Science.gov

Sample records for increases vascular permeability

  1. Atrial natriuretic factor increases vascular permeability

    SciTech Connect

    Lockette, W.; Brennaman, B. )

    1990-12-01

    An increase in central blood volume in microgravity may result in increased plasma levels of atrial natriuretic factor (ANF). Since elevations in plasma ANF are found in clinical syndromes associated with edema, and since space motion sickness induced by microgravity is associated with an increase in central blood volume and facial edema, we determined whether ANF increases capillary permeability to plasma protein. Conscious, bilaterally nephrectomized male rats were infused with either saline, ANF + saline, or hexamethonium + saline over 2 h following bolus injections of 125I-albumin and 14C-dextran of similar molecular size. Blood pressure was monitored and serial determinations of hematocrits were made. Animals infused with 1.0 micrograms.kg-1.min-1 ANF had significantly higher hematocrits than animals infused with saline vehicle. Infusion of ANF increased the extravasation of 125I-albumin, but not 14C-dextran from the intravascular compartment. ANF also induced a depressor response in rats, but the change in blood pressure did not account for changes in capillary permeability to albumin; similar depressor responses induced by hexamethonium were not accompanied by increased extravasation of albumin from the intravascular compartment. ANF may decrease plasma volume by increasing permeability to albumin, and this effect of ANF may account for some of the signs and symptoms of space motion sickness.

  2. Atrial natriuretic factor increases vascular permeability

    NASA Technical Reports Server (NTRS)

    Lockette, Warren; Brennaman, Bruce

    1990-01-01

    An increase in central blood volume in microgravity may result in increased plasma levels of atrial natriuretic factor (ANF). In this study, it was determined whether ANF increases capillary permeability to plasma protein. Conscious, bilaterally nephrectomized male rats were infused with either saline, ANF + saline, or hexamethonium + saline over 2 h following bolus injections of (I-125)-albumin and (C-14)-dextran of similar molecular size. Blood pressure was monitored, and serial determinations of hematocrits were made. Animals infused with 1.0 microg/kg per min ANF had significantly higher hematocrits than animals infused with saline vehicle. Infusion of ANF increased the extravasation of (I-125)-albumin, but not (C-14)-dextran from the intravascular compartment. ANF also induced a depressor response in rats, but the change in blood pressure did not account for changes in capillary permeability to albumin; similar depressor responses induced by hexamethonium were not accompanied by increased extravasation of albumin from the intravascular compartment. ANF may decrease plasma volume by increasing permeability to albumin, and this effect of ANF may account for some of the signs and symptoms of space motion sickness.

  3. Increased Vascular permeability produced by human platelet granule cationic extract

    PubMed Central

    Nachman, Ralph L.; Weksler, Babette; Ferris, Barbara

    1970-01-01

    A cationic protein extract obtained from isolated human platelet granules increased vascular permeability in mouse and rabbit skin. The permeability-enhancing effect was not inhibited by soybean trypsin and pancreatic trypsin inhibitor, methylsergide maleate, carboxypeptidase B, and C[unk]1 inactivator. Permeability-enhancing activity was blocked by prior treatment of challenged animals with antihistamine. The nondializable relatively heat-stable cationic granule protein extract possessed potent mastocytolytic activity. The experiments described suggest that human platelets exert a permeability-enhancing effect by lysosomal release of cationic proteins which cause histamine release from adjacent tissue mast cells. Images PMID:4391559

  4. Betacellulin Induces Increased Retinal Vascular Permeability in Mice

    PubMed Central

    Anand-Apte, Bela; Ebrahem, Quteba; Cutler, Alecia; Farage, Eric; Sugimoto, Masahiko; Hollyfield, Joe; Folkman, Judah

    2010-01-01

    Background Diabetic maculopathy, the leading cause of vision loss in patients with type 2 diabetes, is characterized by hyper-permeability of retinal blood vessels with subsequent formation of macular edema and hard exudates. The degree of hyperglycemia and duration of diabetes have been suggested to be good predictors of retinal complications. Intervention studies have determined that while intensive treatment of diabetes reduced the development of proliferative diabetic retinopathy it was associated with a two to three-fold increased risk of severe hypoglycemia. Thus we hypothesized the need to identify downstream glycemic targets, which induce retinal vascular permeability that could be targeted therapeutically without the additional risks associated with intensive treatment of the hyperglycemia. Betacellulin is a 32 kD member of the epidermal growth factor family with mitogenic properties for the retinal pigment epithelial cells. This led us to hypothesize a role for betacellulin in the retinal vascular complications associated with diabetes. Methods and Findings In this study, using a mouse model of diabetes, we demonstrate that diabetic mice have accentuated retinal vascular permeability with a concomitant increased expression of a cleaved soluble form of betacellulin (s-Btc) in the retina. Intravitreal injection of soluble betacellulin induced retinal vascular permeability in normoglycemic and hyperglycemic mice. Western blot analysis of retinas from patients with diabetic retinopathy showed an increase in the active soluble form of betacellulin. In addition, an increase in the levels of A disintegrin and metalloproteinase (ADAM)-10 which plays a role in the cleavage of betacellulin was seen in the retinas of diabetic mice and humans. Conclusions These results suggest that excessive amounts of betacellulin in the retina may contribute to the pathogenesis of diabetic macular edema. PMID:20976146

  5. Endotoxin increases pulmonary vascular protein permeability in the dog

    SciTech Connect

    Welsh, C.H.; Dauber, I.M.; Weil, J.V.

    1986-10-01

    Endotoxin increases pulmonary vascular permeability consistently in some species but fails to reliably cause injury in the dog. We wondered whether this phenomenon depended on the method of injury assessment, as others have relied on edema measurement; we quantified injury by monitoring the rate of extravascular protein accumulation. /sup 113m/In-labeled protein and /sup 99m/Tc-labeled erythrocytes were injected into anesthetized dogs and monitored by an externally placed lung probe. A protein leak index, the rate of extravascular protein accumulation, was derived from the rate of increase in lung protein counts corrected for changes in intravascular protein activity. After administration of Salmonella enteriditis endotoxin (4 micrograms/kg), the protein leak index was elevated 2.5-fold (41.1 +/- 4.6 X 10(-4) min-1) compared with control (16.0 +/- 2.8 X 10(-4) min-1). In contrast, wet-to-dry weight ratios failed to increase after endotoxin (4.6 +/- 0.8 vs. control values of 4.2 +/- 0.5 g/g dry bloodless lung). However, we observed that endotoxin increased lung dry weight (per unit body weight), which may have attenuated the change in wet-to-dry weight ratios. To determine whether low microvascular pressures following endotoxin attenuated edema formation, we increased pulmonary arterial wedge pressures in five dogs by saline infusion, which caused an increase in wet-to-dry weight ratios following endotoxin but no change in the five controls. We conclude that low dose endotoxin causes pulmonary vascular protein leak in the dog while edema formation is minimal or absent.

  6. Increased Sheep Lung Vascular Permeability Caused by Pseudomonas Bacteremia

    PubMed Central

    Brigham, Kenneth L.; Woolverton, William C.; Blake, Lynn H.; Staub, Norman C.

    1974-01-01

    In awake sheep, we compared the responses of lung lymph flow and lymph and plasma protein concentrations to steady state elevations of pulmonary vascular pressures made by inflating a left atrial balloon with those after an intravenous infusion of 105-1010Pseudomonas aeruginosa. Lymph flow increased when pressure was increased, but lymph-plasma protein concentration ratios always fell and lymph protein flow (lymph flow × lymph protein concentration) increased only slightly. After Pseudomonas, sheep had transient chills, fever, leukopenia, hypoxemia, increased pulmonary artery pressure and lymph flow and decreased left atrial pressure and lymph protein concentration, 3-5 h after Pseudomonas, when vascular pressures and lymph protein concentrations had returned to near base line, lymph flow increased further to 3-10 times base line and remained at a steady level for many hours. During this steady state period, lymph-plasma protein concentration ratios were similar to base line and lymph protein flow was higher than in the increased pressure studies. Two sheep died of pulmonary edema 7 and 9 h after Pseudomonas, but in 16 studies, five other sheep appeared well during the period of highest lymph flow and all variables returned to base line in 24-72 h. Six serial indicator dilution lung water studies in five sheep changed insignificantly from base line after Pseudomonas. Postmortem lung water was high in the two sheep dead of pulmonary edema and one other, but six sheep killed 1-6 h after Pseudomonas had normal lung water. Because of the clear difference between the effects of increased pressure and Pseudomonas on lymphplasma protein concentration ratios and lymph protein flow, we conclude that Pseudomonas causes a prolonged increase in lung vessel permeability to protein. Because we saw lung lymph flow as high as 10 times base line without pulmonary edema, we conclude that lung lymphatics are a sensitive high-capacity mechanism for removing excess filtered fluid. An

  7. A Factor Capable of Increasing Vascular Permeability Present in Lymph Node Cells

    PubMed Central

    Willoughby, D. A.; Boughton, Barbara; Schild, H. O.

    1963-01-01

    A soluble extract from guinea-pig lymph node cells (LPF) has been found to increase vascular permeability in the skin of the rat. The active substance has been differentiated from histamine, 5-hydroxytryptamine, bradykinin, substance P, kallikrein and the globulin permeability factors from rat and guinea-pig serum by means of parallel quantitative assays. LPF was present in both sensitized and non-sensitized guinea-pig lymph node cells and in lymph node cells from rats and mice. LPF also increased vascular permeability in the skin of guinea-pigs, mice and rabbits. The possible importance of this factor in the mechanism of the delayed reactions is discussed. ImagesFIG. 1FIG. 3 PMID:14069726

  8. Vascular permeability, vascular hyperpermeability and angiogenesis

    PubMed Central

    Nagy, Janice A.; Benjamin, Laura; Zeng, Huiyan; Dvorak, Ann M.

    2008-01-01

    The vascular system has the critical function of supplying tissues with nutrients and clearing waste products. To accomplish these goals, the vasculature must be sufficiently permeable to allow the free, bidirectional passage of small molecules and gases and, to a lesser extent, of plasma proteins. Physiologists and many vascular biologists differ as to the definition of vascular permeability and the proper methodology for its measurement. We review these conflicting views, finding that both provide useful but complementary information. Vascular permeability by any measure is dramatically increased in acute and chronic inflammation, cancer, and wound healing. This hyperpermeability is mediated by acute or chronic exposure to vascular permeabilizing agents, particularly vascular permeability factor/vascular endothelial growth factor (VPF/VEGF, VEGF-A). We demonstrate that three distinctly different types of vascular permeability can be distinguished, based on the different types of microvessels involved, the composition of the extravasate, and the anatomic pathways by which molecules of different size cross-vascular endothelium. These are the basal vascular permeability (BVP) of normal tissues, the acute vascular hyperpermeability (AVH) that occurs in response to a single, brief exposure to VEGF-A or other vascular permeabilizing agents, and the chronic vascular hyperpermeability (CVH) that characterizes pathological angiogenesis. Finally, we list the numerous (at least 25) gene products that different authors have found to affect vascular permeability in variously engineered mice and classify them with respect to their participation, as far as possible, in BVP, AVH and CVH. Further work will be required to elucidate the signaling pathways by which each of these molecules, and others likely to be discovered, mediate the different types of vascular permeability. PMID:18293091

  9. Intra-arterial delivery of triolein emulsion increases vascular permeability in skeletal muscles of rabbits

    PubMed Central

    Kim, Hak Jin; Kim, Yong Woo; Lee, In Sook; Song, Jong Woon; Jeong, Yeon Joo; Choi, Seon Hee; Choi, Kyung Un; Suh, Kuen Tak; Cho, Byung Mann

    2009-01-01

    Background To test the hypothesis that triolein emulsion will increase vascular permeability of skeletal muscle. Methods Triolein emulsion was infused into the superficial femoral artery in rabbits (triolein group, n = 12). As a control, saline was infused (saline group, n = 18). Pre- and post-contrast T1-weighted MR images were obtained two hours after infusion. The MR images were qualitatively and quantitatively evaluated by assessing the contrast enhancement of the ipsilateral muscles. Histologic examination was performed in all rabbits. Results The ipsilateral muscles of the rabbits in the triolein group showed contrast enhancement, as opposed to in the ipsilateral muscles of the rabbits in the saline group. The contrast enhancement of the lesions was statistically significant (p < 0.001). Histologic findings showed that most examination areas of the triolein and saline groups had a normal appearance. Conclusion Rabbit thigh muscle revealed significantly increased vascular permeability with triolein emulsion; this was clearly demonstrated on the postcontrast MR images. PMID:19604410

  10. Increased pulmonary vascular permeability as a cause of re-expansion edema in rabbits

    SciTech Connect

    Pavlin, D.J.; Nessly, M.L.; Cheney, F.W.

    1981-01-01

    In order to study the mechanism(s) underlying re-expansion edema, we measured the concentration of labeled albumin (RISA) in the extravascular, extracellular water (EVECW) of the lung as a measure of pulmonary vascular permeability. Re-expansion edema was first induced by rapid re-expansion of rabbit lungs that had been collapsed for 1 wk by pneumothorax. The RISA in EVECW was expressed as a fraction of its plasma concentration: (RISA)L/(RISA)PL. The volume of EVECW (ml/gm dry lung) was measured using a /sup 24/Na indicator. Results in re-expansion edema were compared with normal control lungs and with oleic acid edema as a model of permeability edema. In re-expanded lungs, EVECW (3.41 +/- SD 1.24 ml/g) and (RISA)L/(RISA)PL 0.84 +/- SD 0.15) were significantly increased when compared with normal control lungs (2.25 +/- 0.41 ml/g and 0.51 +/- 0.20, respectively). Results in oleic acid edema (5.66 +/- 2.23 ml/g and 0.84 +/- 0.23) were similar to re-expansion edema. This suggested that re-expansion edema is due to increased pulmonary vascular permeability caused by mechanical stresses applied to the lung during re-expansion.

  11. Suilysin Stimulates the Release of Heparin Binding Protein from Neutrophils and Increases Vascular Permeability in Mice

    PubMed Central

    Chen, Shaolong; Xie, Wenlong; Wu, Kai; Li, Ping; Ren, Zhiqiang; Li, Lin; Yuan, Yuan; Zhang, Chunmao; Zheng, Yuling; Lv, Qingyu; Jiang, Hua; Jiang, Yongqiang

    2016-01-01

    Most of the deaths that occurred during two large outbreaks of Streptococcus suis infections in 1998 and 2005 in China were caused by streptococcal toxic shock syndrome (STSS), which is characterized by increased vascular permeability. Heparin-binding protein (HBP) is thought to mediate the vascular leakage. The purpose of this study was to investigate the detailed mechanism underlying the release of HBP and the vascular leakage induced by S. suis. Significantly higher serum levels of HBP were detected in Chinese patients with STSS than in patients with meningitis or healthy controls. Suilysin (SLY) is an exotoxin secreted by the highly virulent strain 05ZYH33, and it stimulated the release of HBP from the polymorphonuclear neutrophils and mediated vascular leakage in mice. The release of HBP induced by SLY was caused by a calcium influx-dependent degranulation. Analyses using a pharmacological approach revealed that the release of HBP induced by SLY was related to Toll-like receptor 4, p38 mitogen-activated protein kinase, and the 1-phosphatidylinositol 3-kinase pathway. It was also dependent on a G protein-coupled seven-membrane spanning receptor. The results of this study provide new insights into the vascular leakage in STSS associated with non-Group A streptococci, which could lead to the discovery of potential therapeutic targets for STSS associated with S. suis. PMID:27617009

  12. Suilysin Stimulates the Release of Heparin Binding Protein from Neutrophils and Increases Vascular Permeability in Mice.

    PubMed

    Chen, Shaolong; Xie, Wenlong; Wu, Kai; Li, Ping; Ren, Zhiqiang; Li, Lin; Yuan, Yuan; Zhang, Chunmao; Zheng, Yuling; Lv, Qingyu; Jiang, Hua; Jiang, Yongqiang

    2016-01-01

    Most of the deaths that occurred during two large outbreaks of Streptococcus suis infections in 1998 and 2005 in China were caused by streptococcal toxic shock syndrome (STSS), which is characterized by increased vascular permeability. Heparin-binding protein (HBP) is thought to mediate the vascular leakage. The purpose of this study was to investigate the detailed mechanism underlying the release of HBP and the vascular leakage induced by S. suis. Significantly higher serum levels of HBP were detected in Chinese patients with STSS than in patients with meningitis or healthy controls. Suilysin (SLY) is an exotoxin secreted by the highly virulent strain 05ZYH33, and it stimulated the release of HBP from the polymorphonuclear neutrophils and mediated vascular leakage in mice. The release of HBP induced by SLY was caused by a calcium influx-dependent degranulation. Analyses using a pharmacological approach revealed that the release of HBP induced by SLY was related to Toll-like receptor 4, p38 mitogen-activated protein kinase, and the 1-phosphatidylinositol 3-kinase pathway. It was also dependent on a G protein-coupled seven-membrane spanning receptor. The results of this study provide new insights into the vascular leakage in STSS associated with non-Group A streptococci, which could lead to the discovery of potential therapeutic targets for STSS associated with S. suis. PMID:27617009

  13. Resistance of essential fatty acid-deficient rats to endotoxin-induced increases in vascular permeability

    SciTech Connect

    Li, E.J.; Cook, J.A.; Spicer, K.M.; Wise, W.C.; Rokach, J.; Halushka, P.V. )

    1990-06-01

    Resistance to endotoxin in essential fatty acid-deficient (EFAD) rats is associated with reduced synthesis of certain arachidonic acid metabolites. It was hypothesized that EFAD rats would manifest decreased vascular permeability changes during endotoxemia as a consequence of reduced arachidonic acid metabolism. To test this hypothesis, changes in hematocrit (HCT) and mesenteric localization rate of technetium-labeled human serum albumin (99mTc-HSA) and red blood cells (99mTc-RBC) were assessed in EFAD and normal rats using gamma-camera imaging. Thirty minutes after Salmonella enteritidis endotoxin, EFAD rats exhibited less hemoconcentration as determined by % HCT than normal rats. Endotoxin caused a less severe change in permeability index in the splanchnic region in EFAD rats than in normal rats (1.2 +/- 0.6 x 10(-3)min-1 vs. 4.9 +/- 1.7 x 10(-3)min-1 respectively, P less than 0.05). In contrast to 99mTc-HSA, mesenteric localization of 99mTc-RBC was not changed by endotoxin in control or EFAD rats. Supplementation with ethyl-arachidonic acid did not enhance susceptibility of EFAD rats to endotoxin-induced splanchnic permeability to 99mTc-HSA. Leukotrienes have been implicated as mediators of increased vascular permeability in endotoxin shock. Since LTC3 formation has been reported to be increased in EFA deficiency, we hypothesized that LTC3 may be less potent than LTC4. Thus the effect of LTC3 on mean arterial pressure and permeability was compared to LTC4 in normal rats. LTC3-induced increases in peak mean arterial pressure were less than LTC4 at 10 micrograms/kg (39 +/- 5 mm Hg vs. 58 +/- 4 mm Hg respectively, P less than 0.05) and at 20 micrograms/kg (56 +/- 4 mm Hg vs. 75 +/- 2 mm Hg respectively, P less than 0.05). LY171883 (30 mg/kg), an LTD4/E4 receptor antagonist, attenuated the pressor effect of LTC4, LTD4, and LTC3.

  14. Bothrops lanceolatus (Fer de lance) venom induces oedema formation and increases vascular permeability in the mouse hind paw.

    PubMed

    de Araújo, A L; de Souza, A O; da Cruz-Höfling, M A; Flores, C A; Bon, C

    2000-02-01

    The ability of snake venoms to increase vascular permeability and to induce oedema through the release of pharmacologically active substances is well known. We have studied the oedema and vascular permeability induced by Bothrops lanceolatus venom in male Swiss white mice. Paw oedema was induced by the subplantar injection of B. lanceolatus venom (125-1000 ng/paw) and was quantified as the increase in paw weight. Changes in vascular permeability were assessed by measuring the amount of Evans blue dye extravasation. The oedema and the increase in vascular permeability were maximal within 2 h and had resolved after 24 h. The administration of the vasodilator iloprost (20 ng/paw) immediately after B. lanceolatus venom potentiated the oedema and the increase in vascular permeability by approximately four-fold. Pretreating the mice with indomethacin, dexamethasone, NDGA or BW A4C inhibited the venom-induced oedema and the increase in vascular permeability. In contrast, histamine, serotonin and PAF-acether antagonists (mepyramine, cyproheptadine and WEB 2086, respectively) were ineffective. Histological examination showed that B. lanceolatus venom (250 ng and 500 ng/paw) caused thickening of the inner dermal layers which was accompanied by extensive intercellular spaces indicative of oedema. In addition, there was a marked infiltration of inflammatory cells, particularly neutrophils, into the underlying muscle layer. The latter, however, remained morphologically unaffected during the 3 h of observation. Venom doses larger than 500 ng/paw produced intense haemorrhage. These results indicate that B. lanceolatus venom induces oedema and increases vascular permeability in the mouse hind paw. The principal mediators of this inflammatory response are cyclooxygenase and lipoxygenase products. PMID:10665802

  15. Shed GP of Ebola Virus Triggers Immune Activation and Increased Vascular Permeability

    PubMed Central

    Escudero-Pérez, Beatriz; Volchkova, Valentina A.; Dolnik, Olga; Lawrence, Philip; Volchkov, Viktor E.

    2014-01-01

    During Ebola virus (EBOV) infection a significant amount of surface glycoprotein GP is shed from infected cells in a soluble form due to cleavage by cellular metalloprotease TACE. Shed GP and non-structural secreted glycoprotein sGP, both expressed from the same GP gene, have been detected in the blood of human patients and experimentally infected animals. In this study we demonstrate that shed GP could play a particular role during EBOV infection. In effect it binds and activates non-infected dendritic cells and macrophages inducing the secretion of pro- and anti-inflammatory cytokines (TNFα, IL1β, IL6, IL8, IL12p40, and IL1-RA, IL10). Activation of these cells by shed GP correlates with the increase in surface expression of co-stimulatory molecules CD40, CD80, CD83 and CD86. Contrary to shed GP, secreted sGP activates neither DC nor macrophages while it could bind DCs. In this study, we show that shed GP activity is likely mediated through cellular toll-like receptor 4 (TLR4) and is dependent on GP glycosylation. Treatment of cells with anti-TLR4 antibody completely abolishes shed GP-induced activation of cells. We also demonstrate that shed GP activity is negated upon addition of mannose-binding sera lectin MBL, a molecule known to interact with sugar arrays present on the surface of different microorganisms. Furthermore, we highlight the ability of shed GP to affect endothelial cell function both directly and indirectly, demonstrating the interplay between shed GP, systemic cytokine release and increased vascular permeability. In conclusion, shed GP released from virus-infected cells could activate non-infected DCs and macrophages causing the massive release of pro- and anti-inflammatory cytokines and effect vascular permeability. These activities could be at the heart of the excessive and dysregulated inflammatory host reactions to infection and thus contribute to high virus pathogenicity. PMID:25412102

  16. Cardiopulmonary bypass increases pulmonary microvascular permeability through the Src kinase pathway: Involvement of caveolin-1 and vascular endothelial cadherin

    PubMed Central

    ZHANG, JUNWEN; JIANG, ZHAOLEI; BAO, CHUNRONG; MEI, JU; ZHU, JIAQUAN

    2016-01-01

    Changes in pulmonary microvascular permeability following cardiopulmonary bypass (CPB) and the underlying mechanisms have not yet been established. Therefore, the aim of the present study was to elucidate the alterations in pulmonary microvascular permeability following CPB and the underlying mechanism. The pulmonary microvascular permeability was measured using Evans Blue dye (EBD) exclusion, and the neutrophil infiltration and proinflammatory cytokine secretion was investigated. In addition, the activation of Src kinase and the phosphorylation of caveolin-1 and vascular endothelial cadherin (VE-cadherin) was examined. The results revealed that CPB increased pulmonary microvascular leakage, neutrophil count and proinflammatory cytokines in the bronchoalveolar lavage fluid, and activated Src kinase. The administration of PP2, an inhibitor of Src kinase, decreased the activation of Src kinase and attenuated the increase in pulmonary microvascular permeability observed following CPB. Two important proteins associated with vascular permeability, caveolin-1 and VE-cadherin, were significantly activated at 24 h in the lung tissues following CPB, which correlated with the alterations in pulmonary microvascular permeability and Src kinase. PP2 administration inhibited their activation, suggesting that they are downstream factors of Src kinase activation. The data indicated that the Src kinase pathway increased pulmonary microvascular permeability following CPB, and the activation of caveolin-1 and VE-cadherin may be involved. Inhibition of this pathway may provide a potential therapy for acute lung injury following cardiac surgery. PMID:26847917

  17. Arsenite induces endothelial cell permeability increase through a reactive oxygen species-vascular endothelial growth factor pathway.

    PubMed

    Bao, Lingzhi; Shi, Honglian

    2010-11-15

    As a potent environmental oxidative stressor, arsenic exposure has been reported to exacerbate cardiovascular diseases and increase vascular endothelial cell monolayer permeability. However, the underlying mechanism of this effect is not well understood. In this paper, we test our hypothesis that reactive oxygen species (ROS)-induced vascular endothelial growth factor (VEGF) expression may play an important role in an arsenic-caused increase of endothelial cell monolayer permeability. The mouse brain vascular endothelial cell bEnd3 monolayer was exposed to arsenite for 1, 3, and 6 days. The monolayer permeability, VEGF protein release, and ROS generation were determined. In addition, VE-cadherin and zonula occludens-1 (ZO-1), two membrane structure proteins, were immunostained to elucidate the effects of arsenite on the cell-cell junction. The roles of ROS and VEGF in arsenite-induced permeability was determined by inhibiting ROS with antioxidants and immuno-depleting VEGF with a VEGF antibody. We observed that arsenite increased bEnd3 monolayer permeability, elevated the production of cellular ROS, and increased VEGF release. VE-cadherin and ZO-1 disruptions were also found in cells treated with arsenite. Furthermore, both antioxidant (N-acetyl cysteine and tempol) and the VEGF antibody treatments significantly lowered the arsenite-induced permeability of the bEnd3 monolayer as well as VEGF expression. VE-cadherin and ZO-1 disruptions were also diminished by N-acetyl cysteine and the VEGF antibody. Our data suggest that the increase in VEGF expression caused by ROS may play an important role in the arsenite-induced increase in endothelial cell permeability. PMID:20954712

  18. siRNA-induced caveolin-1 knockdown in mice increases lung vascular permeability via the junctional pathway.

    PubMed

    Miyawaki-Shimizu, Kayo; Predescu, Dan; Shimizu, Jun; Broman, Michael; Predescu, Sanda; Malik, Asrar B

    2006-02-01

    Caveolin-1, the principal integral membrane protein of caveolae, has been implicated in regulating the structural integrity of caveolae, vesicular trafficking, and signal transduction. Although the functions of caveolin-1 are beginning to be explored in caveolin-1-/- mice, these results are confounded by unknown compensatory mechanisms and the development of pulmonary hypertension, cardiomyopathy, and lung fibrosis. To address the role of caveolin-1 in regulating lung vascular permeability, in the present study we used small interfering RNA (siRNA) to knock down caveolin-1 expression in mouse lung endothelia in vivo. Intravenous injection of siRNA against caveolin-1 mRNA incorporated in liposomes selectively reduced the expression of caveolin-1 by approximately 90% within 96 h of injection compared with wild-type mice. We observed the concomitant disappearance of caveolae in lung vessel endothelia and dilated interendothelial junctions (IEJs) as well as increased lung vascular permeability to albumin via IEJs. The reduced caveolin-1 expression also resulted in increased plasma nitric oxide concentration. The nitric oxide synthase inhibitor L-NAME, in part, blocked the increased vascular albumin permeability. These morphological and functional effects of caveolin-1 knockdown were reversible within 168 h after siRNA injection, corresponding to the restoration of caveolin-1 expression. Thus our results demonstrate the essential requirement of caveolin-1 in mediating the formation of caveolae in endothelial cells in vivo and in negatively regulating IEJ permeability. PMID:16183667

  19. Prazosin treatment suppresses increased vascular permeability in both acute and passively transferred experimental autoimmune encephalomyelitis in the lewis rat

    SciTech Connect

    Goldmuntz, E.A.; Brosnan, C.F.; Norton, W.T.

    1986-12-01

    Prazosin, an antagonist of the ..cap alpha../sub 1/-adrenoceptor, has been found to suppress the clinical and histologic expression of experimental autoimmune encephalomyelitis (EAE) in the Lewis rat. This effect appears to be specific for the ..cap alpha../sub 1/-receptor. To determine the effect of this drug on vascular permeability to serum proteins and inflammatory cells, leakage of serum proteins into the central nervous system (CNS) was measured with (/sup 125/I)albumin, and quantitation of cellular inflammation was determined by an estimation of total DNA. The results show that in both actively induced and passively transferred models of the disease, treatment with prazosin significantly suppresses leakage of serum proteins into the CNS but does not significantly suppress the increase of DNA. The results of the (/sup 125/I)albumin studies additionally support the conclusion that the extent of vascular permeability to serum proteins in the spinal cord is a significant correlate of clinical disease. The results of the DNA estimation were at variance with the histologic evidence of cellular infiltration. The authors conclude that treatment with prazosin has a significant effect on the development of vascular edema in EAE. These results additionally validate a role for the adrenergic receptor in the development of EAE, and support the hypothesis that the primary site of action of prazosin is on the vascular ..cap alpha../sub 1/-adrenoceptor.

  20. Measuring Vascular Permeability In Vivo.

    PubMed

    Meijer, Eelco F J; Baish, James W; Padera, Timothy P; Fukumura, Dai

    2016-01-01

    Over the past decades, in vivo vascular permeability measurements have provided significant insight into vascular functions in physiological and pathophysiological conditions such as the response to pro- and anti-angiogenic signaling, abnormality of tumor vasculature and its normalization, and delivery and efficacy of therapeutic agents. Different approaches for vascular permeability measurements have been established. Here, we describe and discuss a conventional 2D imaging method to measure vascular permeability, which was originally documented by Gerlowski and Jain in 1986 (Microvasc Res 31:288-305, 1986) and further developed by Yuan et al. in the early 1990s (Microvasc Res 45:269-289, 1993; Cancer Res 54:352-3356, 1994), and our recently developed 3D imaging method, which advances the approach originally described by Brown et al. in 2001 (Nat Med 7:864-868, 2001). PMID:27581015

  1. Angiomodulin, a marker of cancer vasculature, is upregulated by vascular endothelial growth factor and increases vascular permeability as a ligand of integrin αvβ3

    PubMed Central

    Komiya, Eriko; Sato, Hiroki; Watanabe, Naoko; Ise, Marii; Higashi, Shouichi; Miyagi, Yohei; Miyazaki, Kaoru

    2014-01-01

    Angiomodulin (AGM) is a member of insulin-like growth factor binding protein (IGFBP) superfamily and often called IGFBP-rP1 or IGFBP-7. AGM was originally identified as a tumor-derived cell adhesion factor, which was highly accumulated in blood vessels of human cancer tissues. AGM is also overexpressed in cancer-associated fibroblasts (CAFs) and activates fibroblasts. However, some studies have shown tumor-suppressing activity of AGM. To understand the roles of AGM in cancer progression, we here investigated the expression of AGM in benign and invasive breast cancers and its functions in cancer vasculature. Immunohistochemical analysis showed that AGM was highly expressed in cancer vasculature even in ductal carcinoma in situ (DCIS) as compared to normal vasculature, while its expression in CAFs was more prominent in invasive carcinomas than DCIS. In vitro analyses showed that AGM was strongly induced by vascular endothelial cell growth factor (VEGF) in vascular endothelial cells. Although AGM stimulated neither the growth nor migration of endothelial cells, it supported efficient adhesion of endothelial cells. Integrin αvβ3 was identified as a novel major receptor for AGM in vascular endothelial cells. AGM retracted endothelial cells by inducing actin stress fibers and loosened their VE-cadherin-mediated intercellular junction. Consequently, AGM increased vascular permeability both in vitro and in vivo. Furthermore, AGM and integrin αvβ3 were highly expressed and colocalized in cancer vasculature. These results suggest that AGM cooperates with VEGF to induce the aberrant functions of cancer vasculature as a ligand of integrin αvβ3. PMID:24737780

  2. Vascular Permeability and Drug Delivery in Cancers

    PubMed Central

    Azzi, Sandy; Hebda, Jagoda K.; Gavard, Julie

    2013-01-01

    The endothelial barrier strictly maintains vascular and tissue homeostasis, and therefore modulates many physiological processes such as angiogenesis, immune responses, and dynamic exchanges throughout organs. Consequently, alteration of this finely tuned function may have devastating consequences for the organism. This is particularly obvious in cancers, where a disorganized and leaky blood vessel network irrigates solid tumors. In this context, vascular permeability drives tumor-induced angiogenesis, blood flow disturbances, inflammatory cell infiltration, and tumor cell extravasation. This can directly restrain the efficacy of conventional therapies by limiting intravenous drug delivery. Indeed, for more effective anti-angiogenic therapies, it is now accepted that not only should excessive angiogenesis be alleviated, but also that the tumor vasculature needs to be normalized. Recovery of normal state vasculature requires diminishing hyperpermeability, increasing pericyte coverage, and restoring the basement membrane, to subsequently reduce hypoxia, and interstitial fluid pressure. In this review, we will introduce how vascular permeability accompanies tumor progression and, as a collateral damage, impacts on efficient drug delivery. The molecular mechanisms involved in tumor-driven vascular permeability will next be detailed, with a particular focus on the main factors produced by tumor cells, especially the emblematic vascular endothelial growth factor. Finally, new perspectives in cancer therapy will be presented, centered on the use of anti-permeability factors and normalization agents. PMID:23967403

  3. Seismic waves increase permeability.

    PubMed

    Elkhoury, Jean E; Brodsky, Emily E; Agnew, Duncan C

    2006-06-29

    Earthquakes have been observed to affect hydrological systems in a variety of ways--water well levels can change dramatically, streams can become fuller and spring discharges can increase at the time of earthquakes. Distant earthquakes may even increase the permeability in faults. Most of these hydrological observations can be explained by some form of permeability increase. Here we use the response of water well levels to solid Earth tides to measure permeability over a 20-year period. At the time of each of seven earthquakes in Southern California, we observe transient changes of up to 24 degrees in the phase of the water level response to the dilatational volumetric strain of the semidiurnal tidal components of wells at the Piñon Flat Observatory in Southern California. After the earthquakes, the phase gradually returns to the background value at a rate of less than 0.1 degrees per day. We use a model of axisymmetric flow driven by an imposed head oscillation through a single, laterally extensive, confined, homogeneous and isotropic aquifer to relate the phase response to aquifer properties. We interpret the changes in phase response as due to changes in permeability. At the time of the earthquakes, the permeability at the site increases by a factor as high as three. The permeability increase depends roughly linearly on the amplitude of seismic-wave peak ground velocity in the range of 0.21-2.1 cm s(-1). Such permeability increases are of interest to hydrologists and oil reservoir engineers as they affect fluid flow and might determine long-term evolution of hydrological and oil-bearing systems. They may also be interesting to seismologists, as the resulting pore pressure changes can affect earthquakes by changing normal stresses on faults. PMID:16810253

  4. Ozone-induced bronchial hyperresponsiveness in the rat is not accompanied by neutrophil influx or increased vascular permeability in the trachea

    SciTech Connect

    Evans, T.W.; Brokaw, J.J.; Chung, K.F.; Nadel, J.A.; McDonald, D.M.

    1988-07-01

    We determined whether ozone-induced bronchial hyperresponsiveness in the rat is accompanied by neutrophil influx or increased vascular permeability in the trachea. Three groups of female Long-Evans rats were studied. One group was exposed to 4 ppm ozone for 2 h and studied immediately thereafter, another group was similarly exposed but was not studied until 24 h after the ozone exposure, and a third group consisted of control rats that breathed room air. Increases in total pulmonary resistance caused by acetylcholine aerosol were measured to assess bronchial responsiveness in these 3 groups. In parallel studies, neutrophil influx into the tracheal mucosa was quantified by counting cells within whole mounts of tracheas that were treated histochemically to stain the myeloperoxidase in neutrophils, and tracheal vascular permeability was quantified by measuring the amount of Evans blue dye extravasated into the trachea. In the rats studied immediately after the ozone exposure, the concentration of acetylcholine required to increase total pulmonary resistance to three-fold the baseline value was only 6% of that required in the controls. In the rats studied 24 h after the ozone exposure, this provocative acetylcholine concentration was not significantly different from that of the controls. Neither the number of neutrophils in the tracheal mucosa nor the amount of Evans blue dye extravasated into the trachea was significantly different from the corresponding control values at either time. We conclude that rats exposed to ozone develop bronchial hyperresponsiveness without detectable neutrophil influx or increased vascular permeability in the trachea.

  5. Pre-B cell colony enhancing factor (PBEF/NAMPT/Visfatin) and vascular endothelial growth factor (VEGF) cooperate to increase the permeability of the human placental amnion

    PubMed Central

    Astern, J.M.; Collier, A.C.; Kendal-Wright, C.E.

    2012-01-01

    Fluid efflux across the region of the amnion overlying the placenta is an essential component of the intramembranous absorption pathway that maintains amniotic fluid volume homeostasis. Dysregulation of this pathway may result in adverse pregnancy outcomes, however the factors controlling amnion permeability are unknown. Here, we report a novel mechanism that increases placental amnion permeability. Pre-B Cell Colony Enhancing Factor (PBEF) is a stress-responsive cytokine expressed by the human amnion, and is known to induce Vascular Endothelial Growth Factor (VEGF) production by other cell types. Interestingly, VEGF is up-regulated in the ovine amnion when intramembranous absorption is augmented. In this study, we show that PBEF induced VEGF secretion by primary human amniotic epithelial cells (AEC) derived from the placental amnion, as well as from the reflected amnion that lines the remainder of the gestational sac. Further, PBEF treatment led to the increased expression of VEGFR2 in placental AEC, but not reflected AEC. To test the hypothesis that PBEF and VEGF increase placental amnion permeability, we monitored the transfer of 2′,7′-dichlorofluorescein (DCF) from the fetal to the maternal side of human amnion explants. A treatment regimen including both PBEF and VEGF increased the rate of DCF transfer across the placental amnion, but not the reflected amnion. In summary, our results suggest that by augmenting VEGFR2 expression in the placental amnion, PBEF primes the tissue for a VEGF-mediated increase in permeability. This mechanism may have important implications in amniotic fluid volume control throughout gestation. PMID:23151382

  6. Vascular Endothelial Growth Factor Increases during Blood-Brain Barrier-Enhanced Permeability Caused by Phoneutria nigriventer Spider Venom

    PubMed Central

    Mendonça, Monique C. P.; Soares, Edilene S.; Stávale, Leila M.; Kalapothakis, Evanguedes; Cruz-Höfling, Maria Alice

    2014-01-01

    Phoneutria nigriventer spider accidental envenomation provokes neurotoxic manifestations, which when critical, results in epileptic-like episodes. In rats, P. nigriventer venom (PNV) causes blood-brain barrier breakdown (BBBb). The PNV-induced excitotoxicity results from disturbances on Na+, K+ and Ca2+ channels and glutamate handling. The vascular endothelial growth factor (VEGF), beyond its angiogenic effect, also, interferes on synaptic physiology by affecting the same ion channels and protects neurons from excitotoxicity. However, it is unknown whether VEGF expression is altered following PNV envenomation. We found that adult and neonates rats injected with PNV showed immediate neurotoxic manifestations which paralleled with endothelial occludin, β-catenin, and laminin downregulation indicative of BBBb. In neonate rats, VEGF, VEGF mRNA, and Flt-1 receptors, glutamate decarboxylase, and calbindin-D28k increased in Purkinje neurons, while, in adult rats, the BBBb paralleled with VEGF mRNA, Flk-1, and calbindin-D28k increases and Flt-1 decreases. Statistically, the variable age had a role in such differences, which might be due to age-related unequal maturation of blood-brain barrier (BBB) and thus differential cross-signaling among components of the glial neurovascular unit. The concurrent increases in the VEGF/Flt-1/Flk-1 system in the cerebellar neuron cells and the BBBb following PNV exposure might imply a cytokine modulation of neuronal excitability consequent to homeostatic perturbations induced by ion channels-acting PNV neuropeptides. Whether such modulation represents neuroprotection needs further investigation. PMID:25247186

  7. The Cytokine Response of U937-Derived Macrophages Infected through Antibody-Dependent Enhancement of Dengue Virus Disrupts Cell Apical-Junction Complexes and Increases Vascular Permeability

    PubMed Central

    Puerta-Guardo, Henry; Raya-Sandino, Arturo; González-Mariscal, Lorenza; Rosales, Victor H.; Ayala-Dávila, José; Chávez-Mungía, Bibiana; Martínez-Fong, Daniel; Medina, Fernando

    2013-01-01

    Severe dengue (SD) is a life-threatening complication of dengue that includes vascular permeability syndrome (VPS) and respiratory distress. Secondary infections are considered a risk factor for developing SD, presumably through a mechanism called antibody-dependent enhancement (ADE). Despite extensive studies, the molecular bases of how ADE contributes to SD and VPS are largely unknown. This work compares the cytokine responses of differentiated U937 human monocytic cells infected directly with dengue virus (DENV) or in the presence of enhancing concentrations of a humanized monoclonal antibody recognizing protein E (ADE-DENV infection). Using a cytometric bead assay, ADE-DENV-infected cells were found to produce significantly higher levels of the proinflammatory cytokines interleukin 6 (IL-6), IL-12p70, and tumor necrosis factor alpha (TNF-α), as well as prostaglandin E2 (PGE2), than cells directly infected. The capacity of conditioned supernatants (conditioned medium [CM]) to disrupt tight junctions (TJs) in MDCK cell cultures was evaluated. Exposure of MDCK cell monolayers to CM collected from ADE-DENV-infected cells (ADE-CM) but not from cells infected directly led to a rapid loss of transepithelial electrical resistance (TER) and to delocalization and degradation of apical-junction complex proteins. Depletion of either TNF-α, IL-6, or IL-12p70 from CM from ADE-DENV-infected cells fully reverted the disrupting effect on TJs. Remarkably, mice injected intraperitoneally with ADE-CM showed increased vascular permeability in sera and lungs, as indicated by an Evans blue quantification assay. These results indicate that the cytokine response of U937-derived macrophages to ADE-DENV infection shows an increased capacity to disturb TJs, while results obtained with the mouse model suggest that such a response may be related to the vascular plasma leakage characteristic of SD. PMID:23616663

  8. Tiam1 and Rac1 are required for platelet-activating factor-induced endothelial junctional disassembly and increase in vascular permeability.

    PubMed

    Knezevic, Ivana I; Predescu, Sanda A; Neamu, Radu F; Gorovoy, Matvey S; Knezevic, Nebojsa M; Easington, Cordus; Malik, Asrar B; Predescu, Dan N

    2009-02-20

    It is known that platelet-activating factor (PAF) induces severe endothelial barrier leakiness, but the signaling mechanisms remain unclear. Here, using a wide range of biochemical and morphological approaches applied in both mouse models and cultured endothelial cells, we addressed the mechanisms of PAF-induced disruption of interendothelial junctions (IEJs) and of increased endothelial permeability. The formation of interendothelial gaps filled with filopodia and lamellipodia is the cellular event responsible for the disruption of endothelial barrier. We observed that PAF ligation of its receptor induced the activation of the Rho GTPase Rac1. Following PAF exposure, both Rac1 and its guanine nucleotide exchange factor Tiam1 were found associated with a membrane fraction from which they co-immunoprecipitated with PAF receptor. In the same time frame with Tiam1-Rac1 translocation, the junctional proteins ZO-1 and VE-cadherin were relocated from the IEJs, and formation of numerous interendothelial gaps was recorded. Notably, the response was independent of myosin light chain phosphorylation and thus distinct from other mediators, such as histamine and thrombin. The changes in actin status are driven by the PAF-induced localized actin polymerization as a consequence of Rac1 translocation and activation. Tiam1 was required for the activation of Rac1, actin polymerization, relocation of junctional associated proteins, and disruption of IEJs. Thus, PAF-induced IEJ disruption and increased endothelial permeability requires the activation of a Tiam1-Rac1 signaling module, suggesting a novel therapeutic target against increased vascular permeability associated with inflammatory diseases. PMID:19095647

  9. Tiam1 and Rac1 Are Required for Platelet-activating Factor-induced Endothelial Junctional Disassembly and Increase in Vascular Permeability*

    PubMed Central

    Knezevic, Ivana I.; Predescu, Sanda A.; Neamu, Radu F.; Gorovoy, Matvey S.; Knezevic, Nebojsa M.; Easington, Cordus; Malik, Asrar B.; Predescu, Dan N.

    2009-01-01

    It is known that platelet-activating factor (PAF) induces severe endothelial barrier leakiness, but the signaling mechanisms remain unclear. Here, using a wide range of biochemical and morphological approaches applied in both mouse models and cultured endothelial cells, we addressed the mechanisms of PAF-induced disruption of interendothelial junctions (IEJs) and of increased endothelial permeability. The formation of interendothelial gaps filled with filopodia and lamellipodia is the cellular event responsible for the disruption of endothelial barrier. We observed that PAF ligation of its receptor induced the activation of the Rho GTPase Rac1. Following PAF exposure, both Rac1 and its guanine nucleotide exchange factor Tiam1 were found associated with a membrane fraction from which they co-immunoprecipitated with PAF receptor. In the same time frame with Tiam1-Rac1 translocation, the junctional proteins ZO-1 and VE-cadherin were relocated from the IEJs, and formation of numerous interendothelial gaps was recorded. Notably, the response was independent of myosin light chain phosphorylation and thus distinct from other mediators, such as histamine and thrombin. The changes in actin status are driven by the PAF-induced localized actin polymerization as a consequence of Rac1 translocation and activation. Tiam1 was required for the activation of Rac1, actin polymerization, relocation of junctional associated proteins, and disruption of IEJs. Thus, PAF-induced IEJ disruption and increased endothelial permeability requires the activation of a Tiam1-Rac1 signaling module, suggesting a novel therapeutic target against increased vascular permeability associated with inflammatory diseases. PMID:19095647

  10. Control of vascular permeability by adhesion molecules.

    PubMed

    Sarelius, Ingrid H; Glading, Angela J

    2015-01-01

    Vascular permeability is a vital function of the circulatory system that is regulated in large part by the limited flux of solutes, water, and cells through the endothelial cell layer. One major pathway through this barrier is via the inter-endothelial junction, which is driven by the regulation of cadherin-based adhesions. The endothelium also forms attachments with surrounding proteins and cells via 2 classes of adhesion molecules, the integrins and IgCAMs. Integrins and IgCAMs propagate activation of multiple downstream signals that potentially impact cadherin adhesion. Here we discuss the known contributions of integrin and IgCAM signaling to the regulation of cadherin adhesion stability, endothelial barrier function, and vascular permeability. Emphasis is placed on known and prospective crosstalk signaling mechanisms between integrins, the IgCAMs- ICAM-1 and PECAM-1, and inter-endothelial cadherin adhesions, as potential strategic signaling nodes for multipartite regulation of cadherin adhesion. PMID:25838987

  11. Monitoring pulmonary vascular permeability using radiolabeled transferrin

    SciTech Connect

    Basran, G.S.; Hardy, J.G.

    1988-07-01

    A simple, noninvasive technique for monitoring pulmonary vascular permeability in patients in critical care units is discussed. High vascular permeability is observed in patients with clinically defined adult respiratory distress syndrome (ARDS) but not in patients with hydrostatic pulmonary edema or in patients with minor pulmonary insults who are considered to be at risk of developing ARDS. The technique has been used in the field of therapeutics and pharmacology to test the effects of the putative antipermeability agents methylprednisolone and terbutaline sulfate. There appears to be a good correlation between the acute inhibitory effect of either drug on transferrin exudation and patient prognosis. Thus, a byproduct of such drug studies may be an index of survival in patients with established ARDS.

  12. Regulation of Vascular Permeability by Sphingosine 1-Phosphate

    PubMed Central

    Wang, Lichun; Dudek, Steven M.

    2009-01-01

    A significant and sustained increase in vascular permeability is a hallmark of acute inflammatory diseases such as acute lung injury (ALI) and sepsis and is an essential component of tumor metastasis, angiogenesis, and atherosclerosis. Sphingosine 1-phosphate (S1P), an endogenous bioactive lipid produced in many cell types, regulates endothelial barrier function by activation of its G-protein coupled receptor SIP1. S1P enhances vascular barrier function through a series of profound events initiated by SIP1 ligation with subsequent downstream activation of the Rho family of small GTPases, cytoskeletal reorganization, adherens junction and tight junction assembly, and focal adhesion formation. Furthermore, recent studies have identified transactivation of SIP1 signaling by other barrier enhancing agents as a common mechanism for promoting endothelial barrier function. This review summarizes the state of our current knowledge about the mechanisms through which the S1P/SIP1 axis reduces vascular permeability, which remains an area of active investigation that will hopefully produce novel therapeutic agents in the near future. PMID:18973762

  13. Semaphorin3A elevates vascular permeability and contributes to cerebral ischemia-induced brain damage

    PubMed Central

    Hou, Sheng Tao; Nilchi, Ladan; Li, Xuesheng; Gangaraju, Sandhya; Jiang, Susan X.; Aylsworth, Amy; Monette, Robert; Slinn, Jacqueline

    2015-01-01

    Semaphorin 3A (Sema3A) increased significantly in mouse brain following cerebral ischemia. However, the role of Sema3A in stroke brain remains unknown. Our aim was to determine wether Sema3A functions as a vascular permeability factor and contributes to ischemic brain damage. Recombinant Sema3A injected intradermally to mouse skin, or stereotactically into the cerebral cortex, caused dose- and time-dependent increases in vascular permeability, with a degree comparable to that caused by injection of a known vascular permeability factor vascular endothelial growth factor receptors (VEGF). Application of Sema3A to cultured endothelial cells caused disorganization of F-actin stress fibre bundles and increased endothelial monolayer permeability, confirming Sema3A as a permeability factor. Sema3A-mediated F-actin changes in endothelial cells were through binding to the neuropilin2/VEGFR1 receptor complex, which in turn directly activates Mical2, a F-actin modulator. Down-regulation of Mical2, using specific siRNA, alleviated Sema3A-induced F-actin disorganization, cellular morphology changes and endothelial permeability. Importantly, ablation of Sema3A expression, cerebrovascular permeability and brain damage were significantly reduced in response to transient middle cerebral artery occlusion (tMCAO) and in a mouse model of cerebral ischemia/haemorrhagic transformation. Together, these studies demonstrated that Sema3A is a key mediator of cerebrovascular permeability and contributes to brain damage caused by cerebral ischemia. PMID:25601765

  14. Pre-B cell colony enhancing factor (PBEF/NAMPT/Visfatin) and vascular endothelial growth factor (VEGF) cooperate to increase the permeability of the human placental amnion.

    PubMed

    Astern, J M; Collier, A C; Kendal-Wright, C E

    2013-01-01

    Fluid efflux across the region of the amnion overlying the placenta is an essential component of the intramembranous absorption pathway that maintains amniotic fluid volume homeostasis. Dysregulation of this pathway may result in adverse pregnancy outcomes, however the factors controlling amnion permeability are unknown. Here, we report a novel mechanism that increases placental amnion permeability. Pre-B Cell Colony Enhancing Factor (PBEF) is a stress-responsive cytokine expressed by the human amnion, and is known to induce Vascular Endothelial Growth Factor (VEGF) production by other cell types. Interestingly, VEGF is up-regulated in the ovine amnion when intramembranous absorption is augmented. In this study, we show that PBEF induced VEGF secretion by primary human amniotic epithelial cells (AEC) derived from the placental amnion, as well as from the reflected amnion that lines the remainder of the gestational sac. Further, PBEF treatment led to the increased expression of VEGFR2 in placental AEC, but not reflected AEC. To test the hypothesis that PBEF and VEGF increase placental amnion permeability, we monitored the transfer of 2',7'-dichlorofluorescein (DCF) from the fetal to the maternal side of human amnion explants. A treatment regimen including both PBEF and VEGF increased the rate of DCF transfer across the placental amnion, but not the reflected amnion. In summary, our results suggest that by augmenting VEGFR2 expression in the placental amnion, PBEF primes the tissue for a VEGF-mediated increase in permeability. This mechanism may have important implications in amniotic fluid volume control throughout gestation. PMID:23151382

  15. Increased endothelial cell permeability in endoglin-deficient cells.

    PubMed

    Jerkic, Mirjana; Letarte, Michelle

    2015-09-01

    Endoglin (ENG) is a TGF-β superfamily coreceptor essential for vascular endothelium integrity. ENG mutations lead to a vascular dysplasia associated with frequent hemorrhages in multiple organs, whereas ENG null mouse embryos die at midgestation with impaired heart development and leaky vasculature. ENG interacts with several proteins involved in cell adhesion, and we postulated that it regulates vascular permeability. The current study assessed the permeability of ENG homozygous null (Eng(-/-)), heterozygous (Eng(+/-)), and normal (Eng(+/+)) mouse embryonic endothelial cell (EC) lines. Permeability, measured by passage of fluorescent dextran through EC monolayers, was increased 2.9- and 1.7-fold for Eng(-/-) and Eng(+/-) ECs, respectively, compared to control ECs and was not increased by TGF-β1 or VEGF. Prolonged starvation increased Eng(-/-) EC permeability by 3.7-fold with no effect on control ECs; neutrophils transmigrated faster through Eng(-/-) than Eng(+/+) monolayers. Using a pull-down assay, we demonstrate that Ras homolog gene family (Rho) A is constitutively active in Eng(-/-) and Eng(+/-) ECs. We show that the endothelial barrier destabilizing factor thrombospondin-1 and its receptor-like protein tyrosine phosphatase are increased, whereas stabilizing factors VEGF receptor 2, vascular endothelial-cadherin, p21-activated kinase, and Ras-related C3 botulinum toxin substrate 2 are decreased in Eng(-/-) cells. Our findings indicate that ENG deficiency leads to EC hyperpermeability through constitutive activation of RhoA and destabilization of endothelial barrier function. PMID:25972355

  16. Spatiotemporal Dysfunction of the Vascular Permeability Barrier in Transgenic Mice with Sickle Cell Disease

    PubMed Central

    Ghosh, Samit; Tan, Fang; Ofori-Acquah, Solomon F.

    2012-01-01

    Sickle cell disease (SCD) is characterized by chronic intravascular hemolysis that generates excess cell-free hemoglobin in the blood circulation. Hemoglobin causes multiple endothelial dysfunctions including increased vascular permeability, impaired reactivity to vasoactive agonists, and increased adhesion of leukocytes to the endothelium. While the adhesive and vasomotor defects of SCD associated with cell-free hemoglobin are well defined, the vascular permeability phenotype remains poorly appreciated. We addressed this issue in two widely used and clinically relevant mouse models of SCD. We discovered that the endothelial barrier is normal in most organs in the young but deteriorates with aging particularly in the lung. Indeed, middle-aged sickle mice developed pulmonary edema revealing for the first time similarities in the chronic permeability phenotypes of the lung in mice and humans with SCD. Intravenous administration of lysed red blood cells into the circulation of sickle mice increased vascular permeability significantly in the lung without impacting permeability in other organs. Thus, increased vascular permeability is an endothelial dysfunction of SCD with the barrier in the lung likely the most vulnerable to acute inflammation. PMID:22778926

  17. Resistin increases monolayer permeability of human coronary artery endothelial cells.

    PubMed

    Jamaluddin, Md Saha; Yan, Shaoyu; Lü, Jianming; Liang, Zhengdong; Yao, Qizhi; Chen, Changyi

    2013-01-01

    Resistin has been linked to obesity, insulin resistance, atherosclerosis, and the development of cardiovascular disease. Nevertheless, the effects and the molecular mechanisms of resistin on endothelial permeability, a key event in the development of atherosclerosis, inflammation, and vascular disease, are largely unknown. In order to determine the effect of resistin on endothelial permeability, human coronary artery endothelial cells (HCAECs) were treated with clinically relevant concentrations of resistin and the endothelial permeability was measured using the Transwell system with a Texas-Red-labeled dextran tracer. The permeability of HCAEC monolayers treated with resistin (80 ng/mL) was 51% higher than the permeability of control monolayers (P<0.05). The mRNA levels of tight junction proteins zonula occludens-1 (ZO-1) and occludin in resistin-treated cells were 37% and 42% lower, respectively, than the corresponding levels in untreated cells. The protein levels of these molecules in resistin-treated cells were significantly reduced by 35% and 37%, respectively (P<0.05), as shown by flow cytometry and Western blot analysis. Superoxide dismutase (SOD) mimetic MnTBAP effectively blocked the resistin-mediated reduction of ZO-1 and occludin levels in HCAECs. In addition, superoxide anion production was increased from 21% (untreated cells) to 55% (cells treated with 40 ng/mL resistin), and 64% (resistin, 80 mg/mL) (P<0.05). The natural antioxidant Ginkgolide A effectively inhibited resistin-induced increase in permeability and the increase in superoxide anion production in HCAECs. Furthermore, resistin treatment significantly activated p38 MAPK, but not ERK1/2. Pretreatment of HCAECs with a p38 inhibitor effectively blocked resistin-induced permeability. These results provide new evidence that resistin may contribute to the vascular lesion formation via increasing endothelial permeability through the mechanism of oxidative stress and the activation of p38 MAPK. PMID

  18. Resistin Increases Monolayer Permeability of Human Coronary Artery Endothelial Cells

    PubMed Central

    Jamaluddin, Md Saha; Yan, Shaoyu; Lü, Jianming; Liang, Zhengdong; Yao, Qizhi; Chen, Changyi

    2013-01-01

    Resistin has been linked to obesity, insulin resistance, atherosclerosis, and the development of cardiovascular disease. Nevertheless, the effects and the molecular mechanisms of resistin on endothelial permeability, a key event in the development of atherosclerosis, inflammation, and vascular disease, are largely unknown. In order to determine the effect of resistin on endothelial permeability, human coronary artery endothelial cells (HCAECs) were treated with clinically relevant concentrations of resistin and the endothelial permeability was measured using the Transwell system with a Texas-Red-labeled dextran tracer. The permeability of HCAEC monolayers treated with resistin (80 ng/mL) was 51% higher than the permeability of control monolayers (P<0.05). The mRNA levels of tight junction proteins zonula occludens-1 (ZO-1) and occludin in resistin-treated cells were 37% and 42% lower, respectively, than the corresponding levels in untreated cells. The protein levels of these molecules in resistin-treated cells were significantly reduced by 35% and 37%, respectively (P<0.05), as shown by flow cytometry and Western blot analysis. Superoxide dismutase (SOD) mimetic MnTBAP effectively blocked the resistin-mediated reduction of ZO-1 and occludin levels in HCAECs. In addition, superoxide anion production was increased from 21% (untreated cells) to 55% (cells treated with 40 ng/mL resistin), and 64% (resistin, 80 mg/mL) (P<0.05). The natural antioxidant Ginkgolide A effectively inhibited resistin-induced increase in permeability and the increase in superoxide anion production in HCAECs. Furthermore, resistin treatment significantly activated p38 MAPK, but not ERK1/2. Pretreatment of HCAECs with a p38 inhibitor effectively blocked resistin-induced permeability. These results provide new evidence that resistin may contribute to the vascular lesion formation via increasing endothelial permeability through the mechanism of oxidative stress and the activation of p38 MAPK. PMID

  19. Rhubarb Antagonizes Matrix Metalloproteinase-9-induced Vascular Endothelial Permeability

    PubMed Central

    Cui, Yun-Liang; Zhang, Sheng; Tian, Zhao-Tao; Lin, Zhao-Fen; Chen, De-Chang

    2016-01-01

    Background: Intact endothelial structure and function are critical for maintaining microcirculatory homeostasis. Dysfunction of the latter is an underlying cause of various organ pathologies. In a previous study, we showed that rhubarb, a traditional Chinese medicine, protected intestinal mucosal microvascular endothelial cells in rats with metastasizing septicemia. In this study, we investigated the effects and mechanisms of rhubarb on matrix metalloproteinase-9 (MMP9)-induced vascular endothelial (VE) permeability. Methods: Rhubarb monomers were extracted and purified by a series of chromatography approaches. The identity of these monomers was analyzed by hydrogen-1 nuclear magnetic resonance (NMR), carbon-13 NMR, and distortionless enhancement by polarization transfer magnetic resonance spectroscopy. We established a human umbilical vein endothelial cell (HUVEC) monolayer on a Transwell insert. We measured the HUVEC permeability, proliferation, and the secretion of VE-cadherin into culture medium using fluorescein isothiocyanate-dextran assay, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay, and enzyme-linked immunosorbent assay, respectively, in response to treatment with MMP9 and/or rhubarb monomers. Results: A total of 21 rhubarb monomers were extracted and identified. MMP9 significantly increased the permeability of the HUVEC monolayer, which was significantly reduced by five individual rhubarb monomer (emodin, 3,8-dihydroxy-1-methyl-anthraquinone-2-carboxylic acid, 1-O-caffeoyl-2-(4-hydroxyl-O-cinnamoyl)-β-D-glucose, daucosterol linoleate, and rhein) or a combination of all five monomers (1 μmol/L for each monomer). Mechanistically, the five-monomer mixture at 1 μmol/L promoted HUVEC proliferation. In addition, MMP9 stimulated the secretion of VE-cadherin into the culture medium, which was significantly inhibited by the five-monomer mixture. Conclusions: The rhubarb mixture of emodin, 3,8-dihydroxy-1-methyl-anthraquinone-2

  20. Strategies for improving chemotherapeutic delivery to solid tumors mediated by vascular permeability modulation

    NASA Astrophysics Data System (ADS)

    Roy Chaudhuri, Tista

    An essential mode of distribution of blood-borne chemotherapeutic agents within a solid tumor is via the micro-circulation. Poor tumor perfusion, because of a lack of functional vasculature or a lack of microvessels, as well as low tumor vascular permeability, can prevent adequate deposition of even low molecular-weight agents into the tumor. The modulation of tumor vascular function and density can provides numerous strategies for improving intratumor deposition of chemotherapeutic agents. Here we investigated strategies to improve drug delivery to two tumor types that share in common poor drug delivery, but differ in the underlying cause. First, in an angiogenesis-driven brain tumor model of Glioblastoma, the vascular permeability barrier, along with poorly-functional vasculature, hinders drug delivery. A strategy of nanoparticle-based tumor 'priming' to attack the vascular permeability barrier, employing sterically stabilized liposomal doxorubicin (SSL-DXR), was investigated. Functional and histological evaluation of tumor vasculature revealed that after an initial period of depressed vascular permeability and vascular pruning 3--4 days after SSL-DXR administration, vascular permeability and perfusion were restored and then elevated after 5--7 days. As a result of tumor priming, deposition of subsequently-administered nanoparticles was enhanced, and the efficacy of temozolomide (TMZ), if administered during the window of elevated permeability, was increased. The sequenced regimen resulted in a persistent reduction of the tumor proliferative index and a 40% suppression of tumor volume, compared to animals that received both agents simultaneously. Second, in a hypovascular, pancreatic ductal adenocarcinoma model, disruption of tumor-stromal communication via sonic hedgehog (sHH) signaling pathway inhibition mediated an indirect vascular proliferation and a more than 2-fold increase in intratumor nanoparticle deposition. Enhanced delivery of SSL-DXR in tumors pre

  1. Effects of Extremely Low Frequency Electromagnetic Fields on Vascular Permeability of Circumventricular Organs in the Adult Rat

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Mercado, Y. K.; Cañedo-Dorantes, L.; Bañuelos-Pineda, J.; Serrano-Luna, G.; Feria-Velasco, A.

    2008-08-01

    The present work deals with the effects of extremely low frequency electromagnetic fields (ELF-EMF) on blood vessels permeability to non liposoluble substances of the circumventricular organs (CVO) of adult rats. Male Wistar adult rats were exposed to ELF-EMF and vascular permeability to colloidal carbon was investigated with the use of histological techniques. Results were compared to corresponding data from sham-exposed and control groups of animals. Exposure to ELF-EMF increased the CVO vascular permeability to colloidal carbon intravascularly injected, particularly in the subfornical organ, the median eminence, the pineal gland and the area postrema.

  2. Intima modifier locus 2 controls endothelial cell activation and vascular permeability

    PubMed Central

    Smolock, Elaine M.; Burke, Ryan M.; Wang, Chenjing; Thomas, Tamlyn; Batchu, Sri N.; Qiu, Xing; Zettel, Martha; Fujiwara, Keigi; Berk, Bradford C.

    2014-01-01

    Carotid intima formation is a significant risk factor for cardiovascular disease. C3H/FeJ (C3H/F) and SJL/J (SJL) inbred mouse strains differ in susceptibility to immune and vascular traits. Using a congenic approach we demonstrated that the Intima modifier 2 (Im2) locus on chromosome 11 regulates leukocyte infiltration. We sought to determine whether inflammation was due to changes in circulating immune cells or activation of vascular wall cells in genetically pure Im2 (C3H/F.SJL.11.1) mice. Complete blood counts showed no differences in circulating monocytes between C3H/F and C3H/F.SJL.11.1 compared with SJL mice. Aortic vascular cell adhesion molecule-1 (VCAM-1) total protein levels were dramatically increased in SJL and C3H/F.SJL.11.1 compared with C3H/F mice. Immunostaining of aortic endothelial cells (EC) showed a significant increase in VCAM-1 expression in SJL and C3H/F.SJL.11.1 compared with C3H/F under steady flow conditions. Immunostaining of EC membranes revealed a significant decrease in EC size in SJL and C3H/F.SJL.11.1 vs. C3H/F in regions of disturbed flow. Vascular permeability was significantly higher in C3H/F.SJL.11.1 compared with C3H/F. Our results indicate that Im2 regulation of leukocyte infiltration is mediated by EC inflammation and permeability. RNA sequencing and pathway analyses comparing genes in the Im2 locus to C3H/F provide insight into candidate genes that regulate vascular wall inflammation and permeability highlighting important genetic mechanisms that control vascular intima in response to injury. PMID:24986958

  3. Nerve impulses increase glial intercellular permeability.

    PubMed

    Marrero, H; Orkand, R K

    1996-03-01

    Coordinating the activity of neurons and their satellite glial cells requires mechanisms by which glial cells detect neuronal activity and change their properties as a result. This study monitors the intercellular diffusion of the fluorescent dye Lucifer Yellow (LY), following its injection into glial cells of the frog optic nerve, and demonstrates that nerve impulses increase the permeability of interglial gap junctions. Consequently, the spatial buffer capacity of the neuroglial cell syncytium for potassium, other ions, and small molecules will be enhanced; this may facilitate glial function in maintaining homeostasis of the neuronal microenvironment. PMID:8833199

  4. Activation of Vascular Endothelial Growth Factor (VEGF) Receptor 2 Mediates Endothelial Permeability Caused by Cyclic Stretch.

    PubMed

    Tian, Yufeng; Gawlak, Grzegorz; O'Donnell, James J; Birukova, Anna A; Birukov, Konstantin G

    2016-05-01

    High tidal volume mechanical ventilation and the resultant excessive mechanical forces experienced by lung vascular endothelium are known to lead to increased vascular endothelial leak, but the underlying molecular mechanisms remain incompletely understood. One reported mechanotransduction pathway of increased endothelial cell (EC) permeability caused by high magnitude cyclic stretch (18% CS) involves CS-induced activation of the focal adhesion associated signalosome, which triggers Rho GTPase signaling. This study identified an alternative pathway of CS-induced EC permeability. We show here that high magnitude cyclic stretch (18% CS) rapidly activates VEGF receptor 2 (VEGFR2) signaling by dissociating VEGFR2 from VE-cadherin at the cell junctions. This results in VEGFR2 activation, Src-dependent VE-cadherin tyrosine phosphorylation, and internalization leading to increased endothelial permeability. This process is also accompanied by CS-induced phosphorylation and internalization of PECAM1. Importantly, CS-induced endothelial barrier disruption was attenuated by VEGFR2 inhibition. 18% CS-induced EC permeability was linked to dissociation of cell junction scaffold afadin from the adherens junctions. Forced expression of recombinant afadin in pulmonary endothelium attenuated CS-induced VEGFR2 and VE-cadherin phosphorylation, preserved adherens junction integrity and VEGFR2·VE-cadherin complex, and suppressed CS-induced EC permeability. This study shows for the first time a mechanism whereby VEGFR2 activation mediates EC permeability induced by pathologically relevant cyclic stretch. In this mechanism, CS induces dissociation of the VE-cadherin·VEGFR2 complex localized at the adherens juctions, causing activation of VEGFR2, VEGFR2-mediated Src-dependent phosphorylation of VE-cadherin, disassembly of adherens junctions, and EC barrier failure. PMID:26884340

  5. Truncated netrin-1 contributes to pathological vascular permeability in diabetic retinopathy.

    PubMed

    Miloudi, Khalil; Binet, François; Wilson, Ariel; Cerani, Agustin; Oubaha, Malika; Menard, Catherine; Henriques, Sullivan; Mawambo, Gaelle; Dejda, Agnieszka; Nguyen, Phuong Trang; Rezende, Flavio A; Bourgault, Steve; Kennedy, Timothy E; Sapieha, Przemyslaw

    2016-08-01

    Diabetic retinopathy (DR) is a major complication of diabetes and a leading cause of blindness in the working-age population. Impaired blood-retinal barrier function leads to macular edema that is closely associated with the deterioration of central vision. We previously demonstrated that the neuronal guidance cue netrin-1 activates a program of reparative angiogenesis in microglia within the ischemic retina. Here, we provide evidence in both vitreous humor of diabetic patients and in retina of a murine model of diabetes that netrin-1 is metabolized into a bioactive fragment corresponding to domains VI and V of the full-length molecule. In contrast to the protective effects of full-length netrin-1 on retinal microvasculature, the VI-V fragment promoted vascular permeability through the uncoordinated 5B (UNC5B) receptor. The collagenase matrix metalloprotease 9 (MMP-9), which is increased in patients with diabetic macular edema, was capable of cleaving netrin-1 into the VI-V fragment. Thus, MMP-9 may release netrin-1 fragments from the extracellular matrix and facilitate diffusion. Nonspecific inhibition of collagenases or selective inhibition of MMP-9 decreased pathological vascular permeability in a murine model of diabetic retinal edema. This study reveals that netrin-1 degradation products are capable of modulating vascular permeability, suggesting that these fragments are of potential therapeutic interest for the treatment of DR. PMID:27400127

  6. Role of bradykinin in the vascular permeability response induced by carrageenin in rats.

    PubMed Central

    Kumakura, S.; Kamo, I.; Tsurufuji, S.

    1988-01-01

    1 Bradykinin in carrageenin-induced inflammatory pouch fluid was measured by an enzyme immunoassay method. 2 The bradykinin showed a single peak in the 30-60 min period after the challenge and then decreased quickly, and there was a correlation between the bradykinin level and exudation of fluorescein-labelled bovine serum albumin in the first 60 min period. 3 Captopril (an inhibitor of kininase II) elevated both the bradykinin level in the inflammatory pouch fluid and vascular permeability, while DL-2-mercaptomethyl-3- guanidinoethylthiopropanoic acid (an inhibitor of kininase I) had no effect. 4 Soybean trypsin inhibitor (SBTI) inhibited the vascular permeability response in parallel with the decrease in the bradykinin level. 5 A bradykinin-degrading activity appeared in the pouch fluid within 1 h after the challenge and increased with time. 6 In the period of 3.5-4 h, bradykinin levels were suppressed below the sensitivity limit of the assay, i.e. 0.07 nm ml-1, in spite of active generation. This was because degradation of bradykinin was very rapid in this late stage. Nevertheless, bradykinin still played a definite role in sustaining a high level of vascular permeability response in the late stage in conjunction with prostaglandins. PMID:2839262

  7. Lipopolysaccharide-induced caveolin-1 phosphorylation-dependent increase in transcellular permeability precedes the increase in paracellular permeability

    PubMed Central

    Wang, Nan; Zhang, Dan; Sun, Gengyun; Zhang, Hong; You, Qinghai; Shao, Min; Yue, Yang

    2015-01-01

    Background Lipopolysaccharide (LPS) was shown to induce an increase in caveolin-1 (Cav-1) expression in endothelial cells; however, the mechanisms regarding this response and the consequences on caveolae-mediated transcellular transport have not been completely investigated. This study aims to investigate the role of LPS-induced Cav-1 phosphorylation in pulmonary microvascular permeability in pulmonary microvascular endothelial cells (PMVECs). Methods Rat PMVECs were isolated, cultured, and identified. Endocytosis experiments were employed to stain the nuclei by DAPI, and images were obtained with a fluorescence microscope. Permeability of endothelial cultures was measured to analyze the barrier function of endothelial monolayer. Western blot assay was used to examine the expression of Cav-1, pCav-1, triton-insoluble Cav-1, and triton-soluble Cav-1 protein. Results The LPS treatment induced phosphorylation of Cav-1, but did not alter the total Cav-1 level till 60 min in both rat and human PMVECs. LPS treatment also increased the triton-insoluble Cav-1 level, which peaked 15 min after LPS treatment in both rat and human PMVECs. LPS treatment increases the intercellular cell adhesion molecule-1 expression. Src inhibitors, including PP2, PP1, Saracatinib, and Quercetin, partially inhibited LPS-induced phosphorylation of Cav-1. In addition, both PP2 and caveolae disruptor MβCD inhibited LPS-induced increase of triton-insoluble Cav-1. LPS induces permeability by activating interleukin-8 and vascular endothelial growth factor and targeting other adhesion markers, such as ZO-1 and occludin. LPS treatment also significantly increased the endocytosis of albumin, which could be blocked by PP2 or MβCD. Furthermore, LPS treatment for 15 min significantly elevated Evans Blue-labeled BSA transport in advance of a decrease in transendothelial electrical resistance of PMVEC monolayer at this time point. After LPS treatment for 30 min, transendothelial electrical resistance

  8. Membrane stress increases cation permeability in red cells.

    PubMed

    Johnson, R M

    1994-11-01

    The human red cell is known to increase its cation permeability when deformed by mechanical forces. Light-scattering measurements were used to quantitate the cell deformation, as ellipticity under shear. Permeability to sodium and potassium was not proportional to the cell deformation. An ellipticity of 0.75 was required to increase the permeability of the membrane to cations, and flux thereafter increased rapidly as the limits of cell extension were reached. Induction of membrane curvature by chemical agents also did not increase cation permeability. These results indicate that membrane deformation per se does not increase permeability, and that membrane tension is the effector for increased cation permeability. This may be relevant to some cation permeabilities observed by patch clamping. PMID:7858123

  9. Tumor Vascular Permeability to a Nanoprobe Correlates to Tumor-Specific Expression Levels of Angiogenic Markers

    PubMed Central

    Karathanasis, Efstathios; Chan, Leslie; Karumbaiah, Lohitash; McNeeley, Kathleen; D'Orsi, Carl J.; Annapragada, Ananth V.; Sechopoulos, Ioannis; Bellamkonda, Ravi V.

    2009-01-01

    Background Vascular endothelial growth factor (VEGF) receptor-2 is the major mediator of the mitogenic, angiogenic, and vascular hyperpermeability effects of VEGF on breast tumors. Overexpression of VEGF and VEGF receptor-2 is associated with the degree of pathomorphosis of the tumor tissue and unfavorable prognosis. In this study, we demonstrate that non-invasive quantification of the degree of tumor vascular permeability to a nanoprobe correlates with the VEGF and its receptor levels and tumor growth. Methodology/Principal Findings We designed an imaging nanoprobe and a methodology to detect the intratumoral deposition of a 100 nm-scale nanoprobe using mammography allowing measurement of the tumor vascular permeability in a rat MAT B III breast tumor model. The tumor vascular permeability varied widely among the animals. Notably, the VEGF and VEGF receptor-2 gene expression of the tumors as measured by qRT-PCR displayed a strong correlation to the imaging-based measurements of vascular permeability to the 100 nm-scale nanoprobe. This is in good agreement with the fact that tumors with high angiogenic activity are expected to have more permeable blood vessels resulting in high intratumoral deposition of a nanoscale agent. In addition, we show that higher intratumoral deposition of the nanoprobe as imaged with mammography correlated to a faster tumor growth rate. This data suggest that vascular permeability scales to the tumor growth and that tumor vascular permeability can be a measure of underlying VEGF and VEGF receptor-2 expression in individual tumors. Conclusions/Significance This is the first demonstration, to our knowledge, that quantitative imaging of tumor vascular permeability to a nanoprobe represents a form of a surrogate, functional biomarker of underlying molecular markers of angiogenesis. PMID:19513111

  10. Vascular Endothelial Growth Factors Enhance the Permeability of the Mouse Blood-brain Barrier

    PubMed Central

    Jiang, Shize; Xia, Rui; Jiang, Yong; Wang, Lei; Gao, Fabao

    2014-01-01

    The blood-brain barrier (BBB) impedes entry of many drugs into the brain, limiting clinical efficacy. A safe and efficient method for reversibly increasing BBB permeability would greatly facilitate central nervous system (CNS) drug delivery and expand the range of possible therapeutics to include water soluble compounds, proteins, nucleotides, and other large molecules. We examined the effect of vascular endothelial growth factor (VEGF) on BBB permeability in Kunming (KM) mice. Human VEGF165 was administered to treatment groups at two concentrations (1.6 or 3.0 µg/mouse), while controls received equal-volume saline. Changes in BBB permeability were measured by parenchymal accumulation of the contrast agent Gd-DTPA as assessed by 7 T magnetic resonance imaging (MRI). Mice were then injected with Evans blue, sacrificed 0.5 h later, and perfused transcardially. Brains were removed, fixed, and sectioned for histological study. Both VEGF groups exhibited a significantly greater signal intensity from the cerebral cortex and basal ganglia than controls (P<0.001). Evans blue fluorescence intensity was higher in the parenchyma and lower in the cerebrovasculature of VEGF-treated animals compared to controls. No significant brain edema was observed by diffusion weighted MRI (DWI) or histological staining. Exogenous application of VEGF can increase the permeability of the BBB without causing brain edema. Pretreatment with VEGF may be a feasible method to facilitate drug delivery into the CNS. PMID:24551038

  11. EPHA4-FC TREATMENT REDUCES ISCHEMIA/REPERFUSION-INDUCED INTESTINAL INJURY BY INHIBITING VASCULAR PERMEABILITY

    PubMed Central

    Woodruff, Trent M.; Wu, Mike C.-L.; Morgan, Michael; Bain, Nathan T.; Jeanes, Angela; Lipman, Jeffrey; Ting, Michael J.; Boyd, Andrew W.; Taylor, Stephen M.; Coulthard, Mark G.

    2016-01-01

    ABSTRACT The inflammatory response is characterized by increased endothelial permeability, which permits the passage of fluid and inflammatory cells into interstitial spaces. The Eph/ephrin receptor ligand system plays a role in inflammation through a signaling cascade, which modifies Rho-GTPase activity. We hypothesized that blocking Eph/ephrin signaling using an EphA4-Fc would result in decreased inflammation and tissue injury in a model of ischemia/reperfusion (I/R) injury. Mice undergoing intestinal I/R pretreated with the EphA4-Fc had significantly reduced intestinal injury compared to mice injected with the control Fc. This reduction in I/R injury was accompanied by significantly reduced neutrophil infiltration, but did not affect intestinal inflammatory cytokine generation. Using microdialysis, we identified that intestinal I/R induced a marked increase in systemic vascular leakage, which was completely abrogated in EphA4-Fc-treated mice. Finally, we confirmed the direct role of Eph/ephrin signaling in endothelial leakage by demonstrating that EphA4-Fc inhibited tumor necrosis factor-α–induced vascular permeability in human umbilical vein endothelial cells. This study identifies that Eph/ephrin interaction induces proinflammatory signaling in vivo by inducing vascular leak and neutrophil infiltration, which results in tissue injury in intestinal I/R. Therefore, therapeutic targeting of Eph/ephrin interaction using inhibitors, such as EphA4-Fc, may be a novel method to prevent tissue injury in acute inflammation by influencing endothelial integrity and by controlling vascular leak. PMID:26771935

  12. Platelets mediate increased endothelium permeability in dengue through NLRP3-inflammasome activation

    PubMed Central

    Hottz, Eugenio D.; Lopes, Juliana F.; Freitas, Carla; Valls-de-Souza, Rogério; Oliveira, Marcus F.; Bozza, Marcelo T.; Da Poian, Andrea T.; Weyrich, Andrew S.; Zimmerman, Guy A.

    2013-01-01

    Dengue is the most frequent hemorrhagic viral disease and re-emergent infection in the world. Although thrombocytopenia is characteristically observed in mild and severe forms of dengue, the role of platelet activation in dengue pathogenesis has not been fully elucidated. We hypothesize that platelets have major roles in inflammatory amplification and increased vascular permeability during severe forms of dengue. Here we investigate interleukin (IL)-1β synthesis, processing, and secretion in platelets during dengue virus (DV) infection and potential contribution of these events to endothelial permeability during infection. We observed increased expression of IL-1β in platelets and platelet-derived microparticles from patients with dengue or after platelet exposure to DV in vitro. We demonstrated that DV infection leads to assembly of nucleotide-binding domain leucine rich repeat containing protein (NLRP3) inflammasomes, activation of caspase-1, and caspase-1–dependent IL-1β secretion. Our findings also indicate that platelet-derived IL-1β is chiefly released in microparticles through mechanisms dependent on mitochondrial reactive oxygen species–triggered NLRP3 inflammasomes. Inflammasome activation and platelet shedding of IL-1β–rich microparticles correlated with signs of increased vascular permeability. Moreover, microparticles from DV-stimulated platelets induced enhanced permeability in vitro in an IL-1–dependent manner. Our findings provide new evidence that platelets contribute to increased vascular permeability in DV infection by inflammasome-dependent release of IL-1β. PMID:24009231

  13. Assessing changes in vascular permeability in a hamster model of viral hemorrhagic fever

    PubMed Central

    2010-01-01

    Background A number of RNA viruses cause viral hemorrhagic fever (VHF), in which proinflammatory mediators released from infected cells induce increased permeability of the endothelial lining of blood vessels, leading to loss of plasma volume, hypotension, multi-organ failure, shock and death. The optimal treatment of VHF should therefore include both the use of antiviral drugs to inhibit viral replication and measures to prevent or correct changes in vascular function. Although rodent models have been used to evaluate treatments for increased vascular permeability (VP) in bacterial sepsis, such studies have not been performed for VHF. Results Here, we use an established model of Pichinde virus infection of hamsters to demonstrate how changes in VP can be detected by intravenous infusion of Evans blue dye (EBD), and compare those measurements to changes in hematocrit, serum albumin concentration and serum levels of proinflammatory mediators. We show that EBD injected into sick animals in the late stage of infection is rapidly sequestered in the viscera, while in healthy animals it remains within the plasma, causing the skin to turn a marked blue color. This test could be used in live animals to detect increased VP and to assess the ability of antiviral drugs and vasoactive compounds to prevent its onset. Finally, we describe a multiplexed assay to measure levels of serum factors during the course of Pichinde arenavirus infection and demonstrate that viremia and subsequent increase in white blood cell counts precede the elaboration of inflammatory mediators, which is followed by increased VP and death. Conclusions This level of model characterization is essential to the evaluation of novel interventions designed to control the effects of virus-induced hypercytokinemia on host vascular function in VHF, which could lead to improved survival. PMID:20846417

  14. Changes in endothelial cell proliferation and vascular permeability after systemic lipopolysaccharide administration in the subfornical organ.

    PubMed

    Morita-Takemura, Shoko; Nakahara, Kazuki; Tatsumi, Kouko; Okuda, Hiroaki; Tanaka, Tatsuhide; Isonishi, Ayami; Wanaka, Akio

    2016-09-15

    The subfornical organ (SFO) has highly permeable fenestrated vasculature and is a key site for immune-to-brain communications. Recently, we showed the occurrence of continuous angiogenesis in the SFO. In the present study, we found that systemic administration of bacterial lipopolysaccharide (LPS) reduced the vascular permeability and endothelial cell proliferation. In LPS-administered mice, the SFO vasculature showed a significant decrease in the immunoreactivity of plasmalemma vesicle associated protein-1, a marker of endothelial fenestral diaphragms. These data suggest that vasculature undergoes structural change to decrease vascular permeability in response to systemic LPS administration. PMID:27609286

  15. Acute respiratory distress syndrome caused by Mycoplasma pneumoniae without elevated pulmonary vascular permeability: a case report

    PubMed Central

    Takahashi, Naoki; Oi, Rie; Ota, Muneyuki; Toriumi, Shinichi; Ogushi, Fumitaka

    2016-01-01

    Sporadic patients with acute respiratory distress syndrome (ARDS) caused by Mycoplasma pneumoniae have been reported. However, knowledge about the pathophysiology and pharmacological treatment of this condition is insufficient. Moreover, the pulmonary vascular permeability in ARDS related to M. pneumoniae infection has not been reported. We report a case of ARDS caused by Mycoplasma pneumoniae without elevated pulmonary vascular permeability, which was successfully treated using low-dose short-term hydrocortisone, suggesting that pulmonary infiltration in ARDS caused by Mycoplasma pneumoniae does not match the criteria of permeability edema observed in typical ARDS. PMID:27162691

  16. Acute respiratory distress syndrome caused by Mycoplasma pneumoniae without elevated pulmonary vascular permeability: a case report.

    PubMed

    Takahashi, Naoki; Shinohara, Tsutomu; Oi, Rie; Ota, Muneyuki; Toriumi, Shinichi; Ogushi, Fumitaka

    2016-05-01

    Sporadic patients with acute respiratory distress syndrome (ARDS) caused by Mycoplasma pneumoniae have been reported. However, knowledge about the pathophysiology and pharmacological treatment of this condition is insufficient. Moreover, the pulmonary vascular permeability in ARDS related to M. pneumoniae infection has not been reported. We report a case of ARDS caused by Mycoplasma pneumoniae without elevated pulmonary vascular permeability, which was successfully treated using low-dose short-term hydrocortisone, suggesting that pulmonary infiltration in ARDS caused by Mycoplasma pneumoniae does not match the criteria of permeability edema observed in typical ARDS. PMID:27162691

  17. Fibrinogen-induced increased pial venular permeability in mice

    PubMed Central

    Muradashvili, Nino; Qipshidze, Natia; Munjal, Charu; Givvimani, Srikanth; Benton, Richard L; Roberts, Andrew M; Tyagi, Suresh C; Lominadze, David

    2012-01-01

    Elevated blood level of Fibrinogen (Fg) is commonly associated with vascular dysfunction. We tested the hypothesis that at pathologically high levels, Fg increases cerebrovascular permeability by activating matrix metalloproteinases (MMPs). Fibrinogen (4 mg/mL blood concentration) or equal volume of phosphate-buffered saline (PBS) was infused into male wild-type (WT; C57BL/6J) or MMP-9 gene knockout (MMP9−/−) mice. Pial venular leakage of fluorescein isothiocyanate-bovine serum albumin to Fg or PBS alone and to topically applied histamine (10−5 mol/L) were assessed. Intravital fluorescence microscopy and image analysis were used to assess cerebrovascular protein leakage. Pial venular macromolecular leakage increased more after Fg infusion than after infusion of PBS in both (WT and MMP9−/−) mice but was more pronounced in WT compared with MMP9−/− mice. Expression of vascular endothelial cadherin (VE-cadherin) was less and plasmalemmal vesicle-associated protein-1 (PV-1) was greater in Fg-infused than in PBS-infused both mice groups. However, in MMP9−/− mice, VE-cadherin expression was greater and PV-1 expression was less than in WT mice. These data indicate that at higher levels, Fg compromises microvascular integrity through activation of MMP-9 and downregulation of VE-cadherin and upregulation of PV-1. Our results suggest that elevated blood level of Fg could have a significant role in cerebrovascular dysfunction and remodeling. PMID:21989482

  18. Effect of leukotriene receptor antagonists on vascular permeability during endotoxic shock

    SciTech Connect

    Cook, J.A.; Li, E.J.; Spicer, K.M.; Wise, W.C.; Halushka, P.V. )

    1990-11-01

    Evidence has accumulated that sulfidopeptide leukotrienes are significant pathogenic mediators of certain hematologic and hemodynamic sequelae of endotoxic shock. In the present study, the effects of a selective LTD4/E4 receptor antagonist, LY171883 (LY), or a selective LTD4 receptor antagonist, SKF-104353 (SKF), were assessed on splanchnic and pulmonary localization of 99mTechnetium-labeled human serum albumin (99mTc-HSA) in acute endotoxic shock in the rat. Dynamic gamma camera imaging of heart (H), midabdominal (GI), and lung regions of interest generated time activity curves for baseline and at 5-35 min after Salmonella enteritidis endotoxin (10 mg/kg, i.v.). Slopes of GI/H and lung/H activity (permeability index, GI/H or lung/H X 10(-3)/min) provided indices of intestinal and lung localization. Rats received LY (30 mg/kg, i.v.), LY vehicle (LY Veh), SKF (10 mg/kg), or SKF vehicle (SK Veh) 10 min prior to endotoxin or endotoxin vehicle. In rats receiving the LY Veh and endotoxin (n = 8) or SKF Veh and endotoxin (n = 12), the splanchnic permeability indices to 99mTc-HSA were increased 11.2-fold and 5.1-fold, respectively (P less than 0.05) compared to vehicle control groups not given endotoxin (n = 5). Pulmonary permeability index for 99mTc-HSA was increased (P less than 0.05) to a lesser extent (3.2-fold) by endotoxin compared to vehicle controls. Pretreatment with SKF reduced the mesenteric permeability index to control levels (P less than 0.05) during the 5-35 min time interval post-endotoxin. LY reduced the mesenteric permeability index by 70%. Pulmonary relative permeability to 99mTc-HSA was not affected by LY pretreatment. Both splanchnic and lung relative permeability to the isotope was transient; at 135-225 min post-endotoxin, splanchnic localization of 99mTc-HSA (n = 4) was not significantly different from vehicle controls in these vascular beds.

  19. Neuronal Wiskott-Aldrich syndrome protein regulates TGF-β1-mediated lung vascular permeability.

    PubMed

    Wagener, Brant M; Hu, Meng; Zheng, Anni; Zhao, Xueke; Che, Pulin; Brandon, Angela; Anjum, Naseem; Snapper, Scott; Creighton, Judy; Guan, Jun-Lin; Han, Qimei; Cai, Guo-Qiang; Han, Xiaosi; Pittet, Jean-Francois; Ding, Qiang

    2016-07-01

    TGF-β1 induces an increase in paracellular permeability and actin stress fiber formation in lung microvascular endothelial and alveolar epithelial cells via small Rho GTPase. The molecular mechanism involved is not fully understood. Neuronal Wiskott-Aldrich syndrome protein (N-WASP) has an essential role in actin structure dynamics. We hypothesized that N-WASP plays a critical role in these TGF-β1-induced responses. In these cell monolayers, we demonstrated that N-WASP down-regulation by short hairpin RNA prevented TGF-β1-mediated disruption of the cortical actin structure, actin stress filament formation, and increased permeability. Furthermore, N-WASP down-regulation blocked TGF-β1 activation mediated by IL-1β in alveolar epithelial cells, which requires actin stress fiber formation. Control short hairpin RNA had no effect on these TGF-β1-induced responses. TGF-β1-induced phosphorylation of Y256 of N-WASP via activation of small Rho GTPase and focal adhesion kinase mediates TGF-β1-induced paracellular permeability and actin cytoskeleton dynamics. In vivo, compared with controls, N-WASP down-regulation increases survival and prevents lung edema in mice induced by bleomycin exposure-a lung injury model in which TGF-β1 plays a critical role. Our data indicate that N-WASP plays a crucial role in the development of TGF-β1-mediated acute lung injury by promoting pulmonary edema via regulation of actin cytoskeleton dynamics.-Wagener, B. M., Hu, M., Zheng, A., Zhao, X., Che, P., Brandon, A., Anjum, N., Snapper, S., Creighton, J., Guan, J.-L., Han, Q., Cai, G.-Q., Han, X., Pittet, J.-F., Ding, Q. Neuronal Wiskott-Aldrich syndrome protein regulates TGF-β1-mediated lung vascular permeability. PMID:27025963

  20. Wogonin inhibits H2O2-induced vascular permeability through suppressing the phosphorylation of caveolin-1.

    PubMed

    Wang, Fei; Song, Xiuming; Zhou, Mi; Wei, Libin; Dai, Qinsheng; Li, Zhiyu; Lu, Na; Guo, Qinglong

    2013-03-01

    Wogonin, a naturally occurring monoflavonoid extracted from the root of Scutellaria baicalensis Georgi, has been reported for its anti-oxidant activity. However, it is still unclear whether wogonin can inhibit oxidant-induced vascular permeability. In this study, we evaluated the effects of wogonin on H2O2-induced vascular permeability in human umbilical vein endothelial cells (HUVECs). We found that wogonin can suppress the H2O2-stimulated actin remodeling and albumin uptake of HUVECs, as well as transendothelial cell migration of the human breast carcinoma cell MDA-MB-231. The mechanism revealed that wogonin inhibited H2O2-induced phosphorylation of caveolin-1 (cav-1) associating with the suppression of stabilization of VE-cadherin and β-catenin. Moreover, wogonin repressed anisomycin-induced phosphorylation of p38, cav-1 and vascular permeability. These results suggested that wogonin could inhibit H2O2-induced vascular permeability by downregulating the phosphorylation of cav-1, and that it might have a therapeutic potential for the diseases associated with the development of both oxidant and vascular permeability. PMID:23246481

  1. Isoflurane post-treatment improves pulmonary vascular permeability via upregulation of heme oxygenase-1.

    PubMed

    Dong, Xiang; Hu, Rong; Sun, Yu; Li, Qifang; Jiang, Hong

    2013-09-01

    Isoflurane (ISO) has been shown to attenuate acute lung injury (ALI). Induction of heme oxygenase-1 (HO-1) and suppression of inducible nitric oxide synthase (iNOS) expression provide cytoprotection in lung and vascular injury. The aim of this study was to investigate the effect of post-treatment with isoflurane on lung vascular permeability and the role of HO-1 in an ALI rat model induced by cecal ligation and puncture (CLP). Male Sprague-Dawley rats were randomly assigned to one of four groups: sham group, sham rats post-treated with vehicle (Sham); CLP group, CLP rats post-treated with vehicle (CLP); ISO group, CLP rats post-treated with isoflurane (ISO); and ZnPP group, CLP rats injected with zinc protoporphyrin IX (ZnPP), a competitive inhibitor of HO-1, 1 hour before the operation, and post-treated with isoflurane (ZnPP). Isoflurane (1.4%) was administered 2 hour after CLP. At 24 hour after CLP, the extent of ALI was evaluated by lung wet/dry ratio, Evans blue dye (EBD) extravasation, lung permeability index (LPI), as well as histological and immunohistochemical examinations. We also determined pulmonary iNOS and HO-1 expression. Compared with the CLP group, the isoflurane post-treatment group showed improved pulmonary microvascular permeability as detected by EBD extravasation, LPI, as well as histological and immunohistochemical examinations. Furthermore, isoflurane decreased iNOS and increased HO-1 expression in lung tissue. Pretreatment with ZnPP prevented the protective effects of isoflurane in rats. These findings indicate that the protective role of isoflurane post-conditioning against CLP-induced lung injury may be associated with its role in upregulating HO-1 in ALI. PMID:23919323

  2. Reinforcing endothelial junctions prevents microvessel permeability increase and tumor cell adhesion in microvessels in vivo

    NASA Astrophysics Data System (ADS)

    Fu, Bingmei M.; Yang, Jinlin; Cai, Bin; Fan, Jie; Zhang, Lin; Zeng, Min

    2015-10-01

    Tumor cell adhesion to the microvessel wall is a critical step during tumor metastasis. Vascular endothelial growth factor (VEGF), a secretion of tumor cells, can increase microvessel permeability and tumor cell adhesion in the microvessel. To test the hypothesis that inhibiting permeability increase can reduce tumor cell adhesion, we used in vivo fluorescence microscopy to measure both microvessel permeability and adhesion rates of human mammary carcinoma MDA-MB-231 cells in post-capillary venules of rat mesentery under the treatment of VEGF and a cAMP analog, 8-bromo-cAMP, which can decrease microvessel permeability. By immunostaining adherens junction proteins between endothelial cells forming the microvessel wall, we further investigated the structural mechanism by which cAMP abolishes VEGF-induced increase in microvessel permeability and tumor cell adhesion. Our results demonstrate that 1) Pretreatment of microvessels with cAMP can abolish VEGF-enhanced microvessel permeability and tumor cell adhesion; 2) Tumor cells prefer to adhere to the endothelial cell junctions instead of cell bodies; 3) VEGF increases microvessel permeability and tumor cell adhesion by compromising endothelial junctions while cAMP abolishes these effects of VEGF by reinforcing the junctions. These results suggest that strengthening the microvessel wall integrity can be a potential approach to inhibiting hematogenous tumor metastasis.

  3. Minocycline prevents retinal inflammation and vascular permeability following ischemia-reperfusion injury

    PubMed Central

    2013-01-01

    Background Many retinal diseases are associated with vascular dysfunction accompanied by neuroinflammation. We examined the ability of minocycline (Mino), a tetracycline derivative with anti-inflammatory and neuroprotective properties, to prevent vascular permeability and inflammation following retinal ischemia-reperfusion (IR) injury, a model of retinal neurodegeneration with breakdown of the blood-retinal barrier (BRB). Methods Male Sprague–Dawley rats were subjected to 45 min of pressure-induced retinal ischemia, with the contralateral eye serving as control. Rats were treated with Mino prior to and following IR. At 48 h after reperfusion, retinal gene expression, cellular inflammation, Evan’s blue dye leakage, tight junction protein organization, caspase-3 activation, and DNA fragmentation were measured. Cellular inflammation was quantified by flow-cytometric evaluation of retinal tissue using the myeloid marker CD11b and leukocyte common antigen CD45 to differentiate and quantify CD11b+/CD45low microglia, CD11b+/CD45hi myeloid leukocytes and CD11bneg/CD45hi lymphocytes. Major histocompatibility complex class II (MHCII) immunoreactivity was used to determine the inflammatory state of these cells. Results Mino treatment significantly inhibited IR-induced retinal vascular permeability and disruption of tight junction organization. Retinal IR injury significantly altered mRNA expression for 21 of 25 inflammation- and gliosis-related genes examined. Of these, Mino treatment effectively attenuated IR-induced expression of lipocalin 2 (LCN2), serpin peptidase inhibitor clade A member 3 N (SERPINA3N), TNF receptor superfamily member 12A (TNFRSF12A), monocyte chemoattractant-1 (MCP-1, CCL2) and intercellular adhesion molecule-1 (ICAM-1). A marked increase in leukostasis of both myeloid leukocytes and lymphocytes was observed following IR. Mino treatment significantly reduced retinal leukocyte numbers following IR and was particularly effective in decreasing the

  4. Sphingosine-1-phosphate Maintains Normal Vascular Permeability by Preserving Endothelial Surface Glycocalyx in Intact Microvessels

    PubMed Central

    Zhang, Lin; Zeng, Min; Fan, Jie; Tarbell, John, M.; Curry, Fitz-Roy E.; Fu, Bingmei M.

    2016-01-01

    Objective Sphingosine-1-phosphate (S1P) was found to protect the endothelial surface glycocalyx (ESG) by inhibiting matrix metalloproteinase (MMP) activity-dependent shedding of ESG in cultured endothelial cell studies. We aimed to further test that S1P contributes to the maintenance of normal vascular permeability by protecting the ESG in intact microvessels. Methods We quantified the ESG in post-capillary venules of rat mesentery and measured the vascular permeability to albumin in the presence and absence of 1 μM S1P. We also measured permeability to albumin in the presence of MMP inhibitors and compared the measured permeability with those predicted by a transport model for the inter-endothelial cleft. Results We found that in the absence of S1P, the fluorescence intensity of the FITC-anti-heparan sulfate labeled ESG was ~10% of that in the presence of S1P, while the measured permeability to albumin was ~6.5 fold that in the presence of S1P. Similar results were observed with MMP inhibition. The predictions by the mathematical model further confirmed that S1P maintains microvascular permeability by preserving ESG. Conclusions Our results show that S1P contributes to the maintenance of normal vascular permeability by protecting the ESG in intact microvessels, consistent with parallel observation in cultured endothelial monolayers. PMID:27015105

  5. Wogonin inhibits LPS-induced vascular permeability via suppressing MLCK/MLC pathway.

    PubMed

    Huang, Yujie; Luo, Xuwei; Li, Xiaorui; Song, Xiuming; Wei, Libin; Li, Zhiyu; You, Qidong; Guo, Qinglong; Lu, Na

    2015-09-01

    Wogonin, a naturally occurring monoflavonoid extracted from the root of Scutellaria baicalensis Georgi, has been shown to have anti-inflammatory and anti-tumor activities and inhibits oxidant stress-induced vascular permeability. However, the influence of wogonin on vascular hyperpermeability induced by overabounded inflammatory factors often appears in inflammatory diseases and tumor is not well known. In this study, we evaluate the effects of wogonin on LPS induced vascular permeability in human umbilical vein endothelial cells (HUVECs) and investigate the underlying mechanisms. We find that wogonin suppresses the LPS-stimulated hyperactivity and cytoskeleton remodeling of HUVECs, promotes the expression of junctional proteins including VE-Cadherin, Claudin-5 and ZO-1, as well as inhibits the invasion of MDA-MB-231 across EC monolayer. Miles vascular permeability assay proves that wogonin can restrain the extravasated Evans in vivo. The mechanism studies reveal that the expressions of TLR4, p-PLC, p-MLCK and p-MLC are decreased by wogonin without changing the total steady state protein levels of PLC, MLCK and MLC. Moreover, wogonin can also inhibit KCl-activated MLCK/MLC pathway, and further affect vascular permeability. Significantly, compared with wortmannin, the inhibitor of MLCK/MLC pathway, wogonin exhibits similar inhibition effects on the expression of p-MLCK, p-MLC and LPS-induced vascular hyperpermeability. Taken together, wogonin can inhibit LPS-induced vascular permeability by suppressing the MLCK/MLC pathway, suggesting a therapeutic potential for the diseases associated with the development of both inflammatory and tumor. PMID:25956732

  6. Extracellular vesicle-transported Semaphorin3A promotes vascular permeability in glioblastoma.

    PubMed

    Treps, L; Edmond, S; Harford-Wright, E; Galan-Moya, E M; Schmitt, A; Azzi, S; Citerne, A; Bidère, N; Ricard, D; Gavard, J

    2016-05-19

    Glioblastoma are malignant highly vascularized brain tumours, which feature large oedema resulting from tumour-promoted vascular leakage. The pro-permeability factor Semaphorin3A (Sema3A) produced within glioblastoma has been linked to the loss of endothelial barrier integrity. Here, we report that extracellular vesicles (EVs) released by patient-derived glioblastoma cells disrupt the endothelial barrier. EVs expressed Sema3A at their surface, which accounted for in vitro elevation of brain endothelial permeability and in vivo vascular permeability, in both skin and brain vasculature. Blocking Sema3A or its receptor Neuropilin1 (NRP1) hampered EV-mediated permeability. In vivo models using ectopically and orthotopically xenografted mice revealed that Sema3A-containing EVs were efficiently detected in the blood stream. In keeping with this idea, sera from glioblastoma multiforme (GBM) patients also contain high levels of Sema3A carried in the EV fraction that enhanced vascular permeability, in a Sema3A/NRP1-dependent manner. Our results suggest that EV-delivered Sema3A orchestrates loss of barrier integrity in glioblastoma and may be of interest for prognostic purposes. PMID:26364614

  7. Iloprost attenuates the increased permeability in skeletal muscle after ischemia and reperfusion

    SciTech Connect

    Blebea, J.; Cambria, R.A.; DeFouw, D.; Feinberg, R.N.; Hobson, R.W. 2d.; Duran, W.N. )

    1990-12-01

    Increased vascular permeability is an early and sensitive indicator of ischemic muscle injury, occurring before significant histologic or radionuclide changes are evident. We investigated the effect of iloprost, a stable prostacyclin analog, on microvascular permeability in a rat striated muscle model. In six control and six experimental animals the cremaster muscle was dissected, placed in a closed-flow acrylic chamber, and suffused with a bicarbonate buffer solution. Dextran labeled with fluorescein was injected intravenously as a macromolecular tracer, and microvascular permeability was determined on the basis of clearance of the fluorescent tracer. Two hours of ischemia were followed by 2 hours of reperfusion. In the experimental group iloprost (0.5 microgram/kg/min) was given in a continuous intravenous infusion. Microvascular permeability increased significantly during reperfusion in both control and experimental animals (p less than 0.0001). Treatment with iloprost, however, significantly attenuated this response compared to the control group, 4.8 +/- 0.3 versus 7.3 +/- 0.5 microliters/gm/min, respectively (p less than 0.0001). Iloprost decreases the rise in vascular permeability after ischemia and reperfusion. Experimental clinical use of iloprost under controlled conditions in the treatment of patients with acute skeletal muscle ischemia appears justified.

  8. Effect of Melilotus suaveolens extract on pulmonary microvascular permeability by downregulating vascular endothelial growth factor expression in rats with sepsis.

    PubMed

    Liu, Ming-Wei; Su, Mei-Xian; Zhang, Wei; Wang, Yun Hui; Qin, Lan-Fang; Liu, Xu; Tian, Mao-Li; Qian, Chuan-Yun

    2015-05-01

    A typical indicator of sepsis is the development of progressive subcutaneous and body‑cavity edema, which is caused by the breakdown of endothelial barrier function, leading to a marked increase in vascular permeability. Microvascular leakage predisposes to microvascular thrombosis, breakdown of microcirculatory flow and organ failure, which are common events preceding mortality in patients with severe sepsis. Melilotus suaveolens (M. suaveolens) is a Traditional Tibetan Medicine. Previous pharmacological studies have demonstrated that an ethanolic extract of M. suaveolens has powerful anti‑inflammatory activity and leads to an improvement in capillary permeability. However, the mechanisms underlying its pharmacological activity remain elusive. The present study aimed to assess the impact of M. suaveolens extract tablets on pulmonary vascular permeability, and their effect on regulating lung inflammation and the expression of vascular endothelial growth factor (VEGF) in the lung tissue of rats with sepsis. A cecal ligation and puncture (CLP) sepsis model was established for both the control and treatment groups. ~2 h prior to surgery, 25 mg/kg of M. suaveolens extract tablet was administered to the treatment group. Polymerase chain reaction and western blot analyses were used to assess the expression of nuclear factor (NF)‑κB and VEGF in the lung tissue, and ELISA was applied to detect changes in serum tumor necrosis factor‑α as well as interleukins (IL) ‑1, ‑4, ‑6, and ‑10. The lung permeability, wet/dry weight ratio and lung pathology were determined. The results demonstrated that in the lung tissue of CLP‑rats with sepsis, M. suaveolens extract inhibited the expression of NF‑κB, reduced the inflammatory response and blocked the expression of VEGF, and thus significantly decreased lung microvascular permeability. The effects of M. Suaveolens extract may be of potential use in the treatment of CLP‑mediated lung microvascular permeability

  9. Sucrose, xylitol, and erythritol increase PMMA permeability for depot antibiotics.

    PubMed

    McLaren, Alex C; McLaren, Sandra G; Hickmon, Miranda K

    2007-08-01

    Release of antibiotics from antibiotic-loaded PMMA is dependent on its permeability. Loading PMMA with soluble particulate filler has been proposed to increase permeability and antibiotic release for beads and spacers. We therefore assessed particulate sucrose, xylitol, and erythritol as fillers to increase the permeability and elution kinetics of filler-loaded PMMA. Based on lower solubility, we hypothesized that erythritol would not enhance permeability and elution as much as xylitol and sucrose. We made filler-loaded PMMA beads with each of the three fillers combined with phenolphthalein, and soaked in 0.1% NaOH solution. Permeability was assessed qualitatively by relative depth of phenolphthalein color change caused by penetration of NaOH solution into subsequently split beads. Elution was quantitatively assessed by spectrophotometric light absorption measurements of the eluent. Fluid penetration reached the center of 7-mm beads by day 15, similar for all three materials. Elution of phenolphthalein was greater for xylitol than for the other two materials. Particulate sucrose, xylitol, and erythritol fillers increase PMMA permeability and elution kinetics but relative solubility did not determine the relative degree of enhancement of permeability and elution by these materials. PMID:17549030

  10. Thromboxane A{sub 2} increases endothelial permeability through upregulation of interleukin-8

    SciTech Connect

    Kim, Su-Ryun; Bae, Soo-Kyung; Park, Hyun-Joo; Kim, Mi-Kyoung; Kim, Koanhoi; Park, Shi-Young; Jang, Hye-Ock; Yun, Il; Kim, Yung-Jin; Yoo, Mi-Ae; Bae, Moon-Kyoung

    2010-07-02

    Thromboxane A{sub 2} (TXA{sub 2}), a major prostanoid formed from prostaglandin H{sub 2} by thromboxane synthase, is involved in the pathogenesis of a variety of vascular diseases. In this study, we report that TXA{sub 2} mimetic U46619 significantly increases the endothelial permeability both in vitro and in vivo. U46619 enhanced the expression and secretion of interleukin-8 (IL-8), a major inducer of vascular permeability, in endothelial cells. Promoter analysis showed that the U46619-induced expression of IL-8 was mainly regulated by nuclear factor-{kappa}B (NF-{kappa}B). U46619 induced the activation of NF-{kappa}B through I{kappa}B kinase (IKK) activation, I{kappa}B phosphorylation and NF-{kappa}B nuclear translocation. Furthermore, the inhibition of IL-8 or blockade of the IL-8 receptor attenuated the U46619-induced endothelial cell permeability by modulating the cell-cell junctions. Overall, these results suggest that U46619 promotes vascular permeability through the production of IL-8 via NF-{kappa}B activation in endothelial cells.

  11. Dengue virus NS1 triggers endothelial permeability and vascular leak that is prevented by NS1 vaccination.

    PubMed

    Beatty, P Robert; Puerta-Guardo, Henry; Killingbeck, Sarah S; Glasner, Dustin R; Hopkins, Kaycie; Harris, Eva

    2015-09-01

    The four dengue virus serotypes (DENV1 to DENV4) are mosquito-borne flaviviruses that cause up to ~100 million cases of dengue annually worldwide. Severe disease is thought to result from immunopathogenic processes involving serotype cross-reactive antibodies and T cells that together induce vasoactive cytokines, causing vascular leakage that leads to shock. However, no viral proteins have been directly implicated in triggering endothelial permeability, which results in vascular leakage. DENV nonstructural protein 1 (NS1) is secreted and circulates in patients' blood during acute infection; high levels of NS1 are associated with severe disease. We show that inoculation of mice with DENV NS1 alone induces both vascular leakage and production of key inflammatory cytokines. Furthermore, simultaneous administration of NS1 with a sublethal dose of DENV2 results in a lethal vascular leak syndrome. We also demonstrate that NS1 from DENV1, DENV2, DENV3, and DENV4 triggers endothelial barrier dysfunction, causing increased permeability of human endothelial cell monolayers in vitro. These pathogenic effects of physiologically relevant amounts of NS1 in vivo and in vitro were blocked by NS1-immune polyclonal mouse serum or monoclonal antibodies to NS1, and immunization of mice with NS1 from DENV1 to DENV4 protected against lethal DENV2 challenge. These findings add an important and previously overlooked component to the causes of dengue vascular leak, identify a new potential target for dengue therapeutics, and support inclusion of NS1 in dengue vaccines. PMID:26355030

  12. Role of nitric oxide in tumor microcirculation. Blood flow, vascular permeability, and leukocyte-endothelial interactions.

    PubMed Central

    Fukumura, D.; Yuan, F.; Endo, M.; Jain, R. K.

    1997-01-01

    The present study was designed to define the role of nitric oxide (NO) in tumor microcirculation, through the direct intravital microcirculatory observations after administration of NO synthase (NOS) inhibitor and NO donor both regionally and systemically. More specifically, we tested the following hypotheses: 1) endogenous NO derived from tumor vascular endothelium and/or tumor cells increases and/or maintains tumor blood flow, decreases leukocyte-endothelial interactions, and increases vascular permeability, 2) exogenous NO can increase tumor blood flow via vessel dilatation and decrease leukocyte-endothelial interactions, and 3) NO production and tissue responses to NO are tumor dependent. To this end, a murine mammary adenocarcinoma (MCaIV) and a human colon adenocarcinoma (LS174T) were implanted in the dorsal skinfold chamber in C3H and severe combined immunodeficient mice, respectively, and observed by means of intravital fluorescence microscopy. Both regional and systemic inhibition of endogenous NO by N omega-nitro-L-arginine methyl ester (L-NAME; 100 mumol/L superfusion or 10 mg/kg intravenously) significantly decreased vessel diameter and local blood flow rate. The diameter change was dominant on the arteriolar side. Superfusion of NO donor (spermine NO, 100 mumol/L) increased tumor vessel diameter and flow rate, whereas systemic injection of spermine NO (2.62 mg/kg) had no significant effect on these parameters. Rolling and stable adhesion of leukocytes were significantly increased by intravenous injection of L-NAME. In untreated animals, both MCaIV and LS174T tumor vessels were leaky to albumin. Systemic NO inhibition significantly attenuated tumor vascular permeability of MCaIV but not of LS174T tumor. Immunohistochemical studies, using polyclonal antibodies to endothelial NOS and inducible NOS, revealed a diffuse pattern of positive labeling in both MCaIV and LS174T tumors. Nitrite and nitrate levels in tumor interstitial fluid of MCaIV but not of LS

  13. Effects of endothelin-1 on vascular permeability in the conscious rat: interactions with platelet-activating factor.

    PubMed Central

    Filep, J. G.; Sirois, M. G.; Rousseau, A.; Fournier, A.; Sirois, P.

    1991-01-01

    1. The objectives of the present experiments were to assess the effects of endothelin-1 on the macrovascular permeability in selected vascular beds, to study the involvement of platelet-activating factor (PAF) in vascular responses to endothelin-1 and to examine the vascular effects of combined administration of endothelin-1 and PAF in conscious rats. 2. Intravenous bolus injection of endothelin-1 (0.1-2 nmol kg-1) resulted in a dose-dependent biphasic change in mean arterial blood pressure (MABP) with initial transient hypotension followed by a prolonged pressor action. These changes were accompanied by a dose-dependent increase in haematocrit values. 3. Endothelin-1 (0.1 and 1 nmol kg-1) increased dose-dependently the vascular permeability of the trachea, upper and lower bronchi, stomach, duodenum, spleen and kidney (up to 240%) as measured by the extravasation of Evans blue dye. The permeability of pulmonary parenchyma, liver and pancreas was not affected significantly by endothelin-1 treatment. 4. Pretreatment of animals with the specific PAF receptor antagonist, WEB 2086 (1 mg kg-1, i.v.) or BN 52021 (10 mg kg-1, i.v.) reduced the endothelin-1 (1 nmol kg-1)-induced rise in haematocrit by about 50 and 30%, respectively. Both antagonists were highly effective at inhibiting protein extravasation in the stomach, duodenum and kidney. On the other hand, BN 52021, but not WEB 2086, significantly attenuated the effect of endothelin-1 on permeability in the lower bronchi and spleen. Neither WEB 2086 nor BN 52021 modified the changes in MABP evoked by endothelin-1.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1667286

  14. Angiopoietin-4 increases permeability of blood vessels and promotes lymphatic dilation.

    PubMed

    Kesler, Cristina T; Pereira, Ethel R; Cui, Cheryl H; Nelson, Gregory M; Masuck, David J; Baish, James W; Padera, Timothy P

    2015-09-01

    The angiopoietin (Ang) ligands are potential therapeutic targets for lymphatic related diseases, which include lymphedema and cancer. Ang-1 and Ang-2 functions are established, but those of Ang-4 are poorly understood. We used intravital fluorescence microscopy to characterize Ang-4 actions on T241 murine fibrosarcoma-associated vessels in mice. The diameters of lymphatic vessels draining Ang-4- or VEGF-C (positive control)-expressing tumors increased to 123 and 135 μm, respectively, and parental, mock-transduced (negative controls) and tumors expressing Ang-1 or Ang-2 remained at baseline (∼60 μm). Ang-4 decreased human dermal lymphatic endothelial cell (LEC) monolayer permeability by 27% while increasing human dermal blood endothelial cell (BEC) monolayer permeability by 200%. In vivo, Ang-4 stimulated a 4.5-fold increase in tumor-associated blood vessel permeability compared with control when measured using intravital quantitative multiphoton microscopy. Ang-4 activated receptor signaling in both LECs and BECs, evidenced by tyrosine kinase with Ig and endothelial growth factor homology domains-2 (TIE2) receptor, protein kinase B, and Erk1,2 phosphorylation detectable by immunoblotting. These data suggest that Ang-4 actions are mediated through cell-type-specific networks and that lymphatic vessel dilation occurs secondarily to increased vascular leakage. Ang-4 also promoted survival of LECs. Thus, blocking Ang-4 may prune the draining lymphatic vasculature and decrease interstitial fluid pressure (IFP) by reducing vascular permeability. PMID:25977256

  15. New insight in quantitative analysis of vascular permeability during immune reaction (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kalchenko, Vyacheslav; Molodij, Guillaume; Kuznetsov, Yuri; Smolyakov, Yuri; Israeli, David; Meglinski, Igor; Harmelin, Alon

    2016-03-01

    The use of fluorescence imaging of vascular permeability becomes a golden standard for assessing the inflammation process during experimental immune response in vivo. The use of the optical fluorescence imaging provides a very useful and simple tool to reach this purpose. The motivation comes from the necessity of a robust and simple quantification and data presentation of inflammation based on a vascular permeability. Changes of the fluorescent intensity, as a function of time is a widely accepted method to assess the vascular permeability during inflammation related to the immune response. In the present study we propose to bring a new dimension by applying a more sophisticated approach to the analysis of vascular reaction by using a quantitative analysis based on methods derived from astronomical observations, in particular by using a space-time Fourier filtering analysis followed by a polynomial orthogonal modes decomposition. We demonstrate that temporal evolution of the fluorescent intensity observed at certain pixels correlates quantitatively to the blood flow circulation at normal conditions. The approach allows to determine the regions of permeability and monitor both the fast kinetics related to the contrast material distribution in the circulatory system and slow kinetics associated with extravasation of the contrast material. Thus, we introduce a simple and convenient method for fast quantitative visualization of the leakage related to the inflammatory (immune) reaction in vivo.

  16. Relative vascular permeability and vascularity across different regions of the rat nasal mucosa: implications for nasal physiology and drug delivery

    PubMed Central

    Kumar, Niyanta N.; Gautam, Mohan; Lochhead, Jeffrey J.; Wolak, Daniel J.; Ithapu, Vamsi; Singh, Vikas; Thorne, Robert G.

    2016-01-01

    Intranasal administration provides a non-invasive drug delivery route that has been proposed to target macromolecules either to the brain via direct extracellular cranial nerve-associated pathways or to the periphery via absorption into the systemic circulation. Delivering drugs to nasal regions that have lower vascular density and/or permeability may allow more drug to access the extracellular cranial nerve-associated pathways and therefore favor delivery to the brain. However, relative vascular permeabilities of the different nasal mucosal sites have not yet been reported. Here, we determined that the relative capillary permeability to hydrophilic macromolecule tracers is significantly greater in nasal respiratory regions than in olfactory regions. Mean capillary density in the nasal mucosa was also approximately 5-fold higher in nasal respiratory regions than in olfactory regions. Applying capillary pore theory and normalization to our permeability data yielded mean pore diameter estimates ranging from 13–17 nm for the nasal respiratory vasculature compared to <10 nm for the vasculature in olfactory regions. The results suggest lymphatic drainage for CNS immune responses may be favored in olfactory regions due to relatively lower clearance to the bloodstream. Lower blood clearance may also provide a reason to target the olfactory area for drug delivery to the brain. PMID:27558973

  17. Relative vascular permeability and vascularity across different regions of the rat nasal mucosa: implications for nasal physiology and drug delivery.

    PubMed

    Kumar, Niyanta N; Gautam, Mohan; Lochhead, Jeffrey J; Wolak, Daniel J; Ithapu, Vamsi; Singh, Vikas; Thorne, Robert G

    2016-01-01

    Intranasal administration provides a non-invasive drug delivery route that has been proposed to target macromolecules either to the brain via direct extracellular cranial nerve-associated pathways or to the periphery via absorption into the systemic circulation. Delivering drugs to nasal regions that have lower vascular density and/or permeability may allow more drug to access the extracellular cranial nerve-associated pathways and therefore favor delivery to the brain. However, relative vascular permeabilities of the different nasal mucosal sites have not yet been reported. Here, we determined that the relative capillary permeability to hydrophilic macromolecule tracers is significantly greater in nasal respiratory regions than in olfactory regions. Mean capillary density in the nasal mucosa was also approximately 5-fold higher in nasal respiratory regions than in olfactory regions. Applying capillary pore theory and normalization to our permeability data yielded mean pore diameter estimates ranging from 13-17 nm for the nasal respiratory vasculature compared to <10 nm for the vasculature in olfactory regions. The results suggest lymphatic drainage for CNS immune responses may be favored in olfactory regions due to relatively lower clearance to the bloodstream. Lower blood clearance may also provide a reason to target the olfactory area for drug delivery to the brain. PMID:27558973

  18. Vascular bursts enhance permeability of tumour blood vessels and improve nanoparticle delivery

    NASA Astrophysics Data System (ADS)

    Matsumoto, Yu; Nichols, Joseph W.; Toh, Kazuko; Nomoto, Takahiro; Cabral, Horacio; Miura, Yutaka; Christie, R. James; Yamada, Naoki; Ogura, Tadayoshi; Kano, Mitsunobu R.; Matsumura, Yasuhiro; Nishiyama, Nobuhiro; Yamasoba, Tatsuya; Bae, You Han; Kataoka, Kazunori

    2016-06-01

    Enhanced permeability in tumours is thought to result from malformed vascular walls with leaky cell-to-cell junctions. This assertion is backed by studies using electron microscopy and polymer casts that show incomplete pericyte coverage of tumour vessels and the presence of intercellular gaps. However, this gives the impression that tumour permeability is static amid a chaotic tumour environment. Using intravital confocal laser scanning microscopy we show that the permeability of tumour blood vessels includes a dynamic phenomenon characterized by vascular bursts followed by brief vigorous outward flow of fluid (named ‘eruptions’) into the tumour interstitial space. We propose that ‘dynamic vents’ form transient openings and closings at these leaky blood vessels. These stochastic eruptions may explain the enhanced extravasation of nanoparticles from the tumour blood vessels, and offer insights into the underlying distribution patterns of an administered drug.

  19. Vascular bursts enhance permeability of tumour blood vessels and improve nanoparticle delivery.

    PubMed

    Matsumoto, Yu; Nichols, Joseph W; Toh, Kazuko; Nomoto, Takahiro; Cabral, Horacio; Miura, Yutaka; Christie, R James; Yamada, Naoki; Ogura, Tadayoshi; Kano, Mitsunobu R; Matsumura, Yasuhiro; Nishiyama, Nobuhiro; Yamasoba, Tatsuya; Bae, You Han; Kataoka, Kazunori

    2016-06-01

    Enhanced permeability in tumours is thought to result from malformed vascular walls with leaky cell-to-cell junctions. This assertion is backed by studies using electron microscopy and polymer casts that show incomplete pericyte coverage of tumour vessels and the presence of intercellular gaps. However, this gives the impression that tumour permeability is static amid a chaotic tumour environment. Using intravital confocal laser scanning microscopy we show that the permeability of tumour blood vessels includes a dynamic phenomenon characterized by vascular bursts followed by brief vigorous outward flow of fluid (named 'eruptions') into the tumour interstitial space. We propose that 'dynamic vents' form transient openings and closings at these leaky blood vessels. These stochastic eruptions may explain the enhanced extravasation of nanoparticles from the tumour blood vessels, and offer insights into the underlying distribution patterns of an administered drug. PMID:26878143

  20. Bovine colostrum supplementation during running training increases intestinal permeability.

    PubMed

    Buckley, Jonathan D; Butler, Ross N; Southcott, Emma; Brinkworth, Grant D

    2009-02-01

    Endurance exercise training can increase intestinal permeability which may contribute to the development of gastrointestinal symptoms in some athletes. Bovine colostrum (BC) supplementation reduces intestinal permeability induced by non-steroidal anti-inflammatory drugs. This study aimed to determine whether BC could also reduce intestinal permeability induced by endurance exercise. Thirty healthy adult males (25.0 ± 4.7 yr; mean ± SD) completed eight weeks of running three times per week for 45 minutes at their lactate threshold while consuming 60 g/day of BC, whey protein (WP) or control (CON). Intestinal permeability was assessed at baseline and after eight weeks by measuring the ratio of urinary lactulose (L) and rhamnose (R) excretion. After eight weeks the L/R ratio increased significantly more in volunteers consuming BC (251 ± 140%) compared with WP (21 ± 35%, P < 0.05) and CON (-7 ± 13%, P < 0.02). The increase in intestinal permeability with BC may have been due to BC inducing greater leakiness of tight junctions between enterocytes or by increasing macromolecular transport as it does in neonatal gut. Further research should investigate the potential for BC to increase intestinal macromolecular transport in adults. PMID:22253980

  1. Expression of vascular permeability factor/vascular endothelial growth factor by human granulosa and theca lutein cells. Role in corpus luteum development.

    PubMed Central

    Kamat, B. R.; Brown, L. F.; Manseau, E. J.; Senger, D. R.; Dvorak, H. F.

    1995-01-01

    Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) is a cytokine that is overexpressed in many tumors, in healing wounds, and in rheumatoid arthritis. VPF/VEGF is thought to induce angiogenesis and accompanying connective tissue stroma in two ways: 1), by increasing microvascular permeability, thereby modifying the extracellular matrix and 2), as an endothelial cell mitogen. VPF/VEGF has been reported in animal corpora lutea and we investigated the possibility that it might be present in human ovaries and have a role in corpus luteum formation. We here report that VPF/VEGF mRNA and protein are expressed by human ovarian granulosa and theca cells late in follicle development and, subsequent to ovulation, by granulosa and theca lutein cells. Therefore, VPF/VEGF is ideally positioned to provoke the increased permeability of thecal blood vessels that occurs shortly before ovulation. VPF/VEGF likely also contributes to the angiogenesis and connective tissue stroma generation that accompany corpus luteum/corpus albicans formation. Finally, VPF/VEGF was overexpressed in the hyperthecotic ovarian stroma of Stein-Leventhal syndrome in which it may also have a pathophysiological role. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:7531945

  2. Permeability-increasing effects of low-power light

    NASA Astrophysics Data System (ADS)

    Nemtsev, Igor Z.; Koudryavtsev, N. N.

    1996-01-01

    The actions of physico-chemical mechanisms of low power light, applied in medicine are discussed. The investigations were prepared both in experiment on laboratory animals and in emergency-care clinics, where I worked with physicians as the theory-investigator. In this message I propose the theory of permeability increasing effects of low power light. Proton- permeability increasing effects on membranes go to the bioenergetic mechanism of low power light action. Sodium-permeability increasing effects on excitable membranes go to the reflex mechanism of low power light action. We suppose the medical mechanism of laser irradiation effects on the blood to be connected with water-permeability increasing effects because of blood cell membrane depolarization and shaking. We measured the dependence of red blood cell membrane water-permeability coefficient upon the low power light irradiation wavelength in the range 625 - 645 nm. So it was proved that He-Ne laser irradiation with 633 nm wavelength excites dissolved molecular oxygen from the ground triplet state to the singlet state. Fast relaxation of singlet oxygen to triplet state in water medium near membrane with the time 10-6 sec go to the membrane purification mechanism of low power light action.

  3. Effects of thromboxane A2 analogue on vascular resistance distribution and permeability in isolated blood-perfused dog lungs.

    PubMed

    Shibamoto, T; Wang, H G; Yamaguchi, Y; Hayashi, T; Saeki, Y; Tanaka, S; Koyama, S

    1995-01-01

    This study was designed to determine the effects of thromboxane A2 (TxA2) on the distribution of vascular resistance, lung weight, and microvascular permeability in isolated dog lungs perfused at a constant pressure with autologous blood. The stable TxA2 analogue (STA2; 30 micrograms, n = 5) caused an increase in pulmonary capillary pressure (Pc) assessed as double-occlusion pressure to 14.0 +/- 0.4 mmHg from the baseline of 7.9 +/- 0.3 mmHg with progressive lung weight gain. Pulmonary vascular resistance increased threefold exclusively due to pulmonary venoconstriction. Pulmonary venoconstriction was confirmed in lungs perfused in a reverse direction from the pulmonary vein to the artery (n = 5), as evidenced by marked precapillary vasoconstriction and a sustained lung weight loss. Furthermore, in lungs perfused at a constant blood flow (n = 5), STA2 also caused selective pulmonary venoconstriction. Vascular permeability measured by the capillary filtration coefficient and the isogravimetric Pc at 30 and 60 min after STA2 infusion did not change significantly from baseline in any lungs studied. Moreover, elevation of Pc by raising the venous reservoir of the intact lobes (n = 5) to the same level as the STA2 lungs caused a greater or similar weight gain compared with the STA2 lungs. Thus, we conclude that TxA2 constricts selectively the pulmonary vein resulting in an increase in Pc and lung weight gain without significant changes in vascular permeability in isolated blood-perfused dog lungs. PMID:7564480

  4. Differential vascular permeability along the forebrain ventricular neurogenic niche in the adult murine brain.

    PubMed

    Colín-Castelán, Dannia; Ramírez-Santos, Jesús; Gutiérrez-Ospina, Gabriel

    2016-02-01

    Adult neurogenesis is influenced by blood-borne factors. In this context, greater or lesser vascular permeability along neurogenic niches would expose differentially neural stem cells (NSCs), transit amplifying cells (TACs), and neuroblasts to such factors. Here we evaluate endothelial cell morphology and vascular permeability along the forebrain neurogenic niche in the adult brain. Our results confirm that the subventricular zone (SVZ) contains highly permeable, discontinuous blood vessels, some of which allow the extravasation of molecules larger than those previously reported. In contrast, the rostral migratory stream (RMS) and the olfactory bulb core (OBc) display mostly impermeable, continuous blood vessels. These results imply that NSCs, TACs, and neuroblasts located within the SVZ are exposed more readily to blood-borne molecules, including those with very high molecular weights, than those positioned along the RMS and the OBc, subregions in which every stage of neurogenesis also takes place. These observations suggest that the existence of specialized vascular niches is not a precondition for neurogenesis to occur; specialized vascular beds might be essential for keeping high rates of proliferation and/or differential differentiation of neural precursors located at distinct domains. PMID:26492830

  5. Plasma From Patients With HELLP Syndrome Increases Blood–Brain Barrier Permeability

    PubMed Central

    Tremble, Sarah M.; Owens, Michelle Y.; Morris, Rachael; Cipolla, Marilyn J.

    2015-01-01

    Circulating inflammatory factors and endothelial dysfunction have been proposed to contribute to the pathophysiology of hemolysis, elevated liver enzymes, and low platelet count (HELLP) syndrome. To date, the occurrence of neurological complications in these women has been reported, but few studies have examined whether impairment in blood–brain barrier (BBB) permeability or cerebrovascular reactivity is present in women having HELLP syndrome. We hypothesized that plasma from women with HELLP syndrome causes increased BBB permeability and cerebrovascular dysfunction. Posterior cerebral arteries from female nonpregnant rats were perfused with 20% serum from women with normal pregnancies (n = 5) or women with HELLP syndrome (n = 5), and BBB permeability and vascular reactivity were compared. Plasma from women with HELLP syndrome increased BBB permeability while not changing myogenic tone and reactivity to pressure. Addition of the nitric oxide (NO) synthase inhibitor Nω-nitro-l-arginine methyl ester caused constriction of arteries that was not different with the different plasmas nor was dilation to the NO donor sodium nitroprusside different between the 2 groups. However, dilation to the small- and intermediate-conductance, calcium-activated potassium channel activator NS309 was decreased in vessels exposed to HELLP plasma. Thus, increased BBB permeability in response to HELLP plasma was associated with selective endothelial dysfunction. PMID:25194151

  6. Identifying tumor vascular permeability heterogeneity using reduced encoding techniques

    NASA Astrophysics Data System (ADS)

    Aref, Michael

    We test the hypothesis that the loss of spatial resolution to gain temporal resolution in clinical dynamic contrast enhanced (DCE) magnetic resonance mammography (MRM) causes partial volume effects that yield inaccurate permeability-surface area products (PS = Kp↔t) which results in erroneous diagnostic information and we offer a potential solution using reduced encoding techniques to solve this problem. We compared the PS obtained from DCE MRI at clinical MRI resolutions (2500 x 2500 mum resolution), to that obtained from resolutions analogous to histopathological in plane resolutions (938 x 938 mum and 469 x 469 mum resolution). Secondly, we determined the accuracy of PS obtained from Keyhole, Ṟeduced-encoding I&barbelow;maging by G&barbelow;eneralized-series Ṟeconstruction (RIGR), and Ṯwo-reference RIGR (TRIGR) using high-resolution baseline data (469 x 469 mum resolution) and clinical resolution dynamic data (2500 x 2500 mum resolution). Lastly, we statistically correlated two-compartment model fitting parameters (tumor EES volume fraction, ve, tumor plasma volume fraction, vp, and PS) obtained from DCE MRI at all three resolutions to histopathologically determined tumor diagnosis. In our model, female Sprague Dawley rats with N-ethyl-N-nitrosourea (ENU) induced mammary tumors imaged with fast T1-weighted gradient echo DCE MRI following a Gd-DTPA injection, there is a window of resolutions that detects similar PS "hot spots" compared to those obtained from the clinical imager resolution. The top five PS "hot spots" obtained from 469 mum resolution FFT are statistically different from those at 938 mum resolution FFT, p = 0.0014, and 2500 mum resolution FFT, p < 0.0001. Keyhole when compared with a FFT of similar resolution does not detect PS "hot spots" of similar value, p = 0.0002. PS "hot spots" obtained from RIGR compared to those from FFT are statistically the same value, p = 0.2734, but do not statistically agree on the location of mapped values

  7. Dissociation of cutaneous vascular permeability and the development of cutaneous late-phase allergic reactions

    SciTech Connect

    Keahey, T.M.; Indrisano, J.; Kaliner, M.A.

    1989-03-01

    Cutaneous late-phase allergic reactions (LPR) are characterized by an early, immediate hypersensitivity whealing reaction followed by persistent, localized induration that peaks 6 to 8 hours later. In this study we used rodents to examine the relationship between vascular permeability (VP) and induration during LPR. Efflux of macromolecular tracers from the vasculature into skin was measured with the use of radiolabeled albumin and neutral dextran tracers having large molecular radii. To induce LPR immunologically, we used either intradermal injections of antirat IgE or passive cutaneous sensitization with IgE antidinitrophenyl followed 24 hours later by intravenous injection of albumin-dinitrophenyl. (/sup 125/I)albumin and (/sup 3/H)dextran tracers were injected intravenously before and at various intervals after the induction of LPR. Although a marked increase in VP occurred within the first 30 minutes after induction of mast cell degranulation, analysis of radiolabeled tracer accumulation at 2, 4, 8, and 24 hours failed to demonstrate any further increase in VP. These findings indicate that the induration observed in rodent LPR is not associated with increased VP beyond the immediate hypersensitivity stage and suggest that impairment of lymphatic drainage, cellular infiltration, and/or fibrin deposition are contributing factors.

  8. Sp1-mediated nonmuscle myosin light chain kinase expression and enhanced activity in vascular endothelial growth factor–induced vascular permeability

    PubMed Central

    2015-01-01

    Abstract Despite the important role played by the nonmuscle isoform of myosin light chain kinase (nmMLCK) in vascular barrier regulation and the implication of both nmMLCK and vascular endothelial growth factor (VEGF) in the pathogenesis of acute respiratory distress syndrome (ARDS), the role played by nmMLCK in VEGF-induced vascular permeability is poorly understood. In this study, the role played by nmMLCK in VEGF-induced vascular hyperpermeability was investigated. Human lung endothelial cell barrier integrity in response to VEGF is examined in both the absence and the presence of nmMLCK small interfering RNAs. Levels of nmMLCK messenger RNA (mRNA), protein, and promoter activity expression were monitored after VEGF stimulation in lung endothelial cells. nmMYLK promoter activity was assessed using nmMYLK promoter luciferase reporter constructs with a series of nested deletions. nmMYLK transcriptional regulation was further characterized by examination of a key transcriptional factor. nmMLCK plays an important role in VEGF-induced permeability. We found that activation of the VEGF signaling pathway in lung endothelial cells increases MYLK gene product at both mRNA and protein levels. Increased nmMLCK mRNA and protein expression is a result of increased nmMYLK promoter activity, regulated in part by binding of the Sp1 transcription factor on triggering by the VEGF signaling pathway. Taken together, these findings suggest that MYLK is an important ARDS candidate gene and a therapeutic target that is highly influenced by excessive VEGF concentrations in the inflamed lung. PMID:26697178

  9. Radiation effects on the fibrinolytic system and their relation to hemorrhagic diathesis and increased endothelial permeability

    SciTech Connect

    Ballelos, E.E.

    1982-01-01

    This study was designed to investigate the effects of wholebody X-irradiation on the fibrinolytic system, the causes of radiation-induced changes in plasmin (fibrinolytic) activity, and the contribution of increased plasmin activity to increased capillary (endothelial) permeability and hemorrhagic diathesis. The parameters evaluated using adult, male, Rochester ex-Wistar rats were: (1) plasmin, plasminogen, and plasminogen activator levels in plasma within one month after 425, 655, or 885 rad and at 3.5, 7 and 12 months after 425 rad, by a modified caseinolytic method; (2) tissue plasminogen activator activity (TPAA) in heart, kidneys, lungs, liver, pancreas and spleen, by a fibrin plate method (885 rad); (3) vascular permeability, by a radioisotopic method (885 rad); and (4) gross hemorrhagic response, scored for severity. The dose-dependent changes described in plasmin, plasminogen and plasminogen activator were multi-phasic. Epsilon-amino-caproic acid (0.3 gm/kg body weight) prevented the immediate and early radiation effects on these fibrinolytic components, and partially inhibited the later effects (within one month) whether administered only as a single injection before irradiation or maintained by daily water intake thereafter. The kidneys, spleen and pancreas were markedly susceptible to radiation-induced changes in TPAA. The lungs and liver showed significant changes in capillary permeability, which correlated positively with changes in vascular volume and blood plasmin and plasminogen activator levels. Increased plasmin (fibrinolytic) activity, superimposed on a hemostatic apparatus already impaired because of thrombocytopenia, contributed to hemorrhagic diathesis in acute radiation sickness.

  10. The inhibition of advanced glycation end-products-induced retinal vascular permeability by silver nanoparticles.

    PubMed

    Sheikpranbabu, Sardarpasha; Kalishwaralal, Kalimuthu; Lee, Kyung-Jin; Vaidyanathan, Ramanathan; Eom, Soo Hyun; Gurunathan, Sangiliyandi

    2010-03-01

    The increased permeability of the blood-retinal barrier is known to occur in patients with diabetes, and this defect contributes to retinal edema. This study aimed to determine the effects of silver nanoparticles (Ag-NPs) on advanced glycation end-products (AGEs)-induced endothelial cell permeability. Cultured porcine retinal endothelial cells (PRECs) were exposed to AGE-modified bovine serum albumin (AGE-BSA) and the endothelial cell permeability was detected by measuring the flux of RITC-dextran across the PREC monolayers. We found that AGE-BSA increased the dextran flux across a PREC monolayer and Ag-NPs blocked the solute flux induced by AGE-BSA. In order to understand the underlying signaling mechanism of Ag-NPs on the inhibitory effect of AGE-BSA-induced permeability, we demonstrated that Ag-NPs could inhibit the AGE-BSA-induced permeability via Src kinase pathway. AGE-BSA also increased the PREC permeability by stimulating the expression of intracellular adhesion molecule-1 (ICAM-1) and decreased the expression of occludin and ZO-1. Further, Ag-NPs inhibited the AGE-BSA-induced permeability by increased expression of tight junction proteins occludin and ZO-1, co-incident with an increase in barrier properties of endothelial monolayer. Together, our results indicate that Ag-NPs could possibly act as potent anti-permeability molecule by targeting the Src signaling pathway and tight junction proteins and it offers potential targets to inhibit the ocular related diseases. PMID:19963272

  11. Intravital analysis of vascular permeability in mice using two-photon microscopy.

    PubMed

    Egawa, Gyohei; Nakamizo, Satoshi; Natsuaki, Yohei; Doi, Hiromi; Miyachi, Yoshiki; Kabashima, Kenji

    2013-01-01

    Blood vessel endothelium forms a semi-permeable barrier and its permeability controls the traffics of plasma contents. Here we report an intravital evaluation system for vascular permeability in mice using two-photon microscopy. We used various sizes of fluorescein-conjugated dextran as a tracer and its efflux was quantified by measuring the changes of fluorescent intensity both on the blood vessel area and the interstitial space. Using this system, we demonstrated that skin blood vessels limited the passage of dextran larger than 70 kDa under homeostatic conditions. We evaluated the kinetics of vascular permeability in histamine- or IgE-induced type I allergic models and a hapten-induced type IV allergic model. In such inflammatory conditions, the hyperpermeability was selectively induced in the postcapillary venules and dextran as large as 2000-kDa leaked from the bloods. Taken together, our study provides a convenient method to characterize the skin blood vessels as a traffic barrier in physiological conditions. PMID:23732999

  12. Asef controls vascular endothelial permeability and barrier recovery in the lung

    PubMed Central

    Tian, Xinyong; Tian, Yufeng; Gawlak, Grzegorz; Meng, Fanyong; Kawasaki, Yoshihiro; Akiyama, Tetsu; Birukova, Anna A.

    2015-01-01

    Increased levels of hepatocyte growth factor (HGF) in injured lungs may reflect a compensatory response to diminish acute lung injury (ALI). HGF-induced activation of Rac1 GTPase stimulates endothelial barrier protective mechanisms. This study tested the involvement of Rac-specific guanine nucleotide exchange factor Asef in HGF-induced endothelial cell (EC) cytoskeletal dynamics and barrier protection in vitro and in a two-hit model of ALI. HGF induced membrane translocation of Asef and stimulated Asef Rac1-specific nucleotide exchange activity. Expression of constitutively activated Asef mutant mimicked HGF-induced peripheral actin cytoskeleton enhancement. In contrast, siRNA-induced Asef knockdown or expression of dominant-negative Asef attenuated HGF-induced Rac1 activation evaluated by Rac-GTP pull down and FRET assay with Rac1 biosensor. Molecular inhibition of Asef attenuated HGF-induced peripheral accumulation of cortactin, formation of lamellipodia-like structures, and enhancement of VE-cadherin adherens junctions and compromised HGF-protective effect against thrombin-induced RhoA GTPase activation, Rho-dependent cytoskeleton remodeling, and EC permeability. Intravenous HGF injection attenuated lung inflammation and vascular leak in the two-hit model of ALI induced by excessive mechanical ventilation and thrombin signaling peptide TRAP6. This effect was lost in Asef−/− mice. This study shows for the first time the role of Asef in HGF-mediated protection against endothelial hyperpermeability and lung injury. PMID:25518936

  13. Chloroquine and Hydroxychloroquine Increase Retinal Pigment Epithelial Layer Permeability.

    PubMed

    Korthagen, Nicoline M; Bastiaans, Jeroen; van Meurs, Jan C; van Bilsen, Kiki; van Hagen, P Martin; Dik, Willem A

    2015-07-01

    Antimalarials chloroquine (CQ) and hydroxychloroquine (HCQ) are widely used as antiinflammatory drugs, but side effects include retinopathy and vision loss. The objective of this study was to examine the effect of CQ and HCQ on the barrier integrity of retinal pigment epithelial (RPE) cell monolayers in vitro. Permeability of ARPE-19 cell monolayers was determined using Fluorescein isothiocyanate (FITC)-labeled dextran. The influence of CQ and HCQ on cell death and the expression tight junction molecules was examined. CQ and HCQ significantly increased ARPE-19 monolayer permeability after 3 and 18 h, respectively, and enhanced mRNA levels for claudin-1 and occludin. Cytotoxicity was only observed after 18 h exposure. Thus, CQ and HCQ rapidly enhance RPE barrier permeability in vitro, independent of cytotoxicity or loss of zonula occludens-1, claudin-1, and occludin expression. Our findings suggest that CQ/HCQ-induced permeability of the RPE layer may contribute to blood-retinal barrier breakdown in case of CQ/HCQ-induced retinopathy. PMID:25752684

  14. Adult human dental pulp stem cells promote blood-brain barrier permeability through vascular endothelial growth factor-a expression.

    PubMed

    Winderlich, Joshua N; Kremer, Karlea L; Koblar, Simon A

    2016-06-01

    Stem cell therapy is a promising new treatment option for stroke. Intravascular administration of stem cells is a valid approach as stem cells have been shown to transmigrate the blood-brain barrier. The mechanism that causes this effect has not yet been elucidated. We hypothesized that stem cells would mediate localized discontinuities in the blood-brain barrier, which would allow passage into the brain parenchyma. Here, we demonstrate that adult human dental pulp stem cells express a soluble factor that increases permeability across an in vitro model of the blood-brain barrier. This effect was shown to be the result of vascular endothelial growth factor-a. The effect could be amplified by exposing dental pulp stem cell to stromal-derived factor 1, which stimulates vascular endothelial growth factor-a expression. These findings support the use of dental pulp stem cell in therapy for stroke. PMID:26661186

  15. Cadmium induces vascular permeability via activation of the p38 MAPK pathway

    SciTech Connect

    Dong, Fengyun; Guo, Fang; Li, Liqun; Guo, Ling; Hou, Yinglong; Hao, Enkui; Yan, Suhua; Allen, Thaddeus D.; Liu, Ju

    2014-07-18

    Highlights: • Low-dose cadmium (Cd) induces vascular hyper-permeability. • p38 MAPK mediates Cd-induced disruption of endothelial cell barrier function. • SB203850 inhibits Cd-induced membrane dissociation of VE-cadherin and β-catenin. • SB203850 reduces Cd-induced expression and secretion of TNF-α. - Abstract: The vasculature of various organs is a targeted by the environmental toxin, cadmium (Cd). However, mechanisms leading to pathological conditions are poorly understood. In the present study, we examined the effect of cadmium chloride (CdCl{sub 2}) on human umbilical vein endothelial cells (HUVECs). At 4 μM, CdCl{sub 2} induced a hyper-permeability defect in HUVECs, but not the inhibition of cell growth up to 24 h. This effect of CdCl{sub 2} was dependent on the activation of the p38 mitogen-activated protein kinase (MAPK) pathway. The p38 MAPK inhibitor SB203850 suppressed the CdCl{sub 2}-induced alteration in trans-endothelial electrical resistance in HUVEC monolayers, a model measurement of vascular endothelial barrier integrity. SB203850 also inhibited the Cd-induced membrane dissociation of vascular endothelial (VE) cadherin and β-catenin, the important components of the adherens junctional complex. In addition, SB203850 reduces the Cd-induced expression and secretion of tumor necrosis factor α (TNF-α). Taken together, our findings suggest that Cd induces vascular hyper-permeability and disruption of endothelial barrier integrity through stimulation of p38 MAPK signaling.

  16. Increased bladder permeability in interstitial cystitis/painful bladder syndrome

    PubMed Central

    Greenwood-Van Meerveld, Beverley; Wisniewski, Amy B.; VanGordon, Samuel; Lin, HsuehKung; Kropp, Bradley P.; Towner, Rheal A.

    2015-01-01

    The definition of interstitial cystitis (IC) has evolved over the years from being a well-defined entity characterized by diagnostic lesion (Hunner’s ulcer) in the urothelium to a clinical diagnosis by exclusion [painful bladder syndrome (PBS)]. Although the etiology is unknown, a central theme has been an association with increased permeability of the bladder. This article reviews the evidence for increased permeability being important to the symptoms of interstitial cystitis/painful bladder syndrome (IC/PBS) and in treating the disorder. Recent work showing cross-communication among visceral organs is also reviewed to provide a basis for understanding IC/PBS as a systemic disorder of a complex, interconnected system consisting of the bladder, bowel and other organs, nerves, cytokine-responding cells and the nervous system. PMID:26751576

  17. Nitric Oxide Increases Arterial Endotheial Permeability through Mediating VE-Cadherin Expression during Arteriogenesis

    PubMed Central

    Wu, Xiaoqiong; Guan, Yinglu; Zhang, Bin; Cai, Weijun; Schaper, Jutta; Schaper, Wolfgang

    2015-01-01

    Macrophage invasion is an important event during arteriogenesis, but the underlying mechanism is still only partially understood. The present study tested the hypothesis that nitric oxide (NO) and VE-cadherin, two key mediators for vascular permeability, contribute to this event in a rat ischemic hindlimb model. In addition, the effect of NO on expression of VE-caherin and endothelial permeability was also studied in cultured HUVECs. We found that: 1) in normal arteriolar vessels (NAV), eNOS was moderately expressed in endothelial cells (EC) and iNOS was rarely detected. In contrast, in collateral vessels (CVs) induced by simple femoral artery ligation, both eNOS and iNOS were significantly upregulated (P<0.05). Induced iNOS was found mainly in smooth muscle cells, but also in other vascular cells and macrophages; 2) in NAV VE-cadherin was strongly expressed in EC. In CVs, VE-cadherin was significantly downregulated, with a discontinuous and punctate pattern. Administration of nitric oxide donor DETA NONOate (NONOate) further reduced the amounts of Ve-cadherin in CVs, whereas NO synthase inhibitor L-NAME inhibited downregulation of VE-cadherin in CVs; 3) in normal rats Evans blue extravasation (EBE) was low in the musculus gracilis, FITC-dextron leakage was not detected in the vascular wall and few macrophages were observed in perivascular space. In contrast, EBE was significantly increased in femoral artery ligation rats, FITC-dextron leakage and increased amounts of macrophages were detected in CVs, which were further enhanced by administration of NONOate, but inhibited by L-NAME supplement; 4) in vitro experiments confirmed that an increase in NO production reduced VE-cadherin expression, correlated with increases in the permeability of HUVECs. In conclusion, our data for the first time reveal the expression profile of VE-cadherin and alterations of vascular permeability in CVs, suggesting that NO-mediated VE-cadherin pathway may be one important mechanism

  18. Estimating retinal vascular permeability using the adiabatic approximation to the tissue homogeneity model with fluorescein videoangiography

    NASA Astrophysics Data System (ADS)

    Tichauer, Kenneth M.; Osswald, Christian R.; Dosmar, Emily; Guthrie, Micah J.; Hones, Logan; Sinha, Lagnojita; Xu, Xiaochun; Mieler, William F.; St. Lawrence, Keith; Kang-Mieler, Jennifer J.

    2015-06-01

    Clinical symptoms of diabetic retinopathy are not detectable until damage to the retina reaches an irreversible stage, at least by today's treatment standards. As a result, there is a push to develop new, "sub-clinical" methods of predicting the onset of diabetic retinopathy before the onset of irreversible damage. With diabetic retinopathy being associated with the accumulation of long-term mild damage to the retinal vasculature, retinal blood vessel permeability has been proposed as a key parameter for detecting preclinical stages of retinopathy. In this study, a kinetic modeling approach used to quantify vascular permeability in dynamic contrast-enhanced medical imaging was evaluated in noise simulations and then applied to retinal videoangiography data in a diabetic rat for the first time to determine the potential for this approach to be employed clinically as an early indicator of diabetic retinopathy. Experimental levels of noise were found to introduce errors of less than 15% in estimates of blood flow and extraction fraction (a marker of vascular permeability), and fitting of rat retinal fluorescein angiography data provided stable maps of both parameters.

  19. Increased intestinal permeability during cytomegalovirus infection in renal transplant recipients.

    PubMed

    de Maar, E F; Kleibeuker, J H; Boersma-van Ek, W; The, T H; van Son, W J

    1996-01-01

    Cytomegalovirus (CMV) infections in renal transplant recipients can affect the gastrointestinal tract, but significant clinical manifestations are seldom seen. We hypothesize that subclinical involvement of the gastrointestinal tract may be quite frequent during CMV infection. In order to study this, we measured intestinal permeability by calculating the urinary lactulose mannitol (LM) excretion ratio after oral administration of lactulose and mannitol (normal < 0.030) in patients with symptomatic and asymptomatic CMV infection. A total of 111 patients were enrolled in the study, 104 of whom were tested on postoperative day (POD) 10. Twenty-nine patients developed CMV infection, 12 of whom could be studied with the permeability test (median POD 40). Another nine patients without CMV infection were also studied at day 40 and served as controls. The LM ratio increased significantly during CMV infection compared to measurements before active infection (median 0.060 vs. 0.030, P < 0.01) and was significantly higher during the infection than in the control group (median 0.007, P < 0.01). No correlation could be found between the LM ratio and viral load, humoral response to the virus, or symptomatology of infection. We conclude that an increased intestinal permeability is found in a substantial number of patients with an active, albeit asymptomatic, CMV infection after renal transplantation. Pathophysiological mechanisms and clinical implications remain speculative but will be subject to further study. PMID:8914238

  20. Intravital lectin perfusion analysis of vascular permeability in human micro- and macro- blood vessels.

    PubMed

    Debbage, P L; Sölder, E; Seidl, S; Hutzler, P; Hugl, B; Ofner, D; Kreczy, A

    2001-10-01

    We previously applied intravital lectin perfusion in mouse models to elucidate mechanisms underlying vascular permeability. The present work transfers this technique to human models, analysing vascular permeability in macro- and microvessels. Human vascular endothelial surface carbohydrate biochemistry differs significantly from its murine counterpart, lacking alpha-galactosyl epitopes and expressing the L-fucose moiety in the glycocalyx; the poly-N-lactosamine glycan backbone is common to all mammals. We examined extensively lectin binding specificities in sections and in vivo, and then applied the poly-N-lactosamine-specific lectin LEA and the L-fucose-specific lectin UEA-I in human intravital perfusions. Transendothelial transport differed in macrovessels and microvessels. In microvessels of adult human fat tissue, rectal wall and rectal carcinomas, slow transendothelial transport by vesicles was followed by significant retention at the subendothelial basement membrane; paracellular passage was not observed. Passage time exceeded 1 h. Thus we found barrier mechanisms resembling those we described previously in murine tissues. In both adult and fetal macrovessels, the vena saphena magna and the umbilical vein, respectively, rapid passage across the endothelial lining was observed, the tracer localising completely in the subendothelial tissues within 15 min; vesicular transport was more rapid than in microvessels, and retention at the subendothelial basement membrane briefer. PMID:11702193

  1. Detection of a vascular permeability factor in the extracellular products of Renibacterium salmoninarum.

    PubMed

    Bandín, I; Santos, Y; Toranzo, A E; Barja, J L

    1992-09-01

    The presence of vascular permeability factors in the extracellular products (ECP) of 10 strains of Renibacterium salmoninarum with different geographical origin and serological characteristics are reported. All the ECP produced haemorrhagic and/or oedematous zones at the injection site with a diameter ranging from 10-30 mm. However, the ECP samples did not display toxic effect in fish at the same dose as inoculated in rabbit (180-400 micrograms protein/0.1 ml). No differences were observed in the production of this dermatotoxic factor between the two antigenic groups found in this microorganism. Whereas heating (80 and 100 degrees C/15 min) the ECP samples resulted in a complete loss of their proteolytic activity, only a decrease (but not total inactivation) of the dermatotoxic effects was detected. Therefore, although proteases could be implicated in the permeability factor, they are not totally responsible for this activity. PMID:1291845

  2. Heterogeneous vascular permeability and alternative diffusion barrier in sensory circumventricular organs of adult mouse brain.

    PubMed

    Morita, Shoko; Furube, Eriko; Mannari, Tetsuya; Okuda, Hiroaki; Tatsumi, Kouko; Wanaka, Akio; Miyata, Seiji

    2016-02-01

    Fenestrated capillaries of the sensory circumventricular organs (CVOs), including the organum vasculosum of the lamina terminalis, the subfornical organ and the area postrema, lack completeness of the blood-brain barrier (BBB) to sense a variety of blood-derived molecules and to convey the information into other brain regions. We examine the vascular permeability of blood-derived molecules and the expression of tight-junction proteins in sensory CVOs. The present tracer assays revealed that blood-derived dextran 10 k (Dex10k) having a molecular weight (MW) of 10,000 remained in the perivascular space between the inner and outer basement membranes, but fluorescein isothiocyanate (FITC; MW: 389) and Dex3k (MW: 3000) diffused into the parenchyma. The vascular permeability of FITC was higher at central subdivisions than at distal subdivisions. Neither FITC nor Dex3k diffused beyond the dense network of glial fibrillar acidic protein (GFAP)-positive astrocytes/tanycytes. The expression of tight-junction proteins such as occludin, claudin-5 and zonula occludens-1 (ZO-1) was undetectable at the central subdivisions of the sensory CVOs but some was expressed at the distal subdivisions. Electron microscopic observation showed that capillaries were surrounded with numerous layers of astrocyte processes and dendrites. The expression of occludin and ZO-1 was also observed as puncta on GFAP-positive astrocytes/tanycytes of the sensory CVOs. Our study thus demonstrates the heterogeneity of vascular permeability and expression of tight-junction proteins and indicates that the outer basement membrane and dense astrocyte/tanycyte connection are possible alternative mechanisms for a diffusion barrier of blood-derived molecules, instead of the BBB. PMID:26048259

  3. Vasodilator-Stimulated Phosphoprotein Deficiency Potentiates PAR-1-induced Increase in Endothelial Permeability in Mouse Lungs

    PubMed Central

    Profirovic, Jasmina; Han, Jingyan; Andreeva, Alexandra V.; Neamu, Radu F.; Pavlovic, Sasha; Vogel, Stephen M.; Walter, Ulrich; Voyno-Yasenetskaya, Tatyana A.

    2010-01-01

    Vasodilator-stimulated phosphoprotein (VASP) is implicated in the protection of the endothelial barrier in vitro and in vivo. VASP function in thrombin signaling in the endothelial cells (ECs) is not known. For the first time we studied the effects of VASP deficiency on EC permeability and pulmonary vascular permeability in response to thrombin receptor stimulation. We provided the evidence that VASP deficiency potentiates the increase in endothelial permeability induced by activation of thrombin receptor in cultured human umbilical vein endothelial cells (HUVECs) and isolated mouse lungs. Using transendothelial resistance measurement, we showed that siRNA-mediated VASP downregulation in HUVECs leads to a potentiation of thrombin- and protease-activated receptor 1 (PAR-1) agonist-induced increase in endothelial permeability. Compared to control cells, VASP-deficient HUVECs had delayed endothelial junctional reassembly and abrogated VE-cadherin cytoskeletal anchoring in the recovery phase after thrombin stimulation, as demonstrated by immunofluorescence studies and cell fractionation analysis, respectively. Measurement of the capillary filtration coefficient in isolated mouse lungs demonstrated that VASP−/− mice have increased microvascular permeability in response to infusion with PAR-1 agonist compared to wild type mice. Lack of VASP led to decreased Rac1 activation both in VASP-deficient HUVECs after thrombin stimulation and VASP−/− mouse lungs after PAR-1 agonist infusion, indicating that VASP effects on thrombin signaling may correlated with changes in Rac1 activity. This study demonstrates that VASP may play critical and complex role in the regulation of thrombin-dependent disruption of the endothelial barrier function. PMID:20945373

  4. Increased permeability of macroscopically normal small bowel in Crohn's disease.

    PubMed

    Peeters, M; Ghoos, Y; Maes, B; Hiele, M; Geboes, K; Vantrappen, G; Rutgeerts, P

    1994-10-01

    To investigate permeability alterations of the macroscopically normal jejunum in Crohn's disease, the permeation of two probes was measured during perfusion of an isolated jejunal segment. The data were compared with the results obtained by the standard per oral test in the same patients. Test probes were PEG-400 and [51Cr]EDTA. Ten normal individuals, 12 patients with Crohn's ileitis or ileocolitis, and seven patients with isolated Crohn's colitis all with normal jejunum on x-ray series were studied. Upon perfusion of the proximal small bowel, the 3-hr [51Cr]EDTA excretion was significantly increased in ileitis patients (P = 0.023) as compared to normals. The excretion exceeded the highest value of normals in eight of 12 ileitis patients. The excretion in Crohn's colitis patients was not significantly increased (P = 0.24) and abnormal excretion was found only in one of the Crohn's colitis patients. PEG-400 permeation during perfusion did not differentiate between the groups, but five of the seven patients with isolated Crohn's colitis had PEG-400 excretion exceeding the highest value in normals. Overall, 13 of the 19 patients had increased permeation of one of the two probes through jejunal mucosa during perfusion. These data suggest that the permeability is increased in the majority of patients even in segments that seem normal on x-ray. PMID:7924738

  5. Dipeptidyl Peptidase-4 Inhibitor Increases Vascular Leakage in Retina through VE-cadherin Phosphorylation

    PubMed Central

    Lee, Choon-Soo; Kim, Yun Gi; Cho, Hyun-Jai; Park, Jonghanne; Jeong, Heewon; Lee, Sang-Eun; Lee, Seung-Pyo; Kang, Hyun-Jae; Kim, Hyo-Soo

    2016-01-01

    The inhibitors of CD26 (dipeptidyl peptidase-4; DPP4) have been widely prescribed to control glucose level in diabetic patients. DPP4-inhibitors, however, accumulate stromal cell-derived factor-1α (SDF-1α), a well-known inducer of vascular leakage and angiogenesis both of which are fundamental pathophysiology of diabetic retinopathy. The aim of this study was to investigate the effects of DPP4-inhibitors on vascular permeability and diabetic retinopathy. DPP4-inhibitor (diprotin A or sitagliptin) increased the phosphorylation of Src and vascular endothelial-cadherin (VE-cadherin) in human endothelial cells and disrupted endothelial cell-to-cell junctions, which were attenuated by CXCR4 (receptor of SDF-1α)-blocker or Src-inhibitor. Disruption of endothelial cell-to-cell junctions in the immuno-fluorescence images correlated with the actual leakage of the endothelial monolayer in the transwell endothelial permeability assay. In the Miles assay, vascular leakage was observed in the ears into which SDF-1α was injected, and this effect was aggravated by DPP4-inhibitor. In the model of retinopathy of prematurity, DPP4-inhibitor increased not only retinal vascularity but also leakage. Additionally, in the murine diabetic retinopathy model, DPP4-inhibitor increased the phosphorylation of Src and VE-cadherin and aggravated vascular leakage in the retinas. Collectively, DPP4-inhibitor induced vascular leakage by augmenting the SDF-1α/CXCR4/Src/VE-cadherin signaling pathway. These data highlight safety issues associated with the use of DPP4-inhibitors. PMID:27381080

  6. Dipeptidyl Peptidase-4 Inhibitor Increases Vascular Leakage in Retina through VE-cadherin Phosphorylation.

    PubMed

    Lee, Choon-Soo; Kim, Yun Gi; Cho, Hyun-Jai; Park, Jonghanne; Jeong, Heewon; Lee, Sang-Eun; Lee, Seung-Pyo; Kang, Hyun-Jae; Kim, Hyo-Soo

    2016-01-01

    The inhibitors of CD26 (dipeptidyl peptidase-4; DPP4) have been widely prescribed to control glucose level in diabetic patients. DPP4-inhibitors, however, accumulate stromal cell-derived factor-1α (SDF-1α), a well-known inducer of vascular leakage and angiogenesis both of which are fundamental pathophysiology of diabetic retinopathy. The aim of this study was to investigate the effects of DPP4-inhibitors on vascular permeability and diabetic retinopathy. DPP4-inhibitor (diprotin A or sitagliptin) increased the phosphorylation of Src and vascular endothelial-cadherin (VE-cadherin) in human endothelial cells and disrupted endothelial cell-to-cell junctions, which were attenuated by CXCR4 (receptor of SDF-1α)-blocker or Src-inhibitor. Disruption of endothelial cell-to-cell junctions in the immuno-fluorescence images correlated with the actual leakage of the endothelial monolayer in the transwell endothelial permeability assay. In the Miles assay, vascular leakage was observed in the ears into which SDF-1α was injected, and this effect was aggravated by DPP4-inhibitor. In the model of retinopathy of prematurity, DPP4-inhibitor increased not only retinal vascularity but also leakage. Additionally, in the murine diabetic retinopathy model, DPP4-inhibitor increased the phosphorylation of Src and VE-cadherin and aggravated vascular leakage in the retinas. Collectively, DPP4-inhibitor induced vascular leakage by augmenting the SDF-1α/CXCR4/Src/VE-cadherin signaling pathway. These data highlight safety issues associated with the use of DPP4-inhibitors. PMID:27381080

  7. Clostridium perfringens epsilon-toxin increases permeability of single perfused microvessels of rat mesentery.

    PubMed

    Adamson, R H; Ly, J C; Fernandez-Miyakawa, M; Ochi, S; Sakurai, J; Uzal, F; Curry, F E

    2005-08-01

    Epsilon-toxin, the primary virulence factor of Clostridium perfringens type D, causes mortality in livestock, particularly sheep and goats, in which it induces an often-fatal enterotoxemia. It is believed to compromise the intestinal barrier and then enter the gut vasculature, from which it is carried systemically, causing widespread vascular endothelial damage and edema. Here we used single perfused venular microvessels in rat mesentery, which enabled direct observation of permeability properties of the in situ vascular wall during exposure to toxin. We determined the hydraulic conductivity (L(p)) of microvessels as a measure of the response to epsilon-toxin. We found that microvessels were highly sensitive to toxin. At 10 microg ml(-1) the L(p) increased irreversibly to more than 15 times the control value by 10 min. At 0.3 microg ml(-1) no increase in L(p) was observed for up to 90 min. The toxin-induced increase in L(p) was consistent with changes in ultrastructure of microvessels exposed to the toxin. Those microvessels exhibited gaps either between or through endothelial cells where perfusate had direct access to the basement membrane. Many endothelial cells appeared necrotic, highly attenuated, and with dense cytoplasm. We showed that epsilon-toxin, in a time- and dose-dependent manner, rapidly and irreversibly compromised the barrier function of venular microvessel endothelium. The results conformed to the hypothesis that epsilon-toxin interacts with vascular endothelial cells and increases the vessel wall permeability by direct damage of the endothelium. PMID:16041001

  8. Protein Kinase Cβ Phosphorylates Occludin Regulating Tight Junction Trafficking in Vascular Endothelial Growth Factor–Induced Permeability In Vivo

    PubMed Central

    Murakami, Tomoaki; Frey, Tiffany; Lin, Chengmao; Antonetti, David A.

    2012-01-01

    Vascular endothelial growth factor (VEGF)–induced breakdown of the blood-retinal barrier requires protein kinase C (PKC)β activation. However, the molecular mechanisms related to this process remain poorly understood. In this study, the role of occludin phosphorylation and ubiquitination downstream of PKCβ activation in tight junction (TJ) trafficking and endothelial permeability was investigated. Treatment of bovine retinal endothelial cells and intravitreal injection of PKCβ inhibitors as well as expression of dominant-negative kinase was used to determine the contribution of PKCβ to endothelial permeability and occludin phosphorylation at Ser490 detected with a site-specific antibody. In vitro kinase assay was used to demonstrate direct occludin phosphorylation by PKCβ. Ubiquitination was measured by immunoblotting after occludin immunoprecipitation. Confocal microscopy revealed organization of TJ proteins. The results reveal that inhibition of VEGF-induced PKCβ activation blocks occludin Ser490 phosphorylation, ubiquitination, and TJ trafficking in retinal vascular endothelial cells both in vitro and in vivo and prevents VEGF-stimulated vascular permeability. Occludin Ser490 is a direct target of PKCβ, and mutating Ser490 to Ala (S490A) blocks permeability downstream of PKCβ. Therefore, PKCβ activation phosphorylates occludin on Ser490, leading to ubiquitination required for VEGF-induced permeability. These data demonstrate a novel mechanism for PKCβ targeted inhibitors in regulating vascular permeability. PMID:22438576

  9. A sustained release formulation of novel quininib-hyaluronan microneedles inhibits angiogenesis and retinal vascular permeability in vivo.

    PubMed

    Galvin, Orla; Srivastava, Akshay; Carroll, Oliver; Kulkarni, Rajiv; Dykes, Steve; Vickers, Steven; Dickinson, Keith; Reynolds, Alison L; Kilty, Claire; Redmond, Gareth; Jones, Rob; Cheetham, Sharon; Pandit, Abhay; Kennedy, Breandán N

    2016-07-10

    Pathologic neovascularisation and ocular permeability are hallmarks of proliferative diabetic retinopathy and age-related macular degeneration. Current pharmacologic interventions targeting VEGF are effective in only 30-60% of patients and require multiple intraocular injections associated with iatrogenic infection. Thus, our goal is to develop novel small molecule drugs that are VEGF-independent are amenable to sustained ocular-release, and which reduce retinal angiogenesis and retinal vascular permeability. Here, the anti-angiogenic drug quininib was formulated into hyaluronan (HA) microneedles whose safety and efficacy was evaluated in vivo. Quininib-HA microneedles were formulated via desolvation from quininib-HA solution and subsequent cross-linking with 4-arm-PEG-amine prior to freeze-drying. Scanning electron microscopy revealed hollow needle-shaped particle ultrastructure, with a zeta potential of -35.5mV determined by electrophoretic light scattering. The incorporation efficiency and pharmacokinetic profile of quininib released in vitro from the microneedles was quantified by HPLC. Quininib incorporation into these microneedles was 90%. In vitro, 20% quininib was released over 4months; or in the presence of increasing concentrations of hyaluronidase, 60% incorporated quininib was released over 4months. Zebrafish hyaloid vasculature assays demonstrated quininib released from these microneedles significantly (p<0.0001) inhibited ocular developmental angiogenesis compared to control. Sustained amelioration of retinal vascular permeability (RVP) was demonstrated using a bespoke cysteinyl leukotriene induced rodent model. Quininib-HA microparticles significantly inhibited RVP in Brown Norway rats one month after administration compared to neat quininib control (p=0.0071). In summary, quininib-HA microneedles allow for sustained release of quininib; are safe in vivo and quininib released from these microneedles effectively inhibits angiogenesis and RVP in vivo

  10. Crosstalk between ACE2 and PLGF regulates vascular permeability during acute lung injury

    PubMed Central

    Wang, Lantao; Li, Yong; Qin, Hao; Xing, Dong; Su, Jie; Hu, Zhenjie

    2016-01-01

    Angiotensin converting enzyme 2 (ACE2) treatment suppresses the severity of acute lung injury (ALI), through antagonizing hydrolyzing angiotensin II (AngII) and the ALI-induced apoptosis of pulmonary endothelial cells. Nevertheless, the effects of ACE2 on vessel permeability and its relationship with placental growth factor (PLGF) remain ill-defined. In the current study, we examined the relationship between ACE2 and PLGF in ALI model in mice. We used a previously published bleomycin method to induce ALI in mice, and treated the mice with ACE2. We analyzed the levels of PLGF in these mice. The mouse lung vessel permeability was determined by a fluorescence pharmacokinetic assay following i.v. injection of 62.5 µg/kg Visudyne. PLGF pump or soluble Flt-1 (sFlt-1) pump was given to augment or suppress PLGF effects, respectively. The long-term effects on lung function were determined by measurement of lung resistance using methacholine. We found that ACE2 treatment did not alter PLGF levels in lung, but antagonized the effects of PLGF on increases of lung vessel permeability. Ectogenic PLGF abolished the antagonizing effects of ACE2 on the vessel permeability against PLGF. On the other hand, suppression of PLGF signaling mimicked the effects of ACE2 on the vessel permeability against PLGF. The suppression of vessel permeability resulted in improvement of lung function after ALI. Thus, ACE2 may antagonize the PLGF-mediated increases in lung vessel permeability during ALI, resulting in improvement of lung function after ALI. PMID:27158411

  11. Mechanisms associated with tumor vascular shut-down induced by combretastatin A-4 phosphate: intravital microscopy and measurement of vascular permeability.

    PubMed

    Tozer, G M; Prise, V E; Wilson, J; Cemazar, M; Shan, S; Dewhirst, M W; Barber, P R; Vojnovic, B; Chaplin, D J

    2001-09-01

    The tumor vascular effects of the tubulin destabilizing agent disodium combretastatinA-4 3-O-phosphate (CA-4-P) were investigated in the rat P22 tumor growing in a dorsal skin flap window chamber implanted into BD9 rats. CA-4-P is in clinical trial as a tumor vascular targeting agent. In animal tumors, it can cause the shut-down of blood flow, leading to extensive tumor cell necrosis. However, the mechanisms leading to vascular shut-down are still unknown. Tumor vascular effects were visualized and monitored on-line before and after the administration of two doses of CA-4-P (30 and 100 mg/kg) using intravital microscopy. The combined effect of CA-4-P and systemic nitric oxide synthase (NOS) inhibition using N(omega)-nitro-L-arginine (L-NNA) was also assessed, because this combination has been shown previously to have a potentiating effect. The early effect of CA-4-P on tumor vascular permeability to albumin was determined to assess whether this could be involved in the mechanism of action of the drug. Tumor blood flow reduction was extremely rapid after CA-4-P treatment, with red cell velocity decreasing throughout the observation period and dropping to <5% of the starting value by 1 h. NOS inhibition alone caused a 50% decrease in red cell velocity, and the combined treatment of CA-4-P and NOS inhibition was approximately additive. The mechanism of blood flow reduction was very different for NOS inhibition and CA-4-P. That of NOS inhibition could be explained by a decrease in vessel diameter, which was most profound on the arteriolar side of the tumor circulation. In contrast, the effects of CA-4-P resembled an acute inflammatory reaction resulting in a visible loss of a large proportion of the smallest blood vessels. There was some return of visible vasculature at 1 h after treatment, but the blood in these vessels was static or nearly so, and many of the vessels were distended. The hematocrit within larger draining tumor venules tended to increase at early times

  12. Amyloid beta-peptide induces cell monolayer albumin permeability, impairs glucose transport, and induces apoptosis in vascular endothelial cells.

    PubMed

    Blanc, E M; Toborek, M; Mark, R J; Hennig, B; Mattson, M P

    1997-05-01

    Amyloid beta-peptide (A beta) is deposited as insoluble fibrils in the brain parenchyma and cerebral blood vessels in Alzheimer's disease (AD). In addition to neuronal degeneration, cerebral vascular alterations indicative of damage to vascular endothelial cells and disruption of the blood-brain barrier occur in AD. Here we report that A beta25-35 can impair regulatory functions of endothelial cells (ECs) from porcine pulmonary artery and induce their death. Subtoxic exposures to A beta25-35 induced albumin transfer across EC monolayers and impaired glucose transport into ECs. Cell death induced by A beta25-35 was of an apoptotic form, characterized by DNA condensation and fragmentation, and prevented by inhibitors of macromolecular synthesis and endonucleases. The effects of A beta25-35 were specific because A beta1-40 also induced apoptosis in ECs with the apoptotic cells localized to the microenvironment of A beta1-40 aggregates and because astrocytes did not undergo similar changes after exposure to A beta25-35. Damage and death of ECs induced by A beta25-35 were attenuated by antioxidants, a calcium channel blocker, and a chelator of intracellular calcium, indicating the involvement of free radicals and dysregulation of calcium homeostasis. The data show that A beta induces increased permeability of EC monolayers to macromolecules, impairs glucose transport, and induces apoptosis. If similar mechanisms are operative in vivo, then A beta and other amyloidogenic peptides may be directly involved in vascular EC damage documented in AD and other disorders that involve vascular amyloid accumulation. PMID:9109512

  13. KRIT1 Protein Depletion Modifies Endothelial Cell Behavior via Increased Vascular Endothelial Growth Factor (VEGF) Signaling*

    PubMed Central

    DiStefano, Peter V.; Kuebel, Julia M.; Sarelius, Ingrid H.; Glading, Angela J.

    2014-01-01

    Disruption of endothelial cell-cell contact is a key event in many cardiovascular diseases and a characteristic of pathologically activated vascular endothelium. The CCM (cerebral cavernous malformation) family of proteins (KRIT1 (Krev-interaction trapped 1), PDCD10, and CCM2) are critical regulators of endothelial cell-cell contact and vascular homeostasis. Here we show novel regulation of vascular endothelial growth factor (VEGF) signaling in KRIT1-depleted endothelial cells. Loss of KRIT1 and PDCD10, but not CCM2, increases nuclear β-catenin signaling and up-regulates VEGF-A protein expression. In KRIT1-depleted cells, increased VEGF-A levels led to increased VEGF receptor 2 (VEGFR2) activation and subsequent alteration of cytoskeletal organization, migration, and barrier function and to in vivo endothelial permeability in KRIT1-deficient animals. VEGFR2 activation also increases β-catenin phosphorylation but is only partially responsible for KRIT1 depletion-dependent disruption of cell-cell contacts. Thus, VEGF signaling contributes to modifying endothelial function in KRIT1-deficient cells and microvessel permeability in Krit1+/− mice; however, VEGF signaling is likely not the only contributor to disrupted endothelial cell-cell contacts in the absence of KRIT1. PMID:25320085

  14. The diaphragms of fenestrated endothelia – gatekeepers of vascular permeability and blood composition

    PubMed Central

    Stan, Radu V.; Tse, Dan; Deharvengt, Sophie J.; Smits, Nicole C.; Xu, Yan; Luciano, Marcus R.; McGarry, Caitlin L.; Buitendijk, Maarten; Nemani, Krishnamurthy V.; Elgueta, Raul; Kobayashi, Takashi; Shipman, Samantha L.; Moodie, Karen L.; Daghlian, Charles P.; Ernst, Patricia A.; Lee, Hong-Kee; Suriawinata, Arief A.; Schned, Alan R.; Longnecker, Daniel S.; Fiering, Steven N.; Noelle, Randolph J.; Gimi, Barjor; Shworak, Nicholas W.; Carrière, Catherine

    2012-01-01

    SUMMARY Fenestral and stomatal diaphragms are endothelial subcellular structures of unknown function that form on organelles implicated in vascular permeability: fenestrae, transendothelial channels and caveolae. PV1 protein is required for diaphragm formation in vitro. Here, we report that deletion of the PV1-encoding Plvap gene in mice results in the absence of diaphragms and decreased survival. Loss of diaphragms did not affect the fenestrae and transendothelial channels formation but disrupted the barrier function of fenestrated capillaries causing a major leak of plasma proteins. This disruption results in early death of animals due to severe non-inflammatory protein loosing enteropathy. Deletion of PV1 in endothelium, but not the hematopoietic compartment, recapitulates the phenotype of global PV1 deletion, whereas endothelial reconstitution of PV1 rescues the phenotype. Taken together, these data provide genetic evidence for the critical role of the diaphragms in fenestrated capillaries in the maintenance of blood composition. PMID:23237953

  15. Diesel exhaust particles modulate vascular endothelial cell permeability: Implication of ZO-1 Expression

    PubMed Central

    Li, Rongsong; Ning, Zhi; Cui, Jeffrey; Yu, Fei; Sioutas, Constantinos; Hsiai, Tzung

    2010-01-01

    Exposure to air pollutants increases the incidence of cardiovascular disease. Recent toxicity studies revealed that ultra fine particles (UFP, dp<100–200 nm), the major portion of particulate matter (PM) by numbers in the atmosphere, induced atherosclerosis. In this study, we posited that variations in chemical composition in diesel exhausted particles (DEP) regulated endothelial cell permeability to a different extent. Human aortic endothelial cells (HAEC) were exposed to well-characterized DEP (dp<100 nm) emitted from a diesel engine in either idling mode (DEP1) or in urban dynamometer driving schedule (UDDS) (DEP2). Horse Radish Peroxidase-Streptavidin activity assay showed that DEP2 increased endothelial permeability to a greater extent than DEP1 (Control=0.077± 0.005, DEP1=0.175±0.003, DEP2=0.265±0.006, n=3, p<0.01). DEP2 also down-regulated tight junction protein, Zonular Occludin-1 (ZO-1), to a greater extent compared to DEP1. LDH and caspase-3 activities revealed that DEP-mediated increase in permeability was not due to direct cytotoxicity, and DEP-mediated ZO-1 down-regulation was not due to a decrease in ZO-1 mRNA. Hence, our findings suggest that DEP1 versus DEP2 differentially influenced the extent of endothelial permeability at the post-translational level. This increase in endothelium permeability is implicated in inflammatory cell transmigration into subendothelial layers with relevance to the initiation of atherosclerosis. PMID:20576493

  16. Monitoring Vascular Permeability and Remodeling After Endothelial Injury in a Murine Model Using a Magnetic Resonance Albumin-Binding Contrast Agent

    PubMed Central

    Phinikaridou, Alkystis; Lorrio, Silvia; Zaragoza, Carlos; Botnar, René M.

    2015-01-01

    Background— Despite the beneficial effects of vascular interventions, these procedures may damage the endothelium leading to increased vascular permeability and remodeling. Re-endothelialization of the vessel wall, with functionally and structurally intact cells, is controlled by endothelial nitric oxide synthase (NOS3) and is crucial for attenuating adverse effects after injury. We investigated the applicability of the albumin-binding MR contrast agent, gadofosveset, to noninvasively monitor focal changes in vascular permeability and remodeling, after injury, in NOS3-knockout (NOS3−/−) and wild-type (WT) mice in vivo. Methods and Results— WT and NOS3−/− mice were imaged at 7, 15, and 30 days after aortic denudation or sham-surgery. T1 mapping (R1=1/T1, s−1) and delayed-enhanced MRI were used as measurements of vascular permeability (R1) and remodeling (vessel wall enhancement, mm2) after gadofosveset injection, respectively. Denudation resulted in higher vascular permeability and vessel wall enhancement 7 days after injury in both strains compared with sham-operated animals. However, impaired re-endothelialization and increased neovascularization in NOS3−/− mice resulted in significantly higher R1 at 15 and 30 days post injury compared with WT mice that showed re-endothelialization and lack of neovascularization (R1 [s−1]=15 days: NOS3−/−4.02 [interquartile range, IQR, 3.77–4.41] versus WT2.39 [IQR, 2.35–2.92]; 30 days: NOS3−/−4.23 [IQR, 3.94–4.68] versus WT2.64 [IQR, 2.33–2.80]). Similarly, vessel wall enhancement was higher in NOS3−/− but recovered in WT mice (area [mm2]=15 days: NOS3−/−5.20 [IQR, 4.68–6.80] versus WT2.13 [IQR, 0.97–3.31]; 30 days: NOS3−/−7.35 [IQR, 5.66–8.61] versus WT1.60 [IQR, 1.40–3.18]). Ex vivo histological studies corroborated the MRI findings. Conclusions— We demonstrate that increased vascular permeability and remodeling, after injury, can be assessed noninvasively using an

  17. Semaphorin 3A suppresses VEGF-mediated angiogenesis yet acts as a vascular permeability factor

    PubMed Central

    Acevedo, Lisette M.; Barillas, Samuel; Weis, Sara M.; Göthert, Joachim R.

    2008-01-01

    Semaphorin 3A (Sema3A), a known inhibitor of axonal sprouting, also alters vascular patterning. Here we show that Sema3A selectively interferes with VEGF- but not bFGF-induced angiogenesis in vivo. Consistent with this, Sema3A disrupted VEGF- but not bFGF-mediated endothelial cell signaling to FAK and Src, key mediators of integrin and growth factor signaling; however, signaling to ERK by either growth factor was unperturbed. Since VEGF is also a vascular permeability (VP) factor, we examined the role of Sema3A on VEGF-mediated VP in mice. Surprisingly, Sema3A not only stimulated VEGF-mediated VP but also potently induced VP in the absence of VEGF. Sema3A-mediated VP was inhibited either in adult mice expressing a conditional deletion of endothelial neuropilin-1 (Nrp-1) or in wild-type mice systemically treated with a function-blocking Nrp-1 antibody. While both Sema3A- and VEGF-induced VP was Nrp-1 dependent, they use distinct downstream effectors since VEGF- but not Sema3A-induced VP required Src kinase signaling. These findings define a novel role for Sema3A both as a selective inhibitor of VEGF-mediated angiogenesis and a potent inducer of VP. PMID:18180379

  18. Semaphorin 3A suppresses VEGF-mediated angiogenesis yet acts as a vascular permeability factor.

    PubMed

    Acevedo, Lisette M; Barillas, Samuel; Weis, Sara M; Göthert, Joachim R; Cheresh, David A

    2008-03-01

    Semaphorin 3A (Sema3A), a known inhibitor of axonal sprouting, also alters vascular patterning. Here we show that Sema3A selectively interferes with VEGF- but not bFGF-induced angiogenesis in vivo. Consistent with this, Sema3A disrupted VEGF- but not bFGF-mediated endothelial cell signaling to FAK and Src, key mediators of integrin and growth factor signaling; however, signaling to ERK by either growth factor was unperturbed. Since VEGF is also a vascular permeability (VP) factor, we examined the role of Sema3A on VEGF-mediated VP in mice. Surprisingly, Sema3A not only stimulated VEGF-mediated VP but also potently induced VP in the absence of VEGF. Sema3A-mediated VP was inhibited either in adult mice expressing a conditional deletion of endothelial neuropilin-1 (Nrp-1) or in wild-type mice systemically treated with a function-blocking Nrp-1 antibody. While both Sema3A- and VEGF-induced VP was Nrp-1 dependent, they use distinct downstream effectors since VEGF- but not Sema3A-induced VP required Src kinase signaling. These findings define a novel role for Sema3A both as a selective inhibitor of VEGF-mediated angiogenesis and a potent inducer of VP. PMID:18180379

  19. Role of Staphylococcus aureus Virulence Factors in Inducing Inflammation and Vascular Permeability in a Mouse Model of Bacterial Endophthalmitis

    PubMed Central

    Kumar, Ajay; Kumar, Ashok

    2015-01-01

    Staphylococcus (S.) aureus is a common causative agent of bacterial endophthalmitis, a vision threatening complication of eye surgeries. The relative contribution of S. aureus virulence factors in the pathogenesis of endophthalmitis remains unclear. Here, we comprehensively analyzed the development of intraocular inflammation, vascular permeability, and the loss of retinal function in C57BL/6 mouse eyes, challenged with live S. aureus, heat-killed S. aureus (HKSA), peptidoglycan (PGN), lipoteichoic acid (LTA), staphylococcal protein A (SPA), α-toxin, and Toxic-shock syndrome toxin 1 (TSST1). Our data showed a dose-dependent (range 0.01 μg/eye to 1.0 μg/eye) increase in the levels of inflammatory mediators by all virulence factors. The cell wall components, particularly PGN and LTA, seem to induce higher levels of TNF-α, IL-6, KC, and MIP2, whereas the toxins induced IL-1β. Similarly, among the virulence factors, PGN induced higher PMN infiltration. The vascular permeability assay revealed significant leakage in eyes challenged with live SA (12-fold) and HKSA (7.3-fold), in comparison to other virulence factors (~2-fold) and controls. These changes coincided with retinal tissue damage, as evidenced by histological analysis. The electroretinogram (ERG) analysis revealed a significant decline in retinal function in eyes inoculated with live SA, followed by HKSA, SPA, and α-toxin. Together, these findings demonstrate the differential innate responses of the retina to S. aureus virulence factors, which contribute to intraocular inflammation and retinal function loss in endophthalmitis. PMID:26053426

  20. Transient Receptor Potential Channel 4 Encodes a Vascular Permeability Defect and High-Frequency Ca(2+) Transients in Severe Pulmonary Arterial Hypertension.

    PubMed

    Francis, Michael; Xu, Ningyong; Zhou, Chun; Stevens, Troy

    2016-06-01

    The canonical transient receptor potential channel 4 (TRPC4) comprises an endothelial store-operated Ca(2+) entry channel, and TRPC4 inactivation confers a survival benefit in pulmonary arterial hypertension (PAH). Endothelial Ca(2+) signals mediated by TRPC4 enhance vascular permeability in vitro, but the contribution of TRPC4-dependent Ca(2+) signals to the regulation of endothelial permeability in PAH is poorly understood. We tested the hypothesis that TRPC4 increases vascular permeability and alters the frequency of endothelial Ca(2+) transients in PAH. We measured permeability in isolated lungs, and found that TRPC4 exaggerated permeability responses to thapsigargin in Sugen/hypoxia-treated PAH rats. We compared endothelial Ca(2+) activity of wild-type with TRPC4-knockout rats using confocal microscopy, and evaluated how Ca(2+) signals were influenced in response to thapsigargin and sequential treatment with acetylcholine. We found that thapsigargin-stimulated Ca(2+) signals were increased in PAH, and recovered by TRPC4 inactivation. Store depletion revealed bimodal Ca(2+) responses to acetylcholine, with both short- and long-duration populations. Our results show that TRPC4 underlies an exaggerated endothelial permeability response in PAH. Furthermore, TRPC4 increased the frequency of endothelial Ca(2+) transients in severe PAH, suggesting that TRPC4 provides a Ca(2+) source associated with endothelial dysfunction in the pathophysiology of PAH. This phenomenon represents a new facet of the etiology of PAH, and may contribute to PAH vasculopathy by enabling inflammatory mediator flux across the endothelial barrier. PMID:27083517

  1. A 3D porous media liver lobule model: the importance of vascular septa and anisotropic permeability for homogeneous perfusion.

    PubMed

    Debbaut, Charlotte; Vierendeels, Jan; Siggers, Jennifer H; Repetto, Rodolfo; Monbaliu, Diethard; Segers, Patrick

    2014-01-01

    The hepatic blood circulation is complex, particularly at the microcirculatory level. Previously, 2D liver lobule models using porous media and a 3D model using real sinusoidal geometries have been developed. We extended these models to investigate the role of vascular septa (VS) and anisotropic permeability. The lobule was modelled as a hexagonal prism (with or without VS) and the tissue was treated as a porous medium (isotropic or anisotropic permeability). Models were solved using computational fluid dynamics. VS inclusion resulted in more spatially homogeneous perfusion. Anisotropic permeability resulted in a larger axial velocity component than isotropic permeability. A parameter study revealed that results are most sensitive to the lobule size and radial pressure drop. Our model provides insight into hepatic microhaemodynamics, and suggests that inclusion of VS in the model leads to perfusion patterns that are likely to reflect physiological reality. The model has potential for applications to unphysiological and pathological conditions. PMID:23237543

  2. Measurement of canine gastric vascular permeability to plasma proteins in the normal and protein-losing states

    SciTech Connect

    Wood, J.G.; Davenport, H.W.

    1982-04-01

    An isolated segment of the greater curvature of a dog's stomach was perfused at constant flow through a single cannulated artery with donor blood containing 131I-albumin, 125I-fibrinogen, and papaverine. Perfusion pressure was 30-50 mmHg, and venous pressure was set at 15 mmHg. Venous blood was collected in 1-min samples for 60 min. Filtration of fluid and loss of labeled proteins were calculated as the difference between measured arterial inflow and venous outflow. Permeability-surface area products (PS) were calculated for the proteins, and reflection coefficients (sigma) were calculated from solute flux and filtration. Intraarterial infusion of histamine (1.6-1.9 microgram . ml-1) increased filtration and PS and decreased sigma for albumin but not fibrinogen. When protein-losing was established by topical irrigation with 10 mM dithiothreitol in neutral solution, filtration and PS increased, and sigma for albumin but not fibrinogen decreased. Irrigation of the mucosa with 10 mM salicylic acid in 100 mN HCl caused bleeding that was quantitated by addition of 51Cr-erythrocytes to perfusing blood. Filtration and PS increased, and sigma for albumin but not fibrinogen decreased. Hematocrit of blood lost remained low during extensive mucosal damage. Effects of histamine infusion were attenuated or abolished by cimetidine (4 mg . kg-1 loading, 1.4 mg . kg-1 . h-1 continuous infusion) or by pyrilamine maleate (5 mg . kg-1 bolus injection at beginning of irrigation, repeated at 40-50 min). Pyrilamine attenuated or abolished effects of topical dithiothreitol or salicylic acid. We conclude that during protein loss caused by dithiothreitol or salicylic acid, histamine released within the mucosa causes increased vascular permeability for plasma proteins.

  3. Characterization of vascular disruption and blood-spinal cord barrier permeability following traumatic spinal cord injury.

    PubMed

    Figley, Sarah A; Khosravi, Ramak; Legasto, Jean M; Tseng, Yun-Fan; Fehlings, Michael G

    2014-03-15

    Significant vascular changes occur subsequent to spinal cord injury (SCI), which contribute to progressive pathophysiology. In the present study, we used female Wistar rats (300-350 g) and a 35-g clip-compression injury at T6 to T7 to characterize the spatial and temporal vascular changes that ensue post-SCI. Before sacrifice, animals were injected with vascular tracing dyes (2% Evans Blue (EB) or fluorescein isothiocyanate/Lycopersicon esculentum agglutinin [FITC-LEA]) to assess blood-spinal cord barrier (BSCB) integrity or vascular architecture, respectively. Spectrophotometry of EB tissue showed maximal BSCB disruption at 24 h postinjury, with significant disruption observed until 5 days postinjury (p<0.01). FITC-LEA-identified functional vasculature was dramatically reduced by 24 h. Similarly, RECA-1 immunohistochemistry showed a significant decrease in the number of vessels at 24 h postinjury, compared to uninjured animals (p<0.01), with slight increases in endogenous revascularization by 10 days postinjury. White versus gray matter (GM) quantification showed that GM vessels are more susceptible to SCI. Finally, we observed an endogenous angiogenic response between 3 and 7 days postinjury: maximal endothelial cell proliferation was observed at day 5. These data indicate that BSCB disruption and endogenous revascularization occur at specific time points after injury, which may be important for developing effective therapeutic interventions for SCI. PMID:24237182

  4. PTEN deficiency in mast cells causes a mastocytosis-like proliferative disease that heightens allergic responses and vascular permeability

    PubMed Central

    Furumoto, Yasuko; Charles, Nicolas; Olivera, Ana; Leung, Wai Hang; Dillahunt, Sandra; Sargent, Jennifer L.; Tinsley, Kevin; Odom, Sandra; Scott, Eric; Wilson, Todd M.; Ghoreschi, Kamran; Kneilling, Manfred; Chen, Mei; Lee, David M.; Bolland, Silvia

    2011-01-01

    Kit regulation of mast cell proliferation and differentiation has been intimately linked to the activation of phosphatidylinositol 3-OH kinase (PI3K). The activating D816V mutation of Kit, seen in the majority of mastocytosis patients, causes a robust activation of PI3K signals. However, whether increased PI3K signaling in mast cells is a key element for their in vivo hyperplasia remains unknown. Here we report that dysregulation of PI3K signaling in mice by deletion of the phosphatase and tensin homolog (Pten) gene (which regulates the levels of the PI3K product, phosphatidylinositol 3,4,5-trisphosphate) caused mast cell hyperplasia and increased numbers in various organs. Selective deletion of Pten in the mast cell compartment revealed that the hyperplasia was intrinsic to the mast cell. Enhanced STAT5 phosphorylation and increased expression of survival factors, such as Bcl-XL, were observed in PTEN-deficient mast cells, and these were further enhanced by stem cell factor stimulation. Mice carrying PTEN-deficient mast cells also showed increased hypersensitivity as well as increased vascular permeability. Thus, Pten deletion in the mast cell compartment results in a mast cell proliferative phenotype in mice, demonstrating that dysregulation of PI3K signals is vital to the observed mast cell hyperplasia. PMID:21926349

  5. Vascular permeability and axonal regeneration in skin autotransplanted into the brain.

    PubMed Central

    Heinicke, E A; Kiernan, J A

    1978-01-01

    Pieces of skin were autotransplanted from the pinna of an ear into a cerebral hemisphere in 36 albino rats. The grafts were examined 2, 4 and 6 weeks later for signs of vascular permeability and for the presence of nerve fibres. An intravenously injected fluorescent protein exuded into the connective tissue of the dermis and into the spaces between epidermal cells. Extravascular leukocytes were also seen in the dermis. Nerve fibres, derived from the caudate nucleus, corpus callosum and neocortex, were seen in nearly all the grafts, entering both the dermis and epidermis. They were more numerous after the fourth and sixth than after the second post-operative week. A few of these axons were myelinated and a few contained acetylcholinesterase. It has thus been shown that central axons can regenerate into a region in which they are surrounded by proteins and cells derived from the blood, for at least 6 weeks. This observation does not support a recently advanced hypothesis invoking autoimmunity as the cause of the failure of most axons to regenerate following severance within the central nervous system. It is tentatively suggested that the presence of plasma proteins in the extracellular fluid around the tips of axons may be necessary for the occurrence of regeneration. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 PMID:342472

  6. Dependence of vascular permeability enhancement on cysteine proteinases in vesicles of Porphyromonas gingivalis.

    PubMed Central

    Imamura, T; Potempa, J; Pike, R N; Travis, J

    1995-01-01

    Infection with Porphyromonas gingivalis is strongly associated with adult periodontitis, and proteinases are considered to be important virulent factors of the bacterium. In order to investigate the function of proteinases in disease development we examined vesicles, a biological carrier of these enzymes, for the generation of vascular permeability enhancement (VPE) activity, believed to correlate with the exudation of gingival crevicular fluid. The vesicles generated VPE activity from human plasma in a dose-dependent manner which could be inhibited 90% by antipain, a specific inhibitor of the Arg-specific cysteine proteinases (Arg-gingipains [RGPs] from P. gingivalis. Incubation of vesicles with high-molecular-weight-kininogen (HMWK)-deficient plasma did not result in VPE activity. On this basis, RGPs associated with vesicles were assumed to be responsible for most of the VPE activity generation via plasma prekallikrein activation and subsequent bradykinin production. The secondary pathway for VPE activity production was dependent on the direct release of bradykinin from HMWK by the concerted action of RGP and a Lys-specific cysteine proteinase (Lys-gingipain [KGP]), also associated with vesicles. These results indicate that RGP and KGP are biologically important VPE factors acting either via prekallikrein activation (RGP) and/or HMWK cleavage (RGP and KGP) to release BK and, thereby, contributing to the production of gingival crevicular fluid at periodontal sites infected with P. gingivalis. PMID:7729914

  7. Electrohydraulic shock wave generation as a means to increase intrinsic permeability of mortar

    SciTech Connect

    Maurel, O.; Reess, T.; Matallah, M.; De Ferron, A.; Chen, W.; La Borderie, C.; Pijaudier-Cabot, G.; Jacques, A.; Rey-Bethbeder, F.

    2010-12-15

    This article discusses the influence of compressive shock waves on the permeability of cementitious materials. Shock waves are generated in water by Pulsed Arc Electrohydraulic Discharges (PAED). The practical aim is to increase the intrinsic permeability of the specimens. The maximum pressure amplitude of the shock wave is 250 MPa. It generates damage in the specimens and the evolution of damage is correlated with the intrinsic permeability of the mortar. A threshold of pressure is observed. From this threshold, the increase of permeability is linear in a semi-log plot. The influence of repeated shocks on permeability is also discussed. Qualitative X Ray Tomography illustrates the evolution of the microstructure of the material leading to the increase of permeability. Comparative results from mercury intrusion porosimetry (MIP) show that the micro-structural damage process starts at the sub-micrometric level and that the characteristic size of pores of growing volume increases.

  8. Enhanced vascular permeability facilitates entry of plasma HDL and promotes macrophage-reverse cholesterol transport from skin in mice.

    PubMed

    Kareinen, Ilona; Cedó, Lídia; Silvennoinen, Reija; Laurila, Pirkka-Pekka; Jauhiainen, Matti; Julve, Josep; Blanco-Vaca, Francisco; Escola-Gil, Joan Carles; Kovanen, Petri T; Lee-Rueckert, Miriam

    2015-02-01

    Reverse cholesterol transport (RCT) pathway from macrophage foam cells initiates when HDL particles cross the endothelium, enter the interstitial fluid, and induce cholesterol efflux from these cells. We injected [(3)H]cholesterol-loaded J774 macrophages into the dorsal skin of mice and measured the transfer of macrophage-derived [(3)H]cholesterol to feces [macrophage-RCT (m-RCT)]. Injection of histamine to the macrophage injection site increased locally vascular permeability, enhanced influx of intravenously administered HDL, and stimulated m-RCT from the histamine-treated site. The stimulatory effect of histamine on m-RCT was abolished by prior administration of histamine H1 receptor (H1R) antagonist pyrilamine, indicating that the histamine effect was H1R-dependent. Subcutaneous administration of two other vasoactive mediators, serotonin or bradykinin, and activation of skin mast cells to secrete histamine and other vasoactive compounds also stimulated m-RCT. None of the studied vasoactive mediators affected serum HDL levels or the cholesterol-releasing ability of J774 macrophages in culture, indicating that acceleration of m-RCT was solely due to increased availability of cholesterol acceptors in skin. We conclude that disruption of the endothelial barrier by vasoactive compounds enhances the passage of HDL into interstitial fluid and increases the rate of RCT from peripheral macrophage foam cells, which reveals a novel tissue cholesterol-regulating function of these compounds. PMID:25473102

  9. Mechanism of IL-1β-Induced Increase in Intestinal Epithelial Tight Junction Permeability

    PubMed Central

    Al-Sadi, Rana; Ye, Dongmei; Dokladny, Karol; Ma, Thomas Y.

    2011-01-01

    The IL-1β-induced increase in intestinal epithelial tight junction (TJ) permeability has been postulated to be an important mechanism contributing to intestinal inflammation of Crohn's disease and other inflammatory conditions of the gut. The intra-cellular and molecular mechanisms that mediate the IL-1β-induced increase in intestinal TJ permeability remain unclear. The purpose of this study was to elucidate the mechanisms that mediate the IL-1β-induced increase in intestinal TJ permeability. Specifically, the role of myosin L chain kinase (MLCK) was investigated. IL-1β caused a progressive increase in MLCK protein expression. The time course of IL-1β-induced increase in MLCK level correlated linearly with increase in Caco-2 TJ permeability. Inhibition of the IL-1β-induced increase in MLCK protein expression prevented the increase in Caco-2 TJ permeability. Inhibition of the IL-1β-induced increase in MLCK activity also prevented the increase in Caco-2 TJ permeability. Additionally, knock-down of MLCK protein expression by small interference RNA prevented the IL-1β-induced increase in Caco-2 TJ permeability. The IL-1β-induced increase in MLCK protein expression was preceded by an increase in MLCK mRNA expression. The IL-1β-induced increase in MLCK mRNA transcription and subsequent increase in MLCK protein expression and Caco-2 TJ permeability was mediated by activation of NF-κB. In conclusion, our data indicate that the IL-1β increase in Caco-2 TJ permeability was mediated by an increase in MLCK expression and activity. Our findings also indicate that the IL-1β-induced increase in MLCK protein expression and Caco-2 TJ permeability was mediated by an NF-κB-dependent increase in MLCK gene transcription. PMID:18390750

  10. Force control of endothelium permeability in mechanically stressed pulmonary micro-vascular endothelial cells.

    PubMed

    Wang, Bin; Caluch, Adam; Fodil, Redouane; Féréol, Sophie; Zadigue, Patricia; Pelle, Gabriel; Louis, Bruno; Isabey, Daniel

    2012-01-01

    Mechanical factors play a key role in the pathogenesis of Acute Respiratory Distress Syndrome (ARDS) and Ventilator-Induced Lung Injury (VILI) as contributing to alveolo-capillary barrier dysfunction. This study aims at elucidating the role of the cytoskeleton (CSK) and cell-matrix adhesion system in the stressed endothelium and more precisely in the loss of integrity of the endothelial barrier. We purposely develop a cellular model made of a monolayer of confluent Human Pulmonary Microvascular Endothelial Cells (HPMVECs) whose cytoskeleton (CSK) is directly exposed to sustained cyclic mechanical stress for 1 and 2 h. We used RGD-coated ferromagnetic beads and measured permeability before and after stress application. We find that endothelial permeability increases in the stressed endothelium, hence reflecting a loss of integrity. Structural and mechanical results suggest that this endothelial barrier alteration would be due to physically-founded discrepancies in latero-basal reinforcement of adhesion sites in response to the global increase in CSK stiffness or centripetal intracellular forces. Basal reinforcement of adhesion is presently evidenced by the marked redistribution of αvβ3 integrin with cluster formation in the stressed endothelium. PMID:22766716

  11. Characterization of cutaneous vascular permeability induced by platelet-activating factor in guinea pigs and rats and its inhibition by a platelet-activating factor receptor antagonist

    SciTech Connect

    Hwang, S.B.; Li, C.L.; Lam, M.H.; Shen, T.Y.

    1985-06-01

    Mechanisms of platelet-activating factor (PAF)-induced increases of cutaneous vascular permeability in guinea pigs and in rats were further explored. PAF so far is the most potent vasoactive mediator, being more than 1000-fold more potent than histamine and bradykinin in both species. In guinea pigs, there is a time delay of 5 to 10 minutes before PAF action, whereas, in the rat, the increased vasopermeability occurs immediately following the intradermal PAF injection. Relative vasoactive potencies of PAF and several structure-related analogues in both species correlate very well with their relative inhibition of the binding of /sup 3/H-PAF to specific receptor sites on isolated rabbit platelet plasma membranes and their aggregatory abilities of rabbit platelets. Furthermore, the PAF-induced cutaneous vascular permeability is inhibitable by a competitive specific PAF receptor antagonist, kadsurenone, suggesting that binding of PAF to its specific receptor site is the first step to initiate its action of increased cutaneous vascular permeability. Several pure cyclooxygenase inhibitors, including indomethacin, diflunisal, and flurbiprofen, and the dual cyclooxygenase/lipoxygenase inhibitor, BW755C, but not the histamine antagonists, inhibit the PAF-induced vasopermeability in guinea pigs. The inhibition by indomethacin or BW755C can be fully reversed by coinjection intradermally with PAF and prostaglandin E1 but not leukotriene B4. Also, prostaglandin E1 but not leukotriene B4 enhances the guinea pig in vivo response to PAF in this model. However, in rats, none of the cyclooxygenase inhibitors, histamine antagonists, or BW755C inhibit the PAF effect of cutaneous phenomena.

  12. Protective Effects of N-Acetyl Cysteine against Diesel Exhaust Particles-Induced Intracellular ROS Generates Pro-Inflammatory Cytokines to Mediate the Vascular Permeability of Capillary-Like Endothelial Tubes

    PubMed Central

    Tseng, Chia-Yi; Chang, Jing-Fen; Wang, Jhih-Syuan; Chang, Yu-Jung; Gordon, Marion K.; Chao, Ming-Wei

    2015-01-01

    Exposure to diesel exhaust particles (DEP) is associated with pulmonary and cardiovascular diseases. Previous studies using in vitro endothelial tubes as a simplified model of capillaries have found that DEP-induced ROS increase vascular permeability with rearrangement or internalization of adherens junctional VE-cadherin away from the plasma membrane. This allows DEPs to penetrate into the cell and capillary lumen. In addition, pro-inflammatory cytokines are up-regulated and mediate vascular permeability in response to DEP. However, the mechanisms through which these DEP-induced pro-inflammatory cytokines increase vascular permeability remain unknown. Hence, we examined the ability of DEP to induce permeability of human umbilical vein endothelial cell tube cells to investigate these mechanisms. Furthermore, supplementation with NAC reduces ROS production following exposure to DEP. HUVEC tube cells contributed to a pro-inflammatory response to DEP-induced intracellular ROS generation. Endothelial oxidative stress induced the release of TNF-α and IL-6 from tube cells, subsequently stimulating the secretion of VEGF-A independent of HO-1. Our data suggests that DEP-induced intracellular ROS and release of the pro-inflammatory cytokines TNF- α and IL-6, which would contribute to VEGF-A secretion and disrupt cell-cell borders and increase vasculature permeability. Addition of NAC suppresses DEP-induced ROS efficiently and reduces subsequent damages by increasing endogenous glutathione. PMID:26148005

  13. Modulation of VEGF-Induced Retinal Vascular Permeability by Peroxisome Proliferator-Activated Receptor-β/δ

    PubMed Central

    Suarez, Sandra; McCollum, Gary W.; Bretz, Colin A.; Yang, Rong; Capozzi, Megan E.; Penn, John S.

    2014-01-01

    Purpose. Vascular endothelial growth factor (VEGF)-induced retinal vascular permeability contributes to diabetic macular edema (DME), a serious vision-threatening condition. Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) antagonist/reverse agonist, GSK0660, inhibits VEGF-induced human retinal microvascular endothelial cell (HRMEC) proliferation, tubulogenesis, and oxygen-induced retinal vasculopathy in newborn rats. These VEGF-induced HRMEC behaviors and VEGF-induced disruption of endothelial cell junctional complexes may well share molecular signaling events. Thus, we sought to examine the role of PPARβ/δ in VEGF-induced retinal hyperpermeability. Methods. Transendothelial electrical resistance (TEER) measurements were performed on HRMEC monolayers to assess permeability. Claudin-1/Claudin-5 localization in HRMEC monolayers was determined by immunocytochemistry. Extracellular signal-regulated protein kinases 1 and 2 (Erk 1/2) phosphorylation, VEGF receptor 1 (VEGFR1) and R2 were assayed by Western blot analysis. Expression of VEGFR1 and R2 was measured by quantitative RT-PCR. Last, retinal vascular permeability was assayed in vivo by Evans blue extravasation. Results. Human retinal microvascular endothelial cell monolayers treated with VEGF for 24 hours showed decreased TEER values that were completely reversed by the highest concentration of GSK0660 (10 μM) and PPARβ/δ-directed siRNA (20 μM). In HRMEC treated with VEGF, GSK0660 stabilized tight-junctions as evidenced by Claudin-1 staining, reduced phosphorylation of Erk1/2, and reduced VEGFR1/2 expression. Peroxisome proliferator-activated receptor β/δ siRNA had a similar effect on VEGFR expression and Claudin-1, supporting the specificity of GSK0660 in our experiments. Last, GSK0660 significantly inhibited VEGF-induced retinal vascular permeability and reduced retinal VEGFR1and R2 levels in C57BL/6 mice. Conclusions. These data suggest a protective effect for PPARβ/δ antagonism against

  14. Increased regional vascular albumin permeation in the rat during anaphylaxis

    SciTech Connect

    Leng, W.; Chang, K.; Williamson, J.R.; Jakschik, B.A.

    1989-03-15

    The changes in vascular albumin permeation induced by systemic anaphylaxis were studied simultaneously in 21 different tissues of the same animal. Before Ag challenge sensitized rats were injected i.v. with 125I-albumin (test tracer), 51Cr-RBC (vascular space marker) and 57Co-EDTA (extravascular space marker). The index of vascular permeation used was the tissue to blood isotope ratio (tbir), which was obtained by dividing the ratio of 125I/51Cr counts in each tissue by the ratio of the same isotopes in the arterial blood sample. After Ag challenge, the increase in the tbir varied considerably among the different tissues. The most pronounced increase was noted in the lymph node (ninefold) followed by the aorta and mesentery (six- to sevenfold) and the various parts of the gastrointestinal tract (four- to sixfold). In the skin less than skeletal muscle less than lung less than liver and eye two- to fourfold increases occurred. Relatively minor increases in albumin permeation (less than twofold) were observed in the brain less than kidney less than heart and less than spleen. The testis was the only organ in which no significant change occurred. For some of the tissues there was also an increase in the tbir for 57Co/51Cr (an index of the extracellular fluid space) suggesting edema formation. The highest increase was noted in the aorta (fourfold). Minor increases occurred in the atrium of the heart, stomach, duodenum, and lymph nodes. There was also a 36% increase in hematocrit. Therefore, systemic anaphylaxis caused extensive extravasation of albumin and hemoconcentration.

  15. Aminoguanidine effects on nerve blood flow, vascular permeability, electrophysiology, and oxygen free radicals

    SciTech Connect

    Kihara, Mikihiro; Schmelzer, J.D.; Poduslo, J.F.; Curran, G.L.; Nickander, K.K.; Low, P.A. )

    1991-07-15

    Since advanced glycosylation end products have been suggested to mediate hyperglycemia-induced microvascular atherogenesis and because aminoguanidine (AG) prevents their generation, the authors examined whether AG could prevent or ameliorate the physiologic and biochemical indices of streptozotocin (STZ)-induced experimental diabetic neuropathy. Four groups of adult Sprague-Dawley rats were studied: group I received STZ plus AG, group II received STZ plus AG, group III received STZ alone, and group IV was a control. They monitored conduction and action potential amplitudes serially in sciatic-tibial and caudal nerves, nerve blood flow, oxygen free radical activity (conjugated dienes and hydroperoxides), and the product of the permeability coefficient and surface area to {sup 125}I-labeled albumin. STZ-induced diabetes (group III) caused a 57% reduction in nerve blood flow and in abnormal nerve conduction and amplitudes and a 60% increase in conjugated dienes. Nerve blood flow was normalized by 8 weeks with AG (groups I and II) and conduction was significantly improved, in a dose-dependent manner, by 16 and 24 weeks in sciatic-tibial and caudal nerves, respectively. The permeability coefficient was not impaired, suggesting a normal blood-nerve barrier function for albumin, and the oxygen free-radical indices were not ameliorated by AG. They suggest that AG reverses nerve ischemia and more gradually improves their electrophysiology by an action on nerve microvessels. AG may have potential in the treatment of diabetic neuropathy.

  16. Up-Regulation of Pressure-activated Ca2+-permeable Cation Channel in Intact Vascular Endothelium of Hypertensive Rats

    NASA Astrophysics Data System (ADS)

    Hoyer, J.; Kohler, R.; Haase, W.; Distler, A.

    1996-10-01

    In endothelial cells, stretch-activated cation channels have been proposed to act as mechanosensors for changes in hemodynamic forces. We have identified a novel mechanosensitive pressure-activated channel in intact endothelium from rat aorta and mesenteric artery. The 18-pS cation channel responded with a multifold increase in channel activity when positive pressure was applied to the luminal cell surface with the patch pipette and inactivated at negative pipette pressure. Channel permeability ratio for K+, Na+, and Ca2+ ions was 1:0.98:0.23. Ca2+ influx through the channel was sufficient to activate a neighboring Ca2+-dependent K+ channel. Hemodynamic forces are chronically disturbed in arterial hypertension. Endothelial cell dysfunction has been implicated in the pathogenesis of arterial hypertension. In two comparative studies, density of the pressure-activated channel was found to be significantly higher in spontaneously hypertensive rats and renovascular hypertensive rats compared with their respective normotensive controls. Channel activity presumably leads to mechanosensitive Ca2+ influx and induces cell hyperpolarization by K+ channel activity. Both Ca2+ influx and hyperpolarization are known to induce a vasodilatory endothelial response by stimulating endothelial nitric oxide (NO) production. Up-regulation of channel density in hypertension could, therefore, represent a counterregulatory mechanism of vascular endothelium.

  17. Carbon monoxide inhalation increases microparticles causing vascular and CNS dysfunction

    SciTech Connect

    Xu, Jiajun; Yang, Ming; Kosterin, Paul; Salzberg, Brian M.; Milovanova, Tatyana N.; Bhopale, Veena M.; Thom, Stephen R.

    2013-12-01

    We hypothesized that circulating microparticles (MPs) play a role in pro-inflammatory effects associated with carbon monoxide (CO) inhalation. Mice exposed for 1 h to 100 ppm CO or more exhibit increases in circulating MPs derived from a variety of vascular cells as well as neutrophil activation. Tissue injury was quantified as 2000 kDa dextran leakage from vessels and as neutrophil sequestration in the brain and skeletal muscle; and central nervous system nerve dysfunction was documented as broadening of the neurohypophysial action potential (AP). Indices of injury occurred following exposures to 1000 ppm for 1 h or to 1000 ppm for 40 min followed by 3000 ppm for 20 min. MPs were implicated in causing injuries because infusing the surfactant MP lytic agent, polyethylene glycol telomere B (PEGtB) abrogated elevations in MPs, vascular leak, neutrophil sequestration and AP prolongation. These manifestations of tissue injury also did not occur in mice lacking myeloperoxidase. Vascular leakage and AP prolongation were produced in naïve mice infused with MPs that had been obtained from CO poisoned mice, but this did not occur with MPs obtained from control mice. We conclude that CO poisoning triggers elevations of MPs that activate neutrophils which subsequently cause tissue injuries. - Highlights: • Circulating microparticles (MPs) increase in mice exposed to 100 ppm CO or more. • MPs are lysed by infusing the surfactant polyethylene glycol telomere B. • CO-induced MPs cause neutrophil activation, vascular leak and CNS dysfunction. • Similar tissue injuries do not arise with MPs obtained from air-exposed, control mice.

  18. Carbon monoxide inhalation increases microparticles causing vascular and CNS dysfunction

    PubMed Central

    Xu, Jiajun; Yang, Ming; Kosterin, Paul; Salzberg, Brian M.; Milovanova, Tatyana N.; Bhopale, Veena M.; Thom, Stephen R.

    2014-01-01

    We hypothesized that circulating microparticles (MPs) play a role in pro-inflammatory effects associated with carbon monoxide (CO) inhalation. Mice exposed for 1 h to 100 ppm CO or more exhibit increases in circulating MPs derived from a variety of vascular cells as well as neutrophil activation. Tissue injury was quantified as 2000 kDa dextran leakage from vessels and as neutrophil sequestration in the brain and skeletal muscle; and central nervous system nerve dysfunction was documented as broadening of the neurohypophysial action potential (AP). Indices of injury occurred following exposures to 1000 ppm for 1 h or to 1000 ppm for 40 min followed by 3000 ppm for 20 min. MPs were implicated in causing injuries because infusing the surfactant MP lytic agent, polyethylene glycol telomere B (PEGtB) abrogated elevations in MPs, vascular leak, neutrophil sequestration and AP prolongation. These manifestations of tissue injury also did not occur in mice lacking myeloperoxidase. Vascular leakage and AP prolongation were produced in naïve mice infused with MPs that had been obtained from CO poisoned mice, but this did not occur with MPs obtained from control mice. We conclude that CO poisoning triggers elevations of MPs that activate neutrophils which subsequently cause tissue injuries. PMID:24090814

  19. Titanium dioxide nanoparticles increase inflammatory responses in vascular endothelial cells

    PubMed Central

    Han, Sung Gu; Newsome, Bradley; Hennig, Bernhard

    2013-01-01

    Atherosclerosis is a chronic inflammatory disease that remains the leading cause of death in the United States. Numerous risk factors for endothelial cell inflammation and the development of atherosclerosis have been identified, including inhalation of ultrafine particles. Recently, engineered nanoparticles (NPs) such as titanium (TiO2) NPs have attracted much attention due to their wide range of applications. However, there are also great concerns surrounding potential adverse health effects in vascular systems. Although TiO2 NPs are known to induce oxidative stress and inflammation, the associated signaling pathways have not been well studied. The focus of this work, therefore, deals with examination of the cellular signaling pathways responsible for TiO2 NP-induced endothelial oxidative stress and inflammation. In this study, primary vascular endothelial cells were treated with TiO2 NPs for 2–16 h at concentrations of 0–50 µg/mL. TiO2 NP exposure increased cellular oxidative stress and DNA binding of NF-κB. Further, phosphorylation of Akt, ERK, JNK and p38 was increased in cells exposed to TiO2 NPs. TiO2 NPs also significantly increased induction of mRNA and protein levels of vascular cell adhesion molecule-1 (VCAM-1) and mRNA levels of monocyte chemoattractant protein-1 (MCP-1). Pretreatment with inhibitors for NF-κB (pyrrolidine dithiocarbamate), oxidative stress (epigallocatechin gallate and apocynin), Akt (LY294002), ERK (PD98059), JNK (SP600125) and p38 (SB203580) significantly attenuated TiO2 NP-induced MCP-1 and VCAM-1 gene expression, as well as activation of NF-κB. These data indicate that TiO2 NPs can induce endothelial inflammatory responses via redox-sensitive cellular signaling pathways. PMID:23380242

  20. Silver nanoparticles interact with the cell membrane and increase endothelial permeability by promoting VE-cadherin internalization.

    PubMed

    Sun, Xia; Shi, Junpeng; Zou, Xiaoyan; Wang, Chengcheng; Yang, Yi; Zhang, Hongwu

    2016-11-01

    The toxicological risks of silver nanoparticles (AgNPs) have attracted widespread attention, and many studies have been published that have contributed to understanding AgNPs-induced toxicity. However, little attention has been paid to the low-dose effects of AgNPs and the related toxicological mechanism is still unclear. Here, we show that short-term exposure to AgNPs at low doses induces a substantial increase in human umbilical vein endothelial cells (HUVECs) monolayer permeability, whereas Ag ions at low doses do not induce an observable increase in monolayer permeability. This effect is independent of oxidative stress and apoptosis. Scanning electron microscopy confirms that AgNPs adhere to the cell membrane after 1h exposure. Furthermore, adhesion of AgNPs to the cell membrane can trigger vascular endothelial (VE)-cadherin phosphorylation at Y658 followed by VE-cadherin internalization, which lead to the increase in endothelial monolayer permeability. Our data show that surface interactions of AgNPs with the cell membrane, in other words, the particle effect, is a major factor leading to endothelial dysfunction following low-dose and short-term exposure. Our findings will contribute to understanding the health effects and the toxicological mechanisms of AgNPs. PMID:27344258

  1. Cell-Permeable MR Contrast Agents with Increased Intracellular Retention

    PubMed Central

    Endres, Paul J.; MacRenaris, Keith W.; Vogt, Stefan; Meade, Thomas J.

    2009-01-01

    Magnetic resonance imaging (MRI) is a technique used in both clinical and experimental settings to produce high resolution images of opaque organisms without ionizing radiation. Currently, MR imaging is augmented by contrast agents and the vast majority these small molecule Gd(III) chelates are confined to the extracellular regions. As a result, contrast agents are confined to vascular regions reducing their ability to provide information about cell physiology or molecular pathology. We have shown that polypeptides of arginine have the capacity to transport Gd(III) contrast agents across cell membranes. However, this transport is not unidirectional and once inside the cell the arginine-modified contrast agents efflux rapidly, decreasing the intracellular Gd(III) concentration and corresponding MR image intensity. By exploiting the inherent disulfide reducing environment of cells, thiol compounds, Gd(III)-DOTA-SS-Arg8 and Gd(III)-DTPA-SS-Arg8, are cleaved from their cell penetrating peptide transduction domains upon cell internalization. This reaction prolongs the cell-associated lifetime of the chelated Gd(III) by cleaving it from the cell transduction domain. PMID:18803414

  2. IL-1β Causes an Increase in Intestinal Epithelial Tight Junction Permeability1

    PubMed Central

    Al-Sadi, Rana M.; Ma, Thomas Y.

    2011-01-01

    IL-1β is a prototypical proinflammatory cytokine that plays a central role in the intestinal inflammation amplification cascade. Recent studies have indicated that a TNF-α- and IFN-γ-induced increase in intestinal epithelial paracellular permeability may be an important mechanism contributing to intestinal inflammation. Despite its central role in promoting intestinal inflammation, the role of IL-1β on intestinal epithelial tight junction (TJ) barrier function remains unclear. The major aims of this study were to determine the effect of IL-1β on intestinal epithelial TJ permeability and to elucidate the mechanisms involved in this process, using a well-established in vitro intestinal epithelial model system consisting of filter-grown Caco-2 intestinal epithelial monolayers. IL-1β (0–100 ng/ml) produced a concentration- and time-dependent decrease in Caco-2 transepithelial resistance. Conversely, IL-1β caused a progressive time-dependent increase in transepithelial permeability to paracellular marker inulin. IL-1β-induced increase in Caco-2 TJ permeability was accompanied by a rapid activation of NF-κB. NF-κB inhibitors, pyrrolidine dithiocarbamate and curcumin, prevented the IL-1β-induced increase in Caco-2 TJ permeability. To further confirm the role of NF-κB in the IL-1β-induced increase in Caco-2 TJ permeability, NF-κB p65 expression was silenced by small interfering RNA transfection. NF-κB p65 depletion completely inhibited the IL-1β-induced increase in Caco-2 TJ permeability. IL-1β did not induce apoptosis in the Caco-2 cell. In conclusion, our findings show for the first time that IL-1β at physiologically relevant concentrations causes an increase in intestinal epithelial TJ permeability. The IL-1β-induced increase in Caco-2 TJ permeability was mediated in part by the activation of NF-κB pathways but not apoptosis. PMID:17372023

  3. Potent In Vitro Protection Against PM[Formula: see text]-Caused ROS Generation and Vascular Permeability by Long-Term Pretreatment with Ganoderma tsugae.

    PubMed

    Tseng, Chia-Yi; Chung, Meng-Chi; Wang, Jhih-Syuan; Chang, Yu-Jung; Chang, Jing-Fen; Lin, Chin-Hung; Hseu, Ruey-Shyang; Chao, Ming-Wei

    2016-04-01

    Epidemiological studies show increased particulate matter (PM[Formula: see text]) particles in ambient air are correlated with increased myocardial infarctions. Given the close association of capillaries and alveoli, the dysfunction is caused when inhaled PM[Formula: see text] particles come in close proximity to capillary endothelial cells. We previously suggested that the inhalation of PM[Formula: see text] diesel exhaust particles (DEP) induces oxidative stress and upregulates the Nrf2/HO-1 pathway, inducing vascular permeability factor VEGFA secretion, which results in cell-cell adherens junction disruption and PM[Formula: see text] transmigratation into circulation. Here, we minimized the level that PM[Formula: see text] traveled in the bloodstream by pre-supplementing with a traditional Chinese medicine (TCM) Ganoderma tsugae DMSO extract (GTDE) prior to PM[Formula: see text] exposure. Our results show that PM[Formula: see text] caused alterations in enzyme activities and cellular anti-oxidant balance. We found decreased glutathione levels, a reduced cellular redox ratio, increased ROS generation and cytotoxicity in the cellular fractions. The oxidative stress caused DNA damage and apoptosis, likely causing downstream molecular events that trigger vasculature permeabilization and, eventually, cardiovascular disorders. Our results show long-term GTDE treatment increased endogenous glutathione level, while PM[Formula: see text]-reduced glutathione levels and the cellular redox ratio. GTDE was protective against the genotoxic and apoptotic effects initiated by PM[Formula: see text] oxidative stress. Vascular permeability revealed that PM[Formula: see text] only accumulated on the surface of cells after GTDE treatment; no penetration was detected. After two weeks of GTDE treatment, VEGFA secretion was significantly reduced in human umbilical vein endothelial cells (HUVEC) and endothelial cell migration was blocked. Our results suggest GTDE prevents PM

  4. Radiation-induced changes in the profile of spinal cord serotonin, prostaglandin synthesis, and vascular permeability

    SciTech Connect

    Siegal, T.; Pfeffer, M.R.

    1995-01-01

    To investigate the profile of biochemical and physiological changes induced in the rat spinal cord by radiation, over a period of 8 months. The thoraco-lumbar spinal cords of Fisher rats were irradiated to a dose of 15 Gy. The rats were then followed and killed at various times afterward. Serotonin (5-HT) and its major metabolite 5-hydroxyindole-3-acetic acid (5-HIAA) were assayed as well as prostaglandin synthesis. Microvessel permeability was assessed by quantitative evaluation of Evans blue dye extravasation. None of the rats developed neurologic dysfunction, and histologic examination revealed only occasional gliosis in the ventral white matter at 240 days after irradiation. Serotonin levels were unchanged at 2, 14, and 56 days after radiation but increased at 120 and 240 days in the irradiated cord segments when compared to both the nonirradiated thoracic and cervical segments (p < 0.01) and age-matched controls (p < 0.03). The calculated utilization ratio of serotonin (5-HIAA/5-HT) remained unchanged. Immediately after radiation (at 3 and 24 h) an abrupt but brief increase in the synthesis of prostaglandin-E{sub 2} (PGE{sub 2}), thromboxane (TXB{sub 2}), and prostacyclin [6 keto-PGF1{alpha} (6KPGF)] was noted, which returned to normal at 3 days. This was followed after 7 and 14 days by a significant fall off in synthesis of all three prostaglandins. Thereafter, at 28, 56, 120, and 240 days, escalated production of thromboxane followed, white prostacyclin synthesis remained markedly reduced (-88% of control level at 240 days). Up to 7 days after radiation the calculated TXB{sub 2}/6KPGF ratio remained balanced, regardless of the observed abrupt early fluctuations in their rate of synthesis. Later, between 7 and 240 days after radiation, a significant imbalance was present which became more pronounced over time. In the first 24 h after radiation, a 104% increase in microvessel permeability was observed which returned to normal by 3 days. 57 refs., 3 figs.

  5. Model selection in magnetic resonance imaging measurements of vascular permeability: Gadomer in a 9L model of rat cerebral tumor.

    PubMed

    Ewing, James R; Brown, Stephen L; Lu, Mei; Panda, Swayamprava; Ding, Guangliang; Knight, Robert A; Cao, Yue; Jiang, Quan; Nagaraja, Tavarekere N; Churchman, Jamie L; Fenstermacher, Joseph D

    2006-03-01

    Vasculature in and around the cerebral tumor exhibits a wide range of permeabilities, from normal capillaries with essentially no blood-brain barrier (BBB) leakage to a tumor vasculature that freely passes even such large molecules as albumin. In measuring BBB permeability by magnetic resonance imaging (MRI), various contrast agents, sampling intervals, and contrast distribution models can be selected, each with its effect on the measurement's outcome. Using Gadomer, a large paramagnetic contrast agent, and MRI measures of T(1) over a 25-min period, BBB permeability was estimated in 15 Fischer rats with day-16 9L cerebral gliomas. Three vascular models were developed: (1) impermeable (normal BBB); (2) moderate influx (leakage without efflux); and (3) fast leakage with bidirectional exchange. For data analysis, these form nested models. Model 1 estimates only vascular plasma volume, v(D), Model 2 (the Patlak graphical approach) v(D) and the influx transfer constant K(i). Model 3 estimates v(D), K(i), and the reverse transfer constant, k(b), through which the extravascular distribution space, v(e), is calculated. For this contrast agent and experimental duration, Model 3 proved the best model, yielding the following central tumor means (+/-s.d.; n = 15): v(D) = 0.07 +/- 0.03 for K(i) = 0.0105 +/- 0.005 min(-1) and v(e) = 0.10 +/- 0.04. Model 2 K(i) estimates were approximately 30% of Model 3, but highly correlated (r = 0.80, P < 0.0003). Sizable inhomogeneity in v(D), K(i), and k(b) appeared within each tumor. We conclude that employing nested models enables accurate assessment of transfer constants among areas where BBB permeability, contrast agent distribution volumes, and signal-to-noise vary. PMID:16079791

  6. Leaky gut and mycotoxins: Aflatoxin B1 does not increase gut permeability in broiler chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous studies conducted in our laboratory have demonstrated that intestinal barrier function can be adversely affected by diet ingredients or feed restriction, resulting in increased intestinal inflammation-associated permeability. Two experiments were conducted in broilers to evaluate the effect...

  7. Stress does not increase blood-brain barrier permeability in mice.

    PubMed

    Roszkowski, Martin; Bohacek, Johannes

    2016-07-01

    Several studies have reported that exposure to acute psychophysiological stressors can lead to an increase in blood-brain barrier permeability, but these findings remain controversial and disputed. We thoroughly examined this issue by assessing the effect of several well-established paradigms of acute stress and chronic stress on blood-brain barrier permeability in several brain areas of adult mice. Using cerebral extraction ratio for the small molecule tracer sodium fluorescein (NaF, 376 Da) as a sensitive measure of blood-brain barrier permeability, we find that neither acute swim nor restraint stress lead to increased cerebral extraction ratio. Daily 6-h restraint stress for 21 days, a model for the severe detrimental impact of chronic stress on brain function, also does not alter cerebral extraction ratio. In contrast, we find that cold forced swim and cold restraint stress both lead to a transient, pronounced decrease of cerebral extraction ratio in hippocampus and cortex, suggesting that body temperature can be an important confounding factor in studies of blood-brain barrier permeability. To additionally assess if stress could change blood-brain barrier permeability for macromolecules, we measured cerebral extraction ratio for fluorescein isothiocyanate-dextran (70 kDa). We find that neither acute restraint nor cold swim stress affected blood-brain barrier permeability for macromolecules, thus corroborating our findings that various stressors do not increase blood-brain barrier permeability. PMID:27146513

  8. Adaptive response of vascular endothelial cells to an acute increase in shear stress frequency.

    PubMed

    Zhang, Ji; Friedman, Morton H

    2013-09-15

    Local shear stress sensed by arterial endothelial cells is occasionally altered by changes in global hemodynamic parameters, e.g., heart rate and blood flow rate, as a result of normal physiological events, such as exercise. In a recently study (41), we demonstrated that during the adaptive response to increased shear magnitude, porcine endothelial cells exhibited an unique phenotype featuring a transient increase in permeability and the upregulation of a set of anti-inflammatory and antioxidative genes. In the present study, we characterize the adaptive response of these cells to an increase in shear frequency, another important hemodynamic parameter with implications in atherogenesis. Endothelial cells were preconditioned by a basal-level sinusoidal shear stress of 15 ± 15 dyn/cm(2) at 1 Hz, and the frequency was then elevated to 2 Hz. Endothelial permeability increased slowly after the frequency step-up, but the increase was relatively small. Using microarrays, we identified 37 genes that are sensitive to the frequency step-up. The acute increase in shear frequency upregulates a set of cell-cycle regulation and angiogenesis-related genes. The overall adaptive response to the increased frequency is distinctly different from that to a magnitude step-up. However, consistent with the previous study, our data support the notion that endothelial function during an adaptive response is different than that of fully adapted endothelial cells. Our studies may also provide insights into the beneficial effects of exercise on vascular health: transient increases in frequency may facilitate endothelial repair, whereas similar increases in shear magnitude may keep excessive inflammation and oxidative stress at bay. PMID:23851277

  9. Adaptive response of vascular endothelial cells to an acute increase in shear stress frequency

    PubMed Central

    Zhang, Ji

    2013-01-01

    Local shear stress sensed by arterial endothelial cells is occasionally altered by changes in global hemodynamic parameters, e.g., heart rate and blood flow rate, as a result of normal physiological events, such as exercise. In a recently study (41), we demonstrated that during the adaptive response to increased shear magnitude, porcine endothelial cells exhibited an unique phenotype featuring a transient increase in permeability and the upregulation of a set of anti-inflammatory and antioxidative genes. In the present study, we characterize the adaptive response of these cells to an increase in shear frequency, another important hemodynamic parameter with implications in atherogenesis. Endothelial cells were preconditioned by a basal-level sinusoidal shear stress of 15 ± 15 dyn/cm2 at 1 Hz, and the frequency was then elevated to 2 Hz. Endothelial permeability increased slowly after the frequency step-up, but the increase was relatively small. Using microarrays, we identified 37 genes that are sensitive to the frequency step-up. The acute increase in shear frequency upregulates a set of cell-cycle regulation and angiogenesis-related genes. The overall adaptive response to the increased frequency is distinctly different from that to a magnitude step-up. However, consistent with the previous study, our data support the notion that endothelial function during an adaptive response is different than that of fully adapted endothelial cells. Our studies may also provide insights into the beneficial effects of exercise on vascular health: transient increases in frequency may facilitate endothelial repair, whereas similar increases in shear magnitude may keep excessive inflammation and oxidative stress at bay. PMID:23851277

  10. Large intestine permeability is increased in patients with compensated liver cirrhosis.

    PubMed

    Pijls, Kirsten E; Koek, Ger H; Elamin, Elhaseen E; de Vries, Hanne; Masclee, Ad A M; Jonkers, Daisy M A E

    2014-01-01

    Intestinal barrier dysfunction, facilitating translocation of bacteria and bacterial products, plays an important role in the pathophysiology of liver cirrhosis and its complications. Increased intestinal permeability has been found in patients with liver cirrhosis, but data on small and large intestine permeability and tight junctions (TJs) in patients with compensated cirrhosis are scarce. We aimed to investigate both small and large intestine permeability in patients with stable compensated cirrhosis compared with healthy controls and evaluated the expression of TJ proteins in mucosal biopsies at duodenal and sigmoid level. Intestinal permeability was assessed in 26 patients with compensated cirrhosis and 27 matched controls using a multisugar test. Duodenal and sigmoid biopsies were available from a subgroup for analyses of gene transcription and expression of key TJ proteins by qRT-PCR and ELISA, respectively. Median 0-5-h urinary sucrose excretion and lactulose/rhamnose ratio were comparable between patients with compensated cirrhosis and controls, whereas 5-24-h urinary sucralose/erythritol ratio was increased in these patients. Downregulation of gene transcription was found for claudin-3 in duodenal biopsies and claudin-4 in sigmoid biopsies, and at the protein level occludin expression was significantly increased in both duodenal and sigmoid biopsies. This study shows that gastroduodenal and small intestine permeability are not altered, whereas large intestine permeability is increased in patients with stable compensated cirrhosis. Only limited alterations were found regarding the expression of TJ proteins in both the small and large intestine. PMID:24264047

  11. Bactericidal Permeability Increasing Protein Gene Polymorphism is Associated with Inflammatory Bowel Diseases in the Turkish Population

    PubMed Central

    Can, Güray; Akın, Hakan; Özdemir, Filiz T.; Can, Hatice; Yılmaz, Bülent; Eren, Fatih; Atuğ, Özlen; Ünsal, Belkıs; Hamzaoğlu, Hülya O.

    2015-01-01

    Background/Aims: Inflammatory bowel disease, a chronic inflammatory disease with unknown etiology, affects the small and large bowel at different levels. It is increasingly considered that innate immune system may have a central position in the pathogenesis of the disease. As a part of the innate immune system, bactericidal permeability increasing protein has an important role in the recognition and neutralization of gram-negative bacteria. The aim of our study was to investigate the involvement of bactericidal permeability increasing protein gene polymorphism (bactericidal permeability increasing protein Lys216Glu) in inflammatory bowel disease in a large group of Turkish patients. Patients and Methods: The present study included 528 inflammatory bowel disease patients, 224 with Crohn's disease and 304 with ulcerative colitis, and 339 healthy controls. Results: Bactericidal permeability increasing protein Lys216Glu polymorphism was found to be associated with both Crohn's disease and ulcerative colitis (P = 0.0001). The frequency of the Glu/Glu genotype was significantly lower in patients using steroids and in those with steroid dependence (P = 0.012, OR, 0.80; 95% confidence interval [CI]: 0.68-0.94; P = 0.0286, OR, 0.75; 95% CI: 0.66-0.86, respectively). There was no other association between bactericidal permeability increasing protein gene polymorphism and phenotypes of inflammatory bowel disease. Conclusions: Bactericidal permeability increasing protein Lys216Glu polymorphism is associated with both Crohn's disease and ulcerative colitis. This is the first study reporting the association of bactericidal permeability increasing protein gene polymorphism with steroid use and dependence in Crohn's disease. PMID:26228368

  12. Interleukin-23 Increases Intestinal Epithelial Cell Permeability In Vitro.

    PubMed

    Heinzerling, Nathan P; Donohoe, Deborah; Fredrich, Katherine; Gourlay, David M; Liedel, Jennifer L

    2016-06-01

    Background Breast milk has a heterogeneous composition that differs between mothers and changes throughout the first weeks after birth. The proinflammatory cytokine IL-23 has a highly variable expression in human breast milk. We hypothesize that IL-23 found in human breast milk is biologically active and promotes epithelial barrier dysfunction. Methods The immature rat small intestinal epithelial cell line, IEC-18, was grown on cell inserts or standard cell culture plates. Confluent cultures were exposed to human breast milk with high or low levels of IL-23 and barrier function was measured using a flux of fluorescein isothiocyanate-dextran (FD-70). In addition, protein and mRNA expression of occludin and ZO-1 were measured and immunofluorescence used to stain occludin and ZO-1. Results Exposure to breast milk with high levels of IL-23 caused an increase flux of FD-70 compared with both controls and breast milk with low levels of IL-23. The protein expression of ZO-1 but not occludin was decreased by exposure to high levels of IL-23. These results correlate with immunofluorescent staining of ZO-1 and occludin which show decreased staining of occludin in both the groups exposed to breast milk with high and low IL-23. Conversely, cells exposed to high IL-23 breast milk had little peripheral staining of ZO-1 compared with controls and low IL-23 breast milk. Conclusion IL-23 in human breast milk is biologically active and negatively affects the barrier function of intestinal epithelial cells through the degradation of tight junction proteins. PMID:26007691

  13. Molecular mechanisms of increased vascular smooth muscle contraction in SHR

    SciTech Connect

    Sharma, R.V.; Aqel, M.B.; Butters, C.; McEldoon, J.; Bhalla, R.C.

    1986-03-01

    The isometric tension development and /sup 45/Ca influx in response to NE and methoxamine stimulation were significantly (P < .05) increased in SHR caudal arteries as compared to WKY. Estimation of /sup 3/H-prazosin binding to the membranes isolated from caudal artery of WKY and SHR showed a single class of high affinity binding sites with Kd values: SHR, 128 +/- 14 pM; WKY, 141 +/- 19 pM and the Bmax values; SHR, 108 +/- 14 fmoles/mg protein; WKY, 113 +/- 21 fmoles/mg protein. Nifedipine inhibition of caudal artery contractions in response to NE stimulation was significantly greater (P < .05) in SHR as compared to WKY. On the other hand, there were no differences between WKY and SHR caudal artery rings either in the isometric tension development, /sup 45/Ca influx or nifedipine inhibition in response to K/sup +/-depolarization. Their results indicate that the increased vascular smooth muscle contraction in SHR in response to NE-stimulation may be due to increased Ca/sup 2 +/ influx through the receptor operated Ca/sup 2 +/ channels.

  14. Neuron-derived semaphorin 3A is an early inducer of vascular permeability in diabetic retinopathy via neuropilin-1.

    PubMed

    Cerani, Agustin; Tetreault, Nicolas; Menard, Catherine; Lapalme, Eric; Patel, Chintan; Sitaras, Nicholas; Beaudoin, Felix; Leboeuf, Dominique; De Guire, Vincent; Binet, François; Dejda, Agnieszka; Rezende, Flavio A; Miloudi, Khalil; Sapieha, Przemyslaw

    2013-10-01

    The deterioration of the inner blood-retinal barrier and consequent macular edema is a cardinal manifestation of diabetic retinopathy (DR) and the clinical feature most closely associated with loss of sight. We provide evidence from both human and animal studies for the critical role of the classical neuronal guidance cue, semaphorin 3A, in instigating pathological vascular permeability in diabetic retinas via its cognate receptor neuropilin-1. We reveal that semaphorin 3A is induced in early hyperglycemic phases of diabetes within the neuronal retina and precipitates initial breakdown of endothelial barrier function. We demonstrate, by a series of orthogonal approaches, that neutralization of semaphorin 3A efficiently prevents diabetes-induced retinal vascular leakage in a stage of the disease when vascular endothelial growth factor neutralization is inefficient. These observations were corroborated in Tg(Cre-Esr1)/Nrp1(flox/flox) conditional knockout mice. Our findings identify a therapeutic target for macular edema and provide further evidence for neurovascular crosstalk in the pathogenesis of DR. PMID:24093675

  15. Src inhibitor reduces permeability without disturbing vascularization and prevents bone destruction in steroid-associated osteonecrotic lesions in rabbits

    PubMed Central

    He, Yi-Xin; Liu, Jin; Guo, Baosheng; Wang, Yi-Xiang; Pan, Xiaohua; Li, Defang; Tang, Tao; Chen, Yang; Peng, Songlin; Bian, Zhaoxiang; Liang, Zicai; Zhang, Bao-Ting; Lu, Aiping; Zhang, Ge

    2015-01-01

    To examine the therapeutic effect of Src inhibitor on the VEGF mediating vascular hyperpermeability and bone destruction within steroid-associated osteonecrotic lesions in rabbits. Rabbits with high risk for progress to destructive repair in steroid-associated osteonecrosis were selected according to our published protocol. The selected rabbits were systemically administrated with either Anti-VEGF antibody (Anti-VEGF Group) or Src inhibitor (Src-Inhibition Group) or VEGF (VEGF-Supplement Group) or a combination of VEGF and Src inhibitor (Supplement & Inhibition Group) or control vehicle (Control Group) for 4 weeks. At 0, 2 and 4 weeks after administration, in vivo dynamic MRI, micro-CT based-angiography, histomorphometry and immunoblotting were employed to evaluate the vascular and skeletal events in different groups. The incidence of the destructive repair in the Anti-VEGF Group, Src-Inhibition Group and Supplement & Inhibition Group was all significantly lower than that in the Control Group. The angiogenesis was promoted in VEGF-Supplement Group, Src-Inhibition Group and Supplement & Inhibition Group, while the hyperpermeability was inhibited in Anti-VEGF Group, Src-Inhibition Group and Supplement & Inhibition Group. The trabecular structure was improved in Src-Inhibition Group and Supplement & Inhibition Group. Src inhibitor could reduce permeability without disturbing vascularization and prevent destructive repair in steroid-associated osteonecrosis. PMID:25748225

  16. Corticosterone mediates stress-related increased intestinal permeability in a region-specific manner

    PubMed Central

    Zheng, Gen; Wu, Shu-Pei; Hu, Yongjun; Smith, David E; Wiley, John W.; Hong, Shuangsong

    2012-01-01

    Background Chronic psychological stress (CPS) is associated with increased intestinal epithelial permeability and visceral hyperalgesia. It is unknown whether corticosterone (CORT) plays a role in mediating alterations of epithelial permeability in response to CPS. Methods Male rats were subjected to 1-hour water avoidance (WA) stress or subcutaneous CORT injection daily for 10 consecutive days in the presence or absence of corticoid-receptor antagonist RU-486. The visceromotor response (VMR) to colorectal distension (CRD) was measured. The in situ single-pass intestinal perfusion was used to measure intestinal permeability in jejunum and colon simultaneously. Key Results We observed significant decreases in the levels of glucocorticoid receptor (GR) and tight junction proteins in the colon but not the jejunum in stressed rats. These changes were largely reproduced by serial CORT injections in control rats and were significantly reversed by RU-486. Stressed and CORT-injected rats demonstrated a 3-fold increase in permeability for PEG-400 (MW) in colon but not jejunum and significant increase in VMR to CRD, which was significantly reversed by RU-486. In addition, no differences in permeability to PEG-4,000 and PEG-35,000 were detected between control and WA groups. Conclusions & Inferences Our findings indicate that CPS was associated with region-specific decrease in epithelial tight junction protein levels in the colon, increased colon epithelial permeability to low-molecular weight macromolecules which were largely reproduced by CORT treatment in control rats and prevented by RU-486. These observations implicate a novel, region-specific role for CORT as a mediator of CPS-induced increased permeability to macromolecules across the colon epithelium. PMID:23336591

  17. Role of actin and myosin in the control of paracellular permeability in pig, rat and human vascular endothelium.

    PubMed Central

    Schnittler, H J; Wilke, A; Gress, T; Suttorp, N; Drenckhahn, D

    1990-01-01

    1. We have investigated the endothelial actomyosin system with particular emphasis on its possible role in actively opening a paracellular route for permeability. 2. Actin and myosin comprised 16% of total endothelial protein with a molar actin/myosin ratio of 16.2 which is close to the actin/myosin ratio of muscle (studies on freshly isolated pig pulmonary arterial endothelial cells, PAEC). 3. By immunocytochemistry at the light and electron microscope levels the bulk of actin and myosin was colocalized in close vicinity to the intercellular clefts of both micro- and macrovascular endothelial cells in situ and in vitro. 4. Calcium-ionophore-induced rise in permeability of human umbilical venous endothelial cells (HUVEC) and PAEC monolayers grown on filters in a two-chamber permeability system was caused by opening of intercellular gaps. Gap formation depended on the rise in intracellular Ca2+ and could be blocked by the calmodulin-binding drugs trifluperazine (TFP) and W7. 5. In skinned monolayers of cultured PAEC and in isolated sheets of HUVEC gap formation was shown to require ATP and occurred only when free myosin binding sites were available on endothelial actin filaments (experiments with myosin subfragment 1 modified by N-ethylmaleimide, S1-NEM). 6. These experiments suggest that actin and myosin in endothelial cells play a central role in regulating the width of the intercellular clefts, thereby controlling the paracellular pathway of vascular permeability. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14 Fig. 15 PMID:2100310

  18. Measurement of the filtration coefficient (Kfc) in the lung of Gallus domesticus and the effects of increased microvascular permeability.

    PubMed

    Weidner, W Jeffrey; Waddell, David S; Furlow, J David

    2006-08-01

    The filtration coefficient (Kfc) is a sensitive measure of microvascular hydraulic conductivity and has been reported for the alveolar lungs of many mammalian species, but not for the parabronchial avian lung. This study reports the Kfc in the isolated lungs of normal chickens and in the lungs of chickens given the edemogenic agents oleic acid (OA) or dimethyl amiloride (DMA). The control Kfc =0.04+/-0.01 ml min(-1) kPa(-1) g(-1). This parameter increased significantly following the administration of both OA (0.12+/-0.02 ml min(-1) kPa(-1) g(-1)) and DMA (0.07+/-0.01 ml min kPa(-1) g(-1)). As endothelial cadherins are thought to play a role in the dynamic response to acute lung injury, we utilized Western blot analysis to assess lung cadherin content and Northern blot analysis to assess pulmonary vascular endothelial (VE) cadherin expression following drug administration. Lung cadherin content decreases markedly following DMA, but not OA administration. VE cadherin expression increases as a result of DMA treatment, but is unchanged following OA. Our results suggest that the permeability characteristics of the avian lung are more closely consistent with those of the mammalian rather than the reptilian lung, and, that cadherins may play a significant role in the response to acute increases in avian pulmonary microvascular permeability. PMID:16538461

  19. Maintenance of superior mesenteric arterial perfusion prevents increased intestinal mucosal permeability in endotoxic pigs

    SciTech Connect

    Fink, M.P.; Kaups, K.L.; Wang, H.L.; Rothschild, H.R. )

    1991-08-01

    Lipopolysaccharide increases intestinal mucosal permeability to hydrophilic compounds such as chromium 51-labeled edetate (51Cr-EDTA). The authors sought to determine whether this phenomenon is partly mediated by lipopolysaccharide-induced mesenteric hypoperfusion. They assessed permeability in an isolated segment of ileum by measuring plasma-to-lumen clearances (C) for two probes, 51Cr-EDTA and urea, and expressing the results as a ratio (CEDTA/CUREA). In control pigs (n = 6) resuscitated with Ringer's lactate (RL), mucosal permeability was unchanged during the 210-minute period of observation. In pigs (n = 7) infused with lipopolysaccharide (50 micrograms/kg) and similarly resuscitated with RL, mesenteric perfusion (Qsma) decreased significantly and permeability increased progressively and significantly. When endotoxic pigs (n = 6) were resuscitated with a regimen (RL plus hetastarch plus dobutamine) that preserved normal Qsma, lipopolysaccharide-induced mucosal hyperpermeability was prevented. Resuscitation of endotoxic pigs (n = 6) with RL plus hetastarch provided intermediate protection against both mesenteric hypoperfusion and increased permeability. These data suggest that diminished Qsma contributes to impaired ileal mucosal barrier function in experimental endotoxicosis.

  20. Negatively charged silver nanoparticles cause retinal vascular permeability by activating plasma contact system and disrupting adherens junction.

    PubMed

    Long, Yan-Min; Zhao, Xing-Chen; Clermont, Allen C; Zhou, Qun-Fang; Liu, Qian; Feener, Edward P; Yan, Bing; Jiang, Gui-Bin

    2016-01-01

    Silver nanoparticles (AgNPs) have been extensively used as antibacterial component in numerous healthcare, biomedical and consumer products. Therefore, their adverse effects to biological systems have become a major concern. AgNPs have been shown to be absorbed into circulation and redistributed into various organs. It is thus of great importance to understand how these nanoparticles affect vascular permeability and uncover the underlying molecular mechanisms. A negatively charged mecaptoundeonic acid-capped silver nanoparticle (MUA@AgNP) was investigated in this work. Ex vivo experiments in mouse plasma revealed that MUA@AgNPs caused plasma prekallikrein cleavage, while positively charged or neutral AgNPs, as well as Ag ions had no effect. In vitro tests revealed that MUA@AgNPs activated the plasma kallikrein-kinin system (KKS) by triggering Hageman factor autoactivation. By using specific inhibitors aprotinin and HOE 140, we demonstrated that KKS activation caused the release of bradykinin, which activated B2 receptors and induced the shedding of adherens junction protein, VE-cadherin. These biological perturbations eventually resulted in endothelial paracellular permeability in mouse retina after intravitreal injection of MUA@AgNPs. The findings from this work provided key insights for toxicity modulation and biomedical applications of AgNPs. PMID:26399585

  1. Terror Attacks Increase the Risk of Vascular Injuries

    PubMed Central

    Heldenberg, Eitan; Givon, Adi; Simon, Daniel; Bass, Arie; Almogy, Gidon; Peleg, Kobi

    2014-01-01

    Objectives: Extensive literature exists about military trauma as opposed to the very limited literature regarding terror-related civilian trauma. However, terror-related vascular trauma (VT), as a unique type of injury, is yet to be addressed. Methods: A retrospective analysis of the Israeli National Trauma Registry was performed. All patients in the registry from 09/2000 to 12/2005 were included. The subgroup of patients with documented VT (N = 1,545) was analyzed and further subdivided into those suffering from terror-related vascular trauma (TVT) and non-terror-related vascular trauma (NTVT). Both groups were analyzed according to mechanism of trauma, type and severity of injury and treatment. Results: Out of 2,446 terror-related trauma admissions, 243 sustained TVT (9.9%) compared to 1302 VT patients from non-terror trauma (1.1%). TVT injuries tend to be more complex and most patients were operated on. Intensive care unit admissions and hospital length of stay was higher in the TVT group. Penetrating trauma was the prominent cause of injury among the TVT group. TVT group had a higher proportion of patients with severe injuries (ISS ≥ 16) and mortality. Thorax injuries were more frequent in the TVT group. Extremity injuries were the most prevalent vascular injuries in both groups; however NTVT group had more upper extremity injuries, while the TVT group had significantly much lower extremity injuries. Conclusion: Vascular injuries are remarkably more common among terror attack victims than among non-terror trauma victims and the injuries of terror casualties tend to be more complex. The presence of a vascular surgeon will ensure a comprehensive clinical care. PMID:24910849

  2. Non-nucleoside reverse transcriptase inhibitor efavirenz increases monolayer permeability of human coronary artery endothelial cells.

    PubMed

    Jamaluddin, Md Saha; Lin, Peter H; Yao, Qizhi; Chen, Changyi

    2010-01-01

    Highly active antiretroviral therapy (HAART) is often associated with endothelial dysfunction and cardiovascular complications. In this study, we determined whether HIV non-nucleoside reverse transcriptase inhibitor efavirenz (EFV) could increase endothelial permeability. Human coronary artery endothelial cells (HCAECs) were treated with EFV (1, 5 and 10 microg/ml) and endothelial permeability was determined by a transwell system with a fluorescence-labeled dextran tracer. HCAECs treated with EFV showed a significant increase of endothelial permeability in a concentration-dependent manner. With real time PCR analysis, EFV significantly reduced the mRNA levels of tight junction proteins claudin-1, occludin, zonula occluden-1 and junctional adhesion molecule-1 compared with controls (P<0.05). Protein levels of these tight junction molecules were also reduced substantially in the EFV-treated cells by western blot and flow cytometry analyses. In addition, EFV also increased superoxide anion production with dihydroethidium and cellular glutathione assays, while it decreased mitochondrial membrane potential with JC-staining. Antioxidants (ginkgolide B and MnTBAP) effectively blocked EFV-induced endothelial permeability and mitochondrial dysfunction. Furthermore, EFV increased the phosphorylation of MAPK JNK and IkappaBalpha, thereby increasing NFkappaB translocation to the nucleus. Chemical JNK inhibitor and dominant negative mutant JNK and IkappaBalpha adenoviruses effectively blocked the effects of EFV on HCAECs. Thus, EFV increases endothelial permeability which may be due to the decrease of tight junction proteins and the increase of superoxide anion. JNK and NFkappaB activation may be directly involved in the signal transduction pathway of EFV action in HCAECs. PMID:19674747

  3. Adaptive response of vascular endothelial cells to an acute increase in shear stress magnitude.

    PubMed

    Zhang, Ji; Friedman, Morton H

    2012-02-15

    The adaptation of vascular endothelial cells to shear stress alteration induced by global hemodynamic changes, such as those accompanying exercise or digestion, is an essential component of normal endothelial physiology in vivo. An understanding of the transient regulation of endothelial phenotype during adaptation to changes in mural shear will advance our understanding of endothelial biology and may yield new insights into the mechanism of atherogenesis. In this study, we characterized the adaptive response of arterial endothelial cells to an acute increase in shear stress magnitude in well-defined in vitro settings. Porcine endothelial cells were preconditioned by a basal level shear stress of 15 ± 15 dyn/cm(2) at 1 Hz for 24 h, after which an acute increase in shear stress to 30 ± 15 dyn/cm(2) was applied. Endothelial permeability nearly doubled after 40-min exposure to the elevated shear stress and then decreased gradually. Transcriptomics studies using microarray techniques identified 86 genes that were sensitive to the elevated shear. The acute increase in shear stress promoted the expression of a group of anti-inflammatory and antioxidative genes. The adaptive response of the global gene expression profile is triphasic, consisting of an induction period, an early adaptive response (ca. 45 min) and a late remodeling response. Our results suggest that endothelial cells exhibit a specific phenotype during the adaptive response to changes in shear stress; this phenotype is different than that of fully adapted endothelial cells. PMID:22140046

  4. ON THE EXISTENCE OF A FACTOR INCREASING TISSUE PERMEABILITY IN ORGANS OTHER THAN TESTICLE

    PubMed Central

    Claude, Albert; Duran-Reynals, F.

    1934-01-01

    Many of the organs from animals of both sexes, including the ovary, have been found to contain in various proportion a factor or factors increasing tissue permeability. The potency exhibited by such active extracts was always less than that of extracts from testicle. Blood serum was found to be devoid of any spreading property. PMID:19870315

  5. Lipid raft components cholesterol and sphingomyelin increase H+/OH− permeability of phosphatidylcholine membranes

    PubMed Central

    Gensure, Rebekah H.; Zeidel, Mark L.; Hill, Warren G.

    2006-01-01

    H+/OH− permeation through lipid bilayers occurs at anomalously high rates and the determinants of proton flux through membranes are poorly understood. Since all life depends on proton gradients, it is important to develop a greater understanding of proton leak phenomena. We have used stopped-flow fluorimetry to probe the influence of two lipid raft components, chol (cholesterol) and SM (sphingomyelin), on H+/OH− and water permeability. Increasing the concentrations of both lipids in POPC (palmitoyl-2-oleoyl phosphatidylcholine) liposomes decreased water permeability in a concentration-dependent manner, an effect that correlated with increased lipid order. Surprisingly, proton flux was increased by increasing the concentration of chol and SM. The chol effect was complex with molar concentrations of 17.9, 33 and 45.7% giving 2.8-fold (P<0.01), 2.2-fold (P<0.001) and 5.1-fold (P<0.001) increases in H+/OH− permeability from a baseline of 2.4×10−2 cm/s. SM at 10 mole% effected a 2.8-fold increase (P<0.01), whereas 20 and 30 mole% enhanced permeability by 3.6-fold (P<0.05) and 4.1-fold respectively (P<0.05). Supplementing membranes containing chol with SM did not enhance H+/OH− permeability. Of interest was the finding that chol addition to soya-bean lipids decreased H+/OH− permeability, consistent with an earlier report [Ira and Krishnamoorthy (2001) J. Phys. Chem. B 105, 1484–1488]. We speculate that the presence of proton carriers in crude lipid extracts might contribute to this result. We conclude that (i) chol and SM specifically and independently increase rates of proton permeation in POPC bilayers, (ii) domains enriched in these lipids or domain interfaces may represent regions with high H+/OH− conductivity, (iii) H+/OH− fluxes are not governed by lipid order and (iv) chol can inhibit or promote H+/OH− permeability depending on the total lipid environment. Theories of proton permeation are discussed in the light of these results. PMID

  6. Acute laminar shear stress reversibly increases human glomerular endothelial cell permeability via activation of endothelial nitric oxide synthase.

    PubMed

    Bevan, Heather S; Slater, Sadie C; Clarke, Hayley; Cahill, Paul A; Mathieson, Peter W; Welsh, Gavin I; Satchell, Simon C

    2011-10-01

    Laminar shear stress is a key determinant of systemic vascular behavior, including through activation of endothelial nitric oxide synthase (eNOS), but little is known of its role in the glomerulus. We confirmed eNOS expression by glomerular endothelial cells (GEnC) in tissue sections and examined effects of acute exposure (up to 24 h) to physiologically relevant levels of laminar shear stress (10-20 dyn/cm(2)) in conditionally immortalized human GEnC. Laminar shear stress caused an orientation of GEnC and stress fibers parallel to the direction of flow and induced Akt and eNOS phosphorylation along with NO production. Inhibition of the phophatidylinositol (PI)3-kinase/Akt pathway attenuated laminar shear stress-induced eNOS phosphorylation and NO production. Laminar shear stress of 10 dyn/cm(2) had a dramatic effect on GEnC permeability, reversibly decreasing the electrical resistance across GEnC monolayers. Finally, the laminar shear stress-induced reduction in electrical resistance was attenuated by the NOS inhibitors l-N(G)-monomethyl arginine (l-NMMA) and l-N(G)-nitroarginine methyl ester (l-NAME) and also by inhibition of the PI3-kinase/Akt pathway. Hence we have shown for GEnC in vitro that acute permeability responses to laminar shear stress are dependent on NO, produced via activation of the PI3-kinase/Akt pathway and increased eNOS phosphorylation. These results suggest the importance of laminar shear stress and NO in regulating the contribution of GEnC to the permeability properties of the glomerular capillary wall. PMID:21775480

  7. Simple clinical means of documenting increased pulmonary endothelial permeability to protein

    SciTech Connect

    Mishkin, F.S.; Niden, A.; Kumar, A.; Thomas, A.; Reese, I.C.; Vasinrapee, P.

    1987-02-20

    The authors investigated a simple method that can be used at the bedside for documenting the net accumulation of albumin in the lung. The technique employs measurement with a computer-linked gamma camera of the activity ratio in an area of the right lung compared with the same-sized area in the heart at 20 minutes and three hours following intravenous injection of technetium Tc 99m albumin. They applied this measurement to three groups of patients: a control group and patients with roentgenographic evidence of edema classified according to clinically available criteria as either hydrostatic edema or permeability edema to see if they could document differences among these groups. In control patients this ratio did not increase by more than seven units between the 20-minute and three-hour measurements. Of 18 patients classified by other routine clinical means as having hydrostatic pulmonary edema, 89% showed no increase in lung albumin accumulation. In 29 patients with permeability edema associated with the so-called adult respiratory distress syndrome, 31% showed evidence of net pulmonary albumin accumulation. These findings suggest that some patients otherwise classified as having hydrostatic edema have concomitant permeability changes in the microvasculature and that permeability edema represents a spectrum of endothelial damage.

  8. Minimally invasive molecular delivery into the brain using optical modulation of vascular permeability

    PubMed Central

    Choi, Myunghwan; Ku, Taeyun; Chong, Kyuha; Yoon, Jonghee; Choi, Chulhee

    2011-01-01

    Systemic delivery of bioactive molecules in the CNS is hampered by the blood–brain barrier, which has bottlenecked noninvasive physiological study of the brain and the development of CNS drugs. Here we report that irradiation with an ultrashort pulsed laser to the blood vessel wall induces transient leakage of blood plasma without compromising vascular integrity. By combining this method with a systemic injection, we delivered target molecules in various tissues, including the brain cortex. This tool allows minimally invasive local delivery of chemical probes, nanoparticles, and viral vectors into the brain cortex. Furthermore, we demonstrated astrocyte-mediated vasodilation in vivo without opening the skull, using this method to load a calcium indicator in conjunction with label-free photoactivation of astrocytes. PMID:21576460

  9. Basolateral potassium (IKCa) channel inhibition prevents increased colonic permeability induced by chemical hypoxia

    PubMed Central

    Loganathan, A.; Linley, J. E.; Rajput, I.; Hunter, M.; Lodge, J. P. A.

    2011-01-01

    Major liver resection is associated with impaired intestinal perfusion and intestinal ischemia, resulting in decreased mucosal integrity, increased bacterial translocation, and an increased risk of postoperative sepsis. However, the mechanism by which ischemia impairs intestinal mucosal integrity is unclear. We therefore evaluated the role of Ca2+-sensitive, intermediate-conductance (IKCa) basolateral potassium channels in enhanced intestinal permeability secondary to chemical hypoxia. The effects of chemical hypoxia induced by 100 μM dinitrophenol (DNP) and 5 mM deoxyglucose (DG) on basolateral IKCa channel activity and whole cell conductance in intact human colonic crypts, and paracellular permeability (GS) in isolated colonic sheets, were determined by patch-clamp recording and transepithelial electrical measurements, respectively. DNP and DG rapidly stimulated IKCa channels in cell-attached basolateral membrane patches and elicited a twofold increase (P = 0.004) in whole cell conductance in amphotericin B-permeabilized membrane patches, changes that were inhibited by the specific IKCa channel blockers TRAM-34 (100 nM) and clotrimazole (CLT; 10 μM). In colonic sheets apically permeabilized with nystatin, DNP elicited a twofold increase (P = 0.005) in GS, which was largely inhibited by the serosal addition of 50 μM CLT. We conclude that, in intestinal epithelia, chemical hypoxia increases GS through a mechanism involving basolateral IKCa channel activation. Basolateral IKCa channel inhibition may prevent or limit increased intestinal permeability during liver surgery. PMID:20966032

  10. Increased Red Blood Cell Stiffness Increases Pulmonary Vascular Resistance and Pulmonary Arterial Pressure.

    PubMed

    Schreier, David A; Forouzan, Omid; Hacker, Timothy A; Sheehan, John; Chesler, Naomi

    2016-02-01

    Patients with sickle cell anemia (SCD) and pulmonary hypertension (PH) have a significantly increased risk of sudden death compared to patients with SCD alone. Sickled red blood cells (RBCs) are stiffer, more dense, more frequently undergo hemolysis, and have a sixfold shorter lifespan compared to normal RBCs. Here, we sought to investigate the impact of increased RBC stiffness, independent of other SCD-related biological and mechanical RBC abnormalities, on the hemodynamic changes that ultimately cause PH and increase mortality in SCD. To do so, pulmonary vascular impedance (PVZ) measures were recorded in control C57BL6 mice before and after ∼50 μl of blood (Hct = 45%) was extracted and replaced with an equal volume of blood containing either untreated RBCs or RBCs chemically stiffened with glutaraldehyde (Hct = 45%). Chemically stiffened RBCs increased mean pulmonary artery pressure (mPAP) (13.5 ± 0.6 mmHg at baseline to 23.2 ± 0.7 mmHg after the third injection), pulmonary vascular resistance (PVR) (1.23 ± 0.11 mmHg*min/ml at baseline to 2.24 ± 0.14 mmHg*min/ml after the third injection), and wave reflections (0.31 ± 0.02 at baseline to 0.43 ± 0.03 after the third injection). Chemically stiffened RBCs also decreased cardiac output, but did not change hematocrit, blood viscosity, pulmonary arterial compliance, or heart rate. The main finding of this study is that increased RBC stiffness alone affects pulmonary pulsatile hemodynamics, which suggests that RBC stiffness plays an important role in the development of PH in patients with SCD. PMID:26638883

  11. Stress Induces Endotoxemia and Low-Grade Inflammation by Increasing Barrier Permeability

    PubMed Central

    de Punder, Karin; Pruimboom, Leo

    2015-01-01

    Chronic non-communicable diseases (NCDs) are the leading causes of work absence, disability, and mortality worldwide. Most of these diseases are associated with low-grade inflammation. Here, we hypothesize that stresses (defined as homeostatic disturbances) can induce low-grade inflammation by increasing the availability of water, sodium, and energy-rich substances to meet the increased metabolic demand induced by the stressor. One way of triggering low-grade inflammation is by increasing intestinal barrier permeability through activation of various components of the stress system. Although beneficial to meet the demands necessary during stress, increased intestinal barrier permeability also raises the possibility of the translocation of bacteria and their toxins across the intestinal lumen into the blood circulation. In combination with modern life-style factors, the increase in bacteria/bacterial toxin translocation arising from a more permeable intestinal wall causes a low-grade inflammatory state. We support this hypothesis with numerous studies finding associations with NCDs and markers of endotoxemia, suggesting that this process plays a pivotal and perhaps even a causal role in the development of low-grade inflammation and its related diseases. PMID:26029209

  12. Pulmonary instillation of MWCNT increases lung permeability, decreases gp130 expression in the lungs, and initiates cardiovascular IL-6 transsignaling.

    PubMed

    Thompson, Leslie C; Holland, Nathan A; Snyder, Ryan J; Luo, Bin; Becak, Daniel P; Odom, Jillian T; Harrison, Benjamin S; Brown, Jared M; Gowdy, Kymberly M; Wingard, Christopher J

    2016-01-15

    Pulmonary instillation of multiwalled carbon nanotubes (MWCNT) has the potential to promote cardiovascular derangements, but the mechanisms responsible are currently unclear. We hypothesized that exposure to MWCNT would result in increased epithelial barrier permeability by 24 h postexposure and initiate a signaling process involving IL-6/gp130 transsignaling in peripheral vascular tissue. To test this hypothesis we assessed the impact of 1 and 10 μg/cm(2) MWCNT on transepithelial electrical resistance (TEER) and expression of barrier proteins and cell activation in vitro using normal human bronchial epithelial primary cells. Parallel studies using male Sprague-Dawley rats instilled with 100 μg MWCNT measured bronchoalveolar lavage (BAL) differential cell counts, BAL fluid total protein, and lung water-to-tissue weight ratios 24 h postexposure and quantified serum concentrations of IL-6, soluble IL-6r, and soluble gp130. Aortic sections were examined immunohistochemically for gp130 expression, and gp130 mRNA/protein expression was evaluated in rat lung, heart, and aortic tissue homogenates. Our in vitro findings indicate that 10 μg/cm(2) MWCNT decreased the development of TEER and zonula occludens-1 expression relative to the vehicle. In rats MWCNT instillation increased BAL protein, lung water, and induced pulmonary eosinophilia. Serum concentrations of soluble gp130 decreased, aortic endothelial expression of gp130 increased, and expression of gp130 in the lung was downregulated in the MWCNT-exposed group. We propose that pulmonary exposure to MWCNT can manifest as a reduced epithelial barrier and activator of vascular gp130-associated transsignaling that may promote susceptibility to cardiovascular derangements. PMID:26589480

  13. Cell Treatment for Stroke in Type Two Diabetic Rats Improves Vascular Permeability Measured by MRI.

    PubMed

    Ding, Guangliang; Chen, Jieli; Chopp, Michael; Li, Lian; Yan, Tao; Li, Qingjiang; Cui, Chengcheng; Davarani, Siamak P N; Jiang, Quan

    2016-01-01

    Treatment of stroke with bone marrow stromal cells (BMSC) significantly enhances brain remodeling and improves neurological function in non-diabetic stroke rats. Diabetes is a major risk factor for stroke and induces neurovascular changes which may impact stroke therapy. Thus, it is necessary to test our hypothesis that the treatment of stroke with BMSC has therapeutic efficacy in the most common form of diabetes, type 2 diabetes mellitus (T2DM). T2DM was induced in adult male Wistar rats by administration of a high fat diet in combination with a single intraperitoneal injection (35mg/kg) of streptozotocin. These rats were then subjected to 2h of middle cerebral artery occlusion (MCAo). T2DM rats received BMSC (5x106, n = 8) or an equal volume of phosphate-buffered saline (PBS) (n = 8) via tail-vein injection at 3 days after MCAo. MRI was performed one day and then weekly for 5 weeks post MCAo for all rats. Compared with vehicle treated control T2DM rats, BMSC treatment of stroke in T2DM rats significantly (p<0.05) decreased blood-brain barrier disruption starting at 1 week post stroke measured using contrast enhanced T1-weighted imaging with gadopentetate, and reduced cerebral hemorrhagic spots starting at 3 weeks post stroke measured using susceptibility weighted imaging, although BMSC treatment did not reduce the ischemic lesion volumes as demarcated by T2 maps. These MRI measurements were consistent with histological data. Thus, BMSC treatment of stroke in T2DM rats initiated at 3 days after stroke significantly reduced ischemic vascular damage, although BMSC treatment did not change infarction volume in T2DM rats, measured by MRI. PMID:26900843

  14. Cell Treatment for Stroke in Type Two Diabetic Rats Improves Vascular Permeability Measured by MRI

    PubMed Central

    Ding, Guangliang; Chen, Jieli; Chopp, Michael; Li, Lian; Yan, Tao; Li, Qingjiang; Cui, Chengcheng; Davarani, Siamak P. N.; Jiang, Quan

    2016-01-01

    Treatment of stroke with bone marrow stromal cells (BMSC) significantly enhances brain remodeling and improves neurological function in non-diabetic stroke rats. Diabetes is a major risk factor for stroke and induces neurovascular changes which may impact stroke therapy. Thus, it is necessary to test our hypothesis that the treatment of stroke with BMSC has therapeutic efficacy in the most common form of diabetes, type 2 diabetes mellitus (T2DM). T2DM was induced in adult male Wistar rats by administration of a high fat diet in combination with a single intraperitoneal injection (35mg/kg) of streptozotocin. These rats were then subjected to 2h of middle cerebral artery occlusion (MCAo). T2DM rats received BMSC (5x106, n = 8) or an equal volume of phosphate-buffered saline (PBS) (n = 8) via tail-vein injection at 3 days after MCAo. MRI was performed one day and then weekly for 5 weeks post MCAo for all rats. Compared with vehicle treated control T2DM rats, BMSC treatment of stroke in T2DM rats significantly (p<0.05) decreased blood-brain barrier disruption starting at 1 week post stroke measured using contrast enhanced T1-weighted imaging with gadopentetate, and reduced cerebral hemorrhagic spots starting at 3 weeks post stroke measured using susceptibility weighted imaging, although BMSC treatment did not reduce the ischemic lesion volumes as demarcated by T2 maps. These MRI measurements were consistent with histological data. Thus, BMSC treatment of stroke in T2DM rats initiated at 3 days after stroke significantly reduced ischemic vascular damage, although BMSC treatment did not change infarction volume in T2DM rats, measured by MRI. PMID:26900843

  15. Decreased melatonin secretion is associated with increased intestinal permeability and marker of endotoxemia in alcoholics

    PubMed Central

    Gorenz, Annika; Shaikh, Maliha; Desai, Vishal; Forsyth, Christopher; Fogg, Louis; Burgess, Helen J.; Keshavarzian, Ali

    2015-01-01

    Chronic heavy alcohol use is known to cause gut leakiness and alcoholic liver disease (ALD), but only 30% of heavy drinkers develop increased intestinal permeability and ALD. The hypothesis of this study was that disruption of circadian rhythms is a potential risk factor in actively drinking alcoholics for gut leakiness and endotoxemia. We studied 20 subjects with alcohol use disorder (AD) and 17 healthy controls (HC, 6 day workers, 11 night workers). Subjects wore a wrist actiwatch for 7 days and underwent a 24-h dim light phase assessment and urine collection for intestinal permeability. The AD group had significantly less total sleep time and increased fragmentation of sleep (P < 0.05). AD also had significantly lower plasma melatonin levels compared with the HC [mean area under the curve (AUC) 322.78 ± 228.21 vs. 568.75 ± 304.26 pg/ml, P = 0.03]. In the AD group, AUC of melatonin was inversely correlated with small bowel and colonic intestinal permeability (lactulose-to-mannitol ratio, r = −0.39, P = 0.03; urinary sucralose, r = −0.47, P = 0.01). Cosinor analysis of lipopolysaccharide-binding protein (marker of endotoxemia) and lipopolysaccharide every 4 h for 24 h in HC and AD subjects had a midline estimating statistic of rhythm of 5,026.15 ± 409.56 vs. 6,818.02 ± 628.78 ng/ml (P < 0.01) and 0.09 ± 0.03 vs. 0.15 ± 0.19 EU/ml (P < 0.05), respectively. We found plasma melatonin was significantly lower in the AD group, and lower melatonin levels correlated with increased intestinal permeability and a marker of endotoxemia. Our study suggests the suppression of melatonin in AD may promote gut leakiness and endotoxemia. PMID:25907689

  16. Decreased melatonin secretion is associated with increased intestinal permeability and marker of endotoxemia in alcoholics.

    PubMed

    Swanson, Garth R; Gorenz, Annika; Shaikh, Maliha; Desai, Vishal; Forsyth, Christopher; Fogg, Louis; Burgess, Helen J; Keshavarzian, Ali

    2015-06-15

    Chronic heavy alcohol use is known to cause gut leakiness and alcoholic liver disease (ALD), but only 30% of heavy drinkers develop increased intestinal permeability and ALD. The hypothesis of this study was that disruption of circadian rhythms is a potential risk factor in actively drinking alcoholics for gut leakiness and endotoxemia. We studied 20 subjects with alcohol use disorder (AD) and 17 healthy controls (HC, 6 day workers, 11 night workers). Subjects wore a wrist actiwatch for 7 days and underwent a 24-h dim light phase assessment and urine collection for intestinal permeability. The AD group had significantly less total sleep time and increased fragmentation of sleep (P < 0.05). AD also had significantly lower plasma melatonin levels compared with the HC [mean area under the curve (AUC) 322.78 ± 228.21 vs. 568.75 ± 304.26 pg/ml, P = 0.03]. In the AD group, AUC of melatonin was inversely correlated with small bowel and colonic intestinal permeability (lactulose-to-mannitol ratio, r = -0.39, P = 0.03; urinary sucralose, r = -0.47, P = 0.01). Cosinor analysis of lipopolysaccharide-binding protein (marker of endotoxemia) and lipopolysaccharide every 4 h for 24 h in HC and AD subjects had a midline estimating statistic of rhythm of 5,026.15 ± 409.56 vs. 6,818.02 ± 628.78 ng/ml (P < 0.01) and 0.09 ± 0.03 vs. 0.15 ± 0.19 EU/ml (P < 0.05), respectively. We found plasma melatonin was significantly lower in the AD group, and lower melatonin levels correlated with increased intestinal permeability and a marker of endotoxemia. Our study suggests the suppression of melatonin in AD may promote gut leakiness and endotoxemia. PMID:25907689

  17. Neuropeptide S inhibits gastrointestinal motility and increases mucosal permeability through nitric oxide.

    PubMed

    Wan Saudi, Wan Salman; Halim, Md Abdul; Rudholm-Feldreich, Tobias; Gillberg, Linda; Rosenqvist, Evelina; Tengholm, Anders; Sundbom, Magnus; Karlbom, Urban; Näslund, Erik; Webb, Dominic-Luc; Sjöblom, Markus; Hellström, Per M

    2015-10-15

    Neuropeptide S (NPS) receptor (NPSR1) polymorphisms are associated with enteral dysmotility and inflammatory bowel disease (IBD). This study investigated the role of NPS in conjunction with nitrergic mechanisms in the regulation of intestinal motility and mucosal permeability. In rats, small intestinal myoelectric activity and luminal pressure changes in small intestine and colon, along with duodenal permeability, were studied. In human intestine, NPS and NPSR1 were localized by immunostaining. Pre- and postprandial plasma NPS was measured by ELISA in healthy and active IBD humans. Effects and mechanisms of NPS were studied in human intestinal muscle strips. In rats, NPS 100-4,000 pmol·kg(-1)·min(-1) had effects on the small intestine and colon. Low doses of NPS increased myoelectric spiking (P < 0.05). Higher doses reduced spiking and prolonged the cycle length of the migrating myoelectric complex, reduced intraluminal pressures (P < 0.05-0.01), and increased permeability (P < 0.01) through NO-dependent mechanisms. In human intestine, NPS localized at myenteric nerve cell bodies and fibers. NPSR1 was confined to nerve cell bodies. Circulating NPS in humans was tenfold below the ∼0.3 nmol/l dissociation constant (Kd) of NPSR1, with no difference between healthy and IBD subjects. In human intestinal muscle strips precontracted by bethanechol, NPS 1-1,000 nmol/l induced NO-dependent muscle relaxation (P < 0.05) that was sensitive also to tetrodotoxin (P < 0.01). In conclusion, NPS inhibits motility and increases permeability in neurocrine fashion acting through NO in the myenteric plexus in rats and humans. Aberrant signaling and upregulation of NPSR1 could potentially exacerbate dysmotility and hyperpermeability by local mechanisms in gastrointestinal functional and inflammatory reactions. PMID:26206857

  18. Increase in the permeability of tonoplast of garlic (Allium sativum) by monocarboxylic acids.

    PubMed

    Bai, Bing; Li, Lei; Hu, Xiaosong; Wang, Zhengfu; Zhao, Guanghua

    2006-10-18

    Immersion of intact aged garlic (Allium sativum) cloves in a series of 5% weak organic monocarboxylate solutions (pH 2.0) resulted in green color formation. No color was formed upon treatment with other weak organic acids, such as citric and malic acids, and the inorganic hydrochloric acid under the same conditions. To understand the significance of monocarboxylic acids and their differing function from that of other acids, acetic acid was compared with organic acids citric and malic and the inorganic hydrochloric acid. The effects of these acids on the permeability of plasma and intracellular membrane of garlic cells were measured by conductivity, light microscopy, and transmission electron microscopy. Except for hydrochloric acid, treatment of garlic with all three organic acids greatly increased the relative conductivity of their respective pickling solutions, indicating that all tested organic acids increased the permeability of plasma membrane. Moreover, a pickling solution containing acetic acid exhibited 1.5-fold higher relative conductivity (approximately 90%) as compared to those (approximately 60%) of both citric and malic acids, implying that exposure of garlic cloves to acetic acid not only changed the permeability of the plasma membrane but also increased the permeability of intracellular membrane. Exposure of garlic to acetic acid led to the production of precipitate along the tonoplast, but no precipitate was formed by citric and malic acids. This indicates that the structure of the tonoplast was damaged by this treatment. Further support for this conclusion comes from results showing that the concentration of thiosulfinates [which are produced only by catalytic conversion of S-alk(en)yl-l-cysteine sulfoxides in cytosol by alliinase located in the vacuole] in the acetic acid pickling solution is 1.3 mg/mL, but almost no thiosulfinates were detected in the pickling solution of citric and malic acids. Thus, all present results suggest that damage of

  19. Botulinum toxin complex increases paracellular permeability in intestinal epithelial cells via activation of p38 mitogen-activated protein kinase.

    PubMed

    Miyashita, Shin-Ichiro; Sagane, Yoshimasa; Inui, Ken; Hayashi, Shintaro; Miyata, Keita; Suzuki, Tomonori; Ohyama, Tohru; Watanabe, Toshihiro; Niwa, Koichi

    2013-12-30

    Clostridium botulinum produces a large toxin complex (L-TC) that increases paracellular permeability in intestinal epithelial cells by a mechanism that remains unclear. Here, we show that mitogen-activated protein kinases (MAPKs) are involved in this permeability increase. Paracellular permeability was measured by FITC-dextran flux through a monolayer of rat intestinal epithelial IEC-6 cells, and MAPK activation was estimated from western blots. L-TC of C. botulinum serotype D strain 4947 increased paracellular dextran flux and activated extracellular signal-regulated kinase (ERK), p38, but not c-Jun N-terminal kinase (JNK) in IEC-6 cells. The permeability increase induced by L-TC was abrogated by the p38 inhibitor SB203580. These results indicate that L-TC increases paracellular permeability by activating p38, but not JNK and ERK. PMID:23884081

  20. High-energy ball milling of saquinavir increases permeability across the buccal mucosa.

    PubMed

    Rambharose, Sanjeev; Ojewole, Elizabeth; Branham, Michael; Kalhapure, Rahul; Govender, Thirumala

    2014-05-01

    Saquinavir (SQV), a candidate for buccal drug delivery, is limited by poor solubility. This study identified the effects of high-energy ball milling on the buccal permeability of SQV and compared it to the effects of chemical enhancers, i.e. ethylenediaminetetraacetic acid (EDTA), sodium lauryl sulfate (SLS), polyethylene glycol (PEG) and beta cyclodextrin (β-cyclodextrin). SQV was ball milled using a high energy planetary mill (1, 3, 15 and 30 h) and permeation studies across porcine buccal mucosa were performed using franz diffusion cells. Drug was quantified by UV spectrophotometry. Both unmilled and milled SQV samples were able to permeate the buccal mucosa. Milled samples of 15 h displayed the greatest flux of 10.40 ± 1.24 µg/cm(2 )h and an enhancement ratio of 2.61. All enhancers were able to increase the buccal permeability of unmilled SQV, with SLS achieving the greatest flux (6.99 ± 0.7 µg/cm(2)) and an enhancement ratio of 1.75. However, all the milled SQV samples displayed greater permeability than SLS, the best chemical enhancer for unmilled SQV. Enhanced permeability by ball milling was attributed to reduction in particle size, formation of solid dispersions and an increase in solubility of milled samples. Microscopical evaluation revealed no significant loss in mucosal cellular integrity treated with either unmilled or milled SQV. Histological studies suggest that SQV uses both the paracellular and transcellular route of transport across the mucosa, with drug treatment having no permanent affects. High-energy ball milling was superior to the chemical enhancers studied for enhancement of SQV buccal permeation. PMID:24499179

  1. Ascorbic Acid may Exacerbate Aspirin-Induced Increase in Intestinal Permeability.

    PubMed

    Sequeira, Ivana R; Kruger, Marlena C; Hurst, Roger D; Lentle, Roger G

    2015-09-01

    Ascorbic acid in combination with aspirin has been used to prevent aspirin-induced oxidative GI damage. We aimed to determine whether ascorbic acid reduces or prevents aspirin-induced changes in intestinal permeability over a 6-hr period using saccharidic probes mannitol and lactulose. The effects of administration of 600 mg aspirin alone, 500 mg ascorbic acid alone and simultaneous dosage of both agents were compared in a cross-over study in 28 healthy female volunteers. These effects were also compared with that of a placebo. The ability of ascorbic acid to mitigate the effects of aspirin when administered either half an hour before or after dosage with aspirin was also assessed in 19 healthy female volunteers. The excretion of lactulose over the 6-hr period was augmented after consumption of either aspirin or ascorbic acid compared with that after consumption of placebo. Dosage with ascorbic acid alone augmented the excretion of lactulose more than did aspirin alone. Simultaneous dosage with both agents augmented the excretion of lactulose in an additive manner. The timing of dosage with ascorbic acid in relation to that with aspirin had no significant effect on the excretion of the two sugars. These findings indicate that ascorbic acid does not prevent aspirin-induced increase in gut permeability rather that both agents augment it to a similar extent. The additive effect on simultaneous dosage with both agents in augmenting the absorption of lactulose suggests that each influences paracellular permeability by different pathways. PMID:25641731

  2. Oxidative Stress and Modification of Renal Vascular Permeability Are Associated with Acute Kidney Injury during P. berghei ANKA Infection

    PubMed Central

    Elias, Rosa Maria; Correa-Costa, Matheus; Barreto, Claudiene Rodrigues; Silva, Reinaldo Correia; Hayashida, Caroline Y.; Castoldi, Ângela; Gonçalves, Giselle Martins; Braga, Tarcio Teodoro; Barboza, Renato; Rios, Francisco José; Keller, Alexandre Castro; Cenedeze, Marcos Antonio; Hyane, Meire Ioshie; D'Império-Lima, Maria Regina; Figueiredo-Neto, Antônio Martins; Reis, Marlene Antônia; Marinho, Cláudio Romero Farias; Pacheco-Silva, Alvaro; Câmara, Niels Olsen Saraiva

    2012-01-01

    Malaria associated-acute kidney injury (AKI) is associated with 45% of mortality in adult patients hospitalized with severe form of the disease. However, the causes that lead to a framework of malaria-associated AKI are still poorly characterized. Some clinical studies speculate that oxidative stress products, a characteristic of Plasmodium infection, as well as proinflammatory response induced by the parasite are involved in its pathophysiology. Therefore, we aimed to investigate the development of malaria-associated AKI during infection by P. berghei ANKA, with special attention to the role played by the inflammatory response and the involvement of oxidative stress. For that, we took advantage of an experimental model of severe malaria that showed significant changes in the renal pathophysiology to investigate the role of malaria infection in the renal microvascular permeability and tissue injury. Therefore, BALB/c mice were infected with P. berghei ANKA. To assess renal function, creatinine, blood urea nitrogen, and ratio of proteinuria and creatininuria were evaluated. The products of oxidative stress, as well as cytokine profile were quantified in plasma and renal tissue. The change of renal microvascular permeability, tissue hypoxia and cellular apoptosis were also evaluated. Parasite infection resulted in renal dysfunction. Furthermore, we observed increased expression of adhesion molecule, proinflammatory cytokines and products of oxidative stress, associated with a decrease mRNA expression of HO-1 in kidney tissue of infected mice. The measurement of lipoprotein oxidizability also showed a significant increase in plasma of infected animals. Together, our findings support the idea that products of oxidative stress, as well as the immune response against the parasite are crucial to changes in kidney architecture and microvascular endothelial permeability of BALB/c mice infected with P. berghei ANKA. PMID:22952850

  3. Increased intestinal permeability in endotoxic pigs. Mesenteric hypoperfusion as an etiologic factor

    SciTech Connect

    Fink, M.P.; Antonsson, J.B.; Wang, H.L.; Rothschild, H.R. )

    1991-02-01

    Infusing pigs with lipopolysaccharide (LPS) decreases superior mesenteric artery blood flow (Qsma), suggesting that mesenteric hypoperfusion may be responsible for LPS-induced alterations in gut mucosal permeability. To test this hypothesis, we studied four groups of anesthetized swine. Group 1 animals (N = 6) were infused with LPS (250 micrograms/kg over 1 hour beginning at 60 minutes) and continuously resuscitated with Ringer's lactate (48 mL/kg per hour). In group 2 (N = 5), Qsma was decreased by 50% by means of a mechanical occluder to mimic the LPS-induced alterations in Qsma observed in group I. Group 3 (N = 5) was included to document our ability to detect ischemia/reperfusion-induced alterations in mucosal permeability; in these pigs, Qsma was decreased in steps to zero flow (at 150 to 210 minutes) and then perfusion was restored (at 210 to 270 minutes). Pigs in group 4 (N = 6) served as normal controls; these animals were resuscitated with Ringer's lactate at the same rate as in group 1 but were not infused with LPS. To assess mucosal permeability, we measured plasma-to-lumen clearances for two markers, chromium 51-labeled edetic acid monohydrate (EDTA) and urea. Loading and maintenance infusions of the markers were given intravenously, and a 20-cm isolated segment of small intestine was continuously perfused at 2 mL/min with Ringer's lactate at 37 degrees C. Results were expressed as the ratio of the clearances for the two probes (CEDTA/CUREA). In group 3, CEDTA/CUREA was 999% +/- 355% of baseline at 270 minutes. In group 1, CEDTA/CUREA was 572% +/- 235% of baseline at 270 minutes. In groups 2 and 4, however, CEDTA/CUREA did not change significantly from the baseline value over the duration of the study. These data suggest that increased mucosal permeability after LPS is due to factors other than (or in addition to) mesenteric hypoperfusion.

  4. Metalloporphyrin chloride ionophores: induction of increased anion permeability in lung epithelial cells.

    PubMed

    El-Etri, M; Cuppoletti, J

    1996-03-01

    5,10,15,20-Tetraphenyl-21H,23H-porphine manganese (III) chloride [TPPMn(III)] is a positively charged lipophilic anion carrier that is widely used as a Cl- sensor. TPPMn(III) increased anion permeability of cultured mouse lung epithelial (MLE) cells as measured by short-circuit current (ISC) to a level similar to that induced by forskolin analogues. Anion permeability was also studied in cultured human lung epithelial (A549) cells by measurement of the rates of change of fluorescence of the anion sensitive fluorescent dye, 6-methoxy-N-(3-sulfopropyl)quinolinium (SPQ). In these studies, cells were incubated with SPQ in SO2-4- medium, washed free of extracellular SPQ, and then perfused with medium containing anions that are known to quench SPQ fluorescence. The effect of TPPMn(III) on anion transport was then determined either microscopically in single cell studies or using cell monolayers mounted in a front face fluorimeter. TPPMn(III) in the range from 1 to 100 micrograms/ml induced a dose-dependent increase in Br- transport. The half-maximal quenching effect was estimated to be approximate 5 micrograms/ml. TPPMn(III) increased the rates of fluorescence quench of anions by up to fourfold. TPPMn(III) was without effect on -Ca2+-i level in A549 cells as measured with fura 2-AM. This indicates that TPPMn(III) effects were not mediated through effects on Ca+2 -activated Cl- channels, or by compromise of energy metabolism or membrane integrity of the cells. This study suggests that TPPMn(III) and, by extension, other lipophilic Mn(III) or Co(III) derivatives wherein the selectivity of lipophilicity is altered, could increase the anion permeability of biological membranes, and suggests a new approach for treatment of diseases such as cystic fibrosis, where transport of Cl- is defective. PMID:8638731

  5. Estrogen increases the permeability of the cultured human cervical epithelium by modulating cell deformability.

    PubMed

    Gorodeski, G I

    1998-09-01

    Estrogens increase secretion of cervical mucus in females. The objective of this research was to study the mechanisms of estrogen action. The experimental models were human CaSki (endocervical) and hECE (ectocervical) epithelial cells cultured on filters. Incubation in steroid-free medium increased transepithelial electrical resistance (RTE) and decreased epithelial permeability to the cell-impermeant acid pyranine. Estrogen treatment reversed the effects, indicating estrogen decreases epithelial paracellular resistance. The estrogen effect was time and dose related (EC50 approximately 1 nM) and specific (estradiol = diethylstilbestrol > estrone, estriol; no effect by progesterone, testosterone, or cortisol) and was blocked by progesterone, tamoxifen, and ICI-182780 (an estrogen receptor antagonist). Estrogen treatment did not modulate dilution potential or changes in RTE in response to diC8 or to low extracellular Ca2+ (modulators of tight junctional resistance). In contrast, estrogen augmented decreases in RTE in response to hydrostatic and hypertonic gradients [modulators of resistance of lateral intercellular space (RLIS)], suggesting estrogen decreases RLIS. Estrogen decreased cervical cell size, shortened response time relative to changes in cell size after hypertonic challenge, and augmented the decrease in cell size in response to hypertonic and hydrostatic gradients. Lowering luminal NaCl had no significant effect on RTE, and the Cl- channel blocker diphenylamine-2-carboxylate attenuated the hypertonicity-induced decrease in cell size to the same degree in control and estrogen-treated cells, suggesting estrogen effects on permeability and cell size are not mediated by modulating Na+ or Cl- transport. In contrast, estrogen increased cellular G-actin levels, suggesting estrogens shift actin steady-state toward G-actin and the cervical cell cytoskeleton toward a more flexible structure. We suggest that the mechanism by which estrogens decrease RLIS and

  6. Acute hyperglycemia induces rapid, reversible increases in glomerular permeability in nondiabetic rats.

    PubMed

    Axelsson, Josefin; Rippe, Anna; Rippe, Bengt

    2010-06-01

    This study was performed to investigate the impact of acute hyperglycemia (HG) on the permeability of the normal glomerular filtration barrier in vivo. In anesthetized Wistar rats (250-280 g), the left ureter was catheterized for urine collection, while simultaneously blood access was achieved. Rats received an intravenous (iv) infusion of either 1) hypertonic glucose to maintain blood glucose at 20-25 mM (G; n = 8); 2) hypertonic glucose as in 1) and a RhoA-kinase inhibitor (Y-27632; Rho-G; n = 8); 3) 20% mannitol (MANN; n = 7) or 4) hypertonic (12%) NaCl to maintain plasma crystalloid osmotic pressure (pi(cry)) at approximately 320-325 mosmol/l (NaCl; n = 8) or 5) physiological saline (SHAM; n = 8). FITC-Ficoll 70/400 was infused iv for at least 20 min before termination of the experiments, and plasma and urine were collected to determine the glomerular sieving coefficients (theta) for polydisperse Ficoll (molecular radius 15-80 A) by high-performance size-exclusion chromatography. In G there was a marked increase in for Ficoll(55-80A) at 20 min, which was completely reversible within 60 min and abrogated by a Rho-kinase (ROCK) inhibitor, while glomerular permeability remained unchanged in MANN and NaCl. In conclusion, acute HG caused rapid, reversible increases in for large Ficolls, not related to the concomitant hyperosmolarity, but sensitive to ROCK inhibition. The changes observed were consistent with the formation of an increased number of large pores in the glomerular filter. The sensitivity of the permeability changes to ROCK inhibition strongly indicates that the cytoskeleton of the cells in the glomerular barrier may be involved in these alterations. PMID:20237233

  7. Helminthosporium maydis T toxin increased membrane permeability to Ca/sup 2 +/ in susceptible corn mitochondria

    SciTech Connect

    Holden, M.J.; Sze, H.

    1984-05-01

    Though Helminthosporium maydis race T (HmT) toxin decreased active Ca/sup 2 +/ uptake into mitochondria isolated from susceptible (T) but not resistant (N) corn. The mode of toxin action is not understood. This study shows that HmT toxin or A23187 (a Ca/sup 2 +/ ionophore) dissipated a Ca/sup 2 +/ gradient in T mitochondria. However, HmT toxin had no effect on Ca/sup 2 +/ gradients in N mitochondria or microsomal vesicles from T or N corn. The results suggest that HmT toxin increased membrane permeability to Ca/sup 2 +/ in mitochondria of T corn specifically.

  8. ICAM-2 regulates vascular permeability and N-cadherin localization through ezrin-radixin-moesin (ERM) proteins and Rac-1 signalling

    PubMed Central

    2014-01-01

    Background Endothelial junctions control functions such as permeability, angiogenesis and contact inhibition. VE-Cadherin (VECad) is essential for the maintenance of intercellular contacts. In confluent endothelial monolayers, N-Cadherin (NCad) is mostly expressed on the apical and basal membrane, but in the absence of VECad it localizes at junctions. Both cadherins are required for vascular development. The intercellular adhesion molecule (ICAM)-2, also localized at endothelial junctions, is involved in leukocyte recruitment and angiogenesis. Results In human umbilical vein endothelial cells (HUVEC), both VECad and NCad were found at nascent cell contacts of sub-confluent monolayers, but only VECad localized at the mature junctions of confluent monolayers. Inhibition of ICAM-2 expression by siRNA caused the appearance of small gaps at the junctions and a decrease in NCad junctional staining in sub-confluent monolayers. Endothelioma lines derived from WT or ICAM-2-deficient mice (IC2neg) lacked VECad and failed to form junctions, with loss of contact inhibition. Re-expression of full-length ICAM-2 (IC2 FL) in IC2neg cells restored contact inhibition through recruitment of NCad at the junctions. Mutant ICAM-2 lacking the binding site for ERM proteins (IC2 ΔERM) or the cytoplasmic tail (IC2 ΔTAIL) failed to restore junctions. ICAM-2-dependent Rac-1 activation was also decreased in these mutant cell lines. Barrier function, measured in vitro via transendothelial electrical resistance, was decreased in IC2neg cells, both in resting conditions and after thrombin stimulation. This was dependent on ICAM-2 signalling to the small GTPase Rac-1, since transendothelial electrical resistance of IC2neg cells was restored by constitutively active Rac-1. In vivo, thrombin-induced extravasation of FITC-labeled albumin measured by intravital fluorescence microscopy in the mouse cremaster muscle showed that permeability was increased in ICAM-2-deficient mice compared to controls

  9. VIP and its homologous increase vascular conductance in certain endocrine and exocrine glands

    SciTech Connect

    Huffman, L.J.; Connors, J.M.; Hedge, G.A. )

    1988-04-01

    The effects of vasoactive intestinal peptide (VIP) and related structural homologues on tissue vascular conductances were investigated in anesthetized male rats. VIP, peptide histidine isoleucine (PHI), secretin, growth hormone-releasing factor (GHRF), gastric inhibitory peptide (GIP), or saline was infused intravenously over 4 min. Tissue blood flows were measured during this time by use of {sup 141}Ce-labeled microspheres. Circulating thyrotropin (TSH), triiodothyronine (T{sub 3}), and thyroxine (T{sub 4}) levels were determined before and at 20 min and 2 h after treatment. Marked increases in thyroid, pancreatic, and salivary gland vascular Cs occurred during peptide infusion with the order of potency correlating with the degree of structural homology to VIP. PHI and secretin produced maximal increases in vascular Cs, which were the same as those obtained with VIP. Circulating TSH, T{sub 3}, and T{sub 4} levels were not different from values in saline-infused rats after peptide treatments that caused striking increases in thyroid vascular C. These observations indicate that the vascular beds of certain endocrine and exocrine glands are responsive to the vasodilatory action of VIP and related homologues with the order of potency corresponding to the degree of structural homology to VIP. These results are also consistent with the proposal that structural homologues of VIP act at the same vascular receptor as VIP. Alternative, the involvement of different vascular receptors, acting through the same mechanism at a level beyond the receptor site, cannot be excluded.

  10. BET Bromodomain Suppression Inhibits VEGF-induced Angiogenesis and Vascular Permeability by Blocking VEGFR2-mediated Activation of PAK1 and eNOS

    PubMed Central

    Huang, Mingcheng; Qiu, Qian; Xiao, Youjun; Zeng, Shan; Zhan, Mingying; Shi, Maohua; Zou, Yaoyao; Ye, Yujin; Liang, Liuqin; Yang, Xiuyan; Xu, Hanshi

    2016-01-01

    The tyrosine kinase receptor vascular endothelial growth factor receptor 2 (VEGFR2) is a critical modulator of angiogenesis. Increasing evidence indicate the important role of bromodomain and extra-terminal domain (BET) of chromatin adaptors in regulating tumor growth and inflammatory response. However, whether BET proteins have a role in angiogenesis and endothelial permeability is unclear. In this study, we observed that treatment with JQ1, a specific BET inhibitor, suppressed in vitro tube formation of human umbilical vein endothelial cells (HUVECs) and in vivo angiogenesis in a Matrigel plug and oxygen-induced retinopathy neovascularization. JQ1 attenuated the VEGF-induced decrease in TEER in HUVECs and prevented Evans blue dye leakage in the VEGF-induced Miles assay in athymic Balb/c nude mice. BET inhibition with JQ1 or shRNA for Brd2 or Brd4 suppressed VEGF-induced migration, proliferation, and stress fiber formation of HUVECs. Furthermore, BET inhibition suppressed phosphorylation of VEGFR2 and PAK1, as well as eNOS activation in VEGF-stimulated HUVECs. Inhibition with VEGFR2 and PAK1 also reduced migration and proliferation, and attenuated the VEGF-induced decrease in TEER. Thus, our observations suggest the important role of BET bromodomain in regulating VEGF-induced angiogenesis. Strategies that target the BET bromodomain may provide a new therapeutic approach for angiogenesis-related diseases. PMID:27044328

  11. Puromycin aminonucleoside increases podocyte permeability by modulating ZO-1 in an oxidative stress-dependent manner.

    PubMed

    Ha, Tae-Sun; Park, Hye-Young; Seong, Su-Bin; Ahn, Hee Yul

    2016-01-01

    Puromycin aminonucleoside (PAN)-induced nephrosis is a widely studied animal model of human idiopathic nephrotic syndrome because PAN injection into rats results in increased glomerular permeability with the characteristic ultrastructural changes in podocytes similar to human nephrosis. To investigate the role of zonula occludens (ZO)-1 and oxidative stress on PAN-induced podocyte phenotypical changes and hyperpermeability in vitro, we cultured rat and mouse podocytes and treated with various concentrations of PAN. PAN treatment increased oxidative stress level of podocytes significantly with the induction of Nox4. In addition, PAN changed the ultrastructure of podocytes, such as shortening and fusion of microvilli, and the separation of intercellular gaps, which were improved by anti-oxidative vitamin C and Nox4 siRNA. PAN also disrupted the intercellular linear ZO-1 staining and induced inner cytoplasmic re-localization of ZO-1 protein, resulting in increased podocyte intercellular permeability. PAN reduced ZO-1 protein amount and mRNA expression in a dose-dependent manner, which means that PAN could also modulate ZO-1 protein transcriptionally. However, the decreased ZO-1 protein of podocytes by PAN was improved by Nox4 siRNA transfection. Furthermore, vitamin C mitigated the quantitative and distributional disturbances of ZO-1 protein caused by PAN. Our results demonstrate that the phenotypical changes of intercellular ZO-1 by oxidative stress via Nox4 likely contribute to the glomerular hyperpermeability caused by PAN. PMID:26683996

  12. Vascular tumors have increased p70 S6-kinase activation and are inhibited by topical rapamycin.

    PubMed

    Du, Wa; Gerald, Damien; Perruzzi, Carole A; Rodriguez-Waitkus, Paul; Enayati, Ladan; Krishnan, Bhuvaneswari; Edmonds, Joseph; Hochman, Marcelo L; Lev, Dina C; Phung, Thuy L

    2013-10-01

    Vascular tumors are endothelial cell neoplasms whose cellular and molecular mechanisms, leading to tumor formation, are poorly understood, and current therapies have limited efficacy with significant side effects. We have investigated mechanistic (mammalian) target of rapamycin (mTOR) signaling in benign and malignant vascular tumors, and the effects of mTOR kinase inhibitor as a potential therapy for these lesions. Human vascular tumors (infantile hemangioma and angiosarcoma) were analyzed by immunohistochemical stains and western blot for the phosphorylation of p70 S6-kinase (S6K) and S6 ribosomal protein (S6), which are activated downstream of mTOR complex-1 (mTORC1). To assess the function of S6K, tumor cells with genetic knockdown of S6K were analyzed for cell proliferation and migration. The effects of topical rapamycin, an mTOR inhibitor, on mTORC1 and mTOR complex-2 (mTORC2) activities, as well as on tumor growth and migration, were determined. Vascular tumors showed increased activation of S6K and S6. Genetic knockdown of S6K resulted in reduced tumor cell proliferation and migration. Rapamycin fully inhibited mTORC1 and partially inhibited mTORC2 activities, including the phosphorylation of Akt (serine 473) and PKCα, in vascular tumor cells. Rapamycin significantly reduced vascular tumor growth in vitro and in vivo. As a potential localized therapy for cutaneous vascular tumors, topically applied rapamycin effectively reduced tumor growth with limited systemic drug absorption. These findings reveal the importance of mTOR signaling pathways in benign and malignant vascular tumors. The mTOR pathway is an important therapeutic target in vascular tumors, and topical mTOR inhibitors may provide an alternative and well-tolerated therapy for the treatment of cutaneous vascular lesions. PMID:23938603

  13. The nutriceutical bovine colostrum truncates the increase in gut permeability caused by heavy exercise in athletes.

    PubMed

    Marchbank, Tania; Davison, Glen; Oakes, Jemma R; Ghatei, Mohammad A; Patterson, Michael; Moyer, Mary Pat; Playford, Raymond J

    2011-03-01

    Heavy exercise causes gut symptoms and, in extreme cases, "heat stroke" partially due to increased intestinal permeability of luminal toxins. We examined bovine colostrum, a natural source of growth factors, as a potential moderator of such effects. Twelve volunteers completed a double-blind, placebo-controlled, crossover protocol (14 days colostrum/placebo) prior to standardized exercise. Gut permeability utilized 5 h urinary lactulose-to-rhamnose ratios. In vitro studies (T84, HT29, NCM460 human colon cell lines) examined colostrum effects on temperature-induced apoptosis (active caspase-3 and 9, Baxα, Bcl-2), heat shock protein 70 (HSP70) expression and epithelial electrical resistance. In both study arms, exercise increased blood lactate, heart rate, core temperature (mean 1.4°C rise) by similar amounts. Gut hormone profiles were similar in both arms although GLP-1 levels rose following exercise in the placebo but not the colostrum arm (P = 0.026). Intestinal permeability in the placebo arm increased 2.5-fold following exercise (0.38 ± 0.012 baseline, to 0.92 ± 0.014, P < 0.01), whereas colostrum truncated rise by 80% (0.38 ± 0.012 baseline to 0.49 ± 0.017) following exercise. In vitro apoptosis increased by 47-65% in response to increasing temperature by 2°C. This effect was truncated by 60% if colostrum was present (all P < 0.01). Similar results were obtained examining epithelial resistance (colostrum truncated temperature-induced fall in resistance by 64%, P < 0.01). Colostrum increased HSP70 expression at both 37 and 39°C (P < 0.001) and was truncated by addition of an EGF receptor-neutralizing antibody. Temperature-induced increase in Baxα and reduction in Bcl-2 was partially reversed by presence of colostrum. Colostrum may have value in enhancing athletic performance and preventing heat stroke. PMID:21148400

  14. Evidence of a bactericidal permeability increasing protein in an invertebrate, the Crassostrea gigas Cg-BPI

    PubMed Central

    Gonzalez, Marcelo; Gueguen, Yannick; Destoumieux-Garzón, Delphine; Romestand, Bernard; Fievet, Julie; Pugnière, Martine; Roquet, Françoise; Escoubas, Jean-Michel; Vandenbulcke, Franck; Levy, Ofer; Sauné, Laure; Bulet, Philippe; Bachère, Evelyne

    2007-01-01

    A cDNA sequence with homologies to members of the LPS-binding protein and bactericidal/permeability-increasing protein (BPI) family was identified in the oyster Crassostrea gigas. The recombinant protein was found to bind LPS, to display bactericidal activity against Escherichia coli, and to increase the permeability of the bacterial cytoplasmic membrane. This indicated that it is a BPI rather than an LPS-binding protein. By in situ hybridization, the expression of the C. gigas BPI (Cg-bpi) was found to be induced in hemocytes after oyster bacterial challenge and to be constitutive in various epithelia of unchallenged oysters. Thus, Cg-bpi transcripts were detected in the epithelial cells of tissues/organs in contact with the external environment (mantle, gills, digestive tract, digestive gland diverticula, and gonad follicles). Therefore, Cg-BPI, whose expression profile and biological properties are reminiscent of mammalian BPIs, may provide a first line of defense against potential bacterial invasion. To our knowledge, this is the first characterization of a BPI in an invertebrate. PMID:17965238

  15. Serum clara cell protein: a sensitive biomarker of increased lung epithelium permeability caused by ambient ozone.

    PubMed

    Broeckaert, F; Arsalane, K; Hermans, C; Bergamaschi, E; Brustolin, A; Mutti, A; Bernard, A

    2000-06-01

    Ozone in ambient air may cause various effects on human health, including decreased lung function, asthma exacerbation, and even premature mortality. These effects have been evidenced using various clinical indicators that, although sensitive, do not specifically evaluate the O(3)-increased lung epithelium permeability. In the present study, we assessed the acute effects of ambient O(3) on the pulmonary epithelium by a new approach relying on the assay in serum of the lung-specific Clara cell protein (CC16 or CC10). We applied this test to cyclists who exercised for 2 hr during episodes of photochemical smog and found that O(3) induces an early leakage of lung Clara cell protein. The protein levels increased significantly into the serum from exposure levels as low as 0.060-0.084 ppm. Our findings, confirmed in mice exposed to the current U.S. National Ambient Air Quality Standards for O(3) (0.08 ppm for 8 hr) indicate that above the present natural background levels, there is almost no safety margin for the effects of ambient O(3) on airway permeability. The assay of CC16 in the serum represents a new sensitive noninvasive test allowing the detection of early effects of ambient O(3) on the lung epithelial barrier. PMID:10856027

  16. Do non-steroidal anti-inflammatory drugs increase colonic permeability?

    PubMed Central

    Jenkins, A P; Trew, D R; Crump, B J; Nukajam, W S; Foley, J A; Menzies, I S; Creamer, B

    1991-01-01

    Urinary excretion of orally administered lactulose and 51 chromium labelled ethylenediamine tetra-acetate (51Cr-EDTA) was measured in 12 healthy adult subjects and in six patients with ileostomies to assess intestinal permeability. In normal subjects, 24 hour urinary recovery of 51Cr-EDTA was significantly greater than that of lactulose (mean (SEM) 2.27 (0.15) v 0.50 (0.08)% oral dose; p less than 0.001), but in ileostomy patients recovery of the two markers was the same. In normal subjects, therefore, the difference between the two markers may arise from bacterial break-down of lactulose but not of 51Cr-EDTA in the distal bowel, urinary excretion of lactulose representing small intestinal permeation and that of 51Cr-EDTA representing both small and large intestinal permeation. The markers were then given simultaneously to nine patients receiving non-steroidal anti-inflammatory drugs (NSAIDs) for rheumatoid arthritis and osteoarthritis. The 24 hour urinary recovery of 51Cr-EDTA in the patients was significantly greater than normal (4.64 (1.20) v 2.27 (0.15)% oral dose; p less than 0.01), but that of lactulose was not significantly affected. Moreover, the increase in 51Cr-EDTA recovery was most noticeable in the later urine collections. Both of these findings suggest that NSAIDs may increase colonic permeability. PMID:1899408

  17. Lactobacillus fermentum AGR1487 cell surface structures and supernatant increase paracellular permeability through different pathways.

    PubMed

    Sengupta, Ranjita; Anderson, Rachel C; Altermann, Eric; McNabb, Warren C; Ganesh, Siva; Armstrong, Kelly M; Moughan, Paul J; Roy, Nicole C

    2015-08-01

    Lactobacillus fermentum is commonly found in food products, and some strains are known to have beneficial effects on human health. However, our previous research indicated that L. fermentum AGR1487 decreases in vitro intestinal barrier integrity. The hypothesis was that cell surface structures of AGR1487 are responsible for the observed in vitro effect. AGR1487 was compared to another human oral L. fermentum strain, AGR1485, which does not cause the same effect. The examination of phenotypic traits associated with the composition of cell surface structures showed that compared to AGR1485, AGR1487 had a smaller genome, utilized different sugars, and had greater tolerance to acid and bile. The effect of the two strains on intestinal barrier integrity was determined using two independent measures of paracellular permeability of the intestinal epithelial Caco-2 cell line. The transepithelial electrical resistance (TEER) assay specifically measures ion permeability, whereas the mannitol flux assay measures the passage of uncharged molecules. Both live and UV-inactivated AGR1487 decreased TEER across Caco-2 cells implicating the cell surfaces structures in the effect. However, only live AGR1487, and not UV-inactivated AGR1487, increased the rate of passage of mannitol, implying that a secreted component(s) is responsible for this effect. These differences in barrier integrity results are likely due to the TEER and mannitol flux assays measuring different characteristics of the epithelial barrier, and therefore imply that there are multiple mechanisms involved in the effect of AGR1487 on barrier integrity. PMID:25943073

  18. Clostridium perfringens epsilon toxin increases the small intestinal permeability in mice and rats.

    PubMed

    Goldstein, Jorge; Morris, Winston E; Loidl, César Fabián; Tironi-Farinati, Carla; Tironi-Farinatti, Carla; McClane, Bruce A; Uzal, Francisco A; Fernandez Miyakawa, Mariano E

    2009-01-01

    Epsilon toxin is a potent neurotoxin produced by Clostridium perfringens types B and D, an anaerobic bacterium that causes enterotoxaemia in ruminants. In the affected animal, it causes oedema of the lungs and brain by damaging the endothelial cells, inducing physiological and morphological changes. Although it is believed to compromise the intestinal barrier, thus entering the gut vasculature, little is known about the mechanism underlying this process. This study characterizes the effects of epsilon toxin on fluid transport and bioelectrical parameters in the small intestine of mice and rats. The enteropooling and the intestinal loop tests, together with the single-pass perfusion assay and in vitro and ex vivo analysis in Ussing's chamber, were all used in combination with histological and ultrastructural analysis of mice and rat small intestine, challenged with or without C. perfringens epsilon toxin. Luminal epsilon toxin induced a time and concentration dependent intestinal fluid accumulation and fall of the transepithelial resistance. Although no evident histological changes were observed, opening of the mucosa tight junction in combination with apoptotic changes in the lamina propria were seen with transmission electron microscopy. These results indicate that C. perfringens epsilon toxin alters the intestinal permeability, predominantly by opening the mucosa tight junction, increasing its permeability to macromolecules, and inducing further degenerative changes in the lamina propria of the bowel. PMID:19763257

  19. Clostridium perfringens Epsilon Toxin Increases the Small Intestinal Permeability in Mice and Rats

    PubMed Central

    Goldstein, Jorge; Morris, Winston E.; Loidl, César Fabián; Tironi-Farinatti, Carla; McClane, Bruce A.; Uzal, Francisco A.; Fernandez Miyakawa, Mariano E.

    2009-01-01

    Epsilon toxin is a potent neurotoxin produced by Clostridium perfringens types B and D, an anaerobic bacterium that causes enterotoxaemia in ruminants. In the affected animal, it causes oedema of the lungs and brain by damaging the endothelial cells, inducing physiological and morphological changes. Although it is believed to compromise the intestinal barrier, thus entering the gut vasculature, little is known about the mechanism underlying this process. This study characterizes the effects of epsilon toxin on fluid transport and bioelectrical parameters in the small intestine of mice and rats. The enteropooling and the intestinal loop tests, together with the single-pass perfusion assay and in vitro and ex vivo analysis in Ussing's chamber, were all used in combination with histological and ultrastructural analysis of mice and rat small intestine, challenged with or without C. perfringens epsilon toxin. Luminal epsilon toxin induced a time and concentration dependent intestinal fluid accumulation and fall of the transepithelial resistance. Although no evident histological changes were observed, opening of the mucosa tight junction in combination with apoptotic changes in the lamina propria were seen with transmission electron microscopy. These results indicate that C. perfringens epsilon toxin alters the intestinal permeability, predominantly by opening the mucosa tight junction, increasing its permeability to macromolecules, and inducing further degenerative changes in the lamina propria of the bowel. PMID:19763257

  20. An effective way to increase the high-frequency permeability of Fe3O4 nanorods.

    PubMed

    Ren, Xiao; Yang, Haitao; Tang, Jin; Li, Zi-An; Su, Yi Kun; Geng, Sai; Zhou, Jun; Zhang, Xiangqun; Cheng, Zhaohua

    2016-07-14

    Uniform Fe3O4 magnetic nanorods (NRs) were successfully synthesized and oriented in epoxy resin under a rotating magnetic field. Magnetic induction fields within and around a single Fe3O4 nanorod in the remanence state were obtained by off-axis electron holography. The induction fields indicated a single domain state of the highly anisotropic Fe3O4 nanorod due to its strong magnetic shape anisotropy. Quantitative magnetic moment analysis of the obtained phase image yielded an average magnetization of 0.53 T of a single Fe3O4 nanorod. Moreover, the real part of the permeability (μ') of magnetic-oriented Fe3O4 NRs is obviously higher than that of random Fe3O4 NRs in the GHz range. The oriented Fe3O4 NRs exhibit a higher resonance peak at 4.75 GHz compared to the bulk counterpart (1.2 GHz) in the frequency dependence of μ in the range of 1-10 GHz. Moreover, the calculated μ value of the oriented Fe3O4 NRs could be improved to 4.22 with the increased dipolar interaction strength using the OOMMF software. These results could play a guiding significance in the development of an effective method to improve the permeability of magnetic nanomaterials at GHz working frequency. PMID:27305587

  1. Phosphatidic acid osmotically destabilizes lysosomes through increased permeability to K+ and H+.

    PubMed

    Yi, Y-P; Wang, X; Zhang, G; Fu, T-S; Zhang, G-J

    2006-06-01

    Lysosomal destabilization is a critical event not only for the organelle but also for living cells. However, what factors can affect lysosomal stability is not fully studied. In this work, the effects of phosphatidic acid (PA) on the lysosomal integrity were investigated. Through the measurements of lysosomal beta-hexosaminidase free activity, intralysosomal pH, leakage of lysosomal protons and lysosomal latency loss in hypotonic sucrose medium, we established that PA could increase the lysosomal permeability to K+ and H+, and enhance the lysosomal osmotic sensitivity. Treatment of lysosomes with PA promoted entry of K+ into the organelle via K+/H+ exchange, which could produce osmotic stresses and osmotically destabilize the lysosomes. In addition, PA-induced increase in the lysosomal osmotic sensitivity caused the lysosomes to become more liable to destabilization in osmotic shocks. The results suggest that PA may play a role in the lysosomal destabilization. PMID:16917129

  2. Separation of sublethal and lethal effects of the bactericidal/permeability increasing protein on Escherichia coli.

    PubMed Central

    Mannion, B A; Weiss, J; Elsbach, P

    1990-01-01

    Binding of the bactericidal/permeability increasing protein (BPI) of granulocytes to Escherichia coli promptly produces several discrete outer envelope alterations and growth arrest without major impairment of bacterial structure or biosynthetic capabilities, raising the question whether these early effects of BPI are sufficient to cause bacterial death. In this study, the bactericidal action of BPI was examined more closely. We have found that bovine or human serum albumin blocks bacterial killing without preventing BPI binding or an increase in outer membrane permeability. Moreover, addition of serum albumin after BPI results in growth resumption without displacement of bound BPI and without (early) repair of the envelope alterations. These effects are opposite to those produced by Mg2+ (80 mM), which displaces greater than 85% of bound BPI and rapidly initiates outer envelope repair without restoration of bacterial growth. The extent of rescue by serum albumin depends on the time and pH of preincubation of BPI with E. coli: e.g., for E. coli J5 treated with human BPI, t1/2 = 79 min at pH 7.4 and 10 min at pH 6.0. The serum albumin effects on BPI action are the same in wild-type E. coli and in a mutant strain lacking an activatable phospholipase, indicating that serum albumin does not act by sequestering membrane-damaging products of bacterial phospholipid hydrolysis. The progression from reversible to irreversible growth arrest, revealed by the subsequent addition of serum albumin at different times, is paralleled by a decrease in amino acid uptake and an increase in the permeability of the cytoplasmic membrane to o-nitrophenyl-beta-D-galactoside. These findings demonstrate at least two stages in the action of BPI: (a) an early, reversible, sublethal stage in which BPI has effects on the outer envelope and causes growth arrest, and (b) time- and pH-dependent progression to a lethal stage, apparently involving cytoplasmic membrane damage, possibly caused by

  3. Role of type II pneumocytes in pathogenesis of radiation pneumonitis: dose response of radiation-induced lung changes in the transient high vascular permeability period.

    PubMed

    Osterreicher, Jan; Pejchal, Jaroslav; Skopek, Jirí; Mokrỳ, Jaroslav; Vilasová, Zdena; Psutka, Jan; Vávrová, Jirina; Mazurová, Yvona

    2004-12-01

    We studied the dose response of pulmonary changes at 3 weeks after 1-25 Gy irradiation and we investigated the effects of an anti-inflammatory drug. Wistar rats were given a single dose of 1-25Gy irradiation to the thorax. Group one was treated with saline only, while group two was administered subcutaneously a combination of pentoxifylline (35 mg/kg) and dexamethasone (1 mg/kg) twice per week. Lungs were examined histochemically and number of neutrophile granulocytes, alveolar septal thickness, air/tissue ratio, number of alveoli per field, number of type II pneumocytes per alveolus, and occludin 1 expression were measured. A significant dose-dependent depletion of type II pneumocytes was found after irradiation with a dose of 1 Gy and higher. Alveolar neutrophils increased after 1 Gy with a dose dependency noted after 10-25Gy and alveolar septa thickening followed 5-25 Gy. A lower occludin 1 expression was observed in animals irradiated with the doses of 5 20 Gy, indicating an effect on vascular permeability. Anti-inflammatory therapy partially inhibited the increase of neutrophils at all radiation doses and the depletion of type II pneumocytes after doses of 1, 10, and 15 Gy. Occludin 1 did not decrease in the lungs of rats treated with the anti-inflammatory drugs as it did in most rats treated only with saline. Our results suggest that pneumocytes depletion is a major factor responsible for radiation pneumonitis development and that these changes may be compensated for provided radiation doses are below the threshold. PMID:15625787

  4. Transcranial direct current stimulation transiently increases the blood-brain barrier solute permeability in vivo

    NASA Astrophysics Data System (ADS)

    Shin, Da Wi; Khadka, Niranjan; Fan, Jie; Bikson, Marom; Fu, Bingmei M.

    2016-03-01

    Transcranial Direct Current Stimulation (tDCS) is a non-invasive electrical stimulation technique investigated for a broad range of medical and performance indications. Whereas prior studies have focused exclusively on direct neuron polarization, our hypothesis is that tDCS directly modulates endothelial cells leading to transient changes in blood-brain-barrier (BBB) permeability (P) that are highly meaningful for neuronal activity. For this, we developed state-of-the-art imaging and animal models to quantify P to various sized solutes after tDCS treatment. tDCS was administered using a constant current stimulator to deliver a 1mA current to the right frontal cortex of rat (approximately 2 mm posterior to bregma and 2 mm right to sagittal suture) to obtain similar physiological outcome as that in the human tDCS application studies. Sodium fluorescein (MW=376), or FITC-dextrans (20K and 70K), in 1% BSA mammalian Ringer was injected into the rat (SD, 250-300g) cerebral circulation via the ipsilateral carotid artery by a syringe pump at a constant rate of ~3 ml/min. To determine P, multiphoton microscopy with 800-850 nm wavelength laser was applied to take the images from the region of interest (ROI) with proper microvessels, which are 100-200 micron below the pia mater. It shows that the relative increase in P is about 8-fold for small solute, sodium fluorescein, ~35-fold for both intermediate sized (Dex-20k) and large (Dex-70k) solutes, 10 min after 20 min tDCS pretreatment. All of the increased permeability returns to the control after 20 min post treatment. The results confirmed our hypothesis.

  5. Specific binding of a mutated fragment of Clostridium perfringens enterotoxin to endothelial claudin-5 and its modulation of cerebral vascular permeability.

    PubMed

    Liao, Zhuangbin; Yang, Zhenguo; Piontek, Anna; Eichner, Miriam; Krause, Gerd; Li, Longxuan; Piontek, Joerg; Zhang, Jingjing

    2016-07-01

    The vertebrate blood-brain barrier (BBB) creates an obstacle for central nervous system-related drug delivery. Claudin-5 (Cldn5), expressed in large quantities in BBB, plays a vital role in restricting BBB permeability. The C-terminal domain of Clostridium perfringens enterotoxin (cCPE) has been verified as binding to a subset of claudins (Cldns). The Cldn5-binding cCPE194-319 variant cCPEY306W/S313H was applied in this study to investigate its ability to modulate the permeability of zebrafish larval BBB. In vitro results showed that cCPEY306W/S313H is able to bind specifically to Cldn5 in murine brain vascular endothelial (bEnd.3) cells, and is transported along with Cldn5 from the cell membrane to the cytoplasm, which in turn results in a reduction in transendothelial electrical resistance (TEER). Conversely, this effect can be reversed by removal of cCPEY306W/S313H. In an in vivo experiment, this study estimates the capability of cCPEY306W/S313H to modulate Cldn5 using a rhodamine B-Dextran dye diffusion assay in zebrafish larval BBB. The results show that cCPEY306W/S313H co-localized with Cldn5 in zebrafish cerebral vascular cells and modulated BBB permeability, resulting in dye leakage. Taken together, this study suggests that cCPEY306W/S313H has the capability - both in vitro and in vivo - to modulate BBB permeability temporarily by specific binding to Cldn5. PMID:27095710

  6. Quantification of transient increase of the blood–brain barrier permeability to macromolecules by optimized focused ultrasound combined with microbubbles

    PubMed Central

    Shi, Lingyan; Palacio-Mancheno, Paolo; Badami, Joseph; Shin, Da Wi; Zeng, Min; Cardoso, Luis; Tu, Raymond; Fu, Bingmei M

    2014-01-01

    Radioimmunotherapy using a radiolabeled monoclonal antibody that targets tumor cells has been shown to be efficient for the treatment of many malignant cancers, with reduced side effects. However, the blood–brain barrier (BBB) inhibits the transport of intravenous antibodies to tumors in the brain. Recent studies have demonstrated that focused ultrasound (FUS) combined with microbubbles (MBs) is a promising method to transiently disrupt the BBB for the drug delivery to the central nervous system. To find the optimal FUS and MBs that can induce reversible increase in the BBB permeability, we employed minimally invasive multiphoton microscopy to quantify the BBB permeability to dextran-155 kDa with similar molecular weight to an antibody by applying different doses of FUS in the presence of MBs with an optimal size and concentration. The cerebral microcirculation was observed through a section of frontoparietal bone thinned with a micro-grinder. About 5 minutes after applying the FUS on the thinned skull in the presence of MBs for 1 minute, TRITC (tetramethylrhodamine isothiocyanate)-dextran-155 kDa in 1% bovine serum albumin in mammalian Ringer’s solution was injected into the cerebral circulation via the ipsilateral carotid artery by a syringe pump. Simultaneously, the temporal images were collected from the brain parenchyma ~100–200 μm below the pia mater. Permeability was determined from the rate of tissue solute accumulation around individual microvessels. After several trials, we found the optimal dose of FUS. At the optimal dose, permeability increased by ~14-fold after 5 minutes post-FUS, and permeability returned to the control level after 25 minutes. FUS without MBs or MBs injected without FUS did not change the permeability. Our method provides an accurate in vivo assessment for the transient BBB permeability change under the treatment of FUS. The optimal FUS dose found for the reversible BBB permeability increase without BBB disruption is reliable

  7. An effective way to increase the high-frequency permeability of Fe3O4 nanorods

    NASA Astrophysics Data System (ADS)

    Ren, Xiao; Yang, Haitao; Tang, Jin; Li, Zi-An; Su, Yi Kun; Geng, Sai; Zhou, Jun; Zhang, Xiangqun; Cheng, Zhaohua

    2016-06-01

    Uniform Fe3O4 magnetic nanorods (NRs) were successfully synthesized and oriented in epoxy resin under a rotating magnetic field. Magnetic induction fields within and around a single Fe3O4 nanorod in the remanence state were obtained by off-axis electron holography. The induction fields indicated a single domain state of the highly anisotropic Fe3O4 nanorod due to its strong magnetic shape anisotropy. Quantitative magnetic moment analysis of the obtained phase image yielded an average magnetization of 0.53 T of a single Fe3O4 nanorod. Moreover, the real part of the permeability (μ') of magnetic-oriented Fe3O4 NRs is obviously higher than that of random Fe3O4 NRs in the GHz range. The oriented Fe3O4 NRs exhibit a higher resonance peak at 4.75 GHz compared to the bulk counterpart (1.2 GHz) in the frequency dependence of μ in the range of 1-10 GHz. Moreover, the calculated μ value of the oriented Fe3O4 NRs could be improved to 4.22 with the increased dipolar interaction strength using the OOMMF software. These results could play a guiding significance in the development of an effective method to improve the permeability of magnetic nanomaterials at GHz working frequency.Uniform Fe3O4 magnetic nanorods (NRs) were successfully synthesized and oriented in epoxy resin under a rotating magnetic field. Magnetic induction fields within and around a single Fe3O4 nanorod in the remanence state were obtained by off-axis electron holography. The induction fields indicated a single domain state of the highly anisotropic Fe3O4 nanorod due to its strong magnetic shape anisotropy. Quantitative magnetic moment analysis of the obtained phase image yielded an average magnetization of 0.53 T of a single Fe3O4 nanorod. Moreover, the real part of the permeability (μ') of magnetic-oriented Fe3O4 NRs is obviously higher than that of random Fe3O4 NRs in the GHz range. The oriented Fe3O4 NRs exhibit a higher resonance peak at 4.75 GHz compared to the bulk counterpart (1.2 GHz) in the

  8. Common variants of chemokine receptor gene CXCR3 and its ligands CXCL10 and CXCL11 associated with vascular permeability of dengue infection in peninsular Malaysia.

    PubMed

    Hoh, B P; Umi-Shakina, H; Zuraihan, Z; Zaiharina, M Z; Rafidah-Hanim, S; Mahiran, M; Khairudin, N Y Nik; Benedict, L H Sim; Masliza, Z; Christopher, K C Lee; Sazaly, A B

    2015-06-01

    Dengue causes significantly more human disease than any other arboviruses. It causes a spectrum of illness, ranging from mild self-limited fever, to severe and fatal dengue hemorrhagic fever, as evidenced by vascular leakage and multifactorial hemostatic abnormalities. There is no specific treatment available till date. Evidence shows that chemokines CXCL10, CXCL11 and their receptor CXCR3 are involved in severity of dengue, but their genetic association with the susceptibility of vascular leakage during dengue infection has not been reported. We genotyped 14 common variants of these candidate genes in 176 patients infected with dengue. rs4859584 and rs8878 (CXCL10) were significantly associated with vascular permeability of dengue infection (P<0.05); while variants of CXCL11 showed moderate significance of association (P=0.0527). Haplotype blocks were constructed for genes CXCL10 and CXCL11 (5 and 7 common variants respectively). Haplotype association tests performed revealed that, "CCCCA" of gene CXCL10 and "AGTTTAC" of CXCL11 were found to be significantly associated with vascular leakage (P=0.0154 and 0.0366 respectively). In summary, our association study further strengthens the evidence of the involvement of CXCL10 and CXCL11 in the pathogenesis of dengue infection. PMID:25858769

  9. Increased gastrointestinal permeability and gut inflammation in children with functional abdominal pain and Irritable Bowel Syndrome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To determine gastrointestinal (GI) permeability and fecal calprotectin concentration in children 7 to 10 years of age with functional abdominal pain and irritable bowel syndrome (FAP/IBS) versus control subjects and ascertain potential relationships with pain symptoms and stooling, GI permeability a...

  10. Aldosterone increases the apical Na sup + permeability of toad bladder by two different mechanisms

    SciTech Connect

    Asher, C.; Garty, H. )

    1988-10-01

    The aldosterone-induced augmentation of Na{sup +} transport in toad bladder was analyzed by comparing the hormonal actions on the transepithelial short-circuit current and on the amiloride-sensitive {sup 22}Na{sup +} uptake in isolated membrane vesicles. Incubating bladders with 0.5 {mu}M aldosterone for 3 hr evoked more than a 2-fold increase of the short-circuit current but had no effect on the amiloride-sensitive Na{sup +} transport in apical vesicles derived from the treated tissue. A longer incubation produced an additional augmentation of the short-circuit current, which was accompanied by about a 3-fold increase of the channel activity in isolated membranes. The stimulatory effect of aldosterone sustained in vesicles was inhibited by the antagonist spironolactone and the protein synthesis inhibitor cycloheximide. It is suggested that aldosterone elevates the apical Na{sup +} permeability of target epithelia by two different mechanisms: a relatively fast effect which is insensitive to triiodothyronine or butyrate and is not sustained by the isolated membrane, and a slower or later response blocked by these reagents, which is preserved by the isolated membrane. The data also indicate that these processes are mediated by different nuclear receptors.

  11. Expression of bactericidal/permeability-increasing protein requires C/EBP epsilon.

    PubMed

    Tanaka, Miyuki; Gombart, Adrian F; Koeffler, H Phillip; Shiohara, Masaaki

    2007-05-01

    Bactericidal/permeability-increasing protein (BPI) is a 55-kd cationic protein found mainly in neutrophil primary granules. BPI shows cytotoxicity against Gram-negative bacteria. In this study, we studied the role of a myeloid-specific transcription factor, CCAAT/enhancer binding protein epsilon (C/EBP epsilon), in the regulation of BPI gene expression. A patient with neutrophil-specific granule deficiency with a homozygous inactivating mutation in the CEBP epsilon gene showed severely impaired expression of both BPI messenger RNA (mRNA) and BPI protein. Both U937 and NB4 cells treated with 10-7 M all-trans retinoic acid (ATRA) for 6 days displayed increased levels of BPI protein and accompanying up-regulated C/EBP epsilon expression. Chromatin-immunoprecipitation analysis and electrophoretic mobility shift assays revealed binding of the C/EBP epsilon protein to the C/EBP-binding site in the BPI gene promoter. U937 cells stably transfected with a zinc-inducible C/EBP epsilon expression vector showed a 30-fold increase in BPI mRNA levels compared with cells transfected with control empty vector after culturing for 48 hours with 100 microM ZnSO4. BPI mRNA expression was severely reduced in the bone marrow of C/EBP epsilon-deficient mice compared with wild-type mice. Expression of BPI in human cord blood cells was increased by incubation with 10-7 MATRA for 48 hours. These results demonstrate the requirement for C/EBP epsilon in mediating BPI gene expression in myeloid cells in vitro and in vivo. PMID:17483073

  12. Failure of vascular autoregulation in the upper limb with increased +Gz acceleration.

    PubMed

    Green, N D C; Brown, M D; Coote, J H

    2007-08-01

    Forearm pain occurring during high +Gz exposure has been linked with vascular distension from elevated transmural pressure of hydrostatic origin and is exacerbated by positive pressure breathing (PBG). We postulated that at high vascular transmural pressure vascular autoregulation might be overcome and be associated with worsened pain. Six volunteers were studied at +4, +5, +6, and +7 Gz on a human centrifuge. Forearm vascular resistance (FVR) was assessed by Doppler ultrasound resistive index (RI), and superficial forearm venous pressure (FVP) was measured via an indwelling catheter. Pain rating was assessed by numerical scale. The left arm was located at heart level (control position), or on the throttle (test position). Runs were completed with and without positive pressure breathing for G protection (PBG); subjects wore full coverage anti-G trousers and chest counter-pressure. In the test position, pain increased with increasing acceleration (P < 0.0001), and was more severe with PBG at +5 Gz and +7 Gz (P < 0.05). FVP rose substantially more in the test than control position (238 +/- 17 mmHg vs. 61 +/- 8 mmHg at +7 Gz, P < 0.0001) but the presence or absence of PBG had no effect on the FVP increase during acceleration in either position. In the test position, RI fell with increasing acceleration above +5 Gz (P < 0.0001), and the fall was greater with PBG (P < 0.05). Forearm pain was thus associated with a decrease in FVR and an increase in vascular transmural pressure. PBG exacerbated forearm pain and prompted a greater fall in RI, but had no effect on FVP response. These findings support FVR but not forearm venous distension in the aetiology of +Gz arm pain. PMID:17479280

  13. Reversibility of increased intestinal permeability to 51Cr-EDTA in patients with gastrointestinal inflammatory diseases

    SciTech Connect

    Jenkins, R.T.; Jones, D.B.; Goodacre, R.L.; Collins, S.M.; Coates, G.; Hunt, R.H.; Bienenstock, J.

    1987-11-01

    Intestinal permeability in adults with inflammatory gastrointestinal diseases was investigated by measuring the 24-h urinary excretion of orally administered /sup 51/Cr-EDTA. Eighty controls along with 100 patients with Crohn's disease, 46 patients with ulcerative colitis, 20 patients with gluten-sensitive enteropathy, and 18 patients with other diseases were studied. In controls, the median 24-h excretion was 1.34%/24 h of the oral dose. Patients with Crohn's disease (median 2.96%/24 h), ulcerative colitis (median 2.12%/24 h), and untreated gluten-sensitive enteropathy (median 3.56%/24 h) had significantly elevated urinary excretion of the probe compared to controls (p less than 0.0001). Increased 24-h urinary excretion of /sup 51/Cr-EDTA had a high association with intestinal inflammation (p less than 0.0001). Test specificity and sensitivity were 96% and 57%, respectively. A positive test has a 96% probability of correctly diagnosing the presence of intestinal inflammation, whereas a negative test has a 50% probability of predicting the absence of disease.

  14. Recombinant Bactericidal/Permeability-Increasing Protein rBPI21 Protects against Pneumococcal Disease▿

    PubMed Central

    Srivastava, Amit; Casey, Heather; Johnson, Nathaniel; Levy, Ofer; Malley, Richard

    2007-01-01

    Bactericidal/permeability-increasing (BPI) protein has been shown to play an important role in innate immunity to gram-negative bacteria, by direct microbicidal as well as endotoxin-neutralizing action. Here we examined potential interactions between a recombinant 21-kDa bioactive fragment of BPI, rBPI21, and the gram-positive pathogen Streptococcus pneumoniae. rBPI21 bound to pneumococci and pneumolysin (Ply) in a direct and specific fashion. We observed an enhanced inflammatory response in mouse macrophages when rBPI21 was combined with killed pneumococci or supernatant from overnight growth of pneumococci. In addition, rBPI21 augmented the proapoptotic activity of Ply+ (but not Ply−) pneumococci in TLR4-defective murine macrophages (known to be defective also in their apoptotic response to pneumolysin) in a tumor necrosis factor alpha-dependent manner. rBPI21 also enhanced the association of pneumococci with murine macrophages. In a model of invasive pneumococcal disease in TLR4-defective mice, the intranasal administration of rBPI21 following intranasal inoculation of Ply+ pneumococci both enhanced upper respiratory tract cell apoptosis and prolonged survival. We have thus discovered a novel interaction between pneumococcus and rBPI21, a potent antimicrobial peptide previously considered to target only gram-negative bacteria. PMID:17101667

  15. Focused Ultrasound-Induced Neurogenesis Requires an Increase in Blood-Brain Barrier Permeability

    PubMed Central

    Mooney, Skyler J.; Shah, Kairavi; Yeung, Sharon; Burgess, Alison; Aubert, Isabelle; Hynynen, Kullervo

    2016-01-01

    Transcranial focused ultrasound technology used to transiently open the blood-brain barrier, is capable of stimulating hippocampal neurogenesis; however, it is not yet known what aspects of the treatment are necessary for enhanced neurogenesis to occur. The present study set out to determine whether the opening of blood-brain barrier, the specific pressure amplitudes of focused ultrasound, and/or the intravenous administration of microbubbles (phospholipid microspheres) are necessary for the enhancement of neurogenesis. Specifically, mice were exposed to burst (10ms, 1Hz burst repetition frequency) focused ultrasound at the frequency of 1.68MHz and with 0.39, 0.78, 1.56 and 3.0MPa pressure amplitudes. These treatments were also conducted with or without microbubbles, at 0.39 + 0.78MPa or 1.56 + 3.0MPa, respectively. Only focused ultrasound at the ~0.78 MPa pressure amplitude with microbubbles promoted hippocampal neurogenesis and was associated with an increase in blood-brain barrier permeability. These results suggest that focused ultrasound -mediated neurogenesis is dependent upon the opening of the blood-brain barrier. PMID:27459643

  16. Bactericidal/permeability-increasing protein promotes complement activation for neutrophil-mediated phagocytosis on bacterial surface

    PubMed Central

    Nishimura, H; Gogami, A; Miyagawa, Y; Nanbo, A; Murakami, Y; Baba, T; Nagasawa, S

    2001-01-01

    The neutrophil bactericidal/permeability-increasing protein (BPI) has both bactericidal and lipopolysaccharide-neutralizing activities. The present study suggests that BPI also plays an important role in phagocytosis of Escherichia coli by neutrophils through promotion of complement activation on the bacterial surface. Flow cytometric analysis indicated that fluorescein-labelled E. coli treated with BPI were phagocytosed in the presence of serum at two- to five-fold higher levels than phagocytosis of the bacteria without the treatment. In contrast, phagocytosis of the fluoresceined bacteria with or without treatment by BPI did not occur at all in the absence of serum. The phagocytosis stimulated by BPI and serum was dose-dependent. The effect of BPI on phagocytosis in the presence of serum was not observed on Gram-positive bacteria (Staphylococcus aureus). Interestingly, the complement C3b/iC3b fragments were deposited onto the bacterial surface also as a function of the BPI concentration under conditions similar to those for phagocytosis. Furthermore, the BPI-promoted phagocytosis was blocked completely by anti-C3 F(ab′)2 and partially by anti-complement receptor (CR) type 1 and/or anti-CR type 3. These findings suggest that BPI accelerates complement activation to opsonize bacteria with complement-derived fragments, leading to stimulation of phagocytosis by neutrophils via CR(s). PMID:11529944

  17. Focused Ultrasound-Induced Neurogenesis Requires an Increase in Blood-Brain Barrier Permeability.

    PubMed

    Mooney, Skyler J; Shah, Kairavi; Yeung, Sharon; Burgess, Alison; Aubert, Isabelle; Hynynen, Kullervo

    2016-01-01

    Transcranial focused ultrasound technology used to transiently open the blood-brain barrier, is capable of stimulating hippocampal neurogenesis; however, it is not yet known what aspects of the treatment are necessary for enhanced neurogenesis to occur. The present study set out to determine whether the opening of blood-brain barrier, the specific pressure amplitudes of focused ultrasound, and/or the intravenous administration of microbubbles (phospholipid microspheres) are necessary for the enhancement of neurogenesis. Specifically, mice were exposed to burst (10ms, 1Hz burst repetition frequency) focused ultrasound at the frequency of 1.68MHz and with 0.39, 0.78, 1.56 and 3.0MPa pressure amplitudes. These treatments were also conducted with or without microbubbles, at 0.39 + 0.78MPa or 1.56 + 3.0MPa, respectively. Only focused ultrasound at the ~0.78 MPa pressure amplitude with microbubbles promoted hippocampal neurogenesis and was associated with an increase in blood-brain barrier permeability. These results suggest that focused ultrasound -mediated neurogenesis is dependent upon the opening of the blood-brain barrier. PMID:27459643

  18. A pharmacokinetic model for quantifying the effect of vascular permeability on the choice of drug carrier: a framework for personalized nanomedicine.

    PubMed

    Kirtane, Ameya R; Siegel, Ronald A; Panyam, Jayanth

    2015-03-01

    Drug carriers in the ∼ 100 nm size range are of considerable interest in the field of cancer therapy because of their ability to passively accumulate in tumors. Tailoring the physicochemical properties of these carriers to individual patient requirements will help exploit their full therapeutic potential. Here, we present a pharmacokinetic model to explain how vascular physiology could be used to guide the optimal choice of specific formulation parameters. We find that in order to maximize the benefit-to-risk ratio, nanosystems should be confined to a specific particle size range. The optimal particle size range is dictated by the vascular pore size of not only the tumor tissue but also of the normal organs. Additionally, the duration of drug release is a key variable that can be used to maximize the therapeutic benefit of nanomedicine. Our model further suggests that the enhanced permeability and retention effect is not necessarily a universal outcome for every nanocarrier in every tumor model but will only be observed for nanoparticles of a specific size range. This optimal size range, in turn, is governed by the vascular physiology of the tumor and of non-target organs. PMID:25583443

  19. Permeability Enhancers Dramatically Increase Zanamivir Absolute Bioavailability in Rats: Implications for an Orally Bioavailable Influenza Treatment

    PubMed Central

    Holmes, Eric H.; Devalapally, Harikrishna; Li, Libin; Perdue, Michael L.; Ostrander, Gary K.

    2013-01-01

    We have demonstrated that simple formulations composed of the parent drug in combination with generally regarded as safe (GRAS) permeability enhancers are capable of dramatically increasing the absolute bioavailability of zanamivir. This has the advantage of not requiring modification of the drug structure to promote absorption, thus reducing the regulatory challenges involved in conversion of an inhaled to oral route of administration of an approved drug. Absolute bioavailability increases of up to 24-fold were observed when Capmul MCM L8 (composed of mono- and diglycerides of caprylic/capric acids in glycerol) was mixed with 1.5 mg of zanamivir and administered intraduodenally to rats. Rapid uptake (tmax of 5 min) and a Cmax of over 7200 ng/mL was achieved. Variation of the drug load or amount of enhancer demonstrated a generally linear variation in absorption, indicating an ability to optimize a formulation for a desired outcome such as a targeted Cmax for enzyme saturation. No absorption enhancement was observed when the enhancer was given 2 hr prior to drug administration, indicating, in combination with the observed tmax, that absorption enhancement is temporary. This property is significant and aligns well with therapeutic applications to limit undesirable drug-drug interactions, potentially due to the presence of other poorly absorbed polar drugs. These results suggest that optimal human oral dosage forms of zanamivir should be enteric-coated gelcaps or softgels for intraduodenal release. There continues to be a strong need and market for multiple neuraminidase inhibitors for influenza treatment. Creation of orally available formulations of inhibitor drugs that are currently administered intravenously or by inhalation would provide a significant improvement in treatment of influenza. The very simple GRAS formulation components and anticipated dosage forms would require low manufacturing costs and yield enhanced convenience. These results are being utilized

  20. Increased MFG-E8 expression and its implications in the vascular pathophysiology of cocaine abuse

    PubMed Central

    Kimura-Kojima, Haruka; Unuma, Kana; Funakoshi, Takeshi; Kato, Chizuru; Komatsu, Ayumi; Aki, Toshihiko; Uemura, Koichi

    2016-01-01

    The aim of this study was to examine the possible involvement of smooth muscle cell remodeling and the induction of MFG-E8 (milk fat globule protein epidermal growth factor-VIII) in vascular pathophysiology during cocaine administration in cultured cells and rats. Cocaine exerts bifurcate effects on vascular cells; it stimulates vasoconstriction through enhancement of catecholamine release at low doses, while it suppresses cardiovascular functions through inhibition of ion channels at high doses. Short-term exposure to a high concentration of cocaine (3 mM, 24 hr) resulted in cell death of A7r5 rat aorta-derived smooth muscle cells. On the other hand, long-term exposure of the same cells to a low concentration (0.3 mM, ~7 days) resulted in a transient increase in MFG-E8 expression followed by an increased tendency toward cyclin D1, PCNA (proliferating cell nuclear antigen), and CDK4 (cyclin-dependent protein kinase-4) expression. Interestingly, autophagy was not induced, but rather was impaired, in cocaine-treated cells. Increased expressions of MFG-E8, PCNA, and CDK4 were also observed in the aortic vascular cells of rats administered cocaine (50 mg/kg, 2 days, i.v.), confirming that cocaine induced MFG-E8 expression in vivo. Taken together, the results show that MFG-E8 is induced in vascular cells exposed to cocaine, and that this induction is likely to be involved in the vascular toxicity elicited by cocaine abuse. PMID:27182119

  1. Jujuboside B Reduces Vascular Tension by Increasing Ca2+ Influx and Activating Endothelial Nitric Oxide Synthase.

    PubMed

    Zhao, Yixiu; Zhang, Xin; Li, Jiannan; Bian, Yu; Sheng, Miaomiao; Liu, Bin; Fu, Zidong; Zhang, Yan; Yang, Baofeng

    2016-01-01

    Jujuboside B has been reported to have protective effect on many cardiovascular diseases. However, the effects of Jujuboside B on vascular tension and endothelial function are unknown. The present study investigated the effects of Jujuboside B on reducing vascular tension, protecting endothelial function and the potential mechanisms. The tension of isolated rat thoracic aorta ring was measured by Wire myograph system. The concentration of nitric oxide (NO) and the activity of endothelial nitric oxide synthase (eNOS) in human aortic endothelial cells (HAECs) were determined by Griess reagent method and enzyme-linked immune sorbent assay. The protein levels of eNOS and p-eNOS at Serine-1177 were determined by western blot analysis. Intracellular Ca2+ concentration in HAECs was measured by laser confocal imaging microscopy. Results showed that Jujuboside B reduced the tension of rat thoracic aorta rings with intact endothelium in a dose-dependent manner. L-NAME, KN93, EGTA, SKF96365, iberiotoxin and glibenclamide significantly attenuated Jujuboside B-induced vasodilation in endothelium-intact tissues. In contrast, indometacin and 4-DAMP had no such effects. Jujuboside B also promoted NO generation and increased eNOS activity, which were attenuated by L-NAME, EGTA and SKF96365. Moreover, Jujuboside B increased intracellular Ca2+ concentration dose-dependently, which was inhibited by EGTA and SKF96365. Besides, Jujuboside B induced a rapid Ca2+ influx instantaneously after depleting intracellular Ca2+ store, which was significantly inhibited by SKF96365. In conclusion, this study preliminarily confirmed that Jujuboside B reduced vascular tension endothelium-dependently. The underlying mechanisms involved that Jujuboside B increased extracellular Ca2+ influx through endothelial transient receptor potential cation (TRPC) channels, phosphorylated eNOS and promoted NO generation in vascular endothelial cells. In addition, Jujuboside B-induced vasodilation involved

  2. Jujuboside B Reduces Vascular Tension by Increasing Ca2+ Influx and Activating Endothelial Nitric Oxide Synthase

    PubMed Central

    Zhao, Yixiu; Zhang, Xin; Li, Jiannan; Bian, Yu; Sheng, Miaomiao; Liu, Bin; Fu, Zidong; Zhang, Yan; Yang, Baofeng

    2016-01-01

    Jujuboside B has been reported to have protective effect on many cardiovascular diseases. However, the effects of Jujuboside B on vascular tension and endothelial function are unknown. The present study investigated the effects of Jujuboside B on reducing vascular tension, protecting endothelial function and the potential mechanisms. The tension of isolated rat thoracic aorta ring was measured by Wire myograph system. The concentration of nitric oxide (NO) and the activity of endothelial nitric oxide synthase (eNOS) in human aortic endothelial cells (HAECs) were determined by Griess reagent method and enzyme-linked immune sorbent assay. The protein levels of eNOS and p-eNOS at Serine-1177 were determined by western blot analysis. Intracellular Ca2+ concentration in HAECs was measured by laser confocal imaging microscopy. Results showed that Jujuboside B reduced the tension of rat thoracic aorta rings with intact endothelium in a dose-dependent manner. L-NAME, KN93, EGTA, SKF96365, iberiotoxin and glibenclamide significantly attenuated Jujuboside B-induced vasodilation in endothelium-intact tissues. In contrast, indometacin and 4-DAMP had no such effects. Jujuboside B also promoted NO generation and increased eNOS activity, which were attenuated by L-NAME, EGTA and SKF96365. Moreover, Jujuboside B increased intracellular Ca2+ concentration dose-dependently, which was inhibited by EGTA and SKF96365. Besides, Jujuboside B induced a rapid Ca2+ influx instantaneously after depleting intracellular Ca2+ store, which was significantly inhibited by SKF96365. In conclusion, this study preliminarily confirmed that Jujuboside B reduced vascular tension endothelium-dependently. The underlying mechanisms involved that Jujuboside B increased extracellular Ca2+ influx through endothelial transient receptor potential cation (TRPC) channels, phosphorylated eNOS and promoted NO generation in vascular endothelial cells. In addition, Jujuboside B-induced vasodilation involved

  3. Design of vancomycin RS-100 nanoparticles in order to increase the intestinal permeability

    PubMed Central

    Loveymi, Badir Delf; Jelvehgari, Mitra; Zakeri-Milani, Parvin; Valizadeh, Hadi

    2012-01-01

    Purpose: The purpose of this work was to preparation of vancomycin (VCM) biodegradable nanoparticles to improve the intestinal permeability, using water-in-oil-in-water (W/O/W) multiple emulsion method. Methods: The vancomycin-loaded nanoparticles were created using double-emulsion solvent evaporation method. Using Eudragit RS100 as a coating material. The prepared nanoparticles were identifyed for their micromeritic and crystallographic properties, drug loading, particle size, drug release, Zeta potential, effective permeability (Peff) and oral fractional absorption. Intestinal permeability of VCM nanoparticles was figured out, in different concentrations using SPIP technique in rats. Results: Particle sizes were between 362 and 499 nm for different compositions of VCM-RS-100 nanoparticles. Entrapment efficiency expansed between 63%-94.76%. The highest entrapment efficiency 94.76% was obtained when the ratio of drug to polymer was 1:3. The in vitro release studies were accomplished in pH 7.4. The results showed that physicochemical properties were impressed by drug to polymer ratio. The FT-IR, XRPD and DSC results ruled out any chemical interaction betweenthe drug and RS-100. Effective intestinal permeability values of VCM nanoparticles in concentrations of 200, 300 and 400 μg/ml were higher than that of solutions at the same concentrations. Oral fractional absorption was achieved between 0.419-0.767. Conclusion: Our findings suggest that RS-100 nanoparticles could provide a delivery system for VCM, with enhanced intestinal permeability. PMID:24312770

  4. Genetic basis for increased intestinal permeability in families with Crohn's disease: role of CARD15 3020insC mutation?

    PubMed Central

    Buhner, S; Buning, C; Genschel, J; Kling, K; Herrmann, D; Dignass, A; Kuechler, I; Krueger, S; Schmidt, H H‐J; Lochs, H

    2006-01-01

    Background and aim A genetically impaired intestinal barrier function has long been suspected to be a predisposing factor for Crohn's disease (CD). Recently, mutations of the capsase recruitment domain family, member 15 (CARD15) gene have been identified and associated with CD. We hypothesise that a CARD15 mutation may be associated with an impaired intestinal barrier. Methods We studied 128 patients with quiescent CD, 129 first degree relatives (CD‐R), 66 non‐related household members (CD‐NR), and 96 healthy controls. The three most common CARD15 polymorphisms (R702W, G908R, and 3020insC) were analysed and intestinal permeability was determined by the lactulose/mannitol ratio. Results Intestinal permeability was significantly increased in CD and CD‐R groups compared with CD‐NR and controls. Values above the normal range were seen in 44% of CD and 26% of CD‐R but only in 6% of CD‐NR, and in none of the controls. A household community with CD patients, representing a common environment, was not associated with increased intestinal permeability in family members. However, 40% of CD first degree relatives carrying a CARD15 3020insC mutation and 75% (3/4) of those CD‐R with combined 3020insC and R702W mutations had increased intestinal permeability compared with only 15% of wild‐types, indicating a genetic influence on barrier function. R702W and G908R mutations were not associated with high permeability. Conclusions In healthy first degree relatives, high mucosal permeability is associated with the presence of a CARD15 3020insC mutation. This indicates that genetic factors may be involved in impairment of intestinal barrier function in families with IBD. PMID:16000642

  5. Early increase in intestinal permeability in patients with severe acute pancreatitis: correlation with endotoxemia, organ failure, and mortality.

    PubMed

    Ammori, B J; Leeder, P C; King, R F; Barclay, G R; Martin, I G; Larvin, M; McMahon, M J

    1999-01-01

    Sepsis accounts for 80% of deaths from acute pancreatitis. This study aimed to investigate early changes in intestinal permeability in patients with acute pancreatitis, and to correlate these changes with subsequent disease severity and endotoxemia. The renal excretion of enterally administered polyethylene glycol (PEG) 3350 and PEG 400 was measured within 72 hours of onset of acute pancreatitis to determine intestinal permeability. Severity was assessed on the basis of APACHE II scores and C-reactive protein measurements. Serum endotoxin and antiendotoxin antibodies were measured on admission. Eight-five patients with acute pancreatitis (mild in 56, severe in 29) and 25 healthy control subjects were studied. Urinary excretion of PEG 3350 (median) was significantly greater in patients who had severe attacks (0.61%) compared to those with mild disease (0.09%) and health control subjects (0.12%) (P <0. 0001), as was the permeability index (PEG 3350/400 excretion) (P <0. 00001). The permeability index was significantly greater in patients who subsequently developed multiple organ system failure and/or died compared with other severe cases (0.16 vs. 0.04) (P = 0.0005). The excretion of PEG 3350 correlated strongly with endotoxemia (r = 0.8; P = 0.002). Early increased intestinal permeability may play an important role in the pathophysiology of severe acute pancreatitis. Therapies that aim to restore intestinal barrier function may improve outcome. PMID:10481118

  6. Association analysis of bovine bactericidal/permeability-increasing protein gene polymorphisms with somatic cell score in Holstein cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bactericidal/permeability-increasing (BPI) protein is expressed primarily in bovine neutrophils and epithelial cells and functions as a binding protein of bacterial lipopolysaccharide produced by Gram-negative bacteria. The protein is important in host defense against bacterial infections and may pl...

  7. Pulmonary vascular wall stiffness: An important contributor to the increased right ventricular afterload with pulmonary hypertension

    PubMed Central

    Wang, Zhijie; Chesler, Naomi C.

    2011-01-01

    Pulmonary hypertension (PH) is associated with structural and mechanical changes in the pulmonary vascular bed that increase right ventricular (RV) afterload. These changes, characterized by narrowing and stiffening, occur in both proximal and distal pulmonary arteries (PAs). An important consequence of arterial narrowing is increased pulmonary vascular resistance (PVR). Arterial stiffening, which can occur in both the proximal and distal pulmonary arteries, is an important index of disease progression and is a significant contributor to increased RV afterload in PH. In particular, arterial narrowing and stiffening increase the RV afterload by increasing steady and oscillatory RV work, respectively. Here we review the current state of knowledge of the causes and consequences of pulmonary arterial stiffening in PH and its impact on RV function. We review direct and indirect techniques for measuring proximal and distal pulmonary arterial stiffness, measures of arterial stiffness including elastic modulus, incremental elastic modulus, stiffness coefficient β and others, the changes in cellular function and the extracellular matrix proteins that contribute to pulmonary arterial stiffening, the consequences of PA stiffening for RV function and the clinical implications of pulmonary vascular stiffening for PH progression. Future investigation of the relationship between PA stiffening and RV dysfunction may facilitate new therapies aimed at improving RV function and thus ultimately reducing mortality in PH. PMID:22034607

  8. Perinatal Nicotine Exposure Increases Angiotensin II Receptor-Mediated Vascular Contractility in Adult Offspring

    PubMed Central

    Xiao, DaLiao; Dasgupta, Chiranjib; Li, Yong; Huang, Xiaohui; Zhang, Lubo

    2014-01-01

    Previous studies have reported that perinatal nicotine exposure causes development of hypertensive phenotype in adult offspring. Aims The present study was to determine whether perinatal nicotine exposure causes an epigenetic programming of vascular Angiotensin II receptors (ATRs) and their-mediated signaling pathway leading to heightened vascular contraction in adult offspring. Main methods Nicotine was administered to pregnant rats via subcutaneous osmotic minipumps from day 4 of gestation to day 10 after birth. The experiments were conducted at 5 months of age of male offspring. Key Findings Nicotine treatment enhanced Angitension II (Ang II)-induced vasoconstriction and 20-kDa myosin light chain phosphorylation (MLC20-P) levels. In addition, the ratio of Ang II-induced tension/MLC-P was also significantly increased in nicotine-treated group compared with the saline group. Nicotine-mediated enhanced constrictions were not directly dependent on the changes of [Ca2+]i concentrations but dependent on Ca2+ sensitivity. Perinatal nicotine treatment significantly enhanced vascular ATR type 1a (AT1aR) but not AT1bR mRNA levels in adult rat offspring, which was associated with selective decreases in DNA methylation at AT1aR promoter. Contrast to the effect on AT1aR, nicotine decreased the mRNA levels of vascular AT2R gene, which was associated with selective increases in DNA methylation at AT2R promoter. Significance Our results indicated that perinatal nicotine exposure caused an epigenetic programming of vascular ATRs and their-mediated signaling pathways, and suggested that differential regulation of AT1R/AT2R gene expression through DNA methylation mechanism may be involved in nicotine-induced heightened vasoconstriction and development of hypertensive phenotype in adulthood. PMID:25265052

  9. Increased lung epithelial permeability in HIV-infected patients with isolated cytotoxic T-lymphocytic alveolitis

    SciTech Connect

    Meignan, M.; Guillon, J.M.; Denis, M.; Joly, P.; Rosso, J.; Carette, M.F.; Baud, L.; Parquin, F.; Plata, F.; Debre, P. )

    1990-05-01

    HIV-related lymphocytic alveolitis is common in HIV-seropositive patients without lung infection or tumor. In some of them a fraction of alveolar lymphocytes are HIV-specific cytotoxic T-lymphocytes (CTL) bearing the CD8 and D44 cell surface markers and capable of killing HIV-infected alveolar macrophages. In order to evaluate the in vivo effect of these CTL on lung function, we measured the pulmonary clearance of aerosolized 99mTc-diethylene triamine penta-acetate (DTPA-CI) on 24 occasions in 22 patients with lymphocytic alveolitis. DTPA-CI has been selected as a highly sensitive test to detect injury of the lung epithelium. In 13 of the patients, we found a high DTPA-CI of 4.56 +/- 2.54%.min-1 (mean +/- SD), suggesting an increase of the epithelial permeability. The lymphocytic alveolitis was then characterized by a high cellularity, a high proportion of lymphocytes (59 +/- 18%), mainly composed of CD8+D44+ T-lymphocytes (149 +/- 109 cells/mm3), which spontaneously exhibited a cytolytic activity against the autologous alveolar macrophages in a standard 51Cr release assay. In the remaining 11 patients, DTPA-CI was normal (less than 1.78%.min-1), lymphocytic alveolitis being characterized by a low number or an absence of CD8+D44+ alveolar lymphocytes (9 +/- 13 cells/mm3) with no significant cytolytic activity. In the whole group, a significant correlation (r = 0.74, p = 0.0004) was found between the DTPA-CI and the number of CD8+D44+ lymphocytes and their cytotoxic activity against alveolar macrophages. Altogether, these results suggest that an injury of the lung epithelium could result from a HIV-specific CTL-induced immunologic conflict.

  10. Increased cerebral vascular reactivity in the tau expressing rTg4510 mouse: evidence against the role of tau pathology to impair vascular health in Alzheimer's disease

    PubMed Central

    Wells, Jack A; Holmes, Holly E; O'Callaghan, James M; Colgan, Niall; Ismail, Ozama; Fisher, Elizabeth MC; Siow, Bernard; Murray, Tracey K; Schwarz, Adam J; O'Neill, Michael J; Collins, Emily C; Lythgoe, Mark F

    2015-01-01

    Vascular abnormalities are a key feature of Alzheimer's disease (AD). Imaging of cerebral vascular reactivity (CVR) is a powerful tool to investigate vascular health in clinical populations although the cause of reduced CVR in AD patients is not fully understood. We investigated the specific role of tau pathology in CVR derangement in AD using the rTg4510 mouse model. We observed an increase in CVR in cortical regions with tau pathology. These data suggest that tau pathology alone does not produce the clinically observed decreases in CVR and implicates amyloid pathology as the dominant etiology of impaired CVR in AD patients. PMID:25515210

  11. Increased cerebral vascular reactivity in the tau expressing rTg4510 mouse: evidence against the role of tau pathology to impair vascular health in Alzheimer's disease.

    PubMed

    Wells, Jack A; Holmes, Holly E; O'Callaghan, James M; Colgan, Niall; Ismail, Ozama; Fisher, Elizabeth Mc; Siow, Bernard; Murray, Tracey K; Schwarz, Adam J; O'Neill, Michael J; Collins, Emily C; Lythgoe, Mark F

    2015-03-01

    Vascular abnormalities are a key feature of Alzheimer's disease (AD). Imaging of cerebral vascular reactivity (CVR) is a powerful tool to investigate vascular health in clinical populations although the cause of reduced CVR in AD patients is not fully understood. We investigated the specific role of tau pathology in CVR derangement in AD using the rTg4510 mouse model. We observed an increase in CVR in cortical regions with tau pathology. These data suggest that tau pathology alone does not produce the clinically observed decreases in CVR and implicates amyloid pathology as the dominant etiology of impaired CVR in AD patients. PMID:25515210

  12. Vascular Smooth Muscle Cell Stiffness as a Mechanism for Increased Aortic Stiffness with Aging

    PubMed Central

    Qiu, Hongyu; Zhu, Yi; Sun, Zhe; Trzeciakowski, Jerome P.; Gansner, Meredith; Depre, Christophe; Resuello, Ranillo R.G.; Natividad, Filipinas F.; Hunter, William C.; Genin, Guy M.; Elson, Elliot L.; Vatner, Dorothy E.; Meininger, Gerald A.; Vatner, Stephen F.

    2010-01-01

    Rationale Increased aortic stiffness, an important feature of many vascular diseases, e.g., aging, hypertension, atherosclerosis and aortic aneurysms, is assumed due to changes in extracellular matrix (ECM). Objective We tested the hypothesis that the mechanisms also involve intrinsic stiffening of vascular smooth muscle cells (VSMCs). Methods and Results Stiffness was measured in vitro both by atomic force microscopy (AFM) and in a reconstituted tissue model, using VSMCs from aorta of young versus old male monkeys (Macaca fascicularis, n=7/group), where aortic stiffness increases by 200 % in vivo. The apparent elastic modulus was increased (P<0.05) in old VSMCs (41.7±0.5 kPa) versus young (12.8±0.3 kPa), but not after disassembly of the actin cytoskeleton with cytochalasin D. Stiffness of the VSMCs in the reconstituted tissue model was also higher (P<0.05) in old (23.3±3.0 kPa) than in young (13.7±2.4 kPa). Conclusions These data support the novel concept, not appreciated previously, that increased vascular stiffness with aging is due not only to changes in ECM, but also to intrinsic changes in VSMCs. PMID:20634486

  13. Airway vascular damage in elite swimmers.

    PubMed

    Moreira, André; Palmares, Carmo; Lopes, Cristina; Delgado, Luís

    2011-11-01

    We postulated that high level swimming can promote airway inflammation and thus asthma by enhancing local vascular permeability. We aimed to test this hypothesis by a cross-sectional study comparing swimmers (n = 13, 17 ± 3 years, competing 7 ± 4 years, training 18 ± 3 h per week), asthmatic-swimmers (n = 6, 17 ± 2 years, competing 8 ± 3 years, training 16 ± 4 h per week), and asthmatics (n = 19, 14 ± 3 years). Subjects performed induced sputum and had exhaled nitric oxide, lung volumes, and airway responsiveness determined. Airway vascular permeability index was defined as the ratio of albumin in sputum and serum. Results from the multiple linear regression showed each unit change in airway vascular permeability index was associated with an increase of 0.97% (95%CI: 0.02 to 1.92; p = 0.047) in sputum eosinophilis, and of 2.64% (95%CI:0.96 to 4.31; p = 0.006) in sputum neutrophils after adjustment for confounders. In a general linear model no significant differences between airway vascular permeability between index study groups existed, after controlling for sputum eosinophilis and neutrophils. In conclusion, competitive swimmers training in chlorine-rich pools have similar levels of airway vascular permeability than asthmatics. Although competitive swimming has been associated with asthma, airway inflammation and airway hyperesponsiveness do not seem to be dependent on increased airway vascular permeability. PMID:21669516

  14. Adenosine diphosphate-ribosylation of G-actin by botulinum C2 toxin increases endothelial permeability in vitro.

    PubMed Central

    Suttorp, N; Polley, M; Seybold, J; Schnittler, H; Seeger, W; Grimminger, F; Aktories, K

    1991-01-01

    The endothelial cytoskeleton is believed to play an important role in the regulation of endothelial permeability. We used botulinum C2 toxin to perturb cellular actin and determined its effect on the permeability of endothelial cell monolayers derived from porcine pulmonary arteries. The substrate for botulinum C2 toxin is nonmuscle monomeric actin which becomes ADP-ribosylated. This modified actin cannot participate in actin polymerization and, in addition, acts as a capping protein. Exposure of endothelial cell monolayers to botulinum C2 toxin resulted in a dose- (3-100 ng/ml) and time-dependent (30-120 min) increase in the hydraulic conductivity and decrease in the selectivity of the cell monolayers. The effects of C2 toxin were accompanied by a time- and dose-dependent increase in ADP-ribosylatin of G-actin. G-Actin content increased and F-actin content decreased time- and dose-dependently in C2 toxin-treated endothelial cells. Phalloidin which stabilizes filamentous actin prevented the effects of botulinum C2 toxin on endothelial permeability. Botulinum C2 toxin induced interendothelial gaps. The effects occurred in the absence of overt cell damage and were not reversible within 2 h. The data suggest that the endothelial microfilament system is important for the regulation of endothelial permeability. Images PMID:2022729

  15. Increase in whole-body peripheral vascular resistance during three hours of air or oxygen prebreathing

    NASA Technical Reports Server (NTRS)

    Waligora, J. M.; Horrigan, D. J., Jr.; Conkin, J.; Dierlam, J. J.; Stanford, J., Jr.; Riddle, J. R.

    1984-01-01

    Male and female subjects prebreathed air or 100% oxygen through a mask for 3.0 hours while comfortably reclined. Blood pressures, heart rate, and cardiac output were collected before and after the prebreathe. Peripheral vascular resistance (PVR) was calculated from these parameters and increased by 29% during oxygen prebreathing and 15% during air prebreathing. The oxygen contributed substantially to the increase in PVR. Diastolic blood pressure increased by 18% during the oxygen prebreathe while stystolic blood pressure showed no change under either procedure. The increase in PVR during air prebreathing was attributed to procedural stress common to air and oxygen prebreathing.

  16. Insulin increases glomerular filtration barrier permeability through PKGIα-dependent mobilization of BKCa channels in cultured rat podocytes.

    PubMed

    Piwkowska, Agnieszka; Rogacka, Dorota; Audzeyenka, Irena; Kasztan, Małgorzata; Angielski, Stefan; Jankowski, Maciej

    2015-08-01

    Podocytes are highly specialized cells that wrap around glomerular capillaries and comprise a key component of the glomerular filtration barrier. They are uniquely sensitive to insulin; like skeletal muscle and fat cells, they exhibit insulin-stimulated glucose uptake and express glucose transporters. Podocyte insulin signaling is mediated by protein kinase G type I (PKGI), and it leads to changes in glomerular permeability to albumin. Here, we investigated whether large-conductance Ca²⁺-activated K⁺ channels (BKCa) were involved in insulin-mediated, PKGIα-dependent filtration barrier permeability. Insulin-induced glomerular permeability was measured in glomeruli isolated from Wistar rats. Transepithelial albumin flux was measured in cultured rat podocyte monolayers. Expression of BKCa subunits was detected by RT-PCR. BKCa, PKGIα, and upstream protein expression were examined in podocytes with Western blotting and immunofluorescence. The BKCa-PKGIα interaction was assessed with co-immunoprecipitation. RT-PCR showed that primary cultured rat podocytes expressed mRNAs that encoded the pore-forming α subunit and four accessory β subunits of BKCa. The BKCa inhibitor, iberiotoxin (ibTX), abolished insulin-dependent glomerular albumin permeability and PKGI-dependent transepithelial albumin flux. Insulin-evoked albumin permeability across podocyte monolayers was also blocked with BKCa siRNA. Moreover, ibTX blocked insulin-induced disruption of the actin cytoskeleton and changes in the phosphorylation of PKG target proteins, MYPT1 and RhoA. These results indicated that insulin increased filtration barrier permeability through mobilization of BKCa channels via PKGI in cultured rat podocytes. This molecular mechanism may explain podocyte injury and proteinuria in diabetes. PMID:25952906

  17. Leaky Gut and Mycotoxins: Aflatoxin B1 Does Not Increase Gut Permeability in Broiler Chickens.

    PubMed

    Galarza-Seeber, Rosario; Latorre, Juan D; Bielke, Lisa R; Kuttappan, Vivek A; Wolfenden, Amanda D; Hernandez-Velasco, Xochitl; Merino-Guzman, Ruben; Vicente, Jose L; Donoghue, Annie; Cross, David; Hargis, Billy M; Tellez, Guillermo

    2016-01-01

    Previous studies conducted in our laboratory have demonstrated that intestinal barrier function can be adversely affected by diet ingredients or feed restriction, resulting in increased intestinal inflammation-associated permeability. Two experiments were conducted in broilers to evaluate the effect of three concentrations of Aflatoxin B1 (AFB1; 2, 1.5, or 1 ppm) on gastrointestinal leakage and liver bacterial translocation (BT). In experiment 1, 240 day-of-hatch male broilers were allocated in two groups, each group had six replicates of 20 chickens (n = 120/group): Control feed or feed + 2 ppm AFB1. In experiment 2, 240 day-of-hatch male broilers were allocated in three groups, each group had five replicates of 16 chickens (n = 80/group): Control feed; feed + 1 ppm AFB1; or feed + 1.5 ppm AFB1. In both experiments, chickens were fed starter (days 1-7) and grower diets (days 8-21) ad libitum and performance parameters were evaluated every week. At day 21, all chicks received an oral gavage dose of FITC-d (4.16 mg/kg) 2.5 h before collecting blood samples to evaluate gastrointestinal leakage of FITC-d. In experiment 2, a hematologic analysis was also performed. Liver sections were aseptically collected and cultured using TSA plates to determine BT. Cecal contents were collected to determine total colony-forming units per gram of Gram-negative bacteria, lactic acid bacteria (LAB), or anaerobes by plating on selective media. In experiment 2, liver, spleen, and bursa of Fabricius were removed to determine organ weight ratio, and also intestinal samples were obtained for morphometric analysis. Performance parameters, organ weight ratio, and morphometric measurements were significantly different between Control and AFB1 groups in both experiments. Gut leakage of FITC-d was not affected by the three concentrations of AFB1 evaluated (P > 0.05). Interestingly, a significant reduction in BT was observed in chickens that received 2 and 1

  18. Leaky Gut and Mycotoxins: Aflatoxin B1 Does Not Increase Gut Permeability in Broiler Chickens

    PubMed Central

    Galarza-Seeber, Rosario; Latorre, Juan D.; Bielke, Lisa R.; Kuttappan, Vivek A.; Wolfenden, Amanda D.; Hernandez-Velasco, Xochitl; Merino-Guzman, Ruben; Vicente, Jose L.; Donoghue, Annie; Cross, David; Hargis, Billy M.; Tellez, Guillermo

    2016-01-01

    Previous studies conducted in our laboratory have demonstrated that intestinal barrier function can be adversely affected by diet ingredients or feed restriction, resulting in increased intestinal inflammation-associated permeability. Two experiments were conducted in broilers to evaluate the effect of three concentrations of Aflatoxin B1 (AFB1; 2, 1.5, or 1 ppm) on gastrointestinal leakage and liver bacterial translocation (BT). In experiment 1, 240 day-of-hatch male broilers were allocated in two groups, each group had six replicates of 20 chickens (n = 120/group): Control feed or feed + 2 ppm AFB1. In experiment 2, 240 day-of-hatch male broilers were allocated in three groups, each group had five replicates of 16 chickens (n = 80/group): Control feed; feed + 1 ppm AFB1; or feed + 1.5 ppm AFB1. In both experiments, chickens were fed starter (days 1–7) and grower diets (days 8–21) ad libitum and performance parameters were evaluated every week. At day 21, all chicks received an oral gavage dose of FITC-d (4.16 mg/kg) 2.5 h before collecting blood samples to evaluate gastrointestinal leakage of FITC-d. In experiment 2, a hematologic analysis was also performed. Liver sections were aseptically collected and cultured using TSA plates to determine BT. Cecal contents were collected to determine total colony-forming units per gram of Gram-negative bacteria, lactic acid bacteria (LAB), or anaerobes by plating on selective media. In experiment 2, liver, spleen, and bursa of Fabricius were removed to determine organ weight ratio, and also intestinal samples were obtained for morphometric analysis. Performance parameters, organ weight ratio, and morphometric measurements were significantly different between Control and AFB1 groups in both experiments. Gut leakage of FITC-d was not affected by the three concentrations of AFB1 evaluated (P > 0.05). Interestingly, a significant reduction in BT was observed in chickens that received 2 and

  19. Role of Krev Interaction Trapped-1 in Prostacyclin-Induced Protection against Lung Vascular Permeability Induced by Excessive Mechanical Forces and Thrombin Receptor Activating Peptide 6.

    PubMed

    Meliton, Angelo; Meng, Fanyong; Tian, Yufeng; Shah, Alok A; Birukova, Anna A; Birukov, Konstantin G

    2015-12-01

    Mechanisms of vascular endothelial cell (EC) barrier regulation during acute lung injury (ALI) or other pathologies associated with increased vascular leakiness are an active area of research. Adaptor protein krev interaction trapped-1 (KRIT1) participates in angiogenesis, lumen formation, and stabilization of EC adherens junctions (AJs) in mature vasculature. We tested a role of KRIT1 in the regulation of Rho-GTPase signaling induced by mechanical stimulation and barrier dysfunction relevant to ventilator-induced lung injury and investigated KRIT1 involvement in EC barrier protection by prostacyclin (PC). PC stimulated Ras-related protein 1 (Rap1)-dependent association of KRIT1 with vascular endothelial cadherin at AJs, with KRIT1-dependent cortical cytoskeletal remodeling leading to EC barrier enhancement. KRIT1 knockdown exacerbated Rho-GTPase activation and EC barrier disruption induced by pathologic 18% cyclic stretch and thrombin receptor activating peptide (TRAP) 6 and attenuated the protective effects of PC. In the two-hit model of ALI caused by high tidal volume (HTV) mechanical ventilation and TRAP6 injection, KRIT1 functional deficiency in KRIT1(+/-) mice increased basal lung vascular leak and augmented vascular leak and lung injury caused by exposure to HTV and TRAP6. Down-regulation of KRIT1 also diminished the protective effects of PC against TRAP6/HTV-induced lung injury. These results demonstrate a KRIT1-dependent mechanism of vascular EC barrier control in basal conditions and in the two-hit model of ALI caused by excessive mechanical forces and TRAP6 via negative regulation of Rho activity and enhancement of cell junctions. We also conclude that the stimulation of the Rap1-KRIT1 signaling module is a major mechanism of vascular endothelial barrier protection by PC in the injured lung. PMID:25923142

  20. Transforming growth factor-beta 1 inhibits postischemic increases in splanchnic vascular resistance.

    PubMed

    Thomas, G R; Thibodaux, H

    1992-01-01

    Anesthesized male rabbits having a resting mean arterial pressure of 81 +/- 4 mm Hg and superior mesenteric artery blood flow of 91 +/- 7 mL min-1 were subjected to 60 min of splanchnic ischemia followed by 60 min of reperfusion. Upon reperfusion, mean arterial pressure fell. Splanchnic blood flow also decreased but not in parallel with blood pressure; consequently, vascular resistance was increased over the reperfusion period. This increase in splanchnic vascular resistance was not affected by intravenous t-PA (0.5 mg kg-1 + 5 mg kg-1 hr-1) for 30 min prior to and throughout the reperfusion period or by intravenous L-NAME (1 mg kg-1 x 2). However, intravenous infusions of TGF-beta (18 or 54 micrograms kg-1) at the time of reperfusion dose dependently attenuated the increases in vascular resistance (p < 0.05). This effect of TGF-beta was enhanced by coadministration of t-PA and inhibited by the coadministration of L-NAME. We propose that the effects of TGF-beta are ultimately mediated via nitric oxide release, and conclude that this may be useful therapy for the prevention of reperfusion-associated injury following surgery or as an adjunct to thrombolytic therapy. PMID:1303730

  1. Increase of serum vascular endothelial growth factors in wet beriberi: two case reports.

    PubMed

    Imai, Noboru; Kubota, Mai; Saitou, Mayu; Yagi, Nobuyasu; Serizawa, Masahiro; Kobari, Masahiro

    2012-01-01

    Beriberi is a disease caused by thiamine deficiency resulting in peripheral neuropathy and myocardial dysfunction. Increases in vascular endothelial growth factor (VEGF) are seen in polyneuropathy, organomegaly, endocrinopathy, monoclonal gammopathy and skin changes, called POEMS syndrome. We present herein two cases of wet beriberi accompanied by a moderate increase in VEGF level. Serum VEGF decreased after treatment in both cases. Our experience with these cases suggests that beriberi should be considered in the differential diagnosis of polyneuropathy with a moderate increase in serum VEGF, and that the serum VEGF level may be a therapeutic marker for beriberi. PMID:22504253

  2. Expansion of the Bactericidal/Permeability Increasing-like (BPI-like) protein locus in cattle

    PubMed Central

    Wheeler, Thomas T; Hood, Kylie A; Maqbool, Nauman J; McEwan, John C; Bingle, Colin D; Zhao, Shaying

    2007-01-01

    Background Cattle and other ruminants have evolved the ability to derive most of their metabolic energy requirement from otherwise indigestible plant matter through a symbiotic relationship with plant fibre degrading microbes within a specialised fermentation chamber, the rumen. The genetic changes underlying the evolution of the ruminant lifestyle are poorly understood. The BPI-like locus encodes several putative innate immune proteins, expressed predominantly in the oral cavity and airways, which are structurally related to Bactericidal/Permeability Increasing protein (BPI). We have previously reported the expression of variant BPI-like proteins in cattle (Biochim Biophys Acta 2002, 1579, 92–100). Characterisation of the BPI-like locus in cattle would lead to a better understanding of the role of the BPI-like proteins in cattle physiology Results We have sequenced and characterised a 722 kbp segment of BTA13 containing the bovine BPI-like protein locus. Nine of the 13 contiguous BPI-like genes in the locus in cattle are orthologous to genes in the human and mouse locus, and are thought to play a role in host defence. Phylogenetic analysis indicates the remaining four genes, which we have named BSP30A, BSP30B, BSP30C and BSP30D, appear to have arisen in cattle through a series of duplications. The transcripts of the four BSP30 genes are most abundant in tissues associated with the oral cavity and airways. BSP30C transcripts are also found in the abomasum. This, as well as the ratios of non-synonymous to synonymous differences between pairs of the BSP30 genes, is consistent with at least BSP30C having acquired a distinct function from the other BSP30 proteins and from its paralog in human and mouse, parotid secretory protein (PSP). Conclusion The BPI-like locus in mammals appears to have evolved rapidly through multiple gene duplication events, and is thus a hot spot for genome evolution. It is possible that BSP30 gene duplication is a characteristic feature of

  3. Slug Is Increased in Vascular Remodeling and Induces a Smooth Muscle Cell Proliferative Phenotype

    PubMed Central

    Coll-Bonfill, Núria; Peinado, Victor I.; Pisano, María V.; Párrizas, Marcelina; Blanco, Isabel; Evers, Maurits; Engelmann, Julia C.; García-Lucio, Jessica; Tura-Ceide, Olga; Meister, Gunter

    2016-01-01

    Objective Previous studies have confirmed Slug as a key player in regulating phenotypic changes in several cell models, however, its role in smooth muscle cells (SMC) has never been assessed. The purpose of this study was to evaluate the expression of Slug during the phenotypic switch of SMC in vitro and throughout the development of vascular remodeling. Methods and Results Slug expression was decreased during both cell-to-cell contact and TGFβ1 induced SMC differentiation. Tumor necrosis factor-α (TNFα), a known inductor of a proliferative/dedifferentiated SMC phenotype, induces the expression of Slug in SMC. Slug knockdown blocked TNFα-induced SMC phenotypic change and significantly reduced both SMC proliferation and migration, while its overexpression blocked the TGFβ1-induced SMC differentiation and induced proliferation and migration. Genome-wide transcriptomic analysis showed that in SMC, Slug knockdown induced changes mainly in genes related to proliferation and migration, indicating that Slug controls these processes in SMC. Notably, Slug expression was significantly up-regulated in lungs of mice using a model of pulmonary hypertension-related vascular remodeling. Highly remodeled human pulmonary arteries also showed an increase of Slug expression compared to less remodeled arteries. Conclusions Slug emerges as a key transcription factor driving SMC towards a proliferative phenotype. The increased Slug expression observed in vivo in highly remodeled arteries of mice and human suggests a role of Slug in the pathogenesis of pulmonary vascular diseases. PMID:27441378

  4. Role of NF-kappaB-dependent caveolin-1 expression in the mechanism of increased endothelial permeability induced by lipopolysaccharide.

    PubMed

    Tiruppathi, Chinnaswamy; Shimizu, Jun; Miyawaki-Shimizu, Kayo; Vogel, Stephen M; Bair, Angela M; Minshall, Richard D; Predescu, Dan; Malik, Asrar B

    2008-02-15

    We investigated the role of NF-kappaB activation by the bacterial product lipopolysaccharide (LPS) in inducing caveolin-1 (Cav-1) expression and its consequence in contributing to the leakiness of the endothelial barrier. We observed that LPS challenge of human lung microvascular endothelial cells induced concentration- and time-dependent increases in expression of Cav-1 mRNA and protein. The NEMO (NF-kappaB essential modifier binding domain)-binding domain peptide (IkB kinase (IKK)-NEMO-binding domain (NBD) peptide), which prevents NF-kappaB activation by inhibiting the interaction of IKKgamma with the IKK complex, blocked LPS-induced Cav-1 mRNA and protein expression. Knockdown of NF-kappaB subunit p65/RelA expression with small interfering RNA also prevented LPS-induced Cav-1 expression. Caveolae open to the apical and basal plasmalemma of endothelial cells increased 2-4-fold within 4 h of LPS exposure. IKK-NBD peptide markedly reduced the LPS-induced increase in the number of caveolae as well as transendothelial albumin permeability. These observations were recapitulated in mouse studies in which IKK-NBD peptide prevented Cav-1 expression and interfered with the increase in lung microvessel permeability induced by LPS. Thus, LPS mediates NF-kappaB-dependent Cav-1 expression that results in increased caveolae number and thereby contributes to the mechanism of increased transendothelial albumin permeability. PMID:18077459

  5. Increased length of stay and costs associated with inpatient management of vascular access failures.

    PubMed

    Sawant, Abhishek; Mills, Paul K; Dhingra, Hemant

    2013-01-01

    The creation and maintenance of vascular access for hemodialysis patients is responsible for a significant amount of morbidity and hospital expenses which continue to escalate with increasing population of ESRD patients. A retrospective review of patient charts were performed from 2008 to May 2011 at an academic tertiary care center who had a diagnosis of vascular access failure based on ICD 9 coding. Data regarding demographic information, length of stay (LOS), source of insurance, hospital expenses, and discharge status were obtained. Based on strict inclusion criteria we identified 172 total patients. The mean age among all patients was 60.53 ± 15.35 years and the majority of patients were Hispanic (n = 81). The Mean LOS was 5.30 ± 4.64 days. Mean hospital costs were 41,896 ± 20,318 US$. Patients admitted for tunneled dialysis placement had greater length of stay (p-value = 0.011) as did patients with hypertension (p-value = 0.030). Hospital expenses were significantly higher for patients admitted for arterio-venous fistula complications (55,456 ± 23,779 US$) compared with admissions for catheter or dialysis graft related complications (p-value = 0.004). Patients on Medicare had significantly lower length of stay (3.98 ± 3.32 days) compared with patients with Medicare/Medical (6.59 ± 5.69 days), p-value = 0.047. Inpatient management of vascular access failure is associated with increased length of stay, and significant hospital expenses. Timely referral to vascular access centers can prevent unnecessary hospitalizations and provide cost-saving benefits. PMID:22686456

  6. Simultaneous optical and mr imaging of tissue within implanted window chamber: System development and application in measuring vascular permeability

    NASA Astrophysics Data System (ADS)

    Shayegan Salek, Mir Farrokh

    Simultaneous optical imaging and MRI of a dorsal skin-fold window chamber mouse model is investigated as a novel methodology to study the tumor microenvironment. Simultaneous imaging with two modalities allows for cross-validation of results, integration of the capabilities of the two modalities in one study and mitigation of invasive factors, such as surgery and anesthesia, in an in-vivo experiment. To make this investigation possible, three optical imaging systems were developed that operated inside the MRI scanner. One of the developed systems was applied to estimate vascular kinetic parameters of tumors in a dorsal skin-fold window chamber mouse model with simultaneous optical and MRI imaging. The target of imaging was a molecular agent that was dual labeled with both optical and MRI contrast agents. The labeling of the molecular agent, characteristics of the developed optical systems, the methodologies of measuring vascular kinetic parameters using optical imaging and MRI data, and the obtained results are described and illustrated.

  7. Gut-derived mesenteric lymph but not portal blood increases endothelial cell permeability and promotes lung injury after hemorrhagic shock.

    PubMed Central

    Magnotti, L J; Upperman, J S; Xu, D Z; Lu, Q; Deitch, E A

    1998-01-01

    OBJECTIVE: To determine whether gut-derived factors leading to organ injury and increased endothelial cell permeability would be present in the mesenteric lymph at higher levels than in the portal blood of rats subjected to hemorrhagic shock. This hypothesis was tested by examining the effect of portal blood plasma and mesenteric lymph on endothelial cell monolayers and the interruption of mesenteric lymph flow on shock-induced lung injury. SUMMARY BACKGROUND DATA: The absence of detectable bacteremia or endotoxemia in the portal blood of trauma victims casts doubt on the role of the gut in the generation of multiple organ failure. Nevertheless, previous experimental work has clearly documented the connection between shock and gut injury as well as the concept of gut-induced sepsis and distant organ failure. One explanation for this apparent paradox would be that gut-derived inflammatory factors are reaching the lung and systemic circulation via the gut lymphatics rather than the portal circulation. METHODS: Human umbilical vein endothelial cell monolayers, grown in two-compartment systems, were exposed to media, sham-shock, or postshock portal blood plasma or lymph, and permeability to rhodamine (10K) was measured. Sprague-Dawley rats were subjected to 90 minutes of sham or actual shock and shock plus lymphatic division (before and after shock). Lung permeability, pulmonary myeloperoxidase levels, alveolar apoptosis, and bronchoalveolar fluid protein content were used to quantitate lung injury. RESULTS: Postshock lymph increased endothelial cell monolayer permeability but not postshock plasma, sham-shock lymph/plasma, or medium. Lymphatic division before hemorrhagic shock prevented shock-induced increases in lung permeability to Evans blue dye and alveolar apoptosis and reduced pulmonary MPO levels. In contrast, division of the mesenteric lymphatics at the end of the shock period but before reperfusion ameliorated but failed to prevent increased lung permeability

  8. Cooling treatment transiently increases the permeability of brain capillary endothelial cells through translocation of claudin-5.

    PubMed

    Inamura, Akinori; Adachi, Yasuhiro; Inoue, Takao; He, Yeting; Tokuda, Nobuko; Nawata, Takashi; Shirao, Satoshi; Nomura, Sadahiro; Fujii, Masami; Ikeda, Eiji; Owada, Yuji; Suzuki, Michiyasu

    2013-08-01

    The blood-brain-barrier (BBB) is formed by different cell types, of which brain microvascular endothelial cells are major structural constituents. The goal of this study was to examine the effects of cooling on the permeability of the BBB with reference to tight junction formation of brain microendothelial cells. The sensorimotor cortex above the dura mater in adult male Wistar rats was focally cooled to a temperature of 5 °C for 1 h, then immunostaining for immunoglobulin G (IgG) was performed to evaluate the permeability of the BBB. Permeability produced by cooling was also evaluated in cultured murine brain endothelial cells (bEnd3) based on measurement of trans-epithelial electric resistance (TEER). Immunocytochemistry and Western blotting of proteins associated with tight junctions in bEnd3 were performed to determine protein distribution before and after cooling. After focal cooling of the rat brain cortex, diffuse immunostaining for IgG was observed primarily around the small vasculature and in the extracellular spaces of parenchyma of the cortex. In cultured bEnd3, TEER significantly decreased during cooling (15 °C) and recovered to normal levels after rewarming to 37 °C. Immunocytochemistry and Western blotting showed that claudin-5, a critical regulatory protein for tight junctions, was translocated from the membrane to the cytoplasm after cooling in cultured bEnd3 cells. These results suggest that focal brain cooling may open the BBB transiently through an effect on tight junctions of brain microendothelial cells, and that therapeutically this approach may allow control of BBB function and drug delivery through the BBB. PMID:23653089

  9. Low levels of lipid oxidation radically increase the passive permeability of lipid bilayers.

    PubMed

    Runas, Kristina A; Malmstadt, Noah

    2015-01-21

    Oxidation of unsaturated lipids in cellular membranes has been shown to cause severe membrane damage and potentially cell death. The presence of oxidized lipid species in the membrane is known to cause changes in membrane properties, such as decreased fluidity. This study uses giant unilamellar vesicles (GUVs) to measure passive transport across membranes containing defined concentrations of oxidized lipid species. GUVs consisting of a saturated phospholipid, an unsaturated phospholipid, and cholesterol were used as model membranes. By replacing defined amounts of the unsaturated lipid with a corresponding oxidized product, the oxidation process could be mimicked, yielding vesicles of varying oxidized lipid concentration. Oxidized lipid concentration was varied from 0 mol% to 18 mol% of the total lipid concentration. Passive transport of PEG12-NBD, an uncharged fluorescent molecule, was measured using a microfluidic trap to capture the GUVs and spinning disk confocal microscopy (SDCM) to track the transport of a fluorescent species in the equatorial plane of each GUV. Membrane permeability was determined by fitting the resulting concentration profiles to a finite difference model of diffusion and permeation around and through the membrane. Experiments showed three permeability regimes. Without oxidation, transport was slow, with a measured permeability on the order of 1.5 × 10(-6) cm s(-1). At 2.5-10% oxidized species permeation was fast (1.5 × 10(-5) cm s(-1)). Above 12.5% oxidized species, the bilayer was disrupted by the formation of pore defects. As passive transport is an important mechanism for drug delivery, understanding the relationship between oxidation and permeation could provide insight into the pharmaceutical characteristics of tissues with oxidative damage. PMID:25415555

  10. Novel roles of Src in cancer cell epithelial-to-mesenchymal transition, vascular permeability, microinvasion and metastasis.

    PubMed

    Patel, Ami; Sabbineni, Harika; Clarke, Andrea; Somanath, Payaningal R

    2016-07-15

    The Src-family kinases (SFKs), an intracellularly located group of non-receptor tyrosine kinases are involved in oncogenesis. The importance of SFKs has been implicated in the promotion of tumor cell motility, proliferation, inhibition of apoptosis, invasion and metastasis. Recent evidences indicate that specific effects of SFKs on epithelial-to-mesenchymal transition (EMT) as well as on endothelial and stromal cells in the tumor microenvironment can have profound effects on tumor microinvasion and metastasis. Although, having been studied extensively, these novel features of SFKs may contribute to greater understanding of benefits from Src inhibition in various types of cancers. Here we review the novel role of SFKs, particularly c-Src in mediating EMT, modulation of tumor endothelial-barrier, transendothelial migration (microinvasion) and metastasis of cancer cells, and discuss the utility of Src inhibitors in vascular normalization and cancer therapy. PMID:27245276

  11. Novel CCR3 Antagonists Are Effective Mono- and Combination Inhibitors of Choroidal Neovascular Growth and Vascular Permeability

    PubMed Central

    Nagai, Nori; Ju, Meihua; Izumi-Nagai, Kanako; Robbie, Scott J.; Bainbridge, James W.; Gale, David C.; Pierre, Esaie; Krauss, Achim H.P.; Adamson, Peter; Shima, David T.; Ng, Yin-Shan

    2016-01-01

    Choroidal neovascularization (CNV) is a defining feature of wet age-related macular degeneration. We examined the functional role of CCR3 in the development of CNV in mice and primates. CCR3 was associated with spontaneous CNV lesions in the newly described JR5558 mice, whereas CCR3 ligands localized to CNV-associated macrophages and the retinal pigment epithelium/choroid complex. Intravitreal injection of neutralizing antibodies against vascular endothelial growth factor receptor 2, CCR3, CC chemokine ligand 11/eotaxin-1, and CC chemokine ligand 24/eotaxin-2 all reduced CNV area and lesion number in these mice. Systemic administration of the CCR3 antagonists GW766994X and GW782415X reduced spontaneous CNV in JR5558 mice and laser-induced CNV in mouse and primate models in a dose-dependent fashion. Combination treatment with antivascular endothelial growth factor receptor 2 antibody and GW766994X yielded additive reductions in CNV area and hyperpermeability in mice. Interestingly, topical GW766994X and intravitreal anti-CCR3 antibody yielded strong systemic effects, reducing CNV in the untreated, contralateral eye. Contrarily, ocular administration of GW782415X in primates failed to substantially elevate plasma drug levels or to reduce the development of grade IV CNV lesions. These findings suggest that CCR3 signaling may be an attractive therapeutic target for CNV, utilizing a pathway that is at least partly distinct from that of vascular endothelial growth factor receptor. The findings also demonstrate that systemic exposure to CCR3 antagonists may be crucial for CNV-targeted activity. PMID:26188133

  12. Glycerol and urea can be used to increase skin permeability in reduced hydration conditions.

    PubMed

    Björklund, Sebastian; Engblom, Johan; Thuresson, Krister; Sparr, Emma

    2013-12-18

    The natural moisturizing factor (NMF) is a group of hygroscopic molecules that is naturally present in skin and protects from severe drying. Glycerol and urea are two examples of NMF components that are also used in skin care applications. In the present study, we investigate the influence of glycerol and urea on the permeability of a model drug (metronidazole, Mz) across excised pig skin membranes at different hydrating conditions. The degree of skin hydration is regulated by the gradient in water activity across the membrane, which in turn depends on the water activity of the formulation in contact with the skin membrane. Here, we determine the water activity of all formulations employed using an isothermal calorimetric method. Thus, the gradient in water activity is controlled by a novel experimental set-up with well-defined boundary conditions on both sides of the skin membrane. The results demonstrate that glycerol and urea can retain high steady state flux of Mz across skin membranes at dehydrating conditions, which otherwise would decrease the permeability due to dehydration. X-ray diffraction measurements are performed to give insight into the effects of glycerol and urea on SC molecular organization. The novel steady state flux results can be related to the observation that water, glycerol, and urea all affect the structural features of the SC molecular components in a similar manner. PMID:23643739

  13. Increased Permeability of the Aquaporin SoPIP2;1 by Mercury and Mutations in Loop A.

    PubMed

    Kirscht, Andreas; Survery, Sabeen; Kjellbom, Per; Johanson, Urban

    2016-01-01

    Aquaporins (AQPs) also referred to as Major intrinsic proteins, regulate permeability of biological membranes for water and other uncharged small polar molecules. Plants encode more AQPs than other organisms and just one of the four AQP subfamilies in Arabidopsis thaliana, the water specific plasma membrane intrinsic proteins (PIPs), has 13 isoforms, the same number as the total AQPs encoded by the entire human genome. The PIPs are more conserved than other plant AQPs and here we demonstrate that a cysteine residue, in loop A of SoPIP2;1 from Spinacia oleracea, is forming disulfide bridges. This is in agreement with studies on maize PIPs, but in contrast we also show an increased permeability of mutants with a substitution at this position. In accordance with earlier findings, we confirm that mercury increases water permeability of both wild type and mutant proteins. We report on the slow kinetics and reversibility of the activation, and on quenching of intrinsic tryptophan fluorescence as a potential reporter of conformational changes associated with activation. Hence, previous studies in plants based on the assumption of mercury as a general AQP blocker have to be reevaluated, whereas mercury and fluorescence studies of isolated PIPs provide new means to follow structural changes dynamically. PMID:27625657

  14. Fullerenol C60(OH)24 increases ion permeability of lipid membranes in a pH-dependent manner.

    PubMed

    Rokitskaya, Tatyana I; Antonenko, Yuri N

    2016-06-01

    Fullerenols are water-soluble analogs of fullerene exhibiting both antioxidant and prooxidant activities in vitro and in vivo. Here we report, for the first time, that fullerenol C60(OH)24 can induce ion permeability of a planar lipid bilayer membrane via the formation of ion pores or conductive defects with a preference for cations over anions. The fullerenol-mediated electrical current displayed non-linear concentration dependence and was reversibly enhanced by alkalinization. Calcium and magnesium ions decreased the fullerenol-induced potassium ion permeability. Voltage dependence of the current was sensitive to membrane composition, with the conductance being well pronounced in fully saturated diphytanoylphosphatidylcholine. Fullerenol did not induce carboxyfluorescein leakage from liposomes, suggesting a small size of fullerenol-induced pores. In contrast to ion permeability, the binding of C60(OH)24 to liposomes increased at acidic pH, as measured by fluorescence quenching of pyrene-labeled lipid. In line with this, the photodynamic action of fullerenol on the peptide gramicidin A also increased at low pH. It is hypothesized that aggregates of fullerenol may stabilize transient conductive lipid defects or pores formed under a variety of stress conditions. PMID:26874205

  15. Volume measurements and fluorescent staining indicate an increase in permeability for organic cation transporter substrates during apoptosis.

    PubMed

    Gibbons, Brandon A; Kharel, Prakash; Robinson, Lauren C; Synowicki, Ron A; Model, Michael A

    2016-05-15

    Extensive membrane blebbing is one of the earliest observable changes in HeLa cells stimulated with apoptosis inducers. Blebbing caused by actinomycin D or camptothecin, but not by anti-Fas antibody, is accompanied by an almost 10% volume increase as measured by transmission-through-dye microscopy. When the experiment is carried out in DMEM medium, the swelling appears to result from activation of amiloride-sensitive channels. Low-sodium choline-, but not N-methyl(-)D-glucamine-based, medium, also supports swelling during the blebbing phase of apoptosis; this indicates that the membrane becomes permeable to choline as well. Because choline can enter the cells through organic cation transporters (OCT), we tested three fluorescent dyes (2-[4-(dimethylamino)styryl]-1-methylpyridinium iodide, rhodamine 123 and ethidium bromide) that have been reported to utilize OCT for cell entry. Intact HeLa cells are poorly permeable for these fluorophores, and initially they accumulate on the plasma membranes. Blebbing results in an enhanced penetration of these dyes into the cell interior, as was demonstrated both by direct observation and by FRET. The increased membrane permeability is specific for OCT substrates; the other tested cationic dyes apparently cross the membrane by other routes and exhibit a markedly different behavior. Our results reveal a previously unknown feature of apoptosis and the utility of cationic dyes for studying membrane transport. PMID:26997529

  16. Increased Permeability of the Aquaporin SoPIP2;1 by Mercury and Mutations in Loop A

    PubMed Central

    Kirscht, Andreas; Survery, Sabeen; Kjellbom, Per; Johanson, Urban

    2016-01-01

    Aquaporins (AQPs) also referred to as Major intrinsic proteins, regulate permeability of biological membranes for water and other uncharged small polar molecules. Plants encode more AQPs than other organisms and just one of the four AQP subfamilies in Arabidopsis thaliana, the water specific plasma membrane intrinsic proteins (PIPs), has 13 isoforms, the same number as the total AQPs encoded by the entire human genome. The PIPs are more conserved than other plant AQPs and here we demonstrate that a cysteine residue, in loop A of SoPIP2;1 from Spinacia oleracea, is forming disulfide bridges. This is in agreement with studies on maize PIPs, but in contrast we also show an increased permeability of mutants with a substitution at this position. In accordance with earlier findings, we confirm that mercury increases water permeability of both wild type and mutant proteins. We report on the slow kinetics and reversibility of the activation, and on quenching of intrinsic tryptophan fluorescence as a potential reporter of conformational changes associated with activation. Hence, previous studies in plants based on the assumption of mercury as a general AQP blocker have to be reevaluated, whereas mercury and fluorescence studies of isolated PIPs provide new means to follow structural changes dynamically. PMID:27625657

  17. Increased airway vascularity in newly diagnosed asthma using a high-magnification bronchovideoscope.

    PubMed

    Tanaka, Hiroshi; Yamada, Gen; Saikai, Toyohiro; Hashimoto, Midori; Tanaka, Shintaro; Suzuki, Kazuhiko; Fujii, Masaru; Takahashi, Hiroki; Abe, Shosaku

    2003-12-15

    Hypervascularity in the bronchial wall is part of airway remodeling, but has remained an ill-defined process in asthma pathogenesis. Previous morphologic assessment has been limited to biopsy specimens, and therefore a high-magnification bronchovideoscope (side-viewing type) was developed for less invasive examination of subepithelial vessels. We evaluated vascularity in the lower trachea, using this novel scope in 12 normal control subjects, 13 patients with chronic obstructive pulmonary disease, and 24 subjects with stable asthma; 8 were steroid naive with newly diagnosed asthma (Group A) and 16 had been treated with inhaled corticosteroids for more than 5 years (Group B). The redness of bronchial mucosa in patients with asthma observed by conventional fiberoptic bronchoscopy proved to be due to a fine vascular network. Morphometric measurements of subepithelial vessels showed that both vessel area density and vessel length density were significantly (p<0.0001) increased in subjects with asthma as compared with control subjects and patients with chronic obstructive pulmonary disease. The degree of increase in vessels did not differ between Group A and Group B. The increase in subepithelial vessels of the airway is present even in newly diagnosed asthma. This novel bronchovideoscope is useful for assessment of vessel network in the surface of the airway lumen in vivo. PMID:14512267

  18. Increased serum levels of soluble vascular endothelial-cadherin in patients with systemic vasculitis.

    PubMed

    Chen, Tao; Guo, Zai-Pei; Cao, Na; Qin, Sha; Li, Meng-Meng; Jia, Rui-Zhen

    2014-08-01

    Henoch-Schönlein purpura (HSP) is a commonest systemic vasculitis (SV) in childhood characterized by an inflammatory reaction directed at vessels. Endothelial damage and perivascular leukocyte infiltrates are vital in the development of HSP. Vascular endothelial (VE)-cadherin is an endothelial cell-specific adhesion molecule, which plays critical roles in angiogenesis and endothelial integrity. Herein, we investigated the serum levels of soluble VE-cadherin (sVE-cadherin) in patients with HSP and other forms of SV. The serum levels of sVE-cadherin in 30 patients with HSP, together with patients with urticarial vasculitis, allergic vasculitis, Behcet disease, psoriasis vulgaris (PV) and atopic dermatitis (AD) and 26 health controls were measured by enzyme-linked immunosorbent assay. Serum levels of sVE-cadherin were significantly increased in patients with HSP in acute stage and patients with other forms of SV but not in patients with PV or AD. Moreover, Serum sVE-cadherin levels in HSP patients were correlated with the severity of this disease and serum concentrations of IgA anticardiolipin antibodies and vascular endothelial growth factor. Taken together, we show firstly that serum sVE-cadherin is abnormally increased in HSP patients. Increased serum levels of sVE-cadherin might be a novel biomarker for evaluating the severity of HSP and useful for identifying the presence of SV in inflammatory skin conditions. PMID:24469639

  19. Chorioallantoic Membrane Microtumor Model to Study the Mechanisms of Tumor Angiogenesis, Vascular Permeability, and Tumor Cell Intravasation.

    PubMed

    Deryugina, Elena I

    2016-01-01

    The mechanisms governing the development of angiogenic blood vessels, which not only deliver the nutrients to growing tumors but also provide the conduits for tumor cell dissemination, are still not fully resolved. The model systems based on the grafting of human tumor cells onto the chorioallantoic membrane (CAM) of the chick embryo offer several advantages to study complex processes underlying tumor angiogenesis and tumor cell dissemination. In particular, the CAM model described here allows for investigation of multiple microtumors as independent entities, thereby greatly facilitating quantification and statistical analyses of tumor neovascularization and cancer spreading. This CAM microtumor system was designed specifically to measure the level of tumor cell intravasation in combination with quantitative analyses of the microarchitecture and permeability of the intratumoral angiogenic blood vessels. By using this newly established microtumor model we have demonstrated the functional involvement of tumor matrix metalloproteinase-1 (MMP-1) and epidermal growth factor receptor (EGFR) in regulating the development of a distinct angiogenic vasculature capable of sustaining tumor cell intravasation and metastasis. PMID:27172961

  20. Changes in the lipid composition of ripening banana fruits and evidence for an associated increase in cell membrane permeability.

    PubMed

    Wade, N L; Bishop, D G

    1978-06-23

    The content of total lipid in banana fruit pulp tissue remained constant during the climacteric rise induced by applied ethylene. The relative proportions of neutral lipid, glycolipid and phospholipid did not change. However, the fatty acid composition of the lipid did change during ripening. This change was confined largely to the phospholipid fraction, in which there was an increase in the proportion of linolenic acid and a decrease in the proportion of linoleic acid. The net result was an increase in total unsaturation of the fatty acids in the phospholipid fraction. Measurements of spin label motion in liposomes prepared from banana phospholipids showed that the motion and fluidity of bilayer lipids increased during ripening of the fruit from which the liposomes were prepared, probably as a result of increased lipid unsaturation during ripening. Since increases in membrane fluidity are accompanied by increases in the passive permeability to small molecules in a number of membrane systems, it is suggested that the increased leakage which has been previously demonstrated in ripening banana fruit tissue is due to increases in the permeability of at least some cell membranes. PMID:667087

  1. Macrophage-derived IL-18 and increased fibrinogen deposition are age-related inflammatory signatures of vascular remodeling.

    PubMed

    Rodriguez-Menocal, Luis; Faridi, Mohd Hafeez; Martinez, Laisel; Shehadeh, Lina A; Duque, Juan C; Wei, Yuntao; Mesa, Annia; Pena, Angela; Gupta, Vineet; Pham, Si M; Vazquez-Padron, Roberto I

    2014-03-01

    Aging has been associated with pathological vascular remodeling and increased neointimal hyperplasia. The understanding of how aging exacerbates this process is fundamental to prevent cardiovascular complications in the elderly. This study proposes a mechanism by which aging sustains leukocyte adhesion, vascular inflammation, and increased neointimal thickness after injury. The effect of aging on vascular remodeling was assessed in the rat balloon injury model using microarray analysis, immunohistochemistry, and LINCOplex assays. The injured arteries in aging rats developed thicker neointimas than those in younger animals, and this significantly correlated with a higher number of tissue macrophages and increased vascular IL-18. Indeed, IL-18 was 23-fold more abundant in the injured vasculature of aged animals compared with young rats, while circulating levels were similar in both groups of animals. The depletion of macrophages in aged rats with clodronate liposomes ameliorated vascular accumulation of IL-18 and significantly decreased neointimal formation. IL-18 was found to inhibit apoptosis of vascular smooth muscle cells (VSMC) and macrophages, thus favoring both the formation and inflammation of the neointima. In addition, injured arteries of aged rats accumulated 18-fold more fibrinogen-γ than those of young animals. Incubation of rat peritoneal macrophages with immobilized IL-18 increased leukocyte adhesion to fibrinogen and suggested a proinflammatory positive feedback loop among macrophages, VSMC, and the deposition of fibrinogen during neointimal hyperplasia. In conclusion, our data reveal that concentration changes in vascular cytokine and fibrinogen following injury in aging rats contribute to local inflammation and postinjury neointima formation. PMID:24414074

  2. Macrophage-derived IL-18 and increased fibrinogen deposition are age-related inflammatory signatures of vascular remodeling

    PubMed Central

    Rodriguez-Menocal, Luis; Faridi, Mohd Hafeez; Martinez, Laisel; Shehadeh, Lina A.; Duque, Juan C.; Wei, Yuntao; Mesa, Annia; Pena, Angela; Gupta, Vineet; Pham, Si M.

    2014-01-01

    Aging has been associated with pathological vascular remodeling and increased neointimal hyperplasia. The understanding of how aging exacerbates this process is fundamental to prevent cardiovascular complications in the elderly. This study proposes a mechanism by which aging sustains leukocyte adhesion, vascular inflammation, and increased neointimal thickness after injury. The effect of aging on vascular remodeling was assessed in the rat balloon injury model using microarray analysis, immunohistochemistry, and LINCOplex assays. The injured arteries in aging rats developed thicker neointimas than those in younger animals, and this significantly correlated with a higher number of tissue macrophages and increased vascular IL-18. Indeed, IL-18 was 23-fold more abundant in the injured vasculature of aged animals compared with young rats, while circulating levels were similar in both groups of animals. The depletion of macrophages in aged rats with clodronate liposomes ameliorated vascular accumulation of IL-18 and significantly decreased neointimal formation. IL-18 was found to inhibit apoptosis of vascular smooth muscle cells (VSMC) and macrophages, thus favoring both the formation and inflammation of the neointima. In addition, injured arteries of aged rats accumulated 18-fold more fibrinogen-γ than those of young animals. Incubation of rat peritoneal macrophages with immobilized IL-18 increased leukocyte adhesion to fibrinogen and suggested a proinflammatory positive feedback loop among macrophages, VSMC, and the deposition of fibrinogen during neointimal hyperplasia. In conclusion, our data reveal that concentration changes in vascular cytokine and fibrinogen following injury in aging rats contribute to local inflammation and postinjury neointima formation. PMID:24414074

  3. Increased pulmonary alveolar-capillary permeability in patients at risk for adult respiratory distress syndrome

    SciTech Connect

    Tennenberg, S.D.; Jacobs, M.P.; Solomkin, J.S.; Ehlers, N.A.; Hurst, J.M.

    1987-04-01

    Two methods for predicting adult respiratory distress syndrome (ARDS) were evaluated prospectively in a group of 81 multitrauma and sepsis patients considered at clinical high risk. A popular ARDS risk-scoring method, employing discriminant analysis equations (weighted risk criteria and oxygenation characteristics), yielded a predictive accuracy of 59% and a false-negative rate of 22%. Pulmonary alveolar-capillary permeability (PACP) was determined with a radioaerosol lung-scan technique in 23 of these 81 patients, representing a statistically similar subgroup. Lung scanning achieved a predictive accuracy of 71% (after excluding patients with unilateral pulmonary contusion) and gave no false-negatives. We propose a combination of clinical risk identification and functional determination of PACP to assess a patient's risk of developing ARDS.

  4. MicroRNA-497 impairs the growth of chemoresistant neuroblastoma cells by targeting cell cycle, survival and vascular permeability genes

    PubMed Central

    Soriano, Aroa; París-Coderch, Laia; Jubierre, Luz; Martínez, Alba; Zhou, Xiangyu; Piskareva, Olga; Bray, Isabella; Vidal, Isaac; Almazán-Moga, Ana; Molist, Carla; Roma, Josep; Bayascas, José R.; Casanovas, Oriol; Stallings, Raymond L.; de Toledo, José Sánchez; Gallego, Soledad; Segura, Miguel F.

    2016-01-01

    Despite multimodal therapies, a high percentage of high-risk neuroblastoma (NB) become refractory to current treatments, most of which interfere with cell cycle and DNA synthesis or function, activating the DNA damage response (DDR). In cancer, this process is frequently altered by deregulated expression or function of several genes which contribute to multidrug resistance (MDR). MicroRNAs are outstanding candidates for therapy since a single microRNA can modulate the expression of multiple genes of the same or different pathways, thus hindering the development of resistance mechanisms by the tumor. We found several genes implicated in the MDR to be overexpressed in high-risk NB which could be targeted by microRNAs simultaneously. Our functional screening identified several of those microRNAs that reduced proliferation of chemoresistant NB cell lines, the best of which was miR-497. Low expression of miR-497 correlated with poor patient outcome. The overexpression of miR-497 reduced the proliferation of multiple chemoresistant NB cell lines and induced apoptosis in MYCN-amplified cell lines. Moreover, the conditional expression of miR-497 in NB xenografts reduced tumor growth and inhibited vascular permeabilization. MiR-497 targets multiple genes related to the DDR, cell cycle, survival and angiogenesis, which renders this molecule a promising candidate for NB therapy. PMID:26824183

  5. Vascular Health in American Football Players: Cardiovascular Risk Increased in Division III Players

    PubMed Central

    Feairheller, Deborah L.; Aichele, Kristin R.; Oakman, Joyann E.; Neal, Michael P.; Cromwell, Christina M.; Lenzo, Jessica M.; Perez, Avery N.; Bye, Naomi L.; Santaniello, Erica L.; Hill, Jessica A.; Evans, Rachel C.; Thiele, Karla A.; Chavis, Lauren N.; Getty, Allyson K.; Wisdo, Tia R.; McClelland, JoAnna M.; Sturgeon, Kathleen; Chlad, Pam

    2016-01-01

    Studies report that football players have high blood pressure (BP) and increased cardiovascular risk. There are over 70,000 NCAA football players and 450 Division III schools sponsor football programs, yet limited research exists on vascular health of athletes. This study aimed to compare vascular and cardiovascular health measures between football players and nonathlete controls. Twenty-three athletes and 19 nonathletes participated. Vascular health measures included flow-mediated dilation (FMD) and carotid artery intima-media thickness (IMT). Cardiovascular measures included clinic and 24 hr BP levels, body composition, VO2 max, and fasting glucose/cholesterol levels. Compared to controls, football players had a worse vascular and cardiovascular profile. Football players had thicker carotid artery IMT (0.49 ± 0.06 mm versus 0.46 ± 0.07 mm) and larger brachial artery diameter during FMD (4.3 ± 0.5 mm versus 3.7 ± 0.6 mm), but no difference in percent FMD. Systolic BP was significantly higher in football players at all measurements: resting (128.2 ± 6.4 mmHg versus 122.4 ± 6.8 mmHg), submaximal exercise (150.4 ± 18.8 mmHg versus 137.3 ± 9.5 mmHg), maximal exercise (211.3 ± 25.9 mmHg versus 191.4 ± 19.2 mmHg), and 24-hour BP (124.9 ± 6.3 mmHg versus 109.8 ± 3.7 mmHg). Football players also had higher fasting glucose (91.6 ± 6.5 mg/dL versus 86.6 ± 5.8 mg/dL), lower HDL (36.5 ± 11.2 mg/dL versus 47.1 ± 14.8 mg/dL), and higher body fat percentage (29.2 ± 7.9% versus 23.2 ± 7.0%). Division III collegiate football players remain an understudied population and may be at increased cardiovascular risk. PMID:26904291

  6. Increased Vascular Smooth Muscle Contractility in TRPC6−/− Mice

    PubMed Central

    Dietrich, Alexander; Mederos y Schnitzler, Michael; Gollasch, Maik; Gross, Volkmar; Storch, Ursula; Dubrovska, Galyna; Obst, Michael; Yildirim, Eda; Salanova, Birgit; Kalwa, Hermann; Essin, Kirill; Pinkenburg, Olaf; Luft, Friedrich C.; Gudermann, Thomas; Birnbaumer, Lutz

    2005-01-01

    Among the TRPC subfamily of TRP (classical transient receptor potential) channels, TRPC3, -6, and -7 are gated by signal transduction pathways that activate C-type phospholipases as well as by direct exposure to diacylglycerols. Since TRPC6 is highly expressed in pulmonary and vascular smooth muscle cells, it represents a likely molecular candidate for receptor-operated cation entry. To define the physiological role of TRPC6, we have developed a TRPC6-deficient mouse model. These mice showed an elevated blood pressure and enhanced agonist-induced contractility of isolated aortic rings as well as cerebral arteries. Smooth muscle cells of TRPC6-deficient mice have higher basal cation entry, increased TRPC-carried cation currents, and more depolarized membrane potentials. This higher basal cation entry, however, was completely abolished by the expression of a TRPC3-specific small interference RNA in primary TRPC6−/− smooth muscle cells. Along these lines, the expression of TRPC3 in wild-type cells resulted in increased basal activity, while TRPC6 expression in TRPC6−/− smooth muscle cells reduced basal cation influx. These findings imply that constitutively active TRPC3-type channels, which are up-regulated in TRPC6-deficient smooth muscle cells, are not able to functionally replace TRPC6. Thus, TRPC6 has distinct nonredundant roles in the control of vascular smooth muscle tone. PMID:16055711

  7. Increased peripheral vascular disease risk progressively constrains perfusion adaptability in the skeletal muscle microcirculation.

    PubMed

    Frisbee, Jefferson C; Butcher, Joshua T; Frisbee, Stephanie J; Olfert, I Mark; Chantler, Paul D; Tabone, Lawrence E; d'Audiffret, Alexandre C; Shrader, Carl D; Goodwill, Adam G; Stapleton, Phoebe A; Brooks, Steven D; Brock, Robert W; Lombard, Julian H

    2016-02-15

    To determine the impact of progressive elevations in peripheral vascular disease (PVD) risk on microvascular function, we utilized eight rat models spanning "healthy" to "high PVD risk" and used a multiscale approach to interrogate microvascular function and outcomes: healthy: Sprague-Dawley rats (SDR) and lean Zucker rats (LZR); mild risk: SDR on high-salt diet (HSD) and SDR on high-fructose diet (HFD); moderate risk: reduced renal mass-hypertensive rats (RRM) and spontaneously hypertensive rats (SHR); high risk: obese Zucker rats (OZR) and Dahl salt-sensitive rats (DSS). Vascular reactivity and biochemical analyses demonstrated that even mild elevations in PVD risk severely attenuated nitric oxide (NO) bioavailability and caused progressive shifts in arachidonic acid metabolism, increasing thromboxane A2 levels. With the introduction of hypertension, arteriolar myogenic activation and adrenergic constriction were increased. However, while functional hyperemia and fatigue resistance of in situ skeletal muscle were not impacted with mild or moderate PVD risk, blood oxygen handling suggested an increasingly heterogeneous perfusion within resting and contracting skeletal muscle. Analysis of in situ networks demonstrated an increasingly stable and heterogeneous distribution of perfusion at arteriolar bifurcations with elevated PVD risk, a phenomenon that was manifested first in the distal microcirculation and evolved proximally with increasing risk. The increased perfusion distribution heterogeneity and loss of flexibility throughout the microvascular network, the result of the combined effects on NO bioavailability, arachidonic acid metabolism, myogenic activation, and adrenergic constriction, may represent the most accurate predictor of the skeletal muscle microvasculopathy and poor health outcomes associated with chronic elevations in PVD risk. PMID:26702145

  8. Chronic air-flow limitation does not increase respiratory epithelial permeability assessed by aerosolized solute, but smoking does

    SciTech Connect

    Huchon, G.J.; Russell, J.A.; Barritault, L.G.; Lipavsky, A.; Murray, J.F.

    1984-09-01

    To determine the separate influences of smoking and severe air-flow limitation on aerosol deposition and respiratory epithelial permeability, we studied 26 normal nonsmokers, 12 smokers without airway obstruction, 12 nonsmokers with chronic obstructive pulmonary disease (COPD), and 11 smokers with COPD. We aerosolized 99mTc-labeled diethylene triamine pentaacetic acid to particles approximately 1 micron activity median aerodynamic diameter. Levels of radioactivity were plotted semilogarithmically against time to calculate clearance as percent per minute. The distribution of radioactivity was homogeneous in control subjects and in smokers, but patchy in both groups with COPD. No difference was found between clearances of the control group (1.18 +/- 0.31% min-1), and nonsmoker COPD group (1.37 +/- 0.82% min-1), whereas values in smokers without COPD (4.00 +/- 1.70% min-1) and smokers with COPD (3.62 +/- 2.88% min-1) were significantly greater than in both nonsmoking groups. We conclude that (1) small particles appear to deposit peripherally, even with severe COPD; (2) respiratory epithelial permeability is normal in nonsmokers with COPD; (3) smoking increases permeability by a mechanism unrelated to air-flow limitation.

  9. Iron ion irradiation increases promotes adhesion of monocytic cells to arterial vascular endothelium

    NASA Astrophysics Data System (ADS)

    Kucik, Dennis; Khaled, Saman; Gupta, Kiran; Wu, Xing; Yu, Tao; Chang, Polly; Kabarowski, Janusz

    Radiation causes inflammation, and chronic, low-level vascular inflammation is a risk factor for atherosclerosis. Consistent with this, exposure to radiation from a variety of sources is associated with increased risk of heart disease and stroke. Part of the inflammatory response to radiation is a change in the adhesiveness of the endothelial cells that line the blood vessels, triggering inappropriate accumulation of leukocytes, leading to later, damaging effects of inflammation. Although some studies have been done on the effects of gamma irradiation on vascular endothelium, the response of endothelium to heavy ion radiation likely to be encountered in prolonged space flight has not been determined. We investigated how irradiation of aortic endothelial cells with iron ions affects adhesiveness of cultured aortic endothelial cells for monocytic cells and the consequences of this for development of atherosclerosis. Aortic endothelial cells were irradiated with 600 MeV iron ions at Brookhaven National Laboratory and adhesion-related changes were measured. Cells remained viable for at least 72 hours, and were even able to repair acute damage to cell junctions. We found that iron ion irradiation altered expression levels of specific endothelial cell adhesion molecules. Further, these changes had functional consequences. Using a flow chamber adhesion assay to measure adhesion of monocytic cells to endothelial cells under physiological shear stress, we found that adhesivity of vascular endothelium was enhanced in as little as 24 hours after irradiation. Further, the radiation dose dependence was not monotonic, suggesting that it was not simply the result of endothelial cell damage. We also irradiated aortic arches and carotid arteries of Apolipoprotein-E-deficient mice. Histologic analysis of these mice will be conducted to determine whether effects of radiation on endothelial adhesiveness result in consequences for development of atherosclerosis. (Supported by NSBRI

  10. Severe feed restriction increases permeability of mammary gland cell tight junctions and reduces ethanol stability of milk.

    PubMed

    Stumpf, M T; Fischer, V; McManus, C M; Kolling, G J; Zanela, M B; Santos, C S; Abreu, A S; Montagner, P

    2013-07-01

    A total of twelve lactating Jersey cows were used in a 5-week experiment to determine the effects of severe feed restriction on the permeability of mammary gland cell tight junctions (TJs) and its effects on milk stability to the alcohol test. During the first 2 weeks, cows were managed and fed together and received the same diet according to their nutritional requirements (full diet: 15 kg of sugar cane silage; 5.8 kg of alfalfa hay; 0.16 kg of mineral salt and 6.2 kg of concentrate). In the 3rd week, animals were distributed into two groups of six cows each. One group received the full diet and the other a restricted diet (50% of the full diet). In the 4th and 5th weeks, all animals received the full diet again. Milk composition and other attributes, such as titratable acidity, ethanol stability, pH, density and somatic cell count (SCC) were evaluated. Cortisol levels indicated the stress condition of the cows. Plasma lactose and milk sodium were measured to assess mammary TJ leakiness. Principal factor analysis (PFA) showed that the first two principal factors (PFs) contributed with 44.47% and 20.57% of the total variance in the experiment and, as feeding levels increased, milk stability to the ethanol test became higher and plasma lactose levels decreased, which indicates lower permeability of the mammary gland cell TJ. Correspondence analyses were consistent with PFA and also showed that lower feeding levels were related to reduced milk stability, high plasma lactose, high sodium in milk, low milk lactose (another parameter used to assess TJ permeability) and higher cortisol levels, indicating the stress to which animals were submitted. All observations were grouped in three clusters, with some of the above-mentioned patterns. Feeding restriction was associated with higher permeability of TJ, decreasing milk stability to the ethanol test. PMID:23414830

  11. PRODUCTION IMPROVEMENT FROM INCREASED PERMEABILITY USING ENGINEERED BIOCHEMICAL SECONDARY RECOVERY METHODOLOGY IN MARGINAL WELLS OF THE EAST TEXAS FIELD

    SciTech Connect

    R.L. Bassett; William S. Botto

    2005-04-29

    A combination of a regenerating biochemical mixture and an organic surfactant has been applied to wells in the East Texas Field with the goal of restoring permeability, reversing formation damage, mobilizing hydrocarbons, and ultimately increasing production. Initial work in task 1 was designed to open the perforations and remove blockages of scale, asphaltene, and other corrosion debris. This was accomplished on three wells that produce from the Woodbine, and was necessary to prepare the wells for more substantial future treatments. Secondly, in task 2, two wells were treated with much larger quantities of the biochemical mixture, e.g. 25 gallons, with a 2% KCl carrier solution that carried the active biochemical solution into the near wellbore area adjacent to producing reservoir. After a 7 to 10 day acclamation and reaction period, the wells were put back into production. The biochemical solution successfully broke down the scale, paraffin and other binders blocking permeability and released significant debris, which was immediately produced into the flow lines and separators. Oil production was clearly improved and the removed debris was a maintenance issue until the surface equipment could be modified. In task 3 the permeability restrictions in a cylindrical area of 10 to 20 feet from the wellbore within the reservoir were treated with the biochemical solution. Fluid was forced into the producing horizon using the hydraulic head of the well filled with 2 % KCl solution, allowed to acclimate, and then withdrawn by pumping. The chloride content of the produce water was measured and production of oil and water monitored. The most significant effect in improving permeability and removing scale and high molecular weight hydrocarbons was accomplished in the wellbore perforations and near wellbore treatments of tasks 1 and 2. The effect the deeper insertion of solution in task 3 had minimal impact on production.

  12. The angiotensin converting enzyme inhibitory tripeptides Ile-Pro-Pro and Val-Pro-Pro show increasing permeabilities with increasing physiological relevance of absorption models.

    PubMed

    Foltz, Martin; Cerstiaens, Anja; van Meensel, Ans; Mols, Raf; van der Pijl, Pieter C; Duchateau, Guus S M J E; Augustijns, Patrick

    2008-08-01

    Transepithelial transport of the ACE inhibitory peptides Ile-Pro-Pro and Val-Pro-Pro was studied in different models of absorption. Apparent permeability (P(app)) values for absorptive transport across Caco-2 monolayers were 1.0+/-0.9 x 10(-8) (Ile-Pro-Pro) and 0.5+/-0.1 x 10(-8)cms(-1) (Val-Pro-Pro). Ex vivo transport across jejunal segments in the Ussing chamber was 5-times (Ile-Pro-Pro) to 10-times (Val-Pro-Pro) higher with no significant differences (p>0.05) observed between both peptides. The peptidase inhibitor bestatin increased permeability for the absorptive direction for Ile-Pro-Pro by twofold. Neither a transepithelial pH gradient nor increased apical tripeptide concentration nor longitudinal localization of the intestinal segment influenced P(app) in the ex vivo experiments. Val-Pro-Pro transport across Peyer's patches, however, was 4-times higher (P(app)=21.0+/-9.3 x10(-8)cms(-1)) as compared to duodenum (P(app)=4.8+/-1.4 x 10(-8)cms(-1)). In the in situ perfusion experiments P(app) values varied greatly among different animals ranging from 0.5 to 24.0 x10(-8)cms(-1) (Ile-Pro-Pro) and from 1.0 to 15.6 x 10(-8)cms(-1) (Val-Pro-Pro). In summary, Caco-2 and ex vivo absorption models differ considerably regarding their peptide permeability. The in situ model seems to be less appropriate because of the observed large variability in peptide permeability. The results of this study demonstrate that the ACE inhibitory peptides Ile-Pro-Pro and Val-Pro-Pro are absorbed partially undegraded. PMID:18490081

  13. Increasing Muscle Mass Improves Vascular Function in Obese (db/db) Mice

    PubMed Central

    Qiu, Shuiqing; Mintz, James D.; Salet, Christina D.; Han, Weihong; Giannis, Athanassios; Chen, Feng; Yu, Yanfang; Su, Yunchao; Fulton, David J.; Stepp, David W.

    2014-01-01

    Background A sedentary lifestyle is an independent risk factor for cardiovascular disease and exercise has been shown to ameliorate this risk. Inactivity is associated with a loss of muscle mass, which is also reversed with isometric exercise training. The relationship between muscle mass and vascular function is poorly defined. The aims of the current study were to determine whether increasing muscle mass by genetic deletion of myostatin, a negative regulator of muscle growth, can influence vascular function in mesenteric arteries from obese db/db mice. Methods and Results Myostatin expression was elevated in skeletal muscle of obese mice and associated with reduced muscle mass (30% to 50%). Myostatin deletion increased muscle mass in lean (40% to 60%) and obese (80% to 115%) mice through increased muscle fiber size (P<0.05). Myostatin deletion decreased adipose tissue in lean mice, but not obese mice. Markers of insulin resistance and glucose tolerance were improved in obese myostatin knockout mice. Obese mice demonstrated an impaired endothelial vasodilation, compared to lean mice. This impairment was improved by superoxide dismutase mimic Tempol. Deletion of myostatin improved endothelial vasodilation in mesenteric arteries in obese, but not in lean, mice. This improvement was blunted by nitric oxide (NO) synthase inhibitor l‐NG‐nitroarginine methyl ester (l‐NAME). Prostacyclin (PGI2)‐ and endothelium‐derived hyperpolarizing factor (EDHF)‐mediated vasodilation were preserved in obese mice and unaffected by myostatin deletion. Reactive oxygen species) was elevated in the mesenteric endothelium of obese mice and down‐regulated by deletion of myostatin in obese mice. Impaired vasodilation in obese mice was improved by NADPH oxidase inhibitor (GKT136901). Treatment with sepiapterin, which increases levels of tetrahydrobiopterin, improved vasodilation in obese mice, an improvement blocked by l‐NAME. Conclusions Increasing muscle mass by genetic

  14. Acute exercise improves endothelial function despite increasing vascular resistance during stress in smokers and nonsmokers.

    PubMed

    Rooks, Cherie R; McCully, Kevin K; Dishman, Rod K

    2011-09-01

    The present study examined the effect of acute exercise on flow mediated dilation (FMD) and reactivity to neurovascular challenges among female smokers and nonsmokers. FMD was determined by arterial diameter, velocity, and blood flow measured by Doppler ultrasonography after forearm occlusion. Those measures and blood pressure and heart rate were also assessed in response to forehead cold and the Stroop Color-Word Conflict Test (CWT) before and after 30 min of rest or an acute bout of cycling exercise (∼50% VO₂ peak). Baseline FMD and stress responses were not different between smokers and nonsmokers. Compared to passive rest, exercise increased FMD and decreased arterial velocity and blood flow responses during the Stroop CWT and forehead cold in both groups. Overall, acute exercise improved endothelial function among smokers and nonsmokers despite increasing vascular resistance and reducing limb blood flow during neurovascular stress. PMID:21457274

  15. Improved Intratumoral Oxygenation Through Vascular Normalization Increases Glioma Sensitivity to Ionizing Radiation

    SciTech Connect

    McGee, Mackenzie C.; Hamner, J. Blair; Williams, Regan F.; Rosati, Shannon F.; Sims, Thomas L.; Ng, Catherine Y.; Gaber, M. Waleed; Calabrese, Christopher; Wu Jianrong; Nathwani, Amit C.; Merchant, Thomas E.; Davidoff, Andrew M.

    2010-04-15

    Purpose: Ionizing radiation, an important component of glioma therapy, is critically dependent on tumor oxygenation. However, gliomas are notable for areas of necrosis and hypoxia, which foster radioresistance. We hypothesized that pharmacologic manipulation of the typically dysfunctional tumor vasculature would improve intratumoral oxygenation and, thus, the antiglioma efficacy of ionizing radiation. Methods and Materials: Orthotopic U87 xenografts were treated with either continuous interferon-beta (IFN-beta) or bevacizumab, alone, or combined with cranial irradiation (RT). Tumor growth was assessed by quantitative bioluminescence imaging; the tumor vasculature using immunohistochemical staining, and tumor oxygenation using hypoxyprobe staining. Results: Both IFN-beta and bevaziumab profoundly affected the tumor vasculature, albeit with different cellular phenotypes. IFN-beta caused a doubling in the percentage of area of perivascular cell staining, and bevacizumab caused a rapid decrease in the percentage of area of endothelial cell staining. However, both agents increased intratumoral oxygenation, although with bevacizumab, the effect was transient, being lost by 5 days. Administration of IFN-beta or bevacizumab before RT was significantly more effective than any of the three modalities as monotherapy or when RT was administered concomitantly with IFN-beta or bevacizumab or 5 days after bevacizumab. Conclusion: Bevacizumab and continuous delivery of IFN-beta each induced significant changes in glioma vascular physiology, improving intratumoral oxygenation and enhancing the antitumor activity of ionizing radiation. Additional investigation into the use and timing of these and other agents that modify the vascular phenotype, combined with RT, is warranted to optimize cytotoxic activity.

  16. Increasing Production from Low-Permeability Gas Reservoirs by Optimizing Zone Isolation for Successful Stimulation Treatments

    SciTech Connect

    Fred Sabins

    2005-03-31

    Maximizing production from wells drilled in low-permeability reservoirs, such as the Barnett Shale, is determined by cementing, stimulation, and production techniques employed. Studies show that cementing can be effective in terms of improving fracture effectiveness by 'focusing' the frac in the desired zone and improving penetration. Additionally, a method is presented for determining the required properties of the set cement at various places in the well, with the surprising result that uphole cement properties in wells destined for multiple-zone fracturing is more critical than those applied to downhole zones. Stimulation studies show that measuring pressure profiles and response during Pre-Frac Injection Test procedures prior to the frac job are critical in determining if a frac is indicated at all, as well as the type and size of the frac job. This result is contrary to current industry practice, in which frac jobs are designed well before the execution, and carried out as designed on location. Finally, studies show that most wells in the Barnett Shale are production limited by liquid invasion into the wellbore, and determinants are presented for when rod or downhole pumps are indicated.

  17. Polyhydroxybutyrate Targets Mammalian Mitochondria and Increases Permeability of Plasmalemmal and Mitochondrial Membranes

    PubMed Central

    Elustondo, Pia A.; Angelova, Plamena R.; Kawalec, Michał; Michalak, Michał; Kurcok, Piotr; Abramov, Andrey Y.; Pavlov, Evgeny V.

    2013-01-01

    Poly(3-hydroxybutyrate) (PHB) is a polyester of 3-hydroxybutyric acid (HB) that is ubiquitously present in all organisms. In higher eukaryotes PHB is found in the length of 10 to 100 HB units and can be present in free form as well as in association with proteins and inorganic polyphosphate. It has been proposed that PHB can mediate ion transport across lipid bilayer membranes. We investigated the ability of PHB to interact with living cells and isolated mitochondria and the effects of these interactions on membrane ion transport. We performed experiments using a fluorescein derivative of PHB (fluo-PHB). We found that fluo-PHB preferentially accumulated inside the mitochondria of HeLa cells. Accumulation of fluo-PHB induced mitochondrial membrane depolarization. This membrane depolarization was significantly delayed by the inhibitor of the mitochondrial permeability transition pore - Cyclosporin A. Further experiments using intact cells as well as isolated mitochondria confirmed that the effects of PHB directly linked to its ability to facilitate ion transport, including calcium, across the membranes. We conclude that PHB demonstrates ionophoretic properties in biological membranes and this effect is most profound in mitochondria due to the selective accumulation of the polymer in this organelle. PMID:24086638

  18. Polyhydroxybutyrate targets mammalian mitochondria and increases permeability of plasmalemmal and mitochondrial membranes.

    PubMed

    Elustondo, Pia A; Angelova, Plamena R; Kawalec, Michał; Michalak, Michał; Kurcok, Piotr; Abramov, Andrey Y; Pavlov, Evgeny V

    2013-01-01

    Poly(3-hydroxybutyrate) (PHB) is a polyester of 3-hydroxybutyric acid (HB) that is ubiquitously present in all organisms. In higher eukaryotes PHB is found in the length of 10 to 100 HB units and can be present in free form as well as in association with proteins and inorganic polyphosphate. It has been proposed that PHB can mediate ion transport across lipid bilayer membranes. We investigated the ability of PHB to interact with living cells and isolated mitochondria and the effects of these interactions on membrane ion transport. We performed experiments using a fluorescein derivative of PHB (fluo-PHB). We found that fluo-PHB preferentially accumulated inside the mitochondria of HeLa cells. Accumulation of fluo-PHB induced mitochondrial membrane depolarization. This membrane depolarization was significantly delayed by the inhibitor of the mitochondrial permeability transition pore - Cyclosporin A. Further experiments using intact cells as well as isolated mitochondria confirmed that the effects of PHB directly linked to its ability to facilitate ion transport, including calcium, across the membranes. We conclude that PHB demonstrates ionophoretic properties in biological membranes and this effect is most profound in mitochondria due to the selective accumulation of the polymer in this organelle. PMID:24086638

  19. Dual-effect laser handpiece for modification of tissue permeability

    NASA Astrophysics Data System (ADS)

    McMillan, Kathleen

    2011-03-01

    A new approach for improving the availability of topically applied drugs by reducing the permeability of dermis has been evaluated. The premise of this work is that photothermal vascular injury will reduce vascular uptake of drug in the dermis. The dermal distribution of two topically applied drugs, 5-fluorouracil and mitomycin C, is calculated, considering molecular diffusion and vascular uptake according to a distributed model, in the presence and absence of vascular injury. Intradermal drug exposures obtained are compared to exposures known to be effective in killing tumor cells. Combining the reduction in dermal permeability with fractional photothermal epidermal ablation to increase epidermal permeability may allow higher drug concentrations to be achieved in the skin. A newly developed laser handpiece for implementing the technique is described.

  20. Thiamylal sodium increased inflammation and the proliferation of vascular smooth muscle cells

    PubMed Central

    Hoka, Sumio

    2016-01-01

    Background Thiamylal sodium is a common anesthetic barbiturate prepared in alkaline solution for clinical use. There is no previously reported study on the effects of barbiturates on the inflammation and proliferation of vascular smooth muscle cells (VSMCs). Here, we examined the effects of clinical-grade thiamylal sodium solution (TSS) on the inflammation and proliferation of rat VSMCs. Methods Expression levels of interleukin (IL)-1α, IL-1β, IL-6, and toll-like receptors in rat VSMCs were detected by quantitative reverse transcription-polymerase chain reaction and microarray analyses. The production of IL-6 by cultured VSMCs or ex vivo-cultured rat aortic segments was detected in supernatants by enzyme-linked immunosorbent assay. VSMC proliferation and viability were determined by the water-soluble tetrazolium-1 assay and trypan blue staining, respectively. Results TSS increased expression of IL-1α, IL-6, and TLR4 in VSMCs in a dose-dependent manner, and reduced IL-1β expression. Ex vivo TSS stimulation of rat aorta also increased IL-6. Low concentrations of TSS enhanced VSMC proliferation, while high concentrations reduced both cell proliferation and viability. Expression of IL-1 receptor antagonist, which regulates cell proliferation, was not increased by TSS stimulation. Exposure of cells to the TSS additive, sodium carbonate, resulted in significant upregulation of IL-1α and IL-6 mRNA levels, to a greater extent than TSS. Conclusions TSS-induced proinflammatory cytokine production by VSMCs is caused by sodium carbonate. However, pure thiamylal sodium has an anti-inflammatory effect in VSMCs. TSS exposure to VSMCs may promote vascular inflammation, leading to the progression of atherosclerosis or in-stent restenosis, resulting in vessel bypass graft failure. PMID:27274372

  1. Crustal Permeability

    NASA Astrophysics Data System (ADS)

    Ingebritsen, S.; Gleeson, T.

    2014-12-01

    Existing data and models support a distinction between the hydrodynamics of the brittle upper crust, where topography, permeability contrasts, and magmatic heat sources dominate patterns of flow and externally derived (meteoric) fluids are common, and the ductile lower crust, dominated by devolatilization reactions and internally derived fluids. The permeability structure of the uppermost (~<1 km) crust is highly heterogeneous, and controls include primary lithology, porosity, rheology, geochemistry, and tectonic and time-temperature histories of the rocks. Systematic permeability differences among original lithologies persist to contact-metamorphic depths of 3-10 km, but are not evident at regional-metamorphic depths of 10-30+ km - presumably because, at such depths, metamorphic textures become largely independent of the original lithology. Permeability can vary in time as well as space, and its temporal evolution may be gradual or abrupt: streamflow responses to moderate to large earthquakes demonstrate that dynamic stresses can instantaneously change permeability by factors of up to 20 on a regional scale, whereas a 10-fold decrease in the permeability of a package of shale in a compacting basin may require 107years. Temporal variation is enhanced by strong chemical and thermal disequilibrium; thus lab experiments involving hydrothermal flow in crystalline rocks under pressure, temperature, and chemistry gradients often result in 10-fold permeability decreases over daily to sub-annual time scales. Recent research on enhanced geothermal reservoirs, ore-forming systems, and the hydrologic effects of earthquakes consistently shows that shear dislocation caused by tectonic forcing or fluid injection can increase near-to intermediate-field permeability by factors of 100 to 1000. Nonetheless, considering permeability as static parameter is often a reasonable assumption for low-temperature hydrogeologic investigations with time scales of days to decades.

  2. Water increases the fluidity of intercellular membranes of stratum corneum: correlation with water permeability, elastic, and electrical resistance properties.

    PubMed

    Alonso, A; Meirelles, N C; Yushmanov, V E; Tabak, M

    1996-05-01

    We used the spin label electron spin resonance technique to monitor the hydration effect on the molecular dynamics of lipids at C-5, C-12, and C-16 positions of the alkyl chain. Increase in water content of neonatal rat SC leads to an increase in membrane fluidity, especially in the region near the membrane-water interface. The effect is less pronounced deeper inside the hydrophobic core. The reorientational correlation time at the C-16 position of hydrocarbon chains showed a higher change up to approximately 18% (w/w) of water content. This behavior was accompanied by an exponential decay both in elastic modulus and electrical resistance with water content. On the contrary, the segmental motion at C-5 and C-12 positions of the chain and the permeability constant increased in the range of around 18% w/w) up to the fully hydrated condition (58 +/- 7%). Our results give a better characterization of the fluidity of SC and show that it is the principal parameter involved in the mechanism of the permeability of different compounds through skin. PMID:8618039

  3. OBESITY INCREASES BLOOD PRESSURE, CEREBRAL VASCULAR REMODELING, AND SEVERITY OF STROKE IN THE ZUCKER RAT

    PubMed Central

    Osmond, Jessica M.; Mintz, James D.; Dalton, Brian; Stepp, David W.

    2009-01-01

    Obesity is a risk factor for stroke, but the mechanisms by which obesity increases stroke risk are unknown. Because microvascular architecture contributes to the outcome of stroke, we hypothesized that middle cerebral arteries (MCA) from obese Zucker rats (OZR) undergo inward remodeling and develop increased myogenic tone compared to lean Zucker rats (LZR). We further hypothesized that OZR have an increased infarct following cerebral ischemia and that changes in vascular structure and function correlate with the development of hypertension in OZR. Blood pressure was measured by telemetery in LZR and OZR from 6 to 17 weeks of age. Vessel structure and function were assessed in isolated MCAs. Stroke damage was assessed after ischemia was induced for 60 minutes followed by 24 hours of reperfusion. While mean arterial pressure (MAP) was similar between young rats (6–8 weeks old), MAP was higher in adult (14–17 weeks old) OZR than LZR. MCAs from OZR had a smaller lumen diameter and increased myogenic vasoconstriction compared to those from LZR. Following ischemia, infarction was 58% larger in OZR than LZR. Prior to the development of hypertension, MCA myogenic reactity and lumen diameter as well as infarct size were similar between young LZR and OZR. Our results indicate that the MCAs of OZR undergo structural remodeling and that these rats have greater cerebral injury following cerebral ischemia. These cerebrovascular changes correlate with the development of hypertension and suggest that the increased blood pressure may be the major determinant for stroke risk in obese individuals. PMID:19104000

  4. CTGF increases vascular endothelial growth factor-dependent angiogenesis in human synovial fibroblasts by increasing miR-210 expression

    PubMed Central

    Liu, S-C; Chuang, S-M; Hsu, C-J; Tsai, C-H; Wang, S-W; Tang, C-H

    2014-01-01

    Connective tissue growth factor (CTGF, a.k.a. CCN2) is inflammatory mediator and abundantly expressed in osteoarthritis (OA). Angiogenesis is essential for OA progression. Here, we investigated the role of CTGF in vascular endothelial growth factor (VEGF) production and angiogenesis in OA synovial fibroblasts (OASFs). We showed that expression of CTGF and VEGF in synovial fluid were higher in OA patients than in controls. Directly applying CTGF to OASFs increased VEGF production then promoted endothelial progenitor cells tube formation and migration. CTGF induced VEGF by raising miR-210 expression via PI3K, AKT, ERK, and nuclear factor-κB (NF-κB)/ELK1 pathways. CTGF-mediating miR-210 upregulation repressed glycerol-3-phosphate dehydrogenase 1-like (GPD1L) expression and PHD activity and subsequently promoted hypoxia-inducible factor (HIF)-1α-dependent VEGF expression. Knockdown of CTGF decreased VEGF expression and abolished OASF-conditional medium-mediated angiogenesis in vitro as well as angiogenesis in chick chorioallantoic membrane and Matrigel-plug nude mice model in vivo. Taken together, our results suggest CTGF activates PI3K, AKT, ERK, and NF-κB/ELK1 pathway, leading to the upregulation of miR-210, contributing to inhibit GPD1L expression and prolyl hydroxylases 2 activity, promoting HIF-1α-dependent VEGF expression and angiogenesis in human synovial fibroblasts. PMID:25341039

  5. Circulating Zonulin, a Marker of Intestinal Permeability, Is Increased in Association with Obesity-Associated Insulin Resistance

    PubMed Central

    Moreno-Navarrete, José María; Sabater, Mònica; Ortega, Francisco; Ricart, Wifredo; Fernández-Real, José Manuel

    2012-01-01

    Zonulin is the only physiological mediator known to regulate intestinal permeability reversibly by modulating intercellular tight junctions. To investigate the relationship between intestinal permeability and obesity-associated metabolic disturbances in humans, we aimed to study circulating zonulin according to obesity and insulin resistance. Circulating zonulin (ELISA) was measured in 123 caucasian men in association with inflammatory and metabolic parameters (including minimal model-measured insulin sensitivity). Circulating zonulin increased with body mass index (BMI), waist to hip ratio (WHR), fasting insulin, fasting triglycerides, uric acid and IL-6, and negatively correlated with HDL-cholesterol and insulin sensitivity. In multiple regression analysis, insulin sensitivity (p = 0.002) contributed independently to circulating zonulin variance, after controlling for the effects of BMI, fasting triglycerides and age. When circulating IL-6 was added to this model, only BMI (p = 0.01) contributed independently to circulating zonulin variance. In conclusion, the relationship between insulin sensitivity and circulating zonulin might be mediated through the obesity-related circulating IL-6 increase. PMID:22629362

  6. Extracellular signal regulated kinase and GEF-H1 mediate depolarization-induced Rho activation and paracellular permeability increase

    PubMed Central

    Waheed, Faiza; Speight, Pam; Kawai, Glenn; Dan, Qinghong; Kapus, András; Szászi, Katalin

    2011-01-01

    Plasma membrane depolarization activates the Rho/Rho kinase (ROK) pathway and thereby enhances myosin light chain (MLC) phosphorylation, which in turn is thought to be a key regulator of paracellular permeability. However, the upstream mechanisms that couple depolarization to Rho activation and permeability changes are unknown. Here we show that three different depolarizing stimuli (high extracellular [K+], the lipophilic cation tetraphenylphosphonium or L-alanine, which is taken up by electrogenic Na+-cotransport) all provoke robust phosphorylation of Extracellular Signal Regulated Kinase (ERK) in LLC-PK1 and MDCK cells. Importantly, inhibition of ERK prevented the depolarization-induced activation of Rho. Searching for the underlying mechanism, we have identified GEF-H1 as the ERK-regulated critical exchange factor, responsible for the depolarization-induced Rho activation. This conclusion is based on our findings that a) depolarization activated GEF-H1, but not p115RhoGEF; b) siRNA-mediated GEF-H1 silencing eliminated the activation of the Rho pathway; c) ERK inhibition prevented the activation of GEF-H1. Moreover, we found that the Na+/K+ pump inhibitor ouabain also caused ERK, GEF-H1 and Rho activation, partially due to its depolarizing effect. Regarding functional consequences of this newly identified pathway, we found that depolarization increased paracellular permeability in LLC-PK1 and MDCK cells, and this effect was mitigated by inhibiting myosin using blebbistatin or a dominant negative (phosphorylation-incompetent) MLC. Taken together, we propose, that the ERK/GEF-H1/Rho/ROK/pMLC pathway could be a central mechanism whereby electrogenic transmembrane transport processes control myosin phosphorylation and regulate paracellular transport in the tubular epithelium. PMID:20237148

  7. Cyclic strain increases protease-activated receptor-1 expression in vascular smooth muscle cells

    NASA Technical Reports Server (NTRS)

    Nguyen, K. T.; Frye, S. R.; Eskin, S. G.; Patterson, C.; Runge, M. S.; McIntire, L. V.

    2001-01-01

    Cyclic strain regulates many vascular smooth muscle cell (VSMC) functions through changing gene expression. This study investigated the effects of cyclic strain on protease-activated receptor-1 (PAR-1) expression in VSMCs and the possible signaling pathways involved, on the basis of the hypothesis that cyclic strain would enhance PAR-1 expression, reflecting increased thrombin activity. Uniaxial cyclic strain (1 Hz, 20%) of cells cultured on elastic membranes induced a 2-fold increase in both PAR-1 mRNA and protein levels. Functional activity of PAR-1, as assessed by cell proliferation in response to thrombin, was also increased by cyclic strain. In addition, treatment of cells with antioxidants or an NADPH oxidase inhibitor blocked strain-induced PAR-1 expression. Preincubation of cells with protein kinase inhibitors (staurosporine or Ro 31-8220) enhanced strain-increased PAR-1 expression, whereas inhibitors of NO synthase, tyrosine kinase, and mitogen-activated protein kinases had no effect. Cyclic strain in the presence of basic fibroblast growth factor induced PAR-1 mRNA levels beyond the effect of cyclic strain alone, whereas no additive effect was observed between cyclic strain and platelet-derived growth factor-AB. Our findings that cyclic strain upregulates PAR-1 mRNA expression but that shear stress downregulates this gene in VSMCs provide an opportunity to elucidate signaling differences by which VSMCs respond to different mechanical forces.

  8. Arsenic Exposure Increases Monocyte Adhesion to the Vascular Endothelium, a Pro-Atherogenic Mechanism.

    PubMed

    Lemaire, Maryse; Negro Silva, Luis Fernando; Lemarié, Catherine A; Bolt, Alicia M; Flores Molina, Manuel; Krohn, Regina M; Smits, Judit E; Lehoux, Stéphanie; Mann, Koren K

    2015-01-01

    Epidemiological studies have shown that arsenic exposure increases atherosclerosis, but the mechanisms underlying this relationship are unknown. Monocytes, macrophages and platelets play an important role in the initiation of atherosclerosis. Circulating monocytes and macrophages bind to the activated vascular endothelium and migrate into the sub-endothelium, where they become lipid-laden foam cells. This process can be facilitated by platelets, which favour monocyte recruitment to the lesion. Thus, we assessed the effects of low-to-moderate arsenic exposure on monocyte adhesion to endothelial cells, platelet activation and platelet-monocyte interactions. We observed that arsenic induces human monocyte adhesion to endothelial cells in vitro. These findings were confirmed ex vivo using a murine organ culture system at concentrations as low as 10 ppb. We found that both cell types need to be exposed to arsenic to maximize monocyte adhesion to the endothelium. This adhesion process is specific to monocyte/endothelium interactions. Hence, no effect of arsenic on platelet activation or platelet/leukocyte interaction was observed. We found that arsenic increases adhesion of mononuclear cells via increased CD29 binding to VCAM-1, an adhesion molecule found on activated endothelial cells. Similar results were observed in vivo, where arsenic-exposed mice exhibit increased VCAM-1 expression on endothelial cells and increased CD29 on circulating monocytes. Interestingly, expression of adhesion molecules and increased binding can be inhibited by antioxidants in vitro and in vivo. Together, these data suggest that arsenic might enhance atherosclerosis by increasing monocyte adhesion to endothelial cells, a process that is inhibited by antioxidants. PMID:26332580

  9. PRODUCTION IMPROVEMENT FROM INCREASED PERMEABILITY USING ENGINEERED BIOCHEMICAL SECONDARY RECOVERY METHODOLOGY IN MARGINAL WELLS OF THE EAST TEXAS FIELD

    SciTech Connect

    R.L. Bassett; William S. Botto

    2004-07-14

    A regenerating biochemical mixture and organic surfactant has been applied to wells in the East Texas Field with the goal of restoring permeability, reversing formation damage, mobilizing hydrocarbons, and ultimately increasing production. Initial work in task 1 was designed to open the perforations and remove blockages of scale, asphaltene, and other corrosion debris. This was accomplished on three wells that produce from the Woodbine, and was necessary to prepare the wells for more substantial future treatments. Secondly, in task 2, two wells were treated with much larger quantities of the biochemical mixture, e.g. 25 gallons, followed by approximately 140 barrels of a 2% KCl solution that carried the active biochemical solution into the near wellbore area and into the producing reservoir. After a 7 to 10 day acclamation and reaction period, the wells were put back into production. The biochemical solution successfully broke down the scale, paraffin and other binders blocking permeability and released significant debris which was immediately produced into the flowlines and separators. Oil production was clearly improved and the removed debris was a maintenance issue until the surface equipment could be modified. Next steps include larger treatments and tracer tests to better understand the fluid flow dynamics.

  10. Increased vascular thromboxane generation impairs dilation of skeletal muscle arterioles of obese Zucker rats with reduced oxygen tension

    PubMed Central

    Goodwill, Adam G.; James, Milinda E.; Frisbee, Jefferson C.

    2008-01-01

    This study determined if altered vascular prostacyclin (PGI2) and/or thromboxane A2 (TxA2) production with reduced Po2 contributes to impaired hypoxic dilation of skeletal muscle resistance arterioles of obese Zucker rats (OZRs) versus lean Zucker rats (LZRs). Mechanical responses were assessed in isolated gracilis muscle arterioles following reductions in Po2 under control conditions and following pharmacological interventions inhibiting arachidonic acid metabolism and nitric oxide synthase and alleviating elevated vascular oxidant stress. The production of arachidonic acid metabolites was assessed using pooled arteries from OZRs and LZRs in response to reduced Po2. Hypoxic dilation, endothelium-dependent in both strains, was attenuated in OZRs versus LZRs. Nitric oxide synthase inhibition had no significant impact on hypoxic dilation in either strain. Cyclooxygenase inhibition dramatically reduced hypoxic dilation in LZRs and abolished responses in OZRs. Treatment of arterioles from OZRs with polyethylene glycol-superoxide dismutase improved hypoxic dilation, and this improvement was entirely cyclooxygenase dependent. Vascular PGI2 production with reduced Po2 was similar between strains, although TxA2 production was increased in OZRs, a difference that was attenuated by treatment of vessels from OZRs with polyethylene glycol-superoxide dismutase. Both blockade of PGH2/TxA2 receptors and inhibition of thromboxane synthase increased hypoxic dilation in OZR arterioles. These results suggest that a contributing mechanism underlying impaired hypoxic dilation of skeletal muscle arterioles of OZRs may be an increased vascular production of TxA2, which competes against the vasodilator influences of PGI2. These results also suggest that the elevated vascular oxidant stress inherent in metabolic syndrome may contribute to the increased vascular TxA2 production and may blunt vascular sensitivity to PGI2. PMID:18689495

  11. Increased vascular thromboxane generation impairs dilation of skeletal muscle arterioles of obese Zucker rats with reduced oxygen tension.

    PubMed

    Goodwill, Adam G; James, Milinda E; Frisbee, Jefferson C

    2008-10-01

    This study determined if altered vascular prostacyclin (PGI(2)) and/or thromboxane A(2) (TxA(2)) production with reduced Po(2) contributes to impaired hypoxic dilation of skeletal muscle resistance arterioles of obese Zucker rats (OZRs) versus lean Zucker rats (LZRs). Mechanical responses were assessed in isolated gracilis muscle arterioles following reductions in Po(2) under control conditions and following pharmacological interventions inhibiting arachidonic acid metabolism and nitric oxide synthase and alleviating elevated vascular oxidant stress. The production of arachidonic acid metabolites was assessed using pooled arteries from OZRs and LZRs in response to reduced Po(2). Hypoxic dilation, endothelium-dependent in both strains, was attenuated in OZRs versus LZRs. Nitric oxide synthase inhibition had no significant impact on hypoxic dilation in either strain. Cyclooxygenase inhibition dramatically reduced hypoxic dilation in LZRs and abolished responses in OZRs. Treatment of arterioles from OZRs with polyethylene glycol-superoxide dismutase improved hypoxic dilation, and this improvement was entirely cyclooxygenase dependent. Vascular PGI(2) production with reduced Po(2) was similar between strains, although TxA(2) production was increased in OZRs, a difference that was attenuated by treatment of vessels from OZRs with polyethylene glycol-superoxide dismutase. Both blockade of PGH(2)/TxA(2) receptors and inhibition of thromboxane synthase increased hypoxic dilation in OZR arterioles. These results suggest that a contributing mechanism underlying impaired hypoxic dilation of skeletal muscle arterioles of OZRs may be an increased vascular production of TxA(2), which competes against the vasodilator influences of PGI(2). These results also suggest that the elevated vascular oxidant stress inherent in metabolic syndrome may contribute to the increased vascular TxA(2) production and may blunt vascular sensitivity to PGI(2). PMID:18689495

  12. Pathogenesis of periodontitis: a major arginine-specific cysteine proteinase from Porphyromonas gingivalis induces vascular permeability enhancement through activation of the kallikrein/kinin pathway.

    PubMed Central

    Imamura, T; Pike, R N; Potempa, J; Travis, J

    1994-01-01

    To elucidate the mechanism of production of an inflammatory exudate, gingival crevicular fluid (GCF), from periodontal pockets in periodontitis, we examined the vascular permeability enhancement (VPE) activity induced by an arginine-specific cysteine proteinase, Arg-gingipain-1 (RGP-1), produced by a major periopathogenic bacterium, Porphyromonas gingivalis. Intradermal injections into guinea pigs of RGP-1 (> 10(-8) M), or human plasma incubated with RGP-1 (> 10(-9) M), induced VPE in a dose- and activity-dependent manner but with different time courses for the two routes of production. VPE activity induced by RGP-1 was augmented by kininase inhibitors, inhibited by a kallikrein inhibitor and unaffected by an antihistamine drug. The VPE activity in human plasma incubated with RGP-1 also correlated closely with generation of bradykinin (BK). RGP-1 induced 30-40% less VPE activity in Hageman factor-deficient plasma and no VPE in plasma deficient in either prekallikrein (PK) or high molecular weight kininogen (HMWK). After incubation with RGP-1, plasma deficient in PK or HMWK, reconstituted with each missing protein, caused VPE, as did a mixture of purified PK and HMWK, but RGP-1 induced no VPE from HMWK. The VPE of extracts of clinically isolated P. gingivalis were reduced to about 10% by anti-RGP-1-IgG, leupeptin, or tosyl-L-lysine chloromethyl ketone, which paralleled effects observed with RGP-1. These results indicate that RGP-1 is the major VPE factor of P. gingivalis, inducing this activity through PK activation and subsequent BK release, resulting in GCF production at sites of periodontitis caused by infection with this organism. Images PMID:8040277

  13. Roemerine Improves the Survival Rate of Septicemic BALB/c Mice by Increasing the Cell Membrane Permeability of Staphylococcus aureus

    PubMed Central

    He, Gonghao; Wang, Chengying; Ma, Chaoyu; Luo, Xiaoxing; Hou, Zheng; Xu, Guili

    2015-01-01

    Staphylococcus aureus is one of the most frequently occurring hospital- and community-associated pathogenic bacteria featuring high morbidity and mortality. The occurrence of methicillin-resistant S. aureus (MRSA) has increased persistently over the years. Therefore, developing novel anti-MRSA drugs to circumvent drug resistance of S. aureus is highly important. Roemerine, an aporphine alkaloid, has previously been reported to exhibit antibacterial activity. The present study aimed to investigate whether roemerine can maintain these activities against S.aureus in vivo and further explore the underlying mechanism. We found that roemerine is effective in vitro against four S. aureus strains as well as in vivo against MRSA insepticemic BALB/c mice. Furthermore, roemerine was found to increase cell membrane permeability in a concentration-dependent manner. These findings suggest that roemerine may be developed as a promising compound for treating S. aureus, especially methicillin-resistant strains of these bacteria. PMID:26606133

  14. Granulocytes and phorbol myristate acetate increase permeability to albumin of cultured endothelial monolayers and isolated perfused lungs. Role of oxygen radicals and granulocyte adherence.

    PubMed

    Shasby, D M; Shasby, S S; Peach, M J

    1983-01-01

    Human granulocytes and phorbol myristate acetate (PMA) increased permeability to albumin of monolayers of cultured endothelial cells grown on micropore filters. Granulocytes from a patient with chronic granulomatous disease and PMA did not increase endothelial permeability to albumin, demonstrating that the increase in permeability is dependent on granulocyte-derived oxygen radicals. When granulocytes were separated from the endothelial cells by a micropore filter, granulocytes and PMA no longer increased endothelial permeability to albumin, demonstrating that PMA-stimulated granulocytes must be closely approximated to endothelial cells to increase endothelial permeability. The relevance of these in vitro findings to an intact microvasculature was confirmed by demonstrating that agents that reduce granulocyte adherence to endothelium reduce edema formed in isolated lungs by granulocytes and PMA, an oxygen radical dependent process. Pretreatment of granulocytes with cytochalasin B or addition of 2% dextran to isolated lung perfusates reduced granulocyte adherence and markedly reduced edema formation in isolated lungs. These studies demonstrate that PMA-stimulated granulocytes must be closely apposed to endothelial cells to increase endothelial permeability through an oxygen-radical-dependent mechanism, and they suggest that reduction of granulocyte adherence may protect against granulocyte-dependent edema. PMID:6849554

  15. Recombinant erythropoietin increases blood pressure in experimental hypertension and uraemia without change in vascular cytosolic calcium.

    PubMed

    Roger, S D; Fluck, R J; McMahon, A C; Raine, A E

    1996-01-01

    The mechanism of erythropoietin-induced hypertension in dialysis patients is unclear. Intracellular calcium ([Ca2+]i) may be altered in both hypertension and uraemia, and the effects of both uraemia and r-HuEPO on vascular smooth muscle [Ca2+]i and blood pressure (BP) in Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR) were therefore studied. Male WKY and SHR underwent partial nephrectomy or sham operation. Three weeks later a 28-day period of treatment with either r-HuEPO 100 U/kg, s.c., 3 times/week or buffer was commenced (n = 10-12 for each subgroup). BP was measured weekly, by noninvasive Doppler tail-cuff assessment. [Ca2+]i was measured following loading with fura-2 in pooled, primary aortic vascular smooth muscle cells (VSMC). Serum urea and creatinine rose 3- to 4-fold after partial nephrectomy. Treatment with r-HuEPO did not change renal function further in either uraemic or control WKY or SHR. Haemoglobin increased in both non-uraemic WKY (16.2-20.3 g/dl) and SHR (16.4-20.5 g/dl) and uraemic animals (WKY 13.9-20.9; SHR 13.8-18.8 g/dl; p < 0.01 for all changes) following 4 weeks of r-HuEPO treatment. BP was unaffected by r-HuEPO in WKY but increased in nonuraemic SHR (210-250; p < 0.01) and in uraemic SHR (224-251 mm Hg; p < 0.001) at 4 weeks. VSMC [Ca2+]i was higher in SHR than WKY (121 vs. 83 nmol/l; MANOVA p < 0.05) but no effect of uraemia or r-HuEPO on [Ca2+]i was detected. In conclusion, the hypertensive effects of r-HuEPO are augmented both in a genetic model of hypertension and in uraemia. Although VSMC [Ca2+]i was elevated in SHR, the further increase in BP induced by r-HuEPO was not associated with alterations in VSMC cytosolic calcium. PMID:8773347

  16. Chlorogenic Acid Decreases Intestinal Permeability and Increases Expression of Intestinal Tight Junction Proteins in Weaned Rats Challenged with LPS

    PubMed Central

    Ruan, Zheng; Liu, Shiqiang; Zhou, Yan; Mi, Shumei; Liu, Gang; Wu, Xin; Yao, Kang; Assaad, Houssein; Deng, Zeyuan; Hou, Yongqing; Wu, Guoyao; Yin, Yulong

    2014-01-01

    Chlorogenic acid, a natural phenolic acid present in fruits and plants, provides beneficial effects for human health. The objectives of this study were to investigate whether chlorogenic acid (CHA) could improve the intestinal barrier integrity for weaned rats with lipopolysaccharide (LPS) challenge. Thirty-two weaned male Sprague Dawley rats (21±1 d of age; 62.26±2.73 g) were selected and randomly allotted to four treatments, including weaned rat control, LPS-challenged and chlorogenic acid (CHA) supplemented group (orally 20 mg/kg and 50 mg/kg body). Dietary supplementation with CHA decreased (P<0.05) the concentrations of urea and albumin in the serum, compared to the LPS-challenged group. The levels of IFN-γ and TNF-α were lower (P<0.05) in the jejunal and colon of weaned rats receiving CHA supplementation, in comparison with the control group. CHA supplementation increased (P<0.05) villus height and the ratio of villus height to crypt depth in the jejunal and ileal mucosae under condictions of LPS challenge. CHA supplementation decreased (P<0.05) intestinal permeability, which was indicated by the ratio of lactulose to mannitol and serum DAO activity, when compared to weaned rats with LPS challenge. Immunohistochemical analysis of tight junction proteins revealed that ZO-1 and occludin protein abundances in the jejunum and colon were increased (P<0.05) by CHA supplementation. Additionally, results of immunoblot analysis revealed that the amount of occludin in the colon was also increased (P<0.05) in CHA-supplemented rats. In conclusion, CHA decreases intestinal permeability and increases intestinal expression of tight junction proteins in weaned rats challenged with LPS. PMID:24887396

  17. Oxidative LDL modification is increased in vascular dementia and is inversely associated with cognitive performance.

    PubMed

    Li, L; Willets, R S; Polidori, M C; Stahl, W; Nelles, G; Sies, H; Griffiths, H R

    2010-03-01

    It is not known whether the association between increased plasma homocysteine (Hcy) associated with LDL modification and propensity for LDL uptake by macrophages in cardiovascular disease patients holds true in vascular dementia (VaD). Plasma from 83 subjects diagnosed with Alzheimer's disease (AD), VaD, mild cognitive impairment (MCI) and from controls was analysed to examine (1) whether LDL isolated from the plasma of VaD is biochemically and functionally distinct from that isolated from AD, MCI or controls; and (2) whether such biomarkers of LDL phenotype are related to plasma folate levels, Hcy levels and/or to disease severity. Folate and vitamin B6 levels were significantly lower in VaD subjects than in controls. VaD-LDL showed increased protein carbonyl content (p < 0.05) and was more susceptible to scavenging by macrophages (p < 0.05) than AD- or control-LDL. Patients from the VaD cohort were more prevalent in the lowest tertile for HDL:LDL and the upper tertile for LDL oxidation; the combined parameters of HDL cholesterol, LDL oxidation and scavenging by macrophages show 87% sensitivity towards VaD detection. The association between folate deficiency, LDL modification and dysfunction in VaD but not in AD may provide a novel biomarker assessment to discriminate between the diseases. PMID:20166891

  18. A win-win solution in oral delivery of lipophilic drugs: supersaturation via amorphous solid dispersions increases apparent solubility without sacrifice of intestinal membrane permeability.

    PubMed

    Miller, Jonathan M; Beig, Avital; Carr, Robert A; Spence, Julie K; Dahan, Arik

    2012-07-01

    Recently, we have revealed a trade-off between solubility increase and permeability decrease when solubility-enabling oral formulations are employed. We have shown this trade-off phenomenon to be ubiquitous, and to exist whenever the aqueous solubility is increased via solubilizing excipients, regardless if the mechanism involves decreased free fraction (cyclodextrins complexation, surfactant micellization) or simple cosolvent solubilization. Discovering a way to increase drug solubility without concomitant decreased permeability represents a major advancement in oral delivery of lipophilic drugs and is the goal of this work. For this purpose, we sought to elucidate the solubility-permeability interplay when increased apparent solubility is obtained via supersaturation from an amorphous solid dispersion (ASD) formulation. A spray-dried ASD of the lipophilic drug progesterone was prepared in the hydrophilic polymer hydroxypropyl methylcellulose acetate succinate (HPMC-AS), which enabled supersaturation up to 4× the crystalline drug's aqueous solubility (8 μg/mL). The apparent permeability of progesterone from the ASD in HPMC-AS was then measured as a function of increasing apparent solubility (supersaturation) in the PAMPA and rat intestinal perfusion models. In contrast to previous cases in which apparent solubility increases via cyclodextrins, surfactants, and cosolvents resulted in decreased apparent permeability, supersaturation via ASD resulted in no decrease in apparent permeability with increasing apparent solubility. As a result, overall flux increased markedly with increasing apparent solubility via ASD as compared to the other formulation approaches. This work demonstrates that supersaturation via ASDs has a subtle yet powerful advantage over other solubility-enabling formulation approaches. That is, increased apparent solubility may be achieved without the expense of apparent intestinal membrane permeability. Thus, supersaturation via ASDs presents a

  19. Changes of blood flow, oxygen tension, action potential and vascular permeability induced by arterial ischemia or venous congestion on the spinal cord in canine model.

    PubMed

    Kobayashi, Shigeru; Yoshizawa, Hidezo; Shimada, Seiichiro; Guerrero, Alexander Rodríguez; Miyachi, Masaya

    2013-01-01

    It is generally considered that the genesis of myelopathy associated with the degenerative conditions of the spine may result from both mechanical compression and circulatory disturbance. Many references about spinal cord tissue ischemic damage can be found in the literature, but not detailed studies about spinal cord microvasculature damage related to congestion or blood permeability. This study investigates the effect of ischemia and congestion on the spinal cord using an in vivo model. The aorta was clamped as an ischemia model of the spinal cord and the inferior vena cava was clamped as a congestion model at the 6th costal level for 30 min using forceps transpleurally. Measurements of blood flow, partial oxygen pressure, and conduction velocity in the spinal cord were repeated over a period of 1 h after release of clamping. Finally, we examined the status of blood-spinal cord barrier under fluorescence and transmission electron microscope. Immediately after clamping of the inferior vena cava, the central venous pressure increased by about four times. Blood flow, oxygen tension and action potential were more severely affected by the aorta clamping; but this ischemic model did not show any changes of blood permeability in the spinal cord. The intramedullar edema was more easily produced by venous congestion than by arterial ischemia. In conclusions, venous congestion may be a preceding and essential factor of circulatory disturbance in the compressed spinal cord inducing myelopathy. PMID:22912247

  20. Surfactant proteins A and D inhibit the growth of Gram-negative bacteria by increasing membrane permeability.

    PubMed

    Wu, Huixing; Kuzmenko, Alexander; Wan, Sijue; Schaffer, Lyndsay; Weiss, Alison; Fisher, James H; Kim, Kwang Sik; McCormack, Francis X

    2003-05-01

    The pulmonary collectins, surfactant proteins A (SP-A) and D (SP-D), have been reported to bind lipopolysaccharide (LPS), opsonize microorganisms, and enhance the clearance of lung pathogens. In this study, we examined the effect of SP-A and SP-D on the growth and viability of Gram-negative bacteria. The pulmonary clearance of Escherichia coli K12 was reduced in SP-A-null mice and was increased in SP-D-overexpressing mice, compared with strain-matched wild-type controls. Purified SP-A and SP-D inhibited bacterial synthetic functions of several, but not all, strains of E. coli, Klebsiella pneumoniae, and Enterobacter aerogenes. In general, rough E. coli strains were more susceptible than smooth strains, and collectin-mediated growth inhibition was partially blocked by coincubation with rough LPS vesicles. Although both SP-A and SP-D agglutinated E. coli K12 in a calcium-dependent manner, microbial growth inhibition was independent of bacterial aggregation. At least part of the antimicrobial activity of SP-A and SP-D was localized to their C-terminal domains using truncated recombinant proteins. Incubation of E. coli K12 with SP-A or SP-D increased bacterial permeability. Deletion of the E. coli OmpA gene from a collectin-resistant smooth E. coli strain enhanced SP-A and SP-D-mediated growth inhibition. These data indicate that SP-A and SP-D are antimicrobial proteins that directly inhibit the proliferation of Gram-negative bacteria in a macrophage- and aggregation-independent manner by increasing the permeability of the microbial cell membrane. PMID:12750409

  1. Oxidized low density lipoprotein increases RANKL level in human vascular cells. Involvement of oxidative stress

    SciTech Connect

    Mazière, Cécile; Salle, Valéry; Gomila, Cathy; Mazière, Jean-Claude

    2013-10-18

    Highlights: •Oxidized LDL enhances RANKL level in human smooth muscle cells. •The effect of OxLDL is mediated by the transcription factor NFAT. •UVA, H{sub 2}O{sub 2} and buthionine sulfoximine also increase RANKL level. •All these effects are observed in human fibroblasts and endothelial cells. -- Abstract: Receptor Activator of NFκB Ligand (RANKL) and its decoy receptor osteoprotegerin (OPG) have been shown to play a role not only in bone remodeling but also in inflammation, arterial calcification and atherosclerotic plaque rupture. In human smooth muscle cells, Cu{sup 2+}-oxidized LDL (CuLDL) 10–50 μg/ml increased reactive oxygen species (ROS) and RANKL level in a dose-dependent manner, whereas OPG level was not affected. The lipid extract of CuLDL reproduced the effects of the whole particle. Vivit, an inhibitor of the transcription factor NFAT, reduced the CuLDL-induced increase in RANKL, whereas PKA and NFκB inhibitors were ineffective. LDL oxidized by myeloperoxidase (MPO-LDL), or other pro-oxidant conditions such as ultraviolet A (UVA) irradiation, incubation with H{sub 2}O{sub 2} or with buthionine sulfoximine (BSO), an inhibitor of glutathione synthesis{sub ,} also induced an oxidative stress and enhanced RANKL level. The increase in RANKL in pro-oxidant conditions was also observed in fibroblasts and endothelial cells. Since RANKL is involved in myocardial inflammation, vascular calcification and plaque rupture, this study highlights a new mechanism whereby OxLDL might, by generation of an oxidative stress, exert a deleterious effect on different cell types of the arterial wall.

  2. Perinatal hypoxia increases susceptibility to high-altitude polycythemia and attendant pulmonary vascular dysfunction.

    PubMed

    Julian, Colleen Glyde; Gonzales, Marcelino; Rodriguez, Armando; Bellido, Diva; Salmon, Carlos Salinas; Ladenburger, Anne; Reardon, Lindsay; Vargas, Enrique; Moore, Lorna G

    2015-08-15

    Perinatal exposures exert a profound influence on physiological function, including developmental processes vital for efficient pulmonary gas transfer throughout the lifespan. We extend the concept of developmental programming to chronic mountain sickness (CMS), a debilitating syndrome marked by polycythemia, ventilatory impairment, and pulmonary hypertension that affects ∼10% of male high-altitude residents. We hypothesized that adverse perinatal oxygenation caused abnormalities of ventilatory and/or pulmonary vascular function that increased susceptibility to CMS in adulthood. Subjects were 67 male high-altitude (3,600-4,100 m) residents aged 18-25 yr with excessive erythrocytosis (EE, Hb concentration ≥18.3 g/dl), a preclinical form of CMS, and 66 controls identified from a community-based survey (n = 981). EE subjects not only had higher Hb concentrations and erythrocyte counts, but also lower alveolar ventilation, impaired pulmonary diffusion capacity, higher systolic pulmonary artery pressure, lower pulmonary artery acceleration time, and more frequent right ventricular hypertrophy, than controls. Compared with controls, EE subjects were more often born to mothers experiencing hypertensive complications of pregnancy and hypoxia during the perinatal period, with each increasing the risk of developing EE (odds ratio = 5.25, P = 0.05 and odds ratio = 6.44, P = 0.04, respectively) after other factors known to influence EE status were taken into account. Adverse perinatal oxygenation is associated with increased susceptibility to EE accompanied by modest abnormalities of the pulmonary circulation that are independent of increased blood viscosity. The association between perinatal hypoxia and EE may be due to disrupted alveolarization and microvascular development, leading to impaired gas exchange and/or pulmonary hypertension. PMID:26092986

  3. Perinatal hypoxia increases susceptibility to high-altitude polycythemia and attendant pulmonary vascular dysfunction

    PubMed Central

    Gonzales, Marcelino; Rodriguez, Armando; Bellido, Diva; Salmon, Carlos Salinas; Ladenburger, Anne; Reardon, Lindsay; Vargas, Enrique; Moore, Lorna G.

    2015-01-01

    Perinatal exposures exert a profound influence on physiological function, including developmental processes vital for efficient pulmonary gas transfer throughout the lifespan. We extend the concept of developmental programming to chronic mountain sickness (CMS), a debilitating syndrome marked by polycythemia, ventilatory impairment, and pulmonary hypertension that affects ∼10% of male high-altitude residents. We hypothesized that adverse perinatal oxygenation caused abnormalities of ventilatory and/or pulmonary vascular function that increased susceptibility to CMS in adulthood. Subjects were 67 male high-altitude (3,600–4,100 m) residents aged 18–25 yr with excessive erythrocytosis (EE, Hb concentration ≥18.3 g/dl), a preclinical form of CMS, and 66 controls identified from a community-based survey (n = 981). EE subjects not only had higher Hb concentrations and erythrocyte counts, but also lower alveolar ventilation, impaired pulmonary diffusion capacity, higher systolic pulmonary artery pressure, lower pulmonary artery acceleration time, and more frequent right ventricular hypertrophy, than controls. Compared with controls, EE subjects were more often born to mothers experiencing hypertensive complications of pregnancy and hypoxia during the perinatal period, with each increasing the risk of developing EE (odds ratio = 5.25, P = 0.05 and odds ratio = 6.44, P = 0.04, respectively) after other factors known to influence EE status were taken into account. Adverse perinatal oxygenation is associated with increased susceptibility to EE accompanied by modest abnormalities of the pulmonary circulation that are independent of increased blood viscosity. The association between perinatal hypoxia and EE may be due to disrupted alveolarization and microvascular development, leading to impaired gas exchange and/or pulmonary hypertension. PMID:26092986

  4. The IncP plasmid-encoded cell envelope-associated DNA transfer complex increases cell permeability.

    PubMed Central

    Daugelavicius, R; Bamford, J K; Grahn, A M; Lanka, E; Bamford, D H

    1997-01-01

    IncP-type plasmids are broad-host-range conjugative plasmids. DNA translocation requires DNA transfer-replication functions and additional factors required for mating pair formation (Mpf). The Mpf system is located in the cell membranes and is responsible for DNA transport from the donor to the recipient. The Mpf complex acts as a receptor for IncP-specific phages such as PRD1. In this investigation, we quantify the Mpf complexes on the cell surface by a phage receptor saturation technique. Electrochemical measurements are used to show that the Mpf complex increases cell envelope permeability to lipophilic compounds and ATP. In addition it reduces the ability of the cells to accumulate K+. However, the Mpf complex does not dissipate the membrane voltage. The Mpf complex is rapidly disassembled when intracellular ATP concentration is decreased, as measured by a PRD1 adsorption assay. PMID:9260964

  5. Bovine parotid secretory protein: structure, expression and relatedness to other BPI (bactericidal/permeability-increasing protein)-like proteins.

    PubMed

    Wheeler, T T; Hood, K; Oden, K; McCracken, J; Morris, C A

    2003-08-01

    Members of the family of BPI (bactericidal/permeability-increasing protein)-like proteins are as yet incompletely characterized, particularly in cattle, where full-length sequence information is available for only three of the 13 family members known from other species. Structural bioinformatic analyses incorporating bovine homologues of several members of the BPI-like protein family, including two forms of bovine parotid secretory protein (PSP), showed that this family is also present in cattle. Expression analyses of several members of the BPI-like protein family in cattle, including PSP (Bsp30), von Ebner's minor salivary gland protein (VEMSGP) and lung-specific X protein (LUNX), showed a restricted pattern of expression, consistent with earlier hypotheses that these proteins function in the innate immune response to bacteria. The possible role of bovine PSP in susceptibility to pasture bloat in cattle is discussed. PMID:12887305

  6. Burn Injury Alters the Intestinal Microbiome and Increases Gut Permeability and Bacterial Translocation

    PubMed Central

    Earley, Zachary M.; Akhtar, Suhail; Green, Stefan J.; Naqib, Ankur; Khan, Omair; Cannon, Abigail R.; Hammer, Adam M.; Morris, Niya L.; Li, Xiaoling; Eberhardt, Joshua M.; Gamelli, Richard L; Kennedy, Richard H.; Choudhry, Mashkoor A.

    2015-01-01

    Sepsis remains one of the leading causes of death in burn patients who survive the initial insult of injury. Disruption of the intestinal epithelial barrier has been shown after burn injury; this can lead to the translocation of bacteria or their products (e.g., endotoxin) from the intestinal lumen to the circulation, thereby increasing the risk for sepsis in immunocompromised individuals. Since the maintenance of the epithelial barrier is largely dependent on the intestinal microbiota, we examined the diversity of the intestinal microbiome of severely burned patients and a controlled mouse model of burn injury. We show that burn injury induces a dramatic dysbiosis of the intestinal microbiome of both humans and mice and allows for similar overgrowths of Gram-negative aerobic bacteria. Furthermore, we show that the bacteria increasing in abundance have the potential to translocate to extra-intestinal sites. This study provides an insight into how the diversity of the intestinal microbiome changes after burn injury and some of the consequences these gut bacteria can have in the host. PMID:26154283

  7. FPR2/ALX activation reverses LPS-induced vascular hyporeactivity in aorta and increases survival in a pneumosepsis model.

    PubMed

    Horewicz, Verônica Vargas; Crestani, Sandra; de Sordi, Regina; Rezende, Edir; Assreuy, Jamil

    2015-01-01

    The formylpeptide receptor 2 (FPR2/ALX) is a very promiscuous receptor, utilized by lipid and protein ligands that trigger pro- or anti-inflammatory responses. FPR2/ALX expression is increased in lung tissues of septic animals and its activation has a beneficial therapeutic effect by controlling exacerbated inflammation. Although FPR2/ALX expression was observed in vascular smooth muscle cells, its role in vascular reactivity in inflammatory conditions has not been studied. In this study, we report that LPS increases FPR2/ALX expression in vascular smooth muscle cells (A7r5 cells) and aorta tissue, and that the selective agonist WKYMVm reverses LPS-induced vascular hyporeactivity in mouse aorta rings. Mice bearing pneumosepsis by Klebsiella pneumoniae and treated with WKYMVm recovered the reactivity to vasoconstrictors and the survival improved by 40%. As for the mechanisms involved, FPR2/ALX activation decreases NO production in LPS-stimulated cells and aorta, but it does not seem involve the regulation of NOS-2 expression. The molecular mechanism by which the peptide inhibits NO production still needs to be elucidated, but our data suggests an important role for NO in the WKYMVm beneficial effect observed in LPS injury and sepsis. In conclusion, our data suggest, for the first time, that a receptor, primarily described as a mediator of immune responses, may have an important role in the vascular dysfunctions observed in sepsis and may be a possible target for new therapeutic interventions. PMID:25478948

  8. Effect of dengue virus-induced cytotoxin on capillary permeability.

    PubMed Central

    Dhawan, R.; Khanna, M.; Chaturvedi, U. C.; Mathur, A.

    1990-01-01

    Capillary permeability is increased in cases of dengue haemorrhagic fever (DHF) and dengue shock syndrome (DSS) but its genesis is not known. Dengue type 2 virus (DV) induces production of a cytokine (CF2) by mouse macrophages. The present study was undertaken to investigate the effect of CF2 on capillary permeability. It was observed that intraperitoneal inoculation of CF2 in mice increased the capillary permeability in a dose-dependent manner, as shown by leakage of intravenously injected radioactive iodine (125I) or Evan's blue dye in the peritoneal cavity. Peak leakage occurred at 30 min and the vascular integrity was restored by 1-2 h. The increase in capillary permeability was abrogated by pretreatment of mice with avil (H1 receptor blocker) but not by ranitidine (H2 receptor blocker). The findings thus show that DV-induced CF2 increases the capillary permeability via release of histamine. PMID:2310617

  9. Pioglitazone treatment increases COX-2-derived prostacyclin production and reduces oxidative stress in hypertensive rats: role in vascular function

    PubMed Central

    Hernanz, Raquel; Martín, Ángela; Pérez-Girón, Jose V; Palacios, Roberto; Briones, Ana M; Miguel, Marta; Salaices, Mercedes; Alonso, María J

    2012-01-01

    BACKGROUND AND PURPOSE PPARγ agonists, glitazones, have cardioprotective and anti-inflammatory actions associated with gene transcription interference. In this study, we determined whether chronic treatment of adult spontaneously hypertensive rats (SHR) with pioglitazone alters BP and vascular structure and function, and the possible mechanisms involved. EXPERIMENTAL APPROACH Mesenteric resistance arteries from untreated or pioglitazone-treated (2.5 mg·kg−1·day−1, 28 days) SHR and normotensive [Wistar Kyoto (WKY)] rats were used. Vascular structure was studied by pressure myography, vascular function by wire myography, protein expression by Western blot and immunohistochemistry, mRNA levels by RT-PCR, prostanoid levels by commercial kits and reactive oxygen species (ROS) production by dihydroethidium-emitted fluorescence. KEY RESULTS In SHR, pioglitazone did not modify either BP or vascular structural and mechanical alterations or phenylephrine-induced contraction, but it increased vascular COX-2 levels, prostacyclin (PGI2) production and the inhibitory effects of NS 398, SQ 29,548 and tranylcypromine on phenylephrine responses. The contractile phase of the iloprost response, which was reduced by SQ 29,548, was greater in pioglitazone-treated and pioglitazone-untreated SHR than WKY. In addition, pioglitazone abolished the increased vascular ROS production, NOX-1 levels and the inhibitory effect of apocynin and allopurinol on phenylephrine contraction, whereas it did not modify eNOS expression but restored the potentiating effect of N-nitro-L-arginine methyl ester on phenylephrine responses. CONCLUSIONS AND IMPLICATIONS Although pioglitazone did not reduce BP in SHR, it increased COX-2-derived PGI2 production, reduced oxidative stress, and increased NO bioavailability, which are all involved in vasoconstrictor responses in resistance arteries. These effects would contribute to the cardioprotective effect of glitazones reported in several pathologies. PMID

  10. Sex sorting increases the permeability of the membrane of stallion spermatozoa.

    PubMed

    Balao da Silva, C M; Ortega Ferrusola, C; Morillo Rodriguez, A; Gallardo Bolaños, J M; Plaza Dávila, M; Morrell, J M; Rodriguez Martínez, H; Tapia, J A; Aparicio, I M; Peña, F J

    2013-05-01

    At present, the only repeatable means of selecting the sex of offspring is the Beltsville semen sorting technology using flow cytometry (FC). This technology has reached commercial status in the bovine industry and substantial advances have occurred recently in swine and ovine species. In the equine species, however, the technology is not as well developed. To better understand the changes induced in stallion spermatozoa during the sorting procedure, pooled sperm samples were sorted: sperm motility and kinematics were assessed using computer assisted sperm analysis, sperm membrane integrity was assessed using the YoPro-1 assay, while plasmalemmal stability and lipid architecture were assessed using Merocyanine 540/SYTOX green and Annexin-V, respectively. Lipid peroxidation was also investigated with the probe Bodipy(581/591)-C11. All assays were performed shortly after collection, after incubation and after sex sorting using FC. In order to characterize potential molecular mechanisms implicated in sperm damage, an apoptosis protein antibody dot plot array analysis was performed before and after sorting. While the percentage of total motile sperm remained unchanged, sex sorting reduced the percentages of progressive motile spermatozoa and of rapid spermatozoa as well as curvilinear velocity (VCL). Sperm membranes responded to sorting with an increase in the percentage of YoPro-1 positive cells, suggesting the sorted spermatozoa had a reduced energy status that was confirmed by measuring intracellular ATP content. PMID:23567220

  11. Increased Nitric Oxide Bioavailability and Decreased Sympathetic Modulation Are Involved in Vascular Adjustments Induced by Low-Intensity Resistance Training.

    PubMed

    Macedo, Fabrício N; Mesquita, Thassio R R; Melo, Vitor U; Mota, Marcelo M; Silva, Tharciano L T B; Santana, Michael N; Oliveira, Larissa R; Santos, Robervan V; Miguel Dos Santos, Rodrigo; Lauton-Santos, Sandra; Santos, Marcio R V; Barreto, Andre S; Santana-Filho, Valter J

    2016-01-01

    Resistance training is one of the most common kind of exercise used nowadays. Long-term high-intensity resistance training are associated with deleterious effects on vascular adjustments. On the other hand, is unclear whether low-intensity resistance training (LI-RT) is able to induce systemic changes in vascular tone. Thus, we aimed to evaluate the effects of chronic LI-RT on endothelial nitric oxide (NO) bioavailability of mesenteric artery and cardiovascular autonomic modulation in healthy rats. Wistar animals were divided into two groups: exercised (Ex) and sedentary (SED) rats submitted to the resistance (40% of 1RM) or fictitious training for 8 weeks, respectively. After LI-RT, hemodynamic measurements and cardiovascular autonomic modulation by spectral analysis were evaluated. Vascular reactivity, NO production and protein expression of endothelial and neuronal nitric oxide synthase isoforms (eNOS and nNOS, respectively) were evaluated in mesenteric artery. In addition, cardiac superoxide anion production and ventricle morphological changes were also assessed. In vivo measurements revealed a reduction in mean arterial pressure and heart rate after 8 weeks of LI-RT. In vitro studies showed an increased acetylcholine (ACh)-induced vasorelaxation and greater NOS dependence in Ex than SED rats. Hence, decreased phenylephrine-induced vasoconstriction was found in Ex rats. Accordingly, LI-RT increased the NO bioavailability under basal and ACh stimulation conditions, associated with upregulation of eNOS and nNOS protein expression in mesenteric artery. Regarding autonomic control, LI-RT increased spontaneous baroreflex sensitivity, which was associated to reduction in both, cardiac and vascular sympathetic modulation. No changes in cardiac superoxide anion or left ventricle morphometric parameters after LI-RT were observed. In summary, these results suggest that RT promotes beneficial vascular adjustments favoring augmented endothelial NO bioavailability and

  12. Increased Nitric Oxide Bioavailability and Decreased Sympathetic Modulation Are Involved in Vascular Adjustments Induced by Low-Intensity Resistance Training

    PubMed Central

    Macedo, Fabrício N.; Mesquita, Thassio R. R.; Melo, Vitor U.; Mota, Marcelo M.; Silva, Tharciano L. T. B.; Santana, Michael N.; Oliveira, Larissa R.; Santos, Robervan V.; Miguel dos Santos, Rodrigo; Lauton-Santos, Sandra; Santos, Marcio R. V.; Barreto, Andre S.; Santana-Filho, Valter J.

    2016-01-01

    Resistance training is one of the most common kind of exercise used nowadays. Long-term high-intensity resistance training are associated with deleterious effects on vascular adjustments. On the other hand, is unclear whether low-intensity resistance training (LI-RT) is able to induce systemic changes in vascular tone. Thus, we aimed to evaluate the effects of chronic LI-RT on endothelial nitric oxide (NO) bioavailability of mesenteric artery and cardiovascular autonomic modulation in healthy rats. Wistar animals were divided into two groups: exercised (Ex) and sedentary (SED) rats submitted to the resistance (40% of 1RM) or fictitious training for 8 weeks, respectively. After LI-RT, hemodynamic measurements and cardiovascular autonomic modulation by spectral analysis were evaluated. Vascular reactivity, NO production and protein expression of endothelial and neuronal nitric oxide synthase isoforms (eNOS and nNOS, respectively) were evaluated in mesenteric artery. In addition, cardiac superoxide anion production and ventricle morphological changes were also assessed. In vivo measurements revealed a reduction in mean arterial pressure and heart rate after 8 weeks of LI-RT. In vitro studies showed an increased acetylcholine (ACh)-induced vasorelaxation and greater NOS dependence in Ex than SED rats. Hence, decreased phenylephrine-induced vasoconstriction was found in Ex rats. Accordingly, LI-RT increased the NO bioavailability under basal and ACh stimulation conditions, associated with upregulation of eNOS and nNOS protein expression in mesenteric artery. Regarding autonomic control, LI-RT increased spontaneous baroreflex sensitivity, which was associated to reduction in both, cardiac and vascular sympathetic modulation. No changes in cardiac superoxide anion or left ventricle morphometric parameters after LI-RT were observed. In summary, these results suggest that RT promotes beneficial vascular adjustments favoring augmented endothelial NO bioavailability and

  13. Liver failure induces a systemic inflammatory response. Prevention by recombinant N-terminal bactericidal/permeability-increasing protein.

    PubMed Central

    Boermeester, M. A.; Houdijk, A. P.; Meyer, S.; Cuesta, M. A.; Appelmelk, B. J.; Wesdorp, R. I.; Hack, C. E.; Van Leeuwen, P. A.

    1995-01-01

    The observed increased susceptibility of patients with fulminant hepatic failure for local and systemic infections has been hypothesized to be due to a failure for the hepatic clearance function and subsequent leaking of endogenous endotoxins into the systemic circulation. However, experimental evidence for such a systemic inflammation during liver failure due to endogenous endotoxemia is lacking. Therefore, we designed a study to clarify whether circulating endotoxins due to liver failure could lead to the development of systemic inflammations. In a rat model for liver failure induced by a two-thirds partial hepatectomy, we evaluated the course of circulating tumor necrosis factor and interleukin-6, changes in blood chemistry and hemodynamics, and histopathological changes in the lungs. Partially hepatectomized animals, but not sham-operated animals, demonstrated cardiac failure, increased levels of creatinin and urea, metabolic acidosis, high plasma levels of tumor necrosis factor and interleukin-6, and an influx of PMNs in the lungs-together indicating the development of a systemic inflammatory response. Continuous infusion of recombinant N-terminal bactericidal/permeability-increasing protein (rBPI23), a well described endotoxin-neutralizing protein, prevented these inflammatory reactions. Ex vivo experiments with rat plasma samples confirmed the presence of circulating endotoxins in partially hepatectomized rats as opposed to those treated with rBPI23. Thus, our results indicate that the early phase of liver failure induces a systemic inflammatory response triggered by circulating endotoxins, which can be prevented by perioperative infusion of rBPI23. Images Figure 2 PMID:7485405

  14. Recombinant Treponema pallidum Protein Tp0965 Activates Endothelial Cells and Increases the Permeability of Endothelial Cell Monolayer

    PubMed Central

    Zhang, Rui-Li; Zhang, Jing-Ping; Wang, Qian-Qiu

    2014-01-01

    The recombinant Treponema pallidum protein Tp0965 (rTp0965), one of the many proteins derived from the genome of T. pallidum subsp. pallidum, shows strong immunogenicity and immunoreactivity. In this study, we investigated the effects of rTp0965 on the endothelial barrier. Treatment of human umbilical vein endothelial cells (HUVECs) with rTp0965 resulted in increased levels of ICAM-1, E-selectin, and MCP-1 mRNA and protein expression. These increases contributed to the adhesion and chemataxis of monocytes (THP-1 cells) to HUVECs preincubated with rTp0965. In addition, rTp0965 induced reorganization of F-actin and decreased expression of claudin-1 in HUVECs. Interestingly, inhibition of the RhoA/ROCK signal pathway protected against rTp0965-induced higher endothelial permeability as well as transendothelial migration of monocytes. These data indicate that Tp0965 protein may play an important role in the immunopathogenesis of syphilis. PMID:25514584

  15. Recombinant Treponema pallidum protein Tp0965 activates endothelial cells and increases the permeability of endothelial cell monolayer.

    PubMed

    Zhang, Rui-Li; Zhang, Jing-Ping; Wang, Qian-Qiu

    2014-01-01

    The recombinant Treponema pallidum protein Tp0965 (rTp0965), one of the many proteins derived from the genome of T. pallidum subsp. pallidum, shows strong immunogenicity and immunoreactivity. In this study, we investigated the effects of rTp0965 on the endothelial barrier. Treatment of human umbilical vein endothelial cells (HUVECs) with rTp0965 resulted in increased levels of ICAM-1, E-selectin, and MCP-1 mRNA and protein expression. These increases contributed to the adhesion and chemataxis of monocytes (THP-1 cells) to HUVECs preincubated with rTp0965. In addition, rTp0965 induced reorganization of F-actin and decreased expression of claudin-1 in HUVECs. Interestingly, inhibition of the RhoA/ROCK signal pathway protected against rTp0965-induced higher endothelial permeability as well as transendothelial migration of monocytes. These data indicate that Tp0965 protein may play an important role in the immunopathogenesis of syphilis. PMID:25514584

  16. Cellular and membrane events involved in the K-induced increase in water permeability of toad skin.

    PubMed

    Grosso, A; Brown, D; de Sousa, R C

    1982-11-01

    Exposure of the inner surface of toad skin (Bufo marinus) to high [K+] resulted in a marked (up to 7-fold) increase in water permeability (Pf) that was more marked in KC1-Ringer than in K2SO4-Ringer. Although high [K+] did not elicit a maximal increase in Pf, it blunted the hydrosmotic responses to vasopressin, isoproterenol and cAMP. Both "post-cAMP" inhibitors of stimulated water flow, such as diamide and vanadate, and "pre-cAMP" inhibitors, such as methohexital and propranolol, markedly reduced the K response, while exposure to Ca2+-free, KC1-Ringer did not inhibit water flow. Intramembrane particle aggregates, similar to those induced by cAMP-mediated hydrosmotic agents, were seen in the apical membrane of granular cells, just beneath the stratum corneum, in skins exposed to KC1. Available evidence indicates that cAMP might mediate, at least partially, the hydrosmotic effect of high [K+]. In contrast, a role of voltage-dependent Ca2+ channels, described in other cell systems depolarized with K, was not apparent in toad skin. PMID:6817296

  17. Bactericidal/Permeability-Increasing Protein Fold–Containing Family Member A1 in Airway Host Protection and Respiratory Disease

    PubMed Central

    Britto, Clemente J.

    2015-01-01

    Bactericidal/permeability-increasing protein fold–containing family member A1 (BPIFA1), formerly known as SPLUNC1, is one of the most abundant proteins in respiratory secretions and has been identified with increasing frequency in studies of pulmonary disease. Its expression is largely restricted to the respiratory tract, being highly concentrated in the upper airways and proximal trachea. BPIFA1 is highly responsive to airborne pathogens, allergens, and irritants. BPIFA1 actively participates in host protection through antimicrobial, surfactant, airway surface liquid regulation, and immunomodulatory properties. Its expression is modulated in multiple lung diseases, including cystic fibrosis, chronic obstructive pulmonary disease, respiratory malignancies, and idiopathic pulmonary fibrosis. However, the role of BPIFA1 in pulmonary pathogenesis remains to be elucidated. This review highlights the versatile properties of BPIFA1 in antimicrobial protection and its roles as a sensor of environmental exposure and regulator of immune cell function. A greater understanding of the contribution of BPIFA1 to disease pathogenesis and activity may clarify if BPIFA1 is a biomarker and potential drug target in pulmonary disease. PMID:25265466

  18. Antioxidants and vascular health.

    PubMed

    Bielli, Alessandra; Scioli, Maria Giovanna; Mazzaglia, Donatella; Doldo, Elena; Orlandi, Augusto

    2015-12-15

    Oxygen free radicals and other reactive oxygen species (ROS) are common products of normal aerobic cellular metabolism, but high levels of ROS lead to oxidative stress and cellular damage. Increased production of ROS favors vascular dysfunction, inducing altered vascular permeability and inflammation, accompanied by the loss of vascular modulatory function, the imbalance between vasorelaxation and vasoconstriction, and the aberrant expression of inflammatory adhesion molecules. Inflammatory stimuli promote oxidative stress generated from the increased activity of mitochondrial nicotinamide adenine dinucleotide phosphate oxidase, particularly of the Nox4 isoform, with the consequent impairment of mitochondrial β-oxidation. Vascular dysfunction due to the increase in Nox4 activity and ROS overproduction leads to the progression of cardiovascular diseases, diabetes, inflammatory bowel disease, and neurological disorders. Considerable research into the development of effective antioxidant therapies using natural derivatives or new synthetic molecules has been conducted. Antioxidants may prevent cellular damage by reducing ROS overproduction or interfering in reactions that involve ROS. Vitamin E and ascorbic acid are well known as natural antioxidants that counteract lipid peroxidative damage by scavenging oxygen-derived free radicals, thus restoring vascular function. Recently, preliminary studies on natural antioxidants such as goji berries, thymus, rosemary, green tea ginseng, and garlic have been conducted for their efficacy in preventing vascular damage. N-acetyl-cysteine and propionyl-L-carnitine are synthetic compounds that regulate ROS production by replacing endogenous antioxidants in both endothelial and smooth muscle cells. In this review, we consider the molecular mechanisms underlying the generation of oxidative stress-induced vascular dysfunction as well as the beneficial effects of antioxidant therapies. PMID:26585821

  19. Depleted energy charge and increased pulmonary endothelial permeability induced by mitochondrial complex I inhibition are mitigated by coenzyme Q1 in the isolated perfused rat lung.

    PubMed

    Bongard, Robert D; Yan, Ke; Hoffmann, Raymond G; Audi, Said H; Zhang, Xiao; Lindemer, Brian J; Townsley, Mary I; Merker, Marilyn P

    2013-12-01

    Mitochondrial dysfunction is associated with various forms of lung injury and disease that also involve alterations in pulmonary endothelial permeability, but the relationship, if any, between the two is not well understood. This question was addressed by perfusing isolated intact rat lung with a buffered physiological saline solution in the absence or presence of the mitochondrial complex I inhibitor rotenone (20 μM). Compared to control, rotenone depressed whole lung tissue ATP from 5.66 ± 0.46 (SEM) to 2.34 ± 0.15 µmol · g(-1) dry lung, with concomitant increases in the ADP:ATP and AMP:ATP ratios. Rotenone also increased lung perfusate lactate (from 12.36 ± 1.64 to 38.62 ± 3.14 µmol · 15 min(-1) perfusion · g(-1) dry lung) and the lactate:pyruvate ratio, but had no detectable impact on lung tissue GSH:GSSG redox status. The amphipathic quinone coenzyme Q1 (CoQ1; 50 μM) mitigated the impact of rotenone on the adenine nucleotide balance, wherein mitigation was blocked by NAD(P)H-quinone oxidoreductase 1 or mitochondrial complex III inhibitors. In separate studies, rotenone increased the pulmonary vascular endothelial filtration coefficient (Kf) from 0.043 ± 0.010 to 0.156 ± 0.037 ml · min(-1) · cm H2O(-1) · g(-1) dry lung, and CoQ1 protected against the effect of rotenone on Kf. A second complex I inhibitor, piericidin A, qualitatively reproduced the impact of rotenone on Kf and the lactate:pyruvate ratio. Taken together, the observations imply that pulmonary endothelial barrier integrity depends on mitochondrial bioenergetics as reflected in lung tissue ATP levels and that compensatory activation of whole lung glycolysis cannot protect against pulmonary endothelial hyperpermeability in response to mitochondrial blockade. The study further suggests that low-molecular-weight amphipathic quinones may have therapeutic utility in protecting lung barrier function in mitochondrial insufficiency. PMID:23912160

  20. Depleted energy charge and increased pulmonary endothelial permeability induced by mitochondrial complex I inhibition are mitigated by coenzyme Q1 in the isolated perfused rat lung

    PubMed Central

    Bongard, Robert D.; Yan, Ke; Hoffmann, Raymond G.; Audi, Said H.; Zhang, Xiao; Lindemer, Brian J.; Townsley, Mary I.; Merker, Marilyn P.

    2013-01-01

    Mitochondrial dysfunction is associated with various forms of lung injury and disease that also involve alterations in pulmonary endothelial permeability, but the relationship, if any, between the two is not well understood. This question was addressed by perfusing the isolated intact rat lung with a buffered physiological saline solution in the absence or presence of the mitochondrial complex I inhibitor rotenone (20 uM). As compared to control, rotenone depressed whole lung tissue ATP from 5.66 ± 0.46 (SEM) to 2.34 ± 0.15 (SEM) μmol·gram−1 dry lung, with concomitant increases in the ADP:ATP and AMP:ATP ratios. Rotenone also increased lung perfusate lactate (from 12.36 ± 1.64 (SEM) to 38.62 ± 3.14 μmol·15 min−1 perfusion·gm−1 dry lung) and the lactate:pyruvate ratio, but had no detectable impact on lung tissue GSH:GSSG redox status. The amphipathic quinone, coenzyme Q1 (CoQ1; 50 μM) mitigated the impact of rotenone on the adenine nucleotide balance, wherein mitigation was blocked by NAD(P)H:quinone oxidoreductase 1 (NQO1) or mitochondrial complex III inhibitors. In separate studies, rotenone increased the pulmonary vascular endothelial filtration coefficient (Kf) from 0.043 ± 0.010 (SEM) to 0.156 ± 0.037 (SEM) ml·min−1·cm H2O−1·gm−1 dry lung weight, and CoQ1 protected against the effect of rotenone on Kf. A second complex I inhibitor, piericidin A, qualitatively reproduced the impact of rotenone on Kf and the lactate/pyruvate ratio. Taken together, the observations imply that pulmonary endothelial barrier integrity depends on mitochondrial bioenergetics as reflected in lung tissue ATP levels and that compensatory activation of whole lung glycolysis cannot protect against pulmonary endothelial hyperpermeability in response to mitochondrial blockade. The study further suggests that low molecular weight amphipathic quinones may have therapeutic utility in protecting lung barrier function in mitochondrial insufficiency. PMID:23912160

  1. Lower extremity vascular injuries: Increased mortality for minorities and the uninsured?

    PubMed Central

    Crandall, Marie; Sharp, Douglas; Brasel, Karen; Carnethon, Mercedes; Haider, Adil; Esposito, Thomas

    2012-01-01

    Background There is increasing evidence to suggest that racial disparities exist in outcomes for trauma. Minorities and the uninsured have been found to have higher mortality rates for blunt and penetrating trauma. However, mechanisms for these disparities are incompletely understood. Limiting the inquiry to a homogenous group, those with lower extremity vascular injuries (LEVIs), may clarify these disparities. Methods The National Trauma Data Bank (NTDB; version 7.0, American College of Surgeons) was used for this study. LEVIs were identified using codes from the International Classification of Diseases, 9th revision. Univariate and multivariate analyses were performed using Stata software (version 11; StataCorp, LP, College Station, TX). Results Records were reviewed for 4,928 LEVI patients. The mechanism of injury was blunt in 2,452 (49.8%), penetrating in 2,452 (49.8%), and unknown in 24 cases (0.5%). Mortality was similar by mechanism (7.6% overall). Regression analysis using mechanism as a covariate revealed a significantly worse mortality for people of color (POC; odds ratio [OR], 1.45; 95% confidence interval [CI], 1.03-2.02; P = .03) and the uninsured (UN; OR, 1.62; 95% CI, 1.15-2.23; P = .006). However, when separate analyses were performed stratifying by mechanism, no significant mortality disparities were found for blunt trauma (POC OR, 1.28; 95% CI, 0.85-1.96; P = .23; UN OR, 1.33; 95% CI, 0.78-2.22; P = .29), but disparities remained for penetrating trauma (POC OR, 1.81; 95% CI, 0.93-3.57; P = .08; UN OR, 1.85; 95% CI, 1.18-2.94; P = .009). Conclusion For patients with LEVI, mortality disparities based on race or insurance status were only observed for penetrating trauma. It is possible that injury heterogeneity or patient cohort differences may partly explain mortality disparities that have been observed between racial and socioeconomic groups. (Surgery 2011;150:656-64.) PMID:22000177

  2. The Human Antimicrobial Protein Bactericidal/Permeability-Increasing Protein (BPI) Inhibits the Infectivity of Influenza A Virus

    PubMed Central

    Pinkenburg, Olaf; Meyer, Torben; Bannert, Norbert; Norley, Steven; Bolte, Kathrin; Czudai-Matwich, Volker; Herold, Susanne; Gessner, André; Schnare, Markus

    2016-01-01

    In addition to their well-known antibacterial activity some antimicrobial peptides and proteins (AMPs) display also antiviral effects. A 27 aa peptide from the N-terminal part of human bactericidal/permeability-increasing protein (BPI) previously shown to harbour antibacterial activity inhibits the infectivity of multiple Influenza A virus strains (H1N1, H3N2 and H5N1) the causing agent of the Influenza pneumonia. In contrast, the homologous murine BPI-peptide did not show activity against Influenza A virus. In addition human BPI-peptide inhibits the activation of immune cells mediated by Influenza A virus. By changing the human BPI-peptide to the sequence of the mouse homologous peptide the antiviral activity was completely abolished. Furthermore, the human BPI-peptide also inhibited the pathogenicity of the Vesicular Stomatitis Virus but failed to interfere with HIV and measles virus. Electron microscopy indicate that the human BPI-peptide interferes with the virus envelope and at high concentrations was able to destroy the particles completely. PMID:27273104

  3. Identification of Critical Conditions for Immunostaining in the Pea Aphid Embryos: Increasing Tissue Permeability and Decreasing Background Staining.

    PubMed

    Lin, Gee-Way; Chang, Chun-che

    2016-01-01

    The pea aphid Acyrthosiphon pisum, with a sequenced genome and abundant phenotypic plasticity, has become an emerging model for genomic and developmental studies. Like other aphids, A. pisum propagate rapidly via parthenogenetic viviparous reproduction, where the embryos develop within egg chambers in an assembly-line fashion in the ovariole. Previously we have established a robust platform of whole-mount in situ hybridization allowing detection of mRNA expression in the aphid embryos. For analyzing the expression of protein, though, established protocols for immunostaining the ovarioles of asexual viviparous aphids did not produce satisfactory results. Here we report conditions optimized for increasing tissue permeability and decreasing background staining, both of which were problems when applying established approaches. Optimizations include: (1) incubation of proteinase K (1 µg/ml, 10 min), which was found essential for antibody penetration in mid- and late-stage aphid embryos; (2) replacement of normal goat serum/bovine serum albumin with a blocking reagent supplied by a Digoxigenin (DIG)-based buffer set and (3) application of methanol rather hydrogen peroxide (H2O2) for bleaching endogenous peroxidase; which significantly reduced the background staining in the aphid tissues. These critical conditions optimized for immunostaining will allow effective detection of gene products in the embryos of A. pisum and other aphids. PMID:26862939

  4. Increasing the high-frequency magnetic permeability of MnZn ferrite in polyaniline composites by incorporating silver

    NASA Astrophysics Data System (ADS)

    Babayan, V.; Kazantseva, N. E.; Sapurina, I.; Moučka, R.; Stejskal, J.; Sáha, P.

    2013-05-01

    A hybrid composite containing 73 vol% of MnZn ferrite, 21 vol% of polyaniline, and 6 vol% of silver is obtained by oxidative polymerization of aniline with silver nitrate in the presence of ferrite powder. The hybrid composite contains ferrite particles with a size of 40-80 μm coated by an inhomogeneous layer of polyaniline in the conducting emeraldine form. Silver in the form of nano- and submicrometre -size particles is localized both on the surface of ferrite particles and in the bulk of polyaniline coating. The electrical and magnetic properties of the hybrid composite are investigated and compared with the properties of a composite with 71 vol% of MnZn ferrite coated by a conducting polyaniline layer (29 vol%). The hybrid composite containing silver exhibits an increase in the real and imaginary parts of the complex permeability in the radio-frequency band by more than one and a half times compared with those of the MnZn ferrite-polyaniline composite. The high-frequency permittivity of both composites is determined by the properties of core-shell structure: electric properties of shell as well as its composition and uniformity.

  5. Disruption of the Circadian Clock in Mice Increases Intestinal Permeability and Promotes Alcohol-Induced Hepatic Pathology and Inflammation

    PubMed Central

    Forsyth, Christopher B.; Shaikh, Maliha; Cavanaugh, Kate; Tang, Yueming; Vitaterna, Martha Hotz; Song, Shiwen

    2013-01-01

    The circadian clock orchestrates temporal patterns of physiology and behavior relative to the environmental light:dark cycle by generating and organizing transcriptional and biochemical rhythms in cells and tissues throughout the body. Circadian clock genes have been shown to regulate the physiology and function of the gastrointestinal tract. Disruption of the intestinal epithelial barrier enables the translocation of proinflammatory bacterial products, such as endotoxin, across the intestinal wall and into systemic circulation; a process that has been linked to pathologic inflammatory states associated with metabolic, hepatic, cardiovascular and neurodegenerative diseases – many of which are commonly reported in shift workers. Here we report, for the first time, that circadian disorganization, using independent genetic and environmental strategies, increases permeability of the intestinal epithelial barrier (i.e., gut leakiness) in mice. Utilizing chronic alcohol consumption as a well-established model of induced intestinal hyperpermeability, we also found that both genetic and environmental circadian disruption promote alcohol-induced gut leakiness, endotoxemia and steatohepatitis, possibly through a mechanism involving the tight junction protein occludin. Circadian organization thus appears critical for the maintenance of intestinal barrier integrity, especially in the context of injurious agents, such as alcohol. Circadian disruption may therefore represent a previously unrecognized risk factor underlying the susceptibility to or development of alcoholic liver disease, as well as other conditions associated with intestinal hyperpermeability and an endotoxin-triggered inflammatory state. PMID:23825629

  6. PVP formulated Fullerene (C60) increases Rho-kinase dependent Vascular Tissue Contractility in Pregnant Sprague Dawley Rats

    PubMed Central

    Vidanapathirana, Achini K.; Thompson, Leslie C.; Mann, Erin. E.; Odom, Jillian T.; Holland, Nathan A.; Sumner, Susan J.; Han, Li; Lewin, Anita H.; Fennell, Timothy R.; Brown, Jared M.; Wingard, Christopher J.

    2014-01-01

    Pregnancy is a unique physiological state, in which C60 fullerene is reported to be distributed in both maternal and fetal tissues. Tissue distribution of C60 differs between pregnant and non-pregnant states, presumably due to functional changes in vasculature during pregnancy. We hypothesized that, polyvinylpyrorrolidone (PVP) formulated C60 (C60/PVP) increases vascular tissue contractility during pregnancy by increasing Rho-kinase activity. C60/PVP was administered intravenously to pregnant and non-pregnant female Sprague Dawley rats. Vascular responses were assessed using wire myography 24 hours post-exposure. Increased stress generation was observed in uterine artery, thoracic aorta and umbilical vein. Rho-Rho-kinase mediated force maintenance was increased in arterial segments from C60/PVP exposed pregnant rats when compared to PVP exposed rats. Our findings suggest that intravenous exposure to C60/PVP during pregnancy increases vascular tissue contractility of the uterine artery through elements of Rho-Rho-kinase signaling during late stages of pregnancy. PMID:25088243

  7. Hindlimb heating increases vascular access of large molecules to murine tibial growth plates measured by in vivo multiphoton imaging

    PubMed Central

    Efaw, Morgan L.; Williams, Rebecca M.

    2013-01-01

    Advances in understanding the molecular regulation of longitudinal growth have led to development of novel drug therapies for growth plate disorders. Despite progress, a major unmet challenge is delivering therapeutic agents to avascular-cartilage plates. Dense extracellular matrix and lack of penetrating blood vessels create a semipermeable “barrier,” which hinders molecular transport at the vascular-cartilage interface. To overcome this obstacle, we used a hindlimb heating model to manipulate bone circulation in 5-wk-old female mice (n = 22). Temperatures represented a physiological range of normal human knee joints. We used in vivo multiphoton microscopy to quantify temperature-enhanced delivery of large molecules into tibial growth plates. We tested the hypothesis that increasing hindlimb temperature from 22°C to 34°C increases vascular access of large systemic molecules, modeled using 10, 40, and 70 kDa dextrans that approximate sizes of physiological regulators. Vascular access was quantified by vessel diameter, velocity, and dextran leakage from subperichondrial plexus vessels and accumulation in growth plate cartilage. Growth plate entry of 10 kDa dextrans increased >150% at 34°C. Entry of 40 and 70 kDa dextrans increased <50%, suggesting a size-dependent temperature enhancement. Total dextran levels in the plexus increased at 34°C, but relative leakage out of vessels was not temperature dependent. Blood velocity and vessel diameter increased 118% and 31%, respectively, at 34°C. These results demonstrate that heat enhances vascular carrying capacity and bioavailability of large molecules around growth plates, suggesting that temperature could be a noninvasive strategy for modulating delivery of therapeutics to impaired growth plates of children. PMID:24371019

  8. Protective effect of zingerone on increased vascular contractility in diabetic rat aorta.

    PubMed

    Ghareib, Salah A; El-Bassossy, Hany M; Elberry, Ahmed A; Azhar, Ahmad; Watson, Malcolm L; Banjar, Zainy M; Alahdal, Abdulrahman M

    2016-06-01

    The aim of the present study was to investigate the effect and possible mechanism of action of zingerone, the main constituent of ginger, on vascular reactivity in isolated aorta from diabetic rats. The results show that incubation of aortae with zingerone alleviates the exaggerated vasoconstriction of diabetic aortae to phenylephrine, as well as the impaired relaxatory response to acetylcholine in a concentration-dependent manner. Furthermore, Zingerone directly relax phenylephrine-precontracted aortae. The vasorelaxatory response is significantly attenuated by the nitric oxide synthase inhibitor Nω-nitro-l-arginine methyl ester hydrochloride and the guanylate cyclase inhibitor methylene blue but no effect of either the potassium channels blocker tetraethylammonium chloride, or the cyclooxygenase inhibitor indomethacin was observed. Zingerone had no effect on advanced glycation end product formation as well. In conclusion, zingerone ameliorates enhanced vascular contraction in diabetic aortae which may be mediated by its vasodilator effect through NO- and guanylate cyclase stimulation. PMID:27020549

  9. Time course of increased cellular proliferation in collateral arteries after administration of vascular endothelial growth factor in a rabbit model of lower limb vascular insufficiency.

    PubMed Central

    Takeshita, S.; Rossow, S. T.; Kearney, M.; Zheng, L. P.; Bauters, C.; Bunting, S.; Ferrara, N.; Symes, J. F.; Isner, J. M.

    1995-01-01

    Proliferation of vascular cells has been previously shown to contribute to spontaneous development of coronary collaterals. Recent studies from several laboratories have established that collateral artery growth in both the heart and limb can be enhanced by administration of angiogenic growth factors, or therapeutic angiogenesis. In this study, we sought (1) to define the extent and time course of endothelial cell (EC) and smooth muscle cell (SMC) proliferation accompanying spontaneous collateral development during limb ischemia and (2) to determine the extent to which proliferative activity of ECs and SMCs is augmented during therapeutic angiogenesis with vascular endothelial growth factor (VEGF), a heparin-binding EC-specific mitogen. Ten days after induction of limb ischemia by surgically excising the femoral artery of rabbits, either VEGF (500 to 1000 micrograms) or saline was administered as a bolus into the iliac artery of the ischemic limb. Cellular proliferation was evaluated by bromodeoxyuridine labeling for 24 hours at day 0 (immediately before VEGF administration) and at days 3, 5, and 7 after VEGF, EC proliferation in the midzone collaterals of VEGF-treated animals increased 2.8-fold at day 5 (P < 0.05 versus control), and returned to baseline levels by day 7. SMC proliferation in midzone collaterals also increased 2.7-fold in response to VEGF (P < 0.05). No significant increase in EC or SMC proliferation was observed in either the stem or re-entry collaterals of VEGF-treated animals compared with untreated ischemic control animals. Reduction of hemodynamic deficit in the ischemic limb measured by lower limb blood pressure was documented at day 7 after VEGF (P < 0.01 versus untreated, ischemic control). These data thus (1) establish the contribution of cellular proliferation to collateral vessel development in limb ischemia and (2) support the concept that augmented cellular proliferation contributes to the enhanced formation of collateral vessels after

  10. Postprandial hyperglycemia impairs vascular endothelial function in healthy men by inducing lipid peroxidation and increasing asymmetric dimethylarginine:arginine.

    PubMed

    Mah, Eunice; Noh, Sang K; Ballard, Kevin D; Matos, Manuel E; Volek, Jeff S; Bruno, Richard S

    2011-11-01

    Postprandial hyperglycemia induces vascular endothelial dysfunction (VED) and increases future cardiovascular disease risk. We hypothesized that postprandial hyperglycemia would decrease vascular function in healthy men by inducing oxidative stress and proinflammatory responses and increasing asymmetric dimethylarginine:arginine (ADMA:arginine), a biomarker that is predictive of reduced NO biosynthesis. In a randomized, cross-over design, healthy men (n = 16; 21.6 ± 0.8 y) ingested glucose or fructose (75 g) after an overnight fast. Brachial artery flow-mediated dilation (FMD), plasma glucose and insulin, antioxidants, malondialdehyde (MDA), inflammatory proteins, arginine, and ADMA were measured at regular intervals during the 3-h postprandial period. Baseline FMD did not differ between trials (P > 0.05). Postprandial FMD was reduced following the ingestion of glucose only. Postprandial MDA concentrations increased to a greater extent following the ingestion of glucose compared to fructose. Plasma arginine decreased and the ratio of ADMA:arginine increased to a greater extent following the ingestion of glucose. Inflammatory cytokines and cellular adhesion molecules were unaffected by the ingestion of either sugar. Postprandial AUC(0-3 h) for FMD and MDA were inversely related (r = -0.80; P < 0.05), suggesting that hyperglycemia-induced lipid peroxidation suppresses postprandial vascular function. Collectively, these findings suggest that postprandial hyperglycemia in healthy men reduces endothelium-dependent vasodilation by increasing lipid peroxidation independent of inflammation. Postprandial alterations in arginine and ADMA:arginine also suggest that acute hyperglycemia may induce VED by decreasing NO bioavailability through an oxidative stress-dependent mechanism. Additional work is warranted to define whether inhibiting lipid peroxidation and restoring arginine metabolism would mitigate hyperglycemia-mediated decreases in vascular function. PMID:21940510

  11. Changes in mast cells and in permeability of mesenteric microvessels under the effect of immobilization and electrostimulation

    NASA Technical Reports Server (NTRS)

    Gorizontova, M. P.

    1980-01-01

    It was shown that a reduction in the amount of mast cells in the mesentery and an increase in their degranulation was accompanied by an increase in vascular permeability of rat mesentery. It is supposed that immobilization and electrostimulation causing degranulation of mast cells prompted histamine and serotonin release from them, thus increasing the permeability of the venular portion of the microvascular bed. Prophylactic use of esculamin preparation with P-vitaminic activity decreased mast cell degranulation, which apparently prolonged the release of histamine and serotonin from them and normalized vascular permeability.

  12. Mosquito Saliva Increases Endothelial Permeability in the Skin, Immune Cell Migration, and Dengue Pathogenesis during Antibody-Dependent Enhancement

    PubMed Central

    Schmid, Michael A.; Glasner, Dustin R.; Shah, Sanjana; Michlmayr, Daniela; Kramer, Laura D.; Harris, Eva

    2016-01-01

    Dengue remains the most prevalent arthropod-borne viral disease in humans. While probing for blood vessels, Aedes aegypti and Ae. albopictus mosquitoes transmit the four serotypes of dengue virus (DENV1-4) by injecting virus-containing saliva into the skin. Even though arthropod saliva is known to facilitate transmission and modulate host responses to other pathogens, the full impact of mosquito saliva on dengue pathogenesis is still not well understood. Inoculating mice lacking the interferon-α/β receptor intradermally with DENV revealed that mosquito salivary gland extract (SGE) exacerbates dengue pathogenesis specifically in the presence of enhancing serotype-cross-reactive antibodies—when individuals already carry an increased risk for severe disease. We further establish that SGE increases viral titers in the skin, boosts antibody-enhanced DENV infection of dendritic cells and macrophages in the dermis, and amplifies dendritic cell migration to skin-draining lymph nodes. We demonstrate that SGE directly disrupts endothelial barrier function in vitro and induces endothelial permeability in vivo in the skin. Finally, we show that surgically removing the site of DENV transmission in the skin after 4 hours rescued mice from disease in the absence of SGE, but no longer prevented lethal antibody-enhanced disease when SGE was present. These results indicate that SGE accelerates the dynamics of dengue pathogenesis after virus transmission in the skin and induces severe antibody-enhanced disease systemically. Our study reveals novel aspects of dengue pathogenesis and suggests that animal models of dengue and pre-clinical testing of dengue vaccines should consider mosquito-derived factors as well as enhancing antibodies. PMID:27310141

  13. Mosquito Saliva Increases Endothelial Permeability in the Skin, Immune Cell Migration, and Dengue Pathogenesis during Antibody-Dependent Enhancement.

    PubMed

    Schmid, Michael A; Glasner, Dustin R; Shah, Sanjana; Michlmayr, Daniela; Kramer, Laura D; Harris, Eva

    2016-06-01

    Dengue remains the most prevalent arthropod-borne viral disease in humans. While probing for blood vessels, Aedes aegypti and Ae. albopictus mosquitoes transmit the four serotypes of dengue virus (DENV1-4) by injecting virus-containing saliva into the skin. Even though arthropod saliva is known to facilitate transmission and modulate host responses to other pathogens, the full impact of mosquito saliva on dengue pathogenesis is still not well understood. Inoculating mice lacking the interferon-α/β receptor intradermally with DENV revealed that mosquito salivary gland extract (SGE) exacerbates dengue pathogenesis specifically in the presence of enhancing serotype-cross-reactive antibodies-when individuals already carry an increased risk for severe disease. We further establish that SGE increases viral titers in the skin, boosts antibody-enhanced DENV infection of dendritic cells and macrophages in the dermis, and amplifies dendritic cell migration to skin-draining lymph nodes. We demonstrate that SGE directly disrupts endothelial barrier function in vitro and induces endothelial permeability in vivo in the skin. Finally, we show that surgically removing the site of DENV transmission in the skin after 4 hours rescued mice from disease in the absence of SGE, but no longer prevented lethal antibody-enhanced disease when SGE was present. These results indicate that SGE accelerates the dynamics of dengue pathogenesis after virus transmission in the skin and induces severe antibody-enhanced disease systemically. Our study reveals novel aspects of dengue pathogenesis and suggests that animal models of dengue and pre-clinical testing of dengue vaccines should consider mosquito-derived factors as well as enhancing antibodies. PMID:27310141

  14. Chronic hepatitis B infection is not associated with increased risk of vascular mortality while having an association with metabolic syndrome.

    PubMed

    Katoonizadeh, Aezam; Ghoroghi, Shima; Sharafkhah, Maryam; Khoshnia, Masoud; Mirzaei, Samaneh; Shayanrad, Amaneh; Poustchi, Hossein; Malekzadeh, Reza

    2016-07-01

    This study aimed to assess the association of chronic hepatitis B (CHB) with vascular mortality and metabolic syndrome (MS) using data from a large population-based cohort study in Iran. A total of 12,781 participants (2249 treatment-naïve CHB and 10,532 without CHB) were studied. Logistic regression model was used to assess the association between MS and CHB with adjustment for age, ALT, PLT, alcohol intake, smoking, exercise, and socioeconomic status. MS was defined according to the ATPIII guidelines. Cox proportional hazards model was used to assess the hazard ratios for overall and vascular related mortality. There was a significant association between CHB infection and overall mortality (hazard ratio (95%CI) of 1.44 (1.16-1.79), P < 0.001) after adjusting for other confounders. However, we found no association between CHB infection and mortality from vascular events (hazard ratio (95%CI) of 1.31 (0.93-1.84), P = 0.124) even after subgroup analysis by ALT. Furthermore, increased risk of overall mortality in CHB infected individuals was not related to MS and vice versa (P for interaction = 0.06). We noted a significant direct association between CHB infection and MS in women (OR (95%CI); 1.23 (1.07-1.42), P < 0.004). However, CHB was inversely associated with MS in men (OR (95%CI), 0.85 (0.79-0.99). This gender dependent association was related to high BP levels in women. In this study no association between CHB infection and mortality from vascular events was found. Further longitudinal studies should be done to investigate the exact impact of HBV infection on metabolic parameters and vascular pathology. PMID:26742819

  15. Vascular smooth muscle in hypertension.

    PubMed

    Winquist, R J; Webb, R C; Bohr, D F

    1982-06-01

    The cause of the elevated arterial pressure in most forms of hypertension is an increase in total peripheral resistance. This brief review is directed toward an assessment of recent investigations contributing information about the factors responsible for this increased vascular resistance. Structural abnormalities in the vasculature that characterize the hypertensive process are 1) changes in the vascular media, 2) rarefication of the resistance vessels, and 3) lesions of the intimal vascular surface. These abnormalities are mainly the result of an adaptive process and are secondary to the increase in wall stress and/or to pathological damage to cellular components in the vessel wall. Functional alterations in the vascular smooth muscle are described as changes in agonist-smooth muscle interaction or plasma membrane permeability. These types of changes appear to play a primary, initiating role in the elevation of vascular resistance of hypertension. These alterations are not the result of an increase in wall stress and they often precede the development of high blood pressure. The functional changes are initiated by abnormal function of neurogenic, humoral, and/or myogenic changes that alter vascular smooth muscle activity. PMID:6282652

  16. Bactericidal/permeability-increasing protein (rBPI21) and fluoroquinolone mitigate radiation-induced bone marrow aplasia and death

    PubMed Central

    Guinan, Eva C.; Barbon, Christine M.; Kalish, Leslie A.; Parmar, Kalindi; Kutok, Jeff; Mancuso, Christy J.; Stoler-Barak, Liat; Suter, Eugénie E.; Russell, Janice D.; Palmer, Christine D.; Gallington, Leighanne C.; Voskertchian, Annie; Vergilio, Jo-Anne; Cole, Geoffrey; Zhu, Kaya; D’Andrea, Alan; Soiffer, Robert; Weiss, Jerrold P.; Levy, Ofer

    2014-01-01

    Identification of safe, effective treatment strategies to mitigate toxicity after extensive radiation exposure has proven challenging. Only a limited number of candidate approaches have emerged, and the Federal Drug Administration has yet to approve any agent for a mass-casualty radiation disaster indication. As preparative treatments for hematopoietic stem cell transplantation (HSCT) produce toxicities similar to such radiation exposures, we studied patients early after myeloablative HSCT to identify new approaches to this problem. Patients rapidly developed endotoxemia and reduced plasma bactericidal/permeability-increasing protein (BPI), a potent endotoxin-neutralizing protein, in association with neutropenia. We hypothesized that a treatment supplying similar endotoxin-neutralizing activity might replace the BPI deficit and mitigate radiation toxicity. We tested this idea in mice. A single 7 Gy radiation dose, which was 95% lethal by 30 days, was followed 24 hours later by twice daily subcutaneous injections of the recombinant BPI fragment rBPI21 or vehicle alone for 14 or 30 days, with or without an oral fluoroquinolone antibiotic with broad-spectrum anti-bacterial activity including that against endotoxin-bearing Gram-negative bacteria. Compared to either fluoroquinolone alone or vehicle/fluoroquinolone, combined rBPI21/fluoroquinolone treatment improved survival, accelerated hematopoietic recovery and promoted expansion of stem and progenitor cells. The observed efficacy of rBPI21 and fluoroquinolones initiated 24 hours after lethal irradiation, combined with their favorable bioactivity and safety profiles in critically-ill humans, suggest the potential clinical utility of this radiation mitigation strategy and support its further evaluation. PMID:22116933

  17. Angiotensin II-induced endothelial dysfunction is temporally linked with increases in interleukin-6 and vascular macrophage accumulation

    PubMed Central

    Gomolak, Jessica R.; Didion, Sean P.

    2014-01-01

    Angiotensin II (Ang II) is associated with vascular hypertrophy, endothelial dysfunction and activation of a number of inflammatory molecules, however the linear events involved in the development of hypertension and endothelial dysfunction produced in response to Ang II are not well defined. The goal of this study was to examine the dose- and temporal-dependent development of endothelial dysfunction in response to Ang II. Blood pressure and responses of carotid arteries were examined in control (C57Bl/6) mice and in mice infused with 50, 100, 200, 400, or 1000 ng/kg/min Ang II for either 14 or 28 Days. Infusion of Ang II was associated with graded and marked increases in systolic blood pressure and plasma Ang II concentrations. While low doses of Ang II (i.e., 50 and 100 ng/kg/min) had little to no effect on blood pressure or endothelial function, high doses of Ang II (e.g., 1000 ng/kg/min) were associated with large increases in arterial pressure and marked impairment of endothelial function. In contrast, intermediate doses of Ang II (200 and 400 ng/kg/min) while initially having no effect on systolic blood pressure were associated with significant increases in pressure over time. Despite increasing blood pressure, 200 ng/kg/min had no effect on endothelial function, whereas 400 ng/kg/min produced modest impairment on Day 14 and marked impairment of endothelial function on Day 28. The degree of endothelial dysfunction produced by 400 and 1000 ng/kg/min Ang II was reflective of parallel increases in plasma IL-6 levels and vascular macrophage content, suggesting that increases in arterial blood pressure precede the development of endothelial dysfunction. These findings are important as they demonstrate that along with increases in arterial pressure that increases in IL-6 and vascular macrophage accumulation correlate with the impairment of endothelial function produced by Ang II. PMID:25400581

  18. HSP70 increases extracellular matrix production by human vascular smooth muscle through TGF-β1 up-regulation.

    PubMed

    González-Ramos, Marta; Calleros, Laura; López-Ongil, Susana; Raoch, Viviana; Griera, Mercedes; Rodríguez-Puyol, Manuel; de Frutos, Sergio; Rodríguez-Puyol, Diego

    2013-02-01

    The circulating levels of heat shock proteins (HSP) are increased in cardiovascular diseases; however, the implication of this for the fibrotic process typical of such diseases remains unclear. HSP70 can interact with the vascular smooth muscle cells (SMC), the major producer of extracellular matrix (ECM) proteins, through the Toll-like receptors 4 (TLR4). The transforming growth factor type-β1 (TGF-β1) is a well known vascular pro-fibrotic cytokine that is regulated in part by AP-1-dependent transcriptional mechanisms. We hypothesized that extracellular HSP70 could interact with SMCs, inducing TGF-β1 synthesis and subsequent changes in the vascular ECM. We demonstrate that extracellular HSP70 binds to human aorta SMC TLR4, which up-regulates the AP-1-dependent transcriptional activity of the TGF-β1 promoter. This is achieved through the mitogen activated protein kinases JNK and ERK, as demonstrated by the use of specific blockers and the knockdown of TLR4 with specific small interfering RNAs. The TGF-β1 upregulation increase the expression of the ECM proteins type I collagen and fibronectin. This novel observation may elucidate the mechanisms by which HSP70 contributes in the inflammation and fibrosis present in atherosclerosis and other fibrosis-related diseases. PMID:23084979

  19. Increasing the vascular pedicle length in a free flap using a two-stage preliminary ectopic transfer.

    PubMed

    Schmidt, A; Herndl, E; Mühlbauer, W

    1991-08-01

    The length of the vascular pedicle is critically important in the use and safety of a free flap. A lengthening of the artery and vein, until now, has been achieved through the use of either an autologous vein interposition graft or an arteriovenous loop. In such patients, the risk is nevertheless increased and does so proportionally to the increasing length of the venous interposition. We present a 30-year-old male electrician who had lost his left forearm and most of his right ulna after high-voltage electrical trauma. Lengthening of the vascular pedicle of a free fibula flap was achieved by anastomosis to the thoracodorsal vessels for 4 weeks. After this time, the flap was raised again together with the pedicle of the latissimus dorsi and used safely for reconstruction of the ulnar defect. Postoperative recovery after both operations was uneventful and the aim of reconstruction fully realized. In our opinion, this procedure provides an interesting alternative in patients in whom the length of the vascular pedicle is crucial but the designated flap has only a short pedicle. PMID:1952745

  20. Addition of blood to a phycogenic bone substitute leads to increased in vivo vascularization.

    PubMed

    Barbeck, Mike; Najman, Stevo; Stojanović, Sanja; Mitić, Žarko; Živković, Jelena M; Choukroun, Joseph; Kovačević, Predrag; Sader, Robert; Kirkpatrick, C James; Ghanaati, Shahram

    2015-09-01

    The present study aimed to analyze the effects of the addition of blood to the phycogenic bone substitute Algipore(®) on the severity of in vivo tissue reaction. Initially, Fourier-transform infrared spectroscopy (FTIR) of the bone substitute was conducted to analyze its chemical composition. The subcutaneous implantation model in Balb/c mice was then applied for up to 30 d to analyze the tissue reactions on the basis of specialized histochemical, immunohistochemical, and histomorphometrical methods. The data of the FTIR analysis showed that the phycogenic bone substitute material is mainly composed of hydroxyapatite with some carbonate content. The in vivo analyses revealed that the addition of blood to Algipore(®) had a major impact on both angiogenesis and vessel maturation. The higher vascularization seemed to be based on significantly higher numbers of multinucleated TRAP-positive cells. However, mostly macrophages and a relatively low number of multinucleated giant cells were involved in the tissue reaction to Algipore(®). The presented data show that the addition of blood to a bone substitute impacts the tissue reaction to it. In particular, the immune response and the vascularization were influenced, and these are believed to have a major impact on the regenerative potential of the process of bone tissue regeneration. PMID:26359820

  1. A novel fluorescence-based cellular permeability assay.

    PubMed

    Chandra, Ankur; Barillas, Samuel; Suliman, Ahmed; Angle, Niren

    2007-04-10

    Vascular permeability is a pathologic process in many disease states ranging from metastatic progression of malignancies to ischemia-reperfusion injury. In order to more precisely study tissue, and more specifically cell layer permeability, our goal was to create a fluorescence-based assay which could quantify permeability without radioactivity or electrical impedance measurements. Human aortic endothelial cells were grown in monolayer culture on Costar-Transwell clear polyester membrane 6-well cell culture inserts. After monolayer integrity was confirmed, vascular endothelial growth factor (VEGF(165)) at varying concentrations with a fixed concentration of yellow-green fluorescent 0.04 microm carboxylate-modified FluoSpheres microspheres were placed in the luminal chamber and incubated for 24 h. When stimulated with VEGF(165) at 20, 40, 80, and 100 ng/ml, this assay system was able to detect increases in trans-layer flux of 8.2+/-2.4%, 16.0+/-3.7%, 41.5+/-4.9%, and 58.6+/-10.1% for each concentration, respectively. This represents the first fluorescence-based permeability assay with the sensitivity to detect changes in the permeability of a cell layer to fluid flux independent of protein flux; as well as being simpler and safer than previous radioactive-and impedance-based permeability assays. With the application of this in vitro assay to a variety of pathologic conditions, both the dynamics and physiology relating to cellular permeability can be more fully investigated. PMID:16962665

  2. MAPK pathway activation by chronic lead-exposure increases vascular reactivity through oxidative stress/cyclooxygenase-2-dependent pathways

    SciTech Connect

    Simões, Maylla Ronacher; Aguado, Andrea; Fiorim, Jonaína; Silveira, Edna Aparecida; Azevedo, Bruna Fernandes; Toscano, Cindy Medice; Zhenyukh, Olha; Briones, Ana María; Alonso, María Jesús; Vassallo, Dalton Valentim; Salaices, Mercedes

    2015-03-01

    Chronic exposure to low lead concentration produces hypertension; however, the underlying mechanisms remain unclear. We analyzed the role of oxidative stress, cyclooxygenase-2-dependent pathways and MAPK in the vascular alterations induced by chronic lead exposure. Aortas from lead-treated Wistar rats (1st dose: 10 μg/100 g; subsequent doses: 0.125 μg/100 g, intramuscular, 30 days) and cultured aortic vascular smooth muscle cells (VSMCs) from Sprague Dawley rats stimulated with lead (20 μg/dL) were used. Lead blood levels of treated rats attained 21.7 ± 2.38 μg/dL. Lead exposure increased systolic blood pressure and aortic ring contractile response to phenylephrine, reduced acetylcholine-induced relaxation and did not affect sodium nitroprusside relaxation. Endothelium removal and L-NAME left-shifted the response to phenylephrine more in untreated than in lead-treated rats. Apocynin and indomethacin decreased more the response to phenylephrine in treated than in untreated rats. Aortic protein expression of gp91(phox), Cu/Zn-SOD, Mn-SOD and COX-2 increased after lead exposure. In cultured VSMCs lead 1) increased superoxide anion production, NADPH oxidase activity and gene and/or protein levels of NOX-1, NOX-4, Mn-SOD, EC-SOD and COX-2 and 2) activated ERK1/2 and p38 MAPK. Both antioxidants and COX-2 inhibitors normalized superoxide anion production, NADPH oxidase activity and mRNA levels of NOX-1, NOX-4 and COX-2. Blockade of the ERK1/2 and p38 signaling pathways abolished lead-induced NOX-1, NOX-4 and COX-2 expression. Results show that lead activation of the MAPK signaling pathways activates inflammatory proteins such as NADPH oxidase and COX-2, suggesting a reciprocal interplay and contribution to vascular dysfunction as an underlying mechanisms for lead-induced hypertension. - Highlights: • Lead-exposure increases oxidative stress, COX-2 expression and vascular reactivity. • Lead exposure activates MAPK signaling pathway. • ROS and COX-2 activation by

  3. Vascular calcification is not associated with increased ambulatory central aortic systolic pressure in prevalent dialysis patients

    PubMed Central

    Freercks, Robert J; Swanepoel, Charles R; Turest-Swartz, Kristy L; Rayner, Brian L; Carrara, Henri RO; Moosa, Sulaiman EI; Lachman, Anthony S

    2014-01-01

    Summary Introduction Central aortic systolic pressure (CASP) strongly predicts cardiovascular outcomes. We undertook to measure ambulatory CASP in 74 prevalent dialysis patients using the BPro (HealthStats, Singapore) device. We also determined whether coronary or abdominal aortic calcification was associated with changes in CASP and whether interdialytic CASP predicted ambulatory measurement. Methods All patients underwent computed tomography for coronary calcium score, lateral abdominal radiography for aortic calcium score, echocardiography for left ventricular mass index and ambulatory blood pressure measurement using BPro calibrated to brachial blood pressure. HealthStats was able to convert standard BPro SOFT® data into ambulatory CASP. Results Ambulatory CASP was not different in those without and with coronary (137.6 vs 141.8 mmHg, respectively, p = 0.6) or aortic (136.6 vs 145.6 mmHg, respectively, p = 0.2) calcification. Furthermore, when expressed as a percentage of brachial systolic blood pressure to control for peripheral blood pressure, any difference in CASP was abolished: CASP: brachial systolic blood pressure ratio = 0.9 across all categories regardless of the presence of coronary or aortic calcification (p = 0.2 and 0.4, respectively). Supporting this finding, left ventricular mass index was also not different in those with or without vascular calcification (p = 0.7 and 0.8 for coronary and aortic calcification). Inter-dialytic office blood pressure and CASP correlated excellently with ambulatory measurements (r = 0.9 for both). Conclusion Vascular calcification was not associated with changes in ambulatory central aortic systolic pressure in this cohort of prevalent dialysis patients. Inter-dialytic blood pressure and CASP correlated very well with ambulatory measurement. PMID:24626513

  4. Decreased expression of VE-cadherin and claudin-5 and increased phosphorylation of VE-cadherin in vascular endothelium in nasal polyps.

    PubMed

    Yukitatsu, Yoriko; Hata, Masaki; Yamanegi, Koji; Yamada, Naoko; Ohyama, Hideki; Nakasho, Keiji; Kojima, Yusuke; Oka, Hideki; Tsuzuki, Kenzo; Sakagami, Masafumi; Terada, Nobuyuki

    2013-06-01

    VE-cadherin and claudin-5 are major components of adherens and tight junctions of vascular endothelial cells and a decrease in their expression and an increase in the tyrosine-phosphorylation of VE-cadherin are associated with an increase in endothelial paracellular permeability. To clarify the mechanism underlying the development of edema in nasal polyps, we studied these molecules in polyp microvessels. Normal inferior turbinate mucosal tissues and nasal polyps from patients treated with or without glucocorticoid were stained for VE-cadherin or claudin-5 and CD31 by a double-immunofluorescence method and the immunofluorescence intensities were graded 1-3 with increasing intensity. To correct for differences in fluorescence intensity attributable to a different endothelial area being exposed in a section or to the thickness of a section, the relative immunofluorescence intensity was estimated by dividing the grade of VE-cadherin or claudin-5 by that of CD31 in each microvessel. Tyrosine-phosphorylation of VE-cadherin was examined by Western blot analysis. The relative intensities of VE-cadherin and claudin-5 in the CD31-positive microvessels significantly decreased in the following order; inferior turbinate mucosa, treated polyps and untreated polyps. The ratio of tyrosine-phosphorylated VE-cadherin to VE-cadherin was significantly higher in untreated polyps than in the inferior turbinate mucosa and treated polyps, between which no significant difference in the ratio was seen. Thus, in nasal polyps, the barrier function of endothelial adherens and tight junctions is weakened, although glucocorticoid treatment improves this weakened barrier function. PMID:23474739

  5. Role of NF-κB-dependent Caveolin-1 Expression in the Mechanism of Increased Endothelial Permeability Induced by Lipopolysaccharide*S

    PubMed Central

    Tiruppathi, Chinnaswamy; Shimizu, Jun; Miyawaki-Shimizu, Kayo; Vogel, Stephen M.; Bair, Angela M.; Minshall, Richard D.; Predescu, Dan; Malik, Asrar B.

    2008-01-01

    We investigated the role of NF-κB activation by the bacterial product lipopolysaccharide (LPS) in inducing caveolin-1 (Cav-1) expression and its consequence in contributing to the leakiness of the endothelial barrier. We observed that LPS challenge of human lung microvascular endothelial cells induced concentration- and time-dependent increases in expression of Cav-1 mRNA and protein. The NEMO (NF-κB essential modifier binding domain)-binding domain peptide (IkB kinase (IKK)-NEMO-binding domain (NBD) peptide), which prevents NF-κB activation by inhibiting the interaction of IKKγ with the IKK complex, blocked LPS-induced Cav-1 mRNA and protein expression. Knockdown of NF-κB subunit p65/RelA expression with small interfering RNA also prevented LPS-induced Cav-1 expression. Caveolae open to the apical and basal plasmalemma of endothelial cells increased 2–4-fold within 4 h of LPS exposure. IKK-NBD peptide markedly reduced the LPS-induced increase in the number of caveolae as well as transendothelial albumin permeability. These observations were recapitulated in mouse studies in which IKK-NBD peptide prevented Cav-1 expression and interfered with the increase in lung microvessel permeability induced by LPS. Thus, LPS mediates NF-κB-dependent Cav-1 expression that results in increased caveolae number and thereby contributes to the mechanism of increased transendothelial albumin permeability. PMID:18077459

  6. Age decreases mitochondrial motility and increases mitochondrial size in vascular smooth muscle

    PubMed Central

    Chalmers, Susan; Saunter, Christopher D.; Girkin, John M.

    2016-01-01

    Key points Age is proposed to be associated with altered structure and function of mitochondria; however, in fully‐differentiated cells, determining the structure of more than a few mitochondria at a time is challenging. In the present study, the structures of the entire mitochondrial complements of cells were resolved from a pixel‐by‐pixel covariance analysis of fluctuations in potentiometric fluorophore intensity during ‘flickers’ of mitochondrial membrane potential.Mitochondria are larger in vascular myocytes from aged rats compared to those in younger adult rats.A subpopulation of mitochondria in myocytes from aged, but not younger, animals is highly‐elongated.Some mitochondria in myocytes from younger, but not aged, animals are highly‐motile.Mitochondria that are motile are located more peripherally in the cell than non‐motile mitochondria. Abstract Mitochondrial function, motility and architecture are each central to cell function. Age‐associated mitochondrial dysfunction may contribute to vascular disease. However, mitochondrial changes in ageing remain ill‐defined because of the challenges of imaging in native cells. We determined the structure of mitochondria in live native cells, demarcating boundaries of individual organelles by inducing stochastic ‘flickers’ of membrane potential, recorded as fluctuations in potentiometric fluorophore intensity (flicker‐assisted localization microscopy; FaLM). In freshly‐isolated myocytes from rat cerebral resistance arteries, FaLM showed a range of mitochondrial X‐Y areas in both young adult (3 months; 0.05–6.58 μm2) and aged rats (18 months; 0.05–13.4 μm2). In cells from young animals, most mitochondria were small (mode area 0.051 μm2) compared to aged animals (0.710 μm2). Cells from older animals contained a subpopulation of highly‐elongated mitochondria (5.3% were >2 μm long, 4.2% had a length:width ratio >3) that was rare in younger animals (0.15% of mitochondria >2

  7. [Aging-related increase of sensitivity of the mitochondrial permeability transition pore to inductors in the rat heart].

    PubMed

    Sahach, V F; Vavilova, H L; Strutyns'ka, N A; Rudyk, O V

    2004-01-01

    An age-related increase in the sensitivity of the mitochondrial permeability transition pore (MPTP) to inductors of it's opening, Ca2+ ions and phenylarsineoxide (PAO) was studied in experiments in vitro on isolated heart mitochondria of adult and old rats. Two indices were measured spectrophotometrically (lambda = 520 nm) by a decrease in an optical density (OD), resulting from mitochondrial swelling and a release of mitochondrial unidentified substances (mitochondrial factor, MF) registered also spectrophotometrically in a range of waves lambda = 230-260 nm. Dose-dependent effect of Ca2+ (10(-7)-10(-4) mol/l) and PAO (10(-8)-10(-4) mol/l) on swelling of the mitochondria were observed in samples from both adult and old rats. Swelling of the mitochondria from the heart of old rats induced by application of the above inductors was more intensive than the respective effect in samples from adult rats. In samples from the heart of both adult and old rats Ca2+ ions within the tested concentration range (10(-7)-10(-4) mol/l) evoked the release of MF in a dose-dependent manner. Mitochondria from the heart of old rats were found to be capable of releasing some amounts of MF in the absence of the MPTP inductors PAO. When this inductor was applied in a 10(-9) to 10(-4) mol/l concentration range, isolated mitochondria from the heart of old rats released unidentified substances with the absorption peaks at two wavelength, lambda = 230 nm and lambda = 240-245 nm. The former peak was found to be Cyclosporin A-insensitive, while the latter peak could be practically completely inhibited by this antibiotic. The concentrations of tested solutions (10(-7) mol/l CaCl2 and 10(-9) mol/l PAO), at which the release of the factor from the mitochondria of the old rat heart was observed, were significantly lower than those in adult rats. Our experimental data show that mitochondria isolated from the heart tissue of old rats demonstrate significantly higher sensitivity to inductors of MPTP

  8. H460 non-small cell lung cancer stem-like holoclones yield tumors with increased vascularity

    PubMed Central

    Manley, Eugene; Waxman, David J.

    2014-01-01

    Cancer stem-like cells were isolated from several human tumor cell lines by limiting dilution assays and holoclone morphology, followed by assessment of self-renewal capacity, tumor growth, vascularity, and blood perfusion. H460 holoclone-derived tumors grew slower than parental H460 tumors, but displayed significantly increased microvessel density and tumor blood perfusion. Microarray analysis identified 177 differentially regulated genes in the holoclone-derived tumors, of which 47 were associated with angiogenesis. The dysregulated genes include several small leucine-rich proteoglycans that may modulate angiogenesis and serve as novel therapeutic targets for inhibiting cancer stem cell-driven angiogenesis. PMID:24334139

  9. Hydroxysafflor yellow A increases BDNF and NMDARs in the hippocampus in a vascular dementia rat model.

    PubMed

    Xing, Mengya; Sun, Qingna; Wang, Yiyi; Cheng, Yan; Zhang, Nan

    2016-07-01

    Hydroxysafflor yellow A (HSYA) is a drug that exerts angiogenesis regulatory and neuroprotective effects and has become an effective therapy for brain and heart ischemic disorders. There is no definite evidence supporting a therapeutic effect of HSYA in vascular dementia (VaD). We used HSYA in a rat model of chronic cerebral ischemia to determine its potential therapeutic effects in VaD. The Morris water maze (MWM) was used to evaluate spatial cognitive function, and long-term potentiation (LTP) was tested as a marker of synaptic plasticity. The expression levels of brain-derived neurotrophic factor (BDNF) and two subunits of N-methyl-d-aspartate receptor (NMDAR; GluN2A and GluN2B) in the hippocampus were measured via western blotting. The MWM results showed that the experimental VaD group had longer escape latencies than the sham group, whereas the HSYA group had a decreased escape latency compared with the VaD group (P<0.05). The LTP at CA3-CA1 synapses in the hippocampus was also enhanced in the HSYA compared with the VaD group (P<0.05). The western blotting results revealed lower hippocampal BDNF and GluN2B expression in the VaD group compared with the sham group and significantly higher hippocampal expression in the HSYA group compared with the VaD group. No significant change in GluN2A expression was detected. The results indicate that HSYA may enhance the endogenous expression of BDNF and GluN2B, which are associated with the synaptic plasticity of the hippocampus, and may improve spatial learning and memory abilities in a rat model of VaD. PMID:27086971

  10. Dietary fat and bile juice, but not obesity, are responsible for the increase in small intestinal permeability induced through the suppression of tight junction protein expression in LETO and OLETF rats

    PubMed Central

    2010-01-01

    Background An increase in the intestinal permeability is considered to be associated with the inflammatory tone and development in the obesity and diabetes, however, the pathogenesis of the increase in the intestinal permeability is poorly understood. The present study was performed to determine the influence of obesity itself as well as dietary fat on the increase in intestinal permeability. Methods An obese rat strain, Otsuka Long Evans Tokushima Fatty (OLETF), and the lean counter strain, Long Evans Tokushima Otsuka (LETO), were fed standard or high fat diets for 16 weeks. Glucose tolerance, intestinal permeability, intestinal tight junction (TJ) proteins expression, plasma bile acids concentration were evaluated. In addition, the effects of rat bile juice and dietary fat, possible mediators of the increase in the intestinal permeability in the obesity, on TJ permeability were explored in human intestinal Caco-2 cells. Results The OLETF rats showed higher glucose intolerance than did the LETO rats, which became more marked with the prolonged feeding of the high fat diet. Intestinal permeability in the OLETF rats evaluated by the urinary excretion of intestinal permeability markers (Cr-EDTA and phenolsulfonphthalein) was comparable to that in the LETO rats. Feeding the high fat diet increased intestinal permeability in both the OLETF and LETO rats, and the increases correlated with decreases in TJ proteins (claudin-1, claudin-3, occludin and junctional adhesion molecule-1) expression in the small, but not in the large intestine (cecum or colon). The plasma bile acids concentration was higher in rats fed the high fat diet. Exposure to bile juice and the fat emulsion increased TJ permeability with concomitant reductions in TJ protein expression (claudin-1, claudin-3, and junctional adhesion molecule-1) in the Caco-2 cell monolayers. Conclusion Excessive dietary fat and/or increased levels of luminal bile juice, but not genetic obesity, are responsible for the

  11. Orchidectomy attenuates high-salt diet-induced increases in blood pressure, renovascular resistance, and hind limb vascular dysfunction: role of testosterone.

    PubMed

    Oloyo, Ahmed K; Sofola, Olusoga A; Yakubu, Momoh A

    2016-09-01

    Sex hormone-dependent vascular reactivity is an underlying factor contributing to sex differences in salt-dependent hypertension. This study evaluated the role of androgens (testosterone) in high salt-induced increase in blood pressure (BP) and altered vascular reactivity in renal blood flow and perfused hind limb preparation. Weanling male rats (8 weeks old, 180-200 g) were bilaterally orchidectomised or sham operated with or without testosterone replacement (Sustanon 250, 10 mg/kg intramuscularly once in 3 weeks) and placed on a normal (0.3%) or high (4.0%) NaCl diet for 6 weeks. The high-salt diet (HSD) increased arterial BP, renal vascular resistance (RVR) and positive fluid balance (FB). These changes were accompanied by decreased plasma nitric oxide levels. The increased BP, RVR and FB observed in the rats fed a HSD were reversed by orchidectomy while testosterone replacement prevented the reversal. Phenylephrine (PE)-induced increased vascular resistance in the perfused hind limb vascular bed was enhanced by HSD, the enhanced vascular resistance was prevented by orchidectomy and testosterone replacement reversed orchidectomy effect. Vasorelaxation responses to acetylcholine (ACh) and sodium nitroprusside (SNP) were impaired in HSD groups, orchidectomy attenuated the impairment, while testosterone replacement prevented the orchidectomy attenuation. These data suggested that eNOS-dependent and independently-mediated pathways were equally affected by HSD in vascular function impairment and this effect is testosterone-dependent in male Sprague-Dawley rats. PMID:27197589

  12. Mutant Alleles of lptD Increase the Permeability of Pseudomonas aeruginosa and Define Determinants of Intrinsic Resistance to Antibiotics

    PubMed Central

    Grabowicz, Marcin

    2015-01-01

    Gram-negative bacteria provide a particular challenge to antibacterial drug discovery due to their cell envelope structure. Compound entry is impeded by the lipopolysaccharide (LPS) of the outer membrane (OM), and those molecules that overcome this barrier are often expelled by multidrug efflux pumps. Understanding how efflux and permeability affect the ability of a compound to reach its target is paramount to translating in vitro biochemical potency to cellular bioactivity. Herein, a suite of Pseudomonas aeruginosa strains were constructed in either a wild-type or efflux-null background in which mutations were engineered in LptD, the final protein involved in LPS transport to the OM. These mutants were demonstrated to be defective in LPS transport, resulting in compromised barrier function. Using isogenic strain sets harboring these newly created alleles, we were able to define the contributions of permeability and efflux to the intrinsic resistance of P. aeruginosa to a variety of antibiotics. These strains will be useful in the design and optimization of future antibiotics against Gram-negative pathogens. PMID:26596941

  13. Rho kinase and Ca2+ entry mediate increased pulmonary and systemic vascular resistance in L-NAME-treated rats.

    PubMed

    Dhaliwal, Jasdeep S; Casey, David B; Greco, Anthony J; Badejo, Adeleke M; Gallen, Thomas B; Murthy, Subramanyam N; Nossaman, Bobby D; Hyman, Albert L; Kadowitz, Philip J

    2007-11-01

    The small GTP-binding protein and its downstream effector Rho kinase play an important role in the regulation of vasoconstrictor tone. Rho kinase activation maintains increased pulmonary vascular tone and mediates the vasoconstrictor response to nitric oxide (NO) synthesis inhibition in chronically hypoxic rats and in the ovine fetal lung. However, the role of Rho kinase in mediating pulmonary vasoconstriction after NO synthesis inhibition has not been examined in the intact rat. To address this question, cardiovascular responses to the Rho kinase inhibitor fasudil were studied at baseline and after administration of an NO synthesis inhibitor. In the intact rat, intravenous injections of fasudil cause dose-dependent decreases in systemic arterial pressure, small decreases in pulmonary arterial pressure, and increases in cardiac output. L-NAME caused a significant increase in pulmonary and systemic arterial pressures and a decrease in cardiac output. The intravenous injections of fasudil after L-NAME caused dose-dependent decreases in pulmonary and systemic arterial pressure and increases in cardiac output, and the percent decreases in pulmonary arterial pressure in response to the lower doses of fasudil were greater than decreases in systemic arterial pressure. The Ca(++) entry blocker isradipine also decreased pulmonary and systemic arterial pressure in L-NAME-treated rats. Infusion of sodium nitroprusside restored pulmonary arterial pressure to baseline values after administration of L-NAME. These data provide evidence in support of the hypothesis that increases in pulmonary and systemic vascular resistance following L-NAME treatment are mediated by Rho kinase and Ca(++) entry through L-type channels, and that responses to L-NAME can be reversed by an NO donor. PMID:17766587

  14. Production of Experimental Malignant Pleural Effusions Is Dependent on Invasion of the Pleura and Expression of Vascular Endothelial Growth Factor/Vascular Permeability Factor by Human Lung Cancer Cells

    PubMed Central

    Yano, Seiji; Shinohara, Hisashi; Herbst, Roy S.; Kuniyasu, Hiroki; Bucana, Corazon D.; Ellis, Lee M.; Fidler, Isaiah J.

    2000-01-01

    We determined the molecular mechanisms that regulate the pathogenesis of malignant pleural effusion (PE) associated with advanced stage of human, non-small-cell lung cancer. Intravenous injection of human PC14 and PC14PE6 (adenocarcinoma) or H226 (squamous cell carcinoma) cells into nude mice yielded numerous lung lesions. PC14 and PC14PE6 lung lesions invaded the pleura and produced PE containing a high level of vascular endothelial growth factor (VEGF)-localized vascular hyperpermeability. Lung lesions produced by H226 cells were confined to the lung parenchyma with no PE. The level of expression of VEGF mRNA and protein by the cell lines directly correlated with extent of PE formation. Transfection of PC14PE6 cells with antisense VEGF165 gene did not inhibit invasion into the pleural space but reduced PE formation. H226 cells transfected with either sense VEGF 165 or sense VEGF 121 genes induced localized vascular hyperpermeability and produced PE only after direct implantation into the thoracic cavity. The production of PE was thus associated with the ability of tumor cells to invade the pleura, a property associated with expression of high levels of urokinase-type plasminogen activator and low levels of TIMP-2. Collectively, the data demonstrate that the production of malignant PE requires tumor cells to invade the pleura and express high levels of VEGF/VPF. PMID:11106562

  15. Production of experimental malignant pleural effusions is dependent on invasion of the pleura and expression of vascular endothelial growth factor/vascular permeability factor by human lung cancer cells.

    PubMed

    Yano, S; Shinohara, H; Herbst, R S; Kuniyasu, H; Bucana, C D; Ellis, L M; Fidler, I J

    2000-12-01

    We determined the molecular mechanisms that regulate the pathogenesis of malignant pleural effusion (PE) associated with advanced stage of human, non-small-cell lung cancer. Intravenous injection of human PC14 and PC14PE6 (adenocarcinoma) or H226 (squamous cell carcinoma) cells into nude mice yielded numerous lung lesions. PC14 and PC14PE6 lung lesions invaded the pleura and produced PE containing a high level of vascular endothelial growth factor (VEGF)-localized vascular hyperpermeability. Lung lesions produced by H226 cells were confined to the lung parenchyma with no PE. The level of expression of VEGF mRNA and protein by the cell lines directly correlated with extent of PE formation. Transfection of PC14PE6 cells with antisense VEGF165 gene did not inhibit invasion into the pleural space but reduced PE formation. H226 cells transfected with either sense VEGF 165 or sense VEGF 121 genes induced localized vascular hyperpermeability and produced PE only after direct implantation into the thoracic cavity. The production of PE was thus associated with the ability of tumor cells to invade the pleura, a property associated with expression of high levels of urokinase-type plasminogen activator and low levels of TIMP-2. Collectively, the data demonstrate that the production of malignant PE requires tumor cells to invade the pleura and express high levels of VEGF/VPF. PMID:11106562

  16. Enabling non-invasive assessment of an engineered endothelium on ePTFE vascular grafts without increasing oxidative stress.

    PubMed

    Jiang, Bin; Perrin, Louisiane; Kats, Dina; Meade, Thomas; Ameer, Guillermo

    2015-11-01

    Magnetic resonance imaging (MRI) in combination with contrast enhancement is a potentially powerful tool to non-invasively monitor cell distribution in tissue engineering and regenerative medicine. The most commonly used contrast agent for cell labeling is super paramagnetic iron oxide nanoparticles (SPIONs). However, uptake of SPIONs triggers the production of reactive oxygen species (ROS) in cells often leading to a pro-inflammatory phenotype. The objective of this study was to develop a labeling system to non-invasively visualize an engineered endothelium in vascular grafts without creating excessive oxidative stress. Specifically, we investigated: (1) chitosan-coated SPIONs (CSPIONs) as an antioxidant contrast agent for contrast enhancement, and (2) poly(1,8-octamethylene citrate) (POC) as an antioxidant interface to support cell adhesion and function of labeled cells on the vascular graft. While SPION-labeled endothelial cells (ECs) experienced elevated ROS formation and altered cell morphology, CSPION-labeled ECs cultured on POC-coated surfaces mitigated SPION-induced ROS formation and maintained EC morphology, phenotype, viability and functions. A monolayer of labeled ECs exhibited sufficient contrast with T2-weighed MR imaging. CSPION labeling of endothelial cells in combination with coating the graft wall with POC allows non-invasive monitoring of an engineered endothelium on ePTFE grafts without increasing oxidative stress. PMID:26283158

  17. Adiponectin inhibits oxidized low density lipoprotein-induced increase in matrix metalloproteinase 9 expression in vascular smooth muscle cells

    PubMed Central

    Saneipour, Maryam; Ghatreh-Samani, Keihan; Heydarian, Esfandiar; Farrokhi, Effat; Abdian, Narges

    2015-01-01

    BACKGROUND High expression of matrix metalloproteinase 9 (MMP9) during vascular injury and inflammation plays an important role in atherosclerotic plaque formation and rupture. In the process of atherosclerosis, oxidized low-density lipoprotein (oxLDL) upregulates MMP9 in human aortic vascular smooth muscle cells (HA/VSMCs). Adiponectin is an adipose tissue-derived hormone that has been shown to exert anti-atherogenic and anti-inflammatory effects. The aim of this study was to investigate the effect of adiponectin on MMP9 expression under pathogenic condition created by oxLDL in HA/VSMCs. METHODS In this experimental study, HA/VSMC were stimulated with oxLDL alone and in the presence of adiponectin for 24 and 48 h. The expression of MMP9 gene was determined by real-time polymerase chain reaction method. The protein level of this gene was investigated by western blotting technique. RESULTS An oxLDL increased MMP9 expression 2.16 ± 0.24- and 3.32 ± 0.25-fold after 24 and 48 h, respectively and adiponectin decreased oxLDL-induced MMP9 expression in a time-dependent manner. CONCLUSION These results show that adiponectin changes extracellular matrix by reducing MMP9 mRNA and protein, therefore, may stabilize lesions and reduce atheroma rupture. PMID:26405452

  18. The vascular disrupting agent ZD6126 shows increased antitumor efficacy and enhanced radiation response in large, advanced tumors

    SciTech Connect

    Siemann, Dietmar W. . E-mail: siemadw@ufl.edu; Rojiani, Amyn M.

    2005-07-01

    Purpose: ZD6126 is a vascular-targeting agent that induces selective effects on the morphology of proliferating and immature endothelial cells by disrupting the tubulin cytoskeleton. The efficacy of ZD6126 was investigated in large vs. small tumors in a variety of animal models. Methods and Materials: Three rodent tumor models (KHT, SCCVII, RIF-1) and three human tumor xenografts (Caki-1, KSY-1, SKBR3) were used. Mice bearing leg tumors ranging in size from 0.1-2.0 g were injected intraperitoneally with a single 150 mg/kg dose of ZD6126. The response was assessed by morphologic and morphometric means as well as an in vivo to in vitro clonogenic cell survival assay. To examine the impact of tumor size on the extent of enhancement of radiation efficacy by ZD6126, KHT sarcomas of three different sizes were irradiated locally with a range of radiation doses, and cell survival was determined. Results: All rodent tumors and human tumor xenografts evaluated showed a strong correlation between increasing tumor size and treatment effect as determined by clonogenic cell survival. Detailed evaluation of KHT sarcomas treated with ZD6126 showed a reduction in patent tumor blood vessels that was {approx}20% in small (<0.3 g) vs. >90% in large (>1.0 g) tumors. Histologic assessment revealed that the extent of tumor necrosis after ZD6126 treatment, although minimal in small KHT sarcomas, became more extensive with increasing tumor size. Clonogenic cell survival after ZD6126 exposure showed a decrease in tumor surviving fraction from approximately 3 x 10{sup -1} to 1 x 10{sup -4} with increasing tumor size. When combined with radiotherapy, ZD6126 treatment resulted in little enhancement of the antitumor effect of radiation in small (<0.3 g) tumors but marked increases in cell kill in tumors larger than 1.0 g. Conclusions: Because bulky neoplastic disease is typically the most difficult to manage, the present findings provide further support for the continued development of vascular

  19. Aldosterone Increases Oxidant Stress to Impair Guanylyl Cyclase Activity by Cysteinyl Thiol Oxidation in Vascular Smooth Muscle Cells*S⃞

    PubMed Central

    Maron, Bradley A.; Zhang, Ying-Yi; Handy, Diane E.; Beuve, Annie; Tang, Shiow-Shih; Loscalzo, Joseph; Leopold, Jane A.

    2009-01-01

    Hyperaldosteronism is associated with impaired endothelium-dependent vascular reactivity owing to increased reactive oxygen species and decreased bioavailable nitric oxide (NO·); however, the effects of aldosterone on vasodilatory signaling pathways in vascular smooth muscle cells (VSMC) remain unknown. Soluble guanylyl cyclase (GC) is a heterodimer that is activated by NO· to convert cytosolic GTP to cGMP, a second messenger required for normal VSMC relaxation. Here, we show that aldosterone (10-9-10-7 mol/liter) diminishes GC activity by activating NADPH oxidase in bovine aortic VSMC to increase reactive oxygen species levels and induce oxidative posttranslational modification(s) of Cys-122, a β1-subunit cysteinyl residue demonstrated previously to modulate NO· sensing by GC. In VSMC treated with aldosterone, Western immunoblotting detected evidence of GC β1-subunit disulfide bonding, whereas mass spectrometry analysis of a homologous peptide containing the Cys-122-bearing sequence exposed to conditions of increased oxidant stress confirmed cysteinyl sulfinic acid (m/z 435), sulfonic acid (m/z 443), and disulfide (m/z 836) bond formation. The functional effect of these modifications was examined by transfecting COS-7 cells with wild-type GC or mutant GC containing an alanine substitution at Cys-122 (C122A). Exposure to aldosterone or hydrogen peroxide (H2O2) significantly decreased cGMP levels in cells expressing wild-type GC. In contrast, aldosterone or H2O2 did not influence cGMP levels in cells expressing the mutant C122A GC, confirming that oxidative modification of Cys-122 specifically impairs GC activity. These findings demonstrate that pathophysiologically relevant concentrations of aldosterone increase oxidant stress to convert GC to an NO·-insensitive state, resulting in disruption of normal vasodilatory signaling pathways in VSMC. PMID:19141618

  20. Peripheral vascular disease prevalence increases exponentially withproximity to roadways in an adult cardiac catherization cohort.

    EPA Science Inventory

    Background: Previous epidemiologic studies have suggested that residential proximity to traffic increases risk ofcardiovascular diseases (CVD) in major urban areas. Objectives: We examined the associations between mobile source air pollution and cardiovascular outcomes in a less ...

  1. MiRNA-200b Regulates RMP7-Induced Increases in Blood-Tumor Barrier Permeability by Targeting RhoA and ROCKII.

    PubMed

    Ma, Teng; Xue, Yi-Xue

    2016-01-01

    The primary goals of this study were to investigate the potential roles of miR-200b in regulating RMP7-induced increases in blood-tumor barrier (BTB) permeability and some of the possible molecular mechanisms associated with this effect. Microarray analysis revealed 34 significantly deregulated miRNAs including miR-200b in the BTB as induced by RMP7 and 8 significantly up-regulated miRNAs in the BTB by RMP7. RMP7 induced tight junction (TJ) opening of the BTB, thereby increasing BTB permeability. Associated with this effect of RMP7 was a decrease in miR-200b expression within the human cerebral microvascular endothelial cells line hCMEC/D3 (ECs) of the BTB. Overexpression of miR-200b inhibited endothelial leakage and restored normal transendothelial electric resistance values. A simultaneous shift in occludin and claudin-5 distributions from insoluble to soluble fractions were observed to be significantly reduced. In addition, overexpression of miR-200b inhibited the relocation of occludin and claudin-5 from cellular borders into the cytoplasm as well as the production of stress fiber formation in GECs (ECs with U87 glioma cells co-culturing) of the BTB. MiR-200b silencing produced opposite results as that obtained from that of the miR-200b overexpression group. Overexpression of miR-200b was also associated with a down-regulation in RhoA and ROCKII expression, concomitant with a decrease in BTB permeability. Again, results which were opposite to that obtained with the miR-200b silencing group. We further found that miR-200b regulated BTB permeability by directly targeting RhoA and ROCKII. Collectively, these results suggest that miR-200b's contribution to the RMP7-induced increase in BTB permeability was associated with stress fiber formation and TJ disassembly as achieved by directly targeting RhoA and ROCKII. PMID:26903801

  2. MiRNA-200b Regulates RMP7-Induced Increases in Blood-Tumor Barrier Permeability by Targeting RhoA and ROCKII

    PubMed Central

    Ma, Teng; Xue, Yi-xue

    2016-01-01

    The primary goals of this study were to investigate the potential roles of miR-200b in regulating RMP7-induced increases in blood-tumor barrier (BTB) permeability and some of the possible molecular mechanisms associated with this effect. Microarray analysis revealed 34 significantly deregulated miRNAs including miR-200b in the BTB as induced by RMP7 and 8 significantly up-regulated miRNAs in the BTB by RMP7. RMP7 induced tight junction (TJ) opening of the BTB, thereby increasing BTB permeability. Associated with this effect of RMP7 was a decrease in miR-200b expression within the human cerebral microvascular endothelial cells line hCMEC/D3 (ECs) of the BTB. Overexpression of miR-200b inhibited endothelial leakage and restored normal transendothelial electric resistance values. A simultaneous shift in occludin and claudin-5 distributions from insoluble to soluble fractions were observed to be significantly reduced. In addition, overexpression of miR-200b inhibited the relocation of occludin and claudin-5 from cellular borders into the cytoplasm as well as the production of stress fiber formation in GECs (ECs with U87 glioma cells co-culturing) of the BTB. MiR-200b silencing produced opposite results as that obtained from that of the miR-200b overexpression group. Overexpression of miR-200b was also associated with a down-regulation in RhoA and ROCKII expression, concomitant with a decrease in BTB permeability. Again, results which were opposite to that obtained with the miR-200b silencing group. We further found that miR-200b regulated BTB permeability by directly targeting RhoA and ROCKII. Collectively, these results suggest that miR-200b's contribution to the RMP7-induced increase in BTB permeability was associated with stress fiber formation and TJ disassembly as achieved by directly targeting RhoA and ROCKII. PMID:26903801

  3. Fenofibrate Improves Vascular Endothelial Function by Reducing Oxidative Stress While Increasing eNOS in Healthy Normolipidemic Older Adults

    PubMed Central

    Walker, Ashley E; Kaplon, Rachelle E; Lucking, Sara Marian S; Russell-Nowlan, Molly J; Eckel, Robert H; Seals, Douglas R

    2013-01-01

    Vascular endothelial dysfunction develops with aging, as indicated by impaired endothelium-dependent dilation(EDD), and is related to increased cardiovascular disease risk. We hypothesized that short-term treatment with fenofibrate, a lipid-lowering agent with potential pleiotropic effects, would improve EDD in middle-aged and older normolipidemic adults by reducing oxidative stress. Brachial artery flow-mediated dilation (FMD), a measure of EDD, was assessed in 22healthy adults aged 50-77 years before and after 7days of fenofibrate (145 mg/d; n=12/7M) or placebo (n=10/5M). Brachial FMD was unchanged with placebo, but improved after 2 and 7 days of fenofibrate (5.1±0.7 vs. 2d: 6.0±0.7 and 7d: 6.4±0.6 %Δ; both P<0.005). The improvements in FMD after 7 days remained significant (P<0.05) after accounting for modest changes in plasma total and LDL-cholesterol. Endothelium-independent dilation was not affected by fenofibrate or placebo (P>0.05). Infusion (i.v.) of the antioxidant vitamin C improved brachial FMD at baseline in both groups and during placebo treatment (P<0.05), but not after 2 and 7 days of fenofibrate (P>0.05). Fenofibrate treatment also reduced plasma oxidized LDL, a systemic marker of oxidative stress, compared with placebo (P<0.05). In vascular endothelial cells sampled from peripheral veins of the subjects, endothelial nitric oxide synthase (eNOS) protein expression was unchanged with placebo and after 2 days of fenofibrate, but was increased after 7 days of fenofibrate (0.54±0.03 vs. 2d: 0.52±0.04 and 7d: 0.76±0.11 intensity/HUVEC control; P<0.05 7d). Short-term treatment with fenofibrate improves vascular endothelial function in healthy normolipidemic middle-aged/older adults by reducing oxidative stress and induces increases in eNOS. PMID:23108655

  4. Effect of immunologic reactions on rat intestinal epithelium. Correlation of increased permeability to chromium 51-labeled ethylenediaminetetraacetic acid and ovalbumin during acute inflammation and anaphylaxis

    SciTech Connect

    Ramage, J.K.; Stanisz, A.; Scicchitano, R.; Hunt, R.H.; Perdue, M.H.

    1988-06-01

    In these studies we compared jejunal permeability to two probes--chromium 51-labeled ethylenediaminetetraacetic acid (51Cr-EDTA) (mol wt, 360) and ovalbumin (mol wt, 45,000)--under control conditions, during acute intestinal inflammation, and in response to systemic anaphylaxis. Acute inflammation was produced after infection with Nippostrongylus brasiliensis and rats were studied at day 0 (control), day 4 (early), day 10 (acute), and day 35 (postinfection). At the latter stage, immune rats were also studied during anaphylaxis induced by i.v. N. brasiliensis antigen. In each study, blood and urine were sampled over 5 h after the probes were simultaneously injected into ligated loops in anesthetized rats. In controls, small quantities (less than 0.04% and 0.002% of the administered dose for 51Cr-EDTA and ovalbumin, respectively) appeared in the circulation and plateaued at 1 h. During acute inflammation, the appearance of both probes continued to increase with time. Compared with controls, 5-h values for 51Cr-EDTA and ovalbumin were (a) significantly elevated at day 4 (p less than 0.005), (b) increased approximately 20-fold at day 10 (p less than 0.005 and less than 0.01, respectively), and (c) normal at day 35. Urinary recovery of 51Cr-EDTA followed the same pattern. During anaphylaxis, appearance of the probes in the circulation increased at 1 h to values approximately 10-fold those in controls (p less than 0.001 and less than 0.01, for 51Cr-EDTA and ovalbumin, respectively), and then declined. Urinary recovery of 51Cr-EDTA over 5 h was also significantly increased. We conclude that epithelial barrier function becomes impaired during both acute inflammation and anaphylaxis. In this rat model, gut permeability changes to 51Cr-EDTA reflect gut permeability changes to macromolecular antigens.

  5. Utility of urinary Clara cell protein (CC16) to demonstrate increased lung epithelial permeability in non-smokers exposed to outdoor secondhand smoke

    PubMed Central

    St.Helen, Gideon; Holland, Nina T.; Balmes, John R.; Hall, Daniel B.; Bernert, J. Thomas; Vena, John E.; Wang, Jia-Sheng; Naeher, Luke P.

    2012-01-01

    Objectives To assess the utility of urinary Clara cell protein (CC16) as a biomarker of increased lung epithelial permeability in non-smokers exposed to outdoor secondhand smoke (SHS). Methods Twenty-eight healthy non-smoking adults visited outdoor patios of a restaurant and a bar where non-participants smoked and an open-air control with no smokers on three weekend days in a crossover study; subjects visited each site once for three hours. Urine samples were collected at baseline, immediately post-exposure, and next-morning, and analyzed for CC16. Changes in CC16 across location-types or with cigarette count were analyzed using mixed-effect models, stratified by gender. Results Urinary CC16 was higher in males (n=9) compared to females (n=18) at all measurement occasions (p<0.002), possibly reflecting prostatic contamination. Urinary CC16 from pre-exposure to post-exposure was higher following visits to restaurant and bar sites compared to the control among females but this increase did not reach statistical significance. Post-exposure to pre-exposure urinary CC16 ratios among females increased with cigarette count (p=0.048). Exposure-related increases in urinary CC16 were not seen among males. Conclusion Urinary CC16 may be a useful biomarker of increased lung epithelial permeability among female non-smokers; further work will be required to evaluate its applicability to males. PMID:22805990

  6. Bosentan-improved cardiopulmonary vascular performance and increased plasma levels of endothelin-1 in porcine endotoxin shock.

    PubMed Central

    Weitzberg, E.; Hemsén, A.; Rudehill, A.; Modin, A.; Wanecek, M.; Lundberg, J. M.

    1996-01-01

    1. To evaluate the possible contribution of endothelin-1 (ET-1) to the pathophysiology of porcine septic shock, the non-peptide, mixed ET-receptor antagonist, bosentan (RO 47-0203) was administered (5 mg kg-1, i.v.) 30 min before infusion of lipopolysaccharide (LPS) (E. coli., serotype 0111:B4) (15 micrograms kg-1 h-1) and at 3.5 h of endotoxaemia in six anaesthetized and mechanically ventilated pigs. Six other pigs served as controls and received only LPS infusion. Pulmonary and systemic haemodynamics as well as splenic, renal and intestinal blood flows were measured continuously. Release and synthesis of ET-1 and Big ET-1 were also measured. 2. Only three of the six pigs in the control group survived 3 h of LPS infusion while in the bosentantreated group all six pigs were alive at that time. A biphasic increase in mean pulmonary arterial pressure (MPAP) and pulmonary vascular resistance (PVR) was seen in control pigs. Pretreatment with bosentan did not influence the first peak but markedly attenuated the second, more prolonged increase in MPAP and PVR. The second dose of bosentan completely restored these parameters to pre-LPS levels. The LPS-induced changes in mean arterial blood pressure, heart rate and systemic vascular resistance were similar in both groups, while cardiac output (CO) was significantly higher in the bosentan-treated group. The second bosentan dose increased CO and splenic and intestinal blood flow without further lowering of blood pressure. 3. Bosentan caused an increase of the basal arterial plasma levels of ET-1-like immunoreactivity (LI), from 16.8 +/- 1.3 pM to 49.6 +/- 10.0 pM (n = 6, P < 0.01). However, the rate of the increase of ET-1 levels during the LPS infusion was not affected by bosentan. Repeated administration of bosentan during LPS infusion caused an additional increase of ET-1-LI levels. Neither the basal levels of Big ET-LI nor the LPS induced 8 fold increase in Big ET-LI were changed by bosentan. The level of preproET-1 m

  7. All-trans retinoic acid increases expression of aquaporin-5 and plasma membrane water permeability via transactivation of Sp1 in mouse lung epithelial cells.

    PubMed

    Nomura, Johji; Horie, Ichiro; Seto, Mayumi; Nagai, Kazufumi; Hisatsune, Akinori; Miyata, Takeshi; Isohama, Yoichiro

    2006-12-29

    Aquaporin-5 (AQP5) is a water-selective channel protein that is expressed in lacrimal glands, salivary glands, and distal lung. Several studies using AQP5 knockout mice have revealed that AQP5 plays an important role in maintaining water homeostasis in the lung. We report here that all-trans retinoic acid (atRA) increases plasma membrane water permeability, AQP5 mRNA and protein expression, and AQP5 promoter activity in MLE-12 cells. The promoter activation induced by atRA was diminished by mutation at the Sp1/Sp3 binding element (SBE), suggesting that the SBE mediates the effects of atRA. In addition, atRA increased the binding of Sp1 to the SBE without changing the levels of Sp1 in the nucleus. Taken together, our data indicate that atRA increases AQP5 expression through transactivation of Sp1, leading to an increase in plasma membrane water permeability. PMID:17097063

  8. Complement factors alter the amount of PrP(Sc) in primary-cultured mouse cortical neurons associated with increased membrane permeability.

    PubMed

    Hasebe, Rie; Tanaka, Misaki; Suzuki, Akio; Yamasaki, Takeshi; Horiuchi, Motohiro

    2016-09-01

    We examined the effects of complement factors on primary-cultured neurons infected with prions. The amount of protease K (PK)-resistant abnormal form of prion protein (PrP(Sc)) reached a maximum level at 12 and 16 days post exposure (dpe) in 22L- and Chandler-infected neurons, respectively. In Chandler-infected neurons, the reaction of complement factors C1q, C3 and C9 significantly increased membrane permeability. This was followed by a decrease of PK-resistant PrP(Sc) at 16 and 20dpe. In contrast, in 22L-infected neurons, the effects of complement factors were observed at 12 and 16dpe, but not at 20dpe. Membrane permeability also increased in 22L-infected neurons by reaction of complement factor C3, but interestingly, the amount of PK-resistant PrP(Sc) initially decreased, and then increased. These results suggest that the reactivity of complement factors in prion-infected neurons depends on the amount of PrP(Sc) and the prion strain. PMID:27236741

  9. Vascular endothelial growth factor (VEGF) is increased in serum, but not in cerebrospinal fluid in HIV associated CNS diseases.

    PubMed

    Sporer, B; Koedel, U; Paul, R; Eberle, J; Arendt, G; Pfister, H-W

    2004-02-01

    Vascular endothelial growth factor (VEGF) is a potent angiogenic and mitogenic peptide, which also induces several mediators that may play a role in HIV induced CNS damage. VEGF levels were determined in cerebrospinal fluid (CSF) and serum samples from patients with (n = 8) and without (n = 19) directly HIV associated CNS disorders and HIV negative control patients (n = 18). VEGF serum but not CSF levels were significantly increased in HIV infected patients with (381.1 (78.9) pg/ml) HIV associated CNS diseases compared with those without (120.8 (13.1) pg/ml) and HIV negative control patients (133.1(14.8) pg/ml). Serum samples from patients with untreated HIV associated encephalopathy (HIVE, n = 3) contained the highest VEGF levels (583.9 (71.5) pg/ml). In two patients VEGF serum levels were reduced during antiretroviral therapy. However, regardless of effective viral suppression, patients with HIVE still had higher levels compared with HIV infected patients without HIVE. A relevant increase of serum VEGF was not observed in patients without HIVE though high HI viral load. We conclude that HIVE is associated with increased serum VEGF levels. Further studies are warranted to elucidate the role of VEGF in HIVE. PMID:14742610

  10. The Ketogenic Diet Alters the Hypoxic Response and Affects Expression of Proteins Associated with Angiogenesis, Invasive Potential and Vascular Permeability in a Mouse Glioma Model

    PubMed Central

    Woolf, Eric C.; Curley, Kara L.; Liu, Qingwei; Turner, Gregory H.; Charlton, Julie A.; Preul, Mark C.; Scheck, Adrienne C.

    2015-01-01

    Background The successful treatment of malignant gliomas remains a challenge despite the current standard of care, which consists of surgery, radiation and temozolomide. Advances in the survival of brain cancer patients require the design of new therapeutic approaches that take advantage of common phenotypes such as the altered metabolism found in cancer cells. It has therefore been postulated that the high-fat, low-carbohydrate, adequate protein ketogenic diet (KD) may be useful in the treatment of brain tumors. We have demonstrated that the KD enhances survival and potentiates standard therapy in a mouse model of malignant glioma, yet the mechanisms are not fully understood. Methods To explore the effects of the KD on various aspects of tumor growth and progression, we used the immunocompetent, syngeneic GL261-Luc2 mouse model of malignant glioma. Results Tumors from animals maintained on KD showed reduced expression of the hypoxia marker carbonic anhydrase 9, hypoxia inducible factor 1-alpha, and decreased activation of nuclear factor kappa B. Additionally, tumors from animals maintained on KD had reduced tumor microvasculature and decreased expression of vascular endothelial growth factor receptor 2, matrix metalloproteinase-2 and vimentin. Peritumoral edema was significantly reduced in animals fed the KD and protein analyses showed altered expression of zona occludens-1 and aquaporin-4. Conclusions The KD directly or indirectly alters the expression of several proteins involved in malignant progression and may be a useful tool for the treatment of gliomas. PMID:26083629

  11. Vascular rings.

    PubMed

    Backer, Carl L; Mongé, Michael C; Popescu, Andrada R; Eltayeb, Osama M; Rastatter, Jeffrey C; Rigsby, Cynthia K

    2016-06-01

    The term vascular ring refers to congenital vascular anomalies of the aortic arch system that compress the esophagus and trachea, causing symptoms related to those two structures. The most common vascular rings are double aortic arch and right aortic arch with left ligamentum. Pulmonary artery sling is rare and these patients need to be carefully evaluated for frequently associated tracheal stenosis. Another cause of tracheal compression occurring only in infants is the innominate artery compression syndrome. In the current era, the diagnosis of a vascular ring is best established by CT imaging that can accurately delineate the anatomy of the vascular ring and associated tracheal pathology. For patients with a right aortic arch there recently has been an increased recognition of a structure called a Kommerell diverticulum which may require resection and transfer of the left subclavian artery to the left carotid artery. A very rare vascular ring is the circumflex aorta that is now treated with the aortic uncrossing operation. Patients with vascular rings should all have an echocardiogram because of the incidence of associated congenital heart disease. We also recommend bronchoscopy to assess for additional tracheal pathology and provide an assessment of the degree of tracheomalacia and bronchomalacia. The outcomes of surgical intervention are excellent and most patients have complete resolution of symptoms over a period of time. PMID:27301603

  12. Inhibition of the proliferation and acceleration of migration of vascular endothelial cells by increased cysteine-rich motor neuron 1

    SciTech Connect

    Nakashima, Yukiko; Morimoto, Mayuka; Toda, Ken-ichi; Shinya, Tomohiro; Sato, Keizo; Takahashi, Satoru

    2015-07-03

    Cysteine-rich motor neuron 1 (CRIM1) is upregulated only in extracellular matrix gels by angiogenic factors such as vascular endothelial growth factor (VEGF). It then plays a critical role in the tube formation of endothelial cells. In the present study, we investigated the effects of increased CRIM1 on other endothelial functions such as proliferation and migration. Knock down of CRIM1 had no effect on VEGF-induced proliferation or migration of human umbilical vein endothelial cells (HUVECs), indicating that basal CRIM1 is not involved in the proliferation or migration of endothelial cells. Stable CRIM1-overexpressing endothelial F-2 cells, termed CR1 and CR2, were constructed, because it was difficult to prepare monolayer HUVECs that expressed high levels of CRIM1. Proliferation was reduced and migration was accelerated in both CR1 and CR2 cells, compared with normal F-2 cells. Furthermore, the transient overexpression of CRIM1 resulted in decreased proliferation and increased migration of bovine aortic endothelial cells. In contrast, neither proliferation nor migration of COS-7 cells were changed by the overexpression of CRIM1. These results demonstrate that increased CRIM1 reduces the proliferation and accelerates the migration of endothelial cells. These CRIM1 effects might contribute to tube formation of endothelial cells. CRIM1 induced by angiogenic factors may serve as a regulator in endothelial cells to switch from proliferating cells to morphological differentiation. - Highlights: • CRIM1 was upregulated only in tubular endothelial cells, but not in monolayers. • Increased CRIM1 reduced the proliferation of endothelial cells. • Increased CRIM1 accelerated the migration of endothelial cells. • Increased CRIM1 had no effect on the proliferation or migration of COS-7 cells.

  13. Increased blood-brain barrier permeability in mammalian brain 7 days after exposure to the radiation from a GSM-900 mobile phone.

    PubMed

    Nittby, Henrietta; Brun, Arne; Eberhardt, Jacob; Malmgren, Lars; Persson, Bertil R R; Salford, Leif G

    2009-08-01

    Microwaves were for the first time produced by humans in 1886 when radio waves were broadcasted and received. Until then microwaves had only existed as a part of the cosmic background radiation since the birth of universe. By the following utilization of microwaves in telegraph communication, radars, television and above all, in the modern mobile phone technology, mankind is today exposed to microwaves at a level up to 10(20) times the original background radiation since the birth of universe. Our group has earlier shown that the electromagnetic radiation emitted by mobile phones alters the permeability of the blood-brain barrier (BBB), resulting in albumin extravasation immediately and 14 days after 2h of exposure. In the background section of this report, we present a thorough review of the literature on the demonstrated effects (or lack of effects) of microwave exposure upon the BBB. Furthermore, we have continued our own studies by investigating the effects of GSM mobile phone radiation upon the blood-brain barrier permeability of rats 7 days after one occasion of 2h of exposure. Forty-eight rats were exposed in TEM-cells for 2h at non-thermal specific absorption rates (SARs) of 0mW/kg, 0.12mW/kg, 1.2mW/kg, 12mW/kg and 120mW/kg. Albumin extravasation over the BBB, neuronal albumin uptake and neuronal damage were assessed. Albumin extravasation was enhanced in the mobile phone exposed rats as compared to sham controls after this 7-day recovery period (Fisher's exact probability test, p=0.04 and Kruskal-Wallis, p=0.012), at the SAR-value of 12mW/kg (Mann-Whitney, p=0.007) and with a trend of increased albumin extravasation also at the SAR-values of 0.12mW/kg and 120mW/kg. There was a low, but significant correlation between the exposure level (SAR-value) and occurrence of focal albumin extravasation (r(s)=0.33; p=0.04). The present findings are in agreement with our earlier studies where we have seen increased BBB permeability immediately and 14 days after

  14. Role of connexin 43 in vascular hyperpermeability and relationship to Rock1-MLC20 pathway in septic rats.

    PubMed

    Zhang, Jie; Yang, Guang-Ming; Zhu, Yu; Peng, Xiao-Yong; Li, Tao; Liu, Liang-Ming

    2015-12-01

    Connexin (Cx)43 has been shown to participate in several cardiovascular diseases. Increased vascular permeability is a common and severe complication in sepsis or septic shock. Whether or not Cx43 takes part in the regulation of vascular permeability in severe sepsis is not known, and the underlying mechanism has not been described. With cecal ligation and puncture-induced sepsis in rats and lipopolysaccharide (LPS)-treated vascular endothelial cells (VECs) from pulmonary veins, the role of Cx43 in increased vascular permeability and its relationship to the RhoA/Rock1 pathway were studied. It was shown that vascular permeability in the lungs, kidneys, and mesentery in sepsis rats and LPS-stimulated monolayer pulmonary vein VECs was significantly increased and positively correlated with the increased expression of Cx43 and Rock1 in these organs and cultured pulmonary vein VECs. The connexin inhibitor carbenoxolone (10 mg/kg iv) and the Rock1 inhibitor Y-27632 (2 mg/kg iv) alleviated the vascular leakage of lung, mesentery, and kidney in sepsis rats. Overexpressed Cx43 increased the phosphorylation of 20-kDa myosin light chain (MLC20) and the expression of Rock1 and increased the vascular permeability and decreased the transendothelial electrical resistance of pulmonary vein VECs. Cx43 RNA interference decreased the phosphorylation of MLC20 and the expression of Rock1 and decreased LPS-stimulated hyperpermeability of cultured pulmonary vein VECs. The Rock1 inhibitor Y-27632 alleviated LPS- and overexpressed Cx43-induced hyperpermeability of monolayer pulmonary vein VECs. This report shows that Cx43 participates in the regulation of vascular permeability in sepsis and that the mechanism is related to the Rock1-MLC20 phosphorylation pathway. PMID:26342084

  15. Neuroprotective effect of selective DPP-4 inhibitor in experimental vascular dementia.

    PubMed

    Jain, Swati; Sharma, Bhupesh

    2015-12-01

    Vascular risk factors are associated with a higher incidence of dementia. Diabetes mellitus is considered as a main risk factor for Alzheimer's disease and vascular dementia. Both forms of dementia are posing greater risk to the world population and are increasing at a faster rate. In the past we have reported the induction of vascular dementia by experimental diabetes. This study investigates the role of vildagliptin, a dipeptidyl peptidase-4 inhibitor in the pharmacological interdiction of pancreatectomy diabetes induced vascular endothelial dysfunction and subsequent vascular dementia in rats. Attentional set shifting and Morris water-maze test were used for assessment of learning and memory. Vascular endothelial function, blood brain barrier permeability, serum glucose, serum nitrite/nitrate, oxidative stress (viz. aortic superoxide anion, brain thiobarbituric acid reactive species and brain glutathione), brain calcium and inflammation (myeloperoxidase) were also estimated. Pancreatectomy diabetes rats have shown impairment of endothelial function, blood brain barrier permeability, learning and memory along with increase in brain inflammation, oxidative stress and calcium. Administration of vildagliptin has significantly attenuated pancreatectomy induced impairment of learning, memory, endothelial function, blood brain barrier permeability and biochemical parameters. It may be concluded that vildagliptin, a dipeptidyl peptidase-4 inhibitor may be considered as potential pharmacological agents for the management of pancreatectomy induced endothelial dysfunction and subsequent vascular dementia. The selective modulators of dipeptidyl peptidase-4 may further be explored for their possible benefits in vascular dementia. PMID:26382939

  16. Gastrointestinal permeability (GIPerm) is increased in family members of children with functional abdominal pain (FAP) and irritable bowel syndrome (IBS)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increased GIPerm has been described in children with FAP/IBS and adults with IBS. We sought to determine if baseline GIPerm is increased and if ibuprofen induces a greater increase in GIPerm in parents and siblings of children with FAP/IBS vs. control families without children with FAP/IBS. Site spe...

  17. Obesity Contributes to Ovarian Cancer Metastatic Success through Increased Lipogenesis, Enhanced Vascularity, and Decreased Infiltration of M1 Macrophages.

    PubMed

    Liu, Yueying; Metzinger, Matthew N; Lewellen, Kyle A; Cripps, Stephanie N; Carey, Kyle D; Harper, Elizabeth I; Shi, Zonggao; Tarwater, Laura; Grisoli, Annie; Lee, Eric; Slusarz, Ania; Yang, Jing; Loughran, Elizabeth A; Conley, Kaitlyn; Johnson, Jeff J; Klymenko, Yuliya; Bruney, Lana; Liang, Zhong; Dovichi, Norman J; Cheatham, Bentley; Leevy, W Matthew; Stack, M Sharon

    2015-12-01

    Epithelial ovarian cancer (EOC) is the leading cause of death from gynecologic malignancy, with high mortality attributable to widespread intraperitoneal metastases. Recent meta-analyses report an association between obesity, ovarian cancer incidence, and ovarian cancer survival, but the effect of obesity on metastasis has not been evaluated. The objective of this study was to use an integrative approach combining in vitro, ex vivo, and in vivo studies to test the hypothesis that obesity contributes to ovarian cancer metastatic success. Initial in vitro studies using three-dimensional mesomimetic cultures showed enhanced cell-cell adhesion to the lipid-loaded mesothelium. Furthermore, in an ex vivo colonization assay, ovarian cancer cells exhibited increased adhesion to mesothelial explants excised from mice modeling diet-induced obesity (DIO), in which they were fed a "Western" diet. Examination of mesothelial ultrastructure revealed a substantial increase in the density of microvilli in DIO mice. Moreover, enhanced intraperitoneal tumor burden was observed in overweight or obese animals in three distinct in vivo models. Further histologic analyses suggested that alterations in lipid regulatory factors, enhanced vascularity, and decreased M1/M2 macrophage ratios may account for the enhanced tumorigenicity. Together, these findings show that obesity potently affects ovarian cancer metastatic success, which likely contributes to the negative correlation between obesity and ovarian cancer survival. PMID:26573796

  18. Brain-derived neurotrophic factor increases vascular endothelial growth factor expression and enhances angiogenesis in human chondrosarcoma cells.

    PubMed

    Lin, Chih-Yang; Hung, Shih-Ya; Chen, Hsien-Te; Tsou, Hsi-Kai; Fong, Yi-Chin; Wang, Shih-Wei; Tang, Chih-Hsin

    2014-10-15

    Chondrosarcomas are a type of primary malignant bone cancer, with a potent capacity for local invasion and distant metastasis. Brain-derived neurotrophic factor (BDNF) is commonly upregulated during neurogenesis. The aim of the present study was to examine the mechanism involved in BDNF-mediated vascular endothelial growth factor (VEGF) expression and angiogenesis in human chondrosarcoma cells. Here, we knocked down BDNF expression in chondrosarcoma cells and assessed their capacity to control VEGF expression and angiogenesis in vitro and in vivo. We found knockdown of BDNF decreased VEGF expression and abolished chondrosarcoma conditional medium-mediated angiogenesis in vitro as well as angiogenesis effects in vivo in the chick chorioallantoic membrane and Matrigel plug nude mouse models. In addition, in the xenograft tumor angiogenesis model, the knockdown of BDNF significantly reduced tumor growth and tumor-associated angiogenesis. BDNF increased VEGF expression and angiogenesis through the TrkB receptor, PLCγ, PKCα, and the HIF-1α signaling pathway. Finally, we analyzed samples from chondrosarcoma patients by immunohistochemical staining. The expression of BDNF and VEGF protein in 56 chondrosarcoma patients was significantly higher than in normal cartilage. In addition, the high level of BDNF expression correlated strongly with VEGF expression and tumor stage. Taken together, our results indicate that BDNF increases VEGF expression and enhances angiogenesis through a signal transduction pathway that involves the TrkB receptor, PLCγ, PKCα, and the HIF-1α. Therefore, BDNF may represent a novel target for anti-angiogenic therapy for human chondrosarcoma. PMID:25150213

  19. Barley-derived β-glucans increases gut permeability, ex vivo epithelial cell binding to E. coli, and naive T-cell proportions in weanling pigs.

    PubMed

    Ewaschuk, J B; Johnson, I R; Madsen, K L; Vasanthan, T; Ball, R; Field, C J

    2012-08-01

    Weaning in young animals is associated with an increased incidence of gastrointestinal infections. β-glucans exert numerous physiological effects, including altering immune function. The objective of this study was to determine the effects of feeding barley (Hordeum vulgare L.)-derived β-glucans on immune and intestinal function in weanling pigs (Sus scrofa). Thirty-one individually-housed Dutch Landrace pigs (21 d; initial BW, 6,298 ± 755 g) were weaned and fed a wheat-based diet (control) or a low (Lo-BG), medium (Med-BG), or high β-glucan-containing barley-based diet (Hi-BG) for 2 wk with 7 or 8 pigs/treatment. Intestinal segments were analyzed for permeability using Ussing chambers and K88 Escherichia coli adhesion to enterocytes was assessed ex vivo. Immune cells from mesenteric lymph nodes, peripheral blood, and Peyer's patches were analyzed for lymphocyte subsets by indirect immunofluorescence and the ability to respond ex vivo to mitogens by (3)H-thymidine incorporation. Hematology and neutrophil function were determined by flow cytometry. Neutrophil burst, size, and granularity, lymphocyte proliferation, and B-cell distribution in peripheral blood lymphocytes, Peyer's patches, and mesenteric lymph nodes were not affected by β-glucans content of the diet. The β-glucans content of the diet altered blood concentrations of erythrocytes and leukocytes, CD4, CD45RA, and CD8 blood cells (P < 0.05). In addition, feeding β-glucan resulted in increased (P < 0.05) percentage CD45RA positive cells in peripheral blood lymphocytes, Peyer's patches, and mesenteric lymph nodes. Mannitol permeability and tissue conductance were increased (P < 0.05) in Hi-BG fed pigs compared with control pigs. Percentage maximum K88-E.coli binding was increased in proportion to the β-glucan content of the diet (P < 0.05). Although β-glucan feeding during the weaning period increased blood lymphocytes and the proportion of naïve T-cells, it also increased E. coli

  20. Vascular Biomarkers in Asthma and COPD.

    PubMed

    Bakakos, Petros; Patentalakis, George; Papi, Alberto

    2016-01-01

    Bronchial asthma and chronic obstructive pulmonary disease (COPD) remain a global health problem with significant morbidity and mortality. The changes in bronchial microvasculature that occurin asthma and COPD contribute to airway wall remodeling. Angiogenesis seems to be more prevalent in asthma and vasodilatation seemsmore relevant in COPD while vascular leak is present in both diseases. Recently, there has been increased interest in the vascular component of airway remodeling in chronic bronchial inflammation of asthma and COPD although its role in the progression of the diseases has not been fully elucidated. Various cells andmediators are involved in the vascular remodeling in asthma and COPD while proinflammatory cytokines and growth factors exert angiogenic and antiangiogenic effects. Vascular endothelial growth factor (VEGF) is a key regulator of blood vessel growth mainly in asthma but also in COPD. In asthmatic airways VEGF promotes proliferation and differentiation of endothelial cells and induces vascular leakage and permeability. It has also been involved in enhanced allergic sensitization, upregulated subsequent T-helper-2 type inflammatory responses, chemotaxis for monocytes and eosinophils, and airway oedema. Impaired VEGF signaling has been associated with emphysema in animal models. Studies on lung biopsies have shown a decreasing effect of anti-asthma drugs to the vascular component of airway remodeling. There is less available evidence on the effect of the currently used drugs on airway microvascular network in COPD. This review article explores the current knowledge regarding vascular biomarkers in asthma and COPD as well as the therapeutic implications of these mediators. PMID:26420364

  1. Microcirculation-on-a-Chip: A Microfluidic Platform for Assaying Blood- and Lymphatic-Vessel Permeability

    PubMed Central

    Sato, Miwa; Sasaki, Naoki; Ato, Manabu; Hirakawa, Satoshi; Sato, Kiichi; Sato, Kae

    2015-01-01

    We developed a microfluidic model of microcirculation containing both blood and lymphatic vessels for examining vascular permeability. The designed microfluidic device harbors upper and lower channels that are partly aligned and are separated by a porous membrane, and on this membrane, blood vascular endothelial cells (BECs) and lymphatic endothelial cells (LECs) were cocultured back-to-back. At cell-cell junctions of both BECs and LECs, claudin-5 and VE-cadherin were detected. The permeability coefficient measured here was lower than the value reported for isolated mammalian venules. Moreover, our results showed that the flow culture established in the device promoted the formation of endothelial cell-cell junctions, and that treatment with histamine, an inflammation-promoting substance, induced changes in the localization of tight and adherens junction-associated proteins and an increase in vascular permeability in the microdevice. These findings indicated that both BECs and LECs appeared to retain their functions in the microfluidic coculture platform. Using this microcirculation device, the vascular damage induced by habu snake venom was successfully assayed, and the assay time was reduced from 24 h to 30 min. This is the first report of a microcirculation model in which BECs and LECs were cocultured. Because the micromodel includes lymphatic vessels in addition to blood vessels, the model can be used to evaluate both vascular permeability and lymphatic return rate. PMID:26332321

  2. LPS-induced imbalanced expression of hepatic vascular stress genes in cirrhosis: possible mechanism of increased susceptibility to endotoxemia.

    PubMed

    Baveja, Rajiv; Keller, Steve; Yokoyama, Yukihiro; Sonin, Natalie; Clemens, Mark G; Zhang, Jian X

    2002-04-01

    Cirrhosis predisposes the liver to secondary stresses such as endotoxemia possibly via dysregulation of the hepatic portal circulation secondary to imbalanced upregulation of vascular stress genes. In this study we determined the effect of cirrhosis on hepatic vasoregulatory gene expression in response to endotoxin (LPS, i.p., 1 mg/kg). Cirrhosis was induced by bile duct ligation (BDL) for 21 days in male Sprague-Dawley rats. Plasma and liver samples were taken 6 h following an injection of LPS for alanine aminotransferase (ALT) assays and RT-PCR analysis of mRNA levels for genes of interest: endothelin (ET-1), its receptors ET(A) and ET(B), endothelial nitric oxide synthase (eNOS), inducible NOS (iNOS), and heme oxygenase-1 (HO-1). ALT release increased by 5.5-fold in the BDL animals and 9.9-fold in BDL + LPS compared to sham. ET-1 mRNA was increased by either LPS or BDL treatment alone and increased significantly more in BDL + LPS compared to sham + LPS. mRNA levels for ET(B) receptors showed no change, whereas ETA transcripts decreased in BDL animals compared to sham, with no significant difference between the saline and LPS treatment groups. The resultant increased ratio of ET(B) over ET(A) in BDL animals was reflected functionally in the portal pressure responses to ET(A) and ET(B) agonists ET-1 and IRL-1620 (a specific ETB receptor agonist). The pressor response to ET-1 was attenuated, while the response to IRL-1620 was similar in BDL and sham. eNOS mRNA levels did not increase in response to either BDL or LPS or a combination of both compared to sham. The increase in iNOS mRNA was attenuated in BDL + LPS compared to sham + LPS. HO-1 expression increased significantly in sham + LPS, but failed to increase in BDL + LPS. Taken collectively, significantly greater induction of the constrictor ET-1 over the dilation forces (i.e., eNOS, iNOS, and HO-1) was observed in BDL + LPS. This suggests a compromised ability of the cirrhotic liver to upregulate sufficient

  3. Inflammatory Cytokines in Vascular Dysfunction and Vascular Disease

    PubMed Central

    Sprague, Alexander H.; Khalil, Raouf A.

    2009-01-01

    The vascular inflammatory response involves complex interaction between inflammatory cells (neutrophils, lymphocytes, monocytes, macrophages), endothelial cells (ECs), vascular smooth muscle cells (VSMCs), and extracellular matrix (ECM). Vascular injury is associated with increased expression of adhesion molecules by ECs and recruitment of inflammatory cells, growth factors, and cytokines, with consequent effects on ECs, VSMCs and ECM. Cytokines include tumor necrosis factors, interleukins, lymphokines, monokines, interferons, colony stimulating factors, and transforming growth factors. Cytokines are produced by macrophages, T cells and monocytes, as well as platelets, ECs and VSMCs. Circulating cytokines interact with specific receptors on various cell types and activate JAK-STAT, NF-κB, and Smad signaling pathways leading to an inflammatory response involving cell adhesion, permeability and apoptosis. Cytokines also interact with mitochondria to increasie the production of reactive oxygen species. Cytokine-induced activation of these pathways in ECs modifies the production/activity of vasodilatory mediators such as nitric oxide, prostacyclin, endothelium-derived hyperpolarizing factor, and bradykinin, as well as vasoconstrictive mediators such as endothelin and angiotensin II. Cytokines interact with VSMCs to activate Ca2+, protein kinase C, Rho-Kinase, and MAPK pathways, which promote cell growth and migration, and VSM reactivity. Cytokines also interact with integrins and matrix metalloproteinases (MMPs) and modify ECM composition. Persistent increases in cytokines are associated with vascular dysfunction and vascular disease such as atherosclerosis, abdominal aortic aneurysm, varicose veins and hypertension. Genetic and pharmacological tools to decrease the production of cytokines or to diminish their effects using cytokine antagonists could provide new approaches in the management of inflammatory vascular disease. PMID:19413999

  4. Ischemia and reperfusion of the lung tissues induced increase of lung permeability and lung edema is attenuated by dimethylthiourea (PP69).

    PubMed

    Chen, K H; Chao, D; Liu, C F; Chen, C F; Wang, D

    2010-04-01

    This study sought to determine whether oxygen radical scavengers of dimethylthiourea (DMTU), superoxide dismutase (SOD), or catalase (CAT) pretreatment attenuated ischemia-reperfusion (I/R)-induced lung injury. After isolation from a Sprague-Dawley rat, the lungs were perfused through the pulmonary artery cannula with rat whole blood diluted 1:1 with a physiological salt solution. An acute lung injury was induced by 10 minutes of hypoxia with 5% CO2-95% N2 followed by 65 minutes of ischemia and then 65 minutes of reperfusion. I/R significantly increased microvascular permeability as measured by the capillary filtration coefficient (Kfc), lung weight-to-body weight ratio (LW/BW), and protein concentration in bronchoalveolar lavage fluid (PCBAL). DMTU pretreatment significantly attenuated the acute lung injury. The capillary filtration coefficient (P<.01), LW/BW (P<.01) and PCBAL (P<.05) were significantly lower among the DMTU-treated rats than hosts pretreated with SOD or CAT. The possible mechanisms of the protective effect of DMTU in I/R-induced lung injury may relate to the permeability of the agent allowing it to scavenge intracellular hydroxyl radicals. However, whether superoxide dismutase or catalase antioxidants showed protective effects possibly due to their impermeability of the cell membrane not allowing scavenging of intracellular oxygen radicals. PMID:20430163

  5. Studies on the potential neurotoxic and convulsant effects of increased blood levels of quinolinic acid in rats with altered blood-brain barrier permeability

    SciTech Connect

    Vezzani, A.; Stasi, M.A.; Wu, H.Q.; Castiglioni, M.; Weckermann, B.; Samanin, R. )

    1989-10-01

    Intravenous injection of 450 mg/kg quinolinic acid (Quin), an endogenous kynurenine metabolite with excitotoxic properties, induced only minor electroencephalographic (EEG) modifications and no neurotoxicity in rats with a mature blood-brain barrier (BBB). BBB permeability was altered in rats by focal unilateral irradiation of the cortex (7 mm in diameter and 5 mm in depth) with protons (60 Gy, 9 Gy/min). Three days after irradiation, Evans blue dye staining showed BBB breakdown in the dorsal hippocampus of the irradiated hemisphere. No neurotoxic or convulsant effects were observed as a consequence of the radiation itself. When BBB-lesioned rats were challenged with 225 mg/kg Quin iv, epileptiform activity was observed on EEG analysis. Tonic-clonic seizures were induced by 225-450 mg/kg Quin. Light microscopic analysis showed a dose-related excitotoxic type of lesion restricted to the hippocampus ipsilateral to the irradiated side. Neuro-degeneration was prevented by local injection of 120 nmol D(-)2-amino-7-phosphonoheptanoic acid, a selective N-methyl-D-aspartate receptor antagonist. No lesions or EEG or behavioral modifications occurred after 450 mg/kg nicotinic acid, an inactive analog of Quin. The potential neurotoxic and convulsant effects of increased blood levels of Quin under conditions of altered BBB permeability are discussed.

  6. Increased plasma levels of soluble vascular endothelial growth factor receptor 1 (sFlt-1) in women by moderate exercise and increased plasma levels of vascular endothelial growth factor in overweight/obese women.

    PubMed

    Makey, Kristina L; Patterson, Sharla G; Robinson, James; Loftin, Mark; Waddell, Dwight E; Miele, Lucio; Chinchar, Edmund; Huang, Min; Smith, Andrew D; Weber, Mark; Gu, Jian-Wei

    2013-01-01

    The incidence of breast cancer is increasing worldwide, and this seems to be related to an increase in lifestyle risk factors, including physical inactivity and overweight/obesity. We have reported previously that exercise induced a circulating angiostatic phenotype characterized by increased soluble fms-like tyrosine kinase-1 (sFlt-1) and endostatin and decreased unbound vascular endothelial growth factor (VEGF) in men. However, there are no data on women. The present study determines the following: (a) whether moderate exercise increased sFlt-1 and endostatin and decreased unbound VEGF in the circulation of adult female volunteers and (b) whether overweight/obese women have a higher plasma level of unbound VEGF than lean women. A total of 72 African American and White adult women volunteers ranging in age from 18 to 44 years were enrolled in the exercise study. All the participants walked on a treadmill for 30 min at a moderate intensity (55-59% heart rate reserve), and oxygen consumption (VO(2)) was quantified utilizing a metabolic cart. We obtained blood samples before and immediately after exercise from 63 participants. ELISA assays showed that the plasma levels of sFlt-1 were 67.8±3.7 pg/ml immediately after exercise (30 min), significantly higher than the basal levels, 54.5±3.3 pg/ml, before exercise (P<0.01; n=63). There was no significant difference in the % increase in the sFlt-1 levels after exercise between African American and White (P=0.533) women or between lean and overweight/obese women (P=0.892). There was no significant difference in the plasma levels of unbound VEGF (35.28±5.47 vs. 35.23±4.96 pg/ml; P=0.99) or endostatin (111.12±5.48 vs. 115.45±7.15 ng/ml; P=0.63) before and after exercise. The basal plasma levels of unbound VEGF in overweight/obese women were 52.26±9.6 pg/ml, significantly higher than the basal levels of unbound VEGF in lean women, 27.34±4.99 pg/ml (P<0.05). The results support our hypothesis that exercise

  7. Increasing functional modularity with residence time in the co-distribution of native and introduced vascular plants.

    PubMed

    Hui, Cang; Richardson, David M; Pyšek, Petr; Le Roux, Johannes J; Kučera, Tomáš; Jarošík, Vojtěch

    2013-01-01

    Species gain membership of regional assemblages by passing through multiple ecological and environmental filters. To capture the potential trajectory of structural changes in regional meta-communities driven by biological invasions, one can categorize species pools into assemblages of different residence times. Older assemblages, having passed through more environmental filters, should become more functionally ordered and structured. Here we calculate the level of compartmentalization (modularity) for three different-aged assemblages (neophytes, introduced after 1500 AD; archaeophytes, introduced before 1500 AD, and natives), including 2,054 species of vascular plants in 302 reserves in central Europe. Older assemblages are more compartmentalized than younger ones, with species composition, phylogenetic structure and habitat characteristics of the modules becoming increasingly distinctive. This sheds light on two mechanisms of how alien species are functionally incorporated into regional species pools: the settling-down hypothesis of diminishing stochasticity with residence time, and the niche-mosaic hypothesis of inlaid neutral modules in regional meta-communities. PMID:24045305

  8. Increasing functional modularity with residence time in the co-distribution of native and introduced vascular plants

    PubMed Central

    Hui, Cang; Richardson, David M.; Pyšek, Petr; Le Roux, Johannes J.; Kučera, Tomáš; Jarošík, Vojtěch

    2013-01-01

    Species gain membership of regional assemblages by passing through multiple ecological and environmental filters. To capture the potential trajectory of structural changes in regional meta-communities driven by biological invasions, one can categorize species pools into assemblages of different residence times. Older assemblages, having passed through more environmental filters, should become more functionally ordered and structured. Here we calculate the level of compartmentalization (modularity) for three different-aged assemblages (neophytes, introduced after 1500 AD; archaeophytes, introduced before 1500 AD, and natives), including 2,054 species of vascular plants in 302 reserves in central Europe. Older assemblages are more compartmentalized than younger ones, with species composition, phylogenetic structure and habitat characteristics of the modules becoming increasingly distinctive. This sheds light on two mechanisms of how alien species are functionally incorporated into regional species pools: the settling-down hypothesis of diminishing stochasticity with residence time, and the niche-mosaic hypothesis of inlaid neutral modules in regional meta-communities. PMID:24045305

  9. Role of permissive hypotension, hypertonic resuscitation and the global increased permeability syndrome in patients with severe hemorrhage: adjuncts to damage control resuscitation to prevent intra-abdominal hypertension.

    PubMed

    Duchesne, Juan C; Kaplan, Lewis J; Balogh, Zsolt J; Malbrain, Manu L N G

    2015-01-01

    Secondary intra-abdominal hypertension (IAH) and abdominal compartment syndrome (ACS) are closely related to fluid resuscitation. IAH causes major deterioration of the cardiac function by affecting preload, contractility and afterload. The aim of this review is to discuss the different interactions between IAH, ACS and resuscitation, and to explore a new hypothesis with regard to damage control resuscitation, permissive hypotension and global increased permeability syndrome. Review of the relevant literature via PubMed search. The recognition of the association between the development of ACS and resuscitation urged the need for new approach in traumatic shock management. Over a decade after wide spread application of damage control surgery damage control resuscitation was developed. DCR differs from previous resuscitation approaches by attempting an earlier and more aggressive correction of coagulopathy, as well as metabolic derangements like acidosis and hypothermia, often referred to as the 'deadly triad' or the 'bloody vicious cycle'. Permissive hypotension involves keeping the blood pressure low enough to avoid exacerbating uncontrolled haemorrhage while maintaining perfusion to vital end organs. The potential detrimental mechanisms of early, aggressive crystalloid resuscitation have been described. Limitation of fluid intake by using colloids, hypertonic saline (HTS) or hyperoncotic albumin solutions have been associated with favourable effects. HTS allows not only for rapid restoration of circulating intravascular volume with less administered fluid, but also attenuates post-injury oedema at the microcirculatory level and may improve microvascular perfusion. Capillary leak represents the maladaptive, often excessive, and undesirable loss of fluid and electrolytes with or without protein into the interstitium that generates oedema. The global increased permeability syndrome (GIPS) has been articulated in patients with persistent systemic inflammation failing

  10. Indomethacin induces increase in gastric epithelial tight junction permeability via redistribution of occludin and activation of p38 MAPK in MKN-28 Cells.

    PubMed

    Thakre-Nighot, Meghali; Blikslager, Anthony T

    2016-01-01

    Tight Junctions (TJ) create a paracellular barrier that is compromised when nonsteriodal anti-inflammatory drugs (NSAIDs) injure the gastric epithelium, leading to increased permeability. However, the mechanism of NSAID-induced gastric injury is unclear. Here, we examined the effect of indomethacin on barrier function and TJ in gastric MKN-28 cells. In concentration response studies, 500 µm indomethacin induced a significant decrease in transepithelial resistance (TER; 380 vs. 220 Ω·cm(2) for control and indomethacin-treated cells respectively, p < 0.05), and increased dextran permeability by 0.2 vs 1.2 g/l (p < 0.05). These changes in barrier function were completely ameliorated by the p38 MAPK inhibitor (SB-203580) but not by JNK inhibitor (SP-600125) or MEK/ERK inhibitor (PD-98059). SiRNA knock down of p38 MAPK prevented the loss of barrier function caused by indomethacin in MKN-28 cells. Western analyses of TJ proteins revealed that expression of occludin was reduced by indomethacin, whereas there was no change in other TJ proteins. The loss of occludin expression induced by indomethacin was prevented by inhibition of p38 MAPK but not JNK or ERK and also by siRNA of p38 MAPK. Immunofluorescence revealed disruption of occludin localization at the site of the tight junction in indomethacin-treated cells, and this was attenuated by inhibition of p38 MAPK. NSAID injury to murine gastric mucosa on Ussing chambers revealed that indomethacin caused a significant drop in TER and increased paracellular permeability. Pretreatment with the p38 MAPK inhibitor significantly attenuated the disruption of barrier function, but JNK and MEK/ERK inhibition had no effect. Western blot analysis on gastric mucosa reveled loss of TJ protein occludin by indomethacin, which was prevented by inhibition of p38 MAPK. This data suggests that indomethacin compromises the gastric epithelial barrier via p38 MAPK inducing occludin alterations in the TJs. PMID:27583191

  11. At high cardiac output, diesel exhaust exposure increases pulmonary vascular resistance and decreases distensibility of pulmonary resistive vessels.

    PubMed

    Wauters, Aurélien; Vicenzi, Marco; De Becker, Benjamin; Riga, Jean-Philippe; Esmaeilzadeh, Fatemeh; Faoro, Vitalie; Vachiéry, Jean-Luc; van de Borne, Philippe; Argacha, Jean-François

    2015-12-15

    Air pollution has recently been associated with the development of acute decompensated heart failure, but the underlying biological mechanisms remain unclear. A pulmonary vasoconstrictor effect of air pollution, combined with its systemic effects, may precipitate decompensated heart failure. The aim of the present study was to investigate the effects of acute exposure to diesel exhaust (DE) on pulmonary vascular resistance (PVR) under resting and stress conditions but also to determine whether air pollution may potentiate acquired pulmonary hypertension. Eighteen healthy male volunteers were exposed to ambient air (AA) or dilute DE with a particulate matter of <2.5 μm concentration of 300 μg/m(3) for 2 h in a randomized, crossover study design. The effects of DE on PVR, on the coefficient of distensibilty of pulmonary vessels (α), and on right and left ventricular function were evaluated at rest (n = 18), during dobutamine stress echocardiography (n = 10), and during exercise stress echocardiography performed in hypoxia (n = 8). Serum endothelin-1 and fractional exhaled nitric oxide were also measured. At rest, exposure to DE did not affect PVR. During dobutamine stress, the slope of the mean pulmonary artery pressure-cardiac output relationship increased from 2.8 ± 0.5 mmHg · min · l (-1) in AA to 3.9 ± 0.5 mmHg · min · l (-1) in DE (P < 0.05) and the α coefficient decreased from 0.96 ± 0.15 to 0.64 ± 0.12%/mmHg (P < 0.01). DE did not further enhance the hypoxia-related upper shift of the mean pulmonary artery pressure-cardiac output relationship. Exposure to DE did not affect serum endothelin-1 concentration or fractional exhaled nitric oxide. In conclusion, acute exposure to DE increased pulmonary vasomotor tone by decreasing the distensibility of pulmonary resistive vessels at high cardiac output. PMID:26497960

  12. Microparticles released by vascular endothelial cells increase hypoxia inducible factor expression in human proximal tubular HK-2 cells.

    PubMed

    Fernandez-Martínez, Ana Belen; Torija, Ana Valdehita; Carracedo, Julia; Ramirez, Rafael; de Lucio-Cazaña, Francisco Javier

    2014-08-01

    Microparticles are produced by vesiculation of the cell plasma membrane and serve as vectors of cell-to-cell communication. Co-culture experiments have shown that hypoxia-inducible factor-α (HIF-α)-regulated-genes are up-regulated in human renal proximal tubular HK-2 cells by endothelial cell factors which might be transported inside endothelial microparticles (EMP). Here we aimed to study in HK-2 cells the effect of EMP, produced by activated endothelial cells, on HIF-α and HIF-α-regulated vascular endothelial growth factor-A (VEGF-A). EMP, at a concentration much lower than that found in plasma, increased the expression of HIF-α/VEGF-A in a COX-2/EP2 receptor dependent manner. Since the EMP/cells ratio was ∼1/1000, we hypothesized that paracrine mediators produced by HK-2 cells amplified the initial signal. This hypothesis was confirmed by two facts which also suggested that the mediators were conveyed by particles released by HK-2 cells: (i) HIF-α was up-regulated in HK-2 cells treated with the pellet obtained from the conditioned medium of the EMP-treated HK-2 cells. (ii) In transwell experiments, EMP-treated cells increased the expression of HIF-α in untreated HK-2 cells. Interestingly, we detected these cells, particles that were released by EMP-treated HK-2 cells. Depending on the pathological context, activation of HIF-α and VEGF-A signaling in renal tissue/cells may have either beneficial or harmful effects. Therefore, our results suggest that their presence in the urinary space of EMP produced by activated endothelial cells may influence the outcome of a number of renal diseases. PMID:24878611

  13. Lung function declines in patients with pulmonary sarcoidosis and increased respiratory epithelial permeability to sup 99m Tc-DTPA

    SciTech Connect

    Chinet, T.; Dusser, D.; Labrune, S.; Collignon, M.A.; Chretien, J.; Huchon, G.J. )

    1990-02-01

    Respiratory epithelial clearance of {sup 99m}Tc-DTPA (RC-Tc-DTPA) and pulmonary function tests (PFT) were determined at intervals of 6 or 12 months in 37 untreated, nonsmoking patients with sarcoidosis over a period of 6 to 36 months. PFT included the measurements of total lung capacity (TLC), vital capacity (VC), FEV1, and diffusing capacity for carbon monoxide. No difference was found between the respiratory clearance of {sup 113m}In-DTPA (2.25 +/- 1.00%/min) and RC-Tc-DTPA (2.29 +/- 1.11%/min) in eight patients with pulmonary sarcoidosis. Pulmonary function decreased 15% or more in at least 2 function tests during 11 follow-up periods, but it remained stable during 47 follow-up periods. In patients whose lung function deteriorated, RC-Tc-DTPA increased to 3.51 +/- 1.55%/min; in contrast, in patients whose lung function remained stable, regardless of the initial values, RC-Tc-DTPA was normal (1.00 +/- 0.50%/min; p less than 0.001). In eight patients who were treated with corticosteroids, RC-Tc-DTPA decreased from 3.48 +/- 1.31%/min to 1.56 +/- 0.64%/min (p less than 0.001), and PFT improved. We conclude that in nonsmokers with pulmonary sarcoidosis, increased RC-Tc-DTPA is not related to dissociation of 99mTc from DTPA, RC-Tc-DTPA is increased when pulmonary function decreases, and, when increased, RC-Tc-DTPA decreases with corticosteroid therapy.

  14. Unilateral renal ischaemia in rats induces a rapid secretion of inflammatory markers to renal lymph and increased capillary permeability.

    PubMed

    Bivol, Liliana Monica; Iversen, Bjarne Magnus; Hultström, Michael; Wallace, Paal William; Reed, Rolf Kåre; Wiig, Helge; Tenstad, Olav

    2016-03-15

    A better understanding of the inflammatory process associated with renal ischaemia-reperfusion (IR) injury may be clinically important. In this study we examined the role of the kidney in production of inflammatory mediators by analysing renal lymph after 30 min unilateral occlusion of renal artery followed by 120 min reperfusion, as well as the effect of IR on size selectivity for proteins in both glomerular and peritubular capillaries. All measured mediators increased dramatically in renal hilar lymph, plasma and renal cortical tissue samples and returned to control levels after 120 min reperfusion. The responses were differentiated; interleukin-1β, monocyte chemoattractant protein-1 and leptin were markedly increased in plasma before reperfusion, reflecting an extrarenal response possibly induced by afferent renal nerve activity from the ischaemic kidney. Tumour necrosis factor-α was the only mediator showing elevated lymph-to-plasma ratio following 30 min reperfusion, indicating that most cytokines were released directly into the bloodstream. The IR-induced rise in cytokine levels was paralleled by a significant increase in high molecular weight plasma proteins in both lymph and urine. The latter was shown as a 14- to 166-fold increase in glomerular sieving coefficient of plasma proteins assessed by a novel proteomic approach, and indicated a temporarily reduced size selectivity of both glomerular and peritubular capillaries. Collectively, our data suggest that cytokines from the ischaemic kidney explain most of the rise in plasma concentration, and that the locally produced substances enter the systemic circulation through transport directly to plasma and not via the interstitium to lymph. PMID:26584508

  15. Co-expression of fibulin-5 and VEGF165 increases long-term patency of synthetic vascular grafts seeded with autologous endothelial cells.

    PubMed

    Preis, M; Schneiderman, J; Koren, B; Ben-Yosef, Y; Levin-Ashkenazi, D; Shapiro, S; Cohen, T; Blich, M; Israeli-Amit, M; Sarnatzki, Y; Gershtein, D; Shofti, R; Lewis, B S; Shaul, Y; Flugelman, M Y

    2016-03-01

    Small caliber synthetic vascular grafts are commonly used for bypass surgery and dialysis access sites but have high failure rates because of neointima formation and thrombosis. Seeding synthetic grafts with endothelial cells (ECs) provides a biocompatible surface that may prevent graft failure. However, EC detachment following exposure to blood flow still remains a major obstacle in the development of biosynthetic grafts. We tested the hypothesis that induced expression by the seeded EC, of vascular endothelial growth factor165 (VEGF165) and of fibulin-5, an extracellular matrix glycoprotein that has a crucial role in elastin fiber organization and increase EC adherence to surfaces, may improve long-term graft patency. Autologous ECs were isolated from venous segments, and were transduced with retroviral vectors expressing fibulin-5 and VEGF165. The modified cells were seeded on expanded polytetrafluoroethylene (ePTFE) grafts and implanted in a large animal model. Three months after transplantation, all grafts seeded with modified EC were patent on a selective angiography, whereas only a third of the control grafts were patent. Similar results were shown at 6 months. Thus, seeding ePTFE vascular grafts with genetically modified EC improved long-term small caliber graft patency. The biosynthetic grafts may provide a novel therapeutic modality for patients with peripheral vascular disease and patients requiring vascular access for hemodialysis. PMID:26588709

  16. Reduced cerebral glucose metabolism and increased brain capillary permeability following high-dose methotrexate chemotherapy: a positron emission tomographic study

    SciTech Connect

    Phillips, P.C.; Dhawan, V.; Strother, S.C.; Sidtis, J.J.; Evans, A.C.; Allen, J.C.; Rottenberg, D.A.

    1987-01-01

    Regional glucose metabolic rate constants and blood-to-brain transport of rubidium were estimated using positron emission tomography in an adolescent patient with a brain tumor, before and after chemotherapy with intravenous high-dose methotrexate. Widespread depression of cerebral glucose metabolism was apparent 24 hours after drug administration, which may reflect reduced glucose phosphorylation, and the influx rate constant for /sup 82/Rb was increased, indicating a drug-induced alteration in blood-brain barrier function. Associated changes in neuropsychological performance, electroencephalogram, and plasma amino acid concentration were identified in the absence of evidence of systemic methotrexate toxicity, suggesting primary methotrexate neurotoxicity.

  17. Knockdown of long non-coding RNA MALAT1 increases the blood-tumor barrier permeability by up-regulating miR-140.

    PubMed

    Ma, Jun; Wang, Ping; Yao, Yilong; Liu, Yunhui; Li, Zhen; Liu, Xiaobai; Li, Zhiqing; Zhao, Xihe; Xi, Zhuo; Teng, Hao; Liu, Jing; Xue, Yixue

    2016-02-01

    The blood-tumor barrier (BTB) forms a major obstacle in brain tumor therapy by preventing the delivery of sufficient quantities of therapeutic drugs. Long non-coding RNAs (lncRNAs) play important roles in both normal development and diseases including cancer. Here, we elucidated the expression of lncRNA metastasis associated lung adenocarcinoma transcript 1 (MALAT1) and defined its functional role in the regulation of BTB function as well as its possible molecular mechanisms. Our results proved that MALAT1 expression was up-regulated in brain microvessels of human glioma and glioma endothelial cells (GECs) which were obtained by co-culturing endothelial cells with glioma cells. Functionally, knockdown of MALAT1 resulted in an impairment and increased the permeability of BTB as well as decreased the expression of ZO-1, occludin and claudin-5 in GECs. Further, there was reciprocal repression between MALAT1 and miR-140, and miR-140 mediated the effects that MALAT1 knockdown exerted. Mechanistic investigations defined that nuclear factor YA (NFYA), a CCAAT box-binding transcription factor, was a direct and functional downstream target of miR-140, which was involved in the MALAT1 knockdown induced regulation of BTB function. Furthermore, NFYA could up-regulate the promoter activities and bind to the promoters of ZO-1, occludin and claudin-5 in GECs. Taken together, we have demonstrated the fact that knockdown of MALAT1 resulted in the increased permeability of BTB, which might contribute to establishing potential therapeutic strategies for human gliomas. PMID:26619802

  18. Activation of Toll-like receptor 3 increases mouse aortic vascular smooth muscle cell contractility through ERK1/2 pathway.

    PubMed

    Hardigan, Trevor; Spitler, Kathryn; Matsumoto, Takayuki; Carrillo-Sepulveda, Maria Alicia

    2015-11-01

    Activation of Toll-like receptor 3 (TLR3), a pattern recognition receptor of the innate immune system, is associated with vascular complications. However, whether activation of TLR3 alters vascular contractility is unknown. We, therefore, hypothesized that TLR3 activation augments vascular contractility and activates vascular smooth muscle cell (VSMC) contractile apparatus proteins. Male mice were treated with polyinosinic-polycytidylic acid (Poly I:C group, 14 days), a TLR3 agonist; control mice received saline (vehicle, 14 days). At the end of protocol, blood pressure was measured by tail cuff method. Aortas were isolated and assessed for contractility experiments using a wire myograph. Aortic protein content was used to determine phosphorylated/total interferon regulatory factor 3 (IRF3), a downstream target of TLR3 signaling, and ERK1/2 using Western blot. We investigated the TLR3/IRF3/ERK1/2 signaling pathway and contractile-related proteins such as phosphorylated/total myosin light chain (MLC) and caldesmon (CaD) in aortic VSMC primary cultures. Poly I:C-treated mice exhibited (vs. vehicle-treated mice) (1) elevated systolic blood pressure. Moreover, Poly I:C treatment (2) enhanced aortic phenylephrine-induced maximum contraction, which was suppressed by PD98059 (ERK1/2 inhibitor), and (3) increased aortic levels of phosphorylated IRF3 and ERK1/2. Stimulation of mouse aortic VSMCs with Poly I:C resulted in increased phosphorylation of IRF3, ERK1/2, MLC, and CaD. Inhibition of ERK1/2 abolished Poly I:C-mediated phosphorylation of MLC and CaD. Our data provide functional evidence for the role of TLR3 in vascular contractile events, suggesting TLR3 as a potential new therapeutic target in vascular dysfunction and regulation of blood pressure. PMID:25724934

  19. Optimizing your vascular practice: how to communicate with referring doctors, increase referrals, and work with cardiologists and interventional radiologists.

    PubMed

    Jain, Krishna M; Munn, John S; Rummel, Mark C; Johnston, Dan; Longton, Chris; Klemens, Tammy; Cotten, Lisa

    2010-12-01

    After the fellowship in vascular surgery is completed there is the daunting task of going into practice and succeeding. There are various tools that one can use to succeed in practice and also work closely with other specialists. The key to success is marketing and innovation. Using the two together any vascular surgeon can succeed. Marketing has multiple facets not to be confused with advertising. Total marketing revolves around the surgeon. It involves personal attributes, running of the office, behavior in the hospital, working with other physicians, and using advertising channels. Innovation is required as the art and science of the specialty continues to evolve. Vascular surgeons need to be on the cutting edge of providing latest technology as well as latest methods of delivering care. PMID:21411462

  20. Nox2 Knockout Delays Infarct Progression and Increases Vascular Recovery through Angiogenesis in Mice following Ischaemic Stroke with Reperfusion

    PubMed Central

    McCann, Sarah K.; Dusting, Gregory J.; Roulston, Carli L.

    2014-01-01

    Evidence suggests the NADPH oxidases contribute to ischaemic stroke injury and Nox2 is the most widely studied subtype in the context of stroke. There is still conjecture however regarding the benefits of inhibiting Nox2 to improve stroke outcome. The current study aimed to examine the temporal effects of genetic Nox2 deletion on neuronal loss after ischaemic stroke using knockout (KO) mice with 6, 24 and 72 hour recovery. Transient cerebral ischaemia was induced via intraluminal filament occlusion and resulted in reduced infarct volumes in Nox2 KO mice at 24 h post-stroke compared to wild-type controls. No protection was evident at either 6 h or 72 h post-stroke, with both genotypes exhibiting similar volumes of damage. Reactive oxygen species were detected using dihydroethidium and were co-localised with neurons and microglia in both genotypes using immunofluorescent double-labelling. The effect of Nox2 deletion on vascular damage and recovery was also examined 24 h and 72 h post-stroke using an antibody against laminin. Blood vessel density was decreased in the ischaemic core of both genotypes 24 h post-stroke and returned to pre-stroke levels only in Nox2 KO mice by 72 h. Overall, these results are the first to show that genetic Nox2 deletion merely delays the progression of neuronal loss after stroke but does not prevent it. Additionally, we show for the first time that Nox2 deletion increases re-vascularisation of the damaged brain by 72 h, which may be important in promoting endogenous brain repair mechanisms that rely on re-vascularisation. PMID:25375101

  1. Uteroplacental Adenovirus Vascular Endothelial Growth Factor Gene Therapy Increases Fetal Growth Velocity in Growth-Restricted Sheep Pregnancies

    PubMed Central

    Wallace, Jacqueline M.; Aitken, Raymond P.; Milne, John S.; Mehta, Vedanta; Martin, John F.; Zachary, Ian C.; Peebles, Donald M.; David, Anna L.

    2014-01-01

    Abstract Fetal growth restriction (FGR) occurs in ∼8% of pregnancies and is a major cause of perinatal mortality and morbidity. There is no effective treatment. FGR is characterized by reduced uterine blood flow (UBF). In normal sheep pregnancies, local uterine artery (UtA) adenovirus (Ad)-mediated overexpression of vascular endothelial growth factor (VEGF) increases UBF. Herein we evaluated Ad.VEGF therapy in the overnourished adolescent ewe, an experimental paradigm in which reduced UBF from midgestation correlates with reduced lamb birthweight near term. Singleton pregnancies were established using embryo transfer in adolescent ewes subsequently offered a high intake (n=45) or control intake (n=12) of a complete diet to generate FGR or normal fetoplacental growth, respectively. High-intake ewes were randomized midgestation to receive bilateral UtA injections of 5×1011 particles Ad.VEGF-A165 (n=18), control vector Ad.LacZ (n=14), or control saline (n=13). Fetal growth/well-being were evaluated using serial ultrasound. UBF was monitored using indwelling flowprobes until necropsy at 0.9 gestation. Vasorelaxation, neovascularization within the perivascular adventitia, and placental mRNA expression of angiogenic factors/receptors were examined using organ bath analysis, anti-vWF immunohistochemistry, and qRT-PCR, respectively. Ad.VEGF significantly increased ultrasonographic fetal growth velocity at 3–4 weeks postinjection (p=0.016–0.047). At 0.9 gestation fewer fetuses were markedly growth-restricted (birthweight >2SD below contemporaneous control-intake mean) after Ad.VEGF therapy. There was also evidence of mitigated fetal brain sparing (lower biparietal diameter-to-abdominal circumference and brain-to-liver weight ratios). No effects were observed on UBF or neovascularization; however, Ad.VEGF-transduced vessels demonstrated strikingly enhanced vasorelaxation. Placental efficiency (fetal-to-placental weight ratio) and FLT1/KDR mRNA expression were

  2. Nanomolar ouabain increases NCX1 expression and enhances Ca2+ signaling in human arterial myocytes: a mechanism that links salt to increased vascular resistance?

    PubMed Central

    Linde, Cristina I.; Antos, Laura K.; Golovina, Vera A.

    2012-01-01

    The mechanisms by which NaCl raises blood pressure (BP) in hypertension are unresolved, but much evidence indicates that endogenous ouabain is involved. In rodents, arterial smooth muscle cell (ASMC) Na+ pumps with an α2-catalytic subunit (ouabain EC50 ≤1.0 nM) are crucial for some hypertension models, even though ≈80% of ASMC Na+ pumps have an α1-subunit (ouabain EC50 ≈ 5 μM). Human α1-Na+ pumps, however, have high ouabain affinity (EC50 ≈ 10–20 nM). We used immunoblotting, immunocytochemistry, and Ca2+ imaging (fura-2) to examine the expression, distribution, and function of Na+ pump α-subunit isoforms in human arteries and primary cultured human ASMCs (hASMCs). hASMCs express α1- and α2-Na+ pumps. Further, α2-, but not α1-, pumps are confined to plasma membrane microdomains adjacent to sarcoplasmic reticulum (SR), where they colocalize with Na/Ca exchanger-1 (NCX1) and C-type transient receptor potential-6 (receptor-operated channels, ROCs). Prolonged inhibition (72 h) with 100 nM ouabain (blocks nearly all α1- and α2-pumps) was toxic to most cultured hASMCs. Treatment with 10 nM ouabain (72 h), however, increased NCX1 and sarco(endo)plasmic reticulum Ca2+-ATPase expression and augmented ATP (10 μM)-induced SR Ca2+ release in 0 Ca2+, ouabain-free media, and Ca2+ influx after external Ca2+ restoration. The latter was likely mediated primarily by ROCs and store-operated Ca2+ channels. These hASMC protein expression and Ca2+ signaling changes are comparable with previous observations on myocytes isolated from arteries of many rat hypertension models. We conclude that the same structurally and functionally coupled mechanisms (α2-Na+ pumps, NCX1, ROCs, and the SR) regulate Ca2+ homeostasis and signaling in hASMCs and rodent ASMCs. These ouabain/endogenous ouabain-modulated mechanisms underlie the whole body autoregulation associated with increased vascular resistance and elevation of BP in human, salt-sensitive hypertension. PMID:22842068

  3. Respiratory uncoupling by increased H+ or K+ flux is beneficial for heart mitochondrial turnover of reactive oxygen species but not for permeability transition

    PubMed Central

    2013-01-01

    Background Ischemic preconditioning has been proposed to involve changes in mitochondrial H+ and K+ fluxes, in particular through activation of uncoupling proteins and ATP-sensitive K+ channels (MitoKATP). The objectives of the present study were to explore how increased H+ and K+ fluxes influence heart mitochondrial physiology with regard to production and scavenging of reactive oxygen species (ROS), volume changes and resistance to calcium-induced mitochondrial permeability transition (mPT). Results Isolated rat heart mitochondria were exposed to a wide concentration range of the protonophore CCCP or the potassium ionophore valinomycin to induce increased H+ and K+ conductance, respectively. Simultaneous monitoring of mitochondrial respiration and calcium retention capacity (CRC) demonstrated that the relative increase in respiration caused by valinomycin or CCCP correlated with a decrease in CRC, and that no level of respiratory uncoupling was associated with enhanced resistance to mPT. Mitochondria suspended in hyperosmolar buffer demonstrated a dose-dependent reduction in CRC with increasing osmolarity. However, mitochondria in hypoosmolar buffer to increase matrix volume did not display increased CRC. ROS generation was reduced by both K+- and H+-mediated respiratory uncoupling. The ability of heart mitochondria to detoxify H2O2 was substantially greater than the production rate. The H2O2 detoxification was dependent on respiratory substrates and was dramatically decreased following calcium-induced mPT, but was unaffected by uncoupling via increased K+ and H+ conductance. Conclusion It is concluded that respiratory uncoupling is not directly beneficial to rat heart mitochondrial resistance to calcium overload irrespective of whether H+ or K+ conductance is increased. The negative effects of respiratory uncoupling thus probably outweigh the reduction in ROS generation and a potential positive effect by increased matrix volume, resulting in a net sensitization

  4. Cytoskeletal mechanisms regulating vascular endothelial barrier function in response to acute lung injury.

    PubMed

    Kása, Anita; Csortos, Csilla; Verin, Alexander D

    2015-01-01

    Endothelial cells (EC) form a semi-permeable barrier between the interior space of blood vessels and the underlying tissues. In acute lung injury (ALI) the EC barrier is weakened leading to increased vascular permeability. It is widely accepted that EC barrier integrity is critically dependent upon intact cytoskeletal structure and cell junctions. Edemagenic agonists, like thrombin or endotoxin lipopolysaccharide (LPS), induced cytoskeletal rearrangement, and EC contractile responses leading to disruption of intercellular contacts and EC permeability increase. The highly clinically-relevant cytoskeletal mechanisms of EC barrier dysfunction are currently under intense investigation and will be described and discussed in the current review. PMID:25838980

  5. Cytoskeletal mechanisms regulating vascular endothelial barrier function in response to acute lung injury

    PubMed Central

    Kása, Anita; Csortos, Csilla; Verin, Alexander D

    2014-01-01

    Endothelial cells (EC) form a semi-permeable barrier between the interior space of blood vessels and the underlying tissues. In acute lung injury (ALI) the EC barrier is weakened leading to increased vascular permeability. It is widely accepted that EC barrier integrity is critically dependent upon intact cytoskeletal structure and cell junctions. Edemagenic agonists, like thrombin or endotoxin lipopolysaccharide (LPS), induced cytoskeletal rearrangement, and EC contractile responses leading to disruption of intercellular contacts and EC permeability increase. The highly clinically-relevant cytoskeletal mechanisms of EC barrier dysfunction are currently under intense investigation and will be described and discussed in the current review. PMID:25838980

  6. Bovine Colostrum Increases Pore-Forming Claudin-2 Protein Expression but Paradoxically Not Ion Permeability Possibly by a Change of the Intestinal Cytokine Milieu

    PubMed Central

    Maletzki, Claudia; Lamprecht, Georg

    2013-01-01

    An impaired intestinal barrier function is involved in the pathogenesis of inflammatory bowel disease (IBD). Several nutritional factors are supposed to be effective in IBD treatment but scientific data about the effects on the intestinal integrity remain scarce. Bovine colostrum was shown to exert beneficial effects in DSS-induced murine colitis, and the present study was undertaken to explore the underlying molecular mechanisms. Western blot revealed increased claudin-2 expression in the distal ileum of healthy mice after feeding with colostrum for 14 days, whereas other tight junction proteins (claudin-3, 4, 10, 15) remained unchanged. The colostrum-induced claudin-2 induction was confirmed in differentiated Caco-2 cells after culture with colostrum for 48 h. Paradoxically, the elevation of claudin-2, which forms a cation-selective pore, was neither accompanied by increased ion permeability nor impaired barrier function. In an in situ perfusion model, 1 h exposure of the colonic mucosa to colostrum induced significantly increased mRNA levels of barrier-strengthening cytokine transforming growth factor-β, while interleukine-2, interleukine-6, interleukine-10, interleukine-13, and tumor-necrosis factor-α remained unchanged. Thus, modulation of the intestinal transforming growth factor-β expression might have compensated the claudin-2 increase and contributed to the observed barrier strengthening effects of colostrum in vivo and in vitro. PMID:23717570

  7. Survey of ocular irritation predictive capacity using Chorioallantoic Membrane Vascular Assay (CAMVA) and Bovine Corneal Opacity and Permeability (BCOP) test historical data for 319 personal care products over fourteen years.

    PubMed

    Donahue, D A; Kaufman, L E; Avalos, J; Simion, F A; Cerven, D R

    2011-03-01

    The Chorioallantoic Membrane Vascular Assay (CAMVA) and Bovine Corneal Opacity and Permeability (BCOP) test are widely used to predict ocular irritation potential for consumer-use products. These in vitro assays do not require live animals, produce reliable predictive data for defined applicability domains compared to the Draize rabbit eye test, and are rapid and inexpensive. Data from 304 CAMVA and/or BCOP studies (319 formulations) were surveyed to determine the feasibility of predicting ocular irritation potential for various formulations. Hair shampoos, skin cleansers, and ethanol-based hair styling sprays were repeatedly predicted to be ocular irritants (accuracy rate=0.90-1.00), with skin cleanser and hair shampoo irritation largely dependent on surfactant species and concentration. Conversely, skin lotions/moisturizers and hair styling gels/lotions were repeatedly predicted to be non-irritants (accuracy rate=0.92 and 0.82, respectively). For hair shampoos, ethanol-based hair stylers, skin cleansers, and skin lotions/moisturizers, future ocular irritation testing (i.e., CAMVA/BCOP) can be nearly eliminated if new formulations are systematically compared to those previously tested using a defined decision tree. For other tested product categories, new formulations should continue to be evaluated in CAMVA/BCOP for ocular irritation potential because either the historical data exhibit significant variability (hair conditioners and mousses) or the historical sample size is too small to permit definitive conclusions (deodorants, make-up removers, massage oils, facial masks, body sprays, and other hair styling products). All decision tree conclusions should be made within a conservative weight-of-evidence context, considering the reported limitations of the BCOP test for alcohols, ketones, and solids. PMID:21147215

  8. Patients with Congenital Systemic-to-Pulmonary Shunts and Increased Pulmonary Vascular Resistance: What Predicts Postoperative Survival?

    PubMed Central

    Gan, Hui-Li; Zhang, Jian-Qun; Zhou, Qi-Wen; Feng, Lei; Chen, Fei; Yang, Yi

    2014-01-01

    Background We carried out a retrospective data review of patients with systemic to pulmonary shunts that underwent surgical repair between February 1990 and February 2012 in order to assess preoperative pulmonary vascular dynamic risk factors for predicting early and late deaths due presumably to pulmonary vascular disease. Methods and Results A total of 1024 cases of congenital systemic-to-pulmonary shunt and advanced pulmonary vascular disease beyond infancy and early childhood were closed surgically. The mean follow up duration was 8.5±5.5 (range 0.7 to 20) years. Sixty-one in-hospital deaths (5.96%, 61/1024) occurred after the shunt closure procedure and there were 46 late deaths, yielding 107 total deaths. We analyzed preoperative pulmonary vascular resistance index (PVRI), pulmonary vascular resistance index on pure oxygen challenge (PVRIO), difference between PVRI and PVRIO (PVRID), Qp∶Qs, and Rp∶Rs as individual risk predictors. The results showed that these individual factors all predicted in-hospital death and total death with PVRIO showing better performance than other risk factors. A multivariable Cox regression model was built,and suggested that PVRID and Qp∶Qs were informative factors for predicting survival time from late death and closure of congenital septal defects was safe with a PVRIO<10.3 WU.m2 and PVRID>7.3 WU.m2 on 100% oxygen. Conclusions All 4 variables, PVRI, PVRIO, PVRID and Qp∶Qs, should be considered in deciding surgical closure of congenital septal defects and a PVRIO<10.3 WU.m2 and PVRID>7.3 WU.m2 on 100% oxygen are associated with a favorable risk benefit profile for the procedure. PMID:24416187

  9. Increased concentrations of soluble vascular cell adhesion molecule-1 and soluble CD40L in subjects with metabolic syndrome.

    PubMed

    Palomo, Iván G; Jaramillo, Julio C; Alarcón, Marcelo L; Gutiérrez, César L; Moore-Carrasco, Rodrigo; Segovia, Fabián M; Leiva, Elba M; Mujica, Verónica E; Icaza, Gloria; Dí, Nora S

    2009-01-01

    Metabolic syndrome (MS) is associated with a high incidence rate of cardiovascular disease. It is characterized by abdominal obesity, elevated blood pressure, atherogenic dyslipidemia [high LDL-c (low density lipoprotein cholesterol) and low HDL-c (high density lipoprotein cholesterol)] and insulin resistance or glucose intolerance. In the context of MS, alterations in the plasmatic levels of some soluble forms of cell adhesion molecules can appear, e.g., soluble vascular cell adhesion molecule-1 (sVCAM-1), soluble E-selectin (sE-selectin) and soluble CD40L (sCD40L). The objective of this study was to compare the serum levels of sVCAM-1, sE-selectin and sCD40L in MS and non-MS groups and to associate these molecules with the diagnostic criteria of MS. A total of 185 non-smokers between 45 and 64 years of age were included. Of these, 93 corresponded to the MS group and the remaining 92 to a non-MS group (according to modified ATP III criteria). The serum concentration of sVCAM-1, sE-selectin and sCD40L was determined by commercial solid phase ELISA. The results were expressed as a median and interquartile range. The MS group showed high levels of sVCAM-1 (558.9 ng/ml; 481.3-667.6 ng/ml) compared with the non-MS group (405.2 ng/ml; 361.0-470.5 ng/ml) (p<0.0001). As well, the median level of sCD40L (3.0 ng/ml; 2.1l-11.7 ng/ml) was significantly higher in the MS group than that in the non-MS group (2.6 ng/ml; 2.3-3.4 ng/ml) (p=0.0061). sE-selectin levels did not differ significantly between the groups: 73.9 ng/ml (58.3-87.0 ng/ml) and 68.5 ng/ml (51.6-97.5 ng/ml) in the MS and non-MS group, respectively. In conclusion, the serum levels of sVCAM-1 and sCD40L, but not sE-selectin, were significantly higher in patients with MS than in subjects that did not present MS. MS may therefore increase the expression of cell adhesion molecules, probably through endothelial activation. PMID:21475854

  10. Increase in Blood Brain Barrier Permeability, Oxidative Stress, and Activated Microglia in a Rat Model of Blast Induced Traumatic Brain Injury

    PubMed Central

    Readnower, Ryan D.; Chavko, Mikulas; Adeeb, Saleena; Conroy, Michael D.; Pauly, James R.; McCarron, Richard M.; Sullivan, Patrick G.

    2010-01-01

    Traumatic brain injury (TBI) as a consequence of exposure to blast is increasingly prevalent in military populations, with the underlying pathophysiological mechanisms mostly unknown. In the present study, we utilized an air-driven shock tube to investigate the effects of blast exposure (120 kPa) on rat brains. Immediately following exposure to blast neurological function was reduced. BBB permeability was measured using IgG antibody and evaluating its immunoreactivity in the brain. At 3 and 24 h post-exposure there was a transient significant increase in IgG staining in the cortex. At 3 days post-exposure IgG immunoreactivity returned to control levels. Quantitative immunostaining was employed to determine the temporal course of brain oxidative stress following exposure to blast. Levels of 4-hydroxynonenal (4HNE) and 3-nitrotyrosine (3NT) were significantly increased at 3 h post-exposure and returned to control levels at 24 h post-exposure. The response of microglia to blast exposure was determined by autoradiographic localization of 3H-PK11195 binding. At 5 days post-exposure increased binding was observed in the contralateral and ipsilateral dentate gyrus. These regions also displayed increased binding at 10 days post-exposure; in addition to these regions there was increased binding in the contralateral ventral hippocampus and substantia nigra at this time point. Using antibodies against CD11b/c, microglia morphology characteristic of activated microglia was observed in the hippocampus and substantia nigra of animals exposed to blast. These results indicate that BBB breakdown, oxidative stress, and microglia activation likely play a role in the neuropathology associated with TBI as a result of blast exposure. PMID:20882564

  11. Cathepsin D: an Mϕ-derived factor mediating increased endothelial cell permeability with implications for alteration of the blood-retinal barrier in diabetic retinopathy.

    PubMed

    Monickaraj, Finny; McGuire, Paul G; Nitta, Carolina Franco; Ghosh, Kaustabh; Das, Arup

    2016-04-01

    Inflammation plays an important role in the pathogenesis of diabetic retinopathy (DR). We have previously reported increased monocyte (Mono) trafficking into the retinas of diabetic animals. In this study, we have examined the effect of activated Monos on retinal endothelial cells (ECs). The U937 Mϕ-conditioned medium (CM) significantly decreased the transendothelial resistance of EC monolayers as measured by electric cell-substrate impedance sensing (P= 0.007). The CM was fractioned, and the effective fraction (30-100 kDa) was analyzed by liquid chromatography-mass spectrometry, and cathepsin D (CD) was identified as a major secreted product. Immunoprecipitated CD resulted in decreased resistance in ECs (P= 0.006). The specificity of CD in mediating alterations of the EC barrier was confirmed using small interfering RNA. The decreased resistance correlated with a significantly increased gap between ECs. CD altered the Ras homolog gene family, member A/Rho-associated kinase pathway with increased stress actin filament formation in the EC layer. Increased CD levels were found in the retinas of diabetic mice (3-fold) and serum samples of patients with diabetic macular edema (1.6-fold) measured by Western blot and ELISA. These findings suggest an important role for Mϕ-derived CD in altering the blood-retinal barrier and reveal a potential therapeutic target in the treatment of DR.-Monickaraj, F., McGuire, P. G., Nitta, C. F., Ghosh, K., Das, A. Cathepsin D: an Mϕ-derived factor mediating increased endothelial cell permeability with implications for alteration of the blood-retinal barrier in diabetic retinopathy. PMID:26718887

  12. Trichostatin A enhances vascular repair by injected human endothelial progenitors through increasing the expression of TAL1-dependent genes.

    PubMed

    Palii, Carmen G; Vulesevic, Branka; Fraineau, Sylvain; Pranckeviciene, Erinija; Griffith, Alexander J; Chu, Alphonse; Faralli, Hervé; Li, Yuhua; McNeill, Brian; Sun, Jie; Perkins, Theodore J; Dilworth, F Jeffrey; Perez-Iratxeta, Carol; Suuronen, Erik J; Allan, David S; Brand, Marjorie

    2014-05-01

    A major goal of cell therapy for vascular diseases is to promote revascularization through the injection of endothelial stem/progenitor cells. The gene regulatory mechanisms that underlie endothelial progenitor-mediated vascular repair, however, remain elusive. Here, we identify the transcription factor TAL1/SCL as a key mediator of the vascular repair function of primary human endothelial colony-forming cells (ECFCs). Genome-wide analyses in ECFCs demonstrate that TAL1 activates a transcriptional program that promotes cell adhesion and migration. At the mechanistic level, we show that TAL1 upregulates the expression of migratory and adhesion genes through recruitment of the histone acetyltransferase p300. Based on these findings, we establish a strategy that enhances the revascularization efficiency of ECFCs after ischemia through ex vivo priming with the histone deacetylase inhibitor TSA. Thus, small molecule epigenetics drugs are effective tools for modifying the epigenome of stem/progenitor cells prior to transplantation as a means to enhance their therapeutic potential. PMID:24792117

  13. Age-dependent increase of blood-brain barrier permeability and neuron-binding autoantibodies in S100B knockout mice.

    PubMed

    Wu, Hao; Brown, Eric V; Acharya, Nimish K; Appelt, Denah M; Marks, Alexander; Nagele, Robert G; Venkataraman, Venkat

    2016-04-15

    S100B is a calcium-sensor protein that impacts multiple signal transduction pathways. It is widely considered to be an important biomarker for several neuronal diseases as well as blood-brain barrier (BBB) breakdown. In this report, we demonstrate a BBB deficiency in mice that lack S100B through detection of leaked Immunoglobulin G (IgG) in the brain parenchyma. IgG leaks and IgG-binding to selected neurons were observed in S100B knockout (S100BKO) mice at 6 months of age but not at 3 months. By 9 months, IgG leaks persisted and the density of IgG-bound neurons increased significantly. These results reveal a chronic increase in BBB permeability upon aging in S100BKO mice for the first time. Moreover, coincident with the increase in IgG-bound neurons, autoantibodies targeting brain proteins were detected in the serum via western blots. These events were concurrent with compromise of neurons, increase of activated microglia and lack of astrocytic activation as evidenced by decreased expression of microtubule-associated protein type 2 (MAP2), elevated number of CD68 positive cells and unaltered expression of glial fibrillary acidic protein (GFAP) respectively. Results suggest a key role for S100B in maintaining BBB functional integrity and, further, propose the S100BKO mouse as a valuable model system to explore the link between chronic functional compromise of the BBB, generation of brain-reactive autoantibodies and neuronal dysfunctions. PMID:26907191

  14. ApoA-I Induced CD31 in Bone Marrow-derived Vascular Progenitor Cells Increases Adhesion: Implications for Vascular Repair

    PubMed Central

    Mythreye, Karthikeyan; Satterwhite, Lisa L.; Davidson, W. Sean; Goldschmidt-Clermont, Pascal J.

    2008-01-01

    Transgenic over expression of apolipoprotein A-I (ApoA-I) the major structural apolipoprotein of HDL appears to convey the most consistent and strongest anti atherogenic effect observed in animal models so far. We tested the hypothesis that ApoA-I mediates its cardio protective effects additionally through ApoA-I induced differentiation of bone marrow derived progenitor cells in vitro. This study demonstrates that lineage negative bone marrow cells (lin−BMCs) alter and differentiate in response to free ApoA-I. We find that lin−BMCs in culture treated with recombinant free ApoA-I at a concentration of 0.4µM are twice as large in size and have altered cell morphology compared to untreated cells; untreated cells retain the original spheroid morphology. Further, the total number of CD31 positive cells in the ApoA-I treated population consistently increased by two fold. This phenotype was significantly reduced in untreated cells and points towards a novel ApoA-I dependent differentiation. A protein lacking its best lipid-binding region (ApoA-IΔ10) did not stimulate any changes in the lin−BMCs cells indicating that ApoA-I may mediate its effects by regulating cholesterol efflux. The increased CD31 correlates with an increased ability of the lin−BMCs to adhere to both fibronectin and Mouse Brain Endothelial Cells. Our results provide the first evidence that exogenous free ApoA-I has the capacity to change the characteristics of progenitor cell populations and suggests a novel mechanism by which HDL may mediate its cardiovascular benefits. PMID:18775511

  15. A Teleost Bactericidal Permeability-Increasing Protein Kills Gram-Negative Bacteria, Modulates Innate Immune Response, and Enhances Resistance against Bacterial and Viral Infection.

    PubMed

    Sun, Yuan-Yuan; Sun, Li

    2016-01-01

    Bactericidal/permeability-increasing protein (BPI) is an important factor of innate immunity that in mammals is known to take part in the clearance of invading Gram-negative bacteria. In teleost, the function of BPI is unknown. In the present work, we studied the function of tongue sole (Cynoglossus semilaevis) BPI, CsBPI. We found that CsBPI was produced extracellularly by peripheral blood leukocytes (PBL). Recombinant CsBPI (rCsBPI) was able to bind to a number of Gram-negative bacteria but not Gram-positive bacteria. Binding to bacteria led to bacterial death through membrane permeabilization and structural destruction, and the bound bacteria were more readily taken up by PBL. In vivo, rCsBPI augmented the expression of a wide arrange of genes involved in antibacterial and antiviral immunity. Furthermore, rCsBPI enhanced the resistance of tongue sole against bacterial as well as viral infection. These results indicate for the first time that a teleost BPI possesses immunoregulatory effect and plays a significant role in antibacterial and antiviral defense. PMID:27105425

  16. A Teleost Bactericidal Permeability-Increasing Protein Kills Gram-Negative Bacteria, Modulates Innate Immune Response, and Enhances Resistance against Bacterial and Viral Infection

    PubMed Central

    Sun, Yuan-yuan; Sun, Li

    2016-01-01

    Bactericidal/permeability-increasing protein (BPI) is an important factor of innate immunity that in mammals is known to take part in the clearance of invading Gram-negative bacteria. In teleost, the function of BPI is unknown. In the present work, we studied the function of tongue sole (Cynoglossus semilaevis) BPI, CsBPI. We found that CsBPI was produced extracellularly by peripheral blood leukocytes (PBL). Recombinant CsBPI (rCsBPI) was able to bind to a number of Gram-negative bacteria but not Gram-positive bacteria. Binding to bacteria led to bacterial death through membrane permeabilization and structural destruction, and the bound bacteria were more readily taken up by PBL. In vivo, rCsBPI augmented the expression of a wide arrange of genes involved in antibacterial and antiviral immunity. Furthermore, rCsBPI enhanced the resistance of tongue sole against bacterial as well as viral infection. These results indicate for the first time that a teleost BPI possesses immunoregulatory effect and plays a significant role in antibacterial and antiviral defense. PMID:27105425

  17. DUF538 protein super family is predicted to be the potential homologue of bactericidal/permeability-increasing protein in plant system.

    PubMed

    Gholizadeh, Ashraf; Kohnehrouz, Samira Baghban

    2013-03-01

    DUF538 protein super family includes a number of plant proteins that their role is not yet clear. These proteins have been frequently reported to be expressed in plants under various stressful stimuli such as bacteria and elicitors. In order to further understand about this protein family we utilized bioinformatics tools to analyze its structure in details. As a result, plants DUF538 was predicted to be the partial structural homologue of BPI (bactericidal/permeability increasing) proteins in mammalian innate immune system that provides the first line of defense against different pathogens including bacteria, fungi, viruses and parasites. Moreover, on the base of the experimental data, it was identified that exogenously applied purified fused product of Celosia DUF538 affects the bacterial growth more possibly similar to BPI through the binding to the bacterial membranes. In conclusion, as the first ever time report, we nominated DUF538 protein family as the potential structural and functional homologue of BPI protein in plants, providing a basis to study the novel functions of this protein family in the biological systems in the future. PMID:23456176

  18. Increased Susceptibility of Gracilinanus microtarsus Liver Mitochondria to Ca2+-Induced Permeability Transition Is Associated with a More Oxidized State of NAD(P)

    PubMed Central

    Ronchi, Juliana A.; Henning, Barbara; Ravagnani, Felipe G.; Figueira, Tiago R.; Castilho, Roger F.; dos Reis, Sergio F.; Vercesi, Anibal E.

    2015-01-01

    In addition to be the cell's powerhouse, mitochondria also contain a cell death machinery that includes highly regulated processes such as the membrane permeability transition pore (PTP) and reactive oxygen species (ROS) production. In this context, the results presented here provide evidence that liver mitochondria isolated from Gracilinanus microtarsus, a small and short life span (one year) marsupial, when compared to mice, are much more susceptible to PTP opening in association with a poor NADPH dependent antioxidant capacity. Liver mitochondria isolated from the marsupial are well coupled and take up Ca2+ but exhibited a much lower Ca2+ retention capacity than mouse mitochondria. Although the known PTP inhibitors cyclosporin A, ADP, and ATP significantly increased the marsupial mitochondria capacity to retain Ca2+, their effects were much larger in mice than in marsupial mitochondria. Both fluorescence and HPLC analysis of mitochondrial nicotinamide nucleotides showed that both content and state of reduction (mainly of NADPH) were lower in the marsupial mitochondria than in mice mitochondria despite the similarity in the activity of the glutathione peroxidase/reductase system. Overall, these data suggest that PTP opening is an important event in processes of Ca2+ signalling to cell death mediated by mitochondrial redox imbalance in G. microtarsus. PMID:26583063

  19. Excretory/secretory products of adult Haemonchus contortus and Teladorsagia circumcincta which increase the permeability of Caco-2 cell monolayers are neutralised by antibodies from immune hosts.

    PubMed

    Rehman, Z U; Deng, Q; Umair, S; Savoian, M S; Knight, J S; Pernthaner, A; Simpson, H V

    2016-05-15

    The onset of abomasal pathophysiology due to parasitism coincides with the presence of adult worms in the lumen, implicating worm excretory/secretory (ES) products acting on the surface mucosa. Caco-2 cell monolayers were grown to confluence on Transwell plates and exposed on the apical side to ES products of adult Haemonchus contortus and Teladorsagia circumcincta. ES products of both species significantly (p<0.001) reduced transepithelial electrical resistance after 2h to 81.1±1.0% and 82.9±1.1% respectively. Immunocytochemical staining of the Caco-2 monolayers for zona occludens-1 and occludin confirmed that the tight junctions remained intact in control medium, but these proteins were internalised from disrupted junctions after exposure to ES products. The components of H. contortus ES products responsible for increased epithelial permeability were partially blocked by phage displaying single chain antibodies derived from sheep immune to field infection and enriched by panning with H. contortus ES products. Immune hosts may therefore be able to reduce the effects of worm chemicals on the gastric epithelium. Permeabilisation of the abomasal surface mucosa by worm chemicals would also explain how cells deep in the gastric glands could rapidly be affected by parasites emerging from the glands or within a day of transplantation of adult worms into naïve hosts, resulting in the pathophysiology typically caused by abomasal nematode parasitism. PMID:27084480

  20. Vascular tracers alter hemodynamics and airway pressure in anesthetized sheep

    SciTech Connect

    Albertine, K.H.; Staub, N.C.

    1986-11-01

    The technique of vascular labeling was developed to mark sites of increased microvascular permeability. We used the vascular labeling technique in anesthetized sheep and found that hemodynamics and airway pressure were adversely affected by intraarterial infusions of two vascular tracers. Monastral blue (nine sheep) immediately caused systemic arterial hypotension, pulmonary arterial hypertension, and bronchoconstriction. All three physiological responses were partially blocked by a cyclooxygenase inhibitor (indomethacin) but not by an H1-antihistamine (chlorpheniramine). Colloidal gold (nine sheep) caused immediate, but less dramatic, pulmonary arterial hypertension which was not attenuated by the blocking agents. We conclude that these two vascular tracers caused detrimental physiological side effects in sheep at the usual doses used to label injured microvessels in other species.

  1. A novel combination of promoter and enhancers increases transgene expression in vascular smooth muscle cells in vitro and coronary arteries in vivo after adenovirus-mediated gene transfer

    PubMed Central

    Appleby, CE; Kingston, PA; David, A; Gerdes, CA; Umaña, P; Castro, MG; Lowenstein, PR; Heagerty, AM

    2010-01-01

    Recombinant adenoviruses are employed widely for vascular gene transfer. Vascular smooth muscle cells (SMCs) are a relatively poor target for transgene expression after adenovirus-mediated gene delivery, however, even when expression is regulated by powerful, constitutive viral promoters. The major immediate-early murine cytomegalovirus enhancer/promoter (MIEmCMV) elicits substantially greater transgene expression than the human cytomegalovirus promoter (MIEhCMV) in all cell types in which they have been compared. The Woodchuck hepatitis virus post-transcriptional regulatory element (WPRE) increases transgene expression in numerous cell lines, and fragments of the smooth muscle myosin heavy chain (SMMHC) promoter increase expression within SMC from heterologous promoters. We therefore, compared the expression of β-galactosidase after adenovirus-mediated gene transfer of lacZ under the transcriptional regulation of a variety of combinations of the promoters and enhancers described, in vitro and in porcine coronary arteries. We demonstrate that inclusion of WPRE and a fragment of the rabbit SMMHC promoter along with MIEmCMV increases β-galactosidase expression 90-fold in SMC in vitro and ≈40-fold in coronary arteries, compared with vectors in which expression is regulated by MIEhCMV alone. Expression cassette modification represents a simple method of improving adenovirus-mediated vascular gene transfer efficiency and has important implications for the development of efficient cardiovascular gene therapy strategies. PMID:12907954

  2. Induction of tumor necrosis factor production from monocytes stimulated with mannuronic acid polymers and involvement of lipopolysaccharide-binding protein, CD14, and bactericidal/permeability-increasing factor.

    PubMed Central

    Jahr, T G; Ryan, L; Sundan, A; Lichenstein, H S; Skjåk-Braek, G; Espevik, T

    1997-01-01

    Well-defined polysaccharides, such as beta1-4-linked D-mannuronic acid (poly[M]) derived from Pseudomonas aeruginosa, induce monocytes to produce tumor necrosis factor (TNF) through a pathway involving membrane CD14. In this study we have investigated the effects of soluble CD14 (sCD14), lipopolysaccharide-binding protein (LBP), and bactericidal/permeability-increasing factor (BPI) on poly(M) binding to monocytes and induction of TNF production. We show that LBP increased the TNF production from monocytes stimulated with poly(M). Addition of sCD14 alone had only minor effects, but when it was added together with LBP, a rise in TNF production was seen. BPI was found to inhibit TNF production from monocytes stimulated with poly(M) in the presence of LBP, LBP-sCD14, or 10% human serum. Binding studies showed that poly(M) bound to LBP- and BPI-coated immunowells, while no significant binding of poly(M) to sCD14-coated wells in the absence of serum was observed. Binding of poly(M) to monocytes was also examined by flow cytometry, and it was shown that the addition of LBP or 10% human serum clearly increased the binding of poly(M) to monocytes. BPI inhibited the binding of poly(M) to monocytes in the presence of LBP, LBP-sCD14, or 10% human serum. Our data demonstrate a role for LBP, LBP-sCD14, and BPI in modulating TNF responses of defined polysaccharides. PMID:8975896

  3. The Vascular Endothelial Growth Factor Inhibitors Ranibizumab and Aflibercept Markedly Increase Expression of Atherosclerosis-Associated Inflammatory Mediators on Vascular Endothelial Cells

    PubMed Central

    Arnott, Clare; Punnia-Moorthy, Gaya; Tan, Joanne; Sadeghipour, Sara; Bursill, Christina; Patel, Sanjay

    2016-01-01

    Introduction Recent studies have suggested that the VEGF inhibitors, Ranibizumab and Aflibercept may be associated with an excess of cardiovascular events, potentially driven by increasing atheroma instability, leading to plaque rupture and clinical events. Inflammation plays a key role in the progression of atherosclerotic plaque and particularly conversion to an unstable phenotype. Here, we sought to assess the in vitro effects of these drugs on the expression of key inflammatory mediators on endothelial cells. Methods Human coronary artery endothelial cells were co-incubated for 16h with Ranibizumab (0.11nM) or Aflibercept (0.45nM), as determined by each drug’s peak serum concentration (Cmax). Expression at protein (ELISA) and gene (RT-PCR) level of inflammatory chemokines CCL2, CCL5 and CXC3L1 as well as gene expression for the cell adhesion molecules VCAM-1, ICAM-1 and the key NF-κb protein p65 was assessed. VEGF-A protein levels were also determined. Results Both drugs significantly increased chemokine, cell adhesion molecule (CAM) and p65 expression, while decreasing VEGF-A protein secretion. At equivalent Cmax concentrations, Aflibercept was significantly more pro-inflammatory than Ranibizumab. Reduction of secreted VEGF-A levels significantly attenuated inflammatory effects of both drugs, whereas blockade of the VEGF-A receptor or silencing of VEGF-A gene synthesis alone had no effect, suggesting that binding of drug to secreted VEGF-A is crucial in promoting inflammation. Finally, blockade of Toll-like receptor 4 significantly reduced inflammatory effects of both drugs. Conclusion We demonstrated here, for the first time, that both drugs have potent pro-inflammatory effects, mediated via activation of Toll-like receptor 4 on the endothelial cell surface by drug bound to VEGF-A. Further studies are required to investigate whether these effects are also seen in vivo. PMID:26959822

  4. Calcitriol reduces thrombospondin-1 and increases vascular endothelial growth factor in breast cancer cells: implications for tumor angiogenesis.

    PubMed</