NOx reservoir. However, the fate of the Cl· and the overall impact of ClNO2 on regional photochemistry remain poorly constrained by measurements and models. To this end, we have incorporated ClNO2 production, photolysis, and subsequent Cl· reactions into an existing master chemical mechanism (MCM version 3.2) box model framework using observational constraints from the CalNex 2010 field study. Cl· reactions with a set of alkenes and alcohols, and the simplified multiphase chemistry of N2O5, ClNO2, HOCl, ClONO2, and Cl2, none of which are currently part of the MCM, have been added to the mechanism. The presence of ClNO2 produces significant changes to oxidants, ozone, and nitrogen oxide partitioning, relative to model runs excluding ClNO2 formation. From a nighttime maximum of 1.5 ppbv ClNO2, the daytime maximum Cl· concentration reaches 1 × 105 atoms cm-3 at 07:00 model time, reacting mostly with a large suite of volatile organic compounds (VOC) to produce 2.2 times more organic peroxy radicals in the morning than in the absence of ClNO2. In the presence of several ppbv of nitrogen oxide radicals (NOx = NO + NO2), these perturbations lead to similar enhancements in hydrogen oxide radicals (HOx = OH + HO2). Neglecting contributions from HONO, the total integrated daytime radical source is 17% larger when including ClNO2, which leads to a similar enhancement in integrated ozone production of 15%. Detectable

  15. Pollution from China increases cloud droplet number, suppresses rain over the East China Sea

    SciTech Connect

    Bennartz, Ralph; Fan, Jiwen; Rausch, J; Leung, Lai-Yung R; Heidinger, Andrew K

    2011-05-18

    Rapid economic growth over the last 30 years in China has led to a significant increase in aerosol loading, which is mainly due to the increased emissions of its precursors such as SO2 and NOx. Here we show that these changes significantly affect wintertime clouds and precipitation over the East China Sea downwind of major emission sources. Satellite observations show an increase of cloud droplet number concentration from less than 200 cm-3 in the 1980s to more than 300 cm-3 in 2005. In the same time period, precipitation frequency reported by voluntary ship observers was reduced from more than 30% to less than 20% of the time. A back trajectory analysis showed the pollution in the investigation area to originate from the Shanghai-Nanjing and Jinan industrial areas. A model sensitivity study was performed, isolating the effects of changes in emissions of the aerosol precursors SO2 and NOx on clouds and precipitation using a state-of-the-art mesocale model including chemistry and aerosol indirect effects. Similar changes in cloud droplet number concentration over the East China Sea were obtained when the current industrial emissions in China were reduced to the 1980s levels. Simulated changes in precipitation were somewhat smaller than the observed changes but still significant. Citation: Bennartz, R., J. Fan, J. Rausch, L. R. Leung, and A. K. Heidinger (2011), Pollution from China increases cloud droplet number, suppresses rain over the East China Sea, Geophys. Res. Lett., 38, L09704, doi:10.1029/ 2011GL047235.

  16. Aeration remediation of a polluted waterway increases near-surface coarse and culturable microbial aerosols.

    PubMed

    Dueker, M Elias; O'Mullan, Gregory D

    2014-04-15

    Aeration remediation is currently used in polluted urban waterways to increase oxygen levels in the water column. Recent studies have provided increasing evidence that the bursting of bubbles at water surfaces introduced by aeration, or other surface disturbances, can transfer viable bacteria to the air. In heavily sewage-polluted waterways these water-originated bacterial aerosols may pose as a health risk to recreators in small boats or residents inhabiting the shoreline. Nonetheless, few studies have explored aerosols above active aeration remediation projects in waterways or investigated how bacterial aerosols change with vertical distance from aeration activities. This study, conducted at the Newtown Creek superfund site in Brooklyn, NY, USA, measured coarse aerosol particles and culturable bacteria in near-surface air above waters undergoing aeration remediation. Regardless of aeration operation culturable bacterial fallout was greater near-surface (0.6m above water) than previously-reported measurements made at 2.5m. Molecular analysis of the 16S rRNA gene sequences from isolated bacteria demonstrates that water and air shared a large number of bacterial genera and that the genera present in the near-surface aerosols (0.6m) contained water-associated Vibrio and Caulobacter, which were not present at 2.5m, despite the smaller sequence library size from the near-surface. Also, the near-surface microbial assemblage had significantly greater association with sequences detected previously in aquatic environments compared to the 2.5m library. We found compelling evidence that aeration activity contributed to this vertical gradient in bacterial aerosol concentrations and identity. Similar to results from 2.5m, concentrations of near-surface respirable coarse aerosols (<10 um) increased significantly when aeration was occurring. Culturable bacterial aerosol fallout was also greater near-surface when the aerator was on compared to simultaneous measurements made at 2

  17. Aconitine Challenge Test Reveals a Single Exposure to Air Pollution Causes Increased Cardiac Arrhythmia Risk in Hypertensive Rats - Abstract

    EPA Science Inventory

    Epidemiological studies demonstrate a significant association between arrhythmias and air pollution exposure. Sensitivity to aconitine-induced arrhythmia has been used repeatedly to examine the factors that increase the risk of such cardiac electrical dysfunction. In this study, ...

  18. Photosynthetic targets for improving crop tolerance to ozone

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ozone (O3) is an air-born pollutant that has increased in the atmosphere from industrial activities. Current O3 concentrations exceed the threshold for damage to plants, and globally, $14-$26 billion in potential crop productivity is estimated to be lost to O3 stress each year. Sensitivity of C3 cro...

  19. IMMUNOSUPPRESSION OF PULMONARY NATURAL KILLER ACTIVITY BY EXPOSURE TO OZONE

    EPA Science Inventory

    Ozone is an oxidant gas and an ubiquitous oxidant air pollutant with the potential to adversely affect pulmonary immune function with a consequent increase in disease susceptibility. ulmonary atural killer (NK) activity was measured in order to assess the pulmonary immunotoxicity...

  20. Midweek Increase in U.S. Summer Rain and Storm Heights, Suggests Air Pollution Invigorates Rainstorms

    NASA Technical Reports Server (NTRS)

    Bell, Thomas L.; Rosenfeld, Daniel; Kim, Kyu-Myong; Yoo, Jung-Moon; Hahnenberger, Maura

    2007-01-01

    Tropical Rainfall Measuring Mission (TRMM) satellite data show a significant midweek increase in summertime rainfall over the southeast U.S., due to afternoon intensification. TRMM radar data show a significant midweek increase in rain area and in the heights reached by afternoon storms. Weekly variations in model-reanalysis wind patterns over the region and in rain-gauge data are consistent with the satellite data. A midweek decrease of rainfall over the nearby Atlantic is also seen. EPA measurements of particulate concentrations show a midweek peak over much of the U.S. These observations are consistent with the theory that anthropogenic air pollution suppresses cloud-drop coalescence and early rainout during the growth of thunderstorms over land, allowing more water to be carried above the 0 C isotherm, where freezing yields additional latent heat, invigorating the storms--most dramatically evidenced by the shift in the midweek distribution of afternoon-storm heights--and producing large ice hydrometeors. The enhanced convection induces regional convergence, uplifting and an overall increase of rainfall. Compensating downward air motion suppresses convection over the adjacent ocean areas. Pre-TRMM-era data suggest that the weekly cycle only became strong enough to be detectable beginning in the 1980's. Rain-gauge data also suggest that a weekly cycle may have been detectable in the 1940's, but with peak rainfall on Sunday or Monday, possibly explained by the difference in composition of aerosol pollution at that time. This "weekend effect" may thus offer climate researchers an opportunity to study the regional climate-scale impact of aerosols on storm development and monsoon-like circulation.

  1. Vascular and Cardiac Impairments in Rats Inhaling Ozone and Diesel Exhaust Particles

    PubMed Central

    Kodavanti, Urmila P.; Thomas, Ronald; Ledbetter, Allen D.; Schladweiler, Mette C.; Shannahan, Jonathan H.; Wallenborn, J. Grace; Lund, Amie K.; Campen, Matthew J.; Butler, Elizabeth O.; Gottipolu, Reddy R.; Nyska, Abraham; Richards, Judy E.; Andrews, Deborah; Jaskot, Richard H.; McKee, John; Kotha, Sainath R.; Patel, Rishi B.; Parinandi, Narasimham L.

    2011-01-01

    Background Mechanisms of cardiovascular injuries from exposure to gas and particulate air pollutants are unknown. Objective We sought to determine whether episodic exposure of rats to ozone or diesel exhaust particles (DEP) causes differential cardiovascular impairments that are exacerbated by ozone plus DEP. Methods and results Male Wistar Kyoto rats (10–12 weeks of age) were exposed to air, ozone (0.4 ppm), DEP (2.1 mg/m3), or ozone (0.38 ppm) + DEP (2.2 mg/m3) for 5 hr/day, 1 day/week for 16 weeks, or to air, ozone (0.51 or 1.0 ppm), or DEP (1.9 mg/m3) for 5 hr/day for 2 days. At the end of each exposure period, we examined pulmonary and cardiovascular biomarkers of injury. In the 16-week study, we observed mild pulmonary pathology in the ozone, DEP, and ozone + DEP exposure groups, a slight decrease in circulating lymphocytes in the ozone and DEP groups, and decreased platelets in the DEP group. After 16 weeks of exposure, mRNA biomarkers of oxidative stress (hemeoxygenase-1), thrombosis (tissue factor, plasminogen activator inhibitor-1, tissue plasminogen activator, and von Willebrand factor), vasoconstriction (endothelin-1, endothelin receptors A and B, endothelial NO synthase) and proteolysis [matrix metalloprotease (MMP)-2, MMP-3, and tissue inhibitor of matrix metalloprotease-2] were increased by DEP and/or ozone in the aorta, but not in the heart. Aortic LOX-1 (lectin-like oxidized low-density lipoprotein receptor-1) mRNA and protein increased after ozone exposure, and LOX-1 protein increased after exposure to ozone + DEP. RAGE (receptor for advanced glycation end products) mRNA increased in the ozone + DEP group. Exposure to ozone or DEP depleted cardiac mitochondrial phospholipid fatty acids (DEP > ozone). The combined effect of ozone and DEP exposure was less pronounced than exposure to either pollutant alone. Exposure to ozone or DEP for 2 days (acute) caused mild changes in the aorta. Conclusions In animals exposed to ozone or DEP alone for 16

  2. Ozone trends: A review

    NASA Astrophysics Data System (ADS)

    Staehelin, J.; Harris, N. R. P.; Appenzeller, C.; Eberhard, J.

    2001-05-01

    Ozone plays a very important role in our atmosphere because it protects any living organisms at the Earth's surface against the harmful solar UVB and UVC radiation. In the stratosphere, ozone plays a critical role in the energy budget because it absorbs both solar UV and terrestrial IR radiation. Further, ozone in the tropopause acts as a strong greenhouse gas, and increasing ozone trends at these altitudes contribute to climate change. This review contains a short description of the various techniques that provided atmospheric ozone measurements valuable for long-term trend analysis. The anthropogenic emissions of substances that deplete ozone (chlorine- and bromine-containing volatile gases) have increased from the 1950s until the second half of the 1980s. The most severe consequence of the anthropogenic release of ozone-depleting substances is the "Antarctic ozone hole." Long-term observations indicate that stratospheric ozone depletion in the southern winter-spring season over Antarctica started in the late 1970s, leading to a strong decrease in October total ozone means. Present values are only approximately half of those observed prior to 1970. In the Arctic, large ozone depletion was observed in winter and spring in some recent years. Satellite and ground-based measurements show no significant trends in the tropics but significant long-term decreasing trends in the northern and southern midlatitudes (of the order of 2-4% per decade in the period from 1970 to 1996 and an acceleration in trends in the 1980s). Ozone at northern midlatitudes decreased by -7.4±2% per decade at 40 km above mean sea level, while ozone loss was small at 30 km. Large trends were found in the lower stratosphere, -5.1±1.8% at 20 km and -7.3±4.6% at 15 km, where the bulk of the ozone resides. The possibility of a reduction in the observed trends has been discussed recently, but it is very hard to distinguish this from the natural variability. As a consequence of the Montreal Protocol

  3. Spatial analysis of ozone in Atlanta: Regulatory and epidemiologic implications

    SciTech Connect

    Butler, A.J.; Mulholland, J.A.; Wilkinson, J.G.; Russell, A.G.; Tolbert, P.E.

    1998-12-31

    Relationships between ambient levels of selected air pollutants and pediatric asthma exacerbation in Atlanta were studied retrospectively. As a part of this study, spatial distributions of ambient ozone concentrations in the twenty-county Atlanta metropolitan area during the summers of 1993, 1994 and 1995 were estimated and assessed. A universal kriging procedure was used for spatial interpolation of aerometric monitoring station data. In this paper, the spatial distributions of ozone are described, and regulatory and epidemiologic implications are discussed. For the study period, the Atlanta ozone nonattainment area based on the one-hour, exceedance-based standard of 0.12 ppm is estimated to expand from 56 percent of the Atlanta MSA by area and 71 percent by population to 88 percent by area and 96 percent by population under the new eight-hour, concentration-based standard of 0.08 ppm. Regarding asthma exacerbation, a 4 percent increase in pediatric asthma emergency room presentation rate per 20 ppb increase in ambient ozone concentration was observed (p-value = 0.001). Ambient ozone level represents a general indicator of air quality due to its correlation with other pollutants. The use of spatially-resolved ozone estimates in the epidemiologic analysis demonstrates the need to control confounding by demographic covariates.

  4. Causes of increasing ozone and decreasing carbon monoxide in springtime at the Mt. Bachelor Observatory from 2004 to 2013

    NASA Astrophysics Data System (ADS)

    Gratz, L. E.; Jaffe, D. A.; Hee, J. R.

    2015-05-01

    We report trends in springtime ozone (O3) and carbon monoxide (CO) at the Mt. Bachelor Observatory (MBO) in central Oregon, U.S.A. from 2004 to 2013. Over the 10-year period the median and 95th percentile springtime O3 increased by 0.76 ± 0.61 ppbv yr-1 (1.7 ± 1.4% yr-1) and 0.87 ± 0.73 ppbv yr-1 (1.5 ± 1.2% yr-1), respectively. These trends are consistent with reported positive trends in springtime O3 in the western U.S. In contrast, median CO decreased by -3.1 ± 2.4 ppbv yr-1 (-1.9 ± 1.4% yr-1), which is highly similar to springtime North Pacific surface flask measurements from 2004 to 2012. While a 10-year record is relatively short to evaluate long-term variability, we incorporate transport model analysis and contextualize our measurements with reported northern mid-latitude trends over similar time frames to investigate the causes of increasing O3 and decreasing CO at MBO. We performed cluster analysis of 10-day HYSPLIT back-trajectories from MBO and examined O3 and CO trends within each cluster. Significant positive O3 trends were associated with high-altitude, rapid transport from East Asia. Significant negative CO trends were most associated with transport from the North Pacific and Siberia, as well as from East Asia. The rise in springtime O3 is likely associated with increasing O3 precursor emissions in Asia and long-range transport to the western U.S. The decline in springtime CO appears linked to decreasing Northern Hemisphere background CO, largely due to anthropogenic emissions reductions in Europe and North America, and also to a recently reported decline in total CO output from China caused by more efficient combustion. These springtime O3 and CO trends suggest that hydroxyl radical (OH) mixing ratios in the North Pacific may have increased over the study period.

  5. INTERACTIVE EFFECTS OF ATMOSPHERIC CARBON DIOXIDE AND OZONE ON GAS-EXCHANGE, BIOMASS, AND YIELD OF ESSEX SOYBEAN: A COMPILATION OF STUDIES FROM TEN GROWING SEASONS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Current levels of pollutant ozone in industrialized regions worldwide suppress the growth and yield of many agronomically important crops. Meanwhile, atmospheric concentrations of CO2 continue to increase, due in large part to the same activities leading to elevated tropospheric ozone production, c...

  6. Plant responses to tropospheric ozone

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tropospheric ozone is the second most abundant air pollutant and an important component of the global climate change. Over five decades of research on the phytotoxicity of ozone in model plants systems, crop plants and forest trees have provided some insight into the physiological, biochemical and m...

  7. OZONE MULTI-YEAR PLAN

    EPA Science Inventory

    The tropospheric ozone research program addresses not only ozone, but other criteria pollutants such as SO2, nitrogen dioxide, carbon monoxide, and lead. It focuses on developing tools to help with implementation of National Ambient Air Quality Standards (NAAQS), such as improvin...

  8. Climate change: potential effects of increased atmospheric carbon dioxide (CO2), ozone (O3), and ultraviolet-B (UV-B) radiation on plant diseases.

    PubMed

    Manning, W J; V Tiedemann, A

    1995-01-01

    Continued world population growth results in increased emission of gases from agriculture, combustion of fossil fuels, and industrial processes. This causes changes in the chemical composition of the atmosphere. Evidence is emerging that increased solar ultraviolet-B (UV-B) radiation is reaching the earth's atmosphere, due to stratospheric ozone depletion. Carbon dioxide (CO(2)), ozone (O(3)) and UV-B are individual climate change factors that have direct biological effects on plants. Such effects may directly or indirectly affect the incidence and severity of plant diseases, caused by biotic agents. Carbon dioxide may increase plant canopy size and density, resulting in a greater biomass of high nutritional quality, combined with a much higher microclimate relative humidity. This would be likely to promote plant diseases such as rusts, powdery mildews, leaf spots and blights. Inoculum potential from greater overwintering crop debris would also be increased. Ozone is likely to have adverse effects on plant growth. Necrotrophic pathogens may colonize plants weakened by O(3) at an accelerated rate, while obligate biotroph infections may be lessened. Ozone is unlikely to have direct adverse effects on fungal pathogens. Ozone effects on plant diseases are host plant mediated. The principal effects of increased UV-B on plant diseases would be via alterations in host plants. Increased flavonoids could lead to increased diseased resistance. Reduced net photosynthesis and premature ripening and senescence could result in a decrease in diseases caused by biotrophs and an increase in those caused by necrotrophs. Microbial plant pathogens are less likely to be adversely affected by CO(2), O(3) and UV-B than are their corresponding host plants. Changes in host plants may result in expectable alterations of disease incidence, depending on host plant growth stages and type of pathogen. Given the importance of plant diseases in world food and fiber production, it is essential to

  9. Water disinfection with ozone, copper and silver ions, and temperature increase to control Legionella: seven years of experience in a university teaching hospital.

    PubMed

    Blanc, D S; Carrara, Ph; Zanetti, G; Francioli, P

    2005-05-01

    The efficacy of ozonation, copper-silver ionization and increased temperature in controlling Legionella spp. in the hot water distribution networks of a university hospital was evaluated. Two separate water distribution networks were studied; network 1 which supplies the surgical intensive care units, and network 2 which supplies the medical intensive care units and the emergency room. Network 1 has been disinfected by ozonation since 1995, and network 2 has been disinfected by ionisation since 1999. The hot water temperature was increased from 50 to 65 degrees C in 1998 and 2000 in networks 1 and 2, respectively. Water samples and swabs of the water outlets were cultured for Legionella spp. between four and six times each year, providing data before and after implementation of the disinfection procedures. There was no significant difference in the proportion of samples positive for Legionella spp. after ozonation in network 1 or after ionization in network 2. In both networks, there was a significant reduction in legionella isolates after increasing the hot water temperature to 65 degrees C. Maintaining the hot water temperature above 50 degrees C throughout both networks proved to be the most effective control measure in our hospital. PMID:15823660

  10. Use of AIRS, OMI, MLS, and TES Data in Assessing Forest Ecosystem Exposure to Ozone

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.

    2007-01-01

    Ground-level ozone at high levels poses health threats to exposed flora and fauna, including negative impacts to human health. While concern is common regarding depletion of ozone in the stratosphere, portions of the urban and rural United States periodically have high ambient levels of tropospheric ozone on the ground. Ozone pollution can cause a variety of impacts to susceptible vegetation (e.g., Ponderosa and Jeffrey pine species in the southwestern United States), such as stunted growth, alteration of growth form, needle or leaf chlorosis, and impaired ability to withstand drought-induced water stress. In addition, Southern Californian forests with high ozone exposures have been recently subject to multiyear droughts that have led to extensive forest overstory mortality from insect outbreaks and increased incidence of wildfires. Residual forests in these impacted areas may be more vulnerable to high ozone exposures and to other forest threats than ever before. NASA sensors collect a wealth of atmospheric data that have been used recently for mapping and monitoring regional tropospheric ozone levels. AIRS (Atmospheric Infrared Sounder), OMI (Ozone Monitoring Instrument), MLS (Microwave Limb Sounder), and TES (Tropospheric Emission Spectrometer) data could be used to assess forest ecosystem exposure to ozone. Such NASA data hold promise for providing better or at least complementary synoptic information on ground-level ozone levels that Federal agency partners can use to assess forest health trends and to mitigate the threats as needed in compliance with Federal laws and mandates. NASA data products on ozone concentrations may be able to aid applications of DSTs (decision support tools) adopted by the USDA FS (U.S. Department of Agriculture Forest Service) and by the NPS (National Park Service), such as the Ozone Calculator, in which ground ozone estimates are employed to assess ozone impacts to forested vegetation.

  11. Estimating the Tropospheric Ozone Distribution by the Assimilation of Satellite Data

    NASA Technical Reports Server (NTRS)

    Hayashi, Hiroo; Stajner, Ivanka; Winslow, Nathan; Jones, Dylan B. A.; Pawson, Steven; Thompson, Anne M.

    2003-01-01

    Tropospheric ozone is important to the environment, because it acts as a strong oxidant to control the concentrations of many reduced gases (methane, carbon monoxide, ... ), its radiative forcing plays a significant role in the greenhouse effect, and direct contact with ozone is harmful to human health. Tropospheric ozone, whose main sources are intrusion from the stratosphere and chemical production from source gases associated with urban pollution or biomass burning, varies on a wide range of spatial and temporal scales. Its transport and chemistry can be influenced by weather, seasonal, or multiannual variability. Despite the importance of tropospheric ozone, it contributes only about 10% of the total ozone loading in the atmosphere. Consequently, satellite instruments lose sensitivity below the stratospheric ozone peak, and provide little information about middle and lower tropospheric ozone. This talk will discuss recent modifications made to the satellite ozone data assimilation system at NASA's Data Assimilation Office (DAO) in order to provide better tropospheric ozone columns and profiles. We use a version of the system that assimilates only the data from the Solar Backscatter UltraViolet/2 (SBUV/2) instrument. The quality of the assimilated ozone in the tropical troposphere is evaluated by comparison with independent observations obtained from the Southern Hemispheric Additional Ozonesondes (SHADOZ) network. It is shown that the quality of ozone fields is sensitive to the winds used in the transport model. Increasing the vertical resolution of the model also has a beneficial impact. The assimilated ozone in the lower troposphere was substantially improved by inclusion of tropospheric ozone production, loss, and dry deposition rates from the Harvard GEOS-CHEM model. The mechanisms behind these results will be examined and the implications for our understanding of tropospheric ozone will be discussed.

  12. Projected risk of high ozone episodes in 2050

    NASA Astrophysics Data System (ADS)

    Lei, Hang; Wuebbles, Donald J.; Liang, Xin-Zhong

    2012-11-01

    We investigate the effects of projected global changes in climate and human-related emissions for the year 2050 relative to 2000 for trends in the potential risk of hazardous ozone pollution episodes using a global climate chemistry model, CAM-Chem, driven by meteorology output from Community Climate System Model 3. Three distinct pathways from the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios A1FI, A1B and B1 are considered to address the range and uncertainty in projected climate and emission changes. The projected changes in extreme climate conditions are likely to intensify the associated extreme weather conditions that foster the risk of high ozone pollution episodes over many parts of the world. It is found that the changes in regional high surface ozone concentration by 2050 largely depends on changes in the anthropogenic emissions of ozone precursors. Our analysis under projected climate and emissions on the frequency of “hazardous ozone days” in which the peak ozone concentration exceed the limit in the summer of 2050, based on 8 and 1-h standards, show that the risk of hazardous ozone pollution episodes will likely increase in developing regions, but changes of risk in developed regions depend on scenarios. For three major pollutant regions, north America, Europe and East Asia under 8-h definition, the hazardous risk in all regions increases under the A1FI scenario with a potential rate of 39-79 days/summer by 2050, but it is likely to decrease over North America and Europe under the A1B and B1 scenarios. The risk on Europe under the A1B and B1 scenarios can be ignored, but a significant rate of 6-71 days/summer still occur on other regions. The relative variability in projected frequency of hazardous ozone days increase by using the 1-h definition, although it shows the highest risk of 17-59 days/summer under the A1FI scenario. The higher variability can be understood through statistical analysis of cumulative

  13. Pollution from China increases cloud droplet number, suppresses rain over the East China Sea

    NASA Astrophysics Data System (ADS)

    Bennartz, Ralf; Fan, Jiwen; Rausch, John; Leung, L. Ruby; Heidinger, Andrew K.

    2011-05-01

    Rapid economic growth over the last 30 years in China has led to a significant increase in aerosol loading, which is mainly due to the increased emissions of its precursors such as SO2 and NOx. Here we show that these changes significantly affect wintertime clouds and precipitation over the East China Sea downwind of major emission sources. Satellite observations show an increase of cloud droplet number concentration from less than 200 cm-3 in the 1980s to more than 300 cm-3 in 2005. In the same time period, precipitation frequency reported by voluntary ship observers was reduced from more than 30% to less than 20% of the time. A back trajectory analysis showed the pollution in the investigation area to originate from the Shanghai-Nanjing and Jinan industrial areas. A model sensitivity study was performed, isolating the effects of changes in emissions of the aerosol precursors SO2 and NOx on clouds and precipitation using a state-of-the-art mesocale model including chemistry and aerosol indirect effects. Similar changes in cloud droplet number concentration over the East China Sea were obtained when the current industrial emissions in China were reduced to the 1980s levels. Simulated changes in precipitation were somewhat smaller than the observed changes but still significant.

  14. Mountain cold-trapping increases transfer of persistent organic pollutants from atmosphere to cows' milk.

    PubMed

    Shunthirasingham, Chubashini; Wania, Frank; MacLeod, Matthew; Lei, Ying Duan; Quinn, Cristina L; Zhang, Xianming; Scheringer, Martin; Wegmann, Fabio; Hungerbühler, Konrad; Ivemeyer, Silvia; Heil, Fritz; Klocke, Peter; Pacepavicius, Grazina; Alaee, Mehran

    2013-08-20

    Concentrations of long-lived organic contaminants in snow, soil, lake water, and vegetation have been observed to increase with altitude along mountain slopes. Such enrichment, called "mountain cold-trapping", is attributed to a transition from the atmospheric gas phase to particles, rain droplets, snowflakes, and Earth's surface at the lower temperatures prevailing at higher elevations. Milk sampled repeatedly from cows that had grazed at three different altitudes in Switzerland during one summer was analyzed for a range of persistent organic pollutants. Mountain cold-trapping significantly increased air-to-milk transfer factors of most analytes. As a result, the milk of cows grazing at higher altitudes was more contaminated with substances that have regionally uniform air concentrations (hexachlorobenzene, α-hexachlorocyclohexane, endosulfan sulfate). For substances that have sources, and therefore higher air concentrations, at lower altitudes (polychlorinated biphenyls, γ-hexachlorocyclohexane), alpine milk has lower concentrations, but not as low as would be expected without mountain cold-trapping. Differences in the elevational gradients in soil concentrations and air-to-milk transfer factors highlight that cold-trapping of POPs in pastures is mostly due to increased gas-phase deposition as a result of lower temperatures causing higher uptake capacity of plant foliage, whereas cold-trapping in soils more strongly depends on wet and dry particle deposition. Climatic influences on air-to-milk transfer of POPs needs to be accounted for when using contamination of milk lipids to infer contamination of the atmosphere. PMID:23885857

  15. Attribution of free tropospheric ozone over eastern China using TES ozone observations, NO2 OMI retrievals and the TM5 chemistry transport model

    NASA Astrophysics Data System (ADS)

    Verstraeten, Willem W.; (K. F.) Boersma, Folkert; Williams, Jason; Bowman, Kevin W.; Worden, John R.

    2014-05-01

    Tropospheric ozone is an important greenhouse gas and a global air pollutant originating from photo-chemical oxidation of precursors such as volatile organic compounds (VOCs) and CO in the presence of NOX in favouring meteorological conditions, long range transport and stratosphere-troposphere ozone exchange (STE). Assessing ozone trends in the troposphere remain difficult due to scarcity of long-term measurement sites, but spaceborne sensors can cope much better with that thanks to their spatio-temporal abilities. Today, eastern Asia has the fastest growing anthropogenic emissions. It has been suggested that much of this pollution is exported eastwards towards western North America affecting the local ozone concentrations in the troposphere. We analysis time series of free tropospheric ozone observed from space by TES (Tropospheric Emission Spectrometer onboard NASA's EOS-Aura satellite) over eastern China. Based on the TM5 chemical transport models (CTM) using six years (2005-2010) of model simulations we attribute the observations to the different sources of ozone using model runs with different anthropogenic emissions of NOX. Here we show a strong and rapid increase (~7 ppbv, or 10% per year) in free tropospheric ozone over China retrieved with the TES satellite instrument from 2005 to 2010. We attribute this increase to a larger inflow of stratospheric ozone and particularly to enhanced ozone production following highly significant increases in Chinese NOX emissions as observed with the OMI satellite instrument. Despite the emission reduction in the western United States, the observed ozone concentrations in the free troposphere raise, which is attributed to the increase of Chinese emissions.

  16. Exposure to Persistent Organic Pollutants Increases Hospitalization Rates for Myocardial Infarction with Comorbid Hypertension

    PubMed Central

    Sergeev, Alexander V.; Carpenter, David O.

    2010-01-01

    Studies suggest that environmental exposure to persistent organic pollutants (POPs) may be an emerging risk factor for ischemic heart disease, including acute myocardial infarction (AMI). However, some studies indicate that exposure to POPs may also be a risk factor for hypertension, a well-established risk factor for AMI. To investigate effect of POPs on the environmental burden of cardiovascular disease, a study of AMI with comorbid hypertension in populations environmentally exposed to persistent organic pollutants, based on the zip code of residence, was conducted. Data on hospital discharges for AMI with comorbid hypertension were obtained from the New York Statewide Planning and Research Cooperative System for 1993–2004. Patients residing in zip codes containing or abutting POPs contaminated sites were considered environmentally exposed. Relative risks (RR) — with corresponding 95% confidence intervals (95% CI) — of hospitalization for AMI with comorbid hypertension were estimated by Poisson regression, adjusting for known confounders. Adjusted hospitalization rates for AMI with comorbid hypertension were 12.4% higher in populations residing in proximity to a POPs site (adjusted RR = 1.124, 95% CI 1.025–1.233, p < 0.05), compared to not in proximity to a POPs site. Also, hospitalization rates for AMI with comorbid hypertension were higher in males than in females (adjusted RR = 2.157, 95% CI 2.100–2.215, p < 0.05), in African Americans than in Caucasians (adjusted RR = 1.631, 95% CI 1.483–1.794, p < 0.05), and in older age groups (p for trend <0.05). These findings are consistent with the established effects of non-modifiable risk factors and serve as indirect quality indicators for our model. In conclusion, our results support the hypothesis that environmental exposure to POPs increases the burden of cardiovascular disease in exposed populations. PMID:21562627

  17. Estimating changes in urban ozone concentrations due to life cycle emissions from hydrogen transportation systems

    NASA Astrophysics Data System (ADS)

    Wang, Guihua; Ogden, Joan M.; Chang, Daniel P. Y.

    Hydrogen has been proposed as a low polluting alternative transportation fuel that could help improve urban air quality. This paper examines the potential impact of introducing a hydrogen-based transportation system on urban ambient ozone concentrations. This paper considers two scenarios, where significant numbers of new hydrogen vehicles are added to a constant number of gasoline vehicles. In our scenarios hydrogen fuel cell vehicles (HFCVs) are introduced in Sacramento, California at market penetrations of 9% and 20%. From a life cycle analysis (LCA) perspective, considering all the emissions involved in producing, transporting, and using hydrogen, this research compares three hypothetical natural gas to hydrogen pathways: (1) on-site hydrogen production; (2) central hydrogen production with pipeline delivery; and (3) central hydrogen production with liquid hydrogen truck delivery. Using a regression model, this research shows that the daily maximum temperature correlates well with atmospheric ozone formation. However, increases in initial VOC and NO x concentrations do not necessarily increase the peak ozone concentration, and may even cause it to decrease. It is found that ozone formation is generally limited by NO x in the summer and is mostly limited by VOC in the fall in Sacramento. Of the three hydrogen pathways, the truck delivery pathway contributes the most to ozone precursor emissions. Ozone precursor emissions from the truck pathway at 9% market penetration can cause additional 3-h average VOC (or NO x) concentrations up to approximately 0.05% (or 1%) of current pollution levels, and at 20% market penetration up to approximately 0.1% (or 2%) of current pollution levels. However, all of the hydrogen pathways would result in very small (either negative or positive) changes in ozone air quality. In some cases they will result in worse ozone air quality (mostly in July, August, and September), and in some cases they will result in better ozone air quality

  18. Ozone studies in the Paso del Norte region

    NASA Astrophysics Data System (ADS)

    Becerra-Davila, Fernando

    obtained from this photolysis study demonstrate that the local ground level ozone formation is not only influenced by the strong solar radiation and changing aerosol makeup, but also by other heterogeneous factors and reactions. In addition, this research provided good evidence that the ground level ozone precursor regime in El Paso during the ozone episode of June 2006 was mostly VOC-limited. Much of this estimation was derived from measurements of local ambient VOC/NOx ratios. This finding shows that at least during June 2006, the non-linear surface ozone production increased during weekends compared to workdays in a habitually VOC-limited regime. The seasonal variations of columnar ozone as measured by a Multi-filter Rotating Shadowband instrument installed at the UTEP campus are analyzed for the first time for this region and results are presented. This investigation has addressed the problem of ground-level ozone formation in the Paso del Norte region. Urban ozone is a complex problem with many aspects that are not fully understood. In this investigation, a range of techniques has been used to address the study of local surface ozone episodes with the purpose of acquiring new insights and knowledge that will help understand and remediate the diverse atmospheric pollution events that affect this bi-national region recurrently. Innovative techniques were developed and used, ranging from the use of local ambient atmospheric pollution data to the utilization of complex modeling techniques to achieve the best possible computer results. Finally, the influence of ground level ozone concentrations in admissions to hospitals for this region due to respiratory diseases is analyzed. The comprehensive results obtained in this work will help to better understand ozone formation in the Paso del Norte Region for future policy regulation implementations.

  19. Increase in Metabolic Syndrome-Related Hospitalizations in Relation to Environmental Sources of Persistent Organic Pollutants

    PubMed Central

    Sergeev, Alexander V.; Carpenter, David O.

    2011-01-01

    Evidence from cell studies indicates that persistent organic pollutants (POP) can induce insulin resistance, an essential component of the metabolic syndrome (MetS). We hypothesized that residential proximity to environmental sources of POP would be associated with the MetS in the population. The present study examined the association between residency in a zip code containing or abutting environmental sources of POP and MetS-related hospitalization rates. Hospitalization data were obtained from the New York Statewide Planning and Research Cooperative System. Relative risks (RR) were calculated as hospitalization rate ratios. Adjusted RR and their 95% confidence intervals (CI) were estimated by multivariable Poisson regression. A higher proportion of African Americans resided in POP zip codes compared to Caucasians (25.9% and 24.3%, respectively, p < 0.01). Residence in POP zip codes was associated with a statistically significant 39.2% increase in MetS-related hospitalization rates, adjusted for race, gender, and age (adjusted RR = 1.392, 95% CI: 1.032–1.879, p = 0.030). Increase in age was independently associated with higher MetS-related hospitalization rates (p for trend < 0.001). Our findings contribute to the body of evidence supporting the hypothesis of POP constituting an environmental risk factor for the MetS. Further studies investigating exposure to POP and insulin resistance are warranted. PMID:21556177

  20. Threat of plastic pollution to seabirds is global, pervasive, and increasing.

    PubMed

    Wilcox, Chris; Van Sebille, Erik; Hardesty, Britta Denise

    2015-09-22

    Plastic pollution in the ocean is a global concern; concentrations reach 580,000 pieces per km(2) and production is increasing exponentially. Although a large number of empirical studies provide emerging evidence of impacts to wildlife, there has been little systematic assessment of risk. We performed a spatial risk analysis using predicted debris distributions and ranges for 186 seabird species to model debris exposure. We adjusted the model using published data on plastic ingestion by seabirds. Eighty of 135 (59%) species with studies reported in the literature between 1962 and 2012 had ingested plastic, and, within those studies, on average 29% of individuals had plastic in their gut. Standardizing the data for time and species, we estimate the ingestion rate would reach 90% of individuals if these studies were conducted today. Using these results from the literature, we tuned our risk model and were able to capture 71% of the variation in plastic ingestion based on a model including exposure, time, study method, and body size. We used this tuned model to predict risk across seabird species at the global scale. The highest area of expected impact occurs at the Southern Ocean boundary in the Tasman Sea between Australia and New Zealand, which contrasts with previous work identifying this area as having low anthropogenic pressures and concentrations of marine debris. We predict that plastics ingestion is increasing in seabirds, that it will reach 99% of all species by 2050, and that effective waste management can reduce this threat. PMID:26324886

  1. Threat of plastic pollution to seabirds is global, pervasive, and increasing

    PubMed Central

    Wilcox, Chris; Van Sebille, Erik; Hardesty, Britta Denise

    2015-01-01

    Plastic pollution in the ocean is a global concern; concentrations reach 580,000 pieces per km2 and production is increasing exponentially. Although a large number of empirical studies provide emerging evidence of impacts to wildlife, there has been little systematic assessment of risk. We performed a spatial risk analysis using predicted debris distributions and ranges for 186 seabird species to model debris exposure. We adjusted the model using published data on plastic ingestion by seabirds. Eighty of 135 (59%) species with studies reported in the literature between 1962 and 2012 had ingested plastic, and, within those studies, on average 29% of individuals had plastic in their gut. Standardizing the data for time and species, we estimate the ingestion rate would reach 90% of individuals if these studies were conducted today. Using these results from the literature, we tuned our risk model and were able to capture 71% of the variation in plastic ingestion based on a model including exposure, time, study method, and body size. We used this tuned model to predict risk across seabird species at the global scale. The highest area of expected impact occurs at the Southern Ocean boundary in the Tasman Sea between Australia and New Zealand, which contrasts with previous work identifying this area as having low anthropogenic pressures and concentrations of marine debris. We predict that plastics ingestion is increasing in seabirds, that it will reach 99% of all species by 2050, and that effective waste management can reduce this threat. PMID:26324886

  2. An investigation of the effects of simulated acid rain and elevated ozone on the physiology of ponderosa pine (Pinus ponderosa Dougl. ex Laws.) seedlings and mature trees

    SciTech Connect

    Momen, B.

    1993-12-31

    This study investigated the combined effects of simulated acid rain and ozone on foliar water relations, carbon and nitrogen contents, gas exchange, and respiration of ponderosa pine seedlings and mature trees grown in the field at the USDA Forest Service Tree Improvement Center in Chico, California. Acid rain levels (pH 5.1 and 3) were applied weekly on foliage only, from January to April, 1992. Plants were exposed to ozone levels (ambient and twice ambient) during the day only, from August to December, 1990, and from September to November, 1992. Results suggested that elevated ozone, particularly in combination with strong acid, caused osmotic adjustment that may benefit plants during drought. The observed effects of pollutants are similar to the reported effects of drought on plant water relations. Elevated ozone decreased foliar nitrogen content and thus increased the C:N ratio, particularly in seedlings. Stomatal conductance was not affected by pollutants but net photosynthesis was decreased by elevated ozone, especially in mature trees. The greater sensitivity of net photosynthesis of mature trees to elevated ozone was contrary to all other plant characteristics investigated. Elevated ozone increased seedling respiration. Under controlled, temperature, light, and vapor pressure deficit conditions, net photosynthesis responded positively to increases in plant age, light intensity, and rain pH, but negatively to increases in tissue age, heat, and ozone concentration. Overall results indicated that acid rain and elevated ozone declined the carbon pool of ponderosa pine due to increased respiration and decreased net photosynthesis. Pollutant effects were more profound in mid-summer when ozone concentrations were highest. On many occasions the effects of acid rain and ozone levels interacted. Seedlings were more sensitive to pollutants than mature trees.

  3. Mortality and air pollution in Helsinki.

    PubMed

    Pönkä, A; Savela, M; Virtanen, M

    1998-01-01

    In Helsinki, Finland, from 1987 to 1993, the authors studied the associations between daily concentrations of sulphur dioxide, nitrogen dioxide, ozone, total suspended particulates, and particulates with aerodynamic diameters less than 10 microm (PM10), and the daily number of deaths from all causes and from cardiovascular causes. Investigators used Poisson regressions to conduct analyses in two age groups, and they controlled for temperature, relative humidity, day of the week, month, year, long-term trend, holidays, and influenza epidemics. The PM10 levels were associated significantly with all-cause and cardiovascular mortality among persons under the age of 65 y of age. In the less-than-65-y age group, sulfur dioxide and ozone were also associated significantly with cardiovascular mortality. The effect of ozone was independent of the PM10 effect, whereas sulfur dioxide became nonsignificant when modeled with PM10. An increase of 10 microg/m3 in PM10 resulted in increases in total mortality and cardiovascular mortality of 3.5% (95% confidence interval=1.0, 5.8) and 4.1% (95% confidence interval=0.4, 10.3), respectively. A 20 microg/m3 increase in ozone was associated with a 9.9% (95% confidence interval=1.1, 19.5) increase in cardiovascular mortality; however, ozone results were inconsistent. Moreover, in addition to their separate effects, high concentrations of PM10, ozone, and nitrogen dioxide had a further harmful additive effect. Typically, PM10 was a better indicator of particulate pollution than total suspended particulates. The authors' findings suggest that (a) even low levels of particulates are related to an increase in cardiovascular mortality; (b) ozone--even in low concentrations--is associated, independently, with cardiovascular mortality; and (c) PM10, ozone, and nitrogen dioxide--the essential components of summertime pollution--have harmful interactions at high concentrations. PMID:9709992

  4. Nonspecific bronchial responsiveness assessed in vitro following acute inhalation exposure to ozone and ozone/sulfuric acid mixtures

    SciTech Connect

    El-Fawal, H.A.N.; McGovern, T.; Schlesinger, R.B.

    1995-01-01

    Air pollution may play some role in the recent increase in severity and prevalence of asthma, but the specific chemical components with the ambient pollutant mix that may be responsible have not been delineated. Since ambient exposures involve mixtures, it is essential to examine airway responses to realistic pollutant mixtures. This study examined the ability of single (3-h) inhalation exposures to ozone and to mixtures of ozone plus sulfuric acid to induce nonspecific airway hyperresponsiveness in healthy rabbits. Airway responsiveness was assessed using an in vitro assay involving administration of increasing doses of acetylcholine to bronchial rings obtained from animals exposed to 0.1-0.6 ppm ozone or to mixtures of ozone and 50-125 {mu}g/m{sup 3} sulfuric acid aerosol; results were compared to those reported previously for sulfuric acid alone. Bronchial hyperresponsiveness in healthy animals and suggest that interaction with sulfuric acid may reduce the effectiveness of both pollutants. 31 refs., 3 figs., 3 tabs.

  5. Ozone depletion and climate change: impacts on UV radiation.

    PubMed

    McKenzie, R L; Aucamp, P J; Bais, A F; Björn, L O; Ilyas, M; Madronich, S

    2011-02-01

    stratospheric ozone can also be affected by the increases in the concentration of GHGs, which lead to decreased temperatures in the stratosphere and accelerated circulation patterns. These changes tend to decrease total ozone in the tropics and increase total ozone at mid and high latitudes. Changes in circulation induced by changes in ozone can also affect patterns of surface wind and rainfall. The projected changes in ozone and clouds may lead to large decreases in UV at high latitudes, where UV is already low; and to small increases at low latitudes, where it is already high. This could have important implications for health and ecosystems. Compared to 1980, UV-B irradiance towards the end of the 21st century is projected to be lower at mid to high latitudes by between 5 and 20% respectively, and higher by 2-3% in the low latitudes. However, these projections must be treated with caution because they also depend strongly on changes in cloud cover, air pollutants, and aerosols, all of which are influenced by climate change, and their future is uncertain. Strong interactions between ozone depletion and climate change and uncertainties in the measurements and models limit our confidence in predicting the future UV radiation. It is therefore important to improve our understanding of the processes involved, and to continue monitoring ozone and surface UV spectral irradiances both from the surface and from satellites so we can respond to unexpected changes in the future. PMID:21253660

  6. Surface Ozone Effects on Productivity Using a Biogeochemistry Model

    NASA Astrophysics Data System (ADS)

    Felzer, B. S.; Kicklighter, D. W.; Melillo, J. M.; Wang, C.; Zhuang, Q.

    2002-05-01

    The effects of air pollution on vegetation may provide another important control on the carbon cycle that has not yet been widely considered. Prolonged exposure to high levels of ozone, in particular, has been observed to inhibit photosynthesis by direct cellular damage within the leaves. This ozone exposure also indirectly affects photosynthesis, as well as nitrogen uptake and water availability, through changes in stomatal conductance. We have incorporated simple empirical equations derived for hardwoods, conifers, and croplands into the Terrestrial Ecosystem Model (TEM, version 4.2). These equations linearly relate gross primary productivity (GPP) to accumulated hourly ozone levels above a threshold of 40 ppb, such that productivity in regions with high ozone levels is reduced. Indirect effects of ozone have been incorporated by limiting nitrogen uptake, evapotranspiration (which limits further CO2 uptake and increases water availability), and ozone uptake in the month following exposure. Evaluation of TEM with data from a mixed hardwood stand at the Harvard Forest shows a 5% reduction in Net Primary Productivity (NPP) as a result of observed ozone levels. At this site, the most important factor influencing the reduction of NPP in the model is the reduction of N uptake. We also ran TEM with a business-as-usual scenario for ozone during the 21st century, using a 2D atmospheric chemistry model developed at MIT. Results for the U.S. show the largest reduction of NPP throughout the transient simulation occurs in the Northeast and upper Midwest, consistent with the regions of largest ozone exposure. The reduction in carbon accumulation by terrestrial ecosystems from 123 years of ozone exposure is 1.6 Pg C (which constitutes a 10% reduction). While these results are not significant for continental-scale carbon sequestration, they may have important implications for more localized carbon budgets.

  7. Ozone induces glucose intolerance and systemic metabolic effects in young and aged brown Norway rats

    SciTech Connect

    Bass, V.; Gordon, C.J.; Jarema, K.A.; MacPhail, R.C.; Cascio, W.E.; Phillips, P.M.; Ledbetter, A.D.; Schladweiler, M.C.; Andrews, D.; Miller, D.; Doerfler, D.L.; Kodavanti, U.P.

    2013-12-15

    Air pollutants have been associated with increased diabetes in humans. We hypothesized that ozone would impair glucose homeostasis by altering insulin signaling and/or endoplasmic reticular (ER) stress in young and aged rats. One, 4, 12, and 24 month old Brown Norway (BN) rats were exposed to air or ozone, 0.25 or 1.0 ppm, 6 h/day for 2 days (acute) or 2 d/week for 13 weeks (subchronic). Additionally, 4 month old rats were exposed to air or 1.0 ppm ozone, 6 h/day for 1 or 2 days (time-course). Glucose tolerance tests (GTT) were performed immediately after exposure. Serum and tissue biomarkers were analyzed 18 h after final ozone for acute and subchronic studies, and immediately after each day of exposure in the time-course study. Age-related glucose intolerance and increases in metabolic biomarkers were apparent at baseline. Acute ozone caused hyperglycemia and glucose intolerance in rats of all ages. Ozone-induced glucose intolerance was reduced in rats exposed for 13 weeks. Acute, but not subchronic ozone increased α{sub 2}-macroglobulin, adiponectin and osteopontin. Time-course analysis indicated glucose intolerance at days 1 and 2 (2 > 1), and a recovery 18 h post ozone. Leptin increased day 1 and epinephrine at all times after ozone. Ozone tended to decrease phosphorylated insulin receptor substrate-1 in liver and adipose tissues. ER stress appeared to be the consequence of ozone induced acute metabolic impairment since transcriptional markers of ER stress increased only after 2 days of ozone. In conclusion, acute ozone exposure induces marked systemic metabolic impairments in BN rats of all ages, likely through sympathetic stimulation. - Highlights: • Air pollutants have been associated with increased diabetes in humans. • Acute ozone exposure produces profound metabolic alterations in rats. • Age influences metabolic risk factors in aging BN rats. • Acute metabolic effects are reversible and repeated exposure reduces these effects. • Ozone

  8. Ozonated olive oils and the troubles.

    PubMed

    Uysal, Bulent

    2014-01-01

    One of the commonly used methods for ozone therapy is ozonated oils. Most prominent type of used oils is extra virgin olive oil. But still, each type of unsaturated oils may be used for ozonation. There are a lot of wrong knowledge on the internet about ozonated oils and its use as well. Just like other ozone therapy studies, also the studies about ozone oils are inadequate to avoid incorrect knowledge. Current data about ozone oil and its benefits are produced by supplier who oversees financial interests and make misinformation. Despite the rapidly increasing ozone oil sales through the internet, its quality and efficacy is still controversial. Dozens of companies and web sites may be easily found to buy ozonated oil. But, very few of these products are reliable, and contain sufficiently ozonated oil. This article aimed to introduce the troubles about ozonated oils and so to inform ozonated oil users. PMID:26401346

  9. Ozonated olive oils and the troubles

    PubMed Central

    Uysal, Bulent

    2014-01-01

    One of the commonly used methods for ozone therapy is ozonated oils. Most prominent type of used oils is extra virgin olive oil. But still, each type of unsaturated oils may be used for ozonation. There are a lot of wrong knowledge on the internet about ozonated oils and its use as well. Just like other ozone therapy studies, also the studies about ozone oils are inadequate to avoid incorrect knowledge. Current data about ozone oil and its benefits are produced by supplier who oversees financial interests and make misinformation. Despite the rapidly increasing ozone oil sales through the internet, its quality and efficacy is still controversial. Dozens of companies and web sites may be easily found to buy ozonated oil. But, very few of these products are reliable, and contain sufficiently ozonated oil. This article aimed to introduce the troubles about ozonated oils and so to inform ozonated oil users. PMID:26401346

  10. Ground-level ozone in Alberta

    SciTech Connect

    Sandhu, H.S.

    1999-11-01

    This literature review on ground-level ozone in Alberta begins with introductory sections on the precursors and products of ozone formation, the chemistry and meteorology of ozone, and atmospheric ozone models. The subsequent section reviews ozone data from ambient air quality monitoring stations in Alberta. The final section discusses trends in ozone concentrations in urban and rural areas of Alberta, human and environmental health effects of ozone, proposed national ambient objectives and Canada-wide standards for ground-level ozone, and options for an ozone concentration standard for Alberta. Appendices include an outline of air pollutant monitoring methods used in Alberta, lists of monitoring stations, and tables of monitoring results for nitrogen oxides, total hydrocarbons, and volatile organic compounds at Calgary and Edmonton sites.

  11. Ground-level ozone in Alberta

    SciTech Connect

    Sandhu, H.S.

    1999-01-01

    This literature review on ground-level ozone in Alberta begins with introductory sections on the precursors and products of ozone formation, the chemistry and meteorology of ozone, and atmospheric ozone models. The subsequent section reviews ozone data from ambient air quality monitoring stations in Alberta. The final section discusses trends in ozone concentrations in urban and rural areas of Alberta, human and environmental health effects of ozone, proposed national ambient objectives and Canada-wide standards for ground-level ozone, and options for an ozone concentration standard for Alberta. Appendices include an outline of air pollutant monitoring methods used in Alberta, lists of monitoring stations, and tables of monitoring results for nitrogen oxides, total hydrocarbons, and volatile organic compounds at Calgary and Edmonton sites.

  12. A two-dimensional model with coupled dynamics, radiative transfer, and photochemistry. 2: Assessment of the response of stratospheric ozone to increased levels of CO2, N2O, CH4, and CFC

    NASA Technical Reports Server (NTRS)

    Schneider, Hans R.; Ko, Malcolm K. W.; Shia, Run-Lie; Sze, Nien-Dak

    1993-01-01

    The impact of increased levels of carbon dioxide (CO2), chlorofluorocarbons (CFCs), and other trace gases on stratospheric ozone is investigated with an interactive, two-dimensional model of gas phase chemistry, dynamics, and radiation. The scenarios considered are (1) a doubling of the CO2 concentration, (2) increases of CFCs, (3) CFC increases combined with increases of nitrous oxide (N2O) and methane CH4, and (4) the simultaneous increase of CO2, CFCs, N2O, and CH4. The radiative feedback and the effect of temperature and circulation changes are studied for each scenario. For the double CO2 calculations the tropospheric warming was specified. The CO2 doubling leads to a 3.1% increase in the global ozone content. Doubling of the CO2 concentrations would lead to a maximum cooling of about 12 C at 45 km if the ozone concentration were held fixed. The cooling of the stratosphere leads to an ozone increase with an associated increase in solar heating, reducing the maximum temperature drop by about 3 C. The CFC increase from continuous emissions at 1985 rate causes a 4.5% loss of ozone. For the combined perturbations a net loss of 1.3% is calculated. The structure of the perturbations shows a north-south asymmetry. Ozone losses (when expressed in terms of percent changes) are generally larger in the high latitudes of the southern hemisphere as a result of the eddy mixing being smaller than in the northern hemisphere. Increase of chlorine leads to ozone losses above 30 km altitude where the radiative feedback results in a cooler temperature and an ozone recovery of about one quarter of the losses predicted with a noninteractive model. In all the cases, changes in circulation are small. In the chlorine case, circulation changes reduce the calculated column depletion by about one tenth compared to offline calculations.

  13. Increased Arctic cloud longwave emissivity associated with pollution from mid-latitudes.

    PubMed

    Garrett, Timothy J; Zhao, Chuanfeng

    2006-04-01

    There is consensus among climate models that Arctic climate is particularly sensitive to anthropogenic greenhouse gases and that, over the next century, Arctic surface temperatures are projected to rise at a rate about twice the global mean. The response of Arctic surface temperatures to greenhouse gas thermal emission is modified by Northern Hemisphere synoptic meteorology and local radiative processes. Aerosols may play a contributing factor through changes to cloud radiative properties. Here we evaluate a previously suggested contribution of anthropogenic aerosols to cloud emission and surface temperatures in the Arctic. Using four years of ground-based aerosol and radiation measurements obtained near Barrow, Alaska, we show that, where thin water clouds and pollution are coincident, there is an increase in cloud longwave emissivity resulting from elevated haze levels. This results in an estimated surface warming under cloudy skies of between 3.3 and 5.2 W m(-2) or 1 and 1.6 degrees C. Arctic climate is closely tied to cloud longwave emission, but feedback mechanisms in the system are complex and the actual climate response to the described sensitivity remains to be evaluated. PMID:16598255

  14. Improving Campus Security with Increased Lighting Efficiency while Simultaneously Reducing Light Pollution

    NASA Astrophysics Data System (ADS)

    Schenk, Andrew; Miller, Dan; Martell, Eric

    2008-04-01

    Many outdoor lighting fixtures fail to enhance the security of the assets they were designed to protect; moreover, they simultaneously increase the levels of light pollution for astronomers. The problem is simple: most lighting fixtures do not properly aim the light they produce downward. In fact, up to fifty percent of the light rays escape upward, thus wasting a significant amount of energy and severely degrading the environment in which to do astronomy. To resolve these problems, I first created a scale model of Millikin University's campus and took time exposures and photometer readings from the replicas of the existing light fixtures. I then fastened improved fixtures to the scaled lamps and retook the camera exposures and photometer readings for comparison. With this information I was able to take my work full scale and physically change one of the light fixtures on campus. Finally to wrap up my project I took my findings to safety and security to show the improvement that these new fixtures represented to Millikin's safety and to its astronomy equipment.

  15. Tropospheric Ozone from the TOMS TDOT (TOMS-Direct-Ozone-in-Troposphere) Technique During SAFARI-2000

    NASA Technical Reports Server (NTRS)

    Stone, J. B.; Thompson, A. M.; Frolov, A. D.; Hudson, R. D.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    There are a number of published residual-type methods for deriving tropospheric ozone from TOMS (Total Ozone Mapping Spectrometer). The basic concept of these methods is that within a zone of constant stratospheric ozone, the tropospheric ozone column can be computed by subtracting stratospheric ozone from the TOMS Level 2 total ozone column, We used the modified-residual method for retrieving tropospheric ozone during SAFARI-2000 and found disagreements with in-situ ozone data over Africa in September 2000. Using the newly developed TDOT (TOMS-Direct-Ozone-in-Troposphere) method that uses TOMS radiances and a modified lookup table based on actual profiles during high ozone pollution periods, new maps were prepared and found to compare better to soundings over Lusaka, Zambia (15.5 S, 28 E), Nairobi and several African cities where MOZAIC aircraft operated in September 2000. The TDOT technique and comparisons are described in detail.

  16. Tropospheric ozone reduces carbon assimilation in trees: estimates from analysis of continuous flux measurements.

    PubMed

    Fares, Silvano; Vargas, Rodrigo; Detto, Matteo; Goldstein, Allen H; Karlik, John; Paoletti, Elena; Vitale, Marcello

    2013-08-01

    High ground-level ozone concentrations are typical of Mediterranean climates. Plant exposure to this oxidant is known to reduce carbon assimilation. Ozone damage has been traditionally measured through manipulative experiments that do not consider long-term exposure and propagate large uncertainty by up-scaling leaf-level observations to ecosystem-level interpretations. We analyzed long-term continuous measurements (>9 site-years at 30 min resolution) of environmental and eco-physiological parameters at three Mediterranean ecosystems: (i) forest site dominated by Pinus ponderosa in the Sierra Mountains in California, USA; (ii) forest site composed of a mixture of Quercus spp. and P. pinea in the Tyrrhenian sea coast near Rome, Italy; and (iii) orchard site of Citrus sinensis cultivated in the California Central Valley, USA. We hypothesized that higher levels of ozone concentration in the atmosphere result in a decrease in carbon assimilation by trees under field conditions. This hypothesis was tested using time series analysis such as wavelet coherence and spectral Granger causality, and complemented with multivariate linear and nonlinear statistical analyses. We found that reduction in carbon assimilation was more related to stomatal ozone deposition than to ozone concentration. The negative effects of ozone occurred within a day of exposure/uptake. Decoupling between carbon assimilation and stomatal aperture increased with the amount of ozone pollution. Up to 12-19% of the carbon assimilation reduction in P. ponderosa and in the Citrus plantation was explained by higher stomatal ozone deposition. In contrast, the Italian site did not show reductions in gross primary productivity either by ozone concentration or stomatal ozone deposition, mainly due to the lower ozone concentrations in the periurban site over the shorter period of investigation. These results highlight the importance of plant adaptation/sensitivity under field conditions, and the importance of

  17. Increase in upper tropospheric and lower stratospheric aerosol levels and its potential connection with Asian pollution

    PubMed Central

    Vernier, J-P; Fairlie, T D; Natarajan, M; Wienhold, F G; Bian, J; Martinsson, B G; Crumeyrolle, S; Thomason, L W; Bedka, K M

    2015-01-01

    Satellite observations have shown that the Asian Summer Monsoon strongly influences the upper troposphere and lower stratosphere (UTLS) aerosol morphology through its role in the formation of the Asian Tropopause Aerosol Layer (ATAL). Stratospheric Aerosol and Gas Experiment II solar occultation and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) lidar observations show that summertime UTLS Aerosol Optical Depth (AOD) between 13 and 18 km over Asia has increased by three times since the late 1990s. Here we present the first in situ balloon measurements of aerosol backscatter in the UTLS from Western China, which confirm high aerosol levels observed by CALIPSO since 2006. Aircraft in situ measurements suggest that aerosols at lower altitudes of the ATAL are largely composed of carbonaceous and sulfate materials (carbon/sulfur elemental ratio ranging from 2 to 10). Back trajectory analysis from Cloud-Aerosol Lidar with Orthogonal Polarization observations indicates that deep convection over the Indian subcontinent supplies the ATAL through the transport of pollution into the UTLS. Time series of deep convection occurrence, carbon monoxide, aerosol, temperature, and relative humidity suggest that secondary aerosol formation and growth in a cold, moist convective environment could play an important role in the formation of ATAL. Finally, radiative calculations show that the ATAL layer has exerted a short-term regional forcing at the top of the atmosphere of −0.1 W/m2 in the past 18 years. Key Points Increase of summertime upper tropospheric aerosol levels over Asia since the 1990s Upper tropospheric enhancement also observed by in situ backscatter measurements Significant regional radiative forcing of −0.1 W/m2 PMID:26691186

  18. Preface: Special Session SpS17 Light Pollution: Protecting Astronomical Sites and Increasing Global Awareness Through Education

    NASA Astrophysics Data System (ADS)

    Montmerle, Thierry

    2015-03-01

    The issue of Light Pollution was a major concern of the International Astronomical Union; during the IAU General Assembly in the city of Rio de Janeiro in 2009. A resolution was unanimously adopted (Resolution B5) to support the need to preserve the night sky and the right to see stars. With the increasing use of artificial light at night posing a growing threat to the visibility of the night sky, this Special Session at the XXVIIIth General Assembly highlighted technical aspects of astronomical site protection and the educational aspects of increasing global awareness on issues concerning light pollution.

  19. Ozone Profile Retrievals from GOME-2 UV/Visible Measurements

    NASA Astrophysics Data System (ADS)

    Liu, X.; Zoogman, P.; Chance, K.; Nowlan, C. R.

    2014-12-01

    It has been shown that adding visible measurements in the Chappuis band to ultraviolet (UV) measurements in the Hartley/Huggins bands can significantly enhance retrieval sensitivity to lower tropospheric ozone from backscattered solar radiances due to deeper photon penetration in the visible to the surface than in the ultraviolet. The first NASA Eearth Venture Instrument TEMPO (Tropospheric Emissions: Monitoring of Pollution) instrument is being developed to measure backscattered solar radiation in two channels (~290-490 and 540-740 nm) and make atmospheric pollution measurements over North America from the Geostationary orbit; the primary purpose of including the second channel is to improve lower tropospheric ozone retrieval for air quality monitoring. However, this retrieval enhancement has yet to be solidly demonstrated from existing measurements due to the weak ozone absorption in the visible and strong interference from surface reflectance. We present retrievals from GOME-2 (Global Ozone Monitoring and Experiment-2) UV and visible measurements using the SAO optimal estimation based ozone profile retrieval algorithm, to directly explore the retrieval improvement in lower tropospheric ozone from additional visible measurements. To reduce the retrieval interference from surface reflectance, we add characterization of surface spectral reflectance in the visible into the ozone profile algorithm based on existing surface reflectance spectra and MODIS (Moderate-resolution Imaging Spectroradiometer) BRDF (Bidirectional Reflectance Distribution Function) climatology. We evaluate the retrieval performance of UV/visible retrieval over the UV retrieval in terms of retrieved lower tropospheric ozone and increase in degree of free for signal (DFS) over the globe in different seasons, and we validate both retrievals against ozonesonde measurements.

  20. The role of ozone exposure in the epidemiology of asthma

    SciTech Connect

    Balmes, J.R.

    1993-12-01

    Asthma is a clinical condition characterized by intermittent respiratory symptoms, nonspecific airway hyperresponsiveness, and reversible airway obstruction. Although the pathogenesis of asthma is incompletely understood, it is clear that airway inflammation is a paramount feature of the condition. Because inhalation of ozone by normal, healthy subjects causes increased airway responsiveness and inflammation, it is somewhat surprising that most controlled human exposure studies that have involved asthmatic subjects have not shown them to be especially sensitive to ozone. The acute decrement in lung function that is the end point traditionally used to define sensitivity to ozone in these studies may be due more to neuromuscular mechanisms limiting deep inspiration than to bronchoconstriction. The frequency of asthma attacks following ozone exposures may be a more relevant end point. Epidemiologic studies, rather than controlled human exposure studies, are required to determine whether ozone pollution increases the risk of asthma exacerbations. Asthma affects approximately 10 million people in the United States and, thus, the answer to this question is of considerable public health importance. Both the prevalence and severity of asthma appear to be increasing in many countries. Although increased asthma morbidity and mortality are probably of multifactorial etiology, a contributory role of urban air pollution is plausible. The epidemiologic database to support an association between asthma and ozone exposure is limited, but the results of several studies suggest such an association. Some potential approaches to further investigation of the relationship between asthma and ozone, including those that would link controlled human exposures to population-based studies, are considered. 57 refs.

  1. RESEARCH ON IMPACT OF OZONE GENERATORS ON INDOOR AIR QUALITY (INDOOR ENVIRONMENT MANAGEMENT BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    Ozone-generating air cleaners are marketed to homeowners as well as business establishments ostensibly to remove odors and other contaminants from indoor air. A typical air cleaner consists of an ozone generator, fan, housing, and controls. Units may also employ filters to remov...

  2. Exposure assessment of air pollutants: a review on spatial heterogeneity and indoor/outdoor/personal exposure to suspended particulate matter, nitrogen dioxide and ozone

    NASA Astrophysics Data System (ADS)

    Monn, Christian

    This review describes databases of small-scale spatial variations and indoor, outdoor and personal measurements of air pollutants with the main focus on suspended particulate matter, and to a lesser extent, nitrogen dioxide and photochemical pollutants. The basic definitions and concepts of an exposure measurement are introduced as well as some study design considerations and implications of imprecise exposure measurements. Suspended particulate matter is complex with respect to particle size distributions, the chemical composition and its sources. With respect to small-scale spatial variations in urban areas, largest variations occur in the ultrafine (<0.1 μm) and the coarse mode (PM 10-2.5, resuspended dust). Secondary aerosols which contribute to the accumulation mode (0.1-2 μm) show quite homogenous spatial distribution. In general, small-scale spatial variations of PM 2.5 were described to be smaller than the spatial variations of PM 10. Recent studies in outdoor air show that ultrafine particle number counts have large spatial variations and that they are not well correlated to mass data. Sources of indoor particles are from outdoors and some specific indoor sources such as smoking and cooking for fine particles or moving of people (resuspension of dust) for coarse particles. The relationships between indoor, outdoor and personal levels are complex. The finer the particle size, the better becomes the correlation between indoor, outdoor and personal levels. Furthermore, correlations between these parameters are better in longitudinal analyses than in cross-sectional analyses. For NO 2 and O 3, the air chemistry is important. Both have considerable small-scale spatial variations within urban areas. In the absence of indoor sources such as gas appliances, NO 2 indoor/outdoor relationships are strong. For ozone, indoor levels are quite small. The study hypothesis largely determines the choice of a specific concept in exposure assessment, i.e. whether personal

  3. Long-range transport of ozone from the Los Angeles Basin: A case study

    NASA Astrophysics Data System (ADS)

    Langford, A. O.; Senff, C. J.; Alvarez, R. J.; Banta, R. M.; Hardesty, R. M.

    2010-03-01

    Airborne lidar measurements of ozone above the Los Angeles Basin on 17 July 2009 show orographic lifting of ozone from the surface to the free troposphere by the San Gabriel Mountains. Mixing ratios in excess of 100 parts-per-billion-by-volume (ppbv) were measured ˜4 km above mean sea level (ASL). These observations are in excellent agreement with published model studies, confirming that topographic venting by the so called “mountain chimney effect” is a potentially important pathway for removal of pollutants from the Los Angeles Basin. The lofting of ozone and other pollutants into the free troposphere also greatly increases the potential for long-range transport from the Basin, and trajectory calculations suggest that some of this ozone may have been transported ˜1000 km to eastern Utah and western Colorado.

  4. Growth response to a changing environment-Impacts of tropospheric ozone dose on photosynthesis of Norway spruce forests in Austria

    NASA Astrophysics Data System (ADS)

    Liu, Xiaozhen; Pietsch, Stephan; Hasenauer, Hubert

    2010-05-01

    Tropospheric ozone is an important air pollutant, although plants have active defense strategies (e.g. antioxidants), the cumulative ozone dose may lead to chronic damages to plant tissues. Ozone enters into plants through stomata and reacts with other chemicals to create toxic compounds. This affects plant photosynthesis and may reduce CO2 fixation, and consequently growth. Open top cambers (OTC) are usually used to study the effects of elevated ozone levels on photosynthesis; whereas field studies with on site occurring ozone levels are rare. A recent modelling study on Norway spruce stands in Austria exhibited trends in model errors indicating that an increase in ozone dose leads to a reduction in volume increment. This study aims to explore how different ozone doses affect photosynthesis under field conditions and may translate into growth response for 12 stands of Norway spruce, distributed along an ozone concentration gradient across Austria. A LI-6400xt photosynthesis system was utilized to collect physiological parameters including net photosynthesis, stomata conductance, internal CO2 concentration, transpiration, etc. Chlorophyll fluorescence data was collected by using a PEA chlorophyll fluorescence meter, and chlorophyll content was measured. Morphological characteristics and soil samples were also analyzed. Ozone dose to leaf tissue was calculated from external ozone concentration, the conductance of the stomata to ozone, the leaf area index and the time span of the day when ozone uptake takes place. Our results confirm that increasing cumulative ozone dose reduces maximum assimilation rate and carboxylation efficiency under field conditions. Our final goal is to quantify how far this ozone induced reduction in assimilation power ultimately translates into a growth reduction of Norway spruce in Austria.

  5. Parental stress increases the effect of traffic-related air pollution on childhood asthma incidence

    PubMed Central

    Shankardass, Ketan; McConnell, Rob; Jerrett, Michael; Milam, Joel; Richardson, Jean; Berhane, Kiros

    2009-01-01

    Exposure to traffic-related pollution (TRP) and tobacco smoke have been associated with new onset asthma in children. Psychosocial stress-related susceptibility has been proposed to explain social disparities in asthma. We investigated whether low socioeconomic status (SES) or high parental stress modified the effect of TRP and in utero tobacco smoke exposure on new onset asthma. We identified 2,497 children aged 5–9 years with no history of asthma or wheeze at study entry (2002–2003) into the Children's Health Study, a prospective cohort study in southern California. The primary outcome was parental report of doctor-diagnosed new onset asthma during 3 years of follow-up. Residential exposure to TRP was assessed using a line source dispersion model. Information about maternal smoking during pregnancy, parental education (a proxy for SES), and parental stress were collected in the study baseline questionnaire. The risk of asthma attributable to TRP was significantly higher for subjects with high parental stress (HR 1.51 across the interquartile range for TRP; 95% CI 1.16–1.96) than for subjects with low parental stress (HR 1.05, 95% CI 0.74–1.49; interaction P value 0.05). Stress also was associated with larger effects of in utero tobacco smoke. A similar pattern of increased risk of asthma was observed among children from low SES families who also were exposed to either TRP or in utero tobacco smoke. These results suggest that children from stressful households are more susceptible to the effects of TRP and in utero tobacco smoke on the development of asthma. PMID:19620729

  6. Generation of oxidative stress in human cutaneous models following in vitro ozone exposure.

    PubMed

    Cotovio, J; Onno, L; Justine, P; Lamure, S; Catroux, P

    2001-01-01

    Ozone, one of the main components of photochemical smog, represents an important source of environmental oxidative stress. The skin, being the outermost barrier of the body, is directly exposed to environmental oxidant toxicants. Skin sebum and cellular plasma membrane lipids contain polyunsaturated fatty acids which are primary targets for ozone and free radical attack induced lipid peroxides. These ozonation processes in skin can also generate aldehydes, hydroxyhydroperoxides and specific Criegee's ozonides. In order to evaluate in vitro human skin susceptibility to ozone, we have exposed cultured immortalized human keratinocytes (DK7-NR) and the reconstructed human epidermis Episkin to 10 ppm of ozone in a specific incubator. We measured the formation of protein carbonyls by an ELISA method and monitored the oxidative stress using the fluorogenic probe 2',7'-dichlorofluorescin-diacetate (DCFH-DA). Results showed a time-dependent increase of fluorescence levels (linked to oxidative stress) in both models exposed to ozone. Using this protocol, we investigated the protective potential of different products including vitamin C, a thiol derivative and a plant extract. All products dramatically reduced oxidative responses during ozone exposure. Decreases observed in fluorescence levels were between 60 and 90% as compared to non-protected controls. These results demonstrate: (a) cutaneous in vitro models are remarkably susceptible to oxidative stress generated by an environmental air pollutant as ozone, and (b) raw antioxidants, thiols and vitamin C were efficient products to prevent ozone induced cellular oxidative damage. PMID:11566563

  7. A study of interferences in ambient ozone monitors

    SciTech Connect

    Kleindienst, T.E.; McIver, C.D.; Ollison, W.M.

    1997-12-31

    Recently proposed EPA revisions to the ozone ambient air quality standards change allowable ozone levels from 120 ppbv (1-hour average) to 70-90 ppbv (8-hour average). Accordingly, the relative importance of potential interferences in currently deployed ethylene-chemiluminescence and ultraviolet (UV) absorption monitors may be increased. UV absorption monitors predominate US monitoring networks and operate in a dual channel mode, requiring a scrubber to selectively remove ozone from other UV absorbing species. However, these scrubbers may also remove aromatic species with UV absorption coefficients at 254 run comparable to ozone that could constitute potential interferants. The interference potential for only a few of these compounds has been determined. Additional representative organic precursor species likely to be present under polluted conditions (e.g., C{sub 8}-C{sub 9} aromatic hydrocarbons and their nitroaromatic and phenolic derivatives) have been tested as UV interferants in this study. The removal and reentrainment of aromatic pollutants on ozone scrubbers used in UV monitors is highly dependent on the relative humidity in the system. Raising the temperature of the scrubber does not improve its interferant transmission under dry conditions and increases the retention of potential interferants under humid conditions. Reduced sulfur compounds such as CS{sub 2} do not appear to be interferants for the chemiluminescence monitor.

  8. The effect of the sea breeze circulation on surface ozone levels at Wallops Island, Virginia

    NASA Technical Reports Server (NTRS)

    Parsons, C. L.; Williams, M. E.

    1979-01-01

    Surface measurements of windspeed, direction, and ozone concentration collected at Wallops Island, Virginia, during the summers of 1977 and 1978 are analyzed to study the effects of the dominant mesoscale sea breeze circulation on the local photochemical oxidant levels. A bimodality in the atmospheric dynamics is linked to systematic variations in ozone concentration. It is concluded that during certain phases of the two circulation modes, increased wind speed reduces the resistance of the earth's surface to the deposition of ozone, and decreased ozone concentration levels result. For other phases, light winds occur, signifying high resistance to deposition and high ozone levels. This modulation by the local dynamics is a major impediment for pollutant studies in coastal environments, especially those centering on transport, because it tends to mask other processes that may be occurring.

  9. Growth response of Pinus ponderosa seedlings and mature tree branches to acid rain and ozone exposure

    SciTech Connect

    Anderson, P.D.; Houpis, J.L.J.; Helms, J.A.

    1994-10-01

    Forests of the central and southern Sierra Nevada in California have been subjected to chronic damage by ozone and other atmospheric pollutants for the past several decades. Until recently, pollutant exposure of northern Sierra Nevada forests has been mild but increasing population and changes in land use throughout the Sacramento Valley and Sierra Nevada foothills may lead to increased pollutant damage in these forests. Although, better documented in other regions of the United States, little is known regarding the potential for acidic precipitation damage to Sierra Nevada forests. Only recently have studies directed towards understanding the potential interactive effects of ozone and acidic precipitation been undertaken. A key issue in resolving potential regional impacts of pollutants on forests is the extent to which research results can be scaled across genotypes and life-stages. Most of the pollution research to date has been performed using seedlings with varying degrees of genetic control. It is important to determine if the results obtained in such studies can be extrapolated to mature trees and to different genetic sources. In this paper, we present results from a one-year study examining the interactive effects of foliar exposure to acidic rain and ozone on the growth of ponderosa pine (Pinus ponderosa), a conifer known to be sensitive to ozone. The response to pollutants is characterized for both seedlings and mature tree branches of three genotypes grown in a common environment.

  10. Using Source Apportionment to Evaluate the Cross State Transport of Ozone in the Eastern United States

    NASA Astrophysics Data System (ADS)

    Goldberg, D. L.; Canty, T. P.; Hembeck, L.; Vinciguerra, T.; Carpenter, S. F.; Anderson, D. C.; Salawitch, R. J.; Dickerson, R. R.

    2014-12-01

    The amount of air pollution crossing state lines has great policy implications. Using the ozone source apportionment tool (OSAT) in the Comprehensive Air-Quality Model with Extensions (CAMx) version 6.10, we can quantify how much ozone is generated locally versus transported from upwind locations. Initial results show that up to 70% of the surface ozone in Maryland during poor air quality days in the summer of July 2011 can be attributed to pollution from outside of the state's borders. Modifications to the CB05 gas-phase chemistry mechanism, supported by literature recommendations and improve agreement with NASA's DISCOVER-AQ Maryland aircraft campaign, can further increase this percentage. Additionally, we show the role of upwind sources and background ozone has become increasingly important as local emissions of ozone precursors continue to drop, starting with the steep reductions imposed in 2002 in response to Maryland's State Implementation Plan submitted to EPA. This study suggests future efforts to control surface ozone must include a meaningful strategy for dealing with cross-state transport of ozone precursors.

  11. Did the widespread haze pollution over China increase during the last decade? A satellite view from space

    NASA Astrophysics Data System (ADS)

    Tao, Minghui; Chen, Liangfu; Wang, Zifeng; Wang, Jun; Tao, Jinhua; Wang, Xinhui

    2016-05-01

    Widespread haze layers usually cover China like low clouds, exerting marked influence on air quality and regional climate. With recent Collection 6 MODIS Deep Blue aerosol data in 2000–2015, we analyzed the trends of regional haze pollution and the corresponding influence of atmospheric circulation in China. Satellite observations show that regional haze pollution is mainly concentrated in northern and central China. The annual frequency of regional haze in northern China nearly doubles between 2000 and 2006, increasing from 30–50 to 80–90 days. Though there is a marked decrease in annual frequency during 2007–2009 due to both reduction of anthropogenic emissions and changes of meteorological conditions, regional pollution increases slowly but steadily after 2009, and maintains at a high level of 70–90 days except for the sudden decrease in 2015. Generally, there is a large increase in the number of regional-scale haze events during the last decade. Seasonal frequency of regional haze exhibits distinct spatial and temporal variations. The increasing winter haze events reach a peak in 2014, but decrease strongly in 2015 due partly to synoptic conditions that are favorable for dispersion. Trends of summer regional haze pollution are more sensitive to changes of atmospheric circulation. Our results indicate that the frequency of regional haze events is associated not only with the strength of atmospheric circulation, but also with its direction and position, as well as variations in anthropogenic emissions.

  12. Pollution, Health, and Avoidance Behavior: Evidence from the Ports of Los Angeles

    ERIC Educational Resources Information Center

    Moretti, Enrico; Neidell, Matthew

    2011-01-01

    A pervasive problem in estimating the costs of pollution is that optimizing individuals may compensate for increases in pollution by reducing their exposure, resulting in estimates that understate the full welfare costs. To account for this issue, measurement error, and environmental confounding, we estimate the health effects of ozone using daily…

  13. Solutions Network Formulation Report. NASA's Potential Contributions for Using Solar Ultraviolet Radiation in Conjunction with Photocatalysis for Urban Air Pollution Mitigation and Increasing Air Quality

    NASA Technical Reports Server (NTRS)

    Underwood, Lauren; Ryan, Robert E.

    2007-01-01

    This Candidate Solution is based on using NASA Earth science research on atmospheric ozone and aerosols data as a means to predict and evaluate the effectiveness of photocatalytically created surfaces (building materials like glass, tile and cement) for air pollution mitigation purposes. When these surfaces are exposed to near UV light, organic molecules, like air pollutants and smog precursors, will degrade into environmentally friendly compounds. U.S. EPA (Environmental Protection Agency) is responsible for forecasting daily air quality by using the Air Quality Index (AQI) that is provided by AIRNow. EPA is partnered with AIRNow and is responsible for calculating the AQI for five major air pollutants that are regulated by the Clean Air Act. In this Solution, UV irradiance data acquired from the satellite mission Aura and the OMI Surface UV algorithm will be used to help understand both the efficacy and efficiency of the photocatalytic decomposition process these surfaces facilitate, and their ability to reduce air pollutants. Prediction models that estimate photocatalytic function do not exist. NASA UV irradiance data will enable this capability, so that air quality agencies that are run by state and local officials can develop and implement programs that utilize photocatalysis for urban air pollution control and, enable them to make effective decisions about air pollution protection programs.

  14. 77 FR 66729 - National Oil and Hazardous Substances Pollution Contingency Plan; Revision To Increase Public...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-07

    ...EPA is taking direct final action to amend the National Oil and Hazardous Substances Pollution Contingency Plan (NCP), to acknowledge advancements in technologies used to manage and convey information to the public. Specifically, this revision will add language to EPA regulations to broaden the technology, to include computer telecommunications or other electronic means, that the lead agency......

  15. 77 FR 66783 - National Oil and Hazardous Substances Pollution Contingency Plan; Revision To Increase Public...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-07

    ... section of this Federal Register. Under Executive Order 12866 (58 FR 51735, October 4, 1993) and Executive ] Order 13563 (76 FR 3821, January 21, 2011), this proposed action is not a ``significant regulatory..., Intergovernmental relations, Penalties, Reporting and recordkeeping requirements, Superfund, Water pollution...

  16. Changes in tropospheric composition and air quality due to stratospheric ozone depletion.

    PubMed

    Solomon, Keith R; Tang, Xiaoyan; Wilson, Stephen R; Zanis, Prodromos; Bais, Alkiviadis F

    2003-01-01

    Increased UV-B through stratospheric ozone depletion leads to an increased chemical activity in the lower atmosphere (the troposphere). The effect of stratospheric ozone depletion on tropospheric ozone is small (though significant) compared to the ozone generated anthropogenically in areas already experiencing air pollution. Modeling and experimental studies suggest that the impacts of stratospheric ozone depletion on tropospheric ozone are different at different altitudes and for different chemical regimes. As a result the increase in ozone due to stratospheric ozone depletion may be greater in polluted regions. Attributable effects on concentrations are expected only in regions where local emissions make minor contributions. The vertical distribution of NOx (NO + NO2), the emission of volatile organic compounds and the abundance of water vapor, are important influencing factors. The long-term nature of stratospheric ozone depletion means that even a small increase in tropospheric ozone concentration can have a significant impact on human health and the environment. Trifluoroacetic acid (TFA) and chlorodifluoroacetic acid (CDFA) are produced by the atmospheric degradation of hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs). TFA has been measured in rain, rivers, lakes, and oceans, the ultimate sink for these and related compounds. Significant anthropogenic sources of TFA other than degradation HCFCs and HFCs have been identified. Toxicity tests under field conditions indicate that the concentrations of TFA and CDFA currently produced by the atmospheric degradation of HFCs and HCFCs do not present a risk to human health and the environment. The impact of the interaction between ozone depletion and future climate change is complex and a significant area of current research. For air quality and tropospheric composition, a range of physical parameters such as temperature, cloudiness and atmospheric transport will modify the impact of UV-B. Changes in the

  17. Effects of ozone on the pulmonary function of children

    SciTech Connect

    Bock, N.; Lippmann, M.; Lioy, P.; Munoz, A.; Speizer, F.E.

    1985-01-01

    Healthy active children, 7 to 13 years old, in a summer recreational camp were chosen as subjects to investigate the acute effects of exposure to ambient-air pollution. Pulmonary-function tests were administered at the camp on 16 days during a five week period in 1982. Ambient-air-pollution data were collected approximately 6 km from the camp. For each of the 39 children tested on six or more days, a linear regression was calculated between the peak one-hour ozone concentration for a given day and each of three functional parameters determined for the same day from the spirograms: forced vital capacity (FVC), Forced expiratory volume in 1 second (PEV1), and peak expiratory flow rate (PEFR). All mean slopes were negative, except for FVC in boys, indicating a general tendency for decreased function with increasing ozone concentration; however only PEFR mean slopes for girls and for all subjects were statistically significantly different from zero. For each of 49 children seen on four or more days, a summary weighted correlation coefficient between peak ozone level and each of the three pulmonary function parameters was calculated. As in the regression analysis, decrements in PEFR were significantly correlated with the ozone exposure. Overall, the decrements were small, approximately a 10% decrease in PEFR with an ozone exposure level of 120 ppb.

  18. The potential near-source ozone impacts of upstream oil and gas industry emissions.

    PubMed

    Olaguer, Eduardo P

    2012-08-01

    Increased drilling in urban areas overlying shale formations and its potential impact on human health through decreased air quality make it important to estimate the contribution of oil and gas activities to photochemical smog. Flares and compressor engines used in natural gas operations, for example, are large sources not only of NOx but also offormaldehyde, a hazardous air pollutant and powerful ozone precursor We used a neighborhood scale (200 m horizontal resolution) three-dimensional (3D) air dispersion model with an appropriate chemical mechanism to simulate ozone formation in the vicinity ofa hypothetical natural gas processing facility, based on accepted estimates of both regular and nonroutine emissions. The model predicts that, under average midday conditions in June, regular emissions mostly associated with compressor engines may increase ambient ozone in the Barnett Shale by more than 3 ppb beginning at about 2 km downwind of the facility, assuming there are no other major sources of ozone precursors. Flare volumes of 100,000 cubic meters per hour ofnatural gas over a period of 2 hr can also add over 3 ppb to peak 1-hr ozone somewhatfurther (>8 km) downwind, once dilution overcomes ozone titration and inhibition by large flare emissions of NOx. The additional peak ozone from the hypothetical flare can briefly exceed 10 ppb about 16 km downwind. The enhancements of ambient ozone predicted by the model are significant, given that ozone control strategy widths are of the order of a few parts per billion. Degrading the horizontal resolution of the model to 1 km spuriously enhances the simulated ozone increases by reducing the effectiveness of ozone inhibition and titration due to artificial plume dilution. PMID:22916444

  19. Role of neutrophilic inflammation in ozone-induced epithelial alterations in the nasal airways of rats

    NASA Astrophysics Data System (ADS)

    Cho, Hye Youn

    Ozone is a principal oxidant air pollutant in photochemical smog. Epithelial cells lining the centriacinar region of lung and the proximal aspects of nasal passage are primary target sites for ozone-induced injury in laboratory animals. Acute exposure of rats to high ambient concentrations of ozone (e.g., 0.5 ppm) results in neutrophilic inflammation, epithelial hyperplasia and mucous cell metaplasia (MCM) in the nasal transitional epithelium (NTE) lining the proximal nasal airways. The principal purpose of the present study was to investigate the role of pre-metaplastic cellular responses, especially neutrophilic inflammation, in the pathogenesis of ozone-induced MCM in rat NTE. For this purpose, three specific hypotheses-based whole-animal inhalation studies were conducted. Male F344/N rats were exposed in whole-body inhalation chambers to 0 (filtered air) or 0.5 ppm ozone for 1-3 days (8 h/day). Histochemical, immunochemical, molecular and morphometric techniques were used to investigate the ozone-induced cellular and molecular events in the NTE. Two in vitro studies were also conducted to examine the effects of ozone-inducible cytokines (i.e., tumor necrosis factor-alpha; TNF- a, and interleukin-6; IL-6) on mucin gene (rMuc-5AC) expression. Ozone induced a rapid increase of rMuc-5AC mRNA in nasal tissues within hours after the start of exposure. It preceded the appearance of MCM, and persisted with MCM. Ozone-induced neutrophilic inflammation accompanied the mucin gene upregulation, but was resolved when MCM first appeared in the NTE. Antibody-mediated depletion of circulating neutrophils attenuated ozone-induced MCM, although it did not affect the ozone-induced epithelial hyperplasia and mucin mRNA upregulation. In another study, it was found that preexisting neutrophilic rhinitis induced by endotoxin augmented the ozone-induced MCM. However, pre-existing rhinitis did not alter the severity of ozone-induced epithelial hyperplasia and mucin gene upregulation

  20. Aging and episodic ozone exposure in Brown Norway rats: Effects on heart rate, core temperature, pulmonary function, and expression of serum biomarkers.

    EPA Science Inventory

    Ozone (03) is an air pollutant that is associated with cardiovascular and respiratory diseases. The aged population is considered to be more sensitive to pollutants such as 03;however, relatively few studies have demonstrated increased susceptibility in aged or senescent animal m...

  1. Relative humidity: important modifier of pollutant uptake by plants

    SciTech Connect

    McLaughlin, S.B.; Taylor, G.E.

    1981-01-09

    Laboratory measurements of foliar uptake of sulfur dioxide and ozone by red kidney beans demonstrated a strong effect of relative humidity on internal pollutant dose. Foliar uptake was enhanced two- to threefold for sulfur dioxide and three- to fourfold for ozone by an increase in relative humidity from 35 to 75 percent. For the same exposure concentration, vegetation growing in humid areas (such as the eastern United States) may experience a significantly greater internal flux of pollutants than that in more arid regions. 22 references, 1 figure, 1 table.

  2. Assessment and Applications of NASA Ozone Data Products Derived from Aura OMI-MLS Satellite Measurements in Context of the GMI Chemical Transport Model

    NASA Technical Reports Server (NTRS)

    Ziemke, J. R.; Olsen, M. A.; Witte, J. C.; Douglass, A. R.; Strahan, S. E.; Wargan, K.; Liu, X.; Schoeberl, M. R.; Yang, K.; Kaplan, T. B.; Pawson, S.; Duncan, B. N.; Newman, P. A.; Bhartia, K.; Heney, M. K.

    2013-01-01

    Measurements from the Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS), both onboard the Aura spacecraft, have been used to produce daily global maps of column and profile ozone since August 2004. Here we compare and evaluate three strategies to obtain daily maps of tropospheric and stratospheric ozone from OMI and MLS measurements: trajectory mapping, direct profile retrieval, and data assimilation. Evaluation is based upon an assessment that includes validation using ozonesondes and comparisons with the Global Modeling Initiative (GMI) chemical transport model (CTM). We investigate applications of the three ozone data products from near-decadal and inter-annual timescales to day-to-day case studies. Zonally averaged inter-annual changes in tropospheric ozone from all of the products in any latitude range are of the order 1-2 Dobson Units while changes (increases) over the 8-year Aura record investigated http://eospso.gsfc.nasa.gov/atbd-category/49 vary approximately 2-4 Dobson Units. It is demonstrated that all of the ozone products can measure and monitor exceptional tropospheric ozone events including major forest fire and pollution transport events. Stratospheric ozone during the Aura record has several anomalous inter-annual events including stratospheric warming split events in the Northern Hemisphere extra-tropics that are well captured using the data assimilation ozone profile product. Data assimilation with continuous daily global coverage and vertical ozone profile information is the best of the three strategies at generating a global tropospheric and stratospheric ozone product for science applications.

  3. Drivers of the tropospheric ozone budget throughout the 21st century under the medium-high climate scenario RCP 6.0

    NASA Astrophysics Data System (ADS)

    Revell, L. E.; Tummon, F.; Stenke, A.; Sukhodolov, T.; Coulon, A.; Rozanov, E.; Garny, H.; Grewe, V.; Peter, T.

    2015-01-01

    Because tropospheric ozone is both a~greenhouse gas and harmful air pollutant, it is important to understand how anthropogenic activities may influence its abundance and distribution through the 21st century. Here, we present model simulations performed with the chemistry-climate model SOCOL, in which spatially disaggregated chemistry and transport tracers have been implemented in order to better understand the distribution and projected changes in tropospheric ozone. We examine the influences of ozone precursor emissions (nitrogen oxides (NOx), carbon monoxide (CO) and volatile organic compounds (VOCs)), climate change and stratospheric ozone recovery on the tropospheric ozone budget, in a~simulation following the climate scenario Representative Concentration Pathway (RCP) 6.0. Changes in ozone precursor emissions have the largest effect, leading to a global-mean increase in tropospheric ozone which maximises in the early 21st century at 23%. The increase is most pronounced at northern midlatitudes, due to regional emission patterns: between 1990 and 2060, northern midlatitude tropospheric ozone remains at constantly large abundances: 31% larger than in 1960. Over this 70 year period, attempts to reduce emissions in Europe and North America do not have an effect on zonally-averaged northern midlatitude ozone because of increasing emissions from Asia, together with the longevity of ozone in the troposphere. A~simulation with fixed anthropogenic ozone precursor emissions of NOx, CO and non-methane VOCs at 1960 conditions shows a 6 % increase in global-mean tropospheric ozone, and an 11% increase at northern midlatitudes. This increase maximises in the 2080s, and is mostly caused by methane, which maximises in the 2080s following RCP 6.0, and plays an important role in controlling ozone directly, and indirectly through its influence on other VOCs and CO. Enhanced flux of ozone from the stratosphere to the troposphere as well as climate change-induced enhancements in

  4. Drivers of the tropospheric ozone budget throughout the 21st century under the medium-high climate scenario RCP 6.0

    NASA Astrophysics Data System (ADS)

    Revell, L. E.; Tummon, F.; Stenke, A.; Sukhodolov, T.; Coulon, A.; Rozanov, E.; Garny, H.; Grewe, V.; Peter, T.

    2015-05-01

    Because tropospheric ozone is both a greenhouse gas and harmful air pollutant, it is important to understand how anthropogenic activities may influence its abundance and distribution through the 21st century. Here, we present model simulations performed with the chemistry-climate model SOCOL, in which spatially disaggregated chemistry and transport tracers have been implemented in order to better understand the distribution and projected changes in tropospheric ozone. We examine the influences of ozone precursor emissions (nitrogen oxides (NOx), carbon monoxide (CO) and volatile organic compounds (VOCs)), climate change (including methane effects) and stratospheric ozone recovery on the tropospheric ozone budget, in a simulation following the climate scenario Representative Concentration Pathway (RCP) 6.0 (a medium-high, and reasonably realistic climate scenario). Changes in ozone precursor emissions have the largest effect, leading to a global-mean increase in tropospheric ozone which maximizes in the early 21st century at 23% compared to 1960. The increase is most pronounced at northern midlatitudes, due to regional emission patterns: between 1990 and 2060, northern midlatitude tropospheric ozone remains at constantly large abundances: 31% larger than in 1960. Over this 70-year period, attempts to reduce emissions in Europe and North America do not have an effect on zonally averaged northern midlatitude ozone because of increasing emissions from Asia, together with the long lifetime of ozone in the troposphere. A simulation with fixed anthropogenic ozone precursor emissions of NOx, CO and non-methane VOCs at 1960 conditions shows a 6% increase in global-mean tropospheric ozone by the end of the 21st century, with an 11 % increase at northern midlatitudes. This increase maximizes in the 2080s and is mostly caused by methane, which maximizes in the 2080s following RCP 6.0, and plays an important role in controlling ozone directly, and indirectly through its

  5. Impact of greenhouse gases on the Earth's ozone layer

    NASA Astrophysics Data System (ADS)

    Zadorozhny, Alexander

    A numerical 2-D zonally averaged interactive dynamical radiative-photochemical model of the ozonosphere including aerosol physics is used to examine the role of the greenhouse gases CO2 , CH4 , and N2 O in the future long-term changes of the Earth's ozone layer, in particular in its recovery after reduction of anthropogenic discharges of chlorine and bromine compounds into the atmosphere. The model allows calculating self-consistently diabatic circulation, temperature, gaseous composition of the troposphere and stratosphere at latitudes from the South to North Poles, as well as distribution of sulphate aerosol particles and polar stratospheric clouds (PSCs) of types I and II. The scenarios of expected changes of the anthropogenic pollutants for the period from 1980 through 2050 are taken from Climate Change 2001. The processes, which determine the influence of anthropogenic growth of atmospheric abundance of the greenhouse gases on the dynamics of recovery of the Earth's ozone layer, have been studied in details. Expected cooling of the stratosphere caused by increases of greenhouse gases, most importantly CO2 , essentially influences the ozone layer by two ways: through temperature dependencies of the gas phase reaction rates and through enhancement of polar ozone depletion via increased PSC formation. The model calculations show that a weakness in efficiencies of all gas phase catalytic cycles of the ozone destruction due to cooling of the stratosphere is a dominant mechanism of the impact of the greenhouse gases on the ozone layer in Antarctic as well as at the lower latitudes. This mechanism leads to a significant acceleration of the ozone layer recovery here because of the greenhouse gases growth. On the contrary, the mechanism of the impact of the greenhouse gases on the ozone through PSC modification begins to be more effective in Arctic in comparison with the gas phase mechanism in springs after about 2020, which leads to retard the expected recovery of the

  6. When will Antarctic ozone begin to recover?

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2012-01-01

    Emissions of ozone-depleting substances have declined over recent decades, but it takes time for the ozone layer to recover. Regular measurements of ozone levels above the South Pole now stretch back 25 years. Hassler et al. analyzed these recorded ozone data to assess changes in ozone loss rates. Consistent with previous studies, they found that ozone loss rates have been stable over the past 15 years, neither increasing nor decreasing. However, they predict that, assuming future atmospheric dynamics are similar to today's, ozone loss rates will begin to decline noticeably between 2017 and 2021. (Journal of Geophysical Research-Atmospheres, doi:10.1029/2011JD016353, 2011)

  7. Simulation research on the natural degradation process of PBDEs in soil polluted by e-waste under increased concentrations of atmospheric O(3).

    PubMed

    Niu, Xiaojun; Liu, Chen; Song, Xiaofei

    2015-01-01

    There have been increased concerns regarding the effect of polybrominated diphenyl ethers (PBDEs) on the environment. These compounds are widely utilized by the electronics industry and also function as fire retardants. More data on the basic characteristics of PBDEs are needed to better understand and used to describe their environmental fate. The aim of this study was to investigate the degradation of BDE-209 with different degrees of bromination under changes in the atmospheric environment. BDE-209 was able to be removed quickly due to the strong oxidizing ability of ozone in the atmosphere environment. Less-brominated BDEs, ranging from BDE-28 to BDE-183, were formed progressively, and the reaction of ozone gradually occupied the main position along with an increase in ozone flow time. Degradation reaction rates of PBDEs increased with increasing ozone concentration but decreased with increasing soil depth. Under UV-irradiation, BDE-209 was quickly transformed into less-brominated BDEs and the photodegradation reactions were faster than solar irradiation. The conditions of high ground temperature in the summer and alkaline soil were both contributors to the degradation of PB