Science.gov

Sample records for indirect global warming

  1. Global Warming?

    ERIC Educational Resources Information Center

    Eichman, Julia Christensen; Brown, Jeff A.

    1994-01-01

    Presents information and data on an experiment designed to test whether different atmosphere compositions are affected by light and temperature during both cooling and heating. Although flawed, the experiment should help students appreciate the difficulties that researchers face when trying to find evidence of global warming. (PR)

  2. Global warming

    NASA Astrophysics Data System (ADS)

    Houghton, John

    2005-06-01

    'Global warming' is a phrase that refers to the effect on the climate of human activities, in particular the burning of fossil fuels (coal, oil and gas) and large-scale deforestation, which cause emissions to the atmosphere of large amounts of 'greenhouse gases', of which the most important is carbon dioxide. Such gases absorb infrared radiation emitted by the Earth's surface and act as blankets over the surface keeping it warmer than it would otherwise be. Associated with this warming are changes of climate. The basic science of the 'greenhouse effect' that leads to the warming is well understood. More detailed understanding relies on numerical models of the climate that integrate the basic dynamical and physical equations describing the complete climate system. Many of the likely characteristics of the resulting changes in climate (such as more frequent heat waves, increases in rainfall, increase in frequency and intensity of many extreme climate events) can be identified. Substantial uncertainties remain in knowledge of some of the feedbacks within the climate system (that affect the overall magnitude of change) and in much of the detail of likely regional change. Because of its negative impacts on human communities (including for instance substantial sea-level rise) and on ecosystems, global warming is the most important environmental problem the world faces. Adaptation to the inevitable impacts and mitigation to reduce their magnitude are both necessary. International action is being taken by the world's scientific and political communities. Because of the need for urgent action, the greatest challenge is to move rapidly to much increased energy efficiency and to non-fossil-fuel energy sources.

  3. Indirect global warming effects of ozone and stratospheric water vapor induced by surface methane emission

    SciTech Connect

    Wuebbles, D.J.; Grossman, A.S.; Tamaresis, J.S.; Patten, K.O. Jr.; Jain, A.; Grant, K.A.

    1994-07-01

    Methane has indirect effects on climate due to chemical interactions as well as direct radiative forcing effects as a greenhouse gas. We have calculated the indirect, time-varying tropospheric radiative forcing and GWP of O{sub 3} and stratospheric H{sub 2}O due to an impulse of CH{sub 4}. This impulse, applied to the lowest layer of the atmosphere, is the increase of the atmospheric mass of CH{sub 4} resulting from a 25 percent steady state increase in the current emissions as a function of latitude. The direct CH{sub 4} radiative forcing and GWP are also calculated. The LLNL 2-D radiative-chemistry-transport model is used to evaluate the resulting changes in the O{sub 3}, H{sub 2}O and CH{sub 4} atmospheric profiles as a function of time. A correlated k-distribution radiative transfer model is used to calculate the radiative forcing at the tropopause of the globally-averaged atmosphere profiles. The O{sub 3} indirect GWPs vary from {approximately}27 after a 20 yr integration to {approximately}4 after 500 years, agreeing with the previous estimates to within about 10 percent. The H{sub 2}O indirect GWPs vary from {approximately}2 after a 20 yr integration to {approximately}0.3 after 500 years, and are in close agreement with other estimates. The CH{sub 4} GWPs vary from {approximately}53 at 20 yrs to {approximately}7 at 500 yrs. The 20 year CH{sub 4} GWP is {approximately}20% larger than previous estimates of the direct CH{sub 4} GWP due to a CH{sub 4} response time ({approximately}17 yrs) that is much longer than the overall lifetime (10 yrs). The increased CH{sub 4} response time results from changes in the OH abundances caused by the CH{sub 4} impulse. The CH{sub 4} radiative forcing results are consistent with IPCC values. Estimates are made of latitude effects in the radiative forcing calculations, and UV effects on the O{sub 3} radiative forcing calculations (10%).

  4. Global warming elucidated

    SciTech Connect

    Shen, S.

    1995-03-01

    The meaning of global warming and its relevance to everyday life is explained. Simple thermodynamics is used to predict an oscillatory nature of the change in climate due to global warming. Global warming causes extreme events and bad weather in the near term. In the long term it may cause the earth to transition to another equilibrium state through many oscillation in climatic patterns. The magnitudes of these oscillations could easily exceed the difference between the end points. The author further explains why many no longer fully understands the nature and magnitudes of common phenomena such as storms and wind speeds because of these oscillations, and the absorptive properties of clouds. The author links the increase in duration of the El Nino to global warming, and further predicts public health risks as the earth transitions to another equilibrium state in its young history.

  5. Long range global warming

    SciTech Connect

    Rolle, K.C.; Pulkrabek, W.W.; Fiedler, R.A.

    1995-12-31

    This paper explores one of the causes of global warming that is often overlooked, the direct heating of the environment by engineering systems. Most research and studies of global warming concentrate on the modification that is occurring to atmospheric air as a result of pollution gases being added by various systems; i.e., refrigerants, nitrogen oxides, ozone, hydrocarbons, halon, and others. This modification affects the thermal radiation balance between earth, sun and space, resulting in a decrease of radiation outflow and a slow rise in the earth`s steady state temperature. For this reason the solution to the problem is perceived as one of cleaning up the processes and effluents that are discharged into the environment. In this paper arguments are presented that suggest, that there is a far more serious cause for global warming that will manifest itself in the next two or three centuries; direct heating from the exponential growth of energy usage by humankind. Because this is a minor contributor to the global warming problem at present, it is overlooked or ignored. Energy use from the combustion of fuels and from the output of nuclear reactions eventually is manifest as warming of the surroundings. Thus, as energy is used at an ever increasing rate the consequent global warming also increases at an ever increasing rate. Eventually this rate will become equal to a few percent of solar radiation. When this happens the earth`s temperature will have risen by several degrees with catastrophic results. The trends in world energy use are reviewed and some mathematical models are presented to suggest future scenarios. These models can be used to predict when the global warming problem will become undeniably apparent, when it will become critical, and when it will become catastrophic.

  6. Is Global Warming Accelerating?

    NASA Astrophysics Data System (ADS)

    Shukla, J.; Delsole, T. M.; Tippett, M. K.

    2009-12-01

    A global pattern that fluctuates naturally on decadal time scales is identified in climate simulations and observations. This newly discovered component, called the Global Multidecadal Oscillation (GMO), is related to the Atlantic Meridional Oscillation and shown to account for a substantial fraction of decadal fluctuations in the observed global average sea surface temperature. IPCC-class climate models generally underestimate the variance of the GMO, and hence underestimate the decadal fluctuations due to this component of natural variability. Decomposing observed sea surface temperature into a component due to anthropogenic and natural radiative forcing plus the GMO, reveals that most multidecadal fluctuations in the observed global average sea surface temperature can be accounted for by these two components alone. The fact that the GMO varies naturally on multidecadal time scales implies that it can be predicted with some skill on decadal time scales, which provides a scientific rationale for decadal predictions. Furthermore, the GMO is shown to account for about half of the warming in the last 25 years and hence a substantial fraction of the recent acceleration in the rate of increase in global average sea surface temperature. Nevertheless, in terms of the global average “well-observed” sea surface temperature, the GMO can account for only about 0.1° C in transient, decadal-scale fluctuations, not the century-long 1° C warming that has been observed during the twentieth century.

  7. Teaching Global Warming

    NASA Astrophysics Data System (ADS)

    Hobson, Art

    2004-05-01

    Every citizen's education should include socially relevant science courses because, as the American Association for the Advancement of Science puts it, "Without a scientifically literate population, the outlook for a better world is not promising." I have developed a conceptual liberal-arts physics course that covers the major principles of classical physics, emphasizes modern/contemporary physics, and includes societal topics such as global warming, ozone depletion, transportation, exponential growth, scientific methodology, risk assessment, nuclear weapons, nuclear power, and the energy future. The societal topics, occupying only about 15% of the class time, appear to be the main cause of the surprising popularity of this course among non-scientists. I will outline some ideas for incorporating global warming into such a course or into any other introductory physics course. For further details, see my textbook Physics: Concepts and Connections (Prentice Hall, 3rd edition 2003).

  8. Aerosol Indirect Forcing Dictated by Warm Low-Cloud

    NASA Astrophysics Data System (ADS)

    Christensen, M.; Chen, Y. C.; Stephens, G. L.

    2014-12-01

    Aerosol indirect forcing is one of the largest sources of uncertainty in estimating the extent of global warming. Increased aerosol levels can enhance the solar reflection from warm liquid clouds countering greenhouse gas warming. However, very little is actually known about the strength of the indirect effects for mixed-phase stratiform clouds as well as other cloud types such as cumulus, altocumulus, nimbostratus, deep convection, and cirrus. These mixed-phase cloud types are ubiquitous and typically overlooked in satellite estimates of the indirect forcing. In this study we assess the responses of each major cloud type to changes in aerosol loading and provide an estimate of their contribution to the global mean indirect forcing. Satellite data is collected from several co-located sensors in the A-train for the period starting in January of 2007 - 2010. Cloud layers are classified according to the 2B-CLDCLASS-LIDAR CloudSat product. Radiative fluxes are obtained from CERES (Clouds and the Earth's Radiant Energy System) and examined as a function of the aerosol loading obtained from MODIS (MODerate resolution Imaging Spectroradiometer) data. For low-level cloud regimes (e.g., stratus, stratocumulus, cumulus) we show that the longwave contribution to the net indirect effect is insignificant and dominated by changes in reflected shortwave radiation which also becomes insignificant as cloud top temperature decreases below 0°C. An increase in the aerosol loading in mixed-phase stratocumulus leads to more ice and precipitation that depletes cloud water and limits cloud brightening. For the more convective type clouds (e.g., altocumulus, nimbostratus, deep convection), increased aerosol loading can invigorate deep convection and promote deeper clouds with higher cloud albedo (cooling effect) and cloud tops that emit less longwave radiation to space (warming effect). As a consequence, the shortwave and longwave indirect radiative effects tend to cancel for the

  9. Global Warming And Meltwater

    NASA Astrophysics Data System (ADS)

    Bratu, S.

    2012-04-01

    In order to find new approaches and new ideas for my students to appreciate the importance of science in their daily life, I proposed a theme for them to debate. They had to search for global warming information and illustrations in the media, and discuss the articles they found in the classroom. This task inspired them to search for new information about this important and timely theme in science. I informed my students that all the best information about global warming and meltwater they found would be used in a poster that would help us to update the knowledge base of the Physics laboratory. I guided them to choose the most eloquent images and significant information. Searching and working to create this poster, the students arrived to better appreciate the importance of science in their daily life and to critically evaluate scientific information transmitted via the media. In the poster we created, one can find images, photos and diagrams and some interesting information: Global warming refers to the rising average temperature of the Earth's atmosphere and oceans and its projected evolution. In the last 100 years, the Earth's average surface temperature increased by about 0.8 °C with about two thirds of the increase occurring over just the last three decades. Warming of the climate system is unequivocal, and scientists are more than 90% certain most of it is caused by increasing concentrations of greenhouse gases produced by human activities such as deforestation and burning fossil fuel. They indicate that during the 21st century the global surface temperature is likely to rise a further 1.1 to 2.9 °C for the lowest emissions scenario and 2.4 to 6.4 °C for the highest predictions. An increase in global temperature will cause sea levels to rise and will change the amount and pattern of precipitation, and potentially result in expansion of subtropical deserts. Warming is expected to be strongest in the Arctic and would be associated with continuing decrease of

  10. Global warming challenge

    SciTech Connect

    Hengeveld, H. )

    1994-11-01

    Global warming will necessitate significant adjustments in Canadian society and its economy. In 1979, the Canadian federal government created its Canadian Climate Program (CCP) in collaboration with other agencies, institutions, and individuals. It sought to coordinate national efforts to understand global and regional climate, and to promote better use of the emerging knowledge. Much of the CCP-coordinated research into sources and sinks of greenhouse gases interfaces with other national and international programs. Other researchers have become involved in the Northern Wetlands Study, a cooperative United States-Canada initiative to understand the role of huge northern bogs and muskegs in the carbon cycle. Because of the need to understand how the whole, linked climate system works, climate modeling emerged as a key focus of current research. 35 refs., 4 figs.

  11. Global Warming on Triton

    NASA Technical Reports Server (NTRS)

    Elliot, J. L.; Hammel, H. B.; Wasserman, L. H.; Franz, O. G.; McDonald, S. W.; Person, M. J.; Olkin, C. B.; Dunham, E. J.; Spencer, J. R.; Stansberry, J. A.; Buie, M. W.; Pasachoff, J. M.; Babcock, B. A.; McConnochie, T. H.

    1998-01-01

    Triton, Neptune's largest moon, has been predicted to undergo significant seasonal changes that would reveal themselves as changes in its mean frost temperature. But whether this temperature should at the present time be increasing, decreasing or constant depends on a number of parameters (such as the thermal properties of the surface, and frost migration patterns) that are unknown. Here we report observations of a recent stellar occultation by Triton which, when combined with earlier results, show that Triton has undergone a period of global warming since 1989. Our most conservative estimates of the rate of temperature and surface-pressure increase during this period imply that the atmosphere is doubling in bulk every 10 years, significantly faster than predicted by any published frost model for Triton. Our result suggests that permanent polar caps on Triton play a c dominant role in regulating seasonal atmospheric changes. Similar processes should also be active on Pluto.

  12. Global warming - A reduced threat

    SciTech Connect

    Michaels, P.J.; Stooksbury, D.E. )

    1992-10-01

    Issues associated with global warming are analyzed focusing on global and hemispheric temperature histories and trace gas concentrations; artificial warming from urban heat islands; high-latitude and diurnal temperatures; recent climate models; direct effects on vegetation of an increase in carbon dioxide; and compensatory cooling from other industrial products. Data obtained indicate that anthropogenerated sulfate emissions are mitigating some of the warming, and that increased cloudiness as a result of these emissions will further enhance night, rather than day, warming. It is noted that the sulfate emissions are not sufficient to explain all of the night warming. The sensitivity of climate to anthropogenerated aerosols, and the general lack of previously predicted warming, could drastically alter the debate on global warming in favor of less expensive policies. 61 refs.

  13. Warm up to the idea: Global warming is here

    SciTech Connect

    Lynch, C.F.

    1996-07-01

    This article summarizes recent information about global warming as well as the history of greenhouse gas emissions which have lead to more and more evidence of global warming. The primary source detailed is the second major study report on global warming by the Intergovernmental Panel on climate change. Along with comments about the environmental effects of global warming such as coastline submersion, the economic, social and political aspects of alleviating greenhouse emissions and the threat of global warming are discussed.

  14. Global temperatures and the global warming ``debate''

    NASA Astrophysics Data System (ADS)

    Aubrecht, Gordon

    2009-04-01

    Many ordinary citizens listen to pronouncements on talk radio casting doubt on anthropogenic global warming. Some op-ed columnists likewise cast doubts, and are read by credulous citizens. For example, on 8 March 2009, the Boston Globe published a column by Jeff Jacoby, ``Where's global warming?'' According to Jacoby, ``But it isn't such hints of a planetary warming trend that have been piling up in profusion lately. Just the opposite.'' He goes on to write, ``the science of climate change is not nearly as important as the religion of climate change,'' and blamed Al Gore for getting his mistaken views accepted. George Will at the Washington Post also expressed denial. As a result, 44% of U.S. voters, according to the January 19 2009 Rasmussen Report, blame long-term planetary trends for global warming, not human beings. Is there global cooling, as skeptics claim? We examine the temperature record.

  15. Global Warming: Physics and Facts

    SciTech Connect

    Levi, B.G.; Hafemeister, D.; Scribner, R.

    1992-05-01

    This report contains papers on: A tutorial on global atmospheric energetics and the greenhouse effect; global climate models: what and how; comparison of general circulation models; climate and the earth`s radiation budget; temperature and sea level change; short-term climate variability and predictions; the great ocean conveyor; trace gases in the atmosphere: temporal and spatial trends; the geochemical carbon cycle and the uptake of fossil fuel CO{sub 2}; forestry and global warming; the physical and policy linkages; policy implications of greenhouse warming; options for lowering US carbon dioxide emissions; options for reducing carbon dioxide emissions; and science and diplomacy: a new partnership to protect the environment.

  16. Global Warming: Physics and Facts

    SciTech Connect

    Levi, B.G. ); Hafemeister, D. , Washington, DC ); Scribner, R. )

    1992-01-01

    This report contains papers on: A tutorial on global atmospheric energetics and the greenhouse effect; global climate models: what and how; comparison of general circulation models; climate and the earth's radiation budget; temperature and sea level change; short-term climate variability and predictions; the great ocean conveyor; trace gases in the atmosphere: temporal and spatial trends; the geochemical carbon cycle and the uptake of fossil fuel CO{sub 2}; forestry and global warming; the physical and policy linkages; policy implications of greenhouse warming; options for lowering US carbon dioxide emissions; options for reducing carbon dioxide emissions; and science and diplomacy: a new partnership to protect the environment.

  17. Indirect aerosol effect increases CMIP5 models projected Arctic warming

    DOE PAGESBeta

    Chylek, Petr; Vogelsang, Timothy J.; Klett, James D.; Hengartner, Nicholas; Higdon, Dave; Lesins, Glen; Dubey, Manvendra K.

    2016-02-20

    Phase 5 of the Coupled Model Intercomparison Project (CMIP5) climate models’ projections of the 2014–2100 Arctic warming under radiative forcing from representative concentration pathway 4.5 (RCP4.5) vary from 0.9° to 6.7°C. Climate models with or without a full indirect aerosol effect are both equally successful in reproducing the observed (1900–2014) Arctic warming and its trends. However, the 2014–2100 Arctic warming and the warming trends projected by models that include a full indirect aerosol effect (denoted here as AA models) are significantly higher (mean projected Arctic warming is about 1.5°C higher) than those projected by models without a full indirect aerosolmore » effect (denoted here as NAA models). The suggestion is that, within models including full indirect aerosol effects, those projecting stronger future changes are not necessarily distinguishable historically because any stronger past warming may have been partially offset by stronger historical aerosol cooling. In conclusion, the CMIP5 models that include a full indirect aerosol effect follow an inverse radiative forcing to equilibrium climate sensitivity relationship, while models without it do not.« less

  18. Global warming and biodiversity

    SciTech Connect

    Peters, R.L.; Lovejoy, T.E.

    1993-01-01

    This book is an introduction to what is known, and not known, from the perspective of biological diversity about ecological response to changes in climate. The five sections in the book cover the following topics: overview including a chapter on climate change preditions; past climatic change and biotic response; general responses of plants and animals to change (individual, behavioral, population and community responses); responses of specific regions including arctic marine and terrestrial; implications for conservation with case studies and general discussions of indirect and interacting effects.

  19. Global warming without global mean precipitation increase?

    PubMed

    Salzmann, Marc

    2016-06-01

    Global climate models simulate a robust increase of global mean precipitation of about 1.5 to 2% per kelvin surface warming in response to greenhouse gas (GHG) forcing. Here, it is shown that the sensitivity to aerosol cooling is robust as well, albeit roughly twice as large. This larger sensitivity is consistent with energy budget arguments. At the same time, it is still considerably lower than the 6.5 to 7% K(-1) decrease of the water vapor concentration with cooling from anthropogenic aerosol because the water vapor radiative feedback lowers the hydrological sensitivity to anthropogenic forcings. When GHG and aerosol forcings are combined, the climate models with a realistic 20th century warming indicate that the global mean precipitation increase due to GHG warming has, until recently, been completely masked by aerosol drying. This explains the apparent lack of sensitivity of the global mean precipitation to the net global warming recently found in observations. As the importance of GHG warming increases in the future, a clear signal will emerge. PMID:27386558

  20. Global warming without global mean precipitation increase?

    PubMed Central

    Salzmann, Marc

    2016-01-01

    Global climate models simulate a robust increase of global mean precipitation of about 1.5 to 2% per kelvin surface warming in response to greenhouse gas (GHG) forcing. Here, it is shown that the sensitivity to aerosol cooling is robust as well, albeit roughly twice as large. This larger sensitivity is consistent with energy budget arguments. At the same time, it is still considerably lower than the 6.5 to 7% K−1 decrease of the water vapor concentration with cooling from anthropogenic aerosol because the water vapor radiative feedback lowers the hydrological sensitivity to anthropogenic forcings. When GHG and aerosol forcings are combined, the climate models with a realistic 20th century warming indicate that the global mean precipitation increase due to GHG warming has, until recently, been completely masked by aerosol drying. This explains the apparent lack of sensitivity of the global mean precipitation to the net global warming recently found in observations. As the importance of GHG warming increases in the future, a clear signal will emerge. PMID:27386558

  1. Global warming at the summit

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    During the recent summit meeting between Russian President Vladimir Putin and U.S. President Bill Clinton, the two leaders reaffirmed their concerns about global warming and the need to continue to take actions to try to reduce the threat.In a June 4 joint statement, they stressed the need to develop flexibility mechanisms, including international emissions trading, under the Kyoto Protocol to the United Nations Framework Convention on Climate Change. They also noted that initiatives to reduce the risk of greenhouse warming, including specific mechanisms of the Kyoto Protocol, could potentially promote economic growth.

  2. Cosmic Rays and Global Warming

    SciTech Connect

    Sloan, T.; Wolfendale, A. W.

    2008-01-24

    Some workers have claimed that the observed temporal correlations of (low level) terrestrial cloud cover with the cosmic ray intensity changes, due to solar modulation, are causal. The possibility arises, therefore, of a connection between cosmic rays and Global Warming. If true, the implications would be very great. We have examined this claim in some detail. So far, we have not found any evidence in support and so our conclusions are to doubt it. From the absence of corroborative evidence we estimate that less than 15% at the 95% confidence level, of the 11-year cycle warming variations are due to cosmic rays and less than 2% of the warming over the last 43 years is due to this cause. The origin of the correlation itself is probably the cycle of solar irradiance although there is, as yet, no certainty.

  3. Global warming: Economic policy responses

    SciTech Connect

    Dornbusch, R.; Poterba, J.M.

    1991-01-01

    This volume contains the proceedings of a conference that brought together economic experts from Europe, the US, Latin America, and Japan to evaluate key issues in the policy debate in global warming. The following issues are at the center of debates on alternative policies to address global warming: scientific evidence on the magnitude of global warming and the extent to which it is due to human activities; availability of economic tools to control the anthropogenic emissions of greenhouse gases, and how vigorously should they be applied; and political economy considerations which influence the design of an international program for controlling greenhouse gases. Many perspectives are offered on the approaches to remedying environmental problems that are currently being pursued in Europe and the Pacific Rim. Deforestation in the Amazon is discussed, as well as ways to slow it. Public finance assessments are presented of both the domestic and international policy issues raised by plans to levy a tax on the carbon emissions from various fossil fuels. Nine chapters have been processed separately for inclusion in the appropriate data bases.

  4. Global warming, bad weather, insurance losses and the global economy

    SciTech Connect

    Low, N.C.; Shen, S.

    1996-09-01

    Global warming causes extremely bad weather in the near term. The impact on the insurance industry is described. Why global warming in the near term causes very bad weather is explained. The continuing trend of very bad weather and the future impact on the insurance industry is explored. How very bad weather can affect the global financial market is explained. Taking a historical view of the development of the modern economy, the authors describe in the near term the impact of global warming on the global economy. The long term impact of global warming on the global economy and the human race is explored. Opportunities presented by global warming are described.

  5. Global Warming: Understanding and Teaching the Forecast.

    ERIC Educational Resources Information Center

    Andrews, Bill

    1995-01-01

    A resource for teaching about the consequences of global warming. Discusses feedback from the temperature increase, changes in the global precipitation pattern, effects on agriculture, weather extremes, effects on forests, effects on biodiversity, effects on sea levels, and actions which will help the global community cope with global warming. (LZ)

  6. Thermal pollution causes global warming

    NASA Astrophysics Data System (ADS)

    Nordell, Bo

    2003-09-01

    Over longer time-scales there is no net heat inflow to Earth since incoming solar energy is re-emitted at exactly the same rate. To maintain Earth's thermal equilibrium, however, there must be a net outflow equal to the geothermal heat flow. Performed calculations show that the net heat outflow in 1880 was equal to the geothermal heat flow, which is the only natural net heat source on Earth. Since then, heat dissipation from the global use of nonrenewable energy sources has resulted in additional net heating. In, e.g. Sweden, which is a sparsely populated country, this net heating is about three times greater than the geothermal heat flow. Such thermal pollution contributes to global warming until the global temperature has reached a level where this heat is also emitted to space. Heat dissipation from the global use of fossil fuels and nuclear power is the main source of thermal pollution. Here, it was found that one third of current thermal pollution is emitted to space and that a further global temperature increase of 1.8 °C is required until Earth is again in thermal equilibrium.

  7. Attribution of the United States “warming hole”: Aerosol indirect effect and precipitable water vapor

    PubMed Central

    Yu, Shaocai; Alapaty, Kiran; Mathur, Rohit; Pleim, Jonathan; Zhang, Yuanhang; Nolte, Chris; Eder, Brian; Foley, Kristen; Nagashima, Tatsuya

    2014-01-01

    Aerosols can influence the climate indirectly by acting as cloud condensation nuclei and/or ice nuclei, thereby modifying cloud optical properties. In contrast to the widespread global warming, the central and south central United States display a noteworthy overall cooling trend during the 20th century, with an especially striking cooling trend in summertime daily maximum temperature (Tmax) (termed the U.S. “warming hole”). Here we used observations of temperature, shortwave cloud forcing (SWCF), longwave cloud forcing (LWCF), aerosol optical depth and precipitable water vapor as well as global coupled climate models to explore the attribution of the “warming hole”. We find that the observed cooling trend in summer Tmax can be attributed mainly to SWCF due to aerosols with offset from the greenhouse effect of precipitable water vapor. A global coupled climate model reveals that the observed “warming hole” can be produced only when the aerosol fields are simulated with a reasonable degree of accuracy as this is necessary for accurate simulation of SWCF over the region. These results provide compelling evidence of the role of the aerosol indirect effect in cooling regional climate on the Earth. Our results reaffirm that LWCF can warm both winter Tmax and Tmin. PMID:25373416

  8. Attribution of the United States “warming hole”: Aerosol indirect effect and precipitable water vapor

    NASA Astrophysics Data System (ADS)

    Yu, Shaocai; Alapaty, Kiran; Mathur, Rohit; Pleim, Jonathan; Zhang, Yuanhang; Nolte, Chris; Eder, Brian; Foley, Kristen; Nagashima, Tatsuya

    2014-11-01

    Aerosols can influence the climate indirectly by acting as cloud condensation nuclei and/or ice nuclei, thereby modifying cloud optical properties. In contrast to the widespread global warming, the central and south central United States display a noteworthy overall cooling trend during the 20th century, with an especially striking cooling trend in summertime daily maximum temperature (Tmax) (termed the U.S. ``warming hole''). Here we used observations of temperature, shortwave cloud forcing (SWCF), longwave cloud forcing (LWCF), aerosol optical depth and precipitable water vapor as well as global coupled climate models to explore the attribution of the ``warming hole''. We find that the observed cooling trend in summer Tmax can be attributed mainly to SWCF due to aerosols with offset from the greenhouse effect of precipitable water vapor. A global coupled climate model reveals that the observed ``warming hole'' can be produced only when the aerosol fields are simulated with a reasonable degree of accuracy as this is necessary for accurate simulation of SWCF over the region. These results provide compelling evidence of the role of the aerosol indirect effect in cooling regional climate on the Earth. Our results reaffirm that LWCF can warm both winter Tmax and Tmin.

  9. Attribution of the United States "warming hole": aerosol indirect effect and precipitable water vapor.

    PubMed

    Yu, Shaocai; Alapaty, Kiran; Mathur, Rohit; Pleim, Jonathan; Zhang, Yuanhang; Nolte, Chris; Eder, Brian; Foley, Kristen; Nagashima, Tatsuya

    2014-01-01

    Aerosols can influence the climate indirectly by acting as cloud condensation nuclei and/or ice nuclei, thereby modifying cloud optical properties. In contrast to the widespread global warming, the central and south central United States display a noteworthy overall cooling trend during the 20(th) century, with an especially striking cooling trend in summertime daily maximum temperature (Tmax) (termed the U.S. "warming hole"). Here we used observations of temperature, shortwave cloud forcing (SWCF), longwave cloud forcing (LWCF), aerosol optical depth and precipitable water vapor as well as global coupled climate models to explore the attribution of the "warming hole". We find that the observed cooling trend in summer Tmax can be attributed mainly to SWCF due to aerosols with offset from the greenhouse effect of precipitable water vapor. A global coupled climate model reveals that the observed "warming hole" can be produced only when the aerosol fields are simulated with a reasonable degree of accuracy as this is necessary for accurate simulation of SWCF over the region. These results provide compelling evidence of the role of the aerosol indirect effect in cooling regional climate on the Earth. Our results reaffirm that LWCF can warm both winter Tmax and Tmin. PMID:25373416

  10. Local cooling despite global warming

    NASA Astrophysics Data System (ADS)

    Girihagama, Lakshika Nilmini Kumari

    How much warmer is the ocean surface than the atmosphere directly above it? Part 1 of the present study offers a means to quantify this temperature difference using a nonlinear one-dimensional global energy balance coupled ocean--atmosphere model ("Aqua Planet"). The significance of our model, which is of intermediate complexity, is its ability to obtain an analytical solution for the global average temperatures. Preliminary results show that, for the present climate, global mean ocean temperature is 291.1 K whereas surface atmospheric temperature is 287.4 K. Thus, the surface ocean is 3.7 K warmer than the atmosphere above it. Temporal perturbation of the global mean solution obtained for "Aqua Planet" showed a stable system. Oscillation amplitude of the atmospheric temperature anomaly is greater in magnitude to those found in the ocean. There is a phase shift (a lag in the ocean), which is caused by oceanic thermal inertia. Climate feedbacks due to selected climate parameters such as incoming radiation, cloud cover, and CO2 are discussed. Warming obtained with our model compares with Intergovernmental Panel on Climate Change's (IPCC) estimations. Application of our model to local regions illuminates the importance of evaporative cooling in determining derived air-sea temperature offsets, where an increase in the latter increases the systems overall sensitivity to evaporative cooling. In part 2, we wish to answer the fairly complicated question of whether global warming and an increased freshwater flux cause Northern Hemispheric warming or cooling. Starting from the assumption of the ocean as the primary source of variability in the Northern hemispheric ocean--atmosphere coupled system, we employed a simple non--linear one--dimensional coupled ocean--atmosphere model similar to the "Aqua Planet" model but with additional advective heat transports. The simplicity of this model allows us to analytically predict the evolution of many dynamical variables of interest

  11. Global warming potential impact of bioenergy systems

    NASA Astrophysics Data System (ADS)

    Tonini, D.; Hamelin, L.; Wenzel, H.; Astrup, T.

    2012-10-01

    Reducing dependence on fossil fuels and mitigation of GHG emissions is a main focus in the energy strategy of many Countries. In the case of Demark, for instance, the long-term target of the energy policy is to reach 100% renewable energy system. This can be achieved by drastic reduction of the energy demand, optimization of production/distribution and substitution of fossil fuels with biomasses. However, a large increase in biomass consumption will finally induce conversion of arable and currently cultivated land into fields dedicated to energy crops production determining significant environmental consequences related to land use changes. In this study the global warming potential impact associated with six alternative bioenergy systems based on willow and Miscanthus was assessed by means of life-cycle assessment. The results showed that bioenergy production may generate higher global warming impacts than the reference fossil fuel system, when the impacts from indirect land use changes are accounted for. In a life-cycle perspective, only highly-efficient co-firing with fossil fuel achieved a (modest) GHG emission reduction.

  12. Global warming; What needs to be done

    SciTech Connect

    Not Available

    1991-04-01

    This paper names global warming as a high-level risk. However, global warming's risk status is a point of debate in some circles, reflecting one of the complexities of using risk-based criteria to establish priorities for action. The position that global warming is a long-term environmental trend that must be halted. In this paper, argument son both sides of the global warming issue are presented to illustrate the difficulties associated with establishing the existence and magnitude of environmental and health risks, an issue that must be faced if the SAB recommendations for EPA policy change are implemented.

  13. Indirect Drive Warm-Loaded Ignition Target Design

    SciTech Connect

    Bernat, T P; Gibson, C R

    2004-09-03

    This document summarizes the Indirect Drive Warm-Loaded Ignition Target design. These targets either use a fill tube or the capsule is strong enough to withstand the room temperature pressure of the DT fuel. Only features that affect the design of the NIF Cryogenic Target System (NCTS) are presented. The design presented is the current thinking and may evolve further. The NCTS should be designed to accommodate a range of targets and target scales, as described here. The interface location between the target and the NCTS cryostat is at the target base / gripper joint, the tamping gas gland/gland joint, and the electrical plug/receptacle joint.

  14. Potential effects on health of global warming

    SciTech Connect

    Haines, A. . Whittington Hospital); Parry, M. . Environmental Change Unit)

    1993-12-01

    Prediction of the impacts of global climate change on health is complicated by a number of factors. These include: the difficulty in predicting regional changes in climate, the capacity for adaptation to climate change, the interactions between the effects of global climate change and a number of other key determinants of health, including population growth and poverty, and the availability of adequate preventive and curative facilities for diseases that may be effected by climate change. Nevertheless, it is of importance to consider the potential health impacts of global climate change for a number of reasons. It is also important to monitor diseases which could be effected by climate change in order to detect changes in incidence as early as possible and study possible interactions with other factors. It seems likely that the possible impacts on health of climate change will be a major determinant of the degree to which policies aimed at reducing global warming are followed, as perceptions of the effect of climate change to human health and well-being are particularly likely to influence public opinion. The potential health impacts of climate change can be divided into direct (primary) and indirect (secondary and tertiary) effects. Primary effects are those related to the effect of temperature on human well-being and disease. Secondary effects include the impacts on health of changes in food production, availability of water and of sea level rise. A tertiary level of impacts can also be hypothesized.

  15. Global Warming Estimation from MSU

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Iacovazzi, Robert; Yoo, Jung-Moon

    1998-01-01

    Microwave Sounding Unit (MSU) radiometer observations in Ch 2 (53.74 GHz) from sequential, sun-synchronous, polar-orbiting NOAA satellites contain small systematic errors. Some of these errors are time-dependent and some are time-independent. Small errors in Ch 2 data of successive satellites arise from calibration differences. Also, successive NOAA satellites tend to have different Local Equatorial Crossing Times (LECT), which introduce differences in Ch 2 data due to the diurnal cycle. These two sources of systematic error are largely time independent. However, because of atmospheric drag, there can be a drift in the LECT of a given satellite, which introduces time-dependent systematic errors. One of these errors is due to the progressive chance in the diurnal cycle and the other is due to associated chances in instrument heating by the sun. In order to infer global temperature trend from the these MSU data, we have eliminated explicitly the time-independent systematic errors. Both of the time-dependent errors cannot be assessed from each satellite. For this reason, their cumulative effect on the global temperature trend is evaluated implicitly. Christy et al. (1998) (CSL). based on their method of analysis of the MSU Ch 2 data, infer a global temperature cooling trend (-0.046 K per decade) from 1979 to 1997, although their near nadir measurements yield near zero trend (0.003 K/decade). Utilising an independent method of analysis, we infer global temperature warmed by 0.12 +/- 0.06 C per decade from the observations of the MSU Ch 2 during the period 1980 to 1997.

  16. Global warming, insurance losses and financial industry

    SciTech Connect

    Low, N.C.

    1996-12-31

    Global warming causes extremely bad weather in the near term. They have already caught the attention of the insurance industry, as they suffered massive losses in the last decade. Twenty-one out of the 25 largest catastrophes in the US, mainly in the form of hurricanes have occurred in the last decade. The insurance industry has reacted by taking the risk of global warming in decisions as to pricing and underwriting decisions. But they have yet to take a more active role in regulating the factors that contributes to global warming. How global warming can impact the financial industry and the modern economy is explored. Insurance and modern financial derivatives are key to the efficient functioning of the modern economy, without which the global economy can still function but will take a giant step backward. Any risk as global warming that causes economic surprises will hamper the efficient working of the financial market and the modern economy.

  17. The effect of global warming on infectious diseases.

    PubMed

    Kurane, Ichiro

    2010-12-01

    Global warming has various effects on human health. The main indirect effects are on infectious diseases. Although the effects on infectious diseases will be detected worldwide, the degree and types of the effect are different, depending on the location of the respective countries and socioeconomical situations. Among infectious diseases, water- and foodborne infectious diseases and vector-borne infectious diseases are two main categories that are forecasted to be most affected. The effect on vector-borne infectious diseases such as malaria and dengue fever is mainly because of the expansion of the infested areas of vector mosquitoes and increase in the number and feeding activity of infected mosquitoes. There will be increase in the number of cases with water- and foodborne diarrhoeal diseases. Even with the strongest mitigation procedures, global warming cannot be avoided for decades. Therefore, implementation of adaptation measures to the effect of global warming is the most practical action we can take. It is generally accepted that the impacts of global warming on infectious diseases have not been apparent at this point yet in East Asia. However, these impacts will appear in one form or another if global warming continues to progress in future. Further research on the impacts of global warming on infectious diseases and on future prospects should be conducted. PMID:24159433

  18. Exploring the Sociopolitical Dimensions of Global Warming

    ERIC Educational Resources Information Center

    Sadler, Troy D.; Klosterman, Michelle L.

    2009-01-01

    The authors present an activity to help high school students conceptualize the sociopolitical complexity of global warming through an exploration of varied perspectives on the issue. They argue that socioscientific issues such as global warming present important contexts for learning science and that the social and political dimensions of these…

  19. Global Warming: How Much and Why?

    ERIC Educational Resources Information Center

    Lanouette, William

    1990-01-01

    Summarizes the history of the study of global warming and includes a discussion of the role of gases, like carbon dioxide, methane, and chlorofluorocarbon (CFC). Discusses modern research on the global warming, including computer modelling and the super-greenhouse effect. (YP)

  20. Turkish Students' Ideas about Global Warming

    ERIC Educational Resources Information Center

    Kilinc, Ahmet; Stanisstreet, Martin; Boyes, Edward

    2008-01-01

    A questionnaire was used to explore the prevalence of ideas about global warming in Year 10 (age 15-16 years) school students in Turkey. The frequencies of individual scientific ideas and misconceptions about the causes, consequences and "cures" of global warming were identified. In addition, several general findings emerged from this study.…

  1. Global Warming: Lessons from Ozone Depletion

    ERIC Educational Resources Information Center

    Hobson, Art

    2010-01-01

    My teaching and textbook have always covered many physics-related social issues, including stratospheric ozone depletion and global warming. The ozone saga is an inspiring good-news story that's instructive for solving the similar but bigger problem of global warming. Thus, as soon as students in my physics literacy course at the University of…

  2. Global Warming: Lessons from Ozone Depletion

    NASA Astrophysics Data System (ADS)

    Hobson, Art

    2010-11-01

    My teaching and textbook have always covered many physics-related social issues, including stratospheric ozone depletion and global warming. The ozone saga is an inspiring good-news story that's instructive for solving the similar but bigger problem of global warming. Thus, as soon as students in my physics literacy course at the University of Arkansas have developed a conceptual understanding of energy and of electromagnetism, including the electromagnetic spectrum, I devote a lecture (and a textbook section) to ozone depletion and another lecture (and section) to global warming. Humankind came together in 1986 and quickly solved, to the extent that humans can solve it, ozone depletion. We could do the same with global warming, but we haven't and as yet there's no sign that we will. The parallel between the ozone and global warming cases, and the difference in outcomes, are striking and instructive.

  3. Some economics of global warming

    SciTech Connect

    Schelling, T.C. )

    1992-03-01

    The greenhouse effect itself is simple enough to understand and is not in any real dispute. What is in dispute is its magnitude over the coming century, its translation into changes in climates around the globe, and the impacts of those climate changes on human welfare and the natural environment. These are beyond the professional understanding of any single person. The sciences involved are too numerous and diverse. Demography, economics, biology, and the technology sciences are needed to project emissions; atmospheric chemistry, oceanography, biology, and meteorology are needed to translate emissions into climates; biology, agronomy, health sciences, economics, sociology, and glaciology are needed to identify and assess impacts on human societies and natural ecosystems. And those are not all. There are expert judgments on large pieces of the subject, but no single person clothed in this panoply of disciplines has shown up or is likely to. This article makes an attempt to forecast the economic and social consequences of global warming due to anthropogenic greenhouse gases, and attempting to prevent it.

  4. How warm days increase belief in global warming

    NASA Astrophysics Data System (ADS)

    Zaval, Lisa; Keenan, Elizabeth A.; Johnson, Eric J.; Weber, Elke U.

    2014-02-01

    Climate change judgements can depend on whether today seems warmer or colder than usual, termed the local warming effect. Although previous research has demonstrated that this effect occurs, studies have yet to explain why or how temperature abnormalities influence global warming attitudes. A better understanding of the underlying psychology of this effect can help explain the public's reaction to climate change and inform approaches used to communicate the phenomenon. Across five studies, we find evidence of attribute substitution, whereby individuals use less relevant but available information (for example, today's temperature) in place of more diagnostic but less accessible information (for example, global climate change patterns) when making judgements. Moreover, we rule out alternative hypotheses involving climate change labelling and lay mental models. Ultimately, we show that present temperature abnormalities are given undue weight and lead to an overestimation of the frequency of similar past events, thereby increasing belief in and concern for global warming.

  5. Global warming and nuclear power

    SciTech Connect

    Wood, L., LLNL

    1998-07-10

    -fold reduction might be attained. Even the first such halving of carbon intensivity of stationary-source energy production world-wide might permit continued slow power-demand growth in the highly developed countries and rapid development of the other 80% of the world, both without active governmental suppression of fossil fuel usage - while also stabilizing carbon input-rates into the Earth`s atmosphere. The second two-fold reduction might obviate most global warming concerns.

  6. Delayed flowering and global warming

    NASA Astrophysics Data System (ADS)

    Cook, B. I.; Wolkovich, E. M.; Parmesan, C.

    2011-12-01

    Within general trends toward earlier spring, observed cases of species and ecosystems that have not advanced their phenology, or have even delayed it, appear paradoxical, especially when made in temperate regions experiencing significant warming. The typical interpretation of this pattern has been that non-responders are insensitive to relatively small levels of warming over the past 40 years, while species showing delays are often viewed as statistical noise or evidence for unknown confounding factors at play. However, plant physiology studies suggest that when winter chilling (vernalization) is required to initiate spring development, winter warming may retard spring events, masking expected advances caused by spring warming. Here, we analyzed long-term data on phenology and seasonal temperatures from 490 species on two continents and demonstrate that 1) apparent non-responders are indeed responding to warming, but their responses to winter and spring warming are opposite in sign, 2) observed trends in first flowering date depend strongly on the magnitude of a given species' response to autumn/winter versus spring warming, and 3) inclusion of these effects strongly improves hindcast predictions of long-term flowering trends. With a few notable exceptions, climate change research has focused on the overall mean trend towards phenological advance, minimizing discussion of apparently non-responding species. Our results illuminate an under-studied source of complexity in wild species responses and support the need for models incorporating diverse environmental cues in order to improve predictability of species responses to anthropogenic climate change.

  7. Can Global Warming be Stopped?

    NASA Astrophysics Data System (ADS)

    Luria, M.

    2013-12-01

    Earlier this year, the CO2 levels exceeded the 400 ppm level and there is no sign that the 1-2 ppm annual increase is going to slow down. Concerns regarding the danger of global warming have been reported in numerous occasions for more than a generation, ever since CO2 levels reached the 350 ppm range in the mid 1980's. Nevertheless, all efforts to slow down the increase have showed little if any effect. Mobile sources, including surface and marine transportation and aviation, consist of 20% of the global CO2 emission. The only realistic way to reduce the mobile sources' CO2 signature is by improved fuel efficiency. However, any progress in this direction is more than compensated by continuous increased demand. Stationary sources, mostly electric power generation, are responsible for the bulk of the global CO2 emission. The measurements have shown, that the effect of an increase in renewable sources, like solar wind and geothermal, combined with conversion from coal to natural gas where possible, conservation and efficiency improvement, did not compensate the increased demand mostly in developing countries. Increased usage of nuclear energy can provide some relief in carbon emission but has the potential of even greater environmental hazard. A major decrease in carbon emission can be obtained by either significant reduction in the cost of non-carbon based energy sources or by of carbon sequestration. The most economical way to make a significant decrease in carbon emission is to apply carbon sequestration technology at large point sources that use coal. Worldwide there are about 10,000 major sources that burn >7 billion metric tons of coal which generate the equivalent of 30 trillion kwh. There is a limited experience in CO2 sequestration of such huge quantities of CO2, however, it is estimated that the cost would be US$ 0.01-0.1 per kwh. The cost of eliminating this quantity can be estimated at an average of 1.5 trillion dollars annually. The major emitters, US

  8. Global Warming: Understanding and Teaching the Forecast.

    ERIC Educational Resources Information Center

    Andrews, Bill

    1994-01-01

    A resource for the teaching of the history and causes of climate change. Discusses evidence of climate change from the Viking era, early ice ages, the most recent ice age, natural causes of climate change, human-made causes of climate change, projections of global warming, and unequal warming. (LZ)

  9. A Scientific Look at Global Warming

    NASA Astrophysics Data System (ADS)

    Glanz, Peter

    2007-10-01

    Scientists like we should ask ``Where's the Beef?'' when a global warming discussion comes up. Current issues like melting glaciers, rising sea levels, disappearing polar bears and increasing tornado activity (among many) are put to the WTB test.

  10. Televised news coverage of global warming

    SciTech Connect

    Nitz, M.; Jarvis, S.; Kenski, H.

    1996-12-31

    Citizens are expressing increased concern over the number and variety of environmental problems. Global warming in particular is a focus of concern for scientists and environmental groups. Such concern should naturally motivate individuals to seek information about these topics. Many people turn to the media, most usually television, for information on the nature of these problems. Consequently, this paper studied media coverage of environmental issues, specifically global warming. Television coverage was examined for: (1) the general nature of coverage, (2) biases in coverage, (3) visual images used to cover global warming, and (4) the congruity between visual and verbal messages in newscasts. Nightly newscasts from the three major American television networks were analyzed from 1993--1995 to determine the overall nature of global warming coverage since the Earth Summit in 1992. Results indicated that television news suffers from some serious inadequacies in its portrayal of global warming issues. The paper concludes by first discussing how its results intertwine with other work in the global warming and mass media field. Finally, the implications of inadequacies in media coverage for policy-makers when it comes to sound management of critical resources in this area are also discussed.

  11. Television news coverage of global warming

    SciTech Connect

    Nitz, M.; Jarvis, S.; Kenski, H.

    1996-06-01

    Citizens are expressing increased concern over the number and variety of environmental problems. Global warming in particular is a focus of concern for scientists and environmental groups. Such concern should naturally motivate individuals to seek information about these topics. Many people turn to the media, most usually television, for information on the nature of these problems. Consequently, this paper studied media coverage of environmental issues, specifically global warming. Television coverage was examined for: (1) the general nature of coverage; (2) biases in coverage; (3) visual images used to cover global warming; and (4) the congruity between visual and verbal messages in newscasts. Nightly newscasts from the three major American television networks were analyzed from 1993--1995 to determine the overall nature of global warming coverage since the Earth Summit in 1992. Results indicated that television news suffers from some serious inadequacies in its portrayal of global warming issues. The paper concludes by first discussing how its results intertwine with other work in the global warming and mass media field. Finally, the implications of inadequacies in media coverage for policy-makers when it comes to sound management of critical resources in this area are also discussed.

  12. Hydrological consequences of global warming

    SciTech Connect

    Miller, Norman L.

    2009-06-01

    The 2007 Intergovernmental Panel for Climate Change indicates there is strong evidence that the atmospheric concentration of carbon dioxide far exceeds the natural range over the last 650,000 years, and this recent warming of the climate system is unequivocal, resulting in more frequent extreme precipitation events, earlier snowmelt runoff, increased winter flood likelihoods, increased and widespread melting of snow and ice, longer and more widespread droughts, and rising sea level. The effects of recent warming has been well documented and climate model projections indicate a range of hydrological impacts with likely to very likely probabilities (67 to 99 percent) of occurring with significant to severe consequences in response to a warmer lower atmosphere with an accelerating hydrologic cycle.

  13. Global warming: a public health concern.

    PubMed

    Afzal, Brenda M

    2007-05-01

    Over the last 100 years the average temperature on the Earth has risen approximately 1ºFahrenheit (F), increasing at a rate twice as fast as has been noted for any period in the last 1,000 years. The Arctic ice cap is shrinking, glaciers are melting, and the Arctic permafrost is thawing. There is mounting evidence that these global climate changes are already affecting human health. This article provides a brief overview of global warming and climate changes, discusses effects of climate change on health, considers the factors which contribute to climate changes, and reviews individual and collective efforts related to reducing global warming. PMID:21848352

  14. Global warming: Perspectives from the Late Quaternary paleomammal record

    SciTech Connect

    Graham, R.W. )

    1993-03-01

    Global warming at the end of the Pleistocene caused significant environmental changes that directly and indirectly effected biotic communities. The biotic response to this global warming event can provide insights into the processes that might be anticipated for future climatic changes. The megafauna extinction may have been the most dramatic alteration of mammalian communities at the end of the Pleistocene. Late Quaternary warming also altered regional diversity patterns for some small mammal guilds without extinction. Reductions in body size for both small and large mammal species were also consequences of these environmental fluctuations. Geographic shifts in the distributions of individual mammal species resulted in changes in species composition of mammalian communities. The individualistic response of biota to environmental fluctuations define some boundary conditions for modeling communities. Understanding these boundary conditions is mandatory in planning for the preservation of biodiversity in the future. Finally, it is essential to determine how global warming will alter seasonal patterns because it is apparent from the paleobiological record that not all Quaternary warming events have been the same.

  15. Some coolness concerning global warming

    NASA Technical Reports Server (NTRS)

    Lindzen, Richard S.

    1990-01-01

    The greenhouse effect hypothesis is discussed. The effects of increasing CO2 levels in the atmosphere on global temperature changes are analyzed. The problems with models currently used to predict climatic changes are examined.

  16. Global warming: A Northwest perspective

    SciTech Connect

    Scott, M.J.; Counts, C.A.

    1990-02-01

    The Northwest Power Planning Council convened a symposium in Olympia, Washington, on the subject of global climate change ( the greenhouse effect'') and its potential for affecting the Pacific Northwest. The symposium was organized in response to a need by the Power Council to understand global climate change and its potential impacts on resource planning and fish and wildlife planning for the region, as well as a need to understand national policy developing toward climate change and the Pacific Northwest's role in it. 40 figs., 15 tabs.

  17. Communicating the Dangers of Global Warming

    NASA Astrophysics Data System (ADS)

    Hansen, J. E.

    2006-12-01

    So far, in my opinion, we scientists have not done a good job of communicating the imminent threat posed by global warming, yet I believe there is still time for that if we work efficiently now to overcome existing obstacles. Several of those obstacles are illustrated by contrasting the roles of scientists, the media, special interests, politicians and the public in the ozone depletion and global warming crises. Scientists in America are further challenged by a decline in public science education, a perceived gap between science and religion, increasing politicization of public affairs offices in the government, and accumulation of power by a unitary executive. First order communication tasks are illustrated by a need for improved exchange and understanding, among scientists as well as with the public, of fundamental climate facts: (1) additional global warming exceeding 1C will yield large climate effects, (2) paleoclimate changes contain quantitatively specific information about climate sensitivity that is not widely appreciated, (3) carbon cycle facts, such as the substantial portion of carbon dioxide emissions that will remain in the air "forever", for practical purposes, (4) fossil fuel facts such as the dominant role of coal and unconventional fuels in all business-as-usual scenarios for future energy sources. The facts graphically illustrate the need for prompt actions to avoid disastrous climate change, yet they also reveal the feasibility of a course that minimizes global warming and yields other benefits. Perhaps the greatest challenge is posed by an inappropriate casting of the topic as a dichotomy between those who deny that there is a global warming problem and those who either are exceedingly pessimistic about the prospects for minimizing climate change or believe that solutions would be very expensive. Sensible evaluation of the situation, in my opinion, suggests a strategy for dealing with global warming that is not costly and has many subsidiary

  18. Global Warming Estimation from MSU

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Iacovazzi, Robert, Jr.

    1999-01-01

    In this study, we have developed time series of global temperature from 1980-97 based on the Microwave Sounding Unit (MSU) Ch 2 (53.74 GHz) observations taken from polar-orbiting NOAA operational satellites. In order to create these time series, systematic errors (approx. 0.1 K) in the Ch 2 data arising from inter-satellite differences are removed objectively. On the other hand, smaller systematic errors (approx. 0.03 K) in the data due to orbital drift of each satellite cannot be removed objectively. Such errors are expected to remain in the time series and leave an uncertainty in the inferred global temperature trend. With the help of a statistical method, the error in the MSU inferred global temperature trend resulting from orbital drifts and residual inter-satellite differences of all satellites is estimated to be 0.06 K decade. Incorporating this error, our analysis shows that the global temperature increased at a rate of 0.13 +/- 0.06 K decade during 1980-97.

  19. Beyond global warming: Ecology and global change

    SciTech Connect

    Vitousek, P.M. )

    1994-10-01

    While ecologists involved in management or policy often are advised to learn to deal with uncertainty, some components of global environmental change are certainly occurring and are certainly human-caused. All have important ecological consequences. Well-documented global changes include: Increasing concentrations of carbon dioxide in the atmosphere; alterations in the biogeochemistry of the global nitrogen cycle; and ongoing land use/land cover change. Human activity - now primarily fossil fuel combustion - has increased carbon dioxide concentrations from [approximately] 280 to 355 [mu]L/L since 1800 and is likely to have climatic consequences and direct effects on biota in all terrestrial ecosystems. The global nitrogen cycle has been altered so that more nitrogen is fixed annually by humanity than by all natural pathways combined. Altering atmospheric chemistry and aquatic ecosystems, contributes to eutrophication of the biosphere, and has substantial regional effects on biological diversity. Finally, human land use/land cover change has transformed one-third to one-half of Earth's ice-free surface, representing the most important component of global change now. Any clear dichotomy between pristine ecosystems and human-altered areas that may have existed in the past has vanished, and ecological research should account for this reality. Certain components of global environmental change are the primary causes of anticipated changes in climate, and of ongoing losses of biological diversity. They are caused by the extraordinary growth in size and resource use of the human population. On a broad scale, there is little uncertainty about any of these components of change or their causes. However, much of the public believes the causes of global change to be uncertain and contentious. By speaking out effectively,the focus of public discussion towards what can and should be done about global environmental change can be shifted. 135 refs., 13 figs., 1 tab.

  20. Resource Letter GW-2: Global Warming

    NASA Astrophysics Data System (ADS)

    Mastrandrea, Michael D.; Schneider, Stephen H.

    2008-07-01

    This Resource Letter provides a guide to the literature on human-induced climate change, also known as global warming [Resource Letter GW-1: Global Warming, John W. Firor, Am. J. Phys. 62, 490-495 (1994)]. After an introductory overview, journal articles, books, and websites are cited for the following topics: the greenhouse effect and radiative forcing, detection and attribution of human-induced climate change, carbon cycle feedbacks, paleoclimate, climate models and modeling uncertainties, projections of future climate change and climate impacts, and mitigation and adaptation policy options.

  1. Indirect Radiative Warming Effect in the Winter and Spring Arctic Associated with Aerosol Pollution from Mid-latitude Regions

    NASA Astrophysics Data System (ADS)

    Zhao, Chuanfeng; Garrett, Timothy

    2016-04-01

    Different from global cooling effects of aerosols and aerosol-cloud interactions, anthropogenic aerosols from mid-latitude are found to play an increased warming effect in the Arctic in later winter and early spring. Using four-year (2000-2003) observation of aerosol, cloud and radiation at North Slope of Alaska, it is found that the aerosols can increase cloud droplet effective radius 3 um for fixed liquid water path, and increase cloud thermal emissivity about 0.05-0.08. In other words, aerosols are associated with a warming of 1-1.6 degrees (3-5 W/m2) in the Arctic during late winter and early spring solely due to their first indirect effect. Further analysis indicates that total aerosol climate effects are even more significant (8-10 W/m2), with about 50% contribution from aerosol first indirect effect and another 50% contribution from complicated feedbacks. It also shows strong seasonal distribution of the aerosol indirect radiative effects, with warming effects in seasons other than in summer. However, only the significant warming effect in winter and spring passes through the significance test. The strong warming effect due to aerosol indirect effect could be further strengthened through following feedbacks involving the surface albedo (early ice melting).

  2. Global warming -- Science and anti-science

    SciTech Connect

    Preining, O. |

    1995-06-01

    The global warming debate has sparked many facts activities in almost all sectors of human endeavors. There are the hard facts, the measurements of the greenhouse gases, the statistics of human activities responsible for emissions, the demographic figures. There are the soft facts, the interpretations of the hard facts requiring additional assumptions. There are the media, the press, television, for whom environmental problems make good stories, these can be used to rise emotions, to make heroes and antiheroes. There are politicians, the global warming debate can be used even in electron campaigns. Global warming is a topic within and beyond science. The judgment (and hence use) of scientific facts is overwhelmingly influenced by the ``Weltbild`` (underlying beliefs how the world operates), and consequently opposing positions of well-known scientists arise. There are the attempts to invent futures of man on Earth: policies, regulations, laws on nation, international, and global levels shall facilitate a change in the basic behavior of all men. The global warming issue has many facets and cannot be successfully discussed without including, e.g., the North-South dialogue, world population, etc.

  3. Direct measurements of chemical composition of shock-induced gases from calcite: an intense global warming after the Chicxulub impact due to the indirect greenhouse effect of carbon monoxide

    NASA Astrophysics Data System (ADS)

    Kawaragi, Ko; Sekine, Yasuhito; Kadono, Toshihiko; Sugita, Seiji; Ohno, Sohsuke; Ishibashi, Ko; Kurosawa, Kosuke; Matsui, Takafumi; Ikeda, Susumu

    2009-05-01

    Shock-induced devolatilization in hypervelocity impacts has been considered to play important roles in the atmospheric evolution and mass extinctions in Earth's history. Although the chemical composition of shock-induced gas species from carbonate rocks has been considered as a key to understand the environmental change after the Chicxulub impact, it has not been investigated extensively before. Here, we conduct direct measurements of the chemical composition (CO/CO 2) of shock-induced gas species from calcite (CaCO 3) using both a laser gun system and an isotopic labeling technique. The CO/CO 2 ratio of the shock-induced gas species from calcite is measured to be 2.02 ± 0.41, suggesting that gaseous CO has been dominant in the shock-induced gases in the Chicxulub impact. In order to evaluate the environmental effects of the injection of CO gas, we investigated the post-impact atmospheric chemistry by incorporating our experimental results into a tropospheric photochemical model. The results suggest that an intense (2-5 °C) global warming would have lasted for several years after a Chicxulub-size impact mainly due to the greenhouse effect of tropospheric O 3, which is produced via photochemical reactions associated with CO gas. Such an intense global warming could have damaged the biosphere in the mass extinction at the Cretaceous-Paleogene (K-P) boundary.

  4. Can Global Warming Heat Up Environmental Education?

    ERIC Educational Resources Information Center

    Mazzatenta, Claudio

    2008-01-01

    Bronx Community College (CUNY) launched "Global Warming Campus Awareness and Action Days" in celebration of Earth Day, 2007. The purpose of this program was to raise awareness of environmental issues in the college population, especially students. To let more students have a grasp of what Environmental Education (EE) is all about, the author…

  5. Global warming and extreme storm surges

    NASA Astrophysics Data System (ADS)

    Grinsted, Aslak

    2013-04-01

    I will show empirical evidence for how global warming has changed extreme storm surge statistics for different regions in the world. Are there any detectable changes beyond what we expect from sea level rise. What does this suggest about the future of hurricane surges such as from hurricane Katrina and superstorm Sandy?

  6. Environmental colonialism Leadership and global warming

    SciTech Connect

    Not Available

    1990-02-16

    The vast majority of the world's scientific community believes there is global warming and that it is global problem requiring international cooperation. But policy makers in industrialized countries are at a crossroads:Listen to the skeptics, who demand more proof and who fear economic consequences of an anti-greenhouse campaign, or take the more difficult path of commitment to attacking the problem. Meanwhile, poverty and debt keep. The Third world locked out of any active partnership. This issue of ED highlight their results of recently tapping documents and seminar findings on the subject of global warming. This issue also contains the following: (1) ED Refining Netback Data Series for the US Gulf and West Coasts, Rotterdam, and Singapore as of the February 9, 1990; and (2) ED Fuel Price/Tax Series for countries of the Western Hemisphere, February 1990 edition. 6 figs., 5 tabs.

  7. Policies on global warming and ozone depletion

    SciTech Connect

    Green, B.

    1987-04-01

    The recent discovery of a dramatic seasonal drop in the amount of ozone over Antarctica has catalyzed concern for protection of stratospheric ozone, the layer of gas that shields the entire planet from excess ultraviolet radiation. Conservative scientific models predict about a 5% reduction in the amount of global ozone by the middle of the next century, with large local variations. The predicted global warming from increased emissions of greenhouse gases will also have differing effects on local climate and weather conditions and consequently on agriculture. Although numerous uncertainties are associated with both ozone depletion and a global warming, there is a consensus that world leaders need to address the problems. The US Congress is now beginning to take note of the task. In this article, one representative outlines some perceptions of the problems and the policy options available to Congress.

  8. Frequency of Deep Convective Clouds and Global Warming

    NASA Technical Reports Server (NTRS)

    Aumann, Hartmut H.; Teixeira, Joao

    2008-01-01

    This slide presentation reviews the effect of global warming on the formation of Deep Convective Clouds (DCC). It concludes that nature responds to global warming with an increase in strong convective activity. The frequency of DCC increases with global warming at the rate of 6%/decade. The increased frequency of DCC with global warming alone increases precipitation by 1.7%/decade. It compares the state of the art climate models' response to global warming, and concludes that the parametrization of climate models need to be tuned to more closely emulate the way nature responds to global warming.

  9. Global Warming: Claims, Science, and Consequences

    NASA Astrophysics Data System (ADS)

    Gould, Laurence I.

    2007-04-01

    Widespread (and seemingly dominant) claims about the dire consequences of anthropogenic global warming (AGW) have been propagated by both scientists and politicians and have been prominently featured by much of the mass media. This talk will examine some of those claims --- such as those made in the popular pro-AGW film, An Inconvenient Truth^1 --- from the perspectives of science^2 and scientific methodology^3. Some of the issues considered will be: What are the major ``greenhouse gases''? To what extent is global warming a result of human influences through an increase of ``greenhouse gases''? Is an increase in (1) global temperature and (2) carbon dioxide bad/good? What are some meanings that can be given to the term ``consensus'' in science? What are the estimated financial and other costs of governments implementing the Kyoto accords? Links to readings and videos will be given at the conclusion of the talk. ^1Gore, Al, An Inconvenient Truth: The Planetary Emergency of Global Warming and What We Can Do About It -- (Rodale Press, May, 2006). ^2Marlo Lewis, ``A Skeptic's Guide to An Inconvenient Truth'' http://www.cei.org/pages/aitresponse-book.cfm ^3Aaron Wildavsky, But Is It True? A Citizen's Guide to Environmental Health and Safety Issues (Harvard University Press, 1995), Intro. and Chap. 11. To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2007.NES07.C1.6

  10. Impact of global dimming and brightening on global warming

    NASA Astrophysics Data System (ADS)

    Wild, Martin; Ohmura, Atsumu; Makowski, Knut

    2007-02-01

    Speculations on the impact of variations in surface solar radiation on global warming range from concerns that solar dimming has largely masked the full magnitude of greenhouse warming, to claims that the recent reversal from solar dimming to brightening rather than the greenhouse effect was responsible for the observed warming. To disentangle surface solar and greenhouse influences on global warming, trends in diurnal temperature range are analyzed. They suggest that solar dimming was effective in masking greenhouse warming, but only up to the 1980s, when dimming gradually transformed into brightening. Since then, the uncovered greenhouse effect has revealed its full dimension, as manifested in a rapid temperature rise (+0.38°C/decade over land since mid-1980s). Recent solar brightening cannot supersede the greenhouse effect as main cause of global warming, since land temperatures increased by 0.8°C from 1960 to 2000, even though solar brightening did not fully outweigh solar dimming within this period.

  11. Global Warming: Settled Science? Unsettled Media Debate??

    NASA Astrophysics Data System (ADS)

    Schneider, S. H.

    2007-12-01

    The Intergovernmental Panel on Climate Change recently assessed the approximate 0.75°C warming since 1850 as an "unequivocal" trend. This is very rare and strong language for scientists who often lead with their caveats, not with their concerns. Later, the same report says it is "very likely" (i.e.- greater that 90% chance) that most of the warming of the past several decades can be attributed to human activities, primarily greenhouse gas emissions. So far, the science sounds "settled". Furthermore, the IPCC, as well as many other national assessments, assigns very high confidence to projections of further warming, intensified tropical cyclones, more extremes of drought and flood, and melting mountain glaciers and arctic sea ice in the twenty-first century. Still sounds settled. However, the likely range of warming projected by IPCC to 2100 varies by a whopping factor of 6: 1.1-6.4°C above 1990 levels-- hardly "settled science". Projections of precipitation are equivocal even as to the direction of change. Therefore, IPCC Working Group 2 recommends a "risk management" approach to dealing with the combination of well establish and remaining speculative components of global warming that nonetheless pose potentially serious risks to human and natural systems.

  12. National contributions to observed global warming

    NASA Astrophysics Data System (ADS)

    Damon Matthews, H.; Graham, Tanya L.; Keverian, Serge; Lamontagne, Cassandra; Seto, Donny; Smith, Trevor J.

    2014-01-01

    There is considerable interest in identifying national contributions to global warming as a way of allocating historical responsibility for observed climate change. This task is made difficult by uncertainty associated with national estimates of historical emissions, as well as by difficulty in estimating the climate response to emissions of gases with widely varying atmospheric lifetimes. Here, we present a new estimate of national contributions to observed climate warming, including CO2 emissions from fossil fuels and land-use change, as well as methane, nitrous oxide and sulfate aerosol emissions While some countries’ warming contributions are reasonably well defined by fossil fuel CO2 emissions, many countries have dominant contributions from land-use CO2 and non-CO2 greenhouse gas emissions, emphasizing the importance of both deforestation and agriculture as components of a country’s contribution to climate warming. Furthermore, because of their short atmospheric lifetime, recent sulfate aerosol emissions have a large impact on a country’s current climate contribution We show also that there are vast disparities in both total and per-capita climate contributions among countries, and that across most developed countries, per-capita contributions are not currently consistent with attempts to restrict global temperature change to less than 2 °C above pre-industrial temperatures.

  13. Robust warming of the global upper ocean.

    PubMed

    Lyman, John M; Good, Simon A; Gouretski, Viktor V; Ishii, Masayoshi; Johnson, Gregory C; Palmer, Matthew D; Smith, Doug M; Willis, Josh K

    2010-05-20

    A large ( approximately 10(23) J) multi-decadal globally averaged warming signal in the upper 300 m of the world's oceans was reported roughly a decade ago and is attributed to warming associated with anthropogenic greenhouse gases. The majority of the Earth's total energy uptake during recent decades has occurred in the upper ocean, but the underlying uncertainties in ocean warming are unclear, limiting our ability to assess closure of sea-level budgets, the global radiation imbalance and climate models. For example, several teams have recently produced different multi-year estimates of the annually averaged global integral of upper-ocean heat content anomalies (hereafter OHCA curves) or, equivalently, the thermosteric sea-level rise. Patterns of interannual variability, in particular, differ among methods. Here we examine several sources of uncertainty that contribute to differences among OHCA curves from 1993 to 2008, focusing on the difficulties of correcting biases in expendable bathythermograph (XBT) data. XBT data constitute the majority of the in situ measurements of upper-ocean heat content from 1967 to 2002, and we find that the uncertainty due to choice of XBT bias correction dominates among-method variability in OHCA curves during our 1993-2008 study period. Accounting for multiple sources of uncertainty, a composite of several OHCA curves using different XBT bias corrections still yields a statistically significant linear warming trend for 1993-2008 of 0.64 W m(-2) (calculated for the Earth's entire surface area), with a 90-per-cent confidence interval of 0.53-0.75 W m(-2). PMID:20485432

  14. Effects of Global Warming on Vibrio Ecology.

    PubMed

    Vezzulli, Luigi; Pezzati, Elisabetta; Brettar, Ingrid; Höfle, Manfred; Pruzzo, Carla

    2015-06-01

    Vibrio-related infections are increasing worldwide both in humans and aquatic animals. Rise in global sea surface temperature (SST), which is approximately 1 °C higher now than 140 years ago and is one of the primary physical impacts of global warming, has been linked to such increases. In this chapter, major known effects of increasing SST on the biology and ecology of vibrios are described. They include the effects on bacterial growth rate, both in the field and in laboratory, culturability, expression of pathogenicity traits, and interactions with aquatic organisms and abiotic surfaces. Special emphasis is given to the effect of ocean warming on Vibrio interactions with zooplankters, which represent one of the most important aquatic reservoirs for these bacteria. The reported findings highlight the biocomplexity of the interactions between vibrios and their natural environment in a climate change scenario, posing the need for interdisciplinary studies to properly understand the connection between ocean warming and persistence and spread of vibrios in sea waters and the epidemiology of the diseases they cause. PMID:26185070

  15. Scientists' views about attribution of global warming.

    PubMed

    Verheggen, Bart; Strengers, Bart; Cook, John; van Dorland, Rob; Vringer, Kees; Peters, Jeroen; Visser, Hans; Meyer, Leo

    2014-08-19

    Results are presented from a survey held among 1868 scientists studying various aspects of climate change, including physical climate, climate impacts, and mitigation. The survey was unique in its size, broadness and level of detail. Consistent with other research, we found that, as the level of expertise in climate science grew, so too did the level of agreement on anthropogenic causation. 90% of respondents with more than 10 climate-related peer-reviewed publications (about half of all respondents), explicitly agreed with anthropogenic greenhouse gases (GHGs) being the dominant driver of recent global warming. The respondents' quantitative estimate of the GHG contribution appeared to strongly depend on their judgment or knowledge of the cooling effect of aerosols. The phrasing of the IPCC attribution statement in its fourth assessment report (AR4)-providing a lower limit for the isolated GHG contribution-may have led to an underestimation of the GHG influence on recent warming. The phrasing was improved in AR5. We also report on the respondents' views on other factors contributing to global warming; of these Land Use and Land Cover Change (LULCC) was considered the most important. Respondents who characterized human influence on climate as insignificant, reported having had the most frequent media coverage regarding their views on climate change. PMID:25051508

  16. Global Warming: Evidence from Satellite Observations

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Iacovazzi, R., Jr.; Yoo, J.-M.

    2001-01-01

    Observations made in Channel 2 (53.74 GHz) of the Microwave Sounding Unit (MSU) radiometer, flown on-board sequential, sun-synchronous, polar orbiting NOAA operational satellites, indicate that the mean temperature of the atmosphere over the globe increased during the period 1980 to 1999. In this study we have minimized systematic errors in the time series introduced by the satellite orbital drift in an objective manner. This is done with the help the onboard warm black body temperature, which is used in the calibration of the MSU radiometer. The corrected MSU Channel 2 observations of the NOAA satellite series reveal that the vertically weighted global mean temperature of the atmosphere, with a peak weight near the mid-troposphere, warmed at the rate of 0.13 K per decade (with an uncertainty of 0.05 K per decade) during 1980 to 1999. The global warming deduced from conventional meteorological data that have been corrected for urbanization effects agrees reasonably with this satellite deuced result.

  17. Global Warming: Evidence from Satellite Observations

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Iacovazzi, R.; Yoo, J.-M.; Dalu, G.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Observations made in Channel 2 (53.74 GHz) of the Microwave Sounding Unit (MSU) radiometer, flown onboard sequential, sun-synchronous, polar-orbiting NOAA (National Oceanic and Atmospheric Administration) operational satellites, indicate that the mean temperature of the atmosphere over the globe increased during the period 1980 to 1999. In this study, we have minimized systematic errors in the time series introduced by satellite orbital drift in an objective manner. This is done with the help of the onboard warm-blackbody temperature, which is used in the calibration of the MSU radiometer. The corrected MSU Channel 2 observations of the NOAA satellite series reveal that the vertically-weighted global-mean temperature of the atmosphere, with a peak weight near the mid troposphere, warmed at the rate of 0.13 +/- 0.05 K/decade during 1980 to 1999. The global warming deduced from conventional meteorological data that have been corrected for urbanization effects agrees reasonably with this satellite-deduced result.

  18. Management of drought risk under global warming

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Han, Lanying; Jia, Jianying; Song, Lingling; Wang, Jinsong

    2016-07-01

    Drought is a serious ecological problem around the world, and its impact on crops and water availability for humans can jeopardize human life. Although drought has always been common, the drought risk has become increasingly prominent because of the climatic warming that has occurred during the past century. However, it still does not comprehensively understand the mechanisms that determine the occurrence of the drought risk it poses to humans, particularly in the context of global climate change. In this paper, we summarize the progress of research on drought and the associated risk, introduce the principle of a drought "transition" from one stage to another, synthesize the characteristics of key factors and their interactions, discuss the potential effect of climatic warming on drought risk, and use this discussion to define the basic requirements for a drought risk management system. We also discuss the main measures that can be used to prevent or mitigate droughts in the context of a risk management strategy.

  19. Microwave sounding units and global warming

    NASA Technical Reports Server (NTRS)

    Gary, Bruce L.; Keihm, Stephen J.

    1991-01-01

    A recent work of Spencer and Christy (1990) on precise monitoring of global temperature trends from satellites is critically examined. It is tentatively concluded in the present comment that remote sensing using satellite microwave radiometers can in fact provide a means for the monitoring of troposphere-averaged air temperature. However, for this to be successful more than one decade of data will be required to overcome the apparent inherent variability of global average air temperature. It is argued that the data set reported by Spencer and Christy should be subjected to careful review before it is interpreted as evidence of the presence or absence of global warming. In a reply, Christy provides specific responses to the commenters' objections.

  20. Global warming and thermohaline circulation stability

    NASA Astrophysics Data System (ADS)

    Wood, Richard A.; Vellinga, Michael; Thorpe, Robert

    2003-09-01

    The Atlantic thermohaline circulation (THC) plays an important role in global climate. Theoretical and palaeoclimatic evidence points to the possibility of rapid changes in the strength of the THC, including a possible quasi-permanent shutdown. The climatic impacts of such a shutdown would be severe, including a cooling throughout the Northern Hemisphere, which in some regions is greater in magnitude than the changes expected from global warming in the next 50 years. Other climatic impacts would likely include a severe alteration of rainfall patterns in the tropics, the Indian subcontinent and Europe. Modelling the future behaviour of the THC focuses on two key questions. (i) Is a gradual weakening of the THC likely in response to global warming, and if so by how much? (ii) Are there thresholds beyond which rapid or irreversible changes in the THC are likely? Most projections of the response of the THC to increasing concentrations of greenhouse gases suggest a gradual weakening over the twenty-first century. However, there is a wide variation between different models over the size of the weakening. Rapid or irreversible THC shutdown is considered a low-probability (but high-impact) outcome; however, some climate models of intermediate complexity do show the possibility of such events. The question of the future of the THC is beset with conceptual, modelling and observational uncertainties, but some current and planned projects show promise to make substantial progress in tackling these uncertainties in future.

  1. Global warming and thermohaline circulation stability.

    PubMed

    Wood, Richard A; Vellinga, Michael; Thorpe, Robert

    2003-09-15

    The Atlantic thermohaline circulation (THC) plays an important role in global climate. Theoretical and palaeoclimatic evidence points to the possibility of rapid changes in the strength of the THC, including a possible quasi-permanent shutdown. The climatic impacts of such a shutdown would be severe, including a cooling throughout the Northern Hemisphere, which in some regions is greater in magnitude than the changes expected from global warming in the next 50 years. Other climatic impacts would likely include a severe alteration of rainfall patterns in the tropics, the Indian subcontinent and Europe. Modelling the future behaviour of the THC focuses on two key questions. (i) Is a gradual weakening of the THC likely in response to global warming, and if so by how much? (ii) Are there thresholds beyond which rapid or irreversible changes in the THC are likely? Most projections of the response of the THC to increasing concentrations of greenhouse gases suggest a gradual weakening over the twenty-first century. However, there is a wide variation between different models over the size of the weakening. Rapid or irreversible THC shutdown is considered a low-probability (but high-impact) outcome; however, some climate models of intermediate complexity do show the possibility of such events. The question of the future of the THC is beset with conceptual, modelling and observational uncertainties, but some current and planned projects show promise to make substantial progress in tackling these uncertainties in future. PMID:14558904

  2. Punishments and Prizes for Explaining Global Warming

    NASA Astrophysics Data System (ADS)

    Somerville, R. C.

    2006-12-01

    Some few gifted scientists, the late Carl Sagan being an iconic example, are superbly skilled at communicating science clearly and compellingly to non-scientists. Most scientists, however, have serious shortcomings as communicators. The common failings include being verbose, addicted to jargon, caveat- obsessed and focused on details. In addition, it is far easier for a scientist to scoff at the scientific illiteracy of modern society than to work at understanding the viewpoints and concerns of journalists, policymakers and the public. Obstacles await even those scientists with the desire and the talent to communicate science well. Peer pressure and career disincentives can act as powerful deterrents, discouraging especially younger scientists from spending time on non-traditional activities. Scientists often lack mentors and role models to help them develop skills in science communication. Journalists also face real difficulties in getting science stories approved by editors and other gatekeepers. Climate change science brings its own problems in communication. The science itself is unusually wide- ranging and complex. The contentious policies and politics of dealing with global warming are difficult to disentangle from the science. Misinformation and disinformation about climate change are widespread. Intimidation and censorship of scientists by some employers is a serious problem. Polls show that global warming ranks low on the public's list of important issues. Despite all the obstacles, communicating climate change science well is critically important today. It is an art that can be learned and that brings its own rewards and satisfactions. Academic institutions and research funding agencies increasingly value outreach by scientists, and they provide resources to facilitate it. Society needs scientists who can clearly and authoritatively explain the science of global warming and its implications, while remaining objective and policy-neutral. This need will

  3. Resource Letter: GW-1: Global warming

    NASA Astrophysics Data System (ADS)

    Firor, John W.

    1994-06-01

    This Resource Letter provides a guide to the literature on the possibility of a human-induced climate change—a global warming. Journal articles and books are cited for the following topics: the Greenhouse Effect, sources of infrared-trapping gases, climate models and their uncertainties, verification of climate models, past climate changes, and economics, ethics, and politics of policy responses to climate change. [The letter E after an item indicates elementary level or material of general interest to persons becoming informed in the field. The letter I, for intermediate level, indicates material of somewhat more specialized nature, and the letter A indicates rather specialized or advanced material.

  4. Anthropogenic global warming threatens world cultural heritage

    NASA Astrophysics Data System (ADS)

    Cazenave, Anny

    2014-05-01

    Numerous cultural sites of the United Nations Educational, Scientific and Cultural Organization (UNESCO) world cultural Heritage are located in low-lying coastal regions. Because of anthropogenic global warming and induced sea level rise, many of these sites will be partially or totally flooded in the coming centuries/millennia. This is shown in a recent study by Marzeion and Levermann (2014 Environ. Res. Lett. 9 034001). Projecting future sea level rise and associated regional variability, these authors investigate which sites will be at risk. Because UNESCO cultural sites represent the common heritage of human beings and reflect the Earth and humanity history, they need to be protected for future generations.

  5. Does coral bleaching mean global warming

    SciTech Connect

    Miller, J.A.

    1991-02-01

    This article discusses the implications of global warming on the marine ecosystems. In recent hearings of the US Senate Committee on Commerce, Science and Transportation, plans were made to introduce legislation for control of greenhouse-gas emissions, conservation of biological diversity, forest conservation, world population planning, sustainable economic development , increased fuel efficiency, and increased research into Earth-system processes. Research is required to ascertain the meaning of coral bleaching, which is the mass expulsion of symbiotic algae, called zooxanthellae, which gives the coral its color. Many scientists think that the death of the algae is an early indicator for massive destruction of the marine ecosystem.

  6. Biotic prognostications: Global warming and biological diversity

    SciTech Connect

    Peters, R.L.; Lovejoy, T.E.

    1992-12-31

    This book focuses on the impacts of the greenhouse effect on biological diversity and on natural ecosystems. Included are chapters which include the following topics: government attitudes to climate change problems; general conclusions and deficiencies of general circulation models; impacts of past climate changes on global biota; effects of climate on vegetation, soils, wildlife diversity, animal physiology, ecology, behavior, migration, and parasites and diseases; arctic mariene ecosystems and coasta marine zones; tropical forests; arctic tundra; western North American forests, etc.; indirect linkages and snyergisms among climate change, biodiversity, geosphere, and anthropogenic stresses.

  7. Revaluating ocean warming impacts on global phytoplankton

    NASA Astrophysics Data System (ADS)

    Behrenfeld, Michael J.; O'Malley, Robert T.; Boss, Emmanuel S.; Westberry, Toby K.; Graff, Jason R.; Halsey, Kimberly H.; Milligan, Allen J.; Siegel, David A.; Brown, Matthew B.

    2016-03-01

    Global satellite observations document expansions of the low-chlorophyll central ocean gyres and an overall inverse relationship between anomalies in sea surface temperature and phytoplankton chlorophyll concentrations. These findings can provide an invaluable glimpse into potential future ocean changes, but only if the story they tell is accurately interpreted. Chlorophyll is not simply a measure of phytoplankton biomass, but also registers changes in intracellular pigmentation arising from light-driven (photoacclimation) and nutrient-driven physiological responses. Here, we show that the photoacclimation response is an important component of temporal chlorophyll variability across the global ocean. This attribution implies that contemporary relationships between chlorophyll changes and ocean warming are not indicative of proportional changes in productivity, as light-driven decreases in chlorophyll can be associated with constant or even increased photosynthesis. Extension of these results to future change, however, requires further evaluation of how the multifaceted stressors of a warmer, higher-CO2 world will impact plankton communities.

  8. Black carbon contribution to global warming

    SciTech Connect

    Chylek, P.; Johnson, B.; Kou, L.; Wong, J.

    1996-12-31

    Before the onset of industrial revolution the only important source of black carbon in the atmosphere was biomass burning. Today, black carbon production is divided between the biomass and fossil fuel burning. Black carbon is a major agent responsible for absorption of solar radiation by atmospheric aerosols. Thus black carbon makes other aerosols less efficient in their role of reflecting solar radiation and cooling the earth-atmosphere system. Black carbon also contributes to the absorption of solar radiation by clouds and snow cover. The authors present the results of black carbon concentrations measurements in the atmosphere, in cloud water, in rain and snow melt water collected during the 1992--1996 time period over the southern Nova Scotia. Their results are put into the global and historical perspective by comparing them with the compilation of past measurements at diverse locations and with their measurements of black carbon concentrations in the Greenland and Antarctic ice cores. Black carbon contribution to the global warming is estimated, and compared to the carbon dioxide warming, using the radiative forcing caused by the black carbon at the top of the atmosphere.

  9. Identifying the Molecular Origin of Global Warming

    NASA Technical Reports Server (NTRS)

    Bera, Partha P.; Francisco, Joseph S.; Lee, Timothy J.

    2009-01-01

    We have investigated the physical characteristics of greenhouse gases (GHGs) to assess which properties are most important in determining the efficiency of a GHG. Chlorofluorcarbons (CFCs), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), nitrogen fluorides, and various other known atmospheric trace molecules have been included in this study. Compounds containing the halogens F or Cl have in common very polar X-F or X-Cl bonds, particularly the X-F bonds. It is shown that as more F atoms bond to the same central atom, the bond dipoles become larger as a result of the central atom becoming more positive. This leads to a linear increase in the total or integrated XF bond dipole derivatives for the molecule, which leads to a non-linear (quadratic) increase in infrared (IR) intensity. Moreover, virtually all of the X-F bond stretches occur in the atmospheric IR window as opposed to X-H stretches, which do not occur in the atmospheric window. It is concluded that molecules possessing several F atoms will always have a large radiative forcing parameter in the calculation of their global warming potential. Some of the implications for global warming and climate change are discussed.

  10. Environmental refugees in a globally warmed world

    SciTech Connect

    Myers, N.

    1993-12-01

    This paper examines the complex problem of environmental refugees as among the most serious of all the effects of global warming. Shoreline erosion, coastal flooding, and agricultural disruption from drought, soil erosion and desertification are factors now and in the future in creating a group of environmental refugees. Estimates are that at least 10 million such refugees exist today. A preliminary analysis is presented here as a first attempt to understand the full character and extent of the problem. Countries with large delta and coastal areas and large populations are at particular risk from sea-level rise of as little as .5 - 1 meter, compounded by storm surge and salt water intrusions. Bangladesh, Egypt, China, and India are discussed in detail along with Island states at risk. Other global warming effects such as shifts in monsoon systems and severe and persistent droughts make agriculture particularly vulnerable. Lack of soil moisture is during the growing season will probably be the primary problem. Additional and compounding environmental problems are discussed, and an overview of the economic, sociocultural and political consequences is given. 96 refs., 1 tab.

  11. Global Warming Estimation From Microwave Sounding Unit

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Iacovazzi, R., Jr.; Yoo, J.-M.; Dalu, G.

    1998-01-01

    Microwave Sounding Unit (MSU) Ch 2 data sets, collected from sequential, polar-orbiting, Sun-synchronous National Oceanic and Atmospheric Administration operational satellites, contain systematic calibration errors that are coupled to the diurnal temperature cycle over the globe. Since these coupled errors in MSU data differ between successive satellites, it is necessary to make compensatory adjustments to these multisatellite data sets in order to determine long-term global temperature change. With the aid of the observations during overlapping periods of successive satellites, we can determine such adjustments and use them to account for the coupled errors in the long-term time series of MSU Ch 2 global temperature. In turn, these adjusted MSU Ch 2 data sets can be used to yield global temperature trend. In a pioneering study, Spencer and Christy (SC) (1990) developed a procedure to derive the global temperature trend from MSU Ch 2 data. Such a procedure can leave unaccounted residual errors in the time series of the temperature anomalies deduced by SC, which could lead to a spurious long-term temperature trend derived from their analysis. In the present study, we have developed a method that avoids the shortcomings of the SC procedure, the magnitude of the coupled errors is not determined explicitly. Furthermore, based on some assumptions, these coupled errors are eliminated in three separate steps. Such a procedure can leave unaccounted residual errors in the time series of the temperature anomalies deduced by SC, which could lead to a spurious long-term temperature trend derived from their analysis. In the present study, we have developed a method that avoids the shortcomings of the SC procedures. Based on our analysis, we find there is a global warming of 0.23+/-0.12 K between 1980 and 1991. Also, in this study, the time series of global temperature anomalies constructed by removing the global mean annual temperature cycle compares favorably with a similar

  12. Scientists' Views about Attribution of Global Warming

    NASA Astrophysics Data System (ADS)

    Verheggen, Bart; Strengers, Bart; Cook, John; van Dorland, Rob; Vringer, Kees; Peters, Jeroen; Visser, Hans; Meyer, Leo

    2015-04-01

    What do scientists think? That is an important question when engaging in science communication, in which an attempt is made to communicate the scientific understanding to a lay audience. To address this question we undertook a large and detailed survey among scientists studying various aspects of climate change , dubbed "perhaps the most thorough survey of climate scientists ever" by well-known climate scientist and science communicator Gavin Schmidt. Among more than 1800 respondents we found widespread agreement that global warming is predominantly caused by human greenhouse gases. This consensus strengthens with increased expertise, as defined by the number of self-reported articles in the peer-reviewed literature. 90% of respondents with more than 10 climate-related peer-reviewed publications (about half of all respondents), agreed that anthropogenic greenhouse gases are the dominant cause of recent global warming, i.e. having contributed more than half of the observed warming. With this survey we specified what the consensus position entails with much greater specificity than previous studies. The relevance of this consensus for science communication will be discussed. Another important result from our survey is that the main attribution statement in IPCC's fourth assessment report (AR4) may lead to an underestimate of the greenhouse gas contribution to warming, because it implicitly includes the lesser known masking effect of cooling aerosols. This shows the importance of the exact wording in high-profile reports such as those from IPCC in how the statement is perceived, even by fellow scientists. The phrasing was improved in the most recent assessment report (AR5). Respondents who characterized the human influence on climate as insignificant, reported having the most frequent media coverage regarding their views on climate change. This shows that contrarian opinions are amplified in the media in relation to their prevalence in the scientific community. This

  13. Warming and carbon dioxide enrichment alter plant production and ecosystem gas exchange in a semi-arid grassland through direct responses to global change factors and indirect effects on water relations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Prairie Heating and CO2 Enrichment (PHACE) experiment was initiated in Spring 2007 to evaluate the combined effects of warming and elevated CO2 on a northern mixed-grass prairie (NMP). Thirty 3-m diameter circular experimental plots were installed in Spring, 2006 at the USDA-ARS High Plains Gras...

  14. Rice yields decline with higher night temperature from global warming.

    PubMed

    Peng, Shaobing; Huang, Jianliang; Sheehy, John E; Laza, Rebecca C; Visperas, Romeo M; Zhong, Xuhua; Centeno, Grace S; Khush, Gurdev S; Cassman, Kenneth G

    2004-07-01

    The impact of projected global warming on crop yields has been evaluated by indirect methods using simulation models. Direct studies on the effects of observed climate change on crop growth and yield could provide more accurate information for assessing the impact of climate change on crop production. We analyzed weather data at the International Rice Research Institute Farm from 1979 to 2003 to examine temperature trends and the relationship between rice yield and temperature by using data from irrigated field experiments conducted at the International Rice Research Institute Farm from 1992 to 2003. Here we report that annual mean maximum and minimum temperatures have increased by 0.35 degrees C and 1.13 degrees C, respectively, for the period 1979-2003 and a close linkage between rice grain yield and mean minimum temperature during the dry cropping season (January to April). Grain yield declined by 10% for each 1 degrees C increase in growing-season minimum temperature in the dry season, whereas the effect of maximum temperature on crop yield was insignificant. This report provides a direct evidence of decreased rice yields from increased nighttime temperature associated with global warming. PMID:15226500

  15. Halocarbon ozone depletion and global warming potentials

    NASA Technical Reports Server (NTRS)

    Cox, Richard A.; Wuebbles, D.; Atkinson, R.; Connell, Peter S.; Dorn, H. P.; Derudder, A.; Derwent, Richard G.; Fehsenfeld, F. C.; Fisher, D.; Isaksen, Ivar S. A.

    1990-01-01

    Concern over the global environmental consequences of fully halogenated chlorofluorocarbons (CFCs) has created a need to determine the potential impacts of other halogenated organic compounds on stratospheric ozone and climate. The CFCs, which do not contain an H atom, are not oxidized or photolyzed in the troposphere. These compounds are transported into the stratosphere where they decompose and can lead to chlorine catalyzed ozone depletion. The hydrochlorofluorocarbons (HCFCs or HFCs), in particular those proposed as substitutes for CFCs, contain at least one hydrogen atom in the molecule, which confers on these compounds a much greater sensitivity toward oxidation by hydroxyl radicals in the troposphere, resulting in much shorter atmospheric lifetimes than CFCs, and consequently lower potential for depleting ozone. The available information is reviewed which relates to the lifetime of these compounds (HCFCs and HFCs) in the troposphere, and up-to-date assessments are reported of the potential relative effects of CFCs, HCFCs, HFCs, and halons on stratospheric ozone and global climate (through 'greenhouse' global warming).

  16. Global warming and changes in ocean circulation

    SciTech Connect

    Duffy, P.B.; Caldeira, K.C.

    1998-02-01

    This final report provides an overview of the goals and accomplishments of this project. Modeling and observational work has raised the possibility that global warming may cause changes in the circulation of the ocean. If such changes would occur they could have important climatic consequences. The first technical goal of this project was to investigate some of these possible changes in ocean circulation in a quantitative way, using a state-of -the-art numerical model of the ocean. Another goal was to develop our ocean model, a detailed three-dimensional numerical model of the ocean circulation and ocean carbon cycles. A major non-technical goal was to establish LLNL as a center of excellence in modelling the ocean circulation and carbon cycle.

  17. Perihelion precession, polar ice and global warming

    NASA Astrophysics Data System (ADS)

    Steel, Duncan

    2013-03-01

    The increase in mean global temperature over the past 150 years is generally ascribed to human activities, in particular the rises in the atmospheric mixing ratios of carbon dioxide and other greenhouse gases since the Industrial Revolution began. Whilst it is thought that ice ages and interglacial periods are mainly initiated by multi-millennial variations in Earth's heliocentric orbit and obliquity, shorter-term orbital variations and consequent observable climatic effects over decadal/centurial timescales have not been considered significant causes of contemporary climate change compared to anthropogenic influences. Here it is shown that the precession of perihelion occurring over a century substantially affects the intra-annual variation of solar radiation influx at different locations, especially higher latitudes, with northern and southern hemispheres being subject to contrasting insolation changes. This north/south asymmetry has grown since perihelion was aligned with the winter solstice seven to eight centuries ago, and must cause enhanced year-on-year springtime melting of Arctic (but not Antarctic) ice and therefore feedback warming because increasing amounts of land and open sea are denuded of high-albedo ice and snow across boreal summer and into autumn. The accelerating sequence of insolation change now occurring as perihelion moves further into boreal winter has not occurred previously during the Holocene and so would not have been observed before by past or present civilisations. Reasons are given for the significance of this process having been overlooked until now. This mechanism represents a supplementary - natural - contribution to climate change in the present epoch and may even be the dominant fundamental cause of global warming, although anthropogenic effects surely play a role too.

  18. Are Claims of Global Warming Being Suppressed?

    NASA Astrophysics Data System (ADS)

    Crowley, Thomas J.

    2006-02-01

    Over the last few years, I have heard many rumors that climate science relevant to the global warming discussion is being suppressed by the Bush Administration. One cannot do much about third-hand information. However, on 29 January, the New York Times published a front page article on NASA efforts to suppress statements about global warming by James Hansen, director of the NASA Goddard Institute for Space Studies. A claim by one government scientist, though, no matter how distinguished, still requires examples from other scientists before a general conclusion can be drawn about the overall scope of the problem. But if the charges are more widespread, then some government scientists might be reluctant to make such claims, because they might feel that their positions were jeopardized. Therefore, an alternate way may be needed to determine the scope of the issue, while still safeguarding government workers from possible retaliation. -On 30 January, Rep. Sherwood Boehlert (R-N.Y.), chairman of the U.S. House of Representatives Committee on Science, wrote a letter to NASA Administrator Michael Griffin addressing many of the concerns Crowley has raised. Boehlert wrote,``It ought to go without saying that government scientists must be free to describe their scientific conclusions and the implications of those conclusions to their fellow scientists, policymakers and the general public.'' He continued,``Good science cannot long persist in an atmosphere of intimidation. Political figures ought to be reviewing their public statements to make sure they are consistent with the best available science; scientists should not be reviewing their statements to make sure they are consistent with the current political orthodoxy.'' I commend Rep. Boehlert for his quick and clear statement of the importance of unfettered communication of science. -FRED SPILHAUS, Editor

  19. Warming and Carbon Dioxide Enrichment Alter Plant Production and Ecosystem gas Exchange in a Semi-Arid Grassland Through Direct Responses to Global Change Factors and Indirect Effects on Water Relations

    NASA Astrophysics Data System (ADS)

    Morgan, J. A.; Pendall, E.; Williams, D. G.; Bachman, S.; Dijkstra, F. A.; Lecain, D. R.; Follett, R.

    2007-12-01

    The Prairie Heating and CO2 Enrichment (PHACE) experiment was initiated in Spring, 2007 to evaluate the combined effects of warming and elevated CO2 on a northern mixed-grass prairie. Thirty 3-m diameter circular experimental plots were installed in Spring, 2006 at the USDA-ARS High Plains Grasslands Research Station, just west of Cheyenne, WY, USA. Twenty plots were assigned to a two-level factorial combination of two CO2 concentrations (present ambient, 380 ppmV; and elevated, 600 ppmV), and two levels of temperature (present ambient; and elevated temperature, 1.5/3.0 C warmer day/night), with five replications for each treatment. Five of the ten remaining plots were subjected to either frequent, small water additions throughout the growing season, and the other five to a deep watering once or twice during the growing season. The watering treatments were imposed to simulate hypothesized water savings in the CO2-enriched plots, and to contrast the influence of variable water dynamics on ecosystem processes. Carbon dioxide enrichment of the ten CO2- enriched plots is accomplished with Free Air CO2 Enrichment (FACE) technology and occurs during daylight hours of the mid-April - October growing season. Warming is done year-round with circularly-arranged ceramic heater arrays positioned above the ring perimeters, and with temperature feed-backs to control day/night canopy surface temperatures. Carbon dioxide enrichment began in Spring, 2006, and warming was added in Spring, 2007. Results from the first year of CO2 enrichment (2006) confirmed earlier reports that CO2 increases productivity in semi-arid grasslands (21% increase in peak seasonal above ground biomass for plants grown under elevated CO2 compared to non-enriched controls), and that the response was related to CO2- induced water savings. Growth at elevated CO2 reduced leaf carbon isotope discrimination and N concentrations in plants compared to results obtained in control plots, but the magnitude of changes

  20. A Simple Model of Global Aerosol Indirect Effects

    SciTech Connect

    Ghan, Steven J.; Smith, Steven J.; Wang, Minghuai; Zhang, Kai; Pringle, K. J.; Carslaw, K. S.; Pierce, Jeffrey; Bauer, Susanne E.; Adams, P. J.

    2013-06-28

    Most estimates of the global mean indirect effect of anthropogenic aerosol on the Earth’s energy balance are from simulations by global models of the aerosol lifecycle coupled with global models of clouds and the hydrologic cycle. Extremely simple models have been developed for integrated assessment models, but lack the flexibility to distinguish between primary and secondary sources of aerosol. Here a simple but more physically-based model expresses the aerosol indirect effect using analytic representations of droplet nucleation, cloud and aerosol vertical structure, and horizontal variability in cloud water and aerosol concentration. Although the simple model is able to produce estimates of aerosol indirect effects that are comparable to those from some global aerosol models using the same global mean aerosol properties, the estimates are found to be sensitive to several uncertain parameters, including the preindustrial cloud condensation nuclei concentration, primary and secondary anthropogenic emissions, the size of the primary particles, the fraction of the secondary anthropogenic emissions that accumulates on the coarse mode, the fraction of the secondary mass that forms new particles, and the sensitivity of liquid water path to droplet number concentration. Aerosol indirect effects are surprisingly linear in emissions. This simple model provides a much stronger physical basis for representing aerosol indirect effects than previous representations in integrated assessment models designed to quickly explore the parameter space of emissions-climate interactions. The model also produces estimates that depend on parameter values in ways that are consistent with results from detailed global aerosol-climate simulation models.

  1. Global Warming and 21st Century Drying

    NASA Technical Reports Server (NTRS)

    Cook, Benjamin I.; Smerdun, Jason E.; Seager, Richard; Coats, Sloan

    2014-01-01

    Global warming is expected to increase the frequency and intensity of droughts in the twenty-first century, but the relative contributions from changes in moisture supply (precipitation) versus evaporative demand (potential evapotranspiration; PET) have not been comprehensively assessed. Using output from a suite of general circulation model (GCM) simulations from phase 5 of the Coupled Model Intercomparison Project, projected twentyfirst century drying and wetting trends are investigated using two offline indices of surface moisture balance: the Palmer Drought Severity Index (PDSI) and the Standardized Precipitation Evapotranspiration Index (SPEI). PDSI and SPEI projections using precipitation and Penman- Monteith based PET changes from the GCMs generally agree, showing robust cross-model drying in western North America, Central America, the Mediterranean, southern Africa, and the Amazon and robust wetting occurring in the Northern Hemisphere high latitudes and east Africa (PDSI only). The SPEI is more sensitive to PET changes than the PDSI, especially in arid regions such as the Sahara and Middle East. Regional drying and wetting patterns largely mirror the spatially heterogeneous response of precipitation in the models, although drying in the PDSI and SPEI calculations extends beyond the regions of reduced precipitation. This expansion of drying areas is attributed to globally widespread increases in PET, caused by increases in surface net radiation and the vapor pressure deficit. Increased PET not only intensifies drying in areas where precipitation is already reduced, it also drives areas into drought that would otherwise experience little drying or even wetting from precipitation trends alone. This PET amplification effect is largest in the Northern Hemisphere mid-latitudes, and is especially pronounced in western North America, Europe, and southeast China. Compared to PDSI projections using precipitation changes only, the projections incorporating both

  2. Phenology and global warming research in Brazil

    NASA Astrophysics Data System (ADS)

    Morellato, L. P. C.

    2009-04-01

    A recent review on South American phenology research has shown an increase in phenology papers over the last two decades, especially in this new 21st century. Nevertheless, there is a lack of long term data sets or monitoring systems, or of papers addressing plant phenology and global warming. The IPCC AR4 report from 2007 has offered indisputable evidence of regional to global-scale change in seasonality, but it is supported by plant and animal phenological data from North Hemisphere and temperate species. Information from tropical regions in general and South America in particular are sparse or lacking. Here I summarize the recent outcomes of our ongoing tropical phenology research in Brazil and its potential contribution to integrate fields and understand the effects of global warming within the tropics. The Phenology Laboratory (UNESP) is located at Rio Claro, São Paulo State, Southeastern Brazil. We are looking for trends and shifts on tropical vegetation phenology, and are exploring different methods for collecting and analyzing phenology data. The phenological studies are developed in collaboration with graduate and undergraduate students, post-docs and researchers from Brazil and around the world. We established three long term monitoring programs on Southeastern Brazil from 2000 onwards: trees from an urban garden, semideciduous forest trees, and savanna cerrado woody vegetation, all based on direct weekly to monthly observation of marked plants. We have collected some discontinuous data from Atlantic rain forest trees ranging from 5 to 8 years long. I collaborate with the longest tropical wet forest phenology monitoring system in Central Amazon, and with another long term monitoring system on semi deciduous forest from South Brazil. All research programs aim, in the long run, to monitor and detect shifts on tropical plant phenology related to climatic changes. Our first preliminary findings suggest that: (i) flowering and leafing are more affected by

  3. Global warming 2007. An update to global warming: the balance of evidence and its policy implications.

    PubMed

    Keller, Charles F

    2007-01-01

    century or so. However, this conclusion is being challenged by differing interpretations of satellite observations of Total Solar Insolation (TSI). Different satellites give different estimates of TSI during the 1996-7 solar activity minimum. A recent study using the larger TSI satellite interpretation indicates a stronger role for the sun, and until there is agreement on TSI at solar minimum, we caution completely disregarding the sun as a significant factor in recent warming. Computer models continue to improve and, while they still do not do a satisfactory job of predicting regional changes, their simulations of global aspects of climate change and of individual forcings are increasingly reliable. In addition to these four areas, the past five years have seen advances in our understanding of many other aspects of climate change--from albedo changes due to land use to the dynamics of glacier movement. However, these more are of second order importance and will only be treated very briefly. The big news since CFK03 is the first of these, the collapse of the climate critics' last real bastion, namely that satellites and radiosondes show no significant warming in the past quarter century. Figuratively speaking, this was the center pole that held up the critics' entire "tent." Their argument was that, if there had been little warming in the past 25 years or so, then what warming was observed would have been within the range of natural variations with solar forcing as the major player. Further, the models would have been shown to be unreliable since they were predicting warming that was not happening. But now both satellite and in-situ radiosonde observations have been shown to corroborate both the surface observations of warming and the model predictions. Thus, while uncertainties still remain, we are now seeing a coherent picture in which past climate variations, solar and other forcings, model predictions and other indicators such as glacier recession all point to a human

  4. Changes in ocean vertical heat transport with global warming

    NASA Astrophysics Data System (ADS)

    Zika, Jan D.; Laliberté, Frédéric; Mudryk, Lawrence R.; Sijp, Willem P.; Nurser, A. J. G.

    2015-06-01

    Heat transport between the surface and deep ocean strongly influences transient climate change. Mechanisms setting this transport are investigated using coupled climate models and by projecting ocean circulation into the temperature-depth diagram. In this diagram, a "cold cell" cools the deep ocean through the downwelling of Antarctic waters and upwelling of warmer waters and is balanced by warming due to a "warm cell," coincident with the interhemispheric overturning and previously linked to wind and haline forcing. With anthropogenic warming, the cold cell collapses while the warm cell continues to warm the deep ocean. Simulations with increasingly strong warm cells, set by their mean Southern Hemisphere winds, exhibit increasing deep-ocean warming in response to the same anthropogenic forcing. It is argued that the partition between components of the circulation which cool and warm the deep ocean in the preindustrial climate is a key determinant of ocean vertical heat transport with global warming.

  5. Global crop yield losses from recent warming

    SciTech Connect

    Lobell, D; Field, C

    2006-06-02

    Global yields of the world-s six most widely grown crops--wheat, rice, maize, soybeans, barley, sorghum--have increased since 1961. Year-to-year variations in growing season minimum temperature, maximum temperature, and precipitation explain 30% or more of the variations in yield. Since 1991, climate trends have significantly decreased yield trends in all crops but rice, leading to foregone production since 1981 of about 12 million tons per year of wheat or maize, representing an annual economic loss of $1.2 to $1.7 billion. At the global scale, negative impacts of climate trends on crop yields are already apparent. Annual global temperatures have increased by {approx}0.4 C since 1980, with even larger changes observed in several regions (1). While many studies have considered the impacts of future climate changes on food production (2-5), the effects of these past changes on agriculture remain unclear. It is likely that warming has improved yields in some areas, reduced them in others, and had negligible impacts in still others; the relative balance of these effects at the global scale is unknown. An understanding of this balance would help to anticipate impacts of future climate changes, as well as to more accurately assess recent (and thereby project future) technologically driven yield progress. Separating the contribution of climate from concurrent changes in other factors--such as crop cultivars, management practices, soil quality, and atmospheric carbon dioxide (CO{sub 2}) levels--requires models that describe the response of yields to climate. Studies of future global impacts of climate change have typically relied on a bottom-up approach, whereby field scale, process-based models are applied to hundreds of representative sites and then averaged (e.g., ref 2). Such approaches require input data on soil and management conditions, which are often difficult to obtain. Limitations on data quality or quantity can thus limit the utility of this approach

  6. Global warming, population growth, and natural resources for food production.

    PubMed

    Pimentel, D

    1991-01-01

    Destruction of forests and the considerable burning of fossil fuels is directly causing the level of carbon dioxide and other greenhouse gases including methane, carbon monoxide, and nitrous oxide in the atmosphere to rise. Population growth in the US and the world indirectly contributes to this global warming. This has led the majority of scientists interested in weather and climate to predict that the planet's temperature will increase from 1.5 to 4.5 degrees Celsius by 2050. These forecasted climactic changes will most likely strongly affect crop production. Specifically these scientists expect the potential changes in temperature, moisture, carbon dioxide, and pests to decrease food production in North America. The degree of changes hinges on each crop and its environmental needs. If farmers begin using improved agricultural technology, the fall in crop yields can be somewhat counterbalanced. Even without global warming, however, agriculture in North America must embrace sensible ecological resource management practices such as conserving soil, water, energy, and biological resources. These sustainable agricultural practices would serve agriculture, farmers, the environment, and society. Agriculturalists, farmers, and society are already interested in sustainable agriculture. Still scientists must conduct more research on the multiple effects of potential global climate change on many different crops under various environmental conditions and on new technologies that farmers might use in agricultural production. We must cut down our consumption of fossil fuel, reduce deforestation, erase poverty, and protect our soil, water, and biological resources. The most important action we need to take, however, is to check population growth. PMID:12344889

  7. Situational Influences upon Children's Beliefs about Global Warming and Energy

    ERIC Educational Resources Information Center

    Devine-Wright, Patrick; Devine-Wright, Hannah; Fleming, Paul

    2004-01-01

    This paper explores children's beliefs about global warming and energy sources from a psychological perspective, focusing upon situational influences upon subjective beliefs, including perceived self-efficacy. The context of the research is one of growing concern at the potential impacts of global warming, yet demonstrably low levels of…

  8. Expansion of World Drylands Under Global Warming

    NASA Astrophysics Data System (ADS)

    Feng, S.; Fu, Q.; Hu, Q. S.

    2012-12-01

    The world drylands including both semi-arid and arid regions comprise of one-third of the global land surfaces, which support 14% of the world's inhabitants and a significant share of the world agriculture. Because of meager annual precipitation and large potential evaporative water loss, the ecosystems over drylands are fragile and sensitive to the global change. By analyzing the observations during 1948-2008 and 20 fully coupled climate model simulations from CMIP5 for the period 1900-2100, this study evaluated the changes of the world drylands that are defined with a modified form of the Thornthwaite's moisture index. The results based on observational data showed that the world drylands are steadily expanding during the past 60 years. The areas occupied by drylands in 1994-2008 is about 2.0×10^6km^2 (or 4%) larger than the average during the 1950s. Such an expansion is also a robust feature in the simulations of the 20 global climate models, though the rate is much smaller in the models. A stronger expanding rate is projected during the first half of this century than the simulations in the last century, followed by accelerating expansion after 2050s under the high greenhouse gas emission scenario (RCP8.5). By the end of this century, the world drylands are projected to be over 58×10^6km^2 (or 11% increase compared to the 1961-1990 climatology). The projected expansion of drylands, however, is not homogeneous over the world drylands, with major expansion of arid regions over the southwest North America, the northern fringe of Africa, southern Africa and Australia. Major expansions of semi-arid regions are projected over the north side of the Mediterranean, southern Africa, North and South America. The global warming is the main factor causing the increase of potential evapotranspiration estimated by Penman-Monteith algorithm, which in turn dominants the expansion of drylands. The widening of Hadley cell, which has impact on both temperature and precipitation

  9. Global Warming and Air Quality in China

    NASA Astrophysics Data System (ADS)

    Liu, S. C.

    2014-12-01

    The atmospheric lapse rate has been observed to decrease as a result of global warming. Reduced lapse rate is a result of a robust water vapor/lapse rate climate feedback simulated in coupled ocean-atmosphere models. The reduced lapse rate makes the atmosphere more stable, and in turn the more stable atmosphere can affect air quality in many aspects, most of them detrimental to the air quality. The largest effect of an increased vertical stability is an increased trapping of air pollutants in the boundary layer. A more stable atmosphere also makes it less likely to precipitate, especially for light and moderate precipitation that requires an unstable large-scale environment. Thus there is less scavenging of air pollutants by precipitation. Furthermore less precipitation implies less cloud cover or more clear days which can result in more nighttime inversions, again trapping more pollutants in the surface layer. Significant increase in clear days has been observed in China in the last 50 years, this can be a major contributor to more and worse fog/haze events in recent decades.

  10. Talking about Climate Change and Global Warming.

    PubMed

    Lineman, Maurice; Do, Yuno; Kim, Ji Yoon; Joo, Gea-Jae

    2015-01-01

    The increasing prevalence of social networks provides researchers greater opportunities to evaluate and assess changes in public opinion and public sentiment towards issues of social consequence. Using trend and sentiment analysis is one method whereby researchers can identify changes in public perception that can be used to enhance the development of a social consciousness towards a specific public interest. The following study assessed Relative search volume (RSV) patterns for global warming (GW) and Climate change (CC) to determine public knowledge and awareness of these terms. In conjunction with this, the researchers looked at the sentiment connected to these terms in social media networks. It was found that there was a relationship between the awareness of the information and the amount of publicity generated around the terminology. Furthermore, the primary driver for the increase in awareness was an increase in publicity in either a positive or a negative light. Sentiment analysis further confirmed that the primary emotive connections to the words were derived from the original context in which the word was framed. Thus having awareness or knowledge of a topic is strongly related to its public exposure in the media, and the emotional context of this relationship is dependent on the context in which the relationship was originally established. This has value in fields like conservation, law enforcement, or other fields where the practice can and often does have two very strong emotive responses based on the context of the problems being examined. PMID:26418127

  11. Talking about Climate Change and Global Warming

    PubMed Central

    Kim, Ji Yoon; Joo, Gea-Jae

    2015-01-01

    The increasing prevalence of social networks provides researchers greater opportunities to evaluate and assess changes in public opinion and public sentiment towards issues of social consequence. Using trend and sentiment analysis is one method whereby researchers can identify changes in public perception that can be used to enhance the development of a social consciousness towards a specific public interest. The following study assessed Relative search volume (RSV) patterns for global warming (GW) and Climate change (CC) to determine public knowledge and awareness of these terms. In conjunction with this, the researchers looked at the sentiment connected to these terms in social media networks. It was found that there was a relationship between the awareness of the information and the amount of publicity generated around the terminology. Furthermore, the primary driver for the increase in awareness was an increase in publicity in either a positive or a negative light. Sentiment analysis further confirmed that the primary emotive connections to the words were derived from the original context in which the word was framed. Thus having awareness or knowledge of a topic is strongly related to its public exposure in the media, and the emotional context of this relationship is dependent on the context in which the relationship was originally established. This has value in fields like conservation, law enforcement, or other fields where the practice can and often does have two very strong emotive responses based on the context of the problems being examined. PMID:26418127

  12. Role of Indian Ocean SST variability on the recent global warming hiatus

    NASA Astrophysics Data System (ADS)

    Arora, Anika; Rao, Suryachandra A.; Chattopadhyay, R.; Goswami, Tanmoy; George, Gibies; Sabeerali, C. T.

    2016-08-01

    Previous studies have shown a slowdown in the warming rate of the annual mean global surface temperature in the recent decade and it is referred to as the hiatus in global warming. Some recent studies have suggested that the hiatus in global warming is possibly due to strong cooling in the tropical Pacific. This study investigates the possible role of the Indian Ocean warming on the tropical Pacific cooling. Despite the continued rise in sea surface temperature (SST) over the tropical Indian Ocean, SST over the tropical Pacific has shown a cooling trend in the recent decade (2002 - 2012). It is well known fact that the Indian Ocean and the Pacific Ocean are strongly coupled to each other and the Indian Ocean basin wide warming is triggered by El Niño on interannual time scale. However, in the recent decade, this relationship is weakening. The recent Indian Ocean warming is triggering a Matsuno-Gill type response in the atmosphere by generating anomalous cyclonic circulations on either side of equator over the tropical Indian Ocean and anomalous easterlies along the tropical Pacific Ocean. These anomalous easterlies result in Ekman divergence in the equatorial Pacific and produce upwelling Kelvin waves, cools the tropical Pacific and therefore indirectly contributes to the hiatus in global warming.

  13. Global Warming in the 21st Century: An Alternate Scenario

    NASA Technical Reports Server (NTRS)

    Hansen, James E.

    2000-01-01

    Evidence on a broad range of time scales, from Proterozoic to the most recent periods, shows that the Earth's climate responds sensitively to global forcings. In the past few decades the Earth's surface has warmed rapidly, apparently in response to increasing anthropogenic greenhouse gases in the atmosphere. The conventional view is that the current global warming rate will continue or accelerate in the 21st century. I will describe an alternate scenario that would slow the rate of global warming and reduce the danger of dramatic climate change. But reliable prediction of future climate change requires improved knowledge of the carbon cycle and global observations that allow interpretation of ongoing climate change.

  14. Global warming and neurodegenerative disorders: speculations on their linkage

    PubMed Central

    Habibi, Laleh; Perry, George; Mahmoudi, Morteza

    2014-01-01

    Climate change is having considerable impact on biological systems. Eras of ice ages and warming shaped the contemporary earth and origin of creatures including humans. Warming forces stress conditions on cells. Therefore, cells evolved elaborate defense mechanisms, such as creation of heat shock proteins, to combat heat stress. Global warming is becoming a crisis and this process would yield an undefined increasing rate of neurodegenerative disorders in future decades. Since heat stress is known to have a degenerative effects on neurons and, conversely, cold conditions have protective effect on these cells, we hypothesize that persistent heat stress forced by global warming might play a crucial role in increasing neurodegenerative disorders. PMID:25671171

  15. Predicting the global warming potential of agro-ecosystems

    NASA Astrophysics Data System (ADS)

    Lehuger, S.; Gabrielle, B.; Larmanou, E.; Laville, P.; Cellier, P.; Loubet, B.

    2007-04-01

    Nitrous oxide, carbon dioxide and methane are the main biogenic greenhouse gases (GHG) contributing to the global warming potential (GWP) of agro-ecosystems. Evaluating the impact of agriculture on climate thus requires a capacity to predict the net exchanges of these gases in an integrated manner, as related to environmental conditions and crop management. Here, we used two year-round data sets from two intensively-monitored cropping systems in northern France to test the ability of the biophysical crop model CERES-EGC to simulate GHG exchanges at the plot-scale. The experiments involved maize and rapeseed crops on a loam and rendzina soils, respectively. The model was subsequently extrapolated to predict CO2 and N2O fluxes over an entire crop rotation. Indirect emissions (IE) arising from the production of agricultural inputs and from cropping operations were also added to the final GWP. One experimental site (involving a wheat-maize-barley rotation on a loamy soil) was a net source of GHG with a GWP of 350 kg CO2-C eq ha-1 yr-1, of which 75% were due to IE and 25% to direct N2O emissions. The other site (involving an oilseed rape-wheat-barley rotation on a rendzina) was a net sink of GHG for -250 kg CO2-C eq ha-1 yr-1, mainly due to a higher predicted C sequestration potential and C return from crops. Such modelling approach makes it possible to test various agronomic management scenarios, in order to design productive agro-ecosystems with low global warming impact.

  16. Global warming, energy use, and economic growth

    NASA Astrophysics Data System (ADS)

    Khanna, Neha

    The dissertation comprises four papers that explore the interactions between global warming, energy use, and economic growth. While the papers are separate entities, they share the underlying theme of highlighting national differences in the growth experience and their implications for long-term energy use and climate change. The first paper provides an overview of some key economic issues in the climate change literature. In doing so, the paper critically appraises the 1995 draft report of Working Group III of the Intergovernmental Panel on Climate Change. The focus is the choice of a pure rate of time preference in the economic modeling of climate change, abatement costs differentials between developed and developing countries, and contrasting implications of standard discount rates and value of life estimates for these two country groups. The second paper develops a global model that takes account of the depletion of oil resources in the context of a geo-economic model for climate change. It is found that in the presence of non-decreasing carbon and energy intensities and declining petroleum availability, the carbon emissions trajectory is much higher than that typically projected by other models of this genre. Furthermore, by introducing price and income sensitive demand functions for fossil fuels, the model provides a framework to assess the effectiveness of fuel specific carbon taxes in reducing the COsb2 emissions trajectory. Cross-price substitution effects necessitate unrealistically high tax rates in order to lower the projected emissions trajectory to the optimal level. The economic structure of five integrated assessment models for climate change is reviewed in the third paper, with a special focus on the macroeconomic and damage assessment modules. The final paper undertakes an econometric estimation of the changing shares of capital, labour, energy, and technical change in explaining the growth patterns of 38 countries. Production elasticities vary by

  17. Carbon cycle: Global warming then and now

    NASA Astrophysics Data System (ADS)

    Stassen, Peter

    2016-04-01

    A rapid warming event 55.8 million years ago was caused by extensive carbon emissions. The rate of change of carbon and oxygen isotopes in marine shelf sediments suggests that carbon emission rates were much slower than anthropogenic emissions.

  18. Global warming and end-use efficiency implications of replacing CFCs

    SciTech Connect

    Fairchild, P.D.; Fischer, S.K.

    1991-12-31

    The direct contribution of CFCs to calculated global warming has been recognized for some time. As a result of the international agreement to phase out CFCs due to stratospheric ozone and the ensuing search for suitable alternatives, there has recently been increased attention on the DIRECT global warming potential (GWP) of the fluorocarbon alternatives as greenhouse gases. However, to date there has been little focus on the INDIRECT global warming effect arising from end-use efficiency changes and associated CO{sub 2} emissions. A study being conducted at Oak Ridge National Laboratory (ORNL) addresses this combined or total global warming impact of viable options to replace CFCs in their major energy-related applications. This paper reviews selected results for air-conditioning, refrigeration, and heat pump applications. The analysis indicates that the CFC user industries have made substantial progress in approaching near-equal energy efficiency with the HCFC/HFC alternative refrigerants. The findings also bring into question the relative importance of the DIRECT (chemical-related) effect in many applications. Replacing CFCs is an important step in reducing the total global warming impact, and at present the HCFC and HFCS appear to offer the best efficiency and lowest total impact of options available in the relatively short time period required for the transition away from CFCs.

  19. A Simple Model of Global Aerosol Indirect Effects

    NASA Technical Reports Server (NTRS)

    Ghan, Steven J.; Smith, Steven J.; Wang, Minghuai; Zhang, Kai; Pringle, Kirsty; Carslaw, Kenneth; Pierce, Jeffrey; Bauer, Susanne; Adams, Peter

    2013-01-01

    Most estimates of the global mean indirect effect of anthropogenic aerosol on the Earth's energy balance are from simulations by global models of the aerosol lifecycle coupled with global models of clouds and the hydrologic cycle. Extremely simple models have been developed for integrated assessment models, but lack the flexibility to distinguish between primary and secondary sources of aerosol. Here a simple but more physically based model expresses the aerosol indirect effect (AIE) using analytic representations of cloud and aerosol distributions and processes. Although the simple model is able to produce estimates of AIEs that are comparable to those from some global aerosol models using the same global mean aerosol properties, the estimates by the simple model are sensitive to preindustrial cloud condensation nuclei concentration, preindustrial accumulation mode radius, width of the accumulation mode, size of primary particles, cloud thickness, primary and secondary anthropogenic emissions, the fraction of the secondary anthropogenic emissions that accumulates on the coarse mode, the fraction of the secondary mass that forms new particles, and the sensitivity of liquid water path to droplet number concentration. Estimates of present-day AIEs as low as 5 W/sq m and as high as 0.3 W/sq m are obtained for plausible sets of parameter values. Estimates are surprisingly linear in emissions. The estimates depend on parameter values in ways that are consistent with results from detailed global aerosol-climate simulation models, which adds to understanding of the dependence on AIE uncertainty on uncertainty in parameter values.

  20. Global Warming and Neotropical Rainforests: A Historical Perspective

    NASA Astrophysics Data System (ADS)

    Jaramillo, Carlos; Cárdenas, Andrés

    2013-05-01

    There is concern over the future of the tropical rainforest (TRF) in the face of global warming. Will TRFs collapse? The fossil record can inform us about that. Our compilation of 5,998 empirical estimates of temperature over the past 120 Ma indicates that tropics have warmed as much as 7°C during both the mid-Cretaceous and the Paleogene. We analyzed the paleobotanical record of South America during the Paleogene and found that the TRF did not expand toward temperate latitudes during global warm events, even though temperatures were appropriate for doing so, suggesting that solar insolation can be a constraint on the distribution of the tropical biome. Rather, a novel biome, adapted to temperate latitudes with warm winters, developed south of the tropical zone. The TRF did not collapse during past warmings; on the contrary, its diversity increased. The increase in temperature seems to be a major driver in promoting diversity.

  1. Unabated global surface temperature warming: evaluating the evidence

    NASA Astrophysics Data System (ADS)

    Karl, T. R.; Arguez, A.

    2015-12-01

    New insights related to time-dependent bias corrections in global surface temperatures have led to higher rates of warming over the past few decades than previously reported in the IPCC Fifth Assessment Report (2014). Record high global temperatures in the past few years have also contributed to larger trends. The combination of these factors and new analyses of the rate of temperature change show unabated global warming since at least the mid-Twentieth Century. New time-dependent bias corrections account for: (1) differences in temperatures measured from ships and drifting buoys; (2) improved corrections to ship measured temperatures; and (3) the larger rates of warming in polar regions (particularly the Arctic). Since 1951, the period over which IPCC (2014) attributes over half of the observed global warming to human causes, it is shown that there has been a remarkably robust and sustained warming, punctuated with inter-annual and decadal variability. This finding is confirmed through simple trend analysis and Empirical Mode Decomposition (EMD). Trend analysis however, especially for decadal trends, is sensitive to selection bias of beginning and ending dates. EMD has no selection bias. Additionally, it can highlight both short- and long-term processes affecting the global temperature times series since it addresses both non-linear and non-stationary processes. For the new NOAA global temperature data set, our analyses do not support the notion of a hiatus or slowing of long-term global warming. However, sub-decadal periods of little (or no warming) and rapid warming can also be found, clearly showing the impact of inter-annual and decadal variability that previously has been attributed to both natural and human-induced non-greenhouse forcings.

  2. Atmospheric General Circulation Changes under Global Warming

    NASA Astrophysics Data System (ADS)

    Palipane, Erool

    The work in this thesis is mainly two-fold. First we study the internal variability of the general circulation and focus our study on the annular modes and how important it is to simulate the subsynoptic scales in the circulation. In the next major section we will try to understand the mechanisms of the forced response and the mechanisms leading towards the jet shift from transient evolution in Atmospheric general circulation models. In the first part, in an attempt to assess the benefit of resolving the sub-synoptic to mesoscale processes, the spatial and temporal characteristics of the Annular Modes (AMs), in particular those related to the troposphere-stratosphere interaction, are evaluated for moderate- and high-horizontal resolution simulations with a global atmospheric general circulation model (AGCM), in comparison with the ERA40 re- analysis. Relative to the CMIP-type climate models, the IFS AGCM demonstrates notable improvement in capturing the key characteristics of the AMs. Notably, the performance with the high horizontal resolution version of the model is systematically superior to the moderate resolution on all metrics examined, including the variance of the AMs at different seasons of the year, the intrinsic e-folding time scales of the AMs, and the downward influence from the stratosphere to troposphere in the AMs. Moreover, the high-resolution simulation with a greater persistence in the intrinsic variability of the SAM projects an appreciably larger shift of the surface westerly wind during the Southern Hemisphere summer under climate change. In the second part, the response of the atmospheric circulation to greenhouse gas-induced SST warming is investigated using large ensemble experiments with two AGCMs, with a focus on the robust feature of the poleward shift of the eddy driven jet. In these experiments, large ensembles of simulations are conducted by abruptly switching the SST forcing on from January 1st to focus on the wintertime circulation

  3. Aerosol Indirect Effect on Warm Clouds over Eastern China Using Combined CALIOP and MODIS Observations

    NASA Astrophysics Data System (ADS)

    Guo, Jianping; Wang, Fu; Huang, Jingfeng; Li, Xiaowen

    2015-04-01

    Aerosol, one of key components of the climate system, is highly variable, both temporally and spatially. It often exerts great influences on the cloud-precipitation chain processes by serving as CCN/IN, altering cloud microphysics and its life cycle. Yet, the aerosol indirect effect on clouds remains largely unknown, because the initial changes in clouds due to aerosols may be enhanced or dampened by such feedback processes as modified cloud dynamics, or evaporation of the smaller droplets due to the competition for water vapor. In this study, we attempted to quantify the aerosol effects on warm cloud over eastern China, based on near-simultaneous retrievals from MODIS/AQUA, CALIOP/CALIPSO and CPR/CLOUDSAT during the period 2006 to 2010. The seasonality of aerosol from ground-based PM10 is quite different from that estimated from MODIS AOD. This result is corroborated by lower level profile of aerosol occurrence frequency from CALIOP, indicating the significant role CALIOP could play in aerosol-cloud interaction. The combined use of CALIOP and CPR facilitate the process to exactly determine the (vertical) position of warm cloud relative to aerosol, out of six scenarios in terms of aerosol-cloud mixing status in terms of aerosol-cloud mixing status, which shows as follows: AO (Aerosol only), CO (Cloud only), SASC (Single aerosol-single cloud), SADC (single aerosol-double cloud), DASC (double aerosol-single cloud), and others. Results shows that about 54% of all the cases belong to mixed status, among all the collocated aerosol-cloud cases. Under mixed condition, a boomerang shape is observed, i.e., reduced cloud droplet radius (CDR) is associated with increasing aerosol at moderate aerosol pollution (AOD<0.4), becoming saturated at AOD of 0.5, followed by an increase in CDR with aerosol. In contrast, there is no such boomerang shape found for (aerosol-cloud) separated cases. We categorize dataset into warm-season and cold-season subsets to figure out how the

  4. Mechanisms driving change: altered species interactions and ecosystem function through global warming.

    PubMed

    Traill, Lochran W; Lim, Matthew L M; Sodhi, Navjot S; Bradshaw, Corey J A

    2010-09-01

    1. We review the mechanisms behind ecosystem functions, the processes that facilitate energy transfer along food webs, and the major processes that allow the cycling of carbon, oxygen and nitrogen, and use case studies to show how these have already been, and will continue to be, altered by global warming. 2. Increased temperatures will affect the interactions between heterotrophs and autotrophs (e.g. pollination and seed dispersal), and between heterotrophs (e.g. predators-prey, parasites/pathogens-hosts), with generally negative ramifications for important ecosystem services (functions that provide direct benefit to human society such as pollination) and potential for heightened species co-extinction rates. 3. Mitigation of likely impacts of warming will require, in particular, the maintenance of species diversity as insurance for the provision of basic ecosystem services. Key to this will be long-term monitoring and focused research that seek to maintain ecosystem resilience in the face of global warming. 4. We provide guidelines for pursuing research that quantifies the nexus between ecosystem function and global warming. These include documentation of key functional species groups within systems, and understanding the principal outcomes arising from direct and indirect effects of a rapidly warming environment. Localized and targeted research and monitoring, complemented with laboratory work, will determine outcomes for resilience and guide adaptive conservation responses and long-term planning. PMID:20487086

  5. Quantifying the likelihood of a continued hiatus in global warming

    NASA Astrophysics Data System (ADS)

    Roberts, C. D.; Palmer, M. D.; McNeall, D.; Collins, M.

    2015-04-01

    Since the end of the twentieth century, global mean surface temperature has not risen as rapidly as predicted by global climate models (GCMs). This discrepancy has become known as the global warming `hiatus’ and a variety of mechanisms have been proposed to explain the observed slowdown in warming. Focusing on internally generated variability, we use pre-industrial control simulations from an observationally constrained ensemble of GCMs and a statistical approach to evaluate the expected frequency and characteristics of variability-driven hiatus periods and their likelihood of future continuation. Given an expected forced warming trend of ~0.2 K per decade, our constrained ensemble of GCMs implies that the probability of a variability-driven 10-year hiatus is ~10%, but less than 1% for a 20-year hiatus. Although the absolute probability of a 20-year hiatus is small, the probability that an existing 15-year hiatus will continue another five years is much higher (up to 25%). Therefore, given the recognized contribution of internal climate variability to the reduced rate of global warming during the past 15 years, we should not be surprised if the current hiatus continues until the end of the decade. Following the termination of a variability-driven hiatus, we also show that there is an increased likelihood of accelerated global warming associated with release of heat from the sub-surface ocean and a reversal of the phase of decadal variability in the Pacific Ocean.

  6. Global Warming and Energy Transition: A Public Policy Imperative

    NASA Astrophysics Data System (ADS)

    Stone, G. T.

    2006-12-01

    The historic transition from fossil fuels to alternative energy resources has begun. This development is commonly attributed to increasing energy costs and the need for energy security. Looming ever larger, however, is the issue that will soon drive the third energy revolution: global warming. A preponderance of evidence documents accelerating warming, enlarging impacts, and human causes -- principally combustion of fossil fuels. The carbon dioxide (C02) content of Earth's atmosphere has increased more than 35 percent since the beginning of the industrial revolution and is the highest in 650,000 years. This dramatic rise of C02 and attendant positive feedbacks are already forcing significant impacts worldwide. These include atmospheric warming with shifting climatic and habitat zones, spreading tropical disease, and more extreme weather events; rapid ice loss at high latitude and high altitude; ocean warming and acidification with coral reef bleaching and intensifying tropical storms; rising sea level; and accelerating extinction rates. The 2007 draft report of the Intergovernmental Panel on Climate Change (IPCC) predicts greater warming than in previous models. A tipping point to abrupt climate change may be imminent. It is incumbent upon geoscientists and geoscience educators to assume leadership in addressing this challenge through public outreach and general education. The following topics should be integrated into all appropriate courses: the evidence of global warming and its causes; observed present and predicted future impacts of global warming; mitigation and adaptation strategies; and implications for energy policies and economic opportunities. New entry-level science and general education courses -- such as Climate Change Fundamentals and Energy in Nature, Technology, and Society -- are proving to be effective should be widely developed In addition, by workshops and presentations to civic and business organizations and by demonstrated examples of

  7. Thai Youths and Global Warming: Media Information, Awareness, and Lifestyle Activities

    ERIC Educational Resources Information Center

    Chokriensukchai, Kanchana; Tamang, Ritendra

    2010-01-01

    This study examines the exposure of Thai youths to media information on global warming, the relationship between exposure to global warming information and awareness of global warming, and the relationship between that awareness and lifestyle activities that contribute to global warming. A focus group of eight Thai youths provided information that…

  8. The impact of global warming on Mount Everest.

    PubMed

    Moore, G W K; Semple, John L

    2009-01-01

    Global warming impacts a wide range of human activities and ecosystems. One unanticipated consequence of the warming is an increase in barometric pressure throughout the troposphere. Mount Everest's extreme height and resulting low barometric pressure places humans near its summit in an extreme state of hypoxia. Here we quantify the degree with which this warming is increasing the barometric pressure near Everest's summit and argue that it is of such a magnitude as to make the mountain, over time, easier to climb. PMID:20039819

  9. Bog breath: Sleeper factor in global warming?

    SciTech Connect

    Benyus, J.M.

    1995-04-01

    This artical examines the emission of gases from northern peatlands as plants grow and decay and its implication in the global increase in greenhouse gases, particularly carbon dioxide and methane. Bogs do extract carbon dioxide from the air, incorporating it into green plants which become buried for a long time. However, the cold, wet conditions are ideal for microbes which emit methane. Global climate change models indicate that Minnesota, for example will be 5 degrees warmer and somewhat wetter in future years. As a result bacterial metabolism and methane generation may increase considerably. This paper discusses current research and speculation and looks at possible solutions, both man-created and natural.

  10. Global warming: knowledge and views of Iranian students.

    PubMed

    Yazdanparast, Taraneh; Salehpour, Sousan; Masjedi, Mohammad Reza; Seyedmehdi, Seyed Mohammad; Boyes, Eddie; Stanisstreet, Martin; Attarchi, Mirsaeed

    2013-01-01

    Study of students' knowledge about global warming can help authorities to have better imagination of this critical environmental problem. This research examines high school students' ideas about greenhouse effect and the results may be useful for the respective authorities to improve cultural and educational aspects of next generation. In this cross-sectional study, a 42 question questionnaire with mix of open and closed questions was used to evaluate high school students' view about the mechanism, consequences, causes and cures of global warming. To assess students' knowledge, cognitive score was also calculated. 1035 students were randomly selected from 19 educational districts of Tehran. Sampling method was multi stage. Only 5.1% of the students could explain greenhouse effect correctly and completely. 88.8% and 71.2% respectively believed "if the greenhouse effect gets bigger the Earth will get hotter" and "incidence of more skin cancers is a consequence of global warming". 69.6% and 68.8% respectively thought "the greenhouse effect is made worse by too much carbon dioxide" and "presence of ozone holes is a cause of greenhouse effect". 68.4% believed "not using cars so much is a cure for global warming". While a student's 'cognitive score' could range from -36 to +36, Students' mean cognitive score was equal to +1.64. Mean cognitive score of male students and grade 2 & 3 students was respectively higher than female ones (P<0.01) and grade 1 students (P<0.001) but there was no statistically significant difference between students of different regions (P>0.05). In general, students' knowledge about global warming was not acceptable and there were some misconceptions in the students' mind, such as supposing ozone holes as a cause and more skin cancer as a consequence of global warming. The Findings of this survey indicate that, this important stratum of society have been received no sufficient and efficient education and sensitization on this matter. PMID:23605603

  11. Global warming and prairie wetlands: potential consequences for waterfowl habitat

    USGS Publications Warehouse

    Poiani, Karen A.; Johnson, W. Carter

    1991-01-01

    precipitation and runoff from melting snow on frozen or saturated soils (Figure 2). Annual water levels fluctuate widely due to climate variability in the Great Plains (Borchert 1950, Kantrud et al. 1989b). Climate affects the quality of habitat for breeding waterfowl by controlling regional water conditions--water depth, areal extent, and length of wet/dry cycles (Cowardin et al. 1988)--and vegetation patterns such as the cover ration (the ratio of emergent plant cover to open water). With increased levels of atmospheric carbon dioxide, climate models project warmer and, in some cases, drier conditions for the northern Great Plains (Karl et al. 1991, Manabe and Wetherald 1986, Mitchell 1983, Rind and Lebedeff 1984). In general, a warmer, drier climate could lower waterfowl production directly by increasing the frequency of dry basins and indirectly by producing less favorable cover rations (i.e., heavy emergent cover with few or no open-water areas). The possibility of diminished waterfowl production in a greenhouse climate comes at a time when waterfowl numbers have sharply declined for other reasons (Johnson and Shaffer 1987). Breeding habitat continues to be lost or altered by agriculture, grazing, burning, mowing, sedimentation, and drainage (Kantrud et al. 1989b). For example, it has been estimated that 60% of the wetland area in North Dakota has been drained (Tiner 1984). Pesticides entering wetlands from adjacent agricultural fields have been destructive to aquatic invertebrate populations and have significantly lowered duckling survival (Grue et al. 1988). In this article, we discuss current understanding and projections of global warming; review wetland vegetation dynamics to establish the strong relationship among climate, wetland hydrology, vegetation patterns, and waterflow habitat; discuss the potential effects of a greenhouse warming on these relationships; and illustrate the potential effects of climate change on wetland habitat by using a simulation model. The

  12. Responses of Antarctic Oscillation to global warming

    NASA Astrophysics Data System (ADS)

    Feng, S.

    2015-12-01

    The Antarctic Oscillation (AAO) is the major annular mode dominates the spatiotemporal variability of the atmospheric circulation in the Southern Hemisphere. This study examined the sensitivity of AAO to future warming by analyzing the outputs of 34 state-of-the-art climate models participating in phase 5 of the Coupled Model Intercomparion Project (CMIP5). The model simulations include the stabilized (RCP4.5) and business as usual (RCP8.5) scenarios as well as the idealized 1% per year increase in atmospheric CO2 to quadrupling (1pctCO2) and an instantaneous quadrupling of CO2 (abrupt4xCO2). We show that the CMIP5 models on average simulate increases in the AAO in every season by 2100 under the RCP4.5 and RCP8.5 scenarios. However, due to the impacts of ozone, aerosol and land use changes, the amplitudes of the projected changes in AAO to future climate scenarios are quit different on different seasons. After the impact of ozone, aerosol and land use changes were removed; it was found that the impact of greenhouse gases (GHGs) on AAO is similar on all seasons. The increases of AAO are accelerating following the increase of GHGs. Our results are also consistent with the simulations of 1pctCO2 and abrupt4xCO2.

  13. Climatic irregular staircases: generalized acceleration of global warming.

    PubMed

    De Saedeleer, Bernard

    2016-01-01

    Global warming rates mentioned in the literature are often restricted to a couple of arbitrary periods of time, or of isolated values of the starting year, lacking a global view. In this study, we perform on the contrary an exhaustive parametric analysis of the NASA GISS LOTI data, and also of the HadCRUT4 data. The starting year systematically varies between 1880 and 2002, and the averaging period from 5 to 30 yr - not only decades; the ending year also varies . In this way, we uncover a whole unexplored space of values for the global warming rate, and access the full picture. Additionally, stairstep averaging and linear least squares fitting to determine climatic trends have been sofar exclusive. We propose here an original hybrid method which combines both approaches in order to derive a new type of climatic trend. We find that there is an overall acceleration of the global warming whatever the value of the averaging period, and that 99.9% of the 3029 Earth's climatic irregular staircases are rising. Graphical evidence is also given that choosing an El Niño year as starting year gives lower global warming rates - except if there is a volcanic cooling in parallel. Our rates agree and generalize several results mentioned in the literature. PMID:26813867

  14. Climatic irregular staircases: generalized acceleration of global warming

    PubMed Central

    De Saedeleer, Bernard

    2016-01-01

    Global warming rates mentioned in the literature are often restricted to a couple of arbitrary periods of time, or of isolated values of the starting year, lacking a global view. In this study, we perform on the contrary an exhaustive parametric analysis of the NASA GISS LOTI data, and also of the HadCRUT4 data. The starting year systematically varies between 1880 and 2002, and the averaging period from 5 to 30 yr — not only decades; the ending year also varies . In this way, we uncover a whole unexplored space of values for the global warming rate, and access the full picture. Additionally, stairstep averaging and linear least squares fitting to determine climatic trends have been sofar exclusive. We propose here an original hybrid method which combines both approaches in order to derive a new type of climatic trend. We find that there is an overall acceleration of the global warming whatever the value of the averaging period, and that 99.9% of the 3029 Earth’s climatic irregular staircases are rising. Graphical evidence is also given that choosing an El Niño year as starting year gives lower global warming rates — except if there is a volcanic cooling in parallel. Our rates agree and generalize several results mentioned in the literature. PMID:26813867

  15. Energy and global warming impacts of HFC refrigerants and emerging technologies: TEWI-III

    SciTech Connect

    Sand, J.R.; Fischer, S.K.; Baxter, V.D.

    1997-06-01

    The use of hydrofluorocarbons (BFCs) which were developed as alternative refrigerants and insulating foam blowing agents to replace chlorofluorocarbons (CFCs) is now being affected by scientific investigations of greenhouse warming and questions about the effects of refrigerants and blowing agents on global warming. A Total Equivalent Warming Impact (TEWI) assessment analyzes the environmental affects of these halogenated working fluids in energy consuming applications by combining a direct effect resulting from the inadvertent release of HFCs to the atmosphere with an indirect effect resulting from the combustion of fossil fuels needed to provide the energy to operate equipment using these compounds as working fluids. TEWI is a more balanced measure of environmental impact because it is not based solely on the global warming potential (GWP) of the working fluid. It also shows the environmental benefit of efficient technologies that result in less CO{sub 2} generation and eventual emission to the earth`s atmosphere. The goal of TEWI is to assess total global warming impact of all the gases released to the atmosphere, including CO{sub 2} emissions from energy conversion. Alternative chemicals and technologies have been proposed as substitutes for HFCs in the vapor-compression cycle for refrigeration and air conditioning and for polymer foams in appliance and building insulations which claim substantial environmental benefits. Among these alternatives are: (1) Hydrocarbon (HC) refrigerants and blowing agents which have zero ozone depleting potential and a negligible global warming potential, (2) CO{sub 2} as a refrigerant and blowing agent, (3) Ammonia (NH{sub 3}) vapor compression systems, (4) Absorption chiller and heat pumping cycles using ammonia/water or lithium bromide/water, and (5) Evacuated panel insulations. This paper summarizes major results and conclusions of the detailed final report on the TEWI-111 study.

  16. Using Updated Climate Accounting to Slow Global Warming Before 2035

    NASA Astrophysics Data System (ADS)

    Schultz, T.

    2015-12-01

    The current and projected worsening of climate impacts make clear the urgency of limiting the global mean temperature to 2°C over preindustrial levels. But while mitigation policy today may slow global warming at the end of the century, it will not keep global warming within these limits. This failure arises in large part from the climate accounting system used to inform this policy, which does not factor in several scientific findings from the last two decades, including: The urgent need to slow global warming before 2035. This can postpone the time the +1.5°C limit is passed, and is the only way to avoid the most serious long-term climate disruptions. That while it may mitigate warming by the end of the century, reducing emissions of CO2 alone, according to UNEP/WMO[1], will do "little to mitigate warming over the next 20-30 years," and "may temporarily enhance near-term warming as sulfate [cooling] is reduced." That the only emissions reductions that can slow warming before 2035 are focused on short-lived climate pollutants. A small increase in current mitigation funding could fund these projects, the most promising of which target emissions in regional climate "hot spots" like the Arctic and India.[2] To ensure policies can effectively slow global warming before 2035, a new climate accounting system is needed. Such an updated system is being standardized in the USA,[3] and has been proposed for use in ISO standards. The key features of this updated system are: consideration of all climate pollutants and their multi-faceted climate effects; use of time horizons which prioritize mitigation of near-term warming; a consistent and accurate accounting for "biogenic" CO2; protocols ensuring that new scientific findings are incorporated; and a distinct accounting for emissions affecting regional "hot spots". This accounting system also considers environmental impacts outside of climate change, a feature necessary to identify "win-win" projects with climate benefits

  17. A Noted Physicist's Contrarian View of Global Warming

    ERIC Educational Resources Information Center

    Goldstein, Evan R., Comp.

    2008-01-01

    According to Freeman Dyson, an emeritus professor of physics at the Institute for Advanced Study, the debate about global warming has become too narrow and opinions have become too entrenched. Relying on a computer model designed by the Yale University economist William D. Nordhaus, Dyson compared the effectiveness and economic feasibility of…

  18. Promotion of Scientific Literacy on Global Warming by Process Drama

    ERIC Educational Resources Information Center

    Pongsophon, Pongprapan; Yutakom, Naruemon; Boujaoude, Saouma B.

    2010-01-01

    This project aims to investigate how process drama promotes scientific literacy in the context of global warming. Thirty-one lower (n = 24) and upper (n = 7) secondary students of one secondary school in Bangkok, Thailand participated in a seven-day workshop which process drama strategy was implemented. In the workshop, the students were actively…

  19. Carbon Dioxide and Global Warming: A Failed Experiment

    ERIC Educational Resources Information Center

    Ribeiro, Carla

    2014-01-01

    Global warming is a current environmental issue that has been linked to an increase in anthropogenic carbon dioxide in the atmosphere. To raise awareness of the problem, various simple experiments have been proposed to demonstrate the effect of carbon dioxide on the planet's temperature. This article describes a similar experiment, which…

  20. Seventh Grade Students' Conceptions of Global Warming and Climate Change

    ERIC Educational Resources Information Center

    Shepardson, Daniel P.; Niyogi, Dev; Choi, Soyoung; Charusombat, Umarporn

    2009-01-01

    The purpose of this study was to investigate seventh grade students' conceptions of global warming and climate change. The study was descriptive in nature and involved the collection of qualitative data from 91 seventh grade students from three different schools in the Midwest, USA. An open response and draw and explain assessment instrument was…

  1. Turkish Prospective Teachers' Understanding and Misunderstanding on Global Warming

    ERIC Educational Resources Information Center

    Ocal, A.; Kisoglu, M.; Alas, A.; Gurbuz, H.

    2011-01-01

    The key objective of this study is to determine the Turkish elementary prospective teachers' opinions on global warming. It is also aimed to establish prospective teachers' views about the environmental education in Turkish universities. A true-false type scale was administered to 564 prospective teachers from science education, social studies…

  2. Global Warming: If You Can't Stand the Heat

    ERIC Educational Resources Information Center

    Baird, Stephen L.

    2005-01-01

    Global warming is the progressive, gradual rise of the earth's average surface temperature, thought to be caused in part by increased concentrations of "greenhouse" gases (GHGs) in the atmosphere. According to the National Academy of Sciences, the Earth's temperature has risen by about one degree Fahrenheit in the past century, with accelerated…

  3. College Students' Misconceptions of Environmental Issues Related to Global Warming.

    ERIC Educational Resources Information Center

    Groves, Fred H.; Pugh, Ava F.

    Students are currently exposed to world environmental problems--including global warming and the greenhouse effect--in science classes at various points during their K-12 and college experience. However, the amount and depth of explosure to these issues can be quite variable. Students are also exposed to sources of misinformation leading to…

  4. Global Warming: Discussion for EOS Science Writers Workshop

    NASA Technical Reports Server (NTRS)

    Hansen, James E

    1999-01-01

    The existence of global warming this century is no longer an issue of scientific debate. But there are many important questions about the nature and causes of long-term climate change, th roles of nature and human-made climate forcings and unforced (chaotic) climate variability, the practical impacts of climate change, and what, if anything, should be done to reduce global warming, Global warming is not a uniform increase of temperature, but rather involves at complex geographically varying climate change. Understanding of global warming will require improved observations of climate change itself and the forcing factors that can lead to climate change. The NASA Terra mission and other NASA Earth Science missions will provide key measurement of climate change and climate forcings. The strategy to develop an understanding of the causes and predictability of long-term climate change must be based on combination of observations with models and analysis. The upcoming NASA missions will make important contributions to the required observations.

  5. Simulation of future global warming scenarios in rice paddies with an open-field warming facility

    PubMed Central

    2011-01-01

    To simulate expected future global warming, hexagonal arrays of infrared heaters have previously been used to warm open-field canopies of upland crops such as wheat. Through the use of concrete-anchored posts, improved software, overhead wires, extensive grounding, and monitoring with a thermal camera, the technology was safely and reliably extended to paddy rice fields. The system maintained canopy temperature increases within 0.5°C of daytime and nighttime set-point differences of 1.3 and 2.7°C 67% of the time. PMID:22145582

  6. Global Warming Attenuates the Tropical Atlantic-Pacific Teleconnection

    PubMed Central

    Jia, Fan; Wu, Lixin; Gan, Bolan; Cai, Wenju

    2016-01-01

    Changes in global sea surface temperature (SST) since the end of last century display a pattern of widespread warming intercepted by cooling in the eastern equatorial Pacific and western coasts of the American continent. Studies have suggested that the cooling in the eastern equatorial Pacific may be partly induced by warming in the North Atlantic. However, it remains unknown how stable this inter-tropical teleconnection will be under global warming. Here we show that the inter-tropical teleconnection from the tropical Atlantic to Pacific weakens substantially as the CO2 concentration increases. This reduced impact is related to the El Niño-like warming of the tropical Pacific mean state, which leads to limited seasonal migration of the Pacific inter-tropical convergence zone (ITCZ) and weakened ocean heat transport. A fast decay of the tropical Atlantic SST anomalies in a warmer climate also contributes to the weakened teleconnection. Our study suggests that as greenhouse warming continues, the trend in the tropical Pacific as well as the development of ENSO will be less frequently interrupted by the Atlantic because of this attenuation. The weakened teleconnection is also supported by CMIP5 models, although only a few of these models can capture this inter-tropical teleconnection. PMID:26838053

  7. Global Warming Attenuates the Tropical Atlantic-Pacific Teleconnection.

    PubMed

    Jia, Fan; Wu, Lixin; Gan, Bolan; Cai, Wenju

    2016-01-01

    Changes in global sea surface temperature (SST) since the end of last century display a pattern of widespread warming intercepted by cooling in the eastern equatorial Pacific and western coasts of the American continent. Studies have suggested that the cooling in the eastern equatorial Pacific may be partly induced by warming in the North Atlantic. However, it remains unknown how stable this inter-tropical teleconnection will be under global warming. Here we show that the inter-tropical teleconnection from the tropical Atlantic to Pacific weakens substantially as the CO2 concentration increases. This reduced impact is related to the El Niño-like warming of the tropical Pacific mean state, which leads to limited seasonal migration of the Pacific inter-tropical convergence zone (ITCZ) and weakened ocean heat transport. A fast decay of the tropical Atlantic SST anomalies in a warmer climate also contributes to the weakened teleconnection. Our study suggests that as greenhouse warming continues, the trend in the tropical Pacific as well as the development of ENSO will be less frequently interrupted by the Atlantic because of this attenuation. The weakened teleconnection is also supported by CMIP5 models, although only a few of these models can capture this inter-tropical teleconnection. PMID:26838053

  8. Global Warming Attenuates the Tropical Atlantic-Pacific Teleconnection

    NASA Astrophysics Data System (ADS)

    Jia, Fan; Wu, Lixin; Gan, Bolan; Cai, Wenju

    2016-02-01

    Changes in global sea surface temperature (SST) since the end of last century display a pattern of widespread warming intercepted by cooling in the eastern equatorial Pacific and western coasts of the American continent. Studies have suggested that the cooling in the eastern equatorial Pacific may be partly induced by warming in the North Atlantic. However, it remains unknown how stable this inter-tropical teleconnection will be under global warming. Here we show that the inter-tropical teleconnection from the tropical Atlantic to Pacific weakens substantially as the CO2 concentration increases. This reduced impact is related to the El Niño-like warming of the tropical Pacific mean state, which leads to limited seasonal migration of the Pacific inter-tropical convergence zone (ITCZ) and weakened ocean heat transport. A fast decay of the tropical Atlantic SST anomalies in a warmer climate also contributes to the weakened teleconnection. Our study suggests that as greenhouse warming continues, the trend in the tropical Pacific as well as the development of ENSO will be less frequently interrupted by the Atlantic because of this attenuation. The weakened teleconnection is also supported by CMIP5 models, although only a few of these models can capture this inter-tropical teleconnection.

  9. I'll Save the World from Global Warming--Tomorrow: Using Procrastination Management to Combat Global Warming

    ERIC Educational Resources Information Center

    Malott, Richard W.

    2010-01-01

    In the provocatively titled "I'll Save the World from Global Warming--Tomorrow," Dick Malott says that although we all want to do the right thing to help the environment, whether it's buying and installing compact fluorescent light bulbs (CFLs) or replacing an energy-guzzling appliance with a more efficient one, we put it off because there's no…

  10. Signature of ocean warming in global fisheries catch.

    PubMed

    Cheung, William W L; Watson, Reg; Pauly, Daniel

    2013-05-16

    Marine fishes and invertebrates respond to ocean warming through distribution shifts, generally to higher latitudes and deeper waters. Consequently, fisheries should be affected by 'tropicalization' of catch (increasing dominance of warm-water species). However, a signature of such climate-change effects on global fisheries catch has so far not been detected. Here we report such an index, the mean temperature of the catch (MTC), that is calculated from the average inferred temperature preference of exploited species weighted by their annual catch. Our results show that, after accounting for the effects of fishing and large-scale oceanographic variability, global MTC increased at a rate of 0.19 degrees Celsius per decade between 1970 and 2006, and non-tropical MTC increased at a rate of 0.23 degrees Celsius per decade. In tropical areas, MTC increased initially because of the reduction in the proportion of subtropical species catches, but subsequently stabilized as scope for further tropicalization of communities became limited. Changes in MTC in 52 large marine ecosystems, covering the majority of the world's coastal and shelf areas, are significantly and positively related to regional changes in sea surface temperature. This study shows that ocean warming has already affected global fisheries in the past four decades, highlighting the immediate need to develop adaptation plans to minimize the effect of such warming on the economy and food security of coastal communities, particularly in tropical regions. PMID:23676754

  11. Quantifying global warming from the retreat of glaciers

    SciTech Connect

    Oerlemans, J. )

    1994-04-08

    Records of glacier fluctuations compiled by the World Glacier Monitoring Service can be used to derive an independent estimate of global warming during the last 100 years. Records of different glaciers are made comparable by a two-step scaling procedure; one allowing for differences in glacier geometry, the other for differences in climate sensitivity. The retreat of glaciers during the last 100 years appears to be coherent over the globe. On the basis of modeling of the climate sensitivity of glaciers, the observed glacier retreat can be explained by a linear warming trend of 0.66 kelvin per century.

  12. Recent decrease in typhoon destructive potential and global warming implications

    PubMed Central

    Lin, I-I; Chan, Johnny C.L.

    2015-01-01

    Typhoons (tropical cyclones) severely impact the half-billion population of the Asian Pacific. Intriguingly, during the recent decade, typhoon destructive potential (Power Dissipation Index, PDI) has decreased considerably (by ∼35%). This decrease, paradoxically, has occurred despite the increase in typhoon intensity and ocean warming. Using the method proposed by Emanuel (in 2007), we show that the stronger negative contributions from typhoon frequency and duration, decrease to cancel the positive contribution from the increasing intensity, controlling the PDI. Examining the typhoons' environmental conditions, we find that although the ocean condition became more favourable (warming) in the recent decade, the atmospheric condition ‘worsened' at the same time. The ‘worsened' atmospheric condition appears to effectively overpower the ‘better' ocean conditions to suppress PDI. This stronger negative contribution from reduced typhoon frequency over the increased intensity is also present under the global warming scenario, based on analysis of the simulated typhoon data from high-resolution modelling. PMID:25990561

  13. Fast-slow climate dynamics and peak global warming

    NASA Astrophysics Data System (ADS)

    Seshadri, Ashwin K.

    2016-06-01

    The dynamics of a linear two-box energy balance climate model is analyzed as a fast-slow system, where the atmosphere, land, and near-surface ocean taken together respond within few years to external forcing whereas the deep-ocean responds much more slowly. Solutions to this system are approximated by estimating the system's time-constants using a first-order expansion of the system's eigenvalue problem in a perturbation parameter, which is the ratio of heat capacities of upper and lower boxes. The solution naturally admits an interpretation in terms of a fast response that depends approximately on radiative forcing and a slow response depending on integrals of radiative forcing with respect to time. The slow response is inversely proportional to the "damping-timescale", the timescale with which deep-ocean warming influences global warming. Applications of approximate solutions are discussed: conditions for a warming peak, effects of an individual pulse emission of carbon dioxide (CO2 ), and metrics for estimating and comparing contributions of different climate forcers to maximum global warming.

  14. Global warming triggers the loss of a key Arctic refugium.

    PubMed

    Rühland, K M; Paterson, A M; Keller, W; Michelutti, N; Smol, J P

    2013-12-01

    We document the rapid transformation of one of the Earth's last remaining Arctic refugia, a change that is being driven by global warming. In stark contrast to the amplified warming observed throughout much of the Arctic, the Hudson Bay Lowlands (HBL) of subarctic Canada has maintained cool temperatures, largely due to the counteracting effects of persistent sea ice. However, since the mid-1990s, climate of the HBL has passed a tipping point, the pace and magnitude of which is exceptional even by Arctic standards, exceeding the range of regional long-term variability. Using high-resolution, palaeolimnological records of algal remains in dated lake sediment cores, we report that, within this short period of intense warming, striking biological changes have occurred in the region's freshwater ecosystems. The delayed and intense warming in this remote region provides a natural observatory for testing ecosystem resilience under a rapidly changing climate, in the absence of direct anthropogenic influences. The environmental repercussions of this climate change are of global significance, influencing the huge store of carbon in the region's extensive peatlands, the world's southern-most polar bear population that depends upon Hudson Bay sea ice and permafrost for survival, and native communities who rely on this landscape for sustenance. PMID:24107529

  15. Global warming triggers the loss of a key Arctic refugium

    PubMed Central

    Rühland, K. M.; Paterson, A. M.; Keller, W.; Michelutti, N.; Smol, J. P.

    2013-01-01

    We document the rapid transformation of one of the Earth's last remaining Arctic refugia, a change that is being driven by global warming. In stark contrast to the amplified warming observed throughout much of the Arctic, the Hudson Bay Lowlands (HBL) of subarctic Canada has maintained cool temperatures, largely due to the counteracting effects of persistent sea ice. However, since the mid-1990s, climate of the HBL has passed a tipping point, the pace and magnitude of which is exceptional even by Arctic standards, exceeding the range of regional long-term variability. Using high-resolution, palaeolimnological records of algal remains in dated lake sediment cores, we report that, within this short period of intense warming, striking biological changes have occurred in the region's freshwater ecosystems. The delayed and intense warming in this remote region provides a natural observatory for testing ecosystem resilience under a rapidly changing climate, in the absence of direct anthropogenic influences. The environmental repercussions of this climate change are of global significance, influencing the huge store of carbon in the region's extensive peatlands, the world's southern-most polar bear population that depends upon Hudson Bay sea ice and permafrost for survival, and native communities who rely on this landscape for sustenance. PMID:24107529

  16. CFC Destruction of Ozone - Major Cause of Recent Global Warming!

    NASA Astrophysics Data System (ADS)

    Ashworth, R. A.

    2008-12-01

    There has been a lot of discussion about global warming. Some say anthropogenic carbon dioxide (CO2) emissions caused the earth to warm. Others say there is no abnormality at all, that it is just natural warming. As you will see from the data presented and analyzed, a greater than normal warming did occur in recent times but no measurements confirm an increase in CO2, whether anthropogenic or natural, had any effect on global temperatures. There is however, strong evidence that anthropogenic emissions of chlorofluorocarbons (CFCs) were the major cause of the recent abnormal warming. CFCs have created both unnatural atmospheric cooling and warming based on these facts: CFCs have destroyed ozone in the lower stratosphere/ upper troposphere causing these zones in the atmosphere to cool 1.37°C from 1966 to 1998. This time span was selected to eliminate the effect of the natural solar irradiance (cooling-warming) cycle effect on the earth's temperature. The loss of ozone allowed more UV light to pass through the stratosphere at a sufficient rate to warm the lower troposphere plus 8-3/4" of the earth by 0.48°C (1966 to 1998). Mass and energy balances show that the energy that was absorbed in the lower stratosphere and upper troposphere hit the lower troposphere/earth at a sustainable level of 1.69 × 10 18 Btu more in 1998 than it did in 1966. Greater ozone depletion in the Polar Regions has caused these areas to warm some two and one-half (2 1/2) times that of the average earth temperature -1.2°C versus 0.48°C. This has caused permafrost to melt, which is releasing copious quantities of methane, estimated at 100 times that of manmade CO2 release, to the atmosphere. Methane in the atmosphere slowly converts to CO2 and water vapor and its release has contributed to higher CO2 concentrations in the atmosphere. There is a temperature anomaly in Antarctica. The Signey Island landmass further north, warmed like the rest of the Polar Regions; but south at Vostok, there has

  17. How probable was the 20th century global warming?

    NASA Astrophysics Data System (ADS)

    Papalexiou, Simon Michael; Markonis, Yannis

    2016-04-01

    The increase of global mean temperature during the 20th century, according to the Intergovernmental Panel on Climate Change (IPCC), is very plausible due to the anthropogenic greenhouse gas emissions. In addition, climate model projections suggest that the global mean temperature will further rise during the 21st century. While the vast majority of scientists have endorsed IPCC's conclusions, not a few individual scientists, have expressed a disagreement regarding the validity of climate model projections. In this study, the answer to a fundamental question is sought. That is, how probable was the global warming of the 20th century considering only recorded and reconstructed global mean temperatures values, and assuming that the global mean temperature is a stationary stochastic process. In order to answer this question, a stationary stochastic model is set that incorporates (a) the observed autocorrelation structure of the global mean temperature, (b) past observations of global mean temperature and (c) global, regional and site-specific reconstructions of global mean temperature changes during the last two millennia. Based on an intense Monte Carlo simulation, the probability of a global mean temperature trend with equal or greater slope than the observed one in the 20th century is presented.

  18. The role of clouds and oceans in global greenhouse warming

    SciTech Connect

    Hoffert, M.I.

    1992-12-01

    During the past three years we have conducted several studies using models and a combination of satellite data, in situ meteorological and oceanic data, and paleoclimate reconstructions, under the DoE program, Quantifying the Link Between Change in Radiative Balance and Atmospheric Temperature''. Our goals were to investigate effects of global cloudiness variations on global climate and their implications for cloud feedback and continue development and application of NYU transient climate/ocean models, with emphasis on coupled effects of greenhouse warming and feedbacks by both the clouds and oceans. Our original research plan emphasized the use of cloud, surface temperature and ocean data sets interpreted by focused climate/ocean models to develop a cloud radiative forcing scenario for the past 100 years and to assess the transient climate response; to narrow key uncertainties in the system; and to identify those aspects of the climate system most likely to be affected by greenhouse warming over short, medium and long time scales.

  19. GIS applications to evaluate public health effects of global warming

    SciTech Connect

    Regens, J.L.; Hodges, D.G.

    1996-12-31

    Modeling projections of future climatic conditions suggest changes in temperature and precipitation patterns that might induce direct adverse effects on human health by altering the extent and severity of infectious and vector-borne diseases. The incidence of mosquito-borne diseases, for example, could increase substantially in areas where temperature and relative humidity rise. The application of Geographic Information Systems (GIS) offers new methodologies to evaluate the impact of global warming on changes in the incidence of infectious and vector-borne diseases. This research illustrates the potential analytical and communication uses of GIS for monitoring historical patterns of climate and human health variables and for projecting changes in these health variables with global warming.

  20. Health effects of global warming: Problems in assessment

    SciTech Connect

    Longstreth, J.

    1993-06-01

    Global warming is likely to result in a variety of environmental effects ranging from impacts on species diversity, changes in population size in flora and fauna, increases in sea level and possible impacts on the primary productivity of the sea. Potential impacts on human health and welfare have included possible increases in heat related mortality, changes in the distribution of disease vectors, and possible impacts on respiratory diseases including hayfever and asthma. Most of the focus thus far is on effects which are directly related to increases in temperature, e.g., heat stress or perhaps one step removed, e.g., changes in vector distribution. Some of the more severe impacts are likely to be much less direct, e.g., increases in migration due to agricultural failure following prolonged droughts. This paper discusses two possible approaches to the study of these less-direct impacts of global warming and presents information from on-going research using each of these approaches.

  1. Management of Philippine tropical forests: Implications to global warming

    SciTech Connect

    Lasco, R.D.

    1997-12-31

    The first part of the paper presents the massive changes in tropical land management in the Philippines as a result of a {open_quotes}paradigm shift{close_quotes} in forestry. The second part of the paper analyzes the impacts of the above management strategies on global warming, in general, preserved forests are neither sinks not sources of greenhouse gasses (GHG). Reforestation activities are primarily net sinks of carbon specially the use of fast growing reforestation species. Estimates are given for the carbon-sequestering ability of some commonly used species. The last part of the paper policy recommendations and possible courses of action by the government to maximize the role of forest lands in the mitigation of global warming. Private sector initiatives are also explored.

  2. Global variations of zonal mean ozone during stratospheric warming events

    NASA Technical Reports Server (NTRS)

    Randel, William J.

    1993-01-01

    Eight years of Solar Backscatter Ultraviolet (SBUV) ozone data are examined to study zonal mean variations associated with stratospheric planetary wave (warming) events. These fluctuations are found to be nearly global in extent, with relatively large variations in the tropics, and coherent signatures reaching up to 50 deg in the opposite (summer) hemisphere. These ozone variations are a manifestation of the global circulation cells associated with stratospheric warming events; the ozone responds dynamically in the lower stratosphere to transport, and photochemically in the upper stratosphere to the circulation-induced temperature changes. The observed ozone variations in the tropics are of particular interest because transport is dominated by zonal-mean vertical motions (eddy flux divergences and mean meridional transports are negligible), and hence, substantial simplifications to the governing equations occur. The response of the atmosphere to these impulsive circulation changes provides a situation for robust estimates of the ozone-temperature sensitivity in the upper stratosphere.

  3. Enhanced deep ocean ventilation and oxygenation with global warming

    NASA Astrophysics Data System (ADS)

    Froelicher, T. L.; Jaccard, S.; Dunne, J. P.; Paynter, D.; Gruber, N.

    2014-12-01

    Twenty-first century coupled climate model simulations, observations from the recent past, and theoretical arguments suggest a consistent trend towards warmer ocean temperatures and fresher polar surface oceans in response to increased radiative forcing resulting in increased upper ocean stratification and reduced ventilation and oxygenation of the deep ocean. Paleo-proxy records of the warming at the end of the last ice age, however, suggests a different outcome, namely a better ventilated and oxygenated deep ocean with global warming. Here we use a four thousand year global warming simulation from a comprehensive Earth System Model (GFDL ESM2M) to show that this conundrum is a consequence of different rates of warming and that the deep ocean is actually better ventilated and oxygenated in a future warmer equilibrated climate consistent with paleo-proxy records. The enhanced deep ocean ventilation in the Southern Ocean occurs in spite of increased positive surface buoyancy fluxes and a constancy of the Southern Hemisphere westerly winds - circumstances that would otherwise be expected to lead to a reduction in deep ocean ventilation. This ventilation recovery occurs through a global scale interaction of the Atlantic Meridional Overturning Circulation undergoing a multi-centennial recovery after an initial century of transient decrease and transports salinity-rich waters inform the subtropical surface ocean to the Southern Ocean interior on multi-century timescales. The subsequent upwelling of salinity-rich waters in the Southern Ocean strips away the freshwater cap that maintains vertical stability and increases open ocean convection and the formation of Antarctic Bottom Waters. As a result, the global ocean oxygen content and the nutrient supply from the deep ocean to the surface are higher in a warmer ocean. The implications for past and future changes in ocean heat and carbon storage will be discussed.

  4. Global warming potential for CF[sub 4

    SciTech Connect

    Wuebbles, D J; Grossman, A S

    1992-11-16

    With sufficient emissions, fluorinated gases such as CF[sub 4] could contribute significantly to the concerns about global warming because they are greenhouse gases, are chemically very inert, and have long accumulation lifetimes in the atmosphere. At this time, the only significant known source of CF[sub 4] is primary aluminum smelting (Abrahamson, 1992). While current emissions are small, additional sources could make CF[sub 4] an important contribution to climate forcing in the future.

  5. Global warming, sea-level rise, and coastal marsh survival

    USGS Publications Warehouse

    Cahoon, Donald R.

    1997-01-01

    Coastal wetlands are among the most productive ecosystems in the world. These wetlands at the land-ocean margin provide many direct benefits to humans, including habitat for commercially important fisheries and wildlife; storm protection; improved water quality through sediment, nutrient, and pollution removal; recreation; and aesthetic values. These valuable ecosystems will be highly vulnerable to the effects of the rapid rise in sea level predicted to occur during the next century as a result of global warming.

  6. When could global warming reach 4°C?

    PubMed

    Betts, Richard A; Collins, Matthew; Hemming, Deborah L; Jones, Chris D; Lowe, Jason A; Sanderson, Michael G

    2011-01-13

    The Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) assessed a range of scenarios of future greenhouse-gas emissions without policies to specifically reduce emissions, and concluded that these would lead to an increase in global mean temperatures of between 1.6°C and 6.9°C by the end of the twenty-first century, relative to pre-industrial. While much political attention is focused on the potential for global warming of 2°C relative to pre-industrial, the AR4 projections clearly suggest that much greater levels of warming are possible by the end of the twenty-first century in the absence of mitigation. The centre of the range of AR4-projected global warming was approximately 4°C. The higher end of the projected warming was associated with the higher emissions scenarios and models, which included stronger carbon-cycle feedbacks. The highest emissions scenario considered in the AR4 (scenario A1FI) was not examined with complex general circulation models (GCMs) in the AR4, and similarly the uncertainties in climate-carbon-cycle feedbacks were not included in the main set of GCMs. Consequently, the projections of warming for A1FI and/or with different strengths of carbon-cycle feedbacks are often not included in a wider discussion of the AR4 conclusions. While it is still too early to say whether any particular scenario is being tracked by current emissions, A1FI is considered to be as plausible as other non-mitigation scenarios and cannot be ruled out. (A1FI is a part of the A1 family of scenarios, with 'FI' standing for 'fossil intensive'. This is sometimes erroneously written as A1F1, with number 1 instead of letter I.) This paper presents simulations of climate change with an ensemble of GCMs driven by the A1FI scenario, and also assesses the implications of carbon-cycle feedbacks for the climate-change projections. Using these GCM projections along with simple climate-model projections, including uncertainties in carbon

  7. Direct health effects of global warming in Japan and China

    SciTech Connect

    Ando, M.; Yamamoto, S.; Tamura, K.

    1997-12-31

    Combustion of fossil fuels and industrial and agricultural activities are resulting in greater emissions of some greenhouse gases such as carbon dioxide and methane into the atmosphere, therefore contributing to global warming. Using general circulation models, it is estimated that surface temperatures in temperate regions will rise 1 to 3 degrees C during the next 100 years. Because global warming may increase the frequency and length of high temperatures during hot summer months, various health risks caused by heat stress have been studied. According to our epidemiological survey, the incidence of heat-related illness was significantly correlated to hot environments in Tokyo, Japan and in Nanjing and Wuhan, China. The epidemiological results also showed that the incidence of heat-related morbidity and mortality in the elderly increased very rapidly in summer. The regression analysis on these data showed that the number of heat stroke patients increased exponentially when the mean daily temperature and maximum daily temperature exceeded 27C and 32C in Tokyo and 31C and 36C in Wuhan and Nanjing, respectively. Since the incidence of heat-related morbidity and mortality has been shown to increase as a result of exposure to long periods of hot summer temperatures, it is important to determine to what extent the incidence of heat stress-related morbidity and mortality will be affected as a result of global warming.

  8. Global Warming in the 21st Century: An Alternate Scenario

    NASA Technical Reports Server (NTRS)

    Hansen, James E.; Sato, Makiko; Ruedy, Reto; Lacis, Andrew; Oinas, Valdar

    2000-01-01

    A common view is that the current global warming rate will continue or accelerate. But we argue that rapid warming in recent decades has been driven by non-CO2 greenhouse gases (GHGs), such as CFCs, CH4 and N2O, not by the products of fossil fuel burning, CO2 and aerosols, whose positive and negative climate forcings are partially offsetting. The growth rate of non-CO2 GHGs has declined in the past decade. If sources of CH4 and O3 precursors were reduced in the future, the change of climate forcing by non-CO2 GHGs In the next 50 years could be near zero. Combined with a reduction of black carbon emissions and plausible success in slowing CO2 emissions, this could lead to a decline in the rate of global warming, reducing the danger of dramatic climate change. Such a focus on air pollution has practical benefits that unite the interests of developed and developing countries. However, assessment of ongoing and future climate change requires composition-specific longterm global monitoring of aerosol properties.

  9. Global warming threat on water resources and environment: a review

    NASA Astrophysics Data System (ADS)

    Şen, Zekai

    2009-03-01

    Global warming, greenhouse effect, and the climate change problems are long-term anthropogenic consequences that are expected to threaten water related demand and supply patterns in the near future. These problems may be identified linguistically on a logical basis to take the necessary precautions, and implement mitigation strategies after vulnerability possibilities are assessed using fuzzy logic. Climate change effects are the focus of many scientific, engineering, economic, social, cultural, and global nuisances, and these effects awaits cost-effective remedial solutions. Extreme events such as floods and droughts and modified groundwater recharge may be influenced by climate change.

  10. How much more global warming and sea level rise?

    PubMed

    Meehl, Gerald A; Washington, Warren M; Collins, William D; Arblaster, Julie M; Hu, Aixue; Buja, Lawrence E; Strand, Warren G; Teng, Haiyan

    2005-03-18

    Two global coupled climate models show that even if the concentrations of greenhouse gases in the atmosphere had been stabilized in the year 2000, we are already committed to further global warming of about another half degree and an additional 320% sea level rise caused by thermal expansion by the end of the 21st century. Projected weakening of the meridional overturning circulation in the North Atlantic Ocean does not lead to a net cooling in Europe. At any given point in time, even if concentrations are stabilized, there is a commitment to future climate changes that will be greater than those we have already observed. PMID:15774757

  11. Defining risk, motivating responsibility and rethinking global warming.

    PubMed

    Cerutti, Furio

    2010-09-01

    This paper breaks with the sociological notion of 'risk society' and argues in favour of a philosophical view that sees the two planetary threats of late modernity, nuclear weapons and global warming, as ultimate challenges to morality and politics rather than risks that we can take and manage. The paper also raises the question of why we should feel responsible for the effects of these two global challenges on future generations and in this sense elaborates on the transgenerational chain of parenthood rather than on considerations of justice. PMID:19798589

  12. Early global warming in the period 1850 to 1920

    NASA Astrophysics Data System (ADS)

    Venema, Victor; Lindau, Ralf; Brandsma, Theo; Auchmann, Renate; Esper, Jan; Haustein, Karsten

    2016-04-01

    The current global temperature datasets show no warming in the land surface temperature and the sea surface temperature for the period between 1850 and 1920. However, several lines of evidence suggest that the Earth's surface was warming during this period. Every line of evidence by itself is currently not compelling, but the consilience of evidence at least makes a good case for further research. This period is characterized by the introduction of Stevenson screens, which reduce radiation errors more than the monitoring methods used before. As a consequence, Stevenson screens typically observe cooler temperatures than earlier observations. Recent analyses of parallel measurements suggest that this cooling bias is larger than previously thought. Physical reasoning suggests this bias to be largest in sub-tropical and tropic regions; this pattern is also found in the limited number of parallel measurements available. We are missing information from continental climates. The Global Historical Climate Network (GHCNv3) does not change the trend between 1870 and 1920 and adjust 0.1°C between 1850 and 1970. This small adjustment seems to be less than needed for this transition compared to the size of this jump estimated from the limited evidence we have from parallel measurements Further evidence for warming during this period can be found in lake and river freeze and breakup times, which show a clear shortening of the freezing period between 1850 and 1920. Most of the glaciers for which we have data from this period show reductions in their lengths, which signals clear warming. Also temperature reconstructions from proxies show warming. The CMIP model ensemble shows 0.2°C warming in the global mean temperature. We will be looking at well-homogenized national datasets and compare them to the national averages from the global collections. For this period we have up to now 3 such comparisons (Austria, Italy and Spain), these have too much scatter relative to the BEST

  13. Implications of global warming for the climate of African rainforests.

    PubMed

    James, Rachel; Washington, Richard; Rowell, David P

    2013-01-01

    African rainforests are likely to be vulnerable to changes in temperature and precipitation, yet there has been relatively little research to suggest how the regional climate might respond to global warming. This study presents projections of temperature and precipitation indices of relevance to African rainforests, using global climate model experiments to identify local change as a function of global temperature increase. A multi-model ensemble and two perturbed physics ensembles are used, one with over 100 members. In the east of the Congo Basin, most models (92%) show a wet signal, whereas in west equatorial Africa, the majority (73%) project an increase in dry season water deficits. This drying is amplified as global temperature increases, and in over half of coupled models by greater than 3% per °C of global warming. Analysis of atmospheric dynamics in a subset of models suggests that this could be partly because of a rearrangement of zonal circulation, with enhanced convection in the Indian Ocean and anomalous subsidence over west equatorial Africa, the Atlantic Ocean and, in some seasons, the Amazon Basin. Further research to assess the plausibility of this and other mechanisms is important, given the potential implications of drying in these rainforest regions. PMID:23878329

  14. 78 FR 20632 - Mandatory Reporting of Greenhouse Gases: Notice of Data Availability Regarding Global Warming...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-05

    ...The EPA is announcing to the public the availability of estimated global warming potentials, as well as data and analysis submitted in support of them, for eight fluorinated heat transfer fluids. We are requesting comments on the estimated global warming potentials and the data and analysis supporting them. We are also requesting comment on the cited global warming potentials for 35 other......

  15. Global warming and the regions in the Middle East

    SciTech Connect

    Alvi, S.H.; Elagib, N.

    1996-12-31

    The announcement of NASA scientist James Hansen made at a United States Senate`s hearing in June 1988 about the onset of global warming ignited a whirlwind of public concern in United States and elsewhere in the world. Although the temperature had shown only a slight shift, its warming has the potential of causing environmental catastrophe. According to atmosphere scientists, the effect of higher temperatures will change rainfall patterns--some areas getting drier, some much wetter. The phenomenon of warming in the Arabian Gulf region was first reported by Alvi for Bahrain and then for Oman. In the recent investigations, the authors have found a similar warming in other regions of the Arabian Gulf and in several regions of Sudan in Africa. The paper will investigate the observed data on temperature and rainfall of Seeb in Oman, Bahrain, International Airport in Kuwait as index stations for the Arabian Gulf and Port Sudan, Khartoum and Malakal in the African Continent of Sudan. Based on various statistical methods, the study will highlight a drying of the regions from the striking increase in temperature and decline of rainfall amount. Places of such environmental behavior are regarded as desertifying regions. Following Hulme and Kelly, desertification is taken to mean land degradation in dryland regions, or the permanent decline in the potential of the land to support biological activity, and hence human welfare. The paper will also, therefore, include the aspect of desertification for the regions under consideration.

  16. El Nino/Southern Oscillation response to global warming.

    PubMed

    Latif, M; Keenlyside, N S

    2009-12-01

    The El Niño/Southern Oscillation (ENSO) phenomenon, originating in the Tropical Pacific, is the strongest natural interannual climate signal and has widespread effects on the global climate system and the ecology of the Tropical Pacific. Any strong change in ENSO statistics will therefore have serious climatic and ecological consequences. Most global climate models do simulate ENSO, although large biases exist with respect to its characteristics. The ENSO response to global warming differs strongly from model to model and is thus highly uncertain. Some models simulate an increase in ENSO amplitude, others a decrease, and others virtually no change. Extremely strong changes constituting tipping point behavior are not simulated by any of the models. Nevertheless, some interesting changes in ENSO dynamics can be inferred from observations and model integrations. Although no tipping point behavior is envisaged in the physical climate system, smooth transitions in it may give rise to tipping point behavior in the biological, chemical, and even socioeconomic systems. For example, the simulated weakening of the Pacific zonal sea surface temperature gradient in the Hadley Centre model (with dynamic vegetation included) caused rapid Amazon forest die-back in the mid-twenty-first century, which in turn drove a nonlinear increase in atmospheric CO(2), accelerating global warming. PMID:19060210

  17. Responses of Seasonal Precipitation Intensity to Global Warming

    NASA Astrophysics Data System (ADS)

    Lan, Chia-Wei; Lo, Min-Hui; Chou, Chia

    2016-04-01

    Under global warming, the water vapor increases with rising temperature at the rate of 7%/K. Most previous studies focus on the spatial differences of precipitation and suggest that wet regions become wetter and dry regions become drier. Our recent studies show a temporal disparity of global precipitation, which the wet season becomes wetter and dry season becomes drier; therefore, the annual range increases. However, such changes in the annual range are not homogeneous globally, and in fact, the drier trend over the ocean is much larger than that over the land, where the dry season does not become drier. Such precipitation change over land is likely because of decreased omega at 500hPa (more upward motion) in the reanalysis datasets from 1980 to 2013. The trends of vertical velocity and moist static energy profile over the increased precipitation regions become more unstable. The instability is most likely attributed to the change in specific humility below 400hPa. Further, we will use Coupled Model Intercomparison Project Phase 5 (CMIP5) archives to investigate whether the precipitation responses in dry season are different between the ocean and land under global warming.

  18. Can reducing black carbon emissions counteract global warming?

    SciTech Connect

    Tami C. Bond; Haolin Sun

    2005-08-15

    Field measurements and model results have recently shown that aerosols may have important climatic impacts. One line of inquiry has investigated whether reducing climate-warming soot or black carbon aerosol emissions can form a viable component of mitigating global warming. Black carbon is produced by poor combustion, from our example hard coal cooking fires for and industrial pulverized coal boilers. The authors review and acknowledge scientific arguments against considering aerosols and greenhouse gases in a common framework, including the differences in the physical mechanisms of climate change and relevant time scales. It is argued that such a joint consideration is consistent with the language of the United Nations Framework Convention on Climate Change. Results from published climate-modeling studies are synthesized to obtain a global warming potential for black carbon relative to that of CO{sub 2} (680 on a 100 year basis). This calculation enables a discussion of cost-effectiveness for mitigating the largest sources of black carbon. It is found that many emission reductions are either expensive or difficult to enact when compared with greenhouse gases, particularly in Annex I countries. Finally, a role for black carbon in climate mitigation strategies is proposed that is consistent with the apparently conflicting arguments raised during the discussion. Addressing these emissions is a promising way to reduce climatic interference primarily for nations that have not yet agreed to address greenhouse gas emissions and provides the potential for a parallel climate agreement. 31 refs., 3 figs., 1 tab.

  19. A Contribution by Ice Nuclei to Global Warming

    NASA Technical Reports Server (NTRS)

    Zeng, Xiping; Tao, Wei-Kuo; Zhang, Minghua; Hou, Arthur Y.; Xie, Shaocheng; Lang, Stephen; Li, Xiaowen; Starr, David O.; Li, Xiaofan

    2009-01-01

    Ice nuclei (IN) significantly affect clouds via supercooled droplets, that in turn modulate atmospheric radiation and thus climate change. Since the IN effect is relatively strong in stratiform clouds but weak in convective ones, the overall effect depends on the ratio of stratiform to convective cloud amount. In this paper, 10 years of TRMM (Tropical Rainfall Measuring Mission) satellite data are analyzed to confirm that stratiform precipitation fraction increases with increasing latitude, which implies that the IN effect is stronger at higher latitudes. To quantitatively evaluate the IN effect versus latitude, large-scale forcing data from ten field campaigns are used to drive a CRM (cloud-resolving model) to generate longterm cloud simulations. As revealed in the simulations, the increase in the net downward radiative flux at the TOA (top of the atmosphere) from doubling the current IN concentrations is larger at higher latitude, which is attributed to the meridional tendency in the stratiform precipitation fraction. Surface warming from doubling the IN concentrations, based on the radiative balance of the globe, is compared with that from anthropogenic COZ . It is found that the former effect is stronger than the latter in middle and high latitudes but not in the Tropics. With regard to the impact of IN on global warming, there are two factors to consider: the radiative effect from increasing the IN concentration and the increase in IN concentration itself. The former relies on cloud ensembles and thus varies mainly with latitude. In contrast, the latter relies on IN sources (e.g., the land surface distribution) and thus varies not only with latitude but also longitude. Global desertification and industrialization provide clues on the geographic variation of the increase in IN concentration since pre-industrial times. Thus, their effect on global warming can be inferred and then be compared with observations. A general match in geographic and seasonal

  20. A contribution by ice nuclei to global warming

    SciTech Connect

    Zeng, Xiping; Tao, Wei-Kuo; Zhang, Minghua; Hou, Arthur Y.; Xie, Shaocheng; Lang, Stephen; Li, Xiaowen; Starr, David O'C; Li, Xiaofan

    2009-06-10

    Ice nuclei (IN) significantly affect clouds via supercooled droplets, that in turn modulate atmospheric radiation and thus climate change. Since the IN effect is relatively strong in stratiform clouds but weak in convective ones, the overall effect depends on the ratio of stratiform to convective cloud amount. In this paper, 10 years of TRMM (Tropical Rainfall Measuring Mission) satellite data are analyzed to confirm that stratiform precipitation fraction increases with increasing latitude, which implies that the IN effect is stronger at higher latitudes. To quantitatively evaluate the IN effect versus latitude, large-scale forcing data from ten field campaigns are used to drive a CRM (cloud-resolving model) to generate longterm cloud simulations. As revealed in the simulations, the increase in the net downward radiative flux at the TOA (top of the atmosphere) from doubling the current IN concentrations becomes larger at higher latitude, which is attributed to the meridional tendency in the stratiform precipitation fraction. Surface warming from doubling the IN concentrations, based on the radiative balance of the globe, is compared with that from anthropogenic CO2. We found that the former effect is stronger than the latter in middle and high latitudes but not in the Tropics. With regard to the impact of IN on global warming, there are two factors to consider: the radiative effect from increasing the IN concentration and the increase in IN concentration itself. The former relies on cloud ensembles and thus varies mainly with latitude. In contrast, the latter relies on IN sources (e.g., the land surface distribution) and thus varies not only with latitude but also longitude. Global desertification and industrialization provide clues on the geographic variation of the increase in IN concentration since pre-industrial times. Thus, their effect on global warming can be inferred and then be compared with observations. Finally, a general match in geographic

  1. Global warming: it's not only size that matters

    NASA Astrophysics Data System (ADS)

    Hegerl, Gabriele C.

    2011-09-01

    Observed and model simulated warming is particularly large in high latitudes, and hence the Arctic is often seen as the posterchild of vulnerability to global warming. However, Mahlstein et al (2011) point out that the signal of climate change is emerging locally from that of climate variability earliest in regions of low climate variability, based on climate model data, and in agreement with observations. This is because high latitude regions are not only regions of strong feedbacks that enhance the global warming signal, but also regions of substantial climate variability, driven by strong dynamics and enhanced by feedbacks (Hall 2004). Hence the spatial pattern of both observed warming and simulated warming for the 20th century shows strong warming in high latitudes, but this warming occurs against a backdrop of strong variability. Thus, the ratio of the warming to internal variability is not necessarily highest in the regions that warm fastest—and Mahlstein et al illustrate that it is actually the low-variability regions where the signal of local warming emerges first from that of climate variability. Thus, regions with strongest warming are neither the most important to diagnose that forcing changes climate, nor are they the regions which will necessarily experience the strongest impact. The importance of the signal-to-noise ratio has been known to the detection and attribution community, but has been buried in technical 'optimal fingerprinting' literature (e.g., Hasselmann 1979, Allen and Tett 1999), where it was used for an earlier detection of climate change by emphasizing aspects of the fingerprint of global warming associated with low variability in estimates of the observed warming. What, however, was not discussed was that the local signal-to-noise ratio is of interest also for local climate change: where temperatures emerge from the range visited by internal climate variability, it is reasonable to assume that changes in climate will also cause more

  2. Direct and indirect solar signature on global ozone content

    NASA Astrophysics Data System (ADS)

    Talukdar, Shamitaksha; Maitra, Animesh; Saha, Upal

    Solar activities affecting the Earth’s climate, traditionally measured by the number of sunspots (SSN), shows a periodic variation of 8-11 years. The solar radiation is a major component which drives the atmospheric circulation and thus induces global ozone variability in different parts of the earth. Total ozone varies strongly with latitude over the globe and with solar activity, with the largest values occurring at middle and high latitudes during all seasons. A critical analysis is done to study the direct and indirect effects of solar activity on the total ozone content (TOC) and tropospheric ozone residual (TOR) over urban metropolitan location, Kolkata (22°32'N, 88°20'E), along with 30⁰N and 30⁰S and 0⁰(equator) during the period 1979-2012. It has been focused through our study that the solar parameters have positive correlations with TOC whereas TOR is not much linked with solar activity. The positive correlations with SSN and TOC are valid for all the cases of 30⁰N and 30⁰S, equator (0⁰) and Kolkata region. But it has been observed that no association is found to occur with TOR and SSN. The wavelet spectrum of the signal variation due to Sunspot Number (SSN), Total Solar Irradiance (TSI) and Mg II Index (proxy for solar UV radiation) show peaks corresponding to 11-year cycle of the solar parameters. The TOC, taken from TOMS satellite, also shows a clear 11-year solar signal in all the region. But the spectral analysis show a random signal variation, including a 11-year signal at 30⁰S. At Kolkata, a significant positive correlation is obtained between TOC and SSN as also shown by wavelet spectral analysis. The TOR, taken from calibrated GOME and OMI/AURA satellite data analysis, show no positive 11-year signal feedback at all regions, except 30⁰S. A clear positive 11-year solar signal is found to be observed over this tropical southern hemisphere. The sea-surface temperature (SST), taken from NOAA Optimum Interpolation 1⁰x 1⁰ NCEP

  3. Global scale energy budget contrast between warm and cold years

    NASA Astrophysics Data System (ADS)

    Lembo, Valerio; Lionello, Piero

    2014-05-01

    This contribution analyses changes to the energy budget of the troposphere associated to global warm anomalies of the Earth surface temperature. This is important for understanding the dynamics of climate change. A phenomenological approach is adopted, comparing coldest and warmest years over the last century. Data are provided by the results of 10 simulations carried out within the ERA-20CM experiment and covering the period 1900-2010. This ensemble is forced by 10 perturbed realizations of SST fields and greenhouse gases concentration time series. Analysis considers the annual mean meridional distribution of zonal mean tropospheric and surface temperature, net downward solar radiation at top of atmosphere and Earth surface, surface heat flux (SHF), consisting of net longwave upward radiation, latent heat and sensible heat vertical fluxes, and outgoing longwave radiation at top of atmosphere (OLR). Differences of these variables between the warmest and coldest years are computed, in order to analyze how the energy budget of the atmosphere is associated to the warming the Earth surface. During warm years, it is observed that tropospheric warming occurs at all latitudes, decreasing at its top, being rather uniform but larger/smaller around the North/South Pole than at the tropics. This is consistent with the overall increase of OLR at all latitudes. Shortwave absorption in the troposphere increases, with a peak around 30 degrees north, as a result of increased net downward solar radiation at the top. The warming of the surface is associated with reduced SHF almost everywhere, particularly at higher latitudes. This combined effect might be interpreted as a reduction of solar reflection by cloud cover and an increased moisture in the lower troposphere, inhibiting evaporation and heat fluxes from the surface, and increasing downward flow of longwave radiation to the surface. Finally, the meridional distribution of residual net energy budget in the troposphere suggests

  4. PRISM3 Global Paleoclimate Reconstruction: A Global Warming Data Set

    NASA Astrophysics Data System (ADS)

    Dowsett, H. J.; Chandler, M. A.; Cronin, T. M.; Dwyer, G. S.; Haywood, A. M.; Hill, D. J.; Robinson, M. M.; Salzmann, U.; Williams, M.

    2007-12-01

    The Pliocene Research, Interpretation and Synoptic Mapping (PRISM) Project provides a conceptual model and synoptic view of the earth during the last interval considerably warmer than modern (3.3 to 3.0 Ma) through reconstruction of sea-surface temperature (SST) and other paleoenvironmental parameters. The first PRISM reconstruction, with its foundation in a global network of paleontological analyses, was completed in the early 1990s. Since then, several significant revisions have been released culminating in the PRISM2 data set. The primary goal of PRISM remains a better understanding of the Earth's climate system during the mid-Pliocene, and to that end, includes the development of digital data sets for use with climate models. The new PRISM3 reconstruction, slated to be released early in 2008, has revised SST fields based upon integration of previous and new faunal and floral analyses with new geochemical proxies and biomarkers, a revised vegetation/land cover data set utilizing the BIOME 4 vegetation classification scheme, 3-dimensional land ice distribution based upon ice-sheet model experiments, new sea level estimates based upon stable isotopes and bottom water temperatures, and revised sea-ice distribution. A deep ocean temperature reconstruction, PRISM3D, adds a 3- dimensional component, which can be used for initiating coupled ocean-atmosphere GCM simulations. PRISM3 is a collaborative effort between the U.S. Geological Survey (USGS), National Science Foundation (NSF), National Aeronautics and Space Administration (NASA), British Antarctic Survey (BAS), and several national and international academic institutions (Columbia University, Duke University, George Mason University, University of Leeds and University of Leicester).

  5. Global warming and the potential spread of vector-borne diseases

    SciTech Connect

    Patz, J.

    1996-12-31

    Climatic factors influence many vector-borne infectious diseases, in addition to demographic, biological, and ecological determinants. The United Nation`s Intergovernmental Panel on Climate Change (IPCC) estimates an unprecedented global rise of 2.0 C by the year 2100. Of major concern is that these changes can affect the spread of many serious infectious diseases, including malaria and dengue fever. Global warming would directly affect disease transmission by shifting the mosquito`s geographic range, increasing reproductive and biting rates, and shortening pathogen incubation period. Human migration and damage to health infrastructures from the projected increase in climate variability and sea level rise could indirectly contribute to disease transmission. A review of this literature, as well as preliminary data from ongoing studies will be presented.

  6. Fingerprints of global warming on wild animals and plants

    NASA Astrophysics Data System (ADS)

    Root, Terry L.; Price, Jeff T.; Hall, Kimberly R.; Schneider, Stephen H.; Rosenzweig, Cynthia; Pounds, J. Alan

    2003-01-01

    Over the past 100 years, the global average temperature has increased by approximately 0.6°C and is projected to continue to rise at a rapid rate. Although species have responded to climatic changes throughout their evolutionary history, a primary concern for wild species and their ecosystems is this rapid rate of change. We gathered information on species and global warming from 143 studies for our meta-analyses. These analyses reveal a consistent temperature-related shift, or `fingerprint', in species ranging from molluscs to mammals and from grasses to trees. Indeed, more than 80% of the species that show changes are shifting in the direction expected on the basis of known physiological constraints of species. Consequently, the balance of evidence from these studies strongly suggests that a significant impact of global warming is already discernible in animal and plant populations. The synergism of rapid temperature rise and other stresses, in particular habitat destruction, could easily disrupt the connectedness among species and lead to a reformulation of species communities, reflecting differential changes in species, and to numerous extirpations and possibly extinctions.

  7. Ocean Global Warming Impacts on the South America Climate

    NASA Astrophysics Data System (ADS)

    Ramos-Da-Silva, Renato

    2016-03-01

    The global Ocean-Land-Atmosphere Model (OLAM) model was used to estimate the impacts of the global oceanic warming on the climate projections for the 21st Century focusing on the South America region. This new model is able to represent simultaneously the global and regional scales using a refining grid approach for the region of interest. First, the model was run for a 31-year control period consisting on the years 1960-1990 using the monthly Sea Surface Temperature (SST) from the Atmospheric Model Intercomparison Project (AMIP) data as a driver for the ocean fluxes. Then, the model was run for the period 2010-2100 using the monthly projected SST from the Hadley Center model (HadCM3) as a driver for the oceanic changes. The model was set up with an icosahedral triangular global grid having about 250 km of grid spacing and with a refining grid resolution with the cells reaching about 32 km over the South America region. The results show an overall temperature increase mainly over the center of the Amazon basin caused by the increase of the greenhouse effect of the water vapor; a decrease on precipitation mainly over the northeast Brazil and an increase in the south and over the western Amazon region; and a major increase on the near surface wind speed. These results are similar to the global coupled models; however, OLAM has a novel type of grid that can provide the interaction between the global and regional scales simultaneously.

  8. Northern hemisphere glaciation during the globally warm early Late Pliocene.

    PubMed

    De Schepper, Stijn; Groeneveld, Jeroen; Naafs, B David A; Van Renterghem, Cédéric; Hennissen, Jan; Head, Martin J; Louwye, Stephen; Fabian, Karl

    2013-01-01

    The early Late Pliocene (3.6 to ∼3.0 million years ago) is the last extended interval in Earth's history when atmospheric CO2 concentrations were comparable to today's and global climate was warmer. Yet a severe global glaciation during marine isotope stage (MIS) M2 interrupted this phase of global warmth ∼3.30 million years ago, and is seen as a premature attempt of the climate system to establish an ice-age world. Here we propose a conceptual model for the glaciation and deglaciation of MIS M2 based on geochemical and palynological records from five marine sediment cores along a Caribbean to eastern North Atlantic transect. Our records show that increased Pacific-to-Atlantic flow via the Central American Seaway weakened the North Atlantic Current and attendant northward heat transport prior to MIS M2. The consequent cooling of the northern high latitude oceans permitted expansion of the continental ice sheets during MIS M2, despite near-modern atmospheric CO2 concentrations. Sea level drop during this glaciation halted the inflow of Pacific water to the Atlantic via the Central American Seaway, allowing the build-up of a Caribbean Warm Pool. Once this warm pool was large enough, the Gulf Stream-North Atlantic Current system was reinvigorated, leading to significant northward heat transport that terminated the glaciation. Before and after MIS M2, heat transport via the North Atlantic Current was crucial in maintaining warm climates comparable to those predicted for the end of this century. PMID:24349081

  9. Northern Hemisphere Glaciation during the Globally Warm Early Late Pliocene

    PubMed Central

    De Schepper, Stijn; Groeneveld, Jeroen; Naafs, B. David A; Van Renterghem, Cédéric; Hennissen, Jan; Head, Martin J.; Louwye, Stephen; Fabian, Karl

    2013-01-01

    The early Late Pliocene (3.6 to ∼3.0 million years ago) is the last extended interval in Earth's history when atmospheric CO2 concentrations were comparable to today's and global climate was warmer. Yet a severe global glaciation during marine isotope stage (MIS) M2 interrupted this phase of global warmth ∼3.30 million years ago, and is seen as a premature attempt of the climate system to establish an ice-age world. Here we propose a conceptual model for the glaciation and deglaciation of MIS M2 based on geochemical and palynological records from five marine sediment cores along a Caribbean to eastern North Atlantic transect. Our records show that increased Pacific-to-Atlantic flow via the Central American Seaway weakened the North Atlantic Current and attendant northward heat transport prior to MIS M2. The consequent cooling of the northern high latitude oceans permitted expansion of the continental ice sheets during MIS M2, despite near-modern atmospheric CO2 concentrations. Sea level drop during this glaciation halted the inflow of Pacific water to the Atlantic via the Central American Seaway, allowing the build-up of a Caribbean Warm Pool. Once this warm pool was large enough, the Gulf Stream–North Atlantic Current system was reinvigorated, leading to significant northward heat transport that terminated the glaciation. Before and after MIS M2, heat transport via the North Atlantic Current was crucial in maintaining warm climates comparable to those predicted for the end of this century. PMID:24349081

  10. Nuclear Technology, Global Warming, and the Politicization of Science

    NASA Astrophysics Data System (ADS)

    Weart, Spencer

    2016-03-01

    Since the mid 20th century physical scientists have engaged in two fierce public debates on issues that posed existential risks to modern society: nuclear weapons and global warming. The two overlapped with a third major debate over the deployment of nuclear power reactors. Each controversy included technical disagreements raised by a minority among the scientists themselves. Despite efforts to deal with the issues objectively, the scientists became entangled in left vs. right political polarization. All these debates, but particularly the one over climate change, resulted in a deterioration of public faith in the objectivity and integrity of scientists.

  11. Global Warming and Glaciers Melting at Fjords in Greenland

    NASA Astrophysics Data System (ADS)

    Coelho, Pablo

    2015-04-01

    This paper presents a discussion on the validation or not of a likely paradigm about the melting of polar glaciers and their direct impact on increasing ocean levels. Physico-chemical properties of ocean waters, as well as anomalies in the thermal behavior of water are used as providers of this discussion using fjords of Greenland as study area. This text seeks to infer the relationship between the most recent developments in global warming, specifically dealing with the melting of glaciers located in fjords in the eastern part of Greenland, increasing the water temperature in ocean currents and changes in sea levels. We emphasize the importance of the correlation of the water physico-chemical characteristics in these changes perceived in the studied environment. Greenland is defined by convention as the widest oceanic island in the world. In its fjords formed in the last glaciation of the Quaternary period, basically made of ice mountains with entries to the sea, there has been melts that are discussed in this work. At first, global warming and the melting of glaciers with a consequent rise in sea levels are presented almost as an axiom. This paper seeks to address the conclusions arising from this type of research according the basic laws of physics and chemistry, related to the behavior of water in their states (typically solid and liquid). The ultimate goal of this work glimpsed through some inferences and validation of water behavior in the ice condition and in its liquid state, a broader view with regard to the findings applied to the relationship between global warming and ice melting processes. Will be observed some water anomalies in the variation between its liquid and solid states to attempt a better understanding of the phenomena occurring in this area of interest as well as their possible impacts. It is noteworthy the fact that the water does not behave thermally as most liquids, with very specific consequences in relation to the variation between its

  12. The multimillennial sea-level commitment of global warming.

    PubMed

    Levermann, Anders; Clark, Peter U; Marzeion, Ben; Milne, Glenn A; Pollard, David; Radic, Valentina; Robinson, Alexander

    2013-08-20

    Global mean sea level has been steadily rising over the last century, is projected to increase by the end of this century, and will continue to rise beyond the year 2100 unless the current global mean temperature trend is reversed. Inertia in the climate and global carbon system, however, causes the global mean temperature to decline slowly even after greenhouse gas emissions have ceased, raising the question of how much sea-level commitment is expected for different levels of global mean temperature increase above preindustrial levels. Although sea-level rise over the last century has been dominated by ocean warming and loss of glaciers, the sensitivity suggested from records of past sea levels indicates important contributions should also be expected from the Greenland and Antarctic Ice Sheets. Uncertainties in the paleo-reconstructions, however, necessitate additional strategies to better constrain the sea-level commitment. Here we combine paleo-evidence with simulations from physical models to estimate the future sea-level commitment on a multimillennial time scale and compute associated regional sea-level patterns. Oceanic thermal expansion and the Antarctic Ice Sheet contribute quasi-linearly, with 0.4 m °C(-1) and 1.2 m °C(-1) of warming, respectively. The saturation of the contribution from glaciers is overcompensated by the nonlinear response of the Greenland Ice Sheet. As a consequence we are committed to a sea-level rise of approximately 2.3 m °C(-1) within the next 2,000 y. Considering the lifetime of anthropogenic greenhouse gases, this imposes the need for fundamental adaptation strategies on multicentennial time scales. PMID:23858443

  13. The multimillennial sea-level commitment of global warming

    PubMed Central

    Levermann, Anders; Clark, Peter U.; Marzeion, Ben; Milne, Glenn A.; Pollard, David; Radic, Valentina; Robinson, Alexander

    2013-01-01

    Global mean sea level has been steadily rising over the last century, is projected to increase by the end of this century, and will continue to rise beyond the year 2100 unless the current global mean temperature trend is reversed. Inertia in the climate and global carbon system, however, causes the global mean temperature to decline slowly even after greenhouse gas emissions have ceased, raising the question of how much sea-level commitment is expected for different levels of global mean temperature increase above preindustrial levels. Although sea-level rise over the last century has been dominated by ocean warming and loss of glaciers, the sensitivity suggested from records of past sea levels indicates important contributions should also be expected from the Greenland and Antarctic Ice Sheets. Uncertainties in the paleo-reconstructions, however, necessitate additional strategies to better constrain the sea-level commitment. Here we combine paleo-evidence with simulations from physical models to estimate the future sea-level commitment on a multimillennial time scale and compute associated regional sea-level patterns. Oceanic thermal expansion and the Antarctic Ice Sheet contribute quasi-linearly, with 0.4 m °C−1 and 1.2 m °C−1 of warming, respectively. The saturation of the contribution from glaciers is overcompensated by the nonlinear response of the Greenland Ice Sheet. As a consequence we are committed to a sea-level rise of approximately 2.3 m °C−1 within the next 2,000 y. Considering the lifetime of anthropogenic greenhouse gases, this imposes the need for fundamental adaptation strategies on multicentennial time scales. PMID:23858443

  14. Widespread amphibian extinctions from epidemic disease driven by global warming.

    PubMed

    Pounds, J Alan; Bustamante, Martín R; Coloma, Luis A; Consuegra, Jamie A; Fogden, Michael P L; Foster, Pru N; La Marca, Enrique; Masters, Karen L; Merino-Viteri, Andrés; Puschendorf, Robert; Ron, Santiago R; Sánchez-Azofeifa, G Arturo; Still, Christopher J; Young, Bruce E

    2006-01-12

    As the Earth warms, many species are likely to disappear, often because of changing disease dynamics. Here we show that a recent mass extinction associated with pathogen outbreaks is tied to global warming. Seventeen years ago, in the mountains of Costa Rica, the Monteverde harlequin frog (Atelopus sp.) vanished along with the golden toad (Bufo periglenes). An estimated 67% of the 110 or so species of Atelopus, which are endemic to the American tropics, have met the same fate, and a pathogenic chytrid fungus (Batrachochytrium dendrobatidis) is implicated. Analysing the timing of losses in relation to changes in sea surface and air temperatures, we conclude with 'very high confidence' (> 99%, following the Intergovernmental Panel on Climate Change, IPCC) that large-scale warming is a key factor in the disappearances. We propose that temperatures at many highland localities are shifting towards the growth optimum of Batrachochytrium, thus encouraging outbreaks. With climate change promoting infectious disease and eroding biodiversity, the urgency of reducing greenhouse-gas concentrations is now undeniable. PMID:16407945

  15. Global warming, drought events, and GPP performance (Invited)

    NASA Astrophysics Data System (ADS)

    Yi, C.; Jensen, K.; Wei, S.; Hendrey, G.

    2013-12-01

    The first decade of the 21st century was the warmest decade recorded since the start of modern measurements in 1850, according to a new report on July 3, 2013 by the World Meteorological Organization (WMO). Global warming may now be exacerbating droughts in the world, and leading to more reduction in crop production, plant growth and hence carbon fixation, and further warming climate. How do we quantify the relationship between drought event and ecosystem performance? Here, we developed a method called 'perfect-deficit approach' and a local dryness index based on eddy-flux measurements. We applied these concepts and mathematical method to remote sensing observations (MODIS) to examine the world ecosystem performance in the first decade of 21st century and identify the associated climate extremes. The initial results show that the deficits of ecosystem performances in lower latitudes were caused mainly by drought events, while at high latitudes cold/warm events also exert substantial influences on ecosystem performances, particularly in spring season. Acknowledgements This research was financially supported by PSC-CUNY Award (PSC-CUNY-ENHC-44-83)

  16. Understand Changes of the Tropical Tropopause Under Global Warming

    NASA Astrophysics Data System (ADS)

    Lin, P.; Paynter, D.; Ming, Y.; Ramaswamy, V.

    2014-12-01

    Previous model studies has predicted a warmer and higher tropical tropopause as greenhouse gases increases, but the mechanisms of such changes have not been investigated fully. Here we examine changes the tropical tropopause in two idealized experiments simulated by GFDL global climate model AM3: (1) 4xCO2 with fixed sea surface temperature; and (2) an uniform 4K increase of the sea surface temperature with fixed greenhouse gases concentrations. The tropical tropopause becomes warmer in both experiments, but a higher tropopause is only seen in the second case. By examining the heat budget of the tropical tropoapuse, we diagnose the physical processes that are responsible for these changes and quantify their contributions. For the 4xCO2 experiment, the direct radiative effect of CO2 increase contributes the most. For the SST warming experiment, the radiative effect of a warmer troposphere and convection-related processes lead to a warming at 100 hPa, while a stronger Brewer-Dobson circulation and associated changes in ozone lead to a cooling at 60 hPa. This warming-cooling pattern results in a significant upward shift of the tropopause.

  17. Global warming risk assessment as it is taught at the university level

    SciTech Connect

    Tarassova, N.P.; Malkov, A.V.

    1997-12-31

    It has already become a common place that global warming is the price payed by the civilization for the commodities of the modem life. Various branches of human activities, different types of industrial enterprises make their contributions (direct or indirect) to the Global Warming process, the impact being quite different under the {open_quote}normal{close_quotes} and {open_quote}accident{close_quotes} modes of functioning. The development of industry resulted in the considerable number of techogenic catastrophes, the consequences of the man-made disasters exceeding the ones of the natural disasters. Our statement is that in the modern education at the university level the problems of the risk analysis must be dealt with in the standard curriculum especially if technical universities are under consideration. The students are to be tought how to access the risk at the local, regional and global levels, and how to apply the skills and knowledge gained at the university to the already existing technologies, as well as to the ones under projection. The reliability of risk assessment approaches will determine the level of risk and the amount of economic resources needed to manage the risk.

  18. Modeling the fate of methane hydrates under global warming

    NASA Astrophysics Data System (ADS)

    Kretschmer, Kerstin; Biastoch, Arne; Rüpke, Lars; Burwicz, Ewa

    2015-05-01

    Large amounts of methane hydrate locked up within marine sediments are vulnerable to climate change. Changes in bottom water temperatures may lead to their destabilization and the release of methane into the water column or even the atmosphere. In a multimodel approach, the possible impact of destabilizing methane hydrates onto global climate within the next century is evaluated. The focus is set on changing bottom water temperatures to infer the response of the global methane hydrate inventory to future climate change. Present and future bottom water temperatures are evaluated by the combined use of hindcast high-resolution ocean circulation simulations and climate modeling for the next century. The changing global hydrate inventory is computed using the parameterized transfer function recently proposed by Wallmann et al. (2012). We find that the present-day world's total marine methane hydrate inventory is estimated to be 1146 Gt of methane carbon. Within the next 100 years this global inventory may be reduced by ˜0.03% (releasing ˜473 Mt methane from the seafloor). Compared to the present-day annual emissions of anthropogenic methane, the amount of methane released from melting hydrates by 2100 is small and will not have a major impact on the global climate. On a regional scale, ocean bottom warming over the next 100 years will result in a relatively large decrease in the methane hydrate deposits, with the Arctic and Blake Ridge region, offshore South Carolina, being most affected.

  19. States' roles in reducing global warming: Achieving international goals

    SciTech Connect

    Feldman, D.L.; Wilt, C.A. . Energy, Environment, and Resources Center)

    1994-12-01

    National governments hold major responsibility for reducing global warming. However, some of the most important efforts to stabilize atmospheric concentrations of greenhouse gases must occur at sub-national levels. In federal systems composed of states, as well as unitary systems that impose national policies upon regions, smaller administrative units are involved in energy conservation and end-use efficiency programs, CFC reduction activities, and transportation planning. States and regions also provide greenhouse gas emissions and other basic environmental data needed to comply with international agreements. The authors argue that, for some issues states are better able than national governments to develop innovative, flexible greenhouse gas policies that are administratively feasible and publicly acceptable. International agreements and policy declarations and institution-building efforts acknowledge the importance of institution-building efforts acknowledge the importance of bottom-up approaches that rely on regionally-based, sustainable development activities to reduce global warming. They describe how national energy and pollution-prevention policies in the US invest states with specific responsibilities for reducing greenhouse gases or participating in adaptation strategies.

  20. Subarctic warming: Results from the global treeline project

    SciTech Connect

    Siren, G.; Shen, S.

    1996-12-31

    The authors reported last year at the 6th Global Warming Science and Policy Conference (GW6), April 3--6, 1995, San Francisco USA, the Global Treeline Project (BLECSCO) has definitively established the northward movement in the 20th century of the northernmost limit for pine trees in Finland. this movement is due to climate warming. The Finnish Forest Research Institute has been working on this problem between 1951 and 1996. The authors have observed over half a century the movements of the coniferous treeline. The subarctic pine tree line is used as a permanent bioindicator of climate change. The dynamic pine tree line in the subarctic of Finland serves as a reliable indicator of expected climate change in the future as well as of climatic fluctuations in the past. The FFRI has tracked comprehensively seed year frequencies, performed dendrochronological studies, fire studies, and ecological studies since the abundant seed year of 1948--50 to the present, and discovered that climate change has favored the northward movement of the pine limit. The authors report the detailed scientific methodology, data, and conclusions.

  1. Possible human health impacts of a global warming

    SciTech Connect

    Nichols, M.C.; Kalkstein, L.S.; Cheng, S.

    1995-03-01

    Some ways in which a global warming may affect human health are discussed. Research is presented which explores the hypothesis that heat stress-induced mortality may increase substantially in the event of a worldwide temperature increase. Two procedures are applied to four disparate nations: the US, Canada, China and Egypt. Results indicate that significant increases in heat-related mortality are likely to occur, particularly in developing nations. Factors which might help to mitigate these increases, such as acclimatization and air conditioning, are also examined. Another human health impact of a global warming is the likely spread of certain vector-borne diseases into areas of the world where they do not currently exist. Two of these, onchocerciasis and malaria, have been chosen for a detailed international study. The initial steps in this effort are discussed. Policy options are proposed which may prepare international organizations and public officials for difficulties which may arise. Implementation of these procedures, which include continuation of internationally sponsored research, could help to ameliorate many of the problems outlined in this paper.

  2. Quantifying Contributions of Climate Feedbacks to Global Warming Pattern Formation

    NASA Astrophysics Data System (ADS)

    Song, X.; Zhang, G. J.; Cai, M.

    2013-12-01

    The ';';climate feedback-response analysis method'' (CFRAM) was applied to the NCAR CCSM3.0 simulation to analyze the strength and spatial distribution of climate feedbacks and to quantify their contributions to global and regional surface temperature changes in response to a doubling of CO2. Instead of analyzing the climate sensitivity, the CFRAM directly attributes the temperature change to individual radiative and non-radiative feedbacks. The radiative feedback decomposition is based on hourly model output rather than monthly mean data that are commonly used in climate feedback analysis. This gives a more accurate quantification of the cloud and albedo feedbacks. The process-based decomposition of non-radiative feedback enables us to understand the roles of GCM physical and dynamic processes in climate change. The pattern correlation, the centered root-mean-square (RMS) difference and the ratio of variations (represented by standard deviations) between the partial surface temperature change due to each feedback process and the total surface temperature change in CCSM3.0 simulation are examined to quantify the roles of each feedback process in the global warming pattern formation. The contributions of climate feedbacks to the regional warming are also discussed.

  3. Modification of cirrus clouds to reduce global warming

    NASA Astrophysics Data System (ADS)

    Mitchell, D. L.

    2009-12-01

    Since both greenhouse gases and cirrus clouds strongly affect outgoing longwave radiation (OLR) with no affect or less affect on solar radiation, respectively, an attempt to delay global warming to buy time for emission reduction strategies to work might naturally target cirrus clouds. Cirrus having optical depths < 3.6 cover 13% of the globe and have a net warming effect on climate, with the coldest cirrus having the strongest warming effect. Roughly 2/3 of predicted global warming is due to the feedback effect of water vapor and clouds from an initial greenhouse gas forcing, and a recent study indicates water vapor and clouds in the upper troposphere (UT) have the greatest impact on climate sensitivity (the equilibrium response of global-mean surface temperature to a CO2 doubling). Thus altering UT water vapor and cirrus may be a good strategy for climate engineering. Cirrus cloud coverage is predicted to be sensitive to the ice fall speed which depends on ice crystal size. The higher the cirrus, the greater their impact is on OLR. Thus by changing ice crystal size in the coldest cirrus, OLR and climate might be modified. Fortunately the coldest cirrus have the highest ice supersaturation due to the dominance of homogeneous freezing nucleation. Seeding such cirrus with very efficient heterogeneous ice nuclei should produce larger ice crystals due to vapor competition effects, thus increasing OLR and surface cooling. Preliminary estimates of this global net cloud forcing via GCM simulations are more negative than -2.8 W m-2 and could neutralize the radiative forcing due to a CO2 doubling (3.7 W m-2). This cirrus engineered net forcing is due to (1) reduced cirrus coverage and (2) reduced upper tropospheric water vapor, due to enhanced ice sedimentation. The implementation of this climate engineering could use the airline industry to disperse the seeding material. Commercial airliners typically fly at temperatures between -40 and -60 deg. C (where homogeneous

  4. Hydrothermal venting of greenhouse gases triggering Early Jurassic global warming

    NASA Astrophysics Data System (ADS)

    Svensen, Henrik; Planke, Sverre; Chevallier, Luc; Malthe-Sørenssen, Anders; Corfu, Fernando; Jamtveit, Bjørn

    2007-04-01

    The climate change in the Toarcian (Early Jurassic) was characterized by a major perturbation of the global carbon cycle. The event lasted for approximately 200,000 years and was manifested by a global warming of ˜ 6 °C, anoxic conditions in the oceans, and extinction of marine species. The triggering mechanisms for the perturbation and environmental change are however strongly debated. Here, we present evidence for a rapid formation and transport of greenhouse gases from the deep sedimentary reservoirs in the Karoo Basin, South Africa. Magmatic sills were emplaced during the initial stages of formation of the Early Jurassic Karoo Large Igneous Province, and had a profound influence on the fate of light elements in the organic-rich sedimentary host rocks. Total organic carbon contents and vitrinite reflectivity data from contact aureoles around the sills show that organic carbon was lost from the country rocks during heating. We present data from a new type of geological structures, termed breccia pipes, rooted in the aureoles within the shale of the Western Karoo Basin. The breccia pipes are cylindrical structures up to 150 meters in diameter and are mainly comprised of brecciated and baked black shale. Thousands of breccia pipes were formed due to gas pressure build-up during metamorphism of the shales, resulting in venting of greenhouse gases to the Toarcian atmosphere. Mass balance calculations constrained by new aureole data show that up to 1800 Gt of CO 2 was formed from organic material in the western Karoo Basin. About 15 times this amount of CO 2 (27,400 Gt) may have formed in the entire basin during the intrusive event. U-Pb dating of zircons from a sill related to many of the pipes demonstrates that the magma was emplaced 182.5 ± 0.4 million years ago. This supports a causal relationship between the intrusive volcanism, the gas venting, and the Toarcian global warming.

  5. Climate extremes and ecosystem productivity in global warming simulations

    NASA Astrophysics Data System (ADS)

    Williams, I. N.; Torn, M. S.; Riley, W. J.; Wehner, M. F.; Collins, W.

    2013-12-01

    Ecosystem responses to present-day droughts and heat-waves are often considered indicative of future global warming impacts on ecosystems, under the assumption that the temperature above which vegetation experiences heat and drought stress is invariant with changes in climate and carbon dioxide concentration. Understanding how the impacts of temperature extremes on ecosystems can change with climate change is essential for correctly evaluating and developing Earth System Models (ESMs). The Coupled Model Inter-comparison Project (CMIP5) historical and future (RCP8.5) climate predictions were analyzed in this study to illustrate non-stationarity of climate impacts on ecosystems, as evident by changes in the distribution of Gross Primary Production (GPP) as a function of temperature between future and historical climates. These changes consist of (1) a uniform shift in the GPP distribution toward warmer temperatures between future and historical climates, and (2) a proportional increase in GPP at all temperatures, consistent with CO2 fertilization. The temperature at which GPP has a local maximum within a given climate increases with global warming and closely tracks the change in mean temperature for each ecosystem. This maximum GPP temperature can be conceptualized as a stable equilibrium determined by the temperature at which an increase in plant water stress is compensated by a decrease in light stress (decreasing cloud cover) with increasing temperature. Temperature relative to the temperature of maximum GPP is proposed as an improved measure of climate extremes more relevant to ecosystem productivity than absolute temperature. The percentage change in GPP attributed to changes in relative temperature extremes is up to 3% per K (decrease in GPP), and reflects both an increase in the frequency of climate extremes in global warming scenarios and the change in temperature criteria for negative climate impacts on ecosystem productivity. Temperature at GPP maximum as

  6. Voluminous Icelandic Basaltic Eruptions Appear To Cause Abrupt Global Warming

    NASA Astrophysics Data System (ADS)

    Ward, P. L.

    2011-12-01

    major sub-glacial eruptions that occurred during DO 0, A, and 1 (11.6, 13.1, and 14.6 ka) and similar but less well dated activity at least over the past million years. Massive melting of a thick ice sheet by volcanoes would decrease overburden pressure on the magma chambers, potentially increasing volcanism. Continued basaltic eruptions over decades enhanced by such a feedback c8ould explain why the intervals between DO events (1300 to 8800 years) are more random than cyclic and the evidence for sudden influxes of fresh water into the North Atlantic documented during DO events. Concentrations of sulfate in Greenland were as high from 1928 to 1985 as during the largest DO event. Trace element analysis shows this sulfate came from smoke stacks in northern Russia, Europe, and central North America. Observed levels of SO2, NO_{x}, tropospheric O$_{3} and black carbon are more than sufficient to have been the primary cause of 20th century global warming. Efforts to reduce acid rain by reducing emissions of these pollutants "accidentally" slowed global warming by 1998. Mean global surface temperatures have remained high but have not increased since then.

  7. Enhanced marine sulphur emissions offset global warming and impact rainfall.

    PubMed

    Grandey, B S; Wang, C

    2015-01-01

    Artificial fertilisation of the ocean has been proposed as a possible geoengineering method for removing carbon dioxide from the atmosphere. The associated increase in marine primary productivity may lead to an increase in emissions of dimethyl sulphide (DMS), the primary source of sulphate aerosol over remote ocean regions, potentially causing direct and cloud-related indirect aerosol effects on climate. This pathway from ocean fertilisation to aerosol induced cooling of the climate may provide a basis for solar radiation management (SRM) geoengineering. In this study, we investigate the transient climate impacts of two emissions scenarios: an RCP4.5 (Representative Concentration Pathway 4.5) control; and an idealised scenario, based on RCP4.5, in which DMS emissions are substantially enhanced over ocean areas. We use mini-ensembles of a coupled atmosphere-ocean configuration of CESM1(CAM5) (Community Earth System Model version 1, with the Community Atmosphere Model version 5). We find that the cooling effect associated with enhanced DMS emissions beneficially offsets greenhouse gas induced warming across most of the world. However, the rainfall response may adversely affect water resources, potentially impacting human livelihoods. These results demonstrate that changes in marine phytoplankton activity may lead to a mixture of positive and negative impacts on the climate. PMID:26293204

  8. Enhanced marine sulphur emissions offset global warming and impact rainfall

    NASA Astrophysics Data System (ADS)

    Grandey, B. S.; Wang, C.

    2015-08-01

    Artificial fertilisation of the ocean has been proposed as a possible geoengineering method for removing carbon dioxide from the atmosphere. The associated increase in marine primary productivity may lead to an increase in emissions of dimethyl sulphide (DMS), the primary source of sulphate aerosol over remote ocean regions, potentially causing direct and cloud-related indirect aerosol effects on climate. This pathway from ocean fertilisation to aerosol induced cooling of the climate may provide a basis for solar radiation management (SRM) geoengineering. In this study, we investigate the transient climate impacts of two emissions scenarios: an RCP4.5 (Representative Concentration Pathway 4.5) control; and an idealised scenario, based on RCP4.5, in which DMS emissions are substantially enhanced over ocean areas. We use mini-ensembles of a coupled atmosphere-ocean configuration of CESM1(CAM5) (Community Earth System Model version 1, with the Community Atmosphere Model version 5). We find that the cooling effect associated with enhanced DMS emissions beneficially offsets greenhouse gas induced warming across most of the world. However, the rainfall response may adversely affect water resources, potentially impacting human livelihoods. These results demonstrate that changes in marine phytoplankton activity may lead to a mixture of positive and negative impacts on the climate.

  9. Enhanced marine sulphur emissions offset global warming and impact rainfall

    PubMed Central

    Grandey, B. S.; Wang, C.

    2015-01-01

    Artificial fertilisation of the ocean has been proposed as a possible geoengineering method for removing carbon dioxide from the atmosphere. The associated increase in marine primary productivity may lead to an increase in emissions of dimethyl sulphide (DMS), the primary source of sulphate aerosol over remote ocean regions, potentially causing direct and cloud-related indirect aerosol effects on climate. This pathway from ocean fertilisation to aerosol induced cooling of the climate may provide a basis for solar radiation management (SRM) geoengineering. In this study, we investigate the transient climate impacts of two emissions scenarios: an RCP4.5 (Representative Concentration Pathway 4.5) control; and an idealised scenario, based on RCP4.5, in which DMS emissions are substantially enhanced over ocean areas. We use mini-ensembles of a coupled atmosphere-ocean configuration of CESM1(CAM5) (Community Earth System Model version 1, with the Community Atmosphere Model version 5). We find that the cooling effect associated with enhanced DMS emissions beneficially offsets greenhouse gas induced warming across most of the world. However, the rainfall response may adversely affect water resources, potentially impacting human livelihoods. These results demonstrate that changes in marine phytoplankton activity may lead to a mixture of positive and negative impacts on the climate. PMID:26293204

  10. 40 CFR Table A-1 to Subpart A of... - Global Warming Potentials

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Global Warming Potentials A Table A-1 to Subpart A of Part 98 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... A-1 to Subpart A of Part 98—Global Warming Potentials Name CAS No. Chemical formula Global...

  11. 40 CFR Table A-1 to Subpart A of... - Global Warming Potentials

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Global Warming Potentials A Table A-1 to Subpart A of Part 98 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... A-1 to Subpart A of Part 98—Global Warming Potentials Name CAS No. Chemical formula Global...

  12. Global Warming: Understanding and Teaching the Forecast. Part A The Greenhouse Effect.

    ERIC Educational Resources Information Center

    Andrews, Bill

    1993-01-01

    Provides information necessary for an interdisciplinary analysis of the greenhouse effect, enhanced greenhouse effect, global warming, global climate change, greenhouse gases, carbon dioxide, and scientific study of global warming for students grades 4-12. Several activity ideas accompany the information. (LZ)

  13. Global Warming as a Manifestation of a Random Walk.

    NASA Astrophysics Data System (ADS)

    Gordon, A. H.

    1991-06-01

    Global and hemispheric series of surface temperature anomalies are examined in an attempt to isolate any specific features of the structure of the series that might contribute to the global warming of about 0.5°C which has been observed over the past 100 years. It is found that there are no significant differences between the means of the positive and negative values of the changes in temperature from one year to the next; neither do the relative frequencies of the positive and negative values differ from the frequencies that would be expected by chance with a probability near 0.5. If the interannual changes are regarded as changes of unit magnitude and plotted in a Cartesian frame of reference with time measured along the x axis and yearly temperature differences along the y axis, the resulting path closely resembles the kind of random walk that occurs during a coin-tossing game.We hypothesize that the global and hemispheric temperature series are the result of a Markov process. The climate system is subjected to various forms of random impulses. It is argued that the system fails to return to its former state after reacting to an impulse but tends to adjust to a new state of equilibrium as prescribed by the shock. This happens because a net positive feedback accompanies each shock and slightly alters the environmental state.

  14. The observed global warming record: what does it tell us?

    PubMed

    Wigley, T M; Jones, P D; Raper, S C

    1997-08-01

    Global, near-surface temperature data sets and their derivations are discussed, and differences between the Jones and Intergovernmental Panel on Climate Change data sets are explained. Global-mean temperature changes are then interpreted in terms of anthropogenic forcing influences and natural variability. The inclusion of aerosol forcing improves the fit between modeled and observed changes but does not improve the agreement between the implied climate sensitivity value and the standard model-based range of 1.5-4.5 degrees C equilibrium warming for a CO2 doubling. The implied sensitivity goes from below the model-based range of estimates to substantially above this range. The addition of a solar forcing effect further improves the fit and brings the best-fit sensitivity into the middle of the model-based range. Consistency is further improved when internally generated changes are considered. This consistency, however, hides many uncertainties that surround observed data/model comparisons. These uncertainties make it impossible currently to use observed global-scale temperature changes to narrow the uncertainty range in the climate sensitivity below that estimated directly from climate models. PMID:11607739

  15. A set of experiments to understand global warming

    NASA Astrophysics Data System (ADS)

    Bouquelle, Veronique; Bauwens, Anne; De Bont, Adele; Kivits, Sandrine; Marbaix, Philippe

    2014-05-01

    We have developed a set of experiments addressed to pupils from the age of 14 to teach the basic causes and effects of global warming. Through ten experiments conducted in turns by the pupils themselves, they will understand the physics, biology and chemistry of the main issues linked to the increase in greenhouse gases in our atmosphere. More specifically, the hand-made, low-cost material, allow the students to discover and experiment the science of the greenhouse effect, sea level rise, ocean circulation, ocean acidification, species relocation and extinction, differential heating according to the albedo, carbon cycle, and photosynthesis. Technical notes give background theory input. All the experiments can easily be reproduced.

  16. Energy conversion of biomass in coping with global warming

    SciTech Connect

    Yokoyama, Shin-ya; Ogi, Tomoko; Minowa, Tomoaki

    1993-12-31

    The main purpose of the present paper is to propose energy conversion technologies of biomass in coping with global warming. Among thermochemical conversion, liquid fuel production by high pressure process is mainly introduced. Biomass is a term used to describe materials of biological origin, either purpose-grown or arising as by-products, residues or wastes from forestry, agriculture and food processing. Such biomass is a renewable energy sources dependent on solar energy. Through photosynthesis, plants converts carbon dioxide into organic materials used in their growth. Energy can be recovered from the plant materials by several processes, the simplest way is burning in air. As far as biomass is used in this way, there is no atmospheric accumulation of carbon dioxide making no effect on the Greenhouse Effect, provided that the cycle of regrowth and burning is sustained.

  17. Cold stress on Russian territory during last global warming

    SciTech Connect

    Vinogradov, V.V.

    1996-12-31

    A great part of Russian territory is characterized by climate discomfort of life. In winter cold stress covers nearly all territory. The purpose of this work is to learn how the climatic discomfort of life is affected by climate change. The effect of global warming for the period 1981--1990 on geographical distribution of bioclimatic indexes by seasons (compared with average figures) is analyzed. Indexes of enthalpy, dry cooling, wind chill, wet cooling, effective temperature, physiological deficit index for monthly average figures were calculated and the data bank for the period 1981--1990 was made up. The indexes of enthalpy, wet cooling, and dry cooling according to Bodman were chosen as the most informative and independent. Maps of the climatic indexes taking into account temperature, humidity and wind speed were made up on the basis of the calculated figures.

  18. A Robust Response of the Hadley Circulation to Global Warming

    NASA Technical Reports Server (NTRS)

    Lau, William K M.; Kim, Kyu-Myong

    2014-01-01

    Tropical rainfall is expected to increase in a warmer climate. Yet, recent studies have inferred that the Hadley Circulation (HC), which is primarily driven by latent heating from tropical rainfall, is weakened under global warming. Here, we show evidence of a robust intensification of the HC from analyses of 33 CMIP5 model projections under a scenario of 1 per year CO2 emission increase. The intensification is manifested in a deep-tropics squeeze, characterized by a pronounced increase in the zonal mean ascending motion in the mid and upper troposphere, a deepening and narrowing of the convective zone and enhanced rainfall in the deep tropics. These changes occur in conjunction with a rise in the region of maximum outflow of the HC, with accelerated meridional mass outflow in the uppermost branch of the HC away from the equator, coupled to a weakened inflow in the return branches of the HC in the lower troposphere.

  19. Global warming due to increasing absorbed solar radiation

    NASA Astrophysics Data System (ADS)

    Trenberth, Kevin E.; Fasullo, John T.

    2009-04-01

    Global climate models used in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) are examined for the top-of-atmosphere radiation changes as carbon dioxide and other greenhouse gases build up from 1950 to 2100. There is an increase in net radiation absorbed, but not in ways commonly assumed. While there is a large increase in the greenhouse effect from increasing greenhouse gases and water vapor (as a feedback), this is offset to a large degree by a decreasing greenhouse effect from reducing cloud cover and increasing radiative emissions from higher temperatures. Instead the main warming from an energy budget standpoint comes from increases in absorbed solar radiation that stem directly from the decreasing cloud amounts. These findings underscore the need to ascertain the credibility of the model changes, especially insofar as changes in clouds are concerned.

  20. More hurricanes to hit Western Europe due to global warming

    NASA Astrophysics Data System (ADS)

    Haarsma, Reindert; Hazeleger, Wilco; Severijns, Camiel; de Vries, Hylke; Ster, Andreas; Bintanja, Richard; van Oldenborgh, Geert Jan; van den Brink, Henk; Baatsen, Michiel

    2014-05-01

    Using a very high resolution global climate model (~25 km grid size) with prescribed sea surface temperatures we have investigated the change in the occurrence of hurricane-force (> 32.6 m/s) storms over Western Europe due to climate change. The results show a large increase during early autumn (Aug-Oct). The majority of these storms originate as a tropical cyclone. Using SST sensitivity experiments we have tested the hypothesis that the increase is due to the rise in Atlantic tropical SST thereby extending eastwards the breeding ground of tropical cyclones, yielding more frequent and intense hurricanes following pathways directed towards Europe. En route they transform into extra-tropical depressions and re-intensify after merging with the mid-latitude baroclinic unstable flow. Detailed analysis indicates that the development of a warm seclusion is the main mechanism for the re-intensification and that the hurricane winds are caused by a sting jet.

  1. Does flower phenology mirror the slowdown of global warming?

    PubMed Central

    Jochner, Susanne; Menzel, Annette

    2015-01-01

    Although recent global warming trends in air temperature are not as pronounced as those observed only one decade ago, global mean temperature is still at a very high level. Does plant phenology – which is believed to be a suitable indicator of climate change – respond in a similar way, that is, does it still mirror recent temperature variations? We explored in detail long-term flowering onset dates of snowdrop, cherry, and lime tree and relevant spring temperatures at three sites in Germany (1901–2012) using the Bayesian multiple change-point approach. We investigated whether mean spring temperature changes were amplified or slowed down in the past decade and how plant phenology responded to the most recent temperature changes. Incorporating records with different end points (i.e., 2002 and 2012), we compared differences in trends and inferred possible differences caused by extrapolating phenological and meteorological data. The new multiple-change point approach is characterized by an enhanced structure and greater flexibility compared to the one change point model. However, the highest model probabilities for phenological (meteorological) records were still obtained for the one change point (linear) model. Marked warming trends in the recent decade were only revealed for mean temperatures of March to May, here better described with one or two change point models. In the majority of cases analyzed, changes in temperatures were well mirrored by phenological changes. However, temperatures in March to May were linked to less strongly advancing onset dates for lime tree flowering during the period 1901-2012, pointing to the likely influence of photoperiodic constraints or unfulfilled chilling requirements. Due to the slowdown of temperature increase, analyses conducted on records ending in 2002 demonstrated distinct differences when compared with records ending in 2012. Extrapolation of trends could therefore (along with the choice of the statistical method

  2. Good enough tools for global warming policy making.

    PubMed

    Socolow, R H; Lam, S H

    2007-04-15

    We present a simple analysis of the global warming problem caused by the emissions of CO2 (a major greenhouse gas) into the atmosphere resulting from the burning of fossil fuels. We provide quantitative tools which enable policymakers and interested citizens to explore the following issues central to the global warming problem. (i) At what rate are we permitted to continue to emit CO2 after the global average atmospheric concentration has 'stabilized' at some chosen target level? The answer here provides the magnitude of the effort, measured by the necessary total reduction of today's global (annual) emissions rate to achieve stabilization. We shall see that stabilized emissions rates for all interesting stabilized concentration levels are much lower than the current emissions rate, but these small finite values are very important. (ii) Across how many years can we spread the total effort to reduce the annual CO2 emissions rate from its current high value to the above-mentioned low and stabilized target value? The answer here provides the time-scale of the total mitigation effort for any chosen atmospheric concentration target level. We confirm the common understanding that targets below a doubling of the pre-industrial concentration create great pressure to produce action immediately, while targets above double the pre-industrial level can tolerate longer periods of inaction. (iii) How much harder is the future mitigation effort, if we do not do our share of the job now? Is it a good idea to overshoot a stabilization target? The quantitative answers here provide the penalty of procrastination. For example, the mitigation task to avoid doubling the pre-industrial level is a problem that can be addressed gradually, over a period extending more than a century, if started immediately, but procrastination can turn the effort into a much more urgent task that extends over only a few decades. We also find that overshooting target levels is a bad idea. The quality of

  3. Competition between global warming and an abrupt collapse of the AMOC in Earth's energy imbalance.

    PubMed

    Drijfhout, Sybren

    2015-01-01

    A collapse of the Atlantic Meridional Overturning Circulation (AMOC) leads to global cooling through fast feedbacks that selectively amplify the response in the Northern Hemisphere (NH). How such cooling competes with global warming has long been a topic for speculation, but was never addressed using a climate model. Here it is shown that global cooling due to a collapsing AMOC obliterates global warming for a period of 15-20 years. Thereafter, the global mean temperature trend is reversed and becomes similar to a simulation without an AMOC collapse. The resulting surface warming hiatus lasts for 40-50 years. Global warming and AMOC-induced NH cooling are governed by similar feedbacks, giving rise to a global net radiative imbalance of similar sign, although the former is associated with surface warming, the latter with cooling. Their footprints in outgoing longwave and absorbed shortwave radiation are very distinct, making attribution possible. PMID:26437599

  4. Predicting future uncertainty constraints on global warming projections

    NASA Astrophysics Data System (ADS)

    Shiogama, H.; Stone, D.; Emori, S.; Takahashi, K.; Mori, S.; Maeda, A.; Ishizaki, Y.; Allen, M. R.

    2016-01-01

    Projections of global mean temperature changes (ΔT) in the future are associated with intrinsic uncertainties. Much climate policy discourse has been guided by “current knowledge” of the ΔTs uncertainty, ignoring the likely future reductions of the uncertainty, because a mechanism for predicting these reductions is lacking. By using simulations of Global Climate Models from the Coupled Model Intercomparison Project Phase 5 ensemble as pseudo past and future observations, we estimate how fast and in what way the uncertainties of ΔT can decline when the current observation network of surface air temperature is maintained. At least in the world of pseudo observations under the Representative Concentration Pathways (RCPs), we can drastically reduce more than 50% of the ΔTs uncertainty in the 2040 s by 2029, and more than 60% of the ΔTs uncertainty in the 2090 s by 2049. Under the highest forcing scenario of RCPs, we can predict the true timing of passing the 2 °C (3 °C) warming threshold 20 (30) years in advance with errors less than 10 years. These results demonstrate potential for sequential decision-making strategies to take advantage of future progress in understanding of anthropogenic climate change.

  5. Predicting future uncertainty constraints on global warming projections

    PubMed Central

    Shiogama, H.; Stone, D.; Emori, S.; Takahashi, K.; Mori, S.; Maeda, A.; Ishizaki, Y.; Allen, M. R.

    2016-01-01

    Projections of global mean temperature changes (ΔT) in the future are associated with intrinsic uncertainties. Much climate policy discourse has been guided by “current knowledge” of the ΔTs uncertainty, ignoring the likely future reductions of the uncertainty, because a mechanism for predicting these reductions is lacking. By using simulations of Global Climate Models from the Coupled Model Intercomparison Project Phase 5 ensemble as pseudo past and future observations, we estimate how fast and in what way the uncertainties of ΔT can decline when the current observation network of surface air temperature is maintained. At least in the world of pseudo observations under the Representative Concentration Pathways (RCPs), we can drastically reduce more than 50% of the ΔTs uncertainty in the 2040 s by 2029, and more than 60% of the ΔTs uncertainty in the 2090 s by 2049. Under the highest forcing scenario of RCPs, we can predict the true timing of passing the 2 °C (3 °C) warming threshold 20 (30) years in advance with errors less than 10 years. These results demonstrate potential for sequential decision-making strategies to take advantage of future progress in understanding of anthropogenic climate change. PMID:26750491

  6. Ozone depletion and global warming potentials of CF3I

    SciTech Connect

    Solomon, S.; Burkholder, J.B.; Ravishankara, A.R.; Garcia, R.R. |

    1994-10-01

    Laboratory measurements of the infrared and near-ultraviolet absorption characteristics of CF3I (a potentially useful substitute for halons) are presented. Using these data together with a detailed photochemical model, it is shown that the lifetime of this gas in the sunlit atmosphere is less than a day. The chemistry of iodine in the stratosphere is evaluated, and it is shown that any iodine that reaches the stratosphere will be very effective for ozone destruction there. However, the extremely short lifetime of CF3I greatly limits its transport to the stratosphere when released at the surface, especially at midlatitudes, and the total anthropogenic surface release of CF3I is likely to be far less than that of natural iodocarbons such as CH3I on a global basis. It is highly probable that the steady-state ozone depletion potential (ODP) of CF3I for surface releases is less than 0.008 and more likely below 0.0001. Measured infrared absorption data are also combined with the lifetime to show that the 20-year global warming potential (GWP) of this gas is likely to be very small, less than 5. Therefore, this study suggests that neither the ODP nor the GWP of this gas represent significant obstacles to its use as a replacement for halons.

  7. Global Warming and Food Insecurity in Rural Latin America

    NASA Astrophysics Data System (ADS)

    Byrne, T. R.; Byrne, J. M.; McDaniel, S.

    2012-12-01

    Food insecurity is one of the most important challenges facing humanity in the 21st century - a challenge that will be further exacerbated by the changing climate. The effects of human induced climate change will be most disproportionate and severe in the developing world, where a stable food supply, decreased purchasing power, and adequate nutrition are often already a daily struggle. This study will build on work done by the Food and Agriculture Organization (FAO) of the United Nations (UN), and will assess how vulnerability to household food insecurity will be affected by global warming in various rural parts of Latin America. Temperature data from downscaled Global Circulation Models (GCM) will be used in conjunction with the results of national household surveys to generate information on each rural farming household's probability of falling below a food poverty threshold in the near future. The results of the study will allow us to distinguish between households that are likely to experience chronic food insecurity and those that are likely to experience transitory food insecurity, permitting for improved targeting of policy responses.

  8. Predicting future uncertainty constraints on global warming projections.

    PubMed

    Shiogama, H; Stone, D; Emori, S; Takahashi, K; Mori, S; Maeda, A; Ishizaki, Y; Allen, M R

    2016-01-01

    Projections of global mean temperature changes (ΔT) in the future are associated with intrinsic uncertainties. Much climate policy discourse has been guided by "current knowledge" of the ΔTs uncertainty, ignoring the likely future reductions of the uncertainty, because a mechanism for predicting these reductions is lacking. By using simulations of Global Climate Models from the Coupled Model Intercomparison Project Phase 5 ensemble as pseudo past and future observations, we estimate how fast and in what way the uncertainties of ΔT can decline when the current observation network of surface air temperature is maintained. At least in the world of pseudo observations under the Representative Concentration Pathways (RCPs), we can drastically reduce more than 50% of the ΔTs uncertainty in the 2040 s by 2029, and more than 60% of the ΔTs uncertainty in the 2090 s by 2049. Under the highest forcing scenario of RCPs, we can predict the true timing of passing the 2 °C (3 °C) warming threshold 20 (30) years in advance with errors less than 10 years. These results demonstrate potential for sequential decision-making strategies to take advantage of future progress in understanding of anthropogenic climate change. PMID:26750491

  9. Slowing global warming: benefits for patients and the planet.

    PubMed

    Parker, Cindy L

    2011-08-01

    Global warming will cause significant harm to the health of persons and their communities by compromising food and water supplies; increasing risks of morbidity and mortality from infectious diseases and heat stress; changing social determinants of health resulting from extreme weather events, rising sea levels, and expanding flood plains; and worsening air quality, resulting in additional morbidity and mortality from respiratory and cardiovascular diseases. Vulnerable populations such as children, older persons, persons living at or below the poverty level, and minorities will be affected earliest and greatest, but everyone likely will be affected at some point. Family physicians can help reduce greenhouse gas emissions, stabilize the climate, and reduce the risks of climate change while also directly improving the health of their patients. Health interventions that have a beneficial effect on climate change include encouraging patients to reduce the amount of red meat in their diets and to replace some vehicular transportation with walking or bicycling. Patients are more likely to make such lifestyle changes if their physician asks them to and leads by example. Medical offices and hospitals can become more energy efficient by recycling, purchasing wind-generated electricity, and turning off appliances, computers, and lights when not in use. Moreover, physicians can play an important role in improving air quality and reducing greenhouse gas emissions by advocating for enforcement of existing air quality regulations and working with local and national policy makers to further improve air quality standards, thereby improving the health of their patients and slowing global climate change. PMID:21842773

  10. Attribution of the United States “warming hole”: Aerosol indirect effect andprecipitable water vapor

    EPA Science Inventory

    Aerosols can influence the climate indirectly by acting as cloud condensation nuclei and /or ice nuclei, thereby modifying cloud optical properties. Observations show a striking cooling trend in summertime daily maximum temperature (Tmax) in the central and...

  11. River Runoff Sensitivity in Eastern Siberia to Global Climate Warming

    NASA Astrophysics Data System (ADS)

    Georgiadi, A. G.; Milyukova, I. P.; Kashutina, E.

    2008-12-01

    During several last decades significant climate warming is observed in permafrost regions of Eastern Siberia. These changes include rise of air temperature as well as precipitation. Changes in regional climate are accompanied with river runoff changes. The analysis of the data shows that in the past 25 years, the largest contribution to the annual river runoff increase in the lower reaches of the Lena (Kyusyur) is made (in descending order) by the Lena river watershed (above Tabaga), the Aldan river (Okhotsky Perevoz), and the Vilyui river (Khatyryk-Khomo). The similar relation is also retained in the case of flood, with the seasonal river runoff of the Vilyui river being slightly decreased. Completely different relations are noted in winter, when a substantial river runoff increase is recorded in the lower reaches of the Lena river. In this case the major contribution to the winter river runoff increase in the Lena outlet is made by the winter river runoff increase on the Vilyui river. Unlike the above cases, the summer-fall river runoff in the lower reaches of the Lena river tends to decrease, which is similar to the trend exhibited by the Vilyui river. At the same time, the river runoff of the Lena (Tabaga) and Aldan (Verkhoyansky Perevoz) rivers increase. According to the results of hydrological modeling the expected anthropogenic climate warming in XXI century can bring more significant river runoff increase in the Lena river basin as compared with the recent one. Hydrological responses to climate warming have been evaluated for the plain part of the Lena river basin basing on a macroscale hydrological model featuring simplified description of processes developed in Institute of Geography of the Russian Academy of Sciences. Two atmosphere-ocean global circulation models included in the IPCC (ECHAM4/OPY3 and GFDL-R30) were used as scenarios of future global climate. According to the results of hydrological modeling the expected anthropogenic climate warming in

  12. Upper Temperature Limits of Tropical Marine Ectotherms: Global Warming Implications

    PubMed Central

    Nguyen, Khanh Dung T.; Morley, Simon A.; Lai, Chien-Houng; Clark, Melody S.; Tan, Koh Siang; Bates, Amanda E.; Peck, Lloyd S.

    2011-01-01

    Animal physiology, ecology and evolution are affected by temperature and it is expected that community structure will be strongly influenced by global warming. This is particularly relevant in the tropics, where organisms are already living close to their upper temperature limits and hence are highly vulnerable to rising temperature. Here we present data on upper temperature limits of 34 tropical marine ectotherm species from seven phyla living in intertidal and subtidal habitats. Short term thermal tolerances and vertical distributions were correlated, i.e., upper shore animals have higher thermal tolerance than lower shore and subtidal animals; however, animals, despite their respective tidal height, were susceptible to the same temperature in the long term. When temperatures were raised by 1°C hour−1, the upper lethal temperature range of intertidal ectotherms was 41–52°C, but this range was narrower and reduced to 37–41°C in subtidal animals. The rate of temperature change, however, affected intertidal and subtidal animals differently. In chronic heating experiments when temperature was raised weekly or monthly instead of every hour, upper temperature limits of subtidal species decreased from 40°C to 35.4°C, while the decrease was more than 10°C in high shore organisms. Hence in the long term, activity and survival of tropical marine organisms could be compromised just 2–3°C above present seawater temperatures. Differences between animals from environments that experience different levels of temperature variability suggest that the physiological mechanisms underlying thermal sensitivity may vary at different rates of warming. PMID:22242115

  13. Nonlinear Dependence of Global Warming Prediction on Ocean State

    NASA Astrophysics Data System (ADS)

    Liang, M.; Lin, L.; Tung, K. K.; Yung, Y. L.; Sun, S.

    2010-12-01

    Global temperature has increased by 0.8 C since the pre-industrial era, and is likely to increase further if greenhouse gas emission continues unchecked. Various mitigation efforts are being negotiated among nations to keep the increase under 2 C, beyond which the outcome is believed to be catastrophic. Such policy efforts are currently based on predictions by the state-of-the-art coupled atmosphere ocean models (AOGCM). Caution is advised for their use for the purpose of short-term (less than a century) climate prediction as the predicted warming and spatial patterns vary depending on the initial state of the ocean, even in an ensemble mean. The range of uncertainty in such predictions by Intergovernmental Panel on Climate Change (IPCC) models may be underreported when models were run with their oceans at various stages of adjustment with their atmospheres. By comparing a very long run (> 1000 years) of the coupled Goddard Institute for Space Studies (GISS) model with what was reported to IPCC Fourth Assessment Report (AR4), we show that the fully adjusted model transient climate sensitivity should be 30% higher for the same model, and the 2 C warming should occur sooner than previously predicted. Using model archives we further argue that this may be a common problem for the IPCC AR4 models, since few, if any, of the models has a fully adjusted ocean. For all models, multi-decadal climate predictions to 2050 are highly dependent on the initial ocean state (and so are unreliable). Such dependence cannot be removed simply by subtracting the climate drift from control runs.

  14. Shifting terrestrial feedbacks from CO2 fertilization to global warming

    NASA Astrophysics Data System (ADS)

    Peñuelas, Josep; Ciais, Philippe; Janssens, Ivan; Canadell, Josep; Obersteiner, Michael; Piao, Shilong; Vautard, Robert; Sardans Jordi Sardans, Jordi

    2016-04-01

    Humans are increasingly fertilizing the planet. Our activities are increasing atmospheric concentrations of carbon dioxide, nitrogen inputs to ecosystems and global temperatures. Individually and combined, they lead to biospheric availability of carbon and nitrogen, enhanced metabolic activity, and longer growing seasons. Plants can consequently grow more and take up more carbon that can be stored in ecosystem carbon pools, thus enhancing carbon sinks for atmospheric CO2. Data on the increased strength of carbon sinks are, however, inconclusive: Some data (eddy covariance, short-term experiments on elevated CO2 and nutrient fertilization) suggest that biospheric carbon uptake is already effectively increasing but some other data suggest it is not, or are not general and conclusive (tree-ring, forest inventory). The combined land-ocean CO2 sink flux per unit of excess atmospheric CO2 above preindustrial levels declined over 1959-2012 by a factor of about 1/3, implying that CO2 sinks increased more slowly than excess CO2. We will discuss the available data, and the discussion will drive us to revisit our projections for enhanced carbon sinks. We will reconsider the performance of the modulators of increased carbon uptake in a CO2 fertilized and warmed world: nutrients, climate, land use and pollution. Nutrient availability in particular plays a crucial role. A simple mass-balance approach indicates that limited phosphorus availability and the corresponding N:P imbalances can jointly reduce the projected future carbon storage by natural ecosystems during this century. We then present a new paradigm: we are shifting from a fertilization to a warming era. Compared to the historical period, future impacts of warming will be larger than the benefits of CO2 fertilization given nutrient limitations, management and disturbance (which reduces C stocks and thus sequestration potential) and because CO2 will decrease by 2050 in RCP2.6, meaning loss of CO2 fertilization, and CO2

  15. A unified sea-level response function to global warming

    NASA Astrophysics Data System (ADS)

    Winkelmann, Ricarda; Mengel, Matthias; Reese, Ronja; Levermann, Anders

    2015-04-01

    Linear response functions provide an alternative to process-based models to project future sea-level rise. They are designed to capture the sea-level response to a certain forcing in a comprehensive manner without relying on the full understanding but comprising all processes involved. Here, we propose one unified sea-level response function to global warming as a synthesis of different response functions of the major contributors: oceanic thermal expansion, ice loss from mountain glaciers as well as ice loss from the two ice-sheets on Greenland and Antarctica both through changes in the surface mass balance and dynamic discharge. Except for surface mass balance changes of the ice sheets which occur instantaneously, each response function is inherently time-dependent and accounts for the fact that past climate change will continue to influence sea-level rise in the future. The proposed functions separately estimate the contributions from the main sea-level components on a centennial time scale. The validity of the approach is assessed by comparing the sea-level estimates obtained via the response functions to observations as well as projections from comprehensive models. Total sea level rise and the observed contributions in the past decades are reasonably well reproduced by our approach. Provided that the underlying dynamic mechanisms do not undergo a qualitative change within the 21st century, the response functions found for the individual components can therefore be merged into a single response function in order to project global sea-level rise for a given global mean temperature anomaly.

  16. Climate warming strengthens indirect interactions in an old-field food web.

    PubMed

    Barton, Brandon T; Beckerman, Andrew P; Schmitz, Oswald J

    2009-09-01

    Climate change is expected to alter trophic interactions within food chains, but predicting the fate of particular species is difficult because the predictions hinge on knowing exactly how climate influences direct and indirect interactions. We used two complementary approaches to examine how climate change may alter trophic interactions within an old-field food web composed of herbaceous plants, grasshopper herbivores, and spider predators. We synthesized data spanning 15 years of experimentation during which interannual mean growing season temperature varied by 2 degrees C and precipitation by 2.5 cm. We also manipulated temperature within mesocosms to test the affect of temperature on primary production and strength of direct and indirect trophic interactions. Both approaches produced similar results: plant production was not directly affected by temperature or precipitation, but the strength of top-down indirect effects on grasses and forbs increased by 30-40% per 1 degrees C. Hence, the net effect of climate change was to strengthen top-down control of this terrestrial system. PMID:19769112

  17. Global Warming Responses at the Primary Secondary Interface: 2. Potential Effectiveness of Education

    ERIC Educational Resources Information Center

    Skamp, Keith; Boyes, Eddie; Stannistreet, Martin

    2009-01-01

    In an earlier paper (Skamp, Boyes, & Stanisstreet, 2009b), students' beliefs and willingness to act in relation to 16 specific actions related to global warming were compared across the primary secondary interface. More primary students believed in the effectiveness of most actions to reduce global warming and were willing to take those actions.…

  18. Metaphors of Primary School Students Relating to the Concept of Global Warming

    ERIC Educational Resources Information Center

    Dogru, Mustafa; Sarac, Esra

    2013-01-01

    The purpose of this study is to reveal the metaphors of primary school students (n = 362) relating to the concept of global warming. Data collected by completing the expression of "global warming is like..., because..." of the students were analysed by use of qualitative and quantitative data analysis techniques. According to findings of…

  19. Senior Secondary Indian Students' Views about Global Warming, and Their Implications for Education

    ERIC Educational Resources Information Center

    Chhokar, Kiran; Dua, Shweta; Taylor, Neil; Boyes, Edward; Stanisstreet, Martin

    2012-01-01

    For individuals to make informed lifestyle choices that may help to reduce global warming, they need some understanding of this phenomenon and the factors that contribute to it. However, there is a "gap" between knowledge about global warming and willingness to take personal action. So, although education may be effective in enhancing student…

  20. Presenting Global Warming and Evolution as Public Health Issues to Encourage Acceptance of Scientific Evidence

    ERIC Educational Resources Information Center

    Stover, Shawn K.; McArthur, Laurence B.; Mabry, Michelle L.

    2013-01-01

    Although evidence supporting anthropogenic global warming and evolution by natural selection is considerable, the public does not embrace these concepts. The current study explores the hypothesis that individuals will become more receptive to scientific viewpoints if evidence for evolution and implications of global warming are presented as issues…

  1. Global Warming Responses at the Primary Secondary Interface: 1. Students' Beliefs and Willingness to Act

    ERIC Educational Resources Information Center

    Skamp, Keith; Boyes, Eddie; Stannistreet, Martin

    2009-01-01

    Using survey methodology, students' beliefs, and willingness to act, about 16 specific actions related to global warming are compared across the primary secondary interface. More primary students believed in the effectiveness of most actions to reduce global warming and were willing to take those actions. In general there was a disparity between…

  2. A New Type of Debate for Global Warming and Scientific Literacy

    ERIC Educational Resources Information Center

    Gautier, Catherine

    2012-01-01

    Expanding on some ideas introduced in the paper by Albe and Gombert (2012) "Students' communication, argumentation and knowledge in a citizen' conference on global warming", I explore two issues relevant to their work: global warming (GW) as a socioscientific controversy and scientific literacy in regards to climate change science. For the first…

  3. Using Interactive Technology to Support Students' Understanding of the Greenhouse Effect and Global Warming

    ERIC Educational Resources Information Center

    Varma, Keisha; Linn, Marcia C.

    2012-01-01

    In this work, we examine middle school students' understanding of the greenhouse effect and global warming. We designed and refined a technology-enhanced curriculum module called "Global Warming: Virtual Earth". In the module activities, students conduct virtual experiments with a visualization of the greenhouse effect. They analyze data and draw…

  4. CO2 [Carbon Dioxide] Diet for a Greenhouse Planet: A Citizen's Guide for Slowing Global Warming.

    ERIC Educational Resources Information Center

    DeCicco, John; And Others

    This guide discusses the global warming issue and offers a plan to facilitate a decrease in the emissions of the major greenhouse gases in the United States, including those under the control of individual citizens. A letter from the organization's president describes its involvement with the global warming issue. A brief overview presented in the…

  5. The Understandings of Global Warming and Learning Styles: A Phenomenographic Analysis of Prospective Primary School Teachers

    ERIC Educational Resources Information Center

    Demirkaya, Hilmi

    2008-01-01

    In this study, statements by prospective primary school teachers such as "I think the word global warming ..." or "I think the term global warming means ..." were analyzed by using qualitative phenomenographic research methods. 142 female (48.3%) and 152 male (51.7%) primary school teacher candidates (n = 294) participated in the study. Moreover,…

  6. An attack on science? Media use, trust in scientists, and perceptions of global warming.

    PubMed

    Hmielowski, Jay D; Feldman, Lauren; Myers, Teresa A; Leiserowitz, Anthony; Maibach, Edward

    2014-10-01

    There is a growing divide in how conservatives and liberals in the USA understand the issue of global warming. Prior research suggests that the American public's reliance on partisan media contributes to this gap. However, researchers have yet to identify intervening variables to explain the relationship between media use and public opinion about global warming. Several studies have shown that trust in scientists is an important heuristic many people use when reporting their opinions on science-related topics. Using within-subject panel data from a nationally representative sample of Americans, this study finds that trust in scientists mediates the effect of news media use on perceptions of global warming. Results demonstrate that conservative media use decreases trust in scientists which, in turn, decreases certainty that global warming is happening. By contrast, use of non-conservative media increases trust in scientists, which, in turn, increases certainty that global warming is happening. PMID:23825287

  7. Apocalypse soon? Dire messages reduce belief in global warming by contradicting just-world beliefs.

    PubMed

    Feinberg, Matthew; Willer, Robb

    2011-01-01

    Though scientific evidence for the existence of global warming continues to mount, in the United States and other countries belief in global warming has stagnated or even decreased in recent years. One possible explanation for this pattern is that information about the potentially dire consequences of global warming threatens deeply held beliefs that the world is just, orderly, and stable. Individuals overcome this threat by denying or discounting the existence of global warming, and this process ultimately results in decreased willingness to counteract climate change. Two experiments provide support for this explanation of the dynamics of belief in global warming, suggesting that less dire messaging could be more effective for promoting public understanding of climate-change research. PMID:21148457

  8. Potential effects of global warming on calving caribou

    SciTech Connect

    Eastland, W.G.; White, R.G.

    1992-03-01

    Calving grounds of barren-ground caribou (Rangifer tarandus) are often in the portion of their range that remains covered by snow late into spring. The authors propose that global warming would alter the duration of snow cover on the calving grounds and the rate of snowmelt, and thus affect caribou population dynamics. The rationale for this hypothesis is based upon the following arguments. For females of the Porcupine Herd, one of the few forages available before and during early calving are the inflorescences of cotton grass (Eriophorum vaginatum), which are very digestible, high in nitrogen and phosphorus, and low in phenols and acid-detergent fiber. The nutritional levels of the inflorescences are highest in the early stages of phenology and decline rapidly until they are lowest at seed set, about 2 weeks after being exposed from snow cover. The high nutritional level of cotton grass inflorescences is important to post-paturient caribou attempting to meet nutritional requirements of lactation while minimizing associated weight loss. The pattern of weight regain in summer is important to herd productivity as female body weight at mating influences conception in late summer and calving success in spring. Therefore, temporal changes in snowmelt may have major effects on nutritional regimes of the female.

  9. Global warming presents new challenges for maize pest management

    NASA Astrophysics Data System (ADS)

    Diffenbaugh, Noah S.; Krupke, Christian H.; White, Michael A.; Alexander, Corinne E.

    2008-10-01

    It has been conjectured that global warming will increase the prevalence of insect pests in many agro-ecosystems. In this paper, we quantitatively assess four of the key pests of maize, one of the most important systems in North American grain production. Using empirically generated estimates of pest overwintering thresholds and degree-day requirements, along with climate change projections from a high-resolution climate model, we project potential future ranges for each of these pests in the United States. Our analysis suggests the possibility of increased winter survival and greater degree-day accumulations for each of the pests surveyed. We find that relaxed cold limitation could expand the range of all four pest taxa, including a substantial range expansion in the case of corn earworm (H. zea), a migratory, cold-intolerant pest. Because the corn earworm is a cosmopolitan pest that has shown resistance to insecticides, our results suggest that this expansion could also threaten other crops, including those in high-value areas of the western United States. Because managing significant additional pressure from this suite of established pests would require additional pest management inputs, the projected decreases in cold limitation and increases in heat accumulation have the potential to significantly alter the pest management landscape for North American maize production. Further, these range expansions could have substantial economic impacts through increased seed and insecticide costs, decreased yields, and the downstream effects of changes in crop yield variability.

  10. Is increased Nuclear Energy a practical response to Global Warming?

    NASA Astrophysics Data System (ADS)

    Stevens, Jeanne

    2007-05-01

    With the threat of global warming there has been renewed interest in nuclear energy as a carbon-free energy source. There are currently 15 nuclear power plants planned for completion in the U.S. by 2014. In the last 30 years, however, investment and public support for nuclear energy has been minimal. Some factors that led to this loss of interest - high economic costs, risk of accident and radiation exposure, and the challenges of storing nuclear waste - have been analyzed in several recent publications. Comparing the costs and risks of nuclear energy to the benefits in reduced carbon emissions is the goal of this report. Coal plants contribute the most carbon dioxide of all types of power plants. The method of this study is a direct comparison of coal plants and nuclear plants in four areas: the current cost per kWh, the predicted annual cost for health issues, the statistically predicted deaths, and the clean-up costs assuming each facility is as ``green'' as possible. A normalized cost/risk value is then calculated for each plant type. Discussion for how these values are likely to vary is included. To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2007.NWS07.C1.11