Science.gov

Sample records for indium borides

  1. In{sub 3}Ir{sub 3}B, In{sub 3}Rh{sub 3}B and In{sub 5}Ir{sub 9}B{sub 4}, the first indium platinum metal borides

    SciTech Connect

    Kluenter, Wilhelm; Jung, Walter . E-mail: walter.jung@uni-koeln.de

    2006-09-15

    The first indium platinum metal borides have been synthesized and structurally characterized by single crystal X-ray diffraction data. In{sub 3}Ir{sub 3}B and In{sub 3}Rh{sub 3}B are isotypic. They crystallize with the hexagonal space group P6-bar 2m and Z=1. The lattice constants are a=685.78(1)pm, c=287.30(1)pm for In{sub 3}Ir{sub 3}B and a=678.47(3)pm, c=288.61(6)pm for In{sub 3}Rh{sub 3}B. The structure which is derived from the Fe{sub 2}P type is characterized by columns of boron centered triangular platinum metal prisms inserted in a three-dimensional indium matrix. The indium atoms are on split positions. In{sub 5}Ir{sub 9}B{sub 4} (hexagonal, space group P6-bar 2m, a=559.0(2)pm, c=1032.6(3)pm, Z=1) crystallizes with a structure derived from the CeCo{sub 3}B{sub 2} type. The structure can be interpreted as a layer as well as a channel structure. In part the indium atoms are arranged at the vertices of a honeycomb net (Schlaefli symbol 6{sup 3}) separating slabs consisting of double layers of triangular Ir{sub 6}B prisms, and in part they form a linear chain in a hexagonal channel formed by iridium prisms and indium atoms of the honeycomb lattice.

  2. Gradient boride layers formed by diffusion carburizing and laser boriding

    NASA Astrophysics Data System (ADS)

    Kulka, M.; Makuch, N.; Dziarski, P.; Mikołajczak, D.; Przestacki, D.

    2015-04-01

    Laser boriding, instead of diffusion boriding, was proposed to formation of gradient borocarburized layers. The microstructure and properties of these layers were compared to those-obtained after typical diffusion borocarburizing. First method of treatment consists in diffusion carburizing and laser boriding only. In microstructure three zones are present: laser borided zone, hardened carburized zone and carburized layer without heat treatment. However, the violent decrease in the microhardness was observed below the laser borided zone. Additionally, these layers were characterized by a changeable value of mass wear intensity factor thus by a changeable abrasive wear resistance. Although at the beginning of friction the very low values of mass wear intensity factor Imw were obtained, these values increased during the next stages of friction. It can be caused by the fluctuations in the microhardness of the hardened carburized zone (HAZ). The use of through hardening after carburizing and laser boriding eliminated these fluctuations. Two zones characterized the microstructure of this layer: laser borided zone and hardened carburized zone. Mass wear intensity factor obtained a constant value for this layer and was comparable to that-obtained in case of diffusion borocarburizing and through hardening. Therefore, the diffusion boriding could be replaced by the laser boriding, when the high abrasive wear resistance is required. However, the possibilities of application of laser boriding instead of diffusion process were limited. In case of elements, which needed high fatigue strength, the substitution of diffusion boriding by laser boriding was not advisable. The surface cracks formed during laser re-melting were the reason for relatively quickly first fatigue crack. The preheating of the laser treated surface before laser beam action would prevent the surface cracks and cause the improved fatigue strength. Although the cohesion of laser borided carburized layer was

  3. Borides in Thin Film Technology

    NASA Astrophysics Data System (ADS)

    Mitterer, Christian

    1997-10-01

    The borides of transition and rare-earth metals are considered for application as wear- and corrosion-resistant, decorative or thermionic coatings. After a review of physical vapor deposition (PVD) techniques used for the deposition of these coatings, a survey of investigations to apply these coatings is given. As a result of the strong directionality of covalent boron-boron bonds, boride coatings show an increasing tendency to amorphous film growth with increasing B/Meatomic ratio and, for rare-earth hexaborides, with decreasing metallic radius of the rare-earth metal. Mechanical and optical properties are strongly influenced by the crystallographic structure of the boride phase. Because of their high hardness combined with good adhesion, crystalline films based on the diborides of transition metals seem to be promising candidates for wear resistant coatings on cutting tools. Alloying of these films with nitrogen by reactive PVD processes results in the formation of extremely fine-grained multiphase hard coatings with excellent tribological and corrosion behavior, thus offering new applications in the coating of engineering components. Because of their distinct colorations, some of the hexaborides of rare-earth elements may be used as decorative coatings on consumer products like wristwatch casings or eyeglass frames. Another promising field is the development of thermionic coatings based on rare-earth hexaborides, which may offer the possibility of the production of inexpensive and simple high emission filaments.

  4. Field free, directly heated lanthanum boride cathode

    DOEpatents

    Leung, Ka-Ngo; Moussa, D.; Wilde, S.B.

    1987-02-02

    A directly heated cylindrical lanthanum boride cathode assembly is disclosed which minimizes generation of magnetic field which would interfere with electron emission from the cathode. The cathode assembly comprises a lanthanum boride cylinder in electrical contact at one end with a central support shaft which functions as one electrode to carry current to the lanthanum boride cylinder and in electrical contact, at its opposite end with a second electrode which is coaxially position around the central support shaft so that magnetic fields generated by heater current flowing in one direction through the central support shaft are cancelled by an opposite magnetic field generated by current flowing through the lanthanum boride cylinder and the coaxial electrode in a direction opposite to the current flow in the central shaft.

  5. Field free, directly heated lanthanum boride cathode

    DOEpatents

    Leung, Ka-Ngo; Moussa, David; Wilde, Stephen B.

    1991-01-01

    A directly heated cylindrical lanthanum boride cathode assembly is disclosed which minimizes generation of magnetic fields which would interfere with electron emission from the cathode. The cathode assembly comprises a lanthanum boride cylinder in electrical contact at one end with a central support shaft which functions as one electrode to carry current to the lanthanum boride cylinder and in electrical contact, at its opposite end with a second electrode which is coaxially position around the central support shaft so that magnetic fields generated by heater current flowing in one direction through the central support shaft are cancelled by an opposite magnetic field generated by current flowing through the lanthanum boride cylinder and the coaxial electrode in a direction opposite to the current flow in the central shaft.

  6. Kinetics of electrochemical boriding of low carbon steel

    NASA Astrophysics Data System (ADS)

    Kartal, G.; Eryilmaz, O. L.; Krumdick, G.; Erdemir, A.; Timur, S.

    2011-05-01

    In this study, the growth kinetics of the boride layers forming on low carbon steel substrates was investigated during electrochemical boriding which was performed at a constant current density of 200 mA/cm 2 in a borax based electrolyte at temperatures ranging from 1123 K to 1273 K for periods of 5-120 min. After boriding, the presence of both FeB and Fe 2B phases were confirmed by the X-ray diffraction method. Cross-sectional microscopy revealed a very dense and thick morphology for both boride phases. Micro hardness testing of the borided steel samples showed a significant increase in the hardness of the borided surfaces (i.e., up to (1700 ± 200) HV), while the hardness of un-borided steel samples was approximately (200 ± 20) HV. Systematic studies over a wide range of boriding time and temperature confirmed that the rate of the boride layer formation is strongly dependent on boriding duration and has a parabolic character. The activation energy of boride layer growth for electrochemical boriding was determined as (172.75 ± 8.6) kJ/mol.

  7. The fracture toughness of borides formed on boronized cold work tool steels

    SciTech Connect

    Sen, Ugur; Sen, Saduman

    2003-06-15

    In this study, the fracture toughness of boride layers of two borided cold work tool steels have been investigated. Boriding was carried out in a salt bath consisting of borax, boric acid, ferro-silicon and aluminum. Boriding was performed at 850 and 950 deg. C for 2 to 7 h. The presence of boride phases were determined by X-ray diffraction (XRD) analysis. Hardness and fracture toughness of borides were measured via Vickers indenter. Increasing of boriding time and temperature leads to reduction of fracture toughness of borides. Metallographic examination showed that boride layer formed on cold work tool steels was compact and smooth.

  8. Investigation of the fracture mechanics of boride composites

    NASA Technical Reports Server (NTRS)

    Kaufman, L.; Clougherty, E. V.; Nesor, H.

    1971-01-01

    Fracture energies of WC-6Co, Boride 5 (ZrB2+SiC), Boride 8(ZrB2+SiC+C) and Boride 8-M2(ZrB2+SiC+C) were measured by slow bend and impact tests of notched charpy bars. Cobalt bonded tungsten carbide exhibited impact energies of 0.76 ft-lb or 73.9 in-lb/square inch. Boride 5 and the Boride 8 exhibit impact energies one third and one quarter of that observed for WC-6Co comparing favorably with measurements for SiC and Si3N4. Slow bend-notched bar-fracture energies for WC-6Co were near 2.6 in-lb/square inch or 1/20 the impact energies. Slow bend energies for Boride 8-M2, Boride 8 and Boride 5 were 58%, 42% and 25% of the value observed for WC-6Co. Fractograph showed differences for WC-6Co where slow bend testing resulted in smooth transgranular cleavage while samples broken by impact exhibited intergranular failures. By contrast the boride fractures showed no distinction based on testing method. Fabrication studies were conducted to effect alteration of the boride composites by alloying and introduction of graphite cloth.

  9. Fracture Microindentation on boride layers on AISI 1020 steel

    NASA Astrophysics Data System (ADS)

    Prince, M.; Thanu, A. Justin; Arjun, S. L.; Velmurugan, U.; Gopalakrishnan, P.

    2016-02-01

    In this paper, an attempt has been made to enhance the fracture toughness (Kc) of boride layer using multi-component (Ni, Cr and B) laser bonding. The fracture toughness of continuously pack borided, interrupted pack borided and multi-component (Ni, Cr and B) laser borided steel specimens was measured using Vickers microindentation fracture toughness test as per ASTM E384 standard. The fracture toughness of continuously pack borided layer was - 3.3 MPa.m1/2. The fracture toughness of interrupted boride layer was in the range of - 4.9 MPa.m1/2. The fracture toughness of multi-component (Ni, Cr and B) laser borided layer was in the range of 13.8 - 18.3 MPa.m1/2. A significant improvement in fracture toughness of laser treated specimens was observed from the experimental results. This may be due to better distribution of boron, nickel, chromium and other alloying elements due to laser treatment and relatively more uniform boride layer as compared with continuously pack borided layer and interrupted pack borided layer.

  10. Electrochemical Evaluation of Corrosion on Borided and Non-borided Steels Immersed in 1 M HCl Solution

    NASA Astrophysics Data System (ADS)

    Mejía-Caballero, I.; Martínez-Trinidad, J.; Palomar-Pardavé, M.; Romero-Romo, M.; Herrera-Hernández, H.; Herrera-Soria, O.; Campos Silva, I.

    2014-08-01

    In this study the corrosion resistances of AISI 1018 and AISI 304 borided and non-borided steels were estimated using polarization resistance and electrochemical impedance spectroscopy (EIS) techniques. Boriding of the steel samples was conducted using the powder-pack method at 1223 K with 6 h of exposure. Structural examinations of the surfaces of the borided steels showed the presence of a Fe2B layer with isolated FeB teeth on the AISI 1018 steel, whereas a compact layer of FeB/Fe2B was formed on the AISI 304 steel. Polarization resistance and EIS of the borided and non-borided steels surfaces were performed in a corrosive solution of 1 M HCl. The EIS data were analyzed during 43 days of exposure to the acid solution. Impedance curves obtained during this period for the borided and non-borided steels were modeled using equivalent electrical circuits. The results of both electrochemical techniques indicated that boride layers formed at the steel surfaces effectively protect the samples from the corrosive effects of HCl. The main corrosion processes observed on the boride layers were pitting and crevice corrosion.

  11. Colloidal nickel boride catalyst for hydrogenation of olefins

    SciTech Connect

    Nakao, Y.; Fujishige, S.

    1981-04-01

    Colloidal nickel boride was prepared from nickel(II) chloride by reduction with sodium borohydride in the presence of polyvinylpyrrolidone in ethanol. Hydrogenation of various olefins was examined over the colloidal catalyst at 30/sup 0/C and atmospheric pressure. The colloidal nickel boride was much more effective than the precipitated nickel boride prepared in the absence of polyvinylpyrrolidone as a hydrogenation catalyst, especially for isopropenyl compounds. Additional amines and sodium acetate were slightly inhibitive to the colloidal catalyst, while, being strongly promotive to the precipitated catalyst. The colloidal nickel boride was superior to the charcoal-supported metals of the platinum group in catalytic activity for ..cap alpha..-methylstyrene.

  12. Investigation of the diffusion kinetics of borided stainless steels

    NASA Astrophysics Data System (ADS)

    Kayali, Yusuf

    2013-12-01

    In this study, the kinetics of borides formed on AISI 420, AISI 304 and AISI 304L stainless steels was investigated. Boronizing treatment was carried out using Ekabor-II powders at the processing temperatures of 1123, 1173 and 1223 K for 2, 4 and 6 h. The phases of the boride layers of borided AISI 420, AISI 304 and AISI 304L stainless steels were FeB, Fe2B, CrB and NiB, respectively. The thickness of the boride layer formed on the borided steels ranged from 4.6 to 64 μm depending on the boriding temperature, boriding time and alloying elements of the stainless steels. Depending on the chemical composition, temperature and layer thickness, the activation energies of boron in AISI 420, AISI 304 and AISI 304L stainless steels were found to be 206.161, 234.641 and 222.818 kJ/mol, respectively. The kinetics of growth of the boride layers formed on the AISI 420, AISI 304 and AISI 304L stainless steels and the thickness of the boride layers were investigated.

  13. Mechanism of boriding from pastes in a glow discharge

    SciTech Connect

    Isakov, S.A.; Al'tshuler, S.A.

    1987-09-01

    The authors investigate the boridation of steel 45 from the standpoint of the glow-discharge dissociation of a borax paste and the plasma arc spraying of the resulting boron into the steel. The effects of process parameters on the impregnation of boron into the steel and its phase behavior in the boridation process are discussed.

  14. The influence of carbon content in the borided Fe-alloys on the microstructure of iron borides

    SciTech Connect

    Kulka, M. . E-mail: coolka@sol.put.poznan.pl; Pertek, A. . E-mail: pertek@sol.put.poznan.pl; Klimek, L. . E-mail: kemilk@p.lodz.pl

    2006-04-15

    This paper presents the results of Electron Back-Scatter Diffraction (EBSD) analyses of the borided layers produced on substrate of varying carbon content. Two types of materials were investigated: borided Armco iron of very low carbon content and borocarburized chromium- and nickel-based steels of high carbon content beneath iron borides. The tetragonal phase Fe{sub 2}B was identified in all materials studied. It was difficult to obtain an EBSD pattern from iron boride (FeB) because of its presence at low depths below the surface, and because of the rounded corners of the specimens. EBSD provided information on the orientation of Fe{sub 2}B crystals. In case of the low-carbon Armco iron the crystallographic orientation was constant along the full length of the Fe{sub 2}B needle. The EBSPs obtained from borocarburized steel indicate that the crystallographic orientation of the Fe{sub 2}B phase changes along the length of the needle. This is the result of hindered boron diffusion due to boriding of the carburized substrate. The increased resistance to friction wear of borocarburized layers arises from two reasons. One is the decreased microhardness gradient between the iron borides and the substrate, which causes a decrease in the brittleness of the iron borides and an improved distribution of internal stresses in the diffusion layer. The second is the changeable crystallographic orientation of iron borides, which leads to the lower texture and porosity of borided layers. These advantageous properties of the borocarburized layer can be obtained if the carbon content beneath the iron borides is no more than about 1.0-1.2 wt.% C.

  15. Boriding of high carbon high chromium cold work tool steel

    NASA Astrophysics Data System (ADS)

    Muhammad, W.

    2014-06-01

    High-carbon high-chromium cold work tool steels are widely used for blanking and cold forming of punches and dies. It is always advantageous to obtain an increased wear resistant surface to improve life and performance of these steels. In this connection boriding of a high-carbon high-chromium cold work die steel, D3, was conducted in a mixture of 30% B4C, 70% borax at 950 °C for two, four and six hours. Case depth of the borided layer obtained was between 40 to 80 μm. After boriding, the surface hardness achieved was between 1430 to 1544 HV depending upon the process time. X-ray diffraction studies confirmed the formation of a duplex compound layer consisting of FeB and Fe2B. It is generally considered that FeB is undesirable because of its inherent brittleness. Post boriding treatment (homogenization) transformed the compound layer into single-phase layer of Fe2B, while surface hardness decreased to 1345-1430 HV. Pin-on-disc wer test showed that wear resistance of the borided samples was superior as compared to non-borided material and increased with boriding time.

  16. Method of making an icosahedral boride structure

    DOEpatents

    Hersee, Stephen D.; Wang, Ronghua; Zubia, David; Aselage, Terrance L.; Emin, David

    2005-01-11

    A method for fabricating thin films of an icosahedral boride on a silicon carbide (SiC) substrate is provided. Preferably the icosahedral boride layer is comprised of either boron phosphide (B.sub.12 P.sub.2) or boron arsenide (B.sub.12 As.sub.2). The provided method achieves improved film crystallinity and lowered impurity concentrations. In one aspect, an epitaxially grown layer of B.sub.12 P.sub.2 with a base layer or substrate of SiC is provided. In another aspect, an epitaxially grown layer of B.sub.12 As.sub.2 with a base layer or substrate of SiC is provided. In yet another aspect, thin films of B.sub.12 P.sub.2 or B.sub.12 As.sub.2 are formed on SiC using CVD or other vapor deposition means. If CVD techniques are employed, preferably the deposition temperature is above 1050.degree. C., more preferably in the range of 1100.degree. C. to 1400.degree. C., and still more preferably approximately 1150.degree. C.

  17. Synthesis and properties of nanoscale titanium boride

    NASA Astrophysics Data System (ADS)

    Efimova, K. A.; Galevskiy, G. V.; Rudneva, V. V.

    2015-09-01

    This work reports the scientific and technological grounds for plasma synthesis of titanium diboride, including thermodynamic and kinetic conditions of boride formation when titanium and titanium dioxide are interacting with products resulting from boron gasification in the nitrogen - hydrogen plasma flow, and two variations of its behavior using the powder mixtures: titanium - boron and titanium dioxide - boron. To study these technology variations, the mathematical models were derived, describing the relation between element contents in the synthesized products of titanium and free boron and basic parameters. The probable mechanism proposed for forming titanium diboride according to a "vapour - melt - crystal" pattern was examined, covering condensation of titanium vapour in the form of aerosol, boriding of nanoscale melt droplets by boron hydrides and crystallization of titanium - boron melt. The comprehensive physical - chemical certification of titanium diboride was carried out, including the study of its crystal structure, phase and chemical composition, dispersion, morphology and particle oxidation. Technological application prospects for use of titanium diboride nanoscale powder as constituent element in the wettable coating for carbon cathodes having excellent physical and mechanical performance and protective properties.

  18. Pack-boriding of Fe-Mn binary alloys: Characterization and kinetics of the boride layers

    SciTech Connect

    Bektes, M.; Calik, A.; Ucar, N.; Keddam, M.

    2010-02-15

    In this work, the boronizing of Fe-Mn binary alloys at 0.42, 0.76 and 0.94 wt.% Mn was carried out in a solid medium using the powder pack method. In this method, commercial Ekabor-II boron source and activator (ferro-silicon) were thoroughly mixed to form the boriding medium. The samples were boronized in an electrical resistance furnace for exposure times of 2, 4, 6 and 8 h at 1173 K under atmospheric pressure and a series of boronized samples in the temperature range 1073-1373 K for 3 h. After the furnace process, boronized samples were removed from the furnace and cooled in air. Afterwards, the boride layers generated by the pack-boronizing process were characterized by optical microscopy, scanning electron microscopy, XRD analysis, Vickers microhardness and tensile testing. The generated boride layers, showing a saw-tooth morphology, had a surface microhardness in the range 1400-1270 HV0.1. It was shown that the values of yield stresses and ultimate tensile stresses were increased as the Mn content increases in the boronized Fe-Mn binary alloys. In contrast, the values of elongations determined from the stress-strain curves were decreased. Furthermore, it was found that the calculated mean value of the activation energy of boron diffusion was close to 119 J/mol.

  19. Certain physical properties of cobalt and nickel borides

    NASA Technical Reports Server (NTRS)

    Kostetskiy, I. I.; Lvov, S. N.

    1981-01-01

    The temperature dependence of the electrical resistivity, the thermal conductivity, and the thermal emf of cobalt and nickel borides were studied. In the case of the nickel borides the magnetic susceptibility and the Hall coefficient were determined at room temperature. The results are discussed with allowance for the current carrier concentration, the effect of various mechanisms of current-carrier scattering and the location of the Fermi level in relation to the 3d band.

  20. Ultralow friction behavior of borided steel surfaces after flash annealing

    SciTech Connect

    Bindal, C.; Erdemir, A.

    1996-02-01

    In this letter, we describe the ultralow friction mechanism of borided steel surfaces subjected to a short-duration, or {open_quote}{open_quote}flash,{close_quote}{close_quote} annealing procedure. In this procedure, a borided steel surface is exposed to high temperature (600 to 800{degree}C) for a short time (3 to 5 min) and then cooled to room temperature in open air. During the high-temperature exposure, boron atoms within the borided layer diffuse to the surface and react spontaneously with oxygen in air. The reaction product is a thin boron oxide film. During cooling, the boron oxide reacts spontaneously with moisture in the surrounding air to form a thin boric acid film. The sliding friction coefficient of a Si{sub 3}N{sub 4} ball against this flash-annealed surface is about 0.06, but is 0.5 and higher against the unborided or borided-only surfaces. Mechanistically, we propose that the ultralow friction behavior of the borided and flash-annealed surface is due mainly to the layered-crystal structure of the boric acid film that forms on the sliding surface. {copyright} {ital 1996 American Institute of Physics.}

  1. The characterization of boride layer on the St37 iron

    NASA Astrophysics Data System (ADS)

    Sutrisno, Soegijono, Bambang

    2012-06-01

    The property such as microhardness of boride layer formed on St37 iron was investigated. Boronizing was carried out in a solid medium consisting of nano size powders of 50% B4C as a donor, 45% SiC as a diluent, and 5% KBF4 as an activator treated at the temperature of 1000°C for 8 hours. The phases that were formed on the substrate was found as Fe2B and FeB layer that had smooth and flate shape morphology. The hardness of boride layer on St37 was over 2000 HV, while the hardness of untreated St37 iron was about 123,82 HV. Depending on process time and temperature, the depth of boride layer ranges from 20 to 60 μm, leading to a diffusion controlled process.

  2. Superconductivity and magnetism of complex rhodium borides

    NASA Astrophysics Data System (ADS)

    Burkhanov, G. S.; Lachenkov, S. A.; Khlybov, E. P.; Dankin, D. G.; Kulikova, L. F.

    2013-05-01

    A number of complex rhodium borides with an LuRu4B4-type structure is synthesized; these are DyRh4B4 (samples HP) with T c ≈ 4.5 K, DyRh3.8Ru0.2B4 (samples AM) with T c ≈ 4.5 K, Dy0.8Er0.2Rh3.8Ru0.2B4 (samples AM) with T c ≈ 6.3 K, and HoRh3.8Ru0.2B4 (samples AM) with T c ≈ 6.0 K. The temperature dependence of upper critical field B c2( T) for all the samples under study exhibits an anomalous behavior. In all cases, the curve B c2( T) demonstrates a point of inflection, after which the curve deviates from the classical parabolic law abruptly upward for DyRh4B4 and DyRh3.8Ru0.2B4 (the 1st group of compounds) and downward for the Dy0.8Er0.2Rh3.8Ru0.2B4 and HoRh3.8Ru0.2B4 compounds (the 2nd group). These compounds are found to be characterized by of the following phase transitions: paramagnet → ferrimagnet → superconductor (retained ferrimagnetism) → antiferromagnet (retained superconductivity). The latter transition to the antiferromagnetic state occurs only in the compounds of the 1st group. It is found that, for the DyRh3.8Ru0.2B4 compound, no traditional Meissner effect is observed but the so-called Volleben effect (paramagnetic Meissner effect) takes place.

  3. Development and application of high strength ternary boride base cermets

    SciTech Connect

    Takagi, Ken-ichi . E-mail: u4381@toyokohan.co.jp

    2006-09-15

    Reaction boronizing sintering is a novel strategy to form a ternary boride coexisting with a metal matrix in a cermet during liquid phase sintering. This new sintering technique has successfully developed world first ternary boride base cermets with excellent mechanical properties such as Mo{sub 2}FeB{sub 2}, Mo{sub 2}NiB{sub 2} and WCoB base ones. In these cermets Mo{sub 2}FeB{sub 2} and Mo{sub 2}NiB{sub 2} base ones consist of a tetragonal M {sub 3}B{sub 2} (M: metal)-type complex boride as a hard phase and a transition metal base matrix. The cermets have already been applied to wear resistant applications such as injection molding machine parts, can making tools, and hot copper extruding dies, etc. This paper focuses on the characteristics, effects of the additional elements on the mechanical properties and structure, and practical applications of the ternary boride base cermets. - Graphical abstract: TRS and hardness of Ni-5B-51Mo-17.5Cr and Ni-5B-51Mo-12.5Cr-5V-xMn mass% cermets as functions of Mn content (Fig. 17)

  4. Subminiature eddy current transducers for studying boride coatings

    NASA Astrophysics Data System (ADS)

    Dmitriev, S. F.; Ishkov, A. V.; Malikov, V. N.; Sagalakov, A. M.

    2016-07-01

    Strengthening of parts and units of machines, increased reliability and longer service life is an important task of modern mechanical engineering. The main objects of study in the work were selected steel 65G and 50HGA, wear-resistant boride coatings ternary system Fe-B-Fe n B which were investigated by scanning electron microscopy and eddy-current nondestructive methods.

  5. Metals fact sheet - indium

    SciTech Connect

    1994-01-01

    Indium is generally found in concentrations averaging 10 to 20 ppm in sphalerite and chalcopyrite ores associated with zinc, copper, lead and tin deposits. Indium is recovered as a by-product of base metal mining by open pit, underground and other methods. After the recovery of zinc by the electrolytic process (copper concentrate by flotation, and lead and tin by electrolysis), indium antimonide slimes left on the anode and the indium-containing spent electrolyte become the input material for the processing of indium. Sulfuric acid is combined with the residues and heated to form sulfates which are then leached with water to filter off the remaining tin, lead and antimony. The indium in solution is recovered by cementation on aluminum, washed, melted, and refined into a metal.

  6. Nanosize cobalt boride particles: Control of the size and properties

    NASA Astrophysics Data System (ADS)

    Petit, C.; Pileni, M. P.

    1997-02-01

    Cobalt boride is obtained by the reduction of cobalt (2-ethyl hexyl) sulfosuccinate, Co(AOT) 2, by sodium borohydride either in reverse micelles or in a diphasic system. In Co(AOT) 2/Na(AOT)/H 2O reverse micellar solution, the size and polydispersity of the Co 2B particles is controlled by the size of the water droplets, which increases from 4 to 7.5 nm by increasing the water content. In a diphasic system of Co(AOT) 2/isooctane and sodium borohydride in aqueous solution, large and polydisperse particles of cobalt boride are formed (˜ 10 nm), and their magnetization properties are presented. The smallest particles are in a superparamagnetic regime at room temperature, whereas the largest particles show ferromagnetic behavior.

  7. Single crystal studies on Co-containing {tau}-borides Co{sub 23-x}M{sub x}B{sub 6} (M=Al, Ga, Sn, Ti, V, Ir) and the boron-rich {tau}-boride Co{sub 12.3}Ir{sub 8.9}B{sub 10.5}

    SciTech Connect

    Kotzott, Dominik; Ade, Martin; Hillebrecht, Harald

    2009-03-15

    Single crystals of the cubic {tau}-Borides Co{sub 23-x}M{sub x}B{sub 6} (M=Al, Ga, Sn) were synthesised from the elements at temperatures between 1200 and 1500 deg. C. According to the structure refinements one (Ga, Sn: 8c) or two (Al: 4a and 8c) of the four independent metal sites show a mixed occupation Co/M resulting in the compositions Co{sub 20.9}Al{sub 2.1}B{sub 6}, Co{sub 21.9}Ga{sub 1.1}B{sub 6}, and Co{sub 21.4}Sn{sub 1.6}B{sub 6}, respectively. Melts with Indium gave access to Co{sub 23}B{sub 6} as the first binary {tau}-boride (Fm3-barm,a=10.4618(13) A, 104 refl., 14 param., R{sub 1}(F)=0.0132, wR{sub 2}(F{sup 2})=0.0210). With M=Ir mixed occupations occur for all sites and the boron content varies. The composition for the boron-poor single crystal was Co{sub 16.2}Ir{sub 6.8}B{sub 6}. A higher Ir-content enables the uptake of additional boron resulting in a composition Co{sub 12.3}Ir{sub 8.9}B{sub 10.5}. This can be explained be the substitution of metal atoms on the 8c-site by B{sub 4}-tetrahedra. A boron-rich phase was observed for the first time for a {tau}-boride of cobalt. All compositions were confirmed by EDX measurements. - Graphical Abstract: Single crystal investigations on {tau}-borides Co/M/B with M = Al, Ga, In, Sn, V, Ti, Ir explained the substitution processes. Furthermore the yielded the first binary boride, Co{sub 23}B{sub 6}, and a boron-rich Co{sub 12.3}Ir{sub 8.9}B{sub 10.5} containing B{sub 4}-tetrahedra.

  8. Indium fluoride glass fibers

    NASA Astrophysics Data System (ADS)

    Saad, Mohammed

    2012-03-01

    Fluoride glasses are the only material that transmit light from ultraviolet to mid-infrared and can be drawn into industrial optical fibers. The mechanical and optical properties of new indium fluoride glass fibers have been investigated. Multimode fiber 190 microns, has very high mechanical strength greater than 100 kpsi and optical loss as low as 45 dB/km between 2 and 4 microns. Unlike chalcogenide glass fibers, indium fluoride fiber has a wide transmission window from 0.3 to 5.5 microns without any absorption peak. Indium fluoride glass fibers are the technology of choice for all application requiring transmission up to 5 micron such as infrared contour measure (IRCM) and chemical sensing. Furthermore, Indium fluoride glasses have low phonon energy and can be heavily doped and co-doped whit rare-earth elements. Therefore they are very promising candidates for infrared fiber lasers.

  9. Microstructural characterization and some mechanical properties of gas-borided Inconel 600-alloy

    NASA Astrophysics Data System (ADS)

    Makuch, N.; Kulka, M.

    2014-09-01

    The excellent resistance of Ni-based alloys to corrosion and oxidation is well-known. Boriding can be applied to these alloys in order to obtain suitable wear protection. In this paper, two-stage gas boronizing in N2-H2-BCl3 atmosphere is proposed for the producing the boride layer on Inconel®600-alloy. This process consists in two stages alternately repeated: saturation by boron and diffusion annealing. Such a gas boriding is applied in order to accelerate the saturation by boron and its diffusion. It turns out to be more effective because of eliminating the excess of boron, diffusing into the substrate, during the second stage. Microstructure and some mechanical properties of the produced layer are presented. Microstructural characterization is studied with using an optical microscope, scanning electron microscope, energy-dispersive x-ray microanalysis and x-ray diffraction. The diffusion zone consists of the mixture of nickel and chromium borides, occurring in the compact boride zone and in the area located beneath, at grain boundaries. The improved hardness and wear resistance characterize the layer. The formed boride layer is significantly thicker than those-obtained by the pack-boronizing or paste process at comparable temperature and time. Simultaneously, the measured depth of layer is slightly smaller than that-reported for electrolytic boriding.

  10. Characterisation of titanium-titanium boride composites processed by powder metallurgy techniques

    SciTech Connect

    Selva Kumar, M.; Chandrasekar, P.; Chandramohan, P.; Mohanraj, M.

    2012-11-15

    In this work, a detailed characterisation of titanium-titanium boride composites processed by three powder metallurgy techniques, namely, hot isostatic pressing, spark plasma sintering and vacuum sintering, was conducted. Two composites with different volume percents of titanium boride reinforcement were used for the investigation. One was titanium with 20% titanium boride, and the other was titanium with 40% titanium boride (by volume). Characterisation was performed using X-ray diffraction, electron probe micro analysis - energy dispersive spectroscopy and wavelength dispersive spectroscopy, image analysis and scanning electron microscopy. The characterisation results confirm the completion of the titanium boride reaction. The results reveal the presence of titanium boride reinforcement in different morphologies such as needle-shaped whiskers, short agglomerated whiskers and fine plates. The paper also discusses how mechanical properties such as microhardness, elastic modulus and Poisson's ratio are influenced by the processing techniques as well as the volume fraction of the titanium boride reinforcement. - Highlights: Black-Right-Pointing-Pointer Ti-TiB composites were processed by HIP, SPS and vacuum sintering. Black-Right-Pointing-Pointer The completion of Ti-TiB{sub 2} reaction was confirmed by XRD, SEM and EPMA studies. Black-Right-Pointing-Pointer Hardness and elastic properties of Ti-TiB composites were discussed. Black-Right-Pointing-Pointer Processing techniques were compared with respect to their microstructure.

  11. Reactive Boride Brazing on Low-Alloy Automotive Grade Steel

    NASA Astrophysics Data System (ADS)

    Palanisamy, B.; Upadhyaya, A.

    2011-11-01

    Brazing is a widely used process to improve the performance of steels used in automotive applications. The substrate material is often exposed to harsh conditions in these applications and may affect the service life of the component. Reactive boride brazing aims to improve the mechanical properties of the substrate material by forming a ceramic-metal composite coating in a single-step process in situ. In this study, sintered Ancor 4300 low-alloy steel is used as the substrate with chromium-rich braze and chromium-lean braze materials. The mechanical properties of the brazed samples were studied in detail using microindentation hardness measurements and the transverse rupture test. The results indicate that the brazed superlayer has a 10 times higher hardness. There was a significant improvement in the transverse rupture strength of the steel brazed with the chromium-rich boride as compared to the pure substrate material. In an effort to reduce processing time, green compacts of the substrate were also directly brazed and yielded favorable results.

  12. Discovery of elusive structures of multifunctional transition-metal borides.

    PubMed

    Liang, Yongcheng; Wu, Zhaobing; Yuan, Xun; Zhang, Wenqing; Zhang, Peihong

    2016-01-14

    A definitive determination of crystal structures is an important prerequisite for designing and exploiting new functional materials. Even though tungsten and molybdenum borides (TMBx) are the prototype for transition-metal light-element compounds with multiple functionalities, their elusive crystal structures have puzzled scientists for decades. Here, we discover that the long-assumed TMB2 phases with the simple hP3 structure (hP3-TMB2) are in fact a family of complex TMB3 polytypes with a nanoscale ordering along the axial direction. Compared with the energetically unfavorable and dynamically unstable hP3-TMB2 phase, the energetically more favorable and dynamically stable TMB3 polytypes explain the experimental structural parameters, mechanical properties, and X-ray diffraction (XRD) patterns better. We demonstrate that such a structural and compositional modification from the hP3-TMB2 phases to the TMB3 polytypes originates from the relief of the strong antibonding interaction between d electrons by removing one third of metal atoms systematically. These results resolve the longstanding structural mystery of this class of metal borides and uncover a hidden family of polytypic structures. Moreover, these polytypic structures provide an additional hardening mechanism by forming nanoscale interlocks that may strongly hinder the interlayer sliding movements, which promises to open a new avenue towards designing novel superhard nanocomposite materials by exploiting the coexistence of various polytypes. PMID:26660270

  13. Processing and properties of some alumina-boride composites

    SciTech Connect

    Edirisinghe, M.J.

    1995-10-01

    Alumina (Al{sub 2}O{sub 3}) test bars containing a small (5--10%) volume of titanium diboride (TiB{sub 2}) or zirconium diboride (ZrB{sub 2}) particles have been pressed and sintered (pressureless) in an argon atmosphere. The microstructure of the sintered bodies was characterized by X-ray diffraction and a range of microscopical techniques and shows that 3 ppm (by volume) of oxygen present in the argon caused the boride particles in the surface regions of the test bars to oxidize during sintering, to a greater extent in the Al{sub 2}O{sub 3}-TiB{sub 2} composites. Mechanisms of oxidation are discussed. The boride particles retarded the densification of the composites, to a greater extent in the Al{sub 2}O{sub 3}-ZrB{sub 2} bodies. However, densification in the Al{sub 2}O{sub 3}-ZrB{sub 2} system was enhanced by sintering in an Ar-4% H{sub 2} atmosphere. The decrease in flexural strength due to the retardation of sintering has been overcome in both types of composites.

  14. The Electronic Properties of Metal Borides and Borocarbides: Differences and Similarities

    NASA Astrophysics Data System (ADS)

    Lassoued, Souheila; Gautier, Régis; Halet, Jean-François

    The bonding and structural arrangement in a few representative ring- or chain-containing solid-state metal borides and boride carbides are analyzed with respect to the electron count of the non-metal entities. Similarities and differences between them are emphasized. More specifically, the bonding in some layered ternary borides of RETB4 formula (RE = rare-earth metal and T = transition metal) is first analyzed and compared to that of the metal boride carbide ScB2C2, which contains a similar non-metal arrangement. Oxidation states are proposed for the boron or boron-carbon networks encountered in these compounds. It seems that they are electron-richer than graphite-like boron networks. In a second part, the bonding in linear boron and boron-carbon chains encapsulated in channels of LiB or RE xByCz is discussed and compared. Cumulenic bond character is favored in these chains.

  15. Nanosized Borides and Carbides for Electroplating. Metal-Matrix Coatings: Specifications, Performance Evaluation

    NASA Astrophysics Data System (ADS)

    Galevskiy, G. V.; Rudneva, V. V.; Galevskiy, S. G.; Il’yashchenko, D. P.; Kartsev, D. S.

    2016-04-01

    This paper summarizes experience of application of nano-sized carbides and borides of titanium and chromium, silicon carbide as components of electro-depositable coating compositions based on nickel, zinc, and chromium. Basic physical and mechanical properties of the coatings are determined. Technological and economic evaluation is completed; practicability of high-cost nano-diamonds substitution for nano-sized borides and carbides is justified.

  16. An alternative method of gas boriding applied to the formation of borocarburized layer

    SciTech Connect

    Kulka, M. Makuch, N.; Pertek, A.; Piasecki, A.

    2012-10-15

    The borocarburized layers were produced by tandem diffusion processes: carburizing followed by boriding. An alternative method of gas boriding was proposed. Two-stage gas boronizing in N{sub 2}-H{sub 2}-BCl{sub 3} atmosphere was applied to the formation of iron borides on a carburized substrate. This process consisted in two stages, which were alternately repeated: saturation by boron and diffusion annealing. The microstructure and microhardness of produced layer were compared to those-obtained in case of continuous gas boriding in H{sub 2}-BCl{sub 3} atmosphere, earlier used. The first objective of two-stage boronizing, consisting in acceleration of boron diffusion, has been efficiently implemented. Despite the lower temperature and shorter duration of boronizing, about 1.5 times larger iron borides' zone has been formed on carburized steel. Second objective, the absolute elimination of brittle FeB phase, has failed. However, the amount of FeB phase has been considerably limited. Longer diffusion annealing should provide the boride layer with single-phase microstructure, without FeB phase. - Highlights: Black-Right-Pointing-Pointer Alternative method of gas boriding in H{sub 2}-N{sub 2}-BCl{sub 3} atmosphere was proposed. Black-Right-Pointing-Pointer The process consisted in two stages: saturation by boron and diffusion annealing. Black-Right-Pointing-Pointer These stages of short duration were alternately repeated. Black-Right-Pointing-Pointer The acceleration of boron diffusion was efficiently implemented. Black-Right-Pointing-Pointer The amount of FeB phase in the boride zone was limited.

  17. Indium sealing techniques.

    NASA Technical Reports Server (NTRS)

    Hochuli, U.; Haldemann, P.

    1972-01-01

    Gold films are used as an alloying flux to form 5-micron-thick indium film seals at temperatures below 300 C. Pyrex was sealed to quartz, ULE, CER-VIT, Irtran 2, Ge, GaAs, Invar, Kovar, Al, and Cu. The seals can also be used as current feedthroughs and graded seals.

  18. Plasma boriding of a cobalt-chromium alloy as an interlayer for nanostructured diamond growth

    NASA Astrophysics Data System (ADS)

    Johnston, Jamin M.; Jubinsky, Matthew; Catledge, Shane A.

    2015-02-01

    Chemical vapor deposited (CVD) diamond coatings can potentially improve the wear resistance of cobalt-chromium medical implant surfaces, but the high cobalt content in these alloys acts as a catalyst to form graphitic carbon. Boriding by high temperature liquid baths and powder packing has been shown to improve CVD diamond compatibility with cobalt alloys. We use the microwave plasma-enhanced (PE) CVD process to deposit interlayers composed primarily of the borides of cobalt and chromium. The use of diborane (B2H6) in the plasma feedgas allows for the formation of a robust boride interlayer for suppressing graphitic carbon during subsequent CVD of nano-structured diamond (NSD). This metal-boride interlayer is shown to be an effective diffusion barrier against elemental cobalt for improving nucleation and adhesion of NSD coatings on a CoCrMo alloy. Migration of elemental cobalt to the surface of the interlayer is significantly reduced and undetectable on the surface of the subsequently-grown NSD coating. The effects of PECVD boriding are compared for a range of substrate temperatures and deposition times and are evaluated using glancing-angle X-ray diffraction (XRD), cross-sectional scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and micro-Raman spectroscopy. Boriding of CoCrMo results in adhered nanostructured diamond coatings with low surface roughness.

  19. Respirable Indium Exposures, Plasma Indium, and Respiratory Health Among Indium-Tin Oxide (ITO) Workers

    PubMed Central

    Cummings, Kristin J.; Virji, M. Abbas; Park, Ji Young; Stanton, Marcia L.; Edwards, Nicole T.; Trapnell, Bruce C.; Carey, Brenna; Stefaniak, Aleksandr B.; Kreiss, Kathleen

    2016-01-01

    Background Workers manufacturing indium-tin oxide (ITO) are at risk of elevated indium concentration in blood and indium lung disease, but relationships between respirable indium exposures and biomarkers of exposure and disease are unknown. Methods For 87 (93%) current ITO workers, we determined correlations between respirable and plasma indium and evaluated associations between exposures and health outcomes. Results Current respirable indium exposure ranged from 0.4 to 108 μg/m3 and cumulative respirable indium exposure from 0.4 to 923 μg-yr/m3. Plasma indium better correlated with cumulative (rs = 0.77) than current exposure (rs = 0.54) overall and with tenure ≥1.9 years. Higher cumulative respirable indium exposures were associated with more dyspnea, lower spirometric parameters, and higher serum biomarkers of lung disease (KL-6 and SP-D), with significant effects starting at 22 μg-yr/m3, reached by 46% of participants. Conclusions Plasma indium concentration reflected cumulative respirable indium exposure, which was associated with clinical, functional, and serum biomarkers of lung disease. PMID:27219296

  20. Indium Sorption to Iron Oxides

    NASA Astrophysics Data System (ADS)

    White, S. J.; Sacco, S. A.; Hemond, H.; Hussain, F. A.; Runkel, R. L.; Walton-Day, K. E.; Kimball, B. A.; Shine, J. P.

    2014-12-01

    Indium is an increasingly important metal in semiconductors and electronics, and its use is growing rapidly as a semiconductive coating (as indium tin oxide) for liquid crystal displays (LCDs) and flat panel displays. It also has uses in important energy technologies such as light emitting diodes (LEDs) and photovoltaic cells. Despite its rapid increase in use, very little is known about the environmental behavior of indium, and concerns are being raised over the potential health effects of this emerging metal contaminant. One source of indium to the environment is acid mine drainage from the mining of lead, zinc, and copper sulfides. In our previous studies of a stream in Colorado influenced by acid mine drainage from lead and zinc mining activities, indium concentrations were found to be 10,000 times those found in uncontaminated rivers. However, the speciation and mobility of indium could not be reliably modeled because sorption constants to environmental sorbents have not been determined. In this study, we generate sorption constants for indium to ferrihydrite in the laboratory over a range of pHs, sorbent to sorbate ratios, and ionic strengths. Ferrihydrite is one of the most important sorbents in natural systems, and sorption to amorphous iron oxides such as ferrihydrite is thought to be one of the main removal mechanisms of metals from the dissolved phase in aqueous environments. Because of its relatively low solubility, we also find that indium hydroxide precipitation can dominate indium's partitioning at micromolar concentrations of indium. This precipitation may be important in describing indium's behavior in our study stream in Colorado, where modeling sorption to iron-oxides does not explain the complete removal of indium from the dissolved phase when the pH of the system is artificially raised to above 8. This study contributes much-needed data about indium's aqueous behavior, in order to better understand its fate, transport, and impacts in the

  1. Precursors for formation of copper selenide, indium selenide, copper indium diselenide, and/or copper indium gallium diselenide films

    SciTech Connect

    Curtis, Calvin J; Miedaner, Alexander; Van Hest, Maikel; Ginley, David S

    2014-11-04

    Liquid-based precursors for formation of Copper Selenide, Indium Selenide, Copper Indium Diselenide, and/or copper Indium Galium Diselenide include copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent. These liquid-based precursors can be deposited in liquid form onto substrates and treated by rapid thermal processing to form crystalline copper selenide and indium selenide films.

  2. The Growth Behavior of Titanium Boride Layers in α and β Phase Fields of Titanium

    NASA Astrophysics Data System (ADS)

    Lv, Xiaojun; Hu, Lingyun; Shuang, Yajing; Liu, Jianhua; Lai, Yanqing; Jiang, Liangxing; Li, Jie

    2016-07-01

    In this study, the commercially pure titanium was successfully electrochemical borided in a borax-based electrolyte. The process was carried out at a constant cathodic current density of 300 mA cm-2 and at temperatures of 1123 K and 1223 K (850 °C and 950 °C) for 0.5, 1, 2, 3, and 5 hours. The growth behavior of titanium boride layers in the α phase field of titanium was compared with that in the β phase field. After boriding, the presence of both the TiB2 top layer and TiB whisker sub-layer was confirmed by the X-ray diffraction (XRD) and scanning electron microscope. The relationship between the thickness of boride layers and boriding time was found to have a parabolic character in both α and β phase fields of titanium. The TiB whiskers showed ultra-fast growth rate in the β phase field. Its growth rate constant was found to be as high as 3.2002 × 10-13 m2 s-1. Besides, the chemical resistance of the TiB2 layer on the surface of titanium substrate was characterized by immersion tests in molten aluminum.

  3. Metal boride catalysts for indirect liquefaction. Quarterly technical progress report, December 1, 1983-February 29, 1984

    SciTech Connect

    Bartholomew, C.H.

    1984-04-12

    During the sixth quarter four boron-promoted cobalt catalysts were prepared by a new boriding process using diborane gas as the boriding agent. These catalysts were characterized by chemical analysis, BET, H/sub 2/ chemisorption, and x-ray diffraction. Temperature-programmed desorption spectra of H/sub 2/ were obtained for a sodium-promoted cobalt boride and a sodium-promoted Co/SiO/sub 2/. Four cobalt catalysts (unsupported, boron-promoted, sodium-promoted, and doubly-promoted) were tested for CO hydrogenation activity and selectivity at 1 atm and 3 to 4 temperatures in the range of 190 to 240/sup 0/C. About 10% of the surface of cobalt boride consists of reduced metallic cobalt. The addition of sodium to cobalt increases its binding energy with H/sub 2/ and its activation energy for H/sub 2/ adsorption. Boron does not affect the activity of cobalt; sodium decreases it by a factor of 10. Cobalt boride produces lighter hydrocarbon products relative to cobalt; sodium-promoted cobalt produces heavier products, more alcohols, and more CO/sub 2/. 29 references, 10 figures, 4 tables.

  4. The Growth Behavior of Titanium Boride Layers in α and β Phase Fields of Titanium

    NASA Astrophysics Data System (ADS)

    Lv, Xiaojun; Hu, Lingyun; Shuang, Yajing; Liu, Jianhua; Lai, Yanqing; Jiang, Liangxing; Li, Jie

    2016-04-01

    In this study, the commercially pure titanium was successfully electrochemical borided in a borax-based electrolyte. The process was carried out at a constant cathodic current density of 300 mA cm-2 and at temperatures of 1123 K and 1223 K (850 °C and 950 °C) for 0.5, 1, 2, 3, and 5 hours. The growth behavior of titanium boride layers in the α phase field of titanium was compared with that in the β phase field. After boriding, the presence of both the TiB2 top layer and TiB whisker sub-layer was confirmed by the X-ray diffraction (XRD) and scanning electron microscope. The relationship between the thickness of boride layers and boriding time was found to have a parabolic character in both α and β phase fields of titanium. The TiB whiskers showed ultra-fast growth rate in the β phase field. Its growth rate constant was found to be as high as 3.2002 × 10-13 m2 s-1. Besides, the chemical resistance of the TiB2 layer on the surface of titanium substrate was characterized by immersion tests in molten aluminum.

  5. Kinetics of borided 31CrMoV9 and 34CrAlNi7 steels

    SciTech Connect

    Efe, Goezde Celebi; Ipek, Mediha; Ozbek, Ibrahim; Bindal, Cuma

    2008-01-15

    In this study, kinetics of borides formed on the surface of 31CrMoV9 and 34CrAlNi7 steels borided in solid medium consisting of Ekabor II at 850-900-950 deg. C for 2, 4, 6 and 8 h were investigated. Scanning electron microscopy and optical microscopy examinations showed that borides formed on the surface of borided steels have columnar morphology. The borides formed in the coating layer confirmed by X-ray diffraction analysis are FeB, Fe{sub 2}B, CrB, and Cr{sub 2}B. The hardnesses of boride layers are much higher than that of matrix. It was found that depending on process temperature and time the fracture toughness of boride layers ranged from 3.93 to 4.48 MPa m{sup 1/2} for 31CrMoV9 and from 3.87 to 4.40 MPa m{sup 1/2} for 34CrAlNi7 steel. Activation energy, growth rate and growth acceleration of boride layer calculated according to these kinetic studies revealed that lower activation energy results in the fast growth rate and high growth acceleration.

  6. Mineral of the month: indium

    USGS Publications Warehouse

    George, Micheal W.

    2004-01-01

    Indium was discovered in Germany in 1863. Although it is a lustrous silver-white color, the finders named the new material for the “indigo” spectral lines the mineral created on the spectrograph. Indium ranks 61st in abundance in Earth’s crust and is about three times more abundant than silver or mercury.

  7. Nano-Disperse Borides and Carbides: Plasma Technology Production, Specific Properties, Economic Evaluation

    NASA Astrophysics Data System (ADS)

    Galevskii, G. V.; Rudneva, V. V.; Galevskii, S. G.; Tomas, K. I.; Zubkov, M. S.

    2016-04-01

    The experience of production and study on properties of nano-disperse chromium and titanium borides and carbides, and silicon carbide has been generalized. The structure and special service aspects of utilized plasma-metallurgical complex equipped with a three-jet direct-flow reactor with a capacity of 150 kW have been outlined. Processing, heat engineering and service life characteristics of the reactor are specified. The synthesis parameters of borides and carbides, as well as their basic characteristics in nano-disperse condition and their production flow diagram are outlined. Engineering and economic performance of synthesizing borides in laboratory and industrial conditions is assessed, and the respective segment of the international market as well. The work is performed at State Siberian Industrial University as a project part of the State Order of Ministry of Science and Education of the Russian Federation No. 11.1531/2014/K.

  8. Boride-based nano-laminates with MAX-phase-like behaviour

    SciTech Connect

    Telle, Rainer . E-mail: telle@ghi.rwth-aachen.de; Momozawa, Ai; Music, Denis; Schneider, Jochen M.

    2006-09-15

    MAX-phases being usually composed of transition metals, group A elements and carbon/nitrogen are considered interesting materials for many applications because of their tremendous bulk modulus, 'reversible' plasticity, and machinability. This is mainly due to their unique kind of bonding comprising covalent, ionic as well as metallic bonds providing 'easy' planes of rupture and deformability due to the layered crystal structures. In transition metal boride systems, similar types of bonding are available. In particular the W{sub 2}B{sub 5}-structure type and its stacking variations allow the synthesis of strongly layered crystal structures exhibiting unique delamination phenomena. The paper presents ab initio calculations showing the similarities of bonding between the ternary carbides and the corresponding ternary or quaternary borides. Formation of boride-based nano-laminates from auxiliary liquid phases, from the melt as well as during sintering and precipitation from supersaturated solid solutions will be discussed by means of SEM and TEM studies. The role of impurities weakening the interlayer bonding will be addressed in particular. The pronounced cleavage parallel to the basal plane gives rise for crack deflection and pull-out mechanisms if the laminates are dispersed in brittle matrices such as boron carbide, silicon carbide or other transition metal borides. - Graphical abstract: Some transition metal borides crystallise in a layered structure of alternating stacks of metal and boron atoms giving rise for strongly anisotropic properties. Their preferred cleavage parallel and the deformability perpendicular to the basal plan are similar to the peculiar mechanical behaviour recently described for MAX-phases. Ab initio calculations of the crystal structure prove the weak bonds between the layers for a variety of borides which can be used to reinforce ceramic materials on a nano-scale level.

  9. Surface hardening of steel by boriding in a cold rf plasma

    NASA Technical Reports Server (NTRS)

    Finberg, I.; Avni, R.; Grill, A.; Spalvins, T.; Buckley, D. H.

    1985-01-01

    Scanning electron spectroscopy, X-ray diffractometry, Auger electron spectroscopy, and microhardness measurements, are used to study the surfaces of 4340-steel samples that have been borided in a cold RF plasma which had been initiated in a gas mixture of 2.7 percent diborane in Ar. As a result of the dislocation of the diborane in the plasma, boron is deposited on the surface of the steel substrate and two crystalline phases, tetragonal Fe2B and orthorhombic FeB, are formed. The formation of boride phases then increases the surface microhardness from 2650 MPa to a maximum value of 7740 MPa.

  10. Metal-boride phase formation on tungsten carbide (WC-Co) during microwave plasma chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Johnston, Jamin M.; Catledge, Shane A.

    2016-02-01

    Strengthening of cemented tungsten carbide by boriding is used to improve the wear resistance and lifetime of carbide tools; however, many conventional boriding techniques render the bulk carbide too brittle for extreme conditions, such as hard rock drilling. This research explored the variation in metal-boride phase formation during the microwave plasma enhanced chemical vapor deposition process at surface temperatures from 700 to 1100 °C. We showed several well-adhered metal-boride surface layers consisting of WCoB, CoB and/or W2CoB2 with average hardness from 23 to 27 GPa and average elastic modulus of 600-730 GPa. The metal-boride interlayer was shown to be an effective diffusion barrier against elemental cobalt; migration of elemental cobalt to the surface of the interlayer was significantly reduced. A combination of glancing angle X-ray diffraction, electron dispersive spectroscopy, nanoindentation and scratch testing was used to evaluate the surface composition and material properties. An evaluation of the material properties shows that plasma enhanced chemical vapor deposited borides formed at substrate temperatures of 800 °C, 850 °C, 900 °C and 1000 °C strengthen the material by increasing the hardness and elastic modulus of cemented tungsten carbide. Additionally, these boride surface layers may offer potential for adhesion of ultra-hard carbon coatings.

  11. Surface hardening of St41 low carbon steel by using the hot-pressing powder-pack boriding method

    NASA Astrophysics Data System (ADS)

    Sutrisno, Soegijono, Bambang

    2014-03-01

    This research describes a powder-pack boriding process by using hot-pressing technic for St41 low carbon steel which will improve the hardness on the substrate by forming boride layer solid solution. Those method can reduce the operational cost of the research if it is compared by the conventional method with the asmospheric condition both vacuum system and gas inert condition. The concept of boriding by hot-pressing technic was verified in a laboratory scale. Welldefined and reusedable technic was achieved by using the stainless steel 304 as the container and sealed with a 5 ton pressure. This container was filled boronizing powder consisting of 5%B4C, 90%SiC, and 5%KBF4 to close the St41 low carbon steel specimen inside the container. The St41 boriding specimen was treated at the temperature of 900°C for 8 hours. The boride layer on the substrate was found as FeB and Fe2B phase with the hardness about 1800 HV. This value was more than ten times if compared with the untreated specimen that only had the hardness of 123 HV. Depend on heat treatment temperature, heat treatment time, and powder-pack boriding pressure, the depth of boride layer range from 127 to 165 μm, leading to a diffusion controlled process.

  12. Niobium boride layers deposition on the surface AISI D2 steel by a duplex treatment

    NASA Astrophysics Data System (ADS)

    Kon, O.; Pazarlioglu, S.; Sen, S.; Sen, U.

    2015-03-01

    In this paper, we investigated the possibility of deposition of niobium boride layers on the surface of AISI D2 steel by a duplex treatment. At the first step of duplex treatment, boronizing was performed on AISI D2 steel samples at 1000oC for 2h and then pre-boronized samples niobized at 850°C, 900°C and 950°C using thermo-reactive deposition method for 1-4 h. The presence of the niobium boride layers such as NbB, NbB2 and Nb3B4 and also iron boride phases such as FeB, Fe2B were examined by X-ray diffraction analysis. Scanning electron microscope (SEM) and micro-hardness measurements were realized. Experimental studies showed that the depth of the coating layers increased with increasing temperature and times and also ranged from 0.42 µm to 2.43 µm, depending on treatment time and temperature. The hardness of the niobium boride layer was 2620±180 HV0.005.

  13. Superabrasive boride and a method of preparing the same by mechanical alloying and hot pressing

    DOEpatents

    Cook, Bruce A.; Harringa, Joel L.; Russell, Alan M.

    2002-08-13

    A ceramic material which is an orthorhombic boride of the general formula: AlMgB.sub.14 :X, with X being a doping agent. The ceramic is a superabrasive, and in most instances provides a hardness of 40 GPa or greater.

  14. Ultra-Fast Boriding in High-Temperature Materials Processing Industries

    SciTech Connect

    2008-12-01

    This factsheet describes a research project whose main objective is to further develop, optimize, scale-up, and commercialize an ultra-fast boriding (also referred to as “boronizing”) process that can provide much higher energy efficiency, productivity, and near-zero emissions in many of the high-temperature materials processing industries.

  15. Structures and stability of novel transition-metal (M =Co ,Rh ,Co and Ir ) borides

    NASA Astrophysics Data System (ADS)

    Wang, Yachun; Wu, Lailei; Lin, Yangzheng; Hu, Qingyang; Li, Zhiping; Liu, Hanyu; Zhang, Yunkun; Gou, Huiyang; Yao, Yansun; Zhang, Jingwu; Gao, Faming; Mao, Ho-kwang

    2015-11-01

    Recent progress of high-pressure technology enables the synthesis of novel metal borides with diverse compositions and interesting properties. A precise characterization of these borides, however, is sometimes hindered by multiphase intergrowth and grain-size limitation in the synthesis process. Here, we theoretically explored new transition-metal borides (M =Co , Rh, and Ir) using a global structure searching method and discovered a series of stable compounds in this family. The predicted phases display a rich variety of stoichiometries and distinct boron networks resulting from the electron-deficient environments. Significantly, we identified a new Ir B1.25 structure as the long-sought structure of the first synthesized Ir-B compound. The simulated x-ray diffraction pattern of the proposed Ir B1.25 structure matches well with the experiment, and the convex hull calculation establishes its thermodynamic stability. Results of the present paper should advance the understanding of transition-metal borides and stimulate experimental explorations of these new and promising materials.

  16. Niobium boride layers deposition on the surface AISI D2 steel by a duplex treatment

    SciTech Connect

    Kon, O.; Pazarlioglu, S.

    2015-03-30

    In this paper, we investigated the possibility of deposition of niobium boride layers on the surface of AISI D2 steel by a duplex treatment. At the first step of duplex treatment, boronizing was performed on AISI D2 steel samples at 1000{sup o}C for 2h and then pre-boronized samples niobized at 850°C, 900°C and 950°C using thermo-reactive deposition method for 1–4 h. The presence of the niobium boride layers such as NbB, NbB{sub 2} and Nb{sub 3}B{sub 4} and also iron boride phases such as FeB, Fe{sub 2}B were examined by X-ray diffraction analysis. Scanning electron microscope (SEM) and micro-hardness measurements were realized. Experimental studies showed that the depth of the coating layers increased with increasing temperature and times and also ranged from 0.42 µm to 2.43 µm, depending on treatment time and temperature. The hardness of the niobium boride layer was 2620±180 HV{sub 0.005}.

  17. Indium Second-Surface Mirrors

    NASA Technical Reports Server (NTRS)

    Bouquet, F. L.; Hasegawa, T.

    1982-01-01

    Second-surface mirrors are formed by vapor deposition of indium onto glass. Mirrors have reflectances comparable to those of ordinary silver or aluminized mirrors and are expected to show superior corrosion resistance. Mirrors may be used in solar concentrators.

  18. Potential and limitations of microanalysis SEM techniques to characterize borides in brazed Ni-based superalloys

    SciTech Connect

    Ruiz-Vargas, J.; Siredey-Schwaller, N.; Noyrez, P.; Mathieu, S.; Bocher, P.; and others

    2014-08-15

    Brazed Ni-based superalloys containing complex phases of different Boron contents remain difficult to characterize at the micrometer scale. Indeed Boron is a light element difficult to measure precisely. The state-of-the-art microanalysis systems have been tested on a single crystal MC2 based metal brazed with BNi-2 alloy to identify boride precipitates. Effort has been made to evaluate the accuracy in Boron quantitation. Energy-dispersive and wavelength-dispersive X-ray spectroscopy attached to a Scanning Electron Microscope have first been used to determine the elemental composition of Boron-free phases, and then applied to various types of borides. Results have been compared to the ones obtained using a dedicated electron probe microanalysis, considered here as the reference technique. The most accurate method to quantify Boron using EDS is definitely by composition difference. A precision of 5 at.% could be achieved with optimized data acquisition and post-processing schemes. Attempts that aimed at directly quantifying Boron with various standards using EDS or coupled EDS/WDS gave less accurate results. Ultimately, Electron Backscatter Diffraction combined with localized EDS analysis has proved invaluable in conclusively identifying micrometer sized boride precipitates; thus further improving the characterization of brazed Ni-based superalloys. - Highlights: • We attempt to accurately identify Boron-rich phases in Ni-based superalloys. • EDS, WDS, EBSD systems are tested for accurate identification of these borides. • Results are compared with those obtained by electron probe microanalysis. • Boron was measured with EDS by composition difference with a precision of 5 at. %. • Additional EBSD in phase identification mode conclusively identifies the borides.

  19. Additive-assisted synthesis of boride, carbide, and nitride micro/nanocrystals

    SciTech Connect

    Chen, Bo; Yang, Lishan; Heng, Hua; Chen, Jingzhong; Zhang, Linfei; Xu, Liqiang; Qian, Yitai; Yang, Jian

    2012-10-15

    General and simple methods for the syntheses of borides, carbides and nitrides are highly desirable, since those materials have unique physical properties and promising applications. Here, a series of boride (TiB{sub 2}, ZrB{sub 2}, NbB{sub 2}, CeB{sub 6}, PrB{sub 6}, SmB{sub 6}, EuB{sub 6}, LaB{sub 6}), carbide (SiC, TiC, NbC, WC) and nitride (TiN, BN, AlN, MgSiN{sub 2}, VN) micro/nanocrystals were prepared from related oxides and amorphous boron/active carbon/NaN{sub 3} with the assistance of metallic Na and elemental S. In-situ temperature monitoring showed that the reaction temperature could increase quickly to {approx}850 Degree-Sign C, once the autoclave was heated to 100 Degree-Sign C. Such a rapid temperature increase was attributed to the intense exothermic reaction between Na and S, which assisted the formation of borides, carbides and nitrides. The as-obtained products were characterized by XRD, SEM, TEM, and HRTEM techniques. Results in this report will greatly benefit the future extension of this approach to other compounds. - Graphical abstract: An additive-assisted approach is successfully developed for the syntheses of borides, carbides and nitrides micro/nanocrystals with the assistance of the exothermic reaction between Na and S. Highlights: Black-Right-Pointing-Pointer An additive-assisted synthesis strategy is developed for a number of borides, carbides and nitrides. Black-Right-Pointing-Pointer The reaction mechanism is demonstrated by the case of SiC nanowires. Black-Right-Pointing-Pointer The formation of SiC nanowires is initiated by the exothermic reaction of Na and S.

  20. The coexistence of silicon borides with boron-saturated silicon: Metastability of SiB{sub 3}

    SciTech Connect

    Aselage, T.L.

    1998-07-01

    The silicon-rich end of the Si-B phase diagram, defining the silicon boride(s) that coexist in equilibrium with boron-saturated silicon, is poorly known. Understanding this equilibrium has implications for the processing of p{sup +} silicon wafers, whose boron concentrations are near the solubility limit. Additionally, silicon boride precipitates produced by boron-ion-implantation and annealing of crystalline silicon have recently been shown to be efficient internal getters of transition metal ions. The experiments described in this paper probe the stability of these silicon borides. A phase with a boron-carbide-like structure, SiB{sub 3}, grows from boron-saturated silicon in both the solid and the liquid state. However, SiB{sub 3} is not found to be stable in either circumstance. Rather, SiB{sub 3} is a metastable phase whose formation is driven by the relative ease of its nucleation and growth. The silicon boride that exists in stable equilibrium with boron-saturated silicon is SiB{sub 6}. A qualitative understanding of the metastability of SiB{sub 3} comes from recognizing the conflict between the bonding requirements of icosahedral borides such as SiB{sub 3} and the size mismatch between silicon and boron atoms. {copyright} {ital 1998 Materials Research Society.}

  1. Improving the Adhesion Resistance of the Boride Coatings to AISI 316L Steel Substrate by Diffusion Annealing

    NASA Astrophysics Data System (ADS)

    Campos-Silva, I.; Bernabé-Molina, S.; Bravo-Bárcenas, D.; Martínez-Trinidad, J.; Rodríguez-Castro, G.; Meneses-Amador, A.

    2016-07-01

    In this study, new results about the practical adhesion resistance of boride coating/substrate system formed at the surface of AISI 316 L steel and improved by means of a diffusion annealing process are presented. First, the boriding of AISI 316 L steel was performed by the powder-pack method at 1173 K with different exposure times (4-8 h). The diffusion annealing process was conducted on the borided steels at 1273 K with 2 h of exposure using a diluent atmosphere of boron powder mixture. The mechanical behavior of the boride coating/substrate system developed by both treatments was established using Vickers and Berkovich tests along the depth of the boride coatings, respectively. Finally, for the entire set of experimental conditions, the scratch tests were performed with a continuously increasing normal force, in which the practical adhesion resistance of the boride coating/substrate system was represented by the critical load. The failure mechanisms developed over the surface of the scratch tracks were analyzed; the FeB-Fe2B/substrate system exhibited an adhesive mode, while the Fe2B/substrate system obtained by the diffusion annealing process showed predominantly a cohesive failure mode.

  2. Selection of peptides binding to metallic borides by screening M13 phage display libraries

    PubMed Central

    2014-01-01

    Background Metal borides are a class of inorganic solids that is much less known and investigated than for example metal oxides or intermetallics. At the same time it is a highly versatile and interesting class of compounds in terms of physical and chemical properties, like semiconductivity, ferromagnetism, or catalytic activity. This makes these substances attractive for the generation of new materials. Very little is known about the interaction between organic materials and borides. To generate nanostructured and composite materials which consist of metal borides and organic modifiers it is necessary to develop new synthetic strategies. Phage peptide display libraries are commonly used to select peptides that bind specifically to metals, metal oxides, and semiconductors. Further, these binding peptides can serve as templates to control the nucleation and growth of inorganic nanoparticles. Additionally, the combination of two different binding motifs into a single bifunctional phage could be useful for the generation of new composite materials. Results In this study, we have identified a unique set of sequences that bind to amorphous and crystalline nickel boride (Ni3B) nanoparticles, from a random peptide library using the phage display technique. Using this technique, strong binders were identified that are selective for nickel boride. Sequence analysis of the peptides revealed that the sequences exhibit similar, yet subtle different patterns of amino acid usage. Although a predominant binding motif was not observed, certain charged amino acids emerged as essential in specific binding to both substrates. The 7-mer peptide sequence LGFREKE, isolated on amorphous Ni3B emerged as the best binder for both substrates. Fluorescence microscopy and atomic force microscopy confirmed the specific binding affinity of LGFREKE expressing phage to amorphous and crystalline Ni3B nanoparticles. Conclusions This study is, to our knowledge, the first to identify peptides that

  3. Indium oxide based fiber optic SPR sensor

    NASA Astrophysics Data System (ADS)

    Shukla, Sarika; Sharma, Navneet K.

    2016-05-01

    Surface plasmon resonance based fiber optic sensor using indium oxide layer is presented and theoretically studied. It has been found that with increase in thickness of indium oxide layer beyond 170 nm, the sensitivity of SPR sensor decreases. 170 nm thick indium oxide layer based SPR sensor holds maximum sensitivity.

  4. Indium Foil Serves As Thermally Conductive Gasket

    NASA Technical Reports Server (NTRS)

    Eastman, G. Yale; Dussinger, Peter M.

    1993-01-01

    Indium foil found useful as gasket to increase thermal conductance between bodies clamped together. Deforms to fill imperfections on mating surfaces. Used where maximum temperature in joint less than melting temperature of indium. Because of low melting temperature of indium, most useful in cryogenic applications.

  5. Friction and wear of radiofrequency-sputtered borides, silicides, and carbides

    NASA Technical Reports Server (NTRS)

    Brainard, W. A.; Wheeler, D. R.

    1978-01-01

    The friction and wear properties of several refractory compound coatings were examined. These compounds were applied to 440 C bearing steel surfaces by radiofrequency (RF) sputtering. The refractory compounds were the titanium and molybdenum borides, the titanium and molybdenum silicides, and the titanium, molybdenum, and boron carbides. Friction testing was done with a pin-on-disk wear apparatus at loads from 0.1 to 5.0 newtons. Generally, the best wear properties were obtained when the coatings were bias sputtered onto 440 C disks that had been preoxidized. Adherence was improved because of the better bonding of the coatings to the iron oxide formed during preoxidation. As a class the carbides provided wear protection to the highest loads. Titanium boride coatings provided low friction and good wear properties to moderate loads.

  6. Formation of copper-indium-selenide and/or copper-indium-gallium-selenide films from indium selenide and copper selenide precursors

    DOEpatents

    Curtis, Calvin J.; Miedaner, Alexander; Van Hest, Maikel; Ginley, David S.; Nekuda, Jennifer A.

    2011-11-15

    Liquid-based indium selenide and copper selenide precursors, including copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent, are used to form crystalline copper-indium-selenide, and/or copper indium gallium selenide films (66) on substrates (52).

  7. Direct Hydrogenation Magnesium Boride to Magnesium Borohydride: Demonstration of >11 Weight Percent Reversible Hydrogen Storage

    SciTech Connect

    Severa, Godwin; Ronnebro, Ewa; Jensen, Craig M.

    2010-11-16

    We here for the first time demonstrate direct hydrogenation of magnesium boride, MgB2, to magnesium borohydride, Mg(BH4)2 at 900 bar H2-pressures and 400°C. Upon 14.8wt% hydrogen release, the end-decomposition product of Mg(BH4)2 is MgB2, thus, this is a unique reversible path here obtaining >11wt% H2 which implies promise for a fully reversible hydrogen storage material.

  8. Synthesis and Characterization of an Alumina Forming Nanolaminated Boride: MoAlB

    NASA Astrophysics Data System (ADS)

    Kota, Sankalp; Zapata-Solvas, Eugenio; Ly, Alexander; Lu, Jun; Elkassabany, Omar; Huon, Amanda; Lee, William E.; Hultman, Lars; May, Steve J.; Barsoum, Michel W.

    2016-05-01

    The ‘MAlB’ phases are nanolaminated, ternary transition metal borides that consist of a transition metal boride sublattice interleaved by monolayers or bilayers of pure aluminum. However, their synthesis and properties remain largely unexplored. Herein, we synthesized dense, predominantly single-phase samples of one such compound, MoAlB, using a reactive hot pressing method. High-resolution scanning transmission electron microscopy confirmed the presence of two Al layers in between a Mo-B sublattice. Unique among the transition metal borides, MoAlB forms a dense, mostly amorphous, alumina scale when heated in air. Like other alumina formers, the oxidation kinetics follow a cubic time-dependence. At room temperature, its resistivity is low (0.36–0.49 μΩm) and – like a metal – drops linearly with decreasing temperatures. It is also a good thermal conductor (35 Wm‑1K‑1 at 26 °C). In the 25–1300 °C temperature range, its thermal expansion coefficient is 9.5 × 10‑6 K‑1. Preliminary results suggest the compound is stable to at least 1400 °C in inert atmospheres. Moderately low Vickers hardness values of 10.6 ± 0.3 GPa, compared to other transition metal borides, and ultimate compressive strengths up to 1940 ± 103 MPa were measured at room temperature. These results are encouraging and warrant further study of this compound for potential use at high temperatures.

  9. Synthesis and Characterization of an Alumina Forming Nanolaminated Boride: MoAlB.

    PubMed

    Kota, Sankalp; Zapata-Solvas, Eugenio; Ly, Alexander; Lu, Jun; Elkassabany, Omar; Huon, Amanda; Lee, William E; Hultman, Lars; May, Steve J; Barsoum, Michel W

    2016-01-01

    The 'MAlB' phases are nanolaminated, ternary transition metal borides that consist of a transition metal boride sublattice interleaved by monolayers or bilayers of pure aluminum. However, their synthesis and properties remain largely unexplored. Herein, we synthesized dense, predominantly single-phase samples of one such compound, MoAlB, using a reactive hot pressing method. High-resolution scanning transmission electron microscopy confirmed the presence of two Al layers in between a Mo-B sublattice. Unique among the transition metal borides, MoAlB forms a dense, mostly amorphous, alumina scale when heated in air. Like other alumina formers, the oxidation kinetics follow a cubic time-dependence. At room temperature, its resistivity is low (0.36-0.49 μΩm) and - like a metal - drops linearly with decreasing temperatures. It is also a good thermal conductor (35 Wm(-1)K(-1) at 26 °C). In the 25-1300 °C temperature range, its thermal expansion coefficient is 9.5 × 10(-6 )K(-1). Preliminary results suggest the compound is stable to at least 1400 °C in inert atmospheres. Moderately low Vickers hardness values of 10.6 ± 0.3 GPa, compared to other transition metal borides, and ultimate compressive strengths up to 1940 ± 103 MPa were measured at room temperature. These results are encouraging and warrant further study of this compound for potential use at high temperatures. PMID:27220751

  10. Synthesis and Characterization of an Alumina Forming Nanolaminated Boride: MoAlB

    PubMed Central

    Kota, Sankalp; Zapata-Solvas, Eugenio; Ly, Alexander; Lu, Jun; Elkassabany, Omar; Huon, Amanda; Lee, William E.; Hultman, Lars; May, Steve J.; Barsoum, Michel W.

    2016-01-01

    The ‘MAlB’ phases are nanolaminated, ternary transition metal borides that consist of a transition metal boride sublattice interleaved by monolayers or bilayers of pure aluminum. However, their synthesis and properties remain largely unexplored. Herein, we synthesized dense, predominantly single-phase samples of one such compound, MoAlB, using a reactive hot pressing method. High-resolution scanning transmission electron microscopy confirmed the presence of two Al layers in between a Mo-B sublattice. Unique among the transition metal borides, MoAlB forms a dense, mostly amorphous, alumina scale when heated in air. Like other alumina formers, the oxidation kinetics follow a cubic time-dependence. At room temperature, its resistivity is low (0.36–0.49 μΩm) and – like a metal – drops linearly with decreasing temperatures. It is also a good thermal conductor (35 Wm−1K−1 at 26 °C). In the 25–1300 °C temperature range, its thermal expansion coefficient is 9.5 × 10−6 K−1. Preliminary results suggest the compound is stable to at least 1400 °C in inert atmospheres. Moderately low Vickers hardness values of 10.6 ± 0.3 GPa, compared to other transition metal borides, and ultimate compressive strengths up to 1940 ± 103 MPa were measured at room temperature. These results are encouraging and warrant further study of this compound for potential use at high temperatures. PMID:27220751

  11. Heat capacity and thermal expansion of icosahedral lutetium boride LuB66

    SciTech Connect

    Novikov, V V; Avdashchenko, D V; Matovnikov, A V; Mitroshenkov, N V; Bud’ko, S L

    2014-01-07

    The experimental values of heat capacity and thermal expansion for lutetium boride LuB66 in the temperature range of 2-300 K were analysed in the Debye-Einstein approximation. It was found that the vibration of the boron sub-lattice can be considered within the Debye model with high characteristic temperatures; low-frequency vibration of weakly connected metal atoms is described by the Einstein model.

  12. Structure of superhard tungsten tetraboride: a missing link between MB2 and MB12 higher borides.

    PubMed

    Lech, Andrew T; Turner, Christopher L; Mohammadi, Reza; Tolbert, Sarah H; Kaner, Richard B

    2015-03-17

    Superhard metals are of interest as possible replacements with enhanced properties over the metal carbides commonly used in cutting, drilling, and wear-resistant tooling. Of the superhard metals, the highest boride of tungsten--often referred to as WB4 and sometimes as W(1-x)B3--is one of the most promising candidates. The structure of this boride, however, has never been fully resolved, despite the fact that it was discovered in 1961--a fact that severely limits our understanding of its structure-property relationships and has generated increasing controversy in the literature. Here, we present a new crystallographic model of this compound based on refinement against time-of-flight neutron diffraction data. Contrary to previous X-ray-only structural refinements, there is strong evidence for the presence of interstitial arrangements of boron atoms and polyhedral bonding. The formation of these polyhedral--slightly distorted boron cuboctahedra--appears to be dependent upon the defective nature of the tungsten-deficient metal sublattice. This previously unidentified structure type has an intermediary relationship between MB2 and MB12 type boride polymorphs. Manipulation of the fractionally occupied metal and boron sites may provide insight for the rational design of new superhard metals. PMID:25733870

  13. Distinct surface hydration behaviors of boron-rich boride thin film coatings

    NASA Astrophysics Data System (ADS)

    Lu, Xinhong; Liu, Wei; Ouyang, Jun; Tian, Yun

    2014-08-01

    In this work, the surface boron chemical states and surface hydration behaviors of the as-deposited and annealed boron-rich boride thin film coatings, including AlMgB14, TiB2 and AlMgB14-TiB2, were systematically studied by use of X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. The XPS results indicate that boron at annealed AlMgB14 film surface can be oxidized; surprisingly, such oxidation does not lead to the formation of boric acid in ambient air. Instead, boric acid can be produced at the surface of annealed TiB2 film and AlMgB14-TiB2 film. It is shown, via the water contact angle measurements, that these boride films exhibit distinct surface wettability characteristics, which are believed to result in the observed surface hydration processes. Furthermore, we found anatase TiO2 formation plays a major role in the surface wetting behaviors for these boride films.

  14. Structure of superhard tungsten tetraboride: A missing link between MB2 and MB12 higher borides

    PubMed Central

    Lech, Andrew T.; Turner, Christopher L.; Mohammadi, Reza; Tolbert, Sarah H.; Kaner, Richard B.

    2015-01-01

    Superhard metals are of interest as possible replacements with enhanced properties over the metal carbides commonly used in cutting, drilling, and wear-resistant tooling. Of the superhard metals, the highest boride of tungsten—often referred to as WB4 and sometimes as W1–xB3—is one of the most promising candidates. The structure of this boride, however, has never been fully resolved, despite the fact that it was discovered in 1961—a fact that severely limits our understanding of its structure–property relationships and has generated increasing controversy in the literature. Here, we present a new crystallographic model of this compound based on refinement against time-of-flight neutron diffraction data. Contrary to previous X-ray–only structural refinements, there is strong evidence for the presence of interstitial arrangements of boron atoms and polyhedral bonding. The formation of these polyhedra—slightly distorted boron cuboctahedra—appears to be dependent upon the defective nature of the tungsten-deficient metal sublattice. This previously unidentified structure type has an intermediary relationship between MB2 and MB12 type boride polymorphs. Manipulation of the fractionally occupied metal and boron sites may provide insight for the rational design of new superhard metals. PMID:25733870

  15. Corrosion behavior of titanium boride composite coating fabricated on commercially pure titanium in Ringer's solution for bioimplant applications.

    PubMed

    Sivakumar, Bose; Singh, Raghuvir; Pathak, Lokesh Chandra

    2015-03-01

    The boriding of commercially pure titanium was performed at 850°C, 910°C, and 1050°C for varied soaking periods (1, 3 and 5h) to enhance the surface properties desirable for bioimplant applications. The coating developed was characterized for the evolution of phases, microstructure and morphology, microhardness, and consequent corrosion behavior in the Ringer's solution. Formation of the TiB2 layer at the outermost surface followed by the TiB whiskers across the borided CpTi is unveiled. Total thickness of the composite layer on the substrates borided at 850, 910, and 1050°C for 5h was found to be 19.1, 26.4, and 18.2μm respectively which includes <3μm thick TiB2 layer. The presence of TiB2 phase was attributed to the high hardness ~2968Hv15gf of the composite coating. The anodic polarization studies in the simulated body fluid unveiled a reduction in the pitting corrosion resistance after boriding the CpTi specimens. However, this value is >0.55VSCE (electrochemical potential in in-vivo physiological environment) and hence remains within the safe region. Both the untreated and borided CpTi specimens show two passive zones associated with different passivation current densities. Among the CpTi borided at various times and temperatures, a 3h treated shows better corrosion resistance. The corrosion of borided CpTi occurred through the dissolution of TiB2. PMID:25579920

  16. PREFACE: The 16th International Symposium on Boron, Borides and Related Materials (ISBB 2008)

    NASA Astrophysics Data System (ADS)

    Tanaka, Takaho

    2009-07-01

    This volume of Journal of Physics: Conference Series contains invited and contributed peer-reviewed papers that were presented at the 16th International Symposium on Boron, Borides and Related Materials (ISBB 2008), which was held on 7-12 September 2008, at Kunibiki Messe, Matsue, Japan. This triennial symposium has a half-century long history starting from the 1st meeting in 1959 at Asbury Park, New Jersey. We were very pleased to organize ISBB 2008, which gathered chemists, physicists, materials scientists as well as diamond and high-pressure researchers. This meeting had a strong background in the boron-related Japanese research history, which includes the discovery of superconductivity in MgB2 and development of Nd-Fe-B hard magnets and of YB66 soft X-ray monochromator. The scope of ISBB 2008 spans both basic and applied interdisciplinary research that is centered on boron, borides and related materials, and the collection of articles defines the state of the art in research on these materials. The topics are centered on: 1. Preparation of new materials (single crystals, thin films, nanostructures, ceramics, etc) under normal or extreme conditions. 2. Crystal structure and chemical bonding (new crystal structures, nonstoichiometry, defects, clusters, quantum-chemical calculations). 3. Physical and chemical properties (band structure, phonon spectra, superconductivity; optical, electrical, magnetic, emissive, mechanical properties; phase diagrams, thermodynamics, catalytic activity, etc) in a wide range of temperatures and pressures. 4. Applications and prospects (thermoelectric converters, composites, ceramics, coatings, etc) There were a few discoveries of new materials, such as nanomaterials, and developments in applications. Many contributions were related to 4f heavy Fermion systems of rare-earth borides. Exotic mechanisms of magnetism and Kondo effects have been discussed, which may indicate another direction of development of boride. Two special sessions

  17. Nanomechanical Characterization of Indium Nano/Microwires

    PubMed Central

    2010-01-01

    Nanomechanical properties of indium nanowires like structures fabricated on quartz substrate by trench template technique, measured using nanoindentation. The hardness and elastic modulus of wires were measured and compared with the values of indium thin film. Displacement burst observed while indenting the nanowire. ‘Wire-only hardness’ obtained using Korsunsky model from composite hardness. Nanowires have exhibited almost same modulus as indium thin film but considerable changes were observed in hardness value. PMID:20596474

  18. Indentation strength of ultraincompressible rhenium boride, carbide, and nitride from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Zang, Chenpeng; Sun, Hong; Tse, John S.; Chen, Changfeng

    2012-07-01

    Using a recently developed first-principles approach for determining indentation strength [Z. Pan, H. Sun, and C. Chen, Phys. Rev. Lett.0031-9007 PRLTAO10.1103/PhysRevLett.98.135505 98, 135505 (2007); Z. Pan, H. Sun, and C. Chen, Phys. Rev. Lett.0031-9007 PRLTAO10.1103/PhysRevLett.102.055503 102, 055503 (2009)], we performed calculations of the ideal strength of hexagonal Re, Re3N, Re2N, Re2C, Re2B, and ReB2 in various shear deformation directions beneath the Vickers indentor. Our results show that the normal compressive pressure beneath the indentor weakens the strength of these electron-rich rhenium boride, carbide, and nitride compounds that belong to a distinct class of ultraincompressible and ultrahard materials. The reduction of indentation strength in these materials stems from lateral bond and volume expansions driven by the normal compressive pressure mediated by the high-density valence electrons in these structures. We compare the calculated indentation strength to the Poisson's ratio, which measures the lateral structural expansion, for the rhenium boride, carbide, and nitride compounds as well as diamond and cubic boron nitride. Our analysis indicates that although the normal pressure beneath the indentor generally leads to more significant reduction of indentation strength in materials with larger Poisson's ratios, crystal and electronic structures also play important roles in determining the structural response under indentation. The present study reveals structural deformation modes and the underlying atomistic mechanisms in transition-metal boride, carbide, and nitride compounds under the Vickers indentation. The results are distinctive from those of the traditional covalent superhard materials. The insights obtained from this work have important implications for further exploration and design of ultrahard materials.

  19. Physical, chemical, and catalytic properties of borided cobalt Fischer-Tropsch catalysts

    SciTech Connect

    Wang, J.

    1987-01-01

    Unsupported and alumina-supported borided cobalt catalysts were prepared by chemical reduction of anhydrous cobalt acetate at 25/sup 0/C using B/sub 2/H/sub 6//THF or NaBH/sub 4//diglyme solution as the reducing agent. These catalysts were further activated in H/sub 2/ at 250/sup 0/C prior to use. The physical and chemical properties of these catalysts were characterized by chemical analysis, BET surface area measurements, H/sub 2/ and CO adsorption measurements, X-ray Diffraction, and Temperature Programmed Desorption of CO. The catalytic properties of these catalysts for hydrogenation of CO to hydrocarbons were investigated at 160 - 300/sup 0/C, 1 and 10 atm, and H/sub 2//CO ratio of 2 in a differential conversion range of less than 8%. The data show that unsupported, Na-free, borided cobalt is much more active than Na-containing borided cobalt and pure cobalt on a site basis. Similarly, CoB/Al/sub 2/O/sub 3/ is more than an order of magnitude more active than Co/Al/sub 2/O/sub 3/ is more than an order of magnitude more active than Co/Al/sub 2/O/sub 3/ but has similar selectivity; its selectivity for C/sub 5//sup +/ hydrocarbons, however, is very high (> 75 wt%) at low reaction temperatures (e.g. 170/sup 0/C) or at low H/sub 2//CO ratios (e.g. less than or equal to 1). The observed changes in catalytic and adsorption behavior are consistent with an electron-donor model in which boron atoms donate electrons to cobalt. Na was found to lower catalytic activity of cobalt while increasing selectivity for light hydrocarbons, olefins, and CO/sub 2/ products.

  20. Synthesis and Characterization of Low-Cost Superhard Transition-Metal Borides

    NASA Astrophysics Data System (ADS)

    Kaner, Richard

    2013-06-01

    The increasing demand for high-performance cutting and forming tools, along with the shortcomings of traditional tool materials such as diamond (unable to cut ferrous materials), cubic boron nitride (expensive) and tungsten carbide (relatively-low hardness), has motivated the search for new superhard materials for these applications. This has led us to a new class of superhard materials, dense refractory transition-metal borides, which promise to address some of the existing problems of conventional superhard materials. For example, we have synthesized rhenium diboride (ReB2) using arc melting at ambient pressure. This superhard material has demonstrated an excellent electrical conductivity and superior mechanical properties, including a Vickers hardness of 48.0 GPa (under an applied load of 0.49 N). To further increase the hardness and lower the materials costs, we have begun exploring high boron content metal borides including tungsten tetraboride (WB4) . We have synthesized WB4 by arc melting and studied its hardness and high-pressure behavior. With a similar Vickers hardness (43.3 GPa under a load of 0.49 N) and bulk modulus (326-339 GPa) to ReB2, WB4 offers a lower cost alternative and has the potential to be used in cutting tools. To further enhance the hardness of this superhard metal, we have created the binary and ternary solid solutions of WB4 with Cr, Mn and Ta, the results of which show a hardness increase of up to 20 percent. As with other metals, these metallic borides can be readily cut and shaped using electric discharge machining (EDM).

  1. Metal-boride catalysts for indirect liquefaction. Quarterly technical progress report, December 1, 1982-February 28, 1983

    SciTech Connect

    Bartholomew, C.H.

    1983-03-15

    Four iron-boride catalysts were prepared. Washing with methanol did not change the iron phase composition as did water. Potassium borohydride reduction produces essentially the same iron phases as sodium borohydride reduction. Solution phase reductions with NH/sub 3/BH/sub 3/ were not productive. Reduction of ferric citrate with sodium borohydride produced a highly magnetic Fe/sub 2/B which was easily washed. Reduction of cobalt boride catalysts at a low temperature resulted in a catalyst with unusual selectivities in CO hydrogenation, i.e. the product contained more than 95% C/sub 5/-C/sub 16/ hydrocarbons. However, this catalyst deactivated rapidly.

  2. Infiltration processing of boron carbide-, boron-, and boride-reactive metal cermets

    DOEpatents

    Halverson, Danny C.; Landingham, Richard L.

    1988-01-01

    A chemical pretreatment method is used to produce boron carbide-, boron-, and boride-reactive metal composites by an infiltration process. The boron carbide or other starting constituents, in powder form, are immersed in various alcohols, or other chemical agents, to change the surface chemistry of the starting constituents. The chemically treated starting constituents are consolidated into a porous ceramic precursor which is then infiltrated by molten aluminum or other metal by heating to wetting conditions. Chemical treatment of the starting constituents allows infiltration to full density. The infiltrated precursor is further heat treated to produce a tailorable microstructure. The process at low cost produces composites with improved characteristics, including increased toughness, strength.

  3. Electroplating of the superconductive boride MgB2 from molten salts

    NASA Astrophysics Data System (ADS)

    Abe, Hideki; Yoshii, Kenji; Nishida, Kenji; Imai, Motoharu; Kitazawa, Hideaki

    2005-02-01

    An electroplating technique of the superconductive boride MgB2 onto graphite substrates is reported. Films of MgB2 with a thickness of tens micrometer were fabricated on the planar and curved surfaces of graphite substrates by means of electrolysis on a mixture of magnesium chloride, potassium chloride, sodium chloride, and magnesium borate fused at 600 °C under an Ar atmosphere. The electrical resistivity and magnetization measurements revealed that the electroplated MgB2 films undergo a superconducting transition with the critical temperature (Tc) of 36 K.

  4. Improved carbides and new borides for HVOF and their coating properties

    SciTech Connect

    Froning, M.J.; Keller, H.

    1995-12-31

    In the presented paper, investigations on HVOF coatings produced from a new family of powders will be discussed. The influence of microstructure, composition and production methods will be discussed in view of powder properties and resulting coating properties. New boride powders and coatings will be compared with regard to their properties deposition, efficiency, hardness, surface roughness, bond strength, and wear against commercial WC-Co and cr3C2-NiCr coatings. Additionally, improved WC- and CrC-based powders and coatings will be compared with regard to oxidation and erosion resistance.

  5. Amorphous nickel boride membrane on a platinum–nickel alloy surface for enhanced oxygen reduction reaction

    PubMed Central

    He, Daping; Zhang, Libo; He, Dongsheng; Zhou, Gang; Lin, Yue; Deng, Zhaoxiang; Hong, Xun; Wu, Yuen; Chen, Chen; Li, Yadong

    2016-01-01

    The low activity of the oxygen reduction reaction in polymer electrolyte membrane fuel cells is a major barrier for electrocatalysis, and hence needs to be optimized. Tuning the surface electronic structure of platinum-based bimetallic alloys, a promising oxygen reduction reaction catalyst, plays a key role in controlling its interaction with reactants, and thus affects the efficiency. Here we report that a dealloying process can be utilized to experimentally fabricate the interface between dealloyed platinum–nickel alloy and amorphous nickel boride membrane. The coating membrane works as an electron acceptor to tune the surface electronic structure of the platinum–nickel catalyst, and this composite catalyst composed of crystalline platinum–nickel covered by amorphous nickel boride achieves a 27-times enhancement in mass activity relative to commercial platinum/carbon at 0.9 V for the oxygen reduction reaction performance. Moreover, this interactional effect between a crystalline surface and amorphous membrane can be readily generalized to facilitate the 3-times higher catalytic activity of commercial platinum/carbon. PMID:27503412

  6. Amorphous nickel boride membrane on a platinum-nickel alloy surface for enhanced oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    He, Daping; Zhang, Libo; He, Dongsheng; Zhou, Gang; Lin, Yue; Deng, Zhaoxiang; Hong, Xun; Wu, Yuen; Chen, Chen; Li, Yadong

    2016-08-01

    The low activity of the oxygen reduction reaction in polymer electrolyte membrane fuel cells is a major barrier for electrocatalysis, and hence needs to be optimized. Tuning the surface electronic structure of platinum-based bimetallic alloys, a promising oxygen reduction reaction catalyst, plays a key role in controlling its interaction with reactants, and thus affects the efficiency. Here we report that a dealloying process can be utilized to experimentally fabricate the interface between dealloyed platinum-nickel alloy and amorphous nickel boride membrane. The coating membrane works as an electron acceptor to tune the surface electronic structure of the platinum-nickel catalyst, and this composite catalyst composed of crystalline platinum-nickel covered by amorphous nickel boride achieves a 27-times enhancement in mass activity relative to commercial platinum/carbon at 0.9 V for the oxygen reduction reaction performance. Moreover, this interactional effect between a crystalline surface and amorphous membrane can be readily generalized to facilitate the 3-times higher catalytic activity of commercial platinum/carbon.

  7. Amorphous nickel boride membrane on a platinum-nickel alloy surface for enhanced oxygen reduction reaction.

    PubMed

    He, Daping; Zhang, Libo; He, Dongsheng; Zhou, Gang; Lin, Yue; Deng, Zhaoxiang; Hong, Xun; Wu, Yuen; Chen, Chen; Li, Yadong

    2016-01-01

    The low activity of the oxygen reduction reaction in polymer electrolyte membrane fuel cells is a major barrier for electrocatalysis, and hence needs to be optimized. Tuning the surface electronic structure of platinum-based bimetallic alloys, a promising oxygen reduction reaction catalyst, plays a key role in controlling its interaction with reactants, and thus affects the efficiency. Here we report that a dealloying process can be utilized to experimentally fabricate the interface between dealloyed platinum-nickel alloy and amorphous nickel boride membrane. The coating membrane works as an electron acceptor to tune the surface electronic structure of the platinum-nickel catalyst, and this composite catalyst composed of crystalline platinum-nickel covered by amorphous nickel boride achieves a 27-times enhancement in mass activity relative to commercial platinum/carbon at 0.9 V for the oxygen reduction reaction performance. Moreover, this interactional effect between a crystalline surface and amorphous membrane can be readily generalized to facilitate the 3-times higher catalytic activity of commercial platinum/carbon. PMID:27503412

  8. Process for Patterning Indium for Bump Bonding

    NASA Technical Reports Server (NTRS)

    Denis, Kevin

    2012-01-01

    An innovation was created for the Cosmology Large Angular Scale Surveyor for integration of low-temperature detector chips with a silicon backshort and a silicon photonic choke through flipchip bonding. Indium bumps are typically patterned using liftoff processes, which require thick resist. In some applications, it is necessary to locate the bumps close to high-aspect-ratio structures such as wafer through-holes. In those cases, liftoff processes are challenging, and require complicated and time-consuming spray coating technology if the high-aspect-ratio structures are delineated prior to the indium bump process. Alternatively, processing the indium bumps first is limited by compatibility of the indium with subsequent processing. The present invention allows for locating bumps arbitrarily close to multiple-level high-aspect-ratio structures, and for indium bumps to be formed without liftoff resist. The process uses the poor step coverage of indium deposited on a silicon wafer that has been previously etched to delineate the location of the indium bumps. The silicon pattern can be processed through standard lithography prior to adding the high-aspect-ratio structures. Typically, high-aspectratio structures require a thick resist layer so this layer can easily cover the silicon topography. For multiple levels of topography, the silicon can be easily conformally coated through standard processes. A blanket layer of indium is then deposited onto the full wafer; bump bonding only occurs at the high points of the topography.

  9. Investigation of composition and chemical state of elements in iron boride by the method of X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Alyoshin, V. G.; Kharlamov, A. I.; Prokopenko, V. M.

    1981-06-01

    The composition and chemical state of iron and boron in the surface layer of iron boride under different kinds of pretreatment of samples have been investigated by the method of X-ray photo-electron spectroscopy. It has been found that in the initial sample there is oxygen chemically combined with iron and boron atoms. Upon heating (450°C) in hydrogen, in argon, and in vacuo there occurs removal of oxygen only from iron atoms (no pure iron was found to be formed). Boron oxidizes and there probably appears a new surface combination of boron with oxygen in which the bonding energy of 1 s electrons is higher than that in B 2O 3. Treatment of the iron boride surface with argon ions and with protons ensures uniform removal of oxygen from iron and boron atoms. It has been found that thermal treatment of iron boride leads to depletion of iron atoms from the sample surface layer, and pickling with argon ions and with protons leads to strong enrichment. Iron boride samples subjected to Ar + and H + bombardment tend to undergo significant oxidation when subsequently exposed to air at room temperature.

  10. Synthesis of transition metal borides layers under pulsed electron-beams treatment in a vacuum for surface hardening of instrumental steels

    NASA Astrophysics Data System (ADS)

    Milonov, A. S.; Danzheev, B. A.; Smirnyagina, N. N.; Dasheev, D. E.; Kim, T. B.; Semenov, A. P.

    2015-11-01

    The saturation of the surface layers of metals and alloys with boron is conducted for increasing their surface hardness, wear resistance, etc. Multicomponent layers containing in its composition borides of refractory metals, as a rule, are formed by the methods of chemical- thermal processing in the interaction of boriding component with refractory one or by the method of saturation of refractory metal impurities or alloy with boron. In this work, we studied the features of vanadium and iron borides formation on the surface of instrumental steels U8A and R18 under the influence of intense electron beams in continuous and pulse modes.

  11. A Kinetic Study of Indium Leaching from Indium-Bearing Zinc Ferrite Under Microwave Heating

    NASA Astrophysics Data System (ADS)

    Zhang, Linye; Mo, Jiamei; Li, Xuanhai; Pan, Liuping; Liang, Xinyuan; Wei, Guangtao

    2013-12-01

    To obtain information about leaching reaction and kinetics of indium from indium-bearing materials under microwave heating (MH), leaching of indium from indium-bearing zinc ferrite (IBZF) has been investigated. IBZF samples under MH and under conventional heating (CH) were studied by X-ray diffraction and specific surface area. Compared with that of CH, the effect of MH and the effects of various control parameters on indium leaching were studied. The results showed that compared with CH, MH enhanced the indium leaching from IBZF and increased the leaching rate. The leaching behavior of indium from IBZF was analyzed by unreacted shrinking core model, and the regression of kinetic equations showed that leaching of indium from IBZF obeyed the model very well. The activation energies under MH and under CH were 77.374 kJ/mol and 53.555 kJ/mol, respectively; the ratio of frequency factor K 0(MH)/ K 0(CH) was 10,818.36. The activation mechanism involved in leaching of indium under MH was mainly the increase of reactant energy and effective collision, which caused by the thermal and nonthermal microwave effect. Compared with the activation energy, the effective collision played a more important role in the acceleration of leaching of indium.

  12. Indium Phosphide Window Layers for Indium Gallium Arsenide Solar Cells

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.

    2005-01-01

    Window layers help in reducing the surface recombination at the emitter surface of the solar cells resulting in significant improvement in energy conversion efficiency. Indium gallium arsenide (In(x)Ga(1-x)As) and related materials based solar cells are quite promising for photovoltaic and thermophotovoltaic applications. The flexibility of the change in the bandgap energy and the growth of InGaAs on different substrates make this material very attractive for multi-bandgap energy, multi-junction solar cell approaches. The high efficiency and better radiation performance of the solar cell structures based on InGaAs make them suitable for space power applications. This work investigates the suitability of indium phosphide (InP) window layers for lattice-matched In(0.53)Ga(0.47)As (bandgap energy 0.74 eV) solar cells. We present the first data on the effects of the p-type InP window layer on p-on-n lattice-matched InGaAs solar cells. The modeled quantum efficiency results show a significant improvement in the blue region with the InP window. The bare InGaAs solar cell performance suffers due to high surface recombination velocity (10(exp 7) cm/s). The large band discontinuity at the InP/InGaAs heterojunction offers a great potential barrier to minority carriers. The calculated results demonstrate that the InP window layer effectively passivates the solar cell front surface, hence resulting in reduced surface recombination and therefore, significantly improving the performance of the InGaAs solar cell.

  13. Valence fluctuations of europium in the boride Eu4Pd(29+x)B8.

    PubMed

    Gumeniuk, Roman; Schnelle, Walter; Ahmida, Mahmoud A; Abd-Elmeguid, Mohsen M; Kvashnina, Kristina O; Tsirlin, Alexander A; Leithe-Jasper, Andreas; Geibel, Christoph

    2016-03-23

    We synthesized a high-quality sample of the boride Eu4Pd(29+x)B8 (x  =  0.76) and studied its structural and physical properties. Its tetragonal structure was solved by direct methods and confirmed to belong to the Eu4Pd29B8 type. All studied physical properties indicate a valence fluctuating Eu state, with a valence decreasing continuously from about 2.9 at 5 K to 2.7 at 300 K. Maxima in the T dependence of the susceptibility and thermopower at around 135 K and 120 K, respectively, indicate a valence fluctuation energy scale on the order of 300 K. Analysis of the magnetic susceptibility evidences some inconsistencies when using the ionic interconfigurational fluctuation (ICF) model, thus suggesting a stronger relevance of hybridization between 4f and valence electrons compared to standard valence-fluctuating Eu systems. PMID:26895077

  14. Preparation and sintering of refractory metal borides, carbides and nitrides of high purity

    SciTech Connect

    Sane, A.Y.

    1987-09-15

    The method of preparing a consolidated and purified Group IVb, Vb, or VIb refractory metal boride, carbide, nitride, or mixture, combination or cermet thereof by means of aided, reduced pressure and elevated temperature conditions is described. It consists of: (a) establishing a composition for a second stage reaction step of reaction sintering and adapted for enhanced production of desired product; (b) providing sintering aid at least in part together with the composition and resting the composition upon the sintering aid, which aid is solid at normal pressure and temperatures and aids via the vapor phase at the pressure and temperature conditions of the second stage reaction step; (c) reducing the pressure around the composition; (d) heating the composition at a temperature for sintering; while (e) establishing sintering aid atmosphere in contact with the composition; and (f) maintaining the heating for a time sufficient to consolidate the composition, and thereby prepare a consolidate and purified product.

  15. Valence fluctuations of europium in the boride Eu4Pd29+x B8

    NASA Astrophysics Data System (ADS)

    Gumeniuk, Roman; Schnelle, Walter; Ahmida, Mahmoud A.; Abd-Elmeguid, Mohsen M.; Kvashnina, Kristina O.; Tsirlin, Alexander A.; Leithe-Jasper, Andreas; Geibel, Christoph

    2016-03-01

    We synthesized a high-quality sample of the boride Eu4Pd29+x B8 (x  =  0.76) and studied its structural and physical properties. Its tetragonal structure was solved by direct methods and confirmed to belong to the Eu4Pd29B8 type. All studied physical properties indicate a valence fluctuating Eu state, with a valence decreasing continuously from about 2.9 at 5 K to 2.7 at 300 K. Maxima in the T dependence of the susceptibility and thermopower at around 135 K and 120 K, respectively, indicate a valence fluctuation energy scale on the order of 300 K. Analysis of the magnetic susceptibility evidences some inconsistencies when using the ionic interconfigurational fluctuation (ICF) model, thus suggesting a stronger relevance of hybridization between 4f and valence electrons compared to standard valence-fluctuating Eu systems.

  16. Identification of delamination failure of boride layer on common Cr-based steels

    NASA Astrophysics Data System (ADS)

    Taktak, Sukru; Tasgetiren, Suleyman

    2006-10-01

    Adhesion is an important aspect in the reliability of coated components. With low-adhesion of interfaces, different crack paths may develop depending on the local stress field at the interface and the fracture toughness of the coating, substrate, and interface. In the current study, an attempt has been made to identify the delamination failure of coated Cr-based steels by boronizing. For this reason, two commonly used steels (AISI H13, AISI 304) are considered. The steels contain 5.3 and 18.3 wt.% Cr, respectively. Boriding treatment is carried out in a slurry salt bath consisting of borax, boric acid, and ferrosilicon at a temperature range of 800 950 °C for 3, 5, and 7 h. The general properties of the boron coating are obtained by mechanical and metallographic characterization tests. For identification of coating layer failure, some fracture toughness tests and the Daimler-Benz Rockwell-C adhesion test are used.

  17. Cobalt-Boride: An efficient and robust electrocatalyst for Hydrogen Evolution Reaction

    NASA Astrophysics Data System (ADS)

    Gupta, Suraj; Patel, Nainesh; Miotello, Antonio; Kothari, D. C.

    2015-04-01

    This work presents Cobalt-Boride (Co-B) as a non-noble, efficient and robust electrocatalyst for Hydrogen Evolution Reaction (HER) active in aqueous solution of wide pH values. In neutral solution, amorphous Co-B nanoparticles (30-50 nm size) generate high current density (10 mA/cm2) at low overpotential (250 mV) with Tafel slope of 75 mV/dec following Volmer-Heyrovsky reaction mechanism. Highly active Co surface sites created by electronic transfer from B to Co (as inferred from XPS analysis and supported by theoretical calculations) are responsible for this significant HER activity in wide range of pH (4-9) values. Stability and reusability tests also demonstrate the robust nature of the catalyst.

  18. A new tetragonal boride phase in FeAl+B type alloys

    SciTech Connect

    Pierron, X.; Baker, I.

    1997-12-31

    The structure and composition of a previously unreported second phase were investigated in both Fe-43Al-0.12B and Fe-48Al-0.12B alloys. Energy dispersive x-ray and electron energy loss spectroscopy showed that the precipitates contained boron and were enriched in iron. This new boride phase had a tetragonal symmetry, with a{sub t} = 4a{sub B2} and c{sub t} = a{sub B2}, where a{sub B2} is the matrix lattice parameter. The effect of iron content and heat treatments on the microstructure of those two boron-doped FeAl alloys are discussed.

  19. Refractory Boride Formation and Microstructure Evolution during Solidification of Titanium-Boron and Titanium Aluminum-Boron Alloys

    NASA Astrophysics Data System (ADS)

    Hyman, Mark Edward

    1990-01-01

    gamma-TiAl alloys targeted for use as a structural material in advanced aerospace applications lack adequate creep strength at high temperatures. Incorporation of hard refractory second phase particles (e.g. TiB _2) exhibiting large aspect ratios (i.e. needles) can increase creep strength by constraining the plastic flow of the matrix during high temperature service. Matrix microstructure evolution and refractory boride formation in binary Ti-B and Ti-(25-52) at% Al and <= ~ 6 at% B alloys during conventional solidification is examined. The effects of rapid solidification processing (RSP) on microstructure evolution and boride morphology in ternary alloys is examined in electromagnetically levitated droplets processed via gas and splat quenching. A liquidus projection near the Ti-Al edge binary is deduced from a combination of computer modelling efforts and experimental evidence. The primary fields of crystallization sequentially traversed with increasing Al content starting from the Ti-B edge binary are: TiB to Ti_3B_4 to TiB_2 and beta to alpha to gamma for B-rich (i.e. ~5 at% B) and dilute alloys, respectively. A monovariant line of the type, L to M + TiB_2 (where M = beta, alpha , and gamma) was found to run slightly below the ~1 at% B isoconcentration line near the equiatomic TiAl composition. Matrix microstructure evolution and boride formation in these ternary alloys can be explained using the proposed liquidus projection for the Ti-Al-B system. TiB_2 forms in Ti-Al-B alloys (i.e. >= 35 at% Al) with various morphologies--blocky, plate/needle and flakes--and are extensively characterized by TEM and SEM. Their growth mechanisms leading to their various morphologies is discussed. Aside from the boride phases formed, the solidification microstructures of the Ti-Al -B alloys of interest showed essentially the same constituent phases as those of binary Ti-Al alloys of similar composition. Characterization of supercooled ternary droplets dilute in B (i.e. <=1 at% B

  20. PREFACE: The 16th International Symposium on Boron, Borides and Related Materials (ISBB 2008)

    NASA Astrophysics Data System (ADS)

    Tanaka, Takaho

    2009-07-01

    This volume of Journal of Physics: Conference Series contains invited and contributed peer-reviewed papers that were presented at the 16th International Symposium on Boron, Borides and Related Materials (ISBB 2008), which was held on 7-12 September 2008, at Kunibiki Messe, Matsue, Japan. This triennial symposium has a half-century long history starting from the 1st meeting in 1959 at Asbury Park, New Jersey. We were very pleased to organize ISBB 2008, which gathered chemists, physicists, materials scientists as well as diamond and high-pressure researchers. This meeting had a strong background in the boron-related Japanese research history, which includes the discovery of superconductivity in MgB2 and development of Nd-Fe-B hard magnets and of YB66 soft X-ray monochromator. The scope of ISBB 2008 spans both basic and applied interdisciplinary research that is centered on boron, borides and related materials, and the collection of articles defines the state of the art in research on these materials. The topics are centered on: 1. Preparation of new materials (single crystals, thin films, nanostructures, ceramics, etc) under normal or extreme conditions. 2. Crystal structure and chemical bonding (new crystal structures, nonstoichiometry, defects, clusters, quantum-chemical calculations). 3. Physical and chemical properties (band structure, phonon spectra, superconductivity; optical, electrical, magnetic, emissive, mechanical properties; phase diagrams, thermodynamics, catalytic activity, etc) in a wide range of temperatures and pressures. 4. Applications and prospects (thermoelectric converters, composites, ceramics, coatings, etc) There were a few discoveries of new materials, such as nanomaterials, and developments in applications. Many contributions were related to 4f heavy Fermion systems of rare-earth borides. Exotic mechanisms of magnetism and Kondo effects have been discussed, which may indicate another direction of development of boride. Two special sessions

  1. Mineral resource of the month: indium

    USGS Publications Warehouse

    Tolcin, Amy C.

    2011-01-01

    Geologically, the occurrence of indium minerals is rare. The element most often occurs as a sulfide inclusion or substitutes in other base-metal minerals, including cassiterite, chalcopyrite, sphalerite and stannite. Indium’s abundance in the crust is estimated to be 0.05 parts per million, which makes it more abundant than silver, but it is so widely disseminated that it does not occur in high enough concentrations to form mineable deposits. Therefore, indium is most often recovered from byproduct residues produced during the refining of lead and zinc. But only about one-quarter of the indium mined worldwide is refined into metal, as many indium-bearing concentrates are sent to refineries that do not have the capability of recovering the metal.

  2. Indium Single-Ion Frequency Standard

    NASA Technical Reports Server (NTRS)

    Nagourney, Warren

    2001-01-01

    A single laser-cooled indium ion is a promising candidate for an ultimate resolution optical time or frequency standard. It can be shown that single ions from group IIIA of the periodic table (indium, thallium, etc.) can have extremely small systematic errors. In addition to being free from Doppler, transit-time and collisional shifts, these ions are also quite insensitive to perturbations from ambient magnetic and electric fields (mainly due to the use of a J=0-0 transition for spectroscopy). Of all group IIIA ions, indium seems to be the most practical, since it is heavy enough to have a tolerable intercombination cooling transition rate and (unlike thallium) has transitions which are easily accessible with frequency multiplied continuous-wave lasers. A single indium ion standard has a potential inaccuracy of one part in 10(exp 18) for integration times of 10(exp 6) seconds. We have made substantial progress during the grant period in constructing a frequency standard based upon a single indium ion. At the beginning of the grant period, single indium ions were being successfully trapped, but the lasers and optical systems were inadequate to achieve the desired goal. We have considerably improved the stability of the dye laser used to cool the ions and locked it to a molecular resonance line, making it possible to observe stable cooling-line fluorescence from a single indium ion for reasonable periods of time, as required by the demands of precision spectroscopy. We have substantially improved the single-ion fluorescence signal with significant benefits for the detection efficiency of forbidden transitions using the 'shelving' technique. Finally, we have constructed a compact, efficient UV 'clock' laser and observed 'clock' transitions in single indium ions using this laser system. We will elaborate on these accomplishments.

  3. Quantification of indium in steel using PIXE

    NASA Astrophysics Data System (ADS)

    Oliver, A.; Miranda, J.; Rickards, J.; Cheang, J. C.

    1989-04-01

    The quantitative analysis of steel for endodontics tools was carried out using low-energy protons (≤ 700 keV). A computer program for a thick-target analysis which includes enhancement due to secondary fluorescence was used. In this experiment the L-lines of indium are enhanced due to the proximity of other elements' K-lines to the indium absorption edge. The results show that the ionization cross section expression employed to evaluate this magnitude is important.

  4. Interlayer utilization (including metal borides) for subsequent deposition of NSD films via microwave plasma CVD on 316 and 440C stainless steels

    NASA Astrophysics Data System (ADS)

    Ballinger, Jared

    Diamond thin films have promising applications in numerous fields due to the extreme properties of diamonds in conjunction with the surface enhancement of thin films. Biomedical applications are numerous including temporary implants and various dental and surgical instruments. The unique combination of properties offered by nanostructured diamond films that make it such an attractive surface coating include extreme hardness, low obtainable surface roughness, excellent thermal conductivity, and chemical inertness. Regrettably, numerous problems exist when attempting to coat stainless steel with diamond generating a readily delaminated film: outward diffusion of iron to the surface, inward diffusion of carbon limiting necessary surface carbon precursor, and the mismatch between the coefficients of thermal expansion yielding substantial residual stress. While some exotic methods have been attempted to overcome these hindrances, the most common approach is the use of an intermediate layer between the stainless steel substrate and the diamond thin film. In this research, both 316 stainless steel disks and 440C stainless steel ball bearings were tested with interlayers including discrete coatings and graded, diffusion-based surface enhancements. Titanium nitride and thermochemical diffusion boride interlayers were both examined for their effectiveness at allowing for the growth of continuous and adherent diamond films. Titanium nitride interlayers were deposited by cathodic arc vacuum deposition on 440C bearings. Lower temperature diamond processing resulted in improved surface coverage after cooling, but ultimately, both continuity and adhesion of the nanostructured diamond films were unacceptable. The ability to grow quality diamond films on TiN interlayers is in agreement with previous work on iron and low alloy steel substrates, and the similarly seen inadequate adhesion strength is partially a consequence of the lacking establishment of an interfacial carbide phase

  5. Pt-B System Revisited: Pt2B, a New Structure Type of Binary Borides. Ternary WAl12-Type Derivative Borides.

    PubMed

    Sologub, Oksana; Salamakha, Leonid; Rogl, Peter; Stöger, Berthold; Bauer, Ernst; Bernardi, Johannes; Giester, Gerald; Waas, Monika; Svagera, Robert

    2015-11-16

    On the basis of a detailed study applying X-ray single-crystal and powder diffraction, differential scanning calorimetry, and scanning electron microscopy analysis, it was possible to resolve existing uncertainties in the Pt-rich section (≥65 atom % Pt) of the binary Pt-B phase diagram above 600 °C. The formation of a unique structure has been observed for Pt2B [X-ray single-crystal data: space group C2/m, a = 1.62717(11) nm, b = 0.32788(2) nm, c = 0.44200(3) nm, β = 104.401(4)°, RF2 = 0.030]. Within the homogeneity range of "Pt3B", X-ray powder diffraction phase analysis prompted two structural modifications as a function of temperature. The crystal structure of "hT-Pt3B" complies with the hitherto reported structure of anti-MoS2 [space group P63/mmc, a = 0.279377(2) nm, c = 1.04895(1) nm, RF = 0.075, RI = 0.090]. The structure of the new "[Formula: see text]T-Pt3B" is still unknown. The formation of previously reported Pt∼4B has not been confirmed from binary samples. Exploration of the Pt-rich section of the Pt-Cu-B system at 600 °C revealed a new ternary compound, Pt12CuB6-y [X-ray single-crystal data: space group Im3̅, a = 0.75790(2) nm, y = 3, RF2 = 0.0129], which exhibits the filled WAl12-type structure accommodating boron in the interstitial trigonal-prismatic site 12e. The isotypic platinum-aluminum-boride was synthesized and studied. The solubility of copper in binary platinum borides has been found to attain ∼7 atom % Cu for Pt2B but to be insignificant for "[Formula: see text]T-Pt3B". The architecture of the new Pt2B structure combines puckered layers of boron-filled and empty [Pt6] octahedra (anti-CaCl2-type fragment) alternating along the x axis with a double layer of boron-semifilled [Pt6] trigonal prisms interbedded with a layer of empty tetrahedra and tetragonal pyramids (B-deficient α-T[Formula: see text]I fragment). Assuming boron vacancies ordering (space group R3), the Pt12CuB6-y structure exhibits serpentine-like columns of edge

  6. Pre-irradiation spatial distribution and stability of boride particles in rapidly solidified boron-doped stainless steels

    SciTech Connect

    Kanani, N.; Arnberg, L.; Harling, O.K.

    1981-01-01

    The time temperature behavior of boride particles has been studied in rapidly solidified ultra low carbon and nitrogen modified 316 stainless steel with 0.088% boron and 0.45% zirconium. The results show that the as-splat-cooled specimens exhibit precipitates at the grain boundaries and triple junctions. For temperatures up to about 750/sup 0/C no significant microstructural changes occur for short heat treatment times. In the temperature range of 750 to 950/sup 0/C, however, particles typically 100 to 500 A in diameter containing Zr and B are formed within the grains. Higher temperatures enhance the formation of such particles and give rise to particle networks. The results show that a fine and uniform distribution of the boride particles almost exclusively within the grains can be achieved if proper annealing conditions are chosen. This type of distribution is an important requirement for the homogeneous production of helium during neutron irradiation in fast reactors.

  7. Synthesis and characterization of nitrogen-phosphorus-based fire retardants modified by boride/propanetriol flyeidyl ether complex

    NASA Astrophysics Data System (ADS)

    Kang, Haijiao; Ma, Linrong; Zhang, Shifeng; Li, Jianzhang

    2015-07-01

    A Boride/propanetriol glyeidyl ether (B/PTGE) complex was employed to intensify the fire resistance capabilities of nitrogen-phosphorus (NP) fire retardants by reacting with phosphoric acid and urea to yield nitrogen-phosphorus-boron-PTGE fire retardants. The effects of NPB-PTGE fire retardants on wooden properties were characterized by limit oxygen index (LOI), cone calorimetry, X-ray Diffraction (XRD) and scanning electron microscopy (SEM). The results depict that the fire resistance of the B/PTGE complex modified by NP-based fire retardants was improved significantly. The PTGE was at 10% boride at 2%, and the treated wood has the LOI of 52%, which is 11.46% higher compared with woods treated with NP fire retardant.

  8. 40 CFR 421.190 - Applicability: Description of the secondary indium subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... secondary indium subcategory. 421.190 Section 421.190 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Indium Subcategory § 421.190 Applicability: Description of the secondary indium... indium at secondary indium facilities processing spent electrolyte solutions and scrap indium metal...

  9. 40 CFR 421.190 - Applicability: Description of the secondary indium subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... secondary indium subcategory. 421.190 Section 421.190 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Indium Subcategory § 421.190 Applicability: Description of the secondary indium... indium at secondary indium facilities processing spent electrolyte solutions and scrap indium metal...

  10. 40 CFR 421.190 - Applicability: Description of the secondary indium subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... secondary indium subcategory. 421.190 Section 421.190 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Indium Subcategory § 421.190 Applicability: Description of the secondary indium... indium at secondary indium facilities processing spent electrolyte solutions and scrap indium metal...

  11. 40 CFR 421.190 - Applicability: Description of the secondary indium subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... secondary indium subcategory. 421.190 Section 421.190 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Indium Subcategory § 421.190 Applicability: Description of the secondary indium... indium at secondary indium facilities processing spent electrolyte solutions and scrap indium metal...

  12. 40 CFR 421.190 - Applicability: Description of the secondary indium subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... secondary indium subcategory. 421.190 Section 421.190 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Indium Subcategory § 421.190 Applicability: Description of the secondary indium... indium at secondary indium facilities processing spent electrolyte solutions and scrap indium metal...

  13. Thermal Stability of Chelated Indium Activable Tracers

    SciTech Connect

    Chrysikopoulos, Costas; Kruger, Paul

    1986-01-21

    The thermal stability of indium tracer chelated with organic ligands ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA) was measured for reservoir temperatures of 150, 200, and 240 C. Measurements of the soluble indium concentration was made as a function of time by neutron activation analysis. From the data, approximate thermal decomposition rates were estimated. At 150 C, both chelated tracers were stable over the experimental period of 20 days. At 200 C, the InEDTA concentration remained constant for 16 days, after which the thermal decomposition occurred at a measured rate constant of k = 0.09 d{sup -1}. The thermal decomposition of InNTA at 200 C showed a first order reaction with a measured rate constant of k = 0.16 d{sup -1}. At 240 C, both indium chelated tracers showed rapid decomposition with rate constants greater than 1.8 d{sup -1}. The data indicate that for geothermal reservoir with temperatures up to about 200 C, indium chelated tracers can be used effectively for transit times of at least 20 days. These experiments were run without reservoir rock media, and do not account for concomitant loss of indium tracer by adsorption processes.

  14. Indium oxide/n-silicon heterojunction solar cells

    DOEpatents

    Feng, Tom; Ghosh, Amal K.

    1982-12-28

    A high photo-conversion efficiency indium oxide/n-silicon heterojunction solar cell is spray deposited from a solution containing indium trichloride. The solar cell exhibits an Air Mass One solar conversion efficiency in excess of about 10%.

  15. Indium: bringing liquid-crystal displays into focus

    USGS Publications Warehouse

    Mercer, Celestine N.

    2015-01-01

    Compared to more abundant industrial metals such as lead and zinc, information about the behavior and toxicity of indium in the environment is limited. However, many indium compounds have been proven to be toxic to animals.

  16. Indium-111 leukocyte scanning and fracture healing

    SciTech Connect

    Mead, L.P.; Scott, A.C.; Bondurant, F.J.; Browner, B.D. )

    1990-01-01

    This study was undertaken to determine the specificity of indium-111 leukocyte scans for osteomyelitis when fractures are present. Midshaft tibial osteotomies were performed in 14 New Zealand white rabbits, seven of which were infected postoperatively with Staphylococcus aureus per Norden's protocol. All 14 rabbits were scanned following injection with 75 microCi of indium 111 at 72 h after osteotomy and at weekly intervals for 4 weeks. Before the rabbits were killed, the fracture sites were cultured to document the presence or absence of infection. The results of all infected osteotomy sites were positive, whereas no positive scans were found in the noninfected osteotomies. We concluded from this study that uncomplicated fracture healing does not result in a positive indium-111 leukocyte scan.

  17. Suppression of Boride Formation in Transient Liquid Phase Bonding of Pairings of Parent Superalloy Materials with Different Compositions and Grain Structures and Resulting Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Steuer, Susanne; Singer, Robert F.

    2014-07-01

    Two Ni-based superalloys, columnar grained Alloy 247 and single-crystal PWA1483, are joined by transient liquid phase bonding using an amorphous brazing foil containing boron as a melting point depressant. At lower brazing temperatures, two different morphologies of borides develop in both base materials: plate-like and globular ones. Their ratio to each other is temperature dependent. With very high brazing temperatures, the deleterious boride formation in Alloy 247 can be totally avoided, probably because the three-phase-field moves to higher alloying element contents. For the superalloy PWA1483, the formation of borides cannot be completely avoided at high brazing temperatures as incipient melting occurs. During subsequent solidification of these areas, Chinese-script-like borides precipitate. The mechanical properties (tensile tests at room and elevated temperatures and short-term creep rupture tests at elevated temperatures) for brazed samples without boride precipitation are very promising. Tensile strengths and creep times to 1 pct strain are comparable, respectively, higher than the ones of the weaker parent material for all tested temperatures and creep conditions (from 90 to 100 pct rsp. 175 to 250 pct).

  18. 40 CFR 721.10391 - Copper gallium indium selenide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Copper gallium indium selenide. 721... Substances § 721.10391 Copper gallium indium selenide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as copper gallium indium selenide (PMN...

  19. 40 CFR 721.10391 - Copper gallium indium selenide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Copper gallium indium selenide. 721... Substances § 721.10391 Copper gallium indium selenide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as copper gallium indium selenide (PMN...

  20. 40 CFR 721.10391 - Copper gallium indium selenide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Copper gallium indium selenide. 721... Substances § 721.10391 Copper gallium indium selenide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as copper gallium indium selenide (PMN...

  1. Electronic spectra and magnetic properties of RB6, RB12 and RB2C2 borides

    NASA Astrophysics Data System (ADS)

    Baranovskiy, A. E.; Grechnev, G. E.; Logosha, A. V.; Svechkarev, I. V.; Filippov, V. B.; Shitsevalova, N. Yu.; Oga, O. J.; Eriksson, O.

    2006-01-01

    The electronic structures of R B6, R B12 and R B2C2 borides are studied ab initio by using the full-potential linear muffin-tin orbital method. This study includes the promising materials for spin electronics with reported high temperature ferromagnetism, namely, doped divalent hexaborides CaB6, SrB6, BaB6, and the CaB2C2 compound, as well as Kondo semiconductors, SmB6 and YbB12. For CaB6 and SrB6 a semiconducting band structure has been obtained, whereas a semimetallic ground state is revealed for CaB2C2 and doped hexaborides. For YB6, LaB6, CaB2C2 and the semimetallic Ba1-x Lax B6 alloys we have performed spin-polarized band structure calculations in an external field to evaluate the induced spin and orbital magnetic moments. These calculations indicate a feasibility of the field-induced weak ferromagnetic phase in CaB2C2 and the La doped hexaborides. The LSDA and GGA calculations for different spin configurations of YbB12 point to a possibility of antiferromagnetic coupling between Yb3+ ions. For SmB6 and YbB12 our LSDA, GGA, and LSDA+U calculations have not revealed the hybridization gap for configurations with trivalent Sm3+ and Yb3+.

  2. High borides: determining the features and details of lattice dynamics from neutron spectroscopy

    NASA Astrophysics Data System (ADS)

    Alekseev, P. A.

    2015-04-01

    We review wide-ranging research that combines inelastic neutron scattering spectroscopy with phenomenological and ab initio calculations to study the lattice dynamics and specifics of the electron-phonon interaction in three-dimensional boron cluster network systems M B_6 and M B12 ( M= {La}, {Sm}, and {Yb}, {Lu}, {Zr}). A close similarity is found between the atomic vibration spectra of these systems, which is fundamentally due to a strong hierarchy of interatomic interaction in these systems and which manifests itself both in the shape of the low-energy phonon dispersion and in the position of the high-energy edge of the spectrum. Manifestations of strong electron-phonon interactions in the lattice vibration spectra of borides are studied in detail and their relation to the nature and features of the valence-unstable state of rare-earth ions is examined. Resonance nonadiabaticity and magnetovibration interaction effects in spin- and valence-fluctuating systems are given special attention.

  3. Preliminary investigation of zirconium boride ceramals for gas-turbine blade applications

    NASA Technical Reports Server (NTRS)

    Hoffman, Charles A

    1953-01-01

    Zirconium boride ZrB2 ceramals were investigated for possible gas-turbine-blade application. Included in the study were thermal shock evaluations of disks, preliminary turbine-blade operation, and observations of oxidation resistance. Thermal shock disks of the following three compositions were studied: (a) 97.5 percent ZrB2 plus 2.5 percent B by weight; (b) 92.5 percent ZrB2 plus 7.5 percent B by weight; and (c) 100 percent ZrB2. Thermal shock disks were quenched from temperatures of 1800 degrees, 2000 degrees, 2200 degrees, and 2400 degrees F. The life of turbine blades containing 93 percent ZrB2 plus 7 percent B by weight was determined in gas-turbine tests. The blades were run at approximately 1600 degrees F and 15,000 to 26,000 rpm. The thermal shock resistance of the 97.5 percent ZrB2 plus 2.5 percent boron ceramals compares favorably with that of TiC plus Co and TiC plus Ni ceramals. Oxidation of the disks during the thermal shock evaluation was slight for the comparatively short time (8.3 hr) up through 2000 degrees F. Oxidation of a specimen was severe, however, after 100 hours at 2000 degrees F. The turbine blade performance evaluation of the 93 percent ZrB2 plus 7 percent B composition was preliminary in scope ; no conclusions can be drawn.

  4. Mechanical properties of laser-deposited composite boride coating using nanoindentation

    SciTech Connect

    Agarwal, A.; Dahotre, N.B.

    2000-02-01

    Nanoindentation proves to be an effective technique to measure mechanical properties of composite materials, as it has high spatial resolution that enables estimation of properties even from fine grains, particles, and precipitates. The elastic modulus, E, of the composite boride coating deposited on AISI 1010 steel using the laser surface engineering (LSE) process has been computed using the nanoindentation technique. The highest E value of 477.3 GPa was achieved for coating in a sample that contained 0.69 volume fraction of TiB{sub 2} particles in the coating after processing with the highest laser traverse speed of 33 mm/s. A comparison between the theoretical and experimental computation of the elastic modulus suggests that theoretical elastic modulus values are lower than computed elastic modulus, as the latter includes the effect of dissolution of fine TiB{sub 2} particles in Fe matrix and metastable phase formation such as Fe{sub a}B{sub b} and Ti{sub m}B{sub n}. Dissolution of fine TiB{sub 2} particles in the Fe matrix in the coating region has been corroborated by transmission electron microscope (TEM) micrographs and corresponding energy-dispersive spectroscope (EDS) analysis and selected area diffraction (SAD) pattern.

  5. Charge-Driven Structural Transformation and Valence Versatility of Boron Sheets in Magnesium Borides

    NASA Astrophysics Data System (ADS)

    Zhao, Yufeng; Ban, Chunmei; Xu, Qiang; Wei, Suhuai; Dillon, Anne C.; National Renewable Energy Laboratory Team

    2011-03-01

    We show here that boron sheets exhibit highly versatile valence and the layered boron materials may hold the promise for a high energy-density magnesium-ion battery. Practically, boron is superior to previously known multi-valence materials, especially transition metal compounds, which are heavy, expensive, and often not benign. Based on Density Functional Theory simulations, we have predicted a series of stable magnesium borides MgBx with a broad range of stoichiometries, 2 x <= 16, by removing magnesium atoms from MgB2. The layered boron structures are preserved through an in-plane topological transformation between the hexagonal lattice domains and triangular domains. The process can be reversibly switched as the charge transfer changes with Mg insertion/extraction. The mechanism of such a charge-driven transformation originates from the versatile valence state of boron in its planar form. The discovery of these new physical phenomena suggests the design of a high-capacity magnesium-boron battery. Funded by the U.S. Department of Energy under subcontract number DE-AC36-08GO28308 through: DOE Office of Energy Efficiency and Renewable Energy Office of the Vehicle Technologies Program.

  6. Transport in indium-decorated graphene

    NASA Astrophysics Data System (ADS)

    Chandni, U.; Henriksen, Erik A.; Eisenstein, J. P.

    2015-06-01

    The electronic-transport properties of single-layer graphene that has a dilute coating of indium adatoms have been investigated. Our studies establish that isolated indium atoms donate electrons to graphene and become a source of charged impurity scattering, affecting the conductivity as well as magnetotransport properties of the pristine graphene. Notably, a positive magnetoresistance is observed over a wide density range after In doping. The low-field magnetoresistance carries signatures of quantum interference effects which are significantly altered by the adatoms.

  7. Sinterless Formation Of Contacts On Indium Phosphide

    NASA Technical Reports Server (NTRS)

    Weizer, Victor G.; Fatemi, Navid S.

    1995-01-01

    Improved technique makes it possible to form low-resistivity {nearly equal to 10(Sup-6) ohm cm(Sup2)} electrical contacts on indium phosphide semiconductor devices without damaging devices. Layer of AgP2 40 Angstrom thick deposited on InP before depositing metal contact. AgP2 interlayer sharply reduces contact resistance, without need for sintering.

  8. Study of the doping of thermally evaporated zinc oxide thin films with indium and indium oxide

    NASA Astrophysics Data System (ADS)

    Palimar, Sowmya; Bangera, Kasturi V.; Shivakumar, G. K.

    2013-12-01

    The present paper reports observations made on investigations carried out to study structural, optical and electrical properties of thermally evaporated ZnO thin films and their modulations on doping with metallic indium and indium oxide separately. ZnO thin film in the undoped state is found to have a very good conductivity of 90 Ω-1 cm-1 with an excellent transmittance of up to 90 % in the visible region. After doping with metallic indium, the conductivity of the film is found to be 580 Ω-1 cm-1, whereas the conductivity of indium oxide-doped films is increased up to 3.5 × 103 Ω-1 cm-1. Further, the optical band gap of the ZnO thin film is widened from 3.26 to 3.3 eV when doped with indium oxide and with metallic indium it decreases to 3.2 eV. There is no considerable change in the transmittance of the films after doping. All undoped and doped films were amorphous in nature with smooth and flat surface without significant modifications due to doping.

  9. The oxidation and surface speciation of indium and indium oxides exposed to atmospheric oxidants

    NASA Astrophysics Data System (ADS)

    Detweiler, Zachary M.; Wulfsberg, Steven M.; Frith, Matthew G.; Bocarsly, Andrew B.; Bernasek, Steven L.

    2016-06-01

    Metallic indium and its oxides are useful in electronics applications, in transparent conducting electrodes, as well as in electrocatalytic applications. In order to understand more fully the speciation of the indium and oxygen composition of the indium surface exposed to atmospheric oxidants, XPS, HREELS, and TPD were used to study the indium surface exposed to water, oxygen, and carbon dioxide. Clean In and authentic samples of In2O3 and In(OH)3 were examined with XPS to provide standard spectra. Indium was exposed to O2 and H2O, and the ratio of O2 - to OH- in the O1s XPS region was used to monitor oxidation and speciation of the surface. HREELS and TPD indicate that water dissociates on the indium surface even at low temperature, and that In2O3 forms at higher temperatures. Initially, OH- is the major species at the surface. Pure In2O3 is also OH- terminated following water exposure. Ambient pressure XPS studies of water exposure to these surfaces suggest that high water pressures tend to passivate the surface, inhibiting extensive oxide formation.

  10. Nano-Borides and Silicide Dispersed Composite Coating on AISI 304 Stainless Steel by Laser-Assisted HVOF Spray Deposition

    NASA Astrophysics Data System (ADS)

    Sharma, Prashant; Majumdar, Jyotsna Dutta

    2014-10-01

    The study concerned a detailed microstructural investigation of nano-borides (Cr2B and Ni3B) and nano-silicide (Ni2Si) dispersed γ-nickel composite coating on AISI 304 stainless steel by HVOF spray deposition of the NiCrBSi precursor powder and subsequent laser surface melting. A continuous wave diode laser with an applied power of 3 kW and scan speed of 20 mm/s in argon shroud was employed. The characterization of the surface in terms of microstructure, microtexture, phases, and composition were carried out and compared with the as-coated (high-velocity oxy-fuel sprayed) surface. Laser surface melting led to homogenization and refinement of microstructures with the formation of few nano-silicides of nickel along with nano-borides of nickel and chromium (Ni3B, Cr2B, and Cr2B3). A detailed microtexture analysis showed the presence of no specific texture in the as-sprayed and laser-melted surface of Cr2B and Ni3B phases. The average microhardness was improved to 750-900 VHN as compared to 250 VHN of the as-received substrate. Laser surface melting improved the microhardness further to as high as 1400 VHN due to refinement of microstructure and the presence of silicides.

  11. Indium-111 autologous leukocyte imaging in pancreatitis

    SciTech Connect

    Anderson, J.R.; Spence, R.A.; Laird, J.D.; Ferguson, W.R.; Kennedy, T.L.

    1986-03-01

    Thirty-nine patients with acute pancreatitis have been assessed using a prognostic factor grading system, abdominal ultrasound, and autologous leukocyte imaging. Both prognostic factor grading and leukocyte imaging can accurately assess the severity of the disease early in its course. All patients with a negative indium-labeled leukocyte image recovered without sequelae, whereas five of the 12 patients with a positive image developed complications, including two deaths. Abdominal ultrasound is of no value in assessing severity, but is a useful method of detecting those patients with gallstone-associated disease. In patients with suspected abscess formation following acute pancreatitis, indium leukocyte imaging does not differentiate between fat necrosis and abscess formation. In this situation, computerized tomography should be carried out before laparotomy is undertaken.

  12. Sorption of indium (III) onto carbon nanotubes.

    PubMed

    Alguacil, F J; Lopez, F A; Rodriguez, O; Martinez-Ramirez, S; Garcia-Diaz, I

    2016-08-01

    Indium has numerous applications in different industrial sectors and is not an abundant element. Therefore appropriate technology to recover this element from various process wastes is needed. This research reports high adsorption capacity of multiwalled carbon nanotubes (MWCNT) for In(III). The effects of pH, kinetics, isotherms and adsorption mechanism of MWCNT on In(III) adsorption were investigated and discussed in detail. The pH increases improves the adsorption capacity for In(III). The Langmuir adsorption model is the best fit with the experimental data. For the kinetic study, the adsorption onto MWCNT could be fitted to pseudo second-order. The adsorption of indium(III) can be described to a mechanism which consists of a film diffusion controlled process. Metal desorption can be achieved with acidic solutions. PMID:27085001

  13. The Wyckoff positional order and polyhedral intergrowth in the M3B2- and M5B3-type boride precipitated in the Ni-based superalloys

    NASA Astrophysics Data System (ADS)

    Hu, X. B.; Zhu, Y. L.; Sheng, N. C.; Ma, X. L.

    2014-12-01

    Ni-based single superalloys play a crucial role in the hottest parts of jet engines. However, due to the complex geometry and macro-segregation during the solidification process, the cast defect such as stray grains is inevitable. Therefore, the transient liquid phase (TLP) bonding which can join several small single crystalline castings together is gradually believed to be an effective method for improving the yields of production of the complex components. The melting point depressant element B is always added into the interlayer filler material. Consequently, borides including the M3B2 and M5B3 phase usually precipitate during the TLP bonding process. So a comprehensive knowledge of the fine structural characteristics of the borides is very critical for an accurate evaluation of the TLP bonding process. In this work, by means of the aberration-corrected transmission electron microscopy, we show, at an atomic scale, the Wyckoff positional order phenomenon of the metal atoms in the unit cell of M3B2- and M5B3-type boride. Meanwhile, the defect along the (001) plane of the above two types of boride are determined to be the polyhedral intergrowth with complex configurations.

  14. The Wyckoff positional order and polyhedral intergrowth in the M3B2- and M5B3-type boride precipitated in the Ni-based superalloys.

    PubMed

    Hu, X B; Zhu, Y L; Sheng, N C; Ma, X L

    2014-01-01

    Ni-based single superalloys play a crucial role in the hottest parts of jet engines. However, due to the complex geometry and macro-segregation during the solidification process, the cast defect such as stray grains is inevitable. Therefore, the transient liquid phase (TLP) bonding which can join several small single crystalline castings together is gradually believed to be an effective method for improving the yields of production of the complex components. The melting point depressant element B is always added into the interlayer filler material. Consequently, borides including the M3B2 and M5B3 phase usually precipitate during the TLP bonding process. So a comprehensive knowledge of the fine structural characteristics of the borides is very critical for an accurate evaluation of the TLP bonding process. In this work, by means of the aberration-corrected transmission electron microscopy, we show, at an atomic scale, the Wyckoff positional order phenomenon of the metal atoms in the unit cell of M3B2- and M5B3-type boride. Meanwhile, the defect along the (001) plane of the above two types of boride are determined to be the polyhedral intergrowth with complex configurations. PMID:25482386

  15. Surface decoration through electrostatic interaction leading to enhanced reactivity: Low temperature synthesis of nanostructured chromium borides (CrB and CrB{sub 2})

    SciTech Connect

    Menaka,; Kumar, Bharat; Kumar, Sandeep; Ganguli, A.K.

    2013-04-15

    The present study describes a novel low temperature route at ambient pressure for the synthesis of nanocrystalline chromium borides (CrB and CrB{sub 2}) without using any flux or additives. The favorable and intimate mixing of nanoparticles of chromium acetate (Cr source) and boron forms an active chromium–boron precursor which decomposes at much lower temperature (400 °C) to form CrB (which is ∼1000 °C less than the known ambient pressure synthesis). The chromium acetate nanoparticles (∼5 nm) decorate the larger boron particles (150–200 nm) due to electrostatic interactions resulting from opposing surface charges of boron (zeta potential:+48.101 mV) and chromium acetate (zeta potential:−4.021 mV) in ethanolic medium and is evident in the TEM micrographs. The above method leads to the formation of pure CrB film like structure at 400 °C and nanospheres (40–60 nm) at 600 °C. Also, chromium diboride (CrB{sub 2}) nanoparticles (25 nm) could be obtained at 1000 °C. - Graphical abstract: Variation of surface charge of reactants, precursor and the products, chromium borides (CrB and CrB{sub 2}). Highlights: ► Novel borothermal reduction process for synthesis of chromium boride. ► Significant lowering of reaction temperature to obtain nanocrystalline chromium boride. ► Enhanced reactivity due to appropriate surface interactions.

  16. The Wyckoff positional order and polyhedral intergrowth in the M3B2- and M5B3-type boride precipitated in the Ni-based superalloys

    PubMed Central

    Hu, X. B.; Zhu, Y. L.; Sheng, N. C.; Ma, X. L.

    2014-01-01

    Ni-based single superalloys play a crucial role in the hottest parts of jet engines. However, due to the complex geometry and macro-segregation during the solidification process, the cast defect such as stray grains is inevitable. Therefore, the transient liquid phase (TLP) bonding which can join several small single crystalline castings together is gradually believed to be an effective method for improving the yields of production of the complex components. The melting point depressant element B is always added into the interlayer filler material. Consequently, borides including the M3B2 and M5B3 phase usually precipitate during the TLP bonding process. So a comprehensive knowledge of the fine structural characteristics of the borides is very critical for an accurate evaluation of the TLP bonding process. In this work, by means of the aberration-corrected transmission electron microscopy, we show, at an atomic scale, the Wyckoff positional order phenomenon of the metal atoms in the unit cell of M3B2- and M5B3-type boride. Meanwhile, the defect along the (001) plane of the above two types of boride are determined to be the polyhedral intergrowth with complex configurations. PMID:25482386

  17. Electroplated indium bump arrays and the bonding reliability

    NASA Astrophysics Data System (ADS)

    Qiuping, Huang; Gaowei, Xu; Gang, Quan; Yuan, Yuan; Le, Luo

    2010-11-01

    A novel electroplating indium bumping process is described, as a result of which indium bump arrays with a pitch of 100 μm and a diameter of 40 μm were successfully prepared. UBM (under bump metallization) for indium bumping was investigated with an XRD technique. The experimental results indicate that Ti/Pt (300 Å / 200 Å) has an excellent barrier effect both at room temperature and at 200 °C. The bonding reliability of the indium bumps was evaluated by a shear test. Results show that the shear strength of the indium bump significantly increases after the first reflow and then changes slowly with increasing reflow times. Such a phenomenon may be caused by the change in textures of the indium after reflow. The corresponding flip-chip process is also discussed in this paper.

  18. The toxicology of indium tin oxide.

    PubMed

    Bomhard, Ernst M

    2016-07-01

    Indium tin oxide (ITO) is a technologically important semiconductor. An increasing number of cases of severe lung effects (characterized by pulmonary alveolar proteinosis and/or interstitial fibrosis) in ITO-exposed workers warrants a review of the toxicological hazards. Short- and long-term inhalation studies in rats and mice revealed persistent alveolar proteinosis, inflammation and fibrosis in the lungs down to concentrations as low as 0.01mg/m(3). In rats, the incidences of bronchiolo-alveolar adenomas and carcinomas were significantly increased at all concentrations. In mice, ITO was not carcinogenic. A few bronchiolo-alveolar adenomas occurring after repeated intratracheal instillation of ITO to hamsters have to be interpreted as treatment-related. In vitro and in vivo studies on the formation of reactive oxygen species suggest epigenetic effects as cause of the lung tumor development. Repeated intratracheal instillation of ITO to hamsters slightly affected the male sexual organs, which might be interpreted as a secondary effect of the lung damage. Epidemiological and medical surveillance studies, serum/blood indium levels in workers as well as data on the exposure to airborne indium concentrations indicate a need for measures to reduce exposure at ITO workplaces. PMID:27343753

  19. Structural and Physical Properties Diversity of New CaCu5-Type Related Europium Platinum Borides

    PubMed Central

    2013-01-01

    Three novel europium platinum borides have been synthesized by arc melting of constituent elements and subsequent annealing. They were characterized by X-ray powder and single-crystal diffraction: EuPt4B, CeCo4B type, P6/mmm, a = 0.56167(2) nm, c = 0.74399(3) nm; Eu3Pt7B2, Ca3Al7Cu2 type as an ordered variant of PuNi3, R3̅m, a = 0.55477(2) nm, c = 2.2896(1) nm; and Eu5Pt18B6–x, a new unique structure type, Fmmm, a = 0.55813(3) nm, b = 0.95476(5) nm, c = 3.51578(2) nm. These compounds belong to the CaCu5 family of structures, revealing a stacking sequence of CaCu5-type slabs with different structural units: CaCu5 and CeCo3B2 type in EuPt4B; CeCo3B2 and Laves MgCu2 type in Eu3Pt7B2; and CaCu5-, CeCo3B2-, and site-exchange ThCr2Si2-type slabs in Eu5Pt18B6–x. The striking motif in the Eu5Pt18B6–x structure is the boron-centered Pt tetrahedron [BPt4], which build chains running along the a axis and plays a decisive role in the structure arrangement by linking the terminal fragments of repeating blocks of fused Eu polyhedra. Physical properties of two compounds, EuPt4B and Eu3Pt7B2, were studied. Both compounds were found to order magnetically at 36 and 57 K, respectively. For EuPt4B a mixed-valence state of the Eu atom was confirmed via magnetic and specific heat measurements. Moreover, the Sommerfeld value of the specific heat of Eu3Pt7B2 was found to be extraordinarily large, on the order of 0.2 J/mol K2. PMID:23540751

  20. InP (Indium Phosphide): Into the future

    NASA Technical Reports Server (NTRS)

    Brandhorst, Henry W., Jr.

    1989-01-01

    Major industry is beginning to be devoted to indium phosphide and its potential applications. Key to these applications are high speed and radiation tolerance; however the high cost of indium phosphide may be an inhibitor to progress. The broad applicability of indium phosphide to many devices will be discussed with an emphasis on photovoltaics. Major attention is devoted to radiation tolerance and means of reducing cost of devices. Some of the approaches applicable to solar cells may also be relevant to other devices. The intent is to display the impact of visionary leadership in the field and enable the directions and broad applicability of indium phosphide.

  1. Method to Improve Indium Bump Bonding via Indium Oxide Removal Using a Multi-Step Plasma Process

    NASA Technical Reports Server (NTRS)

    Greer, H. Frank (Inventor); Jones, Todd J. (Inventor); Vasquez, Richard P. (Inventor); Hoenk, Michael E. (Inventor); Dickie, Matthew R. (Inventor); Nikzad, Shouleh (Inventor)

    2012-01-01

    A process for removing indium oxide from indium bumps in a flip-chip structure to reduce contact resistance, by a multi-step plasma treatment. A first plasma treatment of the indium bumps with an argon, methane and hydrogen plasma reduces indium oxide, and a second plasma treatment with an argon and hydrogen plasma removes residual organics. The multi-step plasma process for removing indium oxide from the indium bumps is more effective in reducing the oxide, and yet does not require the use of halogens, does not change the bump morphology, does not attack the bond pad material or under-bump metallization layers, and creates no new mechanisms for open circuits.

  2. The influence of random indium alloy fluctuations in indium gallium nitride quantum wells on the device behavior

    SciTech Connect

    Yang, Tsung-Jui; Wu, Yuh-Renn; Shivaraman, Ravi; Speck, James S.

    2014-09-21

    In this paper, we describe the influence of the intrinsic indium fluctuation in the InGaN quantum wells on the carrier transport, efficiency droop, and emission spectrum in GaN-based light emitting diodes (LEDs). Both real and randomly generated indium fluctuations were used in 3D simulations and compared to quantum wells with a uniform indium distribution. We found that without further hypothesis the simulations of electrical and optical properties in LEDs such as carrier transport, radiative and Auger recombination, and efficiency droop are greatly improved by considering natural nanoscale indium fluctuations.

  3. Aqueous sol-gel routes to conducting films of indium oxide and indium-tin-oxide

    NASA Astrophysics Data System (ADS)

    Perry, Carole C.; McGiveron, J. K.; Harrison, Philip G.

    2000-05-01

    Thin films of indium tin oxide (ITO) are of interest because of their high transparency and low electrical resistivity. Applications include use as electrodes for liquid crystal display and as heat mirrors for solar energy devices. We have developed totally aqueous routes to indium oxide (IO) and ITO materials because, (1) the particulate sols afford a longer shelf life than for alkoxyide derived materials, (2) organics do not have to be removed from the films by baking, and (3) the starting materials are cheaper than the corresponding alkoxides. Indium and mixed indium/tin sols have been prepared form inorganic solutions and treated with alkali to produce white thixotropic sols ca. 0.64 in Mz+ ions. This films were prepared by spinning on low iron or pure silica slides previously cleaned with DECON and washed with distilled water. Films were subsequently heated at 773K in air, or 1173K in air or nitrogen. The film with the lowest resistivity contained ca. 5 percent Sn and had an average optical transmittance between 400 and 600nm of 95 percent. The film was non-porous, smooth in texture, approximately 300nm thick and had a band gap energy of 3.22eV.

  4. J/{psi} production in indium-indium collisions at SPS energies

    SciTech Connect

    Pillot, P.; Ducroux, L.; Guichard, A.; Tieulent, R.; Arnaldi, R.; Colla, A.; Cortese, P.; Ferretti, A.; Oppedisano, C.; Scomparin, E.; Averbeck, R.; Drees, A.; Banicz, K.; Keil, M.; Castor, J.; Devaux, A.; Force, P.; Manso, F.; Chaurand, B.; Cicalo, C.

    2006-01-12

    The NA60 experiment collected data on dimuon production in indium-indium collisions at 158 GeV/c per incident nucleon, in year 2003, to contribute to the clarification of several questions raised by previous experiments studying high-energy heavy-ion physics at the CERN SPS in search of the quark gluon plasma. Among these previous results stands the observation, by NA50, that the production yield of J/{psi} mesons is suppressed in central Pb-Pb collisions beyond the normal nuclear absorption defined by proton-nucleus data. By comparing the centrality dependence of the suppression pattern between different colliding systems, S-U, Pb-Pb and In-In, we should be able to identify the corresponding scaling variable, and the physics mechanism driving the suppression. In this paper, we will present the ratio of J/{psi} and Drell-Yan production cross-sections in indium-indium collisions, in three centrality bins, and how these values compare to previous measurements. We will also present a study of the transverse momentum distributions of the J/{psi} mesons, in seven centrality bins.

  5. Influence of indium concentration on the structural and optoelectronic properties of indium selenide thin films

    NASA Astrophysics Data System (ADS)

    Yan, Yong; Li, Shasha; Yu, Zhou; Liu, Lian; Yan, Chuanpeng; Zhang, Yong; Zhao, Yong

    2014-12-01

    We have grown indium selenide thin films using magnetron sputtering method. The influence of indium concentration on the structural, optical and electrical properties was studied. The concentration of indium in indium selenide thin films was varied by adjusting the sputtering power from 40 to 80 W while keeping the substrate temperature and argon pressure constant. The β-phase, which only exists at elevated temperatures in bulk single crystals, can persist at room temperature in the In-rich films. The β-phase thin film with smaller band gap has an electrical resistivity about four orders of magnitude lower than that of the γ-In2Se3 thin film, which is also stable at room temperature. Furthermore, the single-phase γ-In2Se3 thin film was then assembled in visible-light photodetector which shows a fast, reversible, and stable response. These results indicate the possibility of using γ-In2Se3 thin film in various next-generation photoelectric and optical-memory applications.

  6. Studies of indium amides and nitrides

    SciTech Connect

    Purdy, A.P.; Berry, A.D.

    1993-12-31

    A reaction between InI{sub 3} and 3 eq. of KNH{sub 2} in liquid NH{sub 3} forms indium(III) amide (In(NH{sub 2}){sub 3}) a white, nearly insoluble compound. Indium(III) amide readily combines with KNH{sub 2} in liquid NH{sub 3} to form the mixed metal amide K{sub 2}In(NH{sub 2}){sub 5}. Other potassium and sodium derivatives MxIn(NH{sub 2}){sub 3+x} derivatives were prepared in a similar manner, but not all were obtained pure in the solid state. An impure tri-lithium derivative (Li{sub 3}In(NH{sub 2}){sub 6}) was obtained by adding a KNH{sub 2} solution (6 eq) to a solution of InI{sub 3} and 3 eq of LiI. Pyrolysis (in vacuo 25-300{degrees}C, under N{sub 2} 300-400{degrees}C) of In(NH{sub 2}){sub 3} or MxIn(NH{sub 2}){sub x+3} (M = Na, K) to 400{degrees}C results in the formation of InN, but indium metal is also formed from some of the mixed metal amides. The product from thermal decomposition of Li{sub 3}In(NH{sub 2}){sub 6} under vacuum was tentatively identified as the ternary nitride Li{sub 3}InN{sub 2}. Products were characterized by elemental analysis, IR spectroscopy, and powder x-ray diffraction experiments.

  7. Two-Step Plasma Process for Cleaning Indium Bonding Bumps

    NASA Technical Reports Server (NTRS)

    Greer, Harold F.; Vasquez, Richard P.; Jones, Todd J.; Hoenk, Michael E.; Dickie, Matthew R.; Nikzad, Shouleh

    2009-01-01

    A two-step plasma process has been developed as a means of removing surface oxide layers from indium bumps used in flip-chip hybridization (bump bonding) of integrated circuits. The two-step plasma process makes it possible to remove surface indium oxide, without incurring the adverse effects of the acid etching process.

  8. Rapid solidification of indium: Modeling subcooling

    SciTech Connect

    Le Bot, C. Delaunay, D.

    2008-05-15

    This paper deals with the study of crystallization kinetics. A pure metal - indium - is subjected to different cooling rates by analyzing phenomena with a differential scanning calorimeter. Thanks to the thermal flux obtained by this device and to the temperature determined with a thermocouple inside the metal sample, and according to the modified Avrami theory, the aim was to determine a temperature dependent function K which links thermodynamic properties to a macroscopic model of crystallization kinetics. Experiments highlight the recalescence phenomenon and show that this function has a shape similar to that of the nucleation rate.

  9. Fabrication, structure and mechanical properties of indium nanopillars

    SciTech Connect

    Lee, Gyuhyon; Kim, Ju-Young; Budiman, Arief Suriadi; Tamura, Nobumichi; Kunz, Martin; Chen, Kai; Burek, Michael J.; Greer, Julia R.; Tsui, Ting Y.

    2010-01-01

    Solid and hollow cylindrical indium pillars with nanoscale diameters were prepared using electron beam lithography followed by the electroplating fabrication method. The microstructure of the solid-core indium pillars was characterized by scanning micro-X-ray diffraction, which shows that the indium pillars were annealed at room temperature with very few dislocations remaining in the samples. The mechanical properties of the solid pillars were characterized using a uniaxial microcompression technique, which demonstrated that the engineering yield stress is {approx}9 times greater than bulk and is {approx}1/28 of the indium shear modulus, suggesting that the attained stresses are close to theoretical strength. Microcompression of hollow indium nanopillars showed evidence of brittle fracture. This may suggest that the failure mode for one of the most ductile metals can become brittle when the feature size is sufficiently small.

  10. Fluxless indium and silver-indium bonding processes for photonics and high-temperature electronics

    NASA Astrophysics Data System (ADS)

    So, William Wilson

    A fluxless oxidation-free bonding technology using multilayer composite solders based on indium, or low melting temperature indium. alloys such as Ag-In, In-Sn and Au-In has been developed and studied. This technology eliminates the need of flux and scrubbing motion that are used in conventional soldering processes, and still produces good quality joints. By depositing multilayer composite materials in high vacuum, we eliminate the formation of an oxide layer thus removing the origin of the problem---solder oxidation. To understand the oxidation kinetics in the bonding process, I have modeled the oxidation rate of tin, which follows a parabolic growth law. For completeness of the oxidation model, I incorporated the temperature dependency of Henry's coefficient in the oxidation model. To prevent the solder material from oxidation when exposing to atmosphere, I have developed a technique, which utilizes the in-situ formation of stable intermetallic compound on the outer surface, or a gold layer to protect the bonding materials. The bonding is achieved by means of solid-liquid interdiffusion (SLID) and in-situ compound formation. The first alloy system that I studied is indium-silver. GaAs and silicon dice have been successfully bonded on silicon or glass substrates. The bonding quality is examined by a Scanning Acoustic Microscope (SAM). The results confirm that void-free joints are achieved. Cross-sections of the joint are examined using a Scanning Electron Microscope (SEM) equipped with Energy Dispersive X-ray (EDX) spectroscopy. The results reveal that the joint is composed of AuIn2, AgIn2-intermetallic compound and pure indium. From the Ag-In phase diagram, as indium composition is reduced to 25 wt. %, the solidus temperature jumps from 144 to above 695°C. By modifying the design of the multilayer composite, we developed a 210°C process to produce 700°C joints. All the well-bonded devices, before or after annealing, exceed the shear test force requirement of 2

  11. Tumour scanning with indium-111 dihaematoporphyrin ether.

    PubMed Central

    Quastel, M. R.; Richter, A. M.; Levy, J. G.

    1990-01-01

    Photofrin II (dihaematoporphyrin ether/ester, DHE) was labelled with indium-111 and its biodistribution in tumour bearing mice compared with that of 111In chloride. The uptake and clearance of 111In labelled DHE differed markedly from that of indium-111 chloride in that the former was not taken up by the tissues as much as the latter. Scintillation scanning with a gamma-camera showed marked uptake of both 111In agents at the site of the tumour, but a much lower tissue background (excluding the abdominal organs) for the mice given 111In DHE. Tumour:muscle ratios of dissected tissues were 2-3 times higher in 111In DHE treated animals as compared to the uptake of 111In chloride. There was a distinct difference in the pattern of distribution of the two 111In preparations in the tissues. The major accumulation of 111In chloride was in the kidneys, whereas the highest uptake of 111In DHE was in the liver, the organ in which unlabelled porphyrins accumulate. Extraction and testing of materials from tumours of 111In DHE treated animals indicated that most of the tumour extractable 111In had remained associated with the porphyrin in vivo up to 4 days after injection. Images Figure 1 PMID:2147858

  12. Indium antimonide large-format detector arrays

    NASA Astrophysics Data System (ADS)

    Davis, Mike; Greiner, Mark

    2011-06-01

    Large format infrared imaging sensors are required to achieve simultaneously high resolution and wide field of view image data. Infrared sensors are generally required to be cooled from room temperature to cryogenic temperatures in less than 10 min thousands of times during their lifetime. The challenge is to remove mechanical stress, which is due to different materials with different coefficients of expansion, over a very wide temperature range and at the same time, provide a high sensitivity and high resolution image data. These challenges are met by developing a hybrid where the indium antimonide detector elements (pixels) are unconnected islands that essentially float on a silicon substrate and form a near perfect match to the silicon read-out circuit. Since the pixels are unconnected and isolated from each other, the array is reticulated. This paper shows that the front side illuminated and reticulated element indium antimonide focal plane developed at L-3 Cincinnati Electronics are robust, approach background limited sensitivity limit, and provide the resolution expected of the reticulated pixel array.

  13. Discovery of Cadmium, Indium, and Tin Isotopes

    NASA Astrophysics Data System (ADS)

    Amos, Stephanie; Thoennessen, Michael

    2009-10-01

    As of today, no comprehensive study has been made covering the initial observations and identifications of isotopes. A project has been undertaken at MSU to document the discovery of all the known isotopes. The criteria defining discovery of a given isotope is the publication of clear mass and element assignment in a refereed journal. Prior to the current work the documentation of the discovery of eleven elements had been completed^1. These elements are cerium^2, arsenic, gold, tungsten, krypton, silver, vanadium, einsteinium, iron, barium, and cobalt. We will present the new documentation for the cadmium, indium, and tin isotopes. Thirty-seven cadmium isotopes, thirty-eight indium isotopes, and thirty-eight tin isotopes have been discovered so far. The description for each discovered isotope includes the year of discovery, the article published on the discovery, the article's author, the method of production, the method of identification, and any previous information concerning the isotope discovery. A summary and overview of all ˜500 isotopes documented so far as a function of discovery year, method and place will also be presented. ^1http://www.nscl.msu.edu/˜thoennes/2009/discovery.htm ^2J.Q. Ginepro, J. Snyder, and M. Thoennessen, At. Data Nucl. Data. Tables, in press (2009), doi:10.1016/j.adt.2009.06.002

  14. Patterning of Indium Tin Oxide Films

    NASA Technical Reports Server (NTRS)

    Immer, Christopher

    2008-01-01

    A relatively rapid, economical process has been devised for patterning a thin film of indium tin oxide (ITO) that has been deposited on a polyester film. ITO is a transparent, electrically conductive substance made from a mixture of indium oxide and tin oxide that is commonly used in touch panels, liquid-crystal and plasma display devices, gas sensors, and solar photovoltaic panels. In a typical application, the ITO film must be patterned to form electrodes, current collectors, and the like. Heretofore it has been common practice to pattern an ITO film by means of either a laser ablation process or a photolithography/etching process. The laser ablation process includes the use of expensive equipment to precisely position and focus a laser. The photolithography/etching process is time-consuming. The present process is a variant of the direct toner process an inexpensive but often highly effective process for patterning conductors for printed circuits. Relative to a conventional photolithography/ etching process, this process is simpler, takes less time, and is less expensive. This process involves equipment that costs less than $500 (at 2005 prices) and enables patterning of an ITO film in a process time of less than about a half hour.

  15. Convection sensitivity and thermal analyses for indium and indium-lead mixing experiment (74-18)

    NASA Technical Reports Server (NTRS)

    Bourgeois, S. V.; Doty, J. P.

    1976-01-01

    Sounding rocket Experiment 74-18 was designed to demonstrate the effects of the Black Brandt rocket acceleration levels (during the low-g coast phase of its flight) on the motion of a liquid metal system to assist in preflight design. Some post flight analyses were also conducted. Preflight studies consisted of heat transfer analysis and convection sensitivity and convection modeling analyses which aided in the: (1) final selection of fluid materials (indium-lead melts rather than paraffins); (2) design and timing of heater and quench system; and (3) preflight predictions of the degree of lead penetration into the pure indium segment of the fluid. Postflight studies involved: (1) updating the convection sensitivity calculations by utilizing actual flight gravity levels; and (2) modeling the mixing in the flight samples.

  16. High-efficiency indium tin oxide/indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Li, X.; Wanlass, M. W.; Gessert, T. A.; Emery, K. A.; Coutts, T. J.

    1989-01-01

    Improvements in the performance of indium tin oxide (ITO)/indium phosphide solar cells have been realized by the dc magnetron sputter deposition of n-ITO onto an epitaxial p/p(+) structure grown on commercial p(+) bulk substrates. The highest efficiency cells were achieved when the surface of the epilayer was exposed to an Ar/H2 plasma before depositing the bulk of the ITO in a more typical Ar/O2 plasma. With H2 processing, global efficiencies of 18.9 percent were achieved. It is suggested that the excellent performance of these solar cells results from the optimization of the doping, thickness, transport, and surface properties of the p-type base, as well as from better control over the ITO deposition procedure.

  17. The effect of prenatal indium chloride exposure on chondrogenic ossification.

    PubMed

    Ungváry, G; Tátrai, E; Szakmáry, E; Náray, M

    2001-03-01

    Daily indium chloride doses of control (0) or 400 mg/kg were administered orally to pregnant Sprague-Dawley (SD) rats by gavage, on d 20 of gestation. Indium concentration was determined in the maternal and fetal blood, livers, kidneys, skulls, and femurs by atomic absorption spectrometry. Further groups of pregnant rats were treated with control (0) or 400 mg/kg indium chloride orally, during the whole gestation period. The fetuses were examined on d 21 of gestation, using histological and histochemical methods. Four hours after the administration indium concentration was found to be significant in the blood, liver, and kidneys of the dams. Twenty-four hours later it increased in the blood but not in the liver and kidney. Fetal indium concentrations were 40-50% of the maternal levels due to a barrier of the placenta. In the skull and the femur, indium was already detectable at 4 h after the administration, and by the end of 24 h, metal concentration was several times higher than that at 4 h, indicating accumulation. Furthermore, it was found that the birefringency of collagen detectable by picrosirius red staining in polarized light around the chondrocytes disappeared and became irregular. In the matrix of the epiphyseal cartilage, the regular, birefringent network demonstrable by Rivanol reaction became irregular and hardly recognizable. In the cytoplasm of the chondrocytes, the diffuse, evenly distributed positive Ricinus communis agglutinin reaction became irregular or disappeared. Similar but much weaker changes were observed with concanavalin A and wheat germ agglutinin stainings. It was concluded that the missing femur and micromelia diagnosed by alizarin staining is the consequence of a specific toxic effect of indium that inhibits chondrogenic ossification. No similar histochemical changes were observed in the bones of the skull developing by desmogenic ossification, despite the presence of indium. Data indicate that the mechanisms of the effects of indium

  18. Reflectance of metallic indium for solar energy applications

    NASA Technical Reports Server (NTRS)

    Bouquet, F. L.; Hasegawa, T.

    1984-01-01

    An investigation has been conducted in order to compile quantitative data on the reflective properties of metallic indium. The fabricated samples were of sufficiently high quality that differences from similar second-surface silvered mirrors were not apparent to the human eye. Three second-surface mirror samples were prepared by means of vacuum deposition techniques, yielding indium thicknesses of approximately 1000 A. Both hemispherical and specular measurements were made. It is concluded that metallic indium possesses a sufficiently high specular reflectance to be potentially useful in many solar energy applications.

  19. Determination of indium in rocks by substoichiometric radioisotope dilution analysis

    USGS Publications Warehouse

    Greenland, L. Paul; Campbell, E.Y.

    1973-01-01

    Rocks containing 10-140 ng of indium per g are decomposed with hydrofluoric and nitric acids in the presence of 114In. Indium is separated from other constituents by sequential extractions of the bromide, cupferronate, and acetylacetonate, and is then reacted with a substoichiometric amont of EDTA. Excess of indium is removed by acetylacetone extraction and the specific activity of the complexed fraction is determined by counting 114In. Analyses of the U.S.G.S. standard rocks are reported. These show good agreement with previous neutron activation analyses. Repetitive rock analyses indicated an analytical precision of ??4-7%. ?? 1973.

  20. Electrodeposition of Indium Bumps for Ultrafine Pitch Interconnection

    NASA Astrophysics Data System (ADS)

    Tian, Yingtao; Liu, Changqing; Hutt, David; Stevens, Bob

    2014-02-01

    Electroplating is a promising method to produce ultrafine pitch indium bumps for assembly of pixel detectors in imaging applications. In this work, the process of indium bumping through electrodeposition was demonstrated and the influences of various current waveforms on the bump morphology, microstructure and height uniformity were investigated. Electron microscopy was used to study the microstructure of electroplated indium bumps and a Zygo white light interferometer was utilised to evaluate the height uniformity. The results indicated that the bump uniformities on wafer, pattern and feature scales were improved by using unipolar pulse and bipolar pulse reverse current waveforms.

  1. Indium antimonide based HEMT for RF applications

    NASA Astrophysics Data System (ADS)

    Subash, T. D.; Gnanasekaran, T.

    2014-11-01

    We report on an indium antimonide high electron mobility transistor with record cut-off frequency characteristics. For high frequency response it is important to minimize parasitic resistance and capacitance to improve short-channel effects. For analog applications adequate pinch-off behavior is demonstrated. For proper device scaling we need high electron mobility and high electron density. Toward this end, the device design features and simulation are carried out by the Synopsys TCAD tool. A 30 nm InSb HEMT exhibits an excellent cut-off frequency of 586 GHz. To the knowledge of the authors, the obtained cut-off frequency is the highest ever reported in any FET on any material system.

  2. High quality factor indium oxide mechanical microresonators

    SciTech Connect

    Bartolomé, Javier Cremades, Ana; Piqueras, Javier

    2015-11-09

    The mechanical resonance behavior of as-grown In{sub 2}O{sub 3} microrods has been studied in this work by in-situ scanning electron microscopy (SEM) electrically induced mechanical oscillations. Indium oxide microrods grown by a vapor–solid method are naturally clamped to an aluminum oxide ceramic substrate, showing a high quality factor due to reduced energy losses during mechanical vibrations. Quality factors of more than 10{sup 5} and minimum detectable forces of the order of 10{sup −16} N/Hz{sup 1/2} demonstrate their potential as mechanical microresonators for real applications. Measurements at low-vacuum using the SEM environmental operation mode were performed to study the effect of extrinsic damping on the resonators behavior. The damping coefficient has been determined as a function of pressure.

  3. Processing development of 4 tantalum carbide-hafnium carbide and related carbides and borides for extreme environments

    NASA Astrophysics Data System (ADS)

    Gaballa, Osama Gaballa Bahig

    Carbides, nitrides, and borides ceramics are of interest for many applications because of their high melting temperatures and good mechanical properties. Wear-resistant coatings are among the most important applications for these materials. Materials with high wear resistance and high melting temperatures have the potential to produce coatings that resist degradation when subjected to high temperatures and high contact stresses. Among the carbides, Al4SiC4 is a low density (3.03 g/cm3), high melting temperature (>2000°C) compound, characterized by superior oxidation resistance, and high compressive strength. These desirable properties motivated this investigation to (1) obtain high-density Al4SiC4 at lower sintering temperatures by hot pressing, and (2) to enhance its mechanical properties by adding WC and TiC to the Al4SiC4. Also among the carbides, tantalum carbide and hafnium carbide have outstanding hardness; high melting points (3880°C and 3890°C respectively); good resistance to chemical attack, thermal shock, and oxidation; and excellent electronic conductivity. Tantalum hafnium carbide (Ta4HfC 5) is a 4-to-1 ratio of TaC to HfC with an extremely high melting point of 4215 K (3942°C), which is the highest melting point of all currently known compounds. Due to the properties of these carbides, they are considered candidates for extremely high-temperature applications such as rocket nozzles and scramjet components, where the operating temperatures can exceed 3000°C. Sintering bulk components comprised of these carbides is difficult, since sintering typically occurs above 50% of the melting point. Thus, Ta4 HfC5 is difficult to sinter in conventional furnaces or hot presses; furnaces designed for very high temperatures are expensive to purchase and operate. Our research attempted to sinter Ta4HfC5 in a hot press at relatively low temperature by reducing powder particle size and optimizing the powder-handling atmosphere, milling conditions, sintering

  4. Indium foil with beryllia washer improves transistor heat dissipation

    NASA Technical Reports Server (NTRS)

    Hilliard, J.; John, J. E. A.

    1964-01-01

    Indium foil, used as an interface material in transistor mountings, greatly reduces the thermal resistance of beryllia washers. This method improves the heat dissipation of power transistors in a vacuum environment.

  5. Clinical imaging with indium-111 leukocytes: uptake in bowel infarction

    SciTech Connect

    Gray, H.W.; Cuthbert, I.; Richards, J.R.

    1981-08-01

    Leukocytes labeled with indium-111 accumulated in an area of small-bowel infarction, mimicking a paracolic abscess. Evidence of subacute bowel obstruction should alert the nuclear medicine physician to the former possibility.

  6. Doping of indium phosphide with group IV elements

    SciTech Connect

    Zakharenkov, L.F.; Samorukov, B.E.; Zykov, A.M.

    1985-06-01

    This paper studies the doping of single crystals of indium phosphide (InP) with group IV elements using data obtained by measuring the total charge concentration of additives and carriers. Single crystals of indium phosphide were grown by the Czochralski method from liquid melts with a liquid hermetic seal in quartz cubicles. The total impurity concentration was determined by atomic-absorption analysis with + or - 10% error. In order to explain the behavior of germanium and tin in indium phosphide, the authors consider the bond energies of additives in indium phosphide and their tetrahedral radii. The authors conclude that the established higher amphoteric character of germanium with respect to tin is probably explained by the moduli of elasticity of the doped crystal.

  7. Determination of indium in standard rocks by neutron activation analysis.

    PubMed

    Johansen, O; Steinnes, E

    1966-08-01

    A rapid neutron activation method for the determination of indium in rocks, based on 54 min (116m)In, is described. The method has been applied to a series of geochemical standards including granite G-1 and diabase W-1. The precision is better than +/- 5% for samples containing more than 5 x 10(-10)g indium. Good agreement with previously published values for G-1 and W-1 has been obtained. PMID:18959988

  8. Status of indium phosphide solar cell development at Spire

    NASA Technical Reports Server (NTRS)

    Spitzer, M. B.; Keavney, C. J.; Vernon, S. M.

    1987-01-01

    On-going development of indium phosphide solar cells for space applications is presented. The development is being carried out with a view towards both high conversion efficiency and simplicity of manufacture. The cell designs comprise the ion-implanted cell, the indium tin oxide top contact cell, and the epitaxial cell grown by metal organic chemical vapor deposition. Modelling data on the limit to the efficiency are presented and comparison is made to measured performance data.

  9. Development of indium bumping technology through AZ9260 resist electroplating

    NASA Astrophysics Data System (ADS)

    Huang, Qiuping; Xu, Gaowei; Yuan, Yuan; Cheng, Xiao; Luo, Le

    2010-05-01

    Indium bumping is very critical technology in the application of high-density interconnection between a FPA (focal plane array) and a Si ROIC (read-out integrated circuit) by flip-chip bonding. In this paper, the indium BGA (ball grid array) chips are prepared with an electroplating method on the Si substrate. With such a method, the first difficulty arises in removing the seed layer. Two ways, including IBE (ion beam etching) and lift-off, are adopted to overcome it. The results show that the lift-off process is effective but not IBE. During the reflow process, many indium bumps fall off the substrate. Two ways are tried to solve this problem: one is to optimize the reflow profile and the other is to thicken the wetting layer. The results show that these two ways can effectively improve such status. The barrier effects of the UBM (under bump metallization) for indium, which are Ti/Pt (300 Å/200 Å) and Ti/Pt/Au/Ep Au (300 Å/200 Å/1000 Å/4 µm), are also investigated. Experimental results indicate that both of them can be used in application of integration of the FPA and ROIC. Reliability of indium bumps with these two kinds of UBM is evaluated by the shear test. The results show that their shear strength has a significant increase after reflow. For the indium bump with UBM of Ti/Pt/Au/Ep Au (300 Å/200 Å/1000 Å/4 µm), IMC (intermetallic compounds) at the interface of Au-In can strengthen the indium bump but may change the plasticity of indium.

  10. Analysis of the production of ATLAS indium bonded pixel modules

    NASA Astrophysics Data System (ADS)

    Alimonti, G.; Andreazza, A.; Bulgheroni, A.; Corda, G.; Di Gioia, S.; Fiorello, A.; Gemme, C.; Koziel, M.; Manca, F.; Meroni, C.; Nechaeva, P.; Paoloni, A.; Rossi, L.; Rovani, A.; Ruscino, E.

    2006-09-01

    The ATLAS collaboration is currently building 1500 pixel modules using the indium bump bonding technique developed by SELEX Sistemi Integrati (former AMS). The indium deposition and flip-chip process are described together with an overview of the chip stripping machine that allows defective modules to be reworked. The production is half-way through at the time of this writing. This paper also discusses the problems encountered during production and the adopted solutions.

  11. Recovery of indium from LCD screens of discarded cell phones.

    PubMed

    Silveira, A V M; Fuchs, M S; Pinheiro, D K; Tanabe, E H; Bertuol, D A

    2015-11-01

    Advances in technological development have resulted in high consumption of electrical and electronic equipment (EEE), amongst which are cell phones, which have LCD (liquid crystal display) screens as one of their main components. These multilayer screens are composed of different materials, some with high added value, as in the case of the indium present in the form of indium tin oxide (ITO, or tin-doped indium oxide). Indium is a precious metal with relatively limited natural reserves (Dodbida et al., 2012), so it can be profitable to recover it from discarded LCD screens. The objective of this study was to develop a complete process for recovering indium from LCD screens. Firstly, the screens were manually removed from cell phones. In the next step, a pretreatment was developed for removal of the polarizing film from the glass of the LCD panels, because the adherence of this film to the glass complicated the comminution process. The choice of mill was based on tests using different equipment (knife mill, hammer mill, and ball mill) to disintegrate the LCD screens, either before or after removal of the polarizing film. In the leaching process, it was possible to extract 96.4 wt.% of the indium under the following conditions: 1.0M H2SO4, 1:50 solid/liquid ratio, 90°C, 1h, and stirring at 500 rpm. The results showed that the best experimental conditions enabled extraction of 613 mg of indium/kg of LCD powder. Finally, precipitation of the indium with NH4OH was tested at different pH values, and 99.8 wt.% precipitation was achieved at pH 7.4. PMID:25922168

  12. Indium acetate toxicity in male reproductive system in rats.

    PubMed

    Lee, Kuo-Hsin; Chen, Hsiu-Ling; Leung, Chung-Man; Chen, Hsin-Pao; Hsu, Ping-Chi

    2016-01-01

    Indium, a rare earth metal characterized by high plasticity, corrosion resistance, and a low melting point, is widely used in the electronics industry, but has been reported to be an environmental pollutant and a health hazard. We designed a study to investigate the effects of subacute exposure of indium compounds on male reproductive function. Twelve-week old male Sprague-Dawley rats were randomly divided into test and control groups, and received weekly intraperitoneal injections of indium acetate (1.5 mg/kg body weight) and normal saline, respectively, for 8 weeks. Serum indium levels, cauda epididymal sperm count, motility, morphology, chromatin DNA structure, mitochondrial membrane potential, oxidative stress, and testis DNA content were investigated. The indium acetate-treated group showed significant reproductive toxicity, as well as an increased percentage of sperm morphology abnormality, chromatin integrity damage, and superoxide anion generation. Furthermore, positive correlations among sperm morphology abnormalities, chromatin DNA damage, and superoxide anion generation were also noted. The results of this study demonstrated the toxic effect of subacute low-dose indium exposure during the period of sexual maturation on male reproductive function in adulthood, through an increase in oxidative stress and sperm chromatin DNA damage during spermiogenesis, in a rodent model. PMID:25044390

  13. Precipitation of Niobium Boride Phases at the Base Metal/Weld Metal Interface in Dissimilar Weld Joints

    NASA Astrophysics Data System (ADS)

    Výrostková, Anna; Kepič, Ján; Homolová, Viera; Falat, Ladislav

    2015-07-01

    In this work, the analysis of failure mechanism in the heat affected zone is described in dissimilar weld joints between advanced martensitic steel T92 and Ni-base weld metal. The joints were treated with two different post-weld heat treatments and tested. For the creep, tensile, and Charpy impact tests, the samples with interfacially located notch were used. Moreover long term aging at 625 °C was applied before the tensile and notch toughness tests. Decohesion fractures ran along carbides at the T92 BM/WM interfaces in case of the modified PWHT, whereas type IV cracking was the prevailing failure mechanism after the classical PWHT in the creep test. In the notch tensile and Charpy impact tests, with the notch at T92 base metal/weld metal interface, fractures ran along the interface with a hard phase on the fracture surface along with the ductile dimple and brittle quasi-cleavage fracture. The phase identified as niobium boride (either NbB and/or Nb3B2) was produced during welding at the end of the solidification process. It was found in the welds regardless of the post-weld heat treatment and long-term aging.

  14. Transition metal carbides, nitrides and borides, and their oxygen containing analogs useful as water gas shift catalysts

    DOEpatents

    Thompson, Levi T.; Patt, Jeremy; Moon, Dong Ju; Phillips, Cory

    2003-09-23

    Mono- and bimetallic transition metal carbides, nitrides and borides, and their oxygen containing analogs (e.g. oxycarbides) for use as water gas shift catalysts are described. In a preferred embodiment, the catalysts have the general formula of M1.sub.A M2.sub.B Z.sub.C O.sub.D, wherein M1 is selected from the group consisting of Mo, W, and combinations thereof; M2 is selected from the group consisting of Fe, Ni, Cu, Co, and combinations thereof; Z is selected from the group consisting of carbon, nitrogen, boron, and combinations thereof; A is an integer; B is 0 or an integer greater than 0; C is an integer; O is oxygen; and D is 0 or an integer greater than 0. The catalysts exhibit good reactivity, stability, and sulfur tolerance, as compared to conventional water shift gas catalysts. These catalysts hold promise for use in conjunction with proton exchange membrane fuel cell powered systems.

  15. On the transferability of electron density in binary vanadium borides VB, V3B4 and VB2.

    PubMed

    Terlan, Bürgehan; Akselrud, Lev; Baranov, Alexey I; Borrmann, Horst; Grin, Yuri

    2015-12-01

    Binary vanadium borides are suitable model systems for a systematic analysis of the transferability concept in intermetallic compounds due to chemical intergrowth in their crystal structures. In order to underline this structural relationship, topological properties of the electron density in VB, V3B4 and VB2 reconstructed from high-resolution single-crystal X-ray diffraction data as well as derived from quantum chemical calculations, are analysed in terms of Bader's Quantum Theory of Atoms in Molecules [Bader (1990). Atoms in Molecules: A Quantum Theory, 1st ed. Oxford: Clarendon Press]. The compounds VB, V3B4 and VB2 are characterized by a charge transfer from the metal to boron together with two predominant atomic interactions, the shared covalent B-B interactions and the polar covalent B-M interactions. The resembling features of the crystal structures are well reflected by the respective B-B interatomic distances as well as by ρ(r) values at the B-B bond critical points. The latter decrease with an increase in the corresponding interatomic distances. The B-B bonds show transferable electron density properties at bond critical points depending on the respective bond distances. PMID:26634735

  16. Mechanism and kinetics of sodium borohydride hydrolysis over crystalline nickel and nickel boride and amorphous nickel-boron nanoparticles

    NASA Astrophysics Data System (ADS)

    Wu, Zhijie; Mao, Xikang; Zi, Qin; Zhang, Rongrong; Dou, Tao; Yip, Alex C. K.

    2014-12-01

    The initial hydrogen generation turnover rates during the hydrolysis of sodium borohydride over nickel catalysts (crystalline nickel (Ni), crystalline nickel boride (Ni3B), and amorphous nickel-boron (Ni-B) nanoparticles) were measured to investigate the reaction kinetics and mechanisms by varying the reactant concentrations and reaction temperatures. Nickel catalysts with and without boron follow different hydrolysis pathways; hydroxide ions are involved in the activation of reactant molecules over Ni3B and Ni-B catalysts. This study explicitly reports the zero-order and first-order reaction kinetics with respect to the reactant concentration over Ni, Ni3B and Ni-B catalysts. The initial hydrogen generation turnover rates and activation energies determined from the experimental data indicate that the amorphous Ni-B nanoparticles exhibit the highest turnover rate and lowest activation energy for the hydrolysis of borohydride among the investigated catalysts. This study provides a general strategy for the development of borohydride hydrolysis catalysts via the modification of a metal catalyst using boron, which causes the crystalline structure to become amorphous and leads to electron-rich, highly undercoordinated metal atoms at the surface.

  17. Indium Antimonide Nanowires: Synthesis and Properties.

    PubMed

    Shafa, Muhammad; Akbar, Sadaf; Gao, Lei; Fakhar-E-Alam, Muhammad; Wang, Zhiming M

    2016-12-01

    This article summarizes some of the critical features of pure indium antimonide nanowires (InSb NWs) growth and their potential applications in the industry. In the first section, historical studies on the growth of InSb NWs have been presented, while in the second part, a comprehensive overview of the various synthesis techniques is demonstrated briefly. The major emphasis of current review is vapor phase deposition of NWs by manifold techniques. In addition, author review various protocols and methodologies employed to generate NWs from diverse material systems via self-organized fabrication procedures comprising chemical vapor deposition, annealing in reactive atmosphere, evaporation of InSb, molecular/ chemical beam epitaxy, solution-based techniques, and top-down fabrication method. The benefits and ill effects of the gold and self-catalyzed materials for the growth of NWs are explained at length. Afterward, in the next part, four thermodynamic characteristics of NW growth criterion concerning the expansion of NWs, growth velocity, Gibbs-Thomson effect, and growth model were expounded and discussed concisely. Recent progress in device fabrications is explained in the third part, in which the electrical and optical properties of InSb NWs were reviewed by considering the effects of conductivity which are diameter dependent and the applications of NWs in the fabrications of field-effect transistors, quantum devices, thermoelectrics, and detectors. PMID:27009531

  18. Fabrication challenges for indium phosphide microsystems

    NASA Astrophysics Data System (ADS)

    Siwak, N. P.; Fan, X. Z.; Ghodssi, R.

    2015-04-01

    From the inception of III-V microsystems, monolithically integrated device designs have been the motivating drive for this field, bringing together the utility of single-chip microsystems and conventional fabrication techniques. Indium phosphide (InP) has a particular advantage of having a direct bandgap within the low loss telecommunication wavelength (1550 nm) range, able to support passive waveguiding and optical amplification, detection, and generation depending on the exact alloy of In, P, As, Ga, or Al materials. Utilizing epitaxy, one can envision the growth of a substrate that contains all of the components needed to establish a single-chip optical microsystem, containing detectors, sources, waveguides, and mechanical structures. A monolithic InP MEMS system has, to our knowledge, yet to be realized due to the significant difficulties encountered when fabricating the integrated devices. In this paper we present our own research and consolidate findings from other research groups across the world to give deeper insight into the practical aspects of InP monolithic microsystem development: epitaxial growth of InP-based alloys, etching techniques, common MEMS structures realized in InP, and future applications. We pay special attention to shedding light on considerations that must be taken when designing and fabricating a monolithic InP MEMS device.

  19. Indium Antimonide Nanowires: Synthesis and Properties

    NASA Astrophysics Data System (ADS)

    Shafa, Muhammad; Akbar, Sadaf; Gao, Lei; Fakhar-e-Alam, Muhammad; Wang, Zhiming M.

    2016-03-01

    This article summarizes some of the critical features of pure indium antimonide nanowires (InSb NWs) growth and their potential applications in the industry. In the first section, historical studies on the growth of InSb NWs have been presented, while in the second part, a comprehensive overview of the various synthesis techniques is demonstrated briefly. The major emphasis of current review is vapor phase deposition of NWs by manifold techniques. In addition, author review various protocols and methodologies employed to generate NWs from diverse material systems via self-organized fabrication procedures comprising chemical vapor deposition, annealing in reactive atmosphere, evaporation of InSb, molecular/ chemical beam epitaxy, solution-based techniques, and top-down fabrication method. The benefits and ill effects of the gold and self-catalyzed materials for the growth of NWs are explained at length. Afterward, in the next part, four thermodynamic characteristics of NW growth criterion concerning the expansion of NWs, growth velocity, Gibbs-Thomson effect, and growth model were expounded and discussed concisely. Recent progress in device fabrications is explained in the third part, in which the electrical and optical properties of InSb NWs were reviewed by considering the effects of conductivity which are diameter dependent and the applications of NWs in the fabrications of field-effect transistors, quantum devices, thermoelectrics, and detectors.

  20. Independent Composition and Size Control for Highly Luminescent Indium-Rich Silver Indium Selenide Nanocrystals.

    PubMed

    Yarema, Olesya; Yarema, Maksym; Bozyigit, Deniz; Lin, Weyde M M; Wood, Vanessa

    2015-11-24

    Ternary I-III-VI nanocrystals, such as silver indium selenide (AISe), are candidates to replace cadmium- and lead-based chalcogenide nanocrystals as efficient emitters in the visible and near IR, but, due to challenges in controlling the reactivities of the group I and III cations during synthesis, full compositional and size-dependent behavior of I-III-VI nanocrystals is not yet explored. We report an amide-promoted synthesis of AISe nanocrystals that enables independent control over nanocrystal size and composition. By systematically varying reaction time, amide concentration, and Ag- and In-precursor concentrations, we develop a predictive model for the synthesis and show that AISe sizes can be tuned from 2.4 to 6.8 nm across a broad range of indium-rich compositions from AgIn11Se17 to AgInSe2. We perform structural and optical characterization for representative AISe compositions (Ag0.85In1.05Se2, Ag3In5Se9, AgIn3Se5, and AgIn11Se17) and relate the peaks in quantum yield to stoichiometries exhibiting defect ordering in the bulk. We optimize luminescence properties to achieve a record quantum yield of 73%. Finally, time-resolved photoluminescence measurements enable us to better understand the physics of donor-acceptor emission and the role of structure and composition in luminescence. PMID:26370776

  1. Indium-granulocyte scanning in the painful prosthetic joint

    SciTech Connect

    Pring, D.J.; Henderson, R.G.; Keshavarzian, A.; Rivett, A.G.; Krausz, T.; Coombs, R.R.; Lavender, J.P.

    1986-07-01

    The value of indium-111-labeled granulocyte scanning to determine the presence of infection was assessed in 50 prosthetic joints (41 of which were painful) in 40 patients. Granulocytes were obtained from the patients' blood and labeled in plasma with indium 111 tropolonate. Abnormal accumulation of indium 111 in the region of the prosthesis was noted. Proven infection occurred in 11 prostheses, and all of the infections were detected by indium-111-labeled granulocyte scanning. Nineteen were not infected (including nine asymptomatic controls) and only two produced false-positive scans. This represents a specificity of 89.5%, sensitivity of 100%, and overall accuracy of 93.2%. These results compare favorably with plain radiography. There was no radiologic evidence of infection in three of the infected prostheses, and 10 of the noninfected prostheses had some radiologic features that suggested sepsis. We conclude that indium-granulocyte scanning can reliably detect or exclude infection in painful prosthetic joints and should prove useful in clinical management.

  2. Highly Conducting Transparent Indium-Doped Zinc Oxide Thin Films

    NASA Astrophysics Data System (ADS)

    Singh, Budhi; Ghosh, Subhasis

    2014-09-01

    Highly conducting transparent indium-doped zinc oxide (IZO) thin films have been achieved by controlling different growth parameters using radio frequency magnetron sputtering. The structural, electrical, and optical properties of the IZO thin films have been investigated for varied indium content and growth temperature ( T G) in order to find out the optimum level of doping to achieve the highest conducting transparent IZO thin films. The highest mobility and carrier concentration of 11.5 cm2/V-s and 3.26 × 1020 cm-3, respectively, have been achieved in IZO doped with 2% indium. It has been shown that as T G of the 2% IZO thin films increase, more and more indium atoms are substituted into Zn sites leading to shift in (002) peaks towards higher angles which correspond to releasing the stress within the IZO thin film. The minimum resistivity of 5.3 × 10-4 Ω-cm has been achieved in 2% indium-doped IZO grown at 700°C.

  3. Method for forming indium oxide/n-silicon heterojunction solar cells

    DOEpatents

    Feng, Tom; Ghosh, Amal K.

    1984-03-13

    A high photo-conversion efficiency indium oxide/n-silicon heterojunction solar cell is spray deposited from a solution containing indium trichloride. The solar cell exhibits an Air Mass One solar conversion efficiency in excess of about 10%.

  4. Higher borides and oxygen-enriched Mg-B-O inclusions as possible pinning centers in nanostructural magnesium diboride and the influence of additives on their formation

    NASA Astrophysics Data System (ADS)

    Prikhna, Tatiana; Gawalek, Wolfgang; Savchuk, Yaroslav; Tkach, Vasiliy; Danilenko, Nikolay; Wendt, Michael; Dellith, Jan; Weber, Harold; Eisterer, Michael; Moshchil, Viktor; Sergienko, Nina; Kozyrev, Artem; Nagorny, Peter; Shapovalov, Andrey; Melnikov, Vladimir; Dub, Sergey; Litzkendorf, Doris; Habisreuther, Tobias; Schmidt, Christa; Mamalis, Athanasios; Sokolovsky, Vladimir; Sverdun, Vladimir; Karau, Fridrich; Starostina, Alexandra

    2010-10-01

    The study of high pressure (2 GPa) synthesized MgB 2-based materials allows us to conclude that higher borides (with near MgB 12 stoichiometry) and oxygen-enriched Mg-B-O inclusions can be pinning centers in nanostructural magnesium diboride matrix (with average grain sizes of 15-37 nm). It has been established that additions of Ti or SiC as well as manufacturing temperature can affect the size, amount and distribution of these inclusions in the material structure and thus, influence critical current density. The superconducting behavior of materials with near MgB 12 stoichiometry of matrix is discussed.

  5. Site-preferential design of itinerant ferromagnetic borides: experimental and theoretical investigation of MRh6B3 (M = Fe, Co).

    PubMed

    Misse, Patrick R N; Gillessen, Michael; Fokwa, Boniface P T

    2011-10-17

    Single-phase polycrystalline samples of the compounds MRh(6)B(3) (M = Fe, Co) as well as single crystals of CoRh(6)B(3) have been synthesized by arc-melting the elements under a purified argon atmosphere in a water-cooled copper crucible. The characterization of the new phases was achieved by using single-crystal and powder X-ray diffraction as well as EDX measurements. The two phases are isotypic and crystallize in the hexagonal Th(7)Fe(3) structure type (space group P6(3)mc, no. 186, Z = 2). In this structure, the magnetically active atoms (Fe, Co) are preferentially found on only one of the three available rhodium sites, and together with rhodium they build a three-dimensional network of interconnected (Rh/M)(3) triangles. Magnetic properties investigations show that both phases order ferromagnetically below Curie temperatures of 240 K (for FeRh(6)B(3)) and 150 K (for CoRh(6)B(3)). First-principles DFT calculations correctly reproduce not only the lattice parameters but also the ground state magnetic ordering in the two phases. These calculations also show that the long-range magnetic ordering in both phases occurs via indirect ferromagnetic coupling between the iron atoms mediated by rhodium. This magnetic structural model also predicts the saturation magnetizations to be 4.02 μ(B) for FeRh(6)B(3) (3.60 μ(B) found experimentally) and 2.75 μ(B) for CoRh(6)B(3). Furthermore, both phases are predicted to be metallic conductors as expected for these intermetallic borides. PMID:21905755

  6. Effect of higher borides and inhomogeneity of oxygen distribution on critical current density of undoped and doped magnesium diboride

    NASA Astrophysics Data System (ADS)

    Prikhna, T. A.; Gawalek, W.; Tkach, V. M.; Danilenko, N. I.; Savchuk, Ya M.; Dub, S. N.; Moshchil, V. E.; Kozyrev, A. V.; Sergienko, N. V.; Wendt, M.; Melnikov, V. S.; Dellith, J.; Weber, H.; Eisterer, M.; Schmidt, Ch; Habisreuther, T.; Litzkendorf, D.; Vajda, J.; Shapovalov, A. P.; Sokolovsky, V.; Nagorny, P. A.; Sverdun, V. B.; Kosa, J.; Karau, F.; Starostina, A. V.

    2010-06-01

    The effect of doping with Ti, Ta, SiC in complex with synthesis temperature on the amount and distribution of structural inhomogeneities in MgB2 matrix of high-pressure-synthesized-materials (2 GPa) which can influence pinning: higher borides (MgB12) and oxygen-enriched Mg-B-O inclusions, was established and a mechanism of doping effect on jc increase different from the generally accepted was proposed. Near theoretically dense SiC-doped material exhibited jc= 106 A/cm2 in 1T field and Hirr =8.5 T at 20 K. The highest jc in fields above 9, 6, and 4 T at 10, 20, and 25 K, respectively, was demonstrated by materials synthesized at 2 GPa, 600 °C from Mg and B without additions (at 20 K jc= 102 A/cm2 in 10 T field). Materials synthesized from Mg and B taken up to 1:20 ratio were superconductive. The highest jc (6×104 A/cm2 at 20 K in zero field, Hirr= 5 T) and the amount of SC phase (95.3% of shielding fraction), Tc being 37 K were demonstrated by materials having near MgB12 composition of the matrix. The materials with MgB12 matrix had a doubled microhardness of that with MgB2 matrix (25±1.1 GPa and 13.08±1.07 GPa, at a load of 4.9 N, respectively).

  7. Anomalous effect of vanadium boride seeding on thermoelectric properties of YB{sub 22}C{sub 2}N

    SciTech Connect

    Prytuliak, A.; Maruyama, S.; Mori, T.

    2013-05-15

    Highlights: ► We doped YB{sub 22}C{sub 2}N; the long awaited n-type counterpart to p-type boron carbide. ► VB{sub 2} seeding of YB{sub 22}C{sub 2}N showed striking results. ► Thermal treatment effects led to VB{sub 2} being intrinsically doped. ► Large increase of both Seebeck coefficient and electrical conductivity was obtained. - Abstract: Vanadium boride seeded YB{sub 22}C{sub 2}N were synthesized and the thermoelectric properties investigated. YB{sub 22}C{sub 2}N is representative of the series of rare earth borocarbonitrides which is the potential long awaited n-type counterpart to p-type boron carbide. VB{sub 2} seeded samples of YB{sub 22}C{sub 2}N were prepared using VB{sub 2} directly as an initial additive and V{sub 2}O{sub 3} which also results in formation of vanadium diboride in the final product. The resistivity and Seebeck coefficient of samples were measured in the temperature range of 323 K to 1073 K. A dramatic effect of thermal treatment on the Seebeck coefficient of VB{sub 2} seeded samples was observed, and it is indicated that there is possible partial intrinsic doping of vanadium into YB{sub 22}C{sub 2}N. VB{sub 2} is revealed to be a promising additive to improve the thermoelectric properties of YB{sub 22}C{sub 2}N. An enhancement of more than 220% of the maximum absolute value of the Seebeck coefficient was obtained while the resistivity was also reduced considerably.

  8. Indium-111-Photofrin-II scintillation scan

    SciTech Connect

    Origitano, T.C.; Karesh, S.M.; Reichman, O.H.; Henkin, R.E.; Caron, M.J.

    1989-04-01

    Photodynamic therapy is under intense investigation as an adjuvant treatment for malignant glial tumors of the central nervous system. Photofrin-II (HpD-II) is currently the most actively investigated photosensitizing agent. A crucial issue regarding the safe and efficacious usage of HpD-II-based photodynamic therapy is the individual in vivo kinetics of tumor uptake and retention, compared with normal brain clearance. The optimal time for photoactivation of sensitized tumor must be known to ensure a high target-to-nontarget ratio, resulting in the maximal tumor destruction while preserving normal brain. Our laboratory developed a radionuclide scan based on 111indium (111In)-labeled HpD-II to evaluate HpD-II localization and clearance noninvasively within a canine model of intracerebral gliosarcoma. Synthesis of the 111In-HpD-II complex in greater than 90% yield is achieved by a simple, rapid labeling method. Radiochemical purity and stability were verified by high-performance liquid chromatography. Using the canine model of intracerebral gliosarcoma, we followed the uptake of 111In-HpD-II in tumors with serial scintillation scanning. Localization of the tumor by 111In-HpD-II has been verified by contrast-enhanced computed tomographic scan followed by gross and histological examination of the enhancing brain region. Total body biodistribution of 111In-HpD-II at various times after injection has been evaluated. The ratio of uptake in tumor compared with surrounding brain peaked at 72 hours after injection. The knowledge of regional distribution and concentration of a photosensitizing agent within a tumor mass and surrounding brain allows for the most efficacious timing and localization of a photoactivating source.

  9. Materials flow of indium in the United States in 2008 and 2009

    USGS Publications Warehouse

    Goonan, Thomas G.

    2012-01-01

    Indium is a material that has many applications. It is used by anyone who watches television or views a computer screen. It is found in solar energy arrays and in soldering applications that are required to be lead free. In 2009, about 550 metric tons (t) of indium metal was produced from primary sources world-wide; it was estimated that the United States consumed about 110 t of indium metal (20 percent of world primary production). However, when imports of consumer products that contain indium are considered, the United States consumed about 200 t of indium (36 percent of world primary production). When one considers the recovery from the low-efficiency sputtering process that coats indium-tin oxide onto glass and other surfaces, the recycling rate (within the manufacturing process that uses indium-tin oxide in flat panel displays approaches 36 percent. However, indium recovery from old scrap generated from end-of-life consumer products is not sufficiently economic to add significantly to secondary production. Between 1988 and 2010, indium prices averaged $381 per kilogram (in constant 2000 dollars). However, prices have been quite volatile (deviating from the average of $381 per kilogram by ±$199 per kilogram, a 52 percent difference from the average), reflecting short-term disequilibrium of supply and demand but also responsiveness of supply to demand. The dynamics of zinc smelting govern the primary supply of indium because indium is a byproduct of zinc smelting. Secondary indium supply, which accounts for about one-half of total indium supply, is governed by indium prices and technological advances in recovery. Indium demand is expected to grow because the number and volume of cutting edge technology applications that depend on indium are expected to grow.

  10. Synthesis and conductivity of indium-doped tin pyrophosphates

    SciTech Connect

    Garzon, Fernando H; Mukundan, Rangachary; Brosha, Eric L

    2008-01-01

    We have synthesized indium-doped tin pyrophosphates as high-temperature anhydrous proton conductors. The ratio of tin to indium was varied using two different synthetic methods. The first is a high-temperature reaction in which a paste containing the reactants in excess phosphoric acid was heated for various amounts of time at various temperatures. The second method is a solution precipitation procedure followed by calcination, which offers several advantages over traditional synthetic techniques. These advantages inc 1 ude better stoichiometric control, lower temperature requirements, and chemically uniform products. Several phosphate sources were investigated, including phosphoric acid, pyrophosphoric acid, and potassium pyrophosphate. The resulting indium-doped tin pyrophosphates had good proton conductivity over a wide temperature range with no humidification.

  11. Indium oxide inverse opal films synthesized by structure replication method

    NASA Astrophysics Data System (ADS)

    Amrehn, Sabrina; Berghoff, Daniel; Nikitin, Andreas; Reichelt, Matthias; Wu, Xia; Meier, Torsten; Wagner, Thorsten

    2016-04-01

    We present the synthesis of indium oxide (In2O3) inverse opal films with photonic stop bands in the visible range by a structure replication method. Artificial opal films made of poly(methyl methacrylate) (PMMA) spheres are utilized as template. The opal films are deposited via sedimentation facilitated by ultrasonication, and then impregnated by indium nitrate solution, which is thermally converted to In2O3 after drying. The quality of the resulting inverse opal film depends on many parameters; in this study the water content of the indium nitrate/PMMA composite after drying is investigated. Comparison of the reflectance spectra recorded by vis-spectroscopy with simulated data shows a good agreement between the peak position and calculated stop band positions for the inverse opals. This synthesis is less complex and highly efficient compared to most other techniques and is suitable for use in many applications.

  12. Mobility of indium on the ZnO(0001) surface

    NASA Astrophysics Data System (ADS)

    Heinhold, R.; Reeves, R. J.; Williams, G. T.; Evans, D. A.; Allen, M. W.

    2015-02-01

    The mobility of indium on the Zn-polar (0001) surface of single crystal ZnO wafers was investigated using real-time x-ray photoelectron spectroscopy. A sudden transition in the wettability of the ZnO(0001) surface was observed at ˜520 °C, with indium migrating from the ( 000 1 ¯ ) underside of the wafer, around the non-polar ( 1 1 ¯ 00 ) and ( 11 2 ¯ 0 ) sidewalls, to form a uniform self-organized (˜20 Å) adlayer. The In adlayer was oxidized, in agreement with the first principles calculations of Northrup and Neugebauer that In2O3 precipitation can only be avoided under a combination of In-rich and Zn-rich conditions. These findings suggest that unintentional In adlayers may form during the epitaxial growth of ZnO on indium-bonded substrates.

  13. Mobility of indium on the ZnO(0001) surface

    SciTech Connect

    Heinhold, R.; Reeves, R. J.; Allen, M. W.; Williams, G. T.; Evans, D. A.

    2015-02-02

    The mobility of indium on the Zn-polar (0001) surface of single crystal ZnO wafers was investigated using real-time x-ray photoelectron spectroscopy. A sudden transition in the wettability of the ZnO(0001) surface was observed at ∼520 °C, with indium migrating from the (0001{sup ¯}) underside of the wafer, around the non-polar (11{sup ¯}00) and (112{sup ¯}0) sidewalls, to form a uniform self-organized (∼20 Å) adlayer. The In adlayer was oxidized, in agreement with the first principles calculations of Northrup and Neugebauer that In{sub 2}O{sub 3} precipitation can only be avoided under a combination of In-rich and Zn-rich conditions. These findings suggest that unintentional In adlayers may form during the epitaxial growth of ZnO on indium-bonded substrates.

  14. Diffusion parameters of indium for silicon process modeling

    NASA Astrophysics Data System (ADS)

    Kizilyalli, I. C.; Rich, T. L.; Stevie, F. A.; Rafferty, C. S.

    1996-11-01

    The diffusion parameters of indium in silicon are investigated. Systematic diffusion experiments in dry oxidizing ambients at temperatures ranging from 800 to 1050 °C are conducted using silicon wafers implanted with indium. Secondary-ion-mass spectrometry (SIMS) is used to analyze the dopant distribution before and after heat treatment. The oxidation-enhanced diffusion parameter [R. B. Fair, in Semiconductor Materials and Process Technology Handbook, edited by G. E. McGuire (Noyes, Park Ridge, NJ, 1988); A. M. R. Lin, D. A. Antoniadis, and R. W. Dutton, J. Electrochem. Soc. Solid-State Sci. Technol. 128, 1131 (1981); D. A. Antoniadis and I. Moskowitz, J. Appl. Phys. 53, 9214 (1982)] and the segregation coefficient at the Si/SiO2 interface [R. B. Fair and J. C. C. Tsai, J. Electrochem. Soc. Solid-State Sci. Technol. 125, 2050 (1978)] (ratio of indium concentration in silicon to that in silicon dioxide) are extracted as a function of temperature using SIMS depth profiles and the silicon process simulator PROPHET [M. Pinto, D. M. Boulin, C. S. Rafferty, R. K. Smith, W. M. Coughran, I. C. Kizilyalli, and M. J. Thoma, in IEDM Technical Digest, 1992, p. 923]. It is observed that the segregation coefficient of indium at the Si/SiO2 interface is mIn≪1, similar to boron; however, unlike boron, the segregation coefficient of indium at the Si/SiO2 interface decreases with increasing temperature. Extraction results are summarized in analytical forms suitable for incorporation into other silicon process simulators. Finally, the validity of the extracted parameters is verified by comparing the simulated and measured SIMS profiles for an indium implanted buried-channel p-channel metal-oxide-semiconductor field-effect-transistor [I. C. Kizilyalli, F. A. Stevie, and J. D. Bude, IEEE Electron Device Lett. (1996)] process that involves a gate oxidation and various other thermal processes.

  15. Equation of state of liquid Indium under high pressure

    NASA Astrophysics Data System (ADS)

    Li, Huaming; Sun, Yongli; Li, Mo

    2015-09-01

    We apply an equation of state of a power law form to liquid Indium to study its thermodynamic properties under high temperature and high pressure. Molar volume of molten indium is calculated along the isothermal line at 710K within good precision as compared with the experimental data in an externally heated diamond anvil cell. Bulk modulus, thermal expansion and internal pressure are obtained for isothermal compression. Other thermodynamic properties are also calculated along the fitted high pressure melting line. While our results suggest that the power law form may be a better choice for the equation of state of liquids, these detailed predictions are yet to be confirmed by further experiment.

  16. Transition properties of low-lying states in atomic indium

    SciTech Connect

    Sahoo, B. K.; Das, B. P.

    2011-07-15

    We present here the results of our relativistic many-body calculations of various properties of the first six low-lying excited states of indium. The calculations were performed using the relativistic coupled-cluster method in the framework of the singles, doubles, and partial triples approximation. The lifetime of the [4p{sup 6}]5s{sup 2}5p{sub 3/2} state in this atom is determined. Our results could be used to shed light on the reliability of the lifetime measurements of the excited states of atomic indium that we have considered in the present work.

  17. Equation of state of liquid Indium under high pressure

    SciTech Connect

    Li, Huaming E-mail: mo.li@gatech.edu; Li, Mo E-mail: mo.li@gatech.edu; Sun, Yongli

    2015-09-15

    We apply an equation of state of a power law form to liquid Indium to study its thermodynamic properties under high temperature and high pressure. Molar volume of molten indium is calculated along the isothermal line at 710K within good precision as compared with the experimental data in an externally heated diamond anvil cell. Bulk modulus, thermal expansion and internal pressure are obtained for isothermal compression. Other thermodynamic properties are also calculated along the fitted high pressure melting line. While our results suggest that the power law form may be a better choice for the equation of state of liquids, these detailed predictions are yet to be confirmed by further experiment.

  18. Uptake of indium-111-labeled leukocytes by brain metastasis

    SciTech Connect

    Balachandran, S.; Husain, M.M.; Adametz, J.R.; Pallin, J.S.; Angtuaco, T.L.; Boyd, C.M.

    1987-04-01

    Uptake of indium-labeled leukocytes was seen in two cases of histologically proven brain metastasis. In one, this led to misdiagnosis of the lesion as an abscess. On histological evaluation, a large number of white blood cells or macrophages was seen at the neoplastic sites. Reasons for leukocyte accumulation around metastatic brain neoplasms are discussed. In contrast to the current reports that indium-labeled leukocyte scans can differentiate intracranial infection from tumor, these cases demonstrate their lack of specificity in the detection of brain abscess.

  19. Method for labelling leucocytes with indium In-111 oxine

    SciTech Connect

    Kaminsky, D.

    1992-03-03

    This patent describes an improved method for radio-labelling leucocytes with Indium In-111 oxine. It comprises separating the leucocytes from whole blood for obtaining separated leucocytes mixed with residual red blood cells; and then labelling the separated leucocytes with Indium In-111 oxine; wherein the improvement comprises the following further step: depleting residual red blood cells from the separated leucocytes by resuspending the leucocytes in an isotonic saline solution, then rocking the resuspended leucocytes for causing the leucocytes to preferentially settle out, and then removing residual red blood cells which remain suspended within the supernatant isotonic saline solution.

  20. Indium tin oxide and indium phosphide heterojunction nanowire array solar cells

    SciTech Connect

    Yoshimura, Masatoshi Nakai, Eiji; Fukui, Takashi; Tomioka, Katsuhiro

    2013-12-09

    Heterojunction solar cells were formed with a position-controlled InP nanowire array sputtered with indium tin oxide (ITO). The ITO not only acted as a transparent electrode but also as forming a photovoltaic junction. The devices exhibited an open-circuit voltage of 0.436 V, short-circuit current of 24.8 mA/cm{sup 2}, and fill factor of 0.682, giving a power conversion efficiency of 7.37% under AM1.5 G illumination. The internal quantum efficiency of the device was higher than that of the world-record InP cell in the short wavelength range.

  1. Deep Subgap Feature in Amorphous Indium Gallium Zinc Oxide. Evidence Against Reduced Indium

    SciTech Connect

    Sallis, Shawn; Quackenbush, Nicholas F.; Williams, Deborah S.; Senger, Mikell; Woicik, Joseph C.; White, Bruce E.; Piper, Louis F.

    2015-01-14

    Amorphous indium gallium zinc oxide (a-IGZO) is the archetypal transparent amorphous oxide semiconductor. In spite of the gains made with a-IGZO over amorphous silicon in the last decade, the presence of deep subgap states in a-IGZO active layers facilitate instabilities in thin film transistor properties under negative bias illumination stress. Several candidates could contribute to the formation of states within the band gap. We present evidence against In+ lone pair active electrons as the origin of the deep subgap features. No In+ species are observed, only In0 nano-crystallites under certain oxygen deficient growth conditions. Our results further support under coordinated oxygen as the source of the deep subgap states.

  2. A Simple Kinetic Model for the Growth of Fe2B Layers on AISI 1026 Steel During the Powder-pack Boriding

    NASA Astrophysics Data System (ADS)

    Flores-Rentería, M. A.; Ortiz-Domínguez, M.; Keddam, M.; Damián-Mejía, O.; Elias-Espinosa, M.; Flores-González, M. A.; Medina-Moreno, S. A.; Cruz-Avilés, A.; Villanueva-Ibañez, M.

    2015-02-01

    This work focused on the determination of boron diffusion coefficient through the Fe2B layers on AISI 1026 steel using a mathematical model. The suggested model solves the mass balance equation at the (Fe2B/substrate) interface. This thermochemical treatment was carried out in the temperature range of 1123-1273 K for a treatment time ranging from 2 to 8 h. The generated boride layers were characterized by different experimental techniques such as light optical microscopy, scanning electron microscopy, XRD analysis and the Daimler-Benz Rockwell-C indentation technique. As a result, the boron activation energy for AISI 1026 steel was estimated as 178.4 kJ/mol. Furthermore, this kinetic model was validated by comparing the experimental Fe2B layer thickness with the predicted one at a temperature of 1253 K for 5 h of treatment. A contour diagram relating the layer thickness to the boriding parameters was proposed to be used in practical applications.

  3. Hybrid aluminum and indium conducting filaments for nonpolar resistive switching of Al/AlOx/indium tin oxide flexible device

    NASA Astrophysics Data System (ADS)

    Yuan, Fang; Wang, Jer-Chyi; Zhang, Zhigang; Ye, Yu-Ren; Pan, Liyang; Xu, Jun; Lai, Chao-Sung

    2014-02-01

    The nonpolar resistive switching characteristics of an Al/AlOx/indium tin oxide (ITO) device on a plastic flexible substrate are investigated. By analyzing the electron diffraction spectroscopy results and thermal coefficient of resistivity, it is discovered that the formation of aluminum and indium conducting filaments in AlOx film strongly depends on the polarity of the applied voltage. The metal ions arising from the Al and ITO electrodes respectively govern the resistive switching in corresponding operation polarity. After 104 times of mechanical bending, the device can perform satisfactorily in terms of resistance distribution, read sequence of high and low resistive states, and thermal retention properties.

  4. p-type conduction in sputtered indium oxide films

    SciTech Connect

    Stankiewicz, Jolanta; Alcala, Rafael; Villuendas, Francisco

    2010-05-10

    We report p-type conductivity in intrinsic indium oxide (IO) films deposited by magnetron sputtering on fused quartz substrates under oxygen-rich ambient. Highly oriented (111) films were studied by x-ray diffraction, optical absorption, and Hall effect measurements. We fabricated p-n homojunctions on these films.

  5. Technique for depositing silicon dioxide on indium arsenide improves adhesion

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Planar array processing of indium arsenide wafers includes dicing into a prescribed geometry, then cleaning and drying, and finally pre-oxidizing in an oxygen atmosphere at 500 degrees C. The last step forms an oxide interface between the InAs surface and a glow discharge deposited layer of silicon dioxide.

  6. Indium-111 labeled anti-melanoma monoclonal antibodies

    DOEpatents

    Srivastava, S.C.; Fawwaz, R.A.; Ferrone, S.

    1984-04-30

    A monoclonal antibody to a high molecular weight melanoma-associated antigen was chelated and radiolabeled with indium-111. This material shows high affinity for melanoma and thus can be used in the detection, localization and imaging of melanoma. 1 figure.

  7. Properties and composition of anodic oxide layers of indium antimonide

    SciTech Connect

    Sorokin, I.N.; Gat'ko, L.E.; Nikitina, N.G.

    1985-09-01

    In recent years a number of optoelectronic devices based on narrowgap semiconductors of the AIIIBV type have been developed. One of the factors preventing widespread production of such devices is the inadequate study of the effect of the technology on the properties of insulator-semiconductor systems, of which anodic oxide films (AOF)--indium antimonide--are most promising. In this work the authors studied the dielectric properties and chemical composition of indium antimonide AOF as a function of their thicknesses and conditions of formation. It is determined that anodic indium antimonide oxide layers 90-110nm thick have high dielectric properties. It is also determined that an increase of the film thickness above 80100nm is accompanied by a decrease in the relative antimony content. The ratio of indium and antimony in oxide layers depends on the electrical conditions of oxidation of the semiconductor: the relative antimony content increases as a result of a decrease in the field intensity under conditions of constant voltage.

  8. Sub-micronewton thrust measurements of indium field emission thrusters

    NASA Technical Reports Server (NTRS)

    Ziemer, J. K.

    2003-01-01

    The performance of three indium field emission thrusters (In-FETs) developed by the Austrian Research Center Seibersdorf (ARCS) have been measured up to 200 muN, 2 mA, and 20 W using a submicronewton resolution thrust stand.

  9. Detection of accessory spleens with indium 111-labeled autologous platelets

    SciTech Connect

    Davis, H.H., II; Varki, A.; Heaton, W.A.; Siegel, B.A.

    1980-01-01

    In two patients with recurrent immune thrombocytopenia, accessory splenic tissue was demonstrated by radionuclide imaging following administration of indium 111-labeled autologous platelets. In one of these patients, no accessory splenic tissue was seen on images obtained with technetium 99m sulfur colloid. This new technique provides a simple means for demonstrating accessory spleens and simultaneously evaluating the life-span of autologous platelets.

  10. Indium segregation measured in InGaN quantum well layer

    PubMed Central

    Deng, Zhen; Jiang, Yang; Wang, Wenxin; Cheng, Liwen; Li, Wei; Lu, Wei; Jia, Haiqiang; Liu, Wuming; Zhou, Junming; Chen, Hong

    2014-01-01

    The indium segregation in InGaN well layer is confirmed by a nondestructive combined method of experiment and numerical simulation, which is beyond the traditional method. The pre-deposited indium atoms before InGaN well layer growth are first carried out to prevent indium atoms exchange between the subsurface layer and the surface layer, which results from the indium segregation. The uniform spatial distribution of indium content is achieved in each InGaN well layer, as long as indium pre-deposition is sufficient. According to the consistency of the experiment and numerical simulation, the indium content increases from 16% along the growth direction and saturates at 19% in the upper interface, which cannot be determined precisely by the traditional method. PMID:25339386

  11. Cross-current leaching of indium from end-of-life LCD panels.

    PubMed

    Rocchetti, Laura; Amato, Alessia; Fonti, Viviana; Ubaldini, Stefano; De Michelis, Ida; Kopacek, Bernd; Vegliò, Francesco; Beolchini, Francesca

    2015-08-01

    Indium is a critical element mainly produced as a by-product of zinc mining, and it is largely used in the production process of liquid crystal display (LCD) panels. End-of-life LCDs represent a possible source of indium in the field of urban mining. In the present paper, we apply, for the first time, cross-current leaching to mobilize indium from end-of-life LCD panels. We carried out a series of treatments to leach indium. The best leaching conditions for indium were 2M sulfuric acid at 80°C for 10min, which allowed us to completely mobilize indium. Taking into account the low content of indium in end-of-life LCDs, of about 100ppm, a single step of leaching is not cost-effective. We tested 6 steps of cross-current leaching: in the first step indium leaching was complete, whereas in the second step it was in the range of 85-90%, and with 6 steps it was about 50-55%. Indium concentration in the leachate was about 35mg/L after the first step of leaching, almost 2-fold at the second step and about 3-fold at the fifth step. Then, we hypothesized to scale up the process of cross-current leaching up to 10 steps, followed by cementation with zinc to recover indium. In this simulation, the process of indium recovery was advantageous from an economic and environmental point of view. Indeed, cross-current leaching allowed to concentrate indium, save reagents, and reduce the emission of CO2 (with 10 steps we assessed that the emission of about 90kg CO2-Eq. could be avoided) thanks to the recovery of indium. This new strategy represents a useful approach for secondary production of indium from waste LCD panels. PMID:25997989

  12. Optimization of Indium Bump Morphology for Improved Flip Chip Devices

    NASA Technical Reports Server (NTRS)

    Jones, Todd J.; Nikzad, Shouleh; Cunningham, Thomas J.; Blazejewski, Edward; Dickie, Matthew R.; Hoenk, Michael E.; Greer, Harold F.

    2011-01-01

    Flip-chip hybridization, also known as bump bonding, is a packaging technique for microelectronic devices that directly connects an active element or detector to a substrate readout face-to-face, eliminating the need for wire bonding. In order to make conductive links between the two parts, a solder material is used between the bond pads on each side. Solder bumps, composed of indium metal, are typically deposited by thermal evaporation onto the active regions of the device and substrate. While indium bump technology has been a part of the electronic interconnect process field for many years and has been extensively employed in the infrared imager industry, obtaining a reliable, high-yield process for high-density patterns of bumps can be quite difficult. Under the right conditions, a moderate hydrogen plasma exposure can raise the temperature of the indium bump to the point where it can flow. This flow can result in a desirable shape where indium will efficiently wet the metal contact pad to provide good electrical contact to the underlying readout or imager circuit. However, it is extremely important to carefully control this process as the intensity of the hydrogen plasma treatment dramatically affects the indium bump morphology. To ensure the fine-tuning of this reflow process, it is necessary to have realtime feedback on the status of the bumps. With an appropriately placed viewport in a plasma chamber, one can image a small field (a square of approximately 5 millimeters on each side) of the bumps (10-20 microns in size) during the hydrogen plasma reflow process. By monitoring the shape of the bumps in real time using a video camera mounted to a telescoping 12 magnifying zoom lens and associated optical elements, an engineer can precisely determine when the reflow of the bumps has occurred, and can shut off the plasma before evaporation or de-wetting takes place.

  13. Plasma Treatment to Remove Carbon from Indium UV Filters

    NASA Technical Reports Server (NTRS)

    Greer, Harold F.; Nikzad, Shouleh; Beasley, Matthew; Gantner, Brennan

    2012-01-01

    The sounding rocket experiment FIRE (Far-ultraviolet Imaging Rocket Experiment) will improve the science community fs ability to image a spectral region hitherto unexplored astronomically. The imaging band of FIRE (.900 to 1,100 Angstroms) will help fill the current wavelength imaging observation hole existing from approximately equal to 620 Angstroms to the GALEX band near 1,350 Angstroms. FIRE is a single-optic prime focus telescope with a 1.75-m focal length. The bandpass of 900 to 1100 Angstroms is set by a combination of the mirror coating, the indium filter in front of the detector, and the salt coating on the front of the detector fs microchannel plates. Critical to this is the indium filter that must reduce the flux from Lymanalpha at 1,216 Angstroms by a minimum factor of 10(exp -4). The cost of this Lyman-alpha removal is that the filter is not fully transparent at the desired wavelengths of 900 to 1,100 Angstroms. Recently, in a project to improve the performance of optical and solar blind detectors, JPL developed a plasma process capable of removing carbon contamination from indium metal. In this work, a low-power, low-temperature hydrogen plasma reacts with the carbon contaminants in the indium to form methane, but leaves the indium metal surface undisturbed. This process was recently tested in a proof-of-concept experiment with a filter provided by the University of Colorado. This initial test on a test filter showed improvement in transmission from 7 to 9 percent near 900 with no process optimization applied. Further improvements in this performance were readily achieved to bring the total transmission to 12% with optimization to JPL's existing process.

  14. Use of and Occupational Exposure to Indium in the United States

    PubMed Central

    Hines, Cynthia J.; Roberts, Jennifer L.; Andrews, Ronnee N.; Jackson, Matthew V.; Deddens, James A.

    2015-01-01

    Indium use has increased greatly in the past decade in parallel with the growth of flat-panel displays, touchscreens, optoelectronic devices, and photovoltaic cells. Much of this growth has been in the use of indium tin oxide (ITO). This increased use has resulted in more frequent and intense exposure of workers to indium. Starting with case reports and followed by epidemiological studies, exposure to ITO has been linked to serious and sometimes fatal lung disease in workers. Much of this research was conducted in facilities that process sintered ITO, including manufacture, grinding, and indium reclamation from waste material. Little has been known about indium exposure to workers in downstream applications. In 2009–2011, the National Institute for Occupational Safety and Health (NIOSH) contacted 89 potential indium-using companies; 65 (73%) responded, and 43 of the 65 responders used an indium material. Our objective was to identify current workplace applications of indium materials, tasks with potential indium exposure, and exposure controls being used. Air sampling for indium was either conducted by NIOSH or companies provided their data for a total of 63 air samples (41 personal, 22 area) across 10 companies. Indium exposure exceeded the NIOSH recommended exposure limit (REL) of 0.1 mg/m3 for certain methods of resurfacing ITO sputter targets, cleaning sputter chamber interiors, and in manufacturing some inorganic indium compounds. Indium air concentrations were low in sputter target bonding with indium solder, backside thinning and polishing of fabricated indium phosphide-based semiconductor devices, metal alloy production, and in making indium-based solder pastes. Exposure controls such as containment, local exhaust ventilation (LEV), and tool-mounted LEV can be effective at reducing exposure. In conclusion, occupational hygienists should be aware that the manufacture and use of indium materials can result in indium air concentrations that exceed the NIOSH

  15. Use of and occupational exposure to indium in the United States.

    PubMed

    Hines, Cynthia J; Roberts, Jennifer L; Andrews, Ronnee N; Jackson, Matthew V; Deddens, James A

    2013-01-01

    Indium use has increased greatly in the past decade in parallel with the growth of flat-panel displays, touchscreens, optoelectronic devices, and photovoltaic cells. Much of this growth has been in the use of indium tin oxide (ITO). This increased use has resulted in more frequent and intense exposure of workers to indium. Starting with case reports and followed by epidemiological studies, exposure to ITO has been linked to serious and sometimes fatal lung disease in workers. Much of this research was conducted in facilities that process sintered ITO, including manufacture, grinding, and indium reclamation from waste material. Little has been known about indium exposure to workers in downstream applications. In 2009-2011, the National Institute for Occupational Safety and Health (NIOSH) contacted 89 potential indium-using companies; 65 (73%) responded, and 43 of the 65 responders used an indium material. Our objective was to identify current workplace applications of indium materials, tasks with potential indium exposure, and exposure controls being used. Air sampling for indium was either conducted by NIOSH or companies provided their data for a total of 63 air samples (41 personal, 22 area) across 10 companies. Indium exposure exceeded the NIOSH recommended exposure limit (REL) of 0.1 mg/m(3) for certain methods of resurfacing ITO sputter targets, cleaning sputter chamber interiors, and in manufacturing some inorganic indium compounds. Indium air concentrations were low in sputter target bonding with indium solder, backside thinning and polishing of fabricated indium phosphide-based semiconductor devices, metal alloy production, and in making indium-based solder pastes. Exposure controls such as containment, local exhaust ventilation (LEV), and tool-mounted LEV can be effective at reducing exposure. In conclusion, occupational hygienists should be aware that the manufacture and use of indium materials can result in indium air concentrations that exceed the NIOSH

  16. Molecular beam epitaxy growth of indium nitride and indium gallium nitride materials for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Trybus, Elaissa

    The objective of the proposed research is to establish the technology for material growth by molecular beam epitaxy (MBE) and fabrication of indium gallium nitride/gallium nitride (InxGa1-xN/GaN) heterojunction solar cells. InxGa1-xN solar cells have the potential to span 90% of the solar spectrum, however there has been no success with high indium (In) incorporation and only limited success with low In incorporation InxGa1-xN. Therefore, this present work focuses on 15--30% In incorporation leading to a bandgap value of 2.3--2.8 eV. This work will exploit the revision of the indium nitride (InN) bandgap value of 0.68 eV, which expands the range of the optical emission of nitride-based devices from ultraviolet to near infrared regions, by developing transparent In xGa1-xN solar cells outside the visible spectrum. Photovoltaic devices with a bandgap greater than 2.0 eV are attractive because over half the available power in the solar spectrum is above the photon energy of 2.0 eV. The ability of InxGa1-xN materials to optimally span the solar spectrum offers a tantalizing solution for high-efficiency photovoltaics. This work presents results confirming the revised bandgap of InN grown on germanium (Ge) substrates and the effects of oxygen contamination on the bandgap. This research adds to the historical discussion of the bandgap value of InN. Using the metal modulated epitaxy (MME) technique in a new, ultra-clean refurbished MBE system, an innovative growth regime is established where In and Ga phase separation is diminished by increasing the growth rate for In xGa1-xN. The MME technique modulates the metal shutters with a fixed duty cycle while maintaining a constant nitrogen flux and proves effective for improving crystal quality and p-type doping. InxGa 1-xN/GaN heterojunction solar cells require p-type doping to create the p-n subcell collecting junction, which facilitates current collection through the electrostatic field created by spatially separated ionized

  17. MOCVD growth of gallium nitride with indium surfactant

    NASA Astrophysics Data System (ADS)

    Won, Dong Jin

    In this thesis research, the effect of indium surfactant on Ga-polar and N-polar GaN films grown at 950 °C by MOCVD on various substrates such as Si-face SiC, bulk GaN, Si(111), and C-face SiC was studied to investigate the stress relaxation mechanism, structural, and optical properties of GaN films which were modified by the indium surfactant. The effect of indium surfactant on GaN films grown on SiC was studied first. In the 1.8 microm thick Ga-polar GaN films grown on lattice-mismatched Si-face SiC substrates utilizing indium surfactant at 950 °C, inverted hexagonal pyramid surface defects, so-called V-defects which consist of six (1011) planes, formed at threading dislocations on the GaN surface, which gave rise to the relaxation of compressive misfit stress in an elastic way. Simultaneously, enhanced surface mobility of Ga and N adatoms with indium surfactant lead to improved 2D growth, which may be contradictory to the formation of surface defects like V-defects. In order to find the driving force for V-defect formation in the presence of indium, a nucleation and growth model was developed, taking into consideration the strain, surface, and dislocation energies modified by indium surfactant. This model found that the V-defect formation can be energetically preferred since indium reduces the surface energy of the (1011) plane, which gives rise to the V-defect formation and growth that can overcome the energy barrier at the critical radius of the V-defect. These Ga-polar GaN films were found to be unintentionally doped with Si. Thus, an investigation into the effect of intentional Si doping at a constant TMIn flow rate on GaN films was also performed. Si turned out to be another important factor in the generation of V-defects because Si may be captured at the threading dislocation cores by forming Si -- N bonds, acting as a mask to locally prevent GaN growth. This behavior appeared to assist the initiation of the V-defect which enables V-defects to easily

  18. Cross-current leaching of indium from end-of-life LCD panels

    SciTech Connect

    Rocchetti, Laura; Amato, Alessia; Fonti, Viviana; Ubaldini, Stefano; De Michelis, Ida; Kopacek, Bernd; Vegliò, Francesco; Beolchini, Francesca

    2015-08-15

    Graphical abstract: Display Omitted - Highlights: • End-of-life LCD panels represent a source of indium. • Several experimental conditions for indium leaching have been assessed. • Indium is completely extracted with 2 M sulfuric acid at 80 °C for 10 min. • Cross-current leaching improves indium extraction and operating costs are lowered. • Benefits to the environment come from reduction of CO{sub 2} emissions and reagents use. - Abstract: Indium is a critical element mainly produced as a by-product of zinc mining, and it is largely used in the production process of liquid crystal display (LCD) panels. End-of-life LCDs represent a possible source of indium in the field of urban mining. In the present paper, we apply, for the first time, cross-current leaching to mobilize indium from end-of-life LCD panels. We carried out a series of treatments to leach indium. The best leaching conditions for indium were 2 M sulfuric acid at 80 °C for 10 min, which allowed us to completely mobilize indium. Taking into account the low content of indium in end-of-life LCDs, of about 100 ppm, a single step of leaching is not cost-effective. We tested 6 steps of cross-current leaching: in the first step indium leaching was complete, whereas in the second step it was in the range of 85–90%, and with 6 steps it was about 50–55%. Indium concentration in the leachate was about 35 mg/L after the first step of leaching, almost 2-fold at the second step and about 3-fold at the fifth step. Then, we hypothesized to scale up the process of cross-current leaching up to 10 steps, followed by cementation with zinc to recover indium. In this simulation, the process of indium recovery was advantageous from an economic and environmental point of view. Indeed, cross-current leaching allowed to concentrate indium, save reagents, and reduce the emission of CO{sub 2} (with 10 steps we assessed that the emission of about 90 kg CO{sub 2}-Eq. could be avoided) thanks to the recovery of indium

  19. Fibrotic gene expression coexists with alveolar proteinosis in early indium lung.

    PubMed

    Noguchi, Shuhei; Eitoku, Masamitsu; Kiyosawa, Hidenori; Suganuma, Narufumi

    2016-08-01

    Occupational inhalation of indium compounds can cause the so-called "indium lung disease". Most affected individuals show pulmonary alveolar proteinosis (PAP) and fibrotic interstitial lung disease. In animal experiments, inhalation of indium tin oxide or indium oxide has been shown to cause lung damage. However, the mechanisms by which indium compounds lead to indium lung disease remain unknown. In this study, we constructed a mouse model of indium lung disease and analyzed gene expression in response to indium exposure. Indium oxide (In2O3, 10 mg/kg, primary particle size <100 nm) was administered intratracheally to C57BL/6 mice (male, 8 weeks of age) twice a week for 8 weeks. Four weeks after the final instillation, histopathological analysis exhibited periodic acid-Schiff positive material in the alveoli, characteristic of PAP. Comprehensive gene expression analysis by RNA-Seq, however, revealed expression of fibrosis-related genes, such as surfactant associated protein D, surfactant associated protein A1, mucin 1, and collagen type I and III, was significantly increased, indicating that fibrotic gene expression progresses in early phase of indium lung. These data supported the latest hypothesis that PAP occurs as an acute phase response and is replaced by fibrosis after long-term latency. PMID:27308969

  20. X-Ray photoelectron spectroscopy study of radiofrequency-sputtered titanium, carbide, molybdenum carbide, and titanium boride coatings and their friction properties

    NASA Technical Reports Server (NTRS)

    Brainard, W. A.; Wheeler, D. R.

    1977-01-01

    Radiofrequency sputtered coatings of titanium carbide, molybdenum carbide and titanium boride were tested as wear resistant coatings on stainless steel in a pin on disk apparatus. X-ray photoelectron spectroscopy (XPS) was used to analyze the sputtered films with regard to both bulk and interface composition in order to obtain maximum film performance. Significant improvements in friction behavior were obtained when properly biased films were deposited on deliberately preoxidized substrates. XPS depth profile data showed thick graded interfaces for bias deposited films even when adherence was poor. The addition of 10 percent hydrogen to the sputtering gas produced coatings with thin poorly adherent interfaces. Results suggest that some of the common practices in the field of sputtering may be detrimental to achieving maximum adherence and optimum composition for these refractory compounds.

  1. Metallic Borides, La2Re3B7 and La3Re2B5, Featuring Extensive Boron-Boron Bonding.

    PubMed

    Bugaris, Daniel E; Malliakas, Christos D; Chung, Duck Young; Kanatzidis, Mercouri G

    2016-02-15

    La2Re3B7 and La3Re2B5 have been synthesized in single-crystalline form from a molten La/Ni eutectic at 1000 °C in the first example of the flux crystal growth of ternary rare-earth rhenium borides. Both compounds crystallize in their own orthorhombic structure types, with La2Re3B7 (space group Pcca) having lattice parameters a = 7.657(2) Å, b = 6.755(1) Å, and c = 11.617(2) Å, and La3Re2B5 (space group Pmma) having lattice parameters a = 10.809(2) Å, b = 5.287(1) Å, and c = 5.747(1) Å. The compounds possess three-dimensional framework structures that are built up from rhenium boride polyhedra and boron-boron bonding. La3Re2B5 features fairly common B2 dumbbells, whereas La2Re3B7 has unique one-dimensional subunits composed of alternating triangular B3 and trans-B4 zigzag chain fragments. Also observed in La3Re2B5 is an unusual coordination of B by an octahedron of La atoms. Electronic band structure calculations predict that La2Re3B7 is a semimetal, which is observed in the electrical resistivity data as measured on single crystals, with behavior obeying the Bloch-Grüneisen model and a room-temperature resistivity ρ300 K of ∼375 μΩ cm. The electronic band structure calculations also suggest that La3Re2B5 is a regular metal. PMID:26812202

  2. Indium Phosphide Nanocrystals Formed in Silica by Sequential Ion Implantation

    SciTech Connect

    Denmark, D.; Ueda, A.; Shao, C. L.; Wu, M. H.; Mu, R.; White, Clark W; Vlahovic, B.; Muntele, C. I.; Ila, Dr. Daryush; Liu, Y. C.

    2005-01-01

    Fused silica substrates were implanted with: (1) phosphorus only, (2) indium only, and (3) phosphorus plus indium ions. Vibrational and electronic characterizations have been performed on the P only and In only samples to obtain an understanding of the thermal annealing behavior in order to obtain a meaningful guide for the fabrication of InP quantum dots (QDs) formed by sequential ion implantation of In and P in SiO{sub 2}. Thermal annealing procedures for InP synthesis have been established and InP quantum dots are confirmed by TEM, XRD and far infrared measurements. Far IR spectra show a single resonance at 323 cm{sup -1} rather than two absorption peaks in its counterpart of bulk InP crystals. The single band absorption is attributed to the surface phonon of InP quantum dots which will appear between transverse optical (TO) and longitudinal optical (LO) phonon modes of the bulk.

  3. Enhanced superconducting pairing interaction in indium-doped tin telluride

    SciTech Connect

    Erickson, A.S.; Chu, J.-H.; Toney, M.F.; Geballe, T.H.; Fisher, I.R.; /SLAC, SSRL /Stanford U., Appl. Phys. Dept. /Stanford U., Geballe Lab.

    2010-02-15

    The ferroelectric degenerate semiconductor Sn{sub 1-{delta}}Te exhibits superconductivity with critical temperatures, T{sub c}, of up to 0.3 K for hole densities of order 10{sup 21} cm{sup -3}. When doped on the tin site with greater than x{sub c} = 1.7(3)% indium atoms, however, superconductivity is observed up to 2 K, though the carrier density does not change significantly. We present specific heat data showing that a stronger pairing interaction is present for x > x{sub c} than for x < x{sub c}. By examining the effect of In dopant atoms on both T{sub c} and the temperature of the ferroelectric structural phase transition, T{sub SPT}, we show that phonon modes related to this transition are not responsible for this T{sub c} enhancement, and discuss a plausible candidate based on the unique properties of the indium impurities.

  4. Enhanced superconducting pairing interaction in indium-doped tin telluride

    SciTech Connect

    Erickson, A.S.

    2010-05-03

    The ferroelectric degenerate semiconductor Sn{sub 1-{delta}}Te exhibits superconductivity with critical temperatures, T{sub c}, of up to 0.3 K for hole densities of order 10{sup 21} cm{sup -3}. When doped on the tin site with greater than x{sub c} = 1.7(3)% indium atoms, however, superconductivity is observed up to 2 K, though the carrier density does not change significantly. We present specific heat data showing that a stronger pairing interaction is present for x > x{sub c} than for x < x{sub c}. By examining the effect of In dopant atoms on both T{sub c} and the temperature of the ferroelectric structural phase transition, T{sub SPT}, we show that phonon modes related to this transition are not responsible for this T{sub c} enhancement, and discuss a plausible candidate based on the unique properties of the indium impurities.

  5. Determination of series resistance of indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Weinberg, Irving

    1991-01-01

    The series resistance of a solar cell is an important parameter, which must be minimized to achieve high cell efficiencies. The cell series resistance is affected by the starting material, its design, and processing. The theoretical approach proposed by Jia, et. al., is used to calculate the series resistance of indium phosphide solar cells. It is observed that the theoretical approach does not predict the series resistance correctly in all cases. The analysis was modified to include the use of effective junction ideality factor. The calculated results were compared with the available experimental results on indium phosphide solar cells processed by different techniques. It is found that the use of process dependent junction ideality factor leads to better estimation of series resistance. An accurate comprehensive series resistance model is warranted to give proper feedback for modifying the cell processing from the design state.

  6. Oxygen-free atomic layer deposition of indium sulfide

    DOEpatents

    Martinson, Alex B.; Hock, Adam S.; McCarthy, Robert; Weimer, Matthew S.

    2016-07-05

    A method for synthesizing an In(III) N,N'-diisopropylacetamidinate precursor including cooling a mixture comprised of diisopropylcarbodiimide and diethyl ether to approximately -30.degree. C., adding methyllithium drop-wise into the mixture, allowing the mixture to warm to room temperature, adding indium(III) chloride as a solid to the mixture to produce a white solid, dissolving the white solid in pentane to form a clear and colorless solution, filtering the mixture over a celite plug, and evaporating the solution under reduced pressure to obtain a solid In(III) N,N'-diisopropylacetamidinate precursor. This precursor has been further used to develop a novel atomic layer deposition technique for indium sulfide by dosing a reactor with the precursor, purging with nitrogen, dosing with dilute hydrogen sulfide, purging again with nitrogen, and repeating these steps to increase growth.

  7. Preparation Of Copper Indium Gallium Diselenide Films For Solar Cells

    DOEpatents

    Bhattacharya, Raghu N.; Contreras, Miguel A.; Keane, James; Tennant, Andrew L. , Tuttle, John R.; Ramanathan, Kannan; Noufi, Rommel

    1998-08-08

    High quality thin films of copper-indium-gallium-diselenide useful in the production of solar cells are prepared by electrodepositing at least one of the constituent metals onto a glass/Mo substrate, followed by physical vapor deposition of copper and selenium or indium and selenium to adjust the final stoichiometry of the thin film to approximately Cu(In,Ga)Se.sub.2. Using an AC voltage of 1-100 KHz in combination with a DC voltage for electrodeposition improves the morphology and growth rate of the deposited thin film. An electrodeposition solution comprising at least in part an organic solvent may be used in conjunction with an increased cathodic potential to increase the gallium content of the electrodeposited thin film.

  8. Absorption of ac fields in amorphous indium-oxide films

    NASA Astrophysics Data System (ADS)

    Ovadyahu, Z.

    2014-08-01

    Absorption data from applied ac fields in Anderson-localized amorphous indium-oxide (InxO) films are shown to be frequency and disorder dependent. The absorption shows a roll-off at a frequency which is much lower than the electron-electron scattering rate of the material when it is in the diffusive regime. This is interpreted as evidence for discreteness of the energy spectrum of the deeply localized regime. This is consistent with recent many-body localization scenarios. As the metal-insulator transition is approached, the absorption shifts to higher frequencies. Comparing with the previously obtained results on the crystalline version of indium-oxide (In2O3-x) implies a considerably higher inelastic electron-phonon scattering rate in the amorphous material. The range over which the absorption versus frequency decreases may indicate that a wide distribution of localization length is a common feature in these systems.

  9. Preparation and photoluminescence study of mesoporous indium hydroxide nanorods

    SciTech Connect

    Li, Changyu; Lian, Suoyuan; Liu, Yang; Liu, Shouxin; Kang, Zhenhui

    2010-02-15

    Mesoporous indium hydroxide nanorods were successfully synthesized by a mild one-step one-pot method. The obtained samples were characterized by X-ray diffraction, transmission electron microscopy with selected area electron diffraction, N{sub 2} adsorption, ultraviolet-visible absorption and photoluminescence, respectively. Transmission electron microscopy showed that there were some pores in the samples, which were mainly composed of rod-like shapes with length of 300 nm and diameter of 90 nm. N{sub 2} adsorption/desorption measurements confirmed that the prepared powder was mesoporous with average pore diameter of 3.1 nm. The ultraviolet-visible absorption spectroscopy analysis indicated that the band gap energy of the samples was 5.15 eV. Photoluminescence spectrum showed that there were two strong emissions under ultraviolet light irradiation. The growth mechanism of indium hydroxide nanorods and the role of cetyltrimethyl ammonium bromide were also discussed.

  10. Indium-111 leukocyte scintigraphy in Wegener's granulomatosis involving the spleen

    SciTech Connect

    Morayati, S.J.; Fink-Bennett, D.

    1986-12-01

    Indium-111-labeled leukocyte scintigraphy was performed on a 44-yr-old man to exclude an occult abscess. Four- and twenty-four-hour images of the abdomen revealed splenic photopenia except for a rim of activity medially. A subsequent computed tomography (CT) study demonstrated necrosis or hemorrhage of the spleen except for a medial rim. Exploratory laparotomy demonstrated necrotizing vasculitis with granuloma formation consistent with Wegener's granulomatosis and a rim of viable splenic tissue corresponding to the radionuclide and CT studies.

  11. Indium Helps Strengthen Al/Cu/Li Alloy

    NASA Technical Reports Server (NTRS)

    Blackburn, Linda B.; Starke, Edgar A., Jr.

    1992-01-01

    Experiments on Al/Cu/Li alloys focus specifically on strengthening effects of minor additions of In and Cd. Indium-bearing alloy combines low density with ability to achieve high strength through heat treatment alone. Tensile tests on peak-aged specimens indicated that alloy achieved yield strength approximately 15 percent higher than baseline alloy. Alloy highly suitable for processing to produce parts of nearly net shape, with particular applications in aircraft and aerospace vehicles.

  12. Pressed boride cathodes

    NASA Technical Reports Server (NTRS)

    Wolski, W.

    1985-01-01

    Results of experimental studies of emission cathodes made from lanthanum, yttrium, and gadolinium hexaborides are presented. Maximum thermal emission was obtained from lanthanum hexaboride electrodes. The hexaboride cathodes operated stably under conditions of large current density power draw, at high voltages and poor vacuum. A microtron electron gun with a lanthanum hexaboride cathode is described.

  13. Effect of strain on indium incorporation in heteroepitaxial (indium, gallium) nitride nanomaterials

    NASA Astrophysics Data System (ADS)

    Ewoldt, David A.

    2011-12-01

    One of the challenges facing LED lighting today is the achievement of low-cost true white lighting. Ideally, multiple LEDs of different colors, blue, red and green, would be utilized in order to achieve white light. Currently, the quality of green LEDs is low when compared to the red and blue counterparts. Green emission from LEDs is difficult to achieve due to phase segregation that occurs during growth of the (In,Ga)N LED structure, which separates into compositions of high and low InN concentration and prevents the moderate composition required for green emission. On the nanoscale, strain effects in the (In,Ga)N material system give rise to shifts in optical properties. Relieving strain allows for the incorporation of additional indium nitride, which shifts the wavelength of light emitted by the structure. In order to control strain effects, growth templates were fabricated by several methods (PAA, FIB, EBL). A robust process for fabrication of pores down to 25 nm in diameter has been developed in order to investigate this effect. From this process, a template using e-beam lithography has been created and then growth of (In,Ga)N on this template in a metallorganic chemical vapor deposition system was performed. As (In,Ga)N grows from the GaN substrate, it is naturally strained due to the lattice mismatch. Lateral growth out of the templates relieves strain by allowing the rods to expand as they grow out of the prepared pores. The effect of the diameter of pores on the emission characteristics has been analyzed and a strong logarithmic trend was discovered correlating emission wavelength to pore diameter. In addition to allowing control over the wavelength of emission based on pore diameter, the process that has been developed and demonstrated will allow a distribution of pore sizes that could facilitate color mixing.

  14. Polycrystalline indium phosphide on silicon by indium assisted growth in hydride vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Metaferia, Wondwosen; Sun, Yan-Ting; Pietralunga, Silvia M.; Zani, Maurizio; Tagliaferri, Alberto; Lourdudoss, Sebastian

    2014-07-01

    Polycrystalline InP was grown on Si(001) and Si(111) substrates by using indium (In) metal as a starting material in hydride vapor phase epitaxy (HVPE) reactor. In metal was deposited on silicon substrates by thermal evaporation technique. The deposited In resulted in islands of different size and was found to be polycrystalline in nature. Different growth experiments of growing InP were performed, and the growth mechanism was investigated. Atomic force microscopy and scanning electron microscopy for morphological investigation, Scanning Auger microscopy for surface and compositional analyses, powder X-ray diffraction for crystallinity, and micro photoluminescence for optical quality assessment were conducted. It is shown that the growth starts first by phosphidisation of the In islands to InP followed by subsequent selective deposition of InP in HVPE regardless of the Si substrate orientation. Polycrystalline InP of large grain size is achieved and the growth rate as high as 21 μm/h is obtained on both substrates. Sulfur doping of the polycrystalline InP was investigated by growing alternating layers of sulfur doped and unintentionally doped InP for equal interval of time. These layers could be delineated by stain etching showing that enough amount of sulfur can be incorporated. Grains of large lateral dimension up to 3 μm polycrystalline InP on Si with good morphological and optical quality is obtained. The process is generic and it can also be applied for the growth of other polycrystalline III-V semiconductor layers on low cost and flexible substrates for solar cell applications.

  15. Polycrystalline indium phosphide on silicon by indium assisted growth in hydride vapor phase epitaxy

    SciTech Connect

    Metaferia, Wondwosen; Sun, Yan-Ting Lourdudoss, Sebastian; Pietralunga, Silvia M.; Zani, Maurizio; Tagliaferri, Alberto

    2014-07-21

    Polycrystalline InP was grown on Si(001) and Si(111) substrates by using indium (In) metal as a starting material in hydride vapor phase epitaxy (HVPE) reactor. In metal was deposited on silicon substrates by thermal evaporation technique. The deposited In resulted in islands of different size and was found to be polycrystalline in nature. Different growth experiments of growing InP were performed, and the growth mechanism was investigated. Atomic force microscopy and scanning electron microscopy for morphological investigation, Scanning Auger microscopy for surface and compositional analyses, powder X-ray diffraction for crystallinity, and micro photoluminescence for optical quality assessment were conducted. It is shown that the growth starts first by phosphidisation of the In islands to InP followed by subsequent selective deposition of InP in HVPE regardless of the Si substrate orientation. Polycrystalline InP of large grain size is achieved and the growth rate as high as 21 μm/h is obtained on both substrates. Sulfur doping of the polycrystalline InP was investigated by growing alternating layers of sulfur doped and unintentionally doped InP for equal interval of time. These layers could be delineated by stain etching showing that enough amount of sulfur can be incorporated. Grains of large lateral dimension up to 3 μm polycrystalline InP on Si with good morphological and optical quality is obtained. The process is generic and it can also be applied for the growth of other polycrystalline III–V semiconductor layers on low cost and flexible substrates for solar cell applications.

  16. Crystalline Indium Sulphide thin film by photo accelerated deposition technique

    NASA Astrophysics Data System (ADS)

    Dhanya, A. C.; Preetha, K. C.; Deepa, K.; Remadevi, T. L.

    2015-02-01

    Indium sulfide thin films deserve special attention because of its potential application as buffer layers in CIGS based solar cells. Highly transparent indium sulfide (InS) thin films were prepared using a novel method called photo accelerated chemical deposition (PCD). Ultraviolet source of 150 W was used to irradiate the solution. Compared to all other chemical methods, PCD scores its advantage for its low cost, flexible substrate and capable of large area of deposition. Reports on deposition of high quality InS thin films at room temperature are very rare in literature. The precursor solution was initially heated to 90°C for ten minutes and then deposition was carried out at room temperature for two hours. The appearance of the film changed from lemon yellow to bright yellow as the deposition time increased. The sample was characterized for its structural and optical properties. XRD profile showed the polycrystalline behavior of the film with mixed phases having crystallite size of 17 nm. The surface morphology of the films exhibited uniformly distributed honey comb like structures. The film appeared to be smooth and the value of extinction coefficient was negligible. Optical measurements showed that the film has more than 80% transmission in the visible region. The direct band gap energy was 2.47eV. This method is highly suitable for the synthesis of crystalline and transparent indium sulfide thin films and can be used for various photo voltaic applications.

  17. Effect of preparation conditions on physic-chemical properties of tin-doped nanocrystalline indium oxide

    NASA Astrophysics Data System (ADS)

    Malinovskaya, T. D.; Sachkov, V. I.; Zhek, V. V.; Nefedov, R. A.

    2016-01-01

    In this paper the results of investigation of phase formation and change of concentration of free electrons (Ne) in indium tin oxide system during heat treatment of coprecipitated hydroxides of indium and tin from nitric and hydrochloric solutions and also, for comparison melts of salts nitrates by an alkaline reactant (NH4OH) are considered.The performed investigation allowed to set the optimal condition of preparation of polycrystalline tin-doped indium oxide with maximal electron concentration.

  18. Method for enhancing the solubility of boron and indium in silicon

    DOEpatents

    Sadigh, Babak; Lenosky, Thomas J.; Diaz de la Rubia, Tomas; Giles, Martin; Caturla, Maria-Jose; Ozolins, Vidvuds; Asta, Mark; Theiss, Silva; Foad, Majeed; Quong, Andrew

    2002-01-01

    A method for enhancing the equilibrium solubility of boron and indium in silicon. The method involves first-principles quantum mechanical calculations to determine the temperature dependence of the equilibrium solubility of two important p-type dopants in silicon, namely boron and indium, under various strain conditions. The equilibrium thermodynamic solubility of size-mismatched impurities, such as boron and indium in silicon, can be raised significantly if the silicon substrate is strained appropriately. For example, for boron, a 1% compressive strain raises the equilibrium solubility by 100% at 1100.degree. C.; and for indium, a 1% tensile strain at 1100.degree. C., corresponds to an enhancement of the solubility by 200%.

  19. Ultrasonic-Assisted Acid Leaching of Indium from Blast Furnace Sludge

    NASA Astrophysics Data System (ADS)

    Shen, Xingmei; Li, Liaosha; Wu, Zhaojin; Lü, Huihong; Lü, Jia

    2013-12-01

    Ultrasonic-assisted acid leaching was used to improve extraction of indium from blast furnace sludge. The effects of solid-liquid ratio, leaching temperature, and leaching time on extraction of indium were investigated and three leaching methods of high temperature acid leaching (HL), ultrasonic acid leaching (UL), and high temperature-ultrasonic acid leaching (HUL) were compared. The results show that extraction of indium increases with leaching time for all the methods. UL exhibits the lowest indium extraction. For HL, extraction of indium reaches 32.6 pct when the leaching time is 4 hours, and after 4 hours, the extraction increases slowly. Leaching temperature has a more positive effect on extraction of indium than ultrasonic. HUL can lead to a higher extraction of indium than high temperature acid leaching and UL, and extraction of indium reaches 40.4 pct when the leaching time is 2 hours. After 2 hours, no obvious increase occurs. HUL not only increases extraction of indium but also reduces the leaching time which can improve production efficiency.

  20. Thermodynamics of Indium Dissolution Behavior in FeO-Bearing Metallurgical Slags

    NASA Astrophysics Data System (ADS)

    Han, Yun Soon; Park, Joo Hyun

    2015-02-01

    Indium solubility in the FeO-SiO2-Al2O3-5CaO-MgOsat slag system was measured at 1573 K (1300 °C) to confirm the thermodynamic dissolution behavior of indium at atm. The indium solubility in FeO-bearing slags increased with increasing oxygen partial pressure and decreased with increasing basicity which is in proportion to the activity of FeO. The dissolution of indium in FeO-bearing slags was confirmed to progress according to the following reaction: The enthalpy change for the dissolution of indium in FeO-bearing slag was about -181 kJ/mol, indicating that indium dissolution is exothermic. The indium solubility in the FeO-SiO2-Al2O3-5CaO-MgOsat slag system was minimized as a function of alumina content at a given FeO/SiO2 ratio, which can be explained by the amphoteric behavior of Al2O3 in the slag system. To improve indium recovery by lowering indium loss to the slag phase during the pyro-recycling of In-containing materials using FeO-bearing metallurgical slags, a lower oxygen potential and lower silica content are highly favorable.

  1. Optimization of indium bump preparation in infrared focal plane array fabrication

    NASA Astrophysics Data System (ADS)

    Hou, Zhijin; Si, Junjie; Wang, Wei; Wang, Haizhen; Wang, Liwen

    2014-11-01

    Optimization of indium bump preparation in infrared focal plane array (IRFPA) fabrication is presented. Reasons of bringing defective pixels during conventional lift-off and cleanout process in fabrication of indium bump are discussed. IRFPAs are characterized by IRFPA test-bench. Results show that defective pixels of InSb IRFPA are owing to indium bumps connecting through indium residue on the surface of wafer. The characteristic and configuration of defective pixels of InSb IRFPA are given and analyzed. A method of reducing defective pixels through optimizing liftoff and cleanout process in InSb IRFPA is proposed. Results prove that this method is effective.

  2. The electronic structure, mechanical and thermodynamic properties of Mo{sub 2}XB{sub 2} and MoX{sub 2}B{sub 4} (X = Fe, Co, Ni) ternary borides

    SciTech Connect

    He, TianWei; Jiang, YeHua E-mail: jfeng@seas.harvard.edu; Zhou, Rong; Feng, Jing E-mail: jfeng@seas.harvard.edu

    2015-08-21

    The mechanical properties, electronic structure and thermodynamic properties of the Mo{sub 2}XB{sub 2} and MoX{sub 2}B{sub 4} (X = Fe, Co, Ni) ternary borides were calculated by first-principles methods. The elastic constants show that these ternary borides are mechanically stable. Formation enthalpy of Mo{sub 2}XB{sub 2} and MoX{sub 2}B{sub 4} (X = Fe, Co, Ni) ternary borides are at the range of −118.09 kJ/mol to −40.14 kJ/mol. The electronic structures and chemical bonding characteristics are analyzed by the density of states. Mo{sub 2}FeB{sub 2} has the largest shear and Young's modulus because of its strong chemical bonding, and the values are 204.3 GPa and 500.3 GPa, respectively. MoCo{sub 2}B{sub 4} shows the lowest degree of anisotropy due to the lack of strong direction in the bonding. The Debye temperature of MoFe{sub 2}B{sub 4} is the largest among the six phases, which means that MoFe{sub 2}B{sub 4} possesses the best thermal conductivity. Enthalpy shows an approximately linear function of the temperature above 300 K. The entropy of these compounds increase rapidly when the temperature is below 450 K. The Gibbs free energy decreases with the increase in temperature. MoCo{sub 2}B{sub 4} has the lowest Gibbs free energy, which indicates the strongest formation ability in Mo{sub 2}XB{sub 2} and MoX{sub 2}B{sub 4} (X = Fe, Co, Ni) ternary borides.

  3. Ternary Borides Cr2AlB2, Cr3AlB4, and Cr4AlB6: The First Members of the Series (CrB2)nCrAl with n = 1, 2, 3 and a Unifying Concept for Ternary Borides as MAB-Phases.

    PubMed

    Ade, Martin; Hillebrecht, Harald

    2015-07-01

    Single crystals of the ternary borides Cr2AlB2, Cr3AlB4, Cr4AlB6, MoAlB, WAlB, Mn2AlB2, and Fe2AlB2 were grown from the elements with an excess of Al. Structures were refined by X-ray methods on the basis of single crystal data. All compounds crystallize in orthorhombic space groups. In each case boron atoms show the typical trigonal prisms BM6. The BM6-units are linked by common rectangular faces forming B-B-bonds. Thus, zigzag chains of boron atoms are obtained for MoAlB, WAlB, and M2AlB2 (M = Cr, Mn, Fe); chains of hexagons for Cr3AlB4; and double chains of hexagons for Cr4AlB6. The same subunits are known for the binary borides CrB, Cr3B4, Cr2B3, and β-WB, too. The boride partial structures are separated by single layers of Al-atoms in the case of the chromium compounds and double layers for WAlB, i.e., W2Al2B2. All crystal structures can be described using a unified building set principle with quadratic 4(4)-nets of metal atoms. The different compositions and crystal structures are obtained by different numbers of metal layers in the corresponding parts according to the formula (MB)2Aly(MB2)x. This principle is an extension of a scheme which was developed for the boridecarbides of niobium. Furthermore, there is a close similarity to the group of ternary carbides MAl(MC)n, so-called MAX-phases. Therefore, they might be named as "MAB-phases". The pronounced two-dimensionality and the mixture of strong covalent and metallic interactions make MAB-phases to promising candidates for interesting material properties. All compositions were confirmed by EDX measurements. Additionally, microhardness measurements were performed. PMID:26069993

  4. Synthesis and use of (polyfluoroaryl)fluoroanions of aluminum, gallium and indium

    DOEpatents

    Marks, Tobin J.; Chen, You-Xian

    2000-01-01

    Salts of (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium are described. The (polyfluoroaryl)fluoroanions have the formula [ER'R"R'"F].sup..crclbar. wherein E is aluminum, gallium, or indium, wherein F is fluorine, and wherein R', R", and R'" is each a fluorinated phenyl, fluorinated biphenyl, or fluorinated polycyclic group.

  5. Intracellular accumulation of indium ions released from nanoparticles induces oxidative stress, proinflammatory response and DNA damage.

    PubMed

    Tabei, Yosuke; Sonoda, Akinari; Nakajima, Yoshihiro; Biju, Vasudevanpillai; Makita, Yoji; Yoshida, Yasukazu; Horie, Masanori

    2016-02-01

    Due to the widespread use of indium tin oxide (ITO), it is important to investigate its effect on human health. In this study, we evaluated the cellular effects of ITO nanoparticles (NPs), indium chloride (InCl3) and tin chloride (SnCl3) using human lung epithelial A549 cells. Transmission electron microscopy and inductively coupled plasma mass spectrometry were employed to study cellular ITO NP uptake. Interestingly, greater uptake of ITO NPs was observed, as compared with soluble salts. ITO NP species released could be divided into two types: 'indium release ITO' or 'tin release ITO'. We incubated A549 cells with indium release ITO, tin release ITO, InCl3 or SnCl2 and investigated oxidative stress, proinflammatory response, cytotoxicity and DNA damage. We found that intracellular reactive oxygen species were increased in cells incubated with indium release ITO, but not tin release ITO, InCl3 or SnCl2. Messenger RNA and protein levels of the inflammatory marker, interleukin-8, also increased following exposure to indium release ITO. Furthermore, the alkaline comet assay revealed that intracellular accumulation of indium ions induced DNA damage. Our results demonstrate that the accumulation of ionic indium, but not ionic tin, from ITO NPs in the intracellular matrix has extensive cellular effects. PMID:26378248

  6. Indium phosphide space solar cell research: Where we are and where we are going

    NASA Technical Reports Server (NTRS)

    Jain, R. K.; Flood, D. J.; Weinberg, Irving

    1995-01-01

    Indium phosphide is considered to be a strong contender for many photovoltaic space applications because of its radiation resistance and its potential for high efficiency. An overview of recent progress is presented, and possible future research directions for indium phosphide space solar cells are discussed. The topics considered include radiation damage studies and space flight experiments.

  7. Materials recovery from waste liquid crystal displays: A focus on indium.

    PubMed

    Fontana, Danilo; Forte, Federica; De Carolis, Roberta; Grosso, Mario

    2015-11-01

    In the present work the recovery of indium and of the polarizing film from waste liquid crystal displays was experimentally investigated in the laboratory. First of all, the polarizing film was removed by employing a number of different techniques, including thermal and chemical treatments. Leaching of indium was then performed with HCl 6N, which allowed solubilisation of approximately 90% In (i.e. 260 mg In per kg of glass) at room temperature, without shredding. Indium recovery from the aqueous phase was then investigated through solvent extraction with polyethylene glycol (PEG)-based aqueous biphasic systems. Indium extraction tests through the PEG-ammonium sulphate-water system were conducted as a function of PEG concentration, salt concentration and molecular weight of PEG, using 1,10 phenanthroline as a ligand. The experimental results demonstrated that indium partitioning between the bottom (salt-rich) and the top (PEG-rich) phase is quite independent on the composition of the system, since 80-95% indium is extracted in the bottom phase and 5-20% in the top phase; it was also found that when PEG concentration is increased, the ratio between the bottom and the upper phase volumes decreases, resulting in an increase of indium concentration in the bottom phase (at [PEG]=25% w/w, indium concentration in the bottom phase is ∼30% higher than the initial concentration before the extraction). PMID:26239936

  8. Radiation damage in proton irradiated indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Swartz, C. K.; Hart, R. E., Jr.; Yamaguchi, Masafumi

    1986-01-01

    Indium phosphide solar cells exposed to 10 MeV proton irradiations were found to have significantly greater radiation resistance than either GaAs or Si. Performance predictions were obtained for two proton dominated orbits and one in which both protons and electrons were significant cell degradation factors. Array specific power was calculated using lightweight blanket technology, a SEP array structure, and projected cell efficiencies. Results indicate that arrays using fully developed InP cells should out-perform those using GaAs or Si in orbits where radiation is a significant cell degradation factor.

  9. Liquid phase synthesis of copper indium diselenide nanoparticles

    SciTech Connect

    Jakhmola, Priyanka; Agarwal, Garima; Jha, Prafulla K.; Bhatnagar, S. P.

    2014-04-24

    Nanoparticles of Copper Indium diselenide (CuInSe{sub 2}), belongs to I-III-VI{sub 2} family has been synthesized via liquid phase route using ethylenediamine as a solvent. Characterization of as-grown particles is done by XRD, HRTEM, DLS, optical microscopy and UV-Vis spectroscopy. X-ray diffraction pattern confirmed that the CuInSe2 nanoparticles obtained reveals chalcopyrite structure. Particle size evaluated from dynamic light scattering of as grown particle possessing radius of 90 nm. The bandgap of 1.05eV is obtained from UV-Vis spectrum which will applicable to the solar cell devices.

  10. Ab initio calculation of the thermal conductivity of indium antimonide

    NASA Astrophysics Data System (ADS)

    Miranda, Alonso L.; Xu, Bin; Hellman, Olle; Romero, Aldo H.; Verstraete, Matthieu J.

    2014-12-01

    A theoretical study based on the density functional theory and the temperature-dependent effective potential method is performed to analyze the changes in the phonon band structure as a function of temperature for indium antimonide. In particular, we show changes in the thermal expansion coefficient and the thermal resistivity that agree rather well with experimental measurements. From the theoretical side, we show a weak dependence with respect to the chosen thermostat used to obtain the inter-atomic force constants, which strengthens our conclusions.