Science.gov

Sample records for incrust technology fremgangsmaede

  1. Prevention of urinary catheter incrustations by acetohydroxamic acid.

    PubMed

    Burns, J R; Gauthier, J F

    1984-09-01

    Acetohydroxamic acid was administered in 5 patients to determine its effect in reducing urinary catheter incrustations. All patients had chronic indwelling catheters that required frequent changes because of severe incrustations and catheter occlusion. Incrustations were analyzed chemically for calcium, magnesium, ammonia nitrogen and phosphorus. The degree of incrustation before and during acetohydroxamic acid therapy was compared in each patient and was decreased significantly (average 81 per cent) during therapy (p less than 0.05). Catheter changes were required less frequently during therapy in all patients. Acetohydroxamic acid is effective in preventing catheter incrustations and should be considered in patients with this problem. PMID:6381758

  2. The influence of well hydraulics on the spatial distribution of well incrustations.

    PubMed

    Houben, Georg J

    2006-01-01

    In many cases, the operation of wells is hampered by the formation of mineral incrustations. From field studies, it is known that the distribution of incrustations in wells is quite inhomogeneous. Flow models were calculated to assess the hydraulic background of this phenomenon. For horizontal flow, the screen section facing the natural flow direction receives the majority of the total inflow. This phenomenon increases with increasing natural gradients of flow. The vertical distribution of water intake is also quite inhomogeneous. In partially penetrating wells, the uppermost part of the screen receives much more inflow than the deeper screen sections. These flow inhomogenities involve elevated flow velocities and may cause increased influx of shallow, oxygenated water, all conditions favorable for incrustation growth. Field investigations on incrusting wells clearly show that the identified screen areas of elevated flow are indeed much more prone to incrustation deposition. Such sections require more attention during rehabilitations. A suction flow control device can help to homogenize the inflow but can cause elevated entrance loss when affected by incrustation buildup itself. PMID:16961488

  3. Incrusting and boring bryozoans from the Dessau Chalk Formation (Cretaceous), Little Walnut Creek, Austin, Texas

    SciTech Connect

    Morris, P.A. )

    1990-09-01

    Four sections were measured along a 1/4 mi length of Little Walnut Creek. The first section was 165 ft north of the US. 290 bridge while the fourth was 1/4 mi upstream. Structurally, the stream follows the fault in this section. Small faults can be found perpendicular to the primary fault and apparently account not only for minor variation in local dip (8{degrees}SE, parallel to 5{degrees}NW) but also for the placement of at least one tributary. Megainvertebrate exoskeletons were found to have been inhabited by incrusting bryozoans, boring bryozoans, and sponges. These fossils were found on both interior and exterior surfaces of Exogyra laeviuscula E tigrina, and interior surfaces of Inoceramus. A low-energy environment allowed exposure of megainvertebrate exoskeletons after death but also prevented fracturing. Low siltation rates also extended exoskeleton availability after organismic death. The nonboring bryozoans are cheilostomes and at least one species, Pyripora, has been described from the Kansas Cretaceous as well as European Cretaceous sites. The boring bryozoans are primarily represented by Terebripora sp. In conclusion, this section of Dessau Chalk Formation, Upper Austin Group, was mostly a low-energy environment, shallow, limy mud platform. This substrate was probably not stable enough for bryozoan colonization as unattached colonies have not been found in sediments. Therefore, bryozoan substrates were limited to living and dead Exogyra sp. and dead Inoceramus sp. exoskeletons.

  4. Technology.

    ERIC Educational Resources Information Center

    Online-Offline, 1998

    1998-01-01

    Focuses on technology, on advances in such areas as aeronautics, electronics, physics, the space sciences, as well as computers and the attendant progress in medicine, robotics, and artificial intelligence. Describes educational resources for elementary and middle school students, including Web sites, CD-ROMs and software, videotapes, books,…

  5. Technology Development.

    ERIC Educational Resources Information Center

    Gomory, Ralph E.

    1983-01-01

    The evolutionary character and complexity of technological development is discussed, focusing on the steam engine and computer as examples. Additional topics include characteristics of science/technology, cultural factors in technological development, technology transfer, and problems in technological organization. (JN)

  6. Laser Technology.

    ERIC Educational Resources Information Center

    Gauger, Robert

    1993-01-01

    Describes lasers and indicates that learning about laser technology and creating laser technology activities are among the teacher enhancement processes needed to strengthen technology education. (JOW)

  7. Assistive Technology

    MedlinePlus

    ... Page Resize Text Printer Friendly Online Chat Assistive Technology Assistive technology (AT) is any service or tool that helps ... be difficult or impossible. For older adults, such technology may be a walker to improve mobility or ...

  8. Dimension Technologies

    NASA Video Gallery

    Command and Control Technologies (CCT) Corporation of Titusville, Florida, a Florida/NASA Business Incubator tenant, is commercializing technology based on Kennedy Space Center's (KSC's) spacecraft...

  9. Technology coordination

    NASA Technical Reports Server (NTRS)

    Hartman, Steven

    1992-01-01

    Viewgraphs on technology coordination are provided. Topics covered include: technology coordination process to date; goals; how the Office of Aeronautics and Space Technology (OAST) can support the Office of Space Science and Applications (OSSA); how OSSA can support OAST; steps to technology transfer; and recommendations.

  10. Guerilla Technology.

    ERIC Educational Resources Information Center

    Van Horn, Royal

    1999-01-01

    Staff at disadvantaged schools lacking sufficient technology must take matters into their own hands. Guerilla technology tactics include finding all the hidden technology on campus, scanning the school budget carefully, helping others spend their technology money, and scrounging free computers at universities and local businesses. (MLH)

  11. Technology 2020

    ERIC Educational Resources Information Center

    Newby, Mike

    2005-01-01

    This brief article discusses the new technologies that may be available in 2020 that will impact the field of education. The author believes that the new educational themes will be "flexibility" and "autonomy", and the new technological theme will be "transparency". Topics discussed include genetic technology, pharmacological technology, digital…

  12. Casting Technology.

    ERIC Educational Resources Information Center

    Wright, Michael D.; And Others

    1992-01-01

    Three articles discuss (1) casting technology as it relates to industry, with comparisons of shell casting, shell molding, and die casting; (2) evaporative pattern casting for metals; and (3) high technological casting with silicone rubber. (JOW)

  13. Engine technology

    NASA Technical Reports Server (NTRS)

    Hoffman, A. C.

    1982-01-01

    Materials used in a presentation on development of engine technology for electric flight systems are presented. Component and system technology issues, NASA's role, and flight test requirements are outlined.

  14. Being technological

    NASA Astrophysics Data System (ADS)

    Denning, Kathryn

    2011-02-01

    SETI's essential premises involve evolution in multiple domains: cosmology, biology, culture and technology. Comparatively little has been written about the last of these, technology, in relation to SETI's targets, but it is a crucial variable and well worth deep examination. In particular, it would seem prudent to consider carefully our assumptions about hypothetical extraterrestrial societies which have developed technology that SETI could detect, or which could detect, at interstellar distances, the existence of intelligent life on Earth. This paper contributes to that effort by reflecting upon our habits of projecting terracentric assumptions onto hypothetical worlds, exploring dominant narratives about technological development and presenting varied philosophical theories about the nature of technology. It highlights the cultural aspects of technology here on Earth, particularly their role in the development of radio technology. In the end, it is clear that technology need not develop along a prescribed, linear path; projections about extraterrestrial societies which rely on this assumption need to be reconsidered.

  15. Technology transfer

    NASA Technical Reports Server (NTRS)

    Penaranda, Frank E.

    1992-01-01

    The topics are presented in viewgraph form and include the following: international comparison of R&D expenditures in 1989; NASA Technology Transfer Program; NASA Technology Utilization Program thrusts for FY 1992 and FY 1993; National Technology Transfer Network; and NTTC roles.

  16. Technology Night.

    ERIC Educational Resources Information Center

    DuPont, Albert P.

    1998-01-01

    A Maryland elementary school enlightened parents and community members about school technology by hosting a technology night showcasing student work. Through staff and community members' cooperative efforts, the technology committee created a comprehensive program composed of several elements: student involvement, district vision,…

  17. Contemporary Technology.

    ERIC Educational Resources Information Center

    Clark, Gilbert, Ed.

    1999-01-01

    This theme issue of "InSEA News" focuses on contemporary technology and art education. The articles are: "International Travel and Contemporary Technology" (Gilbert Clark); "Recollections and Visions for Electronic Computing in Art Education" (Guy Hubbard); "Using Technologies in Art Education: A Review of Current Issues" (Li-Fen Lu); "Reflections…

  18. Assistive Technologies

    ERIC Educational Resources Information Center

    Auat Cheein, Fernando A., Ed.

    2012-01-01

    This book offers the reader new achievements within the Assistive Technology field made by worldwide experts, covering aspects such as assistive technology focused on teaching and education, mobility, communication and social interactivity, among others. Each chapter included in this book covers one particular aspect of Assistive Technology that…

  19. Being Technological

    NASA Astrophysics Data System (ADS)

    Denning, Kathryn

    SETI's essential premises involve evolution in multiple domains: cosmology, biology, culture, and technology. Comparatively little has been written about the last of these, technology, in relation to SETI's targets, but it is a crucial variable, and well worth deep examination. In particular, it would seem prudent to consider carefully our assumptions about hypothetical extraterrestrial societies which have developed technology that SETI could detect, or which could detect, at interstellar distances, the existence of intelligent life on Earth. This chapter contributes to that effort by reflecting upon our habits of projecting terracentric assumptions onto hypothetical worlds, exploring dominant narratives about technological development, and presenting varied philosophical theories about the nature of technology. It highlights the cultural aspects of technology here on Earth, particularly their role in the development of radio technology.

  20. Technology Lecturer Turned Technology Teacher

    ERIC Educational Resources Information Center

    Lee, Kerry

    2009-01-01

    This case study outlines a program developed by a group of 6 teachers' college lecturers who volunteered to provide a technology program to year 7 & 8 children (11- and 12-year-olds) for a year. This involved teaching technology once a week. As technology education was a new curriculum area when first introduced to the college, few lecturers had…

  1. Technology '90

    SciTech Connect

    Not Available

    1991-01-01

    The US Department of Energy (DOE) laboratories have a long history of excellence in performing research and development in a number of areas, including the basic sciences, applied-energy technology, and weapons-related technology. Although technology transfer has always been an element of DOE and laboratory activities, it has received increasing emphasis in recent years as US industrial competitiveness has eroded and efforts have increased to better utilize the research and development resources the laboratories provide. This document, Technology '90, is the latest in a series that is intended to communicate some of the many opportunities available for US industry and universities to work with the DOE and its laboratories in the vital activity of improving technology transfer to meet national needs. Technology '90 is divided into three sections: Overview, Technologies, and Laboratories. The Overview section describes the activities and accomplishments of the DOE research and development program offices. The Technologies section provides descriptions of new technologies developed at the DOE laboratories. The Laboratories section presents information on the missions, programs, and facilities of each laboratory, along with a name and telephone number of a technology transfer contact for additional information. Separate papers were prepared for appropriate sections of this report.

  2. Technology transfer

    NASA Technical Reports Server (NTRS)

    Handley, Thomas

    1992-01-01

    The requirements for a successful technology transfer program and what such a program would look like are discussed. In particular, the issues associated with technology transfer in general, and within the Jet Propulsion Laboratory (JPL) environment specifically are addressed. The section on background sets the stage, identifies the barriers to successful technology transfer, and suggests actions to address the barriers either generally or specifically. The section on technology transfer presents a process with its supporting management plan that is required to ensure a smooth transfer process. Viewgraphs are also included.

  3. Technological Tyranny

    NASA Astrophysics Data System (ADS)

    Greenwood, Dick

    1984-08-01

    It is implicitly assumed by those who create, develop, control and deploy new technology, as well as by society at-large, that technological innovation always represents progress. Such an unchallenged assumption precludes an examination and evaluation of the interrelationships and impact the development and use of technology have on larger public policy matters, such as preservation of democratic values, national security and military policies, employment, income and tax policies, foreign policy and the accountability of private corporate entities to society. This brief challenges those assumptions and calls for social control of technology.

  4. Polysomnographic Technology

    MedlinePlus

    ... ACCREDITATION MENTOR | TAKE THE SITE VISITOR QUIZ Polysomnographic Technology Occupational Description Polysomnographic technologists perform sleep tests and work with physicians to provide information needed ...

  5. Thermally activated technologies: Technology Roadmap

    SciTech Connect

    None, None

    2003-05-01

    The purpose of this Technology Roadmap is to outline a set of actions for government and industry to develop thermally activated technologies for converting America’s wasted heat resources into a reservoir of pollution-free energy for electric power, heating, cooling, refrigeration, and humidity control. Fuel flexibility is important. The actions also cover thermally activated technologies that use fossil fuels, biomass, and ultimately hydrogen, along with waste heat.

  6. Plastics Technology.

    ERIC Educational Resources Information Center

    Barker, Tommy G.

    This curriculum guide is designed to assist junior high schools industrial arts teachers in planning new courses and revising existing courses in plastics technology. Addressed in the individual units of the guide are the following topics: introduction to production technology; history and development of plastics; safety; youth leadership,…

  7. Technological Advancements

    ERIC Educational Resources Information Center

    Kennedy, Mike

    2010-01-01

    The influx of technology has brought significant improvements to school facilities. Many of those advancements can be found in classrooms, but when students head down the hall to use the washrooms, they are likely to find a host of technological innovations that have improved conditions in that part of the building. This article describes modern…

  8. Modern Technology

    ERIC Educational Resources Information Center

    Smyth, Michael P.

    1971-01-01

    Describes a PMC college course which is an introduction to technology and its impact upon society for non-scientists. Case studies of computer technology, pollution, communications, and other systems are used to bring into perspective the roles and responsibilities of the engineer and scientist in today's society. (Author/TS)

  9. Autonomous Technology.

    ERIC Educational Resources Information Center

    Stevenson, John O., Jr.

    1987-01-01

    Contends that the explosive expansion of science and technology and decreasing human control over technology undermine the ability to create a just and satisfying social and political life. Considers the social/ethical roles of scientists and artists. Argues that minorities, women, and other traditionally disenfranchised/exploited persons…

  10. Woodworking Technology.

    ERIC Educational Resources Information Center

    Kirk, Albert S.; And Others

    1991-01-01

    Three articles discuss the importance of wood processing to manufacturing and construction industries and the need for progressive change in the curriculum; the evolution of wood-based synthetic panel materials; and the technological advances in the computer control of machine tools and their incorporation into wood technology curricula. (JOW)

  11. Construction Technologies.

    ERIC Educational Resources Information Center

    Columbus State Community Coll., OH.

    This document contains materials developed for and about the construction technologies tech prep program of the South-Western City Schools in Ohio. Part 1 begins with a map of the program, which begins with a construction technologies program in grades 11 and 12 that leads to entry-level employment or one of five 2-year programs at a community…

  12. Use Technology

    ERIC Educational Resources Information Center

    Teo, Timothy

    2013-01-01

    Technology acceptance is posited to be influenced by a variety of factors, including individual differences, social influences, beliefs, attitudes and situational influences (Agarwal, 2000; Teo, 2009a). A majority of the conceptualisations of technology acceptance have drawn on theories and models from social psychology, notably the theory of…

  13. Technology Push

    ERIC Educational Resources Information Center

    Kennedy, Mike

    2008-01-01

    When students, teachers, administrators and others employed in education arrive at work every day on thousands of campuses across the nation, it should come as no surprise that at every step along the way, technology is there to greet them. Technological advancements in education, as well as in facilities operation and management, are not a…

  14. Technology Tips

    ERIC Educational Resources Information Center

    Santos-Trigo, Manuel

    2004-01-01

    A dynamic program for geometry called Cabri Geometry II is used to examine properties of figures like triangles and make connections with other mathematical ideas like ellipse. The technology tip includes directions for creating such a problem with technology and suggestions for exploring it.

  15. Recycling Technology.

    ERIC Educational Resources Information Center

    Aviation/Space, 1982

    1982-01-01

    In a comprehensive nationwide effort, National Aeronautics and Space Administration (NASA) seeks to increase public and private sector benefits by broadening and accelerating the secondary application of aerospace technology. Discussed are NASA's Applications Centers, publications, technology applications, and Computer Software Management and…

  16. Technology Transformation

    ERIC Educational Resources Information Center

    Scott, Heather; McGilll, Toria

    2011-01-01

    Social networking and other technologies, if used judiciously, present the means to integrate 21st century skills into the classroom curriculum. But they also introduce challenges that educators must overcome. Increased concerns about plagiarism and access to technology can test educators' creativity and school resources. Air Academy High School,…

  17. Videodisc Technology.

    ERIC Educational Resources Information Center

    Ullmer, Eldon J.

    Developed as a service to the health sciences community, this monograph is intended as an introduction to interactive videodisk technology. It describes both videodisk and compact disk technologies and different videodisk player formats, and discusses some of the major factors that educators considering videodisk adoption should consider. The…

  18. Environmental Technology.

    ERIC Educational Resources Information Center

    Columbus State Community Coll., OH.

    This document contains materials developed for and about the environmental technology tech prep program of the South-Western City Schools in Ohio. Part 1 begins with a map of the program, which begins with an environmental science technology program in grades 11 and 12 that leads to entry-level employment or a 2-year environmental technology…

  19. Sensor technology

    NASA Technical Reports Server (NTRS)

    Sokoloski, Martin M.

    1988-01-01

    The objective is to provide necessary expertise and technology to advance space remote sensing of terrestrial, planetary, and galactic phenomena through the use of electromagnetic and electro-optic properties of gas, liquid, and solid state materials technology. The Sensor Technology Program is divided into two subprograms: a base research and development part and a Civil Space Technology Initiative (CSTI) part. The base research and development consists of research on artificially grown materials such as quantum well and superlattice structure with the potential for new and efficient means for detecting electromagnetic phenomena. Research is also being done on materials and concepts for detector components and devices for measuring high energy phenomena such as UV, X-, and gamma rays that are required observables in astrophysis and solar physics missions. The CSTI program is more mission driven and is balanced among four major disciplines: detector sensors; submillimeter wave sensors; LIDAR/DIAL sensors; and cooler technology.

  20. Alternative technologies

    SciTech Connect

    Corum, L.

    1988-11-01

    We want to get untreated waste out of our landfills, and to do this we want to entice technologies into our state, preferably in the source reduction mode. This is a thumbnail description of the purpose of the Alternative Technologies section (ATS) of the California Department of Health Services (DHS). This paper reports on the ATS program which was initially conceived in recognition that California's relatively strict environmental regulations might be scaring off businesses possessing technologies with the potential to reduce the state's toxic wastes. There are also a lot of great inventors out there and one thing they don't know how to do is move technology into the marketplace. It was hoped that ATS would help shape technologies and move them into appropriate market niches.

  1. Technology development.

    PubMed

    Gomory, R E

    1983-05-01

    In technology development significant advances are as often the result of a series of evolutionary steps as they are of breakthroughs. This is illustrated by the examples of the steam engine and the computer. Breakthroughs, such as the transistor, are relatively rare, and are often the result of the introduction of new knowledge coming from a quite different area. Technology development is often difficult to predict because of its complexity; practical considerations may far outweigh apparent scientific advantages, and cultural factors enter in at many levels. In a large technological organization problems exist in bringing scientific knowledge to bear on development, but much can be done to obviate these difficulties. PMID:17749515

  2. Ergonomics technology

    NASA Technical Reports Server (NTRS)

    Jones, W. L.

    1977-01-01

    Major areas of research and development in ergonomics technology for space environments are discussed. Attention is given to possible applications of the technology developed by NASA in industrial settings. A group of mass spectrometers for gas analysis capable of fully automatic operation has been developed for atmosphere control on spacecraft; a version for industrial use has been constructed. Advances have been made in personal cooling technology, remote monitoring of medical information, and aerosol particle control. Experience gained by NASA during the design and development of portable life support units has recently been applied to improve breathing equipment used by fire fighters.

  3. Videodisc technology

    SciTech Connect

    Marsh, F.E. Jr.

    1981-03-01

    An overview of the technology of videodiscs is given. The emphasis is on systems that use reflection or transmission of laser light. Possible use of videodiscs for storage of bibliographic information is considered. 6 figures, 3 tables. (RWR)

  4. Electrosynthesis Technology.

    ERIC Educational Resources Information Center

    Weinberg, Norman L.

    1983-01-01

    Provides a prospective on electrosynthesis technology for chemical educators and students by discussing electrosynthesis reactions and experiments. Includes tables illustrating some electrochemical products, variables to consider in electrochemical reactions, indirect electrolysis of organic compounds, examples of direct/indirect electrochemical…

  5. Aerocapture Technologies

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.

    2006-01-01

    Aeroassist technology development is a vital part of the NASA In-Space Propulsion Technology (ISPT) Program. One of the main focus areas of ISPT is aeroassist technologies through the Aerocapture Technology (AT) Activity. Within the ISPT, the current aeroassist technology development focus is aerocapture. Aerocapture relies on the exchange of momentum with an atmosphere to achieve thrust, in this case a decelerating thrust leading to orbit capture. Without aerocapture, a substantial propulsion system would be needed on the spacecraft to perform the same reduction of velocity. This could cause reductions in the science payload delivered to the destination, increases in the size of the launch vehicle (to carry the additional fuel required for planetary capture) or could simply make the mission impossible due to additional propulsion requirements. The AT is advancing each technology needed for the successful implementation of aerocapture in future missions. The technology development focuses on both rigid aeroshell systems as well as the development of inflatable aerocapture systems, advanced aeroshell performance sensors, lightweight structure and higher temperature adhesives. Inflatable systems such as tethered trailing ballutes ('balloon parachutes'), clamped ballutes, and inflatable aeroshells are also under development. Aerocapture-specific computational tools required to support future aerocapture missions are also an integral part of the ATP. Tools include: engineering reference atmosphere models, guidance and navigation, aerothermodynamic modeling, radiation modeling and flight simulation. Systems analysis plays a key role in the AT development process. The NASA in-house aerocapture systems analysis team has been taken with multiple systems definition and concept studies to complement the technology development tasks. The team derives science requirements, develops guidance and navigation algorithms, as well as engineering reference atmosphere models and

  6. Radiator technology

    NASA Astrophysics Data System (ADS)

    Juhasz, Albert J.

    Radiator technology is discussed in the context of the Civilian Space Technology Initiative's (CSTI's) high capacity power-thermal management project. The CSTI project is a subset of a project to develop a piloted Mars nuclear electric propulsion (NEP) vehicle. The following topics are presented in vugraph form: advanced radiator concepts; heat pipe codes and testing; composite materials; radiator design and integration; and surface morphology.

  7. Technology Report

    NASA Technical Reports Server (NTRS)

    Repucci, George

    1996-01-01

    This is the fourth report of a series of semi-annual reports that describe the technology areas being advanced under this contract and the progress achieved to date. The most significant technical event this period was the successful completion of the Lewis spacecraft in 2 years (contract award date was June 1994). In August of 1996 we held a program-wide Technology Workshop which covered all aspects of the Lewis payload. A copy of the Workshop proceedings is attached.

  8. Radiator technology

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.

    1993-01-01

    Radiator technology is discussed in the context of the Civilian Space Technology Initiative's (CSTI's) high capacity power-thermal management project. The CSTI project is a subset of a project to develop a piloted Mars nuclear electric propulsion (NEP) vehicle. The following topics are presented in vugraph form: advanced radiator concepts; heat pipe codes and testing; composite materials; radiator design and integration; and surface morphology.

  9. Fabrication Technology

    SciTech Connect

    Blaedel, K.L.

    1993-03-01

    The mission of the Fabrication Technology thrust area is to have an adequate base of manufacturing technology, not necessarily resident at Lawrence Livermore National Laboratory (LLNL), to conduct the future business of LLNL. The specific goals continue to be to (1) develop an understanding of fundamental fabrication processes; (2) construct general purpose process models that will have wide applicability; (3) document findings and models in journals; (4) transfer technology to LLNL programs, industry, and colleagues; and (5) develop continuing relationships with the industrial and academic communities to advance the collective understanding of fabrication processes. The strategy to ensure success is changing. For technologies in which they are expert and which will continue to be of future importance to LLNL, they can often attract outside resources both to maintain their expertise by applying it to a specific problem and to help fund further development. A popular vehicle to fund such work is the Cooperative Research and Development Agreement with industry. For technologies needing development because of their future critical importance and in which they are not expert, they use internal funding sources. These latter are the topics of the thrust area. Three FY-92 funded projects are discussed in this section. Each project clearly moves the Fabrication Technology thrust area towards the goals outlined above. They have also continued their membership in the North Carolina State University Precision Engineering Center, a multidisciplinary research and graduate program established to provide the new technologies needed by high-technology institutions in the US. As members, they have access to and use of the results of their research projects, many of which parallel the precision engineering efforts at LLNL.

  10. Emerging technologies

    SciTech Connect

    Hodson, C.O.; Williams, D.

    1996-07-01

    Among the emerging technologies for air, hazardous waste and water come new ways of looking at pollution, in both the figurative and quite literal sense. The use of microbes for remediation and pollution control is a component in many of the technologies in this report and is the focus of environmental research at many university and industry labs. Bacteria are the engines driving one featured emissions control technology: the air biofilter. Biofilters are probably more acceptable to most engineers as a soil remediation technology--such as the innovative method described in the hazardous waste section--rather than as means of cleaning off-gases, but in many cases bugs can perform the function inexpensively. The authors give the basics on this available technology. A more experimental application of microbes is being investigated as a potential quantum leap in heavy metals removal technology: bio-engineered, metal consuming plants. The effort to genetically engineer a green remediation tool is detailed in the hazardous waste section.

  11. Technology Transfer

    NASA Technical Reports Server (NTRS)

    Smith, Nanette R.

    1995-01-01

    The objective of this summer's work was to attempt to enhance Technology Application Group (TAG) ability to measure the outcomes of its efforts to transfer NASA technology. By reviewing existing literature, by explaining the economic principles involved in evaluating the economic impact of technology transfer, and by investigating the LaRC processes our William & Mary team has been able to lead this important discussion. In reviewing the existing literature, we identified many of the metrics that are currently being used in the area of technology transfer. Learning about the LaRC technology transfer processes and the metrics currently used to track the transfer process enabled us to compare other R&D facilities to LaRC. We discuss and diagram impacts of technology transfer in the short run and the long run. Significantly, it serves as the basis for analysis and provides guidance in thinking about what the measurement objectives ought to be. By focusing on the SBIR Program, valuable information regarding the strengths and weaknesses of this LaRC program are to be gained. A survey was developed to ask probing questions regarding SBIR contractors' experience with the program. Specifically we are interested in finding out whether the SBIR Program is accomplishing its mission, if the SBIR companies are providing the needed innovations specified by NASA and to what extent those innovations have led to commercial success. We also developed a survey to ask COTR's, who are NASA employees acting as technical advisors to the SBIR contractors, the same type of questions, evaluating the successes and problems with the SBIR Program as they see it. This survey was developed to be implemented interactively on computer. It is our hope that the statistical and econometric studies that can be done on the data collected from all of these sources will provide insight regarding the direction to take in developing systematic evaluations of programs like the SBIR Program so that they can

  12. Mirror Technology

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Under a NASA contract, MI-CVD developed a process for producing bulk silicon carbide by means of a chemical vapor deposition process. The technology allows growth of a high purity material with superior mechanical/thermal properties and high polishability - ideal for mirror applications. The company employed the technology to develop three research mirrors for NASA Langley and is now marketing it as CVD SILICON CARBIDE. Its advantages include light weight, thermal stability and high reflectivity. The material has nuclear research facility applications and is of interest to industrial users of high power lasers.

  13. Manufacturing technologies

    NASA Astrophysics Data System (ADS)

    The Manufacturing Technologies Center is at the core of Sandia National Laboratories' advanced manufacturing effort which spans the entire product realization process. The center's capabilities in product and process development are summarized in the following disciplines: (1) mechanical - rapid prototyping, manufacturing engineering, machining and computer-aided manufacturing, measurement and calibration, and mechanical and electronic manufacturing liaison; (2) electronics - advanced packaging for microelectronics, printed circuits, and electronic fabrication; and (3) materials - ceramics, glass, thin films, vacuum technology, brazing, polymers, adhesives, composite materials, and process analysis.

  14. Technology Benefits

    NASA Technical Reports Server (NTRS)

    Haller, William

    2001-01-01

    An assessment was recently performed by NASA s Inter-Center Systems Analysis Team to quantify the potential emission reduction benefits from technologies being developed under UEET. The CO2 and LTO NO, reductions were estimated for 4 vehicles: a 50-passenger regional jet, a twin-engine, long-range subsonic transport, a high-speed (Mach 2.4) civil transport and a supersonic (Mach 2) business jet. The results of the assessment confirm that the current portfolio of technologies within the UEET program provides an opportunity for substantial reductions in CO2 and NO, emissions.

  15. Manufacturing technology

    SciTech Connect

    Blaedel, K.L.

    1997-02-01

    The specific goals of the Manufacturing Technology thrust area are to develop an understanding of fundamental fabrication processes, to construct general purpose process models that will have wide applicability, to document our findings and models in journals, to transfer technology to LLNL programs, industry, and colleagues, and to develop continuing relationships with industrial and academic communities to advance our collective understanding of fabrication processes. Advances in four projects are described here, namely Design of a Precision Saw for Manufacturing, Deposition of Boron Nitride Films via PVD, Manufacturing and Coating by Kinetic Energy Metallization, and Magnet Design and Application.

  16. Technology Transfer: Marketing Tomorrow's Technology

    NASA Technical Reports Server (NTRS)

    Tcheng, Erene

    1995-01-01

    The globalization of the economy and the end of the Cold War have triggered many changes in the traditional practices of U.S. industry. To effectively apply the resources available to the United States, the federal government has firmly advocated a policy of technology transfer between private industry and government labs, in this case the National Aeronautics and Space Administration (NASA). NASA Administrator Daniel Goldin is a strong proponent of this policy and has organized technology transfer or commercialization programs at each of the NASA field centers. Here at Langley Research Center, the Technology Applications Group (TAG) is responsible for facilitating the transfer of Langley developed research and technology to U.S. industry. Entering the program, I had many objectives for my summer research with TAG. Certainly, I wanted to gain a more thorough understanding of the concept of technology transfer and Langley's implementation of a system to promote it to both the Langley community and the community at large. Also, I hoped to become more familiar with Langley's research capabilities and technology inventory available to the public. More specifically, I wanted to learn about the technology transfer process at Langley. Because my mentor is a member of Materials and Manufacturing marketing sector of the Technology Transfer Team, another overriding objective for my research was to take advantage of his work and experience in materials research to learn about the Advanced Materials Research agency wide and help market these developments to private industry. Through the various projects I have been assigned to work on in TAG, I have successfully satisfied the majority of these objectives. Work on the Problem Statement Process for TAG as well as the development of the Advanced Materials Research Brochure have provided me with the opportunity to learn about the technology transfer process from the outside looking in and the inside looking out. Because TAG covers

  17. Geospatial Technology

    ERIC Educational Resources Information Center

    Reed, Philip A.; Ritz, John

    2004-01-01

    Geospatial technology refers to a system that is used to acquire, store, analyze, and output data in two or three dimensions. This data is referenced to the earth by some type of coordinate system, such as a map projection. Geospatial systems include thematic mapping, the Global Positioning System (GPS), remote sensing (RS), telemetry, and…

  18. Measurement Technology

    NASA Technical Reports Server (NTRS)

    1972-01-01

    New and improved materials, equipment, and techniques in measurement technology, developed by the aerospace industry, are presented for economic development in other industries. The developments are grouped as follows: (1) surface measurement, (2) alignment and orientation of bodies, (3) fluid measurement, (4) linear and angular measurements, and (5) force measurements.

  19. Manufacturing Technology.

    ERIC Educational Resources Information Center

    Barnes, James L.

    This curriculum guide is designed to assist junior high school industrial arts teachers in planning new courses and revising existing courses in manufacturing technology. Addressed in the individual units of the guide are the following topics: introduction to manufacturing, materials processing, personnel management, production management,…

  20. Construction Technology.

    ERIC Educational Resources Information Center

    Barnes, James L.

    This curriculum guide is designed to assist junior high school industrial arts teachers in planning new courses and revising existing courses in construction technology. Addressed in the individual units of the guide are the following topics: basic types of construction and the impact of construction on society, preconstruction, personnel…

  1. Manufacturing technologies

    SciTech Connect

    1995-09-01

    The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

  2. Technology Forever

    ERIC Educational Resources Information Center

    Villano, Matt

    2008-01-01

    Today, "lifelong learning" encompasses a wide range of student profiles and curricular designs, but a growing subset of the nation's life-long learning programs are non-credit and designed specifically for students over the age of 50. The good news is that "over 50" does not mean "out of the technology loop." In this article, the author discusses…

  3. Information Technology.

    ERIC Educational Resources Information Center

    Marcum, Deanna; Boss, Richard

    1982-01-01

    Discusses a problem commonly encountered in library automation projects: the conversion from existing card catalog formats to machine readable catalog (MARC) records. Catalog formats, the advantages of full versus limited records, changing computer technology, the advantages of full MARC records, and record standardization are among the topics…

  4. Videodisc Technology.

    ERIC Educational Resources Information Center

    Marsh, Fred E., Jr.

    1982-01-01

    Identifies and describes the major areas of videodisc technology; discusses the operation, reliability, storage capacities, and applications of two types of laser systems; and illustrates the versatility of the optical digital disc through a description of its ability to digitize large bodies of data. Included are six figures and three tables.…

  5. Technology Transfer

    NASA Technical Reports Server (NTRS)

    Bullock, Kimberly R.

    1995-01-01

    The development and application of new technologies in the United States has always been important to the economic well being of the country. The National Aeronautics and Space Administration (NASA) has been an important source of these new technologies for almost four decades. Recently, increasing global competition has emphasized the importance of fully utilizing federally funded technologies. Today NASA must meet its mission goals while at the same time, conduct research and development that contributes to securing US economic growth. NASA technologies must be quickly and effectively transferred into commercial products. In order to accomplish this task, NASA has formulated a new way of doing business with the private sector. Emphasis is placed on forming mutually beneficial partnerships between NASA and US industry. New standards have been set in response to the process that increase effectiveness, efficiency, and timely customer response. This summer I have identified potential markets for two NASA inventions: including the Radially Focused Eddy Current Sensor for Characterization of Flaws in Metallic Tubing and the Radiographic Moire. I have also worked to establish a cooperative program with TAG, private industry, and a university known as the TAG/Industry/Academia Program.

  6. (Environmental technology)

    SciTech Connect

    Boston, H.L.

    1990-10-12

    The traveler participated in a conference on environmental technology in Paris, sponsored by the US Embassy-Paris, US Environmental Protection Agency (EPA), the French Environmental Ministry, and others. The traveler sat on a panel for environmental aspects of energy technology and made a presentation on the potential contributions of Oak Ridge National Laboratory (ORNL) to a planned French-American Environmental Technologies Institute in Chattanooga, Tennessee, and Evry, France. This institute would provide opportunities for international cooperation on environmental issues and technology transfer related to environmental protection, monitoring, and restoration at US Department of Energy (DOE) facilities. The traveler also attended the Fourth International Conference on Environmental Contamination in Barcelona. Conference topics included environmental chemistry, land disposal of wastes, treatment of toxic wastes, micropollutants, trace organics, artificial radionuclides in the environment, and the use biomonitoring and biosystems for environmental assessment. The traveler presented a paper on The Fate of Radionuclides in Sewage Sludge Applied to Land.'' Those findings corresponded well with results from studies addressing the fate of fallout radionuclides from the Chernobyl nuclear accident. There was an exchange of new information on a number of topics of interest to DOE waste management and environmental restoration needs.

  7. Energy Technology.

    ERIC Educational Resources Information Center

    Eaton, William W.

    Reviewed are technological problems faced in energy production including locating, recovering, developing, storing, and distributing energy in clean, convenient, economical, and environmentally satisfactory manners. The energy resources of coal, oil, natural gas, hydroelectric power, nuclear energy, solar energy, geothermal energy, winds, tides,…

  8. Technology Theme.

    ERIC Educational Resources Information Center

    Garrahy, Dennis J.

    One of a series of social studies units designed to develop the reading and writing skills of low achievers, this student activity book focuses on the theme of technology. The unit can be used for high school classes, individual study in alternative and continuing high schools, and adult education classes. Material is divided into four sections.…

  9. SUPERFUND INNOVATIVE TECHNOLOGY EVALUATION - TECHNOLOGY PROFILES

    EPA Science Inventory

    This document is intended as a reference guide for EPA Regional decision makers and others interested in technologies in the SITE Demonstration and Emerging Technologies programs. The Technologies are described in technology profiles, presented in alphabetical order by developer ...

  10. Vacuum Technology

    SciTech Connect

    Biltoft, P J

    2004-10-15

    The environmental condition called vacuum is created any time the pressure of a gas is reduced compared to atmospheric pressure. On earth we typically create a vacuum by connecting a pump capable of moving gas to a relatively leak free vessel. Through operation of the gas pump the number of gas molecules per unit volume is decreased within the vessel. As soon as one creates a vacuum natural forces (in this case entropy) work to restore equilibrium pressure; the practical effect of this is that gas molecules attempt to enter the evacuated space by any means possible. It is useful to think of vacuum in terms of a gas at a pressure below atmospheric pressure. In even the best vacuum vessels ever created there are approximately 3,500,000 molecules of gas per cubic meter of volume remaining inside the vessel. The lowest pressure environment known is in interstellar space where there are approximately four molecules of gas per cubic meter. Researchers are currently developing vacuum technology components (pumps, gauges, valves, etc.) using micro electro mechanical systems (MEMS) technology. Miniature vacuum components and systems will open the possibility for significant savings in energy cost and will open the doors to advances in electronics, manufacturing and semiconductor fabrication. In conclusion, an understanding of the basic principles of vacuum technology as presented in this summary is essential for the successful execution of all projects that involve vacuum technology. Using the principles described above, a practitioner of vacuum technology can design a vacuum system that will achieve the project requirements.

  11. Technological Networks

    NASA Astrophysics Data System (ADS)

    Mitra, Bivas

    The study of networks in the form of mathematical graph theory is one of the fundamental pillars of discrete mathematics. However, recent years have witnessed a substantial new movement in network research. The focus of the research is shifting away from the analysis of small graphs and the properties of individual vertices or edges to consideration of statistical properties of large scale networks. This new approach has been driven largely by the availability of technological networks like the Internet [12], World Wide Web network [2], etc. that allow us to gather and analyze data on a scale far larger than previously possible. At the same time, technological networks have evolved as a socio-technological system, as the concepts of social systems that are based on self-organization theory have become unified in technological networks [13]. In today’s society, we have a simple and universal access to great amounts of information and services. These information services are based upon the infrastructure of the Internet and the World Wide Web. The Internet is the system composed of ‘computers’ connected by cables or some other form of physical connections. Over this physical network, it is possible to exchange e-mails, transfer files, etc. On the other hand, the World Wide Web (commonly shortened to the Web) is a system of interlinked hypertext documents accessed via the Internet where nodes represent web pages and links represent hyperlinks between the pages. Peer-to-peer (P2P) networks [26] also have recently become a popular medium through which huge amounts of data can be shared. P2P file sharing systems, where files are searched and downloaded among peers without the help of central servers, have emerged as a major component of Internet traffic. An important advantage in P2P networks is that all clients provide resources, including bandwidth, storage space, and computing power. In this chapter, we discuss these technological networks in detail. The review

  12. Technology utilization. [aerospace technology transfer

    NASA Technical Reports Server (NTRS)

    Kubokawa, C. C.

    1978-01-01

    NASA developed technologies were used to tackle problems associated with safety, transportation, industry, manufacturing, construction and state and local governments. Aerospace programs were responsible for more innovations for the benefit of mankind than those brought about by either major wars, or peacetime programs. Briefly outlined are some innovations for manned space flight, satellite surveillance applications, and pollution monitoring techniques.

  13. Technology: Technology and Common Sense

    ERIC Educational Resources Information Center

    Van Horn, Royal

    2004-01-01

    The absence of common sense in the world of technology continues to amaze the author. Things that seem so logical to just aren nott for many people. The installation of Voice-over IP (VoIP, with IP standing for Internet Protocol) in many school districts is a good example. Schools have always had trouble with telephones. Many districts don't even…

  14. Innovative Technology in Automotive Technology

    ERIC Educational Resources Information Center

    Gardner, John

    2007-01-01

    Automotive Technology combines hands-on training along with a fully integrated, interactive, computerized multistationed facility. Our program is a competency based, true open-entry/open-exit program that utilizes flexible self-paced course outlines. It is designed around an industry partnership that promotes community and economic development,…

  15. PICNIC Technology.

    PubMed

    Katehakis, Dimitrios G; Bruun-Rasmussen, Morten; Pakarinen, Vesa; Piggott, David; Saranummi, Niilo

    2005-01-01

    A key objective of the Professionals and Citizen Network for Integrated Care (PICNIC) project was to provide products for a European and potentially worldwide software market. The approach followed was through the delivery of a number of Open Source (OS) components, to be integrated into applications that deliver similar services across the participating regions, aiming at their exploitation by other regions and the industry. This chapter describes the technology developed during the lifecycle of the PICNIC project, focusing on the three core services of Clinical Messaging, Access to Patient Data, and Collaboration. For each service, the entire process of how to turn its functional specifications into reusable components and common data sets in order to support Information Technology (IT) services for the next generation of secure, user-friendly healthcare networks is presented by means of common documentation tools. Security and privacy issues are also addressed. PMID:16160219

  16. Communications technology

    NASA Astrophysics Data System (ADS)

    Cuccia, C. Louis; Sivo, Joseph

    The technologies for optimized, i.e., state of the art, operation of satellite-based communications systems are surveyed. Features of spaceborne active repeater systems, low-noise signal amplifiers, power amplifiers, and high frequency switches are described. Design features and capabilities of various satellite antenna systems are discussed, including multiple beam, shaped reflector shaped beam, offset reflector multiple beam, and mm-wave and laser antenna systems. Attitude control systems used with the antenna systems are explored, along with multiplexers, filters, and power generation, conditioning and amplification systems. The operational significance and techniques for exploiting channel bandwidth, baseband and modulation technologies are described. Finally, interconnectivity among communications satellites by means of RF and laser links is examined, as are the roles to be played by the Space Station and future large space antenna systems.

  17. Manufacturing technology

    SciTech Connect

    Leonard, J.A.; Floyd, H.L.; Goetsch, B.; Doran, L.

    1993-08-01

    This bulletin depicts current research on manufacturing technology at Sandia laboratories. An automated, adaptive process removes grit overspray from jet engine turbine blades. Advanced electronic ceramics are chemically prepared from solution for use in high- voltage varistors. Selective laser sintering automates wax casting pattern fabrication. Numerical modeling improves performance of photoresist stripper (simulation on Cray supercomputer reveals path to uniform plasma). And mathematical models help make dream of low- cost ceramic composites come true.

  18. Communications technology

    NASA Technical Reports Server (NTRS)

    Sokoloski, Martin M.

    1988-01-01

    The objective of the Communications Technology Program is to enable data transmission to and from low Earth orbit, geostationary orbit, and solar and deep space missions. This can be achieved by maintaining an effective, balances effort in basic, applied, and demonstration prototype communications technology through work in theory, experimentation, and components. The program consists of three major research and development discipline areas which are: microwave and millimeter wave tube components; solid state monolithic integrated circuit; and free space laser communications components and devices. The research ranges from basic research in surface physics (to study the mechanisms of surface degradation from under high temperature and voltage operating conditions which impacts cathode tube reliability and lifetime) to generic research on the dynamics of electron beams and circuits (for exploitation in various micro- and millimeter wave tube devices). Work is also performed on advanced III-V semiconductor materials and devices for use in monolithic integrated analog circuits (used in adaptive, programmable phased arrays for microwave antenna feeds and receivers) - on the use of electromagnetic theory in antennas and on technology necessary for eventual employment of lasers for free space communications for future low earth, geostationary, and deep space missions requiring high data rates with corresponding directivity and reliability.

  19. Emerging technologies

    SciTech Connect

    Lu, Shin-yee

    1993-03-01

    The mission of the Emerging Technologies thrust area at Lawrence Livermore National Laboratory is to help individuals establish technology areas that have national and commercial impact, and are outside the scope of the existing thrust areas. We continue to encourage innovative ideas that bring quality results to existing programs. We also take as our mission the encouragement of investment in new technology areas that are important to the economic competitiveness of this nation. In fiscal year 1992, we have focused on nine projects, summarized in this report: (1) Tire, Accident, Handling, and Roadway Safety; (2) EXTRANSYT: An Expert System for Advanced Traffic Management; (3) Odin: A High-Power, Underwater, Acoustic Transmitter for Surveillance Applications; (4) Passive Seismic Reservoir Monitoring: Signal Processing Innovations; (5) Paste Extrudable Explosive Aft Charge for Multi-Stage Munitions; (6) A Continuum Model for Reinforced Concrete at High Pressures and Strain Rates: Interim Report; (7) Benchmarking of the Criticality Evaluation Code COG; (8) Fast Algorithm for Large-Scale Consensus DNA Sequence Assembly; and (9) Using Electrical Heating to Enhance the Extraction of Volatile Organic Compounds from Soil.

  20. Biohydrometallurgical technologies

    SciTech Connect

    Torma, A.E.; Wey, J.E.; Lakshmanan, V.I.

    1993-01-01

    The theme of the International Biohydrometallurgy Symposium held in Jackson Hole, Wyoming, August 22-25, 1993, is Biohydrometallurgy: An Industry Matures.'' This is a developing technology which made important contributions to the minerals industry. Biohydrometallurgical technology was first introduced into the copper industry and subsequently to the uranium industry for the production of metal values from low-grade mineral resources. Currently, biotechnology has advanced a step further. It is now commercially applied for the treatment of high-grade refractory gold ores in aerated stirred reactors to liberate precious metals for cyanidation. In addition, the industrial applications of biotechnology involve bioenhanced tertiary oil recovery processes, which contribute to an increase in oil production from previously exhausted wells. Furthermore, many bioremediation technologies are being developed for the removal of toxic heavy metals and radionuclides from contaminated soils and aqueous mining and industrial effluents. This volume contains papers selected for publication which are predominantly dealing with subjects related to laboratory and industrial scale bioleaching of base and precious metals, biocorrosion phenomena, diverse bioreduction processes and electrochemical reactions. Individual papers have been processed separately for inclusion in the appropriate data bases.

  1. Technology transfer methodology

    NASA Technical Reports Server (NTRS)

    Labotz, Rich

    1991-01-01

    Information on technology transfer methodology is given in viewgraph form. Topics covered include problems in economics, technology drivers, inhibitors to using improved technology in development, technology application opportunities, and co-sponsorship of technology.

  2. Hearing Assistive Technology

    MedlinePlus

    ... for the Public / Hearing and Balance Hearing Assistive Technology Hearing Assistive Technology: FM Systems | Infrared Systems | Induction ... Assistive Technology Systems Solutions What are hearing assistive technology systems (HATS)? Hearing assistive technology systems (HATS) are ...

  3. Using technology to teach technology.

    PubMed

    Colman-Brochu, Stephanie; Sullivan, Pat; Meninger, Susanne

    2009-01-01

    As staff development professionals, our goal is to provide cost-effective learning opportunities that meet the objectives of the learner, the program, and the organization. The decision to use instructional technology is based on cost, time, and outcomes. This article describes one organization's use of an inexpensive and versatile software application to develop Web-based tutorials to educate and train clinical staff on a new clinical information system. PMID:19955973

  4. Manufacturing technology

    SciTech Connect

    Blaedel, K L

    1998-01-01

    The mission of the Manufacturing Technology thrust area at Lawrence Livermore National Laboratory (LLNL) has been to have an adequate base of manufacturing technology, not necessarily resident at LLNL, to conduct their future business. The specific goals were (1) to develop an understanding of fundamental fabrication processes; (2) to construct general purpose process models that have wide applicability; (3) to document their findings and models in journals; (4) to transfer technology to LLNL programs, industry, and colleagues; and (5) to develop continuing relationships with the industrial and academic communities to advance their collective understanding of fabrication processes. In support of this mission, two projects were reported here, each of which explores a way to bring higher precision to the manufacturing challenges that we face over the next few years. The first, ''A Spatial-Frequency-Domain Approach to Designing a Precision Machine Tools,'' is an overall view of how they design machine tools and instruments to make or measure workpieces that are specified in terms of the spatial frequency content of the residual errors of the workpiece surface. This represents an improvement of an ''error budget,'' a design tool that saw significant development in the early 1980's, and has been in active use since then. The second project, ''Micro-Drilling of ICF Capsules,'' is an attempt to define the current state in commercial industry for drilling small holes, particularly laser-drilling. The report concludes that 1-{micro}m diameter holes cannot currently be drilled to high aspect ratios, and then defines the engineering challenges that will have to be overcome to machine holes small enough for NIF capsules.

  5. Telemetry Technology

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In 1990, Avtec Systems, Inc. developed its first telemetry boards for Goddard Space Flight Center. Avtec products now include PC/AT, PCI and VME-based high speed I/O boards and turn-key systems. The most recent and most successful technology transfer from NASA to Avtec is the Programmable Telemetry Processor (PTP), a personal computer- based, multi-channel telemetry front-end processing system originally developed to support the NASA communication (NASCOM) network. The PTP performs data acquisition, real-time network transfer, and store and forward operations. There are over 100 PTP systems located in NASA facilities and throughout the world.

  6. Testing technology

    SciTech Connect

    Not Available

    1993-10-01

    This bulletin from Sandia National Laboratories presents current research highlights in testing technology. Ion microscopy offers new nondestructive testing technique that detects high resolution invisible defects. An inexpensive thin-film gauge checks detonators on centrifuge. Laser trackers ride the range and track helicopters at low-level flights that could not be detected by radar. Radiation transport software predicts electron/photon effects via cascade simulation. Acoustic research in noise abatement will lead to quieter travelling for Bay Area Rapid Transport (BART) commuters.

  7. Sandia technology

    SciTech Connect

    Not Available

    1982-06-01

    Four research programs at Sandia are described. These include combustion research aimed at improved efficiency in flames, coal combustors, and internal combustion engines; an implantable insulin delivery system, with an electronically controlled insulin pump derived from weapon technology, provides reliable insulin delivery when implanted in diabetic patients; experiments and prototype testing point to molten nitrate salts as an effective and economical fluid for both heat and heat storage in solar central receivers; and design of packaging for air transport of radioactive reactor samples. (GHT)

  8. Wearable Technology

    NASA Technical Reports Server (NTRS)

    Watson, Amanda

    2013-01-01

    Wearable technology projects, to be useful, in the future, must be seamlessly integrated with the Flight Deck of the Future (F.F). The lab contains mockups of space vehicle cockpits, habitat living quarters, and workstations equipped with novel user interfaces. The Flight Deck of the Future is one element of the Integrated Power, Avionics, and Software (IPAS) facility, which, to a large extent, manages the F.F network and data systems. To date, integration with the Flight Deck of the Future has been limited by a lack of tools and understanding of the Flight Deck of the Future data handling systems. To remedy this problem it will be necessary to learn how data is managed in the Flight Deck of the Future and to develop tools or interfaces that enable easy integration of WEAR Lab and EV3 products into the Flight Deck of the Future mockups. This capability is critical to future prototype integration, evaluation, and demonstration. This will provide the ability for WEAR Lab products, EV3 human interface prototypes, and technologies from other JSC organizations to be evaluated and tested while in the Flight Deck of the Future. All WEAR Lab products must be integrated with the interface that will connect them to the Flight Deck of the Future. The WEAR Lab products will primarily be programmed in Arduino. Arduino will be used for the development of wearable controls and a tactile communication garment. Arduino will also be used in creating wearable methane detection and warning system.

  9. Reservoir Technology

    SciTech Connect

    Renner, J.L.

    1992-03-24

    The reservoir technology program supports the utilization of geothermal resources through development and verification of new earth science technologies for: exploration, fluid production and injection; and prediction of reservoir lifetimes. A two-fold strategy of conducting DOE-sponsored research to meet higher-risk, longer-term needs and cost-shared research with industry in areas of greatest current need is utilized to maximize the benefit of the program to the geothermal industry. The program uses a coordinated, multi-disciplinary approach to investigating and solving reservoir problems facing the industry. Research at The Geysers geothermal field has received major emphasis in the past three years. Recent progress in that work will be reviewed in detail by The Geysers operators, federal, state and local regulators and other interested parties during a meeting in Santa Rosa on May 5 and 6, 1992. Hence the papers by Lipman, Bodvarsson et al., Wannamaker, et al., Horne, and Shook in this proceedings volume emphasize non-Geysers research in the program.

  10. Dezincing Technology

    SciTech Connect

    Dudek, F.J.; Daniels, E.J.; Morgan, W.A.

    1997-08-01

    Half of the steel produced in the US is derived from scrap. With zinc-coated prompt scrap increasing fivefold since 1980, steel-makers are feeling the effect of increased contaminant loads on their operations. The greatest concern is the cost of treatment before disposal of waste dusts and water that arise from remelting zinc-coated scrap. An economic process is needed to strip and recover the zinc from scrap to provide a low residual scrap for steel- and iron-making. Metal Recovery Technologies, Inc., with the assistance of Argonne National Laboratory, have been developing a caustic leach dezincing process for upgrading galvanized stamping plant scrap into clean scrap with recovery of the zinc. With further development the technology could also process galvanized scrap from obsolete automobiles. This paper will review: (1) the status of recent pilot plant operations and plans for a commercial demonstration facility with a dezincing capacity of up to 250,000 tons/year, (2) the economics of caustic dezincing, and (3) benefits of decreased cost of environmental compliance, raw material savings, and improved operations with use of dezinced scrap.

  11. Biohydrometallurgical technologies

    SciTech Connect

    Torma, A.E.; Apel, M.L.; Brierley, C.L.

    1993-01-01

    The theme of the International Biohydrometallurgy Symposium (IBS) held in Jackson Hole, Wyoming, August 22--25, 1993, is Biohydrometallurgy: An Industry Matures''. This is a developing technology which made important contributions to the minerals industry. The IBS-93 is focused on recent advances achieved in fundamental and applied aspects of research and development of biotechnologies applied to mineral domains. The papers presented at the Symposium are grouped together in two volumes, which are the following: this volume contains papers selected for publication which are predominantly dealing with subjects related to laboratory and industrial scale bioleaching of base and precious metals, biocorrosion phenomena, diverse bioreduction processes and electrochemical reactions. Individual papers have been processed separately for inclusion in the appropriate data bases.

  12. OAST system technology planning

    NASA Technical Reports Server (NTRS)

    Sadin, S. R.

    1978-01-01

    The NASA Office of Aeronautics and Space Technology developed a planning model for space technology consisting of a space systems technology model, technology forecasts and technology surveys. The technology model describes candidate space missions through the year 2000 and identifies their technology requirements. The technology surveys and technology forecasts provide, respectively, data on the current status and estimates of the projected status of relevant technologies. These tools are used to further the understanding of the activities and resources required to ensure the timely development of technological capabilities. Technology forecasting in the areas of information systems, spacecraft systems, transportation systems, and power systems are discussed.

  13. Combustion technologies

    SciTech Connect

    Barsin, J.A.

    1994-12-31

    The presentation will cover the highlights of sludge, providing information as to where it comes from, projection of how much more is expected, what is sludge, what can be done with them, and finally focus in one combustion technology that can be utilized and applied to recycle sludge. The author is with Gotaverken Energy Systems Inc. where for the past 100 years they have been involved in the recovery of chemicals in chemical pulp mills. One week ago, our name was changed to Kvaerner Pulping Inc. to better reflect our present make-up which is a combination of Kamyr AB (suppliers of proprietary highly engineered totally chlorine free chemical pulp manufacturing systems, including digesters, O{sub 2} delignification systems, and bleach plant systems) and Goetaverken. Sludges that we are concerned with derive from several sources within chemical pulp mills such as: such as primary clarifier sludges, secondary clarifier sludges, and most recently those sludges derived from post consumer paper and board recycle efforts including de-inking and those from the thermal mechanical pulping processes. These sludges have been classified as non-hazardous therefore, residue can be landfilled, but the volumes involved are growing at an alarming rate.

  14. CMM Technology

    SciTech Connect

    Ward, Robert C.

    2008-10-20

    This project addressed coordinate measuring machine (CMM) technology and model-based engineering. CMM data analysis and delivery were enhanced through the addition of several machine types to the inspection summary program. CMM hardware and software improvements were made with the purchases of calibration and setup equipment and new model-based software for the creation of inspection programs. Kansas City Plant (KCP) personnel contributed to and influenced the development of dimensional metrology standards. Model-based engineering capabilities were expanded through the development of software for the tolerance analysis of piece parts and for the creation of model-based CMM inspection programs and inspection plans and through the purchase of off-the-shelf software for the tolerance analysis of mechanical assemblies. An obsolete database application used to track jobs in Precision Measurement was replaced by a web-based application with improved query and reporting capabilities. A potential project to address the transformation of the dimensional metrology enterprise at the Kansas City Plant was identified.

  15. How Technology Teachers Understand Technological Knowledge

    ERIC Educational Resources Information Center

    Norström, Per

    2014-01-01

    Swedish technology teachers' views of technological knowledge are examined through a written survey and a series of interviews. The study indicates that technology teachers' understandings of what constitutes technological knowledge and how it is justified vary considerably. The philosophical discussions on the topic are unknown to them.…

  16. Flywheel Technology

    NASA Technical Reports Server (NTRS)

    Ritchie, Lisa M.

    2004-01-01

    Throughout the summer of 2004, I am working on a number of different projects. While located in the Space Power and Propulsion Test Engineering branch, my main area of study is flywheel technology. I have been exposed to flywheels, their components, and their uses in today's society. I have been able to experience numerous flywheels here in the flywheel lab at NASA Glenn. My first main project was to explore the attributes and physical characteristics of a flywheel. Our branch was constructing a flywheel demonstration to be presented at the public open house taking place in June. Our Flywheel Interactive Demo, or FIDO, represents a real life multi-flywheel system here at NASA. I was given the opportunity to learn about how these flywheels store energy and are able to position a satellite. With all of this new knowledge, I was able to create the posters that explained how our demonstration worked. I also composed a step-by-step process made up of four experiments that any visitor could follow and perform on FIDO. By stepping through these experiments, the individual learns how a flywheel works. They not only read the explanation of what is happening, but they are also able to see it happen. Creating these two posters not only taught me, but also helped teach the general public during the open house, how flywheel technology is a very important part of our future. Through my research, I have learned that flywheels are able to store massive amounts of energy. They can be described as an electro-mechanical battery that stores kinetic energy while rotating. The faster it rotates, the more energy it stores. Their lifetime is about triple that of an ordinary battery. Flywheels also have the ability to combine energy storage with attitude control all in a single system. Attitude control is the ability to position a satellite as required. FIDO helps us to understand the rotational force (torque) that is applied upon a turn-table or satellite during wheel acceleration

  17. Sports and Technology. Resources in Technology.

    ERIC Educational Resources Information Center

    Hadley, Fred W.

    1993-01-01

    Technology is making a significant impact in all areas of sports and recreation. New equipment and computer training methods in spectator sports have had a major social and economic impact, and individual sports have reaped the benefits of technology. (JOW)

  18. ENVIRONMENTAL TECHNOLOGY VERIFICATION (ETV) PROGRAM: STORMWATER TECHNOLOGIES

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) Environmental Technology Verification (ETV) program evaluates the performance of innovative air, water, pollution prevention and monitoring technologies that have the potential to improve human health and the environment. This techn...

  19. Technology Education: A Primer.

    ERIC Educational Resources Information Center

    Colelli, Leonard A.

    Technological literacy is the primary goal of technology education. The systems approach promotes the understanding of technology education. Technology education comprises a study of four technical human-adaptive systems: communications, construction, manufacturing, and transportation. Six classes of inputs are required for technology systems:…

  20. Plasma technology directory

    SciTech Connect

    Ward, P.P.; Dybwad, G.L.

    1995-03-01

    The Plasma Technology Directory has two main goals: (1) promote, coordinate, and share plasma technology experience and equipment within the Department of Energy; and (2) facilitate technology transfer to the commercial sector where appropriate. Personnel are averaged first by Laboratory and next by technology area. The technology areas are accelerators, cleaning and etching deposition, diagnostics, and modeling.

  1. Technological Literacy. ERIC Digest.

    ERIC Educational Resources Information Center

    Wonacott, Michael E.

    Technological literacy includes the following elements: (1) the ability to use technology; (2) knowledge about the details of individual technologies and the processes of technology development; (3) a holistic understanding of the historical and cultural context of technology and adaptability based on initiative and resourceful thinking; and (4) a…

  2. Planning for Technology.

    ERIC Educational Resources Information Center

    Czubaj, Camilia Anne

    2002-01-01

    Discusses the need to renovate existing schools and/or build new ones due to rising enrollments and rapid developments in technology. Topics include problems with technology use; technology budgeting; assessing the status of ongoing technology; community-based learning environments; school designs and partnerships; technology planning resources;…

  3. Technology transfer of remote sensing technology

    NASA Technical Reports Server (NTRS)

    Smith, A. D.

    1980-01-01

    The basic philosophy and some current activities of MSFC Technology Transfer with regard to remote sensing technology are briefly reviewed. Among the problems that may be alleviated through such technology transfer are the scarcity of energy and mineral resources, the alteration of the environment by man, unpredictable natural disasters, and the effect of unanticipated climatic change on agricultural productivity.

  4. Greenhouse Gas Monitoring Technologies Technology Brief

    EPA Science Inventory

    This is a Technology Brief for the ETV Program. The EPA Environmental Technology Verification Program (ETV) develops test protocols and verifies the performance of innovative technologies that have the potential to improve protection of human health and the environment. The progr...

  5. Technology Education: In Pursuit of Technological Literacy.

    ERIC Educational Resources Information Center

    Jennings, Gerald L.

    This discussion of the need for and efforts to develop technological education in K-12 schools argues that the United States must achieve an acceptable level of technological literacy among its children if it is to maintain its competitive edge. Thus, technology is being suggested as an additional domain of knowledge (along with the sciences,…

  6. Technology Demonstration Missions

    NASA Video Gallery

    NASA's Technology Demonstration Missions (TDM) Program seeks to infuse new technology into space applications, bridging the gap between mature “lab-proven” technology and "flight-ready" status....

  7. Technology and Counseling

    ERIC Educational Resources Information Center

    Loughary, John W.

    1977-01-01

    Today's world is vastly technological, and counselors need to keep abreast of advances in computer science, biofeedback, and other technical systems. Counseling and technology from a larger perspective define technology as concepts and methods as well as hardware. (Author)

  8. Prosthetics and Related Technology

    MedlinePlus

    ... and Related Technology for Restoring Veterans’ Abilities DISCOVERY INNOVATION ADVANCEMENT PROSTHETICS AND RELATED TECHNOLOGY VA Research and ... technology to perform day-to-day activities. DISCOVERY INNOVATION ADVANCEMENT DISCOVERY INNOVATION ADVANCEMENT A Message to Our ...

  9. Information Technology for Education.

    ERIC Educational Resources Information Center

    Snyder, Cathrine E.; And Others

    1990-01-01

    Eight papers address technological, behavioral, and philosophical aspects of the application of information technology to training. Topics include instructional technology centers, intelligent training systems, distance learning, automated task analysis, training system selection, the importance of instructional methods, formative evaluation and…

  10. EPA ENVIRONMENTAL TECHNOLOGY EXPERIENCE

    EPA Science Inventory

    THE USEPA's Environmental Technology Verification for Metal Finishing Pollution Prevention Technologies (ETV-MF) Program verifies the performance of innovative, commercial-ready technologies designed to improve industry performance and achieve cost-effective pollution prevention ...

  11. Technology Transfer Report

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Since its inception, Goddard has pursued a commitment to technology transfer and commercialization. For every space technology developed, Goddard strives to identify secondary applications. Goddard then provides the technologies, as well as NASA expertise and facilities, to U.S. companies, universities, and government agencies. These efforts are based in Goddard's Technology Commercialization Office. This report presents new technologies, commercialization success stories, and other Technology Commercialization Office activities in 1999.

  12. Morgantown Energy Technology Center, technology summary

    SciTech Connect

    Not Available

    1994-06-01

    This document has been prepared by the DOE Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation activities funded through the Morgantown Energy Technology Center (METC). Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. METC`s R&D programs are focused on commercialization of technologies that will be carried out in the private sector. META has solicited two PRDAs for EM. The first, in the area of groundwater and soil technologies, resulted in twenty-one contact awards to private sector and university technology developers. The second PRDA solicited novel decontamination and decommissioning technologies and resulted in eighteen contract awards. In addition to the PRDAs, METC solicited the first EM ROA in 1993. The ROA solicited research in a broad range of EM-related topics including in situ remediation, characterization, sensors, and monitoring technologies, efficient separation technologies, mixed waste treatment technologies, and robotics. This document describes these technology development activities.

  13. Technology and Economics, Inc. Technology Application Team

    NASA Technical Reports Server (NTRS)

    Ballard, T.; Macfadyen, D. J.

    1981-01-01

    Technology + Economics, Inc. (T+E), under contract to the NASA Headquarters Technology Transfer Division, operates a Technology Applications Team (TATeam) to assist in the transfer of NASA-developed aerospace technology. T+E's specific areas of interest are selected urban needs at the local, county, and state levels. T+E contacts users and user agencies at the local, state, and county levels to assist in identifying significant urban needs amenable to potential applications of aerospace technology. Once viable urban needs have been identified in this manner, or through independent research, T+E searches the NASA technology database for technology and/or expertise applicable to the problem. Activities currently under way concerning potential aerospace applications are discussed.

  14. Technology 2000, volume 2

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Technology 2000 was the first major industrial conference and exposition spotlighting NASA technology and technology transfer. It's purpose was, and continues to be, to increase awareness of existing NASA-developed technologies that are available for immediate use in the development of new products and processes, and to lay the groundwork for the effective utilization of emerging technologies. Included are sessions on: computer technology and software engineering; human factors engineering and life sciences; materials science; sensors and measurement technology; artificial intelligence; environmental technology; optics and communications; and superconductivity.

  15. Technology Drives Exploration

    NASA Video Gallery

    NASA is investing in the future by advancing its capabilities and developing transformative technologies required to reach the challenging destinations that await exploration. The Space Technology ...

  16. Synchronous Energy Technology

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The synchronous technology requirements for large space power systems are summarized. A variety of technology areas including photovoltaics, thermal management, and energy storage, and power management are addressed.

  17. Fundamentals of technology roadmapping

    SciTech Connect

    Garcia, M.L.; Bray, O.H.

    1997-04-01

    Technology planning is important for many reasons. Globally, companies are facing many competitive problems. Technology roadmapping, a form of technology planning can help deal with this increasingly competitive environment. While it has been used by some companies and industries, the focus has always been on the technology roadmap as a product, not on the process. This report focuses on formalizing the process so that it can be more broadly and easily used. As a DOE national security laboratory with R&D as a major product, Sandia must do effective technology planning to identify and develop the technologies required to meet its national security mission. Once identified, technology enhancements or new technologies may be developed internally or collaboratively with external partners. For either approach, technology roadmapping, as described in this report, is an effective tool for technology planning and coordination, which fits within a broader set of planning activities. This report, the second in a series on technology roadmapping, develops and documents this technology roadmapping process, which can be used by Sandia, other national labs, universities, and industry. The main benefit of technology roadmapping is that it provides information to make better technology investment decisions by identifying critical technologies and technology gaps and identifying ways to leverage R&D investments. It can also be used as a marketing tool. Technology roadmapping is critical when the technology investment decision is not straight forward. This occurs when it is not clear which alternative to pursue, how quickly the technology is needed, or when there is a need to coordinate the development of multiple technologies. The technology roadmapping process consists of three phases - preliminary activity, development of the technology roadmap, and follow-up activity.

  18. Technology Standards for Students.

    ERIC Educational Resources Information Center

    Burke, Jennifer

    In many states technology standards for students have focused on basic computer skills, but more standards are beginning to focus on identifying technology skills that students need for school and the workplace. In most states in the Southern Region, technology standards for students are based on the National Educational Technology Standards for…

  19. Technology and Education.

    ERIC Educational Resources Information Center

    O'Loughlin, Michael

    1985-01-01

    Discussed are possible ways in which new technology will affect society, particularly its impact on the distribution of power and economic wealth. Also considered are the impact of technological change on educational goals, education about technology, and use of technology in education. Implications for the future are addressed. (JN)

  20. Educational Technology: Leadership Perspectives.

    ERIC Educational Resources Information Center

    Kearsley, Greg, Ed.; Lynch, William, Ed.

    This book addresses the topic of leadership in the use of educational technology. The four chapters of the first part discuss some of the issues associated with leadership in the use of educational technology. They include: (1) "Educational Technology Leadership in the Age of Technology: The New Skills" (Greg Kearsley and William Lynch); (2)…

  1. Teaching with Technology.

    ERIC Educational Resources Information Center

    Meade, Jeff; And Others

    1991-01-01

    Special section on teaching with technology offers eight articles on how to get over technophobia, how to overcome obstacles and "do-it-yourself," teacher training, what teachers are currently doing with technology, how one school uses technology, whether technology works, how to buy a computer, and available resources. (SM)

  2. Students Attitudes towards Technology

    ERIC Educational Resources Information Center

    Ardies, Jan; De Maeyer, Sven; Gijbels, David; van Keulen, Hanno

    2015-01-01

    Technology is more present than ever. Young people are interested in technological products, but their opinions on education and careers in technology are not particularly positive (Johansson in "Mathematics, Science & Technology Education Report." European Round Table of Industrials, Brussel, 2009). If we want to stimulate…

  3. Educational Technology in China

    ERIC Educational Resources Information Center

    Meifeng, Liu; Jinjiao, Lv; Cui, Kang

    2010-01-01

    This paper elaborates the two different academic views of the identity of educational technology in China at the current time--advanced-technology-oriented cognition, known as Electrifying Education, and problem-solving-oriented cognition, known as Educational Technology. It addresses five main modes of educational technology in China: as a…

  4. Technology in the Classroom.

    ERIC Educational Resources Information Center

    Speidel, Gisela E., Ed.

    1995-01-01

    This theme issue contains 20 articles dealing with technology in the classroom. The articles are: (1) "Distance Learning and the Future of Kamehameha Schools Bishop Estate" (Henry E. Meyer); (2) "Technology and Multiple Intelligences" (Bette Savini); (3) "Technology Brings Voyagers into Classrooms" (Kristina Inn and others); (4) "Technologies Old…

  5. Technology in Aging.

    ERIC Educational Resources Information Center

    Haber, Paul A. L.

    1986-01-01

    The application of technology to the problems of the elderly will reduce the costs of care by providing additional help to the elderly so they can remain independent and will enhance the quality of life. Technology is divided into health care technology and ecological technology. (Author/ABB)

  6. NIST ADVANCED TECHNOLOGY PROGRAM

    EPA Science Inventory

    Not-yet-possible technologies are the domain of the National Institute of Standards and Technology (NIST) Advanced Technology Program. The ATP is a unique partnership between government and private industry to accelerate the development of high-risk technologies that promise sign...

  7. Technology Education: The Transition.

    ERIC Educational Resources Information Center

    Pedras, Melvin J.; And Others

    With technology constantly changing, educators are challenged to integrate technology education into the curriculum. In an effort to integrate a study of technology into the public school curriculum, educators at the University of Idaho identified the following areas as representative of modern technology literacy: computers and computer-aided…

  8. Technophobes Teaching with Technology

    ERIC Educational Resources Information Center

    Lecher, Mark

    2004-01-01

    Technology has been used in classroom situations for years now. Traditionally, technology has been used by faculty that were early adopters or who liked the technology. These faculty members would handle the implementation of technology and bring it into the classroom by themselves, with only a small amount of outside support. This evolved into…

  9. The Technological Personality

    ERIC Educational Resources Information Center

    Stivers, Richard

    2004-01-01

    If technology is the single most important factor in explaining the organization of modern societies, it is likewise the key to understanding the modern personality. The technological personality is the psychological counterpart to the technological society.Technology indirectly destroys the basis of a common morality and so leaves human…

  10. Marketing technology in macroeconomics.

    PubMed

    Tamegawa, Kenichi

    2012-01-01

    In this paper, we incorporate a marketing technology into a dynamic stochastic general equilibrium model by assuming a matching friction for consumption. An improvement in matching can be interpreted as an increase in matching technology, which we call marketing technology because of similar properties. Using a simulation analysis, we confirm that a positive matching technology shock can increase output and consumption. PMID:23961358

  11. Soil washing technology evaluation

    SciTech Connect

    Suer, A.

    1995-04-01

    Environmental Restoration Engineering (ERE) continues to review innovative, efficient, and cost effective technologies for SRS soil and/or groundwater remediation. As part of this effort, this technical evaluation provides review and the latest information on the technology for SRS soil remediation. Additional technology evaluation reports will be issued periodically to update these reports. The purpose of this report is to review the soil washing technology and its potential application to SRS soil remediation. To assess whether the Soil Washing technology is a viable option for SRS soil remediation, it is necessary to review the technology/process, technology advantages/limitations, performance, applications, and cost analysis.

  12. GRACE BIOREMEDIATION TECHNOLOGIES - DARAMEND™ BIOREMEDIATION TECHNOLOGY. INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    Grace Dearborn's DARAMEND™ Bioremediation Technology was developed to treat soils/sediment contaminated with organic contaminants using solid-phase organic amendments. The amendments increase the soil’s ability to supply biologically available water/nutrients to micro...

  13. Emerging Technologies Integrating Technology into Study Abroad

    ERIC Educational Resources Information Center

    Godwin-Jones, Robert

    2016-01-01

    "Ready access to travel and to technology-enhanced social networking (e.g., Facebook or Skype) has changed the nature of study abroad to the point where today's experiences are fundamentally different from those of earlier eras" (Kinginger, 2013a, p. 345). In addition to more travel options and greater technology availability, study…

  14. An Educational Technology Curriculum for Converging Technologies.

    ERIC Educational Resources Information Center

    Allen, Brockenbrough S.; And Others

    1989-01-01

    Outlines curriculum reforms being made in the master's level educational technology program at San Diego State University. Topics discussed include technological changes and the roles of educational product designers; human information processing; knowledge base design; student design of educational adventure games; interactive video design; and…

  15. Exploring Technology Education: Exploring Construction Technology.

    ERIC Educational Resources Information Center

    Joerschke, John D.

    This guide is part of a series designed to help students learn about technology and teachers organize and improve instruction in technology. The instructional materials are based on the curriculum-alignment concept of first stating the objectives, developing instructional strategies for teaching those objectives, and assessing to those same…

  16. Payload software technology: Software technology development plan

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Programmatic requirements for the advancement of software technology are identified for meeting the space flight requirements in the 1980 to 1990 time period. The development items are described, and software technology item derivation worksheets are presented along with the cost/time/priority assessments.

  17. SITE TECHNOLOGY CAPSULE: BIOGENESIS SOIL WASHING TECHNOLOGY

    EPA Science Inventory

    Soil washing technologies are designed to transfer contaminants from soil to a liquid phase. The BloGenesis™ soil washing technology uses a proprietary surfactant solution to transfer organic contaminants from soil to wastewater. The surfactant used in the soil washing process wa...

  18. Introducing Current Technologies

    NASA Technical Reports Server (NTRS)

    Mitchell, Tiffany

    1995-01-01

    The objective of the study was a continuation of the 'technology push' activities that the Technology Transfer Team conducts at this time. It was my responsibility to research current technologies at Langley Research Center and find a commercial market for these technologies in the private industry. After locating a market for the technologies, a mailing package was put together which informed the companies of the benefits of NASA Langley's technologies. The mailing package included articles written about the technology, patent material, abstracts from technical papers, and one-pagers which were used at the Technology Opportunities Showcase (TOPS) exhibitions. The companies were encouraged to consult key team members for further information on the technologies.

  19. Technology for small spacecraft

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This report gives the results of a study by the National Research Council's Panel on Small Spacecraft Technology that reviewed NASA's technology development program for small spacecraft and assessed technology within the U.S. government and industry that is applicable to small spacecraft. The panel found that there is a considerable body of advanced technology currently available for application by NASA and the small spacecraft industry that could provide substantial improvement in capability and cost over those technologies used for current NASA small spacecraft. These technologies are the result of developments by commercial companies, Department of Defense agencies, and to a lesser degree NASA. The panel also found that additional technologies are being developed by these same entities that could provide additional substantial improvement if development is successfully completed. Recommendations for future technology development efforts by NASA across a broad technological spectrum are made.

  20. SHARED TECHNOLOGY TRANSFER PROGRAM

    SciTech Connect

    GRIFFIN, JOHN M. HAUT, RICHARD C.

    2008-03-07

    The program established a collaborative process with domestic industries for the purpose of sharing Navy-developed technology. Private sector businesses were educated so as to increase their awareness of the vast amount of technologies that are available, with an initial focus on technology applications that are related to the Hydrogen, Fuel Cells and Infrastructure Technologies (Hydrogen) Program of the U.S. Department of Energy. Specifically, the project worked to increase industry awareness of the vast technology resources available to them that have been developed with taxpayer funding. NAVSEA-Carderock and the Houston Advanced Research Center teamed with Nicholls State University to catalog NAVSEA-Carderock unclassified technologies, rated the level of readiness of the technologies and established a web based catalog of the technologies. In particular, the catalog contains technology descriptions, including testing summaries and overviews of related presentations.

  1. [Health technology in Mexico].

    PubMed

    Cruz, C; Faba, G; Martuscelli, J

    1992-01-01

    The features of the health technology cycle are presented, and the effects of the demographic, epidemiologic and economic transition on the health technology demand in Mexico are discussed. The main problems of science and technology in the context of a decreasing scientific and technological activity due to the economic crisis and the adjustment policies are also analyzed: administrative and planning problems, low impact of scientific production, limitations of the Mexican private sector, and the obstacles for technology assessment. Finally, this paper also discusses the main support strategies for science and technology implemented by the Mexican government during the 1980s and the challenges and opportunities that lie ahead. PMID:1411774

  2. Avionics systems integration technology

    NASA Technical Reports Server (NTRS)

    Stech, George; Williams, James R.

    1988-01-01

    A very dramatic and continuing explosion in digital electronics technology has been taking place in the last decade. The prudent and timely application of this technology will provide Army aviation the capability to prevail against a numerically superior enemy threat. The Army and NASA have exploited this technology explosion in the development and application of avionics systems integration technology for new and future aviation systems. A few selected Army avionics integration technology base efforts are discussed. Also discussed is the Avionics Integration Research Laboratory (AIRLAB) that NASA has established at Langley for research into the integration and validation of avionics systems, and evaluation of advanced technology in a total systems context.

  3. Technology 2000, volume 1

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The purpose of the conference was to increase awareness of existing NASA developed technologies that are available for immediate use in the development of new products and processes, and to lay the groundwork for the effective utilization of emerging technologies. There were sessions on the following: Computer technology and software engineering; Human factors engineering and life sciences; Information and data management; Material sciences; Manufacturing and fabrication technology; Power, energy, and control systems; Robotics; Sensors and measurement technology; Artificial intelligence; Environmental technology; Optics and communications; and Superconductivity.

  4. Mars Technology Program: Planetary Protection Technology Development

    NASA Technical Reports Server (NTRS)

    Lin, Ying

    2006-01-01

    This slide presentation reviews the development of Planetary Protection Technology in the Mars Technology Program. The goal of the program is to develop technologies that will enable NASA to build, launch, and operate a mission that has subsystems with different Planetary Protection (PP) classifications, specifically for operating a Category IVb-equivalent subsystem from a Category IVa platform. The IVa category of planetary protection requires bioburden reduction (i.e., no sterilization is required) The IVb category in addition to IVa requirements: (i.e., terminal sterilization of spacecraft is required). The differences between the categories are further reviewed.

  5. FY04 Engineering Technology Reports Technology Base

    SciTech Connect

    Sharpe, R M

    2005-01-27

    Lawrence Livermore National Laboratory's Engineering Directorate has two primary discretionary avenues for its investment in technologies: the Laboratory Directed Research and Development (LDRD) program and the ''Tech Base'' program. This volume summarizes progress on the projects funded for technology-base efforts in FY2004. The Engineering Technical Reports exemplify Engineering's more than 50-year history of researching and developing (LDRD), and reducing to practice (technology-base) the engineering technologies needed to support the Laboratory's missions. Engineering has been a partner in every major program and project at the Laboratory throughout its existence, and has prepared for this role with a skilled workforce and technical resources. This accomplishment is well summarized by Engineering's mission: ''Enable program success today and ensure the Laboratory's vitality tomorrow''. LDRD is the vehicle for creating those technologies and competencies that are cutting edge. These require a significant level of research or contain some unknown that needs to be fully understood. Tech Base is used to apply those technologies, or adapt them to a Laboratory need. The term commonly used for Tech Base projects is ''reduction to practice''. Tech Base projects effect the natural transition to reduction-to-practice of scientific or engineering methods that are well understood and established. They represent discipline-oriented, core competency activities that are multi-programmatic in application, nature, and scope. The objectives of technology-base funding include: (1) the development and enhancement of tools and processes to provide Engineering support capability, such as code maintenance and improved fabrication methods; (2) support of Engineering science and technology infrastructure, such as the installation or integration of a new capability; (3) support for technical and administrative leadership through our technology Centers; and (4) the initial scoping and

  6. Vehicle Technologies Program Planning

    SciTech Connect

    2009-06-19

    The Vehicle Technologies Program’s strategic goal is to develop sustainable, cost-competitive technologies to reduce U.S. dependence on petroleum, increase fuel efficiency, reduce greenhouse gas emissions and improve the Nation's energy security.

  7. Aeronautics systems technology studies

    NASA Technical Reports Server (NTRS)

    Bauchspies, J. S.

    1983-01-01

    Data collection and analysis in the areas of air transportation, aircraft manufacturing and sales, airline operations, market projections, internal trade, and energy consumption; legislation and regulations, technology needs; surveys; decision-making; cost analyses; and technology transfer are discussed.

  8. Mission critical technology development

    NASA Technical Reports Server (NTRS)

    Sliwa, Nancy

    1991-01-01

    Mission critical technology development is presented in the form of the viewgraphs. The following subject areas are covered: organization/philosophy overview; fault management technology; and introduction to optical processing.

  9. Information Technology: A Bibliography.

    ERIC Educational Resources Information Center

    Wright, William F.; Hawkins, Donald T.

    1981-01-01

    This selective annotated bibliography lists 86 references on the following topics: future technology for libraries, library automation, paperless information systems; computer conferencing and electronic mail, videotext systems, videodiscs, communications technology, networks, information retrieval, cataloging, microcomputers, and minicomputers.…

  10. Effects of New Technologies.

    ERIC Educational Resources Information Center

    Social and Labour Bulletin, 1980

    1980-01-01

    Transnational implications of technological change and innovation in telecommunications are discussed, including impact on jobs and industrial relations, computer security, access to information, and effects of technological innovation on international economic systems. (SK)

  11. Crystal-Clear Technology.

    ERIC Educational Resources Information Center

    Ondris-Crawford, Renate J.; And Others

    1993-01-01

    Provides diagrams to aid in discussing polymer dispersed liquid crystal (PDLC) technology. Equipped with a knowledge of PDLC, teachers can provide students with insight on how the gap between basic science and technology is bridged. (ZWH)

  12. Geared power transmission technology

    NASA Technical Reports Server (NTRS)

    Coy, J. J.

    1983-01-01

    The historical path of the science and art of gearing is reviewed. The present state of gearing technology is discussed along with examples of some of the NASA-sponsored contributions to gearing technology. Future requirements in gearing are summarized.

  13. Propulsion technology discipline

    NASA Technical Reports Server (NTRS)

    Jones, Lee W.

    1990-01-01

    Viewgraphs on propulsion technology discipline for Space Station Freedom are presented. Topics covered include: water electrolysis O2/H2 system; hydrazine system advancements; common technology; fluids disposal; and storable bipropellant system.

  14. Geothermal drilling technology

    SciTech Connect

    Dunn, J.C.; Livesay, B.J.

    1986-01-01

    The report discusses the current state of geothermal drilling technology with reference to how individual technology items are influenced by the following problem areas: high temperature; lost circulation; abrasive rocks; and corrosive gases. (ACR)

  15. Neuroanatomy and transgenic technologies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This is a short review that introduces recent advances of neuroanatomy and transgenic technologies. The anatomical complexity of the nervous system remains a subject of tremendous fascination among neuroscientists. In order to tackle this extraordinary complexity, powerful transgenic technologies a...

  16. NASA Technology Applications Team

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The contributions of NASA to the advancement of the level of the technology base of the United States are highlighted. Technological transfer from preflight programs, the Viking program, the Apollo program, and the Shuttle and Skylab programs is reported.

  17. Technology in Residence.

    ERIC Educational Resources Information Center

    Fox, Jordan

    1999-01-01

    Discusses the necessity for incorporating current technology in today's college residence halls to meet the more diverse and continued activities of its students. Technology addressed covers data networking and telecommunications, heating and cooling systems, and fire-safety systems. (GR)

  18. Potential Technology Needs

    NASA Technical Reports Server (NTRS)

    Platts, Steven H.

    2010-01-01

    This slide presentation reviews some of the technologies that will be required to maintain crew health. The general principle guiding the technology development is to integrate individual devices into small, flight-ready, reportable units.

  19. Vehicle Technologies Program Implementation

    SciTech Connect

    none,

    2009-06-19

    The Vehicle Technologies Program takes a systematic approach to Program implementation. Elements of this approach include the evaluation of new technologies, competitive selection of projects and partners, review of Program and project improvement, project tracking, and portfolio management and adjustment.

  20. Technology and the Unions.

    ERIC Educational Resources Information Center

    Monaghan, Peter

    1995-01-01

    Faculty union meetings will focus increasingly on the role of technology on college campuses, including adoption of new technologies, assuring support services, clarifying intellectual property issues, and preserving teacher-student contact as teleconferencing and network use grows. (MSE)

  1. Technology transfer for adaptation

    NASA Astrophysics Data System (ADS)

    Biagini, Bonizella; Kuhl, Laura; Gallagher, Kelly Sims; Ortiz, Claudia

    2014-09-01

    Technology alone will not be able to solve adaptation challenges, but it is likely to play an important role. As a result of the role of technology in adaptation and the importance of international collaboration for climate change, technology transfer for adaptation is a critical but understudied issue. Through an analysis of Global Environment Facility-managed adaptation projects, we find there is significantly more technology transfer occurring in adaptation projects than might be expected given the pessimistic rhetoric surrounding technology transfer for adaptation. Most projects focused on demonstration and early deployment/niche formation for existing technologies rather than earlier stages of innovation, which is understandable considering the pilot nature of the projects. Key challenges for the transfer process, including technology selection and appropriateness under climate change, markets and access to technology, and diffusion strategies are discussed in more detail.

  2. FCS Technology Investigation Overview

    NASA Technical Reports Server (NTRS)

    Budinger, James; Gilbert, Tricia

    2007-01-01

    This working paper provides an overview of the Future Communication Study (FCS) technology investigation progress. It includes a description of the methodology applied to technology evaluation; evaluation criteria; and technology screening (down select) results. A comparison of screening results with other similar technology screening activities is provided. Additional information included in this working paper is a description of in-depth studies (including characterization of the L-band aeronautical channel; L-band deployment cost assessment; and performance assessments of candidate technologies in the applicable aeronautical channel) that have been conducted to support technology evaluations. The paper concludes with a description on-going activities leading to conclusion of the technology investigation and the development of technology recommendations.

  3. Emerging Technologies for Telemedicine

    PubMed Central

    Minh, Cao Duc; Antoku, Yasuaki; Torata, Nobuhiro; Kudo, Kuriko; Okamura, Koji; Nakashima, Naoki; Tanaka, Masao

    2012-01-01

    This paper focuses on new technologies that are practically useful for telemedicine. Three representative systems are introduced: a Digital Video Transport System (DVTS), an H.323 compatible videoconferencing system, and Vidyo. Based on some of our experiences, we highlight the advantages and disadvantages of each technology, and point out technologies that are especially targeted at doctors and technicians, so that those interested in using similar technologies can make appropriate choices and achieve their own goals depending on their specific conditions. PMID:22563284

  4. Geothermal drilling technology update

    SciTech Connect

    Glowka, D.A.

    1997-04-01

    Sandia National Laboratories conducts a comprehensive geothermal drilling research program for the US Department of Energy, Office of Geothermal Technologies. The program currently includes seven areas: lost circulation technology, hard-rock drill bit technology, high-temperature instrumentation, wireless data telemetry, slimhole drilling technology, Geothermal Drilling Organization (GDO) projects, and drilling systems studies. This paper describes the current status of the projects under way in each of these program areas.

  5. NASA Astrophysics Technology Needs

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2012-01-01

    July 2010, NASA Office of Chief Technologist (OCT) initiated an activity to create and maintain a NASA integrated roadmap for 15 key technology areas which recommend an overall technology investment strategy and prioritize NASA?s technology programs to meet NASA?s strategic goals. Science Instruments, Observatories and Sensor Systems(SIOSS) roadmap addresses technology needs to achieve NASA?s highest priority objectives -- not only for the Science Mission Directorate (SMD), but for all of NASA.

  6. Making Technology Work

    ERIC Educational Resources Information Center

    Soucie, Tanja; Radovic, Nikol; Svedrec, Renata

    2010-01-01

    Students need to learn how to use technology in a meaningful way to become literate. Teachers should take advantage of technology and what it has to offer. Technology can motivate students and can help them visualize mathematics problems. It can enable them to work on more complex tasks that often involve real-life applications of mathematics. It…

  7. The Technology Fair Project

    ERIC Educational Resources Information Center

    Mettas, Alexandros; Constantinou, Constantinos

    2006-01-01

    The purpose of the technology fair is to enhance technological problem-solving skills. This article discusses a technology fair centered on a university/school partnership, which raised the level of complexity both with administrative and scientific issues. The end result of such partnerships is that schools have the opportunity to demonstrate an…

  8. Refocusing Space Technology

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This video presents two examples of NASA Technology Transfer. The first is a Downhole Video Logger, which uses remote sensing technology to help in mining. The second example is the use of satellite image processing technology to enhance ultrasound images taken during pregnancy.

  9. Thriving on Technology's Edge

    ERIC Educational Resources Information Center

    Huwe, Terence K.

    2009-01-01

    New technology appears at a fast pace these days. As individuals people must choose how much technology to allow into their personal worlds. Within organizations, people must collectively decide how to build, sustain, and perhaps jettison new technologies as they consider their long-term value and life span. This requires a collaborative spirit…

  10. Creative Technology and Rap

    ERIC Educational Resources Information Center

    Ch'ien, Evelyn

    2011-01-01

    This paper describes how a linguistic form, rap, can evolve in tandem with technological advances and manifest human-machine creativity. Rather than assuming that the interplay between machines and technology makes humans robotic or machine-like, the paper explores how the pressure of executing artistic visions using technology can drive…

  11. Technology Education. A Bibliography.

    ERIC Educational Resources Information Center

    Florida State Univ., Tallahassee. Center for Instructional Development and Services.

    This annotated bibliography contains information about technology education primarily for the middle, junior, and senior high school levels. Major themes include the shift from industrial to technology education that has occurred in recent years, the rationale behind this shift, and the importance of technological literacy. Programs and…

  12. Trends in Educational Technology.

    ERIC Educational Resources Information Center

    Ely, Donald P.

    Based on the findings of a content analysis of representative literature on educational technology, this report examines the trends in educational technology from October 1, 1990 through September 30, 1991. Ten trends for 1991 are identified and discussed: (1) the creation of technology-based teaching/learning products is based largely on…

  13. ACTTive Technology, 1995.

    ERIC Educational Resources Information Center

    ACTTive Technology, 1995

    1995-01-01

    Four issues of this newsletter published by Project ACTT (Activating Children Through Technology), an Early Education Program for Children with Disabilities Outreach Project on educational technology, include the following major articles: "Annual Survey of ACTT Sites Indicates Common Technology Practices" (Patricia Hutinger and others);…

  14. Optimizing Computer Technology Integration

    ERIC Educational Resources Information Center

    Dillon-Marable, Elizabeth; Valentine, Thomas

    2006-01-01

    The purpose of this study was to better understand what optimal computer technology integration looks like in adult basic skills education (ABSE). One question guided the research: How is computer technology integration best conceptualized and measured? The study used the Delphi method to map the construct of computer technology integration and…

  15. Sex, Technology and Morality.

    ERIC Educational Resources Information Center

    Case, Verna; And Others

    1986-01-01

    Provides an overview of the course "Sex, Technology, and Morality" which focuses on the human reproductive process and examines the advances in reproductive technology. The course emphasizes the social, political, and ethical implications of actual and possible technologies associated with human reproduction. (ML)

  16. Technology in Education

    ERIC Educational Resources Information Center

    Roden, Kasi

    2011-01-01

    This paper was written to support a position on using technology in education. The purpose of this study was to support the use of technology in education by synthesizing previous research. A variety of sources including books and journal articles were studied in order to compile an overview of the benefits of using technology in elementary,…

  17. Education Technology Transformation

    ERIC Educational Resources Information Center

    Kennedy, Mike

    2012-01-01

    Years ago, as personal computers and other technological advancements began to find their way into classrooms and other educational settings, teachers and administrators sought ways to use new technology to benefit students. The potential for improving education was clear, but the limitations of the available education technology made it difficult…

  18. Educational Technology, Reimagined

    ERIC Educational Resources Information Center

    Eisenberg, Michael

    2010-01-01

    "Educational technology" is often equated in the popular imagination with "computers in the schools." But technology is much more than merely computers, and education is much more than mere schooling. The landscape of child-accessible technologies is blossoming in all sorts of directions: tools for communication, for physical construction and…

  19. Technology 2004, Vol. 2

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Proceedings from symposia of the Technology 2004 Conference, November 8-10, 1994, Washington, DC. Volume 2 features papers on computers and software, virtual reality simulation, environmental technology, video and imaging, medical technology and life sciences, robotics and artificial intelligence, and electronics.

  20. Technology and Individual Differences.

    ERIC Educational Resources Information Center

    Cavalier, Albert R.; And Others

    1994-01-01

    Six papers on special education technology and individual differences are introduced. The papers illustrate the growing influence of constructivist perspectives on the use of technology to accommodate individual differences among people. The papers recognize the importance of using technology to scaffold the client's construction of different…

  1. School Technology Grows Up.

    ERIC Educational Resources Information Center

    Vail, Kathleen

    2003-01-01

    Practitioners and researchers in the education technology field asked to give their vision of the future list laptop computers, personal digital assistants, electronic testing, wireless networking, and multimedia technology among the technology advances headed soon for schools. A sidebar lists 12 online resources. (MLF)

  2. Research and technology

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The research and technology accomplishments of the NASA Lewis Research Center are summarized for the fiscal year 1986, the 45th anniversary year of the Center. Five major sections are presented covering: aeronautics, aerospace technology, space communications, space station systems, and computational technology support. A table of contents by subjects was developed to assist the reader in finding articles of special interest.

  3. A Technology Checkup.

    ERIC Educational Resources Information Center

    Sydow, James A.; Kirkpatrick, Clark M.

    1996-01-01

    A technology audit compares a school district's plans and expectations for technology with actual deployment and use. The audit addresses information systems; operational environment; administrative, teaching, and learning applications; student, finance, and human resources systems; technology; infrastructure; office automation and productivity…

  4. Conducting a Technology Audit

    ERIC Educational Resources Information Center

    Flaherty, William

    2011-01-01

    Technology is a critical component in the success of any high-functioning school district, thus it is important that education leaders should examine it closely. Simply put, the purpose of a technology audit is to assess the effectiveness of the technology for administrative or instructional use. Rogers Public Schools in Rogers, Arkansas, recently…

  5. Teaching Information Technology Law

    ERIC Educational Resources Information Center

    Taylor, M. J.; Jones, R. P.; Haggerty, J.; Gresty, D.

    2009-01-01

    In this paper we discuss an approach to the teaching of information technology law to higher education computing students that attempts to prepare them for professional computing practice. As information technology has become ubiquitous its interactions with the law have become more numerous. Information technology practitioners, and in particular…

  6. Trends in Technology Transfer.

    ERIC Educational Resources Information Center

    Starnick, Jurgen

    1988-01-01

    Various forms of technology transfer in Europe and North America are discussed including research contracts, cooperative research centers, and personnel transfer. Examples of approaches to technology transfer are given and the establishment of personnel transfer is discussed. Preconditions for successful technology transfer in the future are…

  7. Access and Technology

    ERIC Educational Resources Information Center

    Watson, Lemuel W.

    2004-01-01

    Community colleges are well positioned to provide underserved student populations with access to computer technology. This chapter explores the issues of access and technology from multiple perspectives in the community college, and explains how community colleges can develop a foundation for their technology plan.

  8. Teaching Technology and Engineering

    ERIC Educational Resources Information Center

    de Vries, Marc J.; Hacker, Michael; Burghardt, David

    2010-01-01

    The publication of "Standards for Technological Literacy: Content for the Study of Technology" (ITEA/ITEEA, 2000/2002/2007) represented a major step forward in identifying the educational components necessary for life in a technological world. But this list of standards, though substantial, does not clearly identify the components that are most…

  9. Mineral Processing Technology Roadmap

    SciTech Connect

    none,

    2000-09-01

    This document represents the roadmap for Processing Technology Research in the US Mining Industry. It was developed based on the results of a Processing Technology Roadmap Workshop sponsored by the National Mining Association in conjunction with the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Office of Industrial Technologies. The Workshop was held January 24 - 25, 2000.

  10. Advanced manufacturing: Technology diffusion

    SciTech Connect

    Tesar, A.

    1995-12-01

    In this paper we examine how manufacturing technology diffuses rom the developers of technology across national borders to those who do not have the capability or resources to develop advanced technology on their own. None of the wide variety of technology diffusion mechanisms discussed in this paper are new, yet the opportunities to apply these mechanisms are growing. A dramatic increase in technology diffusion occurred over the last decade. The two major trends which probably drive this increase are a worldwide inclination towards ``freer`` markets and diminishing isolation. Technology is most rapidly diffusing from the US In fact, the US is supplying technology for the rest of the world. The value of the technology supplied by the US more than doubled from 1985 to 1992 (see the Introduction for details). History shows us that technology diffusion is inevitable. It is the rates at which technologies diffuse to other countries which can vary considerably. Manufacturers in these countries are increasingly able to absorb technology. Their manufacturing efficiency is expected to progress as technology becomes increasingly available and utilized.

  11. Theme: Emerging Technologies.

    ERIC Educational Resources Information Center

    Malpiedi, Barbara J.; And Others

    1989-01-01

    Consists of six articles discussing the effect of emerging technologies on agriculture. Specific topics include (1) agriscience programs, (2) the National Conference on Agriscience and Emerging Occupations and Technologies, (3) biotechnology, (4) program improvement through technology, (5) the Agriscience Teacher of the Year program, and (6)…

  12. New Technologies in Mathematics.

    ERIC Educational Resources Information Center

    Sarmiento, Jorge

    An understanding of past technological advancements can help educators understand the influence of new technologies in education. Inventions such as the abacus, logarithms, the slide rule, the calculating machine, computers, and electronic calculators have all found their place in mathematics education. While new technologies can be very useful,…

  13. Assessing for Technological Literacy

    ERIC Educational Resources Information Center

    Engstrom, Daniel E.

    2004-01-01

    Designing standards-based assessment is a key component of a quality technology education program. For students to become technologically literate, it is important that the teacher understands how to measure student understandings and abilities in the study of technology. This article is written to help teachers and teacher educators recognize the…

  14. Resources in Technology 7.

    ERIC Educational Resources Information Center

    International Technology Education Association, Reston, VA.

    This volume of Resources in Technology contains the following eight instructional modules: (1) "Processing Technology"; (2) "Water--A Magic Resource"; (3) "Hazardous Waste Disposal--The NIMBY (Not in My Backyard) Syndrome"; (4) "Processing Fibers and Fabrics"; (5) "Robotics--An Emerging Technology"; (6) Machine Vision--Giving Eyes to Robots"; (7)…

  15. Stretching Your Technology Dollar

    ERIC Educational Resources Information Center

    Johnson, Doug

    2012-01-01

    A school district technology director offers 10 strategies to help schools make the most of their technology dollar. These include using effective budgeting techniques, taking advantage of the buying power of groups, practicing sustainable technology, purchasing the right tool for the right job, taking advantage of free software, using cloud…

  16. Resources in Technology III.

    ERIC Educational Resources Information Center

    Ritz, John M.; And Others

    This document--intended to help technology education teachers plan their classroom curriculum for secondary school and college students--contains units on exploring high-impact technology, microcomputers as technological tools, integrated manufacturing systems (the future of design and production), the role of robotics in integrated manufacturing…

  17. Education Technology Success Stories

    ERIC Educational Resources Information Center

    West, Darrell M.; Bleiberg, Joshua

    2013-01-01

    Advances in technology are enabling dramatic changes in education content, delivery, and accessibility. Throughout history, new technologies have facilitated the exponential growth of human knowledge. In the early twentieth century, the focus was on the use of radios in education. But since then, innovators have seen technology as a way to improve…

  18. High Technology Partnership Project.

    ERIC Educational Resources Information Center

    Francis Tuttle Vo-Tech Center, Oklahoma City, OK.

    The High Technology Center at Francis Tuttle Vo-Tech Center in Oklahoma City conducted an 18-month demonstration program, beginning in January 1989, to train or retrain average workers, unemployed because of cutbacks in their field or lack of marketable skills, for careers in high technology. The High Technology Center offered adults training in…

  19. Technology Must Bow

    ERIC Educational Resources Information Center

    Milne, Raymond S.

    1973-01-01

    Certain types of technological decision making are socially harmful causing unemployment, inequities of income, and decreased production. Technology should promote the improvement of society, not industry along. Social objectives of the developing countries should be thoroughly examined before instituting any technological decisions. (BL)

  20. Technology Performance Exchange

    SciTech Connect

    2015-09-01

    To address the need for accessible, high-quality data, the Department of Energy has developed the Technology Performance Exchange (TPEx). TPEx enables technology suppliers, third-party testing laboratories, and other entities to share product performance data. These data are automatically transformed into a format that technology evaluators can easily use in their energy modeling assessments to inform procurement decisions.

  1. IVS Technology Coordinator Report

    NASA Technical Reports Server (NTRS)

    Whitney, Alan

    2013-01-01

    This report of the Technology Coordinator includes the following: 1) continued work to implement the new VLBI2010 system, 2) the 1st International VLBI Technology Workshop, 3) a VLBI Digital- Backend Intercomparison Workshop, 4) DiFX software correlator development for geodetic VLBI, 5) a review of progress towards global VLBI standards, and 6) a welcome to new IVS Technology Coordinator Bill Petrachenko.

  2. Science and Technology.

    ERIC Educational Resources Information Center

    Wise, George

    1985-01-01

    Discusses differing views of the science and technology relationship held by policymakers (with budgets to defend) and historians of science and technology (largely without budgets). Focuses on the period after 1945 when leaders of United States science agencies propagandized an older idea that only "basic" science led to technology/technological…

  3. Options for Technology Transfer.

    ERIC Educational Resources Information Center

    Anderson, Richard E.; Sugarman, Barry

    1989-01-01

    Structural means by which institutions of higher education can tap technology are explored with an examination of the licensing of technological discoveries as well as the creation of start-up companies based upon university-developed technology. Additionally, the corporate structures that are being formed so that institutions can more easily hold…

  4. Technology Assessment in Medicine.

    ERIC Educational Resources Information Center

    Littenberg, Benjamin

    1992-01-01

    This article defines the concepts of medical technology and technology assessment and offers a five-level assessment scheme for the evaluation of medical technologies, including (1) biologic plausibility; (2) technical feasibility; (3) intermediate outcomes; (4) patient outcomes; and (5) societal outcomes. This scheme is applied to the use of…

  5. Advanced Manufacturing Technologies

    NASA Technical Reports Server (NTRS)

    Fikes, John

    2016-01-01

    Advanced Manufacturing Technologies (AMT) is developing and maturing innovative and advanced manufacturing technologies that will enable more capable and lower-cost spacecraft, launch vehicles and infrastructure to enable exploration missions. The technologies will utilize cutting edge materials and emerging capabilities including metallic processes, additive manufacturing, composites, and digital manufacturing. The AMT project supports the National Manufacturing Initiative involving collaboration with other government agencies.

  6. Selecting Security Technology Providers

    ERIC Educational Resources Information Center

    Schneider, Tod

    2009-01-01

    The world of security technology holds great promise, but it is fraught with opportunities for expensive missteps and misapplications. The quality of the security technology consultants and system integrators one uses will have a direct bearing on how well his school masters this complex subject. Security technology consultants help determine…

  7. Implementing technology assessments

    NASA Technical Reports Server (NTRS)

    Kasper, R. G. (Editor); Logsdon, J. M. (Editor); Mottur, E. R. (Editor)

    1975-01-01

    Five case studies of specific technology assessments and the ways in which they influenced (or did not influence) the development of the assessed technology are discussed. Automotive air pollution and problems of implementing technology assessment are considered. The assessment-acceptance-implementation process is discussed in detail using the five case studies as examples.

  8. National Technology Transfer Center

    NASA Technical Reports Server (NTRS)

    Rivers, Lee W.

    1992-01-01

    Viewgraphs on the National Technology Transfer Center (NTTC) are provided. The NTTC mission is to serve as a hub for the nationwide technology-transfer network to expedite the movement of federally developed technology into the stream of commerce. A description of the Center is provided.

  9. New Technologies in Education.

    ERIC Educational Resources Information Center

    Grayson, Lawrence P.

    Many technologies besides microcomputers and videodiscs have been and are being used effectively in education, and this article provides an overview of the current utilization of a variety of educational technologies. Existing technologies are categorized according to their accessibility, whether used locally or over a distance, and their…

  10. Technology Leadership Workshop.

    ERIC Educational Resources Information Center

    Technology & Innovations in Education, Rapid City, SD.

    This Technology & Innovations in Education (TIE) workshop, presented in Kansas City, Missouri, on May 2, 1997, was designed to help participants gain a valid big picture of current school technology change issues, acquire current materials, clarify their beliefs, vision, and needs for their district's technology efforts, learn strategies for…

  11. The Technology Balance Beam

    ERIC Educational Resources Information Center

    Coulson, Eddie K.

    2006-01-01

    "The Technology Balance Beam" is designed to question the role of technology within school districts. This case study chronicles a typical school district in relation to the school district's implementation of technology beginning in the 1995-1996 school year. The fundamental question that this scenario raises is, What is the balance between…

  12. TIPs for Technology Integration.

    ERIC Educational Resources Information Center

    Mandell, Susan; Sorge, Dennis H.; Russell, James D.

    2002-01-01

    Discusses the role of the teacher in effectively using technology in education based on the Technology Integration Project (TIP). Topics include why use technology; types of computer software; how to select software; software integration strategies; and effectively planning lessons that integrate the chosen software and integration strategy. (LRW)

  13. The Technology Age Classroom.

    ERIC Educational Resources Information Center

    Cannings, Terence R., Ed.; Finkel, LeRoy, Ed.

    This collection of 111 readings on educational technology is intended for use in formal teacher training courses or inservice programs for teachers. The articles, most of which focus on computer technology, were originally published in journals in the field of educational technology. The articles are arranged in eight chapters that address: (1)…

  14. Technology Assessment Report: Aqueous Sludge Gasification Technologies

    EPA Science Inventory

    The study reveals that sludge gasification is a potentially suitable alternative to conventional sludge handling and disposal methods. However, very few commercial operations are in existence. The limited pilot, demonstration or commercial application of gasification technology t...

  15. Nuclear propulsion technology advanced fuels technology

    NASA Technical Reports Server (NTRS)

    Stark, Walter A., Jr.

    1993-01-01

    Viewgraphs on advanced fuels technology are presented. Topics covered include: nuclear thermal propulsion reactor and fuel requirements; propulsion efficiency and temperature; uranium fuel compounds; melting point experiments; fabrication techniques; and sintered microspheres.

  16. Mars Technology Program Planetary Protection Technology Development

    NASA Technical Reports Server (NTRS)

    Lin, Ying

    2006-01-01

    The objectives of the NASA Planetary Protection program are to preserve biological and organic conditions of solar-system bodies for future scientific exploration and to protect the Earth from potential hazardous extraterrestrial contamination. As the exploration of solar system continues, NASA remains committed to the implementation of planetary protection policy and regulations. To fulfill this commitment, the Mars Technology Program (MTP) has invested in a portfolio of tasks for developing necessary technologies to meet planetary protection requirements for the next decade missions.

  17. Payload software technology

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A software analysis was performed of known STS sortie payload elements and their associated experiments. This provided basic data for STS payload software characteristics and sizes. A set of technology drivers was identified based on a survey of future technology needs and an assessment of current software technology. The results will be used to evolve a planned approach to software technology development. The purpose of this plan is to ensure that software technology is advanced at a pace and a depth sufficient to fulfill the identified future needs.

  18. Incubation of NASA technology

    NASA Astrophysics Data System (ADS)

    Olson, Richard

    1996-03-01

    Traditionally, government agencies have sought to transfer technology by licensing to large corporations. An alternative route to commercialization is through the entrepreneurial process: using government technology to assist new businesses in the environment of a business incubator. The NASA Ames Technology Commercialization Center, in Sunnyvale, California, is a business incubator used to commercialize NASA technology. In operation almost two years, it has helped twenty new, high technology ventures. Ice Management Systems is one of these. The Center is funded by NASA and operated by IC2, a think-tank associated with the University of Texas at Austin.

  19. Making behavioral technology transferable

    PubMed Central

    Pennypacker, H. S.; Hench, Larry L.

    1997-01-01

    The paucity of transferred behavioral technologies is traced to the absence of strategies for developing technology that is transferable, as distinct from strategies for conducting research, whether basic or applied. In the field of engineering, the results of basic research are transformed to candidate technologies that meet standardized criteria with respect to three properties: quantification, repetition, and verification. The technology of vitrification and storage of nuclear waste is used to illustrate the application of these criteria. Examples from behavior analysis are provided, together with suggestions regarding changes in practice that will accelerate the development and application of behavioral technologies. PMID:22478284

  20. Advanced sensors technology survey

    NASA Technical Reports Server (NTRS)

    Cooper, Tommy G.; Costello, David J.; Davis, Jerry G.; Horst, Richard L.; Lessard, Charles S.; Peel, H. Herbert; Tolliver, Robert

    1992-01-01

    This project assesses the state-of-the-art in advanced or 'smart' sensors technology for NASA Life Sciences research applications with an emphasis on those sensors with potential applications on the space station freedom (SSF). The objectives are: (1) to conduct literature reviews on relevant advanced sensor technology; (2) to interview various scientists and engineers in industry, academia, and government who are knowledgeable on this topic; (3) to provide viewpoints and opinions regarding the potential applications of this technology on the SSF; and (4) to provide summary charts of relevant technologies and centers where these technologies are being developed.

  1. Transferring Technology to Industry

    NASA Technical Reports Server (NTRS)

    Wolfenbarger, J. Ken

    2006-01-01

    This slide presentation reviews the technology transfer processes in which JPL has been involved to assist in transferring the technology derived from aerospace research and development to industry. California Institute of Technology (CalTech), the organization that runs JPL, is the leading institute in patents for all U.S. universities. There are several mechanisms that are available to JPL to inform industry of these technological advances: (1) a dedicated organization at JPL, National Space Technology Applications (NSTA), (2) Tech Brief Magazine, (3) Spinoff magazine, and (4) JPL publications. There have also been many start-up organizations and businesses from CalTech.

  2. Technology reviews: Shading systems

    SciTech Connect

    Schuman, J.; Rubinstein, F.; Papamichael, K.; Beltran, L.; Lee, E.S.; Selkowitz, S.

    1992-09-01

    We present a representative review of existing, emerging, and future technology options in each of five hardware and systems areas in envelope and lighting technologies: lighting systems, glazing systems, shading systems, daylighting optical systems, and dynamic curtain wall systems. The term technology is used here to describe any design choice for energy efficiency, ranging from individual components to more complex systems to general design strategies. The purpose of this task is to characterize the state of the art in envelope and lighting technologies in order to identify those with promise for advanced integrated systems, with an emphasis on California commercial buildings. For each technology category, the following activities have been attempted to the extent possible: Identify key performance characteristics and criteria for each technology. Determine the performance range of available technologies. Identify the most promising technologies and promising trends in technology advances. Examine market forces and market trends. Develop a continuously growing in-house database to be used throughout the project. A variety of information sources have been used in these technology characterizations, including miscellaneous periodicals, manufacturer catalogs and cut sheets, other research documents, and data from previous computer simulations. We include these different sources in order to best show the type and variety of data available, however publication here does not imply our guarantee of these data. Within each category, several broad classes are identified, and within each class we examine the generic individual technologies that fall into that class.

  3. Better Learning Through Technology

    NASA Astrophysics Data System (ADS)

    Mathieu, R. D.; National InstituteScience Education, College Level-One Team

    2000-12-01

    The Learning Through Technology (LT2) resource is designed to help college Science, Mathematics, Engineering and Technology (SMET) instructors: - understand why and how they should use technology-enhanced learning strategies; - shape the powerful emerging technologies into learning tools that better prepare college students for the 21st century; and - provide all their students more experience with, and a better appreciation for, SMET as a living enterprise. The LT2 website includes case studies of learning technology innovations at a variety of post-secondary institutions. Personal narratives of faculty and students cover virtually every logistical, technological, inter-personal, and political issue involved in adapting learning technologies into courses or curricula. The site also includes a wide array of lively first-person vignettes about learning technology experiences from around the country. Frequently Asked Questions is a quick stop for opinions, advice, and bits of wisdom from experienced learning technology users. Finally, the Team is developing user-friendly evaluation resources to help faculty assess the success of learning technologies in improving student learning. The LT2 site is an element of the NISE website "Innovations in SMET Education". This site is intended to help college faculty meet multiple challenging goals including: educating all students to be scientifically literate in a technological society, developing the ranks of future scientists and skilled technicians, and preparing K-12 science and math teachers. The "Innovations in SMET Education" website can be found at www.wcer.wisc.edu/nise/cl1 .

  4. Technology reviews: Glazing systems

    SciTech Connect

    Schuman, J.; Rubinstein, F.; Papamichael, K.; Beltran, L.; Lee, E.S.; Selkowitz, S.

    1992-09-01

    We present a representative review of existing, emerging, and future technology options in each of five hardware and systems areas in envelope and lighting technologies: lighting systems, glazing systems, shading systems, daylighting optical systems, and dynamic curtain wall systems. The term technology is used here to describe any design choice for energy efficiency, ranging from individual components to more complex systems to general design strategies. The purpose of this task is to characterize the state of the art in envelope and lighting technologies in order to identify those with promise for advanced integrated systems, with an emphasis on California commercial buildings. For each technology category, the following activities have been attempted to the extent possible: Identify key performance characteristics and criteria for each technology; determine the performance range of available technologies; identify the most promising technologies and promising trends in technology advances; examine market forces and market trends; and develop a continuously growing in-house database to be used throughout the project. A variety of information sources have been used in these technology characterizations, including miscellaneous periodicals, manufacturer catalogs and cut sheets, other research documents, and data from previous computer simulations. We include these different sources in order to best show the type and variety of data available, however publication here does not imply our guarantee of these data. Within each category, several broad classes are identified, and within each class we examine the generic individual technologies that fag into that class.

  5. Data management system technology discipline

    NASA Technical Reports Server (NTRS)

    Benz, Harry F.

    1990-01-01

    Viewgraphs on data management system technology discipline for Space Station Freedom are presented. Topics covered include: systems technology area needs; storage technology area needs; processor technology area needs; communications technology area needs; software system technology area needs; human interface technology area needs; software development and verification; and onboard communications.

  6. Technology and Global Change

    NASA Astrophysics Data System (ADS)

    Grübler, Arnulf

    2003-10-01

    Technology and Global Change describes how technology has shaped society and the environment over the last 200 years. Technology has led us from the farm to the factory to the internet, and its impacts are now global. Technology has eliminated many problems, but has added many others (ranging from urban smog to the ozone hole to global warming). This book is the first to give a comprehensive description of the causes and impacts of technological change and how they relate to global environmental change. Written for specialists and nonspecialists alike, it will be useful for researchers and professors, as a textbook for graduate students, for people engaged in long-term policy planning in industry (strategic planning departments) and government (R & D and technology ministries, environment ministries), for environmental activists (NGOs), and for the wider public interested in history, technology, or environmental issues.

  7. Aerocapture Technology Project Overview

    NASA Technical Reports Server (NTRS)

    James, Bonnie; Munk, Michelle; Moon, Steve

    2003-01-01

    Aerocapture technology development is one of the highest priority investments for the NASA In-Space Propulsion Program (ISP). The ISP is managed by the NASA Headquarters Office of Space Science, and implemented by the Marshall Space Flight Center in Huntsville, Alabama. The objective of the ISP Aerocapture Technology Project (ATP) is to develop technologies that can enable and/or benefit NASA science missions by significantly reducing cost, mass, and trip times. To accomplish this objective, the ATP identifies and prioritizes the most promising technologies using systems analysis, technology advancement and peer review, coupled with NASA Headquarters Office of Space Science target requirements. Efforts are focused on developing mid-Technology Readiness Level (TRL) technologies to systems-level spaceflight validation.

  8. Applications of aerospace technology

    NASA Technical Reports Server (NTRS)

    Rouse, Doris J.

    1984-01-01

    The objective of the Research Triangle Institute Technology Transfer Team is to assist NASA in achieving widespread utilization of aerospace technology in terrestrial applications. Widespread utilization implies that the application of NASA technology is to benefit a significant sector of the economy and population of the Nation. This objective is best attained by stimulating the introduction of new or improved commercially available devices incorporating aerospace technology. A methodology is presented for the team's activities as an active transfer agent linking NASA Field Centers, industry associations, user groups, and the medical community. This methodology is designed to: (1) identify priority technology requirements in industry and medicine, (2) identify applicable NASA technology that represents an opportunity for a successful solution and commercial product, (3) obtain the early participation of industry in the transfer process, and (4) successfully develop a new product based on NASA technology.

  9. Space technology research plans

    NASA Technical Reports Server (NTRS)

    Hook, W. Ray

    1992-01-01

    Development of new technologies is the primary purpose of the Office of Aeronautics and Space Technology (OAST). OAST's mission includes the following two goals: (1) to conduct research to provide fundamental understanding, develop advanced technology and promote technology transfer to assure U.S. preeminence in aeronautics and to enhance and/or enable future civil space missions: and (2) to provide unique facilities and technical expertise to support national aerospace needs. OAST includes both NASA Headquarters operations as well as programmatic and institutional management of the Ames Research Center, the Langley Research Center and the Lewis Research Center. In addition. a considerable portion of OAST's Space R&T Program is conducted through the flight and science program field centers of NASA. Within OAST, the Space Technology Directorate is responsible for the planning and implementation of the NASA Space Research and Technology Program. The Space Technology Directorate's mission is 'to assure that OAST shall provide technology for future civil space missions and provide a base of research and technology capabilities to serve all national space goals.' Accomplishing this mission entails the following objectives: y Identify, develop, validate and transfer technology to: (1) increase mission safety and reliability; (2) reduce flight program development and operations costs; (3) enhance mission performance; and (4) enable new missions. Provide the capability to: (1) advance technology in critical disciplines; and (2) respond to unanticipated mission needs. In-space experiments are an integral part of OAST's program and provides for experimental studies, development and support for in-space flight research and validation of advanced space technologies. Conducting technology experiments in space is a valuable and cost effective way to introduce advanced technologies into flight programs. These flight experiments support both the R&T base and the focussed programs

  10. Emerging Propulsion Technologies

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.

    2006-01-01

    The Emerging Propulsion Technologies (EPT) investment area is the newest area within the In-Space Propulsion Technology (ISPT) Project and strives to bridge technologies in the lower Technology Readiness Level (TRL) range (2 to 3) to the mid TRL range (4 to 6). A prioritization process, the Integrated In-Space Transportation Planning (IISTP), was developed and applied in FY01 to establish initial program priorities. The EPT investment area emerged for technologies that scored well in the IISTP but had a low technical maturity level. One particular technology, the Momentum-eXchange Electrodynamic-Reboost (MXER) tether, scored extraordinarily high and had broad applicability in the IISTP. However, its technical maturity was too low for ranking alongside technologies like the ion engine or aerocapture. Thus MXER tethers assumed top priority at EPT startup in FY03 with an aggressive schedule and adequate budget. It was originally envisioned that future technologies would enter the ISP portfolio through EPT, and EPT developed an EPT/ISP Entrance Process for future candidate ISP technologies. EPT has funded the following secondary, candidate ISP technologies at a low level: ultra-lightweight solar sails, general space/near-earth tether development, electrodynamic tether development, advanced electric propulsion, and in-space mechanism development. However, the scope of the ISPT program has focused over time to more closely match SMD needs and technology advancement successes. As a result, the funding for MXER and other EPT technologies is not currently available. Consequently, the MXER tether tasks and other EPT tasks were expected to phased out by November 2006. Presentation slides are presented which provide activity overviews for the aerocapture technology and emerging propulsion technology projects.

  11. Technology transfer 1994

    SciTech Connect

    Not Available

    1994-01-01

    This document, Technology Transfer 94, is intended to communicate that there are many opportunities available to US industry and academic institutions to work with DOE and its laboratories and facilities in the vital activity of improving technology transfer to meet national needs. It has seven major sections: Introduction, Technology Transfer Activities, Access to Laboratories and Facilities, Laboratories and Facilities, DOE Office, Technologies, and an Index. Technology Transfer Activities highlights DOE`s recent developments in technology transfer and describes plans for the future. Access to Laboratories and Facilities describes the many avenues for cooperative interaction between DOE laboratories or facilities and industry, academia, and other government agencies. Laboratories and Facilities profiles the DOE laboratories and facilities involved in technology transfer and presents information on their missions, programs, expertise, facilities, and equipment, along with data on whom to contact for additional information on technology transfer. DOE Offices summarizes the major research and development programs within DOE. It also contains information on how to access DOE scientific and technical information. Technologies provides descriptions of some of the new technologies developed at DOE laboratories and facilities.

  12. [Earth Science Technology Office's Computational Technologies Project

    NASA Technical Reports Server (NTRS)

    Fischer, James (Technical Monitor); Merkey, Phillip

    2005-01-01

    This grant supported the effort to characterize the problem domain of the Earth Science Technology Office's Computational Technologies Project, to engage the Beowulf Cluster Computing Community as well as the High Performance Computing Research Community so that we can predict the applicability of said technologies to the scientific community represented by the CT project and formulate long term strategies to provide the computational resources necessary to attain the anticipated scientific objectives of the CT project. Specifically, the goal of the evaluation effort is to use the information gathered over the course of the Round-3 investigations to quantify the trends in scientific expectations, the algorithmic requirements and capabilities of high-performance computers to satisfy this anticipated need.

  13. Geothermal innovative technologies catalog

    SciTech Connect

    Kenkeremath, D.

    1988-09-01

    The technology items in this report were selected on the basis of technological readiness and applicability to current technology transfer thrusts. The items include technologies that are considered to be within 2 to 3 years of being transferred. While the catalog does not profess to be entirely complete, it does represent an initial attempt at archiving innovative geothermal technologies with ample room for additions as they occur. The catalog itself is divided into five major functional areas: Exploration; Drilling, Well Completion, and Reservoir Production; Materials and Brine Chemistry; Direct Use; and Economics. Within these major divisions are sub-categories identifying specific types of technological advances: Hardware; Software; Data Base; Process/Procedure; Test Facility; and Handbook.

  14. Information Technology Resources Assessment

    SciTech Connect

    Not Available

    1993-04-01

    The Information Technology Resources Assessment (ITRA) is being published as a companion document to the Department of Energy (DOE) FY 1994--FY 1998 Information Resources Management Long-Range Plan. This document represents a collaborative effort between the Office of Information Resources Management and the Office of Energy Research that was undertaken to achieve, in part, the Technology Strategic Objective of IRM Vision 21. An integral part of this objective, technology forecasting provides an understanding of the information technology horizon and presents a perspective and focus on technologies of particular interest to DOE program activities. Specifically, this document provides site planners with an overview of the status and use of new information technology for their planning consideration.

  15. Space propulsion technology overview

    NASA Technical Reports Server (NTRS)

    Pelouch, J. J., Jr.

    1979-01-01

    Chemical and electric propulsion technologies for operations beyond the shuttle's orbit with focus on future mission needs and economic effectiveness is discussed. The adequacy of the existing propulsion state-of-the-art, barriers to its utilization, benefit of technology advances, and the prognosis for advancement are the themes of the discussion. Low-thrust propulsion for large space systems is cited as a new technology with particularly high benefit. It is concluded that the shuttle's presence for at least two decades is a legitimate basis for new propulsion technology, but that this technology must be predicted on an awareness of mission requirements, economic factors, influences of other technologies, and real constraints on its utilization.

  16. Space propulsion technology overview

    NASA Technical Reports Server (NTRS)

    Pelouch, J. J., Jr.

    1979-01-01

    This paper discusses Shuttle-era, chemical and electric propulsion technologies for operations beyond the Shuttle's orbit with focus on future mission needs and economic effectiveness. The adequacy of the existing propulsion state-of-the-art, barriers to its utilization, benefit of technology advances, and the prognosis for advancement are the themes of the discussion. Low-thrust propulsion for large space systems is cited as a new technology with particularly high benefit. It is concluded that the Shuttle's presence for at least two decades is a legitimate basis for new propulsion technology, but that this technology must be predicated on an awareness of mission requirements, economic factors, influences of other technologies, and real constraints on its utilization.

  17. Targeting space station technologies

    NASA Technical Reports Server (NTRS)

    Olstad, W. B.

    1983-01-01

    NASA's Space Station Technology Steering Committee has undertaken the definition of the level of technology that is desirable for use in the initial design and operation of an evolutionary, long service life space station, as well as the longer term technology required for the improvement of capabilities. The technology should initially become available in 1986, in order to support a space station launch as early as 1990. Toward this end, the committee seeks to assess technology forecasts based on existing research and testing capacity, and then plan and monitor a program which will move current technology to the requisite level of sophistication and reliability. The Space Shuttle is assumed to be the vehicle for space station delivery, assembly, and support on a 90-day initial cycle. Space station tasks will be military, commercial, and scientific, including on-orbit satellite servicing.

  18. Combustion Technology Outreach

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Lewis' High Speed Research (HSR) Propulsion Project Office initiated a targeted outreach effort to market combustion-related technologies developed at Lewis for the next generation of supersonic civil transport vehicles. These combustion-related innovations range from emissions measurement and reduction technologies, to diagnostics, spray technologies, NOx and SOx reduction of burners, noise reduction, sensors, and fuel-injection technologies. The Ohio Aerospace Institute and the Great Lakes Industrial Technology Center joined forces to assist Lewis' HSR Office in this outreach activity. From a database of thousands of nonaerospace firms considered likely to be interested in Lewis' combustion and emission-related technologies, the outreach team selected 41 companies to contact. The selected companies represent oil-gas refineries, vehicle/parts suppliers, and manufacturers of residential furnaces, power turbines, nonautomobile engines, and diesel internal combustion engines.

  19. Technology Transfer and Commercialization

    NASA Technical Reports Server (NTRS)

    Martin, Katherine; Chapman, Diane; Giffith, Melanie; Molnar, Darwin

    2001-01-01

    During concurrent sessions for Materials and Structures for High Performance and Emissions Reduction, the UEET Intellectual Property Officer and the Technology Commercialization Specialist will discuss the UEET Technology Transfer and Commercialization goals and efforts. This will include a review of the Technology Commercialization Plan for UEET and what UEET personnel are asked to do to further the goals of the Plan. The major goal of the Plan is to define methods for how UEET assets can best be infused into industry. The National Technology Transfer Center will conduct a summary of its efforts in assessing UEET technologies in the areas of materials and emissions reduction for commercial potential. NTTC is assisting us in completing an inventory and prioritization by commercialization potential. This will result in increased exposure of UEET capabilities to the private sector. The session will include audience solicitation of additional commercializable technologies.

  20. [Advanced Composites Technology Initiatives

    NASA Technical Reports Server (NTRS)

    Julian, Mark R.

    2002-01-01

    This final report closes out the W02 NASA Grant #NCC5-646. The FY02 grant for advanced technology initiatives through the Advanced Composites Technology Institute in Bridgeport, WV, at the Robert C. Byrd Institute (RCBI) Bridgeport Manufacturing Technology Center, is complete; all funding has been expended. RCBI continued to expand access to technology; develop and implement a workforce-training curriculum; improve material development; and provide prototyping and demonstrations of new and advanced composites technologies for West Virginia composites firms. The FY 02 efforts supported workforce development, technical training and the HST development effort of a super-lightweight composite carrier prototype and expanded the existing technical capabilities of the growing aerospace industry across West Virginia to provide additional support for NASA missions. Additionally, the Composites Technology and Training Center was awarded IS0 9001 - 2000 certification and Cleanroom Class 1000 certification during this report period.

  1. Integrated infrared array technology

    NASA Technical Reports Server (NTRS)

    Goebel, J. H.; Mccreight, C. R.

    1986-01-01

    An overview of integrated infrared (IR) array technology is presented. Although the array pixel formats are smaller, and the readout noise of IR arrays is larger, than the corresponding values achieved with optical charge-coupled-device silicon technology, substantial progress is being made in IR technology. Both existing IR arrays and those being developed are described. Examples of astronomical images are given which illustrate the potential of integrated IR arrays for scientific investigations.

  2. Digital Sensor Technology

    SciTech Connect

    Ted Quinn; Jerry Mauck; Richard Bockhorst; Ken Thomas

    2013-07-01

    The nuclear industry has been slow to incorporate digital sensor technology into nuclear plant designs due to concerns with digital qualification issues. However, the benefits of digital sensor technology for nuclear plant instrumentation are substantial in terms of accuracy, reliability, availability, and maintainability. This report demonstrates these benefits in direct comparisons of digital and analog sensor applications. It also addresses the qualification issues that must be addressed in the application of digital sensor technology.

  3. Physics and technology networks

    NASA Astrophysics Data System (ADS)

    Granberg, Lawrence

    1988-10-01

    Consider a simple network which has physics and technology at its nodes, with parallel connecting branches representing education and technological industry. We describe briefly the historical development of the network, and three new features of it that should be encouraged: (A) small new, science-technology-based enterprises, (B) new connections between the schools and industry, particularly at the secondary level, and (C) recognition of the electronic and print media as major elements of the network.

  4. Advances in fusion technology

    NASA Astrophysics Data System (ADS)

    Baker, Charles C.

    2000-12-01

    The US fusion technology program is an essential element in the development of the knowledge base for an attractive fusion power source. The technology program incorporates both near and long term R&D, contributes to material and engineering sciences as well as technology development, ranges from hardware production to theory and modeling, contributes significantly to spin-off applications, and performs global systems assessments and focused design studies.

  5. The Mars Technology Program

    NASA Technical Reports Server (NTRS)

    Hayati, Samad A.

    2002-01-01

    Future Mars missions require new capabilities that currently are not available. The Mars Technology Program (MTP) is an integral part of the Mars Exploration Program (MEP). Its sole purpose is to assure that required technologies are developed in time to enable the baselined and future missions. The MTP is a NASA-wide technology development program managed by JPL. It is divided into a Focused Program and a Base Program. The Focused Program is tightly tied to the proposed Mars Program mission milestones. It involves time-critical deliverables that must be developed in time for infusion into the proposed Mars 2005, and, 2009 missions. In addition a technology demonstration mission by AFRL will test a LIDAR as part of a joint NASNAFRL experiment. This program bridges the gap between technology and projects by vertically integrating the technology work with pre-project development in a project-like environment with critical dates for technology infusion. A Base Technology Program attacks higher riskhigher payoff technologies not in the critical path of missions.

  6. Technology--The Equalizer.

    ERIC Educational Resources Information Center

    Sloane, Eydie

    1989-01-01

    This article describes a number of computer-based learning tools for disabled students. Adaptive input devices, assisted technologies, software, and hardware and software resources are discussed. (IAH)

  7. ISS Update: Wearable Technology

    NASA Video Gallery

    NASA Public Affairs Officer Lynnette Madison talks with Human Interface Engineer Cory Simon about wearable technology containing sensors, display and controls to assist future astronauts with more ...

  8. General aviation technology program

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The research and technology program of the civil air transportation system is reported. Research is discussed for stall/spin, crashworthiness, pilot operations, flight efficiency, propulsion, and avionics.

  9. Strategic avionics technology planning

    NASA Technical Reports Server (NTRS)

    Cox, Kenneth J.; Brown, Don C.

    1991-01-01

    NASA experience in development and insertion of technology into programs had led to a recognition that a Strategic Plan for Avionics is needed for space. In the fall of 1989 an Avionics Technology Symposium was held in Williamsburg, Virginia. In early 1990, as a followon, a NASA wide Strategic Avionics Technology Working Group was chartered by NASA Headquarters. This paper will describe the objectives of this working group, technology bridging, and approaches to incentivize both the federal and commercial sectors to move toward rapidly developed, simple, and reliable systems with low life cycle cost.

  10. Technology for Changing Feelings

    NASA Astrophysics Data System (ADS)

    Picard, Rosalind

    Feelings change and technology usually ignores such changes, despite that technology often is credited with causing the changed feelings, especially frustration, irritation, annoyance, or (sometimes) interest and delight. This talk will demonstrate technology we've built to recognize and respond to emotion and discuss some ways it can help people better change their own emotions if they want to do so. I will attempt to demo some of the new technologies live, and discuss their beneficial uses (e.g. helping people with anxiety, stress or health-behavior change). I will also mention some worrisome uses and solicit ideas for how to minimize or prevent abusive uses.