Science.gov

Sample records for incremental reaction modeling

  1. Massive sulfide deposits and hydrothermal solutions: incremental reaction modeling of mineral precipitation and sulfur isotopic evolution

    SciTech Connect

    Janecky, D.R.

    1986-01-01

    Incremental reaction path modeling of chemical and sulfur isotopic reactions occurring in active hydrothermal vents on the seafloor, in combination with chemical and petrographic data from sulfide samples from the seafloor and massive sulfide ore deposits, allows a detailed examination of the processes involved. This paper presents theoretical models of reactions of two types: (1) adiabatic mixing between hydrothermal solution and seawater, and (2) reaction of hydrothermal solution with sulfide deposit materials. In addition, reaction of hydrothermal solution with sulfide deposit minerals and basalt in feeder zones is discussed.

  2. A Fast Incremental Gaussian Mixture Model

    PubMed Central

    Pinto, Rafael Coimbra; Engel, Paulo Martins

    2015-01-01

    This work builds upon previous efforts in online incremental learning, namely the Incremental Gaussian Mixture Network (IGMN). The IGMN is capable of learning from data streams in a single-pass by improving its model after analyzing each data point and discarding it thereafter. Nevertheless, it suffers from the scalability point-of-view, due to its asymptotic time complexity of O(NKD3) for N data points, K Gaussian components and D dimensions, rendering it inadequate for high-dimensional data. In this work, we manage to reduce this complexity to O(NKD2) by deriving formulas for working directly with precision matrices instead of covariance matrices. The final result is a much faster and scalable algorithm which can be applied to high dimensional tasks. This is confirmed by applying the modified algorithm to high-dimensional classification datasets. PMID:26444880

  3. Skin testing and incremental challenge in the evaluation of adverse reactions to local anesthetics.

    PubMed

    Schatz, M

    1984-10-01

    True allergic reactions to local anesthetics (LAs) probably make up no more than 1% of all adverse LA reactions. A diagnosis of true potential allergic reactivity is made difficult because (1) the history of the prior reaction may be vague or equivocal and (2) the lack of identification of the actual specific LA hapten-carrier complex limits the potential usefulness of immunologic tests. Nonetheless, since avoidance of LAs may be associated with substantial increased pain or increased risk and because true allergic reactions are rare, investigators and clinicians have used skin testing, incremental challenge, or both as a means of identifying a safe LA for a patient with a history of a prior adverse reaction. Review of the literature dealing with LA skin testing and incremental challenge suggests the following: (1) Skin testing with LAs may correlate with a history of an adverse reaction but may produce systemic adverse reactions, especially with undiluted drug. (2) Although false positive skin tests have been reported, most skin-tested patients who subsequently tolerate an LA have a negative skin test to that drug, and false negative skin tests have not been clearly documented. (3) Incremental challenge beginning with diluted LA is a safe and effective means of identifying a drug that a patient with a history of a prior adverse reaction can tolerate. (4) Current concepts of non-cross-reacting LA groups may be useful in the choice of a drug for use in skin testing and incremental challenge. (5) Preservatives in LAs may account for some but probably not the majority of adverse reactions to LAs. On the basis of this literature review, a practical protocol including dilutional skin testing and incremental challenge is presented for use in evaluating patients with prior adverse reactions to LAs. PMID:6491108

  4. Incremental logistic regression for customizing automatic diagnostic models.

    PubMed

    Tortajada, Salvador; Robles, Montserrat; García-Gómez, Juan Miguel

    2015-01-01

    In the last decades, and following the new trends in medicine, statistical learning techniques have been used for developing automatic diagnostic models for aiding the clinical experts throughout the use of Clinical Decision Support Systems. The development of these models requires a large, representative amount of data, which is commonly obtained from one hospital or a group of hospitals after an expensive and time-consuming gathering, preprocess, and validation of cases. After the model development, it has to overcome an external validation that is often carried out in a different hospital or health center. The experience is that the models show underperformed expectations. Furthermore, patient data needs ethical approval and patient consent to send and store data. For these reasons, we introduce an incremental learning algorithm base on the Bayesian inference approach that may allow us to build an initial model with a smaller number of cases and update it incrementally when new data are collected or even perform a new calibration of a model from a different center by using a reduced number of cases. The performance of our algorithm is demonstrated by employing different benchmark datasets and a real brain tumor dataset; and we compare its performance to a previous incremental algorithm and a non-incremental Bayesian model, showing that the algorithm is independent of the data model, iterative, and has a good convergence. PMID:25417079

  5. An Enhanced Visualization Process Model for Incremental Visualization.

    PubMed

    Schulz, Hans-Jorg; Angelini, Marco; Santucci, Giuseppe; Schumann, Heidrun

    2016-07-01

    With today's technical possibilities, a stable visualization scenario can no longer be assumed as a matter of course, as underlying data and targeted display setup are much more in flux than in traditional scenarios. Incremental visualization approaches are a means to address this challenge, as they permit the user to interact with, steer, and change the visualization at intermediate time points and not just after it has been completed. In this paper, we put forward a model for incremental visualizations that is based on the established Data State Reference Model, but extends it in ways to also represent partitioned data and visualization operators to facilitate intermediate visualization updates. In combination, partitioned data and operators can be used independently and in combination to strike tailored compromises between output quality, shown data quantity, and responsiveness-i.e., frame rates. We showcase the new expressive power of this model by discussing the opportunities and challenges of incremental visualization in general and its usage in a real world scenario in particular. PMID:27244708

  6. Incremental terrain processing for large digital elevation models

    NASA Astrophysics Data System (ADS)

    Ye, Z.

    2012-12-01

    Incremental terrain processing for large digital elevation models Zichuan Ye, Dean Djokic, Lori Armstrong Esri, 380 New York Street, Redlands, CA 92373, USA (E-mail: zye@esri.com, ddjokic@esri.com , larmstrong@esri.com) Efficient analyses of large digital elevation models (DEM) require generation of additional DEM artifacts such as flow direction, flow accumulation and other DEM derivatives. When the DEMs to analyze have a large number of grid cells (usually > 1,000,000,000) the generation of these DEM derivatives is either impractical (it takes too long) or impossible (software is incapable of processing such a large number of cells). Different strategies and algorithms can be put in place to alleviate this situation. This paper describes an approach where the overall DEM is partitioned in smaller processing units that can be efficiently processed. The processed DEM derivatives for each partition can then be either mosaicked back into a single large entity or managed on partition level. For dendritic terrain morphologies, the way in which partitions are to be derived and the order in which they are to be processed depend on the river and catchment patterns. These patterns are not available until flow pattern of the whole region is created, which in turn cannot be established upfront due to the size issues. This paper describes a procedure that solves this problem: (1) Resample the original large DEM grid so that the total number of cells is reduced to a level for which the drainage pattern can be established. (2) Run standard terrain preprocessing operations on the resampled DEM to generate the river and catchment system. (3) Define the processing units and their processing order based on the river and catchment system created in step (2). (4) Based on the processing order, apply the analysis, i.e., flow accumulation operation to each of the processing units, at the full resolution DEM. (5) As each processing unit is processed based on the processing order defined

  7. Integrating Incremental Learning and Episodic Memory Models of the Hippocampal Region

    ERIC Educational Resources Information Center

    Meeter, M.; Myers, C. E.; Gluck, M. A.

    2005-01-01

    By integrating previous computational models of corticohippocampal function, the authors develop and test a unified theory of the neural substrates of familiarity, recollection, and classical conditioning. This approach integrates models from 2 traditions of hippocampal modeling, those of episodic memory and incremental learning, by drawing on an…

  8. Incremental forms of Schapery's model: convergence and inversion to simulate strain controlled ramps

    NASA Astrophysics Data System (ADS)

    Varna, Janis; Pupure, Liva; Joffe, Roberts

    2016-04-01

    Schapery's nonlinear viscoelastic model is written in incremental form, and three different approximations of nonlinearity functions in the time increment are systematically analysed with respect to the convergence rate. It is shown that secant slope is the best approximation of the time shift factor, leading to significantly higher convergence rate. This incremental form of the viscoelastic model, Zapas' model for viscoplasticity, supplemented with terms accounting for damage effect is used to predict inelastic behaviour of material in stress controlled tests. Then the incremental formulation is inverted to simulate stress development in ramps where strain is the input parameter. A comparison with tests shows good ability of the model in inverted form to predict stress-strain response as long as the applied strain is increasing. However, in strain controlled ramps with unloading, the inverted model shows unrealistic hysteresis loops. This is believed to be a proof of the theoretically known incompatibility of the stress and strain controlled formulations for nonlinear materials. It also shows limitations of material models identified in stress controlled tests for use in strain controlled tests.

  9. Nested incremental modeling in the development of computational theories: the CDP+ model of reading aloud.

    PubMed

    Perry, Conrad; Ziegler, Johannes C; Zorzi, Marco

    2007-04-01

    At least 3 different types of computational model have been shown to account for various facets of both normal and impaired single word reading: (a) the connectionist triangle model, (b) the dual-route cascaded model, and (c) the connectionist dual process model. Major strengths and weaknesses of these models are identified. In the spirit of nested incremental modeling, a new connectionist dual process model (the CDP+ model) is presented. This model builds on the strengths of 2 of the previous models while eliminating their weaknesses. Contrary to the dual-route cascaded model, CDP+ is able to learn and produce graded consistency effects. Contrary to the triangle and the connectionist dual process models, CDP+ accounts for serial effects and has more accurate nonword reading performance. CDP+ also beats all previous models by an order of magnitude when predicting individual item-level variance on large databases. Thus, the authors show that building on existing theories by combining the best features of previous models--a nested modeling strategy that is commonly used in other areas of science but often neglected in psychology--results in better and more powerful computational models. PMID:17500628

  10. A prediction model for Atlantic named storm frequency using a year-by-year increment approach

    NASA Astrophysics Data System (ADS)

    Fan, K.

    2010-12-01

    This paper presents a year-by-year incremental approach to forecasting the Atlantic named storm frequency (ATSF) for the hurricane season (June 1- November 30). The year-by-year increase or decrease in the ATSF is first forecasted to yield a net ATSF prediction. Six key predictors for the year-by-year increment in the number of Atlantic named tropical storms have been identified that are available before May 1. The forecast model for the year-by-year increment of the ATSF is first established using a multi-linear regression method based on data taken from the years of 1965-1999, and the forecast model of the ATSF is then derived. The prediction model for the ATSF shows good prediction skill. Compared to the climatological average mean absolute error (MAE) of 4.1, the percentage improvement in the MAE is 29 % for the hindcast period of 2004-2009 and 46 % for the cross-validation test from 1985-2009 (26 yrs). This work demonstrates that the year-by-year incremental approach has the potential to improve operational forecasting skill for the ATSF.

  11. Situation Model Updating in Young and Older Adults: Global versus Incremental Mechanisms

    PubMed Central

    Bailey, Heather R.; Zacks, Jeffrey M.

    2015-01-01

    Readers construct mental models of situations described by text. Activity in narrative text is dynamic, so readers must frequently update their situation models when dimensions of the situation change. Updating can be incremental, such that a change leads to updating just the dimension that changed, or global, such that the entire model is updated. Here, we asked whether older and young adults make differential use of incremental and global updating. Participants read narratives containing changes in characters and spatial location and responded to recognition probes throughout the texts. Responses were slower when probes followed a change, suggesting that situation models were updated at changes. When either dimension changed, responses to probes for both dimensions were slowed; this provides evidence for global updating. Moreover, older adults showed stronger evidence of global updating than did young adults. One possibility is that older adults perform more global updating to offset reduced ability to manipulate information in working memory. PMID:25938248

  12. 77 FR 20648 - Certain Digital Models, Digital Data, and Treatment Plans for Use in Making Incremental Dental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-05

    ... COMMISSION Certain Digital Models, Digital Data, and Treatment Plans for Use in Making Incremental Dental Positioning Adjustment Appliances, the Appliances Made Therefrom, and Methods of Making the Same; Institution... of certain digital models, digital data, and treatment plans for use in making incremental...

  13. Sensitivity to gaze-contingent contrast increments in naturalistic movies: An exploratory report and model comparison

    PubMed Central

    Wallis, Thomas S. A.; Dorr, Michael; Bex, Peter J.

    2015-01-01

    Sensitivity to luminance contrast is a prerequisite for all but the simplest visual systems. To examine contrast increment detection performance in a way that approximates the natural environmental input of the human visual system, we presented contrast increments gaze-contingently within naturalistic video freely viewed by observers. A band-limited contrast increment was applied to a local region of the video relative to the observer's current gaze point, and the observer made a forced-choice response to the location of the target (≈25,000 trials across five observers). We present exploratory analyses showing that performance improved as a function of the magnitude of the increment and depended on the direction of eye movements relative to the target location, the timing of eye movements relative to target presentation, and the spatiotemporal image structure at the target location. Contrast discrimination performance can be modeled by assuming that the underlying contrast response is an accelerating nonlinearity (arising from a nonlinear transducer or gain control). We implemented one such model and examined the posterior over model parameters, estimated using Markov-chain Monte Carlo methods. The parameters were poorly constrained by our data; parameters constrained using strong priors taken from previous research showed poor cross-validated prediction performance. Atheoretical logistic regression models were better constrained and provided similar prediction performance to the nonlinear transducer model. Finally, we explored the properties of an extended logistic regression that incorporates both eye movement and image content features. Models of contrast transduction may be better constrained by incorporating data from both artificial and natural contrast perception settings. PMID:26057546

  14. An assessment of plasticity theories for modeling the incrementally nonlinear behavior of granular soils

    NASA Astrophysics Data System (ADS)

    Tamagnini, Claudio; Calvetti, Francesco; Viggiani, Gioacchino

    The objective of this paper is to assess the predictive capability of different classes of extended plasticity theories (bounding surface plasticity, generalized plasticity and generalized tangential plasticity) in the modeling of incremental nonlinearity, which is one of the most striking features of the mechanical behavior of granular soils, occurring as a natural consequence of the particular nature of grain interactions at the microscale. To this end, the predictions of the various constitutive models considered are compared to the results of a series of Distinct Element simulations performed ad hoc. In the comparison, extensive use is made of the concept of incremental strain-response envelope in order to assess the directional properties of the material response for a given initial state and stress history.

  15. The effect of the model posture on the forming quality in the CNC incremental forming

    NASA Astrophysics Data System (ADS)

    Zhu, H.; Zhang, W.; Bai, J. L.; Yu, C.; Xing, Y. F.

    2015-12-01

    Sheet rupture caused by a sheet metal thickness non-uniformity persists in CNC (Computer Numerical Control) incremental forming. Because the forming half cone angle is determined by the orientation of the model to be formed, so is the sheet metal's uniformity. The finite element analysis models for the two kinds of the postures of the model were established, and the digital simulation was conducted by using the ANSYS/LA-DYNA software. The effect of the model's posture on the sheet thickness distribution and the sheet thickness thinning rate were studied by comparing the simulation results of two kinds of the finite elements analyzes.

  16. A Model Based Approach to Increase the Part Accuracy in Robot Based Incremental Sheet Metal Forming

    SciTech Connect

    Meier, Horst; Laurischkat, Roman; Zhu Junhong

    2011-01-17

    One main influence on the dimensional accuracy in robot based incremental sheet metal forming results from the compliance of the involved robot structures. Compared to conventional machine tools the low stiffness of the robot's kinematic results in a significant deviation of the planned tool path and therefore in a shape of insufficient quality. To predict and compensate these deviations offline, a model based approach, consisting of a finite element approach, to simulate the sheet forming, and a multi body system, modeling the compliant robot structure, has been developed. This paper describes the implementation and experimental verification of the multi body system model and its included compensation method.

  17. Incremental Refinement of FAÇADE Models with Attribute Grammar from 3d Point Clouds

    NASA Astrophysics Data System (ADS)

    Dehbi, Y.; Staat, C.; Mandtler, L.; Pl¨umer, L.

    2016-06-01

    Data acquisition using unmanned aerial vehicles (UAVs) has gotten more and more attention over the last years. Especially in the field of building reconstruction the incremental interpretation of such data is a demanding task. In this context formal grammars play an important role for the top-down identification and reconstruction of building objects. Up to now, the available approaches expect offline data in order to parse an a-priori known grammar. For mapping on demand an on the fly reconstruction based on UAV data is required. An incremental interpretation of the data stream is inevitable. This paper presents an incremental parser of grammar rules for an automatic 3D building reconstruction. The parser enables a model refinement based on new observations with respect to a weighted attribute context-free grammar (WACFG). The falsification or rejection of hypotheses is supported as well. The parser can deal with and adapt available parse trees acquired from previous interpretations or predictions. Parse trees derived so far are updated in an iterative way using transformation rules. A diagnostic step searches for mismatches between current and new nodes. Prior knowledge on façades is incorporated. It is given by probability densities as well as architectural patterns. Since we cannot always assume normal distributions, the derivation of location and shape parameters of building objects is based on a kernel density estimation (KDE). While the level of detail is continuously improved, the geometrical, semantic and topological consistency is ensured.

  18. Incremental checking of Master Data Management model based on contextual graphs

    NASA Astrophysics Data System (ADS)

    Lamolle, Myriam; Menet, Ludovic; Le Duc, Chan

    2015-10-01

    The validation of models is a crucial step in distributed heterogeneous systems. In this paper, an incremental validation method is proposed in the scope of a Model Driven Engineering (MDE) approach, which is used to develop a Master Data Management (MDM) field represented by XML Schema models. The MDE approach presented in this paper is based on the definition of an abstraction layer using UML class diagrams. The validation method aims to minimise the model errors and to optimisethe process of model checking. Therefore, the notion of validation contexts is introduced allowing the verification of data model views. Description logics specify constraints that the models have to check. An experimentation of the approach is presented through an application developed in ArgoUML IDE.

  19. Relaxed incremental variational approach for the modeling of damage-induced stress hysteresis in arterial walls.

    PubMed

    Schmidt, Thomas; Balzani, Daniel

    2016-05-01

    In this paper, a three-dimensional relaxed incremental variational damage model is proposed, which enables the description of complex softening hysteresis as observed in supra-physiologically loaded arterial tissues, and which thereby avoids a loss of convexity of the underlying formulation. The proposed model extends the relaxed formulation of Balzani and Ortiz [2012. Relaxed incremental variational formulation for damage at large strains with application to fiber-reinforced materials and materials with truss-like microstructures. Int. J. Numer. Methods Eng. 92, 551-570], such that the typical stress-hysteresis observed in arterial tissues under cyclic loading can be described. This is mainly achieved by constructing a modified one-dimensional model accounting for cyclic loading in the individual fiber direction and numerically homogenizing the response taking into account a fiber orientation distribution function. A new solution strategy for the identification of the convexified stress potential is proposed based on an evolutionary algorithm which leads to an improved robustness compared to solely Newton-based optimization schemes. In order to enable an efficient adjustment of the new model to experimentally observed softening hysteresis, an adjustment scheme using a surrogate model is proposed. Therewith, the relaxed formulation is adjusted to experimental data in the supra-physiological domain of the media and adventitia of a human carotid artery. The performance of the model is then demonstrated in a finite element example of an overstretched artery. Although here three-dimensional thick-walled atherosclerotic arteries are considered, it is emphasized that the formulation can also directly be applied to thin-walled simulations of arteries using shell elements or other fiber-reinforced biomembranes. PMID:26341795

  20. Generalized Monotone Incremental Forward Stagewise Method for Modeling Count Data: Application Predicting Micronuclei Frequency

    PubMed Central

    Makowski, Mateusz; Archer, Kellie J

    2015-01-01

    The cytokinesis-block micronucleus (CBMN) assay can be used to quantify micronucleus (MN) formation, the outcome measured being MN frequency. MN frequency has been shown to be both an accurate measure of chromosomal instability/DNA damage and a risk factor for cancer. Similarly, the Agilent 4×44k human oligonucleotide microarray can be used to quantify gene expression changes. Despite the existence of accepted methodologies to quantify both MN frequency and gene expression, very little is known about the association between the two. In modeling our count outcome (MN frequency) using gene expression levels from the high-throughput assay as our predictor variables, there are many more variables than observations. Hence, we extended the generalized monotone incremental forward stagewise method for predicting a count outcome for high-dimensional feature settings. PMID:25983544

  1. Impulse processing: A dynamical systems model of incremental eye movements in the visual world paradigm

    PubMed Central

    Kukona, Anuenue; Tabor, Whitney

    2011-01-01

    The visual world paradigm presents listeners with a challenging problem: they must integrate two disparate signals, the spoken language and the visual context, in support of action (e.g., complex movements of the eyes across a scene). We present Impulse Processing, a dynamical systems approach to incremental eye movements in the visual world that suggests a framework for integrating language, vision, and action generally. Our approach assumes that impulses driven by the language and the visual context impinge minutely on a dynamical landscape of attractors corresponding to the potential eye-movement behaviors of the system. We test three unique predictions of our approach in an empirical study in the visual world paradigm, and describe an implementation in an artificial neural network. We discuss the Impulse Processing framework in relation to other models of the visual world paradigm. PMID:21609355

  2. New scaling model for variables and increments with heavy-tailed distributions

    NASA Astrophysics Data System (ADS)

    Riva, Monica; Neuman, Shlomo P.; Guadagnini, Alberto

    2015-06-01

    Many hydrological (as well as diverse earth, environmental, ecological, biological, physical, social, financial and other) variables, Y, exhibit frequency distributions that are difficult to reconcile with those of their spatial or temporal increments, ΔY. Whereas distributions of Y (or its logarithm) are at times slightly asymmetric with relatively mild peaks and tails, those of ΔY tend to be symmetric with peaks that grow sharper, and tails that become heavier, as the separation distance (lag) between pairs of Y values decreases. No statistical model known to us captures these behaviors of Y and ΔY in a unified and consistent manner. We propose a new, generalized sub-Gaussian model that does so. We derive analytical expressions for probability distribution functions (pdfs) of Y and ΔY as well as corresponding lead statistical moments. In our model the peak and tails of the ΔY pdf scale with lag in line with observed behavior. The model allows one to estimate, accurately and efficiently, all relevant parameters by analyzing jointly sample moments of Y and ΔY. We illustrate key features of our new model and method of inference on synthetically generated samples and neutron porosity data from a deep borehole.

  3. Degradation reliability modeling based on an independent increment process with quadratic variance

    NASA Astrophysics Data System (ADS)

    Wang, Zhihua; Zhang, Yongbo; Wu, Qiong; Fu, Huimin; Liu, Chengrui; Krishnaswamy, Sridhar

    2016-03-01

    Degradation testing is an important technique for assessing life time information of complex systems and highly reliable products. Motivated by fatigue crack growth (FCG) data and our previous study, this paper develops a novel degradation modeling approach, in which degradation is represented by an independent increment process with linear mean and general quadratic variance functions of test time or transformed test time if necessary. Based on the constructed degradation model, closed-form expressions of failure time distribution (FTD) and its percentiles can be straightforwardly derived and calculated. A one-stage method is developed to estimate model parameters and FTD. Simulation studies are conducted to validate the proposed approach, and the results illustrate that the approach can provide reasonable estimates even for small sample size situations. Finally, the method is verified by the FCG data set given as the motivating example, and the results show that it can be considered as an effective degradation modeling approach compared with the multivariate normal model and graphic approach.

  4. A dynamic approach for reconstructing missing longitudinal data using the linear increments model.

    PubMed

    Aalen, Odd O; Gunnes, Nina

    2010-07-01

    Missing observations are commonplace in longitudinal data. We discuss how to model and analyze such data in a dynamic framework, that is, taking into consideration the time structure of the process and the influence of the past on the present and future responses. An autoregressive model is used as a special case of the linear increments model defined by Farewell (2006. Linear models for censored data, [PhD Thesis]. Lancaster University) and Diggle and others (2007. Analysis of longitudinal data with drop-out: objectives, assumptions and a proposal. Journal of the Royal Statistical Society, Series C (Applied Statistics, 56, 499-550). We wish to reconstruct responses for missing data and discuss the required assumptions needed for both monotone and nonmonotone missingness. The computational procedures suggested are very simple and easily applicable. They can also be used to estimate causal effects in the presence of time-dependent confounding. There are also connections to methods from survival analysis: The Aalen-Johansen estimator for the transition matrix of a Markov chain turns out to be a special case. Analysis of quality of life data from a cancer clinical trial is analyzed and presented. Some simulations are given in the supplementary material available at Biostatistics online. PMID:20388914

  5. The Variance Reaction Time Model

    ERIC Educational Resources Information Center

    Sikstrom, Sverker

    2004-01-01

    The variance reaction time model (VRTM) is proposed to account for various recognition data on reaction time, the mirror effect, receiver-operating-characteristic (ROC) curves, etc. The model is based on simple and plausible assumptions within a neural network: VRTM is a two layer neural network where one layer represents items and one layer…

  6. An incrementally non-linear model for clays with directional stiffness and a small strain emphasis

    NASA Astrophysics Data System (ADS)

    Tu, Xuxin

    In response to construction activities and loads from permanent structures, soil generally is subjected to a variety of loading modes varying both in time and location. It also has been increasingly appreciated that the strains around well-designed foundations, excavations and tunnels are mostly small, with soil responses at this strain level generally being non-linear and anisotropic. To make accurate prediction of the performance of a geo-system, it is highly desirable to understand soil behavior at small strains along multiple loading directions, and accordingly to incorporate these responses in an appropriate constitutive model implemented in a finite element analysis. This dissertation presents a model based on a series of stress probe tests with small strain measurements performed on compressible Chicago glacial clays. The proposed model is formulated in an original constitutive framework, in which the tangent stiffness matrix is constructed in accordance with the mechanical nature of frictional materials and the tangent moduli therein are described explicitly. The stiffness description includes evolution relations with regard to length of stress path, and directionality relations in terms of stress path direction. The former relations provide distinctive definitions for small-strain and large-strain behaviors, and distinguish soil responses in shearing and compression. The latter relations make this model incrementally non-linear and thus capable of modeling inelastic behavior. A new algorithm based on a classical substepping scheme is developed to numerically integrate this model. A consistent tangent matrix is derived for the proposed model with the upgraded substepping scheme. The code is written in FORTRAN and implemented in FEM via UMAT of ABAQUS. The model is exercised in a variety of applications ranging from oedometer, triaxial and biaxial test simulations to a C-class prediction for a well-instrumented excavation. The computed results indicate that

  7. The Crucial Role of Error Correlation for Uncertainty Modeling of CFD-Based Aerodynamics Increments

    NASA Technical Reports Server (NTRS)

    Hemsch, Michael J.; Walker, Eric L.

    2011-01-01

    The Ares I ascent aerodynamics database for Design Cycle 3 (DAC-3) was built from wind-tunnel test results and CFD solutions. The wind tunnel results were used to build the baseline response surfaces for wind-tunnel Reynolds numbers at power-off conditions. The CFD solutions were used to build increments to account for Reynolds number effects. We calculate the validation errors for the primary CFD code results at wind tunnel Reynolds number power-off conditions and would like to be able to use those errors to predict the validation errors for the CFD increments. However, the validation errors are large compared to the increments. We suggest a way forward that is consistent with common practice in wind tunnel testing which is to assume that systematic errors in the measurement process and/or the environment will subtract out when increments are calculated, thus making increments more reliable with smaller uncertainty than absolute values of the aerodynamic coefficients. A similar practice has arisen for the use of CFD to generate aerodynamic database increments. The basis of this practice is the assumption of strong correlation of the systematic errors inherent in each of the results used to generate an increment. The assumption of strong correlation is the inferential link between the observed validation uncertainties at wind-tunnel Reynolds numbers and the uncertainties to be predicted for flight. In this paper, we suggest a way to estimate the correlation coefficient and demonstrate the approach using code-to-code differences that were obtained for quality control purposes during the Ares I CFD campaign. Finally, since we can expect the increments to be relatively small compared to the baseline response surface and to be typically of the order of the baseline uncertainty, we find that it is necessary to be able to show that the correlation coefficients are close to unity to avoid overinflating the overall database uncertainty with the addition of the increments.

  8. Incremental Change or Initial Differences? Testing Two Models of Marital Deterioration

    PubMed Central

    Lavner, Justin A.; Bradbury, Thomas N.; Karney, Benjamin R.

    2012-01-01

    Most couples begin marriage intent on maintaining a fulfilling relationship, but some newlyweds soon struggle while others continue to experience high levels of satisfaction. Do these diverse outcomes result from an incremental process that unfolds over time, as prevailing models suggest, or are they a manifestation of initial differences that are largely evident at the start of the marriage? Using eight waves of data collected over the first 4 years of marriage (N = 502 spouses, or 251 newlywed marriages), we tested these competing perspectives first by identifying three qualitatively distinct relationship satisfaction trajectory groups and then by determining the extent to which spouses in these groups were differentiated on the basis of (a) initial scores and (b) 4-year changes in a set of established predictor variables, including relationship problems, aggression, attributions, stress, and self-esteem. The majority of spouses exhibited high, stable satisfaction over the first four years of marriage, whereas declining satisfaction was isolating among couples with relatively low initial satisfaction. Across all predictor variables, initial values afforded stronger discrimination of outcome groups than did rates of change in these variables. Thus, readily-measured initial differences are potent antecedents of relationship deterioration, and studies are now needed to clarify the specific ways in which initial indices of risk come to influence changes in spouses’ judgments of relationship satisfaction. PMID:22709260

  9. Determination of the nonlinear dielectric increment in the Cole-Davidson model

    NASA Astrophysics Data System (ADS)

    Déjardin, Jean-Louis; Jadzyn, Jan

    2006-09-01

    The problem of the nonlinear dielectric relaxation of complex liquids is tackled in the context of the Cole-Davidson [J. Chem. Phys. 19, 1484 (1951)] model. By using an appropriate time derivative of noninteger order, an infinite hierarchy of differential-recurrence relations for the moments (expectation values of the Legendre polynomials) is obtained. The solution is established for the stationary regime of an ensemble of polar and symmetric-top molecules acted on by a strong dc bias electric field superimposed on a weak ac electric field. The results for the first three nonlinear harmonic components of the electric susceptibility are analytically established and illustrated with the help of Argand diagrams for the nonlinear dielectric increment and three-dimensional dispersion and absorption spectra for the second and the third harmonic components as a function of the anomalous exponent β ⩽1, the value of which gives rise to skewed arcs (Argand plots) and asymmetric shapes (loss spectra) in the high-frequency domain.

  10. Detection of Bird Nests during Mechanical Weeding by Incremental Background Modeling and Visual Saliency

    PubMed Central

    Steen, Kim Arild; Therkildsen, Ole Roland; Green, Ole; Karstoft, Henrik

    2015-01-01

    Mechanical weeding is an important tool in organic farming. However, the use of mechanical weeding in conventional agriculture is increasing, due to public demands to lower the use of pesticides and an increased number of pesticide-resistant weeds. Ground nesting birds are highly susceptible to farming operations, like mechanical weeding, which may destroy the nests and reduce the survival of chicks and incubating females. This problem has limited focus within agricultural engineering. However, when the number of machines increases, destruction of nests will have an impact on various species. It is therefore necessary to explore and develop new technology in order to avoid these negative ethical consequences. This paper presents a vision-based approach to automated ground nest detection. The algorithm is based on the fusion of visual saliency, which mimics human attention, and incremental background modeling, which enables foreground detection with moving cameras. The algorithm achieves a good detection rate, as it detects 28 of 30 nests at an average distance of 3.8 m, with a true positive rate of 0.75. PMID:25738766

  11. 78 FR 46610 - Certain Digital Models, Digital Data, and Treatment Plans for Use in Making Incremental Dental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-01

    ... COMMISSION Certain Digital Models, Digital Data, and Treatment Plans for Use in Making Incremental Dental Appliances, the Appliances Made Therefrom, and Methods of Making Same; Notice of Commission Determination To... (``Align''), on March 1, 2012, as corrected on March 22, 2012. 77 FR 20648 (April 5, 2012). The...

  12. 78 FR 29157 - Certain Digital Models, Digital Data, and Treatment Plans for Use, in Making Incremental Dental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-17

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Digital Models, Digital Data, and Treatment Plans for Use, in Making Incremental Dental Positioning Adjustment Appliances Made Therefrom, and Methods of Making the Same Investigation No. 337-...

  13. 78 FR 46611 - Certain Digital Models, Digital Data, and Treatment Plans for Use in Making Incremental Dental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-01

    ... COMMISSION Certain Digital Models, Digital Data, and Treatment Plans for Use in Making Incremental Dental Appliances, the Appliances Made Therefrom, and Methods of Making Same; Notice of Commission Determination To... (``Align''), on March 1, 2012, as corrected on March 22, 2012. 77 FR 20648 (April 5, 2012). The...

  14. 40 CFR Table 1 to Subpart Bbbb of... - Model Rule-Compliance Schedules and Increments of Progress

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Model Rule-Compliance Schedules and Increments of Progress 1 Table 1 to Subpart BBBB of Part 60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines and Compliance Times...

  15. Simple exponential regression model to describe the relation between minute ventilation and oxygen uptake during incremental exercise.

    PubMed

    Baba, Reizo; Mori, Emiko; Tauchi, Nobuo; Nagashima, Masami

    2002-11-01

    The physiological significance of an exponential regression model between minute ventilation (VE) and oxygen uptake (VO2) during incremental exercise was examined. Thirty-eight subjects, including 12 patients with chronic heart failure, participated in cardiopulmonary exercise testing on a bicycle ergometer. The equation VE = a e(bVO2), where a and b are parameters, was used to describe the relation between VE and VO2 during incremental exercise. Arterialized blood gas analysis was measured before and during exercise. The correlation coefficient of the regression model was high (r = 0.97 +/- 0.02). Parameter a negatively correlated with the arterial partial pressure of carbon dioxide during exercise (r = -0.44, p < 0.01), and positively correlated with peak VO2 (r = 0.47, p < 0.01). Parameter b negatively correlated with peak VO2 (r = -0.86, p < 0.01) and positively correlated with the dead space to tidal volume ratio (r = 0.68, p < 0.01). The regression model, as well as parameters a and b, is physiologically useful in expressing metabolic response to exercise. This model, a specific solution to the differential equation dVE/dVO2 = bVE, implies that the more a subject breathes, the greater is the increment in ventilation needed to meet a further increment of metabolic demand. PMID:12580535

  16. Reduction of chemical reaction models

    NASA Technical Reports Server (NTRS)

    Frenklach, Michael

    1991-01-01

    An attempt is made to reconcile the different terminologies pertaining to reduction of chemical reaction models. The approaches considered include global modeling, response modeling, detailed reduction, chemical lumping, and statistical lumping. The advantages and drawbacks of each of these methods are pointed out.

  17. Nested Incremental Modeling in the Development of Computational Theories: The CDP+ Model of Reading Aloud

    ERIC Educational Resources Information Center

    Perry, Conrad; Ziegler, Johannes C.; Zorzi, Marco

    2007-01-01

    At least 3 different types of computational model have been shown to account for various facets of both normal and impaired single word reading: (a) the connectionist triangle model, (b) the dual-route cascaded model, and (c) the connectionist dual process model. Major strengths and weaknesses of these models are identified. In the spirit of…

  18. Incremental expansions for the ground-state energy of the two-dimensional Hubbard model

    SciTech Connect

    Malek, J.; Flach, S.; Kladko, K.

    1999-02-01

    A generalization of Faddeev{close_quote}s approach of the three-body problem to the many-body problem leads to the method of increments. This method was recently applied to account for the ground-state properties of Hubbard-Peierls chains [J. Malek, K. Kladko, and S. Flach, JETP Lett. {bold 67}, 1052 (1998)]. Here we generalize this approach to two-dimensional square lattices and explicitly treat the incremental expansion up to third order. Comparing our numerical results with various other approaches (Monte Carlo, cumulant approaches) we show that incremental expansions are very efficient because good accuracy with these approaches is achieved treating lattice segments composed of eight sites only. {copyright} {ital 1999} {ital The American Physical Society}

  19. Propulsive Reaction Control System Model

    NASA Technical Reports Server (NTRS)

    Brugarolas, Paul; Phan, Linh H.; Serricchio, Frederick; San Martin, Alejandro M.

    2011-01-01

    This software models a propulsive reaction control system (RCS) for guidance, navigation, and control simulation purposes. The model includes the drive electronics, the electromechanical valve dynamics, the combustion dynamics, and thrust. This innovation follows the Mars Science Laboratory entry reaction control system design, and has been created to meet the Mars Science Laboratory (MSL) entry, descent, and landing simulation needs. It has been built to be plug-and-play on multiple MSL testbeds [analysis, Monte Carlo, flight software development, hardware-in-the-loop, and ATLO (assembly, test and launch operations) testbeds]. This RCS model is a C language program. It contains two main functions: the RCS electronics model function that models the RCS FPGA (field-programmable-gate-array) processing and commanding of the RCS valve, and the RCS dynamic model function that models the valve and combustion dynamics. In addition, this software provides support functions to initialize the model states, set parameters, access model telemetry, and access calculated thruster forces.

  20. Reaction models in nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Descouvemont, Pierre

    2016-05-01

    We present different reaction models commonly used in nuclear astrophysics, in particular for the nucleosynthesis of light elements. Pioneering works were performed within the potential model, where the internal structure of the colliding nuclei is completely ignored. Significant advances in microscopic cluster models provided the first microscopic description of the 3He(α,&gamma)7 Be reaction more than thirty years ago. In this approach, the calculations are based on an effective nucleon-nucleon interaction, but the cluster approximation should be made to simplify the calculations. Nowadays, modern microscopic calculations are able to go beyond the cluster approximation, and aim at finding exact solutions of the Schrödinger equation with realistic nucleon-nucleon interactions. We discuss recent examples on the d+d reactions at low energies.

  1. Optimizing the Teaching-Learning Process Through a Linear Programming Model--Stage Increment Model.

    ERIC Educational Resources Information Center

    Belgard, Maria R.; Min, Leo Yoon-Gee

    An operations research method to optimize the teaching-learning process is introduced in this paper. In particular, a linear programing model is proposed which, unlike dynamic or control theory models, allows the computer to react to the responses of a learner in seconds or less. To satisfy the assumptions of linearity, the seemingly complicated…

  2. New Scaling Model for Variables and Increments with Heavy-Tailed Distributions

    NASA Astrophysics Data System (ADS)

    Riva, Monica; Guadagnini, Alberto; Neuman, Shlomo P.

    2015-04-01

    Many earth, environmental, ecological, biological, physical, social, financial and other variables, Y , exhibit (i) asymmetry in sample frequency distributions, as well as (ii) symmetry in distributions of their spatial and/or temporal increments, ΔY , at diverse separation distances (or lags), with sharp peaks and heavy tails which appear to decay asymptotically (often toward exponential tails of the Gaussian distribution) as lag increases. No model known to us captures all of these behaviors in a unique and consistent manner. We propose a new model that does so upon treating Y (x) as a random function of a coordinate x in the Euclidean (spatial) domain or time, forming a stationary random field (or process) with constant ensemble mean (expectation) . We express the zero-mean random fluctuation Y '(x) = Y (x) - in sub-Gaussian form. In the classical sub-Gaussian form, Y '(x) = UG(x), where G(x) is a zero-mean stationary Gaussian random field (or process) and the subordinator U is an independent non-negative random variable (Samorodnitsky and Taqqu, 2014). We generalize this by writing Y '(x) = U(x)G(x) in which U(x) is iid. This enables us to analyze, and synthetically generate, heavy-tailed non-Gaussian distributions of both Y and ΔY in both probability space (across an infinite ensemble of random realizations) and real space (in a single realization). We derive analytical expressions for probability distribution functions (pdf s) of Y and ΔY as well as their lead statistical moments. We show that when U is lognormal Y follows the well-known normal-lognormal distribution (NLN, of which the Gaussian distribution is a particular case) with constant parameters. The NLN pdf has been successfully used to interpret financial (Clark, 1973) and environmental (Guadagnini et al., 2014) data. However, ΔY is not NLN and forcing the latter on the former gives a false and widely accepted impression that (a) parameters of the ΔY pdf vary with lag and (b) the pdfs

  3. Modelling reaction kinetics inside cells

    PubMed Central

    Grima, Ramon; Schnell, Santiago

    2009-01-01

    In the past decade, advances in molecular biology such as the development of non-invasive single molecule imaging techniques have given us a window into the intricate biochemical activities that occur inside cells. In this article we review four distinct theoretical and simulation frameworks: (1) non-spatial and deterministic, (2) spatial and deterministic, (3) non-spatial and stochastic and (4) spatial and stochastic. Each framework can be suited to modelling and interpreting intracellular reaction kinetics. By estimating the fundamental length scales, one can roughly determine which models are best suited for the particular reaction pathway under study. We discuss differences in prediction between the four modelling methodologies. In particular we show that taking into account noise and space does not simply add quantitative predictive accuracy but may also lead to qualitatively different physiological predictions, unaccounted for by classical deterministic models. PMID:18793122

  4. Spatial model of autocatalytic reactions

    NASA Astrophysics Data System (ADS)

    de Anna, Pietro; di Patti, Francesca; Fanelli, Duccio; McKane, Alan J.; Dauxois, Thierry

    2010-05-01

    Biological cells with all of their surface structure and complex interior stripped away are essentially vesicles—membranes composed of lipid bilayers which form closed sacs. Vesicles are thought to be relevant as models of primitive protocells, and they could have provided the ideal environment for prebiotic reactions to occur. In this paper, we investigate the stochastic dynamics of a set of autocatalytic reactions, within a spatially bounded domain, so as to mimic a primordial cell. The discreteness of the constituents of the autocatalytic reactions gives rise to large sustained oscillations even when the number of constituents is quite large. These oscillations are spatiotemporal in nature, unlike those found in previous studies, which consisted only of temporal oscillations. We speculate that these oscillations may have a role in seeding membrane instabilities which lead to vesicle division. In this way synchronization could be achieved between protocell growth and the reproduction rate of the constituents (the protogenetic material) in simple protocells.

  5. 12 CFR 217.208 - Incremental risk.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... positions at the portfolio level. If equity positions are included in the model, for modeling purposes... positions in its incremental risk measure. (b) Requirements for incremental risk modeling. For purposes...

  6. Tracking and recognition face in videos with incremental local sparse representation model

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Wang, Yunhong; Zhang, Zhaoxiang

    2013-10-01

    This paper addresses the problem of tracking and recognizing faces via incremental local sparse representation. First a robust face tracking algorithm is proposed via employing local sparse appearance and covariance pooling method. In the following face recognition stage, with the employment of a novel template update strategy, which combines incremental subspace learning, our recognition algorithm adapts the template to appearance changes and reduces the influence of occlusion and illumination variation. This leads to a robust video-based face tracking and recognition with desirable performance. In the experiments, we test the quality of face recognition in real-world noisy videos on YouTube database, which includes 47 celebrities. Our proposed method produces a high face recognition rate at 95% of all videos. The proposed face tracking and recognition algorithms are also tested on a set of noisy videos under heavy occlusion and illumination variation. The tracking results on challenging benchmark videos demonstrate that the proposed tracking algorithm performs favorably against several state-of-the-art methods. In the case of the challenging dataset in which faces undergo occlusion and illumination variation, and tracking and recognition experiments under significant pose variation on the University of California, San Diego (Honda/UCSD) database, our proposed method also consistently demonstrates a high recognition rate.

  7. Incrementally learning objects by touch: online discriminative and generative models for tactile-based recognition.

    PubMed

    Soh, Harold; Demiris, Yiannis

    2014-01-01

    Human beings not only possess the remarkable ability to distinguish objects through tactile feedback but are further able to improve upon recognition competence through experience. In this work, we explore tactile-based object recognition with learners capable of incremental learning. Using the sparse online infinite Echo-State Gaussian process (OIESGP), we propose and compare two novel discriminative and generative tactile learners that produce probability distributions over objects during object grasping/palpation. To enable iterative improvement, our online methods incorporate training samples as they become available. We also describe incremental unsupervised learning mechanisms, based on novelty scores and extreme value theory, when teacher labels are not available. We present experimental results for both supervised and unsupervised learning tasks using the iCub humanoid, with tactile sensors on its five-fingered anthropomorphic hand, and 10 different object classes. Our classifiers perform comparably to state-of-the-art methods (C4.5 and SVM classifiers) and findings indicate that tactile signals are highly relevant for making accurate object classifications. We also show that accurate "early" classifications are possible using only 20-30 percent of the grasp sequence. For unsupervised learning, our methods generate high quality clusterings relative to the widely-used sequential k-means and self-organising map (SOM), and we present analyses into the differences between the approaches. PMID:25532151

  8. Linking impulse response functions to reaction time: Rod and cone reaction time data and a computational model

    PubMed Central

    Cao, Dingcai; Zele, Andrew J.; Pokorny, Joel

    2007-01-01

    Reaction times for incremental and decremental stimuli were measured at five suprathreshold contrasts for six retinal illuminance levels where rods alone (0.002–0.2 Trolands), rods and cones (2–20 Trolands) or cones alone (200 Trolands) mediated detection. A 4-primary photostimulator allowed independent control of rod or cone excitations. This is the first report of reaction times to isolated rod or cone stimuli at mesopic light levels under the same adaptation conditions. The main findings are: 1) For rods, responses to decrements were faster than increments, but cone reaction times were closely similar. 2) At light levels where both systems were functional, rod reaction times were ~20 ms longer. The data were fitted with a computational model that incorporates rod and cone impulse response functions and a stimulus-dependent neural sensory component that triggers a motor response. Rod and cone impulse response functions were derived from published psychophysical two-pulse threshold data and temporal modulation transfer functions. The model fits were accomplished with a limited number of free parameters: two global parameters to estimate the irreducible minimum reaction time for each receptor type, and one local parameter for each reaction time versus contrast function. This is the first model to provide a neural basis for the variation in reaction time with retinal illuminance, stimulus contrast, stimulus polarity, and receptor class modulated. PMID:17346763

  9. Risk prediction models: I. Development, internal validation, and assessing the incremental value of a new (bio)marker.

    PubMed

    Moons, Karel G M; Kengne, Andre Pascal; Woodward, Mark; Royston, Patrick; Vergouwe, Yvonne; Altman, Douglas G; Grobbee, Diederick E

    2012-05-01

    Prediction models are increasingly used to complement clinical reasoning and decision making in modern medicine in general, and in the cardiovascular domain in particular. Developed models first and foremost need to provide accurate and (internally and externally) validated estimates of probabilities of specific health conditions or outcomes in targeted patients. The adoption of such models must guide physician's decision making and an individual's behaviour, and consequently improve individual outcomes and the cost-effectiveness of care. In a series of two articles we review the consecutive steps generally advocated for risk prediction model research. This first article focuses on the different aspects of model development studies, from design to reporting, how to estimate a model's predictive performance and the potential optimism in these estimates using internal validation techniques, and how to quantify the added or incremental value of new predictors or biomarkers (of whatever type) to existing predictors. Each step is illustrated with empirical examples from the cardiovascular field. PMID:22397945

  10. Incremental learning of Bayesian sensorimotor models: from low-level behaviours to large-scale structure of the environment

    NASA Astrophysics Data System (ADS)

    Diard, Julien; Gilet, Estelle; Simonin, Éva; Bessière, Pierre

    2010-12-01

    This paper concerns the incremental learning of hierarchies of representations of space in artificial or natural cognitive systems. We propose a mathematical formalism for defining space representations (Bayesian Maps) and modelling their interaction in hierarchies of representations (sensorimotor interaction operator). We illustrate our formalism with a robotic experiment. Starting from a model based on the proximity to obstacles, we learn a new one related to the direction of the light source. It provides new behaviours, like phototaxis and photophobia. We then combine these two maps so as to identify parts of the environment where the way the two modalities interact is recognisable. This classification is a basis for learning a higher level of abstraction map that describes the large-scale structure of the environment. In the final model, the perception-action cycle is modelled by a hierarchy of sensorimotor models of increasing time and space scales, which provide navigation strategies of increasing complexities.

  11. The dark side of incremental learning: A model of cumulative semantic interference during lexical access in speech production

    PubMed Central

    Oppenheim, Gary M.; Dell, Gary S.; Schwartz, Myrna F.

    2010-01-01

    Naming a picture of a dog primes the subsequent naming of a picture of a dog (repetition priming) and interferes with the subsequent naming of a picture of a cat (semantic interference). Behavioral studies suggest that these effects derive from persistent changes in the way that words are activated and selected for production, and some have claimed that the findings are only understandable by positing a competitive mechanism for lexical selection. We present a simple model of lexical retrieval in speech production that applies error-driven learning to its lexical activation network. This model naturally produces repetition priming and semantic interference effects. It predicts the major findings from several published experiments, demonstrating that these effects may arise from incremental learning. Furthermore, analysis of the model suggests that competition during lexical selection is not necessary for semantic interference if the learning process is itself competitive. PMID:19854436

  12. Ductile Fracture Prediction in Rotational Incremental Forming for Magnesium Alloy Sheets Using Combined Kinematic/Isotropic Hardening Model

    NASA Astrophysics Data System (ADS)

    Nguyen, Duc-Toan; Park, Jin-Gee; Kim, Young-Suk

    2010-08-01

    To predict the ductile fracture of a magnesium alloy sheet when using rotational incremental forming, a combined kinematic and isotropic hardening law is implemented and evaluated from the histories of the ductile fracture value ( I) using a finite element analysis. Here, the criterion for a ductile fracture, as developed by Oyane ( J. Mech. Work. Technol., 1980, vol. 4, pp. 65-81), is applied via a user material based on a finite element analysis. To simulate the effect of the large amount of heat generation at elements in the contact area due to the friction energy of the rotational tool-specimen interface on the equivalent stress-strain evolution in incremental forming, the Johnson-Cook (JC) model was applied and the results compared with equivalent stress-strain curves obtained from tensile tests at elevated temperatures. The finite element (FE) simulation results for a ductile fracture were compared with the experimental results for a (80 mm × 80 mm × 25 mm) square shape with a 45 and 60 deg wall angle, respectively, and a (80 mm × 80 mm × 20 mm) square shape with a 70 deg wall angle. The trends of the FE simulation results agreed quite well with the experimental results. Finally, the effects of the process parameters, i.e., the tool down-step and tool radius, on the ductile fracture value and FLC at fracture (FLCF) were also investigated using the FE simulation results.

  13. Incremental hierarchical discriminant regression.

    PubMed

    Weng, Juyang; Hwang, Wey-Shiuan

    2007-03-01

    This paper presents incremental hierarchical discriminant regression (IHDR) which incrementally builds a decision tree or regression tree for very high-dimensional regression or decision spaces by an online, real-time learning system. Biologically motivated, it is an approximate computational model for automatic development of associative cortex, with both bottom-up sensory inputs and top-down motor projections. At each internal node of the IHDR tree, information in the output space is used to automatically derive the local subspace spanned by the most discriminating features. Embedded in the tree is a hierarchical probability distribution model used to prune very unlikely cases during the search. The number of parameters in the coarse-to-fine approximation is dynamic and data-driven, enabling the IHDR tree to automatically fit data with unknown distribution shapes (thus, it is difficult to select the number of parameters up front). The IHDR tree dynamically assigns long-term memory to avoid the loss-of-memory problem typical with a global-fitting learning algorithm for neural networks. A major challenge for an incrementally built tree is that the number of samples varies arbitrarily during the construction process. An incrementally updated probability model, called sample-size-dependent negative-log-likelihood (SDNLL) metric is used to deal with large sample-size cases, small sample-size cases, and unbalanced sample-size cases, measured among different internal nodes of the IHDR tree. We report experimental results for four types of data: synthetic data to visualize the behavior of the algorithms, large face image data, continuous video stream from robot navigation, and publicly available data sets that use human defined features. PMID:17385628

  14. Modeling Enzymatic Reactions in Proteins.

    NASA Astrophysics Data System (ADS)

    Friesner, Richard

    2007-03-01

    We will discuss application of our density functional (DFT)-based QM/MM methodology to modeling a variety of protein active sites, including methane monooxygenase, myoglobin, and cytochrome P450. In addition to the calculation of intermediates, transition states, and rate constants, we will discuss modeling of reactions requiring protein conformational changes. Our methodology reliably achieves small errors as a result of imposition of the QM/MM boundary. However, the accuracy of DFT methods can vary significantly with the type of system under study. We will discuss a novel approach to the reduction of errors in gradient corrected and hybrid DFT functionals, using empirical localized orbital corrections (DFT-LOC), which addresses this problem effectively. For example, the mean unsigned error in atomization energies for the G3 data set using the B3LYP-LOC model is 0.8 kcal/mole, as compared with 4.8 kcal/mole for B3LYP and 1.0 kcal/mole for G3 theory.

  15. Model parameter estimation approach based on incremental analysis for lithium-ion batteries without using open circuit voltage

    NASA Astrophysics Data System (ADS)

    Wu, Hongjie; Yuan, Shifei; Zhang, Xi; Yin, Chengliang; Ma, Xuerui

    2015-08-01

    To improve the suitability of lithium-ion battery model under varying scenarios, such as fluctuating temperature and SoC variation, dynamic model with parameters updated realtime should be developed. In this paper, an incremental analysis-based auto regressive exogenous (I-ARX) modeling method is proposed to eliminate the modeling error caused by the OCV effect and improve the accuracy of parameter estimation. Then, its numerical stability, modeling error, and parametric sensitivity are analyzed at different sampling rates (0.02, 0.1, 0.5 and 1 s). To identify the model parameters recursively, a bias-correction recursive least squares (CRLS) algorithm is applied. Finally, the pseudo random binary sequence (PRBS) and urban dynamic driving sequences (UDDSs) profiles are performed to verify the realtime performance and robustness of the newly proposed model and algorithm. Different sampling rates (1 Hz and 10 Hz) and multiple temperature points (5, 25, and 45 °C) are covered in our experiments. The experimental and simulation results indicate that the proposed I-ARX model can present high accuracy and suitability for parameter identification without using open circuit voltage.

  16. Graphical assessment of incremental value of novel markers in prediction models: From statistical to decision analytical perspectives.

    PubMed

    Steyerberg, Ewout W; Vedder, Moniek M; Leening, Maarten J G; Postmus, Douwe; D'Agostino, Ralph B; Van Calster, Ben; Pencina, Michael J

    2015-07-01

    New markers may improve prediction of diagnostic and prognostic outcomes. We aimed to review options for graphical display and summary measures to assess the predictive value of markers over standard, readily available predictors. We illustrated various approaches using previously published data on 3264 participants from the Framingham Heart Study, where 183 developed coronary heart disease (10-year risk 5.6%). We considered performance measures for the incremental value of adding HDL cholesterol to a prediction model. An initial assessment may consider statistical significance (HR = 0.65, 95% confidence interval 0.53 to 0.80; likelihood ratio p < 0.001), and distributions of predicted risks (densities or box plots) with various summary measures. A range of decision thresholds is considered in predictiveness and receiver operating characteristic curves, where the area under the curve (AUC) increased from 0.762 to 0.774 by adding HDL. We can furthermore focus on reclassification of participants with and without an event in a reclassification graph, with the continuous net reclassification improvement (NRI) as a summary measure. When we focus on one particular decision threshold, the changes in sensitivity and specificity are central. We propose a net reclassification risk graph, which allows us to focus on the number of reclassified persons and their event rates. Summary measures include the binary AUC, the two-category NRI, and decision analytic variants such as the net benefit (NB). Various graphs and summary measures can be used to assess the incremental predictive value of a marker. Important insights for impact on decision making are provided by a simple graph for the net reclassification risk. PMID:25042996

  17. Small-Sample Robust Estimators of Noncentrality-Based and Incremental Model Fit

    ERIC Educational Resources Information Center

    Herzog, Walter; Boomsma, Anne

    2009-01-01

    Traditional estimators of fit measures based on the noncentral chi-square distribution (root mean square error of approximation [RMSEA], Steiger's [gamma], etc.) tend to overreject acceptable models when the sample size is small. To handle this problem, it is proposed to employ Bartlett's (1950), Yuan's (2005), or Swain's (1975) correction of the…

  18. Transport model of nucleon-nucleus reaction

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Townsend, L. W.; Cucinotta, F. A.

    1986-01-01

    A simplified model of nucleon-nucleus reaction is developed and some of its properties are examined. Comparisons with proton production measured for targets of Al-27, Ni-58, Zr-90, and Bi-209 show some hope for developing an accurate model for these complex reactions. It is suggested that binding effects are the next step required for further development.

  19. Serpentinization reaction pathways: implications for modeling approach

    SciTech Connect

    Janecky, D.R.

    1986-01-01

    Experimental seawater-peridotite reaction pathways to form serpentinites at 300/sup 0/C, 500 bars, can be accurately modeled using the EQ3/6 codes in conjunction with thermodynamic and kinetic data from the literature and unpublished compilations. These models provide both confirmation of experimental interpretations and more detailed insight into hydrothermal reaction processes within the oceanic crust. The accuracy of these models depends on careful evaluation of the aqueous speciation model, use of mineral compositions that closely reproduce compositions in the experiments, and definition of realistic reactive components in terms of composition, thermodynamic data, and reaction rates.

  20. A Networks Approach to Modeling Enzymatic Reactions.

    PubMed

    Imhof, P

    2016-01-01

    Modeling enzymatic reactions is a demanding task due to the complexity of the system, the many degrees of freedom involved and the complex, chemical, and conformational transitions associated with the reaction. Consequently, enzymatic reactions are not determined by precisely one reaction pathway. Hence, it is beneficial to obtain a comprehensive picture of possible reaction paths and competing mechanisms. By combining individually generated intermediate states and chemical transition steps a network of such pathways can be constructed. Transition networks are a discretized representation of a potential energy landscape consisting of a multitude of reaction pathways connecting the end states of the reaction. The graph structure of the network allows an easy identification of the energetically most favorable pathways as well as a number of alternative routes. PMID:27497170

  1. A model for astrophysical spallation reactions

    NASA Technical Reports Server (NTRS)

    Schmitt, W. F.; Ayres, C. L.; Merker, M.; Shen, B. S. P.

    1974-01-01

    A Monte-Carlo model (RENO) for spallation reactions is described which can treat both the spallations induced by a free nucleon and those induced by a complex nucleus. It differs from other such models in that it employs a discrete-nucleon representation of the nucleus and allows clusters of nucleons to form and to participate in the reaction. The RENO model is particularly suited for spallations involving the relatively light nuclei of astrophysical and cosmic-ray interest.

  2. Modeling of turbulent chemical reaction

    NASA Technical Reports Server (NTRS)

    Chen, J.-Y.

    1995-01-01

    Viewgraphs are presented on modeling turbulent reacting flows, regimes of turbulent combustion, regimes of premixed and regimes of non-premixed turbulent combustion, chemical closure models, flamelet model, conditional moment closure (CMC), NO(x) emissions from turbulent H2 jet flames, probability density function (PDF), departures from chemical equilibrium, mixing models for PDF methods, comparison of predicted and measured H2O mass fractions in turbulent nonpremixed jet flames, experimental evidence of preferential diffusion in turbulent jet flames, and computation of turbulent reacting flows.

  3. Source Apportionment of the Anthropogenic Increment to Ozone, Formaldehyde, and Nitrogen Dioxide by the Path-Integral Method in a 3D Model.

    PubMed

    Dunker, Alan M; Koo, Bonyoung; Yarwood, Greg

    2015-06-01

    The anthropogenic increment of a species is the difference in concentration between a base-case simulation with all emissions included and a background simulation without the anthropogenic emissions. The Path-Integral Method (PIM) is a new technique that can determine the contributions of individual anthropogenic sources to this increment. The PIM was applied to a simulation of O3 formation in July 2030 in the U.S., using the Comprehensive Air Quality Model with Extensions and assuming advanced controls on light-duty vehicles (LDVs) and other sources. The PIM determines the source contributions by integrating first-order sensitivity coefficients over a range of emissions, a path, from the background case to the base case. There are many potential paths, with each representing a specific emission-control strategy leading to zero anthropogenic emissions, i.e., controlling all sources together versus controlling some source(s) preferentially are different paths. Three paths were considered, and the O3, formaldehyde, and NO2 anthropogenic increments were apportioned to five source categories. At rural and urban sites in the eastern U.S. and for all three paths, point sources typically have the largest contribution to the O3 and NO2 anthropogenic increments, and either LDVs or area sources, the smallest. Results for formaldehyde are more complex. PMID:25938820

  4. Mathematical model to predict drivers' reaction speeds.

    PubMed

    Long, Benjamin L; Gillespie, A Isabella; Tanaka, Martin L

    2012-02-01

    Mental distractions and physical impairments can increase the risk of accidents by affecting a driver's ability to control the vehicle. In this article, we developed a linear mathematical model that can be used to quantitatively predict drivers' performance over a variety of possible driving conditions. Predictions were not limited only to conditions tested, but also included linear combinations of these tests conditions. Two groups of 12 participants were evaluated using a custom drivers' reaction speed testing device to evaluate the effect of cell phone talking, texting, and a fixed knee brace on the components of drivers' reaction speed. Cognitive reaction time was found to increase by 24% for cell phone talking and 74% for texting. The fixed knee brace increased musculoskeletal reaction time by 24%. These experimental data were used to develop a mathematical model to predict reaction speed for an untested condition, talking on a cell phone with a fixed knee brace. The model was verified by comparing the predicted reaction speed to measured experimental values from an independent test. The model predicted full braking time within 3% of the measured value. Although only a few influential conditions were evaluated, we present a general approach that can be expanded to include other types of distractions, impairments, and environmental conditions. PMID:22431214

  5. Incremental Contingency Planning

    NASA Technical Reports Server (NTRS)

    Dearden, Richard; Meuleau, Nicolas; Ramakrishnan, Sailesh; Smith, David E.; Washington, Rich

    2003-01-01

    There has been considerable work in AI on planning under uncertainty. However, this work generally assumes an extremely simple model of action that does not consider continuous time and resources. These assumptions are not reasonable for a Mars rover, which must cope with uncertainty about the duration of tasks, the energy required, the data storage necessary, and its current position and orientation. In this paper, we outline an approach to generating contingency plans when the sources of uncertainty involve continuous quantities such as time and resources. The approach involves first constructing a "seed" plan, and then incrementally adding contingent branches to this plan in order to improve utility. The challenge is to figure out the best places to insert contingency branches. This requires an estimate of how much utility could be gained by building a contingent branch at any given place in the seed plan. Computing this utility exactly is intractable, but we outline an approximation method that back propagates utility distributions through a graph structure similar to that of a plan graph.

  6. Modeling coal chemistry: One electron catalytic reactions

    SciTech Connect

    Farcasiu, M.; Smith, C.; Hunter, E.A. )

    1991-01-01

    The complexity of the coal structure, in general, and of its organic part, in particular, prevents a rigorous study of coal chemistry. The use of model compounds with less complicated chemical structures to model specific reactions relevant to coal transformation into useful products is necessary and helpful. This is true, however, only if the modeling is properly applied and especially if the results are not excessively extrapolated to all aspects of coal reactivity. The emphasis on all catalytic routes in coal liquefaction has enhanced the interest in the study of the chemistry involved in heterogeneous catalytic reactions relevant to the first stage, solubilization, of coal. One of the important reactions associated with this first stage is the cleavage of carbon-carbon bonds linking aromatic rings with aliphatic moieties. In previous publications (1,2,3) we have used a model compound 4-(l-naphthylmethyl)bibenzyl (1) in which the bond linking the naphthalene ring to a methylene carbon can be selectively cleaved by specific catalysts (i.e. carbon materials, some iron catalysts) at temperatures at which thermal, free radical-initiated reactions, do not take place. Our data suggest that the above-mentioned catalytic cleavage is initiated by the ion radical of 1, with the unpaired electron localized in the naphthalene ring.

  7. Modeling coal chemistry: One electron catalytic reactions

    SciTech Connect

    Farcasiu, M.; Smith, C.; Hunter, E.A.

    1991-12-31

    The complexity of the coal structure, in general, and of its organic part, in particular, prevents a rigorous study of coal chemistry. The use of model compounds with less complicated chemical structures to model specific reactions relevant to coal transformation into useful products is necessary and helpful. This is true, however, only if the modeling is properly applied and especially if the results are not excessively extrapolated to all aspects of coal reactivity. The emphasis on all catalytic routes in coal liquefaction has enhanced the interest in the study of the chemistry involved in heterogeneous catalytic reactions relevant to the first stage, solubilization, of coal. One of the important reactions associated with this first stage is the cleavage of carbon-carbon bonds linking aromatic rings with aliphatic moieties. In previous publications (1,2,3) we have used a model compound 4-(l-naphthylmethyl)bibenzyl (1) in which the bond linking the naphthalene ring to a methylene carbon can be selectively cleaved by specific catalysts (i.e. carbon materials, some iron catalysts) at temperatures at which thermal, free radical-initiated reactions, do not take place. Our data suggest that the above-mentioned catalytic cleavage is initiated by the ion radical of 1, with the unpaired electron localized in the naphthalene ring.

  8. Competing reaction model with many absorbing configurations.

    PubMed

    de Andrade, M F; Figueiredo, W

    2010-02-01

    We study a competitive reaction model between two monomers A and B on a linear lattice. We assume that monomer A can react with a nearest-neighbor monomer A or B , but reactions between monomers of type B are prohibited. We include in our model lateral interactions between monomers as well as the effects of temperature of the catalyst. The model is considered in the adsorption controlled limit, where the reaction rate is infinitely larger than the adsorption rate of the monomers. We employ site and pair mean-field approximations as well as static Monte Carlo simulations. We determine the phase diagram of the model in the plane y_{A} versus temperature, where y_{A} is the probability that a monomer of the type A arrives at the surface. This phase diagram shows regions of active and absorbing states separated by a line of continuous phase transitions. Despite the absorbing state of the model to be strongly dependent on temperature, we show that the static critical exponents of the model belong to the same universality class of the directed percolation. PMID:20365537

  9. Reaction Wheel Disturbance Model Extraction Software - RWDMES

    NASA Technical Reports Server (NTRS)

    Blaurock, Carl

    2009-01-01

    The RWDMES is a tool for modeling the disturbances imparted on spacecraft by spinning reaction wheels. Reaction wheels are usually the largest disturbance source on a precision pointing spacecraft, and can be the dominating source of pointing error. Accurate knowledge of the disturbance environment is critical to accurate prediction of the pointing performance. In the past, it has been difficult to extract an accurate wheel disturbance model since the forcing mechanisms are difficult to model physically, and the forcing amplitudes are filtered by the dynamics of the reaction wheel. RWDMES captures the wheel-induced disturbances using a hybrid physical/empirical model that is extracted directly from measured forcing data. The empirical models capture the tonal forces that occur at harmonics of the spin rate, and the broadband forces that arise from random effects. The empirical forcing functions are filtered by a physical model of the wheel structure that includes spin-rate-dependent moments (gyroscopic terms). The resulting hybrid model creates a highly accurate prediction of wheel-induced forces. It accounts for variation in disturbance frequency, as well as the shifts in structural amplification by the whirl modes, as the spin rate changes. This software provides a point-and-click environment for producing accurate models with minimal user effort. Where conventional approaches may take weeks to produce a model of variable quality, RWDMES can create a demonstrably high accuracy model in two hours. The software consists of a graphical user interface (GUI) that enables the user to specify all analysis parameters, to evaluate analysis results and to iteratively refine the model. Underlying algorithms automatically extract disturbance harmonics, initialize and tune harmonic models, and initialize and tune broadband noise models. The component steps are described in the RWDMES user s guide and include: converting time domain data to waterfall PSDs (power spectral

  10. Theory and Modeling of Asymmetric Catalytic Reactions.

    PubMed

    Lam, Yu-Hong; Grayson, Matthew N; Holland, Mareike C; Simon, Adam; Houk, K N

    2016-04-19

    Modern density functional theory and powerful contemporary computers have made it possible to explore complex reactions of value in organic synthesis. We describe recent explorations of mechanisms and origins of stereoselectivities with density functional theory calculations. The specific functionals and basis sets that are routinely used in computational studies of stereoselectivities of organic and organometallic reactions in our group are described, followed by our recent studies that uncovered the origins of stereocontrol in reactions catalyzed by (1) vicinal diamines, including cinchona alkaloid-derived primary amines, (2) vicinal amidophosphines, and (3) organo-transition-metal complexes. Two common cyclic models account for the stereoselectivity of aldol reactions of metal enolates (Zimmerman-Traxler) or those catalyzed by the organocatalyst proline (Houk-List). Three other models were derived from computational studies described in this Account. Cinchona alkaloid-derived primary amines and other vicinal diamines are venerable asymmetric organocatalysts. For α-fluorinations and a variety of aldol reactions, vicinal diamines form enamines at one terminal amine and activate electrophilically with NH(+) or NF(+) at the other. We found that the stereocontrolling transition states are cyclic and that their conformational preferences are responsible for the observed stereoselectivity. In fluorinations, the chair seven-membered cyclic transition states is highly favored, just as the Zimmerman-Traxler chair six-membered aldol transition state controls stereoselectivity. In aldol reactions with vicinal diamine catalysts, the crown transition states are favored, both in the prototype and in an experimental example, shown in the graphic. We found that low-energy conformations of cyclic transition states occur and control stereoselectivities in these reactions. Another class of bifunctional organocatalysts, the vicinal amidophosphines, catalyzes the (3 + 2) annulation

  11. No-Core Shell Model and Reactions

    SciTech Connect

    Navratil, Petr; Ormand, W. Erich; Caurier, Etienne; Bertulani, Carlos

    2005-10-14

    There has been a significant progress in ab initio approaches to the structure of light nuclei. Starting from realistic two- and three-nucleon interactions the ab initio no-core shell model (NCSM) can predict low-lying levels in p-shell nuclei. It is a challenging task to extend ab initio methods to describe nuclear reactions. In this contribution, we present a brief overview of the NCSM with examples of recent applications as well as the first steps taken toward nuclear reaction applications. In particular, we discuss cross section calculations of p+6Li and 6He+p scattering as well as a calculation of the astrophysically important 7Be(p,{gamma})8B S-factor.

  12. No-Core Shell Model and Reactions

    SciTech Connect

    Navratil, P; Ormand, W E; Caurier, E; Bertulani, C

    2005-04-29

    There has been a significant progress in ab initio approaches to the structure of light nuclei. Starting from realistic two- and three-nucleon interactions the ab initio no-core shell model (NCSM) can predict low-lying levels in p-shell nuclei. It is a challenging task to extend ab initio methods to describe nuclear reactions. In this contribution, we present a brief overview of the NCSM with examples of recent applications as well as the first steps taken toward nuclear reaction applications. In particular, we discuss cross section calculations of p+{sup 6}Li and {sup 6}He+p scattering as well as a calculation of the astrophysically important {sup 7}Be(p, {gamma}){sup 8}B S-factor.

  13. Airborne observed and receptor-oriented modelled urban increments of anthropogenic CO2, CO and NOX concentrations in the megacity of London in summer 2012

    NASA Astrophysics Data System (ADS)

    Font Font, Anna Maria; Morguí, Josep Anton; Lee, James; McQuaid, Jim B.; Barratt, Benjamin

    2014-05-01

    A better characterization of the emissions and the dynamics of anthropogenic CO2 in large-urban centres are needed to implement more effective mitigation measures to combat climate change. This study aims to establish a representative emissions ratio of anthropogenic CO2 (CO2ff) in the megacity of London using CO and NOX as tracers. Observations of CO2, CO and NOX mixing ratios obtained onboard the NERC-ARSF aircraft undertaken on 12 July 2012 over the city of London were used. Airborne observations were taken at ~380 m along four transects crossing London, two in the morning (10:30 to 12:30 GMT) and two in the afternoon (15:30-16:30 GMT). The ratio of the amounts of CO and CO2 in excess of natural abundances (denoted as ΔCO and ΔCO2, respectively) from the airborne observations was used to determine the fraction of CO2 derived from burning fossil fuels (CO2ff). Total observations of CO and CO2 were compared to NOX observations and background concentrations were determined as the intercept when NOX mixing ratios equalled zero derived from standardised major axis linear regression. Excess concentrations were calculated by subtracting total amounts minus the background. ΔCO showed good correlation with ΔCO2 in the morning transects (R=0.95) but not in the afternoon (R=-0.50). The mean (±1σ) CO/CO2ff was derived from linear regression using the morning measurements and valued 5.0±0.4 ppb ppm-1. Lagrangian Particle Dispersion (LPD) simulations in backward mode were undertaken to model urban increments of anthropogenic CO2 and CO and to calculate the emissions ratio from the emissions inventory EDGAR v4.2. The LPD model FLEXPART was run with the meteorological data from the European Centre for Medium-Range Weather Forecasts (spatial resolution of 0.2 x 0.2 degrees; 91 vertical levels) and multiplied with the EDGAR emissions inventory (spatial resolution 0.1 x 0.1 degrees) to obtain an increment at each receptor point along the transects. Annual and temporal

  14. Thermodynamic performance for a chemical reactions model

    NASA Astrophysics Data System (ADS)

    Gonzalez-Narvaez, R. E.; Sánchez-Salas, N.; Chimal-Eguía, J. C.

    2015-01-01

    This paper presents the analysis efficiency of a chemical reaction model of four states, such that their activated states can occur at any point (fixed but arbitrary) of the transition from one state to another. This mechanism operates under a single heat reservoir temperature, unlike the internal combustion engines where there are two thermal sources. Different efficiencies are compared to this model, which operate at different optimum engine regimes. Thus, some analytical methods are used to give an approximate expression, facilitating the comparison between them. Finally, the result is compared with that obtained by other authors considered a general model of an isothermal molecular machine. Taking into account the above, the results seems to follow a similar behaviour for all the optimized engines, which resemble that observed in the case of heat engine efficiencies.

  15. Photochemical reactions of various model protocell systems

    NASA Technical Reports Server (NTRS)

    Folsome, C. E.

    1986-01-01

    Models for the emergence of cellular life on the primitive Earth, and for physical environments of that era have been studied that embody these assumptions: (1) pregenetic cellular forms were phase-bounded systems primarily photosynthetic in nature, and (2) the early Earth environment was anoxic (lacking appreciable amounts of free hydrogen). It was found that organic structures can also be formed under anoxic conditions (N2, CO3=, H2O) by protracted longwavelength UV radiation. Apparently these structures form initially as organic layers upon CaCO3 crystalloids. The question remains as to whether the UV photosynthetic ability of such phase bounded structures is a curiosity, or a general property of phase bounded systems which is of direct interest to the emergence of cellular life. The question of the requirement and sailient features of a phase boundary for UV photosynthetic abilities was addressed by searching for similar general physical properties which might be manifest in a variety of other simple protocell-like structures. Since it has been shown that laboratory protocell models can effect the UV photosynthesis of low molecular weight compounds, this reaction is being used as an assay to survey other types of structures for similar UV photosynthetic reactions. Various kinds of structures surveyed are: (1) proteinoids; (2) liposomes; (3) reconstituted cell membrane spheroids; (4) coacervates; and (5) model protocells formed under anoxic conditions.

  16. Modeling stochasticity in biochemical reaction networks

    NASA Astrophysics Data System (ADS)

    Constantino, P. H.; Vlysidis, M.; Smadbeck, P.; Kaznessis, Y. N.

    2016-03-01

    Small biomolecular systems are inherently stochastic. Indeed, fluctuations of molecular species are substantial in living organisms and may result in significant variation in cellular phenotypes. The chemical master equation (CME) is the most detailed mathematical model that can describe stochastic behaviors. However, because of its complexity the CME has been solved for only few, very small reaction networks. As a result, the contribution of CME-based approaches to biology has been very limited. In this review we discuss the approach of solving CME by a set of differential equations of probability moments, called moment equations. We present different approaches to produce and to solve these equations, emphasizing the use of factorial moments and the zero information entropy closure scheme. We also provide information on the stability analysis of stochastic systems. Finally, we speculate on the utility of CME-based modeling formalisms, especially in the context of synthetic biology efforts.

  17. Model Experiment of Thermal Runaway Reactions Using the Aluminum-Hydrochloric Acid Reaction

    ERIC Educational Resources Information Center

    Kitabayashi, Suguru; Nakano, Masayoshi; Nishikawa, Kazuyuki; Koga, Nobuyoshi

    2016-01-01

    A laboratory exercise for the education of students about thermal runaway reactions based on the reaction between aluminum and hydrochloric acid as a model reaction is proposed. In the introductory part of the exercise, the induction period and subsequent thermal runaway behavior are evaluated via a simple observation of hydrogen gas evolution and…

  18. Model for reaction kinetics in pyrolysis of wood

    SciTech Connect

    Ahuja, P.; Singh, P.C.; Upadhyay, S.N.; Kumar, S.

    1996-12-31

    A reaction model for the pyrolysis of small and large particles of wood Is developed. The chemical reactions that take place when biomass is pyrolyzed are the devolatilization reactions (primary) and due to the vapour-solid interactions (secondary). In the case of small particles, when the volatiles are immediately removed by the purge gas, only primary reactions occur and the reaction model is described by weight loss and char forming reactions. The of heterogeneous secondary reactions occur in the case of large particles due to the interaction between the volatiles and the hot nascent primary char. A chain reaction mechanism of secondary char formation is proposed. The model takes both the volatiles retention time and cracking and repolymerization reactions of the vapours with the decomposing solid as well as autocatalysis into consideration. 7 refs., 3 figs., 2 tabs.

  19. Incremental geriatric assessment.

    PubMed

    Ensberg, Mark; Gerstenlauer, Cynthia

    2005-09-01

    Older adults value (1) independence and the ability to make their own decisions, (2) mobility (the ability to travel outside or simply inside the home), (3) family and friends and the time spent with those persons who are important to them, (4) ethnicity, religion, and spirituality, and (5) home, wherever that might be. The importance of recognizing each person's individuality cannot be overemphasized. The method of incremental assessment presented in this article and summarized in Box 9 is intended to provide the office-based clinician with sufficient information to make decisions regarding the preventive, therapeutic, rehabilitative, and supportive goals of care. IADL and nutritional triggers are used to identify early signs of dysfunction in the home environment. The strengths and weaknesses of cognitive, physical, psychosocial, and spiritual aspects of function are examined in an incremental manner. Health care providers determine whether there is a match between the person's functional capabilities, the available support network, and the home environment. The approach prompts appropriate use of services needed by older adults who are either at risk for becoming, or already are, chronically ill, disabled, and functionally dependent. Use of validated assessment tools provides structure for the assessment process, helps assure consistency, and provides a mechanism for periodic re-evaluation. The assessment approaches also foster a common language for the health care team and consist of measurable parameters that can be used to monitor outcomes. The clinician should be flexible and realize that the assessment or the tools may need to be modified depending on the circumstances. PMID:16140119

  20. Evaluation of incremental reactivity and its uncertainty in Southern California.

    PubMed

    Martien, Philip T; Harley, Robert A; Milford, Jana B; Russell, Armistead G

    2003-04-15

    The incremental reactivity (IR) and relative incremental reactivity (RIR) of carbon monoxide and 30 individual volatile organic compounds (VOC) were estimated for the South Coast Air Basin using two photochemical air quality models: a 3-D, grid-based model and a vertically resolved trajectory model. Both models include an extended version of the SAPRC99 chemical mechanism. For the 3-D modeling, the decoupled direct method (DDM-3D) was used to assess reactivities. The trajectory model was applied to estimate uncertainties in reactivities due to uncertainties in chemical rate parameters, deposition parameters, and emission rates using Monte Carlo analysis with Latin hypercube sampling. For most VOC, RIRs were found to be consistent in rankings with those produced by Carter using a box model. However, 3-D simulations show that coastal regions, upwind of most of the emissions, have comparatively low IR but higher RIR than predicted by box models for C4-C5 alkenes and carbonyls that initiate the production of HOx radicals. Biogenic VOC emissions were found to have a lower RIR than predicted by box model estimates, because emissions of these VOC were mostly downwind of the areas of primary ozone production. Uncertainties in RIR of individual VOC were found to be dominated by uncertainties in the rate parameters of their primary oxidation reactions. The coefficient of variation (COV) of most RIR values ranged from 20% to 30%, whereas the COV of absolute incremental reactivity ranged from about 30% to 40%. In general, uncertainty and variability both decreased when relative rather than absolute reactivity metrics were used. PMID:12731843

  1. Isolating the roles of different forcing agents in global stratospheric temperature changes using model integrations with incrementally added single forcings

    NASA Astrophysics Data System (ADS)

    Aquila, V.; Swartz, W. H.; Waugh, D. W.; Colarco, P. R.; Pawson, S.; Polvani, L. M.; Stolarski, R. S.

    2016-07-01

    Satellite instruments show a cooling of global stratospheric temperatures over the whole data record (1979-2014). This cooling is not linear and includes two descending steps in the early 1980s and mid-1990s. The 1979-1995 period is characterized by increasing concentrations of ozone-depleting substances (ODSs) and by the two major volcanic eruptions of El Chichón (1982) and Mount Pinatubo (1991). The 1995-present period is characterized by decreasing ODS concentrations and by the absence of major volcanic eruptions. Greenhouse gas (GHG) concentrations increase over the whole time period. In order to isolate the roles of different forcing agents in the global stratospheric temperature changes, we performed a set of simulations using the NASA Goddard Earth Observing System Chemistry-Climate Model with prescribed sea surface temperatures. We find that in our model simulations the cooling of the stratosphere from 1979 to present is mostly driven by changes in GHG concentrations in the middle and upper stratosphere and by GHG and ODS changes in the lower stratosphere. While the cooling trend caused by increasing GHGs is roughly constant over the satellite era, changing ODS concentrations cause a significant stratospheric cooling only up to the mid-1990s, when they start to decrease because of the implementation of the Montreal Protocol. Sporadic volcanic events and the solar cycle have a distinct signature in the time series of stratospheric temperature anomalies but do not play a statistically significant role in the long-term trends from 1979 to 2014. Several factors combine to produce the step-like behavior in the stratospheric temperatures: in the lower stratosphere, the flattening starting in the mid-1990s is due to the decrease in ozone-depleting substances; Mount Pinatubo and the solar cycle cause the abrupt steps through the aerosol-associated warming and the volcanically induced ozone depletion. In the middle and upper stratosphere, changes in solar

  2. A generalized kinetic model for heterogeneous gas-solid reactions.

    PubMed

    Xu, Zhijie; Sun, Xin; Khaleel, Mohammad A

    2012-08-21

    We present a generalized kinetic model for gas-solid heterogeneous reactions taking place at the interface between two phases. The model studies the reaction kinetics by taking into account the reactions at the interface, as well as the transport process within the product layer. The standard unreacted shrinking core model relies on the assumption of quasi-static diffusion that results in a steady-state concentration profile of gas reactant in the product layer. By relaxing this assumption and resolving the entire problem, general solutions can be obtained for reaction kinetics, including the reaction front velocity and the conversion (volume fraction of reacted solid). The unreacted shrinking core model is shown to be accurate and in agreement with the generalized model for slow reaction (or fast diffusion), low concentration of gas reactant, and small solid size. Otherwise, a generalized kinetic model should be used. PMID:22920132

  3. A generalized kinetic model for heterogeneous gas-solid reactions

    NASA Astrophysics Data System (ADS)

    Xu, Zhijie; Sun, Xin; Khaleel, Mohammad A.

    2012-08-01

    We present a generalized kinetic model for gas-solid heterogeneous reactions taking place at the interface between two phases. The model studies the reaction kinetics by taking into account the reactions at the interface, as well as the transport process within the product layer. The standard unreacted shrinking core model relies on the assumption of quasi-static diffusion that results in a steady-state concentration profile of gas reactant in the product layer. By relaxing this assumption and resolving the entire problem, general solutions can be obtained for reaction kinetics, including the reaction front velocity and the conversion (volume fraction of reacted solid). The unreacted shrinking core model is shown to be accurate and in agreement with the generalized model for slow reaction (or fast diffusion), low concentration of gas reactant, and small solid size. Otherwise, a generalized kinetic model should be used.

  4. Stationary cell size distributions and mean protein chain length distributions of Archaea, Bacteria and Eukaryotes described with an increment model in terms of irreversible thermodynamics

    NASA Astrophysics Data System (ADS)

    Kilian, H. G.; Gruler, H.; Bartkowiak, D.; Kaufmann, D.

    2005-07-01

    In terms of an increment model irreversible thermodynamics allows to formulate general relations of stationary cell size distributions observed in growing colonies. The treatment is based on the following key postulates: i) The growth dynamics covers a broad spectrum of fast and slow processes. ii) Slow processes are considered to install structural patterns that operate in short periods as temporary stationary states of reference in the sense of irreversible thermodynamics. iii) Distortion during growth is balanced out via the many fast processes until an optimized stationary state is achieved. The relation deduced identifies the numerous different stationary patterns as equivalents, predicting that they should fall on one master curve. Stationary cell size distributions of different cell types, like Hyperphilic archaea, E. coli (Prokaryotes) and S. cerevisiae (Eukaryotes), altogether taken from the literature, are in fact consistently described. As demanded by the model they agree together with the same master curve. Considering the “protein factories” as subsystems of cells the mean protein chain length distributions deduced from completely sequenced genomes should be optimized. In fact, the mean course can be described with analogous relations as used above. Moreover, the master curve fits well to the patterns of different species of Archaea, Bacteria and Eukaryotes. General consequences are discussed.

  5. Directed Incremental Symbolic Execution

    NASA Technical Reports Server (NTRS)

    Person, Suzette; Yang, Guowei; Rungta, Neha; Khurshid, Sarfraz

    2011-01-01

    The last few years have seen a resurgence of interest in the use of symbolic execution -- a program analysis technique developed more than three decades ago to analyze program execution paths. Scaling symbolic execution and other path-sensitive analysis techniques to large systems remains challenging despite recent algorithmic and technological advances. An alternative to solving the problem of scalability is to reduce the scope of the analysis. One approach that is widely studied in the context of regression analysis is to analyze the differences between two related program versions. While such an approach is intuitive in theory, finding efficient and precise ways to identify program differences, and characterize their effects on how the program executes has proved challenging in practice. In this paper, we present Directed Incremental Symbolic Execution (DiSE), a novel technique for detecting and characterizing the effects of program changes. The novelty of DiSE is to combine the efficiencies of static analysis techniques to compute program difference information with the precision of symbolic execution to explore program execution paths and generate path conditions affected by the differences. DiSE is a complementary technique to other reduction or bounding techniques developed to improve symbolic execution. Furthermore, DiSE does not require analysis results to be carried forward as the software evolves -- only the source code for two related program versions is required. A case-study of our implementation of DiSE illustrates its effectiveness at detecting and characterizing the effects of program changes.

  6. Polymerization as a Model Chain Reaction

    ERIC Educational Resources Information Center

    Morton, Maurice

    1973-01-01

    Describes the features of the free radical, anionic, and cationic mechanisms of chain addition polymerization. Indicates that the nature of chain reactions can be best taught through the study of macromolecules. (CC)

  7. Sustained inflation and incremental mean airway pressure trial during conventional and high-frequency oscillatory ventilation in a large porcine model of acute respiratory distress syndrome

    PubMed Central

    Muellenbach, Ralf M; Kredel, Markus; Zollhoefer, Bernd; Wunder, Christian; Roewer, Norbert; Brederlau, Joerg

    2006-01-01

    Background To compare the effect of a sustained inflation followed by an incremental mean airway pressure trial during conventional and high-frequency oscillatory ventilation on oxygenation and hemodynamics in a large porcine model of early acute respiratory distress syndrome. Methods Severe lung injury (Ali) was induced in 18 healthy pigs (55.3 ± 3.9 kg, mean ± SD) by repeated saline lung lavage until PaO2 decreased to less than 60 mmHg. After a stabilisation period of 60 minutes, the animals were randomly assigned to two groups: Group 1 (Pressure controlled ventilation; PCV): FIO2 = 1.0, PEEP = 5 cmH2O, VT = 6 ml/kg, respiratory rate = 30/min, I:E = 1:1; group 2 (High-frequency oscillatory ventilation; HFOV): FIO2 = 1.0, Bias flow = 30 l/min, Amplitude = 60 cmH2O, Frequency = 6 Hz, I:E = 1:1. A sustained inflation (SI; 50 cmH2O for 60s) followed by an incremental mean airway pressure (mPaw) trial (steps of 3 cmH2O every 15 minutes) were performed in both groups until PaO2 no longer increased. This was regarded as full lung inflation. The mPaw was decreased by 3 cmH2O and the animals reached the end of the study protocol. Gas exchange and hemodynamic data were collected at each step. Results The SI led to a significant improvement of the PaO2/FiO2-Index (HFOV: 200 ± 100 vs. PCV: 58 ± 15 and TAli: 57 ± 12; p < 0.001) and PaCO2-reduction (HFOV: 42 ± 5 vs. PCV: 62 ± 13 and TAli: 55 ± 9; p < 0.001) during HFOV compared to lung injury and PCV. Augmentation of mPaw improved gas exchange and pulmonary shunt fraction in both groups, but at a significant lower mPaw in the HFOV treated animals. Cardiac output was continuously deteriorating during the recruitment manoeuvre in both study groups (HFOV: TAli: 6.1 ± 1 vs. T75: 3.4 ± 0.4; PCV: TAli: 6.7 ± 2.4 vs. T75: 4 ± 0.5; p < 0.001). Conclusion A sustained inflation followed by an incremental mean airway pressure trial in HFOV improved oxygenation at a lower mPaw than during conventional lung protective

  8. Reaction chain modeling of denitrification reactions during a push-pull test

    NASA Astrophysics Data System (ADS)

    Boisson, A.; de Anna, P.; Bour, O.; Le Borgne, T.; Labasque, T.; Aquilina, L.

    2013-05-01

    Field quantitative estimation of reaction kinetics is required to enhance our understanding of biogeochemical reactions in aquifers. We extended the analytical solution developed by Haggerty et al. (1998) to model an entire 1st order reaction chain and estimate the kinetic parameters for each reaction step of the denitrification process. We then assessed the ability of this reaction chain to model biogeochemical reactions by comparing it with experimental results from a push-pull test in a fractured crystalline aquifer (Ploemeur, French Brittany). Nitrates were used as the reactive tracer, since denitrification involves the sequential reduction of nitrates to nitrogen gas through a chain reaction (NO3- → NO2- → NO → N2O → N2) under anaerobic conditions. The kinetics of nitrate consumption and by-product formation (NO2-, N2O) during autotrophic denitrification were quantified by using a reactive tracer (NO3-) and a non-reactive tracer (Br-). The formation of reaction by-products (NO2-, N2O, N2) has not been previously considered using a reaction chain approach. Comparison of Br- and NO3- breakthrough curves showed that 10% of the injected NO3- molar mass was transformed during the 12 h experiment (2% into NO2-, 1% into N2O and the rest into N2 and NO). Similar results, but with slower kinetics, were obtained from laboratory experiments in reactors. The good agreement between the model and the field data shows that the complete denitrification process can be efficiently modeled as a sequence of first order reactions. The 1st order kinetics coefficients obtained through modeling were as follows: k1 = 0.023 h- 1, k2 = 0.59 h- 1, k3 = 16 h- 1, and k4 = 5.5 h- 1. A next step will be to assess the variability of field reactivity using the methodology developed for modeling push-pull tracer tests.

  9. Reaction chain modeling of denitrification reactions during a push-pull test.

    PubMed

    Boisson, A; de Anna, P; Bour, O; Le Borgne, T; Labasque, T; Aquilina, L

    2013-05-01

    Field quantitative estimation of reaction kinetics is required to enhance our understanding of biogeochemical reactions in aquifers. We extended the analytical solution developed by Haggerty et al. (1998) to model an entire 1st order reaction chain and estimate the kinetic parameters for each reaction step of the denitrification process. We then assessed the ability of this reaction chain to model biogeochemical reactions by comparing it with experimental results from a push-pull test in a fractured crystalline aquifer (Ploemeur, French Brittany). Nitrates were used as the reactive tracer, since denitrification involves the sequential reduction of nitrates to nitrogen gas through a chain reaction (NO3(-)→NO2(-)→NO→N2O→N2) under anaerobic conditions. The kinetics of nitrate consumption and by-product formation (NO2(-), N2O) during autotrophic denitrification were quantified by using a reactive tracer (NO3(-)) and a non-reactive tracer (Br(-)). The formation of reaction by-products (NO2(-), N2O, N2) has not been previously considered using a reaction chain approach. Comparison of Br(-) and NO3(-) breakthrough curves showed that 10% of the injected NO3(-) molar mass was transformed during the 12 h experiment (2% into NO2(-), 1% into N2O and the rest into N2 and NO). Similar results, but with slower kinetics, were obtained from laboratory experiments in reactors. The good agreement between the model and the field data shows that the complete denitrification process can be efficiently modeled as a sequence of first order reactions. The 1st order kinetics coefficients obtained through modeling were as follows: k1=0.023 h(-1), k2=0.59 h(-1), k3=16 h(-1), and k4=5.5 h(-1). A next step will be to assess the variability of field reactivity using the methodology developed for modeling push-pull tracer tests. PMID:23500936

  10. Incremental mixed lognormal-Gaussian 4D VAR

    NASA Astrophysics Data System (ADS)

    Forsythe, J.; Fletcher, S. J.; Kliewer, A.; Jones, A. S.

    2013-12-01

    One of the advances that allowed 4DVAR to be operational for synoptic numerical weather prediction was the introduction of incremental 4DVAR. This method assumes that the errors are additive and Gaussian in nature. However, as work recently has shown, there are errors which are multiplicative. A full field version of the 4DVAR equations have been derived and tested in a toy problem for the situation where there is a mix of Gaussian and lognormal background and observational errors. It is not straight-forward, however, to extend the incremental theory to multiplicative errors. One approach which has been suggested recently involves using a transform for the increment. It is shown here that the increment that is found is not the 'incremental mode', i.e. the most likely state for the increment, but rather a median state for the increment. To overcome the multiplicative nature of the errors we present a geometric tangent linear approximation which enables us to linearize the observation operator with respect to a consistent lognormal multiplicative increment. In this paper we present an equivalent incremental version of the mixed lognormal-Gaussian which is based upon finding the most-likely state for additive increments for the Gaussian variables and lognormal for the multiplicative lognormal variables. We test this new approach with the Lorenz 1963 model under different size observational errors and observation window lengths.

  11. Effect of reactions in small eddies on biomass gasification with eddy dissipation concept - Sub-grid scale reaction model.

    PubMed

    Chen, Juhui; Yin, Weijie; Wang, Shuai; Meng, Cheng; Li, Jiuru; Qin, Bai; Yu, Guangbin

    2016-07-01

    Large-eddy simulation (LES) approach is used for gas turbulence, and eddy dissipation concept (EDC)-sub-grid scale (SGS) reaction model is employed for reactions in small eddies. The simulated gas molar fractions are in better agreement with experimental data with EDC-SGS reaction model. The effect of reactions in small eddies on biomass gasification is emphatically analyzed with EDC-SGS reaction model. The distributions of the SGS reaction rates which represent the reactions in small eddies with particles concentration and temperature are analyzed. The distributions of SGS reaction rates have the similar trend with those of total reactions rates and the values account for about 15% of the total reactions rates. The heterogeneous reaction rates with EDC-SGS reaction model are also improved during the biomass gasification process in bubbling fluidized bed. PMID:27010338

  12. Modelling couplings between reaction, fluid flow and deformation: Kinetics

    NASA Astrophysics Data System (ADS)

    Malvoisin, Benjamin; Podladchikov, Yury Y.; Connolly, James A. D.

    2016-04-01

    Mineral assemblages out of equilibrium are commonly found in metamorphic rocks testifying of the critical role of kinetics for metamorphic reactions. As experimentally determined reaction rates in fluid-saturated systems generally indicate complete reaction in less than several years, i.e. several orders of magnitude faster than field-based estimates, metamorphic reaction kinetics are generally thought to be controlled by transport rather than by processes at the mineral surface. However, some geological processes like earthquakes or slow-slip events have shorter characteristic timescales, and transport processes can be intimately related to mineral surface processes. Therefore, it is important to take into account the kinetics of mineral surface processes for modelling fluid/rock interactions. Here, a model coupling reaction, fluid flow and deformation was improved by introducing a delay in the achievement of equilibrium. The classical formalism for dissolution/precipitation reactions was used to consider the influence of the distance from equilibrium and of temperature on the reaction rate, and a dependence on porosity was introduced to model evolution of reacting surface area during reaction. The fitting of experimental data for three reactions typically occurring in metamorphic systems (serpentine dehydration, muscovite dehydration and calcite decarbonation) indicates a systematic faster kinetics close from equilibrium on the dehydration side than on the hydration side. This effect is amplified through the porosity term in the reaction rate since porosity is formed during dehydration. Numerical modelling indicates that this difference in reaction rate close from equilibrium plays a key role in microtextures formation. The developed model can be used in a wide variety of geological systems where couplings between reaction, deformation and fluid flow have to be considered.

  13. Development of reaction models for ground-water systems

    USGS Publications Warehouse

    Plummer, L.N.; Parkhurst, D.L.; Thorstenson, D.C.

    1983-01-01

    Methods are described for developing geochemical reaction models from the observed chemical compositions of ground water along a hydrologic flow path. The roles of thermodynamic speciation programs, mass balance calculations, and reaction-path simulations in developing and testing reaction models are contrasted. Electron transfer is included in the mass balance equations to properly account for redox reactions in ground water. The mass balance calculations determine net mass transfer models which must be checked against the thermodynamic calculations of speciation and reaction-path programs. Although reaction-path simulations of ground-water chemistry are thermodynamically valid, they must be checked against the net mass transfer defined by the mass balance calculations. An example is given testing multiple reaction hypotheses along a flow path in the Floridan aquifer where several reaction models are eliminated. Use of carbon and sulfur isotopic data with mass balance calculations indicates a net reaction of incongruent dissolution of dolomite (dolomite dissolution with calcite precipitation) driven irreversibly by gypsum dissolution, accompanied by minor sulfate reduction, ferric hydroxide dissolution, and pyrite precipitation in central Florida. Along the flow path, the aquifer appears to be open to CO2 initially, and open to organic carbon at more distant points down gradient. ?? 1983.

  14. Modeling Second-Order Chemical Reactions using Cellular Automata

    NASA Astrophysics Data System (ADS)

    Hunter, N. E.; Barton, C. C.; Seybold, P. G.; Rizki, M. M.

    2012-12-01

    Cellular automata (CA) are discrete, agent-based, dynamic, iterated, mathematical computational models used to describe complex physical, biological, and chemical systems. Unlike the more computationally demanding molecular dynamics and Monte Carlo approaches, which use "force fields" to model molecular interactions, CA models employ a set of local rules. The traditional approach for modeling chemical reactions is to solve a set of simultaneous differential rate equations to give deterministic outcomes. CA models yield statistical outcomes for a finite number of ingredients. The deterministic solutions appear as limiting cases for conditions such as a large number of ingredients or a finite number of ingredients and many trials. Here we present a 2-dimensional, probabilistic CA model of a second-order gas phase reaction A + B → C, using a MATLAB basis. Beginning with a random distribution of ingredients A and B, formation of C emerges as the system evolves. The reaction rate can be varied based on the probability of favorable collisions of the reagents A and B. The model permits visualization of the conversion of reagents to products, and allows one to plot concentration vs. time for A, B and C. We test hypothetical reaction conditions such as: limiting reagents, the effects of reaction probabilities, and reagent concentrations on the reaction kinetics. The deterministic solutions of the reactions emerge as statistical averages in the limit of the large number of cells in the array. Modeling results for dynamic processes in the atmosphere will be presented.

  15. Assessing the Incremental Value of KABC-II Luria Model Scores in Predicting Achievement: What Do They Tell Us beyond the MPI?

    ERIC Educational Resources Information Center

    McGill, Ryan J.; Spurgin, Angelia R.

    2016-01-01

    The current study examined the incremental validity of the Luria interpretive scheme for the Kaufman Assessment Battery for Children-Second Edition (KABC-II) for predicting scores on the Kaufman Test of Educational Achievement-Second Edition (KTEA-II). All participants were children and adolescents (N = 2,025) drawn from the nationally…

  16. CHEMICAL REACTIONS SIMULATED BY GROUND-WATER-QUALITY MODELS.

    USGS Publications Warehouse

    Grove, David B.; Stollenwerk, Kenneth G.

    1987-01-01

    Recent literature concerning the modeling of chemical reactions during transport in ground water is examined with emphasis on sorption reactions. The theory of transport and reactions in porous media has been well documented. Numerous equations have been developed from this theory, to provide both continuous and sequential or multistep models, with the water phase considered for both mobile and immobile phases. Chemical reactions can be either equilibrium or non-equilibrium, and can be quantified in linear or non-linear mathematical forms. Non-equilibrium reactions can be separated into kinetic and diffusional rate-limiting mechanisms. Solutions to the equations are available by either analytical expressions or numerical techniques. Saturated and unsaturated batch, column, and field studies are discussed with one-dimensional, laboratory-column experiments predominating. A summary table is presented that references the various kinds of models studied and their applications in predicting chemical concentrations in ground waters.

  17. Parallel incremental compilation. Doctoral thesis

    SciTech Connect

    Gafter, N.M.

    1990-06-01

    The time it takes to compile a large program has been a bottleneck in the software development process. When an interactive programming environment with an incremental compiler is used, compilation speed becomes even more important, but existing incremental compilers are very slow for some types of program changes. We describe a set of techniques that enable incremental compilation to exploit fine-grained concurrency in a shared-memory multi-processor and achieve asymptotic improvement over sequential algorithms. Because parallel non-incremental compilation is a special case of parallel incremental compilation, the design of a parallel compiler is a corollary of our result. Instead of running the individual phases concurrently, our design specifies compiler phases that are mutually sequential. However, each phase is designed to exploit fine-grained parallelism. By allowing each phase to present its output as a complete structure rather than as a stream of data, we can apply techniques such as parallel prefix and parallel divide-and-conquer, and we can construct applicative data structures to achieve sublinear execution time. Parallel algorithms for each phase of a compiler are presented to demonstrate that a complete incremental compiler can achieve execution time that is asymptotically less than sequential algorithms.

  18. Supramolecular structures modeling photosynthetic reaction center function

    SciTech Connect

    Wasielewski, M.R.; Gaines, G.L. III; Gosztola, D.; Niemczyk, M.P.; Svec, W.A.

    1992-08-20

    Work in our laboratory has focused on the influence of solvent motion on the rates and energetics of photochemical charge separation in glassy solids. The efficiencies of many nonadiabatic electron transfer reactions involving photochemical electron donors with relatively low excited state energies, such as porphyrins and chlorophylls, are poor in the solid state. Recent work has shown that placing a porphyrin-acceptor system in a glassy solid at low temperature significantly raises the energy of ks ion-pair state. This destabilization can be as much as 0.8 eV relative to the ion pair state energy in a polar liquid. This contrasts sharply with photosynthetic reaction centers, which maintain medium-independent electron transfer rates with relatively small free energies of charge separation. Using this information we have set out to design photochemical systems that produce long-lived radical ion pairs in glassy solids with high quantum efficiency. These systems maintain their efficiency when placed in other glassy matrices, such as polymers. An important consequence of this effort is the design of molecules that minimize the electronic interaction between the oxidized donor and reduced acceptor. This minimization can be attained by careful design of the spacer groups linking the donor and acceptor and by using more than a single electron transfer step to increase the distance between the separated charges as is done in natural photosynthesis.

  19. Anomalous Impact in Reaction-Diffusion Financial Models

    NASA Astrophysics Data System (ADS)

    Mastromatteo, I.; Tóth, B.; Bouchaud, J.-P.

    2014-12-01

    We generalize the reaction-diffusion model A +B → /0 in order to study the impact of an excess of A (or B ) at the reaction front. We provide an exact solution of the model, which shows that the linear response breaks down: the average displacement of the reaction front grows as the square root of the imbalance. We argue that this model provides a highly simplified but generic framework to understand the square-root impact of large orders in financial markets.

  20. Reactive radical facilitated reaction-diffusion modeling for holographic photopolymerization

    SciTech Connect

    Liu Jianhua; Pu Haihui; Gao Bin; Gao Hongyue; Yin Dejin; Dai Haitao

    2010-02-08

    A phenomenological concentration of reactive radical is proposed to take the role of curing light intensity in explicit proportion to the reaction rate for the conventional reaction-diffusion model. This revision rationally eliminates the theoretical defect of null reaction rate in modeling of the postcuring process, and facilitates the applicability of the model in the whole process of holographic photopolymerizations in photocurable monomer and nematic liquid crystal blend system. Excellent consistencies are obtained in both curing and postcuring processes between simulated and experimentally measured evolutions of the first order diffraction efficiency of the formed composite Bragg gratings.

  1. Interference effects of aft reaction-control yaw jets on the aerodynamic characteristics of a space shuttle orbiter model at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Covell, P. F.

    1983-01-01

    A wind tunnel investigation of the interference effects of aft reaction control system yaw jet plumes on a 0.0125 scale Space Shuttle orbiter model was conducted at Mach numbers from 2.50 to 4.50. Test variables included model angle of attack, model angle of sideslip, jet to free stream mass flow ratio, and number and position of operating jets. The aft reaction control jet plume creates a blockage above and behind the wing on the side in which the jet exhausts and results in flow separation on the wing upper surface and fuselage side. Positive pitching moment and side force increments and negative yawing moment and rolling moment increments due to the flow separations are incurred for left side firing jets, primarily at angles of attack above 10 deg. The yawing moment interference increments are favorable and result in a small jet thrust amplification. As a result of this investigation, the aft reaction control system was certified for operation at supersonic Mach numbers prior to the first flight of the space transportation system (STS-1).

  2. Modeling of alkali aggregate reaction effects in concrete dams

    SciTech Connect

    Capra, B.; Bournazel, J.P.; Bourdarot, E.

    1995-12-31

    Alkali Aggregate Reactions (AAR) are difficult to model due to the random distribution of the reactive sites and the imperfect knowledge of these chemical reactions. A new approach, using fracture mechanics and probabilities, capable to describe the anisotropic swelling of a structure is presented.

  3. Reading and a Diffusion Model Analysis of Reaction Time

    PubMed Central

    Naples, Adam; Katz, Leonard; Grigorenko, Elena L.

    2012-01-01

    Processing speed is associated with reading performance. However, the literature is not clear either on the definition of processing speed or on why and how it contributes to reading performance. In this study we demonstrated that processing speed, as measured by reaction time, is not a unitary construct. Using the diffusion model of two-choice reaction time, we assessed processing speed in a series of same-different reaction time tasks for letter and number strings. We demonstrated that the association between reaction time and reading performance is driven by processing speed for reading-related information, but not motor or sensory encoding speed. PMID:22612543

  4. EMPIRE: A Reaction Model Code for Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Palumbo, A.; Herman, M.; Capote, R.

    2014-06-01

    The correct modeling of abundances requires knowledge of nuclear cross sections for a variety of neutron, charged particle and γ induced reactions. These involve targets far from stability and are therefore difficult (or currently impossible) to measure. Nuclear reaction theory provides the only way to estimate values of such cross sections. In this paper we present application of the EMPIRE reaction code to nuclear astrophysics. Recent measurements are compared to the calculated cross sections showing consistent agreement for n-, p- and α-induced reactions of strophysical relevance.

  5. EMPIRE: A Reaction Model Code for Nuclear Astrophysics

    SciTech Connect

    Palumbo, A.; Herman, M.; Capote, R.

    2014-06-15

    The correct modeling of abundances requires knowledge of nuclear cross sections for a variety of neutron, charged particle and γ induced reactions. These involve targets far from stability and are therefore difficult (or currently impossible) to measure. Nuclear reaction theory provides the only way to estimate values of such cross sections. In this paper we present application of the EMPIRE reaction code to nuclear astrophysics. Recent measurements are compared to the calculated cross sections showing consistent agreement for n-, p- and α-induced reactions of strophysical relevance.

  6. The Sugar Model: Autocatalytic Activity of the Triose Ammonia Reaction

    NASA Astrophysics Data System (ADS)

    Weber, Arthur L.

    2007-04-01

    Reaction of triose sugars with ammonia under anaerobic conditions yielded autocatalytic products. The autocatalytic behavior of the products was examined by measuring the effect of the crude triose ammonia reaction product on the kinetics of a second identical triose ammonia reaction. The reaction product showed autocatalytic activity by increasing both the rate of disappearance of triose and the rate of formation of pyruvaldehyde, the product of triose dehydration. This synthetic process is considered a reasonable model of origin-of-life chemistry because it uses plausible prebiotic substrates, and resembles modern biosynthesis by employing the energized carbon groups of sugars to drive the synthesis of autocatalytic molecules.

  7. Heavy Ion Reaction Modeling for Hadrontherapy Applications

    SciTech Connect

    Cerutti, F.; Ferrari, A.; Enghardt, W.; Gadioli, E.; Mairani, A.; Parodi, K.; Sommerer, F.

    2007-10-26

    A comprehensive and reliable description of nucleus-nucleus interactions represents a crucial need in different interdisciplinary fields. In particular, hadrontherapy monitoring by means of in-beam positron emission tomography (PET) requires, in addition to measuring, the capability of calculating the activity of {beta}{sup +}-decaying nuclei produced in the irradiated tissue. For this purpose, in view of treatment monitoring at the Heidelberg Ion Therapy (HIT) facility, the transport and interaction Monte Carlo code FLUKA is a promising candidate. It is provided with the description of heavy ion reactions at intermediate and low energies by two specific event generators. In-beam PET experiments performed at GSI for a few beam-target combinations have been simulated and first comparisons between the measured and calculated {beta}{sup +}-activity are available.

  8. Spallation reactions: A successful interplay between modeling and applications

    NASA Astrophysics Data System (ADS)

    David, J.-C.

    2015-06-01

    The spallation reactions are a type of nuclear reaction which occur in space by interaction of the cosmic rays with interstellar bodies. The first spallation reactions induced with an accelerator took place in 1947 at the Berkeley cyclotron (University of California) with 200MeV deuterons and 400MeV alpha beams. They highlighted the multiple emission of neutrons and charged particles and the production of a large number of residual nuclei far different from the target nuclei. In the same year, R. Serber described the reaction in two steps: a first and fast one with high-energy particle emission leading to an excited remnant nucleus, and a second one, much slower, the de-excitation of the remnant. In 2010 IAEA organized a workshop to present the results of the most widely used spallation codes within a benchmark of spallation models. If one of the goals was to understand the deficiencies, if any, in each code, one remarkable outcome points out the overall high-quality level of some models and so the great improvements achieved since Serber. Particle transport codes can then rely on such spallation models to treat the reactions between a light particle and an atomic nucleus with energies spanning from few tens of MeV up to some GeV. An overview of the spallation reactions modeling is presented in order to point out the incomparable contribution of models based on basic physics to numerous applications where such reactions occur. Validations or benchmarks, which are necessary steps in the improvement process, are also addressed, as well as the potential future domains of development. Spallation reactions modeling is a representative case of continuous studies aiming at understanding a reaction mechanism and which end up in a powerful tool.

  9. On modelling nuclear reactions in meteorites

    NASA Technical Reports Server (NTRS)

    Ustinova, G. K.; Lavrukhina, A. K.

    1993-01-01

    An original method of experimental modeling depth distribution of radionuclides in sphere thick targets irradiated by protons in 4(pi)-geometry on JINR (Dubna) synchrocyclotron is described. Some results are presented.

  10. The future of computational modelling in reaction engineering.

    PubMed

    Kraft, Markus; Mosbach, Sebastian

    2010-08-13

    In this paper, we outline the future of modelling in reaction engineering. Specifically, we use the example of particulate emission formation in internal combustion engines to demonstrate what modelling can achieve at present, and to illustrate the ultimately inevitable steps that need to be taken in order to create a new generation of engineering models. PMID:20603373

  11. Modified version of the combined model of photonucleon reactions

    SciTech Connect

    Ishkhanov, B. S.; Orlin, V. N.

    2015-07-15

    A refined version of the combined photonucleon-reaction model is described. This version makes it possible to take into account the effect of structural features of the doorway dipole state on photonucleon reactions in the energy range of E{sub γ} ≤ 30 MeV. In relation to the previous version of the model, the treatment of isospin effects at the preequilibrium and evaporation reaction stages is refined; in addition, the description of the semidirect effect caused by nucleon emission from the doorway dipole state is improved. The model in question is used to study photonucleon reactions on the isotopes {sup 35-56}Ca and {sup 102-134}Sn in the energy range indicated above.

  12. NUCLEAR REACTION MODELING FOR RIA ISOL TARGET DESIGN

    SciTech Connect

    S. MASHNIK; ET AL

    2001-03-01

    Los Alamos scientists are collaborating with researchers at Argonne and Oak Ridge on the development of improved nuclear reaction physics for modeling radionuclide production in ISOL targets. This is being done in the context of the MCNPX simulation code, which is a merger of MCNP and the LAHET intranuclear cascade code, and simulates both nuclear reaction cross sections and radiation transport in the target. The CINDER code is also used to calculate the time-dependent nuclear decays for estimating induced radioactivities. They give an overview of the reaction physics improvements they are addressing, including intranuclear cascade (INC) physics, where recent high-quality inverse-kinematics residue data from GSI have led to INC spallation and fission model improvements; and preequilibrium reactions important in modeling (p,xn) and (p,xnyp) cross sections for the production of nuclides far from stability.

  13. Neocognitron capable of incremental learning.

    PubMed

    Fukushima, Kunihiko

    2004-01-01

    This paper proposes a new neocognitron that accepts incremental learning, without giving a severe damage to old memories or reducing learning speed. The new neocognitron uses a competitive learning, and the learning of all stages of the hierarchical network progresses simultaneously. To increase the learning speed, conventional neocognitrons of recent versions sacrificed the ability of incremental learning, and used a technique of sequential construction of layers, by which the learning of a layer started after the learning of the preceding layers had completely finished. If the learning speed is simply set high for the conventional neocognitron, simultaneous construction of layers produces many garbage cells, which become always silent after having finished the learning. The proposed neocognitron with a new learning method can prevent the generation of such garbage cells even with a high learning speed, allowing incremental learning. PMID:14690705

  14. Incremental learning from stream data.

    PubMed

    He, Haibo; Chen, Sheng; Li, Kang; Xu, Xin

    2011-12-01

    Recent years have witnessed an incredibly increasing interest in the topic of incremental learning. Unlike conventional machine learning situations, data flow targeted by incremental learning becomes available continuously over time. Accordingly, it is desirable to be able to abandon the traditional assumption of the availability of representative training data during the training period to develop decision boundaries. Under scenarios of continuous data flow, the challenge is how to transform the vast amount of stream raw data into information and knowledge representation, and accumulate experience over time to support future decision-making process. In this paper, we propose a general adaptive incremental learning framework named ADAIN that is capable of learning from continuous raw data, accumulating experience over time, and using such knowledge to improve future learning and prediction performance. Detailed system level architecture and design strategies are presented in this paper. Simulation results over several real-world data sets are used to validate the effectiveness of this method. PMID:22057060

  15. Biomass torrefaction: modeling of reaction thermochemistry.

    PubMed

    Bates, Richard B; Ghoniem, Ahmed F

    2013-04-01

    Based on the evolution of volatile and solid products predicted by a previous model for willow torrefaction (Bates and Ghoniem, 2012) a thermochemical model has been developed to describe their thermal, chemical, and physical properties as well as the rates of heat release. The first stage of torrefaction, associated with hemicellulose decomposition, is exothermic releasing between 40 and 280 kJ/kginitial. The second stage is associated with the decomposition of the remaining lignocellulosic components, completes over a longer period, and is predicted to be either endothermic or exothermic depending on the temperature and assumed solid properties. Cumulative heat release increases with the degree of torrefaction quantified by the mass loss. The rate of mass loss and rate of heat release increase with higher temperatures. The higher heating value of volatiles produced during torrefaction was estimated to be between 4.4 and 16 MJ/kg increasing with the level of mass loss. PMID:23517903

  16. Knockout reactions on p-shell nuclei for tests of structure and reaction models

    NASA Astrophysics Data System (ADS)

    Kuchera, A. N.; Bazin, D.; Babo, M.; Baumann, T.; Bowry, M.; Bradt, J.; Brown, J.; Deyoung, P. A.; Elman, B.; Finck, J. E.; Gade, A.; Grinyer, G. F.; Jones, M. D.; Lunderberg, E.; Redpath, T.; Rogers, W. F.; Stiefel, K.; Thoennessen, M.; Weisshaar, D.; Whitmore, K.

    2015-10-01

    A series of knockout reactions on p-shell nuclei were studied to extract exclusive cross sections and to investigate the neutron knockout mechanism. The measured cross sections provide stringent tests of shell model and ab initio calculations while measurements of neutron+residual coincidences test the accuracy and validity of reaction models used to predict cross sections. Six different beams ranging from A = 7 to 12 were produced at the NSCL totaling measurements of nine different reaction settings. The reaction settings were determined by the magnetic field of the Sweeper magnet which bends the residues into charged particle detectors. The reaction target was surrounded by the high efficiency CsI array, CAESAR, to tag gamma rays for cross section measurements of low-lying excited states. Additionally, knocked out neutrons were detected with MoNA-LISA in coincidence with the charged residuals. Preliminary results will be discussed. This work is partially supported by the National Science Foundation under Grant No. PHY11-02511 and the Department of Energy National Nuclear Security Administration under Award No. DE-NA0000979.

  17. A Lattice Boltzmann Model for Oscillating Reaction-Diffusion

    NASA Astrophysics Data System (ADS)

    Rodríguez-Romo, Suemi; Ibañez-Orozco, Oscar; Sosa-Herrera, Antonio

    2016-07-01

    A computational algorithm based on the lattice Boltzmann method (LBM) is proposed to model reaction-diffusion systems. In this paper, we focus on how nonlinear chemical oscillators like Belousov-Zhabotinsky (BZ) and the chlorite-iodide-malonic acid (CIMA) reactions can be modeled by LBM and provide with new insight into the nature and applications of oscillating reactions. We use Gaussian pulse initial concentrations of sulfuric acid in different places of a bidimensional reactor and nondiffusive boundary walls. We clearly show how these systems evolve to a chaotic attractor and produce specific pattern images that are portrayed in the reactions trajectory to the corresponding chaotic attractor and can be used in robotic control.

  18. Modeling Corrosion Reactions of Steel in a Dilute Carbonate Solution

    NASA Astrophysics Data System (ADS)

    Eliyan, Faysal Fayez; Alfantazi, Akram

    2016-02-01

    This research models the corrosion reactions of a high-strength steel in an aerated, dilute, carbonate solution during a single-cycle voltammetry. Based on a previous study (Eliyan et al. in J Mater Eng Perform 24(6):1-8, 2015) and a literature survey, the corrosion reactions of the cathodic reduction, anodic dissolution, and passivation, as well as the interfacial interactions and the chemistry of the corrosion products are illustrated in schematics. The paper provides a visual guide on the corrosion reactions for steel in carbonate solutions based on the available mechanistic details that were reported and are still being investigated in literature.

  19. A practical guide to modelling enzyme-catalysed reactions

    PubMed Central

    Lonsdale, Richard; Harvey, Jeremy N.; Mulholland, Adrian J.

    2012-01-01

    Molecular modelling and simulation methods are increasingly at the forefront of elucidating mechanisms of enzyme-catalysed reactions, and shedding light on the determinants of specificity and efficiency of catalysis. These methods have the potential to assist in drug discovery and the design of novel protein catalysts. This Tutorial Review highlights some of the most widely used modelling methods and some successful applications. Modelling protocols commonly applied in studying enzyme-catalysed reactions are outlined here, and some practical implications are considered, with cytochrome P450 enzymes used as a specific example. PMID:22278388

  20. Modeling mammary gland morphogenesis as a reaction-diffusion process.

    PubMed

    Grant, Mark R; Hunt, C Anthony; Xia, Lan; Fata, Jimmie E; Bissell, Mina J

    2004-01-01

    Mammary ducts are formed through a process of branching morphogenesis. We present results of experiments using a simulation model of this process, and discuss their implications for understanding mammary duct extension and bifurcation. The model is a cellular automaton approximation of a reaction-diffusion process in which matrix metalloproteinases represent the activator, inhibitors of matrix metalloproteinases represent the inhibitor, and growth factors serve as a substrate. We compare results from the simulation model with those from in-vivo experiments as part of an assessment of whether duct extension and bifurcation during morphogenesis may be a consequence of a reaction-diffusion mechanism mediated by MMPs and TIMPs. PMID:17271768

  1. The kinetic model for slow photoinduced electron transport in the reaction centers of purple bacteria.

    PubMed

    Serdenko, T V; Barabash, Y M; Knox, P P; Seifullina, N Kh

    2016-12-01

    The present work is related to the investigation of slow kinetics of electron transport in the reaction centers (RCs) of Rhodobacter sphaeroides. Experimental data on the absorption kinetics of aqueous solutions of reaction centers at different modes of photoexcitation are given. It is shown that the kinetics of oxidation and reduction of RCs are well described by the sum of three exponential functions. This allows to suggest a two-level kinetic model for electron transport in the RC as a system of four electron-conformational states which correspond to three balance differential equations combined with state equation. The solution of inverse problem made it possible to obtain the rate constant values in kinetic equations for different times and intensities of exciting light. Analysis of rate constant values in different modes of RC excitation allowed to suggest that two mechanisms of structural changes are involved in RC photo-oxidation. One mechanism leads to the increment of the rate of electron return, another one-to its drop. Structural changes were found out to occur in the RCs under incident light. After light was turned off, the reduction of RCs was determined by the second mechanism. PMID:27271854

  2. The kinetic model for slow photoinduced electron transport in the reaction centers of purple bacteria

    NASA Astrophysics Data System (ADS)

    Serdenko, T. V.; Barabash, Y. M.; Knox, P. P.; Seifullina, N. Kh.

    2016-06-01

    The present work is related to the investigation of slow kinetics of electron transport in the reaction centers (RCs) of Rhodobacter sphaeroides. Experimental data on the absorption kinetics of aqueous solutions of reaction centers at different modes of photoexcitation are given. It is shown that the kinetics of oxidation and reduction of RCs are well described by the sum of three exponential functions. This allows to suggest a two-level kinetic model for electron transport in the RC as a system of four electron-conformational states which correspond to three balance differential equations combined with state equation. The solution of inverse problem made it possible to obtain the rate constant values in kinetic equations for different times and intensities of exciting light. Analysis of rate constant values in different modes of RC excitation allowed to suggest that two mechanisms of structural changes are involved in RC photo-oxidation. One mechanism leads to the increment of the rate of electron return, another one—to its drop. Structural changes were found out to occur in the RCs under incident light. After light was turned off, the reduction of RCs was determined by the second mechanism.

  3. An Investigation of Model Catalyzed Hydrocarbon Formation Reactions

    SciTech Connect

    Tysoe, W. T.

    2001-05-02

    Work was focused on two areas aimed at understanding the chemistry of realistic catalytic systems: (1) The synthesis and characterization of model supported olefin metathesis catalysts. (2) Understanding the role of the carbonaceous layer present on Pd(111) single crystal model catalysts during reaction.

  4. Calculation of astrophysical spallation reactions using the RENO model

    NASA Technical Reports Server (NTRS)

    Ayres, C. L.; Schmitt, W. F.; Merker, M.; Shen, B. S. P.

    1974-01-01

    The RENO model for the Monte-Carlo treatment of astrophysical spallation reactions has been used to generate preliminary cross-sections for the purpose of illustrating the discrete-nucleon approach to spallation modeling and to exhibit differences between two versions of RENO. Comparisons with experimental, theoretical, and semiempirical data demonstrate the practicability of the discrete-nucleon approach.-

  5. Producers of Fast Incremental Space.

    ERIC Educational Resources Information Center

    Rensselaer Polytechnic Inst., Troy, NY. Center for Architectural Research.

    School districts sometimes need to add relatively small increments of high quality educational space to their existing physical facilities. For some of these situations, the portable or relocatable classroom is the answer; in other cases, the district needs different or more permanent space--quickly. This document comprises six charts that present…

  6. Thermal maturation of incrementally assembled plutons

    NASA Astrophysics Data System (ADS)

    Davis, J.; Coleman, D. S.; Heizler, M. T.

    2009-12-01

    The Cretaceous zoned intrusive suites of the Sierra Nevada batholith (SNB) were each assembled over 8-11 million years through incremental amalgamation of sheeted intrusions. Emplacement as small sheet-like increments inhibits development of a voluminous zone of melt bearing rock; instead the active magma body represents only a small portion of the total volume intruded. Plutons formed incrementally will have a protracted thermal history (T-t) that can be elucidated using thermochronologic techniques yielding insights into the thermal evolution of the lithosphere at magma chamber-pluton scales. Thermal histories are derived for plutons from the dike-like John Muir Intrusive Suite (JMIS) and the laccolithic Mount Whitney Intrusive Suite (MWIS), both located in the eastern-central SNB, by correlating estimated zircon saturation and argon closure temperatures with U-Pb zircon and titanite, 40Ar/39Ar amphibole, biotite, and K-feldspar ages. Close agreement among zircon and hornblende ages indicate rapid cooling following intrusion. However, hornblende and biotite ages are separated by 6-9 million years indicating slow protracted cooling. We interpret these data to reflect the thermal maturation of an incrementally assembled magma system in which temperatures cycled between ~500-300°C for millions of years. Hornblende ages were not reset by younger intrusions, therefore maximum reheating temperatures did not exceed ~500°C for geologically significant durations. T-t cooling curves from the intrusive suites are used to calibrate finite difference numerical simulations of pluton assembly. Intrusion geometries are modeled (HEAT 3D, Wohletz, 2007) by stacking horizontal increments from the top-down and bottom-up and vertical increments are emplaced syntaxially and antitaxially and are designed to generate plutons of the approximate dimensions, depth of emplacement, and age range of the Sierran suites. Numerical simulations yield the following general observations: 1) an

  7. Chemical and mathematical modeling of asphaltene reaction pathways

    SciTech Connect

    Salvage, P.E.

    1986-01-01

    Precipitated asphaltene was subjected to pyrolysis and hydropyrolysis, both neat and in solvents, and catalytic hydroprocessing. A solvent extraction procedure defined gas, maltene, asphaltene, and coke product fractions. The apparent first order rate constant for asphaltene conversion at 400/sup 0/C was relatively insensitive to the particular reaction scheme. The yield of gases likewise showed little variation and was always less than 10%. On the other hand, the maltene and coke yields were about 20% and 60%, respectively, from neat pyrolysis, and about 60% and less than 5%, respectively, from catalytic reactions. The temporal variations of the product fractions allowed discernment of asphaltene reaction pathways. The primary reaction of asphaltene was to residual asphaltene, maltenes, and gases. The residual asphaltene reacted thermally to coke and catalytically to maltenes at the expense of coke. Secondary degradation of these primary products led to lighter compounds. Reaction mechanism for pyrolysis of asphaltene model compounds and alkylaromstics were determined. The model compound kinetics results were combined with a stochastic description of asphaltene structure in a mathematical model of asphaltene pyrolysis. Individual molecular product were assigned to either the gas, maltene, asphaltene, or coke product fractions, and summation of the weights of each constituted the model's predictions. The temporal variation of the product fractions from simulated asphaltene pyrolysis compared favorably with experimental results.

  8. First principles based mean field model for oxygen reduction reaction.

    PubMed

    Jinnouchi, Ryosuke; Kodama, Kensaku; Hatanaka, Tatsuya; Morimoto, Yu

    2011-12-21

    A first principles-based mean field model was developed for the oxygen reduction reaction (ORR) taking account of the coverage- and material-dependent reversible potentials of the elementary steps. This model was applied to the simulation of single crystal surfaces of Pt, Pt alloy and Pt core-shell catalysts under Ar and O(2) atmospheres. The results are consistent with those shown by past experimental and theoretical studies on surface coverages under Ar atmosphere, the shape of the current-voltage curve for the ORR on Pt(111) and the material-dependence of the ORR activity. This model suggests that the oxygen associative pathway including HO(2)(ads) formation is the main pathway on Pt(111), and that the rate determining step (RDS) is the removal step of O(ads) on Pt(111). This RDS is accelerated on several highly active Pt alloys and core-shell surfaces, and this acceleration decreases the reaction intermediate O(ads). The increase in the partial pressure of O(2)(g) increases the surface coverage with O(ads) and OH(ads), and this coverage increase reduces the apparent reaction order with respect to the partial pressure to less than unity. This model shows details on how the reaction pathway, RDS, surface coverages, Tafel slope, reaction order and material-dependent activity are interrelated. PMID:22064886

  9. Three Dimensional Thermal Abuse Reaction Model for Lithium Ion Batteries

    Energy Science and Technology Software Center (ESTSC)

    2006-06-29

    Three dimensional computer models for simulating thermal runaway of lithium ion battery was developed. The three-dimensional model captures the shapes and dimensions of cell components and the spatial distributions of materials and temperatures, so we could consider the geometrical features, which are critical especially in large cells. An array of possible exothermic reactions, such as solid-electrolyte-interface (SEI) layer decomposition, negative active/electrolyte reaction, and positive active/electrolyte reaction, were considered and formulated to fit experimental data frommore » accelerating rate calorimetry and differential scanning calorimetry. User subroutine code was written to implement NREL developed approach and to utilize a commercially available solver. The model is proposed to use for simulation a variety of lithium-ion battery safety events including thermal heating and short circuit.« less

  10. Three Dimensional Thermal Abuse Reaction Model for Lithium Ion Batteries

    SciTech Connect

    and Ahmad Pesaran, Gi-Heon Kim

    2006-06-29

    Three dimensional computer models for simulating thermal runaway of lithium ion battery was developed. The three-dimensional model captures the shapes and dimensions of cell components and the spatial distributions of materials and temperatures, so we could consider the geometrical features, which are critical especially in large cells. An array of possible exothermic reactions, such as solid-electrolyte-interface (SEI) layer decomposition, negative active/electrolyte reaction, and positive active/electrolyte reaction, were considered and formulated to fit experimental data from accelerating rate calorimetry and differential scanning calorimetry. User subroutine code was written to implement NREL developed approach and to utilize a commercially available solver. The model is proposed to use for simulation a variety of lithium-ion battery safety events including thermal heating and short circuit.

  11. Implementation of a vibrationally linked chemical reaction model for DSMC

    NASA Technical Reports Server (NTRS)

    Carlson, A. B.; Bird, Graeme A.

    1994-01-01

    A new procedure closely linking dissociation and exchange reactions in air to the vibrational levels of the diatomic molecules has been implemented in both one- and two-dimensional versions of Direct Simulation Monte Carlo (DSMC) programs. The previous modeling of chemical reactions with DSMC was based on the continuum reaction rates for the various possible reactions. The new method is more closely related to the actual physics of dissociation and is more appropriate to the particle nature of DSMC. Two cases are presented: the relaxation to equilibrium of undissociated air initially at 10,000 K, and the axisymmetric calculation of shuttle forebody heating during reentry at 92.35 km and 7500 m/s. Although reaction rates are not used in determining the dissociations or exchange reactions, the new method produces rates which agree astonishingly well with the published rates derived from experiment. The results for gas properties and surface properties also agree well with the results produced by earlier DSMC models, equilibrium air calculations, and experiment.

  12. Computerized reduction of elementary reaction sets for combustion modeling

    NASA Technical Reports Server (NTRS)

    Wikstrom, Carl V.

    1991-01-01

    If the entire set of elementary reactions is to be solved in the modeling of chemistry in computational fluid dynamics, a set of stiff ordinary differential equations must be integrated. Some of the reactions take place at very high rates, requiring short time steps, while others take place more slowly and make little progress in the short time step integration. The goal is to develop a procedure to automatically obtain sets of finite rate equations, consistent with a partial equilibrium assumptions, from an elementary set appropriate to local conditions. The possibility of computerized reaction reduction was demonstrated. However, the ability to use the reduced reaction set depends on the ability of the CFD approach in incorporate partial equilibrium calculations into the computer code. Therefore, the results should be tested on a code with partial equilibrium capability.

  13. Modeling human behaviors and reactions under dangerous environment.

    PubMed

    Kang, J; Wright, D K; Qin, S F; Zhao, Y

    2005-01-01

    This paper describes the framework of a real-time simulation system to model human behavior and reactions in dangerous environments. The system utilizes the latest 3D computer animation techniques, combined with artificial intelligence, robotics and psychology, to model human behavior, reactions and decision making under expected/unexpected dangers in real-time in virtual environments. The development of the system includes: classification on the conscious/subconscious behaviors and reactions of different people; capturing different motion postures by the Eagle Digital System; establishing 3D character animation models; establishing 3D models for the scene; planning the scenario and the contents; and programming within Virtools Dev. Programming within Virtools Dev is subdivided into modeling dangerous events, modeling character's perceptions, modeling character's decision making, modeling character's movements, modeling character's interaction with environment and setting up the virtual cameras. The real-time simulation of human reactions in hazardous environments is invaluable in military defense, fire escape, rescue operation planning, traffic safety studies, and safety planning in chemical factories, the design of buildings, airplanes, ships and trains. Currently, human motion modeling can be realized through established technology, whereas to integrate perception and intelligence into virtual human's motion is still a huge undertaking. The challenges here are the synchronization of motion and intelligence, the accurate modeling of human's vision, smell, touch and hearing, the diversity and effects of emotion and personality in decision making. There are three types of software platforms which could be employed to realize the motion and intelligence within one system, and their advantages and disadvantages are discussed. PMID:15850116

  14. A model for reaction rates in turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Chinitz, W.; Evans, J. S.

    1984-01-01

    To account for the turbulent temperature and species-concentration fluctuations, a model is presented on the effects of chemical reaction rates in computer analyses of turbulent reacting flows. The model results in two parameters which multiply the terms in the reaction-rate equations. For these two parameters, graphs are presented as functions of the mean values and intensity of the turbulent fluctuations of the temperature and species concentrations. These graphs will facilitate incorporation of the model into existing computer programs which describe turbulent reacting flows. When the model was used in a two-dimensional parabolic-flow computer code to predict the behavior of an experimental, supersonic hydrogen jet burning in air, some improvement in agreement with the experimental data was obtained in the far field in the region near the jet centerline. Recommendations are included for further improvement of the model and for additional comparisons with experimental data.

  15. Modelling non-Markovian dynamics in biochemical reactions

    PubMed Central

    2015-01-01

    Background Biochemical reactions are often modelled as discrete-state continuous-time stochastic processes evolving as memoryless Markov processes. However, in some cases, biochemical systems exhibit non-Markovian dynamics. We propose here a methodology for building stochastic simulation algorithms which model more precisely non-Markovian processes in some specific situations. Our methodology is based on Constraint Programming and is implemented by using Gecode, a state-of-the-art framework for constraint solving. Results Our technique allows us to randomly sample waiting times from probability density functions that not necessarily are distributed according to a negative exponential function. In this context, we discuss an important case-study in which the probability density function is inferred from single-molecule experiments that describe the distribution of the time intervals between two consecutive enzymatically catalysed reactions. Noticeably, this feature allows some types of enzyme reactions to be modelled as non-Markovian processes. Conclusions We show that our methodology makes it possible to obtain accurate models of enzymatic reactions that, in specific cases, fit experimental data better than the corresponding Markovian models. PMID:26051249

  16. Incremental learning for automated knowledge capture.

    SciTech Connect

    Benz, Zachary O.; Basilico, Justin Derrick; Davis, Warren Leon,; Dixon, Kevin R.; Jones, Brian S.; Martin, Nathaniel; Wendt, Jeremy Daniel

    2013-12-01

    People responding to high-consequence national-security situations need tools to help them make the right decision quickly. The dynamic, time-critical, and ever-changing nature of these situations, especially those involving an adversary, require models of decision support that can dynamically react as a situation unfolds and changes. Automated knowledge capture is a key part of creating individualized models of decision making in many situations because it has been demonstrated as a very robust way to populate computational models of cognition. However, existing automated knowledge capture techniques only populate a knowledge model with data prior to its use, after which the knowledge model is static and unchanging. In contrast, humans, including our national-security adversaries, continually learn, adapt, and create new knowledge as they make decisions and witness their effect. This artificial dichotomy between creation and use exists because the majority of automated knowledge capture techniques are based on traditional batch machine-learning and statistical algorithms. These algorithms are primarily designed to optimize the accuracy of their predictions and only secondarily, if at all, concerned with issues such as speed, memory use, or ability to be incrementally updated. Thus, when new data arrives, batch algorithms used for automated knowledge capture currently require significant recomputation, frequently from scratch, which makes them ill suited for use in dynamic, timecritical, high-consequence decision making environments. In this work we seek to explore and expand upon the capabilities of dynamic, incremental models that can adapt to an ever-changing feature space.

  17. 40 CFR 60.1590 - When must I complete each increment of progress?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false When must I complete each increment of... Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Increments of Progress § 60.1590 When must I complete each increment of progress? Table 1 of this...

  18. A Generic Microdisturbanace Transmissibility Model For Reaction Wheels

    NASA Astrophysics Data System (ADS)

    Penate Castro, Jose; Seiler, Rene

    2012-07-01

    The increasing demand for space missions with high- precision pointing requirements for their payload instruments is underlining the importance of studying the impact of micro-level disturbances on the overall performance of spacecraft. For example, a satellite with an optical telescope taking high-resolution images might be very sensitive to perturbations, generated by moving equipment and amplified by the structure of the equipment itself as well as that of the host spacecraft that is accommodating both, the sources of mechanical disturbances and sensitive payload instruments. One of the major sources of mechanical disturbances inside a satellite may be found with reaction wheels. For investigation of their disturbance generation and propagation characteristics, a finite element model with parametric geometry definition has been developed. The model covers the main structural features of typical reaction wheel assemblies and can be used for a transmissibility representation of the equipment. With the parametric geometry definition approach, a wide range of different reaction wheel types and sizes can be analysed, without the need for (re-)defining an individual reaction wheel configuration from scratch. The reaction wheel model can be combined with a finite element model of the spacecraft structure and the payload for an end-to-end modelling and simulation of the microdisturbance generation and propagation. The finite element model has been generated in Patran® Command Language (PCL), which provides a powerful and time-efficient way to change parameters in the model, for creating a new or modifying an existing geometry, without requiring comprehensive manual interactions in the modelling pre-processor. As part of the overall modelling approach, a tailored structural model of the mechanical ball bearings has been implemented, which is one of the more complex problems to deal with, among others, due to the anisotropic stiffness and damping characteristics

  19. Calibration of Complex Subsurface Reaction Models Using a Surrogate-Model Approach

    EPA Science Inventory

    Application of model assessment techniques to complex subsurface reaction models involves numerous difficulties, including non-trivial model selection, parameter non-uniqueness, and excessive computational burden. To overcome these difficulties, this study introduces SAMM (Simult...

  20. Modeling the Reaction of Fe Atoms with CCl4

    SciTech Connect

    Camaioni, Donald M.; Ginovska, Bojana; Dupuis, Michel

    2009-01-05

    The reaction of zero-valent iron with carbon tetrachloride (CCl4) in gas phase was studied using density functional theory. Temperature programmed desorption experiments over a range of Fe and CCl4 coverages on a FeO(111) surface, demonstrate a rich surface chemistry with several reaction products (C2Cl4, C2Cl6, OCCl2, CO, FeCl2, FeCl3) observed. The reactivity of Fe and CCl4 was studied under three stoichiometries, one Fe with one CCl4, one Fe with two CCl4 molecules and two Fe with one CCl4, modeling the environment of the experimental work. The electronic structure calculations give insight into the reactions leading to the experimentally observed products and suggest that novel Fe-C-Cl containing species are important intermediates in these reactions. The intermediate complexes are formed in highly exothermic reactions, in agreement with the experimentally observed reactivity with the surface at low temperature (30 K). This initial survey of the reactivity of Fe with CCl4 identifies some potential reaction pathways that are important in the effort to use Fe nano-particles to differentiate harmful pathways that lead to the formation of contaminants like chloroform (CHCl3) from harmless pathways that lead to products such as formate (HCO2-) or carbon oxides in water and soil. The Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

  1. Model hydrocracking reactions over monometallic and bimetallic dispersed catalysts

    SciTech Connect

    Schmidt, E.; Song, C.

    1994-12-31

    Coal liquefaction involves the cleavage of methylene and dimethylene bridges connecting polycyclic aromatic units. The selected compound for model reactions is 4-(1-naphthylmethyl)bibenzyl (NMBB). This work describes the synthesis and screening of several metallic complex precursors as dispersed catalysts for hydrocracking of NMBB.

  2. Modeling shock-driven reaction in low density PMDI foam

    NASA Astrophysics Data System (ADS)

    Brundage, Aaron; Alexander, C. Scott; Reinhart, William; Peterson, David

    Shock experiments on low density polyurethane foams reveal evidence of reaction at low impact pressures. However, these reaction thresholds are not evident over the low pressures reported for historical Hugoniot data of highly distended polyurethane at densities below 0.1 g/cc. To fill this gap, impact data given in a companion paper for polymethylene diisocyanate (PMDI) foam with a density of 0.087 g/cc were acquired for model validation. An equation of state (EOS) was developed to predict the shock response of these highly distended materials over the full range of impact conditions representing compaction of the inert material, low-pressure decomposition, and compression of the reaction products. A tabular SESAME EOS of the reaction products was generated using the JCZS database in the TIGER equilibrium code. In particular, the Arrhenius Burn EOS, a two-state model which transitions from an unreacted to a reacted state using single step Arrhenius kinetics, as implemented in the shock physics code CTH, was modified to include a statistical distribution of states. Hence, a single EOS is presented that predicts the onset to reaction due to shock loading in PMDI-based polyurethane foams. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's NNSA under Contract DE-AC04-94AL85000.

  3. Cohabitation reaction-diffusion model for virus focal infections

    NASA Astrophysics Data System (ADS)

    Amor, Daniel R.; Fort, Joaquim

    2014-12-01

    The propagation of virus infection fronts has been typically modeled using a set of classical (noncohabitation) reaction-diffusion equations for interacting species. However, for some single-species systems it has been recently shown that noncohabitation reaction-diffusion equations may lead to unrealistic descriptions. We argue that previous virus infection models also have this limitation, because they assume that a virion can simultaneously reproduce inside a cell and diffuse away from it. For this reason, we build a several-species cohabitation model that does not have this limitation. Furthermore, we perform a sensitivity analysis for the most relevant parameters of the model, and we compare the predicted infection speed with observed data for two different strains of the T7 virus.

  4. Identification of dynamical models of chemical reaction networks

    NASA Astrophysics Data System (ADS)

    Haber, Aleksandar

    Current first-principles models of complex chemistry, such as combustion reaction networks, often give inaccurate predictions of the time variation of chemical species. Moreover, the high complexity and dimensionality of these models render them impractical for real-time prediction and control of chemical network processes. These limitations have motivated us to search for an alternative paradigm that is able to both identify the correct model from the observed dynamical data and reduce complexity while preserving the underlying network structure. In this talk, I will present one such modeling paradigm under the scenarios of complete and incomplete observability of the dynamics. The proposed approach is applicable to combustion chemistry and a range of other chemical reaction networks. Research supported by ARO Grant W911NF-14-1-0359.

  5. Hydrodynamic Reaction Model of a Spouted Bed Electrolytic Reactor

    NASA Astrophysics Data System (ADS)

    Alireza Shirvanian, Pezhman; Calo, Joseph

    2002-08-01

    An Eulerian model is presented that has been developed to describe the hydrodynamics, mass transfer, and metal ion reduction mass transfer in a cylindrical, spouted bed electrolytic reactor. Appropriate boundary conditions are derived from kinetic theory and reaction kinetics for the hydrodynamics and mass transfer and reaction on the cathodic conical bottom of the reactor, respectively. This study was undertaken as a part of a project focused on the development of a Spouted Bed Electrolytic Reactor (SBER) for metals recovery. The results presented here include the effect of particle loading, inlet jet velocity, Solution pH, and temperature on void fraction distribution, pressure drop, particles recirculation rate, and metal recovery rate.

  6. Spatiotemporal patterns in a reaction-diffusion model with the Degn-Harrison reaction scheme

    NASA Astrophysics Data System (ADS)

    Peng, Rui; Yi, Feng-qi; Zhao, Xiao-qiang

    Spatial and temporal patterns generated in ecological and chemical systems have become a central object of research in recent decades. In this work, we are concerned with a reaction-diffusion model with the Degn-Harrison reaction scheme, which accounts for the qualitative feature of the respiratory process in a Klebsiella aerogenes bacterial culture. We study the global stability of the constant steady state, existence and nonexistence of nonconstant steady states as well as the Hopf and steady state bifurcations. In particular, our results show the existence of Turing patterns and inhomogeneous periodic oscillatory patterns while the system parameters are all spatially homogeneous. These results also exhibit the critical role of the system parameters in leading to the formation of spatiotemporal patterns.

  7. Simple model for lambda-doublet propensities in bimolecular reactions

    NASA Technical Reports Server (NTRS)

    Bronikowski, Michael J.; Zare, Richard N.

    1990-01-01

    A simple geometric model is presented to account for lambda-doublet propensities in bimolecular reactions A + BC - AB + C. It applies to reactions in which AB is formed in a pi state, and in which the unpaired molecular orbital responsible for lambda-doubling arises from breaking the B-C bond. The lambda-doublet population ratio is predicted to be 2:1 provided that: (1) the motion of A in the transition state determines the plane of rotation of AB; (2) the unpaired pi orbital lying initially along the B-C bond may be resolved into a projection onto the AB plane of rotation and a projection perpendicular to this plane; (3) there is no preferred geometry for dissociation of ABC. The 2:1 lambda-doublet ratio is the 'unconstrained dynamics prior' lambda-doublet distribution for such reactions.

  8. Fluid dynamic modeling of nano-thermite reactions

    NASA Astrophysics Data System (ADS)

    Martirosyan, Karen S.; Zyskin, Maxim; Jenkins, Charles M.; Yuki Horie, Yasuyuki

    2014-03-01

    This paper presents a direct numerical method based on gas dynamic equations to predict pressure evolution during the discharge of nanoenergetic materials. The direct numerical method provides for modeling reflections of the shock waves from the reactor walls that generates pressure-time fluctuations. The results of gas pressure prediction are consistent with the experimental evidence and estimates based on the self-similar solution. Artificial viscosity provides sufficient smoothing of shock wave discontinuity for the numerical procedure. The direct numerical method is more computationally demanding and flexible than self-similar solution, in particular it allows study of a shock wave in its early stage of reaction and allows the investigation of "slower" reactions, which may produce weaker shock waves. Moreover, numerical results indicate that peak pressure is not very sensitive to initial density and reaction time, providing that all the material reacts well before the shock wave arrives at the end of the reactor.

  9. The power induced effects module: A FORTRAN code which estimates lift increments due to power induced effects for V/STOL flight

    NASA Technical Reports Server (NTRS)

    Sandlin, Doral R.; Howard, Kipp E.

    1991-01-01

    A user friendly FORTRAN code that can be used for preliminary design of V/STOL aircraft is described. The program estimates lift increments, due to power induced effects, encountered by aircraft in V/STOL flight. These lift increments are calculated using empirical relations developed from wind tunnel tests and are due to suckdown, fountain, ground vortex, jet wake, and the reaction control system. The code can be used as a preliminary design tool along with NASA Ames' Aircraft Synthesis design code or as a stand-alone program for V/STOL aircraft designers. The Power Induced Effects (PIE) module was validated using experimental data and data computed from lift increment routines. Results are presented for many flat plate models along with the McDonnell Aircraft Company's MFVT (mixed flow vectored thrust) V/STOL preliminary design and a 15 percent scale model of the YAV-8B Harrier V/STOL aircraft. Trends and magnitudes of lift increments versus aircraft height above the ground were predicted well by the PIE module. The code also provided good predictions of the magnitudes of lift increments versus aircraft forward velocity. More experimental results are needed to determine how well the code predicts lift increments as they vary with jet deflection angle and angle of attack. The FORTRAN code is provided in the appendix.

  10. Classic and contemporary approaches to modeling biochemical reactions

    PubMed Central

    Chen, William W.; Niepel, Mario; Sorger, Peter K.

    2010-01-01

    Recent interest in modeling biochemical networks raises questions about the relationship between often complex mathematical models and familiar arithmetic concepts from classical enzymology, and also about connections between modeling and experimental data. This review addresses both topics by familiarizing readers with key concepts (and terminology) in the construction, validation, and application of deterministic biochemical models, with particular emphasis on a simple enzyme-catalyzed reaction. Networks of coupled ordinary differential equations (ODEs) are the natural language for describing enzyme kinetics in a mass action approximation. We illustrate this point by showing how the familiar Briggs-Haldane formulation of Michaelis-Menten kinetics derives from the outer (or quasi-steady-state) solution of a dynamical system of ODEs describing a simple reaction under special conditions. We discuss how parameters in the Michaelis-Menten approximation and in the underlying ODE network can be estimated from experimental data, with a special emphasis on the origins of uncertainty. Finally, we extrapolate from a simple reaction to complex models of multiprotein biochemical networks. The concepts described in this review, hitherto of interest primarily to practitioners, are likely to become important for a much broader community of cellular and molecular biologists attempting to understand the promise and challenges of “systems biology” as applied to biochemical mechanisms. PMID:20810646

  11. Modelling biochemical reaction systems by stochastic differential equations with reflection.

    PubMed

    Niu, Yuanling; Burrage, Kevin; Chen, Luonan

    2016-05-01

    In this paper, we gave a new framework for modelling and simulating biochemical reaction systems by stochastic differential equations with reflection not in a heuristic way but in a mathematical way. The model is computationally efficient compared with the discrete-state Markov chain approach, and it ensures that both analytic and numerical solutions remain in a biologically plausible region. Specifically, our model mathematically ensures that species numbers lie in the domain D, which is a physical constraint for biochemical reactions, in contrast to the previous models. The domain D is actually obtained according to the structure of the corresponding chemical Langevin equations, i.e., the boundary is inherent in the biochemical reaction system. A variant of projection method was employed to solve the reflected stochastic differential equation model, and it includes three simple steps, i.e., Euler-Maruyama method was applied to the equations first, and then check whether or not the point lies within the domain D, and if not perform an orthogonal projection. It is found that the projection onto the closure D¯ is the solution to a convex quadratic programming problem. Thus, existing methods for the convex quadratic programming problem can be employed for the orthogonal projection map. Numerical tests on several important problems in biological systems confirmed the efficiency and accuracy of this approach. PMID:26920245

  12. EMPIRE: Nuclear Reaction Model Code System for Data Evaluation

    SciTech Connect

    Herman, M. Capote, R.; Carlson, B.V.; Oblozinsky, P.; Sin, M.; Trkov, A.; Wienke, H.; Zerkin, V.

    2007-12-15

    EMPIRE is a modular system of nuclear reaction codes, comprising various nuclear models, and designed for calculations over a broad range of energies and incident particles. A projectile can be a neutron, proton, any ion (including heavy-ions) or a photon. The energy range extends from the beginning of the unresolved resonance region for neutron-induced reactions ({approx} keV) and goes up to several hundred MeV for heavy-ion induced reactions. The code accounts for the major nuclear reaction mechanisms, including direct, pre-equilibrium and compound nucleus ones. Direct reactions are described by a generalized optical model (ECIS03) or by the simplified coupled-channels approach (CCFUS). The pre-equilibrium mechanism can be treated by a deformation dependent multi-step direct (ORION + TRISTAN) model, by a NVWY multi-step compound one or by either a pre-equilibrium exciton model with cluster emission (PCROSS) or by another with full angular momentum coupling (DEGAS). Finally, the compound nucleus decay is described by the full featured Hauser-Feshbach model with {gamma}-cascade and width-fluctuations. Advanced treatment of the fission channel takes into account transmission through a multiple-humped fission barrier with absorption in the wells. The fission probability is derived in the WKB approximation within the optical model of fission. Several options for nuclear level densities include the EMPIRE-specific approach, which accounts for the effects of the dynamic deformation of a fast rotating nucleus, the classical Gilbert-Cameron approach and pre-calculated tables obtained with a microscopic model based on HFB single-particle level schemes with collective enhancement. A comprehensive library of input parameters covers nuclear masses, optical model parameters, ground state deformations, discrete levels and decay schemes, level densities, fission barriers, moments of inertia and {gamma}-ray strength functions. The results can be converted into ENDF-6 formatted

  13. A model for reaction-assisted polymer dissolution in LIGA.

    SciTech Connect

    Larson, Richard S.

    2004-05-01

    A new chemically-oriented mathematical model for the development step of the LIGA process is presented. The key assumption is that the developer can react with the polymeric resist material in order to increase the solubility of the latter, thereby partially overcoming the need to reduce the polymer size. The ease with which this reaction takes place is assumed to be determined by the number of side chain scissions that occur during the x-ray exposure phase of the process. The dynamics of the dissolution process are simulated by solving the reaction-diffusion equations for this three-component, two-phase system, the three species being the unreacted and reacted polymers and the solvent. The mass fluxes are described by the multicomponent diffusion (Stefan-Maxwell) equations, and the chemical potentials are assumed to be given by the Flory-Huggins theory. Sample calculations are used to determine the dependence of the dissolution rate on key system parameters such as the reaction rate constant, polymer size, solid-phase diffusivity, and Flory-Huggins interaction parameters. A simple photochemistry model is used to relate the reaction rate constant and the polymer size to the absorbed x-ray dose. The resulting formula for the dissolution rate as a function of dose and temperature is ?t to an extensive experimental data base in order to evaluate a set of unknown global parameters. The results suggest that reaction-assisted dissolution is very important at low doses and low temperatures, the solubility of the unreacted polymer being too small for it to be dissolved at an appreciable rate. However, at high doses or at higher temperatures, the solubility is such that the reaction is no longer needed, and dissolution can take place via the conventional route. These results provide an explanation for the observed dependences of both the dissolution rate and its activation energy on the absorbed dose.

  14. A model study of sequential enzyme reactions and electrostatic channeling

    NASA Astrophysics Data System (ADS)

    Eun, Changsun; Kekenes-Huskey, Peter M.; Metzger, Vincent T.; McCammon, J. Andrew

    2014-03-01

    We study models of two sequential enzyme-catalyzed reactions as a basic functional building block for coupled biochemical networks. We investigate the influence of enzyme distributions and long-range molecular interactions on reaction kinetics, which have been exploited in biological systems to maximize metabolic efficiency and signaling effects. Specifically, we examine how the maximal rate of product generation in a series of sequential reactions is dependent on the enzyme distribution and the electrostatic composition of its participant enzymes and substrates. We find that close proximity between enzymes does not guarantee optimal reaction rates, as the benefit of decreasing enzyme separation is countered by the volume excluded by adjacent enzymes. We further quantify the extent to which the electrostatic potential increases the efficiency of transferring substrate between enzymes, which supports the existence of electrostatic channeling in nature. Here, a major finding is that the role of attractive electrostatic interactions in confining intermediate substrates in the vicinity of the enzymes can contribute more to net reactive throughput than the directional properties of the electrostatic fields. These findings shed light on the interplay of long-range interactions and enzyme distributions in coupled enzyme-catalyzed reactions, and their influence on signaling in biological systems.

  15. 14 CFR 1274.918 - Incremental funding.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Incremental funding. 1274.918 Section 1274... COMMERCIAL FIRMS Other Provisions and Special Conditions § 1274.918 Incremental funding. Incremental Funding... Agreement, as required, until it is fully funded. Any work beyond the funding limit will be at the...

  16. 14 CFR 1260.53 - Incremental funding.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Incremental funding. 1260.53 Section 1260.53 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GRANTS AND COOPERATIVE AGREEMENTS General Special Conditions § 1260.53 Incremental funding. Incremental Funding October 2000...

  17. 14 CFR 1274.918 - Incremental funding.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Incremental funding. 1274.918 Section 1274... COMMERCIAL FIRMS Other Provisions and Special Conditions § 1274.918 Incremental funding. Incremental Funding... Agreement, as required, until it is fully funded. Any work beyond the funding limit will be at the...

  18. 14 CFR 1274.918 - Incremental funding.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Incremental funding. 1274.918 Section 1274... COMMERCIAL FIRMS Other Provisions and Special Conditions § 1274.918 Incremental funding. Incremental Funding... Agreement, as required, until it is fully funded. Any work beyond the funding limit will be at the...

  19. 14 CFR 1260.53 - Incremental funding.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Incremental funding. 1260.53 Section 1260.53 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GRANTS AND COOPERATIVE AGREEMENTS General Special Conditions § 1260.53 Incremental funding. Incremental Funding October 2000 (a) Only $___ of...

  20. 14 CFR 1274.918 - Incremental funding.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Incremental funding. 1274.918 Section 1274... COMMERCIAL FIRMS Other Provisions and Special Conditions § 1274.918 Incremental funding. Incremental Funding... Agreement, as required, until it is fully funded. Any work beyond the funding limit will be at the...

  1. 14 CFR 1260.53 - Incremental funding.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Incremental funding. 1260.53 Section 1260.53 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GRANTS AND COOPERATIVE AGREEMENTS General Special Conditions § 1260.53 Incremental funding. Incremental Funding October 2000...

  2. 14 CFR 1260.53 - Incremental funding.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Incremental funding. 1260.53 Section 1260.53 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GRANTS AND COOPERATIVE AGREEMENTS General Special Conditions § 1260.53 Incremental funding. Incremental Funding October 2000...

  3. 18 CFR 154.309 - Incremental expansions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Incremental expansions... Changes § 154.309 Incremental expansions. (a) For every expansion for which incremental rates are charged... costs and revenues associated with the expansion, until the Commission authorizes the costs of...

  4. 18 CFR 154.309 - Incremental expansions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Incremental expansions... Changes § 154.309 Incremental expansions. (a) For every expansion for which incremental rates are charged... costs and revenues associated with the expansion, until the Commission authorizes the costs of...

  5. 18 CFR 154.309 - Incremental expansions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Incremental expansions... Changes § 154.309 Incremental expansions. (a) For every expansion for which incremental rates are charged... costs and revenues associated with the expansion, until the Commission authorizes the costs of...

  6. 18 CFR 154.309 - Incremental expansions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Incremental expansions... Changes § 154.309 Incremental expansions. (a) For every expansion for which incremental rates are charged... costs and revenues associated with the expansion, until the Commission authorizes the costs of...

  7. 18 CFR 154.309 - Incremental expansions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Incremental expansions... Changes § 154.309 Incremental expansions. (a) For every expansion for which incremental rates are charged... costs and revenues associated with the expansion, until the Commission authorizes the costs of...

  8. Towards many-body based nuclear reaction modelling

    NASA Astrophysics Data System (ADS)

    Hilaire, Stéphane; Goriely, Stéphane

    2016-06-01

    The increasing need for cross sections far from the valley of stability poses a challenge for nuclear reaction models. So far, predictions of cross sections have relied on more or less phenomenological approaches, depending on parameters adjusted to available experimental data or deduced from systematic expressions. While such predictions are expected to be reliable for nuclei not too far from the experimentally known regions, it is clearly preferable to use more fundamental approaches, based on sound physical principles, when dealing with very exotic nuclei. Thanks to the high computer power available today, all the ingredients required to model a nuclear reaction can now be (and have been) microscopically (or semi-microscopically) determined starting from the information provided by a nucleon-nucleon effective interaction. This concerns nuclear masses, optical model potential, nuclear level densities, photon strength functions, as well as fission barriers. All these nuclear model ingredients, traditionally given by phenomenological expressions, now have a microscopic counterpart implemented in the TALYS nuclear reaction code. We are thus now able to perform fully microscopic cross section calculations. The quality of these ingredients and the impact of using them instead of the usually adopted phenomenological parameters will be discussed. Perspectives for the coming years will be drawn on the improvements one can expect.

  9. First Principles Modeling of Bimolecular Reactions with Diffusion

    NASA Astrophysics Data System (ADS)

    Hansen, S. K.; Scher, H.; Berkowitz, B.

    2013-12-01

    We consider three approaches to modeling A + B → C irreversible reactions in natural media: 1) a discretized diffusion-reaction equation (DRE), 2) a particle tracking (PT) scheme in which reaction occurs if and only if an A and B particle pair are within a fixed distance, r (the "reaction radius"), and 3) a PT scheme using an alternative to the fixed reaction radius: a collocation probability distribution derived directly from first principles. Each approach has advantages. In some cases a discretized DRE may be the most computationally efficient method. For PT simulations, robust codes exist based on use of a fixed reaction radius. And finally, collocation probabilities may be derived directly from the Fick's Law constant, D, which is a well-established property for most species. In each approach, a single parameter governs the 'promiscuity' of the reaction (i.e. the thermodynamic favorability of reaction, predicated on the particles being locally well mixed). For the DRE, fixed-reaction-radius PT, and collocation-based PT, these parameters are, respectively: a second-order decay rate, r, and D. We established a number of new results enhancing these approaches and relating them to each other (and to nature). In particular, a thought experiment concerning a simple system in which the predictions of each approach can be computed analytically was used to derive formulas establishing a universal one-to-one correspondence among each of the governing parameters. We thus showed the conditions for equivalence of the three approaches, and grounded both the DRE approach and the fixed-radius PT approach in the Fick's Law D. We further showed that the existing collocation-based PT theory is based on a probability distribution that is only correct for infinitesimally small times, but which can be modified to be accurate for larger times by means of continuous time random walk analysis and first-passage probability distributions. Finally, we employed a novel mathematical

  10. A model reduction method for biochemical reaction networks

    PubMed Central

    2014-01-01

    Background In this paper we propose a model reduction method for biochemical reaction networks governed by a variety of reversible and irreversible enzyme kinetic rate laws, including reversible Michaelis-Menten and Hill kinetics. The method proceeds by a stepwise reduction in the number of complexes, defined as the left and right-hand sides of the reactions in the network. It is based on the Kron reduction of the weighted Laplacian matrix, which describes the graph structure of the complexes and reactions in the network. It does not rely on prior knowledge of the dynamic behaviour of the network and hence can be automated, as we demonstrate. The reduced network has fewer complexes, reactions, variables and parameters as compared to the original network, and yet the behaviour of a preselected set of significant metabolites in the reduced network resembles that of the original network. Moreover the reduced network largely retains the structure and kinetics of the original model. Results We apply our method to a yeast glycolysis model and a rat liver fatty acid beta-oxidation model. When the number of state variables in the yeast model is reduced from 12 to 7, the difference between metabolite concentrations in the reduced and the full model, averaged over time and species, is only 8%. Likewise, when the number of state variables in the rat-liver beta-oxidation model is reduced from 42 to 29, the difference between the reduced model and the full model is 7.5%. Conclusions The method has improved our understanding of the dynamics of the two networks. We found that, contrary to the general disposition, the first few metabolites which were deleted from the network during our stepwise reduction approach, are not those with the shortest convergence times. It shows that our reduction approach performs differently from other approaches that are based on time-scale separation. The method can be used to facilitate fitting of the parameters or to embed a detailed model of

  11. Diffusion-controlled reactions modeling in Geant4-DNA

    NASA Astrophysics Data System (ADS)

    Karamitros, M.; Luan, S.; Bernal, M. A.; Allison, J.; Baldacchino, G.; Davidkova, M.; Francis, Z.; Friedland, W.; Ivantchenko, V.; Ivantchenko, A.; Mantero, A.; Nieminem, P.; Santin, G.; Tran, H. N.; Stepan, V.; Incerti, S.

    2014-10-01

    Context Under irradiation, a biological system undergoes a cascade of chemical reactions that can lead to an alteration of its normal operation. There are different types of radiation and many competing reactions. As a result the kinetics of chemical species is extremely complex. The simulation becomes then a powerful tool which, by describing the basic principles of chemical reactions, can reveal the dynamics of the macroscopic system. To understand the dynamics of biological systems under radiation, since the 80s there have been on-going efforts carried out by several research groups to establish a mechanistic model that consists in describing all the physical, chemical and biological phenomena following the irradiation of single cells. This approach is generally divided into a succession of stages that follow each other in time: (1) the physical stage, where the ionizing particles interact directly with the biological material; (2) the physico-chemical stage, where the targeted molecules release their energy by dissociating, creating new chemical species; (3) the chemical stage, where the new chemical species interact with each other or with the biomolecules; (4) the biological stage, where the repairing mechanisms of the cell come into play. This article focuses on the modeling of the chemical stage. Method This article presents a general method of speeding-up chemical reaction simulations in fluids based on the Smoluchowski equation and Monte-Carlo methods, where all molecules are explicitly simulated and the solvent is treated as a continuum. The model describes diffusion-controlled reactions. This method has been implemented in Geant4-DNA. The keys to the new algorithm include: (1) the combination of a method to compute time steps dynamically with a Brownian bridge process to account for chemical reactions, which avoids costly fixed time step simulations; (2) a k-d tree data structure for quickly locating, for a given molecule, its closest reactants. The

  12. Diffusion-controlled reactions modeling in Geant4-DNA

    SciTech Connect

    Karamitros, M.; Luan, S.; Bernal, M.A.; Allison, J.; Baldacchino, G.; Davidkova, M.; Francis, Z.; Friedland, W.; Ivantchenko, V.; Ivantchenko, A.; Mantero, A.; Nieminem, P.; Santin, G.; Tran, H.N.; Stepan, V.; Incerti, S.

    2014-10-01

    Context Under irradiation, a biological system undergoes a cascade of chemical reactions that can lead to an alteration of its normal operation. There are different types of radiation and many competing reactions. As a result the kinetics of chemical species is extremely complex. The simulation becomes then a powerful tool which, by describing the basic principles of chemical reactions, can reveal the dynamics of the macroscopic system. To understand the dynamics of biological systems under radiation, since the 80s there have been on-going efforts carried out by several research groups to establish a mechanistic model that consists in describing all the physical, chemical and biological phenomena following the irradiation of single cells. This approach is generally divided into a succession of stages that follow each other in time: (1) the physical stage, where the ionizing particles interact directly with the biological material; (2) the physico-chemical stage, where the targeted molecules release their energy by dissociating, creating new chemical species; (3) the chemical stage, where the new chemical species interact with each other or with the biomolecules; (4) the biological stage, where the repairing mechanisms of the cell come into play. This article focuses on the modeling of the chemical stage. Method This article presents a general method of speeding-up chemical reaction simulations in fluids based on the Smoluchowski equation and Monte-Carlo methods, where all molecules are explicitly simulated and the solvent is treated as a continuum. The model describes diffusion-controlled reactions. This method has been implemented in Geant4-DNA. The keys to the new algorithm include: (1) the combination of a method to compute time steps dynamically with a Brownian bridge process to account for chemical reactions, which avoids costly fixed time step simulations; (2) a k–d tree data structure for quickly locating, for a given molecule, its closest reactants. The

  13. Turing instability in reaction-diffusion models on complex networks

    NASA Astrophysics Data System (ADS)

    Ide, Yusuke; Izuhara, Hirofumi; Machida, Takuya

    2016-09-01

    In this paper, the Turing instability in reaction-diffusion models defined on complex networks is studied. Here, we focus on three types of models which generate complex networks, i.e. the Erdős-Rényi, the Watts-Strogatz, and the threshold network models. From analysis of the Laplacian matrices of graphs generated by these models, we numerically reveal that stable and unstable regions of a homogeneous steady state on the parameter space of two diffusion coefficients completely differ, depending on the network architecture. In addition, we theoretically discuss the stable and unstable regions in the cases of regular enhanced ring lattices which include regular circles, and networks generated by the threshold network model when the number of vertices is large enough.

  14. Constraining kinetic rates of mineral reactions using reactive transport models

    NASA Astrophysics Data System (ADS)

    Bolton, E. W.; Wang, Z.; Ague, J.; Bercovici, D.; Cai, Z.; Karato, S.; Oristaglio, M. L.; Qiu, L.

    2012-12-01

    We use a reactive transport model to better understand results of experiments to obtain kinetic rates of mineral reactions in closed systems. Closed system experiments pose special challenges in that secondary minerals may form that modify the fluid composition evolution and may grow on the dissolving minerals thus armoring the surface. Even so, such closed system experiments provide critical data for what minerals would actually form in field applications and how coupled dissolution and precipitation mineral reactions are strongly linked. Comparing to experimental observations can test the reactive transport model, and the experimental observations can be better understood by comparing the results to the modeling. We apply a 0D end member of the model to understand the dissolution of single crystals of forsterite in a variety of settings (low pH, high pH, or NaHCO3 initial fluids, at 100 C and 1 bar, or 200 C and 150 bar). Depending on the initial conditions, we observe the precipitation of talc, brucite, amorphous silica, chrysotile, or magnesite, in various combinations. We compare simulation results to fluid compositions and the presence of secondary minerals experimentally sampled at various times. Insight from the simulations helped create an inverse model to extract the rates of forsterite dissolution and to create a simple forward model useful for exploring the influence of system size, secondary mineral surface areas, etc. Our reactive transport model allows secondary minerals to armor the forsterite surface, which can strongly decrease the dissolution rate as the system evolves. Tuning our model with experimentally derived rates and assuring relevant processes are included so as to reproduce experimental observations is necessary before upscaling to heterogeneous field conditions. The reactive transport model will be used for field-scale sequestration simulations and coupled with a geomechanical model that includes the influence of deformation.

  15. Mathematical modelling of diffusion and reaction in blocked zeolite catalysts

    SciTech Connect

    Sundaresan, S.; Hall, C.K.

    1985-01-01

    A mathematical model for diffusion and reaction in blocked zeolites is developed which takes into account nonidealities arising from interaction between sorbed molecules as well as the effect of pore and surface blocking. The model combines a microscopic approach, in which expressions for chemical potential and diffusive fluxes are calculated within the lattice-gas framework, with the more traditional continuum approach which takes into account the effect of surface blocking. The effect of pore blocking on the diffusive fluxes is accounted for through an effective medium approximation.

  16. Amphoteric reactions of supercritical water with coal models

    SciTech Connect

    Horiuchi, A.K.; Fish, H.T.; Mikita, M.A.

    1988-01-01

    For the past several years this laboratory has been studying water assisted coal liquefaction. Initial experiments were designed to determine whether water could replace all or part of the donor solvent in coal liquefaction. More recent work has focused upon the chemical reactions of coal models in supercritical water. For the past year efforts have centered upon the study of two distinct coal model compound systems (bibenzyls and benzyl phenyl ethers) with water under liquefaction conditions. This research is intended to further evaluate the chemical role of water above its critical temperature in the conversion of coal to a liquefaction product. Results are discussed.

  17. A chain reaction approach to modelling gene pathways.

    PubMed

    Cheng, Gary C; Chen, Dung-Tsa; Chen, James J; Soong, Seng-Jaw; Lamartiniere, Coral; Barnes, Stephen

    2012-08-01

    BACKGROUND: Of great interest in cancer prevention is how nutrient components affect gene pathways associated with the physiological events of puberty. Nutrient-gene interactions may cause changes in breast or prostate cells and, therefore, may result in cancer risk later in life. Analysis of gene pathways can lead to insights about nutrient-gene interactions and the development of more effective prevention approaches to reduce cancer risk. To date, researchers have relied heavily upon experimental assays (such as microarray analysis, etc.) to identify genes and their associated pathways that are affected by nutrient and diets. However, the vast number of genes and combinations of gene pathways, coupled with the expense of the experimental analyses, has delayed the progress of gene-pathway research. The development of an analytical approach based on available test data could greatly benefit the evaluation of gene pathways, and thus advance the study of nutrient-gene interactions in cancer prevention. In the present study, we have proposed a chain reaction model to simulate gene pathways, in which the gene expression changes through the pathway are represented by the species undergoing a set of chemical reactions. We have also developed a numerical tool to solve for the species changes due to the chain reactions over time. Through this approach we can examine the impact of nutrient-containing diets on the gene pathway; moreover, transformation of genes over time with a nutrient treatment can be observed numerically, which is very difficult to achieve experimentally. We apply this approach to microarray analysis data from an experiment which involved the effects of three polyphenols (nutrient treatments), epigallo-catechin-3-O-gallate (EGCG), genistein, and resveratrol, in a study of nutrient-gene interaction in the estrogen synthesis pathway during puberty. RESULTS: In this preliminary study, the estrogen synthesis pathway was simulated by a chain reaction model. By

  18. A chain reaction approach to modelling gene pathways

    PubMed Central

    Cheng, Gary C.; Chen, Dung-Tsa; Chen, James J.; Soong, Seng-jaw; Lamartiniere, Coral; Barnes, Stephen

    2012-01-01

    Background Of great interest in cancer prevention is how nutrient components affect gene pathways associated with the physiological events of puberty. Nutrient-gene interactions may cause changes in breast or prostate cells and, therefore, may result in cancer risk later in life. Analysis of gene pathways can lead to insights about nutrient-gene interactions and the development of more effective prevention approaches to reduce cancer risk. To date, researchers have relied heavily upon experimental assays (such as microarray analysis, etc.) to identify genes and their associated pathways that are affected by nutrient and diets. However, the vast number of genes and combinations of gene pathways, coupled with the expense of the experimental analyses, has delayed the progress of gene-pathway research. The development of an analytical approach based on available test data could greatly benefit the evaluation of gene pathways, and thus advance the study of nutrient-gene interactions in cancer prevention. In the present study, we have proposed a chain reaction model to simulate gene pathways, in which the gene expression changes through the pathway are represented by the species undergoing a set of chemical reactions. We have also developed a numerical tool to solve for the species changes due to the chain reactions over time. Through this approach we can examine the impact of nutrient-containing diets on the gene pathway; moreover, transformation of genes over time with a nutrient treatment can be observed numerically, which is very difficult to achieve experimentally. We apply this approach to microarray analysis data from an experiment which involved the effects of three polyphenols (nutrient treatments), epigallo-catechin-3-O-gallate (EGCG), genistein, and resveratrol, in a study of nutrient-gene interaction in the estrogen synthesis pathway during puberty. Results In this preliminary study, the estrogen synthesis pathway was simulated by a chain reaction model. By

  19. A Discrete Model to Study Reaction-Diffusion-Mechanics Systems

    PubMed Central

    Weise, Louis D.; Nash, Martyn P.; Panfilov, Alexander V.

    2011-01-01

    This article introduces a discrete reaction-diffusion-mechanics (dRDM) model to study the effects of deformation on reaction-diffusion (RD) processes. The dRDM framework employs a FitzHugh-Nagumo type RD model coupled to a mass-lattice model, that undergoes finite deformations. The dRDM model describes a material whose elastic properties are described by a generalized Hooke's law for finite deformations (Seth material). Numerically, the dRDM approach combines a finite difference approach for the RD equations with a Verlet integration scheme for the equations of the mass-lattice system. Using this framework results were reproduced on self-organized pacemaking activity that have been previously found with a continuous RD mechanics model. Mechanisms that determine the period of pacemakers and its dependency on the medium size are identified. Finally it is shown how the drift direction of pacemakers in RDM systems is related to the spatial distribution of deformation and curvature effects. PMID:21804911

  20. Property Differencing for Incremental Checking

    NASA Technical Reports Server (NTRS)

    Yang, Guowei; Khurshid, Sarfraz; Person, Suzette; Rungta, Neha

    2014-01-01

    This paper introduces iProperty, a novel approach that facilitates incremental checking of programs based on a property di erencing technique. Speci cally, iProperty aims to reduce the cost of checking properties as they are initially developed and as they co-evolve with the program. The key novelty of iProperty is to compute the di erences between the new and old versions of expected properties to reduce the number and size of the properties that need to be checked during the initial development of the properties. Furthermore, property di erencing is used in synergy with program behavior di erencing techniques to optimize common regression scenarios, such as detecting regression errors or checking feature additions for conformance to new expected properties. Experimental results in the context of symbolic execution of Java programs annotated with properties written as assertions show the e ectiveness of iProperty in utilizing change information to enable more ecient checking.

  1. Reactions of Lignin Model Compounds in Ionic Liquids

    SciTech Connect

    Holladay, John E.; Binder, Joseph B.; Gray, Michel J.; White, James F.; Zhang, Z. Conrad

    2009-09-15

    Lignin, a readily available form of biomass, awaits novel chemistry for converting it to valuable aromatic chemicals. Recent work has demonstrated that ionic liquids are excellent solvents for processing woody biomass and lignin. Seeking to exploit ionic liquids as media for depolymerization of lignin, we investigated reactions of lignin model compounds in these solvents. Using Brønsted acid catalysts in 1-ethyl-3-methylimidazolium triflate at moderate temperatures, we obtained up to 11.6% yield of the dealkylation product guaiacol from the model compound eugenol and cleaved phenethyl phenyl ether, a model for lignin ethers. Despite these successes, acid catalysis failed in dealkylation of the unsaturated model compound 4-ethylguaiacol and did not produce monomeric products from organosolv lignin, demonstrating that further work is required to understand the complex chemistry of lignin depolymerization.

  2. Chemical reaction fouling model for single-phase heat transfer

    SciTech Connect

    Panchal, C.B.; Watkinson, A.P.

    1993-08-01

    A fouling model was developed on the premise that the chemical reaction for generation of precursor can take place in the bulk fluid, in the thermalboundary layer, or at the fluid/wall interface, depending upon the interactive effects of flu id dynamics, heat and mass transfer, and the controlling chemical reaction. The analysis was used to examine the experimental data for fouling deposition of polyperoxides produced by autoxidation of indene in kerosene. The effects of fluid and wall temperatures for two flow geometries were analyzed. The results showed that the relative effects of physical parameters on the fouling rate would differ for the three fouling mechanisms; therefore, it is important to identify the controlling mechanism in applying the closed-flow-loop data to industrial conditions.

  3. Homogeneous models for mechanisms of surface reactions: Propylene ammoxidation

    SciTech Connect

    Chan, D.M.T.; Nugent, W.A.; Fultz, W.C.; Rose, D.C.; Tulip, T.H.

    1987-04-01

    The proposed active sites on the catalyst surface in heterogeneous propylene ammoxidation have been successfully modelled by structurally characterized pinacolato W(VI) tert-butylimido complexes. These compounds exist as an equilibrating mixture of amine-bis(imido) and imido-bis(amido) complexes, the position of this equilibrium is dependent on the electronic nature of the glycolate ligand. Both of the C-N bond-forming reactions proposed in recent studies by Grasselli et al. (1) have been reproduced using discrete Group VI d{sup 0} organoimido complexes under mild conditions suitable for detailed mechanistic studies. These reactions are: (1) oxidative trapping of radicals at molybdenum imido sites, and (2) migration of the allyl group from oxygen to an imido nitrogen atom.

  4. Kinetic measurements of hydrocarbon conversion reactions on model metal surfaces.

    PubMed

    Wilson, Jarod; Guo, Hansheng; Morales, Ricardo; Podgornov, Egor; Lee, Ilkeun; Zaera, Francisco

    2007-08-01

    Examples from recent studies in our laboratory are presented to illustrate the main tools available to surface scientists for the determination of the kinetics of surface reactions. Emphasis is given here to hydrocarbon conversions and studies that rely on the use of model systems, typically single crystals and controlled (ultrahigh vacuum) environments. A detailed discussion is provided on the use of temperature-programmed desorption for the determination of activation energies as well as for product identification and yield estimations. Isothermal kinetic measurements are addressed next by focusing on studies under vacuum using molecular beams and surface-sensitive spectroscopies. That is followed by a review of the usefulness of high-pressure cells and other reactor designs for the emulation of realistic catalytic conditions. Finally, an analysis of the power of isotope labeling and chemical substitutions in mechanistic research on surface reactions is presented. PMID:17637975

  5. Modelling charge transfer reactions with the frozen density embedding formalism

    SciTech Connect

    Pavanello, Michele; Neugebauer, Johannes

    2011-12-21

    The frozen density embedding (FDE) subsystem formulation of density-functional theory is a useful tool for studying charge transfer reactions. In this work charge-localized, diabatic states are generated directly with FDE and used to calculate electronic couplings of hole transfer reactions in two {pi}-stacked nucleobase dimers of B-DNA: 5{sup '}-GG-3{sup '} and 5{sup '}-GT-3{sup '}. The calculations rely on two assumptions: the two-state model, and a small differential overlap between donor and acceptor subsystem densities. The resulting electronic couplings agree well with benchmark values for those exchange-correlation functionals that contain a high percentage of exact exchange. Instead, when semilocal GGA functionals are used the electronic couplings are grossly overestimated.

  6. A Model for Incorporating Chemical Reactions in Mesoscale Modeling of Laser Ablation of Polymers

    NASA Astrophysics Data System (ADS)

    Garrison, Barbara J.; Yingling, Yaroslava G.

    2004-03-01

    We have developed a methodology for including effects of chemical reactions in coarse-grained computer simulations such as those that use the united atom or bead and spring approximations. The new coarse-grained chemical reaction model (CGCRM) adopts the philosophy of kinetic Monte Carlo approaches and includes a probabilistic element to predicting when reactions occur, thus obviating the need for a chemically correct interaction potential. The CGCRM uses known chemical reactions along with their probabilities and exothermicities for a specific material in order to assess the effect of chemical reactions on a physical process of interest. The reaction event in the simulation is implemented by removing the reactant molecules from the simulation and replacing them with product molecules. The position of the product molecules is carefully adjusted to make sure that the total energy change of the system corresponds to the reaction exothermicity. The CGCR model was initially implemented in simulations of laser irradiation at fluences such that there is ablation or massive removal of material. The initial reaction is photon cleavage of a chemical bond thus creating two radicals that can undergo subsequent abstraction and radical-radical recombination reactions. The talk will discuss application of the model to photoablation of PMMA. Y. G. Yingling, L. V. Zhigilei and B. J. Garrison, J. Photochemistry and Photobiology A: Chemistry, 145, 173-181 (2001); Y. G. Yingling and B. J. Garrison, Chem. Phys. Lett., 364, 237-243 (2002).

  7. Modelling Violent Reaction Following Low Speed Impact on Confined Explosives

    NASA Astrophysics Data System (ADS)

    Curtis, John; Jones, Andrew; Hughes, Christopher; Reaugh, John

    2011-06-01

    To ensure the safe storage and deployment of explosives it is important to understand the mechanisms that give rise to ignition and reaction growth in low speed impacts. The LLNL High Explosive Response to Mechanical Stimulus (HERMES) material model, integrated in LS-DYNA, has been developed to model the progress of the reaction after such an impact. The low speed impact characteristics of an HMX based formulation have been determined in the AWE Steven Test. Axisymmetric simulations have been performed to determine the characteristics of the model. The sensitivity study included looking at the influence of friction, material strength and confinement. By comparing the experimental and calculated results, the key parameters which determine the response in this configuration have been determined. The model qualitatively predicts the point of ignition within the vehicle. Future refinements are discussed. JER's activity was performed under the auspices of the US DOE by LLNL under Contract DE-AC52-07NA27344, and partially funded by the Joint US DoD/DOE Munitions Technology Development Program.

  8. Entropy-based incremental variational Bayes learning of Gaussian mixtures.

    PubMed

    Peñalver, Antonio; Escolano, Francisco

    2012-03-01

    Variational approaches to density estimation and pattern recognition using Gaussian mixture models can be used to learn the model and optimize its complexity simultaneously. In this brief, we develop an incremental entropy-based variational learning scheme that does not require any kind of initialization. The key element of the proposal is to exploit the incremental learning approach to perform model selection through efficient iteration over the variational Bayes optimization step in a way that the number of splits is minimized. The method starts with just one component and adds new components iteratively by splitting the worst fitted kernel in terms of evaluating its entropy. Our experimental results, on synthetic and real data sets show the effectiveness of the approach outperforming other state-of-the-art incremental component learners. PMID:24808558

  9. A reaction-based paradigm to model reactive chemical transport in groundwater with general kinetic and equilibrium reactions

    SciTech Connect

    Zhang, Fan; Yeh, Gour-Tsyh; Parker, Jack C; Brooks, Scott C; Pace, Molly; Kim, Young Jin; Jardine, Philip M; Watson, David B

    2007-01-01

    This paper presents a reaction-based water quality transport model in subsurface flow systems. Transport of chemical species with a variety of chemical and physical processes is mathematically described by M partial differential equations (PDEs). Decomposition via Gauss-Jordan column reduction of the reaction network transforms M species reactive transport equations into two sets of equations: a set of thermodynamic equilibrium equations representing NE equilibrium reactions and a set of reactive transport equations of M-NE kinetic-variables involving no equilibrium reactions (a kinetic-variable is a linear combination of species). The elimination of equilibrium reactions from reactive transport equations allows robust and efficient numerical integration. The model solves the PDEs of kinetic-variables rather than individual chemical species, which reduces the number of reactive transport equations and simplifies the reaction terms in the equations. A variety of numerical methods are investigated for solving the coupled transport and reaction equations. Simulation comparisons with exact solutions were performed to verify numerical accuracy and assess the effectiveness of various numerical strategies to deal with different application circumstances. Two validation examples involving simulations of uranium transport in soil columns are presented to evaluate the ability of the model to simulate reactive transport with complex reaction networks involving both kinetic and equilibrium reactions.

  10. Reaction times to weak test lights. [psychophysics biological model

    NASA Technical Reports Server (NTRS)

    Wandell, B. A.; Ahumada, P.; Welsh, D.

    1984-01-01

    Maloney and Wandell (1984) describe a model of the response of a single visual channel to weak test lights. The initial channel response is a linearly filtered version of the stimulus. The filter output is randomly sampled over time. Each time a sample occurs there is some probability increasing with the magnitude of the sampled response - that a discrete detection event is generated. Maloney and Wandell derive the statistics of the detection events. In this paper a test is conducted of the hypothesis that the reaction time responses to the presence of a weak test light are initiated at the first detection event. This makes it possible to extend the application of the model to lights that are slightly above threshold, but still within the linear operating range of the visual system. A parameter-free prediction of the model proposed by Maloney and Wandell for lights detected by this statistic is tested. The data are in agreement with the prediction.

  11. Novel Surface Reaction Model in Dry-Etching Process Simulator

    NASA Astrophysics Data System (ADS)

    Misaka, Akio; Harafuji, Kenji; Kubota, Masafumi; Nomura, Noboru

    1992-12-01

    A new surface reaction model has been presented to simulate topological evolutions by taking into account the existence of adsorbed radicals on the substrate surface. The model treats the etching rate as a function of the coverage ratio by adsorbed radicals on the surface. Based on the model, a two-dimensional topography simulator has been developed. The simulator is applied to silicon-dioxide trench etchings made by hydrofluorocarbon gases. First, micro-loading effects in an important ion-assisted etching process are studied. It is confirmed that the micro-loading effect is due to the shortage of supplied active radicals inside the trench structure. Secondly, the competitive process between etching and deposition is examined. The side-wall protection phenomena resulting from the process are well simulated.

  12. Systematic development of reduced reaction mechanisms for dynamic modeling

    NASA Technical Reports Server (NTRS)

    Frenklach, M.; Kailasanath, K.; Oran, E. S.

    1986-01-01

    A method for systematically developing a reduced chemical reaction mechanism for dynamic modeling of chemically reactive flows is presented. The method is based on the postulate that if a reduced reaction mechanism faithfully describes the time evolution of both thermal and chain reaction processes characteristic of a more complete mechanism, then the reduced mechanism will describe the chemical processes in a chemically reacting flow with approximately the same degree of accuracy. Here this postulate is tested by producing a series of mechanisms of reduced accuracy, which are derived from a full detailed mechanism for methane-oxygen combustion. These mechanisms were then tested in a series of reactive flow calculations in which a large-amplitude sinusoidal perturbation is applied to a system that is initially quiescent and whose temperature is high enough to start ignition processes. Comparison of the results for systems with and without convective flow show that this approach produces reduced mechanisms that are useful for calculations of explosions and detonations. Extensions and applicability to flames are discussed.

  13. Deuterium cluster model for low energy nuclear reactions (LENR)

    NASA Astrophysics Data System (ADS)

    Miley, George; Hora, Heinrich

    2007-11-01

    For studying the possible reactions of high density deuterons on the background of a degenerate electron gas, a summary of experimental observations resulted in the possibility of reactions in pm distance and more than ksec duration similar to the K-shell electron capture [1]. The essential reason was the screening of the deuterons by a factor of 14 based on the observations. Using the bosonic properties for a cluster formation of the deuterons and a model of compound nuclear reactions [2], the measured distribution of the resulting nuclei may be explained as known from the Maruhn-Greiner theory for fission. The local maximum of the distribution at the main minimum indicates the excited states of the compound nuclei during their intermediary state. This measured local maximum may be an independent proof for the deuteron clusters at LENR. [1] H. Hora, G.H. Miley et al. Physics Letters A175, 138 (1993) [2] H. Hora and G.H. Miley, APS March Meeting 2007, Program p. 116

  14. Reaction-diffusion modelling of bacterial colony patterns

    NASA Astrophysics Data System (ADS)

    Mimura, Masayasu; Sakaguchi, Hideo; Matsushita, Mitsugu

    2000-07-01

    It is well known from experiments that bacterial species Bacillus subtilis exhibit various colony patterns. These are essentially classified into five types in the morphological diagram, depending on the substrate softness and nutrient concentration. (A) diffusion-limited aggregation-like; (B) Eden-like; (C) concentric ring-like; (D) disk-like; and (E) dense branching morphology-like. There arises the naive question of whether the diversity of colony patterns observed in experiments is caused by different effects or governed by the same underlying principles. Our research has led us to propose reaction-diffusion models to describe the morphological diversity of colony patterns except for Eden-like ones.

  15. Model reference adaptive attitude control of spacecraft using reaction wheels

    NASA Technical Reports Server (NTRS)

    Singh, Sahjendra N.

    1986-01-01

    A nonlinear model reference adaptive control law for large angle rotational maneuvers of spacecraft using reaction wheels in the presence of uncertainty is presented. The derivation of control law does not require any information on the values of the system parameters and the disturbance torques acting on the spacecraft. The controller includes a dynamic system in the feedback path. The control law is a nonlinear function of the attitude error, the rate of the attitude error, and the compensator state. Simulation results are prsented to show that large angle rotational maneuvers can be performed in spite of the uncertainty in the system.

  16. Modeling of associative ionization reactions in hypersonic rarefied flows

    NASA Astrophysics Data System (ADS)

    Boyd, Iain D.

    2007-09-01

    When vehicles reenter the Earth's atmosphere from space, the hypersonic conditions are sufficiently energetic to generate ionizing reactions. The production of a thin plasma layer around a hypersonic vehicle can block radio waves sent to and from the vehicle, leading to communications blackout. For Earth entry from orbit, the maximum energy involved in molecular collisions requires only associative ionization of air-species to be considered. In the present study, the modeling of such reactions is considered in detail using the direct simulation Monte Carlo (DSMC) method. For typical Earth entry conditions, with a velocity near 8km/s, it is shown that the average ionizing reaction probabilities are small. Special numerical techniques must therefore be used in the DSMC technique in order to numerically resolve these reactions. Additional simulation problems arise from the relatively small mass of the electrons in comparison to the other atoms and molecules in these flow fields. Artificially increasing the electron mass greatly increases computational efficiency, and the viability of this approach is investigated. Simulation results are presented for conditions corresponding to the RAM-C II hypersonic flight experiment that gathered measurements of electron number density. It is demonstrated that simulation results for electron number density in this energy regime are relatively insensitive to the mass of the electrons. Direct comparison of DSMC results with the RAM-C II measurements for electron number density shows excellent agreement. These satisfactory comparisons represent the first direct verification of the ability of the DSMC technique to successfully predict the weak plasma generated around a hypersonic vehicle.

  17. Triple-α reaction rate constrained by stellar evolution models

    NASA Astrophysics Data System (ADS)

    Suda, Takuma; Hirschi, Raphael; Fujimoto, Masayuki Y.

    2012-11-01

    We investigate the quantitative constraint on the triple-α reaction rate based on stellar evolution theory, motivated by the recent significant revision of the rate proposed by nuclear physics calculations. Targeted stellar models were computed in order to investigate the impact of that rate in the mass range of 0.8<=M/Msolar<=25 and in the metallicity range between Z = 0 and Z = 0.02. The revised rate has a significant impact on the evolution of low-and intermediate-mass stars, while its influence on the evolution of massive stars (M > 10Msolar) is minimal. We find that employing the revised rate suppresses helium shell flashes on AGB phase for stars in the initial mass range 0.8<=M/Msolar<=6, which is contradictory to what is observed. The absence of helium shell flashes is due to the weak temperature dependence of the revised triple-α reaction cross section at the temperature involved. In our models, it is suggested that the temperature dependence of the cross section should have at least ν > 10 at T = 1-1.2×108K where the cross section is proportional to Tν. We also derive the helium ignition curve to estimate the maximum cross section to retain the low-mass first red giants. The semi-analytically derived ignition curves suggest that the reaction rate should be less than ~ 10-29 cm6 s-1 mole-2 at ~ 107.8 K, which corresponds to about three orders of magnitude larger than that of the NACRE compilation.

  18. Triple-{alpha} reaction rate constrained by stellar evolution models

    SciTech Connect

    Suda, Takuma; Hirschi, Raphael; Fujimoto, Masayuki Y.

    2012-11-12

    We investigate the quantitative constraint on the triple-{alpha} reaction rate based on stellar evolution theory, motivated by the recent significant revision of the rate proposed by nuclear physics calculations. Targeted stellar models were computed in order to investigate the impact of that rate in the mass range of 0.8{<=}M/M{sub Circled-Dot-Operator }{<=}25 and in the metallicity range between Z= 0 and Z= 0.02. The revised rate has a significant impact on the evolution of low-and intermediate-mass stars, while its influence on the evolution of massive stars (M > 10M{sub Circled-Dot-Operator }) is minimal. We find that employing the revised rate suppresses helium shell flashes on AGB phase for stars in the initial mass range 0.8{<=}M/M{sub Circled-Dot-Operator }{<=}6, which is contradictory to what is observed. The absence of helium shell flashes is due to the weak temperature dependence of the revised triple-{alpha} reaction cross section at the temperature involved. In our models, it is suggested that the temperature dependence of the cross section should have at least {nu} > 10 at T = 1-1.2 Multiplication-Sign 10{sup 8}K where the cross section is proportional to T{sup {nu}}. We also derive the helium ignition curve to estimate the maximum cross section to retain the low-mass first red giants. The semi-analytically derived ignition curves suggest that the reaction rate should be less than {approx} 10{sup -29} cm{sup 6} s{sup -1} mole{sup -2} at Almost-Equal-To 10{sup 7.8} K, which corresponds to about three orders of magnitude larger than that of the NACRE compilation.

  19. Incremental Query Rewriting with Resolution

    NASA Astrophysics Data System (ADS)

    Riazanov, Alexandre; Aragão, Marcelo A. T.

    We address the problem of semantic querying of relational databases (RDB) modulo knowledge bases using very expressive knowledge representation formalisms, such as full first-order logic or its various fragments. We propose to use a resolution-based first-order logic (FOL) reasoner for computing schematic answers to deductive queries, with the subsequent translation of these schematic answers to SQL queries which are evaluated using a conventional relational DBMS. We call our method incremental query rewriting, because an original semantic query is rewritten into a (potentially infinite) series of SQL queries. In this chapter, we outline the main idea of our technique - using abstractions of databases and constrained clauses for deriving schematic answers, and provide completeness and soundness proofs to justify the applicability of this technique to the case of resolution for FOL without equality. The proposed method can be directly used with regular RDBs, including legacy databases. Moreover, we propose it as a potential basis for an efficient Web-scale semantic search technology.

  20. Improved VSM for Incremental Text Classification

    NASA Astrophysics Data System (ADS)

    Yang, Zhen; Lei, Jianjun; Wang, Jian; Zhang, Xing; Guo, Jim

    2008-11-01

    As a simple classification method VSM has been widely applied in text information processing field. There are some problems for traditional VSM to select a refined vector model representation, which can make a good tradeoff between complexity and performance, especially for incremental text mining. To solve these problems, in this paper, several improvements, such as VSM based on improved TF, TFIDF and BM25, are discussed. And then maximum mutual information feature selection is introduced to achieve a low dimension VSM with less complexity, and at the same time keep an acceptable precision. The experimental results of spam filtering and short messages classification shows that the algorithm can achieve higher precision than existing algorithms under same conditions.

  1. Geochemical controls on shale groundwaters: Results of reaction path modeling

    SciTech Connect

    Von Damm, K.L.; VandenBrook, A.J.

    1989-03-01

    The EQ3NR/EQ6 geochemical modeling code was used to simulate the reaction of several shale mineralogies with different groundwater compositions in order to elucidate changes that may occur in both the groundwater compositions, and rock mineralogies and compositions under conditions which may be encountered in a high-level radioactive waste repository. Shales with primarily illitic or smectitic compositions were the focus of this study. The reactions were run at the ambient temperatures of the groundwaters and to temperatures as high as 250/degree/C, the approximate temperature maximum expected in a repository. All modeling assumed that equilibrium was achieved and treated the rock and water assemblage as a closed system. Graphite was used as a proxy mineral for organic matter in the shales. The results show that the presence of even a very small amount of reducing mineral has a large influence on the redox state of the groundwaters, and that either pyrite or graphite provides essentially the same results, with slight differences in dissolved C, Fe and S concentrations. The thermodynamic data base is inadequate at the present time to fully evaluate the speciation of dissolved carbon, due to the paucity of thermodynamic data for organic compounds. In the illitic cases the groundwaters resulting from interaction at elevated temperatures are acid, while the smectitic cases remain alkaline, although the final equilibrium mineral assemblages are quite similar. 10 refs., 8 figs., 15 tabs.

  2. Modeling of Syngas Reactions and Hydrogen Generation Over Sulfides

    SciTech Connect

    Kamil Klier; Jeffery A. Spirko; Michael L. Neiman

    2002-09-17

    The objective of the research is to analyze pathways of reactions of hydrogen with oxides of carbon over sulfides, and to predict which characteristics of the sulfide catalyst (nature of metal, defect structure) give rise to the lowest barriers toward oxygenated hydrocarbon product. Reversal of these pathways entails the generation of hydrogen, which is also proposed for study. In this first year of study, adsorption reactions of H atoms and H{sub 2} molecules with MoS{sub 2}, both in molecular and solid form, have been modeled using high-level density functional theory. The geometries and strengths of the adsorption sites are described and the methods used in the study are described. An exposed MO{sup IV} species modeled as a bent MoS{sub 2} molecule is capable of homopolar dissociative chemisorption of H{sub 2} into a dihydride S{sub 2}MoH{sub 2}. Among the periodic edge structures of hexagonal MoS{sub 2}, the (1{bar 2}11) edge is most stable but still capable of dissociating H{sub 2}, while the basal plane (0001) is not. A challenging task of theoretically accounting for weak bonding of MoS{sub 2} sheets across the Van der Waals gap has been addressed, resulting in a weak attraction of 0.028 eV/MoS{sub 2} unit, compared to the experimental value of 0.013 eV/MoS{sub 2} unit.

  3. A Transport Model for Nuclear Reactions Induced by Radioactive Beams

    SciTech Connect

    Li Baoan; Chen Liewen; Das, Champak B.; Das Gupta, Subal; Gale, Charles; Ko, C.M.; Yong, G.-C.; Zuo Wei

    2005-10-14

    Major ingredients of an isospin and momentum dependent transport model for nuclear reactions induced by radioactive beams are outlined. Within the IBUU04 version of this model we study several experimental probes of the equation of state of neutron-rich matter, especially the density dependence of the nuclear symmetry energy. Comparing with the recent experimental data from NSCL/MSU on isospin diffusion, we found a nuclear symmetry energy of Esym({rho}) {approx_equal} 31.6({rho}/{rho}0)1.05 at subnormal densities. Predictions on several observables sensitive to the density dependence of the symmetry energy at supranormal densities accessible at GSI and the planned Rare Isotope Accelerator (RIA) are also made.

  4. Description of quasifission reactions in the dinuclear system model

    NASA Astrophysics Data System (ADS)

    Adamian, G. G.; Antonenko, N. V.; Kalandarov, Sh. A.

    2016-01-01

    The formation and evolution of dinuclear systems in quasifission reactions are investigated. The process of formation of reaction products is analyzed based on the concept of a dinuclear system. Isotopic trends of cross sections of production of superheavy nuclei in quasifission reactions are discussed. The yields of new neutron-rich isotopes of nuclei with Z = 64-80 in quasifission reactions are predicted. The mechanism of production of complex fragments in complete fusion and quasifission reactions is analyzed.

  5. Prediction of Path Deviation in Robot Based Incremental Sheet Metal Forming by Means of a New Solid-Shell Finite Element Technology and a Finite Elastoplastic Model with Combined Hardening

    NASA Astrophysics Data System (ADS)

    Kiliclar, Yalin; Laurischkat, Roman; Vladimirov, Ivaylo N.; Reese, Stefanie

    2011-08-01

    The presented project deals with a robot based incremental sheet metal forming process, which is called roboforming and has been developed at the Chair of Production Systems. It is characterized by flexible shaping using a freely programmable path-synchronous movement of two industrial robots. The final shape is produced by the incremental infeed of the forming tool in depth direction and its movement along the part contour in lateral direction. However, the resulting geometries formed in roboforming deviate several millimeters from the reference geometry. This results from the compliance of the involved machine structures and the springback effects of the workpiece. The project aims to predict these deviations caused by resiliences and to carry out a compensative path planning based on this prediction. Therefore a planning tool is implemented which compensates the robots's compliance and the springback effects of the sheet metal. The forming process is simulated by means of a finite element analysis using a material model developed at the Institute of Applied Mechanics (IFAM). It is based on the multiplicative split of the deformation gradient in the context of hyperelasticity and combines nonlinear kinematic and isotropic hardening. Low-order finite elements used to simulate thin sheet structures, such as used for the experiments, have the major problem of locking, a nonphysical stiffening effect. For an efficient finite element analysis a special solid-shell finite element formulation based on reduced integration with hourglass stabilization has been developed. To circumvent different locking effects, the enhanced assumed strain (EAS) and the assumed natural strain (ANS) concepts are included in this formulation. Having such powerful tools available we obtain more accurate geometries.

  6. 12 CFR 324.208 - Incremental risk.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 5 2014-01-01 2014-01-01 false Incremental risk. 324.208 Section 324.208 Banks... ADEQUACY OF FDIC-SUPERVISED INSTITUTIONS Risk-Weighted Assets-Market Risk § 324.208 Incremental risk. (a) General requirement. An FDIC-supervised institution that measures the specific risk of a portfolio of...

  7. An Equilibrium-Based Model of Gas Reaction and Detonation

    SciTech Connect

    Trowbridge, L.D.

    2000-04-01

    During gaseous diffusion plant operations, conditions leading to the formation of flammable gas mixtures may occasionally arise. Currently, these could consist of the evaporative coolant CFC-114 and fluorinating agents such as F2 and ClF3. Replacement of CFC-114 with a non-ozone-depleting substitute is planned. Consequently, in the future, the substitute coolant must also be considered as a potential fuel in flammable gas mixtures. Two questions of practical interest arise: (1) can a particular mixture sustain and propagate a flame if ignited, and (2) what is the maximum pressure that can be generated by the burning (and possibly exploding) gas mixture, should it ignite? Experimental data on these systems, particularly for the newer coolant candidates, are limited. To assist in answering these questions, a mathematical model was developed to serve as a tool for predicting the potential detonation pressures and for estimating the composition limits of flammability for these systems based on empirical correlations between gas mixture thermodynamics and flammability for known systems. The present model uses the thermodynamic equilibrium to determine the reaction endpoint of a reactive gas mixture and uses detonation theory to estimate an upper bound to the pressure that could be generated upon ignition. The model described and documented in this report is an extended version of related models developed in 1992 and 1999.

  8. Reaction Diffusion Modeling of Calcium Dynamics with Realistic ER Geometry

    PubMed Central

    Means, Shawn; Smith, Alexander J.; Shepherd, Jason; Shadid, John; Fowler, John; Wojcikiewicz, Richard J. H.; Mazel, Tomas; Smith, Gregory D.; Wilson, Bridget S.

    2006-01-01

    We describe a finite-element model of mast cell calcium dynamics that incorporates the endoplasmic reticulum's complex geometry. The model is built upon a three-dimensional reconstruction of the endoplasmic reticulum (ER) from an electron tomographic tilt series. Tetrahedral meshes provide volumetric representations of the ER lumen, ER membrane, cytoplasm, and plasma membrane. The reaction-diffusion model simultaneously tracks changes in cytoplasmic and ER intraluminal calcium concentrations and includes luminal and cytoplasmic protein buffers. Transport fluxes via PMCA, SERCA, ER leakage, and Type II IP3 receptors are also represented. Unique features of the model include stochastic behavior of IP3 receptor calcium channels and comparisons of channel open times when diffusely distributed or aggregated in clusters on the ER surface. Simulations show that IP3R channels in close proximity modulate activity of their neighbors through local Ca2+ feedback effects. Cytoplasmic calcium levels rise higher, and ER luminal calcium concentrations drop lower, after IP3-mediated release from receptors in the diffuse configuration. Simulation results also suggest that the buffering capacity of the ER, and not restricted diffusion, is the predominant factor influencing average luminal calcium concentrations. PMID:16617072

  9. A Reaction-Diffusion Model of Cholinergic Retinal Waves

    PubMed Central

    Lansdell, Benjamin; Ford, Kevin; Kutz, J. Nathan

    2014-01-01

    Prior to receiving visual stimuli, spontaneous, correlated activity in the retina, called retinal waves, drives activity-dependent developmental programs. Early-stage waves mediated by acetylcholine (ACh) manifest as slow, spreading bursts of action potentials. They are believed to be initiated by the spontaneous firing of Starburst Amacrine Cells (SACs), whose dense, recurrent connectivity then propagates this activity laterally. Their inter-wave interval and shifting wave boundaries are the result of the slow after-hyperpolarization of the SACs creating an evolving mosaic of recruitable and refractory cells, which can and cannot participate in waves, respectively. Recent evidence suggests that cholinergic waves may be modulated by the extracellular concentration of ACh. Here, we construct a simplified, biophysically consistent, reaction-diffusion model of cholinergic retinal waves capable of recapitulating wave dynamics observed in mice retina recordings. The dense, recurrent connectivity of SACs is modeled through local, excitatory coupling occurring via the volume release and diffusion of ACh. In addition to simulation, we are thus able to use non-linear wave theory to connect wave features to underlying physiological parameters, making the model useful in determining appropriate pharmacological manipulations to experimentally produce waves of a prescribed spatiotemporal character. The model is used to determine how ACh mediated connectivity may modulate wave activity, and how parameters such as the spontaneous activation rate and sAHP refractory period contribute to critical wave size variability. PMID:25474327

  10. A multi-pathway model for photosynthetic reaction center.

    PubMed

    Qin, M; Shen, H Z; Yi, X X

    2016-03-28

    Charge separation occurs in a pair of tightly coupled chlorophylls at the heart of photosynthetic reaction centers of both plants and bacteria. Recently it has been shown that quantum coherence can, in principle, enhance the efficiency of a solar cell, working like a quantum heat engine. Here, we propose a biological quantum heat engine (BQHE) motivated by Photosystem II reaction center (PSII RC) to describe the charge separation. Our model mainly considers two charge-separation pathways which is more than that typically considered in the published literature. We explore how these cross-couplings increase the current and power of the charge separation and discuss the effects of multiple pathways in terms of current and power. The robustness of the BQHE against the charge recombination in natural PSII RC and dephasing induced by environments is also explored, and extension from two pathways to multiple pathways is made. These results suggest that noise-induced quantum coherence helps to suppress the influence of acceptor-to-donor charge recombination, and besides, nature-mimicking architectures with engineered multiple pathways for charge separations might be better for artificial solar energy devices considering the influence of environments. PMID:27036480

  11. Modeling chemical reactions in laser-induced plasmas

    NASA Astrophysics Data System (ADS)

    Shabanov, S. V.; Gornushkin, I. B.

    2015-11-01

    Under the assumption of local thermal equilibrium, a numerical algorithm is proposed to find the equation of state for laser-induced plasmas (LIPs) in which chemical reactions are permitted in addition to ionization processes. The Coulomb interaction in plasma is accounted for by the Debye-Hückel method. The algorithm is used to calculate the equation of state for LIPs containing carbon, silicon, nitrogen, and argon. The equilibrium reaction constants are calculated using the latest experimental and ab initio data of spectroscopic constants for the molecules {N}_2, {C}_2, {Si}_2, {CN}, {SiN}, {SiC} and their ions. The algorithm is incorporated into a fluid dynamic numerical model based on the Navier-Stokes equations describing an expansion of LIP plumes into an ambient gas. The dynamics of LIP plumes obtained by the ablation of SiC, solid silicon, or solid carbon in an ambient gas containing {N}_2 and Ar is simulated to study formation of molecules and molecular ions.

  12. A multi-pathway model for photosynthetic reaction center

    NASA Astrophysics Data System (ADS)

    Qin, M.; Shen, H. Z.; Yi, X. X.

    2016-03-01

    Charge separation occurs in a pair of tightly coupled chlorophylls at the heart of photosynthetic reaction centers of both plants and bacteria. Recently it has been shown that quantum coherence can, in principle, enhance the efficiency of a solar cell, working like a quantum heat engine. Here, we propose a biological quantum heat engine (BQHE) motivated by Photosystem II reaction center (PSII RC) to describe the charge separation. Our model mainly considers two charge-separation pathways which is more than that typically considered in the published literature. We explore how these cross-couplings increase the current and power of the charge separation and discuss the effects of multiple pathways in terms of current and power. The robustness of the BQHE against the charge recombination in natural PSII RC and dephasing induced by environments is also explored, and extension from two pathways to multiple pathways is made. These results suggest that noise-induced quantum coherence helps to suppress the influence of acceptor-to-donor charge recombination, and besides, nature-mimicking architectures with engineered multiple pathways for charge separations might be better for artificial solar energy devices considering the influence of environments.

  13. Modelling the Maillard reaction during the cooking of a model cheese.

    PubMed

    Bertrand, Emmanuel; Meyer, Xuân-Mi; Machado-Maturana, Elizabeth; Berdagué, Jean-Louis; Kondjoyan, Alain

    2015-10-01

    During processing and storage of industrial processed cheese, odorous compounds are formed. Some of them are potentially unwanted for the flavour of the product. To reduce the appearance of these compounds, a methodological approach was employed. It consists of: (i) the identification of the key compounds or precursors responsible for the off-flavour observed, (ii) the monitoring of these markers during the heat treatments applied to the cheese medium, (iii) the establishment of an observable reaction scheme adapted from a literature survey to the compounds identified in the heated cheese medium (iv) the multi-responses stoichiokinetic modelling of these reaction markers. Systematic two-dimensional gas chromatography time-of-flight mass spectrometry was used for the semi-quantitation of trace compounds. Precursors were quantitated by high-performance liquid chromatography. The experimental data obtained were fitted to the model with 14 elementary linked reactions forming a multi-response observable reaction scheme. PMID:25872449

  14. Incremental and independent value of cardiopulmonary exercise test measures and the Seattle Heart Failure Model for prediction of risk in patients with heart failure

    PubMed Central

    Dardas, Todd; Li, Yanhong; Reed, Shelby D.; O’Connor, Christopher M.; Whellan, David J.; Ellis, Stephen J.; Schulman, Kevin A.; Kraus, William E.; Forman, Daniel E.; Levy, Wayne C.

    2016-01-01

    Background Multivariable risk scores and exercise measures are well-validated risk prediction methods. Combining information from a functional evaluation and a risk model may improve accuracy of risk predictions. We analyzed whether adding exercise measures to the Seattle Heart Failure Model (SHFM) improves risk prediction accuracy in systolic heart failure. Methods and Results We used a sample of patients from the Heart Failure and A Controlled Trial Investigating Outcomes of Exercise TraiNing (HF-ACTION) study to examine the addition of peak VO2, VE/VCO2 slope, 6-minute walk distance (6MWD) or exercise duration (CPXDUR) to the SHFM. Multivariable Cox proportional hazards models were used to test the association between the combined endpoint (death, LVAD or cardiac transplantation) and the addition of exercise variables to the SHFM. 2152 patients were included in the sample. The SHFM and all exercise measures were associated with events (all p-values<0.0001) in proportional hazards models. There was statistically significant improvement in risk estimation when exercise measures were added to the SHFM. However, the improvement in c-index for addition of peak VO2 (+0.01), VE/VCO2 (+0.02), 6MWD (−0.001) and CPXDUR (+0.001) to the SHFM was small or slightly worse than the SHFM alone. Changes in risk assignment with the addition of exercise variables were minimal for patients above or below a15% 1-year mortality. Conclusions Exercise performance measures and the SHFM are independently useful for predicting risk in systolic heart failure. Adding CPET measures and 6MWD to the SHFM offers only minimal improvement in risk reassignment at clinically meaningful cutpoints. PMID:25940075

  15. Clustering recognition model for intermediate energy heavy ion reactions

    SciTech Connect

    Garcia-Solis, E.J.; Mignerey, A.C.

    1996-07-01

    A clustering model which allows the recognition of mass fragments from dynamical simulations has been developed. Studying the evolution of a microscopic computation based on the nuclear Boltzman equation, a suitable time is chosen to define bound clusters. At this stopping time the cluster cores for each member of the distribution are defined as a function of the overall density. Then an iterative routine is applied to estimate the coalescence of the surrounding nucleons. Once the fragment formation has been established, a statistical decay code is used to generate the final fragment distributions. Applications are shown to the reactions {sup 129}Xe + {sup nat}Cu at 50 MeV/nucleon and {sup 139}La on {sup 27}Al and {sup nat}Cu at 45 MeV/nucleon. A general improvement in cluster identification is found over approaches where a standard cluster separation algorithm has been used. {copyright} {ital 1996 The American Physical Society.}

  16. 40 CFR 60.1610 - How do I comply with the increment of progress for submittal of a control plan?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false How do I comply with the increment of progress for submittal of a control plan? 60.1610 Section 60.1610 Protection of Environment ENVIRONMENTAL... Before August 30, 1999 Model Rule-Increments of Progress § 60.1610 How do I comply with the increment...

  17. a Model Study of Complex Behavior in the Belousov - Reaction.

    NASA Astrophysics Data System (ADS)

    Lindberg, David Mark

    1988-12-01

    We have studied the complex oscillatory behavior in a model of the Belousov-Zhabotinskii (BZ) reaction in a continuously-fed stirred tank reactor (CSTR). The model consisted of a set of nonlinear ordinary differential equations derived from a reduced mechanism of the chemical system. These equations were integrated numerically on a computer, which yielded the concentrations of the constituent chemicals as functions of time. In addition, solutions were tracked as functions of a single parameter, the stability of the solutions was determined, and bifurcations of the solutions were located and studied. The intent of this study was to use this BZ model to explore further a region of complex oscillatory behavior found in experimental investigations, the most thorough of which revealed an alternating periodic-chaotic (P-C) sequence of states. A P-C sequence was discovered in the model which showed the same qualitative features as the experimental sequence. In order to better understand the P-C sequence, a detailed study was conducted in the vicinity of the P-C sequence, with two experimentally accessible parameters as control variables. This study mapped out the bifurcation sets, and included examination of the dynamics of the stable periodic, unstable periodic, and chaotic oscillatory motion. Observations made from the model results revealed a rough symmetry which suggests a new way of looking at the P-C sequence. Other nonlinear phenomena uncovered in the model were boundary and interior crises, several codimension-two bifurcations, and similarities in the shapes of areas of stability for periodic orbits in two-parameter space. Each earlier model study of this complex region involved only a limited one-parameter scan and had limited success in producing agreement with experiments. In contrast, for those regions of complex behavior that have been studied experimentally, the observations agree qualitatively with our model results. Several new predictions of the model

  18. A new receptor model-incremental lifetime cancer risk method to quantify the carcinogenic risks associated with sources of particle-bound polycyclic aromatic hydrocarbons from Chengdu in China.

    PubMed

    Liu, Gui-Rong; Peng, Xing; Wang, Rong-Kang; Tian, Ying-Ze; Shi, Guo-Liang; Wu, Jian-Hui; Zhang, Pu; Zhou, Lai-Dong; Feng, Yin-Chang

    2015-01-01

    PM10 and PM2.5 samples were simultaneously collected during a one-year monitoring period in Chengdu. The concentrations of 16 particle-bound polycyclic aromatic hydrocarbons (Σ16PAHs) were measured. Σ16PAHs concentrations varied from 16.85 to 160.24 ng m(-3) and 14.93 to 111.04ngm(-3) for PM10 and PM2.5, respectively. Three receptor models (principal component analysis (PCA), positive matrix factorization (PMF), and Multilinear Engine 2 (ME2)) were applied to investigate the sources and contributions of PAHs. The results obtained from the three receptor models were compared. Diesel emissions, gasoline emissions, and coal and wood combustion were the primary sources. Source apportionment results indicated that these models were able to track the ΣPAHs. For the first time, the cancer risks for each identified source were quantitatively calculated for ingestion and dermal contact routes by combining the incremental lifetime cancer risk (ILCR) values with the estimated source contributions. The results showed that gasoline emissions posed the highest cancer risk, even though it contributed less to Σ16PAHs. The results and method from this work can provide useful information for quantifying the toxicity of source categories and studying human health in the future. PMID:25464284

  19. Physics Based Reaction Burn Model Prediction of Reaction Initiation and Growth in RDX for Thin and Thick Impactor

    NASA Astrophysics Data System (ADS)

    Dwivedi, Sunil; Horie, Yasuyuki

    2011-06-01

    PBRB model for reactive composites simulates the reaction initiation and growth leading to detonation with built-in models for multiple individual as well as coupled phenomena: pre-existing statistical pore distribution, energy dissipation during shock loading and hot spot formations, surface temperature increase of the planar pore surfaces, surface reaction by sublimation, gas phase reaction, gas phase temperature rise and reverse heat flow to the pore surface aiding the surface reaction, solid phase heat conduction, etc. 1D idealized hot spot cell (1DHSC) version of the 3D PBRB model has been converted to a vectorized EOS form for the first time. Results validating the model with the pop plot of RDX in agreement with data through simulation of an assumed plate impact experiment will be presented. In addition, the effect of the surface sublimation model parameters on the rate of reaction, detonation shock pressure, and von-Neumann's peak for thin and thick inert impactor will be presented. We acknowledge Dr. Betsy Rice (ARL), Dr. Suhithi Peiris (DTRA) and Dr. John Brennan (ARL) for their support and discussion. This work is supported by Eglin AFB contract FA8651-08-0108/027 and in part by DTRA contract HDTRA-1-10-1-0035.

  20. Model studies on the first enzyme-catalyzed Ugi reaction.

    PubMed

    Kłossowski, Szymon; Wiraszka, Barbara; Berłożecki, Stanisław; Ostaszewski, Ryszard

    2013-02-01

    Multicomponent reactions are powerful tools for organic chemistry, and among them, the Ugi reaction provides remarkable improvement in many fields of organic chemistry such us combinatorial chemistry, medicinal chemistry, and peptide chemistry. A new, enzyme-catalyzed example of the Ugi three-component reaction is presented. The studies include the selection of an enzyme as well as determination of the scope and limitations of the newly described reaction. The presented method combines the enzyme promiscuity and multicomponent reaction advantages in the first one-pot formation of dipeptide 1. PMID:23343100

  1. Chemical Reaction and Flow Modeling in Fullerene and Nanotube Production

    NASA Technical Reports Server (NTRS)

    Scott, Carl D.; Farhat, Samir; Greendyke, Robert B.

    2004-01-01

    The development of processes to produce fullerenes and carbon nanotubes has largely been empirical. Fullerenes were first discovered in the soot produced by laser ablation of graphite [1]and then in the soot of electric arc evaporated carbon. Techniques and conditions for producing larger and larger quantities of fullerenes depended mainly on trial and error empirical variations of these processes, with attempts to scale them up by using larger electrodes and targets and higher power. Various concepts of how fullerenes and carbon nanotubes were formed were put forth, but very little was done based on chemical kinetics of the reactions. This was mainly due to the complex mixture of species and complex nature of conditions in the reactors. Temperatures in the reactors varied from several thousand degrees Kelvin down to near room temperature. There are hundreds of species possible, ranging from atomic carbon to large clusters of carbonaceous soot, and metallic catalyst atoms to metal clusters, to complexes of metals and carbon. Most of the chemical kinetics of the reactions and the thermodynamic properties of clusters and complexes have only been approximated. In addition, flow conditions in the reactors are transient or unsteady, and three dimensional, with steep spatial gradients of temperature and species concentrations. All these factors make computational simulations of reactors very complex and challenging. This article addresses the development of the chemical reaction involved in fullerene production and extends this to production of carbon nanotubes by the laser ablation/oven process and by the electric arc evaporation process. In addition, the high-pressure carbon monoxide (HiPco) process is discussed. The article is in several parts. The first one addresses the thermochemical aspects of modeling; and considers the development of chemical rate equations, estimates of reaction rates, and thermodynamic properties where they are available. The second part

  2. Incremental Discriminant Analysis in Tensor Space

    PubMed Central

    Chang, Liu; Weidong, Zhao; Tao, Yan; Qiang, Pu; Xiaodan, Du

    2015-01-01

    To study incremental machine learning in tensor space, this paper proposes incremental tensor discriminant analysis. The algorithm employs tensor representation to carry on discriminant analysis and combine incremental learning to alleviate the computational cost. This paper proves that the algorithm can be unified into the graph framework theoretically and analyzes the time and space complexity in detail. The experiments on facial image detection have shown that the algorithm not only achieves sound performance compared with other algorithms, but also reduces the computational issues apparently. PMID:26339229

  3. Modeling of cylindrical alkaline cells III. Mixed-reaction model for the anode

    SciTech Connect

    Chen, Jenn-Shing; Cheh, H.Y. )

    1993-05-01

    A mixed-reaction model has been developed to simulate the discharge behavior of cylindrical alkaline zinc-manganese dioxide primary cells. The analysis of the system considers a whole prismatic cell consisting of a zinc amalgam anode, an inert porous separator, and a manganese dioxide cathode. The domain of investigation extends from the anode to the cathode current collector. The model is based on a macrohomogeneous theory of porous electrodes and includes considerations for the ohmic potential drop, diffusion and convection in the electrolyte, change in porosity and electrolyte decomposition due to chemical and electrochemical reactions, charge-transfer effects, and ionic transport in a concentrated electrolyte. The anode is considered to be a reversible, nonpolarizable electrode with two anodic reactions occurring simultaneously. A parameter which is based on the ratio of the extent of the two reactions is used to characterize the anode-mixed reactions. A solid-state proton diffusion as well as a direct charge transfer are used to describe the cathodic reaction. The performance between cells of different sizes is compared at the same galvanostatic discharge rates per unit cathode mass. Sources of polarization are identified, and the influence of cell behavior by the different operating variables are examined.

  4. Reaction time in ankle movements: a diffusion model analysis

    PubMed Central

    Michmizos, Konstantinos P.; Krebs, Hermano Igo

    2015-01-01

    Reaction time (RT) is one of the most commonly used measures of neurological function and dysfunction. Despite the extensive studies on it, no study has ever examined the RT in the ankle. Twenty-two subjects were recruited to perform simple, 2- and 4-choice RT tasks by visually guiding a cursor inside a rectangular target with their ankle. RT did not change with spatial accuracy constraints imposed by different target widths in the direction of the movement. RT increased as a linear function of potential target stimuli, as would be predicted by Hick–Hyman law. Although the slopes of the regressions were similar, the intercept in dorsal–plantar (DP) direction was significantly smaller than the intercept in inversion–eversion (IE) direction. To explain this difference, we used a hierarchical Bayesian estimation of the Ratcliff's (Psychol Rev 85:59, 1978) diffusion model parameters and divided processing time into cognitive components. The model gave a good account of RTs, their distribution and accuracy values, and hence provided a testimony that the non-decision processing time (overlap of posterior distributions between DP and IE < 0.045), the boundary separation (overlap of the posterior distributions < 0.1) and the evidence accumulation rate (overlap of the posterior distributions < 0.01) components of the RT accounted for the intercept difference between DP and IE. The model also proposed that there was no systematic change in non-decision processing time or drift rate when spatial accuracy constraints were altered. The results were in agreement with the memory drum hypothesis and could be further justified neurophysiologically by the larger innervation of the muscles controlling DP movements. This study might contribute to assessing deficits in sensorimotor control of the ankle and enlighten a possible target for correction in the framework of our on-going effort to develop robotic therapeutic interventions to the ankle of children with cerebral palsy

  5. A comprehensive model to determine the effects of temperature and species fluctuations on reaction rates in turbulent reaction flows

    NASA Technical Reports Server (NTRS)

    Magnotti, F.; Diskin, G.; Matulaitis, J.; Chinitz, W.

    1984-01-01

    The use of silane (SiH4) as an effective ignitor and flame stabilizing pilot fuel is well documented. A reliable chemical kinetic mechanism for prediction of its behavior at the conditions encountered in the combustor of a SCRAMJET engine was calculated. The effects of hydrogen addition on hydrocarbon ignition and flame stabilization as a means for reduction of lengthy ignition delays and reaction times were studied. The ranges of applicability of chemical kinetic models of hydrogen-air combustors were also investigated. The CHARNAL computer code was applied to the turbulent reaction rate modeling.

  6. Comprehensive model to determine the effects of temperature and species fluctuations on reaction rates in turbulent reaction flows

    SciTech Connect

    Magnotti, F.; Diskin, G.; Matulaitis, J.; Chinitz, W.

    1984-01-01

    The use of silane (SiH4) as an effective ignitor and flame stabilizing pilot fuel is well documented. A reliable chemical kinetic mechanism for prediction of its behavior at the conditions encountered in the combustor of a SCRAMJET engine was calculated. The effects of hydrogen addition on hydrocarbon ignition and flame stabilization as a means for reduction of lengthy ignition delays and reaction times were studied. The ranges of applicability of chemical kinetic models of hydrogen-air combustors were also investigated. The CHARNAL computer code was applied to the turbulent reaction rate modeling.

  7. Separate and combined effects of gabapentin and [INCREMENT]9-tetrahydrocannabinol in humans discriminating [INCREMENT]9-tetrahydrocannabinol.

    PubMed

    Lile, Joshua A; Wesley, Michael J; Kelly, Thomas H; Hays, Lon R

    2016-04-01

    The aim of the present study was to examine a potential mechanism of action of gabapentin to manage cannabis-use disorders by determining the interoceptive effects of gabapentin in cannabis users discriminating [INCREMENT]-tetrahydrocannabinol ([INCREMENT]-THC) using a pharmacologically selective drug-discrimination procedure. Eight cannabis users learned to discriminate 30 mg oral [INCREMENT]-THC from placebo and then received gabapentin (600 and 1200 mg), [INCREMENT]-THC (5, 15, and 30 mg), and placebo alone and in combination. Self-report, task performance, and physiological measures were also collected. [INCREMENT]-THC served as a discriminative stimulus, produced positive subjective effects, elevated heart rate, and impaired psychomotor performance. Both doses of gabapentin substituted for the [INCREMENT]-THC discriminative stimulus and engendered subjective and performance-impairing effects that overlapped with those of [INCREMENT]-THC when administered alone. When administered concurrently, gabapentin shifted the discriminative-stimulus effects of [INCREMENT]-THC leftward/upward, and combinations of [INCREMENT]-THC and gabapentin generally produced larger effects on cannabinoid-sensitive outcomes relative to [INCREMENT]-THC alone. These results suggest that one mechanism by which gabapentin might facilitate cannabis abstinence is by producing effects that overlap with those of cannabinoids. PMID:26313650

  8. Environmental Aspects Regarding The Incremental Forming Process

    NASA Astrophysics Data System (ADS)

    Tera, Melania

    2015-09-01

    Future technologies should aim at reducing the consumption of raw materials and energy, avoid technical losses, to save energy and mineral resources, to minimize the emissions and waste, eliminate any irrational use of all resources and also to minimize the environmental impact. The paper present from environmental point of view both a classic forming process such as deep-drawing and incremental forming process. The paper gives an overview of the main environmental aspects regarding the incremental forming process.

  9. Estimating the Optimum Number of Options per Item Using an Incremental Option Paradigm.

    ERIC Educational Resources Information Center

    Trevisan, Michael S.; And Others

    1994-01-01

    The reliabilities of 2-, 3-, 4-, and 5-choice tests were compared through an incremental-option model on a test taken by 154 high school seniors. Creating the test forms incrementally more closely approximates actual test construction. The nonsignificant differences among the option choices support the three-option item. (SLD)

  10. Comparison of the Incremental Validity of the Old and New MCAT.

    ERIC Educational Resources Information Center

    Wolf, Fredric M.; And Others

    The predictive and incremental validity of both the Old and New Medical College Admission Test (MCAT) was examined and compared with a sample of over 300 medical students. Results of zero order and incremental validity coefficients, as well as prediction models resulting from all possible subsets regression analyses using Mallow's Cp criterion,…

  11. External Device to Incrementally Skid the Habitat (E-DISH)

    NASA Technical Reports Server (NTRS)

    Brazell, J. W.; Introne, Steve; Bedell, Lisa; Credle, Ben; Holp, Graham; Ly, Siao; Tait, Terry

    1994-01-01

    A Mars habitat transport system was designed as part of the NASA Mars exploration program. The transport system, the External Device to Incrementally Skid the Habitat (E - DISH), will be used to transport Mars habitats from their landing sites to the colony base and will be detached after unloading. The system requirements for Mars were calculated and scaled for model purposes. Specific model materials are commonly found and recommendations for materials for the Mars design are included.

  12. Glauber model for {alpha}-nucleus total reaction cross section

    SciTech Connect

    Chauhan, Deeksha; Khan, Z. A.

    2009-11-15

    The Coulomb-modified Glauber model is employed to calculate the total reaction cross section ({sigma}{sub R}) for {alpha} particles from {sup 9}Be, {sup 12}C, {sup 16}O, {sup 28}Si, {sup 40}Ca, {sup 58,60}Ni, {sup 112,116,120,124}Sn, and {sup 208}Pb at 117.2, 163.9, and 192.4 MeV and from the lighter nuclei also at 69.6 MeV. Our main focus in this work is to assess the suitability of semiphenomenological parametrization of the NN amplitude (SPNN), used recently [Deeksha Chauhan and Z. A. Khan, Eur. Phys. J. A 41, 179 (2009)], in the analysis of {sigma}{sub R} at the energies under consideration. Using the realistic form factors for the colliding nuclei, it is found that the SPNN works reasonably well and we have quite a satisfactory account of the {sigma}{sub R} data in all the cases. Moreover, our analysis suggests that the SPNN could be taken as fairly stable to describe simultaneously the elastic angular distribution and the {sigma}{sub R} for a wide range of target nuclei in the relatively low-energy region.

  13. Pseudo-Reaction Zone model calibration for Programmed Burn calculations

    NASA Astrophysics Data System (ADS)

    Chiquete, Carlos; Meyer, Chad D.; Quirk, James J.; Short, Mark

    2015-06-01

    The Programmed Burn (PB) engineering methodology for efficiently calculating detonation timing and energy delivery within high explosive (HE) engineering geometries separates the calculation of these two core components. Modern PB approaches utilize Detonation Shock Dynamics (DSD) to provide accurate time-of-arrival information throughout a given geometry, via an experimentally calibrated propagation law relating the surface normal velocity to its local curvature. The Pseudo-Reaction Zone (PRZ) methodology is then used to release the explosive energy in a finite span following the prescribed arrival of the DSD propagated front through a reactive, hydrodynamic calculation. The PRZ energy release rate must be coupled to the local burn velocity set by the DSD surface evolution. In order to synchronize the energy release to the attendant timing calculation, detonation velocity and front shapes resulting from reactive burn simulations utilizing the PRZ rate law and parameters will be fitted to analogues generated via the applied DSD propagation law, thus yielding the PRZ model calibration for the HE.

  14. Mechanism of the Exchange Reaction in HRAS from Multiscale Modeling

    PubMed Central

    Kapoor, Abhijeet; Travesset, Alex

    2014-01-01

    HRAS regulates cell growth promoting signaling processes by cycling between active (GTP-bound) and inactive (GDP-bound) states. Understanding the transition mechanism is central for the design of small molecules to inhibit the formation of RAS-driven tumors. Using a multiscale approach involving coarse-grained (CG) simulations, all-atom classical molecular dynamics (CMD; total of 3.02 µs), and steered molecular dynamics (SMD) in combination with Principal Component Analysis (PCA), we identified the structural features that determine the nucleotide (GDP) exchange reaction. We show that weakening the coupling between the SwitchI (residues 25–40) and SwitchII (residues 59–75) accelerates the opening of SwitchI; however, an open conformation of SwitchI is unstable in the absence of guanine nucleotide exchange factors (GEFs) and rises up towards the bound nucleotide to close the nucleotide pocket. Both I21 and Y32, play a crucial role in SwitchI transition. We show that an open SwitchI conformation is not necessary for GDP destabilization but is required for GDP/Mg escape from the HRAS. Further, we present the first simulation study showing displacement of GDP/Mg away from the nucleotide pocket. Both SwitchI and SwitchII, delays the escape of displaced GDP/Mg in the absence of GEF. Based on these results, a model for the mechanism of GEF in accelerating the exchange process is hypothesized. PMID:25272152

  15. Simulations of diffusion-reaction equations with implications to turbulent combustion modeling

    NASA Technical Reports Server (NTRS)

    Girimaji, Sharath S.

    1993-01-01

    An enhanced diffusion-reaction reaction system (DRS) is proposed as a statistical model for the evolution of multiple scalars undergoing mixing and reaction in an isotropic turbulence field. The DRS model is close enough to the scalar equations in a reacting flow that other statistical models of turbulent mixing that decouple the velocity field from scalar mixing and reaction (e.g. mapping closure model, assumed-pdf models) cannot distinguish the model equations from the original equations. Numerical simulations of DRS are performed for three scalars evolving from non-premixed initial conditions. A simple one-step reversible reaction is considered. The data from the simulations are used (1) to study the effect of chemical conversion on the evolution of scalar statistics, and (2) to evaluate other models (mapping-closure model, assumed multivariate beta-pdf model).

  16. Understanding the incremental value of novel diagnostic tests for tuberculosis.

    PubMed

    Arinaminpathy, Nimalan; Dowdy, David

    2015-12-01

    Tuberculosis is a major source of global mortality caused by infection, partly because of a tremendous ongoing burden of undiagnosed disease. Improved diagnostic technology may play an increasingly crucial part in global efforts to end tuberculosis, but the ability of diagnostic tests to curb tuberculosis transmission is dependent on multiple factors, including the time taken by a patient to seek health care, the patient's symptoms, and the patterns of transmission before diagnosis. Novel diagnostic assays for tuberculosis have conventionally been evaluated on the basis of characteristics such as sensitivity and specificity, using assumptions that probably overestimate the impact of diagnostic tests on transmission. We argue for a shift in focus to the evaluation of such tests' incremental value, defining outcomes that reflect each test's purpose (for example, transmissions averted) and comparing systems with the test against those without, in terms of those outcomes. Incremental value can also be measured in units of outcome per incremental unit of resource (for example, money or human capacity). Using a novel, simplified model of tuberculosis transmission that addresses some of the limitations of earlier tuberculosis diagnostic models, we demonstrate that the incremental value of any novel test depends not just on its accuracy, but also on elements such as patient behaviour, tuberculosis natural history and health systems. By integrating these factors into a single unified framework, we advance an approach to the evaluation of new diagnostic tests for tuberculosis that considers the incremental value at the population level and demonstrates how additional data could inform more-effective implementation of tuberculosis diagnostic tests under various conditions. PMID:26633767

  17. International Space Station Increment Operations Services

    NASA Astrophysics Data System (ADS)

    Michaelis, Horst; Sielaff, Christian

    2002-01-01

    The Industrial Operator (IO) has defined End-to-End services to perform efficiently all required operations tasks for the Manned Space Program (MSP) as agreed during the Ministerial Council in Edinburgh in November 2001. Those services are the result of a detailed task analysis based on the operations processes as derived from the Space Station Program Implementation Plans (SPIP) and defined in the Operations Processes Documents (OPD). These services are related to ISS Increment Operations and ATV Mission Operations. Each of these End-to-End services is typically characterised by the following properties: It has a clearly defined starting point, where all requirements on the end-product are fixed and associated performance metrics of the customer are well defined. It has a clearly defined ending point, when the product or service is delivered to the customer and accepted by him, according to the performance metrics defined at the start point. The implementation of the process might be restricted by external boundary conditions and constraints mutually agreed with the customer. As far as those are respected the IO has the free choice to select methods and means of implementation. The ISS Increment Operations Service (IOS) activities required for the MSP Exploitation program cover the complete increment specific cycle starting with the support to strategic planning and ending with the post increment evaluation. These activities are divided into sub-services including the following tasks: - ISS Planning Support covering the support to strategic and tactical planning up to the generation - Development &Payload Integration Support - ISS Increment Preparation - ISS Increment Execution These processes are tight together by the Increment Integration Management, which provides the planning and scheduling of all activities as well as the technical management of the overall process . The paper describes the entire End-to-End ISS Increment Operations service and the

  18. Nitric oxide dioxygenation reaction by oxy-coboglobin models: in-situ low-temperature FTIR characterization of coordinated peroxynitrite.

    PubMed

    Kurtikyan, Tigran S; Eksuzyan, Shahane R; Hayrapetyan, Vardan A; Martirosyan, Garik G; Hovhannisyan, Gohar S; Goodwin, John A

    2012-08-22

    The oxy-cobolglobin models of the general formula (NH(3))Co(Por)(O(2)) (Por = meso-tetra-phenyl and meso-tetra-p-tolylporphyrinato dianions) were constructed by sequential low temperature interaction of NH(3) and dioxygen with microporous layers of Co-porphyrins. At cryogenic temperatures small increments of NO were introduced into the cryostat and the following reactions were monitored by the FTIR and UV-visible spectroscopy during slow warming. Upon warming the layers from 80 to 120 K a set of new IR bands grows with correlating intensities along with the consumption of the ν(O(2)) band. Isotope labeling experiments with (18)O(2), (15)NO and N(18)O along with DFT calculations provides a basis for assigning them to the six-coordinate peroxynitrite complexes (NH(3))Co(Por)(OONO). Over the course of warming the layers from 140 to 170 K these complexes decompose and there are spectral features suggesting the formation of nitrogen dioxide NO(2). Upon keeping the layers at 180-210 K the bands of NO(2) gradually decrease in intensity and the set of new bands grows in the range of 1480, 1270, and 980 cm(-1). These bands have their isotopic counterparts when (15)NO, (18)O(2) and N(18)O are used in the experiments and certainly belong to the 6-coordinate nitrato complexes (NH(3))Co(Por)(η(1)-ONO(2)) demonstrating the ability of oxy coboglobin models to promote the nitric oxide dioxygenation (NOD) reaction similar to oxy-hemes. As in the case of Hb, Mb and model iron-porphyrins, the six-coordinate nitrato complexes are not stable at room temperature and dissociate to give nitrate anion and oxidized cationic complex Co(III)(Por)(NH(3))(1,2). PMID:22881578

  19. Chemical reaction model for oil and gas generation from type 1 and type 2 kerogen

    SciTech Connect

    Braun, R.L.; Burnham, A.K.

    1993-06-01

    A global model for the generation of oil and gas from petroleum source rocks is presented. The model consists of 13 chemical species and 10 reactions, including an alternate-pathway mechanism for kerogen pyrolysis. Reaction rate parameters and stoichiometry coefficients determined from a variety of pyrolysis data are given for both type I and type II kerogen. Use of the chemical reaction model is illustrated for typical geologic conditions.

  20. Transport Properties of a Kinetic Model for Chemical Reactions without Barriers

    SciTech Connect

    Alves, Giselle M.; Kremer, Gilberto M.; Soares, Ana Jacinta

    2011-05-20

    A kinetic model of the Boltzmann equation for chemical reactions without energy barrier is considered here with the aim of evaluating the reaction rate and characterizing the transport coefficient of shear viscosity for the reactive system. The Chapman-Enskog solution of the Boltzmann equation is used to compute the chemical reaction effects, in a flow regime for which the reaction process is close to the final equilibrium state. Some numerical results are provided illustrating that the considered chemical reaction without energy barrier can induce an appreciable influence on the reaction rate and on the transport coefficient of shear viscosity.

  1. Ares I Reaction Control System Propellant Feedline Decontamination Modeling

    NASA Technical Reports Server (NTRS)

    Pasch, James J.

    2010-01-01

    The objective of the work presented here is to quantify the effects of purge gas temperature, pressure, and mass flow rate on Hydrazine (Hz) decontamination rates of the Ares I Roll Control System and Reaction Control System. A survey of experts in this field revealed the absence of any decontamination rate prediction models. Three basic decontamination methods were identified for analysis and modeling. These include low pressure eduction, high flow rate purge, and pulse purge. For each method, an approach to predict the Hz mass transfer rate, as a function of system pressure, temperature, and purge gas mass flow rate, is developed based on the applicable physics. The models show that low pressure eduction is two orders of magnitude more effective than the high velocity purge, which in turn is two orders of magnitude more effective than the pure diffusion component of pulse purging of deadheads. Eduction subjects the system to low pressure conditions that promote the extraction of Hz vapors. At 120 F, Hz is saturated at approximately 1 psia. At lower pressures and 120 F, Hz will boil, which is an extremely efficient means to remove liquid Hz. The Hz boiling rate is predicted by equating the rate at which energy is added to the saturated liquid Hz through heaters at the tube outer wall with the energy removed from the liquid through evaporation. Boil-off fluxes were predicted by iterating through the range of local pressures with limits set by the minimum allowed pressure of 0.2 psia and maximum allowed wall temperature of 120 F established by the heaters, which gives a saturation pressure of approximately 1.0 psia. Figure 1 shows the resulting boil-off fluxes as a function of local eduction pressure. As depicted in figure 1, the flux is a strong inverse function of eduction pressure, and that minimizing the eduction pressure maximizes the boil-off flux. Also, higher outer wall temperatures lead to higher boil-off fluxes and allow for boil-off over a greater range

  2. Modeling Scalable Pattern Generation in DNA Reaction Networks

    PubMed Central

    Allen, Peter B.; Chen, Xi; Simpson, Zack B.; Ellington, Andrew D.

    2013-01-01

    We have developed a theoretical framework for developing patterns in multiple dimensions using controllable diffusion and designed reactions implemented in DNA. This includes so-called strand displacement reactions in which one single-stranded DNA hybridizes to a hemi-duplex DNA and displaces another single-stranded DNA, reversibly or irreversibly. These reactions can be designed to proceed with designed rate and molecular specificity. By also controlling diffusion by partial complementarity to a stationary, cross-linked DNA, we can generate predictable patterns. We demonstrate this with several simulations showing deterministic, predictable shapes in space. PMID:25506295

  3. The general mathematical model of CO oxidation reaction over Pd-zeolite catalyst

    NASA Astrophysics Data System (ADS)

    Kurkina, E. S.; Tolstunova, E. D.

    2001-10-01

    A new distributed mathematical model of reaction of CO oxidation over Pd-zeolite catalyst is presented. The model takes into account passing of the reactant flow through the catalyst layer, diffusion in pores of zeolite matrix, reaction on the surface of embedded Pd clusters, heat effect of the reaction, heat and mass transfer across the catalyst layer. Reaction on the Pd clusters is described by the new point model suggested herein. The model admits the existence of regular, chaotic and mixed-mode oscillations at the values of the parameters close to the experimental conditions.

  4. Modeling adsorption and reactions of organic molecules at metal surfaces.

    PubMed

    Liu, Wei; Tkatchenko, Alexandre; Scheffler, Matthias

    2014-11-18

    CONSPECTUS: The understanding of adsorption and reactions of (large) organic molecules at metal surfaces plays an increasingly important role in modern surface science and technology. Such hybrid inorganic/organic systems (HIOS) are relevant for many applications in catalysis, light-emitting diodes, single-molecule junctions, molecular sensors and switches, and photovoltaics. Obviously, the predictive modeling and understanding of the structure and stability of such hybrid systems is an essential prerequisite for tuning their electronic properties and functions. At present, density-functional theory (DFT) is the most promising approach to study the structure, stability, and electronic properties of complex systems, because it can be applied to both molecules and solids comprising thousands of atoms. However, state-of-the-art approximations to DFT do not provide a consistent and reliable description for HIOS, which is largely due to two issues: (i) the self-interaction of the electrons with themselves arising from the Hartree term of the total energy that is not fully compensated in approximate exchange-correlation functionals, and (ii) the lack of long-range part of the ubiquitous van der Waals (vdW) interactions. The self-interaction errors sometimes lead to incorrect description of charge transfer and electronic level alignment in HIOS, although for molecules adsorbed on metals these effects will often cancel out in total energy differences. Regarding vdW interactions, several promising vdW-inclusive DFT-based methods have been recently demonstrated to yield remarkable accuracy for intermolecular interactions in the gas phase. However, the majority of these approaches neglect the nonlocal collective electron response in the vdW energy tail, an effect that is particularly strong in condensed phases and at interfaces between different materials. Here we show that the recently developed DFT+vdW(surf) method that accurately accounts for the collective electronic

  5. Chemical modeling of irreversible reactions in nuclear waste-water-rock systems

    SciTech Connect

    Wolery, T.J.

    1981-02-01

    Chemical models of aqueous geochemical systems are usually built on the concept of thermodynamic equilibrium. Though many elementary reactions in a geochemical system may be close to equilibrium, others may not be. Chemical models of aqueous fluids should take into account that many aqueous redox reactions are among the latter. The behavior of redox reactions may critically affect migration of certain radionuclides, especially the actinides. In addition, the progress of reaction in geochemical systems requires thermodynamic driving forces associated with elementary reactions not at equilibrium, which are termed irreversible reactions. Both static chemical models of fluids and dynamic models of reacting systems have been applied to a wide spectrum of problems in water-rock interactions. Potential applications in nuclear waste disposal range from problems in geochemical aspects of site evaluation to those of waste-water-rock interactions. However, much further work in the laboratory and the field will be required to develop and verify such applications of chemical modeling.

  6. Recent Developments of the Nuclear Reaction Model Code EMPIRE

    SciTech Connect

    Herman, M.; Oblozinsky, P.; Capote, R.; Trkov, A.; Zerkin, V.; Sin, M.; Ventura, A.

    2005-05-24

    Recent extensions and improvements of the EMPIRE code system are outlined. They add to the code new capabilities such as fission of actinides, preequilibrium emission of clusters, photo-nuclear reactions, and reactions on excited targets. These features, along with improved ENDF formatting, exclusive spectra, and recoils make the forthcoming 2.19 release a complete tool for evaluation of nuclear data at incident energies above the resonance region.

  7. Observers for Systems with Nonlinearities Satisfying an Incremental Quadratic Inequality

    NASA Technical Reports Server (NTRS)

    Acikmese, Ahmet Behcet; Corless, Martin

    2004-01-01

    We consider the problem of state estimation for nonlinear time-varying systems whose nonlinearities satisfy an incremental quadratic inequality. These observer results unifies earlier results in the literature; and extend it to some additional classes of nonlinearities. Observers are presented which guarantee that the state estimation error exponentially converges to zero. Observer design involves solving linear matrix inequalities for the observer gain matrices. Results are illustrated by application to a simple model of an underwater.

  8. MELTING OF GLASS BATCH - MODEL FOR MULTIPLE OVERLAPPING GAS-EVOLVING REACTIONS

    SciTech Connect

    KRUGER AA; PIERCE DA; POKORNY R; HRMA PR

    2012-02-07

    In this study, we present a model for the kinetics of multiple overlapping reactions. Mathematical representation of the kinetics of gas-evolving reactions is crucial for the modeling of the feed-to-glass conversion in a waste-glass melter. The model simulates multiple gas-evolving reactions that occur during heating of a high-alumina high-level waste melter feed. To obtain satisfactory kinetic parameters, we employed Kissinger's method combined with least-squares analysis. The power-law kinetics with variable reaction order sufficed for obtaining excellent agreement with measured thermogravimetric analysis data.

  9. Modeled Neutron Induced Nuclear Reaction Cross Sections for Radiochemistry in the region of Iriduim and Gold

    SciTech Connect

    Hoffman, R D; Dietrich, F S; Kelley, K; Escher, J; Bauer, R; Mustafa, M

    2008-02-26

    We have developed a set of modeled nuclear reaction cross sections for use in radiochemical diagnostics. Systematics for the input parameters required by the Hauser-Feshbach statistical model were developed and used to calculate neutron induced nuclear reaction cross sections for targets ranging from osmium (Z = 76) to gold (Z = 79). Of particular interest are the cross sections on Ir and Au including reactions on isomeric targets.

  10. Design and Performance Analysis of Incremental Networked Predictive Control Systems.

    PubMed

    Pang, Zhong-Hua; Liu, Guo-Ping; Zhou, Donghua

    2016-06-01

    This paper is concerned with the design and performance analysis of networked control systems with network-induced delay, packet disorder, and packet dropout. Based on the incremental form of the plant input-output model and an incremental error feedback control strategy, an incremental networked predictive control (INPC) scheme is proposed to actively compensate for the round-trip time delay resulting from the above communication constraints. The output tracking performance and closed-loop stability of the resulting INPC system are considered for two cases: 1) plant-model match case and 2) plant-model mismatch case. For the former case, the INPC system can achieve the same output tracking performance and closed-loop stability as those of the corresponding local control system. For the latter case, a sufficient condition for the stability of the closed-loop INPC system is derived using the switched system theory. Furthermore, for both cases, the INPC system can achieve a zero steady-state output tracking error for step commands. Finally, both numerical simulations and practical experiments on an Internet-based servo motor system illustrate the effectiveness of the proposed method. PMID:26186798

  11. Reaction-subdiffusion front propagation in a comblike model of spiny dendrites.

    PubMed

    Iomin, A; Méndez, V

    2013-07-01

    Fractional reaction-diffusion equations are derived by exploiting the geometrical similarities between a comb structure and a spiny dendrite. In the framework of the obtained equations, two scenarios of reaction transport in spiny dendrites are explored, where both a linear reaction in spines and nonlinear Fisher-Kolmogorov-Petrovskii-Piskunov reactions along dendrites are considered. In the framework of fractional subdiffusive comb model, we develop a Hamilton-Jacobi approach to estimate the overall velocity of the reaction front propagation. One of the main effects observed is the failure of the front propagation for both scenarios due to either the reaction inside the spines or the interaction of the reaction with the spines. In the first case the spines are the source of reactions, while in the latter case, the spines are a source of a damping mechanism. PMID:23944491

  12. Ozone layer protection: Country incremental costs

    SciTech Connect

    King, K.; Munasinghe, M.

    1995-07-01

    The framework presented in Chapter 1 by King and Munasinghe was developed to estimate the country-level incremental cost. This framework has been applied in several developing countries in transition. The purpose of the Workshop on Country-Level Incremental Costs of Phasing Out Ozone-Depleting Substances was to gather key analysts engaged in this work to review the framework and its practical application. They present the results of their work in India, Turkey, Jordan, and Zimbabwe (Chapter 2: Mason); Egypt (Chapter 3: Catanach); Thailand (Chapter 4: Widge, Radka, and Dillon); and Tunisia and Czechoslovakia (Chapter 5; Bendtsen).

  13. A Joint Modeling Approach for Reaction Time and Accuracy in Psycholinguistic Experiments

    ERIC Educational Resources Information Center

    Loeys, T.; Rosseel, Y.; Baten, K.

    2011-01-01

    In the psycholinguistic literature, reaction times and accuracy can be analyzed separately using mixed (logistic) effects models with crossed random effects for item and subject. Given the potential correlation between these two outcomes, a joint model for the reaction time and accuracy may provide further insight. In this paper, a Bayesian…

  14. Folding model description of reactions with exotic nuclei

    SciTech Connect

    Ibraheem, Awad A.; Hassanain, M. A.; Mokhtar, S. R.; Zaki, M. A.; Mahmoud, Zakaria M. M.; Farid, M. El-Azab

    2012-08-15

    Microscopic folding calculations based upon the effective M3Y nucleon-nucleon interaction and the nuclearmatter densities of the interacting nuclei have been carried out to explain recently measured experimental data of the {sup 6}He+{sup 120}Sn elastic scattering cross section at four different laboratory energies near the Coulomb barrier. The extracted reaction cross sections are also considered.

  15. Modelling non-homogeneous stochastic reaction-diffusion systems: the case study of gemcitabine-treated non-small cell lung cancer growth

    PubMed Central

    2012-01-01

    diffusive transport in non-homogeneous media. The diffusion coefficient is explicitly expressed as a function depending on the local conditions of the medium, such as the concentration of molecular species, the viscosity of the medium and the temperature. We incorporated this generalized law in a reaction-based stochastic simulation framework implementing an efficient version of Gillespie algorithm for modeling the dynamics of the interactions between tumor cell, nutrients and gemcitabine in a spatial domain expressing a nutrient and drug concentration gradient. Results Using the mathematical framework of model we simulated the spatial growth of a 2D spheroidal tumor model in response to a treatment with gemcitabine and a dynamic gradient of oxygen and glucose. The parameters of the model have been taken from recet literature and also inferred from real tumor shrinkage curves measured in patients suffering from non-small cell lung cancer. The simulations qualitatively reproduce the time evolution of the morphologies of these tumors as well as the morphological patterns follow the growth curves observed in patients. Conclusions s This model is able to reproduce the observed increment/decrement of tumor size in response to the pharmacological treatment with gemcitabine. The formal specification of the model in Redi can be easily extended in an incremental way to include other relevant biophysical processes, such as local extracellular matrix remodelling, active cell migration and traction, and reshaping of host tissue vasculature, in order to be even more relevant to support the experimental investigation of cancer. PMID:23095709

  16. 48 CFR 3452.232-71 - Incremental funding.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 7 2011-10-01 2011-10-01 false Incremental funding. 3452....232-71 Incremental funding. As prescribed in 3432.705-2, insert the following provision in solicitations if a cost-reimbursement contract using incremental funding is contemplated: Incremental...

  17. 48 CFR 3452.232-71 - Incremental funding.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 7 2012-10-01 2012-10-01 false Incremental funding. 3452....232-71 Incremental funding. As prescribed in 3432.705-2, insert the following provision in solicitations if a cost-reimbursement contract using incremental funding is contemplated: Incremental...

  18. 48 CFR 3452.232-71 - Incremental funding.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 7 2014-10-01 2014-10-01 false Incremental funding. 3452....232-71 Incremental funding. As prescribed in 3432.705-2, insert the following provision in solicitations if a cost-reimbursement contract using incremental funding is contemplated: Incremental...

  19. 48 CFR 3452.232-71 - Incremental funding.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 7 2013-10-01 2012-10-01 true Incremental funding. 3452....232-71 Incremental funding. As prescribed in 3432.705-2, insert the following provision in solicitations if a cost-reimbursement contract using incremental funding is contemplated: Incremental...

  20. Incremental constitutive formulation for time dependent materials: creep integral approach

    NASA Astrophysics Data System (ADS)

    Chazal, Claude; Moutou Pitti, Rostand

    2011-08-01

    This paper deals with the development of a mathematical approach for the solution of linear, non-ageing viscoelastic materials undergoing mechanical deformation. The formulation is derived from integral approach based on a discrete spectrum representation for the creep tensor. Finite difference integration is used to discretize the integral operators. The resulting constitutive model contains an internal state variable which represents the influence of the whole past history of stress and strain. Thus the difficulty of retaining the strain history in computer solutions is avoided. A complete general formulation of linear viscoelastic stress-strain analysis is developed in terms of increments of stresses and strains. Numerical simulations are included in order to validate the incremental constitutive equations.

  1. 12 CFR 3.208 - Incremental risk.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... internal risk management methodologies for identifying, measuring, and managing risk. (c) Calculation of... 12 Banks and Banking 1 2014-01-01 2014-01-01 false Incremental risk. 3.208 Section 3.208 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY CAPITAL ADEQUACY STANDARDS...

  2. Input-Based Incremental Vocabulary Instruction

    ERIC Educational Resources Information Center

    Barcroft, Joe

    2012-01-01

    This fascinating presentation of current research undoes numerous myths about how we most effectively learn new words in a second language. In clear, reader-friendly text, the author details the successful approach of IBI vocabulary instruction, which emphasizes the presentation of target vocabulary as input early on and the incremental (gradual)…

  3. Incremental social learning in particle swarms.

    PubMed

    de Oca, Marco A Montes; Stutzle, Thomas; Van den Enden, Ken; Dorigo, Marco

    2011-04-01

    Incremental social learning (ISL) was proposed as a way to improve the scalability of systems composed of multiple learning agents. In this paper, we show that ISL can be very useful to improve the performance of population-based optimization algorithms. Our study focuses on two particle swarm optimization (PSO) algorithms: a) the incremental particle swarm optimizer (IPSO), which is a PSO algorithm with a growing population size in which the initial position of new particles is biased toward the best-so-far solution, and b) the incremental particle swarm optimizer with local search (IPSOLS), in which solutions are further improved through a local search procedure. We first derive analytically the probability density function induced by the proposed initialization rule applied to new particles. Then, we compare the performance of IPSO and IPSOLS on a set of benchmark functions with that of other PSO algorithms (with and without local search) and a random restart local search algorithm. Finally, we measure the benefits of using incremental social learning on PSO algorithms by running IPSO and IPSOLS on problems with different fitness distance correlations. PMID:20875976

  4. Cold-cap reactions in vitrification of nuclear waste glass: experiments and modeling

    SciTech Connect

    Chun, Jaehun; Pierce, David A.; Pokorny, Richard; Hrma, Pavel R.

    2013-05-01

    Cold-cap reactions are multiple overlapping reactions that occur in the waste-glass melter during the vitrification process when the melter feed is being converted to molten glass. In this study, we used differential scanning calorimetry (DSC) to investigate cold-cap reactions in a high-alumina high-level waste melter feed. To separate the reaction heat from both sensible heat and experimental instability, we employed the run/rerun method, which enabled us to define the degree of conversion based on the reaction heat and to estimate the heat capacity of the reacting feed. Assuming that the reactions are nearly independent and can be approximated by the nth order kinetics, we obtained the kinetic parameters using the Kissinger method combined with least squares analysis. The resulting mathematical simulation of the cold-cap reactions provides a key element for the development of an advanced cold-cap model.

  5. Modeling the coupling between flow and transport developed by chemical reactions and density differences using TOUGHREACT.

    SciTech Connect

    Kim, Jeongkon; Scwartz, Franklin W.; Shi, Jianyou; Xu, Tianfu

    2003-04-01

    A complex pattern of coupling between fluid flow and mass transport develops when heterogeneous reactions occur. For instance, dissolution and precipitation reactions can change the physical properties of a medium, such as permeability and pore geometry. These changes influence fluid flow, which in turn impact the composition of dissolved constituents and solid-phase, and the rate and direction of advective transport. Two-dimensional modeling studies using TOUGHREACT were conducted to investigate the coupling between flow and transport developed as a consequence of difference in density, dissolution/precipitation, and medium heterogeneity. The model includes equilibrium reactions for aqueous species, kinetic reactions between the solid phases and aqueous constituents, and full coupling of porosity and permeability changes resulting from precipitation and dissolution reactions in porous media. Generally, the evolutions in the concentrations of the aqueous phase are intimately related to the reaction-front dynamics. Plugging of the medium contributed to significant transients in patterns of flow and mass transport.

  6. SurfKin: an ab initio kinetic code for modeling surface reactions.

    PubMed

    Le, Thong Nguyen-Minh; Liu, Bin; Huynh, Lam K

    2014-10-01

    In this article, we describe a C/C++ program called SurfKin (Surface Kinetics) to construct microkinetic mechanisms for modeling gas-surface reactions. Thermodynamic properties of reaction species are estimated based on density functional theory calculations and statistical mechanics. Rate constants for elementary steps (including adsorption, desorption, and chemical reactions on surfaces) are calculated using the classical collision theory and transition state theory. Methane decomposition and water-gas shift reaction on Ni(111) surface were chosen as test cases to validate the code implementations. The good agreement with literature data suggests this is a powerful tool to facilitate the analysis of complex reactions on surfaces, and thus it helps to effectively construct detailed microkinetic mechanisms for such surface reactions. SurfKin also opens a possibility for designing nanoscale model catalysts. PMID:25111729

  7. Thermal-Aware Incremental Floorplanning for 3D ICs Based on MILP Formulation

    NASA Astrophysics Data System (ADS)

    Ma, Yuchun; Li, Xin; Wang, Yu; Hong, Xianlong

    In 3D IC design, thermal issue is a critical challenge. To eliminate hotspots, physical layouts are always adjusted by some incremental changes, such as shifting or duplicating hot blocks. In this paper, we distinguish the thermal-aware incremental changes in three different categories: migrating computation, growing unit and moving hotspot blocks. However, these modifications may degrade the packing area as well as interconnect distribution greatly. In this paper, mixed integer linear programming (MILP) models are devised according to these different incremental changes so that multiple objectives can be optimized simultaneously. Furthermore, to avoid random incremental modification, which may be inefficient and need long runtime to converge, here potential gain is modeled for each candidate incremental change. Based on the potential gain, a novel thermal optimization flow to intelligently choose the best incremental operation is presented. Experimental results show that migrating computation, growing unit and moving hotspot can reduce max on-chip temperature by 7%, 13% and 15% respectively on MCNC/GSRC benchmarks. Still, experimental results also show that the thermal optimization flow can reduce max on-chip temperature by 14% to the initial packings generated by an existing 3D floorplanning tool CBA, and achieve better area and total wirelength improvement than individual operations do. The results with the initial packings from CBA_T (Thermal-aware CBA floorplanner) show that 13.5% temperature reduction can be obtained by our incremental optimization flow.

  8. On incremental non-linearity in granular media: phenomenological and multi-scale views

    NASA Astrophysics Data System (ADS)

    Darve, Félix; Nicot, François

    2005-12-01

    On the basis of fundamental constitutive laws such as elasticity, perfect plasticity, and pure viscosity, many elasto-viscoplastic constitutive relations have been developed since the 1970s through phenomenological approaches. In addition, a few more recent micro-mechanical models based on multi-scale approaches are now able to describe the main macroscopic features of the mechanical behaviour of granular media. The purpose of this paper is to compare a phenomenological constitutive relation and a micro-mechanical model with respect to a basic issue regularly raised about granular assemblies: the incrementally non-linear character of their behaviour. It is shown that both phenomenological and micro-mechanical models exhibit an incremental non-linearity. In addition, the multi-scale approach reveals that the macroscopic incremental non-linearity could stem from the change in the regime of local contacts between particles (from plastic regime to elastic regime) in terms of the incremental macroscopic loading direction. Copyright

  9. PhreeqcRM: A reaction module for transport simulators based on the geochemical model PHREEQC

    NASA Astrophysics Data System (ADS)

    Parkhurst, David L.; Wissmeier, Laurin

    2015-09-01

    PhreeqcRM is a geochemical reaction module designed specifically to perform equilibrium and kinetic reaction calculations for reactive transport simulators that use an operator-splitting approach. The basic function of the reaction module is to take component concentrations from the model cells of the transport simulator, run geochemical reactions, and return updated component concentrations to the transport simulator. If multicomponent diffusion is modeled (e.g., Nernst-Planck equation), then aqueous species concentrations can be used instead of component concentrations. The reaction capabilities are a complete implementation of the reaction capabilities of PHREEQC. In each cell, the reaction module maintains the composition of all of the reactants, which may include minerals, exchangers, surface complexers, gas phases, solid solutions, and user-defined kinetic reactants. PhreeqcRM assigns initial and boundary conditions for model cells based on standard PHREEQC input definitions (files or strings) of chemical compositions of solutions and reactants. Additional PhreeqcRM capabilities include methods to eliminate reaction calculations for inactive parts of a model domain, transfer concentrations and other model properties, and retrieve selected results. The module demonstrates good scalability for parallel processing by using multiprocessing with MPI (message passing interface) on distributed memory systems, and limited scalability using multithreading with OpenMP on shared memory systems. PhreeqcRM is written in C++, but interfaces allow methods to be called from C or Fortran. By using the PhreeqcRM reaction module, an existing multicomponent transport simulator can be extended to simulate a wide range of geochemical reactions. Results of the implementation of PhreeqcRM as the reaction engine for transport simulators PHAST and FEFLOW are shown by using an analytical solution and the reactive transport benchmark of MoMaS.

  10. A model for lignin alteration - Part I: A kinetic reaction-network model

    USGS Publications Warehouse

    Payne, D.F.; Ortoleva, P.J.

    2001-01-01

    A new quantitative model is presented which simulates the maturation of lignin-derived sedimentary organic matter under geologic conditions. In this model, compositionally specific reactants evolve to specific intermediate and mobile products through balanced, nth order processes, by way of a network of sequential and parallel reactions. The chemical kinetic approach is based primarily on published observed structural transformations of naturally matured, lignin-derived, sedimentary organic matter. Assuming that Upper Cretaceous Williams Fork coal in the Piceance Basin is primarily lignin-derived, the model is calibrated for the Multi-Well Experiment(MWX) Site in this basin. This kind of approach may be applied to other selectively preserved chemical components of sedimentary organic matter. ?? 2001 Elsevier Science Ltd. All rights reserved.

  11. A lattice gas automata model for heterogeneous chemical reactions at mineral surfaces and in pore networks

    SciTech Connect

    Wells, J.T. . Dept. of Geological Sciences); Janecky, D.R.; Travis, B.J. )

    1990-01-15

    A lattice gas automata (LGA) model is described, which couples solute transport with chemical reactions at mineral surfaces and in pore networks. Chemical reactions and transport are integrated into a FHP-I LGA code as a module so that the approach is readily transportable to other codes. Diffusion in a box calculations are compared to finite element Fickian diffusion results and provide an approach to quantifying space-time ratios of the models. Chemical reactions at solid surfaces, including precipitation/dissolution, sorption, and catalytic reaction, can be examined with the model because solute diffusion and mineral surface processes are all treated explicitly. The simplicity and flexibility of the LGA approach provides the ability to study the interrelationship between fluid flow and chemical reactions in porous materials, at a level of complexity that has not previously been computationally possible. 20 refs., 8 figs.

  12. Computational study of a model system of enzyme-mediated [4+2] cycloaddition reaction.

    PubMed

    Gordeev, Evgeniy G; Ananikov, Valentine P

    2015-01-01

    A possible mechanistic pathway related to an enzyme-catalyzed [4+2] cycloaddition reaction was studied by theoretical calculations at density functional (B3LYP, O3LYP, M062X) and semiempirical levels (PM6-DH2, PM6) performed on a model system. The calculations were carried out for the key [4+2] cycloaddition step considering enzyme-catalyzed biosynthesis of Spinosyn A in a model reaction, where a reliable example of a biological Diels-Alder reaction was reported experimentally. In the present study it was demonstrated that the [4+2] cycloaddition reaction may benefit from moving along the energetically balanced reaction coordinate, which enabled the catalytic rate enhancement of the [4+2] cycloaddition pathway involving a single transition state. Modeling of such a system with coordination of three amino acids indicated a reliable decrease of activation energy by ~18.0 kcal/mol as compared to a non-catalytic transformation. PMID:25853669

  13. Wittig reactions on photoprotoporphyrin IX: new synthetic models for the special pair of the photosynthetic reaction center.

    PubMed

    Zheng, G; Shibata, M; Dougherty, T J; Pandey, R K

    2000-01-28

    A first example of spirochlorin-chlorin dimer with fixed distances and orientations as potential model for the "special pair" of the photosynthetic reaction center is discussed. For the preparation of such a novel structure, the Wittig reagent of the desired "spacer" 5 was reacted with photoprotoporphyrin IX dimethyl ester 3 to produce the intermediate dimer 6, which on intramolecular [4 + 2] Diels-Alder cycloaddition gave an unexpected spirochlorin-chlorin dimer 9. Dehydration of dimer 6 under acid-catalyzed conditions generated the corresponding spirochlorin-porphyrin dimer 16 in quantitative yield. The asymmetry in dimer 6 caused by the biphenyl-type anisotropic effect was confirmed by NMR and model studies. The formation of dihydrobenzoporphyrin 14 by reacting chlorin 3 with the phosphonium salt of p-methylbenzylbromide 10 and isolation of 8-phenanthrenevinylporphyrin 19 from chlorin 7 further confirmed our proposed mechanism for the formation of a spirochlorin-chlorin dimer 9. Following a similar approach, chlorin 3 on reacting with bis-phosphonium salt of 4, 4'-bischloromethylbiphenyl produced conjugated chlorin dimer 25. The spectroscopic data obtained from these dimers suggest that, in these compounds, the individual chromophores are not behaving as an individual molecule, but as a single macrocycle. To examine whether the pi-pi interaction exhibited by dimer 9 resembles the structural arrangement of bacteriochlorophylls in reaction center (RC), we investigated the geometrical parameters used to characterize the pi-pi interactions in tetrapyrrolic macrocycles. Starting from the crystallographic coordinates of 9, the molecular mechanics energy minimization was performed to obtain the model dimer structure. The geometrical parameters that measure the single pyrrole ring overlap were used to compare the model structure with the crystallographic coordinates of the special pair in photosynthetic reaction center. The results indicated that the ring A of

  14. Modeling Proton- and Light Ion-Induced Reactions at Low Energies in the MARS15 Code

    SciTech Connect

    Rakhno, I. L.; Mokhov, N. V.; Gudima, K. K.

    2015-04-25

    An implementation of both ALICE code and TENDL evaluated nuclear data library in order to describe nuclear reactions induced by low-energy projectiles in the Monte Carlo code MARS15 is presented. Comparisons between results of modeling and experimental data on reaction cross sections and secondary particle distributions are shown.

  15. Stochastic modeling of biochemical systems with multistep reactions using state-dependent time delay.

    PubMed

    Wu, Qianqian; Tian, Tianhai

    2016-01-01

    To deal with the growing scale of molecular systems, sophisticated modelling techniques have been designed in recent years to reduce the complexity of mathematical models. Among them, a widely used approach is delayed reaction for simplifying multistep reactions. However, recent research results suggest that a delayed reaction with constant time delay is unable to describe multistep reactions accurately. To address this issue, we propose a novel approach using state-dependent time delay to approximate multistep reactions. We first use stochastic simulations to calculate time delay arising from multistep reactions exactly. Then we design algorithms to calculate time delay based on system dynamics precisely. To demonstrate the power of proposed method, two processes of mRNA degradation are used to investigate the function of time delay in determining system dynamics. In addition, a multistep pathway of metabolic synthesis is used to explore the potential of the proposed method to simplify multistep reactions with nonlinear reaction rates. Simulation results suggest that the state-dependent time delay is a promising and accurate approach to reduce model complexity and decrease the number of unknown parameters in the models. PMID:27553753

  16. A mesoscopic reaction rate model for shock initiation of multi-component PBX explosives.

    PubMed

    Liu, Y R; Duan, Z P; Zhang, Z Y; Ou, Z C; Huang, F L

    2016-11-01

    The primary goal of this research is to develop a three-term mesoscopic reaction rate model that consists of a hot-spot ignition, a low-pressure slow burning and a high-pressure fast reaction terms for shock initiation of multi-component Plastic Bonded Explosives (PBX). Thereinto, based on the DZK hot-spot model for a single-component PBX explosive, the hot-spot ignition term as well as its reaction rate is obtained through a "mixing rule" of the explosive components; new expressions for both the low-pressure slow burning term and the high-pressure fast reaction term are also obtained by establishing the relationships between the reaction rate of the multi-component PBX explosive and that of its explosive components, based on the low-pressure slow burning term and the high-pressure fast reaction term of a mesoscopic reaction rate model. Furthermore, for verification, the new reaction rate model is incorporated into the DYNA2D code to simulate numerically the shock initiation process of the PBXC03 and the PBXC10 multi-component PBX explosives, and the numerical results of the pressure histories at different Lagrange locations in explosive are found to be in good agreements with previous experimental data. PMID:27258213

  17. Reactions to Discrimination, Stigmatization, Ostracism, and Other Forms of Interpersonal Rejection: A Multimotive Model

    ERIC Educational Resources Information Center

    Richman, Laura Smart; Leary, Mark R.

    2009-01-01

    This article describes a new model that provides a framework for understanding people's reactions to threats to social acceptance and belonging as they occur in the context of diverse phenomena such as rejection, discrimination, ostracism, betrayal, and stigmatization. People's immediate reactions are quite similar across different forms of…

  18. Stochastic modeling of biochemical systems with multistep reactions using state-dependent time delay

    PubMed Central

    Wu, Qianqian; Tian, Tianhai

    2016-01-01

    To deal with the growing scale of molecular systems, sophisticated modelling techniques have been designed in recent years to reduce the complexity of mathematical models. Among them, a widely used approach is delayed reaction for simplifying multistep reactions. However, recent research results suggest that a delayed reaction with constant time delay is unable to describe multistep reactions accurately. To address this issue, we propose a novel approach using state-dependent time delay to approximate multistep reactions. We first use stochastic simulations to calculate time delay arising from multistep reactions exactly. Then we design algorithms to calculate time delay based on system dynamics precisely. To demonstrate the power of proposed method, two processes of mRNA degradation are used to investigate the function of time delay in determining system dynamics. In addition, a multistep pathway of metabolic synthesis is used to explore the potential of the proposed method to simplify multistep reactions with nonlinear reaction rates. Simulation results suggest that the state-dependent time delay is a promising and accurate approach to reduce model complexity and decrease the number of unknown parameters in the models. PMID:27553753

  19. Calibration of model constants in a biological reaction model for sewage treatment plants.

    PubMed

    Amano, Ken; Kageyama, Kohji; Watanabe, Shoji; Takemoto, Takeshi

    2002-02-01

    Various biological reaction models have been proposed which estimate concentrations of soluble and insoluble components in effluent of sewage treatment plants. These models should be effective to develop a better operation system and plant design, but their formulas consist of nonlinear equations, and there are many model constants, which are not easy to calibrate. A technique has been proposed to decide the model constants by precise experiments, but it is not practical for design engineers or process operators to perform these experiments regularly. Other approaches which calibrate the model constants by mathematical techniques should be used. In this paper, the optimal regulator method of modern control theory is applied as a mathematical technique to calibrate the model constants. This method is applied in a small sewage treatment testing facility. Calibration of the model constants is examined to decrease the deviations between calculated and measured concentrations. Results show that calculated values of component concentrations approach measured values and the method is useful for actual plants. PMID:11848341

  20. Specific mass increment and nonequilibrium crystal growth

    NASA Astrophysics Data System (ADS)

    Martyushev, Leonid M.; Terentiev, Pavel S.

    2013-09-01

    Unsteady nonequilibrium crystallization of ammonium chloride from an aqueous solution resulting in the formation of irregular, so-called seaweed, structures is experimentally investigated. It is shown that specific increment of mass for the coexisting structures (or parts thereof) is the same and changes with time (t) according to the power law a/t-b, where the factor a=1.87±0.09 and the factor b is determined by the system relaxation time. The normalization of the power law to the total time of structure growth allows obtaining a universal law that describes the specific mass increment with time for both seaweed and dendrite structures (including the non-coexisting ones).

  1. Ozone layer protection: Country incremental costs

    SciTech Connect

    King, K.; Munasinghe, M.

    1997-12-31

    The report evaluates the frameworks established in various countries to finance the incremental costs of phasing out ozone-depleting substances. The Multilateral Fund and the Global Environment Facility (GEF) were established to assist developing countries in financing the incremental costs of phasing out ozone-depleting substances. Both the Fund and the GEF require a strategic framework for the activities they finance to demonstrate that overall phaseout of these substances will be accomplished. The framework, known as the `country program,` establishes a national strategy and program of proposed activities. This paper describes the country programs in general and reviews the work and results of key analysts who carried out these programs in the former Czechoslovakia, Egypt, India, Jordan, Thailand, Tunisia, Turkey, and Zimbabwe.

  2. The Sugar Model: Autocatalytic Activity of the Triose-Ammonia Reaction

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.

    2006-01-01

    Reaction of triose sugars with ammonia under anaerobic conditions yielded autocatalytic products. The autocatalytic behavior of the products was examined by measuring the effect of the crude triose-ammonia reaction product on the kinetics of a second identical triose-ammonia reaction. The reaction product showed autocatalytic activity by increasing both the rate of disappearance of triose and the rate formation of pyruvaldehyde, the product of triose dehydration. This synthetic process is considered a reasonable model of origin-of-life chemistry because it uses plausible prebiotic substrates, and resembles modern biosynthesis by employing the energized carbon groups of sugars to drive the synthesis of autocatalytic molecules.

  3. Some Results on Incremental Vertex Cover Problem

    NASA Astrophysics Data System (ADS)

    Dai, Wenqiang

    In the classical k-vertex cover problem, we wish to find a minimum weight set of vertices that covers at least k edges. In the incremental version of the k-vertex cover problem, we wish to find a sequence of vertices, such that if we choose the smallest prefix of vertices in the sequence that covers at least k edges, this solution is close in value to that of the optimal k-vertex cover solution. The maximum ratio is called competitive ratio. Previously the known upper bound of competitive ratio was 4α, where α is the approximation ratio of the k-vertex cover problem. And the known lower bound was 1.36 unless P = NP, or 2 - ɛ for any constant ɛ assuming the Unique Game Conjecture. In this paper we present some new results for this problem. Firstly we prove that, without any computational complexity assumption, the lower bound of competitive ratio of incremental vertex cover problem is φ, where φ=sqrt{5}+1/2≈ 1.618 is the golden ratio. We then consider the restricted versions where k is restricted to one of two given values(Named 2-IVC problem) and one of three given values(Named 3-IVC problem). For 2-IVC problem, we give an algorithm to prove that the competitive ratio is at most φα. This incremental algorithm is also optimal for 2-IVC problem if we are permitted to use non-polynomial time. For the 3-IVC problem, we give an incremental algorithm with ratio factor (1+sqrt{2})α.

  4. Molecular energies from an incremental fragmentation method

    NASA Astrophysics Data System (ADS)

    Meitei, Oinam Romesh; Heßelmann, Andreas

    2016-02-01

    The systematic molecular fragmentation method by Collins and Deev [J. Chem. Phys. 125, 104104 (2006)] has been used to calculate total energies and relative conformational energies for a number of small and extended molecular systems. In contrast to the original approach by Collins, we have tested the accuracy of the fragmentation method by utilising an incremental scheme in which the energies at the lowest level of the fragmentation are calculated on an accurate quantum chemistry level while lower-cost methods are used to correct the low-level energies through a high-level fragmentation. In this work, the fragment energies at the lowest level of fragmentation were calculated using the random-phase approximation (RPA) and two recently developed extensions to the RPA while the incremental corrections at higher levels of the fragmentation were calculated using standard density functional theory (DFT) methods. The complete incremental fragmentation method has been shown to reproduce the supermolecule results with a very good accuracy, almost independent on the molecular type, size, or type of decomposition. The fragmentation method has also been used in conjunction with the DFT-SAPT (symmetry-adapted perturbation theory) method which enables a breakdown of the total nonbonding energy contributions into individual interaction energy terms. Finally, the potential problems of the method connected with the use of capping hydrogen atoms are analysed and two possible solutions are supplied.

  5. Modeling and simulation of pressure waves generated by nano-thermite reactions

    NASA Astrophysics Data System (ADS)

    Martirosyan, Karen S.; Zyskin, Maxim; Jenkins, Charles M.; (Yuki) Horie, Yasuyuki

    2012-11-01

    This paper reports the modeling of pressure waves from the explosive reaction of nano-thermites consisting of mixtures of nanosized aluminum and oxidizer granules. Such nanostructured thermites have higher energy density (up to 26 kJ/cm3) and can generate a transient pressure pulse four times larger than that from trinitrotoluene (TNT) based on volume equivalence. A plausible explanation for the high pressure generation is that the reaction times are much shorter than the time for a shock wave to propagate away from the reagents region so that all the reaction energy is dumped into the gaseous products almost instantaneously and thereby a strong shock wave is generated. The goal of the modeling is to characterize the gas dynamic behavior for thermite reactions in a cylindrical reaction chamber and to model the experimentally measured pressure histories. To simplify the details of the initial stage of the explosive reaction, it is assumed that the reaction generates a one dimensional shock wave into an air-filled cylinder and propagates down the tube in a self-similar mode. Experimental data for Al/Bi2O3 mixtures were used to validate the model with attention focused on the ratio of specific heats and the drag coefficient. Model predictions are in good agreement with the measured pressure histories.

  6. Incremental dynamical downscaling for probabilistic analysis based on multiple GCM projections

    NASA Astrophysics Data System (ADS)

    Wakazuki, Y.; Rasmussen, R.

    2015-12-01

    A dynamical downscaling method for probabilistic regional-scale climate change projections was developed to cover the inherent uncertainty associated with multiple general circulation model (GCM) climate simulations. The climatological increments estimated by GCM results were statistically analyzed using the singular vector decomposition. Both positive and negative perturbations from the ensemble mean with the magnitudes of their standard deviations were extracted and added to the ensemble mean of the climatological increments. The analyzed multiple modal increments were utilized to create multiple modal lateral boundary conditions for the future climate regional climate model (RCM) simulations by adding them to reanalysis data. The incremental handling of GCM simulations realized approximated probabilistic climate change projections with the smaller number of RCM simulations. For the probabilistic analysis, three values of a climatological variable simulated by RCMs for a mode were analyzed under an assumption of linear response to the multiple modal perturbations.

  7. A hydrodynamics-reaction kinetics coupled model for evaluating bioreactors derived from CFD simulation.

    PubMed

    Wang, Xu; Ding, Jie; Guo, Wan-Qian; Ren, Nan-Qi

    2010-12-01

    Investigating how a bioreactor functions is a necessary precursor for successful reactor design and operation. Traditional methods used to investigate flow-field cannot meet this challenge accurately and economically. Hydrodynamics model can solve this problem, but to understand a bioreactor in sufficient depth, it is often insufficient. In this paper, a coupled hydrodynamics-reaction kinetics model was formulated from computational fluid dynamics (CFD) code to simulate a gas-liquid-solid three-phase biotreatment system for the first time. The hydrodynamics model is used to formulate prediction of the flow field and the reaction kinetics model then portrays the reaction conversion process. The coupled model is verified and used to simulate the behavior of an expanded granular sludge bed (EGSB) reactor for biohydrogen production. The flow patterns were visualized and analyzed. The coupled model also demonstrates a qualitative relationship between hydrodynamics and biohydrogen production. The advantages and limitations of applying this coupled model are discussed. PMID:20727741

  8. Chaos in the Showalter-Noyes-Bar-Eli model of the Belousov-Zhabotinskii reaction

    NASA Astrophysics Data System (ADS)

    Lindberg, David; Turner, Jack S.; Barkley, Dwight

    1990-03-01

    The observation of robust, large-scale chaos in the Showalter-Noyes-Bar-Eli model of the Belousov-Zhabotinskii reaction is reported. The chaos observed is comparable to that found in CSTR experiments at low flow rates.

  9. Statistical Model Calculations for (n,γ) Reactions

    NASA Astrophysics Data System (ADS)

    Beard, Mary; Uberseder, Ethan; Wiescher, Michael

    2015-05-01

    Hauser-Feshbach (HF) cross sections are of enormous importance for a wide range of applications, from waste transmutation and nuclear technologies, to medical applications, and nuclear astrophysics. It is a well-observed result that different nuclear input models sensitively affect HF cross section calculations. Less well known however are the effects on calculations originating from model-specific implementation details (such as level density parameter, matching energy, back-shift and giant dipole parameters), as well as effects from non-model aspects, such as experimental data truncation and transmission function energy binning. To investigate the effects or these various aspects, Maxwellian-averaged neutron capture cross sections have been calculated for approximately 340 nuclei. The relative effects of these model details will be discussed.

  10. Precompound decay in heavy ion reactions via the hybrid model

    SciTech Connect

    Blann, M.

    1987-04-01

    The hybrid model for precompound decay is applied to the calculation of neutron spectra following the /sup 20/Ne and /sup 12/C bombardment of /sup 165/Ho at 220, 292, (/sup 20/Ne), and 300 (/sup 12/C) MeV. Results are compared with experimentally deduced angle integrated spectra and with results of the Boltzmann master equation. Both models give excellent agreement with experimentally deduced spectra.

  11. Dynamical Coupled-Channel Model of Meson Production Reactions in the Nucleon Resonance Region

    SciTech Connect

    T.-S. H. Lee; A. Matsuyama; T. Sato

    2006-11-15

    A dynamical coupled-channel model is presented for investigating the nucleon resonances (N*) in the meson production reactions induced by pions and photons. Our objective is to extract the N* parameters and to investigate the meson production reaction mechanisms for mapping out the quark-gluon substructure of N* from the data. The model is based on an energy-independent Hamiltonian which is derived from a set of Lagrangians by using a unitary transformation method.

  12. The PLP cofactor: Lessons from studies on model reactions

    PubMed Central

    Richard, John P.; Amyes, Tina L.; Crugeiras, Juan; Rios, Ana

    2012-01-01

    Experimental probes of the acidity of weak carbon acids have been developed and used to determine the carbon acid pKas of glycine, glycine derivatives and iminium ion adducts of glycine to the carbonyl group, including 5′-deoxypyridoxal (DPL). The high reactivity of the DPL-stabilized glycyl carbanion towards nucleophilic addition to both DPL and the glycine-DPL iminium ion favors the formation of Claisen condensation products at enzyme active sites. The formation of the iminium ion between glycine and DPL is accompanied by a 12-unit decrease in the pKa of 29 for glycine. The complicated effects of formation of glycine iminium ions to DPL and other aromatic and aliphatic aldehydes and ketones on carbon acid pKa are discussed. These data provide insight into the contribution of the individual pyridine ring substituents to the catalytic efficiency of DPL It is suggested that the 5′-phosphodianion group of PLP may play an important role in enzymatic catalysis of carbon deprotonation by providing up to 12 kcal/mol of binding energy that is utilized to stabilize the transition state for the enzymatic reaction. PMID:21182991

  13. Inheritance as an Incremental Modification Mechanism or What Like Is and Isn't Like

    NASA Astrophysics Data System (ADS)

    Wegner, Peter; Zdonik, Stanley B.

    Incremental modification is a fundamental mechanism not only in software systems, but also in physical and mathematical systems. Inheritance owes its importance in large measure to its flexibility as a discrete incremental modification mechanism. Four increasingly permissive properties of incremental modification realizable by inheritance are examined: behavior compatibility, signature compatibility. name compatibility, and cancellation. Inheritance for entities with finite sets of attributes is defined and characterized as incremental modification with deferred binding of self-reference. Types defined as predicates for type checking are contrasted with classes defined as templates for object generation. Mathematical, operational, and conceptual models of inheritance are then examined in detail, leading to a discussion of algebraic models of behavioral compatibility. horizontal and vertical signature modification, algorithmically defined name modification, additive and subtractive exceptions, abstract inheritance networks, and parametric polymorphism. Liketypes are defined as a symmetrical general form of incremental modification that provide a framework for modeling similarity. The combination of safe behaviorally compatible changes and less safe radical incremental changes in a single programming language is considered.

  14. Nuclear cycler: An incremental approach to the deflection of asteroids

    NASA Astrophysics Data System (ADS)

    Vasile, Massimiliano; Thiry, Nicolas

    2016-04-01

    This paper introduces a novel deflection approach based on nuclear explosions: the nuclear cycler. The idea is to combine the effectiveness of nuclear explosions with the controllability and redundancy offered by slow push methods within an incremental deflection strategy. The paper will present an extended model for single nuclear stand-off explosions in the proximity of elongated ellipsoidal asteroids, and a family of natural formation orbits that allows the spacecraft to deploy multiple bombs while being shielded by the asteroid during the detonation.

  15. Study of an incremental optical encoder using speckle

    NASA Astrophysics Data System (ADS)

    Perez Quintián, Fernando; Lutenberg, Ariel; Rebollo, María Aurora

    2006-09-01

    We present a study of the performance of an incremental optical encoder that works using speckle pattern illumination and a phase grating. The operational principle of the encoder lies in measuring the variations of a speckle pattern passing through the phase grating that can be displaced. This study is described theoretically by a model based on the scalar diffraction theory in the Fresnel zone. The intensity correlation of the modified speckle as a function of the grating displacement is obtained and compared with experimental results. Likewise, the mounting tolerances of the proposed system are analyzed.

  16. Genome-scale Metabolic Reaction Modeling: a New Approach to Geomicrobial Kinetics

    NASA Astrophysics Data System (ADS)

    McKernan, S. E.; Shapiro, B.; Jin, Q.

    2014-12-01

    Geomicrobial rates, rates of microbial metabolism in natural environments, are a key parameter of theoretical and practical problems in geobiology and biogeochemistry. Both laboratory- and field-based approaches have been applied to study rates of geomicrobial processes. Laboratory-based approaches analyze geomicrobial kinetics by incubating environmental samples under controlled laboratory conditions. Field methods quantify geomicrobial rates by observing the progress of geomicrobial processes. To take advantage of recent development in biogeochemical modeling and genome-scale metabolic modeling, we suggest that geomicrobial rates can also be predicted by simulating metabolic reaction networks of microbes. To predict geomicrobial rates, we developed a genome-scale metabolic model that describes enzyme reaction networks of microbial metabolism, and simulated the network model by accounting for the kinetics and thermodynamics of enzyme reactions. The model is simulated numerically to solve cellular enzyme abundance and hence metabolic rates under the constraints of cellular physiology. The new modeling approach differs from flux balance analysis of system biology in that it accounts for the thermodynamics and kinetics of enzymatic reactions. It builds on subcellular metabolic reaction networks, and hence also differs from classical biogeochemical reaction modeling. We applied the new approach to Methanosarcina acetivorans, an anaerobic, marine methanogen capable of disproportionating acetate to carbon dioxide and methane. The input of the new model includes (1) enzyme reaction network of acetoclastic methanogenesis, and (2) representative geochemical conditions of freshwater sedimentary environments. The output of the simulation includes the proteomics, metabolomics, and energy and matter fluxes of M. acetivorans. Our simulation results demonstrate the predictive power of the new modeling approach. Specifically, the results illustrate how methanogenesis rates vary

  17. Model of cathode reaction resistance in molten carbonate fuel cells

    SciTech Connect

    Morita, H.; Mugikura, Y.; Izaki, Y.; Watanabe, T.; Abe, T.

    1998-05-01

    A model of the performance of a molten carbonate fuel cell (MCFC) is required to estimate the efficiency of an MCFC power plant or to simulate the internal state of a stack. The model should provide an accurate representation of the performance under various operating conditions. However, the performance estimated by previous models has been found to deviate from the measured performance under low oxygen and carbon dioxide cathode partial pressures. To solve this problem, the authors carried out a systematic analysis of the performance of several bench-scale cells operated under various cathode gas conditions and investigated a model of cathode polarization according to the oxygen reduction mechanism in molten carbonate. As a result, it has been clarified that the behavior of cathode polarization under various conditions is described well by the dependence of mixed diffusion of superoxide ion O{sub 2}{sup {minus}} and CO{sub 2} in the melt on the assumed partial pressures at each total operating pressure.

  18. Collecting, preparing, crossdating, and measuring tree increment cores

    USGS Publications Warehouse

    Phipps, R.L.

    1985-01-01

    Techniques for collecting and handling increment tree cores are described. Procedures include those for cleaning and caring for increment borers, extracting the sample from a tree, core surfacing, crossdating, and measuring. (USGS)

  19. New Direction in Hydrogeochemical Transport Modeling: Incorporating Multiple Kinetic and Equilibrium Reaction Pathways

    SciTech Connect

    Steefel, C.I.

    2000-02-02

    At least two distinct kinds of hydrogeochemical models have evolved historically for use in analyzing contaminant transport, but each has important limitations. One kind, focusing on organic contaminants, treats biodegradation reactions as parts of relatively simple kinetic reaction networks with no or limited coupling to aqueous and surface complexation and mineral dissolution/precipitation reactions. A second kind, evolving out of the speciation and reaction path codes, is capable of handling a comprehensive suite of multicomponent complexation (aqueous and surface) and mineral precipitation and dissolution reactions, but has not been able to treat reaction networks characterized by partial redox disequilibrium and multiple kinetic pathways. More recently, various investigators have begun to consider biodegradation reactions in the context of comprehensive equilibrium and kinetic reaction networks (e.g. Hunter et al. 1998, Mayer 1999). Here we explore two examples of multiple equilibrium and kinetic reaction pathways using the reactive transport code GIMRT98 (Steefel, in prep.): (1) a computational example involving the generation of acid mine drainage due to oxidation of pyrite, and (2) a computational/field example where the rates of chlorinated VOC degradation are linked to the rates of major redox processes occurring in organic-rich wetland sediments overlying a contaminated aerobic aquifer.

  20. Modeling the coupling of reaction kinetics and hydrodynamics in a collapsing cavity

    SciTech Connect

    Mishra, Sudib; Deymier, Pierre; Muralidharan, Krishna; Frantziskonis, G.; Pannala, Sreekanth; Simunovic, Srdjan

    2010-01-01

    We introduce a model of cavitation based on the multiphase Lattice Boltzmann method (LBM) that allows for coupling between the hydrodynamics of a collapsing cavity and supported solute chemical species. We demonstrate that this model can also be coupled to deterministic or stochastic chemical reactions. In a two-species model of chemical reactions (with a major and a minor specie), the major difference observed between the deterministic and stochastic reactions takes the form of random fluctuations in concentration of the minor species. We demonstrate that advection associated with the hydrodynamics of a collapsing cavity leads to highly inhomogeneous concentration of solutes. In turn these inhomogeneities in concentration may lead to significant increase in concentration-dependent reaction rates and can result in a local enhancement in the production of minor species.

  1. Modeling compressive reaction and estimating model uncertainty in shock loaded porous samples of Hexanitrostilbene (HNS)

    NASA Astrophysics Data System (ADS)

    Brundage, Aaron; Gump, Jared

    2011-06-01

    Neat pressings of HNS powders have been used in many explosive applications for over 50 years. However, characterization of its crystalline properties has lagged that of other explosives, and the solid stress has been inferred from impact experiments or estimated from mercury porosimetry. This lack of knowledge of the precise crystalline isotherm can contribute to large model uncertainty in the reacted response of pellets to shock impact. At high impact stresses, deflagration-to-detonation transition (DDT) processes initiated by compressive reaction have been interpreted from velocity interferometry at the surface of distended HNS-FP pellets. In particular, the Baer-Nunziato multiphase model in CTH, Sandia's Eulerian, finite volume shock propagation code, was used to predict compressive waves in pellets having approximately a 60% theoretical maximum density (TMD). These calculations were repeated with newly acquired isothermal compression measurements of fine-particle HNS using diamond anvil cells to compress the sample and powder x-ray diffraction to obtain the sample volume at each pressure point. Hence, estimating the model uncertainty provides a simple method for conveying the impact of future model improvements based upon new experimental data.

  2. Modeling compressive reaction and estimating model uncertainty in shock loaded porous samples of hexanitrostilbene (HNS)

    NASA Astrophysics Data System (ADS)

    Brundage, Aaron L.; Gump, Jared C.

    2012-03-01

    Neat pressings of HNS powders have been used in many explosive applications for over 50 years. However, characterization of its crystalline properties has lagged that of other explosives, and the solid stress has been inferred from impact experiments or estimated from mercury porosimetry. This lack of knowledge of the precise crystalline isotherm can contribute to large model uncertainty in the reacted response of pellets to shock impact. At high impact stresses, deflagration-to-detonation transition (DDT) processes initiated by compressive reaction have been interpreted from velocity interferometry at the surface of distended HNS-FP pellets. In particular, the Baer-Nunziato multiphase model in CTH, Sandia's Eulerian, finite volume shock propagation code, was used to predict compressive waves in pellets having approximately a 60% theoretical maximum density (TMD). These calculations were repeated with newly acquired isothermal compression measurements of fineparticle HNS using diamond anvil cells to compress the sample and powder x-ray diffraction to obtain the sample volume at each pressure point. Hence, estimating the model uncertainty provides a simple method for conveying the impact of future model improvements based upon new experimental data.

  3. A Stochastic Cellular Automaton Model of Non-linear Diffusion and Diffusion with Reaction

    NASA Astrophysics Data System (ADS)

    Brieger, Leesa M.; Bonomi, Ernesto

    1991-06-01

    This article presents a stochastic cellular automaton model of diffusion and diffusion with reaction. The master equations for the model are examined, and we assess the difference between the implementation in which a single particle at a time moves (asynchronous dynamics) and one implementation in which all particles move simultaneously (synchronous dynamics). Biasing locally each particle's random walk, we alter the diffusion coefficients of the system. By appropriately choosing the biasing function, we can impose a desired non-linear diffusive behaviour in the model. We present an application of this model, adapted to include two diffusing species, two static species, and a chemical reaction in a prototypical simulation of carbonation in concrete.

  4. Reaction to Extreme Events in a Minimal Agent Based Model

    NASA Astrophysics Data System (ADS)

    Zaccaria, Andrea; Cristelli, Matthieu; Pietronero, Luciano

    We consider the issue of the overreaction of financial markets to a sudden price change. In particular, we focus on the price and the population dynamics which follows a large fluctuation. In order to investigate these aspects from different perspectives we discuss the known results for empirical data, the Lux-Marchesi model and a minimal agent based model which we have recently proposed. We show that, in this framework, the presence of a overreaction is deeply linked to the population dynamics. In particular, the presence of a destabilizing strategy in the market is a necessary condition to have an overshoot with respect to the exogenously induced price fluctuation. Finally, we analyze how the memory of the agents can quantitatively affect this behavior.

  5. Nicotiana tabacum as model for ozone - plant surface reactions

    NASA Astrophysics Data System (ADS)

    Jud, Werner; Fischer, Lukas; Wohlfahrt, Georg; Tissier, Alain; Canaval, Eva; Hansel, Armin

    2015-04-01

    Elevated tropospheric ozone concentrations are considered a toxic threat to plants, responsible for global crop losses with associated economic costs of several billion dollars per year. The ensuing injuries have been related to the uptake of ozone through the stomatal pores and oxidative effects damaging the internal leaf tissue. A striking question of current research is the environment and plant specific partitioning of ozone loss between gas phase, stomatal or plant surface sink terms. Here we show results from ozone fumigation experiments using various Nicotiana Tabacum varieties, whose surfaces are covered with different amounts of unsaturated diterpenoids exuded by their glandular trichomes. Exposure to elevated ozone levels (50 to 150 ppbv) for 5 to 15 hours in an exceptionally clean cuvette system did neither result in a reduction of photosynthesis nor caused any visible leaf damage. Both these ozone induced stress effects have been observed previously in ozone fumigation experiments with the ozone sensitive tobacco line Bel-W3. In our case ozone fumigation was accompanied by a continuous release of oxygenated volatile organic compounds, which could be clearly associated to their condensed phase precursors for the first time. Gas phase reactions of ozone were avoided by choosing a high enough gas exchange rate of the plant cuvette system. In the case of the Ambalema variety, that is known to exude only the diterpenoid cis-abienol, ozone fumigation experiments yield the volatiles formaldehyde and methyl vinyl ketone (MVK). The latter could be unequivocally separated from isomeric methacrolein (MACR) by the aid of a Selective Reagent Ion Time-of-Flight Mass Spectrometer (SRI-ToF-MS), which was switched every six minutes from H3O+ to NO+ primary ion mode and vice versa. Consistent with the picture of an ozone protection mechanism caused by reactive diterpenoids at the leaf surface are the results from dark-light experiments. The ozone loss obtained from the

  6. Toward a reaction rate model of condensed-phase RDX decomposition under high temperatures

    NASA Astrophysics Data System (ADS)

    Schweigert, Igor

    2015-06-01

    Shock ignition of energetic molecular solids is driven by microstructural heterogeneities, at which even moderate stresses can result in sufficiently high temperatures to initiate material decomposition and chemical energy release. Mesoscale modeling of these ``hot spots'' requires a reaction rate model that describes the energy release with a sub-microsecond resolution and under a wide range of temperatures. No such model is available even for well-studied energetic materials such as RDX. In this presentation, I will describe an ongoing effort to develop a reaction rate model of condensed-phase RDX decomposition under high temperatures using first-principles molecular dynamics, transition-state theory, and reaction network analysis. This work was supported by the Naval Research Laboratory, by the Office of Naval Research, and by the DoD High Performance Computing Modernization Program Software Application Institute for Multiscale Reactive Modeling of Insensitive Munitions.

  7. An Incremental Weighted Least Squares Approach to Surface Lights Fields

    NASA Astrophysics Data System (ADS)

    Coombe, Greg; Lastra, Anselmo

    An Image-Based Rendering (IBR) approach to appearance modelling enables the capture of a wide variety of real physical surfaces with complex reflectance behaviour. The challenges with this approach are handling the large amount of data, rendering the data efficiently, and previewing the model as it is being constructed. In this paper, we introduce the Incremental Weighted Least Squares approach to the representation and rendering of spatially and directionally varying illumination. Each surface patch consists of a set of Weighted Least Squares (WLS) node centers, which are low-degree polynomial representations of the anisotropic exitant radiance. During rendering, the representations are combined in a non-linear fashion to generate a full reconstruction of the exitant radiance. The rendering algorithm is fast, efficient, and implemented entirely on the GPU. The construction algorithm is incremental, which means that images are processed as they arrive instead of in the traditional batch fashion. This human-in-the-loop process enables the user to preview the model as it is being constructed and to adapt to over-sampling and under-sampling of the surface appearance.

  8. 14 CFR § 1260.53 - Incremental funding.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Incremental funding. § 1260.53 Section § 1260.53 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GRANTS AND COOPERATIVE AGREEMENTS General Special Conditions § 1260.53 Incremental funding. Incremental Funding October 2000...

  9. 48 CFR 3452.232-71 - Incremental funding.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 7 2010-10-01 2010-10-01 false Incremental funding. 3452... 3452.232-71 Incremental funding. As prescribed in 3452.771, insert the following provision in solicitations: Incremental Funding (AUG 1987) (a) Sufficient funds are not presently available to cover...

  10. 14 CFR § 1274.918 - Incremental funding.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Incremental funding. § 1274.918 Section Â... WITH COMMERCIAL FIRMS Other Provisions and Special Conditions § 1274.918 Incremental funding. Incremental Funding July 2002 (a) Of the award amount indicated on the cover page of this Agreement, only...

  11. Neutron-induced reactions on AlF3 studied using the optical model

    NASA Astrophysics Data System (ADS)

    Ma, Chun-Wang; Lv, Cui-Juan; Zhang, Guo-Qiang; Wang, Hong-Wei; Zuo, Jia-Xu

    2015-08-01

    Neutron-induced reactions on 27Al and 19F nuclei are investigated using the optical model implemented in the TALYS 1.4 toolkit. Incident neutron energies in a wide range from 0.1 keV to 30 MeV are calculated. The cross sections for the main channels (n, np), (n, p), (n, α), (n, 2n), and (n, γ) and the total reaction cross section (n, tot) of the reactions are obtained. When the default parameters in TALYS 1.4 are adopted, the calculated results agree with the measured results. Based on the calculated results for the n + 27Al and n + 19F reactions, the results of the n + 27Al19F reactions are predicted. These results are useful both for the design of thorium-based molten salt reactors and for neutron activation analysis techniques.

  12. Synchronization phenomena in surface-reaction models of protocells.

    PubMed

    Serra, Roberto; Carletti, Timoteo; Poli, Irene

    2007-01-01

    A class of generic models of protocells is introduced, which are inspired by the Los Alamos bug hypothesis but which, due to their abstraction level, can be applied to a wider set of detailed protocell hypotheses. These models describe the coupled growth of the lipid container and of the self-replicating molecules. A technique to analyze the dynamics of populations of such protocells is described, which couples a continuous-time formalism for the growth between two successive cell divisions, and a discrete map that relates the quantity of self-replicating molecules in successive generations. This technique allows one to derive several properties in an analytical way. It is shown that, under fairly general assumptions, the two growth rates synchronize, so that the lipid container doubles its size when the number of self-replicating molecules has also doubled--thus giving rise to exponential growth of the population of protocells. Such synchronization had been postulated a priori in previous models of protocells; here it is an emergent property. We also compare the rate of duplication of two populations generated by two different protocells with different kinds of self-replicating molecules, considering the interesting case where the rate of self-replication of one kind is higher than that of the other, but its contribution to the container growth rate is smaller. It is shown that in this case the population of offspring of the protocell with the faster-replicating molecule will eventually grow faster than the other. The case where two different types of self-replicating monomers are present in the same protocell is also analyzed, and it is shown that, if the replication follows a first-order kinetic equation, then the faster replicator eventually displaces the slower one, whereas if the growth is sublinear the two coexist. It is also proven by an appropriate rescaling of time that the results that concern the system asymptotic dynamics hold both for micelles and

  13. Optical model methods of predicting nuclide production from spallation reactions

    NASA Technical Reports Server (NTRS)

    Ramsey, C. R.; Townsend, L. W.; Tripathi, R. K.; Cucinotta, F. A.; Wilson, J. W. (Principal Investigator)

    1998-01-01

    Quantum mechanical optical model methods for calculating isotope production cross sections from the spallation of heavy nuclei by high-energy protons are developed from a modified abrasion-ablation collision formalism. The abrasion step is treated quantum-mechanically as a knockout process which leaves the residual prefragment nucleus in an excited state. In ablation the prefragment deexcites to produce the final fragment. The excitation energies of the prefragments are estimated from a combination of liquid drop and frictional-spectator interaction considerations. Estimates of elemental and isotopic production cross sections are in good agreement with recently published cross section measurements.

  14. 40 CFR 60.2600 - How do I comply with the increment of progress for submittal of a control plan?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false How do I comply with the increment of progress for submittal of a control plan? 60.2600 Section 60.2600 Protection of Environment ENVIRONMENTAL... Commenced Construction On or Before November 30, 1999 Model Rule-Increments of Progress § 60.2600 How do...

  15. A GPU Reaction Diffusion Soil-Microbial Model

    NASA Astrophysics Data System (ADS)

    Falconer, Ruth; Houston, Alasdair; Schmidt, Sonja; Otten, Wilfred

    2014-05-01

    Parallelised algorithms are frequent in bioinformatics as a consequence of the close link to informatics - however in the field of soil science and ecology they are less prevalent. A current challenge in soil ecology is to link habitat structure to microbial dynamics. Soil science is therefore entering the 'big data' paradigm as a consequence of integrating data pertinent to the physical soil environment obtained via imaging and theoretical models describing growth and development of microbial dynamics permitting accurate analyses of spatio-temporal properties of different soil microenvironments. The microenvironment is often captured by 3D imaging (CT tomography) which yields large datasets and when used in computational studies the physical sizes of the samples that are amenable to computation are less than 1 cm3. Today's commodity graphics cards are programmable and possess a data parallel architecture that in many cases is capable of out-performing the CPU in terms of computational rates. The programmable aspect is achieved via a low-level parallel programming language (CUDA, OpenCL and DirectX). We ported a Soil-Microbial Model onto the GPU using the DirectX Compute API. We noted a significant computational speed up as well as an increase in the physical size that can be simulated. Some of the drawbacks of such an approach were concerned with numerical precision and the steep learning curve associated with GPGPU technologies.

  16. Geometrical measurement of cardiac wavelength in reaction-diffusion models

    NASA Astrophysics Data System (ADS)

    Dupraz, Marie; Jacquemet, Vincent

    2014-09-01

    The dynamics of reentrant arrhythmias often consists in multiple wavelets propagating throughout an excitable medium. An arrhythmia can be sustained only if these reentrant waves have a sufficiently short wavelength defined as the distance traveled by the excitation wave during its refractory period. In a uniform medium, wavelength may be estimated as the product of propagation velocity and refractory period (electrophysiological wavelength). In order to accurately measure wavelength in more general substrates relevant to atrial arrhythmias (heterogeneous and anisotropic), we developed a mathematical framework to define geometrical wavelength at each time instant based on the length of streamlines following the propagation velocity field within refractory regions. Two computational methods were implemented: a Lagrangian approach in which a set of streamlines were integrated, and an Eulerian approach in which wavelength was the solution of a partial differential equation. These methods were compared in 1D/2D tissues and in a model of the left atrium. An advantage of geometrical definition of wavelength is that the wavelength of a wavelet can be tracked over time with high temporal resolution and smaller temporal variability in an anisotropic and heterogeneous medium. The results showed that the average electrophysiological wavelength was consistent with geometrical measurements of wavelength. Wavelets were however often shorter than the electrophysiological wavelength due to interactions with boundaries and other wavelets. These tools may help to assess more accurately the relation between substrate properties and wavelet dynamics in computer models.

  17. Geometrical measurement of cardiac wavelength in reaction-diffusion models.

    PubMed

    Dupraz, Marie; Jacquemet, Vincent

    2014-09-01

    The dynamics of reentrant arrhythmias often consists in multiple wavelets propagating throughout an excitable medium. An arrhythmia can be sustained only if these reentrant waves have a sufficiently short wavelength defined as the distance traveled by the excitation wave during its refractory period. In a uniform medium, wavelength may be estimated as the product of propagation velocity and refractory period (electrophysiological wavelength). In order to accurately measure wavelength in more general substrates relevant to atrial arrhythmias (heterogeneous and anisotropic), we developed a mathematical framework to define geometrical wavelength at each time instant based on the length of streamlines following the propagation velocity field within refractory regions. Two computational methods were implemented: a Lagrangian approach in which a set of streamlines were integrated, and an Eulerian approach in which wavelength was the solution of a partial differential equation. These methods were compared in 1D/2D tissues and in a model of the left atrium. An advantage of geometrical definition of wavelength is that the wavelength of a wavelet can be tracked over time with high temporal resolution and smaller temporal variability in an anisotropic and heterogeneous medium. The results showed that the average electrophysiological wavelength was consistent with geometrical measurements of wavelength. Wavelets were however often shorter than the electrophysiological wavelength due to interactions with boundaries and other wavelets. These tools may help to assess more accurately the relation between substrate properties and wavelet dynamics in computer models. PMID:25273213

  18. Steady state model of electrochemical gas sensors with multiple reactions

    SciTech Connect

    Brailsford, A.D.; Yussouff, M.; Logothetis, E.M.

    1996-12-31

    A general first-principles model of the steady state response of metal oxide gas sensors was developed by the authors and applied to the case of both electrochemical and resistive type oxygen sensors. It can describe many features of the experimentally observed response of commercial electrochemical zirconia sensors exposed to non-equilibrium gas mixtures consisting of O{sub 2} and one or more reducing species (CO, H{sub 2} , etc). However, the calculated sensor emf as a function of R`= 2p{sub O2}/P{sub CO} (or 2p{sub O2}/P{sub H2}) always showed a sharp transition from high to low values at some R` value and had a small value for R` >> 1. These results do not agree with the broad transitions and relatively high emf values for large R`, as observed experimentally at low temperatures. This paper discusses an extension of the model which is able to describe all aspects of the observed response.

  19. Mathematical modeling of an exothermic leaching reaction system: pressure oxidation of wide size arsenopyrite participates

    NASA Astrophysics Data System (ADS)

    Papangelakis, V. G.; Berk, D.; Demopoulos, G. P.

    1990-10-01

    In the design of processes involving exothermic reactions, as is the case of several sulfide leaching systems, it is desirable to utilize the energy liberated by the reaction to drive the reactor toward autogenous operation. For optimal reactor design, models which couple leaching kinetics and heat effects are needed. In this paper, the principles of modeling exothermic leaching reactions are outlined. The system investigated is the high-temperature (160 °C to 200 °C) pressure (O2) oxidation of arsenopyrite (FeAsS). The reaction system is characterized by three consecutive reactions: (1) heterogeneous dissolution of arsenopyrite particles, (2) homogeneous oxidation of iron(II) to iron(III), and (3) precipitation of scorodite (FeAsO4-2H2O). The overall kinetics is controlled by the arsenopyrite surface reaction. There was good agreement between laboratory-scale batch tests and model predictions. The model was expanded to simulate the performance of large-scale batch and single-stage continuous stirred tank reactor (CSTR) for the same rate-limiting regime. Emphasis is given to the identification of steady-state temperatures for autogenous processing. The effects of operating variables, such as feed temperature, slurry density, and retention time, on reactor operation and yield of leaching products are discussed.

  20. Reactions of coal model compounds in tetralin using microwave energy: Effects of catalysts

    SciTech Connect

    Eray, E.; Yagmur, E.; Simsek, E.H.; Alibeyli, R.; Togrul, T.

    2006-10-01

    Reaction mechanisms of model compounds of coal in tetralin by microwave energy were investigated. Diphenylmethane (DFM), phenyl-methyl ether (anisole), and phenyl-methyl ketone (acetophenon) were chosen as model compounds. Experiments were carried out for 10 minutes of microwave energy and different catalysts were used (pyratol, zeolite, BaCl{sub 2}, AlNiMo) to find out the distribution of reaction products of the model compounds. GC and GC/MS are used to analyze the reaction products. The main reaction products from DFM and tetralin under microwave radiation with catalysts were ethyl benzene, naphthalene, 2-methyl naphthalene, 3,4-dihydronaphthaleneone, 1-1'-ethyldene 1-benzene, and 1-methyl 4-phenyl methyl benzene. The main reaction products from anisole and tetralin under microwave radiation were ethyl benzene, phenol, methyl phenol, decahydronaphthalene, and tetrahydronaphthalenol. The main reaction products from acetophenon and tetralin under microwave radiation with catalysts were ethyl benzene, methoxy benzene, decahydronaphthalene, naphthalene, tetrahydronaphthalenol, 3,4-dihydronaphthalenone and 2-butene-1-one-1,3 diphenyl. The estimated mechanism of the model compounds with tetralin is compared with the results taken from GC/MS analysis. It is obtained that the results suggested theoretically were similar with the GC/MS results.

  1. Numerical modeling of particle generation from ozone reactions with human-worn clothing in indoor environments

    NASA Astrophysics Data System (ADS)

    Rai, Aakash C.; Lin, Chao-Hsin; Chen, Qingyan

    2015-02-01

    Ozone-terpene reactions are important sources of indoor ultrafine particles (UFPs), a potential health hazard for human beings. Humans themselves act as possible sites for ozone-initiated particle generation through reactions with squalene (a terpene) that is present in their skin, hair, and clothing. This investigation developed a numerical model to probe particle generation from ozone reactions with clothing worn by humans. The model was based on particle generation measured in an environmental chamber as well as physical formulations of particle nucleation, condensational growth, and deposition. In five out of the six test cases, the model was able to predict particle size distributions reasonably well. The failure in the remaining case demonstrated the fundamental limitations of nucleation models. The model that was developed was used to predict particle generation under various building and airliner cabin conditions. These predictions indicate that ozone reactions with human-worn clothing could be an important source of UFPs in densely occupied classrooms and airliner cabins. Those reactions could account for about 40% of the total UFPs measured on a Boeing 737-700 flight. The model predictions at this stage are indicative and should be improved further.

  2. Modeling of atmospheric OH reaction rates using newly developed variable distance weighted zero order connectivity index

    NASA Astrophysics Data System (ADS)

    Markelj, Jernej; Pompe, Matevž

    2016-04-01

    A new variable distance weighted zero order connectivity index was used for development of structure-activity relationship for modeling reactivity of OH radical with alkanes and non-conjugated alkenes in the atmosphere. The proposed model is based on the assumptions that the total reaction rate can be obtained by summing all partial reaction rates and that all reaction sites are interrelated by influencing each other. The results suggest that these assumptions are justified. The model was compared with the EPA implemented model in the studied application domain and showed superior prediction capabilities. Further, optimized values of the weights that were used in our model permit some insight into mechanisms that govern the reaction OH + alkane/alkene. The most important conclusion is that the branching degree of the forming radical seems to play a major role in site specific reaction rates. Relative qualitative structural interpretation is possible, e.g. allylic site is suggested to be much more reactive than even tertiary sp3 carbon. Novel modeling software MACI, which was developed in our lab and is now available for research purposes, was used for calculations. Various variable topological indices that are again starting to be recognized because of their great potentials in simplicity, fast calculations, very good correlations and structural information, were implemented in the program.

  3. A new model of reaction-driven cracking: fluid volume consumption and tensile failure during serpentinization

    NASA Astrophysics Data System (ADS)

    Eichenbaum-Pikser, J. M.; Spiegelman, M. W.; Kelemen, P. B.; Wilson, C. R.

    2013-12-01

    Reactive fluid flow plays an important role in a wide range of geodynamic processes, such as melt migration, formation of hydrous minerals on fault surfaces, and chemical weathering. These processes are governed by the complex coupling between fluid transport, reaction, and solid deformation. Reaction-driven cracking is a potentially critical feedback mechanism, by which volume change associated with chemical reaction drives fracture in the surrounding rock. It has been proposed to play a role in both serpentinization and carbonation of peridotite, motivating consideration of its application to mineral carbon sequestration. Previous studies of reactive cracking have focused on the increase in solid volume, and as such, have considered failure in compression. However, if the consumption of fluid is considered in the overall volume budget, the reaction can be net volume reducing, potentially leading to failure in tension. To explore these problems, we have formulated and solved a 2-D model of coupled porous flow, reaction kinetics, and elastic deformation using the finite element model assembler TerraFERMA (Wilson et al, G3 2013 submitted). The model is applied to the serpentinization of peridotite, which can be reasonably approximated as the transfer of a single reactive component (H2O) between fluid and solid phases, making it a simple test case to explore the process. The behavior of the system is controlled by the competition between the rate of volume consumption by the reaction, and the rate of volume replacement by fluid transport, as characterized by a nondimensional parameter χ, which depends on permeability, reaction rate, and the bulk modulus of the solid. Large values of χ correspond to fast fluid transport relative to reaction rate, resulting in a low stress, volume replacing regime. At smaller values of χ, fluid transport cannot keep up with the reaction, resulting in pore fluid under-pressure and tensile solid stresses. For the range of χ relevant

  4. Reaction-based reactive transport modeling of Fe(III)

    SciTech Connect

    Kemner, K.M.; Kelly, S.D.; Burgos, Bill; Roden, Eric

    2006-06-01

    This research project (started Fall 2004) was funded by a grant to Argonne National Laboratory, The Pennsylvania State University, and The University of Alabama in the Integrative Studies Element of the NABIR Program (DE-FG04-ER63914/63915/63196). Dr. Eric Roden, formerly at The University of Alabama, is now at the University of Wisconsin, Madison. Our project focuses on the development of a mechanistic understanding and quantitative models of coupled Fe(III)/U(VI) reduction in FRC Area 2 sediments. This work builds on our previous studies of microbial Fe(III) and U(VI) reduction, and is directly aligned with the Scheibe et al. NABIR FRC Field Project at Area 2.

  5. A measurement model for general noise reaction in response to aircraft noise.

    PubMed

    Kroesen, Maarten; Schreckenberg, Dirk

    2011-01-01

    In this paper a measurement model for general noise reaction (GNR) in response to aircraft noise is developed to assess the performance of aircraft noise annoyance and a direct measure of general reaction as indicators of this concept. For this purpose GNR is conceptualized as a superordinate latent construct underlying particular manifestations. This conceptualization is empirically tested through estimation of a second-order factor model. Data from a community survey at Frankfurt Airport are used for this purpose (N=2206). The data fit the hypothesized factor structure well and support the conceptualization of GNR as a superordinate construct. It is concluded that noise annoyance and a direct measure of general reaction to noise capture a large part of the negative feelings and emotions in response to aircraft noise but are unable to capture all relevant variance. The paper concludes with recommendations for the valid measurement of community reaction and several directions for further research. PMID:21303002

  6. Incremental Scheduling Engines: Cost Savings through Automation

    NASA Technical Reports Server (NTRS)

    Jaap, John; Phillips, Shaun

    2005-01-01

    As humankind embarks on longer space missions farther from home, the requirements and environments for scheduling the activities performed on these missions are changing. As we begin to prepare for these missions it is appropriate to evaluate the merits and applicability of the different types of scheduling engines. Scheduling engines temporally arrange tasks onto a timeline so that all constraints and ob.jectives are met and resources are not over-booked. Scheduling engines used to schedule space missions fall into three general categories: batch, mixed-initiative, and incremental. This paper, presents an assessment of the engine types, a discussion of the impact of human exploration of the moon and Mars on planning and scheduling, and the applicability of the different types of scheduling engines. This paper will pursue the hypothesis that incremental scheduling engines may have a place in the new environment; they have the potential to reduce cost, to improve the satisfaction of those who execute or benefit from a particular timeline (the customers), and to allow astronauts to plan their own tasks and those of their companion robots.

  7. Quantitative assignment of reaction directionality in constraint-based models of metabolism: Application to Escherichia coli

    PubMed Central

    Fleming, R.M.T.; Thiele, I.; Nasheuer, H.P.

    2009-01-01

    Constraint based modeling is an approach for quantitative prediction of net reaction flux in genome scale biochemical networks. In vivo, the second law of thermodynamics requires that net macroscopic flux be forward, when the transformed reaction Gibbs energy is negative. We calculate the latter by using (i) group contribution estimates of metabolite species Gibbs energy, combined with (ii) experimentally measured equilibrium constants. In an application to a genome scale stoichiometric model of E. coli metabolism, iAF1260, we demonstrate that quantitative prediction of reaction directionality is increased in scope and accuracy by integration of both data sources, transformed appropriately to in vivo pH, temperature and ionic strength. Comparison of quantitative versus qualitative assignment of reaction directionality in iAF1260, assuming an accommodating reactant concentration range of 0.02 – 20 mM, revealed that quantitative assignment leads to a low false positive, but high false negative, prediction of effectively irreversible reactions. The latter is partly due to the uncertainty associated with group contribution estimates. We also uncovered evidence that the high intracellular concentration of glutamate in E. coli may be essential to direct otherwise thermodynamically unfavorable essential reactions, such as the leucine transaminase reaction, in an anabolic direction. PMID:19783351

  8. Catalytic conversion reactions in nanoporous systems with concentration-dependent selectivity: Statistical mechanical modeling

    NASA Astrophysics Data System (ADS)

    García, Andrés; Wang, Jing; Windus, Theresa L.; Sadow, Aaron D.; Evans, James W.

    2016-05-01

    Statistical mechanical modeling is developed to describe a catalytic conversion reaction A →Bc or Bt with concentration-dependent selectivity of the products, Bc or Bt, where reaction occurs inside catalytic particles traversed by narrow linear nanopores. The associated restricted diffusive transport, which in the extreme case is described by single-file diffusion, naturally induces strong concentration gradients. Furthermore, by comparing kinetic Monte Carlo simulation results with analytic treatments, selectivity is shown to be impacted by strong spatial correlations induced by restricted diffusivity in the presence of reaction and also by a subtle clustering of reactants, A .

  9. ENZO: A Web Tool for Derivation and Evaluation of Kinetic Models of Enzyme Catalyzed Reactions

    PubMed Central

    Bevc, Staš; Konc, Janez; Stojan, Jure; Hodošček, Milan; Penca, Matej; Praprotnik, Matej; Janežič, Dušanka

    2011-01-01

    We describe a web tool ENZO (Enzyme Kinetics), a graphical interface for building kinetic models of enzyme catalyzed reactions. ENZO automatically generates the corresponding differential equations from a stipulated enzyme reaction scheme. These differential equations are processed by a numerical solver and a regression algorithm which fits the coefficients of differential equations to experimentally observed time course curves. ENZO allows rapid evaluation of rival reaction schemes and can be used for routine tests in enzyme kinetics. It is freely available as a web tool, at http://enzo.cmm.ki.si. PMID:21818304

  10. Flash Vacuum Pyrolysis of Lignin Model Compounds: Reaction Pathways of Aromatic Methoxy Groups

    SciTech Connect

    Britt, P.F.; Buchanan, A.C., III; Martineau, D.R.

    1999-03-21

    Currently, there is interest in utilizing lignin, a major constituent of biomass, as a renewable source of chemicals and fuels. High yields of liquid products can be obtained from the flash or fast pyrolysis of biomass, but the reaction pathways that lead to product formation are not understood. To provide insight into the primary reaction pathways under process relevant conditions, we are investigating the flash vacuum pyrolysis (FVP) of lignin model compounds at 500 C. This presentation will focus on the FVP of {beta}-ether linkages containing aromatic methoxy groups and the reaction pathways of methoxy-substituted phenoxy radicals.

  11. Catalytic conversion reactions in nanoporous systems with concentration-dependent selectivity: Statistical mechanical modeling

    DOE PAGESBeta

    Garcia, Andres; Wang, Jing; Windus, Theresa L.; Sadow, Aaron D.; Evans, James W.

    2016-05-20

    Statistical mechanical modeling is developed to describe a catalytic conversion reaction A → Bc or Bt with concentration-dependent selectivity of the products, Bc or Bt, where reaction occurs inside catalytic particles traversed by narrow linear nanopores. The associated restricted diffusive transport, which in the extreme case is described by single-file diffusion, naturally induces strong concentration gradients. Hence, by comparing kinetic Monte Carlo simulation results with analytic treatments, selectivity is shown to be impacted by strong spatial correlations induced by restricted diffusivity in the presence of reaction and also by a subtle clustering of reactants, A.

  12. The mineralogic evolution of the Martian surface through time: Implications from chemical reaction path modeling studies

    NASA Technical Reports Server (NTRS)

    Plumlee, G. S.; Ridley, W. I.; Debraal, J. D.; Reed, M. H.

    1993-01-01

    Chemical reaction path calculations were used to model the minerals that might have formed at or near the Martian surface as a result of volcano or meteorite impact driven hydrothermal systems; weathering at the Martian surface during an early warm, wet climate; and near-zero or sub-zero C brine-regolith reactions in the current cold climate. Although the chemical reaction path calculations carried out do not define the exact mineralogical evolution of the Martian surface over time, they do place valuable geochemical constraints on the types of minerals that formed from an aqueous phase under various surficial and geochemically complex conditions.

  13. Comparison of DFT and ab initio QM/MM methods for modelling reaction in chorismate synthase

    NASA Astrophysics Data System (ADS)

    Lawan, Narin; Ranaghan, Kara E.; Manby, Frederick R.; Mulholland, Adrian J.

    2014-07-01

    Quantum mechanics/molecular mechanics (QM/MM) methods are a popular tool in the investigation of enzyme reactions. Here, we compare B3LYP density functional theory (DFT) and ab initio QM/MM methods for modelling the conversion of 5-enolpyruvylshikimate-3-phosphate to chorismate in chorismate synthase. Good agreement with experimental data is only obtained at the SCS-MP2/CHARMM27 level for a reaction mechanism in which phosphate elimination precedes proton transfer. B3LYP predicts reaction energetics that are qualitatively wrong, stressing the need for ab initio QM/MM methods, and caution in interpretation of DFT results for this enzyme.

  14. KEMOD: A mixed chemical kinetic and equilibrium model of aqueous and solid phase geochemical reactions

    SciTech Connect

    Yeh, G.T.; Iskra, G.A.; Szecsody, J.E.; Zachara, J.M.; Streile, G.P.

    1995-01-01

    This report presents the development of a mixed chemical Kinetic and Equilibrium MODel in which every chemical species can be treated either as a equilibrium-controlled or as a kinetically controlled reaction. The reaction processes include aqueous complexation, adsorption/desorption, ion exchange, precipitation/dissolution, oxidation/reduction, and acid/base reactions. Further development and modification of KEMOD can be made in: (1) inclusion of species switching solution algorithms, (2) incorporation of the effect of temperature and pressure on equilibrium and rate constants, and (3) extension to high ionic strength.

  15. Theoretical studies of the mechanism of the alumination reaction of ethylene as a Ziegler-Natta-type reaction model

    SciTech Connect

    Sakai, Shogo )

    1991-01-10

    The reactions of ethylene + RAlR{prime}{sub 2} (R = H, CH{sub 3}; R{prime} = H, Cl) were treated by ab initio molecular orbital methods. A push-pull two-stage reaction mechanism via the transition state was shown by the LMO charge centroids analysis. The substituent effects per Al atom in the above reactions were also discussed.

  16. Momentum balance equation for nonelectrolytes in models of coupling between chemical reaction and diffusion in membranes.

    PubMed

    Gałdzicki, Z; Miekisz, S

    1984-04-01

    The role of viscosity in coupling between chemical reaction (complex formation) and diffusion in membranes has been investigated. The Fick law was replaced by the momentum balance equation with the viscous term. The irreversible thermodynamics admits coupling of the chemical reaction rate with the gradient of velocity. The proposed model has shown the contrary effect of viscosity and confirmed the experimental results. The chemical reaction rate increases only above the limit value of viscosity. The parameter Q (degree of complex formation) was introduced to investigate coupling. Q equals to the ratio of the chemical contribution into the flux of the complex to the total flux of the substance transported. For different values of the parameters of the model the dependence of Q upon position inside the membrane has been numerically calculated. The assumptions of the model limit it to a specific case and they only roughly model the biological situation. PMID:6537360

  17. Extended Parker-Sochacki method for Michaelis-Menten enzymatic reaction model.

    PubMed

    Abdelrazik, Ismail M; Elkaranshawy, Hesham A

    2016-03-01

    In this article, a new approach--namely, the extended Parker-Sochacki method (EPSM)--is presented for solving the Michaelis-Menten nonlinear enzymatic reaction model. The Parker-Sochacki method (PSM) is combined with a new resummation method called the Sumudu-Padé resummation method to obtain approximate analytical solutions for the model. The obtained solutions by the proposed approach are compared with the solutions of PSM and the Runge-Kutta numerical method (RKM). The comparison proves the practicality, efficiency, and correctness of the presented approach. It serves as a basis for solving other nonlinear biochemical reaction models in the future. PMID:26707239

  18. Characterization of initial cure reactions in propargyl and nadic end capped model compounds

    NASA Technical Reports Server (NTRS)

    Young, P. R.

    1981-01-01

    Imide model compounds containing propargyl and nadic groups were studied to obtain a fundamental understanding of the reaction of these groups attached to imide oligomers. The initial cure reactions were examined by a variety of characterization techniques including high pressure liquid chromatography, infrared spectroscopy, thermal analyses, and mass spectroscopy. The initial step in the cure of propargyl end capped model compounds probably involved the formation of a new terminal acetylenic group. Configurational changes involving endo/exo isomerism was found in the nadimide model compounds. Nadimide compounds heated in air and in nitrogen appeared to cure by different mechanisms.

  19. A New Sheet Metal Forming System Based on Incremental Punching

    NASA Astrophysics Data System (ADS)

    Luo, Yuanxin

    conducted by the mean of computer simulation in consideration of applying a large impulsive force. This study validates the machine stability and accuracy. One of the keys to successful application of sheet metal forming is to be able to predict the deformation and the strain/stress of the part incurred during the forming process. Because of the complexity of the ISMF process, it is not possible to derive an analytical method. The alternative is to use Finite Element Analysis (FEA). However, based on our experience, it takes about one week to solve a simple case. A mechanics model is therefore developed. It consists of two steps. The first step is to computer the final shape: the initial geometric surface is obtained using the punch positions; then using the minimum energy principle, the virtual forces drive the nodes of geometric surface to their lowest energy positions, which gives the final shape of the forming part. The second step is to predict the strain and stress distributions. This is done using the inverse Finite Element Modeling (FEM). An in-house computer software is developed using MATLABRTM. In order to verify the new mechanics model, numerical and experimental studies are conducted using the new incremental punching system. The final shape and thickness distributions of parts are compared to verify the mechanics model. It is found that the model prediction fits the experiment result well. Forming parameters are also investigated. To evaluate the capability of the presented ISMF process, the formability is studied by the means of theory and experiment. A modified M-K model is proposed for predicting the forming limit of the formed part which is undergoing a very complicated strain path. The maximum forming angle is also investigated by experiments.

  20. Dynamic Analysis of a Reaction-Diffusion Rumor Propagation Model

    NASA Astrophysics Data System (ADS)

    Zhao, Hongyong; Zhu, Linhe

    2016-06-01

    The rapid development of the Internet, especially the emergence of the social networks, leads rumor propagation into a new media era. Rumor propagation in social networks has brought new challenges to network security and social stability. This paper, based on partial differential equations (PDEs), proposes a new SIS rumor propagation model by considering the effect of the communication between the different rumor infected users on rumor propagation. The stabilities of a nonrumor equilibrium point and a rumor-spreading equilibrium point are discussed by linearization technique and the upper and lower solutions method, and the existence of a traveling wave solution is established by the cross-iteration scheme accompanied by the technique of upper and lower solutions and Schauder’s fixed point theorem. Furthermore, we add the time delay to rumor propagation and deduce the conditions of Hopf bifurcation and stability switches for the rumor-spreading equilibrium point by taking the time delay as the bifurcation parameter. Finally, numerical simulations are performed to illustrate the theoretical results.

  1. Stability and bifurcation in a reaction-diffusion model with nonlocal delay effect

    NASA Astrophysics Data System (ADS)

    Guo, Shangjiang

    2015-08-01

    In this paper, the existence, stability, and multiplicity of spatially nonhomogeneous steady-state solution and periodic solutions for a reaction-diffusion model with nonlocal delay effect and Dirichlet boundary condition are investigated by using Lyapunov-Schmidt reduction. Moreover, we illustrate our general results by applications to models with a single delay and one-dimensional spatial domain.

  2. General model of a cascade of reactions with time delays: Global stability analysis

    NASA Astrophysics Data System (ADS)

    Bodnar, Marek

    2015-07-01

    The problem considered in this paper consists of a cascade of reactions with discrete as well as distributed delays, which arose in the context of Hes1 gene expression. For the abstract general model sufficient conditions for global stability are presented. Then the abstract result is applied to the Hes1 model.

  3. SOCON: a computer model for analyzing the behavior of sodium-concrete reactions

    SciTech Connect

    Nguyen, D.G.; Muhlestein, L.D.

    1985-03-01

    Guided by experimental evidence available to date, ranging from basic laboratory studies to large scale tests, a mechanistic computer model (the SOCON model) has been developed to analyze the behavior of SOdium-CONcrete reactions. The model accounts for the thermal, chemical and mechanical phenomena which interact to determine the consequences of the reactions. Reaction limiting mechanisms could be any process which reduces water release and sodium transport to fresh concrete; the buildup of the inert reaction product layer would increase the resistance to sodium transport; water dry-out would decrease the bubble agitation transport mechanism. However, stress-induced failure of concrete, such as spalling, crushing and cracking, and a massive release of gaseous products (hydrogen, water vapor and CO/sub 2/) would increase the transport of sodium to the reaction zone. The results of SOCON calculations are in excellent agreement with measurements obtained from large-scale sodium-limestone concrete reaction tests of duration up to 100 hours conducted at the Hanford Engineering Development Laboratory. 8 refs., 7 figs.

  4. Examining a social reaction model in the prediction of adolescent alcohol use.

    PubMed

    Litt, Dana M; Lewis, Melissa A

    2016-09-01

    The prototype willingness model (PWM; Gerrard et al., 2008) is a modified dual-processing model designed to improve the predictive value of existing health risk behavior by suggesting that there are two pathways to health risk behaviors: a reasoned path that is mediated by behavioral intention and a social reaction path that is mediated by behavioral willingness. Although there is evidence supporting the social reaction path to risk behavior among adolescents, most of this work has focused on specific components of the pathway such as prototypes or willingness rather than looking at the entire social reaction pathway as a whole. As such, the primary goal of the present study was to determine whether the social reaction pathway has acceptable fit for a sample of adolescents using a longitudinal design. Results from 835 adolescents support the social reaction pathway of the PWM model when applied to adolescent alcohol use. Specifically, prototypes, perceived vulnerability, and norms predicted willingness to drink, which in turn predicted drinking behavior (drinks per week and peak number of drinks) over a period of 12months. As such, these findings suggest that the social reaction pathway of the PWM is applicable to adolescent drinkers, meaning that adolescent drinking behavior is based on a less planned and socially based decision process. PMID:27155242

  5. Kidney Tumor Growth Prediction by Coupling Reaction-Diffusion and Biomechanical Model

    PubMed Central

    Chen, Xinjian; Summers, Ronald M.; Yao, Jianhua

    2014-01-01

    It is desirable to predict the tumor growth rate so that appropriate treatment can be planned in the early stage. Previously, we proposed a finite element method (FEM)-based 3D kidney tumor growth prediction system using longitudinal images. A reaction-diffusion model was applied as the tumor growth model. In this paper, we not only improve the tumor growth model by coupling the reaction-diffusion model with a biomechanical model, but also take the surrounding tissues into account. Different diffusion and biomechanical properties are applied for different tissue types. FEM is employed to simulate the coupled tumor growth model. Model parameters are estimated by optimizing an objective function of overlap accuracy using a hybrid optimization parallel search package (HOPSPACK). The proposed method was tested with kidney CT images of eight tumors from five patients with seven time points. The experimental results showed the performance of the proposed method improved greatly compared to our previous work. PMID:23047857

  6. Coupled enzyme reactions performed in heterogeneous reaction media: experiments and modeling for glucose oxidase and horseradish peroxidase in a PEG/citrate aqueous two-phase system.

    PubMed

    Aumiller, William M; Davis, Bradley W; Hashemian, Negar; Maranas, Costas; Armaou, Antonios; Keating, Christine D

    2014-03-01

    The intracellular environment in which biological reactions occur is crowded with macromolecules and subdivided into microenvironments that differ in both physical properties and chemical composition. The work described here combines experimental and computational model systems to help understand the consequences of this heterogeneous reaction media on the outcome of coupled enzyme reactions. Our experimental model system for solution heterogeneity is a biphasic polyethylene glycol (PEG)/sodium citrate aqueous mixture that provides coexisting PEG-rich and citrate-rich phases. Reaction kinetics for the coupled enzyme reaction between glucose oxidase (GOX) and horseradish peroxidase (HRP) were measured in the PEG/citrate aqueous two-phase system (ATPS). Enzyme kinetics differed between the two phases, particularly for the HRP. Both enzymes, as well as the substrates glucose and H2O2, partitioned to the citrate-rich phase; however, the Amplex Red substrate necessary to complete the sequential reaction partitioned strongly to the PEG-rich phase. Reactions in ATPS were quantitatively described by a mathematical model that incorporated measured partitioning and kinetic parameters. The model was then extended to new reaction conditions, i.e., higher enzyme concentration. Both experimental and computational results suggest mass transfer across the interface is vital to maintain the observed rate of product formation, which may be a means of metabolic regulation in vivo. Although outcomes for a specific system will depend on the particulars of the enzyme reactions and the microenvironments, this work demonstrates how coupled enzymatic reactions in complex, heterogeneous media can be understood in terms of a mathematical model. PMID:24517887

  7. Gas Phase Model of Surface Reactions for N{2} Afterglows

    NASA Astrophysics Data System (ADS)

    Marković, V. Lj.; Petrović, Z. Lj.; Pejović, M. M.

    1996-07-01

    The adequacy of the homogeneous gas phase model as a representation of the surface losses of diffusing active particles in gas phase is studied. As an example the recent data obtained for the surface recombination coefficients are reanalyzed. The data were obtained by the application of the breakdown delay times which consists of the measurements of the breakdown delay times t_d as a function of the afterglow period tau. It was found that for the conditions of our experiment, the diffusion should not be neglected as the final results are significantly different when obtained by approximate gas phase representation and by exact numerical solution to the diffusion equation. While application of the gas phase effective coefficients to represent surface losses gives an error in the value of the recombination coefficient, it reproduces correctly other characteristics such as order of the process which can be obtained from simple fits to the experimental data. Dans cet article, nous étudions la validité du modèle approximatif représentant les pertes superficielles des particules actives qui diffusent de la phase gazeuse comme pertes dans la phase homogène du gaz. Les données actuelles du coefficient de recombination en surface sont utilisées par cette vérification . Les données experimentales sont obtenues en utilisant la technique qui consiste en la mesure du temps de retard du début de la décharge en fonction de la période de relaxation. Nous avons trouvé que, pour nos conditions expérimentales, la diffusion ne peut être négligée. Aussi, les résultats finals sont considérablement différents quand ils sont obtenus en utilisant le modèle approximatif par comparaison aves les résultats obtenus par la solution numérique exacte de l'équation de la diffusion. L'application des coefficients effectifs dans la phase gaseuse pour la présentation des pertes superficielles donne, pour les coefficients de la recombinaison, des valeurs qui diffèrent en

  8. A New Method for Incremental Testing of Finite State Machines

    NASA Technical Reports Server (NTRS)

    Pedrosa, Lehilton Lelis Chaves; Moura, Arnaldo Vieira

    2010-01-01

    The automatic generation of test cases is an important issue for conformance testing of several critical systems. We present a new method for the derivation of test suites when the specification is modeled as a combined Finite State Machine (FSM). A combined FSM is obtained conjoining previously tested submachines with newly added states. This new concept is used to describe a fault model suitable for incremental testing of new systems, or for retesting modified implementations. For this fault model, only the newly added or modified states need to be tested, thereby considerably reducing the size of the test suites. The new method is a generalization of the well-known W-method and the G-method, but is scalable, and so it can be used to test FSMs with an arbitrarily large number of states.

  9. A Film Depositional Model of Permeability for Mineral Reactions in Unsaturated Media.

    SciTech Connect

    Freedman, Vicky L.; Saripalli, Prasad; Bacon, Diana H.; Meyer, Philip D.

    2004-11-15

    A new modeling approach based on the biofilm models of Taylor et al. (1990, Water Resources Research, 26, 2153-2159) has been developed for modeling changes in porosity and permeability in saturated porous media and implemented in an inorganic reactive transport code. Application of the film depositional models to mineral precipitation and dissolution reactions requires that calculations of mineral films be dynamically changing as a function of time dependent reaction processes. Since calculations of film thicknesses do not consider mineral density, results show that the film porosity model does not adequately describe volumetric changes in the porous medium. These effects can be included in permeability calculations by coupling the film permeability models (Mualem and Childs and Collis-George) to a volumetric model that incorporates both mineral density and reactive surface area. Model simulations demonstrate that an important difference between the biofilm and mineral film models is in the translation of changes in mineral radii to changes in pore space. Including the effect of tortuosity on pore radii changes improves the performance of the Mualem permeability model for both precipitation and dissolution. Results from simulation of simultaneous dissolution and secondary mineral precipitation provides reasonable estimates of porosity and permeability. Moreover, a comparison of experimental and simulated data show that the model yields qualitatively reasonable results for permeability changes due to solid-aqueous phase reactions.

  10. Golden rule kinetics of transfer reactions in condensed phase: The microscopic model of electron transfer reactions in disordered solid matrices

    SciTech Connect

    Basilevsky, M. V.; Mitina, E. A.; Odinokov, A. V.; National Research Nuclear University “MEPhI,” 31, Kashirskoye shosse, Moscow ; Titov, S. V.

    2013-12-21

    The algorithm for a theoretical calculation of transfer reaction rates for light quantum particles (i.e., the electron and H-atom transfers) in non-polar solid matrices is formulated and justified. The mechanism postulated involves a local mode (an either intra- or inter-molecular one) serving as a mediator which accomplishes the energy exchange between the reacting high-frequency quantum mode and the phonon modes belonging to the environment. This approach uses as a background the Fermi golden rule beyond the usually applied spin-boson approximation. The dynamical treatment rests on the one-dimensional version of the standard quantum relaxation equation for the reduced density matrix, which describes the frequency fluctuation spectrum for the local mode under consideration. The temperature dependence of a reaction rate is controlled by the dimensionless parameter ξ{sub 0}=ℏω{sub 0}/k{sub B}T where ω{sub 0} is the frequency of the local mode and T is the temperature. The realization of the computational scheme is different for the high/intermediate (ξ{sub 0} < 1 − 3) and for low (ξ{sub 0}≫ 1) temperature ranges. For the first (quasi-classical) kinetic regime, the Redfield approximation to the solution of the relaxation equation proved to be sufficient and efficient in practical applications. The study of the essentially quantum-mechanical low-temperature kinetic regime in its asymptotic limit requires the implementation of the exact relaxation equation. The coherent mechanism providing a non-vanishing reaction rate has been revealed when T→ 0. An accurate computational methodology for the cross-over kinetic regime needs a further elaboration. The original model of the hopping mechanism for electronic conduction in photosensitive organic materials is considered, based on the above techniques. The electron transfer (ET) in active centers of such systems proceeds via local intra- and intermolecular modes. The active modes, as a rule, operate beyond the

  11. Intervertebral reaction force prediction using an enhanced assembly of OpenSim models.

    PubMed

    Senteler, Marco; Weisse, Bernhard; Rothenfluh, Dominique A; Snedeker, Jess G

    2016-01-01

    OpenSim offers a valuable approach to investigating otherwise difficult to assess yet important biomechanical parameters such as joint reaction forces. Although the range of available models in the public repository is continually increasing, there currently exists no OpenSim model for the computation of intervertebral joint reactions during flexion and lifting tasks. The current work combines and improves elements of existing models to develop an enhanced model of the upper body and lumbar spine. Models of the upper body with extremities, neck and head were combined with an improved version of a lumbar spine from the model repository. Translational motion was enabled for each lumbar vertebrae with six controllable degrees of freedom. Motion segment stiffness was implemented at lumbar levels and mass properties were assigned throughout the model. Moreover, body coordinate frames of the spine were modified to allow straightforward variation of sagittal alignment and to simplify interpretation of results. Evaluation of model predictions for level L1-L2, L3-L4 and L4-L5 in various postures of forward flexion and moderate lifting (8 kg) revealed an agreement within 10% to experimental studies and model-based computational analyses. However, in an extended posture or during lifting of heavier loads (20 kg), computed joint reactions differed substantially from reported in vivo measures using instrumented implants. We conclude that agreement between the model and available experimental data was good in view of limitations of both the model and the validation datasets. The presented model is useful in that it permits computation of realistic lumbar spine joint reaction forces during flexion and moderate lifting tasks. The model and corresponding documentation are now available in the online OpenSim repository. PMID:26031341

  12. Theoretical study of the position of the transition state for unimolecular reactions: an entropy model

    NASA Astrophysics Data System (ADS)

    Zou, Jian-Wei; Chen, Wei-Chen; Kao, Che-Lun; Yu, Chin-Hui

    2004-01-01

    An entropy model that can be used to quantitatively estimate the position of the transition state for unimolecular reaction is presented. A series of 12 isomeric reactions have been investigated to validate this model. It has been shown that the position of the transition state predicted by the entropy model ( χS≠) is qualitatively consistent with the Hammond postulate (HP) except for the isomerizations of FSSF and CH 3SH. The inconsistency for these two reactions may be well ascribed to the dissociated character of their transition states that would lead to the entropy deviating from a normal unimolecular behavior. Comparisons of χS≠ values with other quantities characterizing the position of the transition state have also been made.

  13. Reaction rate modeling in the deflagration to detonation transition of granular energetic materials

    SciTech Connect

    Son, S.F.; Asay, B.W.; Bdzil, J.B.; Kober, E.M.

    1996-07-01

    The problem of accidental initiation of detonation in granular material has been the initial focus of the Los Alamos explosives safety program. Preexisting models of deflagration-to-detonation transition (DDT) in granular explosives, especially the Baer and Nunziato (BN) model, have been examined. The main focus of this paper is the reaction rate model. Comparison with experiments are made using the BN rate model. Many features are replicated by the simulations. However, some qualitative features, such as inert plug formation in DDT tube-test experiments and other trends, are not produced in the simulations. By modifying the reaction rate model the authors show inert plug formation that more closely replicates the qualitative features of experimental observations. Additional improvements to the rate modeling are suggested.

  14. Incrementality and Prediction in Human Sentence Processing

    PubMed Central

    Altmann, Gerry T. M.; Mirković, Jelena

    2010-01-01

    We identify a number of principles with respect to prediction that, we argue, underpin adult language comprehension: (a) comprehension consists in realizing a mapping between the unfolding sentence and the event representation corresponding to the real-world event being described; (b) the realization of this mapping manifests as the ability to predict both how the language will unfold, and how the real-world event would unfold if it were being experienced directly; (c) concurrent linguistic and nonlinguistic inputs, and the prior internal states of the system, each drive the predictive process; (d) the representation of prior internal states across a representational substrate common to the linguistic and nonlinguistic domains enables the predictive process to operate over variable time frames and variable levels of representational abstraction. We review empirical data exemplifying the operation of these principles and discuss the relationship between prediction, event structure, thematic role assignment, and incrementality. PMID:20396405

  15. Incremental nonlinear dimensionality reduction by manifold learning.

    PubMed

    Law, Martin H C; Jain, Anil K

    2006-03-01

    Understanding the structure of multidimensional patterns, especially in unsupervised cases, is of fundamental importance in data mining, pattern recognition, and machine learning. Several algorithms have been proposed to analyze the structure of high-dimensional data based on the notion of manifold learning. These algorithms have been used to extract the intrinsic characteristics of different types of high-dimensional data by performing nonlinear dimensionality reduction. Most of these algorithms operate in a "batch" mode and cannot be efficiently applied when data are collected sequentially. In this paper, we describe an incremental version of ISOMAP, one of the key manifold learning algorithms. Our experiments on synthetic data as well as real world images demonstrate that our modified algorithm can maintain an accurate low-dimensional representation of the data in an efficient manner. PMID:16526424

  16. Nuclear Reactions X-Sections By Evaporation Model, Gamma-Cascades

    Energy Science and Technology Software Center (ESTSC)

    2000-06-27

    Calculation of energy-averaged cross sections for nuclear reactions with emission of particles and gamma rays and fission. The models employed are the evaporation model with inclusion of pre-equilibrium decay and gamma ray cascade model. Angular momentum and parity conservation are accounted for. Major improvement to the 1976 STAPRE program (NEA 0461) relates to level density approach, implemwnted in subroutine ZSTDE. Generalized superfluid model is incorporated, Boltzman-gas modelling of intrinsic state density and semi-empirical modelling ofmore » a few quasiparticle effects in total level density in equilibrium and saddle deformations of actinide nuclei.« less

  17. Evaluation of the dimensional accuracy in single point incremental forming

    NASA Astrophysics Data System (ADS)

    Araújo, R.; Silva, M. B.; Montanari, L.; Teixeira, P.; Reis, A.; Martins, P. A. F.

    2013-12-01

    Incremental Sheet Forming (ISF) is a forming process widely used to obtain small batches or prototypes. By improving forming strategies, the process can be used in a wide range of applications. However, this technology still presents some drawbacks. The dimensional accuracy between the 3D CAD model and the final product is one of the key challenges for this technique. The springback phenomenon during the incremental forming process is an important reason for the lack of accuracy. In order to study the mechanism of this phenomenon, the geometry of the sheet metal was measured in two different stages of the conventional production chain. First, the geometry of the sheet metal part was acquired after the forming stage, without be released from the blank holder. Then, the final geometry was achieved after the cutting process from the original sheet. A 3D scanning system was used to measure and inspect the springback phenomenon of each step. A reverse method is proposed to design the new tool path for compensation of the springback.

  18. Optimal Curiosity-Driven Modular Incremental Slow Feature Analysis.

    PubMed

    Kompella, Varun Raj; Luciw, Matthew; Stollenga, Marijn Frederik; Schmidhuber, Juergen

    2016-08-01

    Consider a self-motivated artificial agent who is exploring a complex environment. Part of the complexity is due to the raw high-dimensional sensory input streams, which the agent needs to make sense of. Such inputs can be compactly encoded through a variety of means; one of these is slow feature analysis (SFA). Slow features encode spatiotemporal regularities, which are information-rich explanatory factors (latent variables) underlying the high-dimensional input streams. In our previous work, we have shown how slow features can be learned incrementally, while the agent explores its world, and modularly, such that different sets of features are learned for different parts of the environment (since a single set of regularities does not explain everything). In what order should the agent explore the different parts of the environment? Following Schmidhuber's theory of artificial curiosity, the agent should always concentrate on the area where it can learn the easiest-to-learn set of features that it has not already learned. We formalize this learning problem and theoretically show that, using our model, called curiosity-driven modular incremental slow feature analysis, the agent on average will learn slow feature representations in order of increasing learning difficulty, under certain mild conditions. We provide experimental results to support the theoretical analysis. PMID:27348735

  19. Nanolithographic Fabrication and Heterogeneous Reaction Studies ofTwo-Dimensional Platinum Model Catalyst Systems

    SciTech Connect

    Contreras, A.M.

    2006-05-20

    In order to better understand the fundamental components that govern catalytic activity, two-dimensional model platinum nanocatalyst arrays have been designed and fabricated. These catalysts arrays are meant to model the interplay of the metal and support important to industrial heterogeneous catalytic reactions. Photolithography and sub-lithographic techniques such as electron beam lithography, size reduction lithography and nanoimprint lithography have been employed to create these platinum nanoarrays. Both in-situ and ex-situ surface science techniques and catalytic reaction measurements were used to correlate the structural parameters of the system to catalytic activity.

  20. Application of a Sequential Reaction Model to PANS and Aldehyde Measurements in Two Urban Areas

    SciTech Connect

    Roberts, James M.; Stroud, C.; Jobson, B Tom T.; Trainer, Michael; Hereid, D.; Williams, E. J.; Fehsenfeld, Fred C.; Brune, W. H.; Martinez, M.; Harder, H.

    2001-12-15

    Measurements of peroxycarboxylic nitric anhydrides (= PAN, PPN, MPAN) and aldehydes (acetaldehyde, propanal, and methacrolein) were made at Nashville, Tennessee, in 1999 and Houston, Texas, in 2000. The data were interpreted with a sequential reaction model that included reaction of aldehydes with hydroxl radical and formation or loss of PANs mediated by peroxyacyl radicals. The comparison of the measured ratios with those predicted by the model showed disagreement for PAN/acetaldehyde and PPN/propanal in Nashville but agreement in Houston. These features are consistent with the relative importance of isoprene to PAN formation at each site.

  1. Reversible Reshaping of Supported Metal Nanoislands Under Reaction Conditions in a Minimalistic Lattice Model

    NASA Astrophysics Data System (ADS)

    Korobov, A.

    2016-05-01

    The shape of (nano)islands is among significant factors of the catalytic activity of supported catalysts. A lattice model of the reshaping under reaction conditions is suggested and studied by means of kinetic Monte Carlo simulations. It is rooted in experimental findings and is simplified as far as possible to still demonstrate reversible compact—ramified shape transitions. This simple model with complex behavior demonstrates several reshaping regimes and is considered as a possible sub-network of more realistic networks of heterogeneous catalytic reactions.

  2. Influence of diffusive porosity architecture on kinetically-controlled reactions in mobile-immobile models

    NASA Astrophysics Data System (ADS)

    Babey, T.; Ginn, T. R.; De Dreuzy, J. R.

    2014-12-01

    Solute transport in porous media may be structured at various scales by geological features, from connectivity patterns of pores to fracture networks. This structure impacts solute repartition and consequently reactivity. Here we study numerically the influence of the organization of porous volumes within diffusive porosity zones on different reactions. We couple a mobile-immobile transport model where an advective zone exchanges with diffusive zones of variable structure to the geochemical modeling software PHREEQC. We focus on two kinetically-controlled reactions, a linear sorption and a nonlinear dissolution of a mineral. We show that in both cases the structure of the immobile zones has an important impact on the overall reaction rates. Through the Multi-Rate Mass Transfer (MRMT) framework, we show that this impact is very well captured by residence times-based models for the kinetic linear sorption, as it is mathematically equivalent to a modification of the initial diffusive structure; Consequently, the overall reaction rate could be easily extrapolated from a conservative tracer experiment. The MRMT models however struggle to reproduce the non-linearity and the threshold effects associated with the kinetic dissolution. A slower reaction, by allowing more time for diffusion to smooth out the concentration gradients, tends to increase their relevance. Figure: Left: Representation of a mobile-immobile model with a complex immobile architecture. The mobile zone is indicated by an arrow. Right: Total remaining mass of mineral in mobile-immobile models and in their equivalent MRMT models during a flush by a highly under-saturated solution. The models only differ by the organization of their immobile porous volumes.

  3. Reaction mechanism of WGS and PROX reactions catalyzed by Pt/oxide catalysts revealed by an FeO(111)/Pt(111) inverse model catalyst.

    PubMed

    Xu, Lingshun; Wu, Zongfang; Jin, Yuekang; Ma, Yunsheng; Huang, Weixin

    2013-08-01

    We have employed XPS and TDS to study the adsorption and surface reactions of H2O, CO and HCOOH on an FeO(111)/Pt(111) inverse model catalyst. The FeO(111)-Pt(111) interface of the FeO(111)/Pt(111) inverse model catalyst exposes coordination-unsaturated Fe(II) cations (Fe(II)CUS) and the Fe(II)CUS cations are capable of modifying the reactivity of neighbouring Pt sites. Water facilely dissociates on the Fe(II)CUS cations at the FeO(111)-Pt(111) interface to form hydroxyls that react to form both water and H2 upon heating. Hydroxyls on the Fe(II)CUS cations can react with CO(a) on the neighbouring Pt(111) sites to produce CO2 at low temperatures. Hydroxyls act as the co-catalyst in the CO oxidation by hydroxyls to CO2 (PROX reaction), while they act as one of the reactants in the CO oxidation by hydroxyls to CO2 and H2 (WGS reaction), and the recombinative reaction of hydroxyls to produce H2 is the rate-limiting step in the WGS reaction. A comparison of reaction behaviors between the interfacial CO(a) + OH reaction and the formate decomposition reaction suggest that formate is the likely surface intermediate of the CO(a) + OH reaction. These results provide some solid experimental evidence for the associative reaction mechanism of WGS and PROX reactions catalyzed by Pt/oxide catalysts. PMID:23576093

  4. VR-SCOSMO: A smooth conductor-like screening model with charge-dependent radii for modeling chemical reactions

    NASA Astrophysics Data System (ADS)

    Kuechler, Erich R.; Giese, Timothy J.; York, Darrin M.

    2016-04-01

    To better represent the solvation effects observed along reaction pathways, and of ionic species in general, a charge-dependent variable-radii smooth conductor-like screening model (VR-SCOSMO) is developed. This model is implemented and parameterized with a third order density-functional tight binding quantum model, DFTB3/3OB-OPhyd, a quantum method which was developed for organic and biological compounds, utilizing a specific parameterization for phosphate hydrolysis reactions. Unlike most other applications with the DFTB3/3OB model, an auxiliary set of atomic multipoles is constructed from the underlying DFTB3 density matrix which is used to interact the solute with the solvent response surface. The resulting method is variational, produces smooth energies, and has analytic gradients. As a baseline, a conventional SCOSMO model with fixed radii is also parameterized. The SCOSMO and VR-SCOSMO models shown have comparable accuracy in reproducing neutral-molecule absolute solvation free energies; however, the VR-SCOSMO model is shown to reduce the mean unsigned errors (MUEs) of ionic compounds by half (about 2-3 kcal/mol). The VR-SCOSMO model presents similar accuracy as a charge-dependent Poisson-Boltzmann model introduced by Hou et al. [J. Chem. Theory Comput. 6, 2303 (2010)]. VR-SCOSMO is then used to examine the hydrolysis of trimethylphosphate and seven other phosphoryl transesterification reactions with different leaving groups. Two-dimensional energy landscapes are constructed for these reactions and calculated barriers are compared to those obtained from ab initio polarizable continuum calculations and experiment. Results of the VR-SCOSMO model are in good agreement in both cases, capturing the rate-limiting reaction barrier and the nature of the transition state.

  5. VR-SCOSMO: A smooth conductor-like screening model with charge-dependent radii for modeling chemical reactions.

    PubMed

    Kuechler, Erich R; Giese, Timothy J; York, Darrin M

    2016-04-28

    To better represent the solvation effects observed along reaction pathways, and of ionic species in general, a charge-dependent variable-radii smooth conductor-like screening model (VR-SCOSMO) is developed. This model is implemented and parameterized with a third order density-functional tight binding quantum model, DFTB3/3OB-OPhyd, a quantum method which was developed for organic and biological compounds, utilizing a specific parameterization for phosphate hydrolysis reactions. Unlike most other applications with the DFTB3/3OB model, an auxiliary set of atomic multipoles is constructed from the underlying DFTB3 density matrix which is used to interact the solute with the solvent response surface. The resulting method is variational, produces smooth energies, and has analytic gradients. As a baseline, a conventional SCOSMO model with fixed radii is also parameterized. The SCOSMO and VR-SCOSMO models shown have comparable accuracy in reproducing neutral-molecule absolute solvation free energies; however, the VR-SCOSMO model is shown to reduce the mean unsigned errors (MUEs) of ionic compounds by half (about 2-3 kcal/mol). The VR-SCOSMO model presents similar accuracy as a charge-dependent Poisson-Boltzmann model introduced by Hou et al. [J. Chem. Theory Comput. 6, 2303 (2010)]. VR-SCOSMO is then used to examine the hydrolysis of trimethylphosphate and seven other phosphoryl transesterification reactions with different leaving groups. Two-dimensional energy landscapes are constructed for these reactions and calculated barriers are compared to those obtained from ab initio polarizable continuum calculations and experiment. Results of the VR-SCOSMO model are in good agreement in both cases, capturing the rate-limiting reaction barrier and the nature of the transition state. PMID:27131539

  6. Downsag calderas, ring faults, caldera sizes, and incremental caldera growth

    NASA Astrophysics Data System (ADS)

    Walker, G. P. L.

    1984-09-01

    According to present concepts, a caldera is a more or less circular volcanic depression larger than a crater which is caused by subsidence. It is commonly considered that the subsided mass consists of a block or blocks encircled by a ring fracture. Caldera collapse is generally correlated with a major explosive eruption. The present investigation is concerned with six features which do not conform well with the favored caldera model. Attention is given to downsagged calderas, the distribution of postcaldera vents in calderas, vent rings, the size of calderas and cauldrons, incremental caldera growth, and caldera-forming events. It is found that no single structural or genetic model applies to all calderas. Thus, the fact of subsidence may be the only common feature. It is pointed out that most known ring dikes occur in Precambrian crust. This may mean that the subsiding piston mechanism operates best where the crust is sufficiently rigid and strong.

  7. An incremental optimal routing strategy for scale-free networks

    NASA Astrophysics Data System (ADS)

    Jiang, Zhong-Yuan

    2014-03-01

    The link congestion based traffic model can more accurately reveal the traffic dynamics of many real complex networks such as the Internet, and heuristically optimizing each link's weight for the shortest path routing strategy can strongly improve the traffic capacity of network. In this work, we propose an optimal routing strategy in which the weight of each link is regulated incrementally to enhance the network traffic capacity by minimizing the maximum link betweenness of any link in the network. We also estimate more suitable value of the tunable parameter β for the efficient routing strategy under the link congestion based traffic model. The traffic load of network can be significantly balanced at the expense of increasing a bit average path length or average traffic load.

  8. Computational Study of a Model System of Enzyme-Mediated [4+2] Cycloaddition Reaction

    PubMed Central

    2015-01-01

    A possible mechanistic pathway related to an enzyme-catalyzed [4+2] cycloaddition reac-tion was studied by theoretical calculations at density functional (B3LYP, O3LYP, M062X) and semiempirical levels (PM6-DH2, PM6) performed on a model system. The calculations were carried out for the key [4+2] cycloaddition step considering enzyme-catalyzed biosynthesis of Spinosyn A in a model reaction, where a reliable example of a biological Diels-Alder reaction was reported experimentally. In the present study it was demonstrated that the [4+2] cycloaddition reaction may benefit from moving along the energetically balanced reaction coordinate, which enabled the catalytic rate enhancement of the [4+2] cycloaddition pathway involving a single transition state. Modeling of such a system with coordination of three amino acids indicated a reliable decrease of activation energy by ~18.0 kcal/mol as compared to a non-catalytic transformation. PMID:25853669

  9. Prediction of Kinetic Isotope Effects for Various Hydride Transfer Reactions Using a New Kinetic Model.

    PubMed

    Shen, Guang-Bin; Xia, Ke; Li, Xiu-Tao; Li, Jun-Ling; Fu, Yan-Hua; Yuan, Lin; Zhu, Xiao-Qing

    2016-03-24

    In this work, kinetic isotope effect (KIEself) values of 68 hydride self-exchange reactions, XH(D) + X(+) → X(+) + XH(D), in acetonitrile at 298 K were determined using a new experimental method. KIE values of 4556 hydride cross transfer reactions, XH(D) + Y(+) → X(+) + YH(D), in acetonitrile were estimated from the 68 determined KIEself values of hydride self-exchange reactions using a new KIE relation formula derived from Zhu's kinetic equation and the reliability of the estimations was verified using different experimental methods. A new KIE kinetic model to explain and predict KIE values was developed according to Zhu's kinetic model using two different Morse free energy curves instead of one Morse free energy curve in the traditional KIE theories to describe the free energy changes of X-H bond and X-D bond dissociation in chemical reactions. The most significant contribution of this paper to KIE theory is to build a new KIE kinetic model, which can be used to not only uniformly explain the various (normal, enormous and inverse) KIE values but also safely prodict KIE values of various chemical reactions. PMID:26938149

  10. Development of a physics-based degradation model for lithium ion polymer batteries considering side reactions

    NASA Astrophysics Data System (ADS)

    Fu, Rujian; Choe, Song-Yul; Agubra, Victor; Fergus, Jeffrey

    2015-03-01

    Experimental investigations conducted on a large format lithium ion polymer battery (LiPB) have revealed that side reactions taking place at anode are the major factor for degradation of the battery performance and lead to capacity and power fade. Side reactions consume ions and solvents from the electrolyte and produce deposits that increase the thickness of the solid electrolyte interphase (SEI) layer and form a new layer between composite anode and separator. These phenomena are described using physical principles based on the Tafel and Nernst equations that are integrated into the developed electrochemical-thermal model. The key parameters for the side reactions used in the model are experimentally determined from self-discharging behavior of the battery. The integrated model is then validated against experimental data obtained from different operating conditions. Analysis has revealed that the capacity fade is predominantly caused by loss of ions and active materials. The results also show that the rate of side reactions and degradations are more severe at charging process under high SOC and high C-rate due to low overpotential of the side reactions.

  11. Reactions of aqueous chlorine and chlorine dioxide with model food compounds.

    PubMed Central

    Fukayama, M Y; Tan, H; Wheeler, W B; Wei, C I

    1986-01-01

    Chlorine and chlorine dioxide (ClO2), common disinfecting and bleaching chemicals used in the food industry, are potent oxidizing and chlorinating agents. Unfortunately, little is known about the nature of the reactions of chlorine with organic food constituents. This presentation reviews published information concerning the reactions of chlorine gas (Cl2[g]), aqueous chlorine, and ClO2 with model food compounds, the fate of chlorine during the chlorination of specific food products, and the potential toxicity of the reaction products. Fatty acids and their methyl esters react with chlorine with the degree of incorporation corresponding to their degree of unsaturation. Aqueous chlorine oxidizes and chlorinates lipids and amino acids much more readily than ClO2. Several amino acids are highly susceptible to oxidation and chlorination by chlorine compounds. Reactions of chlorine and ClO2 with several food products, including flour and shrimp, have also been characterized. In one model system, 99% of Cl2(g) either reacted with components of flour or was consumed by oxidation/chlorination reactions. The lipids extracted from the chlorinated flour contained significant amounts of chlorine. Exposure of shrimp to hypochlorous acid (HOCl) solution resulted in significant incorporation of chlorine into the edible portion. Although significant quantities of chlorine can be incorporated into specific model compounds and food products, the health risks associated with exposure to chlorinated organic products are unknown. Preliminary studies using the Ames Salmonella/microsome mutagenicity assay indicate that the reaction products from mixtures of aqueous chlorine and various lipids or tryptophan are nonmutagenic. Nevertheless, additional studies are warranted, so that the toxicological significance of these reaction products can be understood more fully. PMID:3545804

  12. Can Drosophila melanogaster represent a model system for the detection of reproductive adverse drug reactions?

    PubMed

    Avanesian, Agnesa; Semnani, Sahar; Jafari, Mahtab

    2009-08-01

    Once a molecule is identified as a potential drug, the detection of adverse drug reactions is one of the key components of its development and the FDA approval process. We propose using Drosophila melanogaster to screen for reproductive adverse drug reactions in the early stages of drug development. Compared with other non-mammalian models, D. melanogaster has many similarities to the mammalian reproductive system, including putative sex hormones and conserved proteins involved in genitourinary development. Furthermore, the D. melanogaster model would present significant advantages in time efficiency and cost-effectiveness compared with mammalian models. We present data on methotrexate (MTX) reproductive adverse events in multiple animal models, including fruit flies, as proof-of-concept for the use of the D. melanogaster model. PMID:19482095

  13. Noise-and delay-induced phase transitions of the dimer-monomer surface reaction model

    NASA Astrophysics Data System (ADS)

    Zeng, Chunhua; Wang, Hua

    2012-06-01

    The effects of noise and time-delayed feedback in the dimer-monomer (DM) surface reaction model are investigated. Applying small delay approximation, we construct a stochastic delayed differential equation and its Fokker-Planck equation to describe the state evolution of the DM reaction model. We show that the noise can only induce first-order irreversible phase transition (IPT) characteristic of the DM model, however the combination of the noise and time-delayed feedback can simultaneously induce first- and second-order IPT characteristics of the DM model. Therefore, it is shown that the well-known first- and second-order IPT characteristics of the DM model may be viewed as noise-and delay-induced phase transitions.

  14. Modeling of the peritectic reaction and macro-segregation in casting of low carbon steel

    NASA Astrophysics Data System (ADS)

    El-Bealy, M.; Fredriksson, H.

    1996-12-01

    Macro-microscopic models have been developed to describe the macrosegregation behavior associated with the peritectic reaction of low carbon steel. The macrosegregation model has been established on the basis of previously published work and experimental data. A microscopic model of a three-phase reaction L+ δ→ γ has been modeled by using Fredriksson’s approach. Four horizontal and unidirectional solidified experimental groups simulating continuous casting have been performed with a low carbon steel containing 0.13 wt pct carbon. The extent of macrosegregation of carbon was determined by wet chemical analysis of millings. It is confirmed, by comparing calculated results with experimental results, that this model successfully predicts the occurrence of macrosegregation. The results indicate that a peritectic reaction which is associated with a high cooling rate generates high thermal contraction and a high tensile strain rate at the peritectic temperature. Therefore, the macrosegregation, particularly at the ingot surface, is very sensitive to the cooling rate, where extremely high positive segregation was observed in the case of a high cooling rate. However, in the case of slow cooling rate, negative segregation was noted. The mechanism of macrosegregation with peritectic reaction is discussed in detail.

  15. Catalytic ignition model in a monolithic reactor with in-depth reaction

    NASA Technical Reports Server (NTRS)

    Tien, Ta-Ching; Tien, James S.

    1990-01-01

    Two transient models have been developed to study the catalytic ignition in a monolithic catalytic reactor. The special feature in these models is the inclusion of thermal and species structures in the porous catalytic layer. There are many time scales involved in the catalytic ignition problem, and these two models are developed with different time scales. In the full transient model, the equations are non-dimensionalized by the shortest time scale (mass diffusion across the catalytic layer). It is therefore accurate but is computationally costly. In the energy-integral model, only the slowest process (solid heat-up) is taken as nonsteady. It is approximate but computationally efficient. In the computations performed, the catalyst is platinum and the reactants are rich mixtures of hydrogen and oxygen. One-step global chemical reaction rates are used for both gas-phase homogeneous reaction and catalytic heterogeneous reaction. The computed results reveal the transient ignition processes in detail, including the structure variation with time in the reactive catalytic layer. An ignition map using reactor length and catalyst loading is constructed. The comparison of computed results between the two transient models verifies the applicability of the energy-integral model when the time is greater than the second largest time scale of the system. It also suggests that a proper combined use of the two models can catch all the transient phenomena while minimizing the computational cost.

  16. Incremental value of natriuretic peptide measurement in acute decompensated heart failure (ADHF): a systematic review.

    PubMed

    Santaguida, Pasqualina L; Don-Wauchope, Andrew C; Ali, Usman; Oremus, Mark; Brown, Judy A; Bustamam, Amy; Hill, Stephen A; Booth, Ronald A; Sohel, Nazmul; McKelvie, Robert; Balion, Cynthia; Raina, Parminder

    2014-08-01

    The aim of this systematic review was to determine whether B-type natriuretic peptide (BNP) and N-terminal proBNP (NT-proBNP) independently add incremental value for predicting mortality and morbidity in patients with acute decompensated heart failure (ADHF). Medline(®), Embase™, AMED, Cochrane Central Register of Controlled Trials, Cochrane Database of Systematic Reviews, and CINAHL were searched from 1989 to June 2012. We also searched reference lists of included articles, systematic reviews, and the gray literature. Studies were screened for eligibility criteria and assessed for risk of bias. Data were extracted on study design, population demographics, assay cutpoints, prognostic risk prediction model covariates, statistical methods, outcomes, and results. From 183 citations, only seven studies (5 BNP and 2 NT-proBNP) considered incremental value in ADHF subjects admitted to acute care centers. Admission assay levels and length of follow-up varied for BNP studies (31 days to 12 months) and for NT-proBNP studies (25-82 months). All studies presented at least one estimate of incremental value of BNP/NT-proBNP relative to the base prognostic model. Using discrimination or likelihood statistics, these studies consistently showed that BNP or NT-proBNP increased model performance. Three studies used reclassification and model validation computations to establish incremental value; these studies showed less consistency with respect to added value. In conclusion, the literature assessing incremental value of BNP/NT-proBNP in ADHF populations is limited to seven studies evaluating only mortality outcomes and at moderate risk of bias. Although there were differences in the base risk prediction models, assay cutpoints, and lengths of follow-up, there was consistency in BNP/NT-proBNP adding incremental value in prediction models in ADHF patients. PMID:25052418

  17. Development and application of a numerical model of kinetic and equilibrium microbiological and geochemical reactions (BIOKEMOD)

    NASA Astrophysics Data System (ADS)

    Salvage, Karen M.; Yeh, Gour-Tsyh

    1998-08-01

    This paper presents the conceptual and mathematical development of the numerical model titled BIOKEMOD, and verification simulations performed using the model. BIOKEMOD is a general computer model for simulation of geochemical and microbiological reactions in batch aqueous solutions. BIOKEMOD may be coupled with hydrologic transport codes for simulation of chemically and biologically reactive transport. The chemical systems simulated may include any mixture of kinetic and equilibrium reactions. The pH, pe, and ionic strength may be specified or simulated. Chemical processes included are aqueous complexation, adsorption, ion-exchange and precipitation/dissolution. Microbiological reactions address growth of biomass and degradation of chemicals by microbial metabolism of substrates, nutrients, and electron acceptors. Inhibition or facilitation of growth due to the presence of specific chemicals and a lag period for microbial acclimation to new substrates may be simulated if significant in the system of interest. Chemical reactions controlled by equilibrium are solved using the law of mass action relating the thermodynamic equilibrium constant to the activities of the products and reactants. Kinetic chemical reactions are solved using reaction rate equations based on collision theory. Microbiologically mediated reactions for substrate removal and biomass growth are assumed to follow Monod kinetics modified for the potentially limiting effects of substrate, nutrient, and electron acceptor availability. BIOKEMOD solves the ordinary differential and algebraic equations of mixed geochemical and biogeochemical reactions using the Newton-Raphson method with full matrix pivoting. Simulations may be either steady state or transient. Input to the program includes the stoichiometry and parameters describing the relevant chemical and microbiological reactions, initial conditions, and sources/sinks for each chemical species. Output includes the chemical and biomass concentrations

  18. Multiresponse kinetic modelling of Maillard reaction and caramelisation in a heated glucose/wheat flour system.

    PubMed

    Kocadağlı, Tolgahan; Gökmen, Vural

    2016-11-15

    The study describes the kinetics of the formation and degradation of α-dicarbonyl compounds in glucose/wheat flour system heated under low moisture conditions. Changes in the concentrations of glucose, fructose, individual free amino acids, lysine and arginine residues, glucosone, 1-deoxyglucosone, 3-deoxyglucosone, 3,4-dideoxyglucosone, 5-hydroxymethyl-2-furfural, glyoxal, methylglyoxal and diacetyl concentrations were determined to form a multiresponse kinetic model for isomerisation and degradation reactions of glucose. Degradation of Amadori product mainly produced 1-deoxyglucosone. Formation of 3-deoxyglucosone proceeded directly from glucose and also Amadori product degradation. Glyoxal formation was predominant from glucosone while methylglyoxal and diacetyl originated from 1-deoxyglucosone. Formation of 5-hydroxymethyl-2-furfural from fructose was found to be a key step. Multi-response kinetic modelling of Maillard reaction and caramelisation simultaneously indicated quantitatively predominant parallel and consecutive pathways and rate limiting steps by estimating the reaction rate constants. PMID:27283710

  19. Career Decision-Making Profiles vs. Styles: Convergent and Incremental Validity

    ERIC Educational Resources Information Center

    Gati, Itamar; Gadassi, Reuma; Mashiah-Cohen, Rona

    2012-01-01

    The present research investigated the convergent and incremental validity of the multidimensional model and questionnaire--the Career Decision-Making Profiles ("CDMP," Gati, Landman, Davidovitch, Peretz-Asulin, & Gadassi, 2010)--by comparing it to two prevalent decision-making style models. Study 1 compared the "CDMP" to the Vocational Decision…

  20. Comparison of Retention Rates Using Traditional, Drill Sandwich, and Incremental Rehearsal Flash Card Methods.

    ERIC Educational Resources Information Center

    MacQuarrie, Lara L.; Tucker, James A.; Burns, Matthew K.; Hartman, Brian

    2002-01-01

    Research has demonstrated increased retention from drill, but the data regarding drill format are inconsistent. Two commonly used models, Drill Sandwich (DS) and Incremental Rehearsal (IR), were compared to each other and to a traditional flashcard method. The IR model consistently led to significantly more words retained than the traditional or…

  1. Validation of daily increments in otoliths of northern squawfish larvae

    USGS Publications Warehouse

    Wertheimer, R.H.; Barfoot, C.A.

    1998-01-01

    Otoliths from laboratory-reared northern squawfish, Ptychocheilus oregonensis, larvae were examined to determine the periodicity of increment deposition. Increment deposition began in both sagittae and lapilli after hatching. Reader counts indicated that increment formation was daily in sagittae of 1-29-day-old larvae. However, increment counts from lapilli were significantly less than the known ages of northern squawfish larvae, possibly because some increments were not detectable. Otolith readability and age agreement among readers were greatest for young (<11 days) northern squawfish larvae. This was primarily because a transitional zone of low-contrast material began forming in otoliths of 8-11-day-old larvae and persisted until approximately 20 days after hatching. Formation of the transition zone appeared to coincide with the onset of exogenous feeding and continued through yolk sac absorption. Our results indicate that aging wild-caught northern squawfish larvae using daily otolith increment counts is possible.

  2. Detection of suspicious activity using incremental outlier detection algorithms

    NASA Astrophysics Data System (ADS)

    Pokrajac, D.; Reljin, N.; Pejcic, N.; Vance, T.; McDaniel, S.; Lazarevic, A.; Chang, H. J.; Choi, J. Y.; Miezianko, R.

    2009-08-01

    Detection of unusual trajectories of moving objects can help in identifying suspicious activity on convoy routes and thus reduce casualties caused by improvised explosive devices. In this paper, using video imagery we compare efficiency of various techniques for incremental outlier detection on detecting unusual trajectories on simulated and real-life data obtained from SENSIAC database. Incremental outlier detection algorithms that we consider in this paper include incremental Support Vector Classifier (incSVC), incremental Local Outlier Factor (incLOF) algorithm and incremental Connectivity Outlier Factor (incCOF) algorithm. Our experiments performed on ground truth trajectory data indicate that incremental LOF algorithm can provide better detection of unusual trajectories in comparison to other examined techniques.

  3. Modeling of Sheath Ion-Molecule Reactions in Plasma Enhanced Chemical Vapor Deposition of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Hash, David B.; Govindan, T. R.; Meyyappan, M.

    2004-01-01

    In many plasma simulations, ion-molecule reactions are modeled using ion energy independent reaction rate coefficients that are taken from low temperature selected-ion flow tube experiments. Only exothermic or nearly thermoneutral reactions are considered. This is appropriate for plasma applications such as high-density plasma sources in which sheaths are collisionless and ion temperatures 111 the bulk p!asma do not deviate significantly from the gas temperature. However, for applications at high pressure and large sheath voltages, this assumption does not hold as the sheaths are collisional and ions gain significant energy in the sheaths from Joule heating. Ion temperatures and thus reaction rates vary significantly across the discharge, and endothermic reactions become important in the sheaths. One such application is plasma enhanced chemical vapor deposition of carbon nanotubes in which dc discharges are struck at pressures between 1-20 Torr with applied voltages in the range of 500-700 V. The present work investigates The importance of the inclusion of ion energy dependent ion-molecule reaction rates and the role of collision induced dissociation in generating radicals from the feedstock used in carbon nanotube growth.

  4. Molecular Simulations of RNA 2’-O-Transesterification Reaction Models in Solution

    PubMed Central

    Radak, Brian K.; Harris, Michael E.

    2013-01-01

    We employ quantum mechanical/molecular mechanical umbrella sampling simulations to probe the free energy surfaces of a series of increasingly complex reaction models of RNA 2’-O-transesterification in aqueous solution under alkaline conditions. Such models are valuable for understanding the uncatalyzed processes underlying catalytic cleavage of the phosphodiester backbone of RNA, a reaction of fundamental importance in biology. The chemically reactive atoms are modeled by the AM1/d-PhoT quantum model for phosphoryl transfer, whereas the aqueous solvation environment is modeled with a molecular mechanics force field. Several simulation protocols were compared that used different ionic conditions and force field models. The results provide insight into how variation of the structural environment of the nucleophile and leaving group affects the free energy profile for the transesterification reaction. Results for a simple RNA backbone model are compared with recent experiments by Harris et al. on the specific base catalyzed cleavage of a UpG dinucleotide. The calculated and measured free energies of activation match extremely well (ΔF‡ = 19.9–20.8 versus 19.9 kcal/mol). Solvation is seen to play a crucial role and is characterized by a network of hydrogen bonds that envelopes the pentacoordinate dianionic phosphorane transition state and provides preferential stabilization relative to the reactant state. PMID:23214417

  5. Population-reaction model and microbial experimental ecosystems for understanding hierarchical dynamics of ecosystems.

    PubMed

    Hosoda, Kazufumi; Tsuda, Soichiro; Kadowaki, Kohmei; Nakamura, Yutaka; Nakano, Tadashi; Ishii, Kojiro

    2016-02-01

    Understanding ecosystem dynamics is crucial as contemporary human societies face ecosystem degradation. One of the challenges that needs to be recognized is the complex hierarchical dynamics. Conventional dynamic models in ecology often represent only the population level and have yet to include the dynamics of the sub-organism level, which makes an ecosystem a complex adaptive system that shows characteristic behaviors such as resilience and regime shifts. The neglect of the sub-organism level in the conventional dynamic models would be because integrating multiple hierarchical levels makes the models unnecessarily complex unless supporting experimental data are present. Now that large amounts of molecular and ecological data are increasingly accessible in microbial experimental ecosystems, it is worthwhile to tackle the questions of their complex hierarchical dynamics. Here, we propose an approach that combines microbial experimental ecosystems and a hierarchical dynamic model named population-reaction model. We present a simple microbial experimental ecosystem as an example and show how the system can be analyzed by a population-reaction model. We also show that population-reaction models can be applied to various ecological concepts, such as predator-prey interactions, climate change, evolution, and stability of diversity. Our approach will reveal a path to the general understanding of various ecosystems and organisms. PMID:26747638

  6. Modeling Mechanism and Growth Reactions for New Nanofabrication Processes by Atomic Layer Deposition.

    PubMed

    Elliott, Simon D; Dey, Gangotri; Maimaiti, Yasheng; Ablat, Hayrensa; Filatova, Ekaterina A; Fomengia, Glen N

    2016-07-01

    Recent progress in the simulation of the chemistry of atomic layer deposition (ALD) is presented for technologically important materials such as alumina, silica, and copper metal. Self-limiting chemisorption of precursors onto substrates is studied using density functional theory so as to determine reaction pathways and aid process development. The main challenges for the future of ALD modeling are outlined. PMID:26689290

  7. Reaction dynamics of {sup 34-38}Mg projectile with carbon target using Glauber model

    SciTech Connect

    Shama, Mahesh K.; Panda, R. N.; Sharma, Manoj K.; Patra, S. K.

    2015-08-28

    We have studied nuclear reaction cross-sections for {sup 34-38}Mg isotopes as projectile with {sup 12}C target at projectile energy 240AMeV using Glauber model with the conjunction of densities from relativistic mean filed formalism. We found good agreement with the available experimental data. The halo status of {sup 37}Mg is also investigated.

  8. Educators' Year Long Reactions to the Implementation of a Response to Intervention (RTI) Model

    ERIC Educational Resources Information Center

    Sanger, Dixie; Friedli, Corey; Brunken, Cindy; Snow, Pamela; Ritzman, Mitzi

    2012-01-01

    Mixed methods were used to explore the reactions of educators before and after implementing the Response to Intervention (RTI) model in secondary settings during a school year. Eighteen participants from six middle schools and four high schools collaborated on interdisciplinary teams that involved classroom teachers, speech-language pathologists…

  9. Calibration of reaction rates for the CREST reactive-burn model

    NASA Astrophysics Data System (ADS)

    Handley, Caroline

    2015-06-01

    In recent years, the hydrocode-based CREST reactive-burn model has had success in modelling a range of shock initiation and detonation propagation phenomena in polymer bonded explosives. CREST uses empirical reaction rates that depend on a function of the entropy of the non-reacted explosive, allowing the effects of initial temperature, porosity and double-shock desensitisation to be simulated without any modifications to the model. Until now, the sixteen reaction-rate coefficients have been manually calibrated by trial and error, using hydrocode simulations of a subset of sustained-shock initiation gas-gun experiments and the detonation size-effect curve for the explosive. This paper will describe the initial development of an automatic method for calibrating CREST reaction-rate coefficients, using the well-established Particle Swarm Optimisation (PSO) technique. The automatic method submits multiple hydrocode simulations for each ``particle'' and analyses the results to determine the ``misfit'' to gas-gun and size-effect data. Over ~40 ``generations,'' the PSO code finds a best set of reaction-rate coefficients that minimises the misfit. The method will be demonstrated by developing a new CREST model for EDC32, a conventional high explosive.

  10. A reduced model for the ICF gamma-ray reaction history diagnostic

    SciTech Connect

    Schmitt, Mark J; Wilson, Douglas C; Hoffman, Nelson M; Langenbrunner, Jamie R; Hermann, H W; Kim, Y H; Young, C S; Evans, S C; Cerjan, C J; Stoeffl, Wolfgang; Munro, D H; Dauffy, L S; Miller, K M; Horsfield, C J; Rubery, M S

    2009-01-01

    An analytic model for the gamma reaction history (GRH) diagnostic to be fielded on the National Ignition Facility is described. The application of the GRH diagnostic for the measurement of capsule rho-R during burn using 4.4 MeV carbon gamma rays is demonstrated by simulation.

  11. A reduced model for the ICF Gamma-Ray reaction history diagnostic

    NASA Astrophysics Data System (ADS)

    Schmitt, M. J.; Wilson, D. C.; Hoffman, N. M.; Langenbrunner, J. R.; Herrmann, H. W.; Kim, Y. H.; Young, C. S.; Evans, S. C.; Cerjan, C. J.; Stoeffl, Wolfgang; Munro, D. H.; Dauffy, L. S.; Miller, K. M.; Horsfield, C. J.; Rubery, M. S.

    2010-08-01

    An analytic model for the gamma reaction history (GRH) diagnostic to be fielded on the National Ignition Facility is described. The application of the GRH diagnostic for the measurement of capsule rho-R during burn using 4.4 MeV carbon gamma rays is demonstrated by simulation.

  12. Modeling Interfacial Glass-Water Reactions: Recent Advances and Current Limitations

    DOE PAGESBeta

    Pierce, Eric M.; Frugier, Pierre; Criscenti, Louise J.; Kwon, Kideok D.; Kerisit, Sebastien N.

    2014-07-12

    Describing the reactions that occur at the glass-water interface and control the development of the altered layer constitutes one of the main scientific challenges impeding existing models from providing accurate radionuclide release estimates. Radionuclide release estimates are a critical component of the safety basis for geologic repositories. The altered layer (i.e., amorphous hydrated surface layer and crystalline reaction products) represents a complex region, both physically and chemically, sandwiched between two distinct boundaries pristine glass surface at the inner most interface and aqueous solution at the outer most interface. Computational models, spanning different length and time-scales, are currently being developed tomore » improve our understanding of this complex and dynamic process with the goal of accurately describing the pore-scale changes that occur as the system evolves. These modeling approaches include geochemical simulations [i.e., classical reaction path simulations and glass reactivity in allowance for alteration layer (GRAAL) simulations], Monte Carlo simulations, and Molecular Dynamics methods. Finally, in this manuscript, we discuss the advances and limitations of each modeling approach placed in the context of the glass-water reaction and how collectively these approaches provide insights into the mechanisms that control the formation and evolution of altered layers.« less

  13. On the Methods for Constructing Meson-Baryon Reaction Models within Relativistic Quantum Field Theory

    SciTech Connect

    B. Julia-Diaz, H. Kamano, T.-S. H. Lee, A. Matsuyama, T. Sato, N. Suzuki

    2009-04-01

    Within the relativistic quantum field theory, we analyze the differences between the $\\pi N$ reaction models constructed from using (1) three-dimensional reductions of Bethe-Salpeter Equation, (2) method of unitary transformation, and (3) time-ordered perturbation theory. Their relations with the approach based on the dispersion relations of S-matrix theory are dicusssed.

  14. Mineral-fluid interaction in the lungs: insights from reaction-path modeling.

    PubMed

    Wood, Scott A; Taunton, Anne E; Normand, Charles; Gunter, Mickey E

    2006-11-01

    Thermodynamic modeling, in conjunction with available kinetic information, has been employed to investigate the fate of chrysotile and tremolite in the human lung. In particular, we focus on mineral-fluid reactions using techniques borrowed from geochemistry, including calculation of saturation indices, activity-ratio phase diagrams, and reaction-path modeling. Saturation index calculations show that fresh lung fluid is undersaturated with respect to both tremolite and chrysotile and these minerals should dissolve, in accordance with conclusions from previous work described in the literature. Modeling of reaction paths in both closed and open systems confirms previous suggestions that chrysotile dissolves faster than tremolite in lung fluid, which offers an explanation for the apparent increase in tremolite/chrysotile ratios in lungs of miners and millers over time. However, examination of activity-ratio phase diagrams and reaction-path model calculations raises the possibility not only that minerals dissolve congruently in lung fluid, but that secondary minerals such as talc or various Ca-Mg carbonates might potentially form in lung fluid as asbestiform minerals dissolve. PMID:16920671

  15. Modeling Interfacial Glass-Water Reactions: Recent Advances and Current Limitations

    SciTech Connect

    Pierce, Eric M.; Frugier, Pierre; Criscenti, Louise J.; Kwon, Kideok D.; Kerisit, Sebastien N.

    2014-07-12

    Describing the reactions that occur at the glass-water interface and control the development of the altered layer constitutes one of the main scientific challenges impeding existing models from providing accurate radionuclide release estimates. Radionuclide release estimates are a critical component of the safety basis for geologic repositories. The altered layer (i.e., amorphous hydrated surface layer and crystalline reaction products) represents a complex region, both physically and chemically, sandwiched between two distinct boundaries pristine glass surface at the inner most interface and aqueous solution at the outer most interface. Computational models, spanning different length and time-scales, are currently being developed to improve our understanding of this complex and dynamic process with the goal of accurately describing the pore-scale changes that occur as the system evolves. These modeling approaches include geochemical simulations [i.e., classical reaction path simulations and glass reactivity in allowance for alteration layer (GRAAL) simulations], Monte Carlo simulations, and Molecular Dynamics methods. Finally, in this manuscript, we discuss the advances and limitations of each modeling approach placed in the context of the glass-water reaction and how collectively these approaches provide insights into the mechanisms that control the formation and evolution of altered layers.

  16. Extended Intranuclear Cascade model for pickup reactions induced by 50-MeV-range protons

    NASA Astrophysics Data System (ADS)

    Uozumi, Yusuke; Mori, Taiki; Sonoda, Akifumi; Nakano, Masahiro

    2016-06-01

    The intranuclear cascade model was investigated to explain (p, dx) and (p, ax) reactions at incident energies of around 50 MeV. Since these reactions are governed mainly by the direct pickup process, the model was expanded to include exclusive pickup processes leading to hole-state-excitations. The energy of the outgoing clusters is determined with single-particle energies of transferred nucleons, the reaction Q-value, and the recoil of the residual nucleus. The rescattering of the produced cluster inside the nucleus is treated within the intranuclear cascade model. The emission angle is given by the sum of momentum vectors of transferred nucleons in addition to the deflection at the nuclear surface, which was introduced to explain angular distributions of elastic scattering. Double differential cross sections of reactions were calculated and compared with experimental data. The proposed model showed a high predictive power over the wide range of emission energies and angles. The treatment ofthe cluster transport inside the nucleus was also verified.

  17. Model-reference attitude control and reaction control jet engine placement for space shuttle

    NASA Technical Reports Server (NTRS)

    Boland, J. S., III

    1973-01-01

    Analytical studies on the theoretical aspects of thrust vector control of large space vehicles were conducted. A system for attitude control of the space shuttle vehicle was developed. Major accomplishments of the project are: (1) investigation of a model-reference adaptive control scheme for controlling the space shuttle attitude and (2) determination of optimum placement of reaction control jet engines on space shuttles.

  18. Relating Derived Relations as a Model of Analogical Reasoning: Reaction Times and Event-Related Potentials

    ERIC Educational Resources Information Center

    Barnes-Holmes, Dermot; Regan, Donal; Barnes-Holmes, Yvonne; Commins, Sean; Walsh, Derek; Stewart, Ian; Smeets, Paul M.; Whelan, Robert; Dymond, Simon

    2005-01-01

    The current study aimed to test a Relational Frame Theory (RFT) model of analogical reasoning based on the relating of derived same and derived difference relations. Experiment 1 recorded reaction time measures of similar-similar (e.g., "apple is to orange as dog is to cat") versus different-different (e.g., "he is to his brother as chalk is to…

  19. Representing effects of aqueous phase reactions in shallow cumuli in global models

    NASA Astrophysics Data System (ADS)

    Nie, Ji; Kuang, Zhiming; Jacob, Daniel J.; Guo, Jiahua

    2016-05-01

    Aqueous phase reactions are important, sometimes dominant (e.g., for SO2), pathways for the oxidation of air pollutants at the local and/or global scale. In many current chemical transport models (CTMs), the transport and aqueous reactions of chemical species are treated as split processes, and the subgrid-scale heterogeneity between cloudy and environmental air is not considered. Here using large eddy simulation (LES) with idealized aqueous reactions mimicking the oxidation of surface-originated SO2 by H2O2 in shallow cumuli, we show that the eddy diffusivity mass flux (EDMF) approach with a bulk plume can represent those processes quite well when entrainment/detrainment rates and eddy diffusivity are diagnosed using a conservative thermodynamic variable such as total water content. The reason is that a typical aqueous reaction such as SO2 aqueous oxidation is relatively slow compared to the in-cloud residence time of air parcels in shallow cumuli. As a result, the surface-originated SO2 is well correlated with and behaves like conservative thermodynamic variables that also have sources at the surface. Experiments with various reaction rate constants and relative abundances of SO2 and H2O2 indicate that when the reaction timescale approaches the in-cloud residence time of air parcels, the errors of the bulk plume approach start to increase. Treating chemical tracer transport and aqueous reaction as split processes leads to significant errors, especially when the reaction is fast compared to the in-cloud residence time. Overall, the EDMF approach shows large improvement over the CTM-like treatments in matching the LES results.

  20. Kinetic modeling of the reaction of HCl and solid lime at low temperatures

    SciTech Connect

    Fonseca, A.M.; Orfao, J.J.; Salcedo, R.L.

    1998-12-01

    Calcium hydroxide is a commonly used sorbent in the dry-scrubbing of hydrogen chloride from flue gases. In this study the kinetic parameters for the reaction between gaseous HCl and solid Ca(OH){sub 2} have been obtained at low temperatures in a fixed-bed laboratory reactor. The influence of the operating temperature (323--400 K), HCl concentration (150--1000 ppm), and humidity (0--11% M) was studied. The experimental results show that in the first few seconds a very fast chemical reaction occurs, with a reaction rate constant per unit surface area of solid larger than 10{sup {minus}3} ms{sup {minus}1}. This reaction was found to be first order relative to HCl concentration and its mechanism is apparently independent of the presence of moisture. However, the relative humidity of the gas has a major impact on the progress of the reaction: when no moisture is present the reaction stops after a short period of time (2--3 min), with very low maximum solid reactant conversions (<5%). For the experiments with humidified gas an almost complete conversion of Ca(OH){sub 2} was obtained after about 40 min of reaction time. For this case the grain model with product layer diffusion limitations is in very good agreement with the experimental results. The diffusion coefficient in the product layer obtained through this model varied from 10{sup {minus}13} to 10{sup {minus}11} m{sup 2}/s and the activation energy for this parameter was estimated at {approx}19 kJ/mol for the range of temperatures studied. A simple linear relationship describes well the effect of relative humidity of the gas on the diffusion coefficient in the solid product layer. In the presence of humidity, the very high conversions of the solid reactant show a good potential applicability to continuous dry-scrubbing at HCl at low temperatures.

  1. Estimating Reaction Rate Coefficients Within a Travel-Time Modeling Framework

    SciTech Connect

    Gong, R; Lu, C; Luo, Jian; Wu, Wei-min; Cheng, H.; Criddle, Craig; Kitanidis, Peter K.; Gu, Baohua; Watson, David B; Jardine, Philip M; Brooks, Scott C

    2011-03-01

    A generalized, efficient, and practical approach based on the travel-time modeling framework is developed to estimate in situ reaction rate coefficients for groundwater remediation in heterogeneous aquifers. The required information for this approach can be obtained by conducting tracer tests with injection of a mixture of conservative and reactive tracers and measurements of both breakthrough curves (BTCs). The conservative BTC is used to infer the travel-time distribution from the injection point to the observation point. For advection-dominant reactive transport with well-mixed reactive species and a constant travel-time distribution, the reactive BTC is obtained by integrating the solutions to advective-reactive transport over the entire travel-time distribution, and then is used in optimization to determine the in situ reaction rate coefficients. By directly working on the conservative and reactive BTCs, this approach avoids costly aquifer characterization and improves the estimation for transport in heterogeneous aquifers which may not be sufficiently described by traditional mechanistic transport models with constant transport parameters. Simplified schemes are proposed for reactive transport with zero-, first-, nth-order, and Michaelis-Menten reactions. The proposed approach is validated by a reactive transport case in a two-dimensional synthetic heterogeneous aquifer and a field-scale bioremediation experiment conducted at Oak Ridge, Tennessee. The field application indicates that ethanol degradation for U(VI)-bioremediation is better approximated by zero-order reaction kinetics than first-order reaction kinetics.

  2. Quantum and Molecular Mechanical (QM/MM) Monte Carlo Techniques for Modeling Condensed-Phase Reactions

    PubMed Central

    Jorgensen, Wiliiam L.

    2014-01-01

    A recent review (Acc. Chem. Res. 2010, 43:142–151) examined our use and development of a combined quantum and molecular mechanical (QM/MM) technique for modelling organic and enzymatic reactions. Advances included the PDDG/PM3 semiempirical QM (SQM) method, computation of multi-dimensional potentials of mean force (PMF), incorporation of on-the-fly QM in Monte Carlo simulations, and a polynomial quadrature method for rapidly treating proton-transfer reactions. The current article serves as a follow up on our progress. Highlights include new reactions, alternative SQM methods, a polarizable OPLS force field, and novel solvent environments, e.g., “on water” and room temperature ionic liquids. The methodology is strikingly accurate across a wide range of condensed-phase and antibody-catalyzed reactions including substitution, decarboxylation, elimination, isomerization, and pericyclic classes. Comparisons are made to systems treated with continuum-based solvents and ab initio or density functional theory (DFT) methods. Overall, the QM/MM methodology provides detailed characterization of reaction paths, proper configurational sampling, several advantages over implicit solvent models, and a reasonable computational cost. PMID:25431625

  3. Reactions of aqueous chlorine and chlorine dioxide with model food compounds

    SciTech Connect

    Fukayama, M.Y.; Tan, H.; Wheeler, W.B.; Wei, C.

    1986-11-01

    This presentation reviews published information concerning the reactions of chlorine gas (CL/sub 2/(g)), aqueous chlorine, and ClO/sub 2/ with model food compounds, the fate of chlorine during the chlorination of specific food products, and the potential toxicity of the reaction products. Fatty acids and their methyl esters react with chlorine with the degree of incorporation corresponding to their degree of unsaturation. Aqueous chlorine oxidizes and chlorinates lipids and amino acids much more readily than ClO/sub 2/. Several amino acids are highly susceptible to oxidation and chlorination by chlorine compounds. Reactions of chlorine and ClO/sub 2/ with several food products, including flour and shrimp, have also been characterized. Although significant quantities of chlorine can be incorporated into specific model compounds and food products, the health risks associated with exposure to chlorinated organic products are unknown. Preliminary studies using the Ames Salmonella/microsome mutagenicity assay indicate that the reaction products from mixtures of aqueous chlorine and various lipids or tryptophan are nonmutagenic. Nevertheless, additional studies are warranted, so that the toxicological significance of these reaction products can be understood more fully.

  4. Temperature Humidity and Sea Level Pressure Increments Induced by 1DVAR Analysis of GPS Refractivity

    NASA Technical Reports Server (NTRS)

    Poli, Paul; Joiner, Joanna; Kursinski, Emil Robert; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The Global Positioning System (GPS) transmitted signals are affected by the atmosphere. Using the radio occultation technique, where a receiver is placed on a low-Earth-orbiting platform. it is possible to perform soundings. by measuring the bending angles of the rays. The information can be converted into atmospheric refractivity. We have developed a one dimensional variational (1DVAR) analysis that uses GPS/MET 1995 refractivity and 6-hour FVDAS (Finite Volume Data Assimilation System) forecasts as background information to constrain the retrievals. The analysis increments are defined as 1DVAR minus background temperature, humidity and sea level pressure. Before assimilating the 1DVAR profiles into the FVDAS. the increments need to be understood. First, some bias could be induced in the retrievals when confronted with actual biased data: second. bias in the back-round could create undesired bias in the retrievals. Anv bias in the analyses will ultimately change the climatology of the model the retrievals will be assimilated into. We relate the increments to the reduction of the difference between observed minus computed refractivity profiles. We also point out the difference in the mean increments using backgrounds which have assimilated either NESDIS TIROS Operational Vertical Sounder (TOVS) operational retrievals or Data Assimilation Office (DAO) TOVS interactive retrievals. The climatology of the model in terms of refractivity is significantly different and this impacts the GPS 1DVAR increments. This testifies that changing the basic load of assimilated data has an influence on the impact the GPS data may have in a DAS.

  5. Incremental Cost-Effectiveness Analysis of Gestational Diabetes Mellitus Screening Strategies in Singapore.

    PubMed

    Chen, Pin Yu; Finkelstein, Eric A; Ng, Mor Jack; Yap, Fabian; Yeo, George S H; Rajadurai, Victor Samuel; Chong, Yap Seng; Gluckman, Peter D; Saw, Seang Mei; Kwek, Kenneth Y C; Tan, Kok Hian

    2016-01-01

    The objective of this study was to conduct an incremental cost-effectiveness analysis from the payer's perspective in Singapore of 3 gestational diabetes mellitus screening strategies: universal, targeted, or no screening. A decision tree model assessed the primary outcome: incremental cost per quality-adjusted life year (QALY) gained. Probabilities, costs, and utilities were derived from the literature, the Growing Up in Singapore Towards healthy Outcomes (GUSTO) birth cohort study, and the KK Women's and Children's Hospital's database. Relative to targeted screening using risk factors, universal screening generates an incremental cost-effectiveness ratio (ICER) of $USD10,630/QALY gained. Sensitivity analyses show that disease prevalence rates and intervention effectiveness of glycemic management have the biggest impacts on the ICERs. Based on the model and best available data, universal screening is a cost-effective approach for reducing the complications of gestational diabetes mellitus in Singapore as compared with the targeted screening approach or no screening. PMID:26512030

  6. Incremental Reactivity Effects on Secondary Organic Aerosol Formation in Urban Atmospheres with and without Biogenic Influence

    NASA Astrophysics Data System (ADS)

    Kacarab, Mary; Li, Lijie; Carter, William P. L.; Cocker, David R., III

    2016-04-01

    Two different surrogate mixtures of anthropogenic and biogenic volatile organic compounds (VOCs) were developed to study secondary organic aerosol (SOA) formation at atmospheric reactivities similar to urban regions with varying biogenic influence levels. Environmental chamber simulations were designed to enable the study of the incremental aerosol formation from select anthropogenic (m‑Xylene, 1,2,4-Trimethylbenzene, and 1-Methylnaphthalene) and biogenic (α-pinene) precursors under the chemical reactivity set by the two different surrogate mixtures. The surrogate reactive organic gas (ROG) mixtures were based on that used to develop the maximum incremental reactivity (MIR) factors for evaluation of O3 forming potential. Multiple incremental aerosol formation experiments were performed in the University of California Riverside (UCR) College of Engineering Center for Environmental Research and Technology (CE-CERT) dual 90m3 environmental chambers. Incremental aerosol yields were determined for each of the VOCs studied and compared to yields found from single precursor studies. Aerosol physical properties of density, volatility, and hygroscopicity were monitored throughout experiments. Bulk elemental chemical composition from high-resolution time of flight aerosol mass spectrometer (HR-ToF-AMS) data will also be presented. Incremental yields and SOA chemical and physical characteristics will be compared with data from previous single VOC studies conducted for these aerosol precursors following traditional VOC/NOx chamber experiments. Evaluation of the incremental effects of VOCs on SOA formation and properties are paramount in evaluating how to best extrapolate environmental chamber observations to the ambient atmosphere and provides useful insights into current SOA formation models. Further, the comparison of incremental SOA from VOCs in varying surrogate urban atmospheres (with and without strong biogenic influence) allows for a unique perspective on the impacts

  7. A parametric duration model of the reaction times of drivers distracted by mobile phone conversations.

    PubMed

    Haque, Md Mazharul; Washington, Simon

    2014-01-01

    The use of mobile phones while driving is more prevalent among young drivers-a less experienced cohort with elevated crash risk. The objective of this study was to examine and better understand the reaction times of young drivers to a traffic event originating in their peripheral vision whilst engaged in a mobile phone conversation. The CARRS-Q advanced driving simulator was used to test a sample of young drivers on various simulated driving tasks, including an event that originated within the driver's peripheral vision, whereby a pedestrian enters a zebra crossing from a sidewalk. Thirty-two licensed drivers drove the simulator in three phone conditions: baseline (no phone conversation), hands-free and handheld. In addition to driving the simulator each participant completed questionnaires related to driver demographics, driving history, usage of mobile phones while driving, and general mobile phone usage history. The participants were 21-26 years old and split evenly by gender. Drivers' reaction times to a pedestrian in the zebra crossing were modelled using a parametric accelerated failure time (AFT) duration model with a Weibull distribution. Also tested where two different model specifications to account for the structured heterogeneity arising from the repeated measures experimental design. The Weibull AFT model with gamma heterogeneity was found to be the best fitting model and identified four significant variables influencing the reaction times, including phone condition, driver's age, license type (provisional license holder or not), and self-reported frequency of usage of handheld phones while driving. The reaction times of drivers were more than 40% longer in the distracted condition compared to baseline (not distracted). Moreover, the impairment of reaction times due to mobile phone conversations was almost double for provisional compared to open license holders. A reduction in the ability to detect traffic events in the periphery whilst distracted

  8. Modeling the solid-state reaction between Sn-Pb solder and a porous substrate coating

    SciTech Connect

    Erickson, K.L.; Hopkins, P.L.; Vianco, P.T.

    1998-11-01

    Solder joints in hybrid microelectronic circuit electronics are formed between the solder alloy and the noble metal thick film conductor that has been printed and fired onto the ceramic. Although the noble metal conductors provide excellent solderability at the time of manufacture, they are susceptible to solid-state reactions with Sn or other constituents of the solder. The reaction products consist of one or more intermetallic compounds (IMC). The integrity of these solder joints can be jeopardized by formation of IMC layers, which can have thermal and mechanical properties that are substantially different from the solder and substrate and which can consume the conductor layer by solid-state reaction. Analytical models predicting IMC growth for a variety of conditions are needed to improve predictions of long-term joint reliability and manufacturing processes. This paper discusses initial 2-D results from a coupled experimental and computational effort to develop a mathematical model and computer code that will ultimately predict 3-D results from a coupled experimental and computational effort to develop a mathematical model and computer code that will ultimately predict 3-D intermetallic growth in porous substrate-solder systems. The numerical model is based on an implicit interface tracking approach developed for diffusion-reaction analyses in complicated geometries. To illustrate the implicit approach with a real system, the 2-D calculations were based on the reaction couple formed between 63Sn-37Pb solder and 76Au-21Pt-3Pd substrates. Physical constants in the model were evaluated from experimental data. Consumption of the thick film was predicted as a function of time and compared with data from independent experiments.

  9. A Geochemical Reaction Model for Titration of Contaminated Soil and Groundwater at the Oak Ridge Reservation

    NASA Astrophysics Data System (ADS)

    Zhang, F.; Parker, J. C.; Gu, B.; Luo, W.; Brooks, S. C.; Spalding, B. P.; Jardine, P. M.; Watson, D. B.

    2007-12-01

    This study investigates geochemical reactions during titration of contaminated soil and groundwater at the Oak Ridge Reservation in eastern Tennessee. The soils and groundwater exhibits low pH and high concentrations of aluminum, calcium, magnesium, manganese, various trace metals such as nickel and cobalt, and radionuclides such as uranium and technetium. The mobility of many of the contaminant species diminishes with increasing pH. However, base additions to increase pH are strongly buffered by various precipitation/dissolution and adsorption/desorption reactions. The ability to predict acid-base behavior and associated geochemical effects is thus critical to evaluate remediation performance of pH manipulation strategies. This study was undertaken to develop a practical but generally applicable geochemical model to predict aqueous and solid-phase speciation during soil and groundwater titration. To model titration in the presence of aquifer solids, an approach proposed by Spalding and Spalding (2001) was utilized, which treats aquifer solids as a polyprotic acid. Previous studies have shown that Fe and Al-oxyhydroxides strongly sorb dissolved Ni, U and Tc species. In this study, since the total Fe concentration is much smaller than that of Al, only ion exchange reactions associated with Al hydroxides are considered. An equilibrium reaction model that includes aqueous complexation, precipitation, ion exchange, and soil buffering reactions was developed and implemented in the code HydroGeoChem 5.0 (HGC5). Comparison of model results with experimental titration curves for contaminated groundwater alone and for soil- water systems indicated close agreement. This study is expected to facilitate field-scale modeling of geochemical processes under conditions with highly variable pH to develop practical methods to control contaminant mobility at geochemically complex sites.

  10. Modeling of the interplay between single-file diffusion and conversion reaction in mesoporous systems

    SciTech Connect

    Wang, Jing

    2013-01-11

    We analyze the spatiotemporal behavior of species concentrations in a diffusion-mediated conversion reaction which occurs at catalytic sites within linear pores of nanometer diameter. A strict single-file (no passing) constraint occurs in the diffusion within such narrow pores. Both transient and steady-state behavior is precisely characterized by kinetic Monte Carlo simulations of a spatially discrete lattice–gas model for this reaction–diffusion process considering various distributions of catalytic sites. Exact hierarchical master equations can also be developed for this model. Their analysis, after application of mean-field type truncation approximations, produces discrete reaction–diffusion type equations (mf-RDE). For slowly varying concentrations, we further develop coarse-grained continuum hydrodynamic reaction–diffusion equations (h-RDE) incorporating a precise treatment of single-file diffusion (SFD) in this multispecies system. Noting the shortcomings of mf-RDE and h-RDE, we then develop a generalized hydrodynamic (GH) formulation of appropriate gh-RDE which incorporates an unconventional description of chemical diffusion in mixed-component quasi-single-file systems based on a refined picture of tracer diffusion for finite-length pores. The gh-RDE elucidate the non-exponential decay of the steady-state reactant concentration into the pore and the non-mean-field scaling of the reactant penetration depth. Then an extended model of a catalytic conversion reaction within a functionalized nanoporous material is developed to assess the effect of varying the reaction product – pore interior interaction from attractive to repulsive. The analysis is performed utilizing the generalized hydrodynamic formulation of the reaction-diffusion equations which can reliably capture the complex interplay between reaction and restricted transport for both irreversible and reversible reactions.

  11. Development and testing of a compartmentalized reaction network model for redox zones in contaminated aquifers

    USGS Publications Warehouse

    Abrams, R.H.; Loague, K.; Kent, D.B.

    1998-01-01

    The work reported here is the first part of a larger effort focused on efficient numerical simulation of redox zone development in contaminated aquifers. The sequential use of various electron acceptors, which is governed by the energy yield of each reaction, gives rise to redox zones. The large difference in energy yields between the various redox reactions leads to systems of equations that are extremely ill-conditioned. These equations are very difficult to solve, especially in the context of coupled fluid flow, solute transport, and geochemical simulations. We have developed a general, rational method to solve such systems where we focus on the dominant reactions, compartmentalizing them in a manner that is analogous to the redox zones that are often observed in the field. The compartmentalized approach allows us to easily solve a complex geochemical system as a function of time and energy yield, laying the foundation for our ongoing work in which we couple the reaction network, for the development of redox zones, to a model of subsurface fluid flow and solute transport. Our method (1) solves the numerical system without evoking a redox parameter, (2) improves the numerical stability of redox systems by choosing which compartment and thus which reaction network to use based upon the concentration ratios of key constituents, (3) simulates the development of redox zones as a function of time without the use of inhibition factors or switching functions, and (4) can reduce the number of transport equations that need to be solved in space and time. We show through the use of various model performance evaluation statistics that the appropriate compartment choice under different geochemical conditions leads to numerical solutions without significant error. The compartmentalized approach described here facilitates the next phase of this effort where we couple the redox zone reaction network to models of fluid flow and solute transport.

  12. Multicomponent reactive transport modeling of acid neutralization reactions in mine tailings

    NASA Astrophysics Data System (ADS)

    Jurjovec, Jasna; Blowes, David W.; Ptacek, Carol J.; Mayer, K. Ulrich

    2004-11-01

    Multicomponent reactive transport modeling was conducted to analyze and quantify the acid neutralization reactions observed in a column experiment. Experimental results and the experimental procedures have been previously published. The pore water geochemistry was described by dissolution and precipitation reactions involving primary and secondary mineral phases. The initial amounts of the primary phases ankerite-dolomite, siderite, chlorite, and gypsum were constrained by mineralogical analyses of the tailings sample used in the experiment. Secondary gibbsite was incorporated into the model to adequately explain the changes in pH and concentration changes of Al in the column effluent water. The results of the reactive transport modeling show that the pH of the column effluent water can be explained by dissolution reactions of ankerite-dolomite, siderite, chlorite, and secondary gibbsite. The modeling results also show that changes in Eh can be explained by dissolution of ferrihydrite during the experiment. In addition, the modeling results show that the kinetically limited dissolution of chlorite contributes the largest mass of dissolved Mg and Fe (II) in the effluent water, followed by ankerite-dolomite, which contributes substantially less. In summary, reactive transport modeling based on detailed geochemical and mineralogical data was successful to quantitatively describe the changes in pH and major ions in the column effluent.

  13. Particle-scale CO2 adsorption kinetics modeling considering three reaction mechanisms

    SciTech Connect

    Suh, Dong-Myung; Sun, Xin

    2013-09-01

    In the presence of water (H2O), dry and wet adsorptions of carbon dioxide (CO2) and physical adsorption of H2O happen concurrently in a sorbent particle. The three reactions depend on each other and have a complicated, but important, effect on CO2 capturing via a solid sorbent. In this study, transport phenomena in the sorbent were modeled, including the tree reactions, and a numerical solving procedure for the model also was explained. The reaction variable distribution in the sorbent and their average values were calculated, and simulation results were compared with experimental data to validate the proposed model. Some differences, caused by thermodynamic parameters, were observed between them. However, the developed model reasonably simulated the adsorption behaviors of a sorbent. The weight gained by each adsorbed species, CO2 and H2O, is difficult to determine experimentally. It is known that more CO2 can be captured in the presence of water. Still, it is not yet known quantitatively how much more CO2 the sorbent can capture, nor is it known how much dry and wet adsorptions separately account for CO2 capture. This study addresses those questions by modeling CO2 adsorption in a particle and simulating the adsorption process using the model. As adsorption temperature changed into several values, the adsorbed amount of each species was calculated. The captured CO2 in the sorbent particle was compared quantitatively between dry and wet conditions. As the adsorption temperature decreased, wet adsorption increased. However, dry adsorption was reduced.

  14. A Luenberger observer for reaction-diffusion models with front position data

    NASA Astrophysics Data System (ADS)

    Collin, Annabelle; Chapelle, Dominique; Moireau, Philippe

    2015-11-01

    We propose a Luenberger observer for reaction-diffusion models with propagating front features, and for data associated with the location of the front over time. Such models are considered in various application fields, such as electrophysiology, wild-land fire propagation and tumor growth modeling. Drawing our inspiration from image processing methods, we start by proposing an observer for the eikonal-curvature equation that can be derived from the reaction-diffusion model by an asymptotic expansion. We then carry over this observer to the underlying reaction-diffusion equation by an "inverse asymptotic analysis", and we show that the associated correction in the dynamics has a stabilizing effect for the linearized estimation error. We also discuss the extension to joint state-parameter estimation by using the earlier-proposed ROUKF strategy. We then illustrate and assess our proposed observer method with test problems pertaining to electrophysiology modeling, including with a realistic model of cardiac atria. Our numerical trials show that state estimation is directly very effective with the proposed Luenberger observer, while specific strategies are needed to accurately perform parameter estimation - as is usual with Kalman filtering used in a nonlinear setting - and we demonstrate two such successful strategies.

  15. Incremental fusion of partial biometric information

    NASA Astrophysics Data System (ADS)

    Abboud, Ali J.; Jassim, Sabah A.

    2012-06-01

    Existing face recognition schemes are mostly based on extracting biometric feature vectors either from whole face images, or from a fixed facial region (e.g., eyes, nose, and mouth). Extreme variation in quality conditions between biometric enrolment and verification stages badly affects the performance of face recognition systems. Such problems have partly motivated several investigations into the use of partial facial features for face recognition. Nevertheless, partial face recognition is potentially useful in several applications, for instance, it used in forensics for detectives to identify individuals after some accidents such as fire or explosion. In this paper, we propose a scheme to fuse the biometric information of partial face images incrementally based on their recognition accuracy (or discriminative power) ranks. Such fusion scheme uses the optimal ratio of full/partial face images in each different quality condition. We found that such scheme is also useful for full face images to enhance authentication accuracy significantly. Nevertheless, it reduces the required storage requirements and processing time of the biometric system. Our experiments show that the required ratio of full/partial facial images to achieve optimal performance varies from (5%) to (80%) according to the quality conditions whereas the authentication accuracy improves significantly for low quality biometric samples.

  16. Evolution of cooperation driven by incremental learning

    NASA Astrophysics Data System (ADS)

    Li, Pei; Duan, Haibin

    2015-02-01

    It has been shown that the details of microscopic rules in structured populations can have a crucial impact on the ultimate outcome in evolutionary games. So alternative formulations of strategies and their revision processes exploring how strategies are actually adopted and spread within the interaction network need to be studied. In the present work, we formulate the strategy update rule as an incremental learning process, wherein knowledge is refreshed according to one's own experience learned from the past (self-learning) and that gained from social interaction (social-learning). More precisely, we propose a continuous version of strategy update rules, by introducing the willingness to cooperate W, to better capture the flexibility of decision making behavior. Importantly, the newly gained knowledge including self-learning and social learning is weighted by the parameter ω, establishing a strategy update rule involving innovative element. Moreover, we quantify the macroscopic features of the emerging patterns to inspect the underlying mechanisms of the evolutionary process using six cluster characteristics. In order to further support our results, we examine the time evolution course for these characteristics. Our results might provide insights for understanding cooperative behaviors and have several important implications for understanding how individuals adjust their strategies under real-life conditions.

  17. Parameter incremental learning algorithm for neural networks.

    PubMed

    Wan, Sheng; Banta, Larry E

    2006-11-01

    In this paper, a novel stochastic (or online) training algorithm for neural networks, named parameter incremental learning (PIL) algorithm, is proposed and developed. The main idea of the PIL strategy is that the learning algorithm should not only adapt to the newly presented input-output training pattern by adjusting parameters, but also preserve the prior results. A general PIL algorithm for feedforward neural networks is accordingly presented as the first-order approximate solution to an optimization problem, where the performance index is the combination of proper measures of preservation and adaptation. The PIL algorithms for the multilayer perceptron (MLP) are subsequently derived. Numerical studies show that for all the three benchmark problems used in this paper the PIL algorithm for MLP is measurably superior to the standard online backpropagation (BP) algorithm and the stochastic diagonal Levenberg-Marquardt (SDLM) algorithm in terms of the convergence speed and accuracy. Other appealing features of the PIL algorithm are that it is computationally as simple as the BP algorithm, and as easy to use as the BP algorithm. It, therefore, can be applied, with better performance, to any situations where the standard online BP algorithm is applicable. PMID:17131658

  18. An Incremental Map Building Approach via Static Stixel Integration

    NASA Astrophysics Data System (ADS)

    Muffert, M.; Anzt, S.; Franke, U.

    2013-10-01

    This paper presents a stereo-vision based incremental mapping approach for urban regions. As input, we use the 3D representation called multi-layered Stixel World which is computed from dense disparity images. More and more, researchers of Driver Assistance Systems rely on efficient and compact 3D representations like the Stixel World. The developed mapping approach takes into account the motion state of obstacles, as well as free space information obtained from the Stixel World. The presented work is based on the well known occupancy grid mapping technique and is formulated with evidential theory. A detailed sensor model is described which is used to determine the information whether a grid cell is occupied, free or has an unknown state. The map update is solved in a time recursive manner by using the Dempster`s Rule of Combination. 3D results of complex inner city regions are shown and are compared with Google Earth images.

  19. Gamma emission in precompound reactions: 1, Statistical model and collective gamma decay

    SciTech Connect

    Hoering, A. Washington Univ., Seattle, WA . Inst. for Nuclear Theory); Weidenmueller, H.A. )

    1992-01-01

    We extend the theory of particle-induced precompound reactions by including gamma decay. We use the Brink-Axel hypothesis and consider the gamma emission of giant dipole resonances built on the ground state and on the excited states of the composite system. The latter are modeled as multiparticle multi-hole excitations. In this way, we combine the statistical ansatz and the chaining hypothesis typical for precompound reaction theories, with the collective aspects of gamma decay. Formulas for average S-matrix and average cross section are derived in this framework.

  20. Gamma emission in precompound reactions: 1, Statistical model and collective gamma decay

    SciTech Connect

    Hoering, A. |; Weidenmueller, H.A.

    1992-09-01

    We extend the theory of particle-induced precompound reactions by including gamma decay. We use the Brink-Axel hypothesis and consider the gamma emission of giant dipole resonances built on the ground state and on the excited states of the composite system. The latter are modeled as multiparticle multi-hole excitations. In this way, we combine the statistical ansatz and the chaining hypothesis typical for precompound reaction theories, with the collective aspects of gamma decay. Formulas for average S-matrix and average cross section are derived in this framework.

  1. Modeling Bimolecular Reactions and Transport in Porous Media via Particle Tracking

    NASA Astrophysics Data System (ADS)

    Ding, D.; Benson, D. A.; Paster, A.; Bolster, D.

    2012-12-01

    We use a particle-tracking model to simulate several one-dimensional bi-molecular reactive transport experiments. In this numerical method, the reactants are represented by particles; advection and dispersion dominate the flow of particles, and molecular diffusion dictates, in large part, the reactions. The reactions are determined by a combination of two probabilities; one is that reactant particles occupy the same volume over a short time interval, which is dictated by diffusion; the other is the conditional probability that two collocated particles favorably transform into a reaction. The first probability is a direct physical representation of the degree of mixing in an advancing displacement front, and as such lacks empirical parameters except for the user-defined number of particles. This number is theoretically correlated to the concentration statistics, which can be estimated from concentration autocovariance in the experiment if concentration data is properly collected. The simulations compare favorably to two physical experiments. In one, Raje and Kapoor (2000) [1] measured the product concentrations at the end of a column at different times (the breakthrough curve). In the other, Gramling et al. [2] measured the distribution of reactants and products within a translucent column (snapshots). In addition, one experiment used reactants with a well-mixed thermodynamic rate coefficient 107 times greater than the other. The higher rate can be considered an essentially instantaneous reaction. When compared to the solution of the classical advection-dispersion-reaction equation with the well-mixed reaction coefficient, both experiments showed on the order of 20% to 40% slower reaction attributed to poor mixing. The Lagrangian model in this study accurately simulated the incomplete mixing for both the breakthrough curves [1] and product concentration profile [2]. In addition to model performance, the advantage is the lack of empirical parameters or assumptions

  2. Modeling Interfacial Glass-Water Reactions: Recent Advances and Current Limitations

    SciTech Connect

    Pierce, Eric M.; Frugier, Pierre; Criscenti, Louise J.; Kwon, K. D.; Kerisit, Sebastien N.

    2014-07-12

    The altered layer (i.e., amorphous hydrated surface layer and crystalline reaction products)represents a complex region, both physically and chemically, sandwiched between two distinct boundaries - pristine glass surface at the inner most interface and aqueous solution at the outer most. The physico-chemical processes that control the development of this region have a significant impact on the long-term glass-water reaction. Computational models, spanning different length and time-scales, are currently being developed to improve our understanding of this complex and dynamic process with the goal of accurately describing the pore-scale changes that occur as the system evolves. These modeling approaches include Geochemical Reaction Path simulations, Glass Reactivity in Allowance for Alteration Layer simulations, Monte Carlo simulations, and Molecular Dynamics methods. Discussed in this manuscript are the advances and limitations of each modeling approach placed in the context of the glass water reaction and how collectively these approaches provide insights into the mechanisms that control the formation and evolution of altered layers; thus providing the fundamental data needed to develop pore-scale equations that enable more accurate predictions of nuclear waste glass corrosion in a geologic repository.

  3. Modeling pore collapse and chemical reactions in shock-loaded HMX crystals

    NASA Astrophysics Data System (ADS)

    Austin, Ryan; Barton, Nathan; Howard, William; Fried, Laurence

    2013-06-01

    The collapse of micron-sized pores in crystalline high explosives is the primary route to initiating thermal decomposition reactions under shock wave loading. Given the difficulty of resolving such processes in experiments, it is useful to study pore collapse using numerical simulation. A significant challenge that is encountered in such calculations is accounting for anisotropic mechanical responses and the effects of highly exothermic chemical reactions. In this work, we focus on simulating the shock-wave-induced collapse of a single pore in crystalline HMX using a multiphysics finite element code (ALE3D). The constitutive model set includes a crystal-mechanics-based model of thermoelasto-viscoplasticity and a single-step decomposition reaction with empirically determined kinetics. The model is exercised for shock stresses up to ~10 GPa to study the localization of energy about the collapsing pore and the early stages of reaction initiation. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 (LLNL-ABS-618941).

  4. The BZ Reaction: Experimental and Model Studies in the Physical Chemistry Laboratory

    NASA Astrophysics Data System (ADS)

    Benini, Omar; Cervellati, Rinaldo; Fetto, Pasquale

    1996-09-01

    The paper illustrates integrated physical chemistry-computational lab experiments at the tertiary level on the "classic" Belousov-Zhabotinsky (BZ) oscillating reaction. The complete work was designed for studying the behavior of the Ce4+/Ce3+- and Fe(phen)32+/Fe(phen)33+-catalyzed BZ systems and developing a kinetic model to interpret the experimental data. The students prepared the appropriate reactant mixtures and followed spectrophotometrically the absorbance of Ce4+ and Fe(phen)32+ ions. Then they plot the period of oscillation as a function of the initial concentration of any one of the mixture components observing in particular the difference in the dependence of the oscillation period on the [Ce4+]o and [Fe(phen)32+]o respectively. These differences suggest that the two redox couples catalyze the BZ reaction by different mechanisms. A kinetic mathematical model based on the FKN mechanism for the cerium-catalyzed reaction is presented and discussed. The numerical intergration solutions of the resulting rate equations show that the model accounts satsfactorily for the oscillations of the Ce4+/Ce3+-catalyzed system but fails to reproduce the experimental behavior of the system catalyzed by the couple Fe(phen)32+/Fe(phen)33+. It has been proved that these integrated chemistry-computational lab experiments are a powerful tool in stimulating student interest in physical chemistry and in showing the importance of chemical kinetics in the elucidation of reaction mechanism.

  5. Activation energy for a model ferrous-ferric half reaction from transition path sampling

    NASA Astrophysics Data System (ADS)

    Drechsel-Grau, Christof; Sprik, Michiel

    2012-01-01

    Activation parameters for the model oxidation half reaction of the classical aqueous ferrous ion are compared for different molecular simulation techniques. In particular, activation free energies are obtained from umbrella integration and Marcus theory based thermodynamic integration, which rely on the diabatic gap as the reaction coordinate. The latter method also assumes linear response, and both methods obtain the activation entropy and the activation energy from the temperature dependence of the activation free energy. In contrast, transition path sampling does not require knowledge of the reaction coordinate and directly yields the activation energy [C. Dellago and P. G. Bolhuis, Mol. Simul. 30, 795 (2004), 10.1080/08927020412331294869]. Benchmark activation energies from transition path sampling agree within statistical uncertainty with activation energies obtained from standard techniques requiring knowledge of the reaction coordinate. In addition, it is found that the activation energy for this model system is significantly smaller than the activation free energy for the Marcus model, approximately half the value, implying an equally large entropy contribution.

  6. Bioorganic modelling stereoselective reactions with chiral neutral ligand complexes as model systems for enzyme catalysis.

    PubMed

    Kellogg, R M

    1982-01-01

    amateurs. A better understanding of non-covalent interactions may also provide the key to achieving also the twin goals of both speed and selectivity in bioorganic modelling. As far as enantioselectivity is concerned it is clear that this can be achieved fairly effectively by the use of relatively small, but appropriately placed, groups that force the substrate to complex in an enantioselective step with the ligand. In other words, the problem of enantioselectivity can be solved at the stage of complex forming, which is kinetically rapid. The p]roblem of rate enhancement lies in the mentarity with the transition state of the reaction being catalyzed. Again the achievement of this goal lies in ingenuity of design. Potential areas of applications of chiral crown ether (or cryptate) ligand systems in bioorganic modelling lie in, for example, the formation of carbon-carbon bonds, development of oxidative processes (i.e... PMID:7036410

  7. Heterogeneous reactions in sulfuric acid aerosols: A framework for model calculations

    SciTech Connect

    Hanson, D.R.; Ravishankara, A.R.; Solomon, S. |

    1994-02-20

    A framework for applying rates of heterogeneous chemical reactions measured in the laboratory to small sulfuric acid aerosols found in the stratosphere is presented. The procedure for calculating the applicable reactive uptake coefficients using laboratory-measured parameters is developed, the necessary laboratory-measured quantities are discussed, and a set of equations for use in models are presented. This approach is demonstrated to be essential for obtaining uptake coefficients for the HOCl+HCl and ClONO{sub 2}+HCl reactions applicable to the stratosphere. In these cases the laboratory-measured uptake coefficients have to be substantially corrected for the small size of the atmospheric aerosol droplets. The measured uptake coefficients for N{sub 2}O{sub 5}+H{sub 2}O and ClONO{sub 2}+H{sub 2}O as well as those for other heterogeneous reactions are discussed in the context of this model. Finally, the derived uptake coefficients were incorporated in two-dimensional dynamical and photochemical model. Thus for the first time the HCl reactions in sulfuric acid have been included. Substantial direct chlorine activation and consequent ozone destruction is shown to occur due to heterogeneous reactions involving HCl for volcanically perturbed aerosol conditions at high latitudes. Smaller but significant chlorine activation also is predicted for background sulfuric acid aerosol in these regions. The coupling between homogeneous and heterogeneous chemistry is shown to lead to important changes in the concentrations of various reactive species. The basic physical and chemical quantities needed to better constrain the model input parameters are identified. 39 refs., 10 figs., 4 tabs.

  8. A reaction-diffusion model of CO2 influx into an oocyte.

    PubMed

    Somersalo, Erkki; Occhipinti, Rossana; Boron, Walter F; Calvetti, Daniela

    2012-09-21

    We have developed and implemented a novel mathematical model for simulating transients in surface pH (pH(S)) and intracellular pH (pH(i)) caused by the influx of carbon dioxide (CO(2)) into a Xenopus oocyte. These transients are important tools for studying gas channels. We assume that the oocyte is a sphere surrounded by a thin layer of unstirred fluid, the extracellular unconvected fluid (EUF), which is in turn surrounded by the well-stirred bulk extracellular fluid (BECF) that represents an infinite reservoir for all solutes. Here, we assume that the oocyte plasma membrane is permeable only to CO(2). In both the EUF and intracellular space, solute concentrations can change because of diffusion and reactions. The reactions are the slow equilibration of the CO(2) hydration-dehydration reactions and competing equilibria among carbonic acid (H(2)CO(3))/bicarbonate (HCO(3)(-)) and a multitude of non-CO(2)/HCO(3)(-) buffers. Mathematically, the model is described by a coupled system of reaction-diffusion equations that-assuming spherical radial symmetry-we solved using the method of lines with appropriate stiff solvers. In agreement with experimental data [Musa-Aziz et al. 2009, PNAS 106 5406-5411], the model predicts that exposing the cell to extracellular 1.5% CO(2)/10 mM HCO(3)(-) (pH 7.50) causes pH(i) to fall and pH(S) to rise rapidly to a peak and then decay. Moreover, the model provides insights into the competition between diffusion and reaction processes when we change the width of the EUF, membrane permeability to CO(2), native extra- and intracellular carbonic anhydrase-like activities, the non-CO(2)/HCO(3)(-) (intrinsic) intracellular buffering power, or mobility of intrinsic intracellular buffers. PMID:22728674

  9. Phase transitions in a holographic s + p model with back-reaction

    NASA Astrophysics Data System (ADS)

    Nie, Zhang-Yu; Cai, Rong-Gen; Gao, Xin; Li, Li; Zeng, Hui

    2015-11-01

    In a previous paper (Nie et al. in JHEP 1311:087, arXiv:1309.2204 [hep-th], 2013), we presented a holographic s + p superconductor model with a scalar triplet charged under an SU(2) gauge field in the bulk. We also study the competition and coexistence of the s-wave and p-wave orders in the probe limit. In this work we continue to study the model by considering the full back-reaction. The model shows a rich phase structure and various condensate behaviors such as the "n-type" and "u-type" ones, which are also known as reentrant phase transitions in condensed matter physics. The phase transitions to the p-wave phase or s + p coexisting phase become first order in strong back-reaction cases. In these first order phase transitions, the free energy curve always forms a swallow tail shape, in which the unstable s + p solution can also play an important role. The phase diagrams of this model are given in terms of the dimension of the scalar order and the temperature in the cases of eight different values of the back-reaction parameter, which show that the region for the s + p coexisting phase is enlarged with a small or medium back-reaction parameter but is reduced in the strong back-reaction cases.

  10. Production of heavy neutron-rich nuclei in transfer reactions within the dinuclear system model

    NASA Astrophysics Data System (ADS)

    Zhu, Long; Feng, Zhao-Qing; Zhang, Feng-Shou

    2015-08-01

    The dynamics of nucleon transfer processes in heavy-ion collisions is investigated within the dinuclear system model. The production cross sections of nuclei in the reactions 136Xe+208Pb and 238U+248Cm are calculated, and the calculations are in good agreement with the experimental data. The transfer cross sections for the 58Ni+208Pb reaction are calculated and compared with the experimental data. We predict the production cross sections of neutron-rich nuclei 165-168 Eu, 169-173 Tb, 173-178 Ho, and 181-185Yb based on the reaction 176Yb+238U. It can be seen that the production cross sections of the neutron-rich nuclei 165Eu, 169Tb, 173Ho, and 181Yb are 2.84 μb, 6.90 μb, 46.24 μb, and 53.61 μb, respectively, which could be synthesized in experiment.

  11. Nuclear reaction cross sections of exotic nuclei in the Glauber model for relativistic mean field densities

    SciTech Connect

    Patra, S. K.; Panda, R. N.; Arumugam, P.; Gupta, Raj K.

    2009-12-15

    We have calculated the total nuclear reaction cross sections of exotic nuclei in the framework of the Glauber model, using as inputs the standard relativistic mean field (RMF) densities and the densities obtained from the more recently developed effective-field-theory-motivated RMF (the E-RMF). Both light and heavy nuclei are taken as the representative targets, and the light neutron-rich nuclei as projectiles. We found the total nuclear reaction cross section to increase as a function of the mass number, for both the target and projectile nuclei. The differential nuclear elastic scattering cross sections are evaluated for some selected systems at various incident energies. We found a large dependence of the differential elastic scattering cross section on incident energy. Finally, we have applied the same formalism to calculate both the total nuclear reaction cross section and the differential nuclear elastic scattering cross section for the recently discussed superheavy nucleus with atomic number Z=122.

  12. Low Velocity Impact Experiments plus Modeling of the Resulting Reaction Violence in LX-10 Charges

    NASA Astrophysics Data System (ADS)

    Chidester, Steven; Garcia, Frank; Vandersall, Kevin; Tarver, Craig

    2011-06-01

    A new gas gun facility and improved instrumentation were used to study the mechanisms of low velocity impact ignition and growth of violent reaction. Cylindrical charges of the HMX based explosive LX-10 (95% HMX, 5% Viton binder) encased by lexan were impacted by 6.35 mm diameter hardened steel projectiles at velocities ranging from 47 to 500 m/s. Fast Phantom v12 cameras were employed to capture the times of first ignition. The degrees of resulting reaction violence were determined using Photonic Doppler Velocimetry (PDV) probes to measure the free surface velocity histories of attached aluminum foils. Analytical and hydrodynamic reactive flow models were used to estimate the relative violence of these LX-10 reactions compared to the intentional detonation of an equivalent LX-10 charge. This work was performed under the auspices of the U. S. Department of Energy by the Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  13. Description of the proton and neutron radiative capture reactions in the Gamow shell model

    NASA Astrophysics Data System (ADS)

    Fossez, K.; Michel, N.; Płoszajczak, M.; Jaganathen, Y.; Id Betan, R. M.

    2015-03-01

    We formulate the Gamow shell model (GSM) in coupled-channel (CC) representation for the description of proton/neutron radiative capture reactions and present the first application of this new formalism for the calculation of cross sections in mirror reactions 7Be(p ,γ ) 8B and 7Li(n,γ ) 8Li . The GSM-CC formalism is applied to a translationally invariant Hamiltonian with an effective finite-range two-body interaction. Reactions channels are built by GSM wave functions for the ground state 3 /2- and the first excited state 1 /2- of 7Be /7Li and the proton/neutron wave function expanded in different partial waves.

  14. Ignition and Growth Modeling of Detonation Reaction Zone Experiments on Single Crystals of PETN and HMX

    NASA Astrophysics Data System (ADS)

    White, Bradley; Tarver, Craig

    2015-06-01

    Fedorov et al. reported nanosecond time resolved interface particle velocity records for detonation reaction zone profiles of single crystals of PETN and HMX with adjoining LiF windows. Von Neumann spike and Chapman-Jouguet pressures were measured, and reaction zone lengths and times wereinferred. The single crystal detonation velocities and von Neumann spike pressures are higher than those measured for heterogeneous PETN and HMX-based explosives pressed to 98-99% theoretical maximum density. Due to the absence of voids, the single crystal detonation reaction zone lengths and times for both PETN and HMX were longer than those for their heterogeneous explosives. Ignition and Growth modeling results are compared to the single crystal PETN and HMX measurements and to previous experimental results for pressed PETN and HMX charges. This work was performed under the auspices of the U. S. Department of Energy by the Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  15. Effect of motion frequency spectrum on subjective comfort response. [modeling passenger reactions to commercial aircraft flights

    NASA Technical Reports Server (NTRS)

    Jacobson, I. D.; Schoultz, M. B.; Blake, J. C.

    1973-01-01

    In order to model passenger reaction to present and future aircraft environments, it is necessary to obtain data in several ways. First, of course, is the gathering of environmental and passenger reaction data on commercial aircraft flights. In addition, detailed analyses of particular aspects of human reaction to the environment are best studied in a controllable experimental situation. Thus the use of simulators, both flight and ground based, is suggested. It is shown that there is a reasonably high probability that the low frequency end of the spectrum will not be necessary for simulation purposes. That is, the fidelity of any simulation which omits the very low frequency content will not yield results which differ significantly from the real environment. In addition, there does not appear to be significant differences between the responses obtained in the airborne simulator environment versus those obtained on commercial flights.

  16. Abrasion-ablation model for neutron production in heavy ion reactions

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wilson, John W.; Townsend, Lawrence W.

    1995-01-01

    In heavy ion reactions, neutron production at forward angles is observed to occur with a Gaussian shape that is centered near the beam energy and extends to energies well above that of the beam. This paper presents an abrasion-ablation model for making quantitative predictions of the neutron spectrum. To describe neutrons produced from the abrasion step of the reaction where the projectile and target overlap, the authors use the Glauber model and include effects of final-state interactions. They then use the prefragment mass distribution from abrasion with a statistical evaporation model to estimate the neutron spectrum resulting from ablation. Measurements of neutron production from Ne and Nb beams are compared with calculations, and good agreement is found.

  17. Waterhammer modeling for the Ares I Upper Stage Reaction Control System cold flow development test article

    NASA Astrophysics Data System (ADS)

    Williams, Jonathan Hunter

    The Upper Stage Reaction Control System provides in-flight three-axis attitude control for the Ares I Upper Stage. The system design must accommodate rapid thruster firing to maintain proper launch trajectory and thus allow for the possibility to pulse multiple thrusters simultaneously. Rapid thruster valve closure creates an increase in static pressure, known as waterhammer, which propagates throughout the propellant system at pressures exceeding nominal design values. A series of development tests conducted at Marshall Space Flight Center in 2009 were performed using a water-flow test article to better understand fluid characteristics of the Upper Stage Reaction Control System. A subset of the tests examined the waterhammer pressure and frequency response in the flight-representative system and provided data to anchor numerical models. This thesis presents a comparison of waterhammer test results with numerical model and analytical results. An overview of the flight system, test article, modeling and analysis are also provided.

  18. Modeling spallation reactions in tungsten and uranium targets with the Geant4 toolkit

    NASA Astrophysics Data System (ADS)

    Malyshkin, Yury; Pshenichnov, Igor; Mishustin, Igor; Greiner, Walter

    2012-02-01

    We study primary and secondary reactions induced by 600 MeV proton beams in monolithic cylindrical targets made of natural tungsten and uranium by using Monte Carlo simulations with the Geant4 toolkit [1-3]. Bertini intranuclear cascade model, Binary cascade model and IntraNuclear Cascade Liège (INCL) with ABLA model [4] were used as calculational options to describe nuclear reactions. Fission cross sections, neutron multiplicity and mass distributions of fragments for 238U fission induced by 25.6 and 62.9 MeV protons are calculated and compared to recent experimental data [5]. Time distributions of neutron leakage from the targets and heat depositions are calculated. This project is supported by Siemens Corporate Technology.

  19. Modeling bimolecular reactions and transport in porous media via particle tracking

    NASA Astrophysics Data System (ADS)

    Ding, Dong; Benson, David A.; Paster, Amir; Bolster, Diogo

    2013-03-01

    We use a particle-tracking method to simulate several one-dimensional bimolecular reactive transport experiments. In our numerical scheme, the reactants are represented by particles: advection and dispersion dominate the flow, and molecular diffusion dictates, in large part, the reactions. The particle/particle reactions are determined by a combination of two probabilities dictated by the physics of transport and energetics of reaction. The first is that reactant particles occupy the same volume over a short time interval. The second is the conditional probability that two collocated particles favorably transform into a reaction. The first probability is a direct physical representation of the degree of mixing in an advancing interface between dissimilar waters, and as such lacks empirical parameters except for the user-defined number of particles. This number can be determined analytically from concentration autocovariance, if this type of data is available. The simulations compare favorably to two physical experiments. In one, the concentration of product, 1,2-naphthoquinoe-4-aminobenzene (NQAB) from reaction between 1,2-naphthoquinone-4-sulfonic acid (NQS) and aniline (AN), was measured at the outflow of a column filled with glass beads at different times. In the other, the concentration distribution of reactants (CuSO and EDTA) and product (CuEDTA) were quantified by snapshots of light transmitted through a column packed with cryolite sand. These snapshots allow us to estimate concentration statistics and calculate the required number of particles. The experiments differ significantly due to a ˜107 difference in thermodynamic rate coefficients, making the latter experiment effectively instantaneous. When compared to the solution of the advection-dispersion-reaction equation (ADRE) with the well-mixed reaction coefficient, the experiments and the particle-tracking simulations showed on the order of 20-40% less overall product, which is attributed to poor mixing

  20. Modeling Bimolecular Reactions and Transport in Porous Media Via Particle Tracking

    SciTech Connect

    Dong Ding; David Benson; Amir Paster; Diogo Bolster

    2012-01-01

    We use a particle-tracking method to simulate several one-dimensional bimolecular reactive transport experiments. In this numerical method, the reactants are represented by particles: advection and dispersion dominate the flow, and molecular diffusion dictates, in large part, the reactions. The particle/particle reactions are determined by a combination of two probabilities dictated by the physics of transport and energetics of reaction. The first is that reactant particles occupy the same volume over a short time interval. The second is the conditional probability that two collocated particles favorably transform into a reaction. The first probability is a direct physical representation of the degree of mixing in an advancing displacement front, and as such lacks empirical parameters except for the user-defined number of particles. This number can be determined analytically from concentration autocovariance, if this type of data is available. The simulations compare favorably to two physical experiments. In one, the concentration of product, 1,2-naphthoquinoe-4-aminobenzene (NQAB) from reaction between 1,2-naphthoquinone-4-sulfonic acid (NQS) and aniline (AN), was measured at the outflow of a column filled with glass beads at different times. In the other, the concentration distribution of reactants (CuSO_4 and EDTA^{4-}) and products (CuEDTA^{4-}) were quantified by snapshots of transmitted light through a column packed with cryloite sand. The thermodynamic rate coefficient in the latter experiment was 10^7 times greater than the former experiment, making it essentially instantaneous. When compared to the solution of the advection-dispersion-reaction equation (ADRE) with the well-mixed reaction coefficient, the experiments and the particle-tracking simulations showed on the order of 20% to 40% less overall product, which is attributed to poor mixing. The poor mixing also leads to higher product concentrations on the edges of the mixing zones, which the particle

  1. An analytical model of hydrogen evolution and oxidation reactions on electrodes partially covered with a catalyst.

    PubMed

    Kemppainen, Erno; Halme, Janne; Lund, Peter D

    2016-05-11

    Our previous theoretical study on the performance limits of the platinum (Pt) nanoparticle catalyst for the hydrogen evolution reaction (HER) had shown that the mass transport losses at a partially catalyst-covered planar electrode are independent of the catalyst loading. This suggests that the two-dimensional (2D) numerical model used could be simplified to a one-dimensional (1D) model to provide an easier but equally accurate description of the operation of these HER electrodes. In this article, we derive an analytical 1D model and show that it indeed gives results that are practically identical to the 2D numerical simulations. We discuss the general principles of the model and how it can be used to extend the applicability of existing electrochemical models of planar electrodes to low catalyst loadings suitable for operating photoelectrochemical devices under unconcentrated sunlight. Since the mass transport losses of the HER are often very sensitive to the H2 concentration, we also discuss the limiting current density of the hydrogen oxidation reaction (HOR) and how it is not necessarily independent of the reaction kinetics. The results give insight into the interplay of kinetic and mass-transport limitations at HER/HOR electrodes with implications for the design of kinetic experiments and the optimization of catalyst loadings in the photoelectrochemical cells. PMID:27137703

  2. Transport-reaction model for defect and carrier behavior within displacement cascades in gallium arsenide

    SciTech Connect

    Wampler, William R.; Myers, Samuel M.

    2014-02-01

    A model is presented for recombination of charge carriers at displacement damage in gallium arsenide, which includes clustering of the defects in atomic displacement cascades produced by neutron or ion irradiation. The carrier recombination model is based on an atomistic description of capture and emission of carriers by the defects with time evolution resulting from the migration and reaction of the defects. The physics and equations on which the model is based are presented, along with details of the numerical methods used for their solution. The model uses a continuum description of diffusion, field-drift and reaction of carriers and defects within a representative spherically symmetric cluster. The initial radial defect profiles within the cluster were chosen through pair-correlation-function analysis of the spatial distribution of defects obtained from the binary-collision code MARLOWE, using recoil energies for fission neutrons. Charging of the defects can produce high electric fields within the cluster which may influence transport and reaction of carriers and defects, and which may enhance carrier recombination through band-to-trap tunneling. Properties of the defects are discussed and values for their parameters are given, many of which were obtained from density functional theory. The model provides a basis for predicting the transient response of III-V heterojunction bipolar transistors to pulsed neutron irradiation.

  3. First-principles modeling of catalysts: novel algorithms and reaction mechanisms

    NASA Astrophysics Data System (ADS)

    Richard, Bryan Goldsmith

    A molecular level understanding of a reaction mechanism and the computation of rates requires knowledge of the stable structures and the corresponding transition states that connect them. Temperature, pressure, and environment effects must be included to bridge the 'materials gap' so one can reasonably compare ab initio (first-principles, i.e., having no empirical parameters) predictions with experimental measurements. In this thesis, a few critical problems pertaining to ab initio modeling of catalytic systems are addressed; namely, 1) the issue of building representative models of isolated metal atoms grafted on amorphous supports, 2) modeling inorganic catalytic reactions in non-ideal solutions where the solvent participates in the reaction mechanism, and 3) bridging the materials gap using ab initio thermodynamics to predict the stability of supported nanoparticles under experimental reaction conditions. In Chapter I, a background on first-principles modeling of heterogeneous and homogenous catalysts is provided. Subsequently, to address the problem of modeling catalysis by isolated metal atoms on amorphous supports, we present in Chapter II a sequential-quadratic programming algorithm that systematically predicts the structure and reactivity of isolated active sites on insulating amorphous supports. Modeling solution phase reactions is also a considerable challenge for first-principles modeling, yet when done correctly it can yield critical kinetic and mechanistic insight that can guide experimental investigations. In Chapter III, we examine the formation of peroxorhenium complexes by activation of H2O2, which is key in selective oxidation reactions catalyzed by CH3ReO3 (methyltrioxorhenium, MTO). New experiments and density functional theory (DFT) calculations were conducted to better understand the activation of H2O2 by MTO and to provide a strong experimental foundation for benchmarking computational studies involving MTO and its derivatives. It was found

  4. Tissue Reaction and Biocompatibility of Implanted Mineral Trioxide Aggregate with Silver Nanoparticles in a Rat Model

    PubMed Central

    Zand, Vahid; Lotfi, Mehrdad; Aghbali, Amirala; Mesgariabbasi, Mehran; Janani, Maryam; Mokhtari, Hadi; Tehranchi, Pardis; Pakdel, Seyyed Mahdi Vahid

    2016-01-01

    Introduction: Biocompatibility and antimicrobial activity of endodontic materials are of utmost importance. Considering the extensive applications of mineral trioxide aggregate (MTA) in dentistry and antimicrobial properties of silver nanoparticles, this study aimed to evaluate the subcutaneous inflammatory reaction of rat connective tissues to white MTA with and without nanosilver (NS) particles. Methods and Materials: Polyethylene tubes (1.1×8 mm) containing experimental materials (MTA and MTA+NS and empty control tubes) were implanted in subcutaneous tissues of seventy-five male rats. Animals were divided into five groups (n=15) according to the time of evaluation: group 1; after 7 days, group 2; after 15 days, group 3; after 30 days, group 4; after 60 days and group 5; after 90 days. The inflammatory reaction was graded and data was analyzed using the Kruskal-Wallis and Mann-Whitney U tests. Statistical significance was defined at 0.05. Results: Comparison of cumulative inflammatory reaction at all intervals revealed that the mean grade of inflammatory reaction to MTA, MTA+NS and control samples were 3, 2 and 2, respectively. According to the Mann-Whitney analysis there were no significant differences between MTA+NS and MTA (P=0.42). Conclusion: Incorporation of 1% nanosilver to MTA does not affect the inflammatory reaction of subcutaneous tissue in rat models. PMID:26843871

  5. Evolution of natural gas composition: Predictive multi-phase reaction-transport modeling

    SciTech Connect

    Ortoleva, P.J.; Chang, K.A.; Maxwell, J.M.

    1995-12-31

    A computational modeling approach is used to investigate reaction and transport processes affecting natural gas composition over geological time. Three basic stages are integrated -- gas generation from organic solids or liquids, interactions during source rock expulsion to the reservoir and reactions within the reservoir. Multi-phase dynamics is handled by solving the fully coupled problem of phase-to-phase transfer, intra-phase organic and inorganic reactions and redox and other reactions between fluid phase molecules and minerals. Effects of capillarity and relative permeability are accounted for. Correlations will be determined between gas composition, temperature history, the mineralogy of rocks with which the gas was in contact and the composition of source organic phases. Questions of H{sub 2}S scavenging by oxidizing minerals and the production or removal of CO{sub 2} are focused upon. Our three spatial dimensional, reaction-transport simulation approach has great promise for testing general concepts and as a practical tool for the exploration and production of natural gas.

  6. Evaluation of electronic correlation contributions for optical tensors of large systems using the incremental scheme

    NASA Astrophysics Data System (ADS)

    Yang, Jun; Dolg, Michael

    2007-08-01

    A new method is developed to calculate the optical tensors of large systems based on available wave function correlation approaches (e.g., the coupled cluster ansatz) in the framework of the incremental scheme. The convergence behaviors of static first- and second-order polarizabilities with respect to the order of the incremental expansion are examined and discussed for the model system Ga4As4H18. The many-body increments of optical tensors originate from the dipole-dipole coupling effects and the corresponding contributions to the incremental expansion are compared among local domains with different distances and orientations. The weight factors for increments of optical tensors are found to be tensorial in accordance with the structural symmetry as well as the polarization and the external electric field directions. The long-term goal of the proposed approach is to incorporate the sophisticated molecular correlation methods into the accurate wave function calculation of optical properties of large compounds or even crystals.

  7. Parallel iterative reaction path optimization in ab initio quantum mechanical/molecular mechanical modeling of enzyme reactions

    NASA Astrophysics Data System (ADS)

    Liu, Haiyan; Lu, Zhenyu; Cisneros, G. Andrés; Yang, Weitao

    2004-07-01

    The determination of reaction paths for enzyme systems remains a great challenge for current computational methods. In this paper we present an efficient method for the determination of minimum energy reaction paths with the ab initio quantum mechanical/molecular mechanical approach. Our method is based on an adaptation of the path optimization procedure by Ayala and Schlegel for small molecules in gas phase, the iterative quantum mechanical/molecular mechanical (QM/MM) optimization method developed earlier in our laboratory and the introduction of a new metric defining the distance between different structures in the configuration space. In this method we represent the reaction path by a discrete set of structures. For each structure we partition the atoms into a core set that usually includes the QM subsystem and an environment set that usually includes the MM subsystem. These two sets are optimized iteratively: the core set is optimized to approximate the reaction path while the environment set is optimized to the corresponding energy minimum. In the optimization of the core set of atoms for the reaction path, we introduce a new metric to define the distances between the points on the reaction path, which excludes the soft degrees of freedom from the environment set and includes extra weights on coordinates describing chemical changes. Because the reaction path is represented by discrete structures and the optimization for each can be performed individually with very limited coupling, our method can be executed in a natural and efficient parallelization, with each processor handling one of the structures. We demonstrate the applicability and efficiency of our method by testing it on two systems previously studied by our group, triosephosphate isomerase and 4-oxalocrotonate tautomerase. In both cases the minimum energy paths for both enzymes agree with the previously reported paths.

  8. A Local, Self-Organizing Reaction-Diffusion Model Can Explain Somite Patterning in Embryos.

    PubMed

    Cotterell, James; Robert-Moreno, Alexandre; Sharpe, James

    2015-10-28

    During somitogenesis in embryos, a posteriorly moving differentiation front arrests the oscillations of "segmentation clock" genes, leaving behind a frozen, periodic pattern of expression stripes. Both mathematical theories and experimental observations have invoked a "clock and wavefront" model to explain this phenomenon, in which long-range molecular gradients control the movement of the front and therefore the placement of the stripes in the embryo. Here, we develop a fundamentally different model-a progressive oscillatory reaction-diffusion (PORD) system driven by short-range interactions. In this model, posterior movement of the front is a local, emergent phenomenon that, in contrast to the clock and wavefront model, is not controlled by global positional information. The PORD model explains important features of somitogenesis, such as size regulation, that previous reaction-diffusion models could not explain. Moreover, the PORD and clock and wavefront models make different predictions about the results of FGF-inhibition and tissue-cutting experiments, and we demonstrate that the results of these experiments favor the PORD model. PMID:27136055

  9. 17 CFR 242.612 - Minimum pricing increment.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 17 Commodity and Securities Exchanges 4 2014-04-01 2014-04-01 false Minimum pricing increment. 242.612 Section 242.612 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED...-Regulation of the National Market System § 242.612 Minimum pricing increment. (a) No national...

  10. 17 CFR 242.612 - Minimum pricing increment.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Minimum pricing increment. 242.612 Section 242.612 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED...-Regulation of the National Market System § 242.612 Minimum pricing increment. (a) No national...

  11. 17 CFR 242.612 - Minimum pricing increment.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 17 Commodity and Securities Exchanges 3 2012-04-01 2012-04-01 false Minimum pricing increment. 242.612 Section 242.612 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED...-Regulation of the National Market System § 242.612 Minimum pricing increment. (a) No national...

  12. 17 CFR 242.612 - Minimum pricing increment.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 17 Commodity and Securities Exchanges 3 2011-04-01 2011-04-01 false Minimum pricing increment. 242.612 Section 242.612 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED...-Regulation of the National Market System § 242.612 Minimum pricing increment. (a) No national...

  13. 17 CFR 242.612 - Minimum pricing increment.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 17 Commodity and Securities Exchanges 3 2013-04-01 2013-04-01 false Minimum pricing increment. 242.612 Section 242.612 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED...-Regulation of the National Market System § 242.612 Minimum pricing increment. (a) No national...

  14. Incremental Seismic Rehabilitation of School Buildings (K-12).

    ERIC Educational Resources Information Center

    Krimgold, Frederick; Hattis, David; Green, Melvyn

    Asserting that the strategy of incremental seismic rehabilitation makes it possible for schools to get started now on improving earthquake safety, this manual provides school administrators with the information necessary to assess the seismic vulnerability of their buildings and to implement a program of incremental seismic rehabilitation for…

  15. Teachers' Preferences toward Alternate Systems of Salary Increment.

    ERIC Educational Resources Information Center

    Bogie, Cheryl E.; Bogie, Donald W.

    1978-01-01

    Elementary teachers from three different urban socioeconomic neighborhoods were surveyed regarding their preferences toward uniform vs competency-based systems of salary increment; the relationship between selected characteristics of teachers and principals and teachers' attitudes toward alternate forms of salary increment were also investigated.…

  16. Hopf bifurcations in a reaction-diffusion population model with delay effect

    NASA Astrophysics Data System (ADS)

    Su, Ying; Wei, Junjie; Shi, Junping

    A reaction-diffusion population model with a general time-delayed growth rate per capita is considered. The growth rate per capita can be logistic or weak Allee effect type. From a careful analysis of the characteristic equation, the stability of the positive steady state solution and the existence of forward Hopf bifurcation from the positive steady state solution are obtained via the implicit function theorem, where the time delay is used as the bifurcation parameter. The general results are applied to a "food-limited" population model with diffusion and delay effects as well as a weak Allee effect population model.

  17. Modeling of On-Cell Reforming Reaction for Planar SOFC Stacks

    SciTech Connect

    Yang, Choongmo; Lim, Hyung-Tae; Hwang, Soon Cheol; Kim, Dohyung; Lai, Canhai; Koeppel, Brian J.; Recknagle, Kurtis P.; Khaleel, Mohammad A.

    2011-05-30

    Planar Solid Oxide Fuel Cell (SOFC) stack is known to suffer thermal problem from high stack temperature during operation to generate high current. On-Cell Reforming (OCR) phenomenon is often used to reduce stack temperature by an endothermic reaction of steam-methane reforming process. RIST conducted single-cell experiment to validate modeling tool to simulate OCR performance including temperature measurement. 2D modeling is used to check reforming rate during OCR using temperature measurement data, and 3D modeling is used to check overall thermal performance including furnace boundary conditions.

  18. Incremental Validity of the Trait Emotional Intelligence Questionnaire-Short Form (TEIQue-SF).

    PubMed

    Siegling, A B; Vesely, Ashley K; Petrides, K V; Saklofske, Donald H

    2015-01-01

    This study examined the incremental validity of the adult short form of the Trait Emotional Intelligence Questionnaire (TEIQue-SF) in predicting 7 construct-relevant criteria beyond the variance explained by the Five-factor model and coping strategies. Additionally, the relative contributions of the questionnaire's 4 subscales were assessed. Two samples of Canadian university students completed the TEIQue-SF, along with measures of the Big Five, coping strategies (Sample 1 only), and emotion-laden criteria. The TEIQue-SF showed consistent incremental effects beyond the Big Five or the Big Five and coping strategies, predicting all 7 criteria examined across the 2 samples. Furthermore, 2 of the 4 TEIQue-SF subscales accounted for the measure's incremental validity. Although the findings provide good support for the validity and utility of the TEIQue-SF, directions for further research are emphasized. PMID:25830494

  19. A Semi-Empirical Two Step Carbon Corrosion Reaction Model in PEM Fuel Cells

    SciTech Connect

    Young, Alan; Colbow, Vesna; Harvey, David; Rogers, Erin; Wessel, Silvia

    2013-01-01

    The cathode CL of a polymer electrolyte membrane fuel cell (PEMFC) was exposed to high potentials, 1.0 to 1.4 V versus a reversible hydrogen electrode (RHE), that are typically encountered during start up/shut down operation. While both platinum dissolution and carbon corrosion occurred, the carbon corrosion effects were isolated and modeled. The presented model separates the carbon corrosion process into two reaction steps; (1) oxidation of the carbon surface to carbon-oxygen groups, and (2) further corrosion of the oxidized surface to carbon dioxide/monoxide. To oxidize and corrode the cathode catalyst carbon support, the CL was subjected to an accelerated stress test cycled the potential from 0.6 VRHE to an upper potential limit (UPL) ranging from 0.9 to 1.4 VRHE at varying dwell times. The reaction rate constants and specific capacitances of carbon and platinum were fitted by evaluating the double layer capacitance (Cdl) trends. Carbon surface oxidation increased the Cdl due to increased specific capacitance for carbon surfaces with carbon-oxygen groups, while the second corrosion reaction decreased the Cdl due to loss of the overall carbon surface area. The first oxidation step differed between carbon types, while both reaction rate constants were found to have a dependency on UPL, temperature, and gas relative humidity.

  20. Low velocity impact experiments on the explosive LX-10 with modeling of reaction violence

    NASA Astrophysics Data System (ADS)

    Chidester, Steven; Garcia, Frank; Vandersall, Kevin S.; Tarver, Craig M.; Ferranti, Louis

    2012-03-01

    A new gas gun capability designed for the velocity range of ~20-400 m/s was used to study the mechanisms of low-velocity impact ignition and reaction violence of explosive targets in safety studies. Hemispherical charges of the HMX-based explosive LX-10 (95% HMX, 5% Viton binder) assembled in a polycarbonate target ring were impacted by a 6.35 mm diameter hardened steel rod protruding from a projectile at velocities ranging from 36 to 374 m/s. Digital high-speed (Phantom v12) cameras were utilized to capture the times of first ignition and a Photonic Doppler Velocimetry (PDV) probe placed at the rear of the target was used to measure the free surface velocity histories of an aluminum foil on the LX-10 surface to quantify the resulting reaction violence. The Ignition and Growth reactive flow model for LX-10 was used to compare the relative violence of these reactions to the intentional detonation of an equivalent LX-10 charge. It was found that comparing the model results to that of the experiment using this impactor geometry within the tested velocity range, the reaction violence increased with velocity from 45-374 m/s and only a small fraction of material appears to react during the impact.

  1. Modeling the BZ reaction in gels with chemo-responsive crosslinks

    NASA Astrophysics Data System (ADS)

    Yashin, Victor V.; Kuksenok, Olga; Balazs, Anna C.

    2010-03-01

    We model chemo-responsive polymer gels, which expand and contract periodically in response to the ongoing oscillatory Belousov-Zhabotinsky (BZ) reaction. This behavior is due to a ruthenium catalyst, which is grafted to the polymers and affects the polymer-solvent interactions as it undergoes the redox oscillations in the course of the reaction. We consider a permanently crosslinked polymer gel that encompasses Ru(terpy)2 catalytic units having both the terpyridine ligands chemically bonded to the network. It is known that oxidation of the Ru metal-ion from Ru(II) to Ru(III) results in the dissociation of the Ru(terpy)2 complexes since the Ru(III) ions form only mono-complexes with terpyridine. Hence, the grafted Ru(terpy)2 units would effectively create crosslinks that break and re-form in the response to the BZ reaction. We modified the Oregonator model for the BZ reaction and took into account that the re-formation of Ru(terpy)2 complexes is frustrated by the gel network. The time-dependent elastic contribution of the Ru(terpy)2 crosslinks was described by the BKZ-type constitutive equation. We report on the results of simulations in 1D. We show, in particular, that compression of the sample leads to stiffening of the gel due to an increase in the crosslink density.

  2. Upscaling of reaction rates in reactive transport using pore-scale reactive transport model

    NASA Astrophysics Data System (ADS)

    Yoon, H.; Dewers, T. A.; Arnold, B. W.; Major, J. R.; Eichhubl, P.; Srinivasan, S.

    2013-12-01

    Dissolved CO2 during geological CO2 storage may react with minerals in fractured rocks, confined aquifers, or faults, resulting in mineral precipitation and dissolution. The overall rate of reaction can be affected by coupled processes among hydrodynamics, transport, and reactions at the (sub) pore-scale. In this research pore-scale modeling of coupled fluid flow, reactive transport, and heterogeneous reaction at the mineral surface is applied to account for permeability alterations caused by precipitation-induced pore-blocking. This work is motivated by the observed CO2 seeps from a natural analog to geologic CO2 sequestration at Crystal Geyser, Utah. A key observation is the lateral migration of CO2 seep sites at a scale of ~ 100 meters over time. A pore-scale model provides fundamental mechanistic explanations of how calcite precipitation alters flow paths by pore plugging under different geochemical compositions and pore configurations. In addition, response function of reaction rates will be constructed from pore-scale simulations which account for a range of reaction regimes characterized by the Damkohler and Peclet numbers. Newly developed response functions will be used in a continuum scale model that may account for large-scale phenomena mimicking lateral migration of surface CO2 seeps. Comparison of field observations and simulations results will provide mechanistic explanations of the lateral migration and enhance our understanding of subsurface processes associated with the CO2 injection. This work is supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security

  3. Gaussian graphical modeling reconstructs pathway reactions from high-throughput metabolomics data

    PubMed Central

    2011-01-01

    Background With the advent of high-throughput targeted metabolic profiling techniques, the question of how to interpret and analyze the resulting vast amount of data becomes more and more important. In this work we address the reconstruction of metabolic reactions from cross-sectional metabolomics data, that is without the requirement for time-resolved measurements or specific system perturbations. Previous studies in this area mainly focused on Pearson correlation coefficients, which however are generally incapable of distinguishing between direct and indirect metabolic interactions. Results In our new approach we propose the application of a Gaussian graphical model (GGM), an undirected probabilistic graphical model estimating the conditional dependence between variables. GGMs are based on partial correlation coefficients, that is pairwise Pearson correlation coefficients conditioned against the correlation with all other metabolites. We first demonstrate the general validity of the method and its advantages over regular correlation networks with computer-simulated reaction systems. Then we estimate a GGM on data from a large human population cohort, covering 1020 fasting blood serum samples with 151 quantified metabolites. The GGM is much sparser than the correlation network, shows a modular structure with respect to metabolite classes, and is stable to the choice of samples in the data set. On the example of human fatty acid metabolism, we demonstrate for the first time that high partial correlation coefficients generally correspond to known metabolic reactions. This feature is evaluated both manually by investigating specific pairs of high-scoring metabolites, and then systematically on a literature-curated model of fatty acid synthesis and degradation. Our method detects many known reactions along with possibly novel pathway interactions, representing candidates for further experimental examination. Conclusions In summary, we demonstrate strong signatures of

  4. Trends in Aromatic Oxidation Reactions Catalyzed by Cytochrome P450 Enzymes: A Valence Bond Modeling.

    PubMed

    Shaik, Sason; Milko, Petr; Schyman, Patric; Usharani, Dandamudi; Chen, Hui

    2011-02-01

    The mixed density functional theory (DFT) and valence bond study described herein focuses on the activation of 17 benzene derivatives by the active species of Cytochrome P450, so-called Compound I (Cpd I), as well as by the methoxy radical, as a potentially simple model of Cpd I (Jones, J. P.; Mysinger, M.; Korzekwa, K. R. Drug Metab. Dispos. 2002, 30, 7-12). Valence bond modeling is employed to rationalize the P450 mechanism and its spin-state selectivity from first principles of electronic structure and to predict activation energies independently, using easily accessible properties of the reactants: the singlet-triplet excitation energies, the ionization potentials of the aromatics, and the electron affinity of Cpd I and/or of the methoxy radical. It is shown that the valence bond model rationalizes all the mechanistic aspects and predicts activation barriers (for 35 reactions) with reasonable accuracy compared to the DFT barriers with an average deviation of ±1.0 kcal·mol(-1) (for DFT barriers, see: Bathelt, C. M.; Ridder, L.; Mulholland, A. J.; Harvey, J. N. Org. Biomol. Chem. 2004, 2, 2998-3005). The valence bond modeling also reveals the mechanistic similarities between the P450 Cpd I and methoxy reactions and enables one to make predictions of barriers for reactions from other studies. PMID:26596155

  5. Mathematical Modeling and Dynamic Simulation of Metabolic Reaction Systems Using Metabolome Time Series Data

    PubMed Central

    Sriyudthsak, Kansuporn; Shiraishi, Fumihide; Hirai, Masami Yokota

    2016-01-01

    The high-throughput acquisition of metabolome data is greatly anticipated for the complete understanding of cellular metabolism in living organisms. A variety of analytical technologies have been developed to acquire large-scale metabolic profiles under different biological or environmental conditions. Time series data are useful for predicting the most likely metabolic pathways because they provide important information regarding the accumulation of metabolites, which implies causal relationships in the metabolic reaction network. Considerable effort has been undertaken to utilize these data for constructing a mathematical model merging system properties and quantitatively characterizing a whole metabolic system in toto. However, there are technical difficulties between benchmarking the provision and utilization of data. Although, hundreds of metabolites can be measured, which provide information on the metabolic reaction system, simultaneous measurement of thousands of metabolites is still challenging. In addition, it is nontrivial to logically predict the dynamic behaviors of unmeasurable metabolite concentrations without sufficient information on the metabolic reaction network. Yet, consolidating the advantages of advancements in both metabolomics and mathematical modeling remain to be accomplished. This review outlines the conceptual basis of and recent advances in technologies in both the research fields. It also highlights the potential for constructing a large-scale mathematical model by estimating model parameters from time series metabolome data in order to comprehensively understand metabolism at the systems level. PMID:27200361

  6. Field theory for a reaction-diffusion model of quasispecies dynamics.

    PubMed

    Pastor-Satorras, R; Solé, R V

    2001-11-01

    RNA viruses are known to replicate with extremely high mutation rates. These rates are actually close to the so-called error threshold. This threshold is in fact a critical point beyond which genetic information is lost through a second-order phase transition, which has been dubbed as the "error catastrophe." Here we explore this phenomenon using a field theory approximation to the spatially extended Swetina-Schuster quasispecies model [J. Swetina and P. Schuster, Biophys. Chem. 16, 329 (1982)], a single-sharp-peak landscape. In analogy with standard absorbing-state phase transitions, we develop a reaction-diffusion model whose discrete rules mimic the Swetina-Schuster model. The field theory representation of the reaction-diffusion system is constructed. The proposed field theory belongs to the same universality class as a conserved reaction-diffusion model previously proposed [F. van Wijland et al., Physica A 251, 179 (1998)]. From the field theory, we obtain the full set of exponents that characterize the critical behavior at the error threshold. Our results present the error catastrophe from a different point of view and suggest that spatial degrees of freedom can modify several mean-field predictions previously considered, leading to the definition of characteristic exponents that could be experimentally measurable. PMID:11735970

  7. Mathematical Modeling and Dynamic Simulation of Metabolic Reaction Systems Using Metabolome Time Series Data.

    PubMed

    Sriyudthsak, Kansuporn; Shiraishi, Fumihide; Hirai, Masami Yokota

    2016-01-01

    The high-throughput acquisition of metabolome data is greatly anticipated for the complete understanding of cellular metabolism in living organisms. A variety of analytical technologies have been developed to acquire large-scale metabolic profiles under different biological or environmental conditions. Time series data are useful for predicting the most likely metabolic pathways because they provide important information regarding the accumulation of metabolites, which implies causal relationships in the metabolic reaction network. Considerable effort has been undertaken to utilize these data for constructing a mathematical model merging system properties and quantitatively characterizing a whole metabolic system in toto. However, there are technical difficulties between benchmarking the provision and utilization of data. Although, hundreds of metabolites can be measured, which provide information on the metabolic reaction system, simultaneous measurement of thousands of metabolites is still challenging. In addition, it is nontrivial to logically predict the dynamic behaviors of unmeasurable metabolite concentrations without sufficient information on the metabolic reaction network. Yet, consolidating the advantages of advancements in both metabolomics and mathematical modeling remain to be accomplished. This review outlines the conceptual basis of and recent advances in technologies in both the research fields. It also highlights the potential for constructing a large-scale mathematical model by estimating model parameters from time series metabolome data in order to comprehensively understand metabolism at the systems level. PMID:27200361

  8. Static and dynamical critical behavior of the monomer-monomer reaction model with desorption

    NASA Astrophysics Data System (ADS)

    da Costa, E. C.; Rusch, Flávio Roberto

    2016-06-01

    We studied in this work the monomer-monomer reaction model on a linear chain. The model is described by the following reaction: A + B → AB, where A and B are two monomers that arrive at the surface with probabilities yA and yB, respectively, and we have considered desorption of the monomer B with probability α. The model is studied in the adsorption controlled limit where the reaction rate is infinitely larger than the adsorption rate. We employ site and pair mean-field approximations as well as static and dynamical Monte Carlo simulations. We show that the model exhibits a continuous phase transition between an active steady state and an A-absorbing state, when the parameter yA is varied through a critical value, which depends on the value of α. Monte Carlo simulations and finite-size scaling analysis near the critical point are used to determine the static critical exponents β and ν⊥ and the dynamical critical exponents ν∥ and z. The results found for the monomer-monomer reaction model with B desorption, in the linear chain, are different from those found by E. V. Albano (Albano, 1992) and are in accordance with the values obtained by Jun Zhuo and Sidney Redner (Zhuo and Redner, 1993), and endorse the conjecture of Grassberger, which states that any system undergoing a continuous phase transition from an active steady state to a single absorbing state, exhibits the same critical behavior of the directed percolation universality class.

  9. Ventilation behavior during upper-body incremental exercise.

    PubMed

    Pires, Flávio O; Hammond, John; Lima-Silva, Adriano E; Bertuzzi, Rômulo C M; Kiss, Maria Augusta P D M

    2011-01-01

    This study tested the ventilation (VE) behavior during upper-body incremental exercise by mathematical models that calculate 1 or 2 thresholds and compared the thresholds identified by mathematical models with V-slope, ventilatory equivalent for oxygen uptake (VE/V(O2)), and ventilatory equivalent for carbon dioxide uptake (VE/V(CO2)). Fourteen rock climbers underwent an upper-body incremental test on a cycle ergometer with increases of approximately 20 W · min(-1) until exhaustion at a cranking frequency of approximately 90 rpm. The VE data were smoothed to 10-second averages for VE time plotting. The bisegmental and the 3-segmental linear regression models were calculated from 1 or 2 intercepts that best shared the VE curve in 2 or 3 linear segments. The ventilatory threshold(s) was determined mathematically by the intercept(s) obtained by bisegmental and 3-segmental models, by V-slope model, or visually by VE/V(O2) and VE/V(CO2). There was no difference between bisegmental (mean square error [MSE] = 35.3 ± 32.7 l · min(-1)) and 3-segmental (MSE = 44.9 ± 47.8 l · min(-1)) models in fitted data. There was no difference between ventilatory threshold identified by the bisegmental (28.2 ± 6.8 ml · kg(-1) · min(-1)) and second ventilatory threshold identified by the 3-segmental (30.0 ± 5.1 ml · kg(-1) · min(-1)), VE/V(O2) (28.8 ± 5.5 ml · kg(-1) · min(-1)), or V-slope (28.5 ± 5.6 ml · kg(-1) . min(-1)). However, the first ventilatory threshold identified by 3-segmental (23.1 ± 4.9 ml · kg(-1) · min(-1)) or by VE/V(O)2 (24.9 ± 4.4 ml · kg(-1) · min(-1)) was different from these 4. The VE behavior during upper-body exercise tends to show only 1 ventilatory threshold. These findings have practical implications because this point is frequently used for aerobic training prescription in healthy subjects, athletes, and in elderly or diseased populations. The ventilatory threshold identified by VE curve should be used for aerobic training prescription in

  10. Power-law confusion: You say incremental, I say differential

    NASA Technical Reports Server (NTRS)

    Colwell, Joshua E.

    1993-01-01

    Power-law distributions are commonly used to describe the frequency of occurrences of crater diameters, stellar masses, ring particle sizes, planetesimal sizes, and meteoroid masses to name a few. The distributions are simple, and this simplicity has led to a number of misstatements in the literature about the kind of power-law that is being used: differential, cumulative, or incremental. Although differential and cumulative power-laws are mathematically trivial, it is a hybrid incremental distribution that is often used and the relationship between the incremental distribution and the differential or cumulative distributions is not trivial. In many cases the slope of an incremental power-law will be nearly identical to the slope of the cumulative power-law of the same distribution, not the differential slope. The discussion that follows argues for a consistent usage of these terms and against the oft-made implicit claim that incremental and differential distributions are indistinguishable.

  11. Determining the Optimum Number of Increments in Composite Sampling

    SciTech Connect

    Hathaway, John E.; Schaalje, G Bruce; Gilbert, Richard O.; Pulsipher, Brent A.; Matzke, Brett D.

    2008-09-30

    Composite sampling can be more cost effective than simple random sampling. This paper considers how to determine the optimum number of increments to use in composite sampling. Composite sampling can be more cost effective than simple random sampling. This paper considers how to determine the optimum number of increments to use in composite sampling. Composite sampling terminology and theory are outlined and a method is developed which accounts for different sources of variation in compositing and data analysis. This method is used to define and understand the process of determining the optimum number of increments that should be used in forming a composite. The blending variance is shown to have a smaller range of possible values than previously reported when estimating the number of increments in a composite sample. Accounting for differing levels of the blending variance significantly affects the estimated number of increments.

  12. New paradigm for simplified combustion modeling of energetic solids: Branched chain gas reaction

    SciTech Connect

    Brewster, M.Q.; Ward, M.J.; Son, S.F.

    1997-09-01

    Two combustion models with simple but rational chemistry are compared: the classical high gas activation energy (E{sub g}/RT {much_gt} 1) Denison-Baum-Williams (DBW) model, and a new low gas activation energy (E{sub g}/RT {much_lt} 1) model recently proposed by Ward, Son, and Brewster (WSB). Both models make the same simplifying assumptions of constant properties, Lewis number unity, single-step, second order gas phase reaction, and single-step, zero order, high activation energy condensed phase decomposition. The only difference is in the gas reaction activation energy E{sub g} which is asymptotically large for DBW and vanishingly small for WSB. For realistic parameters the DBW model predicts a nearly constant temperature sensitivity {sigma}{sub p} and a pressure exponent n approaching 1. The WSB model predicts generally observed values of n = 0.7 to 0.9 and {sigma}{sub p}(T{sub o},P) with the generally observed variations with temperature (increasing) and pressure (decreasing). The WSB temperature profile also matches measured profiles better. Comparisons with experimental data are made using HMX as an illustrative example (for which WSB predictions for {sigma}{sub p}(T{sub o},P) are currently more accurate than even complex chemistry models). WSB has also shown good agreement with NC/NG double base propellant and HNF, suggesting that at the simplest level of combustion modeling, a vanishingly small gas activation energy is more realistic than an asymptotically large one. The authors conclude from this that the important (regression rate determining) gas reaction zone near the surface has more the character of chain branching than thermal decomposition.

  13. Code System to Calculate Nuclear Reaction Cross Sections by Evaporation Model.

    Energy Science and Technology Software Center (ESTSC)

    2000-11-27

    Version: 00 Both STAPRE and STAPREF are included in this package. STAPRE calculates energy-averaged cross sections for nuclear reactions with emission of particles and gamma rays and fission. The models employed are the evaporation model with inclusion of pre-equilibrium decay and a gamma-ray cascade model. Angular momentum and parity conservation are accounted for. Major improvement in the 1976 STAPRE program relates to level density approach, implemented in subroutine ZSTDE. Generalized superfluid model is incorporated, boltzman-gasmore » modeling of intrinsic state density and semi-empirical modeling of a few-quasiparticle effects in total level density at equilibrium and saddle deformations of actinide nuclei. In addition to the activation cross sections, particle and gamma-ray production spectra are calculated. Isomeric state populations and production cross sections for gamma rays from low excited levels are obtained, too. For fission a single or a double humped barrier may be chosen.« less

  14. Evaluation of CSRA CESA Project for Incremental Improvement in Career Education, 1976-1979.

    ERIC Educational Resources Information Center

    Bartos, Robert B.; Smith, Lyle R.

    Central Savannah River Area Cooperative Educational Services Agency (CSRA CESA) implemented a career education project for grades K-12 in the Columbia County School System to develop a replicable model for incremental improvements. The major emphasis was the infusion of career education activities into the teaching of basic skills. Program…

  15. SW Configuration Management Practises for an Incremental Space SW Development Process

    NASA Astrophysics Data System (ADS)

    Tipaldi, Massimo; Reger, Florian; Bruggmann, Jorg; Dehnhardt, Erik; Bruenjes, Bernhard

    2014-08-01

    This paper describes software configuration management practices featuring an incremental software development approach, referred to as "robust software feedback model". A proper SW configuration process is fundamental for the correct implementation of whatever SW development approach and can guarantee its effectiveness. Special attention is given to the SW versioning rules, the SW repository structure and related usage from both the development and testing standpoint.

  16. Factorial Structure of the Career Decision Scale: Incremental Validity of the Five-Factor Domains

    ERIC Educational Resources Information Center

    Feldt, Ronald C.; Ferry, Ashley; Bullock, Melinda; Camarotti-Carvalho, Ana; Collingwood, Melinda; Eilers, Scott; Meyer, Luke; Nurre, Emily; Woelfel, Cheryl

    2010-01-01

    For comparison of one-, three-, and four-factor structures of the Indecision scale of the Career Decision Scale, results of confirmatory factor analysis (N = 686) indicated the best fit for the three-factor structure. Multiple regression analysis results indicated incremental validity of the five-factor model for predicting dimensions of career…

  17. Cell Length Independent PBRB Model for Simulations of HE Reaction Initiation, Growth, and Detonation

    NASA Astrophysics Data System (ADS)

    Dwivedi, Sunil

    2015-06-01

    It has been our focus to use the Physics Based Reaction Burn (PBRB) model to simulate reaction initiation, growth, and detonation of HE composites at the mesoscale. The idealization of hot spots as planar surfaces reduces the 3D model to a 1D hot spot cell (1DHSC) model. The idealization also renders the model dependent on the 1DHSC length and mesh size. New developments are presented making the PBRB model 1DHSC length independent. First, the accurate prediction of the gas-solid interface temperature and thermal gradient are essential, achieved through a finite difference scheme with 500-2000 thermal grid points. Second, keeping the burn mass constant while varying the 1DHSC length is essential, achieved by varying the hot spot specific surface area. 1D and 2D simulation results are presented for shock response of RDX at 1 km/s and 2 km/s impact velocities. The 5, 10, and 50 micro meters 1DHSC lengths yield near identical run-to-detonation, time-to-detonation, and detonation velocity in agreement with experimental data. It is concluded that the new developments make the PBRB model well suited as a generic EOS model for HE composites. - Dr. John Brennan, ARL is acknowledged for his interactions and support. This work is supported in part by ARL Grant W911NF-12-2-0053 and DTRA Grant HDTRA1-12-1-0004.

  18. Reaction-transport-mechanical (RTM) simulator Sym.CS: Putting together water-rock interaction, multi-phase and heat flow, composite petrophysics model, and fracture mechanics

    NASA Astrophysics Data System (ADS)

    Paolini, C.; Park, A. J.; Mellors, R. J.; Castillo, J.

    2009-12-01

    A typical CO2 sequestration scenario involves the use of multiple simulators for addressing multiphase fluid and heat flow, water-rock interaction and mass-transfer, rock mechanics, and other chemical and physical processes. The benefit of such workflow is that each model can be constrained rigorously; however, the drawback is final modeling results may achieve only a limited extent of the theoretically possible capabilities of each model. Furthermore, such an approach in modeling carbon sequestration cannot capture the nonlinearity of the various chemical and physical processes. Hence, the models can only provide guidelines for carbon sequestration processes with large margins of error. As an alternative, a simulator is being constructed by a multi-disciplinary team with the aim of implementing a large array of fundamental phenomenologies, including, but not limited to: water-rock interaction using elemental mass-balance and explicit mass-transfer and reaction coupling methods; multi-phase and heat flow, including super-critical CO2 and oil; fracture mechanics with anisotropic permeabilities; rheological rock mechanics based on incremental stress theory; and a composite petrophysics model capable of describing changing rock composition and properties. The modules representing the processes will be solved using a layered iteration method, with the goal of capturing the nonlinear feedback among all of the processes. The simulator will be constructed using proven optimization and modular, object-oriented, and service-oriented programming methods. Finally, a novel AJAX (asynchronous JavaScript and XML) user interface is being tested to host the simulator that will allow usage through an Internet browser. Currently, the water-rock interaction, composite petrophysics, and multi-phase fluid and heat flow modules are available for integration. Results of the water-rock interaction and petrophysics coupling has been used to model interaction between a CO2-charged water and

  19. Solvent free energy curves for electron transfer reactions: A nonlinear solvent response model

    NASA Astrophysics Data System (ADS)

    Ichiye, Toshiko

    1996-05-01

    Marcus theory for electron transfer assumes a linear response of the solvent so that both the reactant and product free energy curves are parabolic functions of the solvent polarization, each with the same solvent force constant k characterizing the curvature. Simulation data by other workers indicate that the assumption of parabolic free energy curves is good for the Fe2+-Fe3+ self-exchange reaction but that the k of the reactant and product free energy curves are different for the reaction D0+A0→D1-+A1+. However, the fluctuations sampled in these simulations were not large enough to reach the activation barrier region, which was thus treated either by umbrella sampling or by parabolic extrapolation. Here, we present free energy curves calculated from a simple model of ionic solvation developed in an earlier paper by Hyun, Babu, and Ichiye, which we refer to here as the HBI model. The HBI model describes the nonlinearity of the solvent response due to the orientation of polar solvent molecules. Since it is a continuum model, it may be considered the first-order nonlinear correction to the linear response Born model. Moreover, in the limit of zero charge or infinite radius, the Born model and the Marcus relations are recovered. Here, the full free energy curves are calculated using analytic expressions from the HBI model. The HBI reactant and product curves have different k for D0+A0→D1-+A1+ as in the simulations, but examining the full curves shows they are nonparabolic due to the nonlinear response of the solvent. On the other hand, the HBI curves are close to parabolic for the Fe2+-Fe3+ reaction, also in agreement with simulations, while those for another self-exchange reaction D0-A1+ show greater deviations from parabolic behavior than the Fe2+-Fe3+ reaction. This indicates that transitions from neutral to charged species will have the largest deviations. Thus, the second moment of the polarization is shown to be a measure of the deviation from Marcus

  20. Studying Nuclear Level Densities of 238U in the Nuclear Reactions within the Macroscopic Nuclear Models

    NASA Astrophysics Data System (ADS)

    Razavi, Rohallah; Rahmatinejad, Azam; Kakavand, Tayeb; Taheri, Fariba; Aghajani, Maghsood; Khooy, Asghar

    2016-02-01

    In this work the nuclear level density parameters of 238U have been extracted in the back-shifted Fermi gas model (BSFGM), as well as the constant temperature model (CTM), through fitting with the recent experimental data on nuclear level densities measured by the Oslo group. The excitation functions for 238U(p,2nα)233Pa, and 238U(p,4n)235Np reactions and the fragment yields for the fragments of the 238U(p,f) reaction have been calculated using obtained level density parameters. The results are compared to their corresponding experimental values. It was found that the extracted excitation functions and the fragment yields in the CTM coincide well with the experimental values in the low-energy region. This finding is according to the claim made by the Oslo group that the extracted level densities of 238U show a constant temperature behaviour.

  1. Model of defect reactions and the influence of clustering in pulse-neutron-irradiated Si

    SciTech Connect

    Myers, S. M.; Cooper, P. J.; Wampler, W. R.

    2008-08-15

    Transient reactions among irradiation defects, dopants, impurities, and carriers in pulse-neutron-irradiated Si were modeled taking into account the clustering of the primal defects in recoil cascades. Continuum equations describing the diffusion, field drift, and reactions of relevant species were numerically solved for a submicrometer spherical volume, within which the starting radial distributions of defects could be varied in accord with the degree of clustering. The radial profiles corresponding to neutron irradiation were chosen through pair-correlation-function analysis of vacancy and interstitial distributions obtained from the binary-collision code MARLOWE, using a spectrum of primary recoil energies computed for a fast-burst fission reactor. Model predictions of transient behavior were compared with a variety of experimental results from irradiated bulk Si, solar cells, and bipolar-junction transistors. The influence of defect clustering during neutron bombardment was further distinguished through contrast with electron irradiation, where the primal point defects are more uniformly dispersed.

  2. NN-->NNπ reaction near threshold in a covariant one-boson-exchange model

    NASA Astrophysics Data System (ADS)

    Shyam, R.; Mosel, U.

    1998-04-01

    We calculate the cross sections for the p(p,nπ+)p and p(p,pπ0)p reactions for proton beam energies near threshold in a covariant one-boson-exchange model, which incorporates the exchange of π, ρ, σ and ω mesons, treats both nucleon and delta isobar as intermediate states. The final state interaction effects are included within the Watson's theory. Within this model the ω and σ meson exchange terms contribute significantly at these energies, which, along with other meson exchanges, make it possible to reproduce the available experimental data for the total as well as differential cross sections for both the reactions. The cross sections at beam energies <=300 MeV are found to be almost free from the contributions of the Δ isobar excitation.

  3. Knockout reactions from p-shell nuclei : tests of ab initio structure models.

    SciTech Connect

    Grinyer, G. F.; Bazin, D.; Gade, A.; Tostevin, J. A.; Adrich, P.; Bowen, M. D.; Brown, B. A.; Campbell, C. M.; Cook, J. M.; Glasmacher, T.; McDaniel, S.; Navratil, P.; Obertelli, A.; Quaglioni, S.; Siwek, K.; Terry, J. R.; Weisshaar, D.; Wiringa, R. B.

    2011-04-22

    Absolute cross sections have been determined following single neutron knockout reactions from {sup 10}Be and {sup 10}C at intermediate energy. Nucleon density distributions and bound-state wave function overlaps obtained from both variational Monte Carlo (VMC) and no core shell model (NCSM) ab initio calculations have been incorporated into the theoretical description of knockout reactions. Comparison to experimental cross sections demonstrates that the VMC approach, with the inclusion of 3-body forces, provides the best overall agreement while the NCSM and conventional shell-model calculations both overpredict the cross sections by 20% to 30% for {sup 10}Be and by 40% to 50% for {sup 10}C, respectively. This study gains new insight into the importance of 3-body forces and continuum effects in light nuclei and provides a sensitive technique to assess the accuracy of ab initio calculations for describing these effects.

  4. Knockout Reactions from p-Shell Nuclei: Tests of Ab Initio Structure Models

    SciTech Connect

    Grinyer, G. F.; Bazin, D.; Adrich, P.; Obertelli, A.; Weisshaar, D.; Gade, A.; Bowen, M. D.; Brown, B. A.; Campbell, C. M.; Cook, J. M.; Glasmacher, T.; McDaniel, S.; Siwek, K.; Terry, J. R.; Tostevin, J. A.; Navratil, P.; Quaglioni, S.; Wiringa, R. B.

    2011-04-22

    Absolute cross sections have been determined following single neutron knockout reactions from {sup 10}Be and {sup 10}C at intermediate energy. Nucleon density distributions and bound-state wave function overlaps obtained from both variational Monte Carlo (VMC) and no core shell model (NCSM) ab initio calculations have been incorporated into the theoretical description of knockout reactions. Comparison to experimental cross sections demonstrates that the VMC approach, with the inclusion of 3-body forces, provides the best overall agreement while the NCSM and conventional shell-model calculations both overpredict the cross sections by 20% to 30% for {sup 10}Be and by 40% to 50% for {sup 10}C, respectively. This study gains new insight into the importance of 3-body forces and continuum effects in light nuclei and provides a sensitive technique to assess the accuracy of ab initio calculations for describing these effects.

  5. Reaction of nitric oxide with heme proteins and model compounds of hemoglobin

    SciTech Connect

    Sharma, V.S.; Traylor, T.G.; Gardiner, R.; Mizukami, H.

    1987-06-30

    Rates for the reaction of nitric oxide with several ferric heme proteins and model compounds have been measured. The NO combination rates are markedly affected by the presence or absence of distal histidine. Elephant myoglobin in which the E7 distal histidine has been replaced by glutamine reacts with NO 500-1000 times faster than do the native hemoglobins or myoglobins. By contrast, there is not difference in the CO combination rate constants of sperm whale and elephant myoglobins. Studies on ferric model compounds for the R and T states of hemoglobin indicate that their NO combination rate constants are similar to those observed for the combination of CO with the corresponding ferro derivatives. The last observation suggests that the presence of an axial water molecule at the ligand binding site of ferric hemoglobin A prevents it from exhibiting significant cooperativity in its reactions with NO.

  6. A coupled mechanical and chemical damage model for concrete affected by alkali–silica reaction

    SciTech Connect

    Pignatelli, Rossella; Comi, Claudia; Monteiro, Paulo J.M.

    2013-11-15

    To model the complex degradation phenomena occurring in concrete affected by alkali–silica reaction (ASR), we formulate a poro-mechanical model with two isotropic internal variables: the chemical and the mechanical damage. The chemical damage, related to the evolution of the reaction, is caused by the pressure generated by the expanding ASR gel on the solid concrete skeleton. The mechanical damage describes the strength and stiffness degradation induced by the external loads. As suggested by experimental results, degradation due to ASR is considered to be localized around reactive sites. The effect of the degree of saturation and of the temperature on the reaction development is also modeled. The chemical damage evolution is calibrated using the value of the gel pressure estimated by applying the electrical diffuse double-layer theory to experimental values of the surface charge density in ASR gel specimens reported in the literature. The chemo-damage model is first validated by simulating expansion tests on reactive specimens and beams; the coupled chemo-mechanical damage model is then employed to simulate compression and flexure tests results also taken from the literature. -- Highlights: •Concrete degradation due to ASR in variable environmental conditions is modeled. •Two isotropic internal variables – chemical and mechanical damage – are introduced. •The value of the swelling pressure is estimated by the diffuse double layer theory. •A simplified scheme is proposed to relate macro- and microscopic properties. •The chemo-mechanical damage model is validated by simulating tests in literature.

  7. Modeling and simulation of diffusion-convection-reaction in heterogeneous nanochannels using OpenFOAM

    NASA Astrophysics Data System (ADS)

    Pimpalgaonkar, Hrushikesh G.; van Steijn, Volkert; Kreutzer, Michiel T.; Kleijn, Chris R.

    2016-06-01

    We present a finite volume implementation of a phase field method in OpenFOAM as a tool to simulate reactive multiphase flows on heterogeneous surfaces. Using this tool, we simulate the formation and growth of a droplet due to a chemical reaction on a hydrophilic catalytic patch surrounded by a hydrophobic wall. We compare the growth dynamics with a quasi-static growth model from literature and show that they qualitatively agree.

  8. New model to determine the central nervous system reaction to peripheral trauma

    SciTech Connect

    Sjoelund, B.H.W.; Wallstedt, L.

    1988-01-01

    Monitoring the activity of the central nervous system with the /sup 14/C-2-deoxyglucose method of Sokoloff was utilized to explore the possibility to develop a model for the study of central nervous system reaction to peripheral trauma. Preliminary evidence indicates that the activation caused by tactile stimuli to one hindlimb nerve is that expected from earlier physiologic studies. However, an increase of stimulation intensity to recruit nociceptive (pain) fibers seems to abolish the changes, indicating that inhibitory systems have been activated.

  9. Modelling biodegradation of hydrocarbons in aquifers: when is the use of the instantaneous reaction approximation justified?

    PubMed

    Koussis, Antonis D; Pesmajoglou, Stelios; Syriopoulou, Dimitra

    2003-02-01

    In-situ bio-remediation is a viable cleanup alternative for aquifers contaminated by hydrocarbons such as BTEX. Transport models of varying complexity and capabilities are used to quantify their degradation. A model that has gained wide acceptance in applications is BIOPLUME II, which assumes that oxygen-limited biodegradation takes place as an instantaneous reaction. In this work we have employed theoretical analysis, using non-dimensional variables, and numerical modelling to establish a quantitative criterion demarcating the range of validity of the instantaneous reaction approximation against biodegradation kinetics. Oxygen was the limiting species and sorption was ignored. This criterion relates (o), the Dahmköhler number at oxygen depletion, to O(o)*, the ratio of initial to input oxygen concentration, (o) > or = 0.7(O(o)*)(2) + 0.1O(o)* + 1.8. The derived (o) reflects the intrinsic characteristics of the physical transport and of the biochemical reaction, including the effect of biomass density. Relative availability of oxygen and hydrocarbons exerts a small influence on results. Theory, verified and refined via numerical simulations, showed that significant deviations of instantaneous reactions from kinetics are to be expected in the space-time region smodelling is required only in active (engineered) bio-remediation cases, with high velocities (e.g., near pumped wells), and for short distances from the source. PMID:12504363

  10. Modelling biodegradation of hydrocarbons in aquifers: when is the use of the instantaneous reaction approximation justified?

    NASA Astrophysics Data System (ADS)

    Koussis, Antonis D.; Pesmajoglou, Stelios; Syriopoulou, Dimitra

    2003-02-01

    In-situ bio-remediation is a viable cleanup alternative for aquifers contaminated by hydrocarbons such as BTEX. Transport models of varying complexity and capabilities are used to quantify their degradation. A model that has gained wide acceptance in applications is BIOPLUME II, which assumes that oxygen-limited biodegradation takes place as an instantaneous reaction. In this work we have employed theoretical analysis, using non-dimensional variables, and numerical modelling to establish a quantitative criterion demarcating the range of validity of the instantaneous reaction approximation against biodegradation kinetics. Oxygen was the limiting species and sorption was ignored. This criterion relates < Da>∣ o, the Dahmköhler number at oxygen depletion, to Oo*, the ratio of initial to input oxygen concentration, < Da>∣ o≥0.7( Oo*) 2+0.1 Oo*+1.8. The derived < Da>∣ o reflects the intrinsic characteristics of the physical transport and of the biochemical reaction, including the effect of biomass density. Relative availability of oxygen and hydrocarbons exerts a small influence on results. Theory, verified and refined via numerical simulations, showed that significant deviations of instantaneous reactions from kinetics are to be expected in the space-time region s< Ld, t< Td ('near source' and 'initial period'). Under the assumptions considered, numerical simulations also verified the wide applicability of the computationally efficient, stoichiometry-based (algebraic) BIOPLUME concept. Kinetic modelling is required only in active (engineered) bio-remediation cases, with high velocities (e.g., near pumped wells), and for short distances from the source.

  11. Neutrino nucleus reactions at high energies within the GiBUU model

    SciTech Connect

    Lalakulich, O.; Gallmeister, K.; Leitner, T.; Mosel, U.

    2011-11-23

    The GiBUU model, which implements all reaction channels relevant at medium neutrino energy, is used to investigate the neutrino and antineutrino scattering on iron. Results for integrated cross sections are compared with NOMAD and MINOS data. It is shown, that final state interaction can noticeably change the spectra of the outgoing hadrons. Predictions for the Miner{nu}a experiment are made for pion spectra, averaged over NuMI neutrino and antineutrino fluxes.

  12. Atmospheric Reaction Systems as Null-Models to Identify Structural Traces of Evolution in Metabolism

    PubMed Central

    Holme, Petter; Huss, Mikael; Lee, Sang Hoon

    2011-01-01

    The metabolism is the motor behind the biological complexity of an organism. One problem of characterizing its large-scale structure is that it is hard to know what to compare it to. All chemical reaction systems are shaped by the same physics that gives molecules their stability and affinity to react. These fundamental factors cannot be captured by standard null-models based on randomization. The unique property of organismal metabolism is that it is controlled, to some extent, by an enzymatic machinery that is subject to evolution. In this paper, we explore the possibility that reaction systems of planetary atmospheres can serve as a null-model against which we can define metabolic structure and trace the influence of evolution. We find that the two types of data can be distinguished by their respective degree distributions. This is especially clear when looking at the degree distribution of the reaction network (of reaction connected to each other if they involve the same molecular species). For the Earth's atmospheric network and the human metabolic network, we look into more detail for an underlying explanation of this deviation. However, we cannot pinpoint a single cause of the difference, rather there are several concurrent factors. By examining quantities relating to the modular-functional organization of the metabolism, we confirm that metabolic networks have a more complex modular organization than the atmospheric networks, but not much more. We interpret the more variegated modular arrangement of metabolism as a trace of evolved functionality. On the other hand, it is quite remarkable how similar the structures of these two types of networks are, which emphasizes that the constraints from the chemical properties of the molecules has a larger influence in shaping the reaction system than does natural selection. PMID:21573072

  13. Reaction norm model to describe environmental sensitivity across first lactation in dairy cattle under tropical conditions.

    PubMed

    Bignardi, Annaiza Braga; El Faro, Lenira; Pereira, Rodrigo Junqueira; Ayres, Denise Rocha; Machado, Paulo Fernando; de Albuquerque, Lucia Galvão; Santana, Mário Luiz

    2015-10-01

    Reaction norm models have been widely used to study genotype by environment interaction (G × E) in animal breeding. The objective of this study was to describe environmental sensitivity across first lactation in Brazilian Holstein cows using a reaction norm approach. A total of 50,168 individual monthly test day (TD) milk yields (10 test days) from 7476 complete first lactations of Holstein cattle were analyzed. The statistical models for all traits (10 TDs and for 305-day milk yield) included the fixed effects of contemporary group, age of cow (linear and quadratic effects), and days in milk (linear effect), except for 305-day milk yield. A hierarchical reaction norm model (HRNM) based on the unknown covariate was used. The present study showed the presence of G × E in milk yield across first lactation of Holstein cows. The variation in the heritability estimates implies differences in the response to selection depending on the environment where the animals of this population are evaluated. In the average environment, the heritabilities for all traits were rather similar, in range from 0.02 to 0.63. The scaling effect of G × E predominated throughout most of lactation. Particularly during the first 2 months of lactation, G × E caused reranking of breeding values. It is therefore important to include the environmental sensitivity of animals according to the phase of lactation in the genetic evaluations of Holstein cattle in tropical environments. PMID:26143280

  14. Modeling the simultaneous transport of two acid gases in tertiary amines with reversible reactions

    SciTech Connect

    Al-Ghawas, H.A.; Sandall, O.C.

    1988-10-01

    The objective of this work is to develop a model for the simultaneous mass transfer of two acid gases in tertiary amines accompanied by reversible chemical reactions. The model has been applied to the industrially important system of simultaneous absorption or desorption of CO/sub 2/ and H/sub 2/S in aqueous methyldiethanolamine (MDEA). In most applications the treated gas must be virtually free of H/sub 2/S; however, it is often not necessary or economical to remove substantial amounts of CO/sub 2/. Hence, selective removal of H/sub 2/S from gas streams such as natural or synthetic gases which contain CO/sub 2/ is desirable. In this research a film theory model describing the simultaneous diffusion and reversible reaction of two gases into reactive liquid has been used to predict the mass transfer enhancement factors of CO/sub 2/ and H/sub 2/S in aqueous MDEA solutions. The resulting unstable two point boundary value problem has been solved numerically for a range of the dimensionless parameters that characterize an important application for this system. In studying the simultaneous transport of CO/sub 2/ and H/sub 2/S, it is found that the reversibility of the reactions, under certain conditions, causes desorption to take place although absorption would be expected on the basis of overall driving forces. This showed that not only enhancement factors larger but also smaller than unity and even negative values are possible.

  15. Formic Acid Decomposition on Au catalysts: DFT, Microkinetic Modeling, and Reaction Kinetics Experiments

    SciTech Connect

    Singh, Suyash; Li, Sha; Carrasquillo-Flores, Ronald; Alba-Rubio, Ana C.; Dumesic, James A.; Mavrikakis, Manos

    2014-04-01

    A combined theoretical and experimental approach is presented that uses a comprehensive mean-field microkinetic model, reaction kinetics experiments, and scanning transmission electron microscopy imaging to unravel the reaction mechanism and provide insights into the nature of active sites for formic acid (HCOOH) decomposition on Au/SiC catalysts. All input parameters for the microkinetic model are derived from periodic, self-consistent, generalized gradient approximation (GGA-PW91) density functional theory calculations on the Au(111), Au(100), and Au(211) surfaces and are subsequently adjusted to describe the experimental HCOOH decomposition rate and selectivity data. It is shown that the HCOOH decomposition follows the formate (HCOO) mediated path, with 100% selectivity toward the dehydrogenation products (CO21H2) under all reaction conditions. An analysis of the kinetic parameters suggests that an Au surface in which the coordination number of surface Au atoms is 4 may provide a better model for the active site of HCOOH decomposition on these specific supported Au catalysts.

  16. Animal models of complement-mediated hypersensitivity reactions to liposomes and other lipid-based nanoparticles.

    PubMed

    Szebeni, János; Alving, Carl R; Rosivall, László; Bünger, Rolf; Baranyi, Lajos; Bedöcs, Péter; Tóth, Miklós; Barenholz, Yezheckel

    2007-01-01

    Intravenous injection of some liposomal drugs, diagnostic agents, micelles and other lipid-based nanoparticles can cause acute hypersensitivity reactions (HSRs) in a high percentage (up to 45%) of patients, with hemodynamic, respiratory and cutaneous manifestations. The phenomenon can be explained with activation of the complement (C) system on the surface of lipid particles, leading to anaphylatoxin (C5a and C3a) liberation and subsequent release reactions of mast cells, basophils and possibly other inflammatory cells in blood. These reactions can be reproduced and studied in pigs, dogs and rats, animal models which differ from each other in sensitivity and spectrum of symptoms. In the most sensitive pig model, a few miligrams of liposome (phospholipid) can cause anaphylactoid shock, characterized by pulmonary hypertension, systemic hypotension, decreased cardiac output and major cardiac arrhythmias. Pigs also display cutaneous symptoms, such as flushing and rash. The sensitivity of dogs to hemodynamic changes is close to that of pigs, but unlike pigs, dogs also react to micellar lipids (such as Cremophor EL) and their response includes pronounced blood cell and vegetative neural changes (e.g., leukopenia followed by leukocytosis, thrombocytopenia, fluid excretions). Rats are relatively insensitive inasmuch as hypotension, their most prominent response to liposomes, is induced only by one or two orders of magnitude higher phospholipid doses (based on body weight) compared to the reactogenic dose in pigs and dogs. It is suggested that the porcine and dog models are applicable for measuring and predicting the (pseudo)allergic activity of particulate "nanodrugs". PMID:17613700

  17. Highly accurate incremental CCSD(T) calculations on aqua- and amine-complexes

    NASA Astrophysics Data System (ADS)

    Anacker, Tony; Friedrich, Joachim

    2013-07-01

    In this work, the accuracy of the second-order incremental expansion using the domain-specific basis set approach is tested for 20 cationic metal-aqua and 25 cationic metal-amine complexes. The accuracy of the approach is analysed by the statistical measures range, arithmetic mean, mean absolute deviation, root mean square deviation and standard deviation. Using these measures we find that the error due to the local approximations decreases with increasing basis set. Next we construct a local virtual space using projected atomic orbitals (PAOs). The accuracy of the incremental series in combination with a distance-based truncation of the PAO space is analysed and compared to the convergence of the incremental series within the domain-specific basis set approach. Furthermore, we establish the recently proposed incremental CCSD(T)|MP2 method as a benchmark method to obtain highly accurate CCSD(T) energies. In combination with a basis set of quintuple-ζ quality we establish benchmarks for the binding energies of the investigated complexes. Finally, we use the inc-CCSD(T)|MP2/aV5Z' binding energies of 45 complexes and 34 dissociation reactions to compute the accuracy of several state of the art density functional theory (DFT) functionals like BP86, B3LYP, CAM-B3LYP, M06, PBE0 and TPSSh. With our implementation of the incremental scheme it was possible to compute the inc-CCSD(T)|MP2/aV5Z' energy for Al(H2O)3+ 25 (6106 AOs).

  18. A Kinetic Ladle Furnace Process Simulation Model: Effective Equilibrium Reaction Zone Model Using FactSage Macro Processing

    NASA Astrophysics Data System (ADS)

    Van Ende, Marie-Aline; Jung, In-Ho

    2016-05-01

    The ladle furnace (LF) is widely used in the secondary steelmaking process in particular for the de-sulfurization, alloying, and reheating of liquid steel prior to the casting process. The Effective Equilibrium Reaction Zone model using the FactSage macro processing code was applied to develop a kinetic LF process model. The slag/metal interactions, flux additions to slag, various metallic additions to steel, and arcing in the LF process were taken into account to describe the variations of chemistry and temperature of steel and slag. The LF operation data for several steel grades from different plants were accurately described using the present kinetic model.

  19. ezBioNet: A modeling and simulation system for analyzing biological reaction networks

    NASA Astrophysics Data System (ADS)

    Yu, Seok Jong; Tung, Thai Quang; Park, Junho; Lim, Jongtae; Yoo, Jaesoo

    2012-10-01

    To achieve robustness against living environments, a living organism is composed of complicated regulatory mechanisms ranging from gene regulations to signal transduction. If such life phenomena are to be understand, an integrated analysis tool that should have modeling and simulation functions for biological reactions, as well as new experimental methods for measuring biological phenomena, is fundamentally required. We have designed and implemented modeling and simulation software (ezBioNet) for analyzing biological reaction networks. The software can simultaneously perform an integrated modeling of various responses occurring in cells, ranging from gene expressions to signaling processes. To support massive analysis of biological networks, we have constructed a server-side simulation system (VCellSim) that can perform ordinary differential equations (ODE) analysis, sensitivity analysis, and parameter estimates. ezBioNet integrates the BioModel database by connecting the european bioinformatics institute (EBI) servers through Web services APIs and supports the handling of systems biology markup language (SBML) files. In addition, we employed eclipse RCP (rich client platform) which is a powerful modularity framework allowing various functional expansions. ezBioNet is intended to be an easy-to-use modeling tool, as well as a simulation system, to understand the control mechanism by monitoring the change of each component in a biological network. A researcher may perform the kinetic modeling and execute the simulation. The simulation result can be managed and visualized on ezBioNet, which is freely available at http://ezbionet.cbnu.ac.kr.

  20. Comparison of Kinetic and Equilibrium Reaction Models inSimulating the Behavior of Gas Hydrates in Porous Media

    SciTech Connect

    Kowalsky, Michael B.; Moridis, George J.

    2006-05-12

    In this study we compare the use of kinetic and equilibrium reaction models in the simulation of gas (methane) hydrates in porous media. Our objective is to evaluate through numerical simulation the importance of employing kinetic versus equilibrium reaction models for predicting the response of hydrate-bearing systems to external stimuli, such as changes in pressure and temperature. Specifically, we (1) analyze and compare the responses simulated using both reaction models for production in various geological settings and for the case of depressurization in a core during extraction; and (2) examine the sensitivity to factors such as initial hydrate saturation, hydrate reaction surface area, and numerical discretization. We find that for systems undergoing thermal stimulation and depressurization, the calculated responses for both reaction models are remarkably similar, though some differences are observed at early times. Given these observations, and since the computational demands for the kinetic reaction model far exceed those for the equilibrium reaction model, the use of the equilibrium reaction model often appears to be justified and preferred for simulating the behavior of gas hydrates.