Science.gov

Sample records for indium nitride inn

  1. Studies of indium amides and nitrides

    SciTech Connect

    Purdy, A.P.; Berry, A.D.

    1993-12-31

    A reaction between InI{sub 3} and 3 eq. of KNH{sub 2} in liquid NH{sub 3} forms indium(III) amide (In(NH{sub 2}){sub 3}) a white, nearly insoluble compound. Indium(III) amide readily combines with KNH{sub 2} in liquid NH{sub 3} to form the mixed metal amide K{sub 2}In(NH{sub 2}){sub 5}. Other potassium and sodium derivatives MxIn(NH{sub 2}){sub 3+x} derivatives were prepared in a similar manner, but not all were obtained pure in the solid state. An impure tri-lithium derivative (Li{sub 3}In(NH{sub 2}){sub 6}) was obtained by adding a KNH{sub 2} solution (6 eq) to a solution of InI{sub 3} and 3 eq of LiI. Pyrolysis (in vacuo 25-300{degrees}C, under N{sub 2} 300-400{degrees}C) of In(NH{sub 2}){sub 3} or MxIn(NH{sub 2}){sub x+3} (M = Na, K) to 400{degrees}C results in the formation of InN, but indium metal is also formed from some of the mixed metal amides. The product from thermal decomposition of Li{sub 3}In(NH{sub 2}){sub 6} under vacuum was tentatively identified as the ternary nitride Li{sub 3}InN{sub 2}. Products were characterized by elemental analysis, IR spectroscopy, and powder x-ray diffraction experiments.

  2. Molecular beam epitaxy growth of indium nitride and indium gallium nitride materials for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Trybus, Elaissa

    The objective of the proposed research is to establish the technology for material growth by molecular beam epitaxy (MBE) and fabrication of indium gallium nitride/gallium nitride (InxGa1-xN/GaN) heterojunction solar cells. InxGa1-xN solar cells have the potential to span 90% of the solar spectrum, however there has been no success with high indium (In) incorporation and only limited success with low In incorporation InxGa1-xN. Therefore, this present work focuses on 15--30% In incorporation leading to a bandgap value of 2.3--2.8 eV. This work will exploit the revision of the indium nitride (InN) bandgap value of 0.68 eV, which expands the range of the optical emission of nitride-based devices from ultraviolet to near infrared regions, by developing transparent In xGa1-xN solar cells outside the visible spectrum. Photovoltaic devices with a bandgap greater than 2.0 eV are attractive because over half the available power in the solar spectrum is above the photon energy of 2.0 eV. The ability of InxGa1-xN materials to optimally span the solar spectrum offers a tantalizing solution for high-efficiency photovoltaics. This work presents results confirming the revised bandgap of InN grown on germanium (Ge) substrates and the effects of oxygen contamination on the bandgap. This research adds to the historical discussion of the bandgap value of InN. Using the metal modulated epitaxy (MME) technique in a new, ultra-clean refurbished MBE system, an innovative growth regime is established where In and Ga phase separation is diminished by increasing the growth rate for In xGa1-xN. The MME technique modulates the metal shutters with a fixed duty cycle while maintaining a constant nitrogen flux and proves effective for improving crystal quality and p-type doping. InxGa 1-xN/GaN heterojunction solar cells require p-type doping to create the p-n subcell collecting junction, which facilitates current collection through the electrostatic field created by spatially separated ionized

  3. Synthesis of long indium nitride nanowires with uniform diameters in large quantities.

    PubMed

    Luo, Shudong; Zhou, Weiya; Zhang, Zengxing; Liu, Lifeng; Dou, Xinyuan; Wang, Jianxiong; Zhao, Xiaowei; Liu, Dongfang; Gao, Yan; Song, Li; Xiang, Yanjuan; Zhou, Jianjun; Xie, Sishen

    2005-10-01

    Large quantities of indium nitride (InN) nanowires are synthesized by the in situ nitriding of indium oxide (In(2)O(3)) powders in an ammonia (NH(3)) flux. Tens of milligrams of nanowires are obtained in one batch. Every 100 mg of In(2)O(3) starting powder can produce up to 65 mg of InN nanowires under the optimized conditions. The synthesized nanowires grow along the [001] direction with excellent crystallinity. They are of high purity and are 30-50 microm in length with an almost uniform diameter of about 100 nm. Photoluminescence measurements of the nanowires exhibit a strong peak at 707 nm. An optical bandgap of about 1.7 eV is estimated based on the absorption spectrum. The experimental results also demonstrate that the approach of nitriding In(2)O(3) powders in situ is feasible for the synthesis of high-purity InN nanowires in large quantities, with good reproducibility and without catalyst materials. The synthesis of InN nanowires in large quantities would be of benefit to the further study and understanding of their intrinsic properties, as well as being advantageous for their potential application in nanodevices. PMID:17193386

  4. Compositional analysis of dilute nitride doped indium antimonide bulk crystal by VDS technique

    NASA Astrophysics Data System (ADS)

    Deshpande, Manisha; Maske, Dilip; Choudhari, Rashmi; Arora, Brij Mohan; Gadkari, Dattatray

    2016-05-01

    Dilute nitrides are suitable materials for fabrication of devices in detection of long wavelength infrared region. Dilute nitride doped Indium antimonide bulk crystals were grown using vertical directional solidification technique. The compositional characteristics of the crystals were carried out using EDS. The analysis was simulated and compared with observations using DTSA II software for accuracy. The ingots have uniform composition of Indium and Antimony. The actual nitrogen composition measured using EDS was 0.136% for doped nitrogen composition 0.1% except near conical end where it was 0.1%. The study of bonding between nitrogen, Indium and antimony was carried out using SIMS. The analysis shows strong presence of In-N bonding along with In-Sb bonds which indicates nitrogen has replaced antimony atoms in crystal lattice.

  5. An analytical model of anisotropic low-field electron mobility in wurtzite indium nitride

    NASA Astrophysics Data System (ADS)

    Wang, Shulong; Liu, Hongxia; Song, Xin; Guo, Yulong; Yang, Zhaonian

    2014-03-01

    This paper presents a theoretical analysis of anisotropic transport properties and develops an anisotropic low-field electron analytical mobility model for wurtzite indium nitride (InN). For the different effective masses in the Γ-A and Γ-M directions of the lowest valley, both the transient and steady state transport behaviors of wurtzite InN show different transport characteristics in the two directions. From the relationship between velocity and electric field, the difference is more obvious when the electric field is low in the two directions. To make an accurate description of the anisotropic transport properties under low field, for the first time, we present an analytical model of anisotropic low-field electron mobility in wurtzite InN. The effects of different ionized impurity scattering models on the low-field mobility calculated by Monte Carlo method (Conwell-Weisskopf and Brooks-Herring method) are also considered.

  6. Growth mechanism, structure and IR photoluminescence studies of indium nitride nanorods

    NASA Astrophysics Data System (ADS)

    Lan, Z. H.; Wang, W. M.; Sun, C. L.; Shi, S. C.; Hsu, C. W.; Chen, T. T.; Chen, K. H.; Chen, C. C.; Chen, Y. F.; Chen, L. C.

    2004-08-01

    High-quality single crystal indium nitride nanorods were grown on Si substrates by catalytic chemical vapor deposition. Both Raman and high resolution transmission electron microscopic analyses suggested that even a minute amount of oxygen, from the residual oxygen in the growth environment and/or native oxide on the Si, would effectively help the growth of InN nanorods. The In 2O 3 formed on Au nanoparticles helped dissolve nitrogen as a catalyst with the subsequent growth of InN nanorods. Variations in the apparent color and photoluminescence (PL) spectra of the InN nanorods were observed. For the optically brown InN nanorods that exhibited diameters in the range of 30-50 nm, the PL study showed a peak at 1.9 eV, the possible origins of which are discussed. In contrast, for the optically black InN nanorods that exhibited diameters in the range of 50-100 nm, the PL peak at approximately 0.766 eV measured at 20 K was attributed to band edge emission.

  7. Carrier multiplication in bulk indium nitride

    NASA Astrophysics Data System (ADS)

    Jensen, S. A.; Versluis, J.; Cánovas, E.; Pijpers, J. J. H.; Sellers, I. R.; Bonn, M.

    2012-11-01

    Carrier multiplication (CM) is the process of generating multiple electron-hole pairs from one absorbed photon. Narrow-gap InN is a material that has been proposed for achieving efficient CM. We quantify the CM efficiency in bulk InN using terahertz time-domain spectroscopy. While the CM onset occurs at relatively low photon energies in InN (1.7 ± 0.2 eV), corresponding to 2.7 ± 0.3 times its bandgap, the excitation efficiency above the onset increases linearly with a slope of only ˜13%/Eg. Based on these numbers, the efficiency increase of an InN based photovoltaic device owing to CM is limited to maximum 1% point.

  8. Development of a Computational Chemical Vapor Deposition Model: Applications to Indium Nitride and Dicyanovinylaniline

    NASA Technical Reports Server (NTRS)

    Cardelino, Carlos

    1999-01-01

    A computational chemical vapor deposition (CVD) model is presented, that couples chemical reaction mechanisms with fluid dynamic simulations for vapor deposition experiments. The chemical properties of the systems under investigation are evaluated using quantum, molecular and statistical mechanics models. The fluid dynamic computations are performed using the CFD-ACE program, which can simulate multispecies transport, heat and mass transfer, gas phase chemistry, chemistry of adsorbed species, pulsed reactant flow and variable gravity conditions. Two experimental setups are being studied, in order to fabricate films of: (a) indium nitride (InN) from the gas or surface phase reaction of trimethylindium and ammonia; and (b) 4-(1,1)dicyanovinyl-dimethylaminoaniline (DCVA) by vapor deposition. Modeling of these setups requires knowledge of three groups of properties: thermodynamic properties (heat capacity), transport properties (diffusion, viscosity, and thermal conductivity), and kinetic properties (rate constants for all possible elementary chemical reactions). These properties are evaluated using computational methods whenever experimental data is not available for the species or for the elementary reactions. The chemical vapor deposition model is applied to InN and DCVA. Several possible InN mechanisms are proposed and analyzed. The CVD model simulations of InN show that the deposition rate of InN is more efficient when pulsing chemistry is used under conditions of high pressure and microgravity. An analysis of the chemical properties of DCVA show that DCVA dimers may form under certain conditions of physical vapor transport. CVD simulations of the DCVA system suggest that deposition of the DCVA dimer may play a small role in the film and crystal growth processes.

  9. Effect of strain on indium incorporation in heteroepitaxial (indium, gallium) nitride nanomaterials

    NASA Astrophysics Data System (ADS)

    Ewoldt, David A.

    2011-12-01

    One of the challenges facing LED lighting today is the achievement of low-cost true white lighting. Ideally, multiple LEDs of different colors, blue, red and green, would be utilized in order to achieve white light. Currently, the quality of green LEDs is low when compared to the red and blue counterparts. Green emission from LEDs is difficult to achieve due to phase segregation that occurs during growth of the (In,Ga)N LED structure, which separates into compositions of high and low InN concentration and prevents the moderate composition required for green emission. On the nanoscale, strain effects in the (In,Ga)N material system give rise to shifts in optical properties. Relieving strain allows for the incorporation of additional indium nitride, which shifts the wavelength of light emitted by the structure. In order to control strain effects, growth templates were fabricated by several methods (PAA, FIB, EBL). A robust process for fabrication of pores down to 25 nm in diameter has been developed in order to investigate this effect. From this process, a template using e-beam lithography has been created and then growth of (In,Ga)N on this template in a metallorganic chemical vapor deposition system was performed. As (In,Ga)N grows from the GaN substrate, it is naturally strained due to the lattice mismatch. Lateral growth out of the templates relieves strain by allowing the rods to expand as they grow out of the prepared pores. The effect of the diameter of pores on the emission characteristics has been analyzed and a strong logarithmic trend was discovered correlating emission wavelength to pore diameter. In addition to allowing control over the wavelength of emission based on pore diameter, the process that has been developed and demonstrated will allow a distribution of pore sizes that could facilitate color mixing.

  10. Indium nitride: A narrow gap semiconductor

    SciTech Connect

    Wu, J.; Walukiewicz, W.; Yu, K.M.; Ager III, J.W.; Haller, E.E.; Lu, H.; Schaff, W.J.

    2002-08-14

    The optical properties of wurtzite InN grown on sapphire substrates by molecular-beam epitaxy have been characterized by optical absorption, photoluminescence, and photomodulated reflectance techniques. All these three characterization techniques show an energy gap for InN between 0.7 and 0.8 eV, much lower than the commonly accepted value of 1.9 eV. The photoluminescence peak energy is found to be sensitive to the free electron concentration of the sample. The peak energy exhibits a very weak hydrostatic pressure dependence and a small, anomalous blueshift with increasing temperature. The bandgap energies of In-rich InGaN alloys were found to be consistent with the narrow gap of InN. The bandgap bowing parameter was determined to be 1.43 eV in InGaN.

  11. Effect of polarization field on mean free path of phonons in indium nitride

    NASA Astrophysics Data System (ADS)

    Sahoo, Sushant Kumar

    2016-05-01

    The effect of built-in-polarization field on mean free path of acoustic phonons in bulk wurtzite indium nitride (InN) has been theoretically investigated. The elastic constant of the material gets modified due to the existence of polarization field. As a result velocity and Debye frequency of phonons get enhanced. The various scattering rates of phonons are suppressed by the effect of polarization field, which implies an enhanced combined relaxation time. Thus phonons travel freely for a longer distance between two successive scatterings. This would enhance the thermal transport properties of the material when built-in-polarization field taken into account. Hence by the application of electric field the transport properties of such materials can be controlled as and when desired.

  12. Development of an Advanced Computational Model for OMCVD of Indium Nitride

    NASA Technical Reports Server (NTRS)

    Cardelino, Carlos A.; Moore, Craig E.; Cardelino, Beatriz H.; Zhou, Ning; Lowry, Sam; Krishnan, Anantha; Frazier, Donald O.; Bachmann, Klaus J.

    1999-01-01

    An advanced computational model is being developed to predict the formation of indium nitride (InN) film from the reaction of trimethylindium (In(CH3)3) with ammonia (NH3). The components are introduced into the reactor in the gas phase within a background of molecular nitrogen (N2). Organometallic chemical vapor deposition occurs on a heated sapphire surface. The model simulates heat and mass transport with gas and surface chemistry under steady state and pulsed conditions. The development and validation of an accurate model for the interactions between the diffusion of gas phase species and surface kinetics is essential to enable the regulation of the process in order to produce a low defect material. The validation of the model will be performed in concert with a NASA-North Carolina State University project.

  13. The InN epitaxy via controlling In bilayer

    PubMed Central

    2014-01-01

    The method of In bilayer pre-deposition and penetrated nitridation had been proposed, which had been proven to have many advantages theoretically. To study the growth behavior of this method experimentally, various pulse times of trimethylindium supply were used to get the optimal indium bilayer controlling by metalorganic vapour phase epitaxy. The results revealed that the InN film quality became better as the thickness of the top indium atomic layers was close to bilayer. A following tuning of nitridation process enhanced the quality of InN film further, which means that a moderate, stable, and slow nitridation process by NH3 flow also plays the key role in growing better-quality InN film. Meanwhile, the biaxial strain of InN film was gradually relaxing when the flatness was increasingly improved. PMID:24393422

  14. Impact of substrate nitridation on the growth of InN on In2O3(111) by plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Cho, YongJin; Sadofev, Sergey; Fernández-Garrido, Sergio; Calarco, Raffaella; Riechert, Henning; Galazka, Zbigniew; Uecker, Reinhard; Brandt, Oliver

    2016-04-01

    We study the growth of InN films on In2O3(111) substrates by plasma-assisted molecular beam epitaxy under N excess. InN films deposited directly on In2O3(111) exhibit a strongly faceted morphology. A nitridation step prior to growth is found to convert the In2O3(111) surface to InN{0001}. The morphology of InN films deposited on such nitridated In2O3(111) substrates is characteristic for growth by instable step-flow and is thus drastically different from the three-dimensional growth obtained without nitridation. We show that this change originates from the different polarity of the films: while InN films deposited directly on In2O3(111) are In-polar, they are N-polar when grown on the nitridated substrate.

  15. Superconductivity of Ca2 InN with a layered structure embedding an anionic indium chain array

    NASA Astrophysics Data System (ADS)

    Jeong, Sehoon; Matsuishi, Satoru; Lee, Kimoon; Toda, Yoshitake; Wng Kim, Sung; Hosono, Hideo

    2014-05-01

    We report the emergence of superconductivity in Ca2InN consisting of a two-dimensional (2D) array of zigzag indium chains embedded between Ca2N layers. A sudden drop of resistivity and a specific heat (Cp) jump attributed to the superconducting transition were observed at 0.6 K. The Sommerfeld coefficient γ = 4.24 mJ mol-1K-2 and Debye temperature ΘD = 322 K were determined from the Cp of the normal conducting state and the superconducting volume fraction was estimated to be ˜80% from the Cp jump, assuming a BCS-type weak coupling. Density functional theory calculations demonstrated that the electronic bands near the Fermi level (EF) are mainly derived from In 5p orbitals with π and σ bonding states and the Fermi surface is composed of cylindrical parts, corresponding to the quasi-2D electronic state of the In-chain array. By integrating the projected density of states of the In-p component up to EF, a valence electron population of ˜1.6 electrons/In was calculated, indicating that partially anionic state of In. The In 3d binding energies observed in Ca2InN by x-ray photoemission spectroscopy were negatively shifted from that in In metal. The superconductivity of Ca2InN is associated with the p-p bonding states of the anionic In layer.

  16. Surface origin and control of resonance Raman scattering and surface band gap in indium nitride

    NASA Astrophysics Data System (ADS)

    Alarcón-Lladó, Esther; Brazzini, Tommaso; Ager, Joel W.

    2016-06-01

    Resonance Raman scattering measurements were performed on indium nitride thin films under conditions where the surface electron concentration was controlled by an electrolyte gate. As the surface condition is tuned from electron depletion to accumulation, the spectral feature at the expected position of the (E 1, A 1) longitudinal optical (LO) near 590 cm‑1 shifts to lower frequency. The shift is reversibly controlled with the applied gate potential, which clearly demonstrates the surface origin of this feature. The result is interpreted within the framework of a Martin double resonance, where the surface functions as a planar defect, allowing the scattering of long wavevector phonons. The allowed wavevector range, and hence the frequency, is modulated by the electron accumulation due to band gap narrowing. A surface band gap reduction of over 500 meV is estimated for the conditions of maximum electron accumulation. Under conditions of electron depletion, the full InN bandgap (E g  =  0.65 eV) is expected at the surface. The drastic change in the surface band gap is expected to influence the transport properties of devices which utilize the surface electron accumulation layer.

  17. Low-threshold indium gallium nitride quantum dot microcavity lasers

    NASA Astrophysics Data System (ADS)

    Woolf, Alexander J.

    Gallium nitride (GaN) microcavities with embedded optical emitters have long been sought after as visible light sources as well as platforms for cavity quantum electrodynamics (cavity QED) experiments. Specifically, materials containing indium gallium nitride (InGaN) quantum dots (QDs) offer an outstanding platform to study light matter interactions and realize practical devices, such as on-chip light emitting diodes and nanolasers. Inherent advantages of nitride-based microcavities include low surface recombination velocities, enhanced room-temperature performance (due to their high exciton binding energy, as high as 67 meV for InGaN QDs), and emission wavelengths in the blue region of the visible spectrum. In spite of these advantages, several challenges must be overcome in order to capitalize on the potential of this material system. Such diffculties include the processing of GaN into high-quality devices due to the chemical inertness of the material, low material quality as a result of strain-induced defects, reduced carrier recombination effciencies due to internal fields, and a lack of characterization of the InGaN QDs themselves due to the diffculty of their growth and therefore lack of development relative to other semiconductor QDs. In this thesis we seek to understand and address such issues by investigating the interaction of light coupled to InGaN QDs via a GaN microcavity resonator. Such coupling led us to the demonstration of the first InGaN QD microcavity laser, whose performance offers insights into the properties and current limitations of the nitride materials and their emitters. This work is organized into three main sections. Part I outlines the key advantages and challenges regarding indium gallium nitride (InGaN) emitters embedded within gallium nitride (GaN) optical microcavities. Previous work is also discussed which establishes context for the work presented here. Part II includes the fundamentals related to laser operation, including the

  18. Band Offset Characterization of the Atomic Layer Deposited Aluminum Oxide on m-Plane Indium Nitride

    NASA Astrophysics Data System (ADS)

    Jia, Ye; Wallace, Joshua S.; Qin, Yueling; Gardella, Joseph A.; Dabiran, Amir M.; Singisetti, Uttam

    2016-04-01

    In this letter, we report the band offset characterization of the atomic layer deposited aluminum oxide on non-polar m-plane indium nitride grown by plasma-assisted molecular beam epitaxy by using x-ray photoelectron spectroscopy. The valence band offset between aluminum oxide and m-plane indium nitride was determined to be 2.83 eV. The Fermi level of indium nitride was 0.63 eV above valence band maximum, indicated a reduced band bending in comparison to polar indium nitride. The band gap of aluminum oxide was found to be to 6.7 eV, which gave a conduction band offset of 3.17 eV.

  19. Formation and Temperature Effect of InN Nanodots by PA-MBE via Droplet Epitaxy Technique.

    PubMed

    Chen, Hugo Juin-Yu; Yang, Dian-Long; Huang, Tseh-Wet; Yu, Ing-Song

    2016-12-01

    In this report, self-organized indium nitride nanodots have been grown on Si (111) by droplet epitaxy method and their density can reach as high as 2.83 × 10(11) cm(-2) for the growth at low temperature of 250 °C. Based on the in situ reflection high-energy electron diffraction, the surface condition, indium droplets, and the formation of InN nanodots are identified during the epitaxy. The X-ray photoelectron spectroscopy and photoluminescence measurements have shown the formation of InN nanodots as well. The growth mechanism of InN nanodots could be described via the characterizations of indium droplets and InN nanodots using scanning electron microscopy, atomic force microscopy, and transmission electron microscopy. The density of the InN nanodots was less than that of the In droplets due to the surface diffusion and desorption of atoms during the nitridation and annealing process. The average size and density of InN nanodots can be controlled by the substrate temperatures during the growth. For the growth at lower temperature, we obtained the higher density and smaller average size of InN nanodots. To minimize the total surface energy, the coarsening and some preferred orientations of InN nanodots were observed for the growth at high temperature. PMID:27142879

  20. Formation and Temperature Effect of InN Nanodots by PA-MBE via Droplet Epitaxy Technique

    NASA Astrophysics Data System (ADS)

    Chen, Hugo Juin-Yu; Yang, Dian-Long; Huang, Tseh-Wet; Yu, Ing-Song

    2016-05-01

    In this report, self-organized indium nitride nanodots have been grown on Si (111) by droplet epitaxy method and their density can reach as high as 2.83 × 1011 cm-2 for the growth at low temperature of 250 °C. Based on the in situ reflection high-energy electron diffraction, the surface condition, indium droplets, and the formation of InN nanodots are identified during the epitaxy. The X-ray photoelectron spectroscopy and photoluminescence measurements have shown the formation of InN nanodots as well. The growth mechanism of InN nanodots could be described via the characterizations of indium droplets and InN nanodots using scanning electron microscopy, atomic force microscopy, and transmission electron microscopy. The density of the InN nanodots was less than that of the In droplets due to the surface diffusion and desorption of atoms during the nitridation and annealing process. The average size and density of InN nanodots can be controlled by the substrate temperatures during the growth. For the growth at lower temperature, we obtained the higher density and smaller average size of InN nanodots. To minimize the total surface energy, the coarsening and some preferred orientations of InN nanodots were observed for the growth at high temperature.

  1. Investigation of indium gallium nitride facet-dependent nonpolar growth rates and composition for core-shell light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Gîrgel, Ionut; Edwards, Paul R.; Le Boulbar, Emmanuel; Coulon, Pierre-Marie; Sahonta, Suman-Lata; Allsopp, Duncan W. E.; Martin, Robert W.; Humphreys, Colin J.; Shields, Philip A.

    2016-01-01

    Core-shell indium gallium nitride (InGaN)/gallium nitride (GaN) structures are attractive as light emitters due to the large nonpolar surface of rod-like cores with their longitudinal axis aligned along the c-direction. These facets do not suffer from the quantum-confined Stark effect that limits the thickness of quantum wells and efficiency in conventional light-emitting devices. Understanding InGaN growth on these submicron three-dimensional structures is important to optimize optoelectronic device performance. In this work, the influence of reactor parameters was determined and compared. GaN nanorods (NRs) with both {11-20} a-plane and {10-10} m-plane nonpolar facets were prepared to investigate the impact of metalorganic vapor phase epitaxy reactor parameters on the characteristics of a thick (38 to 85 nm) overgrown InGaN shell. The morphology and optical emission properties of the InGaN layers were investigated by scanning electron microscopy, transmission electron microscopy, and cathodoluminescence hyperspectral imaging. The study reveals that reactor pressure has an important impact on the InN mole fraction on the {10-10} m-plane facets, even at a reduced growth rate. The sample grown at 750°C and 100 mbar had an InN mole fraction of 25% on the {10-10} facets of the NRs.

  2. Observation of visible luminescence from indium nitride at room temperature

    SciTech Connect

    Guo, Q.X.; Tanaka, T.; Nishio, M.; Ogawa, H.; Pu, X.D.; Shen, W.Z.

    2005-06-06

    InN films were grown on sapphire substrates with AlN buffer layers by reactive sputtering. C-axis-oriented crystalline InN films with a wurtzite structure were confirmed by x-ray diffraction and Raman scattering. Strong photoluminescence (PL) at 1.87 eV, together with a clear absorption edge at 1.97 eV, was observed at room temperature, which clearly demonstrates that it is not accurate in the previous assignment of an {approx}0.7 eV fundamental band gap for intrinsic InN simply from PL and absorption data. The possible origin of the present large band gap was discussed in terms of the effects of oxygen and the Burstein-Moss shift.

  3. Indium gallium nitride/gallium nitride quantum wells grown on polar and nonpolar gallium nitride substrates

    NASA Astrophysics Data System (ADS)

    Lai, Kun-Yu

    Nonpolar (m-plane or a-plane) gallium nitride (GaN) is predicted to be a potential substrate material to improve luminous efficiencies of nitride-based quantum wells (QWs). Numerical calculations indicated that the spontaneous emission rate in a single In0.15Ga0.85N/GaN QW could be improved by ˜2.2 times if the polarization-induced internal field was avoided by epitaxial deposition on nonpolar substrates. A challenge for nonpolar GaN is the limited size (less than 10x10 mm2) of substrates, which was addressed by expansion during the regrowth by Hydride Vapor Phase Epitaxy (HVPE). Subsurface damage in GaN substrates were reduced by annealing with NH3 and N2 at 950°C for 60 minutes. It was additionally found that the variation of m-plane QWs' emission properties was significantly increased when the substrate miscut toward a-axis was increased from 0° to 0.1°. InGaN/GaN QWs were grown by Metalorganic Chemical Vapor Deposition (MOCVD) on c-plane and m-plane GaN substrates. The QWs were studied by cathodoluminescence spectroscopy with different incident electron beam probe currents (0.1 nA ˜ 1000 nA). Lower emission intensities and longer peak wavelengths from c-plane QWs were attributed to the Quantum-confined Stark Effect (QCSE). The emission intensity ratios of m-plane QWs to c-plane QWs decreased from 3.04 at 1 nA to 1.53 at 1000 nA. This was identified as the stronger screening effects of QCSE at higher current densities in c-plane QWs. To further investigate these effects in a fabricated structure, biased photoluminescence measurements were performed on m-plane InGaN/GaN QWs. The purpose was to detect the possible internal fields induced by the dot-like structure in the InGaN layer through the response of these internal fields under externally applied fields. No energy shifts of the QWs were observed, which was attributed to strong surface leakage currents.

  4. Optical, structural, and transport properties of indium nitride, indium gallium nitride alloys grown by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Khan, Neelam

    InGaN based, blue and green light emitting diodes (LEDs) have been successfully produced over the past decade. But the progress of these LEDs is often limited by the fundamental problems of InGaN such as differences in lattice constants, thermal expansion coefficients and physical properties between InN and GaN. This difficulty could be addressed by studying pure InN and InxGa 1-xN alloys. In this context Ga-rich InxGa1-xN (x ≤ 0.4) epilayers were grown by metal organic chemical vapor deposition (MOCVD). X-ray diffraction (XRD) measurements showed InxGa1-xN films with x= 0.37 had single phase. Phase separation occurred for x ˜ 0.4. To understand the issue of phase separation in Ga-rich InxGa 1-xN, studies on growth of pure InN and In-rich InxGa 1-xN alloys were carried out. InN and In-rich InxGa1-xN (x ˜ 0.97-0.40) epilayers were grown on AlN/Al2O3 templates. A Hall mobility of 1400 cm2/Vs with a carrier concentration of 7x1018cm -3 was observed for InN epilayers grown on AlN templates. Photoluminescence (PL) emission spectra revealed a band to band emission peak at ˜0.75 eV for InN. This peak shifted to 1.15 eV when In content was varied from 1.0 to 0.63 in In-rich InxGa1-xN epilayers. After growth parameter optimization of In-rich InxGa1-xN alloys with (x = 0.97-0.40) were successfully grown without phase separation. Effects of Mg doping on the PL properties of InN epilayers grown on GaN/Al 2O3 templates were investigated. An emission line at ˜ 0.76 eV, which was absent in undoped InN epilayers and was about 60 meV below the band edge emission peak at ˜ 0.82 eV, was observed to be the dominant emission in Mg-doped InN epilayers. PL peak position and the temperature dependent emission intensity corroborated each other and suggested that Mg acceptor level in InN is about 60 meV above the valance band maximum. Strain effects on the emission properties of InGaN/GaN multiple quantum wells (MQWs) were studied using a single blue LED wafer possessing a continuous

  5. InN thin-film transistors fabricated on polymer sheets using pulsed sputtering deposition at room temperature

    NASA Astrophysics Data System (ADS)

    Lye, Khe Shin; Kobayashi, Atsushi; Ueno, Kohei; Ohta, Jitsuo; Fujioka, Hiroshi

    2016-07-01

    Indium nitride (InN) is potentially suitable for the fabrication of high performance thin-film transistors (TFTs) because of its high electron mobility and peak electron velocity. However, InN is usually grown using a high temperature growth process, which is incompatible with large-area and lightweight TFT substrates. In this study, we report on the room temperature growth of InN films on flexible polyimide sheets using pulsed sputtering deposition. In addition, we report on the fabrication of InN-based TFTs on flexible polyimide sheets and the operation of these devices.

  6. Plasma deposited silicon nitride for indium phosphide encapsulation

    NASA Technical Reports Server (NTRS)

    Valco, G. J.; Kapoor, V. J.; Biedenbender, M. D.; Williams, W. D.

    1989-01-01

    The composition and the annealing characteristics of plasma-deposited silicon-nitride encapsulating films on the ion-implanted InP substrates were investigated, using two different substrate-cleaning procedures (organic solvents and HF or HIO3 solutions) prior to encapsulation. The effect of plasma deposition of silicon nitride on the InP substrates was assessed through the current-voltage characteristics of Schottky diodes. Results of XPS analyses showed that the cleaning procedure that employed HF solution left less oxygen on the InP surface than the procedure involving HIO3. No chemical interaction between the film and the substrate was observed before or after annealing.

  7. MOCVD growth of gallium nitride with indium surfactant

    NASA Astrophysics Data System (ADS)

    Won, Dong Jin

    In this thesis research, the effect of indium surfactant on Ga-polar and N-polar GaN films grown at 950 °C by MOCVD on various substrates such as Si-face SiC, bulk GaN, Si(111), and C-face SiC was studied to investigate the stress relaxation mechanism, structural, and optical properties of GaN films which were modified by the indium surfactant. The effect of indium surfactant on GaN films grown on SiC was studied first. In the 1.8 microm thick Ga-polar GaN films grown on lattice-mismatched Si-face SiC substrates utilizing indium surfactant at 950 °C, inverted hexagonal pyramid surface defects, so-called V-defects which consist of six (1011) planes, formed at threading dislocations on the GaN surface, which gave rise to the relaxation of compressive misfit stress in an elastic way. Simultaneously, enhanced surface mobility of Ga and N adatoms with indium surfactant lead to improved 2D growth, which may be contradictory to the formation of surface defects like V-defects. In order to find the driving force for V-defect formation in the presence of indium, a nucleation and growth model was developed, taking into consideration the strain, surface, and dislocation energies modified by indium surfactant. This model found that the V-defect formation can be energetically preferred since indium reduces the surface energy of the (1011) plane, which gives rise to the V-defect formation and growth that can overcome the energy barrier at the critical radius of the V-defect. These Ga-polar GaN films were found to be unintentionally doped with Si. Thus, an investigation into the effect of intentional Si doping at a constant TMIn flow rate on GaN films was also performed. Si turned out to be another important factor in the generation of V-defects because Si may be captured at the threading dislocation cores by forming Si -- N bonds, acting as a mask to locally prevent GaN growth. This behavior appeared to assist the initiation of the V-defect which enables V-defects to easily

  8. Influence of In-N Clusters on Band Gap Energy of Dilute Nitride In x Ga1‑x N y As1‑y

    NASA Astrophysics Data System (ADS)

    Zhao, Chuan-Zhen; Guo, Heng-Fei; Chen, Li-Ying; Tang, Chun-Xiao; Lu, Ke-Qing

    2016-05-01

    The In-N clusters form in the dilute nitride InxGa1‑xNyAs1‑y alloys after annealing. It is found that the formation of the In-N clusters not only raises the N levels lying above the conduction band minimum (CBM) of InGaAs, but also raises the N levels below the CBM of InGaAs, leading to the variation of the impurity-host interaction. The blueshift of the band gap energy is relative to the variation of the impurity-host interaction. In order to describe the blueshift of the band gap energy due to the formation of the In-N clusters, a model is developed. It is found that the model can describe the blueshift of the band gap energy well. In addition, it is found the blueshift of the band gap energy due to the atom interdiffusion at the interface can be larger than that due to the formation of the In-N clusters. Supported by the National Natural Science Foundation of China under Grant No. 61504094, Tinjin Research Program of Application Foundation and Advanced Technology under No. 15JCYBJC16300, and Tianjin City High School Science and Technology Fund Planning Project No. 20120609

  9. Electrochromic reaction of InN thin films

    SciTech Connect

    Asai, Nobuaki; Inoue, Yasushi; Sugimura, Hiroyuki; Takai, Osamu

    1999-06-01

    Electrochromic (EC) reaction of indium nitride (InN) films prepared by radio frequency (rf) ion plating was studied through their chemical bonding states and crystalline structures as measured by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), respectively. In addition, the pH dependence of the EC reaction was characterized. Color of the InN films became darker or lighter when the InN films were polarized anodically or cathodically, respectively, in a Na{sub 2}SO{sub 4} solution. Similar color changes were observed when pH of the Na{sub 2}SO{sub 43} solution was changed from 4.0 to 11.6. The color change at one unit of pH difference corresponded to the EC color change at a potential difference of 59 mV. From these results, H{sup +} and OH{sup {minus}} were confirmed to be active reactants in the EC reaction of the InN films. On the other hand, it was revealed from XPS and XRD results that the amount of hydroxides formed at the grain boundaries and the surface of the anodically polarized InN films was greater than that of the film polarized cathodically. Therefore, the electrochromism of the InN films was concluded to be governed by chemisorption of H{sup +} and OH{sup {minus}} at grain boundaries.

  10. Polycrystalline InN thin films prepared by ion-beam-assisted filtered cathodic vacuum arc technique

    NASA Astrophysics Data System (ADS)

    Ji, X. H.; Lau, S. P.

    2005-09-01

    We report on the fabrication of indium nitride (InN) thin films on silicon (1 0 0) substrates by radio frequency ion-beam-assisted filtered cathodic vacuum arc technique at low temperature. The effects of nitrogen ion energy on the structural properties of InN films have been investigated by X-ray diffraction and Raman spectroscopy. The InN films exhibit polycrystalline wurtzite structure. At nitrogen ion energy of 100 eV, the film shows preferred (0 0 0 2) orientation. The preferred orientation is changed to ( 1 0 1¯ 1) when the nitrogen ion energy is more than 100 eV. Three Raman-active optical phonons have been clearly identified and assigned to A 1(LO) at ˜588 cm -1, E22 at ˜490 cm -1 and A 1(TO) at ˜449 cm -1 of InN films, which confirmed the hexagonal structure of InN.

  11. p-type conduction in Zn-ion implanted InN films

    NASA Astrophysics Data System (ADS)

    Xie, W. M.; Y Xie, Q.; Zhu, H. P.; Wang, W.; Cai, H. L.; Zhang, F. M.; Wu, X. S.

    2015-06-01

    We report p-type conductivity in wurtzite indium nitride (InN) experimentally and theoretically. The as-deposited InN films are implanted with various doses of Zn ions. The Hall coefficient is positive for samples with doses of 2.5 ~ 10   ×   1014 ions cm-2 at low temperature and turns negative as the temperature increases. This notable sign change of the Hall coefficient confirms the existence of mobile holes in Zn-implanted InN. Moreover, first principle calculations indicate that Zn may be a more stable p-type dopant in InN than that of Mg and Ba because of its low ionization energy.

  12. Growth of Indium Gallium Nitride Nanorings via Metal Organic Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Zaidi, Zohair

    III-Nitride nanostructures have been an active area of research recently due to their ability to tune their optoelectronic properties. Thus far work has been done on InGaN quantum dots, nanowires, nanopillars, amongst other structures, but this research reports the creation of a new type of InGaN nanostructure, nanorings. Hexagonal InGaN nanorings were formed using Metal Organic Chemical Vapor Deposition through droplet epitaxy. The nanorings were thoroughly analyzed using x-ray diffraction, photoluminescence, electron microscopy, electron diffraction, and atomic force microscopy. Nanorings with high indium incorporation were achieved with indium content up to 50% that was then controlled using the growth time, temperature, In/Ga ratio and III/N ratio. The analysis showed that the nanoring shape is able to incorporate more indium than other nanostructures, due to the relaxing mechanism involved in the formation of the nanoring. The ideal conditions were determined to be growth of 30 second droplets with a growth time of 1 minute 30 seconds at 770 C to achieve the most well developed rings with the highest indium concentration.

  13. Tuning of the electronic and optical properties of single-layer indium nitride by strain and stress

    NASA Astrophysics Data System (ADS)

    Jalilian, Jaafar; Naseri, Mosayeb; Safari, Shima; Zarei, Mina

    2016-09-01

    Using first principles calculations, electronic and optical properties of indium nitride graphene-like structure have been studied under various stress and strain values. The results exhibit that this compound in the range of ±6 applied biaxial strain remains a direct band gap semiconductor. Also, exerting stress and strain reduces the energy band gap of the considered materials. The optical calculations illustrate that applying stress and strain on system results in blue and red shift in optical spectra. All obtained results presented that we can tune the optoelectronic properties of indium nitride by applying stress and strain.

  14. Chemical vapor deposition of m-plane and c-plane InN nanowires on Si (100) substrate

    NASA Astrophysics Data System (ADS)

    Rafique, Subrina; Han, Lu; Zhao, Hongping

    2015-04-01

    In this paper, synthesis of indium nitride (InN) nanowires (NWs) by chemical vapor deposition (CVD) is studied. InN NWs were synthesized via a vapor-liquid-solid (VLS) growth mechanism using high purity indium foil and ammonia as the source materials, and nitrogen as carrier gas. The mixture of nonpolar m-plane oriented and polar c-plane oriented tapered InN NWs is observed grown on top of Si (100) substrate. Energy dispersive spectroscopy (EDS) showed that the tips of the NWs are primarily consisted of Au and the rest of the NWs are consisted of indium (In) and nitrogen (N). High resolution scanning electron microscopy (HRSEM) revealed that the InN NWs have both triangular and hexagonal cross sections. Transmission electron microscopy (TEM) diffraction pattern showed that the NWs are high quality single crystals having wurtzite crystal structure. High resolution transmission electron microscopy (HRTEM) showed the growth directions of the InN NWs with triangular cross section are along <10-10> nonpolar m-plane orientation and the InN NWs with hexagonal cross section are along <0001> polar c-plane orientation.

  15. Hall effect and photoconductivity lifetime studies of gallium nitride, indium nitride, and mercury cadmium telluride

    NASA Astrophysics Data System (ADS)

    Swartz, Craig H.

    A deep understanding of both carrier recombination and transport is necessary for semiconductor engineering, particularly in defining the ultimate limits of performance for a given device before spending the resources to perfect its fabrication. Hall effect measurements utilizing a variable magnetic field are necessary to discriminate between conduction in epitaxial layers and conduction originating at the surface or at an interfacial layer. For thick hydride vapor phase epitaxy (HVPE) grown GaN, variable field Hall measurements revealed the presence of small but significant lower mobility surface and interface electrons which would otherwise lead to errors in interpreting the electrical properties. In addition, QMSA analysis of the measurements indicates that thick GaN samples contain a large spread in electron mobility values, most likely with depth. For molecular beam epitaxial InN, it was found that electrical measurements are affected by surface charge conduction, as well as the non-uniformity of mobility and carrier concentration with depth. Both of these effects mask the surprisingly high quality of the material close to the surface. Photoconductance lifetime and variable-magnetic-field Hall and transient measurements were performed on a series of undoped, In-doped and As-doped HgCdTe grown by MBE and MOCVD. N-type layers often significantly influence the interpretation of the electrical measurements. Even the best Low Wavelength Infrared (LWIR) n-type material still appears to be dominated by defect-related recombination, as intrinsic lifetimes calculated with full band structure can be well above those measured. Mid-Wavelength Infrared (MWIR) lifetimes increase somewhat with carrier concentration, as if the n-type doping process were passivating Schockley-Read-Hall (SRH) defects. P-type MWIR films lie mainly below the predicted values, and their relationship between concentration and lifetime is essentially unchanged by growth technique, indicating that a

  16. Identification of Raman-active phonon modes in oriented platelets of InN and polycrystalline InN

    NASA Astrophysics Data System (ADS)

    Dyck, J. S.; Kim, K.; Limpijumnong, S.; Lambrecht, W. R. L.; Kash, K.; Angus, J. C.

    2000-04-01

    We report on micro-Raman studies on both randomly oriented polycrystals and groups of oriented, faceted platelets of indium nitride grown from the melt at subatmospheric pressures. Phonon modes were assigned as A1TO=445, E1TO=472, E2(2)=488, and A1LO=588 cm-1. The FWHM of the E2(2) peak of 2.5 cm -1 is the narrowest reported to date for InN. The measured TO phonon frequencies were compared to those calculated from first principles and excellent agreement was found. The results are discussed in the context of previously reported Raman experiments on heteroepitaxial, and hence strained, layers of InN.

  17. ANALYSIS OF THE WATER-SPLITTING CAPABILITIES OF GALLIUM INDIUM PHOSPHIDE NITRIDE (GaInPN)

    SciTech Connect

    Head, J.; Turner, J.

    2007-01-01

    With increasing demand for oil, the fossil fuels used to power society’s vehicles and homes are becoming harder to obtain, creating pollution problems and posing hazard’s to people’s health. Hydrogen, a clean and effi cient energy carrier, is one alternative to fossil fuels. Certain semiconductors are able to harness the energy of solar photons and direct it into water electrolysis in a process known as photoelectrochemical water-splitting. P-type gallium indium phosphide (p-GaInP2) in tandem with GaAs is a semiconductor system that exhibits water-splitting capabilities with a solar-tohydrogen effi ciency of 12.4%. Although this material is effi cient at producing hydrogen through photoelectrolysis it has been shown to be unstable in solution. By introducing nitrogen into this material, there is great potential for enhanced stability. In this study, gallium indium phosphide nitride Ga1-yInyP1-xNx samples were grown using metal-organic chemical vapor deposition in an atmospheric-pressure vertical reactor. Photocurrent spectroscopy determined these materials to have a direct band gap around 2.0eV. Mott-Schottky analysis indicated p-type behavior with variation in fl atband potentials with varied frequencies and pH’s of solutions. Photocurrent onset and illuminated open circuit potential measurements correlated to fl atband potentials determined from previous studies. Durability analysis suggested improved stability over the GaInP2 system.

  18. Large area InN terahertz emitters based on the lateral photo-Dember effect

    SciTech Connect

    Wallauer, Jan Grumber, Christian; Walther, Markus; Polyakov, Vladimir; Iannucci, Robert; Cimalla, Volker; Ambacher, Oliver

    2015-09-14

    Large area terahertz emitters based on the lateral photo-Dember effect in InN (indium nitride) are presented. The formation of lateral photo-Dember currents is induced by laser-illumination through a microstructured metal cover processed onto the InN substrate, causing an asymmetry in the lateral photogenerated charge carrier distribution. Our design uses simple metal structures, which are produced by conventional two-dimensional micro-structuring techniques. Having favoring properties as a photo-Dember material InN is particularly well-suited as a substrate for our emitters. We demonstrate that the emission intensity of the emitters can be significantly influenced by the structure of the metal cover leaving room for improvement by optimizing the masking structures.

  19. The influence of random indium alloy fluctuations in indium gallium nitride quantum wells on the device behavior

    SciTech Connect

    Yang, Tsung-Jui; Wu, Yuh-Renn; Shivaraman, Ravi; Speck, James S.

    2014-09-21

    In this paper, we describe the influence of the intrinsic indium fluctuation in the InGaN quantum wells on the carrier transport, efficiency droop, and emission spectrum in GaN-based light emitting diodes (LEDs). Both real and randomly generated indium fluctuations were used in 3D simulations and compared to quantum wells with a uniform indium distribution. We found that without further hypothesis the simulations of electrical and optical properties in LEDs such as carrier transport, radiative and Auger recombination, and efficiency droop are greatly improved by considering natural nanoscale indium fluctuations.

  20. Indium gallium nitride/gallium nitride vacuum microelectronic cold cathodes: Piezoelectric surface barrier lowering

    NASA Astrophysics Data System (ADS)

    Underwood, Robert Douglas

    Vacuum microelectronic devices are electronic devices fabricated using microelectronic processing and using vacuum as a transport medium. The electron velocity in vacuum can be larger than in solid state, which allows higher frequency operation of vacuum devices compared to solid-state devices. The effectiveness of vacuum microelectronic devices relies on the realization of an efficient source of electrons supplied to the vacuum. Cold cathodes do not rely on thermal energy for the emission of electrons into vacuum. Cold cathodes based on field emission are the most common types of vacuum microelectronic cold cathode because they have a very high efficiency and high current density electron emission. Materials used to fabricate field emitters must have the properties of high electron concentration, low surface reactivity, resistance to sputtering by ions, high thermal conductivity, and a method of fabrication of uniform arrays of field emitters. The III--V nitride semiconductors possess these material properties and uniform arrays of GaN field emitter pyramids have been produced by selective area, self-limited metalorganic chemical vapor deposition. The first GaN field emitter arrays were fabricated and measured. Emission currents as large as 82 muA at 1100 V from 245,000 pyramids have been realized using an external anode, separated by 0.25 mm, to apply voltage bias. The operation voltage was reduced by the development of an integrated anode structure. The anode-cathode separation achievable with the integrated anode was in the range of 0.5--2.4 m. The turn-on voltages of these devices were reduced to the range of 175--435 V. The operation voltage of field emitter cathodes is related to the surface energy barrier, which for n-type semiconductors is the electron affinity. A new method to reduce the effective electron affinity using a piezoelectric dipole in an InGaN/GaN heterostructure has been proposed and tested. The piezoelectric field produced in the strained In

  1. Growth and fabrication of gallium nitride and indium gallium nitride-based optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Berkman, Erkan Acar

    In this study, heteroepitaxial growth of III-Nitrides was performed by metalorganic chemical vapor deposition (MOCVD) technique on (0001) Al 2O3 substrates to develop GaN and InxGa1-x N based optoelectronic devices. Comprehensive experimental studies on emission and relaxation mechanisms of InxGa1-xN quantum wells (QWs) and InxGa 1-xN single layers were performed. The grown films were characterized by x-ray diffraction (XRD), Hall Effect measurements, photoluminescence measurements (PL) and transmission electron microscopy (TEM). An investigation on the effect of number and width of QWs on PL emission properties of InxGa 1-xN single QWs and multi-quantum wells (MQW) was conducted. The experimental results were explained by the developed theoretical bandgap model. The study on the single layer InxGa1-xN films within and beyond critical layer thickness (CLT) demonstrated that thick InxGa 1-xN films display simultaneous presence of strained and (partially) relaxed layers. The In incorporation into the lattice was observed to be dependent on the strain state of the film. The findings on InxGa1-xN QWs and single layers were implemented in the development of InxGa1-xN based LEDs and photodiodes, respectively. The as-grown samples were fabricated using conventional lithography techniques into various optoelectronic devices including long wavelength LEDs, dichromatic monolithic white LEDs, and p-i-n photodiodes. Emission from InxGa1-xN/GaN MQW LEDs at wavelengths as long as 625nm was demonstrated. This is one of the longest peak emission wavelengths reported for MOCVD grown InxGa1-xN MQW structures. Dichromatic white emission in LEDs was realized by utilizing two InGaN MQW active regions emitting at complementary wavelengths. InGaN p-i-n photodiodes operating at various regions of the visible spectrum tailored by the i-layer properties were developed. This was achieved by the novel approach of employing InxGa1-xN in all layers of the p-i-n photodiodes, enabling nearly

  2. Drift current dominated terahertz radiation from InN at low-density excitation

    NASA Astrophysics Data System (ADS)

    Lin, K. I.; Tsai, J. T.; Wang, T. S.; Hwang, J. S.; Chen, M. C.; Chi, G. C.

    2008-12-01

    This letter investigates the polarity of terahertz radiation from indium nitride (InN) excited by femtosecond optical pulses wherein a central wavelength of around 790nm is measured. The InN epilayers are grown by metalorganic chemical vapor deposition on sapphire and silicon substrates. The polarity of the terahertz radiation field from InN is opposite to that from p-InAs whose radiation mechanism is dominated by the photo-Dember effect indicating that the dominant radiation mechanism in InN is the drift current induced by the internal electric field at low-density excitation below 590nJ /cm2. The internal electric field consists of the surface accumulation field and the spontaneous polarization-induced electric field. In addition, since no azimuthal angle dependence of the terahertz radiation is observed, the optical rectification effect is ruled out. By comparing the wave forms of terahertz radiation from the front and the back of the InN sample grown on sapphire in reflection geometry, the N polarity of the InN sample is confirmed.

  3. Effect of strain on gallium nitride and gallium indium arsenide nitride growth and doping

    NASA Astrophysics Data System (ADS)

    G. S., Sudhir

    GaN and the related (Al,In)N materials are currently used in manufacturing optoelectronic and electronic devices. However, the efficiency of these devices is limited due to lack of high structural quality and of low resistive p-type GaN. The GaN thin films are under strain during growth due to the large lattice mismatch, thermal expansion difference, and low growth temperature. Developing a better understanding of the effect of strain on the properties of thin films is important in furthering our knowledge of thin film growth affecting the performance of III-nitride based devices. Pulsed laser deposition was used to grow thin films of AlN and GaN on sapphire substrates. It is shown that the structure and surface morphology of layers are controlled by the nitrogen partial pressure during the growth. Through these nitrogen pressure related effects, thin films with microstructure ranging from crystalline to amorphous can be produced. A minimal surface root mean square roughness of 0.7 nm for amorphous AlN is obtained which compares well with the substrate roughness of 0.5 nm. Incorporation of impurities changes the lattice constants of thin films of GaN deposited on basal plane sapphire by molecular beam epitaxy. Both Mg (1017 cm-3) and Zn (3 x 10 20 cm-3) doping were found to expand the c lattice parameter by +0.38 x 10-2 and +0.62 x 10 -2, respectively. Oxygen up to concentrations 9 x 10 21 cm-3 is shown to replace nitrogen in GaN thin films reducing the c parameter only by a small amount. Incorporation of Si leads to a large decrease of the c parameter, which can not be attributed to the different size of Ga and Si. It is suggested that doping alters the film stoichiometry by a predicted Fermi level dependence of defect formation energies and thereby, lattice parameters and stress. A proper buffer layer design is shown to increase the incorporation of Mg by two orders of magnitude Finally, the balance of lattice parameter change caused by dopant and native point

  4. Micro and nano-structured green gallium indium nitride/gallium nitride light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Stark, Christoph J. M.

    Light-emitting diodes (LEDs) are commonly designed and studied based on bulk material properties. In this thesis different approaches based on patterns in the nano and micrometer length scale range are used to tackle low efficiency in the green spectral region, which is known as “green gap”. Since light generation and extraction are governed by microscopic processes, it is instructive to study LEDs with lateral mesa sizes scaled to the nanometer range. Besides the well-known case of the quantum size effect along the growth direction, a continuous lateral scaling could reveal the mechanisms behind the purported absence of a green gap in nanowire LEDs and the role of their extraction enhancement. Furthermore the possibility to modulate strain and piezoelectric polarization by post growth patterning is of practical interest, because the internal electric fields in conventional wurtzite GaN LEDs cause performance problems. A possible alternative is cubic phase GaN, which is free of built-in polarization fields. LEDs on cubic GaN could show the link between strong polarization fields and efficiency roll-off at high current densities, also known as droop. An additional problem for all nitride-based LEDs is efficient light extraction. For a planar GaN LED only roughly 8% of the generated light can be extracted. Novel lightextraction structures with extraction-favoring geometry can yield significant increase in light output power. To investigate the effect of scaling the mesa dimension, micro and nano-sized LED arrays of variable structure size were fabricated. The nano-LEDs were patterned by electron beam lithography and dry etching. They contained up to 100 parallel nano-stripe LEDs connected to one common contact area. The mesa width was varied over 1 μm, 200 nm, and 50 nm. These LEDs were characterized electrically and optically, and the peak emission wavelength was found to depend on the lateral structure size. An electroluminescence (EL) wavelength shift of 3 nm

  5. Auger recombination in InN from first principles

    NASA Astrophysics Data System (ADS)

    McAllister, Andrew; Kioupakis, Emmanouil

    Group-III Nitride materials are used in numerous electronic and optoelectronic devices including solid-state lighting, energy conversion, sensor technologies, and high-power electronics. Indium nitride in particular is interesting for fast electronics and optoelectronics in the infrared. Auger recombination is a non-radiative carrier recombination process that would limit the efficiency of these devices. The small band gap (0.7 eV) and the high intrinsic free-electron concentrations in InN possibly make Auger recombination particularly important in this material. We used first-principles computational methods to determine the Auger recombination rates in InN. Our results suggest that direct Auger recombination is dominant in this material and that phonon-assisted Auger processes are not as important as in wider-gap nitrides such as GaN. This research was supported by the National Science Foundation CAREER award through Grant No. DMR-1254314. Computational resources were provided by the DOE NERSC facility.

  6. Unusual strategies for using indium gallium nitride grown on silicon (111) for solid-state lighting

    PubMed Central

    Kim, Hoon-sik; Brueckner, Eric; Song, Jizhou; Li, Yuhang; Kim, Seok; Lu, Chaofeng; Sulkin, Joshua; Choquette, Kent; Huang, Yonggang; Nuzzo, Ralph G.; Rogers, John A.

    2011-01-01

    Properties that can now be achieved with advanced, blue indium gallium nitride light emitting diodes (LEDs) lead to their potential as replacements for existing infrastructure in general illumination, with important implications for efficient use of energy. Further advances in this technology will benefit from reexamination of the modes for incorporating this materials technology into lighting modules that manage light conversion, extraction, and distribution, in ways that minimize adverse thermal effects associated with operation, with packages that exploit the unique aspects of these light sources. We present here ideas in anisotropic etching, microscale device assembly/integration, and module configuration that address these challenges in unconventional ways. Various device demonstrations provide examples of the capabilities, including thin, flexible lighting “tapes” based on patterned phosphors and large collections of small light emitters on plastic substrates. Quantitative modeling and experimental evaluation of heat flow in such structures illustrates one particular, important aspect of their operation: small, distributed LEDs can be passively cooled simply by direct thermal transport through thin-film metallization used for electrical interconnect, providing an enhanced and scalable means to integrate these devices in modules for white light generation. PMID:21666096

  7. Surface cleaning procedures for thin films of indium gallium nitride grown on sapphire

    NASA Astrophysics Data System (ADS)

    Douglass, K.; Hunt, S.; Teplyakov, A.; Opila, R. L.

    2010-12-01

    Surface preparation procedures for indium gallium nitride (InGaN) thin films were analyzed for their effectiveness for carbon and oxide removal as well as for the resulting surface roughness. Aqua regia (3:1 mixture of concentrated hydrochloric acid and concentrated nitric acid, AR), hydrofluoric acid (HF), hydrochloric acid (HCl), piranha solution (1:1 mixture of sulfuric acid and 30% H 2O 2) and 1:9 ammonium sulfide:tert-butanol were all used along with high temperature anneals to remove surface contamination. X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) were utilized to study the extent of surface contamination and surface roughness, respectively. The ammonium sulfide treatment provided the best overall removal of oxygen and carbon. Annealing over 700 °C after a treatment showed an even further improvement in surface contamination removal. The piranha treatment resulted in the lowest residual carbon, while the ammonium sulfide treatment leads to the lowest residual oxygen. AFM data showed that all the treatments decreased the surface roughness (with respect to as-grown specimens) with HCl, HF, (NH 4) 2S and RCA procedures giving the best RMS values (˜0.5-0.8 nm).

  8. Pressure dependence of the refractive index in wurtzite and rocksalt indium nitride

    SciTech Connect

    Oliva, R.; Yamaguchi, T.; Nanishi, Y.

    2014-12-08

    We have performed high-pressure Fourier transform infrared reflectance measurements on a freestanding InN thin film to determine the refractive index of wurtzite InN and its high-pressure rocksalt phase as a function of hydrostatic pressure. From a fit to the experimental refractive-index curves including the effect of the high-energy optical gaps, phonons, free carriers, and the direct (fundamental) band-gap in the case of wurtzite InN, we obtain pressure coefficients for the low-frequency (electronic) dielectric constant ε{sub ∞}. Negative pressure coefficients of −8.8 × 10{sup −2 }GPa{sup −1} and −14.8 × 10{sup −2 }GPa{sup −1} are obtained for the wurtzite and rocksalt phases, respectively. The results are discussed in terms of the electronic band structure and the compressibility of both phases.

  9. Initial exploration of growth of InN by electrochemical solution growth.

    SciTech Connect

    Waldrip, Karen Elizabeth

    2010-02-01

    This report summarizes a brief and unsuccessful attempt to grow indium nitride via the electrochemical solution growth method and a modification thereof. Described in this report is a brief effort using a $50,000 LDRD award to explore the possibilities of applying the Electrochemical Solution Growth (ESG) technique to the growth of indium nitride (InN). The ability to grow bulk InN would be exciting from a scientific perspective, and a commercial incentive lies in the potential of extending the ESG technique to grow homogeneous, bulk alloys of In{sub x}Ga{sub 1-x}N for light emitting diodes (LEDs) operating in the green region of the spectrum. Indium nitride is the most difficult of the III-nitrides to grow due to its very high equilibrium vapor pressure of nitrogen1. It is several orders of magnitude higher than for gallium nitride or aluminum nitride. InN has a bandgap energy of 0.7eV, and achieving its growth in bulk for large area, high quality substrates would permit the fabrication of LEDs operating in the infrared. By alloying with GaN and AlN, the bulk material used as substrates would enable high efficiency emission wavelengths that could be tailored all the way through the deep ultraviolet. In addition, InN has been shown to have very high electronic mobilities (2700 cm{sup 2}/V s), making it a promising material for transistors and even terahertz emitters. Several attempts at synthesizing InN have been made by several groups. It was shown that metallic indium does not interact with unactivated nitrogen even at very high temperatures. Thus sets up an incompatibility between the precursors in all growth methods: a tradeoff between thermally activating the nitrogen-containing precursor and the low decomposition temperature of solid InN. We have been working to develop a novel growth technique that circumvents the difficulties of other bulk growth techniques by precipitating the column III nitrides from a solvent, such as a molten chloride salt, that

  10. Pillar Initiated Growth of High Indium Content Bulk Indium Gallium Nitride to Improve the Material Quality for Photonic Devices

    NASA Astrophysics Data System (ADS)

    McFelea, Heather Dale

    The goal of this research was to reduce dislocations and strain in high indium content bulk InGaN to improve quality for optical devices. In an attempt to achieve this goal, InGaN pillars were grown with compositions that matched the composition of the bulk InGaN grown on top. Pillar height and density were optimized to facilitate coalescence on top of the pillars. It was expected that dislocations within the pillars would bend to side facets, thereby reducing the dislocation density in the bulk overgrowth, however this was not observed. It was also expected that pillars would be completely relaxed at the interface with the substrate. It was shown that pillars are mostly relaxed, but not completely. Mechanisms are proposed to explain why threading dislocations did not bend and how complete relaxation may have been achieved by mechanisms outside of interfacial misfit dislocation formation. Phase separation was not observed by TEM but may be related to the limitations of the sample or measurements. High indium observed at facets and stacking faults could be related to the extra photoluminescence peaks measured. This research focused on the InGaN pillars and first stages of coalescence on top of the pillars, saving bulk growth and device optimization for future research.

  11. High-rate growth of InN films on fianite and sapphire substrates by metalorganic vapor phase epitaxy with plasma-assisted nitrogen activation

    NASA Astrophysics Data System (ADS)

    Buzynin, Yu. N.; Vodop'yanov, A. V.; Golubev, S. V.; Drozdov, M. N.; Drozdov, Yu. N.; Luk'yanov, A. Yu.; Mansfeld, D. A.; Khrykin, O. I.; Shashkin, V. I.; Yunin, P. A.

    2015-03-01

    Hexagonal single-crystalline indium nitride (InN) films on (0001)-oriented sapphire (Al2O3) and (111)-oriented fianite (yttria-stabilized zirconia, YSZ) substrates and on (0001)-oriented GaN/Al2O3 templates have been grown at a record high rate of 10 μm/h by the method of metalorganic vapor phase epitaxy with nitrogen activation in plasma of electron cyclotron resonance discharge generated by gyrotron radiation. It is established that the use of fianite substrates significantly improves the structural perfection and photoluminescent properties of InN films as compared to those grown on sapphire and templates. Undoped InN films exhibit n-type conductivity with electron concentrations within n = 8.0 × 1019-4.9 × 1020 cm-3 and room-temperature mobilities up to 180 cm2/(V s).

  12. Quantized Electron Accumulation States in Indium Nitride Studied by Angle-Resolved Photoemission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Colakerol, Leyla; Veal, T. D.; Jeong, Hae-Kyung; Plucinski, Lukasz; Demasi, Alex; Learmonth, Timothy; Glans, Per-Anders; Wang, Shancai; Zhang, Yufeng; Piper, L. F. J.; Jefferson, P. H.; Fedorov, Alexei; Chen, Tai-Chou; Moustakas, T. D.; McConville, C. F.; Smith, Kevin E.

    2006-12-01

    Electron accumulation states in InN have been measured using high resolution angle-resolved photoemission spectroscopy (ARPES). The electrons in the accumulation layer have been discovered to reside in quantum well states. ARPES was also used to measure the Fermi surface of these quantum well states, as well as their constant binding energy contours below the Fermi level EF. The energy of the Fermi level and the size of the Fermi surface for these quantum well states could be controlled by varying the method of surface preparation. This is the first unambiguous observation that electrons in the InN accumulation layer are quantized and the first time the Fermi surface associated with such states has been measured.

  13. Self-Catalyzed Growth of Vertically Aligned InN Nanorods by Metal-Organic Vapor Phase Epitaxy.

    PubMed

    Tessarek, C; Fladischer, S; Dieker, C; Sarau, G; Hoffmann, B; Bashouti, M; Göbelt, M; Heilmann, M; Latzel, M; Butzen, E; Figge, S; Gust, A; Höflich, K; Feichtner, T; Büchele, M; Schwarzburg, K; Spiecker, E; Christiansen, S

    2016-06-01

    Vertically aligned hexagonal InN nanorods were grown mask-free by conventional metal-organic vapor phase epitaxy without any foreign catalyst. The In droplets on top of the nanorods indicate a self-catalytic vapor-liquid-solid growth mode. A systematic study on important growth parameters has been carried out for the optimization of nanorod morphology. The nanorod N-polarity, induced by high temperature nitridation of the sapphire substrate, is necessary to achieve vertical growth. Hydrogen, usually inapplicable during InN growth due to formation of metallic indium, and silane are needed to enhance the aspect ratio and to reduce parasitic deposition beside the nanorods on the sapphire surface. The results reveal many similarities between InN and GaN nanorod growth showing that the process despite the large difference in growth temperature is similar. Transmission electron microscopy, spatially resolved energy-dispersive X-ray spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy have been performed to analyze the structural properties. Spatially resolved cathodoluminescence investigations are carried out to verify the optical activity of the InN nanorods. The InN nanorods are expected to be the material of choice for high-efficiency hot carrier solar cells. PMID:27187840

  14. Enhancement in c-Si solar cells using 16 nm InN nanoparticles

    NASA Astrophysics Data System (ADS)

    Imtiaz Chowdhury, Farsad; Alnuaimi, Aaesha; Alkis, Sabri; Ortaç, Bülend; Aktürk, Selçuk; Alevli, Mustafa; Dietz, Nikolaus; Kemal Okyay, Ali; Nayfeh, Ammar

    2016-05-01

    In this work, 16 nm indium nitride (InN) nanoparticles (NPs) are used to increase the performance of thin-film c-Si HIT solar cells. InN NPs were spin-coated on top of an ITO layer of c-Si HIT solar cells. The c-Si HIT cell is a stack of 2 μm p type c-Si, 4–5 nm n type a-Si, 15 nm n+ type a-Si and 80 nm ITO grown on a p+ type Si substrate. On average, short circuit current density (Jsc) increases from 19.64 mA cm‑2 to 21.54 mA cm‑2 with a relative improvement of 9.67% and efficiency increases from 6.09% to 7.09% with a relative improvement of 16.42% due to the presence of InN NPs. Reflectance and internal/external quantum efficiency (IQE/EQE) of the devices were also measured. Peak EQE was found to increase from 74.1% to 81.3% and peak IQE increased from 93% to 98.6% for InN NPs coated c-Si HIT cells. Lower reflection of light due to light scattering is responsible for performance enhancement between 400–620 nm while downshifted photons are responsible for performance enhancement from 620 nm onwards.

  15. Chemical nature of silicon nitride-indium phosphide interface and rapid thermal annealing for InP MISFETs

    NASA Technical Reports Server (NTRS)

    Biedenbender, M. D.; Kapoor, V. J.

    1990-01-01

    A rapid thermal annealing (RTA) process in pure N2 or pure H2 was developed for ion-implanted and encapsulated indium phosphide compound semiconductors, and the chemical nature at the silicon nitride-InP interface before and after RTA was examined using XPS. Results obtained from SIMS on the atomic concentration profiles of the implanted silicon in InP before and after RTA are presented, together with electrical characteristics of the annealed implants. Using the RTA process developed, InP metal-insulator semiconductor FETs (MISFETS) were fabricated. The MISFETS prepared had threshold voltages of +1 V, transconductance of 27 mS/mm, peak channel mobility of 1200 sq cm/V per sec, and drain current drift of only 7 percent.

  16. Phase separation and atomic ordering in indium gallium nitride epitaxial layers

    NASA Astrophysics Data System (ADS)

    Rao, Manu

    Phase separation and atomic ordering were investigated in InGaN layers grown by metalorganic chemical vapor deposition on (0001) sapphire substrates. Transmission electron microscopy (TEM) of InGaN layers during their early stages of growth reveal 2-D quantum rings that form spontaneously. In thick layers at InN contents of 3%, planview TEM images show a random distribution of atomic species and selected area diffraction (SAD) patterns do not exhibit satellite spots continuous to Bragg reflections. InN contents of 12% result in a speckled microstructure and satellites are present in SAD patterns. No satellites are observed along the [0001] direction, implying that phase separation is two-dimensional in nature and may occur on the surface while the layer is growing. These results are indicative of composition modulations lying in the (0001) growth plane. Samples containing InN fractions of between 22 and 34% exhibit microstructures having stronger contrast variations and SAD patterns with satellites further spaced from fundamental reflections. In cross-sectional TEM images, contrast striations oriented along [0001] are present except near the InGaN/GaN interface. The spacing of these striations is comparable to the composition modulation wavelengths calculated from SADPs and decreases with increasing InN content. Similarly, plan view TEM images taken from very thin specimens exhibit a domain structure with well aligned stripes within the domains. Increasing the growth rate from 400nm/h to 900nm/h results in a reduction in the intensity of satellite spots, indicating that the amplitude of composition modulations is reduced. The absence of contrast near the InGaN/GaN interface suggest reduced In incorporation, resulting in the absence of phase separation. Reduced In incorporation is confirmed by high angle angular dark field (HAADF) imaging and energy dispersive x-ray spectroscopy (EDS). X-ray diffraction and photoluminescence data are consistent with the occurrence

  17. Indium-zinc oxide transparent electrode for nitride-based light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Mizutani, S.; Nakashima, S.; Iwaya, M.; Takeuchi, T.; Kamiyama, S.; Akasaki, I.; Kondo, T.; Teramae, F.; Suzuki, A.; Kitano, T.; Mori, M.; Matsubara, M.

    2013-03-01

    The basic properties of indium-zinc oxide (IZO) were investigated from the view point of the potential of light-emitting diodes (LEDs) for nanostructured transparent contact. The resistivity and contact resistance to p-GaN were obtained to be 2.5×10-4 Ωcm and 9.4×10-4 Ωcm2, respectively, which are comparable to those of indium-tin oxide (ITO). The light output of the LED with the moth-eye IZO was 10 % and 40 % higher than that of the LED with the moth-eye ITO and that of the LED without the moth-eye structure, respectively.

  18. Electron transport and electron energy distributions within the wurtzite and zinc-blende phases of indium nitride: Response to the application of a constant and uniform electric field

    SciTech Connect

    Siddiqua, Poppy; Hadi, Walid A.; Salhotra, Amith K.; O'Leary, Stephen K.; Shur, Michael S.

    2015-03-28

    Within the framework of an ensemble semi-classical three-valley Monte Carlo electron transport simulation approach, we critically contrast the nature of the electron transport that occurs within the wurtzite and zinc-blende phases of indium nitride in response to the application of a constant and uniform electric field. We use the electron energy distribution and its relationship with the electron transport characteristics in order to pursue this analysis. For the case of zinc-blende indium nitride, only a peak corresponding to the electrons within the lowest energy conduction band valley is observed, this peak being seen to broaden and shift to higher energies in response to increases in the applied electric field strength, negligible amounts of upper energy conduction band valley occupancy being observed. In contrast, for the case of wurtzite indium nitride, in addition to the aforementioned lowest energy conduction band valley peak in the electron energy distribution, and its broadening and shifting to higher energies in response to increases in the applied electric field strength, beyond a certain critical electric field strength, 30 kV/cm for the case of this particular material, upper energy conduction band valley occupancy is observed, this occupancy being further enhanced in response to further increases in the applied electric field strength. Reasons for these results are provided. The potential for device consequences is then commented upon.

  19. Think INN, prescribe INN, dispense INN: good professional practice.

    PubMed

    2000-12-01

    (1) International nonproprietary names (INN) for drugs were invented about fifty years ago, under the aegis of the World Health Organisation, to provide a common language for health professionals and patients worldwide. (2) No country forbids INN prescriptions. Some countries actively recommend using INNs. (3) INN prescription empowers prescribers and pharmacists in their choice of treatment. (4) The choice between a prescription based on the INN or the brand name will depend on the type of treatment (short term or chronic), the nature of the drug (especially its therapeutic margin) and any specific risks related to the patient (age, disease condition, allergy, and adherence). (5) A pharmacist's decision to dispense a brand name drug from an INN prescription must be based on usual dispensing precautions. (6) Adopting INN prescribing means having to reflect on one's knowledge of drugs, and to challenge the quality of one's initial and continuing education in pharmacology and therapeutics. The INN system is a means of improving prescribing and dispensing practices: it involves paying more attention to the patient, explaining the treatment in greater detail, and respecting his/her choice. PMID:11475502

  20. Theoretical Study of Indium Compounds of Interest for Organometallic Chemical Vapor Deposition

    NASA Technical Reports Server (NTRS)

    Cardelino, B. H.; Moore, C. E.; Cardelino, C. A.; Frazier, D. O.; Backmann, K. J.

    2000-01-01

    The structural. electronic and therinochemical properties of indium compounds which are of interest in halide transport and organometallic chemical vapor deposition processes have been studied by ab initio and statistical mechanics methods. The compounds reported include: indium halides and hydrides (InF, InCl, InCl3, InH, InH2, InH3); indium clusters (In2, In3); methylindium, dimethylindium, and their hydrogen derivatives [In(CH3), In(CH3)H, In(CH3)H2, In(CH3)2, In(CH3)2H]; dimethyl-indium dimer [In2(CH3)4], trimethyl-indium [In(CH3)3]; dehydrogenated methyl, dimethyl and trimethylindium [In(CH3)2CH2, In(CH3)CH2, In(CH2)], trimethylindium adducts with ammonia, trimethylamine and hydrazine [(CH3)3In:NH3, (CH3)3In:N(CH3)3, (CH3)3In:N(H2)N(H2)]; dimethylamino-indium and methylimino-indium [In(CH3)2(NH2), In(CH3)(NH)]; indium nitride and indium nitride dimer (InN, In2N2), indium phosphide, arsenide and antimonide ([InP, InAs, InSb). The predicted electronic properties are based on density functional theory calculations; the calculated thermodynamic properties are reported following the format of the JANAF (Joint Army, Navy, NASA, Air Force) Tables. Equilibrium compositions at two temperatures (298 and 1000 K) have been analyzed for groups of competing simultaneous reactions.

  1. Growth and characterizations of semipolar (1122) InN

    SciTech Connect

    Dinh, Duc V.; Skuridina, D.; Solopow, S.; Frentrup, M.; Pristovsek, M.; Vogt, P.; Kneissl, M.; Ivaldi, F.; Kret, S.; Szczepanska, A.

    2012-07-01

    We report on metal-organic vapor phase epitaxial growth of (1122) InN on (1122) GaN templates on m-plane (1010) sapphire substrates. The in-plane relationship of the (1122) InN samples is [1123]{sub InN} Double-Vertical-Line Double-Vertical-Line [0001]{sub sapphire} and [1100]{sub InN} Double-Vertical-Line Double-Vertical-Line [1210]{sub sapphire}, replicating the in-plane relationship of the (1122) GaN templates. The surface of the (1122) InN samples and the (1122) GaN templates shows an undulation along [1100]{sub InN,GaN}, which is attributed to anisotropic diffusion of indium/gallium atoms on the (1122) surfaces. The growth rate of the (1122) InN layers was 3-4 times lower compared to c-plane (0001) InN. High resolution transmission electron microscopy showed a relaxed interface between the (1122) InN layers and the (1122) GaN templates, consistent with x-ray diffraction results. Basal plane stacking faults were found in the (1122) GaN templates but they were terminated at the InN/(1122) GaN interface due to the presence of misfit dislocations along the entire InN/GaN interface. The misfit dislocations were contributed to the fully relaxation and the tilts of the (1122) InN layers. X-ray photoelectron spectroscopy was used to determine the polarity of the grown (1122) InN sample, indicating an In-polar (1122) InN. The valence band maximum was determined to be at (1.7 {+-} 0.1) eV for the (1122) InN sample, comparable to In-polar c-plane InN.

  2. High Active Nitrogen Flux Growth of (Indium) Gallium Nitride by Plasma Assisted Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    McSkimming, Brian Matthew

    Plasma-assisted molecular beam epitaxy (PAMBE) growth of gallium nitride (GaN) has evolved over the past two decades due to progress in growth science and in the active nitrogen plasma source hardware. The transition from electron cyclotron resonance (ECR) microwave plasma sources to radio frequency (RF) plasma sources has enabled higher growth rates, reduced ion damage and improved operation at higher growth chamber pressures. Even with further improvements in RF plasma sources, PAMBE has remained primarily a research tool partially due to limitations in material growth rates. This dissertation presents results based upon two modifications of a commercially available nitrogen plasma source. These modifications have resulted in record active nitrogen fluxes, and therefore record growth rates of more than 7.6 mum/h. For optimized growth conditions in the standard metal-rich growth regime, the surfaces displayed a clear step-terrace structure with an average RMS roughness (3 mumx3 mum) on the order of 1 nm. Secondary ion mass spectroscopy (SIMS) impurity analysis demonstrates unintentional oxygen incorporation of ˜1x1016, comparable to the metal organic chemical vapor deposition (MOCVD) grown template layer. Additionally, a revised universal growth diagram is proposed allowing the rapid determination of the metal flux needed to grow in a specific growth regime for any and all active nitrogen fluxes available. High temperature nitrogen rich PAMBE growth of GaN has been previously demonstrated as a viable alternative to the challenges presented in maintaining the Ga bilayer required by metal rich growth of GaN. This dissertation also present results demonstrating PAMBE growth of GaN at a substrate temperature more than 150 °C greater than our standard Ga rich GaN growth regime and ˜100 °C greater than any previously reported PAMBE growth of GaN. Finally, a revised growth diagram is proposed highlighting a large growth window available at high temperatures.

  3. Observation of Room Temperature Ferromagnetism in InN Nanostructures.

    PubMed

    Roul, Basanta; Kumar, Mahesh; Bhat, Thirumaleshwara N; Rajpalke, Mohana K; Krupanidhi, S B; Kumar, Nitesh; Sundaresan, A

    2015-06-01

    The room temperature ferromagnetic behavior of InN nanostructures grown by molecular beam epitaxy (MBE) is explored by means of magnetization measurements. The saturation magnetization and remanent magnetization are found to be strongly dependent on the size of the nanostructures. This suggests that the ferromagnetism is essentially confined to the surface of the nanostructures due to the possible defects. Raman spectroscopy shows the existence of indium vacancies which could be the source of ferromagnetic ordering in InN nanostructures. PMID:26369060

  4. 15. LOOKING WEST TOWARD OLD FAITHFUL INN. THE INN'S NAMESAKE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. LOOKING WEST TOWARD OLD FAITHFUL INN. THE INN'S NAMESAKE, OLD FAITHFUL GEYSER IS AT LEFT. - Old Faithful Inn, 900' northeast of Snowlodge & 1050' west of Old Faithful Lodge, Lake, Teton County, WY

  5. A Sub-ppm Acetone Gas Sensor for Diabetes Detection Using 10 nm Thick Ultrathin InN FETs

    PubMed Central

    Kao, Kun-Wei; Hsu, Ming-Che; Chang, Yuh-Hwa; Gwo, Shangjr; Yeh, J. Andrew

    2012-01-01

    An indium nitride (InN) gas sensor of 10 nm in thickness has achieved detection limit of 0.4 ppm acetone. The sensor has a size of 1 mm by 2.5 mm, while its sensing area is 0.25 mm by 2 mm. Detection of such a low acetone concentration in exhaled breath could enable early diagnosis of diabetes for portable physiological applications. The ultrathin InN epilayer extensively enhances sensing sensitivity due to its strong electron accumulation on roughly 5–10 nm deep layers from the surface. Platinum as catalyst can increase output current signals by 2.5-fold (94 vs. 37.5 μA) as well as reduce response time by 8.4-fold (150 vs. 1,260 s) in comparison with bare InN. More, the effect of 3% oxygen consumption due to breath inhalation and exhalation on 2.4 ppm acetone gas detection was investigated, indicating that such an acetone concentration can be analyzed in air. PMID:22969342

  6. Auger recombination as the dominant recombination process in indium nitride at low temperatures during steady-state photoluminescence

    SciTech Connect

    Seetoh, I. P.; Soh, C. B.; Fitzgerald, E. A.; Chua, S. J.

    2013-03-11

    Auger recombination in InN films grown by metal-organic chemical vapor deposition was studied by steady-state photoluminescence at different laser excitation powers and sample temperatures. It was dominant over radiative recombination and Shockley-Read-Hall recombination at low temperatures, contributing to the sub-linear relationship between the integrated photoluminescence intensity and laser excitation power. Auger recombination rates increased gradually with temperature with an activation energy of 10-17 meV, in good agreement with values from transient photoluminescence reported in literature. As the Auger recombination rates were independent of material quality, they may form an upper limit to the luminous efficiency of InN.

  7. Auger recombination as the dominant recombination process in indium nitride at low temperatures during steady-state photoluminescence

    NASA Astrophysics Data System (ADS)

    Seetoh, I. P.; Soh, C. B.; Fitzgerald, E. A.; Chua, S. J.

    2013-03-01

    Auger recombination in InN films grown by metal-organic chemical vapor deposition was studied by steady-state photoluminescence at different laser excitation powers and sample temperatures. It was dominant over radiative recombination and Shockley-Read-Hall recombination at low temperatures, contributing to the sub-linear relationship between the integrated photoluminescence intensity and laser excitation power. Auger recombination rates increased gradually with temperature with an activation energy of 10-17 meV, in good agreement with values from transient photoluminescence reported in literature. As the Auger recombination rates were independent of material quality, they may form an upper limit to the luminous efficiency of InN.

  8. Electronic and thermoelectric properties of InN studied using ab initio density functional theory and Boltzmann transport calculations

    SciTech Connect

    Borges, P. D. E-mail: lscolfaro@txstate.edu; Scolfaro, L. E-mail: lscolfaro@txstate.edu

    2014-12-14

    The thermoelectric properties of indium nitride in the most stable wurtzite phase (w-InN) as a function of electron and hole concentrations and temperature were studied by solving the semiclassical Boltzmann transport equations in conjunction with ab initio electronic structure calculations, within Density Functional Theory. Based on maximally localized Wannier function basis set and the ab initio band energies, results for the Seebeck coefficient are presented and compared with available experimental data for n-type as well as p-type systems. Also, theoretical results for electric conductivity and power factor are presented. Most cases showed good agreement between the calculated properties and experimental data for w-InN unintentionally and p-type doped with magnesium. Our predictions for temperature and concentration dependences of electrical conductivity and power factor revealed a promising use of InN for intermediate and high temperature thermoelectric applications. The rigid band approach and constant scattering time approximation were utilized in the calculations.

  9. Smooth e-beam-deposited tin-doped indium oxide for III-nitride vertical-cavity surface-emitting laser intracavity contacts

    NASA Astrophysics Data System (ADS)

    Leonard, J. T.; Cohen, D. A.; Yonkee, B. P.; Farrell, R. M.; DenBaars, S. P.; Speck, J. S.; Nakamura, S.

    2015-10-01

    We carried out a series of simulations analyzing the dependence of mirror reflectance, threshold current density, and differential efficiency on the scattering loss caused by the roughness of tin-doped indium oxide (ITO) intracavity contacts for 405 nm flip-chip III-nitride vertical-cavity surface-emitting lasers (VCSELs). From these results, we determined that the ITO root-mean-square (RMS) roughness should be <1 nm to minimize scattering losses in VCSELs. Motivated by this requirement, we investigated the surface morphology and optoelectronic properties of electron-beam (e-beam) evaporated ITO films, as a function of substrate temperature and oxygen flow and pressure. The transparency and conductivity were seen to increase with increasing temperature. Decreasing the oxygen flow and pressure resulted in an increase in the transparency and resistivity. Neither the temperature, nor oxygen flow and pressure series on single-layer ITO films resulted in highly transparent and conductive films with <1 nm RMS roughness. To achieve <1 nm RMS roughness with good optoelectronic properties, a multi-layer ITO film was developed, utilizing a two-step temperature scheme. The optimized multi-layer ITO films had an RMS roughness of <1 nm, along with a high transparency (˜90% at 405 nm) and low resistivity (˜2 × 10-4 Ω-cm). This multi-layer ITO e-beam deposition technique is expected to prevent p-GaN plasma damage, typically observed in sputtered ITO films on p-GaN, while simultaneously reducing the threshold current density and increasing the differential efficiency of III-nitride VCSELs.

  10. Plasma-deposited germanium nitride gate insulators for indium phosphide metal-insulator-semiconductor field-effect transistors

    NASA Technical Reports Server (NTRS)

    Johnson, Gregory A.; Kapoor, Vik J.

    1991-01-01

    Plasma-deposited germanium nitride was investigated for the first time as a possible gate insulator for InP compound semiconductor metal-insulator-semiconductor FET (MISFET) technology. The germanium nitride films were successfully deposited in a capacitively coupled parallel plate reactor at 13.56 MHz operation using GeH4/N2/NH3 and GeH4/N2 mixtures as reactant gases. The former process produced better quality films with enhanced uniformity, increased deposition rates, and increased resistivity. The breakdown field strength of the films was greater than 10 to the 6th V/cm. Auger electron spectroscopy did not indicate significant chemical composition differences between the two processes. For MISFETs with 2-micron channel lengths fabricated on InP, the device transconductance and threshold voltage for the GeH4/N2/NH3 process were 17 mS/mm and -3.6 V, respectively. The drain-source breakdown voltages were greater than 10 V.

  11. InN Quantum Dot Based Infra-Red Photodetectors.

    PubMed

    Shetty, Arjun; Kumar, Mahesh; Roull, Basanta; Vinoy, K J; Krupanidhj, S B

    2016-01-01

    Self-assembled InN quantum dots (QDs) were grown on Si(111) substrate using plasma assisted molecular beam epitaxy (PA-MBE). Single-crystalline wurtzite structure of InN QDs was confirmed by X-ray diffraction. The dot densities were varied by varying the indium flux. Variation of dot density was confirmed by FESEM images. Interdigitated electrodes were fabricated using standard lithog- raphy steps to form metal-semiconductor-metal (MSM) photodetector devices. The devices show strong infrared response. It was found that the samples with higher density of InN QDs showed lower dark current and higher photo current. An explanation was provided for the observations and the experimental results were validated using Silvaco Atlas device simulator. PMID:27398511

  12. Crystallinity, Surface Morphology, and Photoelectrochemical Effects in Conical InP and InN Nanowires Grown on Silicon.

    PubMed

    Parameshwaran, Vijay; Xu, Xiaoqing; Clemens, Bruce

    2016-08-24

    The growth conditions of two types of indium-based III-V nanowires, InP and InN, are tailored such that instead of yielding conventional wire-type morphologies, single-crystal conical structures are formed with an enlarged diameter either near the base or near the tip. By using indium droplets as a growth catalyst, combined with an excess indium supply during growth, "ice cream cone" type structures are formed with a nanowire "cone" and an indium-based "ice cream" droplet on top for both InP and InN. Surface polycrystallinity and annihilation of the catalyst tip of the conical InP nanowires are observed when the indium supply is turned off during the growth process. This growth design technique is extended to create single-crystal InN nanowires with the same morphology. Conical InN nanowires with an enlarged base are obtained through the use of an excess combined Au-In growth catalyst. Electrochemical studies of the InP nanowires on silicon demonstrate a reduction photocurrent as a proof of photovolatic behavior and provide insight as to how the observed surface polycrystallinity and the resulting interface affect these device-level properties. Additionally, a photovoltage is induced in both types of conical InN nanowires on silicon, which is not replicated in epitaxial InN thin films. PMID:27455379

  13. Growth mechanism and microstructure of low defect density InN (0001) In-face thin films on Si (111) substrates

    SciTech Connect

    Kehagias, Th.; Dimitrakopulos, G. P.; Koukoula, T.; Komninou, Ph.; Ajagunna, A. O.; Georgakilas, A.; Tsagaraki, K.; Adikimenakis, A.

    2013-10-28

    Transmission electron microscopy has been employed to analyze the direct nucleation and growth, by plasma-assisted molecular beam epitaxy, of high quality InN (0001) In-face thin films on (111) Si substrates. Critical steps of the heteroepitaxial growth process are InN nucleation at low substrate temperature under excessively high N-flux conditions and subsequent growth of the main InN epilayer at the optimum conditions, namely, substrate temperature 400–450 °C and In/N flux ratio close to 1. InN nucleation occurs in the form of a very high density of three dimensional (3D) islands, which coalesce very fast into a low surface roughness InN film. The reduced reactivity of Si at low temperature and its fast coverage by InN limit the amount of unintentional Si nitridation by the excessively high nitrogen flux and good bonding/adhesion of the InN film directly on the Si substrate is achieved. The subsequent overgrowth of the main InN epilayer, in a layer-by-layer growth mode that enhances the lateral growth of InN, reduces significantly the crystal mosaicity and the density of threading dislocations is about an order of magnitude less compared to InN films grown using an AlN/GaN intermediate nucleation/buffer layer on Si. The InN films exhibit the In-face polarity and very smooth atomically stepped surfaces.

  14. Two-dimensional electron gas in monolayer InN quantum wells

    SciTech Connect

    Pan, W. E-mail: e.dimakis@hzdr.de; Wang, G. T.; Dimakis, E. E-mail: e.dimakis@hzdr.de; Moustakas, T. D.; Tsui, D. C.

    2014-11-24

    We report in this letter experimental results that confirm the two-dimensional nature of the electron systems in a superlattice structure of 40 InN quantum wells consisting of one monolayer of InN embedded between 10 nm GaN barriers. The electron density and mobility of the two-dimensional electron system (2DES) in these InN quantum wells are 5 × 10{sup 15 }cm{sup −2} (or 1.25 × 10{sup 14 }cm{sup −2} per InN quantum well, assuming all the quantum wells are connected by diffused indium contacts) and 420 cm{sup 2}/Vs, respectively. Moreover, the diagonal resistance of the 2DES shows virtually no temperature dependence in a wide temperature range, indicating the topological nature of the 2DES.

  15. My working week: John Innes.

    PubMed

    Innes, John

    2016-07-23

    In the first of a new series of features for Vet Record Careers, John Innes describes a recent working week as referrals director for CVS and a RCVS specialist in small animal orthopaedics. PMID:27450857

  16. Accommodation mechanism of InN nanocolumns grown on Si(111) substrates by molecular beam epitaxy

    SciTech Connect

    Grandal, J.; Sanchez-Garcia, M. A.; Calleja, E.; Luna, E.; Trampert, A.

    2007-07-09

    High quality InN nanocolumns have been grown by molecular beam epitaxy on bare and AlN-buffered Si(111) substrates. The accommodation mechanism of the InN nanocolumns to the substrate was studied by transmission electron microscopy. Samples grown on AlN-buffered Si(111) show abrupt interfaces between the nanocolumns and the buffer layer, where an array of periodically spaced misfit dislocations develops. Samples grown on bare Si(111) exhibit a thin Si{sub x}N{sub y} at the InN nanocolumn/substrate interface because of Si nitridation. The Si{sub x}N{sub y} thickness and roughness may affect the nanocolumn relative alignment to the substrate. In all cases, InN nanocolumns grow strain- and defect-free.

  17. Growth of InN nanorods prepared by plasma-assisted molecular beam epitaxy with varying Cr thicknesses

    NASA Astrophysics Data System (ADS)

    Liu, K. W.; Young, S. J.; Chang, S. J.; Hsueh, T. H.; Chen, Y. Z.; Chen, K. J.; Hung, H.; Wang, S. M.; Wu, Y. L.

    2012-05-01

    This study investigates how the thickness of Cr deposited on the Si substrate after the nitridation process influences the AIN buffer layer and the InN nanorods. Atomic force microscopy results reveal that different thicknesses of Cr form varying sizes of CrN nanoislands. The results of scanning electron microscopy and X-ray diffraction show that a Cr deposition thickness of 10 nm results in CrN nanoislands after the nitridation process, improving the quality and density of InN nanorods. A Cr layer that was too thick led to polycrystalline InN growth. The results of transmission electron microscopy indicate a baseball bat-like InN nanorod growth mechanism.

  18. III-Nitride nanowire optoelectronics

    NASA Astrophysics Data System (ADS)

    Zhao, Songrui; Nguyen, Hieu P. T.; Kibria, Md. G.; Mi, Zetian

    2015-11-01

    Group-III nitride nanowire structures, including GaN, InN, AlN and their alloys, have been intensively studied in the past decade. Unique to this material system is that its energy bandgap can be tuned from the deep ultraviolet (~6.2 eV for AlN) to the near infrared (~0.65 eV for InN). In this article, we provide an overview on the recent progress made in III-nitride nanowire optoelectronic devices, including light emitting diodes, lasers, photodetectors, single photon sources, intraband devices, solar cells, and artificial photosynthesis. The present challenges and future prospects of III-nitride nanowire optoelectronic devices are also discussed.

  19. Obstacles to the universal application of INNs.

    PubMed

    2014-10-01

    Anomalies in the international non-proprietary name (INN) nomenclature show that the international harmonisation of nonproprietary drug names has not been achieved. When pharmaceutical companies request a new INN, they try to obtain an INN that serves their interests, and then use it for promotional or anticompetitive purposes. Drug regulatory agencies are not fulfilling their duty to protect existing INNs, particularly with regard to biosimilars (copies of biotechnology-derived drugs), giving rise in particular to anomalous names. The independence of the World Health Organization INN programme must be safeguarded to ensure that the universal terminology it is responsible for developing is applied worldwide. PMID:25964979

  20. Electronic and optical properties of InN nanowires from first principles

    NASA Astrophysics Data System (ADS)

    Bayerl, Dylan; Kioupakis, Emmanouil

    2013-03-01

    Group-III-nitride nanowires are promising materials for photovoltaic and solid-state-lighting applications. We use first-principles calculations to investigate the electronic and optical properties of InN nanowires. Density functional theory provides the ground-state properties to which we subsequently apply quasiparticle corrections with the GW method. We thereby accurately predict the electronic band gaps, effective masses, and band dispersions of these nanostructured materials. We further solve the Bethe-Salpeter equation to predict the optical absorption spectra of InN nanowires as a function of cross-sectional dimension and geometry. We demonstrate that quantum confinement can increase the fundamental gap in InN nanowires as high as near-ultraviolet energies. This research was supported as part of CSTEC, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science. Computational resources were provided by the DOE NERSC facility.

  1. How INNs are created. Making drug names safer by contributing to INN selection.

    PubMed

    2015-06-01

    The international nonproprietary names (INNs) of drugs proposed by the World Health Organization (WHO) are released for public consultation. These consultations provide an opportunity to identify any risks associated with INNs that could lead to confusion. Prescrire has submitted numerous comments since it began participating in the WHO's public consultations on proposed INNs in 2007. The WHO INN programme has occasionally taken our objections into account. It is easier to replace a proposed INN when a risk of confusion is identified early, before the drug is introduced to the market and the INN enters into use. Regular analysis of the INNs proposed by the WHO reveals some of the challenges of naming drugs and the influence exerted by pharmaceutical companies and the US drug nomenclature committee (USANC) in particular. The lack of an identifiable common stem in certain INNs, sometimes perceived as an obstacle to INN comprehensibility, is a consequence of the procedure for assigning INNs, because the INN programme wants to ensure that new common stems are not created prematurely. Critical analysis of proposed INNs during WHO public consultations offers an insight into the challenges involved in devising common stems. This analysis is useful for improving the quality and safety of INNs. PMID:26436175

  2. Growth modes of InN (000-1) on GaN buffer layers on sapphire

    SciTech Connect

    Liu Bing; Kitajima, Takeshi; Chen Dongxue; Leone, Stephen R.

    2005-03-01

    In this work, using atomic force microscopy and scanning tunneling microscopy, we study the surface morphologies of epitaxial InN films grown by plasma-assisted molecular beam epitaxy with intervening GaN buffer layers on sapphire substrates. On smooth GaN buffer layers, nucleation and evolution of three-dimensional InN islands at various coverages and growth temperatures are investigated. The shapes of the InN islands are observed to be predominantly mesalike with large flat (000-1) tops, which suggests a possible role of indium as a surfactant. Rough GaN buffer layers composed of dense small GaN islands are found to significantly improve uniform InN wetting of the substrates, on which atomically smooth InN films are obtained that show the characteristics of step-flow growth. Scanning tunneling microscopy imaging reveals the defect-mediated surface morphology of smooth InN films, including surface terminations of screw dislocations and a high density of shallow surface pits with depths less than 0.3 nm. The mechanisms of the three-dimensional island size and shape evolution and formation of defects on smooth surfaces are considered.

  3. Growth modes of InN(000-1) on GaN buffer layers on sapphire

    SciTech Connect

    Liu, Bing; Kitajima, Takeshi; Chen, Dongxue; Leone, Stephen R.

    2005-01-24

    In this work, using atomic force microscopy and scanning tunneling microscopy, we study the surface morphologies of epitaxial InN films grown by plasma-assisted molecular beam epitaxy with intervening GaN buffer layers on sapphire substrates. On smooth GaN buffer layers, nucleation and evolution of three-dimensional InN islands at various coverages and growth temperatures are investigated. The shapes of the InN islands are observed to be predominantly mesa-like with large flat (000-1) tops, which suggests a possible role of indium as a surfactant. Rough GaN buffer layers composed of dense small GaN islands are found to significantly improve uniform InN wetting of the substrates, on which atomically smooth InN films are obtained that show the characteristics of step-flow growth. Scanning tunneling microscopy imaging reveals the defect-mediated surface morphology of smooth InN films, including surface terminations of screw dislocations and a high density of shallow surface pits with depths less than 0.3 nm. The mechanisms of the three-dimensional island size and shape evolution and formation of defects on smooth surfaces are considered.

  4. Low-temperature self-limiting atomic layer deposition of wurtzite InN on Si(100)

    NASA Astrophysics Data System (ADS)

    Haider, Ali; Kizir, Seda; Biyikli, Necmi

    2016-04-01

    In this work, we report on self-limiting growth of InN thin films at substrate temperatures as low as 200 °C by hollow-cathode plasma-assisted atomic layer deposition (HCPA-ALD). The precursors used in growth experiments were trimethylindium (TMI) and N2 plasma. Process parameters including TMI pulse time, N2 plasma exposure time, purge time, and deposition temperature have been optimized for self-limiting growth of InN with in ALD window. With the increase in exposure time of N2 plasma from 40 s to 100 s at 200 °C, growth rate showed a significant decrease from 1.60 to 0.64 Å/cycle. At 200 °C, growth rate saturated as 0.64 Å/cycle for TMI dose starting from 0.07 s. Structural, optical, and morphological characterization of InN were carried out in detail. X-ray diffraction measurements revealed the hexagonal wurtzite crystalline structure of the grown InN films. Refractive index of the InN film deposited at 200 °C was found to be 2.66 at 650 nm. 48 nm-thick InN films exhibited relatively smooth surfaces with Rms surface roughness values of 0.98 nm, while the film density was extracted as 6.30 g/cm3. X-ray photoelectron spectroscopy (XPS) measurements depicted the peaks of indium, nitrogen, carbon, and oxygen on the film surface and quantitative information revealed that films are nearly stoichiometric with rather low impurity content. In3d and N1s high-resolution scans confirmed the presence of InN with peaks located at 443.5 and 396.8 eV, respectively. Transmission electron microscopy (TEM) and selected area electron diffraction (SAED) further confirmed the polycrystalline structure of InN thin films and elemental mapping revealed uniform distribution of indium and nitrogen along the scanned area of the InN film. Spectral absorption measurements exhibited an optical band edge around 1.9 eV. Our findings demonstrate that HCPA-ALD might be a promising technique to grow crystalline wurtzite InN thin films at low substrate temperatures.

  5. Colloids in the River Inn

    NASA Astrophysics Data System (ADS)

    Ueckert, Martina; Niessner, Reinhard; Baumann, Thomas

    2015-04-01

    In the light of an increasing number of technical applications using nanoparticles and reports of adverse effects of engineered nanoparticles, research on the occurrence and stability of particles in all compartments has to be intensified. Colloids in river water represent the geologic setting, environmental conditions, and the anthropogenic use in its catchment. The river not only acts as a sink for nanoparticles but also as the source term due to exchange in the hyporheic zone and in bank filtration setups. The concentration, size distribution and elemental composition of particles in the River Inn were studied from the source in the Swiss Alps to the river mouth at Passau from 2008 to 2014. Samples were collected after each tributary from a sub-catchment and filtered on site using a new filtration device for gentle filtration. The elemental composition was determined after acid digestion with ICP/MS. SEM/EDX analysis provided morphological and elemental information for single particles. A complementary chemical analysis of the river water was performed to assess the geochemical stability of individual particles. As presented at EGU 2014, particles in the upper, rural parts mainly reveal changes in the geological setting of the tributary catchments. Not unexpectedly, particles originating from crystalline rocks, were more stable than particles originating from calcareous rocks. Anthropogenic and industrial influences increase in the lower parts. This went together with a change of the size distribution, an increase of the number of organic particles, and a decrease of the microfauna. Interestingly, specific leisure activities in a sub-catchment, like extensive downhill skiing, manifest itself in the particle composition. This general setting was validated in last year's sampling campaigns. An interesting change in on site parameters and hydrochemical composition was seen during all sampling campaigns at an inflow from the valley Kaunertal, Austria. Therefore

  6. Effect of interfacial lattice mismatch on bulk carrier concentration and band gap of InN

    SciTech Connect

    Kuyyalil, Jithesh; Tangi, Malleswararao; Shivaprasad, S. M.

    2012-10-15

    The issue of ambiguous values of the band gap (0.6 to 2 eV) of InN thin film in literature has been addressed by a careful experiment. We have grown wurtzite InN films by PA-MBE simultaneously on differently modified c-plane sapphire substrates and characterized by complementary structural and chemical probes. Our studies discount Mie resonances caused by metallic In segregation at grain boundaries as the reason for low band gap values ( Almost-Equal-To 0.6 eV) and also the formation of Indium oxides and oxynitrides as the cause for high band gap value ( Almost-Equal-To 2.0 eV). It is observed that polycrystallinity arising from azimuthal miss-orientation of c-oriented wurtzite InN crystals increases the carrier concentration and the band gap values. We have reviewed the band gap, carrier concentration, and effective mass of InN in literature and our own measurements, which show that the Moss-Burstein relation with a non-parabolic conduction band accounts for the observed variation of band gap with carrier concentration.

  7. An investigation into the conversion of In2O3 into InN nanowires

    PubMed Central

    2011-01-01

    Straight In2O3 nanowires (NWs) with diameters of 50 nm and lengths ≥2 μm have been grown on Si(001) via the wet oxidation of In at 850°C using Au as a catalyst. These exhibited clear peaks in the X-ray diffraction corresponding to the body centred cubic crystal structure of In2O3 while the photoluminescence (PL) spectrum at 300 K consisted of two broad peaks, centred around 400 and 550 nm. The post-growth nitridation of In2O3 NWs was systematically investigated by varying the nitridation temperature between 500 and 900°C, flow of NH3 and nitridation times between 1 and 6 h. The NWs are eliminated above 600°C while long nitridation times at 500 and 600°C did not result into the efficient conversion of In2O3 to InN. We find that the nitridation of In2O3 is effective by using NH3 and H2 or a two-step temperature nitridation process using just NH3 and slower ramp rates. We discuss the nitridation mechanism and its effect on the PL. PMID:21711836

  8. Mass transport and alloying during InN growth on GaN by molecular-beam epitaxy

    SciTech Connect

    Liu, Y.; Xie, M.H.; Wu, H.S.; Tong, S.Y.

    2006-05-29

    During Stranski-Krastanov (SK) growth of InN on GaN by molecular-beam epitaxy, a mass transport is noted from the two-dimensional wetting layer and/or the surface excess metal adlayers to the SK islands when the excess nitrogen flux is used for deposition. The extent of mass transport depends on the material coverage. For growth under the excess indium flux condition, no such mass transport is observed.

  9. Defect Doping of InN

    SciTech Connect

    Jones, R.E.; van Genuchten, H.C.M.; Yu, K.M.; Walukiewicz, W.; Li, S.X.; A ger III, J.W.; Liliental-Weber, Z.; Haller, E.E.; Lu, H.; Schaff, W.J.

    2007-07-22

    InN films grown by molecular beam epitaxy have been subjected to 2 MeV He{sup +} irradiation followed by thermal annealing. Theoretical analysis of the electron mobilities shows that thermal annealing removes triply charged donor defects, creating films with electron mobilities approaching those predicted for uncompensated, singly charged donors. Optimum thermal annealing of irradiated InN can be used to produce samples with electron mobilities higher than those of as grown films.

  10. Colloids in the River Inn

    NASA Astrophysics Data System (ADS)

    Ueckert, Martina; Baumann, Thomas

    2014-05-01

    In the light of an increasing number of technical applications using nanoparticles and reports of adverse effects of engineered nanoparticles, research on the occurrence and stability of particles in all compartments has to be intensified. Colloids in river water represent the geologic setting, environmental conditions, and the anthropogenic use in its catchment. The river not only acts as a sink for nanoparticles but also as the source term due to exchange in the hyporheic zone and in bank filtration setups. The concentration, size distribution and elemental composition of particles in the River Inn were studied from the source in the Swiss Alps to the river mouth at Passau. Samples were collected after each tributary from a sub-catchment and filtered on-site. The elemental composition was determined after acid digestion with ICP/MS. SEM/EDX analyses provided morphological and elemental information for single particles. A complementary chemical analysis of the river water was performed to assess the geochemical stability of indvidual particles. Particles in the upper, rural parts mainly reveal changes in the geological setting of the tributary catchments. Not unexpectedly, particles originating from crystalline rocks, were more stable than particles originating from calcareous rocks. Anthropogenic and industrial influences increase in the lower parts. This went together with a change of the size distribution, an increase of the number of organic particles, and a decrease of the microfauna. Interestingly, specific leisure activities in a sub-catchment, like extensive downhill skiing, manifest itself in the particle composition.

  11. Molten salt-based growth of bulk GaN and InN for substrates.

    SciTech Connect

    Waldrip, Karen Elizabeth

    2007-08-01

    An atmospheric pressure approach to growth of bulk group III-nitrides is outlined. Native III-nitride substrates for optoelectronic and high power, high frequency electronics are desirable to enhance performance and reliability of these devices; currently, these materials are available in research quantities only for GaN, and are unavailable in the case of InN. The thermodynamics and kinetics of the reactions associated with traditional crystal growth techniques place these activities on the extreme edges of experimental physics. The novel techniques described herein rely on the production of the nitride precursor (N{sup 3-}) by chemical and/or electrochemical methods in a molten halide salt. This nitride ion is then reacted with group III metals in such a manner as to form the bulk nitride material. The work performed during the period of funding (February 2006-September 2006) focused on establishing that mass transport of GaN occurs in molten LiCl, the construction of a larger diameter electrochemical cell, the design, modification, and installation of a made-to-order glove box (required for handling very hygroscopic LiCl), and the feasibility of using room temperature molten salts to perform nitride chemistry experiments.

  12. The Children's Inn at NIH turns 25 | NIH MedlinePlus the Magazine

    MedlinePlus

    ... of this page please turn JavaScript on. Feature: The Children's Inn The Children's Inn at NIH turns 25 Past Issues / ... home …" for all families! What to Expect at The Children's Inn The Children's Inn enhances opportunities for ...

  13. Novel compound semiconductor devices based on III-V nitrides

    SciTech Connect

    Pearton, S.J.; Abernathy, C.R.; Ren, F.

    1995-10-01

    New developments in dry and wet etching, ohmic contacts and epitaxial growth of Ill-V nitrides are reported. These make possible devices such as microdisk laser structures and GaAs/AlGaAs heterojunction bipolar transistors with improved InN ohmic contacts.

  14. Molten salt-based growth of bulk GaN and InN for substrates.

    SciTech Connect

    Waldrip, Karen Elizabeth; Tsao, Jeffrey Yeenien; Kerley, Thomas M.

    2006-09-01

    An atmospheric pressure approach to growth of bulk group III-nitrides is outlined. Native III-nitride substrates for optoelectronic and high power, high frequency electronics are desirable to enhance performance and reliability of these devices; currently, these materials are available in research quantities only for GaN, and are unavailable in the case of InN. The thermodynamics and kinetics of the reactions associated with traditional crystal growth techniques place these activities on the extreme edges of experimental physics. The technique described herein relies on the production of the nitride precursor (N3-) by chemical and/or electrochemical methods in a molten halide salt. This nitride ion is then reacted with group III metals in such a manner as to form the bulk nitride material. The work performed during the period of funding (July 2004-September 2005) focused on the initial measurement of the solubility of GaN in molten LiCl as a function of temperature, the construction of electrochemical cells, the modification of a commercial glove box (required for handling very hygroscopic LiCl), and on securing intellectual property for the technique.

  15. 16. LOOKING WEST AT OLD FAITHFUL INN, MOST OF THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. LOOKING WEST AT OLD FAITHFUL INN, MOST OF THE EAST WING IS VISIBLE TO THE LEFT. THE EAST WING ADDITION WAS BUILT BY THE INN'S ORIGINAL ARCHITECT, ROBERT C. REAMER IN 1913-14. - Old Faithful Inn, 900' northeast of Snowlodge & 1050' west of Old Faithful Lodge, Lake, Teton County, WY

  16. Taming transport in InN

    SciTech Connect

    Ager III, Joel W.; Miller, Nate R.

    2011-05-29

    The large electron affinity of InN, close to 6 eV and the largest of any III-V semiconductor, creates a strong driving force for native donor formation, both in the bulk and at surfaces and interfaces. Moreover, all InN surfaces, regardless of crystal orientation or doping, have been observed to have a surface accumulation layer of electrons, which interferes with standard electrical measurements. For these reasons, until recently, it was uncertain whether or not compensation by donor defects would prevent “real” p-type activity (i.e. existence of sufficiently shallow acceptors and mobile holes). A coordinated experimental approach using a combination of electrical (Hall effect) and electrothermal (Seebeck coefficient) measurements will be described that allows definitive evaluation of carrier transport in InN. In Mg-doped InN films, the sensitivity of thermopower to bulk hole conduction, combined with modeling of the parallel conducting layers (surface/bulk/interface), enables quantitative measurement of the free hole concentration and mobility. In undoped (n-type) material, combined Hall and thermopower measurements, along with a considering of the scattering mechanisms, leads to a quantitative understanding of the crucial role of charged line defects in limiting electron transport.

  17. X-ray diffraction study of A- plane non-polar InN epilayer grown by MOCVD

    NASA Astrophysics Data System (ADS)

    Moret, Matthieu; Briot, Olivier; Gil, Bernard

    2015-03-01

    Strong polarisation-induced electric fields in C-plane oriented nitrides semiconductor layers reduce the performance of devices. Eliminating the polarization fields can be achieved by growing nitrides along non polar direction. We have grown non polar A-plane oriented InN on R-plane (1‾102) nitridated sapphire substrate by MOCVD. We have studied the structural anisotropy observed in these layers by analyzing High Resolution XRay Diffraction rocking curve (RC) experiments as a function of the in-plane beam orientation. A-plane InN epilayer have a unique epitaxial relationship on R-Plane sapphire and show a strong structural anisotropy. Full width at half maximum (FWHM) of the InN(11‾20) XRD RC values are contained between 44 and 81 Arcmin. FWHM is smaller when the diffraction occurs along the [0001] and the largest FWHM values, of the (11‾20) RC, are obtained when the diffraction occurs along the [1‾100] in-plane direction. Atomic Force Microscopy imaging revealed morphologies with well organized crystallites. The grains are structured along a unique crystallographic orientation of InN, leading to larger domains in this direction. This structural anisotropy can be, in first approximation, attributed to the difference in the domain sizes observed. XRD reciprocal space mappings (RSM) were performed in asymmetrical configuration on (13‾40) and (2‾202) diffraction plane. RSM are measured with a beam orientation corresponding to a maximal and a minimal width of the (11‾20) Rocking curves, respectively. A simple theoretical model is exposed to interpret the RSM. We concluded that the dominant contribution to the anisotropy is due to the scattering coherence length anisotropy present in our samples.

  18. Inhomogeneities in MOVPE InN

    NASA Astrophysics Data System (ADS)

    Yamamoto, Akio; Miwa, Hiroshi; Wang, Wen Jun; Hashimoto, Akihiro

    2006-01-01

    This paper reports the in-depth and in-plane inhomogeneities in InN films. Samples of InN are grown on sapphire substrates without or with a buffer using the atmospheric-pressure MOVPE. For the in-depth inhomogeneity analysis, the conventional PL measurement using an excitation source with a different wavelength is made from both the front surface and the film/substrate interface sides of samples. The measurement reveals that samples grown for a long time without buffer contain a deteriorated layer, which shows a higher PL peak energy, near the film/substrate interface. Such a layer is never found on the surface side. The deterioration is markedly enhanced when the sample is annealed in an NH3 flow. Since the coexistence of TMI and NH3 (growth environment) suppresses the deterioration and the InN samples used in this experiment have an In-polarity, such a deterioration is hydrogen-related degradation on the N-face of InN film. In-plane inhomogeneity of InN grown with a different buffer is studied by analyzing PL and absorption data. A wider PL spectrum and a larger discrepancy between PL peak energy and absorption edge, those are observed for films grown without buffer, are well explained by taking account of a large in-plane inhomogeneity in the samples. The existence of the large in-plane inhomogeneity is confirmed by the near-field PL mapping obtained by the SNOM. The SNOM analysis also shows that, although the use of the buffer improves the apparent in-plane uniformity, such a film has a fine inhomogeneity due to small grains of the buffer.

  19. First-principles calculations for AlN, GaN, and InN: Bulk and alloy properties

    SciTech Connect

    Wright, A.F.; Nelson, J.S.

    1995-02-01

    First-principles density-functional calculations utilizing ab initio pseudopotentials and plane-wave expansions are used to determine lattice parameters, bulk moduli, and band structures for AlN, GaN and InN. It is found that large numbers of plane waves are necessary to resolve the nitrogen 2p wave functions and that explicit treatment of the gallium 3d and indium 4d electrons is important for an accurate description of GaN and InN. Several properties of ternary zinc-blende alloys are determined including their bond-length and bond-angle relaxation and their energy-gap bowing parameters. The similarity of the calculated zinc-blende and wurtzite direct gaps also allows estimates to be made of the energy gap versus composition for wurtzite alloys.

  20. Mg doped InN and confirmation of free holes in InN

    SciTech Connect

    Wang, K.; Yamaguchi, T.; Miller, N.; Mayer, M. A.; Haller, E. E.; Iwamoto, R.; Araki, T.; Nanishi, Y.; Yu, K. M.; Walukiewicz, W.; Ager, J. W. III

    2011-01-24

    We report a systematic investigation on Mg doped InN epilayers grown by radio-frequency plasma-assisted molecular beam epitaxy. Electrolyte capacitance voltage (ECV) combined with thermopower measurements find p-type conduction over an Mg concentration range. For InN:Mg in this p-type 'window' the Seebeck coefficients dramatically change their signs from negative to positive when the thickness of undoped InN interlayer decreases to zero. This notable sign change of Seebeck coefficient explains the previous inconsistency between ECV and thermopower results and confirms the existence of mobile holes in the InN:Mg. Taking into account the undoped InN interlayer, the hole density and mobility are extracted.

  1. Post-growth thermal oxidation of wurtzite InN thin films into body-center cubic In{sub 2}O{sub 3} for chemical/gas sensing applications

    SciTech Connect

    Liu, H.F.; Yakovlev, N.L.; Chi, D.Z.; Liu, W.

    2014-06-01

    Post-growth thermal oxidations of InN have been studied using high-resolution x-ray diffraction (HRXRD) and secondary ion-mass spectroscopy (SIMS). The InN thin films, having relative high crystal quality, were grown by metal–organic chemical vapor deposition (MOCVD) on c-sapphire substrates using InGaN/GaN buffer layers. HRXRD reveals that oxidation of wurtzite InN into body-center cubic In{sub 2}O{sub 3} occurred at elevated temperatures. A Si{sub 3}N{sub 4} encapsulation improves the crystal quality of In{sub 2}O{sub 3} oxidized by using conventional rapid thermal annealing (RTA) but it results in the presence of undesired metallic indium. Cycle-RTA not only improves the crystal quality but also avoids the byproduct of metallic indium. SIMS depth profile, using contaminate elements as the ‘interface markers,’ provide evidence that the oxidation of InN is dominated by oxygen inward diffusion mechanism. Together with the HRXRD results, we conclude that the crystal quality of the resultant In{sub 2}O{sub 3}/InN heterostructure is mainly controlled by the balance between the speeds of oxygen diffusion and InN thermal dissociation, which can be effectively tuned by cycle-RTA. The obtained In{sub 2}O{sub 3}/InN heterostructures can be fundamental materials for studying high speed chemical/gas sensing devices. - Graphical abstract: Oxidation of h-InN into bcc-In{sub 2}O{sub 3} has been realized at elevated temperatures. A Si{sub 3}N{sub 4} cap improves the crystal quality of In{sub 2}O{sub 3} oxidized by conventional RTA but it results in the presence of undesired metallic indium. Cycle-RTA not only improves the crystal quality but also avoids the byproduct of metallic indium. SIMS depth profiles provide evidence that the oxidation of InN is dominated by oxygen inward diffusion mechanism. The crystal quality of the resultant In{sub 2}O{sub 3}/InN heterostructure is mainly controlled by the balance between the speeds of oxygen diffusion and InN thermal

  2. Investigation of gas sensing properties of InN nanoparticles

    SciTech Connect

    Madapu, Kishore K. E-mail: dhara@igcar.gov.in; Prasad, A. K.; Tyagi, A. K.; Dhara, S. E-mail: dhara@igcar.gov.in

    2015-06-24

    InN nanoparticles were grown by chemical vapor deposition technique using In{sub 2}O{sub 3} as precursor material. Raman spectroscopic studies show the presence of the wurtzite phase of as-grown InN. Size of the nanoparticles were in range from quantum dot (<8 nm) to larger sized particles (100 nm). We studied the gas sensing properties of InN nanoparticles with CH{sub 4} gas. Sensors substrates were fabricated with interdigitated Au electrodes. InN nanoparticles show high response towards CH{sub 4} with minimum detectable concentration of 50 ppm at 200 °C.

  3. Investigation of gas sensing properties of InN nanoparticles

    NASA Astrophysics Data System (ADS)

    Madapu, Kishore K.; Prasad, A. K.; Tyagi, A. K.; Dhara, S.

    2015-06-01

    InN nanoparticles were grown by chemical vapor deposition technique using In2O3 as precursor material. Raman spectroscopic studies show the presence of the wurtzite phase of as-grown InN. Size of the nanoparticles were in range from quantum dot (<8 nm) to larger sized particles (100 nm). We studied the gas sensing properties of InN nanoparticles with CH4 gas. Sensors substrates were fabricated with interdigitated Au electrodes. InN nanoparticles show high response towards CH4 with minimum detectable concentration of 50 ppm at 200 °C.

  4. The Children's Inn at NIH Anniversary Key Messages | NIH MedlinePlus the Magazine

    MedlinePlus

    ... of this page please turn JavaScript on. Feature: The Children's Inn The Children's Inn at NIH Past Issues / Summer 2014 ... Contents Anniversary Key Messages Playground and Park at The Children's Inn at NIH. Photo courtesy of Mahan ...

  5. Growth kinetics and island evolution during double-pulsed molecular beam epitaxy of InN

    NASA Astrophysics Data System (ADS)

    Kraus, A.; Hein, C.; Bremers, H.; Rossow, U.; Hangleiter, A.

    2016-06-01

    The kinetic processes of InN growth using alternating source fluxes with sub-monolayer In pulses in plasma-assisted molecular beam epitaxy have been investigated. Growth at various temperatures reveals the existence of two growth regimes. While growth at low temperatures is solely governed by surface diffusion, a combination of decomposition, desorption, and diffusion becomes decisive at growth temperatures of 470 °C and above. At this critical temperature, the surface morphology changes from a grainy structure to a structure made of huge islands. The formation of those islands is attributed to the development of an indium adlayer, which can be observed via reflection high energy electron diffraction monitoring. Based on the growth experiments conducted at temperatures below TGrowth = 470 °C, an activation energy for diffusion of 0.54 ± 0.02 eV has been determined from the decreasing InN island density. A comparison between growth on metalorganic vapor phase epitaxy GaN templates and pseudo bulk GaN indicates that step edges and dislocations are favorable nucleation sites. Based on the results, we developed a growth model, which describes the main mechanisms of the growth.

  6. Metals fact sheet - indium

    SciTech Connect

    1994-01-01

    Indium is generally found in concentrations averaging 10 to 20 ppm in sphalerite and chalcopyrite ores associated with zinc, copper, lead and tin deposits. Indium is recovered as a by-product of base metal mining by open pit, underground and other methods. After the recovery of zinc by the electrolytic process (copper concentrate by flotation, and lead and tin by electrolysis), indium antimonide slimes left on the anode and the indium-containing spent electrolyte become the input material for the processing of indium. Sulfuric acid is combined with the residues and heated to form sulfates which are then leached with water to filter off the remaining tin, lead and antimony. The indium in solution is recovered by cementation on aluminum, washed, melted, and refined into a metal.

  7. 21. REAR OF OLD FAITHFUL INN, LOOKING NORTH. SEMICIRCULAR SIDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. REAR OF OLD FAITHFUL INN, LOOKING NORTH. SEMI-CIRCULAR SIDE DINING ROOM, NOW CALLED THE BEAR PIT WAS ADDED IN 1927. (TAKEN FROM CHERRY-PICKER) - Old Faithful Inn, 900' northeast of Snowlodge & 1050' west of Old Faithful Lodge, Lake, Teton County, WY

  8. Solar Hot Water for Motor Inn--Texas City, Texas

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Final report describes solar domestic-hot-water heater installation at LaQuinta Motor Inn, Texas City, Texas which furnished 63% of total hot-water load of new 98-unit inn. Report presents a description of system, drawings and photographs of collectors, operations and maintenance instructions, manufacturers' specifications for pumps, and an engineer's report on performance.

  9. Wet Chemical Etching Survey of III-Nitrides

    SciTech Connect

    Abernathy, C.R.; Cho, H.; Hays, D.C.; MacKenzie, J.D.; Pearton, S.J.; Ren, F.; Shul, R.J.; Vartuli, C.B.; Zolper, J.C.

    1999-02-04

    Wet chemical etching of GaN, InN, AlN, InAlN and InGaN was investigated in various acid and base solutions at temperatures up to 75 C. Only KOH-based solutions were found to etch AlN and InAlN. No etchants were found for the other nitrides, emphasizing their extreme lack of chemical reactivity. The native oxide on most of the nitrides could be removed in potassium tetraborate at 75 C, or HCl/H{sub 2}O at 25 C.

  10. Surface and bulk electronic properties of low temperature synthesized InN microcrystals

    NASA Astrophysics Data System (ADS)

    Barick, B. K.; Dhar, S.

    2015-04-01

    Structural and electronic properties of InN microcrystals, which are synthesized by nitridation of LiInO2 with NaNH2 in a Teflon-lined autoclave at temperatures ranging between 170 and 240 °C, are studied as a function of the growth temperature using x-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), photo-absorption, Raman spectroscopy and x-ray photo-emission spectroscopy (XPS) techniques. Our study shows the formation of wurtzite InN crystals with an average size of 100 nm even at 170 °C. The study, furthermore, suggests an enhancement of electron concentration and a reduction of electron mobility in the crystal as the synthesis temperature (TS) decreases. The density of certain defects lying very close to the band edge is also found to increase with the reduction of TS. These defects are expected to act as donors, which can explain the enhancement of carrier concentration as the growth temperature decreases.

  11. Angular-dependent Raman study of a- and s-plane InN

    SciTech Connect

    Filintoglou, K.; Katsikini, M. Arvanitidis, J.; Lotsari, A.; Dimitrakopulos, G. P.; Vouroutzis, N.; Ves, S.; Christofilos, D.; Kourouklis, G. A.; Ajagunna, A. O.; Georgakilas, A.; Zoumakis, N.

    2015-02-21

    Angular-dependent polarized Raman spectroscopy was utilized to study nonpolar a-plane (11{sup ¯}20) and semipolar s-plane (101{sup ¯}1) InN epilayers. The intensity dependence of the Raman peaks assigned to the vibrational modes A{sub 1}(TO), E{sub 1}(TO), and E{sub 2}{sup h} on the angle ψ that corresponds to rotation around the growth axis, is very well reproduced by using expressions taking into account the corresponding Raman tensors and the experimental geometry, providing thus a reliable technique towards assessing the sample quality. The s- and a-plane InN epilayers grown on nitridated r-plane sapphire (Al{sub 2}O{sub 3}) exhibit good crystalline quality as deduced from the excellent fitting of the experimental angle-dependent peak intensities to the theoretical expressions as well as from the small width of the Raman peaks. On the contrary, in the case of the s-plane epilayer grown on non-nitridated r-plane sapphire, fitting of the angular dependence is much worse and can be modeled only by considering the presence of two structural modifications, rotated so as their c-axes are almost perpendicular to each other. Although the presence of the second variant is verified by transmission electron and atomic force microscopies, angular dependent Raman spectroscopy offers a non-destructive and quick way for its quantification. Rapid thermal annealing of this sample did not affect the angular dependence of the peak intensities. The shift of the E{sub 1}(TO) and E{sub 2}{sup h} Raman peaks was used for the estimation of the strain state of the samples.

  12. Vertically integrated (Ga, In)N nanostructures for future single photon emitters operating in the telecommunication wavelength range

    NASA Astrophysics Data System (ADS)

    Winden, A.; Mikulics, M.; Grützmacher, D.; Hardtdegen, H.

    2013-10-01

    Important technological steps are discussed and realized for future room-temperature operation of III-nitride single photon emitters. First, the growth technology of positioned single pyramidal InN nanostructures capped by Mg-doped GaN is presented. The optimization of their optical characteristics towards narrowband emission in the telecommunication wavelength range is demonstrated. In addition, a device concept and technology was developed so that the nanostructures became singularly addressable. It was found that the nanopyramids emit in the telecommunication wavelength range if their size is chosen appropriately. A p-GaN contacting layer was successfully produced as a cap to the InN pyramids and the top p-contact was achievable using an intrinsically conductive polymer PEDOT:PSS, allowing a 25% increase in light transmittance compared to standard Ni/Au contact technology. Single nanopyramids were successfully integrated into a high-frequency device layout. These decisive technology steps provide a promising route to electrically driven and room-temperature operating InN based single photon emitters in the telecommunication wavelength range.

  13. Local structure of indium oxynitride from x-ray absorption spectroscopy

    SciTech Connect

    T-Thienprasert, J.; Onkaw, D.; Rujirawat, S.; Limpijumnong, S.; Nukeaw, J.; Sungthong, A.; Porntheeraphat, S.; Singkarat, S.

    2008-08-04

    Synchrotron x-ray absorption near edge structures (XANES) measurements of In L{sub 3} edge is used in conjunction with first principles calculations to characterize rf magnetron sputtered indium oxynitride at different O contents. Good agreement between the measured and the independently calculated spectra are obtained. Calculations show that the XANES spectra of this alloy are sensitive to the coordination numbers of the In atoms, i.e., fourfold for indium nitride-like structures and sixfold for indium oxide-like structures, but not to the substitution of nearest neighbor N by O or vice versa.

  14. III-V nitrides and performance of graphene on copper plasmonic biosensor

    NASA Astrophysics Data System (ADS)

    Mohanty, Goutam; Sahoo, Bijaya Kumar

    2016-05-01

    In the present study, the influence of iii-v nitrides as well as Ge and Si on the sensitivity and performance of a graphene protected copper plasmonic biosensor has been investigated. These semiconductors have been used between copper (Cu) and graphene layers on a SF 10 glass prism. The sensitivity and performance of the biosensor has been computed for with and without semiconductors. III-V nitrides demonstrated high sensitivity and high figure of merit (FOM) in comparison to Si and Ge due to their superior electronic and optical properties. The enhancement of evanescent electric field due to Si, Ge, AlN, GaN and InN have been computed and found highest enhancement for InN. This happens due to high refractive index of InN than other semiconductors. Analysis shows that for a high sensitive imaging biosensor the required optimal thickness of copper, InN and graphene are respectively 32 nm, 13 nm and 0.34 nm for light of wavelength λ = 633 nm (red Hesbnd Ne laser). This study suggests that InN would be a better choice for fabrication of new imaging plasmonic biosensors for chemical and biological sensing.

  15. Indium fluoride glass fibers

    NASA Astrophysics Data System (ADS)

    Saad, Mohammed

    2012-03-01

    Fluoride glasses are the only material that transmit light from ultraviolet to mid-infrared and can be drawn into industrial optical fibers. The mechanical and optical properties of new indium fluoride glass fibers have been investigated. Multimode fiber 190 microns, has very high mechanical strength greater than 100 kpsi and optical loss as low as 45 dB/km between 2 and 4 microns. Unlike chalcogenide glass fibers, indium fluoride fiber has a wide transmission window from 0.3 to 5.5 microns without any absorption peak. Indium fluoride glass fibers are the technology of choice for all application requiring transmission up to 5 micron such as infrared contour measure (IRCM) and chemical sensing. Furthermore, Indium fluoride glasses have low phonon energy and can be heavily doped and co-doped whit rare-earth elements. Therefore they are very promising candidates for infrared fiber lasers.

  16. Ultralow wear of gallium nitride

    NASA Astrophysics Data System (ADS)

    Zeng, Guosong; Tan, Chee-Keong; Tansu, Nelson; Krick, Brandon A.

    2016-08-01

    Here, we reveal a remarkable (and surprising) physical property of GaN: it is extremely wear resistant. In fact, we measured the wear rate of GaN is approaching wear rates reported for diamond. Not only does GaN have an ultralow wear rate but also there are quite a few experimental factors that control the magnitude of its wear rate, further contributing to the rich and complex physics of wear of GaN. Here, we discovered several primary controlling factors that will affect the wear rate of III-Nitride materials: crystallographic orientation, sliding environment, and coating composition (GaN, InN and InGaN). Sliding in the ⟨ 1 2 ¯ 10 ⟩ is significantly lower wear than ⟨ 1 1 ¯ 00 ⟩ . Wear increases by 2 orders of magnitude with increasing humidity (from ˜0% to 50% RH). III-Nitride coatings are promising as multifunctional material systems for device design and sliding wear applications.

  17. Ambient temperature deposition of gallium nitride/gallium oxynitride from a deep eutectic electrolyte, under potential control.

    PubMed

    Sarkar, Sujoy; Sampath, S

    2016-05-11

    A ternary, ionically conducting, deep eutectic solvent based on acetamide, urea and gallium nitrate is reported for the electrodeposition of gallium nitride/gallium indium nitride under ambient conditions; blue and white light emitting photoluminescent deposits are obtained under potential control. PMID:27074315

  18. Self-annihilation of inversion domains by high energy defects in III-Nitrides

    SciTech Connect

    Koukoula, T.; Kioseoglou, J. Kehagias, Th.; Komninou, Ph.; Ajagunna, A. O.; Georgakilas, A.

    2014-04-07

    Low-defect density InN films were grown on Si(111) by molecular beam epitaxy over an ∼1 μm thick GaN/AlN buffer/nucleation layer. Electron microscopy observations revealed the presence of inverse polarity domains propagating across the GaN layer and terminating at the sharp GaN/InN (0001{sup ¯}) interface, whereas no inversion domains were detected in InN. The systematic annihilation of GaN inversion domains at the GaN/InN interface is explained in terms of indium incorporation on the Ga-terminated inversion domains forming a metal bonded In-Ga bilayer, a structural instability known as the basal inversion domain boundary, during the initial stages of InN growth on GaN.

  19. The INNs and outs of antibody nonproprietary names

    PubMed Central

    Jones, Tim D.; Carter, Paul J.; Plückthun, Andreas; Vásquez, Max; Holgate, Robert G.E.; Hötzel, Isidro; Popplewell, Andrew G.; Parren, Paul W.H.I.; Enzelberger, Markus; Rademaker, Hendrik J.; Clark, Michael R.; Lowe, David C.; Dahiyat, Bassil I.; Smith, Victoria; Lambert, John M.; Wu, Herren; Reilly, Mary; Haurum, John S.; Dübel, Stefan; Huston, James S.; Schirrmann, Thomas; Janssen, Richard A.J.; Steegmaier, Martin; Gross, Jane A.; Bradbury, Andrew R.M.; Burton, Dennis R.; Dimitrov, Dimiter S.; Chester, Kerry A.; Glennie, Martin J.; Davies, Julian; Walker, Adam; Martin, Steve; McCafferty, John; Baker, Matthew P.

    2016-01-01

    An important step in drug development is the assignment of an International Nonproprietary Name (INN) by the World Health Organization (WHO) that provides healthcare professionals with a unique and universally available designated name to identify each pharmaceutical substance. Monoclonal antibody INNs comprise a –mab suffix preceded by a substem indicating the antibody type, e.g., chimeric (-xi-), humanized (-zu-), or human (-u-). The WHO publishes INN definitions that specify how new monoclonal antibody therapeutics are categorized and adapts the definitions to new technologies. However, rapid progress in antibody technologies has blurred the boundaries between existing antibody categories and created a burgeoning array of new antibody formats. Thus, revising the INN system for antibodies is akin to aiming for a rapidly moving target. The WHO recently revised INN definitions for antibodies now to be based on amino acid sequence identity. These new definitions, however, are critically flawed as they are ambiguous and go against decades of scientific literature. A key concern is the imposition of an arbitrary threshold for identity against human germline antibody variable region sequences. This leads to inconsistent classification of somatically mutated human antibodies, humanized antibodies as well as antibodies derived from semi-synthetic/synthetic libraries and transgenic animals. Such sequence-based classification implies clear functional distinction between categories (e.g., immunogenicity). However, there is no scientific evidence to support this. Dialog between the WHO INN Expert Group and key stakeholders is needed to develop a new INN system for antibodies and to avoid confusion and miscommunication between researchers and clinicians prescribing antibodies. PMID:26716992

  20. The INNs and outs of antibody nonproprietary names.

    PubMed

    Jones, Tim D; Carter, Paul J; Plückthun, Andreas; Vásquez, Max; Holgate, Robert G E; Hötzel, Isidro; Popplewell, Andrew G; Parren, Paul W H I; Enzelberger, Markus; Rademaker, Hendrik J; Clark, Michael R; Lowe, David C; Dahiyat, Bassil I; Smith, Victoria; Lambert, John M; Wu, Herren; Reilly, Mary; Haurum, John S; Dübel, Stefan; Huston, James S; Schirrmann, Thomas; Janssen, Richard A J; Steegmaier, Martin; Gross, Jane A; Bradbury, Andrew R M; Burton, Dennis R; Dimitrov, Dimiter S; Chester, Kerry A; Glennie, Martin J; Davies, Julian; Walker, Adam; Martin, Steve; McCafferty, John; Baker, Matthew P

    2016-01-01

    An important step in drug development is the assignment of an International Nonproprietary Name (INN) by the World Health Organization (WHO) that provides healthcare professionals with a unique and universally available designated name to identify each pharmaceutical substance. Monoclonal antibody INNs comprise a -mab suffix preceded by a substem indicating the antibody type, e.g., chimeric (-xi-), humanized (-zu-), or human (-u-). The WHO publishes INN definitions that specify how new monoclonal antibody therapeutics are categorized and adapts the definitions to new technologies. However, rapid progress in antibody technologies has blurred the boundaries between existing antibody categories and created a burgeoning array of new antibody formats. Thus, revising the INN system for antibodies is akin to aiming for a rapidly moving target. The WHO recently revised INN definitions for antibodies now to be based on amino acid sequence identity. These new definitions, however, are critically flawed as they are ambiguous and go against decades of scientific literature. A key concern is the imposition of an arbitrary threshold for identity against human germline antibody variable region sequences. This leads to inconsistent classification of somatically mutated human antibodies, humanized antibodies as well as antibodies derived from semi-synthetic/synthetic libraries and transgenic animals. Such sequence-based classification implies clear functional distinction between categories (e.g., immunogenicity). However, there is no scientific evidence to support this. Dialog between the WHO INN Expert Group and key stakeholders is needed to develop a new INN system for antibodies and to avoid confusion and miscommunication between researchers and clinicians prescribing antibodies. PMID:26716992

  1. Growth of III-Nitrides by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Tang, Liang

    Nitride compound materials are highly desirable for optoelectronic and power device applications due to their unique combinations of material properties. However due to the large lattice mismatches between AlN and GaN(2.5%), and between InN and GaN(11%), growth of nitride devices which contains lattice mismatched multiple quantum well (MQW) structures remains a challenge. In this work the growth of III-Nitride by the MBE method is investigated, covering the growth of AlGaN/GaN Resonant tunneling Diode, the growth of In0.18 Al0.82N that is lattice matched to GaN, and the fabrication of free standing GaN nanomembranes

  2. Nanogenerators based on vertically aligned InN nanowires.

    PubMed

    Liu, Guocheng; Zhao, Songrui; Henderson, Robert D E; Leonenko, Zoya; Abdel-Rahman, Eihab; Mi, Zetian; Ban, Dayan

    2016-01-28

    Piezoelectric nanogenerators (NGs) based on vertically aligned InN nanowires (NWs) are fabricated, characterized, and evaluated. In these NGs, arrays of p-type and intrinsic InN NWs prepared by plasma-assisted molecular beam epitaxy (MBE) demonstrate similar piezoelectric properties. The p-type NGs show 160% more output current and 70% more output power product than the intrinsic NGs. The features driving performance enhancement are reduced electrostatic losses due to better NW array morphology, improved electromechanical energy conversion efficiency due to smaller NW diameters, and the higher impedance of intrinsic NGs due to elevated NW surface charge levels. These findings highlight the potential of InN based NGs as a power source for self-powered systems and the importance of NW morphology and surface state in overall NG performance. PMID:26700694

  3. The Children's Inn at NIH turns 25 | NIH MedlinePlus the Magazine

    MedlinePlus

    ... a supportive environment, including therapeutic, educational, and recreational programming. Dalvin plays board games at The Inn's Woodmont ... Clinical Center. The Inn has a playroom, kids' computer room, bistro, game room, learning center, business center, ...

  4. The Children's Inn at NIH Anniversary Key Messages | NIH MedlinePlus the Magazine

    MedlinePlus

    ... through mutual support including therapeutic, recreational, and educational programming. Establishment of The Inn took hard work, dedication ... 7 million for the expansion project. fast facts 1 The Children's Inn, located on the NIH campus ...

  5. The Children's Inn at NIH - Three Stories | NIH MedlinePlus the Magazine

    MedlinePlus

    ... of this page please turn JavaScript on. Feature: The Children's Inn The Children's Inn at NIH - Three Stories Past Issues / Summer 2014 Table of Contents Kristal Nemeroff—The Patient Kristal Nemeroff, age 2, at the Children's ...

  6. The Place Where Hope Lives: The Children's Inn Comforts Kids and Their Families

    MedlinePlus

    Skip Navigation Bar Home Current Issue Past Issues The Place Where Hope Lives: The Children's Inn Comforts Kids and Their Families Past ... Story by Melanie Modlin Photography by Veronika Lukasova The Children's Inn at NIH is a unique homeaway- ...

  7. Indium sealing techniques.

    NASA Technical Reports Server (NTRS)

    Hochuli, U.; Haldemann, P.

    1972-01-01

    Gold films are used as an alloying flux to form 5-micron-thick indium film seals at temperatures below 300 C. Pyrex was sealed to quartz, ULE, CER-VIT, Irtran 2, Ge, GaAs, Invar, Kovar, Al, and Cu. The seals can also be used as current feedthroughs and graded seals.

  8. Respirable Indium Exposures, Plasma Indium, and Respiratory Health Among Indium-Tin Oxide (ITO) Workers

    PubMed Central

    Cummings, Kristin J.; Virji, M. Abbas; Park, Ji Young; Stanton, Marcia L.; Edwards, Nicole T.; Trapnell, Bruce C.; Carey, Brenna; Stefaniak, Aleksandr B.; Kreiss, Kathleen

    2016-01-01

    Background Workers manufacturing indium-tin oxide (ITO) are at risk of elevated indium concentration in blood and indium lung disease, but relationships between respirable indium exposures and biomarkers of exposure and disease are unknown. Methods For 87 (93%) current ITO workers, we determined correlations between respirable and plasma indium and evaluated associations between exposures and health outcomes. Results Current respirable indium exposure ranged from 0.4 to 108 μg/m3 and cumulative respirable indium exposure from 0.4 to 923 μg-yr/m3. Plasma indium better correlated with cumulative (rs = 0.77) than current exposure (rs = 0.54) overall and with tenure ≥1.9 years. Higher cumulative respirable indium exposures were associated with more dyspnea, lower spirometric parameters, and higher serum biomarkers of lung disease (KL-6 and SP-D), with significant effects starting at 22 μg-yr/m3, reached by 46% of participants. Conclusions Plasma indium concentration reflected cumulative respirable indium exposure, which was associated with clinical, functional, and serum biomarkers of lung disease. PMID:27219296

  9. Hot Water for Motor Inn--Garland, Texas

    NASA Technical Reports Server (NTRS)

    1982-01-01

    35-page report describes solar collector system and its operation and presents projected system performance. Details calibration and maintenance procedures and lists and describes equipment that makes up system. System provides hot water for laundry, for showers and sinks in inn rooms.

  10. No Vacancy: Inn Provides Revenue Source for Financially Troubled Institute.

    ERIC Educational Resources Information Center

    Bridges, Jerry G.; Brant, Joseph F.

    1994-01-01

    The Peabody Institute of Baltimore (Maryland), the Johns Hopkins University's music school, addressed its financial problems by converting four campus buildings into an inn used to house Elderhostel participants. Annual program revenues cover all costs and yield a financial reserve for the school. (MSE)

  11. Indium Sorption to Iron Oxides

    NASA Astrophysics Data System (ADS)

    White, S. J.; Sacco, S. A.; Hemond, H.; Hussain, F. A.; Runkel, R. L.; Walton-Day, K. E.; Kimball, B. A.; Shine, J. P.

    2014-12-01

    Indium is an increasingly important metal in semiconductors and electronics, and its use is growing rapidly as a semiconductive coating (as indium tin oxide) for liquid crystal displays (LCDs) and flat panel displays. It also has uses in important energy technologies such as light emitting diodes (LEDs) and photovoltaic cells. Despite its rapid increase in use, very little is known about the environmental behavior of indium, and concerns are being raised over the potential health effects of this emerging metal contaminant. One source of indium to the environment is acid mine drainage from the mining of lead, zinc, and copper sulfides. In our previous studies of a stream in Colorado influenced by acid mine drainage from lead and zinc mining activities, indium concentrations were found to be 10,000 times those found in uncontaminated rivers. However, the speciation and mobility of indium could not be reliably modeled because sorption constants to environmental sorbents have not been determined. In this study, we generate sorption constants for indium to ferrihydrite in the laboratory over a range of pHs, sorbent to sorbate ratios, and ionic strengths. Ferrihydrite is one of the most important sorbents in natural systems, and sorption to amorphous iron oxides such as ferrihydrite is thought to be one of the main removal mechanisms of metals from the dissolved phase in aqueous environments. Because of its relatively low solubility, we also find that indium hydroxide precipitation can dominate indium's partitioning at micromolar concentrations of indium. This precipitation may be important in describing indium's behavior in our study stream in Colorado, where modeling sorption to iron-oxides does not explain the complete removal of indium from the dissolved phase when the pH of the system is artificially raised to above 8. This study contributes much-needed data about indium's aqueous behavior, in order to better understand its fate, transport, and impacts in the

  12. Inexpensive Method for Coating the Interior of Silica Growth Ampoules with Pyrolytic Boron Nitride

    NASA Technical Reports Server (NTRS)

    Wang, Jianbin; Regel, Liya L.; Wilcox, William R.

    2003-01-01

    An inexpensive method was developed for coating the interior of silica ampoules with hexagonal boron nitride. An aqueous solution of boric acid was used to coat the ampoule prior to drying in a vacuum at 200 C. This coating was converted to transparent boron nitride by heating in ammonia at 1000 C. Coated ampoules were used to achieve detached solidification of indium antimonide on earth.

  13. Precursors for formation of copper selenide, indium selenide, copper indium diselenide, and/or copper indium gallium diselenide films

    SciTech Connect

    Curtis, Calvin J; Miedaner, Alexander; Van Hest, Maikel; Ginley, David S

    2014-11-04

    Liquid-based precursors for formation of Copper Selenide, Indium Selenide, Copper Indium Diselenide, and/or copper Indium Galium Diselenide include copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent. These liquid-based precursors can be deposited in liquid form onto substrates and treated by rapid thermal processing to form crystalline copper selenide and indium selenide films.

  14. High pressure nitriding

    SciTech Connect

    Jung, M.; Hoffmann, F.T.; Mayr, P.; Minarski, P.

    1995-12-31

    The aim of the presented research project is the development of a new high pressure nitriding process, which avoids disadvantages of conventional nitriding processes and allows for new applications. Up to now, a nitriding furnace has been constructed and several investigations have been made in order to characterize the influence of pressure on the nitriding process. In this paper, connections between pressure in the range of 2 to 12 atm and the corresponding nitride layer formation for the steel grades AISI 1045, H11 and a nitriding steel are discussed. Results of the nitride layer formation are presented. For all steel grades, a growth of nitride layers with increasing pressure was obtained. Steels with passive layers, as the warm working steel H11, showed a better nitriding behavior at elevated pressure.

  15. Growth of Mg-doped InN by Metal Organic Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Khan, N.; Nepal, N.; Lin, J. Y.; Jiang, H. X.

    2007-03-01

    InN with an energy gap of ˜ 0.7 eV, has recently attracted extensive attention due to its potential applications in semiconductor devices such as light emitting diodes, lasers, and high efficiency solar cells. However the ability to grow both p-type and n-type InN is essential to realize these devices. All as grown unintentionally doped InN are n-type. The tendency of native defects in InN to form donors manifests itself severely at surfaces where high levels of electron accumulation are observed. The highly n-type conductive layer at the surface of InN films creates difficulties in the demonstration of p-type InN. Nevertheless it is important to investigate the optical and structural properties of Mg-doped InN. We report here on the growth of Mg-doped InN epilayers by metal organic chemical vapor deposition. Photoluminescence (PL) was employed to study the effects of different growth conditions of Mg-doped InN. PL studies revealed that in addition to emission peak at ˜ 0.82 eV in undoped InN layers, Mg-doped InN layers exhibit an emission peak at ˜ 0.75 eV. The peak at ˜ 0.75eV for Mg-doped InN could be related to defects generated by Mg doping in InN. Various other measurements such as Hall effect measurement, X-ray diffraction and atomic force microscopy were carried out to provide further understanding.

  16. Nanostructures of Indium Gallium Nitride Crystals Grown on Carbon Nanotubes

    PubMed Central

    Park, Ji-Yeon; Man Song, Keun; Min, Yo-Sep; Choi, Chel-Jong; Seok Kim, Yoon; Lee, Sung-Nam

    2015-01-01

    Nanostructure (NS) InGaN crystals were grown on carbon nanotubes (CNTs) using metalorganic chemical vapor deposition. The NS-InGaN crystals, grown on a ~5-μm-long CNT/Si template, were estimated to be ~100–270 nm in size. Transmission electron microscope examinations revealed that single-crystalline InGaN NSs were formed with different crystal facets. The observed green (~500 nm) cathodoluminescence (CL) emission was consistent with the surface image of the NS-InGaN crystallites, indicating excellent optical properties of the InGaN NSs on CNTs. Moreover, the CL spectrum of InGaN NSs showed a broad emission band from 490 to 600 nm. Based on these results, we believe that InGaN NSs grown on CNTs could aid in overcoming the green gap in LED technologies. PMID:26568414

  17. Auger Recombination in Indium Gallium Nitride: Experimental Evidence

    NASA Astrophysics Data System (ADS)

    Krames, Michael

    2010-03-01

    Progress in InGaN-based light-emitting diode (LED) technology has resulted in white-light emitters with efficiencies far exceeding those of conventional light sources such as tungsten-filament-based incandescence and mercury-vapor based fluorescence. Indeed, by now efficacies exceeding 150 lumens per Watt for InGaN-based phosphor-converted white LEDs are claimed, which represent a 90% energy savings compared to the conventional incandescent (i.e., ``light bulb'') solution. However, these high performance levels are obtained under conditions of very low forward current-density for the InGaN LED and do not represent true operating conditions (nor cost-effective utilization) for the device. In order to reduce the cost (and thus increase market penetration of) solid-state lighting, more lumens per unit of semiconductor area are required which in practice necessitates higher drive current densities. Unfortunately, at these higher driver current densities, the internal quantum efficiency of InGaN-based LEDs is observed to decrease significantly. In the fall of 2007, researchers at the Advanced Laboratories of Philips Lumileds were the first to propose Auger recombination as the root-cause mechanism in InGaN which was behind this ``efficiency droop'' [1]. They further proposed to circumvent the problem by employing InGaN-based active region designs that maintain low carrier density, and demonstrated an LED device design that reaches a maximum quantum efficiency above 200 A/cm2, compared to ˜1-10 A/cm^2 for typical multiple-quantum-well heterostructures [2]. In this talk we will review the experimental evidence for Auger recombination in InGaN, beginning with the early work from 2007 and then considering additional work from more recent efforts to better understand the details behind this loss mechanism. [4pt] [1] Y. C. Shen, G. O. M"uller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, ``Auger recombination in InGaN measured by photoluminescence'', Appl. Phys. Lett. 91, 141101 (2007). [0pt] [2] N. F. Gardner, G. O. M"uller, Y. C. Shen, G. Chen, S. Watanabe, W. G"otz, and M. R. Krames, ``Blue-emitting InGaN--GaN double-heterostructure light-emitting diodes reaching maximum quantum efficiency above 200 A/cm^2'', Appl. Phys. Lett. 91, 243506 (2007).

  18. Nanostructures of Indium Gallium Nitride Crystals Grown on Carbon Nanotubes.

    PubMed

    Park, Ji-Yeon; Man Song, Keun; Min, Yo-Sep; Choi, Chel-Jong; Seok Kim, Yoon; Lee, Sung-Nam

    2015-01-01

    Nanostructure (NS) InGaN crystals were grown on carbon nanotubes (CNTs) using metalorganic chemical vapor deposition. The NS-InGaN crystals, grown on a ~5-μm-long CNT/Si template, were estimated to be ~100-270 nm in size. Transmission electron microscope examinations revealed that single-crystalline InGaN NSs were formed with different crystal facets. The observed green (~500 nm) cathodoluminescence (CL) emission was consistent with the surface image of the NS-InGaN crystallites, indicating excellent optical properties of the InGaN NSs on CNTs. Moreover, the CL spectrum of InGaN NSs showed a broad emission band from 490 to 600 nm. Based on these results, we believe that InGaN NSs grown on CNTs could aid in overcoming the green gap in LED technologies. PMID:26568414

  19. Nanostructures of Indium Gallium Nitride Crystals Grown on Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Park, Ji-Yeon; Man Song, Keun; Min, Yo-Sep; Choi, Chel-Jong; Seok Kim, Yoon; Lee, Sung-Nam

    2015-11-01

    Nanostructure (NS) InGaN crystals were grown on carbon nanotubes (CNTs) using metalorganic chemical vapor deposition. The NS-InGaN crystals, grown on a ~5-μm-long CNT/Si template, were estimated to be ~100-270 nm in size. Transmission electron microscope examinations revealed that single-crystalline InGaN NSs were formed with different crystal facets. The observed green (~500 nm) cathodoluminescence (CL) emission was consistent with the surface image of the NS-InGaN crystallites, indicating excellent optical properties of the InGaN NSs on CNTs. Moreover, the CL spectrum of InGaN NSs showed a broad emission band from 490 to 600 nm. Based on these results, we believe that InGaN NSs grown on CNTs could aid in overcoming the green gap in LED technologies.

  20. Temperature switching of cavity modes in InN microcrystals

    SciTech Connect

    Kazanov, D. R. Kaibyshev, V. H.; Davydov, V. Yu.; Smirnov, A. N.; Jmerik, V. N.; Kuznetsova, N. V.; Kopiev, P. S.; Ivanov, S. V.; Shubina, T. V.

    2015-11-15

    InN optical cavities supporting low-order whispering-gallery modes up to room temperature are formed by molecular-beam epitaxy on patterned substrates. The observed switching of the mode type with increasing temperature is explained in terms of changes in the optical parameters due to a shift of the absorption edge and modification of its shape. Modeling taking into account a variation in the refractive index reproduces the typical distributions of the electromagnetic-field intensity in the cavities.

  1. Mineral of the month: indium

    USGS Publications Warehouse

    George, Micheal W.

    2004-01-01

    Indium was discovered in Germany in 1863. Although it is a lustrous silver-white color, the finders named the new material for the “indigo” spectral lines the mineral created on the spectrograph. Indium ranks 61st in abundance in Earth’s crust and is about three times more abundant than silver or mercury.

  2. Preparation of uranium nitride

    DOEpatents

    Potter, Ralph A.; Tennery, Victor J.

    1976-01-01

    A process for preparing actinide-nitrides from massive actinide metal which is suitable for sintering into low density fuel shapes by partially hydriding the massive metal and simultaneously dehydriding and nitriding the dehydrided portion. The process is repeated until all of the massive metal is converted to a nitride.

  3. Dry etching of III-V nitrides

    SciTech Connect

    Pearton, S.J.; Shul, R.J.; McLane, G.F.; Constantine, C.

    1995-12-01

    The chemical inertness and high bond strengths of the III-V nitrides lead to slower plasma etching rates than for more conventional III-V semiconductors under the same conditions. High ion density conditions (>3{times}l0{sup 9}cm{sup {minus}3}) such as those obtained in ECR or magnetron reactors produce etch rates up to an order of magnitude higher than for RIE, where the ion densities are in the 10{sup 9}cm{sup {minus}3} range. We have developed smooth anisotropic dry etches for GaN, InN, AlN and their alloys based on Cl{sub 2}/CH{sub 4}/H{sub 2}/Ar, BCl{sub 3}/Ar, Cl{sub 2}/H{sub 2}, Cl{sub 2}/SF{sub 6}, HBr/H{sub 2} and HI/H{sub 2} plasma chemistries achieving etch rates up to {approximately}4,000{angstrom}/min at moderate dc bias voltages ({le}-150V). Ion-induced damage in the nitrides appears to be less apparent than in other III-V`s. One of the key remaining issues is the achievement of high selectivities for removal of one layer from another.

  4. Convergence of valence bands for high thermoelectric performance for p-type InN

    NASA Astrophysics Data System (ADS)

    Li, Hai-Zhu; Li, Ruo-Ping; Liu, Jun-Hui; Huang, Ming-Ju

    2015-12-01

    Band engineering to converge the bands to achieve high valley degeneracy is one of effective approaches for designing ideal thermoelectric materials. Convergence of many valleys in the valence band may lead to a high Seebeck coefficient, and induce promising thermoelectric performance of p-type InN. In the current work, we have systematically investigated the electronic structure and thermoelectric performance of wurtzite InN by using the density functional theory combined with semiclassical Boltzmann transport theory. Form the results, it can be found that intrinsic InN has a large Seebeck coefficient (254 μV/K) and the largest value of ZeT is 0.77. The transport properties of p-type InN are better than that of n-type one at the optimum carrier concentration, which mainly due to the large Seebeck coefficient for p-type InN, although the electrical conductivity of n-type InN is larger than that of p-type one. We found that the larger Seebeck coefficient for p-type InN may originate from the large valley degeneracy in the valence band. Moreover, the low minimum lattice thermal conductivity for InN is one key factor to become a good thermoelectric material. Therefore, p-type InN could be a potential material for further applications in the thermoelectric area.

  5. Transmission Electron Microscopy Study of InN Nanorods

    SciTech Connect

    Liliental-Weber, Z.; Li, X.; Kryliouk, Olga; Park, H.J.; Mangum,J.; Anderson, T.

    2006-07-13

    InN nanorods were grown on a, c-, and r-plane of sapphire and also on Si (111) and GaN (0001) by non-catalytic, template-free hydride metal-organic vapor phase epitaxy and studied by transmission electron microscopy, electron energy loss (EELS) and photoluminescence (PL) at room temperature. These nanocrystals have different shapes and different faceting depending on the substrate used and their crystallographic orientation. EELS measurements have confirmed the high purity of these crystals. The observed PL peak was in the range of 0.9-0.95 eV. The strongest PL intensity was observed for the nanocrystals with the larger diameters.

  6. Indium Second-Surface Mirrors

    NASA Technical Reports Server (NTRS)

    Bouquet, F. L.; Hasegawa, T.

    1982-01-01

    Second-surface mirrors are formed by vapor deposition of indium onto glass. Mirrors have reflectances comparable to those of ordinary silver or aluminized mirrors and are expected to show superior corrosion resistance. Mirrors may be used in solar concentrators.

  7. Evaluation of threading dislocation densities in In- and N-face InN

    SciTech Connect

    Gallinat, C. S.; Koblmueller, G.; Wu, Feng; Speck, J. S.

    2010-03-15

    The threading dislocation (TD) structure and density has been studied in In- and N-face InN films grown on GaN by plasma-assisted molecular beam epitaxy. The TD densities were determined by nondestructive x-ray diffraction rocking curve measurements in on-axis symmetric and off-axis skew symmetric geometries and calibrated by transmission electron microscopy measurements. TD densities were dominated by edge-type TDs with screw-component TDs accounting for less than 10% of the total TD density. A significant decrease in edge-type TD density was observed for In-face InN films grown at increasingly higher substrate temperatures. In-face InN films grown with excess In exhibited lower TD densities compared to films grown under N-rich conditions. The edge-type TD density of N-face InN films was independent of substrate temperature due to the higher allowable growth temperatures for N-face InN compared to In-face InN. TD densities in In-face InN also showed a strong dependence on film thickness. Films grown at a thickness of less than 1 {mu}m had higher TD densities compared with films grown thicker than 1 {mu}m. The lowest measured TD density for an In-face InN film was {approx}1.5x10{sup 10}/cm{sup 2} for 1 {mu}m thick films.

  8. Donor and acceptor concentrations in degenerate InN

    SciTech Connect

    Look, D.C.; Lu, H.; Schaff, W.J.; Jasinski, J.; Liliental-Weber, Z.

    2002-01-28

    A formalism is presented to determine donor (N{sub D}) and acceptor (N{sub A}) concentrations in wurtzitic InN characterized by degenerate carrier concentration (n) and mobility ({mu}). The theory includes scattering not only by charged point defects and impurities, but also by charged threading dislocations, of concentration N{sub dis}. For an 0.45-{micro}m-thick InN layer grown on Al{sub 2}O{sub 3} by molecular beam epitaxy, having N{sub dis} = 5 x 10{sup 10} cm{sup -2}, determined by transmission electron microscopy, n(20 K) = 3.5 x 10{sup 18} cm{sup -3}, and {mu}(20 K) = 1055 cm{sup 2}/V-s, determined by Hall-effect measurements, the fitted values are N{sub D} = 4.7 x 10{sup 18} cm{sup -3} and N{sub A} = 1.2 x 10{sup 18} cm{sup -3}. The identities of the donors and acceptors are not known, although a comparison of N{sub D} with analytical data, and also with calculations of defect formation energies, suggests that a potential candidate for the dominant donor is H.

  9. Methods of forming boron nitride

    SciTech Connect

    Trowbridge, Tammy L; Wertsching, Alan K; Pinhero, Patrick J; Crandall, David L

    2015-03-03

    A method of forming a boron nitride. The method comprises contacting a metal article with a monomeric boron-nitrogen compound and converting the monomeric boron-nitrogen compound to a boron nitride. The boron nitride is formed on the same or a different metal article. The monomeric boron-nitrogen compound is borazine, cycloborazane, trimethylcycloborazane, polyborazylene, B-vinylborazine, poly(B-vinylborazine), or combinations thereof. The monomeric boron-nitrogen compound is polymerized to form the boron nitride by exposure to a temperature greater than approximately 100.degree. C. The boron nitride is amorphous boron nitride, hexagonal boron nitride, rhombohedral boron nitride, turbostratic boron nitride, wurzite boron nitride, combinations thereof, or boron nitride and carbon. A method of conditioning a ballistic weapon and a metal article coated with the monomeric boron-nitrogen compound are also disclosed.

  10. Photoluminescence properties of Mg-doped InN nanowires

    SciTech Connect

    Zhao, Songrui; Liu, Xuedong; Mi, Zetian

    2013-11-11

    In this work, photoluminescence (PL) properties of nearly defect-free Mg-doped InN nanowires were investigated in detail. The low-doped sample exhibits two PL emission peaks up to 152 K, which can be ascribed to the band-to-band recombination and the Mg-acceptor energy level related recombination, respectively. For the high-doped sample, the Mg-acceptor energy level related transition dominates. Detailed power dependent PL studies further indicate that the Mg-acceptor energy level related PL emission is due to the donor-acceptor pair recombination process, which subsequently evolves into the free-to-acceptor recombination with increasing temperature.

  11. Indium oxide based fiber optic SPR sensor

    NASA Astrophysics Data System (ADS)

    Shukla, Sarika; Sharma, Navneet K.

    2016-05-01

    Surface plasmon resonance based fiber optic sensor using indium oxide layer is presented and theoretically studied. It has been found that with increase in thickness of indium oxide layer beyond 170 nm, the sensitivity of SPR sensor decreases. 170 nm thick indium oxide layer based SPR sensor holds maximum sensitivity.

  12. Indium Foil Serves As Thermally Conductive Gasket

    NASA Technical Reports Server (NTRS)

    Eastman, G. Yale; Dussinger, Peter M.

    1993-01-01

    Indium foil found useful as gasket to increase thermal conductance between bodies clamped together. Deforms to fill imperfections on mating surfaces. Used where maximum temperature in joint less than melting temperature of indium. Because of low melting temperature of indium, most useful in cryogenic applications.

  13. V-shaped inversion domains in InN grown on c-plane sapphire

    SciTech Connect

    Jasinski, J.; Liliental-Weber, Z.; Lu, H.; Schaff, W.J.

    2004-04-27

    Inversion domains with a V-shape were found to nucleate inside a Mg-doped InN heteroepitaxial layer. They resemble Al-polarity domains, observed recently, in N-polarity AlN films. However, the angle between the side-walls of the V-shaped domain and the c-axis differs in these two cases. In InN, this angle is almost two times bigger than that reported for AlN. The origin of V-shaped inversion domains in InN film is not yet clear.

  14. Formation of copper-indium-selenide and/or copper-indium-gallium-selenide films from indium selenide and copper selenide precursors

    DOEpatents

    Curtis, Calvin J.; Miedaner, Alexander; Van Hest, Maikel; Ginley, David S.; Nekuda, Jennifer A.

    2011-11-15

    Liquid-based indium selenide and copper selenide precursors, including copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent, are used to form crystalline copper-indium-selenide, and/or copper indium gallium selenide films (66) on substrates (52).

  15. Superconducting structure with layers of niobium nitride and aluminum nitride

    DOEpatents

    Murduck, James M.; Lepetre, Yves J.; Schuller, Ivan K.; Ketterson, John B.

    1989-01-01

    A superconducting structure is formed by depositing alternate layers of aluminum nitride and niobium nitride on a substrate. Deposition methods include dc magnetron reactive sputtering, rf magnetron reactive sputtering, thin-film diffusion, chemical vapor deposition, and ion-beam deposition. Structures have been built with layers of niobium nitride and aluminum nitride having thicknesses in a range of 20 to 350 Angstroms. Best results have been achieved with films of niobium nitride deposited to a thickness of approximately 70 Angstroms and aluminum nitride deposited to a thickness of approximately 20 Angstroms. Such films of niobium nitride separated by a single layer of aluminum nitride are useful in forming Josephson junctions. Structures of 30 or more alternating layers of niobium nitride and aluminum nitride are useful when deposited on fixed substrates or flexible strips to form bulk superconductors for carrying electric current. They are also adaptable as voltage-controlled microwave energy sources.

  16. Superconducting structure with layers of niobium nitride and aluminum nitride

    DOEpatents

    Murduck, J.M.; Lepetre, Y.J.; Schuller, I.K.; Ketterson, J.B.

    1989-07-04

    A superconducting structure is formed by depositing alternate layers of aluminum nitride and niobium nitride on a substrate. Deposition methods include dc magnetron reactive sputtering, rf magnetron reactive sputtering, thin-film diffusion, chemical vapor deposition, and ion-beam deposition. Structures have been built with layers of niobium nitride and aluminum nitride having thicknesses in a range of 20 to 350 Angstroms. Best results have been achieved with films of niobium nitride deposited to a thickness of approximately 70 Angstroms and aluminum nitride deposited to a thickness of approximately 20 Angstroms. Such films of niobium nitride separated by a single layer of aluminum nitride are useful in forming Josephson junctions. Structures of 30 or more alternating layers of niobium nitride and aluminum nitride are useful when deposited on fixed substrates or flexible strips to form bulk superconductors for carrying electric current. They are also adaptable as voltage-controlled microwave energy sources. 8 figs.

  17. Indium droplet formation in InGaN thin films with single and double heterojunctions prepared by MOCVD

    PubMed Central

    2014-01-01

    Indium gallium nitride (InGaN) samples with single heterojunction (SH) and double heterojunction (DH) were prepared using metal-organic chemical vapor deposition. SH has a layer of InGaN thin film (thicknesses, 25, 50, 100, and 200 nm) grown on an uGaN film (thickness, 2 μm). The DH samples are distinguished by DH uGaN film (thickness, 120 nm) grown on the InGaN layer. Reciprocal space mapping measurements reveal that the DH samples are fully strained with different thicknesses, whereas the strain in the SH samples are significantly relaxed with the increasing thickness of the InGaN film. Scanning electron microscopy results show that the surface roughness of the sample increases when the sample is relaxed. High-resolution transmission electron microscopy images of the structure of indium droplets in the DH sample indicate that the thickness of the InGaN layer decreases with the density of indium droplets. The formation of these droplets is attributed to the insufficient kinetic energy of indium atom to react with the elements of group V, resulting to aggregation. The gallium atoms in the GaN thin film will not be uniformly replaced by indium atoms; the InGaN thin film has an uneven distribution of indium atoms and the quality of the epitaxial layer is degraded. PMID:25024692

  18. Method for preparing actinide nitrides

    DOEpatents

    Bryan, G.H.; Cleveland, J.M.; Heiple, C.R.

    1975-12-01

    Actinide nitrides, and particularly plutonium and uranium nitrides, are prepared by reacting an ammonia solution of an actinide compound with an ammonia solution of a reactant or reductant metal, to form finely divided actinide nitride precipitate which may then be appropriately separated from the solution. The actinide nitride precipitate is particularly suitable for forming nuclear fuels.

  19. Highly efficient potentiometric glucose biosensor based on functionalized InN quantum dots

    NASA Astrophysics Data System (ADS)

    Alvi, N. H.; Soto Rodriguez, P. E. D.; Gómez, V. J.; Kumar, Praveen; Amin, G.; Nur, O.; Willander, M.; Nötzel, R.

    2012-10-01

    We present a fast, highly sensitive, and efficient potentiometric glucose biosensor based on functionalized InN quantum-dots (QDs). The InN QDs are grown by molecular beam epitaxy. The InN QDs are bio-chemically functionalized through physical adsorption of glucose oxidase (GOD). GOD enzyme-coated InN QDs based biosensor exhibits excellent linear glucose concentration dependent electrochemical response against an Ag/AgCl reference electrode over a wide logarithmic glucose concentration range (1 × 10-5 M to 1 × 10-2 M) with a high sensitivity of 80 mV/decade. It exhibits a fast response time of less than 2 s with good stability and reusability and shows negligible response to common interferents such as ascorbic acid and uric acid. The fabricated biosensor has full potential to be an attractive candidate for blood sugar concentration detection in clinical diagnoses.

  20. Improvement of structural and electrical properties of Cu2O films with InN epilayers

    NASA Astrophysics Data System (ADS)

    Pan, Yang; Wang, Zheng; Peng, Ting; Wu, Kemin; Wu, Hao; Liu, Chang

    2011-11-01

    Epitaxial single crystalline Cu2O thin films were synthesized by thermal oxidation of Cu films, which were deposited on InN/sapphire using electron beam evaporation. Cu2O on InN shows a better crystalline quality than that on GaN due to a 30° in-plane rotation between Cu2O and InN, which results in a smaller lattice mismatch. As-oxidized Cu2O on GaN or on InN shows an n-type conducting behavior, however, as-oxidized Cu2O on InN presents a higher resistance and a lower electron concentration. A transition from n- to p-type is found after the Cu2O thin films are annealed at 500 °C in vacuum. A less Cu2+ absorption of the Cu2O/InN plays an important role to determine the conductive type.

  1. Mg acceptor level in InN epilayers probed by photoluminescence

    NASA Astrophysics Data System (ADS)

    Khan, N.; Nepal, N.; Sedhain, A.; Lin, J. Y.; Jiang, H. X.

    2007-07-01

    Mg-doped InN epilayers were grown on sapphire substrates by metal organic chemical vapor deposition. Effects of Mg concentration on the photoluminescence (PL) emission properties have been investigated. An emission line at ˜0.76eV, which was absent in undoped InN epilayers and was about 60meV below the band-to-band emission peak at ˜0.82eV, was observed to be the dominant emission in Mg-doped InN epilayers. The PL spectral peak position and the temperature dependent emission intensity corroborated each other and suggested that the Mg acceptor level in InN is about 60meV above the valance band maximum.

  2. The Place Where Hope Lives: The Children's Inn Comforts Kids and Their Families

    MedlinePlus

    ... Lives: The Children's Inn Comforts Kids and Their Families Past Issues / Fall 2006 Table of Contents For ... home for children with serious illnesses and their families. Meet Channing O'Halloran. Before she was 1 ...

  3. Anomalous phase transition of InN nanowires under high pressure

    NASA Astrophysics Data System (ADS)

    Tang, Shun-Xi; Zhu, Hong-Yang; Jiang, Jun-Ru; Wu, Xiao-Xin; Dong, Yun-Xuan; Zhang, Jian; Yang, Da-Peng; Cui, Qi-Liang

    2015-09-01

    Uniform InN nanowires were studied under pressures up to 35.5 GPa by using in situ synchrotron radiation x-ray diffraction technique at room temperature. An anomalous phase transition behavior has been discovered. Contrary to the results in the literature, which indicated that InN undergoes a fully reversible phase transition from the wurtzite structure to the rocksalt type structure, the InN nanowires in this study unusually showed a partially irreversible phase transition. The released sample contained the metastable rocksalt phase as well as the starting wurtzite one. The experimental findings of this study also reveal the potentiality of high pressure techniques to synthesize InN nanomaterials with the metastable rocksalt type structure, in addition to the generally obtained zincblende type one. Project supported by the National Natural Science Foundation of China (Grant Nos. 50772043, 51172087, and 11074089).

  4. Growth and depth dependence of visible luminescence in wurtzite InN epilayers

    SciTech Connect

    Pu, X.D.; Shen, W.Z.; Zhang, Z.Q.; Ogawa, H.; Guo, Q.X.

    2006-04-10

    We present detailed investigation of growth and depth dependence of visible ({approx}1.9 eV) photoluminescence (PL) in wurtzite InN epilayers grown by magnetron sputtering. For normal surface incidence, PL peak was found to redshift with increasing growth temperatures. Cross-sectional PL measurements were able to separate contributions from the InN epilayers and sapphire substrates, which not only demonstrated the visible luminescence in InN but also revealed the blueshift of the PL peak with laser spot focusing from epilayer surface toward the interface. The results have been well explained by the growth mechanism and residual strain along growth direction of InN epilayers.

  5. Growth of a-Plane InN Film and Its THz Emission

    NASA Astrophysics Data System (ADS)

    Wang, Guang-Bing; Zhao, Guo-Zhong; Zheng, Xian-Tong; Wang, Ping; Chen, Guang; Rong, Xin; Wang, Xin-Qiang

    2014-07-01

    We report the growth of a-plane InN on an r-plane sapphire substrate by plasma-assisted molecular-beam epitaxy. It is found that the a-plane InN is successfully grown by using a GaN buffer layer, which has been confirmed by reflection high-energy electron diffraction, x-ray diffraction and Raman scattering measurements. The Hall effect measurement shows that the electron mobility of the as-grown a-plane InN is about 406 cm2 /V·s with a residual electron concentration of 5.7 × 10 cm-3. THz emission from the a-plane InN film is also studied, where it is found that the emission amplitude is inversely proportional to the conductivity.

  6. Transport and infrared photoresponse properties of InN nanorods/Si heterojunction

    PubMed Central

    2011-01-01

    The present work explores the electrical transport and infrared (IR) photoresponse properties of InN nanorods (NRs)/n-Si heterojunction grown by plasma-assisted molecular beam epitaxy. Single-crystalline wurtzite structure of InN NRs is verified by the X-ray diffraction and transmission electron microscopy. Raman measurements show that these wurtzite InN NRs have sharp peaks E2(high) at 490.2 cm-1 and A1(LO) at 591 cm-1. The current transport mechanism of the NRs is limited by three types of mechanisms depending on applied bias voltages. The electrical transport properties of the device were studied in the range of 80 to 450 K. The faster rise and decay time indicate that the InN NRs/n-Si heterojunction is highly sensitive to IR light. PMID:22122843

  7. Boron nitride: Composition, optical properties and mechanical behavior

    NASA Technical Reports Server (NTRS)

    Pouch, John J.; Alterovitz, Samuel A.; Miyoshi, Kazuhisa; Warner, Joseph D.

    1987-01-01

    A low energy ion beam deposition technique was used to grow boron nitride films on quartz, germanium, silicon, gallium arsenide, and indium phosphate. The film structure was amorphous with evidence of a hexagonal phase. The peak boron concentration was 82 at %. The carbon and oxygen impurities were in the 5 to 8 at % range. Boron-nitrogen and boron-boron bonds were revealed by X-ray photoelectron spectroscopy. The index of refraction varied from 1.65 to 1.67 for films deposited on III-V compound semiconductors. The coefficient of friction for boron nitride in sliding contact with diamond was less than 0.1. The substrate was silicon.

  8. Ultra-low threshold gallium nitride photonic crystal nanobeam laser

    SciTech Connect

    Niu, Nan Woolf, Alexander; Wang, Danqing; Hu, Evelyn L.; Zhu, Tongtong; Oliver, Rachel A.; Quan, Qimin

    2015-06-08

    We report exceptionally low thresholds (9.1 μJ/cm{sup 2}) for room temperature lasing at ∼450 nm in optically pumped Gallium Nitride (GaN) nanobeam cavity structures. The nanobeam cavity geometry provides high theoretical Q (>100 000) with small modal volume, leading to a high spontaneous emission factor, β = 0.94. The active layer materials are Indium Gallium Nitride (InGaN) fragmented quantum wells (fQWs), a critical factor in achieving the low thresholds, which are an order-of-magnitude lower than obtainable with continuous QW active layers. We suggest that the extra confinement of photo-generated carriers for fQWs (compared to QWs) is responsible for the excellent performance.

  9. Dynamic atomic layer epitaxy of InN on/in +c-GaN matrix: Effect of "In+N" coverage and capping timing by GaN layer on effective InN thickness

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Akihiko; Kusakabe, Kazuhide; Hashimoto, Naoki; Hwang, Eun-Sook; Itoi, Takaomi

    2016-01-01

    The growth front in the self-organizing and self-limiting epitaxy of ˜1 monolayer (ML)-thick InN wells on/in +c-GaN matrix by molecular beam epitaxy (MBE) has been studied in detail, with special attention given to the behavior and role of the N atoms. The growth temperatures of interest are above 600 °C, far higher than the typical upper critical temperature of 500 °C in MBE. It was confirmed that 2 ML-thick InN wells can be frozen/inserted in GaN matrix at 620 °C, but it was found that N atoms at the growth front tend to selectively re-evaporate more quickly than In atoms at temperatures higher than 650 °C. As a result, the effective thickness of inserted InN wells in the GaN matrix at 660-670 °C were basically 1 ML or sub-ML, even though they were capped by a GaN barrier at the time of 2 ML "In+N" coverage. Furthermore, it was found that the N atoms located below In atoms in the dynamic atomic layer epitaxy growth front had remarkably weaker bonding to the +c-GaN surface.

  10. First-principles study of optical properties of InN nanosheet

    NASA Astrophysics Data System (ADS)

    Sarmazdeh, Masoud Majidiyan; Mendi, Roohallah Taghavi; Zelati, Amir; Boochani, Arash; Nofeli, Fariba

    2016-05-01

    Based on density functional theory (DFT), some optical properties of InN nanosheet, such as dielectric function, energy loss function, refractive index, reflectivity and absorption coefficient, have been calculated using the modified Becke-Johnson (mBJ) exchange-correlation potential and full potential-linearized augmented plane waves (FP-LAPW) method. The study of dielectric function show that optical properties of InN nanosheet are anisotropic and important energy range in the optical process is between low energies to 20 eV. The results indicate the plasmon energy of InN nanosheet occurs in the lower energy than bulk InN and in addition the plasmon energy in the in-plane direction is different from that perpendicular to the in-plane direction. The obtained optical gaps are 1.2 eV and 3.6 eV in perpendicular and parallel to c-axis, respectively. Study of refractive index and optical reflectivity shows that the superluminal phenomena occur in the several energy ranges for the InN nanosheet and this nanosheet has high transparency in a wide energy range. The results propose that the InN nanosheet is a good candidate for the optical communications applications, optoelectronics devices and transparent coatings.

  11. Growth of very large InN microcrystals by molecular beam epitaxy using epitaxial lateral overgrowth

    SciTech Connect

    Kamimura, J.; Kishino, K.; Kikuchi, A.

    2015-02-28

    Very thick InN (∼40 μm) was grown by molecular beam epitaxy using the epitaxial lateral overgrowth (ELO) technique. In some regions, the ELO of InN was observed as expected, indicating an important step toward fabricating quasi-bulk InN substrates. Interestingly, most parts of the sample consist of large flat-topped microcrystals and well-faceted microstructures. This is likely due to local growth condition variations during ELO, which is supported by an experiment where ELO of InN was performed on a substrate with various stripe mask patterns. TEM characterization of a flat top InN microcrystal revealed few stacking faults and only related threading dislocations. Defect-free small faceted microcrystals were also observed. The thick InN crystals show a narrow photoluminescence spectrum with a peak at 0.679 eV and linewidth of 16.8 meV at 4 K.

  12. Electronic structure calculations of group III nitride clusters

    NASA Astrophysics Data System (ADS)

    Kandalam, Anil Kumar

    2002-04-01

    Group III nitrides have become materials of choice in the manufacturing of devices used in opto-electronic and high-temperature high-power electronic industries. Hence, these materials received wide attention and have become the focus of several theoretical and experimental studies. Though these materials are studied in bulk and thin film forms, research at the cluster level is still lacking. Hence, a first principles calculation, based on the Generalized Gradient Approximation (GGA) to Density Functional Theory (DFT) was initiated to study the structural and electronic properties of AlnN n, GanNn, and InnNn, (n = 1--6) clusters. The calculated results show that the small polyatomic nitride clusters (monomer, triatomic and dimer) have a strong tendency to form N-N multiple bonds leading to the weakening of any existent metal-N or metal-metal bonds. In the absence of the N-N bonds, the metal-nitrogen bond dominates, forming short bond-lengths and large force constants. However, the strength of these heteronuclear bonds decreases in going from Al to Ga and In, whereas the weak metal-metal bond increases its strength from Al to Ga to In in the nitride clusters. Starting from the trimers M3N3, a distinct structural difference between the lowest energy configurations of AlnNn and that of GanNn, and In nNn, clusters has been observed. For AlnNn, clusters, the metal-nitrogen bond is found to dominate the lowest energy configurations. As the cluster size is increased from Al3N3 to Al 6N6, a transition from planar ring structures towards a bulk-like three dimensional configurations is seen. However, in GanN n, and InnNn clusters, no such trend is observed and the lowest energy configurations are dominated either by N2 or (N3)- sub-units. The segregation of N atoms within the stoichiometric clusters indicates the possibility of N2 and N3 based defects in the thin-film deposition process which may affect the quality of the thin-film devices based on Group III nitrides.

  13. Synthesis of aluminium nitride/boron nitride composite materials

    SciTech Connect

    Xiao, T.D. . Polymer Science Program and Dept. of Chemistry); Gonsalves, K.E. . Polymer Science Program and Dept. of Chemistry Univ. of Connecticut, Storrs, CT . Dept. of Chemistry); Strutt, P.R. . Dept. of Metallurgy)

    1993-04-01

    Aluminum nitride/boron nitride composite was synthesized by using boric acid, urea, and aluminum chloride (or aluminum lactate) as the starting compounds. The starting materials were dissolved in water and mixed homogeneously. Ammonolysis of this aqueous solution resulted in the formation of a precomposite gel, which converted into the aluminum nitride/boron nitride composite on further heat treatment. Characterization of both the precomposite and the composite powders included powder X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy. Analysis of the composite revealed that the aluminum nitride phase had a hexagonal structure, and the boron nitride phase a turbostratic structure.

  14. Investigation of the 1987 Indianapolis Airport Ramada Inn incident.

    PubMed

    Clark, M A; Hawley, D A; McClain, J L; Pless, J E; Marlin, D C; Standish, S M

    1994-05-01

    On October 20, 1987, a military reserve aircraft lost power during a transcontinental flight and attempted an emergency landing at The Indianapolis International Airport. The pilot ejected and the disabled and pilotless aircraft struck a bank building. It then skidded across the street and entered the lobby of The Airport Ramada Inn where it exploded. This incident was unusual in that the fatal injuries occurred in individuals on the ground and not in the occupant of the aircraft. Seven people were killed in the lobby area and two were trapped in a laundry where they died of smoke inhalation. A tenth person died of burns ten days later. Minor injuries were reported among four hotel guests, two firefighters and the Air Force pilot. A multiagency mass disaster-plan had been formulated and rehearsed in preparation for the Panamerican Games, which had been held in Indianapolis in August 1987. A number of volunteers arrived before a security perimeter was established. They began an undocumented removal of the bodies from the scene and were about to remove valuables for "safekeeping" when stopped by coroners' office personnel. Fatalities resulted from smoke inhalation, burns or a combination. Bodies were identified by a combination of dental records, personal effects and visual means within 24 hours. The problems encountered in managing this disaster scene will also be compared with previously reported incidents. PMID:8006612

  15. Amber light-emitting diode comprising a group III-nitride nanowire active region

    DOEpatents

    Wang, George T.; Li, Qiming; Wierer, Jr., Jonathan J.; Koleske, Daniel

    2014-07-22

    A temperature stable (color and efficiency) III-nitride based amber (585 nm) light-emitting diode is based on a novel hybrid nanowire-planar structure. The arrays of GaN nanowires enable radial InGaN/GaN quantum well LED structures with high indium content and high material quality. The high efficiency and temperature stable direct yellow and red phosphor-free emitters enable high efficiency white LEDs based on the RGYB color-mixing approach.

  16. Gallium nitride optoelectronic devices

    NASA Technical Reports Server (NTRS)

    Chu, T. L.; Chu, S. S.

    1972-01-01

    The growth of bulk gallium nitride crystals was achieved by the ammonolysis of gallium monochloride. Gallium nitride single crystals up to 2.5 x 0.5 cm in size were produced. The crystals are suitable as substrates for the epitaxial growth of gallium nitride. The epitaxial growth of gallium nitride on sapphire substrates with main faces of (0001) and (1T02) orientations was achieved by the ammonolysis of gallium monochloride in a gas flow system. The grown layers had electron concentrations in the range of 1 to 3 x 10 to the 19th power/cu cm and Hall mobilities in the range of 50 to 100 sq cm/v/sec at room temperature.

  17. III-Nitride Vertical-Cavity Surface-Emitting Lasers

    NASA Astrophysics Data System (ADS)

    Leonard, John T.

    Vertical-cavity surface-emitting lasers (VCSELs) have a long history of development in GaAs-based and InP-based systems, however III-nitride VCSELs research is still in its infancy. Yet, over the past several years we have made dramatic improvements in the lasing characteristics of these highly complex devices. Specifically, we have reduced the threshold current density from ˜100 kA/cm2 to ˜3 kA/cm2, while simultaneously increasing the output power from ˜10 muW to ˜550 muW. These developments have primarily come about by focusing on the aperture design and intracavity contact design for flip-chip dual dielectric DBR III-nitride VCSELs. We have carried out a number of studies developing an Al ion implanted aperture (IIA) and photoelectrochemically etched aperture (PECA), while simultaneously improving the quality of tin-doped indium oxide (ITO) intracavity contacts, and demonstrating the first III-nitride VCSEL with an n-GaN tunnel junction intracavity contact. Beyond these most notable research fronts, we have analyzed numerous other parameters, including epitaxial growth, flip-chip bonding, substrate removal, and more, bringing further improvement to III-nitride VCSEL performance and yield. This thesis aims to give a comprehensive discussion of the relevant underlying concepts for nonpolar VCSELs, while detailing our specific experimental advances. In Section 1, we give an overview of the applications of VCSELs generally, before describing some of the potential applications for III-nitride VCSELs. This is followed by a summary of the different material systems used to fabricate VCSELs, before going into detail on the basic design principles for developing III-nitride VCSELs. In Section 2, we outline the basic process and geometry for fabricating flip-chip nonpolar VCSELs with different aperture and intracavity contact designs. Finally, in Section 3 and 4, we delve into the experimental results achieved in the last several years, beginning with a discussion on

  18. Electron scattering by native defects in III-V nitrides and their alloys

    SciTech Connect

    Hsu, L.; Walukiewicz, W.

    1996-03-01

    We have calculated the electron mobilities in GaN and InN taking into consideration scattering by short range potentials, in addition to all standard scattering mechanisms. These potentials are produced by the native defects which are responsible for the high electron concentrations in nominally undoped nitrides. Comparison of the calculated mobilities with experimental data shows that scattering by short range potentials is the dominant mechanism limiting the electron mobilities in unintentionally doped nitrides with large electron concentrations. In the case of Al{sub x}Ga{sub 1-x}N alloys, the reduction in the electron concentration due to the upward shift of the conduction band relative to the native defect level can account for the experimentally measured mobilities. Resonant scattering is shown to be important when the defect and Fermi levels are close in energy.

  19. Boron nitride nanotubes

    DOEpatents

    Smith, Michael W.; Jordan, Kevin; Park, Cheol

    2012-06-06

    Boron nitride nanotubes are prepared by a process which includes: (a) creating a source of boron vapor; (b) mixing the boron vapor with nitrogen gas so that a mixture of boron vapor and nitrogen gas is present at a nucleation site, which is a surface, the nitrogen gas being provided at a pressure elevated above atmospheric, e.g., from greater than about 2 atmospheres up to about 250 atmospheres; and (c) harvesting boron nitride nanotubes, which are formed at the nucleation site.

  20. Boron nitride composites

    DOEpatents

    Kuntz, Joshua D.; Ellsworth, German F.; Swenson, Fritz J.; Allen, Patrick G.

    2016-02-16

    According to one embodiment, a composite product includes hexagonal boron nitride (hBN), and a plurality of cubic boron nitride (cBN) particles, wherein the plurality of cBN particles are dispersed in a matrix of the hBN. According to another embodiment, a composite product includes a plurality of cBN particles, and one or more borate-containing binders.

  1. Boron Nitride Nanotubes

    NASA Technical Reports Server (NTRS)

    Smith, Michael W. (Inventor); Jordan, Kevin (Inventor); Park, Cheol (Inventor)

    2012-01-01

    Boron nitride nanotubes are prepared by a process which includes: (a) creating a source of boron vapor; (b) mixing the boron vapor with nitrogen gas so that a mixture of boron vapor and nitrogen gas is present at a nucleation site, which is a surface, the nitrogen gas being provided at a pressure elevated above atmospheric, e.g., from greater than about 2 atmospheres up to about 250 atmospheres; and (c) harvesting boron nitride nanotubes, which are formed at the nucleation site.

  2. Nanomechanical Characterization of Indium Nano/Microwires

    PubMed Central

    2010-01-01

    Nanomechanical properties of indium nanowires like structures fabricated on quartz substrate by trench template technique, measured using nanoindentation. The hardness and elastic modulus of wires were measured and compared with the values of indium thin film. Displacement burst observed while indenting the nanowire. ‘Wire-only hardness’ obtained using Korsunsky model from composite hardness. Nanowires have exhibited almost same modulus as indium thin film but considerable changes were observed in hardness value. PMID:20596474

  3. Abnormal Nitride Morphologies upon Nitriding Iron-Based Substrates

    NASA Astrophysics Data System (ADS)

    Meka, Sai Ramudu; Mittemeijer, Eric Jan

    2013-06-01

    Nitriding of iron-based components is a very well-known surface engineering method for bringing about great improvement of the mechanical and chemical properties. An overview is presented of the strikingly different nitride morphologies developing upon nitriding iron-based alloy substrates. Observed abnormal morphologies are the result of intricate interplay of the thermodynamic and kinetic constraints for the nucleation and growth of both alloying element nitride particles in the matrix and iron nitrides at the surface of the substrate. Alloying elements having strong Me-N interaction, such as Cr, V, and Ti, precipitate instantaneously as internal Me-nitrides, thus allowing the subsequent nucleation and growth of "normal" layer-type iron nitride. Alloying elements having weak Me-N interaction, such as Al, Si, and Mo, and simultaneously having low solubility in iron nitride, obstruct/delay the nucleation and growth of iron nitrides at the surface, thus leading to very high nitrogen supersaturation over an extended depth range from the surface. Eventually, the nucleation and growth of "abnormal" plate-type iron nitride occurs across the depth range of high nitrogen supersaturation. On this basis, strategies can be devised for tuned development of specific nitride morphologies at the surface of nitrided components.

  4. Boron nitride housing cools transistors

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Boron nitride ceramic heat sink cools transistors in r-f transmitter and receiver circuits. Heat dissipated by the transistor is conducted by the boron nitride housing to the metal chassis on which it is mounted.

  5. Polarization effects in nitride and ferroelectric based devices

    NASA Astrophysics Data System (ADS)

    Singh, Madhusudan

    This dissertation addresses the application of theoretical and computational methods to examine heterostructure devices based on planar semiconductors. The thesis pursues III-V nitrides and ferroelectrics like LiNbO3 and BaxSr1-xTiO 3. GaN and other nitrides exhibit a large polarization charge arising from the built in polarization revealed in the [1000] growth direction, and are also wide band-gap materials (with the exception of InN). The nitrides are important for high-power/high-temperature electronics and for short wavelength light emitters. Our studies address important issues in large bandgap junctions, transistors and light emitters. One of the salient results of our studies has been the first calculations of tunnel current in polar junctions and the potential of using built in polar charge at interface to design junctions. We find that novel junctions cam be designed to produce tailorable I-V characteristics. Our studies have led to experimental realization of such tailorable junctions. We also present results on charge control in ferroelectric-nitride structures where post growth junction tailoring can be carried out (using poling) to create functional devices. This leads to a new class of devices such as switches. We have developed extensive charge control, Monte Carlo based transport models and device simulation techniques to examine nitride based transistors. These studies allow us to examine mobility, transit time, high frequency behavior, noise, transconductance, etc. We have examined device non-linearity issues, scaling issues, temperature dependence, noise sources, and device design optimization issues. Our results are closely coupled to experimental results. Role of unusual velocity-field relations, self-heating and non-equilibrium phonons is examined. III-V nitride based light emitters often exhibit a very high radiative efficiency, higher than the presence of dislocations in the system suggests. Calculations indicate however, that local disorder

  6. Anisotropy of the nitrogen conduction states in the group III nitrides studied by polarized x-ray absorption

    SciTech Connect

    Lawniczak-Jablonska, K. |; Liliental-Weber, Z.; Gullikson, E.M.

    1997-04-01

    Group III nitrides (AlN, GaN, and InN) consist of the semiconductors which appear recently as a basic materials for optoelectronic devices active in the visible/ultraviolet spectrum as well as high-temperature and high-power microelectronic devices. However, understanding of the basic physical properties leading to application is still not satisfactory. One of the reasons consists in unsufficient knowledge of the band structure of the considered semiconductors. Several theoretical studies of III-nitrides band structure have been published but relatively few experimental studies have been carried out, particularly with respect to their conduction band structure. This motivated the authors to examine the conduction band structure projected onto p-states of the nitrogen atoms for AlN, GaN and InN. An additional advantage of their studies is the availability of the studied nitrides in two structures, hexagonal (wurtzite) and cubic (zincblende). This offers an opportunity to gain information about the role of the anisotropy of electronic band states in determining various physical properties.

  7. MOVPE growth of InN films using 1,1-dimethylhydrazine as a nitrogen precursor

    NASA Astrophysics Data System (ADS)

    Thieu, Quang Tu; Seki, Yuki; Kuboya, Shigeyuki; Katayama, Ryuji; Onabe, Kentaro

    2009-05-01

    InN films have been successfully grown on sapphire substrates by MOVPE using trimethylindium (TMIn) and 1,1-dimethylhydrazine (DMHy) with N 2 carrier. DMHy is an advantageous precursor of N as it decomposes efficiently at relatively low temperature ( T50=420 °C) compatible with the InN growth. The reactor is specially designed so as to avoid parasitic reaction between TMIn and DMHy occurring at room temperature. The growth feature was studied by varying growth temperature, V/III ratio, TMIn flow and reactor pressure. The InN films were obtained at 500-570 °C and 60-200 Torr with a V/III ratio optimized to 100-200. The In droplets are seen on the grown surfaces, indicating an excess supply of TMIn. It is demonstrated that the InN films grows on the sapphire substrate in a single domain with an epitaxial relationship, [1 01¯ 0] InN//[1 1 2¯ 0] sapphire.

  8. III-Nitride ion implantation and device processing

    SciTech Connect

    Zolper, J.C.; Shul, R.J.; Baca, A.G.; Pearton, S.J.; Abernathy, C.R.; Wilson, R.G.; Stall, R.A.; Shur, M.

    1996-06-01

    Ion implantation doping and isolation has played a critical role in realizing high performance photonic and electronic devices in all mature semiconductor materials; this is also expected for binary III-Nitride materials (InN, GaN, AlN) and their alloys as epitaxy improves and more advanced device structures fabricated. This paper reports on recent progress in ion implantation doping of III-Nitride materials that has led to the first demonstration of a GaN JFET (junction field effect transistor). The JFET was fabricated with all ion implantation doping; in particular, p-type doping of GaN with Ca has been demonstrated with an estimated acceptor ionization energy of 169 meV. O-implantation has also been studied and shown to yield n-type conduction with an ionization energy of {similar_to}29 meV. Neither Ca or O display measurable redistribution during a 1125 C, 15 s activation anneal which sets an upper limit on their diffusivity at this temperature of 2.7{times}10{sup {minus}13}cm{sup 2}/s.

  9. EDITORIAL: Non-polar and semipolar nitride semiconductors Non-polar and semipolar nitride semiconductors

    NASA Astrophysics Data System (ADS)

    Han, Jung; Kneissl, Michael

    2012-02-01

    topics including growth and heteroepitaxy, bulk GaN substrates, theory and modelling, optical properties, laser diodes and LEDs as well as transport properties and electronics. Farrell et al review materials and growth issues for high-performance non- and semipolar light-emitting devices, and Scholz provides an overview of heteroepitaxial growth of semipolar GaN. Okada et al review growth mechanisms of non- and semipolar GaN layers on patterned sapphire substrates, and Vennéguès discusses defect reduction methods for heteroepitaxially grown non- and semipolar III-nitride films. Leung et al explain how kinetic Wulff plots can be used to design and control non-polar and semipolar GaN heteroepitaxy, and a contribution by Sawaki et al explores the impurity incorporation in (1-101) GaN grown on Si substrates. In the area of bulk crystal growth Kucharski et al review non- and semipolar GaN substrates by ammonothermal growth, and Chichibu et al discuss the challenges for epitaxial growth of InGaN on free-standing m-plane GaN substrates. Calculation of semipolar orientations for wurtzitic semiconductor heterostructures and their application to nitrides and oxides are reviewed by Bigenwald et al, and Ito et al present an ab initio approach to reconstruction, adsorption, and incorporation on GaN surfaces. Finally, the theoretical description of non-polar and semipolar nitride semiconductor quantum-well structures is presented by Ahn et al. In a discussion of the optical properties, Kisin et al discuss the effect of the quantum well population on the optical characteristics of polar, semipolar and non-polar III-nitride light emitters, and Jönen et al investigate the indium incorporation and optical properties of non- and semipolar GaInN QW structures. Wernicke et al explore the emission wavelength of polar, non-polar, and semipolar InGaN quantum wells and the incorporation of indium. In a contribution by Melo et al, the gain in polar and non-polar/semipolar gallium-nitride

  10. Process for Patterning Indium for Bump Bonding

    NASA Technical Reports Server (NTRS)

    Denis, Kevin

    2012-01-01

    An innovation was created for the Cosmology Large Angular Scale Surveyor for integration of low-temperature detector chips with a silicon backshort and a silicon photonic choke through flipchip bonding. Indium bumps are typically patterned using liftoff processes, which require thick resist. In some applications, it is necessary to locate the bumps close to high-aspect-ratio structures such as wafer through-holes. In those cases, liftoff processes are challenging, and require complicated and time-consuming spray coating technology if the high-aspect-ratio structures are delineated prior to the indium bump process. Alternatively, processing the indium bumps first is limited by compatibility of the indium with subsequent processing. The present invention allows for locating bumps arbitrarily close to multiple-level high-aspect-ratio structures, and for indium bumps to be formed without liftoff resist. The process uses the poor step coverage of indium deposited on a silicon wafer that has been previously etched to delineate the location of the indium bumps. The silicon pattern can be processed through standard lithography prior to adding the high-aspect-ratio structures. Typically, high-aspectratio structures require a thick resist layer so this layer can easily cover the silicon topography. For multiple levels of topography, the silicon can be easily conformally coated through standard processes. A blanket layer of indium is then deposited onto the full wafer; bump bonding only occurs at the high points of the topography.

  11. Nitride quantum light sources

    NASA Astrophysics Data System (ADS)

    Zhu, T.; Oliver, R. A.

    2016-02-01

    Prototype nitride quantum light sources, particularly single-photon emitters, have been successfully demonstrated, despite the challenges inherent in this complex materials system. The large band offsets available between different nitride alloys have allowed device operation at easily accessible temperatures. A wide range of approaches has been explored: not only self-assembled quantum dot growth but also lithographic methods for site-controlled nanostructure formation. All these approaches face common challenges, particularly strong background signals which contaminate the single-photon stream and excessive spectral diffusion of the quantum dot emission wavelength. If these challenges can be successfully overcome, then ongoing rapid progress in the conventional III-V semiconductors provides a roadmap for future progress in the nitrides.

  12. Fe-doped InN layers grown by molecular beam epitaxy

    SciTech Connect

    Wang Xinqiang; Liu Shitao; Ma Dingyu; Zheng Xiantong; Chen Guang; Xu Fujun; Tang Ning; Shen Bo; Zhang Peng; Cao Xingzhong; Wang Baoyi; Huang Sen; Chen, Kevin J.; Zhou Shengqiang; Yoshikawa, Akihiko

    2012-10-22

    Iron(Fe)-doped InN (InN:Fe) layers have been grown by molecular beam epitaxy. It is found that Fe-doping leads to drastic increase of residual electron concentration, which is different from the semi-insulating property of Fe-doped GaN. However, this heavy n-type doping cannot be fully explained by doped Fe-concentration ([Fe]). Further analysis shows that more unintentionally doped impurities such as hydrogen and oxygen are incorporated with increasing [Fe] and the surface is degraded with high density pits, which probably are the main reasons for electron generation and mobility reduction. Photoluminescence of InN is gradually quenched by Fe-doping. This work shows that Fe-doping is one of good choices to control electron density in InN.

  13. High mobility InN epilayers grown on AlN epilayer templates

    NASA Astrophysics Data System (ADS)

    Khan, N.; Sedhain, A.; Li, J.; Lin, J. Y.; Jiang, H. X.

    2008-04-01

    We report on the growth of InN epilayers on AlN/sapphire templates by metal organic chemical vapor deposition. Compared to InN epilayers grown on GaN templates, significant improvements in the electrical and optical properties of InN epilayers on AlN templates were observed. An increase in electron mobility, a decrease in background electron concentration, and a redshift of photoluminescence emission peak position with increasing the growth temperature and V/III ratio were observed and a room temperature Hall mobility of 1400cm2/Vs with a free electron concentration of about 7×1018cm-3 was obtained. The improvements were partly attributed to the use of AlN templates, which allows for higher growth temperatures leading to an enhanced supply of nitrogen atoms and a possible reduction in the incorporation of unintentional impurities and nitrogen vacancy related defects.

  14. Spectral dependence of third-order nonlinear optical properties in InN

    NASA Astrophysics Data System (ADS)

    Ahn, H.; Lee, M.-T.; Chang, Y.-M.

    2014-05-01

    We report on the nonlinear optical properties of InN measured in a wide near-infrared spectral range with the femtosecond Z-scan technique. The above-bandgap nonlinear absorption in InN is found to originate from the saturation of absorption by the band-state-filling and its cross-section increases drastically near the bandgap energy. With below-bandgap excitation, the nonlinear absorption undergoes a transition from saturation absorption (SA) to reverse-SA (RSA), attributed to the competition between SA of band-tail states and two-photon-related RSA. The measured large nonlinear refractive index of the order of 10-10 cm2/W indicates InN as a potential material for all-optical switching and related applications.

  15. Spectral dependence of third-order nonlinear optical properties in InN

    SciTech Connect

    Ahn, H. Lee, M.-T.; Chang, Y.-M.

    2014-05-19

    We report on the nonlinear optical properties of InN measured in a wide near-infrared spectral range with the femtosecond Z-scan technique. The above-bandgap nonlinear absorption in InN is found to originate from the saturation of absorption by the band-state-filling and its cross-section increases drastically near the bandgap energy. With below-bandgap excitation, the nonlinear absorption undergoes a transition from saturation absorption (SA) to reverse-SA (RSA), attributed to the competition between SA of band-tail states and two-photon-related RSA. The measured large nonlinear refractive index of the order of 10{sup −10} cm{sup 2}/W indicates InN as a potential material for all-optical switching and related applications.

  16. Terahertz detectors arrays based on orderly aligned InN nanowires

    PubMed Central

    Chen, Xuechen; Liu, Huiqiang; Li, Qiuguo; Chen, Hao; Peng, Rufang; Chu, Sheng; Cheng, Binbin

    2015-01-01

    Nanostructured terahertz detectors employing a single semiconducting nanowire or graphene sheet have recently generated considerable interest as an alternative to existing THz technologies, for their merit on the ease of fabrication and above-room-temperature operation. However, the lack of alignment in nanostructure device hindered their potential toward practical applications. The present work reports ordered terahertz detectors arrays based on neatly aligned InN nanowires. The InN nanostructures (nanowires and nano-necklaces) were achieved by chemical vapor deposition growth, and then InN nanowires were successfully transferred and aligned into micrometer-sized groups by a “transfer-printing” method. Field effect transistors on aligned nanowires were fabricated and tested for terahertz detection purpose. The detector showed good photoresponse as well as low noise level. Besides, dense arrays of such detectors were also fabricated, which rendered a peak responsivity of 1.1 V/W from 7 detectors connected in series. PMID:26289498

  17. Nitrided Metallic Bipolar Plates

    SciTech Connect

    Brady, Michael P; Tortorelli, Peter F; Pihl, Josh A; Toops, Todd J; More, Karren Leslie; Meyer III, Harry M; Vitek, John Michael; Wang, Heli; Turner, John; Wilson, Mahlon; Garzon, Fernando; Rockward, Tommy; Connors, Dan; Rakowski, Jim; Gervasio, Don

    2008-01-01

    The objectives are: (1) Develop and optimize stainless steel alloys amenable to formation of a protective Cr-nitride surface by gas nitridation, at a sufficiently low cost to meet DOE targets and with sufficient ductility to permit manufacture by stamping. (2) Demonstrate capability of nitridation to yield high-quality stainless steel bipolar plates from thin stamped alloy foils (no significant stamped foil warping or embrittlement). (3) Demonstrate single-cell fuel cell performance of stamped and nitrided alloy foils equivalent to that of machined graphite plates of the same flow-field design ({approx}750-1,000 h, cyclic conditions, to include quantification of metal ion contamination of the membrane electrode assembly [MEA] and contact resistance increase attributable to the bipolar plates). (4) Demonstrate potential for adoption in automotive fuel cell stacks. Thin stamped metallic bipolar plates offer the potential for (1) significantly lower cost than currently-used machined graphite bipolar plates, (2) reduced weight/volume, and (3) better performance and amenability to high volume manufacture than developmental polymer/carbon fiber and graphite composite bipolar plates. However, most metals exhibit inadequate corrosion resistance in proton exchange membrane fuel cell (PEMFC) environments. This behavior leads to high electrical resistance due to the formation of surface oxides and/or contamination of the MEA by metallic ions, both of which can significantly degrade fuel cell performance. Metal nitrides offer electrical conductivities up to an order of magnitude greater than that of graphite and are highly corrosion resistant. Unfortunately, most conventional coating methods (for metal nitrides) are too expensive for PEMFC stack commercialization or tend to leave pinhole defects, which result in accelerated local corrosion and unacceptable performance.

  18. Cubic nitride templates

    DOEpatents

    Burrell, Anthony K; McCleskey, Thomas Mark; Jia, Quanxi; Mueller, Alexander H; Luo, Hongmei

    2013-04-30

    A polymer-assisted deposition process for deposition of epitaxial cubic metal nitride films and the like is presented. The process includes solutions of one or more metal precursor and soluble polymers having binding properties for the one or more metal precursor. After a coating operation, the resultant coating is heated at high temperatures under a suitable atmosphere to yield metal nitride films and the like. Such films can be used as templates for the development of high quality cubic GaN based electronic devices.

  19. Hydrogen adsorbed at N-polar InN: Significant changes in the surface electronic properties

    NASA Astrophysics Data System (ADS)

    Eisenhardt, A.; Krischok, S.; Himmerlich, M.

    2015-06-01

    The interaction of atomic hydrogen and ammonia with as-grown N-polar InN surfaces is investigated using in situ photoelectron spectroscopy. Changes in the surface electronic properties, including the band alignment and work function, as well as the chemical bonding states of the substrate and adsorbates are characterized. Ammonia molecules are dissociating at the InN surface, resulting in adsorption of hydrogen species. Consequently, the considerable changes of the chemical and electronic properties of the InN surface during ammonia interaction are almost identical to those found for adsorption of atomic hydrogen. In both cases, hydrogen atoms preferentially bond to surface nitrogen atoms, resulting in the disappearance of the nitrogen dangling-bond-related occupied surface state close to the valence band edge at ˜1.6 eV binding energy and the formation of new occupied electron states at the conduction band edge. Furthermore, a decrease in work function during adsorption from 4.7 to 3.7-3.8 eV, as well as an increase in the surface downward band bending by 0.3 eV, confirm that hydrogen is acting as electron donor at InN surfaces and therefore has to be considered as one main reason for the surface electron accumulation observed at N-polar InN samples exposed to ambient conditions, for example as the dissociation product of molecules. The measured formation and occupation of electronic states above the conduction band minimum occur in conjunction with the observed increase in surface electron concentration and underline the relationship between the energy position of occupied electron states and surface band alignment for InN as a small-band-gap semiconductor.

  20. Microstructures of InN film on 4H-SiC (0001) substrate grown by RF-MBE

    NASA Astrophysics Data System (ADS)

    Jantawongrit, P.; Sanorpim, S.; Yaguchi, H.; Orihara, M.; Limsuwan, P.

    2015-08-01

    InN film was grown on 4H-SiC (0001) substrate by RF plasma-assisted molecular beam epitaxy (RF-MBE). Prior to the growth of InN film, an InN buffer layer with a thickness of ∼5.5 nm was grown on the substrate. Surface morphology, microstructure and structural quality of InN film were investigated. Micro-structural defects, such as stacking faults and anti-phase domain in InN film were carefully investigated using transmission electron microscopy (TEM). The results show that a high density of line contrasts, parallel to the growth direction (c-axis), was clearly observed in the grown InN film. Dark field TEM images recorded with diffraction vectors g=11\\bar{2}0 and g = 0002 revealed that such line contrasts evolved from a coalescence of the adjacent misoriented islands during the initial stage of the InN nucleation on the substrate surface. This InN nucleation also led to a generation of anti-phase domains. Project supported by the Thailand Center of Excellence in Physics (ThEP) and the King Mongkut's University of Technology Thonburi under The National Research University Project. One of the authors (S. Sanorpim) was supported by the National Research Council of Thailand (NRCT) and the Thai Government Stimulus Package 2 (TKK2555), under the Project for Establishment of Comprehensive Center for Innovative Food, Health Products and Agriculture.

  1. Two-dimensional electron gas in monolayer InN quantum wells

    DOE PAGESBeta

    Pan, Wei; Dimakis, Emmanouil; Wang, George T.; Moustakas, Theodore D.; Tsui, Daniel C.

    2014-11-24

    We report in this letter experimental results that confirm the two-dimensional nature of the electron systems in monolayer InN quantum wells embedded in GaN barriers. The electron density and mobility of the two-dimensional electron system (2DES) in these InN quantum wells are 5×1015 cm-2 and 420 cm2 /Vs, respectively. Moreover, the diagonal resistance of the 2DES shows virtually no temperature dependence in a wide temperature range, indicating the topological nature of the 2DES.

  2. Two-dimensional electron gas in monolayer InN quantum wells

    SciTech Connect

    Pan, Wei; Dimakis, Emmanouil; Wang, George T.; Moustakas, Theodore D.; Tsui, Daniel C.

    2014-11-24

    We report in this letter experimental results that confirm the two-dimensional nature of the electron systems in monolayer InN quantum wells embedded in GaN barriers. The electron density and mobility of the two-dimensional electron system (2DES) in these InN quantum wells are 5×1015 cm-2 and 420 cm2 /Vs, respectively. Moreover, the diagonal resistance of the 2DES shows virtually no temperature dependence in a wide temperature range, indicating the topological nature of the 2DES.

  3. Electrical and electrothermal transport in InN: The roles of defects

    NASA Astrophysics Data System (ADS)

    Miller, N.; Ager, J. W.; Jones, R. E.; Smith, H. M.; Mayer, M. A.; Yu, K. M.; Hawkridge, M. E.; Liliental-Weber, Z.; Haller, E. E.; Walukiewicz, W.; Schaff, W. J.; Gallinat, C.; Koblmüller, G.; Speck, J. S.

    2009-12-01

    The transport properties of Mg doped and undoped InN films are studied with capacitance-voltage, thermopower, and Hall mobility measurements. A positive Seebeck coefficient is observed for Mg doped InN confirming p-type conductivity, though high doping and structural defect density can lead to n-type films. Transport measurements of undoped films are analyzed employing Rode's iterative Boltzmann equation method. Observed thermopower, Hall mobility, and dislocation density data for undoped films are consistent with calculations including the effects of charged line defect (donor-type dislocation) scattering.

  4. Electrical and optical properties of p-type InN

    SciTech Connect

    Mayer, Marie A.; Choi, Soojeong; Bierwagen, Oliver; Smith, Holland M.; Haller, Eugene E.; Speck, James S.; Walukiewicz, Wladek

    2011-01-01

    We have performed comprehensive studies of optical, thermoelectric and electrical properties of Mg doped InN with varying Mg doping levels and sample thicknesses. Room temperature photoluminescence spectra show a Mg acceptor related emission and the thermopower provides clear evidence for the presence of mobile holes. Although the effects of the hole transport are clearly observed in the temperature dependent electrical properties, the sign of the apparent Hall coefficient remains negative in all samples. We show that the standard model of two electrically well connected layers (n-type surface electron accumulation and p-type bulk) does not properly describe Hall effect in p-type InN.

  5. Surface states and electronic structure of polar and nonpolar InN - An in situ photoelectron spectroscopy study

    SciTech Connect

    Eisenhardt, A.; Krischok, S.; Himmerlich, M.

    2013-06-10

    Valence band structure and surface states of InN with (0001), (000-1), (1-100), and (11-20) orientation were investigated in situ after growth using photoelectron spectroscopy. Depending on surface orientation, different occupied surface states are identified and differentiated from bulk contributions. For N-polar, m-plane, and a-plane InN, the surface states are located at the valence band maximum, while In-polar InN features surface states close to the Fermi level. The surface band alignment correlates with the position of surface states. For InN(0001), a much larger surface downward band bending is observed compared to N-polar, m-plane, and a-plane InN, where almost flat band conditions occur.

  6. Morphology and composition controlled growth of polar c-axis and nonpolar m-axis well-aligned ternary III-nitride nanotube arrays.

    PubMed

    Li, Huijie; Zhao, Guijuan; Kong, Susu; Han, Dongyue; Wei, Hongyuan; Wang, Lianshan; Chen, Zhen; Yang, Shaoyan

    2015-10-21

    Control over the nanostructure morphology and growth orientation is in high demand for fundamental research and technological applications. Herein we report a general strategy to fabricate polar c-axis and nonpolar m-axis well-aligned III-nitride ternary nanotube arrays with controllable morphologies and compositions. By depositing AlN on the InN nanorod array templates and thermally removing the InN templates, InAlN nanotubes can be obtained. Polar c-axis and nonpolar m-axis nanotubes were formed on the c- and r-plane sapphire substrates, respectively. The nanotubes are single crystalline and highly ordered on the substrates, as revealed by X-ray diffraction, electron microscopy, and selected area electron microscopy characterization. It was found that the In droplets on top of the InN nanorods play a critical role in controlling the morphology of the nanotubes. By keeping or removing the In droplets, the obtained nanotubes exhibited both ends open or only one end open. And by varying the AlN deposition temperature, the In composition in the nanotubes can be changed from 0 to 0.29. The nanotube synthesis method is simple and can be applied to the formation of other III-nitride ternary (InGaN, and AlGaN) or quaternary (InAlGaN) alloy nanotube arrays. PMID:26395389

  7. A Kinetic Study of Indium Leaching from Indium-Bearing Zinc Ferrite Under Microwave Heating

    NASA Astrophysics Data System (ADS)

    Zhang, Linye; Mo, Jiamei; Li, Xuanhai; Pan, Liuping; Liang, Xinyuan; Wei, Guangtao

    2013-12-01

    To obtain information about leaching reaction and kinetics of indium from indium-bearing materials under microwave heating (MH), leaching of indium from indium-bearing zinc ferrite (IBZF) has been investigated. IBZF samples under MH and under conventional heating (CH) were studied by X-ray diffraction and specific surface area. Compared with that of CH, the effect of MH and the effects of various control parameters on indium leaching were studied. The results showed that compared with CH, MH enhanced the indium leaching from IBZF and increased the leaching rate. The leaching behavior of indium from IBZF was analyzed by unreacted shrinking core model, and the regression of kinetic equations showed that leaching of indium from IBZF obeyed the model very well. The activation energies under MH and under CH were 77.374 kJ/mol and 53.555 kJ/mol, respectively; the ratio of frequency factor K 0(MH)/ K 0(CH) was 10,818.36. The activation mechanism involved in leaching of indium under MH was mainly the increase of reactant energy and effective collision, which caused by the thermal and nonthermal microwave effect. Compared with the activation energy, the effective collision played a more important role in the acceleration of leaching of indium.

  8. Sintering silicon nitride

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P. (Inventor); Levine, Stanley R. (Inventor); Sanders, William A. (Inventor)

    1993-01-01

    Oxides having a composition of (Ba(1-x)Sr(x))O-Al2O3-2SiO2 are used as sintering aids for producing an improved silicon nitride ceramic material. The x must be greater than 0 to insure the formation of the stable monoclinic celsian glass phase.

  9. Indium Phosphide Window Layers for Indium Gallium Arsenide Solar Cells

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.

    2005-01-01

    Window layers help in reducing the surface recombination at the emitter surface of the solar cells resulting in significant improvement in energy conversion efficiency. Indium gallium arsenide (In(x)Ga(1-x)As) and related materials based solar cells are quite promising for photovoltaic and thermophotovoltaic applications. The flexibility of the change in the bandgap energy and the growth of InGaAs on different substrates make this material very attractive for multi-bandgap energy, multi-junction solar cell approaches. The high efficiency and better radiation performance of the solar cell structures based on InGaAs make them suitable for space power applications. This work investigates the suitability of indium phosphide (InP) window layers for lattice-matched In(0.53)Ga(0.47)As (bandgap energy 0.74 eV) solar cells. We present the first data on the effects of the p-type InP window layer on p-on-n lattice-matched InGaAs solar cells. The modeled quantum efficiency results show a significant improvement in the blue region with the InP window. The bare InGaAs solar cell performance suffers due to high surface recombination velocity (10(exp 7) cm/s). The large band discontinuity at the InP/InGaAs heterojunction offers a great potential barrier to minority carriers. The calculated results demonstrate that the InP window layer effectively passivates the solar cell front surface, hence resulting in reduced surface recombination and therefore, significantly improving the performance of the InGaAs solar cell.

  10. Indium tin oxide nanowires grown by one-step thermal evaporation-deposition process at low temperature.

    PubMed

    Dong, Haibo; Zhang, Xiaoxian; Niu, Zhiqiang; Zhao, Duan; Li, Jinzhu; Cai, Le; Zhou, Weiya; Xie, Sishen

    2013-02-01

    Indium tin oxide (ITO), as one of the most important transparent conducting oxide, is widely used in electro-optical field. We have developed a simple one-step method to synthesize ITO nanowires at low temperature of 600 degrees C. In detail, mixtures of InN nanowires and SnO powder, with the molar ratio of 10:1, have been used as precursors for the thermal evaporation-deposition of ITO nanowires on silicon/quartz slices. During the growth process, the evaporation temperature is maintained at 600 degrees C, which favors the decomposition of InN and oxidation of In, with a limited incorporation of Sn in the resulting compound (In:Sn approximately 11:1 in atomic ratio). As far as we know, this is the lowest growth temperature reported on the thermal deposition of ITO nanowires. The diameters of the nanowires are about 120 nm and the lengths are up to tens of micrometers. XRD characterization indicates the high crystallization of the nanowires. HRTEM results show the nanowires grow along the [200] direction. The transmittance of the nanowire film on quartz slice is more than 75% in the visible region. Based on photolithography and lift-off techniques, four-terminal measurement was utilized to test the resistivity of individual nanowire (6.11 x 10(-4) omega x cm). The high crystallization quality, good transmittance and low resistivity make as-grown ITO nanowires a promising candidate as transparent electrodes of nanoscale devices. PMID:23646624

  11. Self-assembled InN micro-mushrooms by upside-down pendeoepitaxy

    NASA Astrophysics Data System (ADS)

    Sarwar, A. T. M. Golam; Yang, Fan; Esser, Bryan D.; Kent, Thomas F.; McComb, David W.; Myers, Roberto C.

    2016-06-01

    Self-assembly of hexagonal InN micro-mushrooms on Si (111) substrates by molecular beam epitaxy is reported. Scanning electron microscopy (SEM) reveals hexagonal mushroom caps with smooth top surfaces and a step-like morphology at the bottom surface. A detailed growth study along with SEM measurements reveals that an upside-down pendeoepitaxy mechanism underlies the formation of these structures. Cryogenic temperature photoluminescence measurements on the InN disks show a dominant band-to-acceptor recombination peak at 0.68 eV. Cross-section annular bright field (ABF-) scanning transmission electron microscopy (STEM) reveals that the growth of these structures occurs along the [ 000 1 bar ] crystallographic orientation (N-face). Plan-view high angle annular dark field (HAADF) STEM in the center of the micro-disks reveals a hexagonal lattice indicative of stacking faults. However, at the outskirt of the micro-disk, surprisingly, a honeycomb lattice is observed in plan view STEM indicating a perfect freestanding Wurtzite InN disk that is free of stacking faults. This result opens a pathway for realizing strain-free, freestanding InN substrates.

  12. Golf Tournament Drives in a Win for the Children’s Inn | Poster

    Cancer.gov

    By Carolynne Keenan, Contributing Writer On September 23, golfers took to the Clustered Spires golf course in Frederick, Md., for a cause. The R&W Club Frederick hosted its inaugural golf tournament, with proceeds benefiting the National Institutes of Health (NIH) Children’s Inn.

  13. Dopants and Defects in InN and InGaN Alloys

    SciTech Connect

    Walukiewicz, W.; Jones, R.E.; Li, S.X.; Yu, K.M.; Ager III, J.W.; Haller, E.E.; Lu, H.; Schaff, W.J.

    2005-04-01

    We have performed systematic studies of the effects of high-energy particle irradiation on the properties of InGaN alloys. In agreement with the amphoteric defect model, irradiation of InN produces donor-like defects. The electron concentration increases with increasing radiation dose and saturates at 4 x 10{sup 20} cm{sup -3} at very high doses. We find that the increase of the electron concentration causes a large blue-shift of the absorption edge, which is well-explained by the Burstein-Moss effect. The maximum electron concentration decreases with increasing Ga fraction in irradiated In{sub 1-x}Ga{sub x}N alloys as the conduction band edge approaches the Fermi level stabilization energy (E{sub FS}). For x > 0.66 the conduction band edge moves above E{sub FS} and the irradiation of n-type films produces acceptor-like defects, resulting in a reduced free electron concentration. An analysis of the concentration dependence of the electron mobility in InN indicates that the dominant defects in irradiated InN are triply-charged donors. Finally, we show that InN films doped with Mg acceptors behave like undoped films above a threshold radiation dose.

  14. EDITORIAL: Non-polar and semipolar nitride semiconductors Non-polar and semipolar nitride semiconductors

    NASA Astrophysics Data System (ADS)

    Han, Jung; Kneissl, Michael

    2012-02-01

    topics including growth and heteroepitaxy, bulk GaN substrates, theory and modelling, optical properties, laser diodes and LEDs as well as transport properties and electronics. Farrell et al review materials and growth issues for high-performance non- and semipolar light-emitting devices, and Scholz provides an overview of heteroepitaxial growth of semipolar GaN. Okada et al review growth mechanisms of non- and semipolar GaN layers on patterned sapphire substrates, and Vennéguès discusses defect reduction methods for heteroepitaxially grown non- and semipolar III-nitride films. Leung et al explain how kinetic Wulff plots can be used to design and control non-polar and semipolar GaN heteroepitaxy, and a contribution by Sawaki et al explores the impurity incorporation in (1-101) GaN grown on Si substrates. In the area of bulk crystal growth Kucharski et al review non- and semipolar GaN substrates by ammonothermal growth, and Chichibu et al discuss the challenges for epitaxial growth of InGaN on free-standing m-plane GaN substrates. Calculation of semipolar orientations for wurtzitic semiconductor heterostructures and their application to nitrides and oxides are reviewed by Bigenwald et al, and Ito et al present an ab initio approach to reconstruction, adsorption, and incorporation on GaN surfaces. Finally, the theoretical description of non-polar and semipolar nitride semiconductor quantum-well structures is presented by Ahn et al. In a discussion of the optical properties, Kisin et al discuss the effect of the quantum well population on the optical characteristics of polar, semipolar and non-polar III-nitride light emitters, and Jönen et al investigate the indium incorporation and optical properties of non- and semipolar GaInN QW structures. Wernicke et al explore the emission wavelength of polar, non-polar, and semipolar InGaN quantum wells and the incorporation of indium. In a contribution by Melo et al, the gain in polar and non-polar/semipolar gallium-nitride

  15. Nanostructural and electronic properties of polytypes in InN nanocolumns

    SciTech Connect

    Kioseoglou, J.; Koukoula, T.; Komninou, Ph.; Kehagias, Th.; Georgakilas, A.; Androulidaki, M.

    2013-08-21

    Transmission electron microscopy techniques and density functional theory calculations were employed to investigate the nanostructural and electronic properties of InN polytypes observed in InN nanocolumns, grown on Si(111) by molecular beam epitaxy. Moiré fringes and alternating hexagonal and cubic lattice stacking sequences along the c-axis, observed among the wurtzite layers, implied the presence of different structures embedded in the basic 2H structure of the nanocolumns. Quantitative electron diffraction analysis and high-resolution image simulations verified the coexistence of the wurtzite structure with the 4H, 6H, and the 3C zinc-blende structural polytypes. Total energies calculations established the 2H wurtzite structure as the most stable polytype. The band gap of all polytypes was found direct with the energies and the band gaps of the 4H (E{sub g} = 0.64 eV) and 6H (E{sub g} = 0.60 eV) structures calculated between the corresponding values of the 2H (E{sub g} = 0.75 eV) and 3C (E{sub g} = 0.49 eV) basic structures. Theoretical and experimental analysis showed that at the initial stages of growth InN nanocolumns were under tensile strain along both the basal plane and growth direction. Structural polytypes were then introduced in the form of embedded inclusions to accommodate the excess tensile strain along the growth direction, allowing the entire process of polymorphism to be the dominant strain relaxation mechanism of InN nanocolumns. Moreover, the lattice and energetic properties and band gap values of InN polytypes showed a linear dependence on hexagonality, while the presence of polytypes led to a characteristic broadening of the photoluminescence emission peak toward lower emission energies.

  16. Large-scale cubic InN nanocrystals by a combined solution- and vapor-phase method under silica confinement.

    PubMed

    Chen, Zhuo; Li, Yanan; Cao, Chuanbao; Zhao, Songrui; Fathololoumi, Saeed; Mi, Zetian; Xu, Xingyan

    2012-01-18

    Large-scale cubic InN nanocrystals were synthesized by a combined solution- and vapor-phase method under silica confinement. Nearly monodisperse cubic InN nanocrystals with uniform spherical shape were dispersed stably in various organic solvents after removal of the silica shells. The average size of InN nanocrystals is 5.7 ± 0.6 nm. Powder X-ray diffraction results indicate that the InN nanocrystals are of high crystallinity with a cubic phase. X-ray photoelectron spectroscopy and energy-dispersive spectroscopy confirm that the nanocrystals are composed of In and N elements. The InN nanocrystals exhibit infrared photoluminescence at room temperature, with a peak energy of ~0.62 eV, which is smaller than that of high-quality wurtzite InN (~0.65-0.7 eV) and is in agreement with theoretical calculations. The small emission peak energy of InN nanocrystals, as compared to other low-cost solution or vapor methods, reveals the superior crystalline quality of our samples, with low or negligible defect density. This work will significantly promote InN-based applications in IR optoelectronic device and biology. PMID:22224725

  17. Analysis of plasma nitrided steels

    NASA Technical Reports Server (NTRS)

    Salik, J.; Ferrante, J.; Honecy, F.; Hoffman, R., Jr.

    1987-01-01

    The analysis of plasma nitrided steels can be divided to two main categories - structural and chemical. Structural analysis can provide information not only on the hardening mechanisms but also on the fundamental processes involved. Chemical analysis can be used to study the kinetics for the nitriding process and its mechanisms. In this paper preliminary results obtained by several techniques of both categories are presented and the applicability of those techniques to the analysis of plasma-nitrided steels is discussed.

  18. Mineral resource of the month: indium

    USGS Publications Warehouse

    Tolcin, Amy C.

    2011-01-01

    Geologically, the occurrence of indium minerals is rare. The element most often occurs as a sulfide inclusion or substitutes in other base-metal minerals, including cassiterite, chalcopyrite, sphalerite and stannite. Indium’s abundance in the crust is estimated to be 0.05 parts per million, which makes it more abundant than silver, but it is so widely disseminated that it does not occur in high enough concentrations to form mineable deposits. Therefore, indium is most often recovered from byproduct residues produced during the refining of lead and zinc. But only about one-quarter of the indium mined worldwide is refined into metal, as many indium-bearing concentrates are sent to refineries that do not have the capability of recovering the metal.

  19. Indium Single-Ion Frequency Standard

    NASA Technical Reports Server (NTRS)

    Nagourney, Warren

    2001-01-01

    A single laser-cooled indium ion is a promising candidate for an ultimate resolution optical time or frequency standard. It can be shown that single ions from group IIIA of the periodic table (indium, thallium, etc.) can have extremely small systematic errors. In addition to being free from Doppler, transit-time and collisional shifts, these ions are also quite insensitive to perturbations from ambient magnetic and electric fields (mainly due to the use of a J=0-0 transition for spectroscopy). Of all group IIIA ions, indium seems to be the most practical, since it is heavy enough to have a tolerable intercombination cooling transition rate and (unlike thallium) has transitions which are easily accessible with frequency multiplied continuous-wave lasers. A single indium ion standard has a potential inaccuracy of one part in 10(exp 18) for integration times of 10(exp 6) seconds. We have made substantial progress during the grant period in constructing a frequency standard based upon a single indium ion. At the beginning of the grant period, single indium ions were being successfully trapped, but the lasers and optical systems were inadequate to achieve the desired goal. We have considerably improved the stability of the dye laser used to cool the ions and locked it to a molecular resonance line, making it possible to observe stable cooling-line fluorescence from a single indium ion for reasonable periods of time, as required by the demands of precision spectroscopy. We have substantially improved the single-ion fluorescence signal with significant benefits for the detection efficiency of forbidden transitions using the 'shelving' technique. Finally, we have constructed a compact, efficient UV 'clock' laser and observed 'clock' transitions in single indium ions using this laser system. We will elaborate on these accomplishments.

  20. Quantification of indium in steel using PIXE

    NASA Astrophysics Data System (ADS)

    Oliver, A.; Miranda, J.; Rickards, J.; Cheang, J. C.

    1989-04-01

    The quantitative analysis of steel for endodontics tools was carried out using low-energy protons (≤ 700 keV). A computer program for a thick-target analysis which includes enhancement due to secondary fluorescence was used. In this experiment the L-lines of indium are enhanced due to the proximity of other elements' K-lines to the indium absorption edge. The results show that the ionization cross section expression employed to evaluate this magnitude is important.

  1. Superplastic forging nitride ceramics

    DOEpatents

    Panda, Prakash C.; Seydel, Edgar R.; Raj, Rishi

    1988-03-22

    The invention relates to producing relatively flaw free silicon nitride ceramic shapes requiring little or no machining by superplastic forging This invention herein was made in part under Department of Energy Grant DE-AC01-84ER80167, creating certain rights in the United States Government. The invention was also made in part under New York State Science and Technology Grant SB1R 1985-10.

  2. Electrically injected near-infrared light emission from single InN nanowire p-i-n diode

    SciTech Connect

    Le, Binh Huy; Zhao, Songrui; Tran, Nhung Hong; Mi, Zetian

    2014-12-08

    We report on the achievement of electroluminescence emission of single InN p-i-n nanowire devices. InN p-i-n nanowire structures were grown directly on Si substrate by plasma-assisted molecular beam epitaxy and subsequently transferred to foreign substrate for the fabrication of single nanowire light emitting diodes. Electroluminescence emission with a peak energy of 0.71 eV (1.75 μm) was observed at 77 K. The measurement of near-bandgap electroluminescence provides unambiguous evidence for the achievement of p-type conduction of InN.

  3. Electrically injected near-infrared light emission from single InN nanowire p-i-n diode

    NASA Astrophysics Data System (ADS)

    Le, Binh Huy; Zhao, Songrui; Tran, Nhung Hong; Mi, Zetian

    2014-12-01

    We report on the achievement of electroluminescence emission of single InN p-i-n nanowire devices. InN p-i-n nanowire structures were grown directly on Si substrate by plasma-assisted molecular beam epitaxy and subsequently transferred to foreign substrate for the fabrication of single nanowire light emitting diodes. Electroluminescence emission with a peak energy of 0.71 eV (1.75 μm) was observed at 77 K. The measurement of near-bandgap electroluminescence provides unambiguous evidence for the achievement of p-type conduction of InN.

  4. Gallium nitride electronics

    NASA Astrophysics Data System (ADS)

    Rajan, Siddharth; Jena, Debdeep

    2013-07-01

    In the past two decades, there has been increasing research and industrial activity in the area of gallium nitride (GaN) electronics, stimulated first by the successful demonstration of GaN LEDs. While the promise of wide band gap semiconductors for power electronics was recognized many years before this by one of the contributors to this issue (J Baliga), the success in the area of LEDs acted as a catalyst. It set the field of GaN electronics in motion, and today the technology is improving the performance of several applications including RF cell phone base stations and military radar. GaN could also play a very important role in reducing worldwide energy consumption by enabling high efficiency compact power converters operating at high voltages and lower frequencies. While GaN electronics is a rapidly evolving area with active research worldwide, this special issue provides an opportunity to capture some of the great advances that have been made in the last 15 years. The issue begins with a section on epitaxy and processing, followed by an overview of high-frequency HEMTs, which have been the most commercially successful application of III-nitride electronics to date. This is followed by review and research articles on power-switching transistors, which are currently of great interest to the III-nitride community. A section of this issue is devoted to the reliability of III-nitride devices, an area that is of increasing significance as the research focus has moved from not just high performance but also production-worthiness and long-term usage of these devices. Finally, a group of papers on new and relatively less studied ideas for III-nitride electronics, such as interband tunneling, heterojunction bipolar transistors, and high-temperature electronics is included. These areas point to new areas of research and technological innovation going beyond the state of the art into the future. We hope that the breadth and quality of articles in this issue will make it

  5. Powder-XRD and (14) N magic angle-spinning solid-state NMR spectroscopy of some metal nitrides.

    PubMed

    Kempgens, Pierre; Britton, Jonathan

    2016-05-01

    Some metal nitrides (TiN, ZrN, InN, GaN, Ca3 N2 , Mg3 N2 , and Ge3 N4 ) have been studied by powder X-ray diffraction (XRD) and (14) N magic angle-spinning (MAS) solid-state NMR spectroscopy. For Ca3 N2 , Mg3 N2 , and Ge3 N4 , no (14) N NMR signal was observed. Low speed (νr  = 2 kHz for TiN, ZrN, and GaN; νr  = 1 kHz for InN) and 'high speed' (νr  = 15 kHz for TiN; νr  = 5 kHz for ZrN; νr  = 10 kHz for InN and GaN) MAS NMR experiments were performed. For TiN, ZrN, InN, and GaN, powder-XRD was used to identify the phases present in each sample. The number of peaks observed for each sample in their (14) N MAS solid-state NMR spectrum matches perfectly well with the number of nitrogen-containing phases identified by powder-XRD. The (14) N MAS solid-state NMR spectra are symmetric and dominated by the quadrupolar interaction. The envelopes of the spinning sidebands manifold are Lorentzian, and it is concluded that there is a distribution of the quadrupolar coupling constants Qcc 's arising from structural defects in the compounds studied. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26687421

  6. Electrochemical nitridation of metal surfaces

    SciTech Connect

    Wang, Heli; Turner, John A.

    2015-06-30

    Electrochemical nitridation of metals and the produced metals are disclosed. An exemplary method of electrochemical nitridation of metals comprises providing an electrochemical solution at low temperature. The method also comprises providing a three-electrode potentiostat system. The method also comprises stabilizing the three-electrode potentiostat system at open circuit potential. The method also comprises applying a cathodic potential to a metal.

  7. Strain distribution of thin InN epilayers grown on (0001) GaN templates by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Delimitis, A.; Komninou, Ph.; Dimitrakopulos, G. P.; Kehagias, Th.; Kioseoglou, J.; Karakostas, Th.; Nouet, G.

    2007-02-01

    A structural characterization of thin InN films is performed to determine the post-growth strain distribution, using electron microscopy techniques. A 60° misfit dislocation network at the InN /GaN interface effectively accommodates the lattice mismatch. The InN in-plane lattice parameter, which remained practically constant throughout the epilayer thickness, was precisely determined by electron diffraction analysis, and cross-section and plan-view lattice images. Image analysis using the geometric phase and projection methods revealed a uniform distribution of the residual tensile strain along the growth and lateral directions. The in-plane strain is primarily attributed to InN island coalescence during the initial stages of growth.

  8. Epitaxial relationship of semipolar s-plane (1101) InN grown on r-plane sapphire

    SciTech Connect

    Dimitrakopulos, G. P.

    2012-07-02

    The heteroepitaxy of semipolar s-plane (1101) InN grown directly on r-plane sapphire by plasma-assisted molecular beam epitaxy is studied using transmission electron microscopy techniques. The epitaxial relationship is determined to be (1101){sub InN} Parallel-To (1102){sub Al{sub 2O{sub 3}}}, [1120]{sub InN} Parallel-To [2021]{sub Al{sub 2O{sub 3}}}, [1102]{sub InN}{approx} Parallel-To [0221]{sub Al{sub 2O{sub 3}}}, which ensures a 0.7% misfit along [1120]{sub InN}. Two orientation variants are identified. Proposed geometrical factors contributing to the high density of basal stacking faults, partial dislocations, and sphalerite cubic pockets include the misfit accommodation and reduction, as well as the accommodation of lattice twist.

  9. High-quality InN films on GaN using graded InGaN buffers by MBE

    NASA Astrophysics Data System (ADS)

    Islam, SM; Protasenko, Vladimir; Rouvimov, Sergei; (Grace Xing, Huili; Jena, Debdeep

    2016-05-01

    The growth of high-quality thick InN films is challenging because of the lack of native substrates. In this work, we demonstrate the use of a linearly graded InGaN buffer layer for the growth of InN films on GaN substrates. A 500 nm InN film with <0.1 nm RMS roughness is obtained with a peak mobility of 1410 cm2/(V·s) at 300 K. A strong room temperature photoluminescence showing a bandgap of 0.65 eV with 79 meV linewidth is observed. A graded InGaN buffer is found to lead to extremely smooth and high-quality InN films.

  10. R&W Club Frederick Raises $1,500 for The Children’s Inn at Annual Golf Tournament | Poster

    Cancer.gov

    Forty-four government and contractor employees, along with their friends and family members, took to the Maryland National Golf Club course this fall for a cause. The R&W Club Frederick held its third annual golf tournament at the Middletown, Md., golf course on Sept. 14 to raise funds for The Children’s Inn at NIH, which celebrated its 25th anniversary this year. The Inn provides support and a home away from home for seriously ill children and their families receiving treatment at the NIH Clinical Center. Through the tournament, the club raised approximately $1,500 for The Children’s Inn, according to Tanya Ransom, biologist, NCI Center for Cancer Research, and secretary of the R&W Club Frederick. She also coordinated the golf tournament. After the tournament, a silent auction of sports memorabilia and collectibles, sponsored by Great Moments, Frederick, was held, and a portion of the proceeds also went to the Inn.

  11. Study of InN nanorods growth mechanism using ultrathin Au layer by plasma-assisted MBE on Si(111)

    NASA Astrophysics Data System (ADS)

    Kumar, Mahesh; Rajpalke, Mohana K.; Roul, Basanta; Bhat, Thirumaleshwara N.; Krupanidhi, S. B.

    2014-01-01

    InN nanorods (NRs) were grown on Si(111) substrate by plasma-assisted molecular beam epitaxy. The growth of InN NRs has been demonstrated using an electron-beam evaporated (~2 nm) Au layer prior to the initiation of growth. The structure and morphology of as deposited Au film, annealed at 600 °C, and InN NRs were investigated using X-ray photoelectron spectroscopy and scanning electron microscopy. Chemical characterization was performed with energy dispersive X-ray analysis. Single-crystalline wurtzite structure of InN NRs is verified by transmission electron microscopy. The formation process of NRs is investigated and a qualitative mechanism is proposed.

  12. InN Nanorods and Epi-layers: Similarities and Differences

    SciTech Connect

    Liliental-Weber, Z.; Kryliouk, O.; Park, H.J.; Mangum, J.; Anderson, T.; Schaff, W.

    2007-03-30

    Transmission electron microscopy was applied to study InN nanorods grown on the a-, c-and r-plane of Al{sub 2}O{sub 3}, and (111) Si substrates by non-catalytic, template-free hydride metal-organic vapor phase epitaxy (H-MOVPE). Single crystal nanorod growth was obtained on all substrates. However, the shape of the nanorods varied depending on the substrate used. For example, nanorods grown on r-plane sapphire and (111) Si have sharp tips. In contrast, growth on a- and c- planes of Al{sub 2}O{sub 3} results in flat tips with clear facets on their sides. The structural quality of these nanorods and their growth polarity are compared to crystalline quality, surface roughness, defects and growth polarity of InN layers grown by MBE on the same planes of Al{sub 2}O{sub 3}.

  13. Metastable nature of InN and In-rich InGaN alloys

    NASA Astrophysics Data System (ADS)

    Ivanov, S. V.; Shubina, T. V.; Komissarova, T. A.; Jmerik, V. N.

    2014-10-01

    The paper provides a thermodynamic insight into the metastable nature of InN and In-rich InGaN alloys, based on experimental studies of their plasma-assisted MBE growth and high-temperature decomposition, as well as on theoretical modeling of nitrogen vacancy behavior. This instability may easily result in occurrence of metallic In nanoparticles in the bulk of In(Ga)N films and in the vicinity of extended defects at high enough In content, which makes us consider this material as a metal-semiconductor composite. An overview of a wide set of experimental studies performed by us on the epitaxial films grown in many laboratories all around the world is given which proves an existence of such In nanoparticles in the films and shows how they affect optical and electrical properties of the epilayers. Possible applications of epitaxial InN layers for THz emitters and magnetic field sensors are discussed.

  14. Solar hot water system installed at Days Inn Motel, Dallas, Texas (Valley View)

    SciTech Connect

    1980-09-01

    The solar hot water system installed in the Days Inns of America, Inc., Days Inn Motel (120 rooms), I-35/2276 Valley View Lane, Dallas, Texas is described. The solar system was designed by ILI Incorporated to provide 65 percent of the total domestic hot water (DHW) demand. The Solar Energy Products, model CU-30WW liquid (water) flat plate collector (1000 square feet) system automatically drains into the 1000 gallon steel storage tank when the solar pump is not running. This system is one of eleven systems planned. Heat is transferred from the DHW tanks through a shell and tube heat exchanger. A circulating pump between the DHW tanks and heat exchanger enables solar heated water to help make up standby losses. All pumps are controlled by differential temperature controllers. The operation of this system was begun March 11, 1980. The solar components were partly funded ($15,000 of 30,000 cost) by a Department of Energy grant.

  15. 40 CFR 421.190 - Applicability: Description of the secondary indium subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... secondary indium subcategory. 421.190 Section 421.190 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Indium Subcategory § 421.190 Applicability: Description of the secondary indium... indium at secondary indium facilities processing spent electrolyte solutions and scrap indium metal...

  16. 40 CFR 421.190 - Applicability: Description of the secondary indium subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... secondary indium subcategory. 421.190 Section 421.190 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Indium Subcategory § 421.190 Applicability: Description of the secondary indium... indium at secondary indium facilities processing spent electrolyte solutions and scrap indium metal...

  17. 40 CFR 421.190 - Applicability: Description of the secondary indium subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... secondary indium subcategory. 421.190 Section 421.190 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Indium Subcategory § 421.190 Applicability: Description of the secondary indium... indium at secondary indium facilities processing spent electrolyte solutions and scrap indium metal...

  18. 40 CFR 421.190 - Applicability: Description of the secondary indium subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... secondary indium subcategory. 421.190 Section 421.190 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Indium Subcategory § 421.190 Applicability: Description of the secondary indium... indium at secondary indium facilities processing spent electrolyte solutions and scrap indium metal...

  19. 40 CFR 421.190 - Applicability: Description of the secondary indium subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... secondary indium subcategory. 421.190 Section 421.190 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Indium Subcategory § 421.190 Applicability: Description of the secondary indium... indium at secondary indium facilities processing spent electrolyte solutions and scrap indium metal...

  20. Thermal Stability of Chelated Indium Activable Tracers

    SciTech Connect

    Chrysikopoulos, Costas; Kruger, Paul

    1986-01-21

    The thermal stability of indium tracer chelated with organic ligands ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA) was measured for reservoir temperatures of 150, 200, and 240 C. Measurements of the soluble indium concentration was made as a function of time by neutron activation analysis. From the data, approximate thermal decomposition rates were estimated. At 150 C, both chelated tracers were stable over the experimental period of 20 days. At 200 C, the InEDTA concentration remained constant for 16 days, after which the thermal decomposition occurred at a measured rate constant of k = 0.09 d{sup -1}. The thermal decomposition of InNTA at 200 C showed a first order reaction with a measured rate constant of k = 0.16 d{sup -1}. At 240 C, both indium chelated tracers showed rapid decomposition with rate constants greater than 1.8 d{sup -1}. The data indicate that for geothermal reservoir with temperatures up to about 200 C, indium chelated tracers can be used effectively for transit times of at least 20 days. These experiments were run without reservoir rock media, and do not account for concomitant loss of indium tracer by adsorption processes.

  1. Functionalized boron nitride nanotubes

    DOEpatents

    Sainsbury, Toby; Ikuno, Takashi; Zettl, Alexander K

    2014-04-22

    A plasma treatment has been used to modify the surface of BNNTs. In one example, the surface of the BNNT has been modified using ammonia plasma to include amine functional groups. Amine functionalization allows BNNTs to be soluble in chloroform, which had not been possible previously. Further functionalization of amine-functionalized BNNTs with thiol-terminated organic molecules has also been demonstrated. Gold nanoparticles have been self-assembled at the surface of both amine- and thiol-functionalized boron nitride Nanotubes (BNNTs) in solution. This approach constitutes a basis for the preparation of highly functionalized BNNTs and for their utilization as nanoscale templates for assembly and integration with other nanoscale materials.

  2. Gallium nitride nanotube lasers

    SciTech Connect

    Li, Changyi; Liu, Sheng; Hurtado, Antonio; Wright, Jeremy Benjamin; Xu, Huiwen; Luk, Ting Shan; Figiel, Jeffrey J.; Brener, Igal; Brueck, Steven R. J.; Wang, George T.

    2015-01-01

    Lasing is demonstrated from gallium nitride nanotubes fabricated using a two-step top-down technique. By optically pumping, we observed characteristics of lasing: a clear threshold, a narrow spectral, and guided emission from the nanotubes. In addition, annular lasing emission from the GaN nanotube is also observed, indicating that cross-sectional shape control can be employed to manipulate the properties of nanolasers. The nanotube lasers could be of interest for optical nanofluidic applications or application benefitting from a hollow beam shape.

  3. Synthesis and characterization of actinide nitrides

    SciTech Connect

    Jaques, Brian; Butt, Darryl P.; Marx, Brian M.; Hamdy, A.S.; Osterberg, Daniel; Balfour, Gordon

    2007-07-01

    A carbothermic reduction of the metal oxides in a hydrogen/nitrogen mixed gas stream prior to nitriding in a nitrogen gas stream was used to synthesize uranium nitride at 1500 deg. C, cerium nitride at 1400 deg. C, and dysprosium nitride at 1500 deg. C. Cerium nitride and dysprosium nitride were also synthesized via hydriding and nitriding the metal shavings at 900 deg. C and 1500 deg. C, respectively. Also, a novel ball-milling synthesis route was used to produce cerium nitride and dysprosium nitride from the metal shavings at room temperature. Dysprosium nitride was also produced by reacting the metal shavings in a high purity nitrogen gas stream at 1300 deg. C. All materials were characterized by phase analysis via X-ray diffraction. Only the high purity materials were further analyzed via chemical analysis to characterize the trace oxygen concentration. (authors)

  4. Indium oxide/n-silicon heterojunction solar cells

    DOEpatents

    Feng, Tom; Ghosh, Amal K.

    1982-12-28

    A high photo-conversion efficiency indium oxide/n-silicon heterojunction solar cell is spray deposited from a solution containing indium trichloride. The solar cell exhibits an Air Mass One solar conversion efficiency in excess of about 10%.

  5. Indium: bringing liquid-crystal displays into focus

    USGS Publications Warehouse

    Mercer, Celestine N.

    2015-01-01

    Compared to more abundant industrial metals such as lead and zinc, information about the behavior and toxicity of indium in the environment is limited. However, many indium compounds have been proven to be toxic to animals.

  6. On the crystalline structure, stoichiometry and band gap of InN thin films

    SciTech Connect

    Yu, K.M.; Liliental-Weber, Z.; Walukiewicz, W.; Li, S.X.; Jones, R.E.; Shan, W.; Ager III, J.W.; Haller, E.E.; Lu, Hai; Schaff, William J.

    2004-09-23

    Detailed transmission electron microscopy (TEM), x-ray diffraction (XRD), and optical characterization of a variety of InN thin films grown by molecular beam epitaxy under both optimized and non-optimized conditions is reported. Optical characterization by absorption and photoluminescence confirms that the band gap of single crystalline and polycrystalline wurtzite InN is 0.70 {+-} 0.05 eV. Films grown under optimized conditions with a AlN nucleation layer and a GaN buffer layer are stoichiometric, single crystalline wurtzite structure with dislocation densities not exceeding mid-10{sup 10} cm{sup -2}. Non-optimal films can be poly-crystalline and display an XRD diffraction feature at 2{theta} {approx} 33{sup o}; this feature has been attributed by others to the presence of metallic In clusters. Careful indexing of wide angle XRD scans and selected area diffraction patterns shows that this peak is in fact due to the presence of polycrystalline InN grains; no evidence of metallic In clusters was found in any of the studied samples.

  7. Photoelectrochemical properties of InN nanowire photoelectrodes for solar water splitting

    NASA Astrophysics Data System (ADS)

    Kamimura, J.; Bogdanoff, P.; Ramsteiner, M.; Geelhaar, L.; Riechert, H.

    2016-07-01

    InN nanowires were grown on Si(111) substrates by plasma-assisted molecular beam epitaxy. Raman spectroscopy showed that the nanowires were strain-free and allowed the deduction of a free carrier concentration of 1–2 × 1018 cm‑3. This value was confirmed by a Mott–Schottky analysis of electrolyte-based capacitance-voltage measurements. In addition, these measurements directly revealed the existence of a surface accumulation layer in the InN nanowires. In cyclic voltammetry measurements under irradiation from a Xe lamp with about 100 mW cm‑2, high photocurrents of about 4 and 11 mA cm‑2 were observed at 1.23 and 1.63 V bias potential versus reversible hydrogen electrode, respectively, using H2O2 as a hole scavenger. By comparing the photocurrent with and without H2O2, the main limiting factor in the performance of InN nanowire photoanodes was identified to be the poor catalytic efficiency for water oxidation at the surface, followed by parasitic bulk recombination.

  8. Effects of hole localization on limiting p-type conductivity in oxide and nitride semiconductors

    SciTech Connect

    Lyons, J. L.; Janotti, A.; Van de Walle, C. G.

    2014-01-07

    We examine how hole localization limits the effectiveness of substitutional acceptors in oxide and nitride semiconductors and explain why p-type doping of these materials has proven so difficult. Using hybrid density functional calculations, we find that anion-site substitutional impurities in AlN, GaN, InN, and ZnO lead to atomic-like states that localize on the impurity atom itself. Substitution with cation-site impurities, on the other hand, triggers the formation of polarons that become trapped on nearest-neighbor anions, generally leading to large ionization energies for these acceptors. Unlike shallow effective-mass acceptors, these two types of deep acceptors couple strongly with the lattice, significantly affecting the optical properties and severely limiting prospects for achieving p-type conductivity in these wide-band-gap materials.

  9. Indium-111 leukocyte scanning and fracture healing

    SciTech Connect

    Mead, L.P.; Scott, A.C.; Bondurant, F.J.; Browner, B.D. )

    1990-01-01

    This study was undertaken to determine the specificity of indium-111 leukocyte scans for osteomyelitis when fractures are present. Midshaft tibial osteotomies were performed in 14 New Zealand white rabbits, seven of which were infected postoperatively with Staphylococcus aureus per Norden's protocol. All 14 rabbits were scanned following injection with 75 microCi of indium 111 at 72 h after osteotomy and at weekly intervals for 4 weeks. Before the rabbits were killed, the fracture sites were cultured to document the presence or absence of infection. The results of all infected osteotomy sites were positive, whereas no positive scans were found in the noninfected osteotomies. We concluded from this study that uncomplicated fracture healing does not result in a positive indium-111 leukocyte scan.

  10. A modern perspective on the history of semiconductor nitride blue light sources

    NASA Astrophysics Data System (ADS)

    Maruska, Herbert Paul; Rhines, Walden Clark

    2015-09-01

    In this paper we shall discuss the development of blue light-emitting (LED) and laser diodes (LD), starting early in the 20th century. Various materials systems were investigated, but in the end, the nitrides of aluminum, gallium and indium proved to be the most effective. Single crystal thin films of GaN first emerged in 1968. Blue light-emitting diodes were first reported in 1971. Devices grown in the 1970s were prepared by the halide transport method, and were never efficient enough for commercial products due to contamination. Devices created by metal-organic vapor-phase epitaxy gave far superior performance. Actual true blue LEDs based on direct band-to-band transitions, free of recombination through deep levels, were finally developed in 1994, leading to a breakthrough in LED performance, as well as nitride based laser diodes in 1996. In 2014, the scientists who achieved these critical results were awarded the Nobel Prize in Physics.

  11. Cordierite silicon nitride filters

    SciTech Connect

    Sawyer, J.; Buchan, B. ); Duiven, R.; Berger, M. ); Cleveland, J.; Ferri, J. )

    1992-02-01

    The objective of this project was to develop a silicon nitride based crossflow filter. This report summarizes the findings and results of the project. The project was phased with Phase I consisting of filter material development and crossflow filter design. Phase II involved filter manufacturing, filter testing under simulated conditions and reporting the results. In Phase I, Cordierite Silicon Nitride (CSN) was developed and tested for permeability and strength. Target values for each of these parameters were established early in the program. The values were met by the material development effort in Phase I. The crossflow filter design effort proceeded by developing a macroscopic design based on required surface area and estimated stresses. Then the thermal and pressure stresses were estimated using finite element analysis. In Phase II of this program, the filter manufacturing technique was developed, and the manufactured filters were tested. The technique developed involved press-bonding extruded tiles to form a filter, producing a monolithic filter after sintering. Filters manufactured using this technique were tested at Acurex and at the Westinghouse Science and Technology Center. The filters did not delaminate during testing and operated and high collection efficiency and good cleanability. Further development in areas of sintering and filter design is recommended.

  12. Electrospun Gallium Nitride Nanofibers

    SciTech Connect

    Melendez, Anamaris; Morales, Kristle; Ramos, Idalia; Campo, Eva; Santiago, Jorge J.

    2009-04-19

    The high thermal conductivity and wide bandgap of gallium nitride (GaN) are desirable characteristics in optoelectronics and sensing applications. In comparison to thin films and powders, in the nanofiber morphology the sensitivity of GaN is expected to increase as the exposed area (proportional to the length) increases. In this work we present electrospinning as a novel technique in the fabrication of GaN nanofibers. Electrospinning, invented in the 1930s, is a simple, inexpensive, and rapid technique to produce microscopically long ultrafine fibers. GaN nanofibers are produced using gallium nitrate and dimethyl-acetamide as precursors. After electrospinning, thermal decomposition under an inert atmosphere is used to pyrolyze the polymer. To complete the preparation, the nanofibers are sintered in a tube furnace under a NH{sub 3} flow. Both scanning electron microscopy and profilometry show that the process produces continuous and uniform fibers with diameters ranging from 20 to a few hundred nanometers, and lengths of up to a few centimeters. X-ray diffraction (XRD) analysis shows the development of GaN nanofibers with hexagonal wurtzite structure. Future work includes additional characterization using transmission electron microscopy and XRD to understand the role of precursors and nitridation in nanofiber synthesis, and the use of single nanofibers for the construction of optical and gas sensing devices.

  13. 40 CFR 721.10391 - Copper gallium indium selenide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Copper gallium indium selenide. 721... Substances § 721.10391 Copper gallium indium selenide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as copper gallium indium selenide (PMN...

  14. 40 CFR 721.10391 - Copper gallium indium selenide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Copper gallium indium selenide. 721... Substances § 721.10391 Copper gallium indium selenide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as copper gallium indium selenide (PMN...

  15. 40 CFR 721.10391 - Copper gallium indium selenide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Copper gallium indium selenide. 721... Substances § 721.10391 Copper gallium indium selenide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as copper gallium indium selenide (PMN...

  16. High Cubic-Phase Purity InN on MgO (001) Using Cubic-Phase GaN as a Buffer Layer

    SciTech Connect

    Sanorpim, S.; Kuntharin, S.; Parinyataramas, J.; Yaguchi, H.; Iwahashi, Y.; Orihara, M.; Hijikata, Y.; Yoshida, S.

    2011-12-23

    High cubic-phase purity InN films were grown on MgO (001) substrates by molecular beam epitaxy with a cubic-phase GaN buffer layer. The cubic phase purity of the InN grown layers has been analyzed by high resolution X-ray diffraction, {mu}-Raman scattering and transmission electron microscopy. It is evidenced that the hexagonal-phase content in the InN overlayer much depends on hexagonal-phase content in the cubic-phase GaN buffer layer and increases with increasing the hexagonal-phase GaN content. From Raman scattering measurements, in addition, the InN layer with lowest hexagonal component (6%), only Raman characteristics of cubic TO{sub InN} and LO{sub InN} modes were observed, indicating a formation of a small amount of stacking faults, which does not affect on vibrational property.

  17. Transport in indium-decorated graphene

    NASA Astrophysics Data System (ADS)

    Chandni, U.; Henriksen, Erik A.; Eisenstein, J. P.

    2015-06-01

    The electronic-transport properties of single-layer graphene that has a dilute coating of indium adatoms have been investigated. Our studies establish that isolated indium atoms donate electrons to graphene and become a source of charged impurity scattering, affecting the conductivity as well as magnetotransport properties of the pristine graphene. Notably, a positive magnetoresistance is observed over a wide density range after In doping. The low-field magnetoresistance carries signatures of quantum interference effects which are significantly altered by the adatoms.

  18. Nitriding iron at lower temperatures.

    PubMed

    Tong, W P; Tao, N R; Wang, Z B; Lu, J; Lu, K

    2003-01-31

    The microstructure in the surface layer of a pure iron plate was refined at the nanometer scale by means of a surface mechanical attrition treatment that generates repetitive severe plastic deformation of the surface layer. The subsequent nitriding kinetics of the treated iron with the nanostructured surface layer were greatly enhanced, so that the nitriding temperature could be as low as 300 degrees C, which is much lower than conventional nitriding temperatures (above 500 degrees C). This enhanced processing method demonstrates the technological significance of nanomaterials in improving traditional processing techniques and provides a new approach for selective surface reactions in solids. PMID:12560546

  19. Effects of strain on the band structure of group-III nitrides

    NASA Astrophysics Data System (ADS)

    Yan, Qimin; Rinke, Patrick; Janotti, Anderson; Scheffler, Matthias; Van de Walle, Chris G.

    2014-09-01

    We present a systematic study of strain effects on the electronic band structure of the group-III-nitrides (AlN, GaN and InN) in the wurtzite phase. The calculations are based on density functional theory with band-gap-corrected approaches including the Heyd-Scuseria-Ernzerhof hybrid functional (HSE) and quasiparticle G0W0 methods. We study strain effects under realistic strain conditions, hydrostatic pressure, and biaxial stress. The strain-induced modification of the band structures is found to be nonlinear; transition energies and crystal-field splittings show a strong nonlinear behavior under biaxial stress. For the linear regime around the experimental lattice parameters, we present a complete set of deformation potentials (acz, act, D1, D2, D3, D4, D5, D6) that allows us to predict the band positions of group-III nitrides and their alloys (InGaN and AlGaN) under realistic strain conditions. The benchmarking G0W0 results for GaN agree well with the HSE data and indicate that HSE provides an appropriate description for the band structures of nitrides. We present a systematic study of strain effects on the electronic band structure of the group-III nitrides (AlN, GaN, and InN). We quantify the nonlinearity of strain effects by introducing a set of bowing parameters. We apply the calculated deformation potentials to the prediction of strain effects on transition energies and valence-band structures of InGaN alloys and quantum wells (QWs) grown on GaN, in various orientations (including c-plane, m-plane, and semipolar). The calculated band gap bowing parameters, including the strain effect for c-plane InGaN, agree well with the results obtained by hybrid functional alloy calculations. For semipolar InGaN QWs grown in (202¯1), (303¯1), and (303¯1¯) orientations, our calculated deformation potentials have provided results for polarization ratios in good agreement with the experimental observations, providing further confidence in the accuracy of our values.

  20. Hard carbon nitride and method for preparing same

    DOEpatents

    Haller, Eugene E.; Cohen, Marvin L.; Hansen, William L.

    1992-01-01

    Novel crystalline .alpha. (silicon nitride-like)-carbon nitride and .beta. (silicon nitride-like)-carbon nitride are formed by sputtering carbon in the presence of a nitrogen atmosphere onto a single crystal germanium or silicon, respectively, substrate.

  1. Boron nitride converted carbon fiber

    DOEpatents

    Rousseas, Michael; Mickelson, William; Zettl, Alexander K.

    2016-04-05

    This disclosure provides systems, methods, and apparatus related to boron nitride converted carbon fiber. In one aspect, a method may include the operations of providing boron oxide and carbon fiber, heating the boron oxide to melt the boron oxide and heating the carbon fiber, mixing a nitrogen-containing gas with boron oxide vapor from molten boron oxide, and converting at least a portion of the carbon fiber to boron nitride.

  2. Method for producing refractory nitrides

    DOEpatents

    Quinby, Thomas C.

    1989-01-24

    A process for making fine, uniform metal nitride powders that can be hot pressed or sintered. A metal salt is placed in a solvent with Melamine and warmed until a metal-Melamine compound forms. The solution is cooled and the metal-Melamine precipitate is calcined at a temperature below 700.degree. C. to form the metal nitrides and to avoid formation of the metal oxide.

  3. Sinterless Formation Of Contacts On Indium Phosphide

    NASA Technical Reports Server (NTRS)

    Weizer, Victor G.; Fatemi, Navid S.

    1995-01-01

    Improved technique makes it possible to form low-resistivity {nearly equal to 10(Sup-6) ohm cm(Sup2)} electrical contacts on indium phosphide semiconductor devices without damaging devices. Layer of AgP2 40 Angstrom thick deposited on InP before depositing metal contact. AgP2 interlayer sharply reduces contact resistance, without need for sintering.

  4. Study of the doping of thermally evaporated zinc oxide thin films with indium and indium oxide

    NASA Astrophysics Data System (ADS)

    Palimar, Sowmya; Bangera, Kasturi V.; Shivakumar, G. K.

    2013-12-01

    The present paper reports observations made on investigations carried out to study structural, optical and electrical properties of thermally evaporated ZnO thin films and their modulations on doping with metallic indium and indium oxide separately. ZnO thin film in the undoped state is found to have a very good conductivity of 90 Ω-1 cm-1 with an excellent transmittance of up to 90 % in the visible region. After doping with metallic indium, the conductivity of the film is found to be 580 Ω-1 cm-1, whereas the conductivity of indium oxide-doped films is increased up to 3.5 × 103 Ω-1 cm-1. Further, the optical band gap of the ZnO thin film is widened from 3.26 to 3.3 eV when doped with indium oxide and with metallic indium it decreases to 3.2 eV. There is no considerable change in the transmittance of the films after doping. All undoped and doped films were amorphous in nature with smooth and flat surface without significant modifications due to doping.

  5. The oxidation and surface speciation of indium and indium oxides exposed to atmospheric oxidants

    NASA Astrophysics Data System (ADS)

    Detweiler, Zachary M.; Wulfsberg, Steven M.; Frith, Matthew G.; Bocarsly, Andrew B.; Bernasek, Steven L.

    2016-06-01

    Metallic indium and its oxides are useful in electronics applications, in transparent conducting electrodes, as well as in electrocatalytic applications. In order to understand more fully the speciation of the indium and oxygen composition of the indium surface exposed to atmospheric oxidants, XPS, HREELS, and TPD were used to study the indium surface exposed to water, oxygen, and carbon dioxide. Clean In and authentic samples of In2O3 and In(OH)3 were examined with XPS to provide standard spectra. Indium was exposed to O2 and H2O, and the ratio of O2 - to OH- in the O1s XPS region was used to monitor oxidation and speciation of the surface. HREELS and TPD indicate that water dissociates on the indium surface even at low temperature, and that In2O3 forms at higher temperatures. Initially, OH- is the major species at the surface. Pure In2O3 is also OH- terminated following water exposure. Ambient pressure XPS studies of water exposure to these surfaces suggest that high water pressures tend to passivate the surface, inhibiting extensive oxide formation.

  6. Superplastic forging nitride ceramics

    DOEpatents

    Panda, P.C.; Seydel, E.R.; Raj, R.

    1988-03-22

    A process is disclosed for preparing silicon nitride ceramic parts which are relatively flaw free and which need little or no machining, said process comprising the steps of: (a) preparing a starting powder by wet or dry mixing ingredients comprising by weight from about 70% to about 99% silicon nitride, from about 1% to about 30% of liquid phase forming additive and from 1% to about 7% free silicon; (b) cold pressing to obtain a preform of green density ranging from about 30% to about 75% of theoretical density; (c) sintering at atmospheric pressure in a nitrogen atmosphere at a temperature ranging from about 1,400 C to about 2,200 C to obtain a density which ranges from about 50% to about 100% of theoretical density and which is higher than said preform green density, and (d) press forging workpiece resulting from step (c) by isothermally uniaxially pressing said workpiece in an open die without initial contact between said workpiece and die wall perpendicular to the direction of pressing and so that pressed workpiece does not contact die wall perpendicular to the direction of pressing, to substantially final shape in a nitrogen atmosphere utilizing a temperature within the range of from about 1,400 C to essentially 1,750 C and strain rate within the range of about 10[sup [minus]7] to about 10[sup [minus]1] seconds[sup [minus]1], the temperature and strain rate being such that surface cracks do not occur, said pressing being carried out to obtain a shear deformation greater than 30% whereby superplastic forging is effected.

  7. Micromorph thin-film silicon solar cells with transparent high-mobility hydrogenated indium oxide front electrodes

    NASA Astrophysics Data System (ADS)

    Battaglia, Corsin; Erni, Lukas; Boccard, Mathieu; Barraud, Loris; Escarré, Jordi; Söderström, Karin; Bugnon, Grégory; Billet, Adrian; Ding, Laura; Despeisse, Matthieu; Haug, Franz-Josef; Wolf, Stefaan De; Ballif, Christophe

    2011-06-01

    We investigate the performance of hydrogenated indium oxide as a transparent front electrode for micromorph thin-film silicon solar cells on glass. Light trapping is achieved by replicating the morphology of state-of-the-art zinc oxide electrodes, known for their outstanding light trapping properties, via ultraviolet nanoimprint lithography. As a result of the high electron mobility and excellent near-infrared transparency of hydrogenated indium oxide, the short-circuit current density of the cells is improved with respect to indium tin oxide and zinc oxide electrodes. We assess the potential for further current gains by identifying remaining sources of parasitic absorption and evaluate the light trapping capacity of each electrode. We further present a method, based on nonabsorbing insulating silicon nitride electrodes, allowing one to directly relate the optical reflectance to the external quantum efficiency. Our method provides a useful experimental tool to evaluate the light trapping potential of novel photonic nanostructures by a simple optical reflectance measurement, avoiding complications with electrical cell performance.

  8. InN nanorods prepared with CrN nanoislands by plasma-assisted molecular beam epitaxy

    PubMed Central

    2011-01-01

    The authors report the influence of CrN nanoisland inserted on growth of baseball-bat InN nanorods by plasma-assisted molecular beam epitaxy under In-rich conditions. By inserting CrN nanoislands between AlN nucleation layer and the Si (111) substrate, it was found that we could reduce strain form Si by inserting CrN nanoisland, FWHM of the x-ray rocking curve measured from InN nanorods from 3,299 reduced to 2,115 arcsec. It is due to the larger strain from lattice miss-match of the film-like InN structure; however, the strain from lattice miss-match was obvious reduced owing to CrN nanoisland inserted. The TEM images confirmed the CrN structures and In droplets dissociation from InN, by these results, we can speculate the growth mechanism of baseball-bat-like InN nanorods. PMID:21736722

  9. InN nanorods prepared with CrN nanoislands by plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Liu, Kuang-Wei; Chang, Shoou-Jinn; Young, Sheng-Joue; Hsueh, Tao-Hung; Hung, Hung; Mai, Yu-Chun; Wang, Shih-Ming; Chen, Kuan-Jen; Wu, Ya-Ling; Chen, Yue-Zhang

    2011-07-01

    The authors report the influence of CrN nanoisland inserted on growth of baseball-bat InN nanorods by plasma-assisted molecular beam epitaxy under In-rich conditions. By inserting CrN nanoislands between AlN nucleation layer and the Si (111) substrate, it was found that we could reduce strain form Si by inserting CrN nanoisland, FWHM of the x-ray rocking curve measured from InN nanorods from 3,299 reduced to 2,115 arcsec. It is due to the larger strain from lattice miss-match of the film-like InN structure; however, the strain from lattice miss-match was obvious reduced owing to CrN nanoisland inserted. The TEM images confirmed the CrN structures and In droplets dissociation from InN, by these results, we can speculate the growth mechanism of baseball-bat-like InN nanorods.

  10. A growth diagram for plasma-assisted molecular beam epitaxy of In-face InN

    SciTech Connect

    Gallinat, C. S.; Koblmueller, G.; Brown, J. S.; Speck, J. S.

    2007-09-15

    We investigated the role of temperature and In/N flux ratios to determine suitable growth windows for the plasma-assisted molecular beam epitaxy of In-face (0001) InN. Under vacuum, InN starts decomposing at 435 deg. C as defined by the release of N{sub 2} from the InN crystal and a buildup of an In adlayer and liquid In droplets on the sample surface. At temperatures greater than 470 deg. C, InN decomposition was characterized by a release of both In vapor and N{sub 2} in the absence of a significant accumulation of an In adlayer. No growth was observed at substrate temperatures above 500 deg. C or at temperatures in which the decomposition rates were higher than the growth rates. A growth diagram was then constructed consisting of two growth regimes: the 'In-droplet regime' characterized by step-flow growth and relatively flat surfaces and the ''N-rich regime'' characterized by rough, three-dimensional surfaces. The growth diagram can then be used to predict the surface structure of films grown at varying substrate temperatures and In fluxes. A 2.5 monolayer In adlayer was observed during In-droplet growth, suggesting that an In wetting layer was necessary for step-flow growth.

  11. In-situ SiNx/InN structures for InN field-effect transistors

    NASA Astrophysics Data System (ADS)

    Zervos, Ch.; Adikimenakis, A.; Beleniotis, P.; Kostopoulos, A.; Kayambaki, M.; Tsagaraki, K.; Konstantinidis, G.; Georgakilas, A.

    2016-04-01

    Critical aspects of InN channel field-effect transistors (FETs) have been investigated. SiNx dielectric layers were deposited in-situ, in the molecular beam epitaxy system, on the surface of 2 nm InN layers grown on GaN (0001) buffer layers. Metal-insulator-semiconductor Ni/SiNx/InN capacitors were analyzed by capacitance-voltage (C-V) and current-voltage measurements and were used as gates in InN FET transistors (MISFETs). Comparison of the experimental C-V results with self-consistent Schrödinger-Poisson calculations indicates the presence of a positive charge at the SiNx/InN interface of Qif ≈ 4.4 - 4.8 × 1013 cm-2, assuming complete InN strain relaxation. Operation of InN MISFETs was demonstrated, but their performance was limited by a catastrophic breakdown at drain-source voltages above 2.5-3.0 V, the low electron mobility, and high series resistances of the structures.

  12. Aluminum Nitride Grown by Atomic Layer Epitaxy Characterized with Real-Time Grazing Incidence Small Angle X-ray Scattering

    NASA Astrophysics Data System (ADS)

    Anderson, Virginia; Nepal, Neeraj; Johnson, Scooter; Robinson, Zachary; Demasi, Alexander; Hite, Jennifer; Ludwig, Karl; Eddy, Charles

    Aluminum nitride, gallium nitride, and indium nitride are being considered for many applications, and are currently being used commercially for LEDs. These III-nitride films are conventionally deposited by metalorganic chemical vapor deposition and molecular beam epitaxy. Research into depositing III-nitrides with atomic layer epitaxy (ALE) is underway as it is a fabrication friendly technique for thin films at lower temperatures. AlN deposited with ALE at 500°C have been shown to have good crystallinity, but relatively high carbon and oxygen impurities, and understanding the film deposition mechanism is an ongoing project. Grazing incidence small angle x-ray scattering (GISAXS) is sensitive to surface features, making it useful for real time monitoring of deposition processes. AlN was monitored by GISAXS while being deposited with ALE using trimethylaluminum and hydrogen/nitrogen plasma at the Brookhaven National Synchrotron Light Source and the Cornell High Energy Synchrotron Source. The GISAXS of AlN ALE at nominally 400°C, 450°C, and 500°C was compared to ex situ characterization with XPS and AFM.

  13. Growth of Well-Aligned InN Nanorods on Amorphous Glass Substrates

    NASA Astrophysics Data System (ADS)

    Li, Huijie; Zhao, Guijuan; Wei, Hongyuan; Wang, Lianshan; Chen, Zhen; Yang, Shaoyan

    2016-05-01

    The growth of well-aligned nanorods on amorphous substrates can pave the way to fabricate large-scale and low-cost devices. In this work, we successfully prepared vertically well-aligned c-axis InN nanorods on amorphous glass substrate by metal-organic chemical vapor deposition. The products formed directly on bare glass are randomly oriented without preferential growth direction. By inserting a GaN/Ti interlayer, the nanowire alignment can be greatly improved as indicated by scanning electron microscopy and X-ray diffraction.

  14. Growth of Well-Aligned InN Nanorods on Amorphous Glass Substrates.

    PubMed

    Li, Huijie; Zhao, Guijuan; Wei, Hongyuan; Wang, Lianshan; Chen, Zhen; Yang, Shaoyan

    2016-12-01

    The growth of well-aligned nanorods on amorphous substrates can pave the way to fabricate large-scale and low-cost devices. In this work, we successfully prepared vertically well-aligned c-axis InN nanorods on amorphous glass substrate by metal-organic chemical vapor deposition. The products formed directly on bare glass are randomly oriented without preferential growth direction. By inserting a GaN/Ti interlayer, the nanowire alignment can be greatly improved as indicated by scanning electron microscopy and X-ray diffraction. PMID:27229517

  15. Excitation-induced energy shifts in the optical gain spectra of InN quantum dots

    NASA Astrophysics Data System (ADS)

    Lorke, M.; Seebeck, J.; Gartner, P.; Jahnke, F.; Schulz, S.

    2009-08-01

    A microscopic theory for the optical absorption and gain spectra of InN quantum-dot systems is used to study the combined influence of material properties and interaction-induced effects. Atomistic tight-binding calculations for the single-particle properties of the self-assembled quantum-dot and wetting-layer system are used in conjunction with a many-body description of Coulomb interaction and carrier phonon interaction. We analyze the carrier-density and temperature dependence of strong excitation-induced energy shifts of the dipole-allowed quantum-dot transitions.

  16. Hybrid functional investigations of band gaps and band alignments for AlN, GaN, InN, and InGaN.

    PubMed

    Moses, Poul Georg; Miao, Maosheng; Yan, Qimin; Van de Walle, Chris G

    2011-02-28

    Band gaps and band alignments for AlN, GaN, InN, and InGaN alloys are investigated using density functional theory with the with the Heyd-Scuseria-Ernzerhof {HSE06 [J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 134, 8207 (2003); 124, 219906 (2006)]} XC functional. The band gap of InGaN alloys as a function of In content is calculated and a strong bowing at low In content is found, described by bowing parameters 2.29 eV at 6.25% and 1.79 eV at 12.5%, indicating the band gap cannot be described by a single composition-independent bowing parameter. Valence-band maxima (VBM) and conduction-band minima (CBM) are aligned by combining bulk calculations with surface calculations for nonpolar surfaces. The influence of surface termination [(1100) m-plane or (1120) a-plane] is thoroughly investigated. We find that for the relaxed surfaces of the binary nitrides the difference in electron affinities between m- and a-plane is less than 0.1 eV. The absolute electron affinities are found to strongly depend on the choice of XC functional. However, we find that relative alignments are less sensitive to the choice of XC functional. In particular, we find that relative alignments may be calculated based on Perdew-Becke-Ernzerhof [J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 134, 3865 (1996)] surface calculations with the HSE06 lattice parameters. For InGaN we find that the VBM is a linear function of In content and that the majority of the band-gap bowing is located in the CBM. Based on the calculated electron affinities we predict that InGaN will be suited for water splitting up to 50% In content. PMID:21361552

  17. Hybrid functional investigations of band gaps and band alignments for AIN, GaN, InN, and InGaN

    SciTech Connect

    Moses, Poul George; Miao, M. S.; Yan, Qimin; Van de Walle, Chris G.

    2011-01-01

    Band gaps and band alignments for AlN,GaN, InN, and InGaN alloys are investigated using density functional theory with the with the Heyd–Scuseria–Ernzerhof {HSE06 [J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys.134, 8207 (2003)10.1063/1.3548872; 124, 219906 (2006)]} XC functional. The band gap of InGaN alloys as a function of In content is calculated and a strong bowing at low In content is found, described by bowing parameters 2.29 eV at 6.25% and 1.79 eV at 12.5%, indicating the band gap cannot be described by a single composition-independent bowing parameter. Valence-band maxima (VBM) and conduction-band minima (CBM) are aligned by combining bulk calculations with surface calculations for nonpolar surfaces. The influence of surface termination [(1{bar 1}00) m-plane or (11{bar 20) a-plane] is thoroughly investigated. We find that for the relaxed surfaces of the binary nitrides the difference in electron affinities between m- and a-plane is less than 0.1 eV. The absolute electron affinities are found to strongly depend on the choice of XC functional. However, we find that relative alignments are less sensitive to the choice of XC functional. In particular, we find that relative alignments may be calculated based on Perdew–Becke–Ernzerhof [J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett.134, 3865 (1996)] surface calculations with the HSE06 lattice parameters. For InGaN we find that the VBM is a linear function of In content and that the majority of the band-gap bowing is located in the CBM. Based on the calculated electron affinities we predict that InGaN will be suited for water splitting up to 50% In content.

  18. Nitride precipitation in salt-bath nitrided interstitial-free steel

    SciTech Connect

    Lee, Tae-Ho; Oh, Chang-Seok; Lee, Min-Ku; Han, Sang-Won

    2010-10-15

    Nitride precipitation and its effect on microstrain in salt-bath nitrided interstitial-free steel were investigated using transmission electron microscopy and neutron diffraction. As the cooling rate after nitriding decreased, two nitrides, {gamma}'-Fe{sub 4}N and {alpha}{sup -}Fe{sub 16}N{sub 2}, were identified in diffusion zone. Combined analyses using Rietveld whole-profile fitting and size-strain analysis revealed that the microstrain in the nitrided specimen increased due to nitrogen supersaturation and then decreased after nitride precipitation, whereas the effective particle size continuously decreased. It was found that microstrain is the dominant factor in peak broadening of the nitrided specimen.

  19. Morphology and composition controlled growth of polar c-axis and nonpolar m-axis well-aligned ternary III-nitride nanotube arrays

    NASA Astrophysics Data System (ADS)

    Li, Huijie; Zhao, Guijuan; Kong, Susu; Han, Dongyue; Wei, Hongyuan; Wang, Lianshan; Chen, Zhen; Yang, Shaoyan

    2015-10-01

    Control over the nanostructure morphology and growth orientation is in high demand for fundamental research and technological applications. Herein we report a general strategy to fabricate polar c-axis and nonpolar m-axis well-aligned III-nitride ternary nanotube arrays with controllable morphologies and compositions. By depositing AlN on the InN nanorod array templates and thermally removing the InN templates, InAlN nanotubes can be obtained. Polar c-axis and nonpolar m-axis nanotubes were formed on the c- and r-plane sapphire substrates, respectively. The nanotubes are single crystalline and highly ordered on the substrates, as revealed by X-ray diffraction, electron microscopy, and selected area electron microscopy characterization. It was found that the In droplets on top of the InN nanorods play a critical role in controlling the morphology of the nanotubes. By keeping or removing the In droplets, the obtained nanotubes exhibited both ends open or only one end open. And by varying the AlN deposition temperature, the In composition in the nanotubes can be changed from 0 to 0.29. The nanotube synthesis method is simple and can be applied to the formation of other III-nitride ternary (InGaN, and AlGaN) or quaternary (InAlGaN) alloy nanotube arrays.Control over the nanostructure morphology and growth orientation is in high demand for fundamental research and technological applications. Herein we report a general strategy to fabricate polar c-axis and nonpolar m-axis well-aligned III-nitride ternary nanotube arrays with controllable morphologies and compositions. By depositing AlN on the InN nanorod array templates and thermally removing the InN templates, InAlN nanotubes can be obtained. Polar c-axis and nonpolar m-axis nanotubes were formed on the c- and r-plane sapphire substrates, respectively. The nanotubes are single crystalline and highly ordered on the substrates, as revealed by X-ray diffraction, electron microscopy, and selected area electron microscopy

  20. Aluminum nitride insulating films for MOSFET devices

    NASA Technical Reports Server (NTRS)

    Lewicki, G. W.; Maserjian, J.

    1972-01-01

    Application of aluminum nitrides as electrical insulator for electric capacitors is discussed. Electrical properties of aluminum nitrides are analyzed and specific use with field effect transistors is defined. Operational limits of field effect transistors are developed.

  1. Near-infrared InN quantum dots on high-In composition InGaN

    SciTech Connect

    Soto Rodriguez, Paul E. D.; Gomez, Victor J.; Kumar, Praveen; Calleja, Enrique; Noetzel, Richard

    2013-04-01

    We report the growth of InN quantum dots (QDs) on thick InGaN layers with high In composition (>50%) by molecular beam epitaxy. Optimized growth conditions are identified for the InGaN layers at reduced growth temperature and increased active N flux resulting in minimized phase separation and defect generation. The InN QDs grown on top of the optimized InGaN layer exhibit small size, high density, and photoluminescence up to room temperature. The InN/InGaN QDs reveal excellent potential for intermediate band solar cells with the InGaN and InN QD bandgap energies tuned to the best match of absorption to the solar spectrum.

  2. Ion-beam nitriding of steels

    NASA Technical Reports Server (NTRS)

    Salik, J.

    1985-01-01

    The application of the ion beam technique to the nitriding of steels is described. It is indicated that the technique can be successfully applied to nitriding. Some of the structural changes obtained by this technique are similar to those obtained by ion nitriding. The main difference is the absence of the iron nitride diffraction lines. It is found that the dependence of the resultant microhardness on beam voltage for super nitralloy is different from that of 304 stainless steel.

  3. Ion-beam nitriding of steels

    NASA Technical Reports Server (NTRS)

    Salik, J.

    1984-01-01

    The application of the ion beam technique to the nitriding of steels is described. It is indicated that the technique can be successfully applied to nitriding. Some of the structural changes obtained by this technique are similar to those obtained by ion nitriding. The main difference is the absence of the iron nitride diffraction lines. It is found that the dependence of the resultant microhardness on beam voltage for super nitralloy is different from that of 304 stainless steel.

  4. Defect reduction in (11-22) semipolar GaN with embedded InN islands on m-plane sapphire

    NASA Astrophysics Data System (ADS)

    Jung, Chilsung; Jang, Jongjin; Hwang, Junghwan; Jeong, Joocheol; Kim, Jinwan; Lee, kyungjae; Nam, Okhyun

    2013-05-01

    This paper reports on the improved properties of semipolar (11-22) GaN with embedded InN islands on m-plane sapphire substrate. The crystal quality of GaN grown over embedded InN islands was improved by the defect blocking mechanism that the InN islands stop from propagating of dislocations. The full width at half maximum (FWHM) of X-ray rocking curves for the on- and off-axes planes of GaN with embedded InN islands significantly narrowed. The photoluminescence (PL) intensity of GaN with embedded InN islands increased by 28% compared with that of GaN without InN islands (reference GaN). The n-type GaN carrier mobility was analyzed by using temperature-dependent Hall effect measurement. The increase in peak mobility at 350 K from 104 to 113 cm2/Vs with embedded islands also suggested the effectiveness of embedded InN islands in GaN. LEDs fabricated on (11-22) GaN with embedded InN islands showed approximately 2.7 times higher optical output power than the reference LED at 100 mA.

  5. A Dance Class, a Drag King, & the Pedagogical Possibilities of Performative Hip-Hop: An Interview with Carmen Morrison & Alex U. Inn

    ERIC Educational Resources Information Center

    Schönfeldt-Aultman, Scott M.; Morrison, Carmen

    2015-01-01

    Alex U. Inn is the co-founder and one of the two MCs of the hip-hop drag king group, Momma's Boyz. Momma's Boyz celebrated their tenth anniversary in 2014. Carmen Morrison is the offstage name of Alex U. Inn, though "Carmen" now goes by Alex offstage, as well. Within this interview, the names "Carmen" and "Alex" are…

  6. Low-temperature (≥400 °C) growth of InN by metalorganic vapor phase epitaxy using an NH3 decomposition catalyst

    NASA Astrophysics Data System (ADS)

    Yamamoto, Akio; Kodama, Kazuki; Shigekawa, Naoteru; Matsuoka, Takashi; Kuzuhara, Masaaki

    2016-05-01

    In this paper, we report the metalorganic vapor phase epitaxial (MOVPE) growth of InN using a NiO-based pellet-type NH3 decomposition catalyst. The use of the catalyst significantly changes the growth behavior of InN, which is dependent on the growth temperature (T g). Continuous InN films without the incorporation of metallic In and a cubic phase are grown at T g = 400–480 °C. An InN film grown at T g ≈ 450 °C has a full-width at half maximum (FWHM) of 376 arcsec in the X-ray rocking curve for InN(0002) reflection. At T g ≥ 500 °C, the deposition rate of InN rapidly decreases and the deposited films become discontinuous with large (ca. 1 µm) pyramidal grains of InN. Depositions are scarcely obtained at T g ≥ 600 °C. Such changes in the growth behavior of InN are governed by the NH3 decomposition.

  7. Growth of wurtzite InN on bulk In{sub 2}O{sub 3}(111) wafers

    SciTech Connect

    Sadofev, Sergey; Cho, Yong Jin; Brandt, Oliver; Ramsteiner, Manfred; Calarco, Raffaella; Riechert, Henning; Erwin, Steven C.; Galazka, Zbigniew; Korytov, Maxym; Albrecht, Martin; Uecker, Reinhard; Fornari, Roberto

    2012-10-22

    A single phase InN epitaxial film is grown on a bulk In{sub 2}O{sub 3}(111) wafer by plasma-assisted molecular beam epitaxy. The InN/In{sub 2}O{sub 3} orientation relationship is found to be (0001) parallel (111) and [1100] parallel [112]. High quality of the layer is confirmed by the small widths of the x-ray rocking curves, the sharp interfaces revealed by transmission electron microscopy, the narrow spectral width of the Raman E{sub 2}{sup h} vibrational mode, and the position of the photoluminescence band close to the fundamental band gap of InN.

  8. Silicon nitride/silicon carbide composite powders

    DOEpatents

    Dunmead, Stephen D.; Weimer, Alan W.; Carroll, Daniel F.; Eisman, Glenn A.; Cochran, Gene A.; Susnitzky, David W.; Beaman, Donald R.; Nilsen, Kevin J.

    1996-06-11

    Prepare silicon nitride-silicon carbide composite powders by carbothermal reduction of crystalline silica powder, carbon powder and, optionally, crystalline silicon nitride powder. The crystalline silicon carbide portion of the composite powders has a mean number diameter less than about 700 nanometers and contains nitrogen. The composite powders may be used to prepare sintered ceramic bodies and self-reinforced silicon nitride ceramic bodies.

  9. Process for making transition metal nitride whiskers

    DOEpatents

    Bamberger, C.E.

    1988-04-12

    A process for making metal nitrides, particularly titanium nitride whiskers, using a cyanide salt as a reducing agent for a metal compound in the presence of an alkali metal oxide. Sodium cyanide, various titanates and titanium oxide mixed with sodium oxide react to provide titanium nitride whiskers that can be used as reinforcement to ceramic composites. 1 fig., 1 tab.

  10. Process for making transition metal nitride whiskers

    SciTech Connect

    Bamberger, Carlos E.

    1989-01-01

    A process for making metal nitrides, particularly titanium nitride whiskers, using a cyanide salt as a reducing agent for a metal compound in the presence of an alkali metal oxide. Sodium cyanide, various titanates and titanium oxide mixed with sodium oxide react to provide titanium nitride whiskers that can be used as reinforcement to ceramic composites.

  11. Resonant raman scattering and dispersion of polar optical and acoustic phonons in hexagonal inn

    SciTech Connect

    Davydov, V. Yu. Klochikhin, A. A.; Smirnov, A. N.; Strashkova, I. Yu.; Krylov, A. S.; Lu Hai; Schaff, William J.; Lee, H.-M.; Hong, Y.-L.; Gwo, S.

    2010-02-15

    It is shown that a study of the dependence of impurity-related resonant first-order Raman scattering on the frequency of excitation light makes it possible to observe the dispersion of polar optical and acoustic branches of vibrational spectrum in hexagonal InN within a wide range of wave vectors. It is established that the wave vectors of excited phonons are uniquely related to the energy of excitation photon. Frequencies of longitudinal optical phonons E{sub 1}(LO) and A{sub 1}(LO) in hexagonal InN were measured in the range of excitation-photon energies from 2.81 to 1.17 eV and the frequencies of longitudinal acoustic phonons were measured in the range 2.81-1.83 eV of excitation-photon energies. The obtained dependences made it possible to extrapolate the dispersion of phonons A{sub 1}(LO) and E{sub 1}(LO) to as far as the point {Gamma} in the Brillouin zone and estimate the center-band energies of these phonons (these energies have not been uniquely determined so far).

  12. From Amateur Astronomer to Observatory Director: The Curious Case of R. T. A. Innes

    NASA Astrophysics Data System (ADS)

    Orchiston, Wayne

    Robert Innes was one of a select band of amateur astronomers who made the transition to professional ranks towards the end of the nineteenth century. Initially he had a passion for mathematical astronomy, but after settling in Sydney he developed a taste for observational astronomy, specialising in the search for new double stars. He quickly became known for his success in this field and for his publications on solar system perturbations, and with John Tebbutt's patronage managed to secure a clerical position at the Royal Observatory, Cape of Good Hope. Once there he continued to observe in his spare time and to publish, and, with strong support from Sir David Gill, was appointed founding Director of the Transvaal Observatory. By the time he died in 1933, Innes had received an honorary D.Sc. from Leiden University, and had established an international reputation as a positional astronomer. This paper provides an interesting case study of a well-known `amateur-turned-professional', and an example of the ways in which patronage played a key role in nineteenth and early twentieth century Australian and South African astronomy.

  13. Solar hot water system installed at Days Inn Motel, Jacksonville, Florida

    SciTech Connect

    1980-09-01

    The solar energy hot water system installed in the Days Inns of America, Inc., Days Inn Motel (120 rooms) I-95 and Cagle Road, Jacksonville, Florida, is described. The solar system was designed by ILI, Incorporated to provide 65 percent of the hot water demand. The system is one of eleven systems planned under this grant. Water (in the Solar Energy Products, Model CU-30ww liquid flat plate collector (900 square feet) system) automatically drains into the 1000 gallon lined and vented steel storage tank when the pump is not running. Heat is transferred from storage to Domestic Hot Water (DHW) tanks through a tube and shell heat exchanger. A circulating pump between the DHW tanks and heat exchanger enables solar heated water to help make up DHW standby losses. All pumps are controlled by differential temperature. This system was turned on June 19, 1979. The solar components were partly funded ($15,823 of $31,823 cost) by the Department of Energy.

  14. Solar hot water system installed at Days Inn Motel, Dallas, Texas

    SciTech Connect

    Not Available

    1980-09-01

    The solar energy hot water system installed in the Days Inn of America, Inc., Days Inn Motel (100 rooms), I-635/2753 Forrest Lane, Dallas, Texas is described. The solar system was designed by ILI, Inc., to provide 65% of the total Domestic Hot Water (DHW) demand. The liquid flat plate (water) collector is 1000 square feet of solar energy products, Model CU-30W array. Water in the collector system automatically drains into the 1000 gallon steel storage tank located in the mechanical room when the pump is not running. Heat is transferred from the storage tank to DHW tanks through a tube and shell heat exchanger. A circulating pump between the DHW tanks and the heat exchanger enables solar heated water to help make up DHW tank standby losses. All pumps are controlled by differential temperature. Operation of this system was begun March 11, 1980. The solar components were partly funded ($15,000 of $30,000 cost) by the Department of Energy Grant.

  15. Solar domestic hot water system manual for Day's Inn, Garland, Texas

    SciTech Connect

    Not Available

    1981-05-01

    The solar domestic hot water system installed at Day's Inn, I-30 and 6222 Beltline, Garland, Texas is described. The system is a solar collector array used to provide from 39.9% in December, to 84.7% in August, of the domestic hot water usage of the Day's Inn in Garland, Texas. The system is an automatic draindown design employing an atmospheric vented storage tank for storing the hot water collected by the 998 sq. ft. collector array. The system's major components and features are: 44 Daystar 1400 collectors, gross square footage of 998 sq. ft.; 1000 gallon vented storage tank; 3 B and G pumps: one for the collection loop, one for transfer of energy from the thermal storage tank to the shell side of the B and G heat exchanger; the third to circulate water from the three existing DHW tanks through the tube side of the heat exchanger; 3 one-inch Taco automatic valves to control the heating of water through existing DHW tanks; vacuum breakers to ensure draindown when main circulator pump stops running; pressure gauges installed across each pump so that system flow rates can be set and read periodically as a preventive maintenance check; collector angle of 30/sup 0/.

  16. Performance of GaN-on-Si-based vertical light-emitting diodes using silicon nitride electrodes with conducting filaments: correlation between filament density and device reliability.

    PubMed

    Kim, Kyeong Heon; Kim, Su Jin; Lee, Tae Ho; Lee, Byeong Ryong; Kim, Tae Geun

    2016-08-01

    Transparent conductive electrodes with good conductivity and optical transmittance are an essential element for highly efficient light-emitting diodes. However, conventional indium tin oxide and its alternative transparent conductive electrodes have some trouble with a trade-off between electrical conductivity and optical transmittance, thus limiting their practical applications. Here, we present silicon nitride transparent conductive electrodes with conducting filaments embedded using the electrical breakdown process and investigate the dependence of the conducting filament density formed in the transparent conductive electrode on the device performance of gallium nitride-based vertical light-emitting diodes. Three gallium nitride-on-silicon-based vertical light-emitting diodes using silicon nitride transparent conductive electrodes with high, medium, and low conducting filament densities were prepared with a reference vertical light-emitting diode using metal electrodes. This was carried to determine the optimal density of the conducting filaments in the proposed silicon nitride transparent conductive electrodes. In comparison, the vertical light-emitting diodes with a medium conducting filament density exhibited the lowest optical loss, direct ohmic behavior, and the best current injection and distribution over the entire n-type gallium nitride surface, leading to highly reliable light-emitting diode performance. PMID:27505739

  17. Polarization Effects in Group III-Nitride Materials and Devices

    NASA Astrophysics Data System (ADS)

    Wei, Qiyuan

    Group III-nitride semiconductors have wide application in optoelectronic devices. Spontaneous and piezoelectric polarization effects have been found to be critical for electric and optical properties of group III-nitrides. In this dissertation, firstly, the crystal orientation dependence of the polarization is calculated and in-plane polarization is revealed. The in-plane polarization is sensitive to the lateral characteristic dimension determined by the microstructure. Specific semi-polar plane growth is suggested for reducing quantum-confined Stark effect. The macroscopic electrostatic field from the polarization discontinuity in the heterostructures is discussed, b ased on that, the band diagram of InGaN/GaN quantum well/barrier and AlGaN/GaN heterojunction is obtained from the self-consistent solution of Schrodinger and Poisson equations. New device design such as triangular quantum well with the quenched polarization field is proposed. Electron holography in the transmission electron microscopy is used to examine the electrostatic potential under polarization effects. The measured potential energy profiles of heterostructure are compared with the band simulation, and evidences of two-dimensional hole gas (2DHG) in a wurtzite AlGaN/ AlN/ GaN superlattice, as well as quasi two-dimensional electron gas (2DEG) in a zinc-blende AlGaN/GaN are found. The large polarization discontinuity of AlN/GaN is the main source of the 2DHG of wurtzite nitrides, while the impurity introduced during the growth of AlGaN layer provides the donor states that to a great extent balance the free electrons in zinc-blende nitrides. It is also found that the quasi-2DEG concentration in zinc-blende AlGaN/GaN is about one order of magnitude lower than the wurtzite AlGaN/GaN, due to the absence of polarization. Finally, the InAlN/GaN lattice-matched epitaxy, which ideally has a zero piezoelectric polarization and strong spontaneous polarization, is experimentally studied. The breakdown in

  18. Electronic properties of III-nitride semiconductors: A first-principles investigation using the Tran-Blaha modified Becke-Johnson potential

    SciTech Connect

    Araujo, Rafael B. Almeida, J. S. de Ferreira da Silva, A.

    2013-11-14

    In this work, we use density functional theory to investigate the influence of semilocal exchange and correlation effects on the electronic properties of III-nitride semiconductors considering zinc-blende and wurtzite crystal structures. We find that the inclusion of such effects through the use of the Tran-Blaha modified Becke-Johnson potential yields an excellent description of the electronic structures of these materials giving energy band gaps which are systematically larger than the ones obtained with standard functionals such as the generalized gradient approximation. The discrepancy between the experimental and theoretical band gaps is then significantly reduced with semilocal exchange and correlation effects. However, the effective masses are overestimated in the zinc-blende nitrides, but no systematic trend is found in the wurtzite compounds. New results for energy band gaps and effective masses of zinc-blende and wurtzite indium nitrides are presented.

  19. Electronic properties of III-nitride semiconductors: A first-principles investigation using the Tran-Blaha modified Becke-Johnson potential

    NASA Astrophysics Data System (ADS)

    Araujo, Rafael B.; de Almeida, J. S.; Ferreira da Silva, A.

    2013-11-01

    In this work, we use density functional theory to investigate the influence of semilocal exchange and correlation effects on the electronic properties of III-nitride semiconductors considering zinc-blende and wurtzite crystal structures. We find that the inclusion of such effects through the use of the Tran-Blaha modified Becke-Johnson potential yields an excellent description of the electronic structures of these materials giving energy band gaps which are systematically larger than the ones obtained with standard functionals such as the generalized gradient approximation. The discrepancy between the experimental and theoretical band gaps is then significantly reduced with semilocal exchange and correlation effects. However, the effective masses are overestimated in the zinc-blende nitrides, but no systematic trend is found in the wurtzite compounds. New results for energy band gaps and effective masses of zinc-blende and wurtzite indium nitrides are presented.

  20. Indium-111 autologous leukocyte imaging in pancreatitis

    SciTech Connect

    Anderson, J.R.; Spence, R.A.; Laird, J.D.; Ferguson, W.R.; Kennedy, T.L.

    1986-03-01

    Thirty-nine patients with acute pancreatitis have been assessed using a prognostic factor grading system, abdominal ultrasound, and autologous leukocyte imaging. Both prognostic factor grading and leukocyte imaging can accurately assess the severity of the disease early in its course. All patients with a negative indium-labeled leukocyte image recovered without sequelae, whereas five of the 12 patients with a positive image developed complications, including two deaths. Abdominal ultrasound is of no value in assessing severity, but is a useful method of detecting those patients with gallstone-associated disease. In patients with suspected abscess formation following acute pancreatitis, indium leukocyte imaging does not differentiate between fat necrosis and abscess formation. In this situation, computerized tomography should be carried out before laparotomy is undertaken.

  1. Sorption of indium (III) onto carbon nanotubes.

    PubMed

    Alguacil, F J; Lopez, F A; Rodriguez, O; Martinez-Ramirez, S; Garcia-Diaz, I

    2016-08-01

    Indium has numerous applications in different industrial sectors and is not an abundant element. Therefore appropriate technology to recover this element from various process wastes is needed. This research reports high adsorption capacity of multiwalled carbon nanotubes (MWCNT) for In(III). The effects of pH, kinetics, isotherms and adsorption mechanism of MWCNT on In(III) adsorption were investigated and discussed in detail. The pH increases improves the adsorption capacity for In(III). The Langmuir adsorption model is the best fit with the experimental data. For the kinetic study, the adsorption onto MWCNT could be fitted to pseudo second-order. The adsorption of indium(III) can be described to a mechanism which consists of a film diffusion controlled process. Metal desorption can be achieved with acidic solutions. PMID:27085001

  2. Efficiency droop in indium gallium nitride light emitters: An introduction to photon quenching processes

    NASA Astrophysics Data System (ADS)

    Sarkissian, Raymond

    This thesis contains work from two separate projects, a study of the efficiency of light emitting diodes, and a tapered-fiber approach to photonic crystal integrated photonics. The first part of this thesis describes an experimental investigation of the quantum efficiency of InGaN-based light emitters. Blue and Green LEDs that utilize InGaN quantum wells for their active medium suffer from a reduction in efficiency with increasing bias. This phenomenon is called efficiency droop. In this thesis experimental evidence for significant quenching of photon population in InGaN is presented and its relevance to the efficiency droop problem in InGaN-based light emitting structures is discussed. An equilibrium rate equation model is set up to demonstrate that radiative efficiency for this loss mechanism not only has a similar dependence on carrier density as Auger recombination process, but it also possesses the right order of magnitude making it difficult to distinguish between the two and possibly leading to errors in interpretation. The impact of photon quenching processes on device performance is emphasized by demonstrating loss of efficiency for spectral regions where there is experimental evidence for photon quenching. We have observed this phenomenon for both c-plane and m-plane light emitting structures. Both structures exhibit droop-like behavior for spectral regions where there is evidence for photon quenching. We have also observed and characterized the dynamical Stark effect for an m-plane light emitter considered in this manuscript. Our results revealed localization centers with a corresponding band-edge energy of 388nm and an excitonic binding energy of 17.81mev. Furthermore, fabrication of a photonic crystal waveguide fiber taper coupler is demonstrated with a peak coupling efficiency of 97 %. All four ports of the device are accessible providing an opportunity for investigation of simultaneous interaction of different light sources inside the photonic crystal cavity. A numerical model is set forth to analyze such devices with an excellent agreement with the experimental data. One important result of that theory is the ability to experimentally extract the phase contribution of optical resonators that employ periodic structures such as photonic crystal cavities. This device has also been used to demonstrate all-optical nonlinear shift and bleaching of cavity resonances via non-degenerate two photon absorption, non-degenerate Kerr mechanism, free carrier absorption, and free carrier plasma effects. As the response time of two photon processes are very fast, about 10 fs, this device can be used in ultrafast low energy all optical switching applications.

  3. Efficiency Improvement of Nitride-Based Solid State Light Emitting Materials -- CRADA Final Report

    SciTech Connect

    Kisielowski, Christian; Weber, Eicke

    2010-05-13

    The development of In{sub x}Ga{sub 1-x} N/GaN thin film growth by Molecular Beam Epitaxy has opened a new route towards energy efficient solid-state lighting. Blue and green LED's became available that can be used to match the whole color spectrum of visible light with the potential to match the eye response curve. Moreover, the efficiency of such devices largely exceeds that of incandescent light sources (tungsten filaments) and even competes favorably with lighting by fluorescent lamps. It is, however, also seen in Figure 1 that it is essential to improve on the luminous performance of green LED's in order to mimic the eye response curve. This lack of sufficiently efficient green LED's relates to particularities of the In{sub x}Ga{sub 1-x}N materials system. This ternary alloy system is polar and large strain is generated during a lattice mismatched thin film growth because of the significantly different lattice parameters between GaN and InN and common substrates such as sapphire. Moreover, it is challenging to incorporate indium into GaN at typical growth temperatures because a miscibility gap exists that can be modified by strain effects. As a result a large parameter space needs exploration to optimize the growth of In{sub x}Ga{sub 1-x}N and to date it is unclear what the detailed physical processes are that affect device efficiencies. In particular, an inhomogeneous distribution indium in GaN modifies the device performance in an unpredictable manner. As a result technology is pushed forward on a trial and error basis in particular in Asian countries such as Japan and Korea, which dominate the market and it is desirable to strengthen the competitiveness of the US industry. This CRADA was initiated to help Lumileds Lighting/USA boosting the performance of their green LED's. The tasks address the distribution of the indium atoms in the active area of their blue and green LED's and its relation to internal and external quantum efficiencies. Procedures to

  4. Effect of strain on low-loss electron energy loss spectra of group-III nitrides

    NASA Astrophysics Data System (ADS)

    Palisaitis, J.; Hsiao, C.-L.; Junaid, M.; Birch, J.; Hultman, L.; Persson, P. O. Å.

    2011-12-01

    Thin films of AlN experiencing different strain states were investigated with a scanning transmission electron microscope (STEM) by low-loss electron energy loss spectroscopy (EELS). The results conclude that the low-loss properties and in particular, the plasmon peak position is shifted as a direct consequence of the inherent strain of the sample. The results reveal that strain, even minor levels, can be measured by STEM-EELS. These results were further corroborated by full potential calculations and expanded to include the similar III nitrides GaN and InN. It is found that a unit-cell volume change of 1% results in a bulk plasmon peak shift of 0.159, 0.168, and 0.079 eV for AlN, GaN, and InN, respectively, according to simulations. The AlN peak shift was experimentally corroborated with a corresponding peak shift of 0.156 eV. The unit-cell volume is used here since it is found that regardless of in- and out-of-plane lattice augmentation, the low-loss properties appear near identical for constant volume. These results have an impact on the interpretation of the plasmon energy and its applicability for determining and separating stress and composition. It is found that while the bulk plasmon energy can be used as a measure of the composition in a group-III nitride alloy for relaxed structures, the presence of strain significantly affects such a measurement. The strain is found to have a lower impact on the peak shift for Al1-xInxN (˜3% compositional error per 1% volume change) and In1-xGaxN alloys compared to significant variations for Al1-xGaxN (16% compositional error for 1% volume change). Hence a key understanding in low-loss studies of III nitrides is that strain and composition are coupled and affect one another.

  5. Electroplated indium bump arrays and the bonding reliability

    NASA Astrophysics Data System (ADS)

    Qiuping, Huang; Gaowei, Xu; Gang, Quan; Yuan, Yuan; Le, Luo

    2010-11-01

    A novel electroplating indium bumping process is described, as a result of which indium bump arrays with a pitch of 100 μm and a diameter of 40 μm were successfully prepared. UBM (under bump metallization) for indium bumping was investigated with an XRD technique. The experimental results indicate that Ti/Pt (300 Å / 200 Å) has an excellent barrier effect both at room temperature and at 200 °C. The bonding reliability of the indium bumps was evaluated by a shear test. Results show that the shear strength of the indium bump significantly increases after the first reflow and then changes slowly with increasing reflow times. Such a phenomenon may be caused by the change in textures of the indium after reflow. The corresponding flip-chip process is also discussed in this paper.

  6. Growth and Carrier Transport Studies of III-Nitride Alloys by Ammonia Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Browne, David Alan

    The III-Nitride alloys span the entire visible spectrum and offer applications to LEDs, lasers, solar cells and power electronics. A detailed understanding of heterojunction growth is required for achieving high performance devices especially due to the large lattice mismatch in this alloy system. The wurtzite crystal system also lacks an inversion center which provides a polarization-induced electric field along the c direction that can be exploited in device design or reduced by growth on other substrate orientations. We present results on the growth of InGaN films by Ammonia MBE on polar gallium nitride substrates as well as on nonpolar and semipolar orientations. We show results from coloaded growth conditions and investigate the effect of substrate temperature, growth rate, and ammonia flow on indium incorporation and impurity uptake. We then present solar cell results from a high indium uptake semipolar orientation with fields in a favorable direction for a p-i-n device. We also investigate and understand the effect of relaxation via basal plane slip and unintentional impurity incorporation on device performance. Results are then be presented on electron transport through c plane InGaN/GaN multiple quantum well (MQW) active regions grown by NH3 MBE which have direct relevance to transport in MQW solar cells and LEDs. The presence of indium fluctuations in InGaN has been suspected and debated in the literature for some time, but there is still much that is not well understood. We present Atom Probe Tomography (APT) analysis of the quantum wells to explicitly examine the magnitude and length scale of these observed local alloy fluctuations. The discrepancy in current-voltage behavior between experiment and modeling using traditional 1D simulation software will be discussed. A 2D/3D drift-diffusion Schrodinger-Poisson solver developed by collaborators was used to input alloy fluctuation parameters to elucidate their direct effect on barrier heights and on

  7. The toxicology of indium tin oxide.

    PubMed

    Bomhard, Ernst M

    2016-07-01

    Indium tin oxide (ITO) is a technologically important semiconductor. An increasing number of cases of severe lung effects (characterized by pulmonary alveolar proteinosis and/or interstitial fibrosis) in ITO-exposed workers warrants a review of the toxicological hazards. Short- and long-term inhalation studies in rats and mice revealed persistent alveolar proteinosis, inflammation and fibrosis in the lungs down to concentrations as low as 0.01mg/m(3). In rats, the incidences of bronchiolo-alveolar adenomas and carcinomas were significantly increased at all concentrations. In mice, ITO was not carcinogenic. A few bronchiolo-alveolar adenomas occurring after repeated intratracheal instillation of ITO to hamsters have to be interpreted as treatment-related. In vitro and in vivo studies on the formation of reactive oxygen species suggest epigenetic effects as cause of the lung tumor development. Repeated intratracheal instillation of ITO to hamsters slightly affected the male sexual organs, which might be interpreted as a secondary effect of the lung damage. Epidemiological and medical surveillance studies, serum/blood indium levels in workers as well as data on the exposure to airborne indium concentrations indicate a need for measures to reduce exposure at ITO workplaces. PMID:27343753

  8. Nitride tuning of lanthanide chromites.

    PubMed

    Black, Ashley P; Johnston, Hannah E; Oró-Solé, Judith; Bozzo, Bernat; Ritter, Clemens; Frontera, Carlos; Attfield, J Paul; Fuertes, Amparo

    2016-03-21

    LnCrO(3-x)N(x) perovskites with Ln = La, Pr and Nd and nitrogen contents up to x = 0.59 have been synthesised through ammonolysis of LnCrO4 precursors. These new materials represent one of the few examples of chromium oxynitrides. Hole-doping through O(2-)/N(3-) anion substitution suppresses the magnetic transition far less drastically than Ln(3+)/M(2+) (M = Ca, Sr) cation substitutions because of the greater covalency of metal-nitride bonds. Hence, nitride-doping is a more benign method for doping metal oxides without suppressing electronic transitions. PMID:26916315

  9. InP (Indium Phosphide): Into the future

    NASA Technical Reports Server (NTRS)

    Brandhorst, Henry W., Jr.

    1989-01-01

    Major industry is beginning to be devoted to indium phosphide and its potential applications. Key to these applications are high speed and radiation tolerance; however the high cost of indium phosphide may be an inhibitor to progress. The broad applicability of indium phosphide to many devices will be discussed with an emphasis on photovoltaics. Major attention is devoted to radiation tolerance and means of reducing cost of devices. Some of the approaches applicable to solar cells may also be relevant to other devices. The intent is to display the impact of visionary leadership in the field and enable the directions and broad applicability of indium phosphide.

  10. Enhanced memory effect via quantum confinement in 16 nm InN nanoparticles embedded in ZnO charge trapping layer

    SciTech Connect

    El-Atab, Nazek; Nayfeh, Ammar; Cimen, Furkan; Alkis, Sabri; Ortaç, Bülend; Alevli, Mustafa; Dietz, Nikolaus; Okyay, Ali K.

    2014-06-23

    In this work, the fabrication of charge trapping memory cells with laser-synthesized indium-nitride nanoparticles (InN-NPs) embedded in ZnO charge trapping layer is demonstrated. Atomic layer deposited Al{sub 2}O{sub 3} layers are used as tunnel and blocking oxides. The gate contacts are sputtered using a shadow mask which eliminates the need for any lithography steps. High frequency C-V{sub gate} measurements show that a memory effect is observed, due to the charging of the InN-NPs. With a low operating voltage of 4 V, the memory shows a noticeable threshold voltage (V{sub t}) shift of 2 V, which indicates that InN-NPs act as charge trapping centers. Without InN-NPs, the observed memory hysteresis is negligible. At higher programming voltages of 10 V, a memory window of 5 V is achieved and the V{sub t} shift direction indicates that electrons tunnel from channel to charge storage layer.

  11. Method to Improve Indium Bump Bonding via Indium Oxide Removal Using a Multi-Step Plasma Process

    NASA Technical Reports Server (NTRS)

    Greer, H. Frank (Inventor); Jones, Todd J. (Inventor); Vasquez, Richard P. (Inventor); Hoenk, Michael E. (Inventor); Dickie, Matthew R. (Inventor); Nikzad, Shouleh (Inventor)

    2012-01-01

    A process for removing indium oxide from indium bumps in a flip-chip structure to reduce contact resistance, by a multi-step plasma treatment. A first plasma treatment of the indium bumps with an argon, methane and hydrogen plasma reduces indium oxide, and a second plasma treatment with an argon and hydrogen plasma removes residual organics. The multi-step plasma process for removing indium oxide from the indium bumps is more effective in reducing the oxide, and yet does not require the use of halogens, does not change the bump morphology, does not attack the bond pad material or under-bump metallization layers, and creates no new mechanisms for open circuits.

  12. Theoretical Study of Material and Device Properties of Group-III Nitrides

    NASA Astrophysics Data System (ADS)

    Yan, Qimin

    Group-III nitride semiconductors, including AlN, GaN, InN, and their alloys, are ideal materials for solid state lighting applications. Current research focuses on improving the efficiency by improvements in materials quality and novel device designs, for instance based on nonpolar and semipolar growth. The motivation for our work is to assist and guide the experimental development of high-performance solid state optoelectronic devices by performing computational studies. Our investigations range from basic structural and electronic properties of nitrides to the effects of device design on efficiency of light emission. In the area of fundamental properties, we performed a systematic study of strain effects on the electronic band structures of the group-III-nitrides (AlN, GaN and InN) using density-functional theory with an advanced hybrid functional as well as using the quasiparticle GW method. We present a complete set of deformation potentials that allows us to predict the band positions of group-III nitrides and their alloys (InGaN and AlGaN) under realistic strain conditions. We then employed the resulting first-principles deformation potentials to predict the effects of strain on transition energies and valence-band structures of c-plane, nonpolar, and semipolar InGaN alloy layers grown on GaN substrates, with particular attention to the role of strain in the polarized light emission. We also investigated the role of native defects in the optical properties of GaN and AlN, again using hybrid density-functional calculations. We established that complexes between Mg and nitrogen vacancies lead to the broad red luminescence that has often been observed in GaN. We find that isolated nitrogen vacancies can give rise to broad emission peaked at 2.18 eV. We show that isolated aluminum vacancies lead to an absorption peak at 3.43 eV and an emission peak at 2.73 eV. We also find that the complexes can give rise to absorption peaked at 3.97 eV and

  13. Precipitation of metal nitrides from chloride melts

    SciTech Connect

    Slater, S.A.; Miller, W.E.; Willit, J.L.

    1996-12-31

    Precipitation of actinides, lanthanides, and fission products as nitrides from molten chloride melts is being investigated for use as a final cleanup step in treating radioactive salt wastes generated by electrometallurgical processing of spent nuclear fuel. The radioactive components (eg, fission products) need to be removed to reduce the volume of high-level waste that requires disposal. To extract the fission products from the salt, a nitride precipitation process is being developed. The salt waste is first contacted with a molten metal; after equilibrium is reached, a nitride is added to the metal phase. The insoluble nitrides can be recovered and converted to a borosilicate glass after air oxidation. For a bench-scale experimental setup, a crucible was designed to contact the salt and metal phases. Solubility tests were performed with candidate nitrides and metal nitrides for which there are no solubility data. Experiments were performed to assess feasibility of precipitation of metal nitrides from chloride melts.

  14. Homogeneous dispersion of gallium nitride nanoparticles in a boron nitride matrix by nitridation with urea.

    PubMed

    Kusunose, Takafumi; Sekino, Tohru; Ando, Yoichi

    2010-07-01

    A Gallium Nitride (GaN) dispersed boron nitride (BN) nanocomposite powder was synthesized by heating a mixture of gallium nitrate, boric acid, and urea in a hydrogen atmosphere. Before heat treatment, crystalline phases of urea, boric acid, and gallium nitrate were recognized, but an amorphous material was produced by heat treatment at 400 degrees C, and then was transformed into GaN and turbostratic BN (t-BN) by further heat treatment at 800 degrees C. TEM obsevations of this composite powder revealed that single nanosized GaN particles were homogeneously dispersed in a BN matrix. Homogeneous dispersion of GaN nanoparticles was thought to be attained by simultaneously nitriding gallium nitrate and boric acid to GaN and BN with urea. PMID:21128417

  15. Elimination of surface band bending on N-polar InN with thin GaN capping

    SciTech Connect

    Kuzmík, J. Haščík, Š.; Kučera, M.; Kúdela, R.; Dobročka, E.; Adikimenakis, A.; Mičušík, M.; Gregor, M.; Plecenik, A.; Georgakilas, A.

    2015-11-09

    0.5–1 μm thick InN (0001) films grown by molecular-beam epitaxy with N- or In-polarity are investigated for the presence of native oxide, surface energy band bending, and effects introduced by 2 to 4 monolayers of GaN capping. Ex situ angle-resolved x-ray photo-electron spectroscopy is used to construct near-surface (GaN)/InN energy profiles, which is combined with deconvolution of In3d signal to trace the presence of InN native oxide for different types of polarity and capping. Downwards surface energy band bending was observed on bare samples with native oxide, regardless of the polarity. It was found that the In-polar InN surface is most readily oxidized, however, with only slightly less band bending if compared with the N-polar sample. On the other hand, InN surface oxidation was effectively mitigated by GaN capping. Still, as confirmed by ultra-violet photo-electron spectroscopy and by energy band diagram calculations, thin GaN cap layer may provide negative piezoelectric polarization charge at the GaN/InN hetero-interface of the N-polar sample, in addition to the passivation effect. These effects raised the band diagram up by about 0.65 eV, reaching a flat-band profile.

  16. Advanced Computational Modeling of Vapor Deposition in a High-pressure Reactor

    NASA Technical Reports Server (NTRS)

    Cardelino, Beatriz H.; Moore, Craig E.; McCall, Sonya D.; Cardelino, Carlos A.; Dietz, Nikolaus; Bachmann, Klaus

    2004-01-01

    In search of novel approaches to produce new materials for electro-optic technologies, advances have been achieved in the development of computer models for vapor deposition reactors in space. Numerical simulations are invaluable tools for costly and difficult processes, such as those experiments designed for high pressures and microgravity conditions. Indium nitride is a candidate compound for high-speed laser and photo diodes for optical communication system, as well as for semiconductor lasers operating into the blue and ultraviolet regions. But InN and other nitride compounds exhibit large thermal decomposition at its optimum growth temperature. In addition, epitaxy at lower temperatures and subatmospheric pressures incorporates indium droplets into the InN films. However, surface stabilization data indicate that InN could be grown at 900 K in high nitrogen pressures, and microgravity could provide laminar flow conditions. Numerical models for chemical vapor deposition have been developed, coupling complex chemical kinetics with fluid dynamic properties.

  17. Advanced Computational Modeling of Vapor Deposition in a High-Pressure Reactor

    NASA Technical Reports Server (NTRS)

    Cardelino, Beatriz H.; Moore, Craig E.; McCall, Sonya D.; Cardelino, Carlos A.; Dietz, Nikolaus; Bachmann, Klaus

    2004-01-01

    In search of novel approaches to produce new materials for electro-optic technologies, advances have been achieved in the development of computer models for vapor deposition reactors in space. Numerical simulations are invaluable tools for costly and difficult processes, such as those experiments designed for high pressures and microgravity conditions. Indium nitride is a candidate compound for high-speed laser and photo diodes for optical communication system, as well as for semiconductor lasers operating into the blue and ultraviolet regions. But InN and other nitride compounds exhibit large thermal decomposition at its optimum growth temperature. In addition, epitaxy at lower temperatures and subatmospheric pressures incorporates indium droplets into the InN films. However, surface stabilization data indicate that InN could be grown at 900 K in high nitrogen pressures, and microgravity could provide laminar flow conditions. Numerical models for chemical vapor deposition have been developed, coupling complex chemical kinetics with fluid dynamic properties.

  18. Alloying Element Nitride Development in Ferritic Fe-Based Materials Upon Nitriding: A Review

    NASA Astrophysics Data System (ADS)

    Steiner, T.; Mittemeijer, E. J.

    2016-04-01

    With the aim of achieving a better understanding of the nitriding process of iron-based components (steels), as applied in engineering practice, the theoretical background and experimental observations currently available on the crystallographic, morphological, and compositional properties of the nitride precipitates in nitrided model binary and ternary, ferritic Fe-based alloys are summarily presented. Thermodynamic and kinetic considerations are employed in order to highlight their importance for the nitriding reaction and the resulting properties of the nitrided zone, thereby providing a more fundamental understanding of the nitriding process.

  19. Alloying Element Nitride Development in Ferritic Fe-Based Materials Upon Nitriding: A Review

    NASA Astrophysics Data System (ADS)

    Steiner, T.; Mittemeijer, E. J.

    2016-06-01

    With the aim of achieving a better understanding of the nitriding process of iron-based components (steels), as applied in engineering practice, the theoretical background and experimental observations currently available on the crystallographic, morphological, and compositional properties of the nitride precipitates in nitrided model binary and ternary, ferritic Fe-based alloys are summarily presented. Thermodynamic and kinetic considerations are employed in order to highlight their importance for the nitriding reaction and the resulting properties of the nitrided zone, thereby providing a more fundamental understanding of the nitriding process.

  20. The Hardest Superconducting Metal Nitride

    SciTech Connect

    Wang, Shanmin; Antonio, Daniel; Yu, Xiaohui; Zhang, Jianzhong; Cornelius, Andrew L.; He, Duanwei; Zhao, Yusheng

    2015-09-03

    Transition–metal (TM) nitrides are a class of compounds with a wide range of properties and applications. Hard superconducting nitrides are of particular interest for electronic applications under working conditions such as coating and high stress (e.g., electromechanical systems). However, most of the known TM nitrides crystallize in the rock–salt structure, a structure that is unfavorable to resist shear strain, and they exhibit relatively low indentation hardness, typically in the range of 10–20 GPa. Here, we report high–pressure synthesis of hexagonal δ–MoN and cubic γ–MoN through an ion–exchange reaction at 3.5 GPa. The final products are in the bulk form with crystallite sizes of 50 – 80 μm. Based on indentation testing on single crystals, hexagonal δ–MoN exhibits excellent hardness of ~30 GPa, which is 30% higher than cubic γ–MoN (~23 GPa) and is so far the hardest among the known metal nitrides. The hardness enhancement in hexagonal phase is attributed to extended covalently bonded Mo–N network than that in cubic phase. The measured superconducting transition temperatures for δ–MoN and cubic γ–MoN are 13.8 and 5.5 K, respectively, in good agreement with previous measurements.

  1. P-type gallium nitride

    DOEpatents

    Rubin, M.; Newman, N.; Fu, T.; Ross, J.; Chan, J.

    1997-08-12

    Several methods have been found to make p-type gallium nitride. P-type gallium nitride has long been sought for electronic devices. N-type gallium nitride is readily available. Discovery of p-type gallium nitride and the methods for making it will enable its use in ultraviolet and blue light-emitting diodes and lasers. pGaN will further enable blue photocathode elements to be made. Molecular beam epitaxy on substrates held at the proper temperatures, assisted by a nitrogen beam of the proper energy produced several types of p-type GaN with hole concentrations of about 5{times}10{sup 11} /cm{sup 3} and hole mobilities of about 500 cm{sup 2} /V-sec, measured at 250 K. P-type GaN can be formed of unintentionally-doped material or can be doped with magnesium by diffusion, ion implantation, or co-evaporation. When applicable, the nitrogen can be substituted with other group III elements such as Al. 9 figs.

  2. P-type gallium nitride

    DOEpatents

    Rubin, Michael; Newman, Nathan; Fu, Tracy; Ross, Jennifer; Chan, James

    1997-01-01

    Several methods have been found to make p-type gallium nitride. P-type gallium nitride has long been sought for electronic devices. N-type gallium nitride is readily available. Discovery of p-type gallium nitride and the methods for making it will enable its use in ultraviolet and blue light-emitting diodes and lasers. pGaN will further enable blue photocathode elements to be made. Molecular beam epitaxy on substrates held at the proper temperatures, assisted by a nitrogen beam of the proper energy produced several types of p-type GaN with hole concentrations of about 5.times.10.sup.11 /cm.sup.3 and hole mobilities of about 500 cm.sup.2 /V-sec, measured at 250.degree. K. P-type GaN can be formed of unintentionally-doped material or can be doped with magnesium by diffusion, ion implantation, or co-evaporation. When applicable, the nitrogen can be substituted with other group III elements such as Al.

  3. The Hardest Superconducting Metal Nitride

    PubMed Central

    Wang, Shanmin; Antonio, Daniel; Yu, Xiaohui; Zhang, Jianzhong; Cornelius, Andrew L.; He, Duanwei; Zhao, Yusheng

    2015-01-01

    Transition–metal (TM) nitrides are a class of compounds with a wide range of properties and applications. Hard superconducting nitrides are of particular interest for electronic applications under working conditions such as coating and high stress (e.g., electromechanical systems). However, most of the known TM nitrides crystallize in the rock–salt structure, a structure that is unfavorable to resist shear strain, and they exhibit relatively low indentation hardness, typically in the range of 10–20 GPa. Here, we report high–pressure synthesis of hexagonal δ–MoN and cubic γ–MoN through an ion–exchange reaction at 3.5 GPa. The final products are in the bulk form with crystallite sizes of 50 – 80 μm. Based on indentation testing on single crystals, hexagonal δ–MoN exhibits excellent hardness of ~30 GPa, which is 30% higher than cubic γ–MoN (~23 GPa) and is so far the hardest among the known metal nitrides. The hardness enhancement in hexagonal phase is attributed to extended covalently bonded Mo–N network than that in cubic phase. The measured superconducting transition temperatures for δ–MoN and cubic γ–MoN are 13.8 and 5.5 K, respectively, in good agreement with previous measurements. PMID:26333418

  4. Structure of boron nitride nanotubes

    SciTech Connect

    Buranova, Yu. S. Kulnitskiy, B. A.; Perezhogin, I. A.; Blank, V. D.

    2015-01-15

    The crystallographic structure of boron nitride nanotubes has been investigated. Various defects that may arise during nanotube synthesis are revealed by electron microscopy. Nanotubes with different numbers of walls and different diameters are modeled by molecular dynamics methods. Structural features of single-wall nanotubes are demonstrated. The causes of certain defects in multiwall nanotubes are indicated.

  5. The Hardest Superconducting Metal Nitride

    NASA Astrophysics Data System (ADS)

    Wang, Shanmin; Antonio, Daniel; Yu, Xiaohui; Zhang, Jianzhong; Cornelius, Andrew L.; He, Duanwei; Zhao, Yusheng

    2015-09-01

    Transition-metal (TM) nitrides are a class of compounds with a wide range of properties and applications. Hard superconducting nitrides are of particular interest for electronic applications under working conditions such as coating and high stress (e.g., electromechanical systems). However, most of the known TM nitrides crystallize in the rock-salt structure, a structure that is unfavorable to resist shear strain, and they exhibit relatively low indentation hardness, typically in the range of 10-20 GPa. Here, we report high-pressure synthesis of hexagonal δ-MoN and cubic γ-MoN through an ion-exchange reaction at 3.5 GPa. The final products are in the bulk form with crystallite sizes of 50 - 80 μm. Based on indentation testing on single crystals, hexagonal δ-MoN exhibits excellent hardness of ~30 GPa, which is 30% higher than cubic γ-MoN (~23 GPa) and is so far the hardest among the known metal nitrides. The hardness enhancement in hexagonal phase is attributed to extended covalently bonded Mo-N network than that in cubic phase. The measured superconducting transition temperatures for δ-MoN and cubic γ-MoN are 13.8 and 5.5 K, respectively, in good agreement with previous measurements.

  6. The Hardest Superconducting Metal Nitride

    DOE PAGESBeta

    Wang, Shanmin; Antonio, Daniel; Yu, Xiaohui; Zhang, Jianzhong; Cornelius, Andrew L.; He, Duanwei; Zhao, Yusheng

    2015-09-03

    Transition–metal (TM) nitrides are a class of compounds with a wide range of properties and applications. Hard superconducting nitrides are of particular interest for electronic applications under working conditions such as coating and high stress (e.g., electromechanical systems). However, most of the known TM nitrides crystallize in the rock–salt structure, a structure that is unfavorable to resist shear strain, and they exhibit relatively low indentation hardness, typically in the range of 10–20 GPa. Here, we report high–pressure synthesis of hexagonal δ–MoN and cubic γ–MoN through an ion–exchange reaction at 3.5 GPa. The final products are in the bulk form withmore » crystallite sizes of 50 – 80 μm. Based on indentation testing on single crystals, hexagonal δ–MoN exhibits excellent hardness of ~30 GPa, which is 30% higher than cubic γ–MoN (~23 GPa) and is so far the hardest among the known metal nitrides. The hardness enhancement in hexagonal phase is attributed to extended covalently bonded Mo–N network than that in cubic phase. The measured superconducting transition temperatures for δ–MoN and cubic γ–MoN are 13.8 and 5.5 K, respectively, in good agreement with previous measurements.« less

  7. Effect of Mg doping on the structural and free-charge carrier properties of InN films

    SciTech Connect

    Xie, M.-Y.; Ben Sedrine, N.; Hung, L.; Monemar, B.; Darakchieva, V.; Schöche, S.; Hofmann, T.; Schubert, M.; Wang, X.; Yoshikawa, A.; Wang, K.; Araki, T.; Nanishi, Y.

    2014-04-28

    We present a comprehensive study of free-charge carrier and structural properties of two sets of InN films grown by molecular beam epitaxy and systematically doped with Mg from 1.0 × 10{sup 18} cm{sup −3} to 3.9 × 10{sup 21} cm{sup −3}. The free electron and hole concentration, mobility, and plasmon broadening parameters are determined by infrared spectroscopic ellipsometry. The lattice parameters, microstructure, and surface morphology are determined by high-resolution X-ray diffraction and atomic force microscopy. Consistent results on the free-charge carrier type are found in the two sets of InN films and it is inferred that p-type conductivity could be achieved for 1.0 × 10{sup 18} cm{sup −3} ≲ [Mg] ≲ 9.0 × 10{sup 19} cm{sup −3}. The systematic change of free-charge carrier properties with Mg concentration is discussed in relation to the evolution of extended defect density and growth mode. A comparison between the structural characteristics and free electron concentrations in the films provides insights in the role of extended and point defects for the n-type conductivity in InN. It further allows to suggest pathways for achieving compensated InN material with relatively high electron mobility and low defect densities. The critical values of Mg concentration for which polarity inversion and formation of zinc-blende InN occurred are determined. Finally, the effect of Mg doping on the lattice parameters is established and different contributions to the strain in the films are discussed.

  8. Temperature dependences of the contact resistivity in ohmic contacts to n{sup +}-InN

    SciTech Connect

    Sachenko, A. V.; Belyaev, A. E.; Boltovets, N. S.; Brunkov, P. N.; Jmerik, V. N.; Ivanov, S. V.; Kapitanchuk, L. M.; Konakova, R. V. Klad’ko, V. P.; Romanets, P. N.; Saja, P. O.; Safryuk, N. V.; Sheremet, V. N.

    2015-04-15

    The temperature dependences of the contact resistivity (ρ{sub c}) of ohmic contacts based on the Au-Ti-Pd-InN system are measured at an InN doping level of 2 × 10{sup 18} cm{sup −3} in the temperature range of 4.2–300 K. At temperatures T > 150 K, linearly increasing dependences ρ{sub c}(T) are obtained. The dependences are explained within the mechanism of thermionic current flow through metal shunts associated with dislocations. Good agreement between theoretical and experimental dependences is achieved assuming that the flowing current is limited by the total resistance of the metal shunts, and the density of conductive dislocations is ∼5 × 10{sup 9} cm{sup −2}. Using the X-ray diffraction method, the density of screw and edge dislocations in the structure under study is measured: their total density exceeds 10{sup 10} cm{sup −2}.

  9. Solar hot water system installed at Quality Inn, Key West, Florida

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar energy hot water system installed in the Quality Inn, Key West, Florida, which consists of four buildings is described. Three buildings are low-rise, two-story buildings containing 100 rooms. The fourth is a four-story building with 48 rooms. The solar system was designed to provide approximately 50 percent of the energy required for the domestic hot water system. The solar system consists of approximately 1400 square feet of flat plate collector, two 500 gallon storage tanks, a circulating pump, and a controller. Operation of the system was begun in April 1978, and has continued to date with only three minor interruptions for pump repair. In the first year of operation, it was determined that the use of the solar facility resulted in forty percent fuel savings.

  10. Unifying description of the optical properties of InN from first principles

    NASA Astrophysics Data System (ADS)

    Zaoui, A.; Ferhat, M.

    2009-02-01

    The optical properties of hexagonal InN have been studied using the all-electron approach based on density functional theory (DFT). The full-potential augmented plane wave method is employed with two different exchange-correlation potentials, the Perdew-Wang (PW) and the Engel-Vosko (EV) approximations. In addition, both non-relativistic and relativistic approximations are considered. We found that the PW and relativistic approximations give a metallic ground state; whereas using the EV and non-relativistic approximations a semiconductor phase is obtained, opening the gap up to 0.83 eV. Besides, the calculated interband transitions of the complex dielectric function up to 13 eV show favourable agreement with the recent spectroscopic ellipsometry results.

  11. J/{psi} production in indium-indium collisions at SPS energies

    SciTech Connect

    Pillot, P.; Ducroux, L.; Guichard, A.; Tieulent, R.; Arnaldi, R.; Colla, A.; Cortese, P.; Ferretti, A.; Oppedisano, C.; Scomparin, E.; Averbeck, R.; Drees, A.; Banicz, K.; Keil, M.; Castor, J.; Devaux, A.; Force, P.; Manso, F.; Chaurand, B.; Cicalo, C.

    2006-01-12

    The NA60 experiment collected data on dimuon production in indium-indium collisions at 158 GeV/c per incident nucleon, in year 2003, to contribute to the clarification of several questions raised by previous experiments studying high-energy heavy-ion physics at the CERN SPS in search of the quark gluon plasma. Among these previous results stands the observation, by NA50, that the production yield of J/{psi} mesons is suppressed in central Pb-Pb collisions beyond the normal nuclear absorption defined by proton-nucleus data. By comparing the centrality dependence of the suppression pattern between different colliding systems, S-U, Pb-Pb and In-In, we should be able to identify the corresponding scaling variable, and the physics mechanism driving the suppression. In this paper, we will present the ratio of J/{psi} and Drell-Yan production cross-sections in indium-indium collisions, in three centrality bins, and how these values compare to previous measurements. We will also present a study of the transverse momentum distributions of the J/{psi} mesons, in seven centrality bins.

  12. Influence of indium concentration on the structural and optoelectronic properties of indium selenide thin films

    NASA Astrophysics Data System (ADS)

    Yan, Yong; Li, Shasha; Yu, Zhou; Liu, Lian; Yan, Chuanpeng; Zhang, Yong; Zhao, Yong

    2014-12-01

    We have grown indium selenide thin films using magnetron sputtering method. The influence of indium concentration on the structural, optical and electrical properties was studied. The concentration of indium in indium selenide thin films was varied by adjusting the sputtering power from 40 to 80 W while keeping the substrate temperature and argon pressure constant. The β-phase, which only exists at elevated temperatures in bulk single crystals, can persist at room temperature in the In-rich films. The β-phase thin film with smaller band gap has an electrical resistivity about four orders of magnitude lower than that of the γ-In2Se3 thin film, which is also stable at room temperature. Furthermore, the single-phase γ-In2Se3 thin film was then assembled in visible-light photodetector which shows a fast, reversible, and stable response. These results indicate the possibility of using γ-In2Se3 thin film in various next-generation photoelectric and optical-memory applications.

  13. Aqueous sol-gel routes to conducting films of indium oxide and indium-tin-oxide

    NASA Astrophysics Data System (ADS)

    Perry, Carole C.; McGiveron, J. K.; Harrison, Philip G.

    2000-05-01

    Thin films of indium tin oxide (ITO) are of interest because of their high transparency and low electrical resistivity. Applications include use as electrodes for liquid crystal display and as heat mirrors for solar energy devices. We have developed totally aqueous routes to indium oxide (IO) and ITO materials because, (1) the particulate sols afford a longer shelf life than for alkoxyide derived materials, (2) organics do not have to be removed from the films by baking, and (3) the starting materials are cheaper than the corresponding alkoxides. Indium and mixed indium/tin sols have been prepared form inorganic solutions and treated with alkali to produce white thixotropic sols ca. 0.64 in Mz+ ions. This films were prepared by spinning on low iron or pure silica slides previously cleaned with DECON and washed with distilled water. Films were subsequently heated at 773K in air, or 1173K in air or nitrogen. The film with the lowest resistivity contained ca. 5 percent Sn and had an average optical transmittance between 400 and 600nm of 95 percent. The film was non-porous, smooth in texture, approximately 300nm thick and had a band gap energy of 3.22eV.

  14. Comparison of nonpolar III-nitride vertical-cavity surface-emitting lasers with tunnel junction and ITO intracavity contacts

    NASA Astrophysics Data System (ADS)

    Leonard, J. T.; Young, E. C.; Yonkee, B. P.; Cohen, D. A.; Shen, C.; Margalith, T.; Ng, T. K.; DenBaars, S. P.; Ooi, B. S.; Speck, J. S.; Nakamura, S.

    2016-02-01

    We report on the lasing of III-nitride nonpolar, violet, vertical-cavity surface-emitting lasers (VCSELs) with IIInitride tunnel-junction (TJ) intracavity contacts and ion implanted apertures (IIAs). The TJ VCSELs are compared to similar VCSELs with tin-doped indium oxide (ITO) intracavity contacts. Prior to analyzing device results, we consider the relative advantages of III-nitride TJs for blue and green emitting VCSELs. The TJs are shown to be most advantageous for violet and UV VCSELs, operating near or above the absorption edge for ITO, as they significantly reduce the total internal loss in the cavity. However, for longer wavelength III-nitride VCSELs, TJs primarily offer the advantage of improved cavity design flexibility, allowing one to make the p-side thicker using a thick n-type III-nitride TJ intracavity contact. This offers improved lateral current spreading and lower loss, compare to using ITO and p-GaN, respectively. These aspects are particularly important for achieving high-power CW VCSELs, making TJs the ideal intracavity contact for any III-nitride VCSEL. A brief overview of III-nitride TJ growth methods is also given, highlighting the molecular-beam epitaxy (MBE) technique used here. Following this overview, we compare 12 μm aperture diameter, violet emitting, TJ and ITO VCSEL experimental results, which demonstrate the significant improvement in differential efficiency and peak power resulting from the reduced loss in the TJ design. Specifically, the TJ VCSEL shows a peak power of ~550 μW with a threshold current density of ~3.5 kA/cm2, while the ITO VCSELs show peak powers of ~80 μW and threshold current densities of ~7 kA/cm2.

  15. Two-Step Plasma Process for Cleaning Indium Bonding Bumps

    NASA Technical Reports Server (NTRS)

    Greer, Harold F.; Vasquez, Richard P.; Jones, Todd J.; Hoenk, Michael E.; Dickie, Matthew R.; Nikzad, Shouleh

    2009-01-01

    A two-step plasma process has been developed as a means of removing surface oxide layers from indium bumps used in flip-chip hybridization (bump bonding) of integrated circuits. The two-step plasma process makes it possible to remove surface indium oxide, without incurring the adverse effects of the acid etching process.

  16. Rapid solidification of indium: Modeling subcooling

    SciTech Connect

    Le Bot, C. Delaunay, D.

    2008-05-15

    This paper deals with the study of crystallization kinetics. A pure metal - indium - is subjected to different cooling rates by analyzing phenomena with a differential scanning calorimeter. Thanks to the thermal flux obtained by this device and to the temperature determined with a thermocouple inside the metal sample, and according to the modified Avrami theory, the aim was to determine a temperature dependent function K which links thermodynamic properties to a macroscopic model of crystallization kinetics. Experiments highlight the recalescence phenomenon and show that this function has a shape similar to that of the nucleation rate.

  17. Fabrication, structure and mechanical properties of indium nanopillars

    SciTech Connect

    Lee, Gyuhyon; Kim, Ju-Young; Budiman, Arief Suriadi; Tamura, Nobumichi; Kunz, Martin; Chen, Kai; Burek, Michael J.; Greer, Julia R.; Tsui, Ting Y.

    2010-01-01

    Solid and hollow cylindrical indium pillars with nanoscale diameters were prepared using electron beam lithography followed by the electroplating fabrication method. The microstructure of the solid-core indium pillars was characterized by scanning micro-X-ray diffraction, which shows that the indium pillars were annealed at room temperature with very few dislocations remaining in the samples. The mechanical properties of the solid pillars were characterized using a uniaxial microcompression technique, which demonstrated that the engineering yield stress is {approx}9 times greater than bulk and is {approx}1/28 of the indium shear modulus, suggesting that the attained stresses are close to theoretical strength. Microcompression of hollow indium nanopillars showed evidence of brittle fracture. This may suggest that the failure mode for one of the most ductile metals can become brittle when the feature size is sufficiently small.

  18. The new Polish nitriding and nitriding like processes in the modern technology

    SciTech Connect

    Has, Z.; Kula, P.

    1995-12-31

    Modern technological methods for making nitrided layers and low-friction combined layers have been described. The possibilities of structures and properties forming were analyzed as well as the area and examples of application were considered. Nitrided layers are applied in high loaded frictional couples, widely. They can be formed on steel or cast iron machine parts by the classic gas nitriding process or by modern numerous nitriding technologies.

  19. High temperature behavior of simulated mixed nitrides

    NASA Astrophysics Data System (ADS)

    Baranov, V. G.; Lunev, A. V.; Mikhalchik, V. V.; Tenishev, A. V.; Shornikov, D. P.

    2016-04-01

    Specimen of uranium-based mixed nitrides were synthesized by high-temperature nitriding of metal powder. To investigate thermal stability, samples were annealed at high temperature in a helium atmosphere. During these experiments, the effect of increasing the exposure temperature is studied. Raising the exposure temperature results in a multifold increase of mass loss. A comparison with data on pure uranium nitride shows that increasing the complexity of the nitride systems also results in higher mass loss. Later microscopic investigation of test samples revealed that metal precipitates may be found only on the surface of test samples. Electron probe micro-analysis indicates these precipitates to be uranium metal. Nevertheless, compared to pure uranium nitride, uranium-based mixed nitrides exhibit active evaporation at lower temperatures

  20. Fluxless indium and silver-indium bonding processes for photonics and high-temperature electronics

    NASA Astrophysics Data System (ADS)

    So, William Wilson

    A fluxless oxidation-free bonding technology using multilayer composite solders based on indium, or low melting temperature indium. alloys such as Ag-In, In-Sn and Au-In has been developed and studied. This technology eliminates the need of flux and scrubbing motion that are used in conventional soldering processes, and still produces good quality joints. By depositing multilayer composite materials in high vacuum, we eliminate the formation of an oxide layer thus removing the origin of the problem---solder oxidation. To understand the oxidation kinetics in the bonding process, I have modeled the oxidation rate of tin, which follows a parabolic growth law. For completeness of the oxidation model, I incorporated the temperature dependency of Henry's coefficient in the oxidation model. To prevent the solder material from oxidation when exposing to atmosphere, I have developed a technique, which utilizes the in-situ formation of stable intermetallic compound on the outer surface, or a gold layer to protect the bonding materials. The bonding is achieved by means of solid-liquid interdiffusion (SLID) and in-situ compound formation. The first alloy system that I studied is indium-silver. GaAs and silicon dice have been successfully bonded on silicon or glass substrates. The bonding quality is examined by a Scanning Acoustic Microscope (SAM). The results confirm that void-free joints are achieved. Cross-sections of the joint are examined using a Scanning Electron Microscope (SEM) equipped with Energy Dispersive X-ray (EDX) spectroscopy. The results reveal that the joint is composed of AuIn2, AgIn2-intermetallic compound and pure indium. From the Ag-In phase diagram, as indium composition is reduced to 25 wt. %, the solidus temperature jumps from 144 to above 695°C. By modifying the design of the multilayer composite, we developed a 210°C process to produce 700°C joints. All the well-bonded devices, before or after annealing, exceed the shear test force requirement of 2

  1. Indium antimonide large-format detector arrays

    NASA Astrophysics Data System (ADS)

    Davis, Mike; Greiner, Mark

    2011-06-01

    Large format infrared imaging sensors are required to achieve simultaneously high resolution and wide field of view image data. Infrared sensors are generally required to be cooled from room temperature to cryogenic temperatures in less than 10 min thousands of times during their lifetime. The challenge is to remove mechanical stress, which is due to different materials with different coefficients of expansion, over a very wide temperature range and at the same time, provide a high sensitivity and high resolution image data. These challenges are met by developing a hybrid where the indium antimonide detector elements (pixels) are unconnected islands that essentially float on a silicon substrate and form a near perfect match to the silicon read-out circuit. Since the pixels are unconnected and isolated from each other, the array is reticulated. This paper shows that the front side illuminated and reticulated element indium antimonide focal plane developed at L-3 Cincinnati Electronics are robust, approach background limited sensitivity limit, and provide the resolution expected of the reticulated pixel array.

  2. Tumour scanning with indium-111 dihaematoporphyrin ether.

    PubMed Central

    Quastel, M. R.; Richter, A. M.; Levy, J. G.

    1990-01-01

    Photofrin II (dihaematoporphyrin ether/ester, DHE) was labelled with indium-111 and its biodistribution in tumour bearing mice compared with that of 111In chloride. The uptake and clearance of 111In labelled DHE differed markedly from that of indium-111 chloride in that the former was not taken up by the tissues as much as the latter. Scintillation scanning with a gamma-camera showed marked uptake of both 111In agents at the site of the tumour, but a much lower tissue background (excluding the abdominal organs) for the mice given 111In DHE. Tumour:muscle ratios of dissected tissues were 2-3 times higher in 111In DHE treated animals as compared to the uptake of 111In chloride. There was a distinct difference in the pattern of distribution of the two 111In preparations in the tissues. The major accumulation of 111In chloride was in the kidneys, whereas the highest uptake of 111In DHE was in the liver, the organ in which unlabelled porphyrins accumulate. Extraction and testing of materials from tumours of 111In DHE treated animals indicated that most of the tumour extractable 111In had remained associated with the porphyrin in vivo up to 4 days after injection. Images Figure 1 PMID:2147858

  3. Discovery of Cadmium, Indium, and Tin Isotopes

    NASA Astrophysics Data System (ADS)

    Amos, Stephanie; Thoennessen, Michael

    2009-10-01

    As of today, no comprehensive study has been made covering the initial observations and identifications of isotopes. A project has been undertaken at MSU to document the discovery of all the known isotopes. The criteria defining discovery of a given isotope is the publication of clear mass and element assignment in a refereed journal. Prior to the current work the documentation of the discovery of eleven elements had been completed^1. These elements are cerium^2, arsenic, gold, tungsten, krypton, silver, vanadium, einsteinium, iron, barium, and cobalt. We will present the new documentation for the cadmium, indium, and tin isotopes. Thirty-seven cadmium isotopes, thirty-eight indium isotopes, and thirty-eight tin isotopes have been discovered so far. The description for each discovered isotope includes the year of discovery, the article published on the discovery, the article's author, the method of production, the method of identification, and any previous information concerning the isotope discovery. A summary and overview of all ˜500 isotopes documented so far as a function of discovery year, method and place will also be presented. ^1http://www.nscl.msu.edu/˜thoennes/2009/discovery.htm ^2J.Q. Ginepro, J. Snyder, and M. Thoennessen, At. Data Nucl. Data. Tables, in press (2009), doi:10.1016/j.adt.2009.06.002

  4. Patterning of Indium Tin Oxide Films

    NASA Technical Reports Server (NTRS)

    Immer, Christopher

    2008-01-01

    A relatively rapid, economical process has been devised for patterning a thin film of indium tin oxide (ITO) that has been deposited on a polyester film. ITO is a transparent, electrically conductive substance made from a mixture of indium oxide and tin oxide that is commonly used in touch panels, liquid-crystal and plasma display devices, gas sensors, and solar photovoltaic panels. In a typical application, the ITO film must be patterned to form electrodes, current collectors, and the like. Heretofore it has been common practice to pattern an ITO film by means of either a laser ablation process or a photolithography/etching process. The laser ablation process includes the use of expensive equipment to precisely position and focus a laser. The photolithography/etching process is time-consuming. The present process is a variant of the direct toner process an inexpensive but often highly effective process for patterning conductors for printed circuits. Relative to a conventional photolithography/ etching process, this process is simpler, takes less time, and is less expensive. This process involves equipment that costs less than $500 (at 2005 prices) and enables patterning of an ITO film in a process time of less than about a half hour.

  5. Surface nitriding and oxidation of nitinol

    NASA Astrophysics Data System (ADS)

    Bazochaharbakhsh, Edin

    Nitinol has been widely employed in biomedical devices due to its unique mechanical properties such as superelasticity, shape memory, and good biocompatibility. However, nickel ion release from the surface of the Nitinol is an issue. Surface nitriding and oxidation was performed on the Nitinol specimens to develop a nickel-free oxide layer on the surface. Nitinol specimens were nitrided in nitrogen + 4% hydrogen at 800--1000°C for 10--30 min and further nitrided in nitrogen + 5% ammonia at 500--675°C for 0--30 min. The thickness and chemical composition, specifically the nickel content of the surface layer, were determined by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), respectively. The effect of the nitriding time and temperature on the thickness and chemical composition of the nitride layer was evaluated. Nitriding temperature was found to be more effective than nitriding time on the thickness of TiN layer. Titanium nitride, the dominant phase on the surface of the nitrided specimens, was nickel free. The nitrided Nitinol specimens were then oxidized at 675°C and 700°C for 30 and 60 min, respectively. The chemical composition and elemental depth profile showed that oxidizing Nitinol specimens with a 0.4 microm thick nitride layer on the surface did not provide a nickel-free oxide layer on the surface of the Nitinol. However, oxidizing the Nitinol specimens with a surface nitride layer that was thicker than 6 microm resulted in a nickel-free oxide layer.

  6. Synthesis, Properties, and Applications Of Boron Nitride

    NASA Technical Reports Server (NTRS)

    Pouch, John J.; Alterovitz, Samuel A.

    1993-01-01

    Report describes synthesis, properties, and applications of boron nitride. Especially in thin-film form. Boron nitride films useful as masks in x-ray lithography; as layers for passivation of high-speed microelectronic circuits; insulating films; hard, wear-resistant, protective films for optical components; lubricants; and radiation detectors. Present status of single-crystal growth of boron nitride indicates promising candidate for use in high-temperature semiconductor electronics.

  7. Analysis of plasma-nitrided steels

    NASA Technical Reports Server (NTRS)

    Salik, J.; Ferrante, J.; Honecy, F.; Hoffman, R., Jr.

    1986-01-01

    The analysis of plasma nitrided steels can be divided to two main categories - structural and chemical. Structural analysis can provide information not only on the hardening mechanisms but also on the fundamental processes involved. Chemical analysis can be used to study the kinetics for the nitriding process and its mechanisms. In this paper preliminary results obtained by several techniques of both categories are presented and the applicability of those techniques to the analysis of plasma-nitrided steels is discussed.

  8. Manufacture of sintered silicon nitrides

    NASA Technical Reports Server (NTRS)

    Iwai, T.

    1985-01-01

    Sintered silicon nitrides are manufactured by sintering Si3N powder containing 2 to 15% in wt of a powder mixture composed of nitride powder of lanthanide or Y 100 parts and AIN powder less than 100 parts at 1500 to 1900 deg. temperature under a pressure of less than 200 Kg/sq. cm. The sintered Si3N has high mechanical strength in high temperature. Thus, Si3N4 93.0, Y 5.0 and AlN 2.0% in weight were wet mixed in acetone in N atom, molded and sintered at 1750 deg. and 1000 Kg/sq. cm. to give a sintered body having high hardness.

  9. Structural properties of InN films grown on O-face ZnO(0001) by plasma-assisted molecular beam epitaxy

    SciTech Connect

    Cho, Yong Jin; Brandt, Oliver; Kaganer, Vladimir M.; Ramsteiner, Manfred; Riechert, Henning; Korytov, Maxim; Albrecht, Martin

    2012-04-09

    We study the impact of substrate temperature and layer thickness on the morphological and structural properties of InN films directly grown on O-face ZnO(0001) substrates by plasma-assisted molecular beam epitaxy. With increasing substrate temperature, an interfacial reaction between InN and ZnO takes place that eventually results in the formation of cubic In{sub 2}O{sub 3} and voids. The properties of the InN films, however, are found to be unaffected by this reaction for substrate temperatures less than 550 deg. C. In fact, both the morphological and the structural quality of InN improve with increasing substrate temperature in the range from 350 to 500 deg. C. High quality films with low threading dislocation densities are demonstrated.

  10. Investigation of the near-surface structures of polar InN films by chemical-state-discriminated hard X-ray photoelectron diffraction

    SciTech Connect

    Yang, A. L.; Yamashita, Y.; Kobata, M.; Yoshikawa, H.; Sakata, O.; Kobayashi, K.; Matsushita, T.; Pis, I.; Imura, M.; Yamaguchi, T.; Nanishi, Y.

    2013-01-21

    Near-surface structures of polar InN films were investigated by laboratory-based hard X-ray photoelectron diffraction (HXPD) with chemical-state-discrimination. HXPD patterns from In 3d{sub 5/2} and N 1s core levels of the In-polar and N-polar InN films were different from each other and compared with the simulation results using a multiple-scattering cluster model. It was found that the near-surface structure of the In-polar InN film was close to the ideal wurtzite structure. On the other hand, on the N-polar InN film, defects-rich surface was formed. In addition, the existence of the In-polar domains was observed in the HXPD patterns.

  11. Silicon Nitride Equation of State

    NASA Astrophysics Data System (ADS)

    Swaminathan, Pazhayannur; Brown, Robert

    2015-06-01

    This report presents the development a global, multi-phase equation of state (EOS) for the ceramic silicon nitride (Si3N4) . Structural forms include amorphous silicon nitride normally used as a thin film and three crystalline polymorphs. Crystalline phases include hexagonal α-Si3N4, hexagonalβ-Si3N4, and the cubic spinel c-Si3N4. Decomposition at about 1900 °C results in a liquid silicon phase and gas phase products such as molecular nitrogen, atomic nitrogen, and atomic silicon. The silicon nitride EOS was developed using EOSPro which is a new and extended version of the PANDA II code. Both codes are valuable tools and have been used successfully for a variety of material classes. Both PANDA II and EOSPro can generate a tabular EOS that can be used in conjunction with hydrocodes. The paper describes the development efforts for the component solid phases and presents results obtained using the EOSPro phase transition model to investigate the solid-solid phase transitions in relation to the available shock data. Furthermore, the EOSPro mixture model is used to develop a model for the decomposition products and then combined with the single component solid models to study the global phase diagram. Sponsored by the NASA Goddard Space Flight Center Living With a Star program office.

  12. Shock Response of Silicon Nitride

    NASA Astrophysics Data System (ADS)

    Dandekar, D. P.; Casem, D. T.; Motoyashiki, Y.; Sato, E.

    2009-06-01

    Silicon nitride is suitable for varied applications. The properties of silicon nitride have been tailored through processing and doping. The current work presents shock response of silicon nitride marketed as SN282. The density of this material, 3.4 Mg/m^3, exceeds its single crystal density due to the presence of lutetium oxide as an additive in ca. 5% by weight in the material. While the average grain size is 3.4 microns, aspect ratio of the grains exceed 3. Preliminary results of shock wave experiments may be summarized as follows: (1) The Hugoniot Elastic Limit (HEL) of SN282 is 11.2 GPa. (2) The magnitude of the inelastic wave velocity just above the HEL is 8.73 km/s, suggesting that inelastic deformation above the HEL is due to shock induced plasticity in the material. (3) The estimated value of the spall strength is 0.5 GPa. The spall strength of SN282 remains unchanged even when shocked beyond the HEL. The non-vanishing spall strength suggests that doping plays a role in the retention of spall strength of SN282. The role of doping needs to be further investigated.

  13. Convection sensitivity and thermal analyses for indium and indium-lead mixing experiment (74-18)

    NASA Technical Reports Server (NTRS)

    Bourgeois, S. V.; Doty, J. P.

    1976-01-01

    Sounding rocket Experiment 74-18 was designed to demonstrate the effects of the Black Brandt rocket acceleration levels (during the low-g coast phase of its flight) on the motion of a liquid metal system to assist in preflight design. Some post flight analyses were also conducted. Preflight studies consisted of heat transfer analysis and convection sensitivity and convection modeling analyses which aided in the: (1) final selection of fluid materials (indium-lead melts rather than paraffins); (2) design and timing of heater and quench system; and (3) preflight predictions of the degree of lead penetration into the pure indium segment of the fluid. Postflight studies involved: (1) updating the convection sensitivity calculations by utilizing actual flight gravity levels; and (2) modeling the mixing in the flight samples.

  14. High-efficiency indium tin oxide/indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Li, X.; Wanlass, M. W.; Gessert, T. A.; Emery, K. A.; Coutts, T. J.

    1989-01-01

    Improvements in the performance of indium tin oxide (ITO)/indium phosphide solar cells have been realized by the dc magnetron sputter deposition of n-ITO onto an epitaxial p/p(+) structure grown on commercial p(+) bulk substrates. The highest efficiency cells were achieved when the surface of the epilayer was exposed to an Ar/H2 plasma before depositing the bulk of the ITO in a more typical Ar/O2 plasma. With H2 processing, global efficiencies of 18.9 percent were achieved. It is suggested that the excellent performance of these solar cells results from the optimization of the doping, thickness, transport, and surface properties of the p-type base, as well as from better control over the ITO deposition procedure.

  15. The effect of prenatal indium chloride exposure on chondrogenic ossification.

    PubMed

    Ungváry, G; Tátrai, E; Szakmáry, E; Náray, M

    2001-03-01

    Daily indium chloride doses of control (0) or 400 mg/kg were administered orally to pregnant Sprague-Dawley (SD) rats by gavage, on d 20 of gestation. Indium concentration was determined in the maternal and fetal blood, livers, kidneys, skulls, and femurs by atomic absorption spectrometry. Further groups of pregnant rats were treated with control (0) or 400 mg/kg indium chloride orally, during the whole gestation period. The fetuses were examined on d 21 of gestation, using histological and histochemical methods. Four hours after the administration indium concentration was found to be significant in the blood, liver, and kidneys of the dams. Twenty-four hours later it increased in the blood but not in the liver and kidney. Fetal indium concentrations were 40-50% of the maternal levels due to a barrier of the placenta. In the skull and the femur, indium was already detectable at 4 h after the administration, and by the end of 24 h, metal concentration was several times higher than that at 4 h, indicating accumulation. Furthermore, it was found that the birefringency of collagen detectable by picrosirius red staining in polarized light around the chondrocytes disappeared and became irregular. In the matrix of the epiphyseal cartilage, the regular, birefringent network demonstrable by Rivanol reaction became irregular and hardly recognizable. In the cytoplasm of the chondrocytes, the diffuse, evenly distributed positive Ricinus communis agglutinin reaction became irregular or disappeared. Similar but much weaker changes were observed with concanavalin A and wheat germ agglutinin stainings. It was concluded that the missing femur and micromelia diagnosed by alizarin staining is the consequence of a specific toxic effect of indium that inhibits chondrogenic ossification. No similar histochemical changes were observed in the bones of the skull developing by desmogenic ossification, despite the presence of indium. Data indicate that the mechanisms of the effects of indium

  16. Correlation between switching to n-type conductivity and structural defects in highly Mg-doped InN

    SciTech Connect

    Khromov, S.; Persson, P. O. Å.; Monemar, B.; Rosen, J.; Janzén, E.; Darakchieva, V.; Wang, X.; Yoshikawa, A.

    2015-06-08

    The effect of Mg doping on the microstructure of InN epitaxial films in relation to their free-charge carrier properties has been investigated by transmission electron microscopy (TEM) and aberration corrected scanning TEM. We observe a direct correlation between Mg concentration and the formation of stacking faults. The threading dislocation density is found to be independent of Mg concentration. The critical Mg concentration for the on-set of stacking faults formation is determined and found to correlate with the switch from p- to n-type conductivity in InN. Potential mechanisms involving stacking faults and point defect complexes are invoked in order to explain the observed conductivity reversal. Finally, the stacking faults are structurally determined and their role in the reduction of the free electron mobility in highly doped InN:Mg is discussed.

  17. Role of native defects in nitrogen flux dependent carrier concentration of InN films grown by molecular beam epitaxy

    SciTech Connect

    Tangi, Malleswararao; Kuyyalil, Jithesh; Shivaprasad, S. M.

    2012-10-01

    We address the carrier concentration, strain, and bandgap issue of InN films grown on c-sapphire at different N-flux by molecular beam epitaxy using x-ray diffraction and x-ray photoelectron spectroscopy. We demonstrate that the strain in InN films arises due to point defects like nitrogen interstitials and nitrogen antisites. We report minimal biaxial strain due to relaxed growth morphology and a minimal hydrostatic strain arising due to interstitial nitrogen atoms being partially compensated by nitrogen antisites. We find that the variation in absorption edge can be attributed to defect induced carrier concentration and that nitrogen interstitials and nitrogen antisites act as donors that yield the respective absorption edge and Moss-Burstein shift. Our studies are a step towards the ability to form low carrier concentration strain-relaxed films and to determine the intrinsic band gap value for this technologically important material.

  18. Time-integrated photoluminescence and pump-probe reflection spectroscopy of Si doped InN thin films

    SciTech Connect

    Mohanta, Antaryami; Jang, Der-Jun Wang, Ming-Sung; Tu, L. W.

    2014-01-28

    Temperature and excitation power dependent time-integrated photoluminescence of Si doped InN thin films are investigated. Photoluminescence (PL) spectra at low temperatures are described by single emission peak ensued due to “free-to-bound” recombination; whereas PL spectra at higher temperatures above 150 K are characterized by both “band-to-band” and “free-to-bound” transition. Carrier dynamics of Si doped InN thin films is studied using pump-probe reflection spectroscopy at room temperature. The hot electron cooling process is well described by electron-electron scattering. The dependence of the hot electron cooling rate on total electron density shows sublinear to linear behavior with increase of background electron density. The variation of the carrier recombination lifetime with total electron density implicates the dominance of the defect-related nonradiative recombination channel over other recombination processes.

  19. Surface structure and surface kinetics of InN grown by plasma-assisted atomic layer epitaxy: A HREELS study

    SciTech Connect

    Acharya, Ananta R. E-mail: anantaach@gmail.com; Thoms, Brian D.; Nepal, Neeraj; Eddy, Charles R.

    2015-03-15

    The surface bonding configuration and kinetics of hydrogen desorption from InN grown by plasma-assisted atomic layer epitaxy have been investigated. High resolution electron energy loss spectra exhibited loss peaks assigned to a Fuchs–Kliewer surface phonon, N-N and N-H surface species. The surface N-N vibrations are attributed to surface defects. The observation of N-H but no In-H surface species suggested N-terminated InN. Isothermal desorption data were best fit by the first-order desorption kinetics with an activation energy of (0.88 ± 0.06) eV and pre-exponential factor of (1.5 ± 0.5) × 10{sup 5 }s{sup −1}.

  20. Polarity control and transport properties of Mg-doped (0001) InN by plasma-assisted molecular beam epitaxy

    SciTech Connect

    Choi, Soojeong; Wu Feng; Bierwagen, Oliver; Speck, James S.

    2013-05-15

    The authors report on the plasma-assisted molecular beam epitaxy growth and carrier transport of Mg-doped In-face (0001) InN. The 1.2 {mu}m thick InN films were grown on GaN:Fe templates under metal rich conditions with Mg concentration from 1 Multiplication-Sign 10{sup 17}/cm{sup 3} to 3 Multiplication-Sign 10{sup 20}/cm{sup 3}. A morphological transition, associated with the formation of V-shape polarity inversion domains, was observed at Mg concentration over 7 Multiplication-Sign 10{sup 19}/cm{sup 3} by atomic force microscopy and transmission electron microscopy. Seebeck measurements indicated p-type conductivity for Mg-concentrations from 9 Multiplication-Sign 10{sup 17}/cm{sup 3} to 7 Multiplication-Sign 10{sup 19}/cm{sup 3}, i.e., as it exceeded the compensating (unintentional) donor concentration.

  1. Demonstration of a III-nitride vertical-cavity surface-emitting laser with a III-nitride tunnel junction intracavity contact

    SciTech Connect

    Leonard, J. T. Young, E. C.; Yonkee, B. P.; Cohen, D. A.; Margalith, T.; Speck, J. S.; DenBaars, S. P.; Nakamura, S.

    2015-08-31

    We report on a III-nitride vertical-cavity surface-emitting laser (VCSEL) with a III-nitride tunnel junction (TJ) intracavity contact. The violet nonpolar VCSEL employing the TJ is compared to an equivalent VCSEL with a tin-doped indium oxide (ITO) intracavity contact. The TJ VCSEL shows a threshold current density (J{sub th}) of ∼3.5 kA/cm{sup 2}, compared to the ITO VCSEL J{sub th} of 8 kA/cm{sup 2}. The differential efficiency of the TJ VCSEL is also observed to be significantly higher than that of the ITO VCSEL, reaching a peak power of ∼550 μW, compared to ∼80 μW for the ITO VCSEL. Both VCSELs display filamentary lasing in the current aperture, which we believe to be predominantly a result of local variations in contact resistance, which may induce local variations in refractive index and free carrier absorption. Beyond the analyses of the lasing characteristics, we discuss the molecular-beam epitaxy (MBE) regrowth of the TJ, as well as its unexpected performance based on band-diagram simulations. Furthermore, we investigate the intrinsic advantages of using a TJ intracavity contact in a VCSEL using a 1D mode profile analysis to approximate the threshold modal gain and general loss contributions in the TJ and ITO VCSEL.

  2. Demonstration of a III-nitride vertical-cavity surface-emitting laser with a III-nitride tunnel junction intracavity contact

    NASA Astrophysics Data System (ADS)

    Leonard, J. T.; Young, E. C.; Yonkee, B. P.; Cohen, D. A.; Margalith, T.; DenBaars, S. P.; Speck, J. S.; Nakamura, S.

    2015-08-01

    We report on a III-nitride vertical-cavity surface-emitting laser (VCSEL) with a III-nitride tunnel junction (TJ) intracavity contact. The violet nonpolar VCSEL employing the TJ is compared to an equivalent VCSEL with a tin-doped indium oxide (ITO) intracavity contact. The TJ VCSEL shows a threshold current density (Jth) of ˜3.5 kA/cm2, compared to the ITO VCSEL Jth of 8 kA/cm2. The differential efficiency of the TJ VCSEL is also observed to be significantly higher than that of the ITO VCSEL, reaching a peak power of ˜550 μW, compared to ˜80 μW for the ITO VCSEL. Both VCSELs display filamentary lasing in the current aperture, which we believe to be predominantly a result of local variations in contact resistance, which may induce local variations in refractive index and free carrier absorption. Beyond the analyses of the lasing characteristics, we discuss the molecular-beam epitaxy (MBE) regrowth of the TJ, as well as its unexpected performance based on band-diagram simulations. Furthermore, we investigate the intrinsic advantages of using a TJ intracavity contact in a VCSEL using a 1D mode profile analysis to approximate the threshold modal gain and general loss contributions in the TJ and ITO VCSEL.

  3. Reflectance of metallic indium for solar energy applications

    NASA Technical Reports Server (NTRS)

    Bouquet, F. L.; Hasegawa, T.

    1984-01-01

    An investigation has been conducted in order to compile quantitative data on the reflective properties of metallic indium. The fabricated samples were of sufficiently high quality that differences from similar second-surface silvered mirrors were not apparent to the human eye. Three second-surface mirror samples were prepared by means of vacuum deposition techniques, yielding indium thicknesses of approximately 1000 A. Both hemispherical and specular measurements were made. It is concluded that metallic indium possesses a sufficiently high specular reflectance to be potentially useful in many solar energy applications.

  4. Electrodeposition of Indium Bumps for Ultrafine Pitch Interconnection

    NASA Astrophysics Data System (ADS)

    Tian, Yingtao; Liu, Changqing; Hutt, David; Stevens, Bob

    2014-02-01

    Electroplating is a promising method to produce ultrafine pitch indium bumps for assembly of pixel detectors in imaging applications. In this work, the process of indium bumping through electrodeposition was demonstrated and the influences of various current waveforms on the bump morphology, microstructure and height uniformity were investigated. Electron microscopy was used to study the microstructure of electroplated indium bumps and a Zygo white light interferometer was utilised to evaluate the height uniformity. The results indicated that the bump uniformities on wafer, pattern and feature scales were improved by using unipolar pulse and bipolar pulse reverse current waveforms.

  5. Determination of indium in rocks by substoichiometric radioisotope dilution analysis

    USGS Publications Warehouse

    Greenland, L. Paul; Campbell, E.Y.

    1973-01-01

    Rocks containing 10-140 ng of indium per g are decomposed with hydrofluoric and nitric acids in the presence of 114In. Indium is separated from other constituents by sequential extractions of the bromide, cupferronate, and acetylacetonate, and is then reacted with a substoichiometric amont of EDTA. Excess of indium is removed by acetylacetone extraction and the specific activity of the complexed fraction is determined by counting 114In. Analyses of the U.S.G.S. standard rocks are reported. These show good agreement with previous neutron activation analyses. Repetitive rock analyses indicated an analytical precision of ??4-7%. ?? 1973.

  6. R&W Club Frederick Hosts Second Annual Golf Tourney for The Children’s Inn | Poster

    Cancer.gov

    By Carolynne Keenan, Contributing Writer On Sept. 8, more than 40 NCI at Frederick and Leidos Biomedical Research employees, along with family and friends, swapped work clothes for golf gear at Maryland National Golf Club in Middletown. The golfers didn’t just play for fun; they participated in the second annual R&W Club Frederick Golf Tournament to support The Children’s Inn at NIH.

  7. Titanium thermodiffusional nitriding by CO{sub 2} laser: Process parameters controlling the nitride growth

    SciTech Connect

    L`Enfant, H.; Laurens, P.; Catherine, M.C.S.

    1996-12-31

    Solid state nitriding of titanium under cw CO{sub 2} laser was investigated. The nitriding kinetics were studied in the case of CO{sub 2} laser treatment in isothermal conditions, and were compared to those obtained by using a conventional heating system. Identical kinetics rate constants and activation energy were obtained; therefore CO{sub 2} irradiation of the titanium surface did not influence nitride growth. Studying nitriding treatment in non isothermal conditions showed that high heating rates induced modifications of the nitride morphology (compared to isothermal treatments). At last, the authors investigated the evolution of the CO{sub 2}-surface coupling during the nitriding treatment. It was found that it depended only on the surface temperature and the substrate surface roughness since the growth of a few micrometers thick nitride layer did not modify the coupling.

  8. Excitation dependent Raman studies of self-seeded grown InN nanoparticles with different carrier concentration.

    PubMed

    Madapu, Kishore K; Polaki, S R; Dhara, Sandip

    2016-07-21

    High quality InN nanoparticles are grown using an atmospheric chemical vapour deposition technique via a self-seeded catalytic approach in the temperature range of 580-650 °C. In this temperature region, the nucleation barrier of InN is overcome by seeding low density In nanoparticles prior to introduction of reactive NH3. Samples with increasing carrier densities are grown, with the help of increasing growth temperature, to understand the role of carrier density in the optical phonon structure. Near-resonance Raman spectra show completely different phonon pictures compared to those for the off-resonance spectra. A Raman forbidden mode of B1(high), because of the possible breakdown of selection rules in the near-resonance conditions, is invoked for the first time. The intensity and frequency of this mode strongly depend on the carrier concentration in the sample. In off-resonance conditions, the A1(LO) mode for the sample with higher carrier concentration is dominated by Fano interference rather than plasmon-phonon coupling. Variation of the intensity of the B1(high) mode is correlated with a band filling effect, which is substantiated by the luminescence studies of the InN samples with different carrier concentrations. PMID:27345503

  9. Morphology and arrangement of InN nanocolumns deposited by radio-frequency sputtering: Effect of the buffer layer

    NASA Astrophysics Data System (ADS)

    Monteagudo-Lerma, L.; Valdueza-Felip, S.; Núñez-Cascajero, A.; Ruiz, A.; González-Herráez, M.; Monroy, E.; Naranjo, F. B.

    2016-01-01

    We present the structural and optical properties of (0001)-oriented nanocolumnar films of InN deposited on c-sapphire substrates by radio-frequency reactive sputtering. It is observed that the column density and dimensions are highly dependent on the growth parameters of the buffer layer. We investigate four buffer layers consisting of (i) 30 nm of low-growth-rate InN, (ii) 30 nm of AlN deposited on the unbiased substrate (us), (iii) 30 nm of AlN deposited on the reverse-biased substrate (bs), and (iv) a 60-nm-thick bilayer consisting of 30-nm-thick bs-AlN deposited on top of 30-nm-thick us-AlN. Differences in the layer nucleation process due to the buffer layer induce variations of the column density in the range of (2.5-16)×109 cm-2, and of the column diameter in the range of 87-176 nm. Best results in terms of mosaicity are obtained using the bs-AlN buffer layer, which leads to a full width at half-maximum of the InN(0002) rocking curve of 1.2°. A residual compressive strain is still present in the nanocolumns. All samples exhibit room temperature photoluminescence emission at ~1.6 eV, and an apparent optical band gap at ~1.7 eV estimated from linear optical transmittance measurements.

  10. High-quality cubic and hexagonal InN crystals studied by micro-Raman scattering and electron backscatter diffraction

    NASA Astrophysics Data System (ADS)

    Kamimura, Jumpei; Ramsteiner, Manfred; Jahn, Uwe; Lu, Cheng-Ying James; Kikuchi, Akihiko; Kishino, Katsumi; Riechert, Henning

    2016-04-01

    Large InN microcrystals grown by molecular beam epitaxy are investigated by micro-Raman spectroscopy and electron backscatter diffraction (EBSD). High-quality (phonon linewidths between 1.5 and 2 cm-1) cubic and hexagonal crystals are identified with Raman mapping by the observation of the respective characteristic phonon modes. The unexpected occurrence of metastable cubic InN crystals is confirmed by EBSD measurements. The cubic microcrystals are revealed by EBSD to be single-crystalline and to exhibit  <1 1 1>  orientation. The transverse (TO) and longitudinal-optical (LO) zone-center phonon frequencies of cubic InN are found to be 463 and 584 cm-1, respectively. The bulk carrier density in the microcrystals lies in the range of 2-3  ×  1017 cm-3 as determined by the analysis of LO phonon-plasmon-coupled modes in the Raman spectra.

  11. High quality factor indium oxide mechanical microresonators

    SciTech Connect

    Bartolomé, Javier Cremades, Ana; Piqueras, Javier

    2015-11-09

    The mechanical resonance behavior of as-grown In{sub 2}O{sub 3} microrods has been studied in this work by in-situ scanning electron microscopy (SEM) electrically induced mechanical oscillations. Indium oxide microrods grown by a vapor–solid method are naturally clamped to an aluminum oxide ceramic substrate, showing a high quality factor due to reduced energy losses during mechanical vibrations. Quality factors of more than 10{sup 5} and minimum detectable forces of the order of 10{sup −16} N/Hz{sup 1/2} demonstrate their potential as mechanical microresonators for real applications. Measurements at low-vacuum using the SEM environmental operation mode were performed to study the effect of extrinsic damping on the resonators behavior. The damping coefficient has been determined as a function of pressure.

  12. Indium antimonide based HEMT for RF applications

    NASA Astrophysics Data System (ADS)

    Subash, T. D.; Gnanasekaran, T.

    2014-11-01

    We report on an indium antimonide high electron mobility transistor with record cut-off frequency characteristics. For high frequency response it is important to minimize parasitic resistance and capacitance to improve short-channel effects. For analog applications adequate pinch-off behavior is demonstrated. For proper device scaling we need high electron mobility and high electron density. Toward this end, the device design features and simulation are carried out by the Synopsys TCAD tool. A 30 nm InSb HEMT exhibits an excellent cut-off frequency of 586 GHz. To the knowledge of the authors, the obtained cut-off frequency is the highest ever reported in any FET on any material system.

  13. Nitride superluminescent diodes with broadened emission spectrum fabricated using laterally patterned substrate.

    PubMed

    Kafar, A; Stanczyk, S; Sarzynski, M; Grzanka, S; Goss, J; Targowski, G; Nowakowska-Siwinska, A; Suski, T; Perlin, P

    2016-05-01

    We demonstrate InGaN/GaN superluminescent diodes with broadened emission spectra fabricated on surface-shaped bulk GaN (0001) substrates. The patterning changes the local vicinal angle linearly along the device waveguide, which results in an indium incorporation profile in InGaN quantum wells. The structure was investigated by microphotoluminescence mapping, showing a shift of central emission wavelength from 413 nm to 430 nm. Spectral full width at half maximum of processed superluminescent diodes is equal to 6.1 nm, while the reference chips show 3.4 nm. This approach may open the path for using nitride devices in applications requiring broad emission spectrum and high beam quality, such as optical coherence tomography. PMID:27137581

  14. Ion-beam nitriding of steels

    NASA Technical Reports Server (NTRS)

    Salik, Joshua (Inventor); Hubbell, Theodore E. (Inventor)

    1987-01-01

    A surface of a steel substrate is nitrided without external heating by exposing it to a beam of nitrogen ions under low pressure, a pressure much lower than that employed for ion-nitriding. An ion source is used instead of a glow discharge. Both of these features reduce the introduction of impurities into the substrate surface.

  15. Titanium carbon nitride coating. Final report

    SciTech Connect

    Nance, S.D.

    1992-04-01

    The purpose of this investigation was to determine the advantages of titanium carbon nitride (TiCN) coated tools. Cutting tests were conducted comparing TiCN coating directly against titanium nitride (TiN) coated and uncoated T-15 CPM end mills.

  16. Method of preparation of uranium nitride

    DOEpatents

    Kiplinger, Jaqueline Loetsch; Thomson, Robert Kenneth James

    2013-07-09

    Method for producing terminal uranium nitride complexes comprising providing a suitable starting material comprising uranium; oxidizing the starting material with a suitable oxidant to produce one or more uranium(IV)-azide complexes; and, sufficiently irradiating the uranium(IV)-azide complexes to produce the terminal uranium nitride complexes.

  17. Feasibility study of silicon nitride regenerators

    NASA Technical Reports Server (NTRS)

    Fucinari, C. A.; Rao, V. D. N.

    1979-01-01

    The feasibility of silicon nitride as a regenerator matrix material for applications requiring inlet temperatures above 1000 C is examined. The present generation oxide ceramics are used as a reference to examine silicon nitride from a material characteristics, manufacturing, thermal stress and aerothermodynamic viewpoint.

  18. Silicon surface passivation by silicon nitride deposition

    NASA Technical Reports Server (NTRS)

    Olsen, L. C.

    1984-01-01

    Silicon nitride deposition was studied as a method of passivation for silicon solar cell surfaces. The following three objectives were the thrust of the research: (1) the use of pecvd silicon nitride for passivation of silicon surfaces; (2) measurement techniques for surface recombination velocity; and (3) the importance of surface passivation to high efficiency solar cells.

  19. Hole transport and photoluminescence in Mg-doped InN

    SciTech Connect

    Miller, N.; Ager III, J. W.; Smith III, H. M.; Mayer, M. A.; Yu, K. M.; Haller, E. E.; Walukiewicz, W.; Schaff, W. J.; Gallinat, C.; Koblmuller, G.; Speck, J. S.

    2010-03-24

    Hole conductivity and photoluminescence were studied in Mg-doped InN films grown by molecular beam epitaxy. Because surface electron accumulation interferes with carrier type determination by electrical measurements, the nature of the majority carriers in the bulk of the films was determined using thermopower measurements. Mg concentrations in a"window" from ca. 3 x 1017 to 1 x 1019 cm-3 produce hole-conducting, p-type films as evidenced by a positive Seebeck coecient. This conclusion is supported by electrolyte-based capacitance voltage measurements and by changes in the overall mobility observed by Hall effect, both of which are consistent with a change from surface accumulation on an n-type film to surface inversion on a p-type film. The observed Seebeck coefficients are understood in terms of a parallel conduction model with contributions from surface and bulk regions. In partially compensated films with Mg concentrations below the window region, two peaks are observed in photoluminescence at 672 meV and at 603 meV. They are attributed to band-to-band and band-to-acceptor transitions, respectively, and an acceptor binding energy of ~;;70 meV is deduced. In hole-conducting films with Mg concentrations in the window region, no photoluminescence is observed; this is attributed to electron trapping by deep states which are empty for Fermi levels close to the valence band edge.

  20. Elucidating the optical properties of MoTe2/InN heterostructures for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Rocha, Alexandre; Villegas, Cesar E. P.

    2015-03-01

    Recently, two-dimensional (2D) atom-thick hexagonal crystals have drawn both experimental and theoretical interest due to their fundamental properties and potential applicability in electronics and optoelectronics. While most studies are focused on 2D crystals with gap in the visible electromagnetic spectrum, the ones with gaps in the near infrared region have not been explored yet. Motivated by this and considering the individual properties of transition metal dichalcogenides and group III-V compounds, we carry out density functional theory (DFT) calculations combine with the GW-Bethe-Salpeter (GW-BSE) methodology to study the optical properties and the power conversion efficiency of MoTe2/InN heterostructures. First, we study the geometric and electronic structure of three heterostructures based on different stacking. Secondly, we use the GW-BSE methodology to study the optical spectrum and estimate the power conversion efficiency of the device. Our results indicates that the photoexcited exciton are originated in the range of 1.12 to 1.5 eV. In addition, we estimate the exciton recombination time finding values in the nanosecond range. Finally, we estimated the short-circuit current and power conversion efficiency of the 2 nm thick device. The Authors thank FAPESP for financial support.

  1. Wear resistance of boron nitride coated metal

    NASA Astrophysics Data System (ADS)

    Andoh, Yasunori; Nishiyama, Satoshi; Sakai, Shigeki; Ogata, Kiyoshi; Fujimoto, Fuminori

    1993-06-01

    The wear resistance of boron nitride films was studied. The films of 1 μm thickness were prepared on the surface of a cutting tool by simultaneous nitrogen ion irradiation and vapor depositon of boron; the Vickers hardness of the films was between 3000 and 5000 kg/mm 2. The test was performed by the cutting of steel. On the tool deposited directly, the wear of the surface is large and this could not be improved greatly. However, the tools prepared after nitridation of the surface layer by ion implantation and the one with another nitride layer in the interface showed decreasing wear, and the wear of the tool with an interlayer of silicon nitride could be decreased to about 15%. As a result, it became clear that boron nitride could be effectively used as a highly hard film by the optimization of the interface between the film and the matrix.

  2. Nitriding of large-sized aluminum

    SciTech Connect

    Ito, Shigeru; Yoshida, Kazuharu; Sato, Shin-ichi

    1996-06-01

    Aluminum chips with 2mm in size have been successfully nitrided with 99.3% of conversion, using yttrium oxide as a promoter. The product consisted of hollow spheres with 2mm in dia. and fine particles of aluminum nitride. This nitriding is divided into two steps. In the first step, nitriding begins from the surface of aluminum chip. Because the surface is activated by the addition of yttrium oxide, the reaction heat raises the temperature of aluminum enough to generate the aluminum vapor, followed by the second step; exothermic reaction of aluminum vapor and nitrogen gas. In addition, to accelerate the first step without additive, electrolytic etching was applied to aluminum wires with 2mm in dia. In this case, aluminum wires were also completely nitrided.

  3. Alloy Effects on the Gas Nitriding Process

    NASA Astrophysics Data System (ADS)

    Yang, M.; Sisson, R. D.

    2014-12-01

    Alloy elements, such as Al, Cr, V, and Mo, have been used to improve the nitriding performance of steels. In the present work, plain carbon steel AISI 1045 and alloy steel AISI 4140 were selected to compare the nitriding effects of the alloying elements in AISI 4140. Fundamental analysis is carried out by using the "Lehrer-like" diagrams (alloy specific Lehrer diagram and nitriding potential versus nitrogen concentration diagram) and the compound layer growth model to simulate the gas nitriding process. With this method, the fundamental understanding for the alloy effect based on the thermodynamics and kinetics becomes possible. This new method paves the way for the development of new alloy for nitriding.

  4. Electric field dynamics in nitride structures containing quaternary alloy (Al, In, Ga)N

    NASA Astrophysics Data System (ADS)

    Borysiuk, J.; Sakowski, K.; DróŻdŻ, P.; Korona, K. P.; Sobczak, K.; Muziol, G.; Skierbiszewski, C.; Kaminska, A.; Krukowski, S.

    2016-07-01

    Molecular beam epitaxy growth and basic physical properties of quaternary AlInGaN layers, sufficiently thick for construction of electron blocking layers (EBL), embedded in ternary InGaN layers are presented. Transmission electron microscopy (TEM) measurement revealed good crystallographic structure and compositional uniformity of the quaternary layers contained in other nitride layers, which are typical for construction of nitride based devices. The AlInGaN layer was epitaxially compatible to InGaN matrix, strained, and no strain related dislocation creation was observed. The strain penetrated for limited depth, below 3 nm, even for relatively high content of indium (7%). For lower indium content (0.6%), the strain was below the detection limit by TEM strain analysis. The structures containing quaternary AlInGaN layers were studied by time dependent photoluminescence (PL) at different temperatures and excitation powers. It was shown that PL spectra contain three peaks: high energy donor bound exciton peak from the bulk GaN (DX GaN) and the two peaks (A and B) from InGaN layers. No emission from quaternary AlInGaN layers was observed. An accumulation of electrons on the EBL interface in high-In sample and formation of 2D electron gas (2DEG) was detected. The dynamics of 2DEG was studied by time resolved luminescence revealing strong dependence of emission energy on the 2DEG concentration. Theoretical calculations as well as power-dependence and temperature-dependence analysis showed the importance of electric field inside the structure. At the interface, the field was screened by carriers and could be changed by illumination. From these measurements, the dynamics of electric field was described as the discharge of carriers accumulated on the EBL.

  5. Indium foil with beryllia washer improves transistor heat dissipation

    NASA Technical Reports Server (NTRS)

    Hilliard, J.; John, J. E. A.

    1964-01-01

    Indium foil, used as an interface material in transistor mountings, greatly reduces the thermal resistance of beryllia washers. This method improves the heat dissipation of power transistors in a vacuum environment.

  6. Clinical imaging with indium-111 leukocytes: uptake in bowel infarction

    SciTech Connect

    Gray, H.W.; Cuthbert, I.; Richards, J.R.

    1981-08-01

    Leukocytes labeled with indium-111 accumulated in an area of small-bowel infarction, mimicking a paracolic abscess. Evidence of subacute bowel obstruction should alert the nuclear medicine physician to the former possibility.

  7. Doping of indium phosphide with group IV elements

    SciTech Connect

    Zakharenkov, L.F.; Samorukov, B.E.; Zykov, A.M.

    1985-06-01

    This paper studies the doping of single crystals of indium phosphide (InP) with group IV elements using data obtained by measuring the total charge concentration of additives and carriers. Single crystals of indium phosphide were grown by the Czochralski method from liquid melts with a liquid hermetic seal in quartz cubicles. The total impurity concentration was determined by atomic-absorption analysis with + or - 10% error. In order to explain the behavior of germanium and tin in indium phosphide, the authors consider the bond energies of additives in indium phosphide and their tetrahedral radii. The authors conclude that the established higher amphoteric character of germanium with respect to tin is probably explained by the moduli of elasticity of the doped crystal.

  8. Nitride semiconductors for ultraviolet detection

    NASA Astrophysics Data System (ADS)

    Davis, Robert F.; Gruss, K.; Hanser, D.; Perry, B.; Smith, L.

    1993-12-01

    Monocrystalline thin films of AlN and GaN have been deposited on vicinal alpha(6H)-SiC(0001) wafers via gas-source MBE and cold-wall metalorganic (MO) CVD and extensively investigated via high-resolution TEM. Elemental metal sources combined with activated nitrogen generated using an ECR plasma were employed in the MBE system; triethylgallium, triethylaluminum and ammonia were used in the MOCVD system. The MBE research has also included n-(Si) and p-type(Mg) doping and the creation of p-n junctions. The effects on growth of T, P, and MO flux have been investigated in the MOCVD work. Below the critical thickness, AlN only contains threading dislocations emanating from the misfit dislocations; above this thickness, defects parallel to the growth surface greatly increase. The defect density of AlN grown on SiC at 1100 C is much lower than that contained in materials deposited at 700 C. Deposition of GaN on an AlN buffer layer previously deposited on sapphire or SiC results in a larger number of dislocations parallel to the growth surface. A system for the deposition of InN and its solid solutions which addresses the problems of the low decomposition pressure has also been designed. The feasibility of designing an ammonia cracker cell for the MBE system to provide an alternative source of activated nitrogen is being investigated.

  9. Molten-Salt-Based Growth of Group III Nitrides

    DOEpatents

    Waldrip, Karen E.; Tsao, Jeffrey Y.; Kerley, Thomas M.

    2008-10-14

    A method for growing Group III nitride materials using a molten halide salt as a solvent to solubilize the Group-III ions and nitride ions that react to form the Group III nitride material. The concentration of at least one of the nitride ion or Group III cation is determined by electrochemical generation of the ions.

  10. Hard carbon nitride and method for preparing same

    DOEpatents

    Haller, E.E.; Cohen, M.L.; Hansen, W.L.

    1992-05-05

    Novel crystalline [alpha](silicon nitride-like)-carbon nitride and [beta](silicon nitride-like)-carbon nitride are formed by sputtering carbon in the presence of a nitrogen atmosphere onto a single crystal germanium or silicon, respectively, substrate. 1 figure.

  11. Status of indium phosphide solar cell development at Spire

    NASA Technical Reports Server (NTRS)

    Spitzer, M. B.; Keavney, C. J.; Vernon, S. M.

    1987-01-01

    On-going development of indium phosphide solar cells for space applications is presented. The development is being carried out with a view towards both high conversion efficiency and simplicity of manufacture. The cell designs comprise the ion-implanted cell, the indium tin oxide top contact cell, and the epitaxial cell grown by metal organic chemical vapor deposition. Modelling data on the limit to the efficiency are presented and comparison is made to measured performance data.

  12. Determination of indium in standard rocks by neutron activation analysis.

    PubMed

    Johansen, O; Steinnes, E

    1966-08-01

    A rapid neutron activation method for the determination of indium in rocks, based on 54 min (116m)In, is described. The method has been applied to a series of geochemical standards including granite G-1 and diabase W-1. The precision is better than +/- 5% for samples containing more than 5 x 10(-10)g indium. Good agreement with previously published values for G-1 and W-1 has been obtained. PMID:18959988

  13. Development of indium bumping technology through AZ9260 resist electroplating

    NASA Astrophysics Data System (ADS)

    Huang, Qiuping; Xu, Gaowei; Yuan, Yuan; Cheng, Xiao; Luo, Le

    2010-05-01

    Indium bumping is very critical technology in the application of high-density interconnection between a FPA (focal plane array) and a Si ROIC (read-out integrated circuit) by flip-chip bonding. In this paper, the indium BGA (ball grid array) chips are prepared with an electroplating method on the Si substrate. With such a method, the first difficulty arises in removing the seed layer. Two ways, including IBE (ion beam etching) and lift-off, are adopted to overcome it. The results show that the lift-off process is effective but not IBE. During the reflow process, many indium bumps fall off the substrate. Two ways are tried to solve this problem: one is to optimize the reflow profile and the other is to thicken the wetting layer. The results show that these two ways can effectively improve such status. The barrier effects of the UBM (under bump metallization) for indium, which are Ti/Pt (300 Å/200 Å) and Ti/Pt/Au/Ep Au (300 Å/200 Å/1000 Å/4 µm), are also investigated. Experimental results indicate that both of them can be used in application of integration of the FPA and ROIC. Reliability of indium bumps with these two kinds of UBM is evaluated by the shear test. The results show that their shear strength has a significant increase after reflow. For the indium bump with UBM of Ti/Pt/Au/Ep Au (300 Å/200 Å/1000 Å/4 µm), IMC (intermetallic compounds) at the interface of Au-In can strengthen the indium bump but may change the plasticity of indium.

  14. Analysis of the production of ATLAS indium bonded pixel modules

    NASA Astrophysics Data System (ADS)

    Alimonti, G.; Andreazza, A.; Bulgheroni, A.; Corda, G.; Di Gioia, S.; Fiorello, A.; Gemme, C.; Koziel, M.; Manca, F.; Meroni, C.; Nechaeva, P.; Paoloni, A.; Rossi, L.; Rovani, A.; Ruscino, E.

    2006-09-01

    The ATLAS collaboration is currently building 1500 pixel modules using the indium bump bonding technique developed by SELEX Sistemi Integrati (former AMS). The indium deposition and flip-chip process are described together with an overview of the chip stripping machine that allows defective modules to be reworked. The production is half-way through at the time of this writing. This paper also discusses the problems encountered during production and the adopted solutions.

  15. Recovery of indium from LCD screens of discarded cell phones.

    PubMed

    Silveira, A V M; Fuchs, M S; Pinheiro, D K; Tanabe, E H; Bertuol, D A

    2015-11-01

    Advances in technological development have resulted in high consumption of electrical and electronic equipment (EEE), amongst which are cell phones, which have LCD (liquid crystal display) screens as one of their main components. These multilayer screens are composed of different materials, some with high added value, as in the case of the indium present in the form of indium tin oxide (ITO, or tin-doped indium oxide). Indium is a precious metal with relatively limited natural reserves (Dodbida et al., 2012), so it can be profitable to recover it from discarded LCD screens. The objective of this study was to develop a complete process for recovering indium from LCD screens. Firstly, the screens were manually removed from cell phones. In the next step, a pretreatment was developed for removal of the polarizing film from the glass of the LCD panels, because the adherence of this film to the glass complicated the comminution process. The choice of mill was based on tests using different equipment (knife mill, hammer mill, and ball mill) to disintegrate the LCD screens, either before or after removal of the polarizing film. In the leaching process, it was possible to extract 96.4 wt.% of the indium under the following conditions: 1.0M H2SO4, 1:50 solid/liquid ratio, 90°C, 1h, and stirring at 500 rpm. The results showed that the best experimental conditions enabled extraction of 613 mg of indium/kg of LCD powder. Finally, precipitation of the indium with NH4OH was tested at different pH values, and 99.8 wt.% precipitation was achieved at pH 7.4. PMID:25922168

  16. The Powder-Pack Nitriding Process: Growth Kinetics of Nitride Layers on Pure Iron

    NASA Astrophysics Data System (ADS)

    Campos-Silva, I.; Ortiz-Dominguez, M.; Elias-Espinosa, M.; Vega-Morón, R. C.; Bravo-Bárcenas, D.; Figueroa-López, U.

    2015-09-01

    In this study, the growth kinetics of nitride layers that develop during the powder-pack nitriding process on the surface of ARMCO pure iron was estimated. The powder-pack nitriding of pure iron was performed according to the Pulnieren© (H.E.F. Durferrit) method using a "Pulnier" powder and an activator, at 798-848 K with different exposure times (2-12 h) for each temperature. In addition, for the entire set of nitriding conditions, three different activator/"Pulnier" powder ratios (0.20, 0.25, and 0.35) were used to evaluate the activation level during the growth of nitride layers. The kinetics of the nitride layers over the surface of ARMCO pure iron were estimated by two mathematical approaches, that consider the mass balance equations at the growth interphases. The resulting expressions for the effective diffusion coefficients in the nitride layers were evaluated as a function of nitriding temperatures and activator/"Pulnier" powder ratio. Finally, based on the experimental parameters ascribed to the powder-pack nitriding process, two expressions were proposed to estimate the nitride layer thicknesses at 798 and 823 K after 9 h of exposure for each temperature, to validate the diffusion models used in this work.

  17. Physicochemical characteristics of the internal nitriding of multicomponent alloys

    SciTech Connect

    Petrova, L.G.

    1995-07-01

    Internal nitriding is the saturation of the deep layers of an alloy with nitrogen, which produces a structure composed of disperse nitride particles distributed in a solid solution. This distinguishes internal nitriding from conventional nitriding where a continuous nitride zone is formed in the surface layer. Therefore, internal nitrogenization, as in other processes of alloy saturation with implantation elements (e.g., internal oxidation), ensures the disperse strengthening of the alloy. The degree of strengthening is dependent on the amount and dispersion of the evolved nitrides and is associated with their thermodynamic stability and coagulation resistance. The study of the characteristics of internal nitriding of multicomponent alloys is of interest.

  18. Synthesis of transition metal nitride by nitridation of metastable oxide precursor

    SciTech Connect

    Wang, Huamin; Wu, Zijie; Kong, Jing; Wang, Zhiqiang; Zhang, Minghui

    2012-10-15

    Metastable transition metal oxides were used as precursors to synthesize transition metal nitrides at low temperature. Amorphous MoO{sub 2} was prepared by reduction of (NH{sub 4}){sub 6}Mo{sub 7}O{sub 24} solution with hydrazine. As-synthesized amorphous MoO{sub 2} was transformed into fcc {gamma}-Mo{sub 2}N at 400 Degree-Sign C and then into hexagonal {delta}-MoN by further increasing the temperature to 600 Degree-Sign C under a NH{sub 3} flow. The nitridation temperature employed here is much lower than that employed in nitridation of crystalline materials, and the amorphous materials underwent a unique nitridation process. Besides this, the bimetallic nitride Ni{sub 2}Mo{sub 3}N was also synthesized by nitridating amorphous bimetallic precursor. These results suggested that the nitridation of amorphous precursor possessed potential to be a general method for synthesizing many interstitial metallic compounds, such as nitrides and carbides at low temperature. - graphical abstract: Amorphous oxide was used as new precursor to prepare nitride at low temperature. Pure {gamma}-Mo{sub 2}N and {delta}-MoN were obtained at 400 Degree-Sign C and at 600 Degree-Sign C, respectively. Highlights: Black-Right-Pointing-Pointer We bring out a new method to synthesize transition metal nitrides at low temperature. Black-Right-Pointing-Pointer Both mono- and bimetallic molybdenum nitrides were synthesized at a mild condition. Black-Right-Pointing-Pointer The formation of two different molybdenum nitrides {gamma}-Mo{sub 2}N and {delta}-MoN can be controlled from the same metastable precursor. Black-Right-Pointing-Pointer The nitridation temperature was much lower than that reported from crystalline precursors. Black-Right-Pointing-Pointer The metastable precursor had different reaction process in comparison with crystalline precursor.

  19. Indium acetate toxicity in male reproductive system in rats.

    PubMed

    Lee, Kuo-Hsin; Chen, Hsiu-Ling; Leung, Chung-Man; Chen, Hsin-Pao; Hsu, Ping-Chi

    2016-01-01

    Indium, a rare earth metal characterized by high plasticity, corrosion resistance, and a low melting point, is widely used in the electronics industry, but has been reported to be an environmental pollutant and a health hazard. We designed a study to investigate the effects of subacute exposure of indium compounds on male reproductive function. Twelve-week old male Sprague-Dawley rats were randomly divided into test and control groups, and received weekly intraperitoneal injections of indium acetate (1.5 mg/kg body weight) and normal saline, respectively, for 8 weeks. Serum indium levels, cauda epididymal sperm count, motility, morphology, chromatin DNA structure, mitochondrial membrane potential, oxidative stress, and testis DNA content were investigated. The indium acetate-treated group showed significant reproductive toxicity, as well as an increased percentage of sperm morphology abnormality, chromatin integrity damage, and superoxide anion generation. Furthermore, positive correlations among sperm morphology abnormalities, chromatin DNA damage, and superoxide anion generation were also noted. The results of this study demonstrated the toxic effect of subacute low-dose indium exposure during the period of sexual maturation on male reproductive function in adulthood, through an increase in oxidative stress and sperm chromatin DNA damage during spermiogenesis, in a rodent model. PMID:25044390

  20. Titanium nitride: A new Ohmic contact material for n-type CdS

    SciTech Connect

    Didden, Arjen; Battjes, Hemme; Dam, Bernard; Krol, Roel van de; Machunze, Raymond

    2011-08-01

    In devices based on CdS, indium is often used to make Ohmic contacts. Since indium is scarce and expensive, suitable replacement materials need to be found. In this work, we show that sputtered titanium nitride forms an Ohmic contact with n-type CdS. The CdS films, deposited with chemical bath deposition, have a hexagonal crystal structure and are polycrystalline, mostly with a (002) texture. The thickness of the films is {approx}600 nm, and the donor density is 1.9 x 10{sup 16} cm{sup -3}. The donor density increases to 1.5 x 10{sup 17} cm{sup -3} upon annealing. The contact resistivity of sputtered TiN on CdS is found to be 4.7 {+-} 0.6 {Omega} cm{sup 2}. This value is sufficiently small to avoid large resistive losses in most CdS device applications. To demonstrate the use of TiN in a CdS device, a Au/CdS/TiN Schottky diode was constructed. The diode has a potential barrier of 0.69 V and an ideality factor of 2.2.

  1. Kinetic process of nitridation on the α-sapphire surface

    NASA Astrophysics Data System (ADS)

    Xingzhou, Tang; Shuping, Li; Junyong, Kang; Jiaqi, Chen

    2014-11-01

    We established a model to simulate the growth process of nitridation and clarified the inner mechanisms of nitridation and over-nitridation by combining the kinetic Monte Carlo and molecular dynamics methods. Supported by reflection high-energy electron diffraction results with growth in an MBE system, the tendency of nitridation on α-sapphire in different conditions was observed and analyzed. The best conditions for nitridation on the α-sapphire surface are found by our simulation.

  2. Process for the production of metal nitride sintered bodies and resultant silicon nitride and aluminum nitride sintered bodies

    NASA Technical Reports Server (NTRS)

    Yajima, S.; Omori, M.; Hayashi, J.; Kayano, H.; Hamano, M.

    1983-01-01

    A process for the manufacture of metal nitride sintered bodies, in particular, a process in which a mixture of metal nitrite powders is shaped and heated together with a binding agent is described. Of the metal nitrides Si3N4 and AIN were used especially frequently because of their excellent properties at high temperatures. The goal is to produce a process for metal nitride sintered bodies with high strength, high corrosion resistance, thermal shock resistance, thermal shock resistance, and avoidance of previously known faults.

  3. Nitridation and CVD reactions with hydrazine

    SciTech Connect

    Vogt, K.W.; Kohl, P.A.; Abys, J.A.

    1995-10-01

    The low-temperature nitridation of gallium arsenide, silicon and transition metals was investigated using hydrazine. Gallium nitride films were grown on gallium arsenide (GaAs) by direct reaction of the semiconductor surface layers with hydrazine at 200--400 C. Auger electron spectroscopy and X-ray photoelectron spectroscopy (XPS) analyses show that the films are primarily gallium nitride with a small oxide impurity. Thin nitride films ({approximately}15{angstrom}) were grown on silicon by reaction with hydrazine at 300--500 C. Ellipsometry results suggest that the film growth goes through different phases following linear, parabolic and logarithmic functions with time. XPS analysis shows that the nitride films could be formed at much lower temperatures than possible with ammonia (300 vs. 600 C). The formation of numerous transition metal nitrides (Co, Cr, Fe, Mo, Si, Ta, Ti, V, and W) by reaction with hydrazine at 400 C is demonstrated, as well as the chemical vapor deposition of boron nitride films from diborane and hydrazine reactants. The temperature at the mixing point was critical in determining the final composition of the film. A 1-D transport model suggests that the reaction rate at 400 C was kinetically limited. The results also agree qualitatively with thermodynamic equilibrium calculations.

  4. Method of synthesizing cubic system boron nitride

    SciTech Connect

    Yuzu, S.; Sumiya, H.; Degawa, J.

    1987-10-13

    A method is described for synthetically growing cubic system boron nitride crystals by using boron nitride sources, solvents for dissolving the boron nitride sources, and seed crystals under conditions of ultra-high pressure and high temperature for maintaining the cubic system boron nitride stable. The method comprises the following steps: preparing a synthesizing vessel having at least two chambers, arrayed in order in the synthesizing vessel so as to be heated according to a temperature gradient; placing the solvents having different eutectic temperatures in each chamber with respect to the boron nitride sources according to the temperature gradient; placing the boron nitride source in contact with a portion of each of the solvents heated at a relatively higher temperature and placing at least a seed crystal in a portion of each of the solvents heated at a relatively lower temperature; and growing at least one cubic system boron nitride crystal in each of the solvents in the chambers by heating the synthesizing vessel for establishing the temperature gradient while maintaining conditions of ultra-high pressure and high temperature.

  5. Shock Response of Silicon Nitride

    NASA Astrophysics Data System (ADS)

    Dandekar, D. P.; Casem, D. T.; Motoyashiki, Y.; Sato, E.

    2009-12-01

    Silicon nitride is suitable for varied applications because its properties can be tailored through processing and doping. The current work presents shock response of silicon nitride marketed as SN282. The density of this material, 3.4 Mg/m3, exceeds its single crystal density, 3.2 Mg/m3, due to the presence of lutetium oxide as an additive around 5% by weight in the material. While the average grain size is 3.4 microns, the aspect ratio of the grains exceed 3. Preliminary results of shock wave experiments may be summarized as follows: (1) The Hugoniot Elastic Limit (HEL) of SN282 lies between 10.8 and 11.9 GPa. (2) The magnitude of the inelastic wave velocity just above the HEL is 8.73 km/s, suggesting that inelastic deformation above the HEL is due to shock induced plasticity in the material. (3) The value of the spall strength lies between 0.57 and 0.65 GPa. The spall strength of SN282 remains unchanged even when shocked beyond the HEL to at least 19.2 GPa unlike other brittle ceramics.

  6. Electrospun Gallium Nitride Nanofibers (abstract)

    NASA Astrophysics Data System (ADS)

    Meléndez, Anamaris; Morales, Kristle; Ramos, Idalia; Campo, Eva; Santiago, Jorge J.

    2009-04-01

    The high thermal conductivity and wide bandgap of gallium nitride (GaN) are desirable characteristics in optoelectronics and sensing applications. In comparison to thin films and powders, in the nanofiber morphology the sensitivity of GaN is expected to increase as the exposed area (proportional to the length) increases. In this work we present electrospinning as a novel technique in the fabrication of GaN nanofibers. Electrospinning, invented in the 1930s, is a simple, inexpensive, and rapid technique to produce microscopically long ultrafine fibers. GaN nanofibers are produced using gallium nitrate and dimethyl-acetamide as precursors. After electrospinning, thermal decomposition under an inert atmosphere is used to pyrolyze the polymer. To complete the preparation, the nanofibers are sintered in a tube furnace under a NH3 flow. Both scanning electron microscopy and profilometry show that the process produces continuous and uniform fibers with diameters ranging from 20 to a few hundred nanometers, and lengths of up to a few centimeters. X-ray diffraction (XRD) analysis shows the development of GaN nanofibers with hexagonal wurtzite structure. Future work includes additional characterization using transmission electron microscopy and XRD to understand the role of precursors and nitridation in nanofiber synthesis, and the use of single nanofibers for the construction of optical and gas sensing devices.

  7. Ion implantation and rapid thermal processing of III-V nitrides

    SciTech Connect

    Zolper, J.C.; Crawford, M.H.; Pearton, S.J.; Abernathy, C.R.; Vartuli, C.B.; Yuan, C.; Stall, R.A.

    1996-05-01

    Ion implantation doping and isolation coupled with rapid thermal annealing has played a critical role in the realization of high performance photonic and electronic devices in all mature semiconductor material systems. This is also expected to be the case for the binary III-V nitrides (InN, GaN, and AlN) and their alloys as the epitaxial material quality improves and more advanced device structures are fabricated. In this article, we review the recent developments in implant doping and isolation along with rapid thermal annealing of GaN and the In-containing ternary alloys InGaN and InAlN. In particular, the successful n- and p-type doping of GaN by ion implantation of Si and Mg+P, respectively, and subsequent high temperature rapid thermal anneals in excess of 1000{degree}C is reviewed. In the area of implant isolation, N-implantation has been shown to compensate both n- and p-type GaN, N-, and O-implantation effectively compensates InAlN, and InGaN shows limited compensation with either N- or F-implantation. The effects of rapid thermal annealing on unimplanted material are also presented. 29 refs., 6 figs., 2 tabs.

  8. Status of ion implantation doping and isolation of III-V nitrides

    SciTech Connect

    Zolper, J.C.; Pearton, S.J.; Abernathy, C.R.

    1995-09-01

    Ion implantation doping and isolation has played a critical role in the realization of high performance photonic and electronic devices in all mature semiconductor material systems. This is also expected to be the case for the binary III-V nitrides (InN, GaN, and AlN) and their alloys as the epitaxial material quality improves and more advanced device structures are fabricated. With this in mind, we review the status of implant doping and isolation of GaN and the ternary alloys AlGaN, InGaN, and InAlN. In particular, we reported on the successful n- and p-type doping of GaN by ion implantation of Mg+P and Si, respectively, and subsequent high temperature rapid thermal anneals in excess of 1000{degrees}C. In the area of implant isolation, N-implantation has been shown to compensate both n- and p-type GaN, N and O-implantation effectively compensates InAlN, and InGaN shows limited compensation with either N or F implantation.

  9. ECR etching of group-III nitride binary and ternary films

    SciTech Connect

    Shul, R.J.; Howard, A.J.; Pearton, S.J.

    1995-10-01

    Due to their wide band gaps and high dielectric constants, the group III-nitrides have made significant impact on the compound semiconductor community as blue and ultraviolet light emitting diodes (LEDs) and for their potential use in laser structures and high temperature electronics. Processing of these materials, in particular wet and dry etching, has proven to be extremely difficult due to their inert chemical nature. We report electron cyclotron resonance (ECR) etch rates for GaN, InN, AlN, In{sub (x)}Ga{sub (1-x)}Ni and In{sub (x)}Al{sub (1-x)}N as a function of temperature, rf-power, pressure, and microwave power. Etch conditions are characterized for rate, profile, and sidewall and surface morphology. Atomic force microscopy (AFM) is used to quantify RMS roughness of the etched surfaces. We observe consistent trends for the InAlN films where the etch rates increase with increasing concentration of In. The trends are far less consistent for the InGaN with a general decrease in etch rate as the In concentration is increased.

  10. Role of C, O and H in III-V nitrides

    SciTech Connect

    Abernathy, C.R.; Pearton, S.J.; MacKenzie, J.D.; Lee, J.W.; Vartuli, C.B.; Wilson, R.G.; Shul, R.J.; Zolper, J.C.; Zavada, J.M.

    1995-12-01

    The light ion impurities C, 0 and H have been implanted or diffused into GaN and related compounds and their effect on the electrical properties of these materials measured by Hall, C-V and SIMS as a function of annealing temperatures from 300--11OO{degree}C. While C in as-grown GaN appears to create an acceptor under MOMBE conditions, implanted C shows no measurable activity. Similarly, implanted 0 does not show any shallow donor activity after annealing at {le}700{degree}C, but can create high resistivity regions (10{sup 6} {Omega}/{open_square}) in GaN, AlInN and InGaN for device isolation when annealed at 500--70O{degree}C. Finally, hydrogen is found to passivate shallow donor and acceptor states in GaN, InN. InAlN and InGaN, with dissociation of the neutral complexes at >450{degree}C. The liberated hydrogen does not leave the nitride films until much higher annealing temperatures (>800{degree}C). Typical reactivation energies are {approximately}2.0 eV for impurity-hydrogen complexes.

  11. Ion implantation and rapid thermal processing of Ill-V nitrides

    NASA Astrophysics Data System (ADS)

    Zolper, J. C.; Hagerott Crawford, M.; Pearton, S. J.; Abernathy, C. R.; Vartuli, C. B.; Yuan, C.; Stall, R. A.

    1996-05-01

    Ion implantation doping and isolation coupled with rapid thermal annealing has played a critical role in the realization of high performance photonic and electronic devices in all mature semiconductor material systems. This is also expected to be the case for the binary III-V nitrides (InN, GaN, and A1N) and their alloys as the epitaxial material quality improves and more advanced device structures are fabricated. In this article, we review the recent developments in implant doping and isolation along with rapid thermal annealing of GaN and the In-containing ternary alloys InGaN and InAlN. In particular, the successful n- and p-type doping of GaN by ion implantation of Si and Mg+P, respectively, and subsequent high temperature rapid thermal anneals in excess of 1000°C is reviewed. In the area of implant isolation, N-implantation has been shown to compensate both n- and p-type GaN, N-, and O-implantation effectively compensates InAlN, and InGaN shows limited compensation with either N- or F-implantation. The effects of rapid thermal annealing on unimplanted material are also presented.

  12. risk factor Inn (INNrisk) - transdisciplinary analysis of the 2005 flood in the province of Tyrol, Austria

    NASA Astrophysics Data System (ADS)

    Kleewein, Klaus; Pfurtscheller, Clemens; Borsdorf, Axel

    2010-05-01

    The transdisciplinary project INNrisk, in collaboration with public risk and disaster management, investigates the severe floods of 22nd and 23rd of August, 2005, and their effects within the federal province of Tyrol. The inundation and accompanying processes (e.g. debris flows, log jams, underwashing of infrastructure) caused by the river Inn and its tributaries created a dangerous situation for Tyrol. The overall economic loss of direct assets is said to amount to ca. 500 million Euros. Climate change has basically been causing a statistical increase of damaging floods within the Alpine Space in recent decades while increasing vulnerability at the same time. The expansion of settlements is one factor in the threat to large numbers of people and growing economic losses. However, the disasters of the last decade provide an opportunity for analysing the flood process in terms of natural-science and geographical aspects as well as in terms of economic and statistical ones. This should lead to a better understanding of triggers and effects in those areas where humans are active and form the basis for mitigation and adaptation strategies. The results of such analyses represent valuable information for public risk and disaster management, particularly in presenting the effects on public and private households. The INNrisk project primarily aims to assess the framework conditions in systemic-legal terms and to analyse human actions during the floods in relation to various plans and the damage potentials resulting from them. The assessed losses depend to a great extent on the actions taken during the emergency and on flood operations by the public emergency management and local fire departments, which are in charge of floods and related processes in the case of Austria. Assessment will be carried out by analysing a database of series of human actions for the duration of the emergeny and increased risk. The project also strives to arrive at a macro- and mesoeconomic

  13. Beaulieu-Boycott-Innes syndrome: an intellectual disability syndrome with characteristic facies.

    PubMed

    Casey, Jillian; Jenkinson, Allan; Magee, Alex; Ennis, Sean; Monavari, Ahmad; Green, Andrew; Lynch, Sally A; Crushell, Ellen; Hughes, Joanne

    2016-10-01

    We report a female child from an Irish Traveller family presenting with severe intellectual disability, dysmorphic features, renal anomalies, dental caries and cyclical vomiting. Current health issues include global developmental delay, mild concentric left ventricular hypertrophy, dental malocclusion and caries and a single duplex left kidney. The proband and her mother also have multiple epiphyseal dysplasia. Whole-exome sequencing was performed to identify the underlying genetic cause. DNA from the proband was enriched with the Agilent Sure Select v5 Exon array and sequenced on an Illumina HiSeq. Rare homozygous variants were prioritized. Whole-exome sequencing identified three linked homozygous missense variants in THOC6 (c.298T>A, p.Trp100Arg; c.700G>C, p.Val234Leu; c.824G>A, p.Gly275Asp) as the likely cause of this child's intellectual disability syndrome, resulting in a molecular diagnosis of Beaulieu-Boycott-Innes syndrome (BBIS). This is the first report of BBIS in Europe. BBIS has been reported previously in two Hutterite families and one Saudi family. A review of all patients to date shows a relatively homogenous phenotype. Core clinical features include low birth weight with subsequent growth failure, short stature, intellectual disability with language delay, characteristic facies, renal anomalies and dental malocclusion with caries. Some patients also have cardiac defects. All patients show characteristic dysmorphic facial features including a tall forehead with high anterior hairline and deep-set eyes with upslanting palpebral fissures. The coexistence of intellectual disability together with these characteristic facies should provide a diagnostic clue for BBIS during patient evaluation. PMID:27295358

  14. Transparent conducting oxide clad limited area epitaxy semipolar III-nitride laser diodes

    NASA Astrophysics Data System (ADS)

    Myzaferi, A.; Reading, A. H.; Cohen, D. A.; Farrell, R. M.; Nakamura, S.; Speck, J. S.; DenBaars, S. P.

    2016-08-01

    The bottom cladding design of semipolar III-nitride laser diodes is limited by stress relaxation via misfit dislocations that form via the glide of pre-existing threading dislocations (TDs), whereas the top cladding is limited by the growth time and temperature of the p-type layers. These design limitations have individually been addressed by using limited area epitaxy (LAE) to block TD glide in n-type AlGaN bottom cladding layers and by using transparent conducting oxide (TCO) top cladding layers to reduce the growth time and temperature of the p-type layers. In addition, a TCO-based top cladding should have significantly lower resistivity than a conventional p-type (Al)GaN top cladding. In this work, LAE and indium-tin-oxide cladding layers are used simultaneously in a ( 20 2 ¯ 1 ) III-nitride laser structure. Lasing was achieved at 446 nm with a threshold current density of 8.5 kA/cm2 and a threshold voltage of 8.4 V.

  15. Improved dispersion of silicon nitride whiskers

    SciTech Connect

    Shih, W.H.; Buchta, M.

    1995-10-01

    To improve the dispersion of silicon nitride whiskers in aqueous suspensions, a standard dispersant used in glass fiber industry, 3-aminopropyltriethoxysilane (APS) is added. It was found that the viscosity of the whisker suspensions is lowered and the centrifuged density of the suspensions is increased with the addition of the APS. The pH values of suspensions before and after the addition of APS indicate that ASP extracts H{sup +} ions from the solutions and the adsorption of APS on silicon nitride is saturated in the experiment. The results indicate a colloidal route to the processing of ceramic composites with silicon nitride whiskers as reinforcements.

  16. Silicon Nitride Membranes for Filtration and Separation

    SciTech Connect

    Galambos, Paul; Zavadil, Kevin; Shul, Randy; Willison, Christi Gober; Miller, Sam

    1999-07-19

    Semi-Permeable silicon nitride membranes have been developed using a Bosch etch process followed by a reactive ion etch (NE) process. These membranes were observed to allow air but not water to pass through them into surface micromachined, silicon nitride microfluidic channels. Membranes with this property have potential use in microfluidic systems as gas bubble traps and vents, filters to remove particles and gas partitioning membranes. Membrane permeation was measured as 1.6 x 10{sup {minus}8} mol/m{sup 2}Pa s of helium for inline membranes at the entrance and exit of the silicon nitride microfluidic channels.

  17. Surface photovoltage spectroscopy of carbon nitride powder

    SciTech Connect

    Dittrich, Th.; Fiechter, S.; Thomas, A.

    2011-08-22

    Powder of carbon nitride has been investigated by surface photovoltage spectroscopy at temperatures between 30 deg. C and 150 deg. C. Photo-generated holes were preferentially separated towards the external surface. Electronic states below the optical band gap from which charge separation may be possible have not been observed. The band gap of the investigated carbon nitride decreased from 2.93 to 2.80 eV with increasing temperature from 30 deg. C to 150 deg. C. The material exhibits a higher optical transition at E = 3.6 eV. Results are discussed from the point of view of photo-catalytic water splitting with carbon nitride.

  18. Photodetectors using III-V nitrides

    DOEpatents

    Moustakas, Theodore D.; Misra, Mira

    1997-01-01

    A photodetector using a III-V nitride and having predetermined electrical properties is disclosed. The photodetector includes a substrate with interdigitated electrodes formed on its surface. The substrate has a sapphire base layer, a buffer layer formed from a III-V nitride and a single crystal III-V nitride film. The three layers are formed by electron cyclotron resonance microwave plasma-assisted molecular beam epitaxy (ECR-assisted MBE). Use of the ECR-assisted MBE process allows control and predetermination of the electrical properties of the photodetector.

  19. Uranium nitride behavior at thermionic temperatures

    NASA Technical Reports Server (NTRS)

    Phillips, W. M.

    1973-01-01

    The feasibility of using uranium nitride for in-core thermionic applications was evaluated in electrically heated thermal gradient tests and in flat plate thermionic converters. These tests indicated that grain boundary penetration of uranium nitride into both tungsten and rhenium will occur under thermal gradient conditions. In the case of the tungsten thermionic converter, this led to grain boundary rupture of the emitter and almost total loss of electrical output from the converter. It appears that uranium nitride is unsuitable for thermionic applications at the 2000 K temperatures used in these tests.

  20. Photodetectors using III-V nitrides

    DOEpatents

    Moustakas, T.D.; Misra, M.

    1997-10-14

    A photodetector using a III-V nitride and having predetermined electrical properties is disclosed. The photodetector includes a substrate with interdigitated electrodes formed on its surface. The substrate has a sapphire base layer, a buffer layer formed from a III-V nitride and a single crystal III-V nitride film. The three layers are formed by electron cyclotron resonance microwave plasma-assisted molecular beam epitaxy (ECR-assisted MBE). Use of the ECR-assisted MBE process allows control and predetermination of the electrical properties of the photodetector. 24 figs.

  1. Boron Nitride Nanoribbons: Synthesis and Future Directions

    NASA Astrophysics Data System (ADS)

    Gibb, Ashley; Erikson, Kris; Sinitskii, Alex; Rousseas, Michael; Alem, Nasim; Tour, James; Zettl, Alex

    2012-02-01

    Boron Nitride Nanoribbons (BNNR) have been theorized to have many interesting electrical and magnetic properties and edge states, but these characteristics have not been experimentally verified due to challenges in synthesis and purification. We have produced BNNRs by longitudinally splitting boron nitride nanotubes (BNNT) using potassium vapor as an intercalant. Due to the strong interactions between boron nitride sheets, separation of nanoribbons from their parent tubes is challenging. We have used various solvent systems to assist with separation of the ribbons with the goal of probing their properties.

  2. Indium Antimonide Nanowires: Synthesis and Properties

    NASA Astrophysics Data System (ADS)

    Shafa, Muhammad; Akbar, Sadaf; Gao, Lei; Fakhar-e-Alam, Muhammad; Wang, Zhiming M.

    2016-03-01

    This article summarizes some of the critical features of pure indium antimonide nanowires (InSb NWs) growth and their potential applications in the industry. In the first section, historical studies on the growth of InSb NWs have been presented, while in the second part, a comprehensive overview of the various synthesis techniques is demonstrated briefly. The major emphasis of current review is vapor phase deposition of NWs by manifold techniques. In addition, author review various protocols and methodologies employed to generate NWs from diverse material systems via self-organized fabrication procedures comprising chemical vapor deposition, annealing in reactive atmosphere, evaporation of InSb, molecular/ chemical beam epitaxy, solution-based techniques, and top-down fabrication method. The benefits and ill effects of the gold and self-catalyzed materials for the growth of NWs are explained at length. Afterward, in the next part, four thermodynamic characteristics of NW growth criterion concerning the expansion of NWs, growth velocity, Gibbs-Thomson effect, and growth model were expounded and discussed concisely. Recent progress in device fabrications is explained in the third part, in which the electrical and optical properties of InSb NWs were reviewed by considering the effects of conductivity which are diameter dependent and the applications of NWs in the fabrications of field-effect transistors, quantum devices, thermoelectrics, and detectors.

  3. Fabrication challenges for indium phosphide microsystems

    NASA Astrophysics Data System (ADS)

    Siwak, N. P.; Fan, X. Z.; Ghodssi, R.

    2015-04-01

    From the inception of III-V microsystems, monolithically integrated device designs have been the motivating drive for this field, bringing together the utility of single-chip microsystems and conventional fabrication techniques. Indium phosphide (InP) has a particular advantage of having a direct bandgap within the low loss telecommunication wavelength (1550 nm) range, able to support passive waveguiding and optical amplification, detection, and generation depending on the exact alloy of In, P, As, Ga, or Al materials. Utilizing epitaxy, one can envision the growth of a substrate that contains all of the components needed to establish a single-chip optical microsystem, containing detectors, sources, waveguides, and mechanical structures. A monolithic InP MEMS system has, to our knowledge, yet to be realized due to the significant difficulties encountered when fabricating the integrated devices. In this paper we present our own research and consolidate findings from other research groups across the world to give deeper insight into the practical aspects of InP monolithic microsystem development: epitaxial growth of InP-based alloys, etching techniques, common MEMS structures realized in InP, and future applications. We pay special attention to shedding light on considerations that must be taken when designing and fabricating a monolithic InP MEMS device.

  4. Indium Antimonide Nanowires: Synthesis and Properties.

    PubMed

    Shafa, Muhammad; Akbar, Sadaf; Gao, Lei; Fakhar-E-Alam, Muhammad; Wang, Zhiming M

    2016-12-01

    This article summarizes some of the critical features of pure indium antimonide nanowires (InSb NWs) growth and their potential applications in the industry. In the first section, historical studies on the growth of InSb NWs have been presented, while in the second part, a comprehensive overview of the various synthesis techniques is demonstrated briefly. The major emphasis of current review is vapor phase deposition of NWs by manifold techniques. In addition, author review various protocols and methodologies employed to generate NWs from diverse material systems via self-organized fabrication procedures comprising chemical vapor deposition, annealing in reactive atmosphere, evaporation of InSb, molecular/ chemical beam epitaxy, solution-based techniques, and top-down fabrication method. The benefits and ill effects of the gold and self-catalyzed materials for the growth of NWs are explained at length. Afterward, in the next part, four thermodynamic characteristics of NW growth criterion concerning the expansion of NWs, growth velocity, Gibbs-Thomson effect, and growth model were expounded and discussed concisely. Recent progress in device fabrications is explained in the third part, in which the electrical and optical properties of InSb NWs were reviewed by considering the effects of conductivity which are diameter dependent and the applications of NWs in the fabrications of field-effect transistors, quantum devices, thermoelectrics, and detectors. PMID:27009531

  5. Design of Integrated III-Nitride/Non-III-Nitride Tandem Photovoltaic Devices

    SciTech Connect

    Toledo, N. G.; Friedman, D.J.; Farrell, R. M.; Perl, E. E.; Lin, C. T.; Bowers, J. E.; Speck, J. S.; Mishra, U. K.

    2012-03-01

    The integration of III-nitride and non-III-nitride materials for tandem solar cell applications can improve the efficiency of the photovoltaic device due to the added power contributed by the III-nitride top cell to that of high-efficiency multi-junction non-III-nitride solar cells if the device components are properly designed and optimized. The proposed tandem solar cell is comprised of a III-nitride top cell bonded to a non-III-nitride, series-constrained, multi-junction subcell. The top cell is electrically isolated, but optically coupled to the underlying subcell. The use of a III-nitride top cell is potentially beneficial when the top junction of a stand-alone non-III-nitride subcell generates more photocurrent than the limiting current of the non-III-nitride subcell. Light producing this excess current can either be redirected to the III-nitride top cell through high energy photon absorption, redirected to the lower junctions through layer thickness optimization, or a combination of both, resulting in improved total efficiency. When the non-III-nitride cell's top junction is the limiting junction, the minimum power conversion efficiency that the III-nitride top cell must contribute should compensate for the spectrum filtered from the multi-junction subcell for this design to be useful. As the III-nitride absorption edge wavelength, {lambda}{sub N}, increases, the performance of the multi-junction subcell decreases due to spectral filtering. In the most common spectra of interest (AM1.5G, AM1.5 D, and AM0), the technology to grow InGaN cells with {lambda}{sub N}<520 nm is found to be sufficient for III-nitride top cell applications. The external quantum efficiency performance, however, of state-of-the-art InGaN solar cells still needs to be improved. The effects of surface/interface reflections are also presented. The management of these reflection issues determines the feasibility of the integrated III-nitride/non-III-nitride design to improve overall cell

  6. Effect of the growth temperature and the AlN mole fraction on In incorporation and properties of quaternary III-nitride layers grown by molecular beam epitaxy

    SciTech Connect

    Fernandez-Garrido, S.; Pereiro, J.; Munoz, E.; Calleja, E.; Gago, R.; Bertram, F.; Christen, J.; Luna, E.; Trampert, A.

    2008-10-15

    Indium incorporation into wurtzite (0001)-oriented In{sub x}Al{sub y}Ga{sub 1-x-y}N layers grown by plasma-assisted molecular beam epitaxy was studied as a function of the growth temperature (565-635 deg. C) and the AlN mole fraction (0.01indium incorporation decreased continuously with increasing growth temperature due to thermally enhanced dissociation of In-N bonds and for increasing AlN mole fractions. High resolution x-ray diffraction and transmission electron microscopy (TEM) measurements did not show evidence of phase separation. The mosaicity of the quaternary layers was found to be mainly determined by the growth temperature and independent on alloy composition within the range studied. However, depending on the AlN mole fraction, nanometer-sized composition fluctuations were detected by TEM. Photoluminescence spectra showed a single broad emission at room temperature, with energy and bandwidth S- and W-shaped temperature dependences typical of exciton localization by alloy inhomogeneities. Cathodoluminescence measurements demonstrated that the alloy inhomogeneities, responsible of exciton localization, occur on a lateral length scale below 150 nm, which is corroborated by TEM.

  7. Fabrication of translucent boron nitride dispersed polycrystalline silicon nitride ceramics

    NASA Astrophysics Data System (ADS)

    Joshi, B.; Fu, Z.; Niihara, K.; Lee, S. W.

    2011-03-01

    Optical transparency was achieved at infrared region and overall translucent silicon nitride was fabricated using hot press sintering (HPS). The increase in h-BN content decreased the optical transparency. Microstructral observations shows that the optical, mechanical and tribological properties of BN dispersed polycrystalline Si3N4 ceramics were affected by the density, α:β-phase ratio and content of h-BN in sintered ceramics. The hot pressed samples were prepared from the mixture of α-Si3N4, AlN, MgO and h-BN at 1850°C. The composite contained from 0.25 to 2 mass % BN powder with sintering aids (9% AlN + 3% MgO). Maximum transmittance of 57% was achieved for 0.25 mass % BN doped Si3N4 ceramics. Fracture toughness was increased and wear volume and friction coefficient were decreased with increase in BN content.

  8. Independent Composition and Size Control for Highly Luminescent Indium-Rich Silver Indium Selenide Nanocrystals.

    PubMed

    Yarema, Olesya; Yarema, Maksym; Bozyigit, Deniz; Lin, Weyde M M; Wood, Vanessa

    2015-11-24

    Ternary I-III-VI nanocrystals, such as silver indium selenide (AISe), are candidates to replace cadmium- and lead-based chalcogenide nanocrystals as efficient emitters in the visible and near IR, but, due to challenges in controlling the reactivities of the group I and III cations during synthesis, full compositional and size-dependent behavior of I-III-VI nanocrystals is not yet explored. We report an amide-promoted synthesis of AISe nanocrystals that enables independent control over nanocrystal size and composition. By systematically varying reaction time, amide concentration, and Ag- and In-precursor concentrations, we develop a predictive model for the synthesis and show that AISe sizes can be tuned from 2.4 to 6.8 nm across a broad range of indium-rich compositions from AgIn11Se17 to AgInSe2. We perform structural and optical characterization for representative AISe compositions (Ag0.85In1.05Se2, Ag3In5Se9, AgIn3Se5, and AgIn11Se17) and relate the peaks in quantum yield to stoichiometries exhibiting defect ordering in the bulk. We optimize luminescence properties to achieve a record quantum yield of 73%. Finally, time-resolved photoluminescence measurements enable us to better understand the physics of donor-acceptor emission and the role of structure and composition in luminescence. PMID:26370776

  9. Ultraviolet photodetectors and imaging arrays based on III-V nitride heterostructures

    NASA Astrophysics Data System (ADS)

    Brown, Jeffrey David

    2000-10-01

    The III-V nitride class of compound semiconductors has received much attention in the last decade. These materials have a wide, direct bandgap, making them a prime candidate for optoelectronic devices in the blue, green, and ultraviolet spectral regions. These materials exhibit impressive optical, electrical, and thermal properties, even though there are fundamental materials issues that are thus far unresolved. This work explores the application of III-V nitride semiconductors to optical detectors in the ultraviolet region of the electromagnetic spectrum. Metalorganic vapor phase epitaxy was used to synthesize thin film p-i-n photodiode structures on double side polished sapphire substrates; these films were characterized for optical, electrical and structural properties. The grown structures were designed to respond to a predetermined region of the UV spectrum when illuminated from the substrate side. These structures were fabricated into devices using generally accepted techniques for dry etching and p and n-contact metallizations. Test devices were characterized using tools developed by the author. These devices demonstrated as high as 80% quantum efficiency and extremely low dark currents; resulting in spectral detectivities as large as 6 * 1013 cmHz1/2W-1. Devices were designed and demonstrated for a series of detection regions ranging from 365 nm to 250 nm. Photolithography masks were designed to allow the fabrication of photodiode arrays that would hybridize to commercially available CMOS based readout integrated circuits (ROICs), used routinely for infrared photodiode imaging. Photodiode arrays were fabricated and indium bumps were deposited onto the diode contacts and the ROICs to provide electrical connection. The hybrid detector arrays were placed in leadless chip carriers, wirebonded, and connected to commercially available drive and readout circuitry. Images of UV scenes were focused onto the arrays using fused quartz lenses. These images and movies

  10. Nitriding of Aluminum Extrusion Die: Effect of Die Geometry

    NASA Astrophysics Data System (ADS)

    Akhtar, S. S.; Arif, A. F. M.; Yilbas, B. S.

    2010-04-01

    Nitriding of complex-shaped extrusion dies may result in non-uniform nitride layers and hence a required hardness may not be achieved in some regions of the bearing area. The present study is carried out to assess the effect of extrusion die profile on the characteristics and growth behavior of nitride layers so that the critical die design feature can be identified to enhance the uniformity of the nitride layer. For this purpose, AISI H13 steel samples have been manufactured with profiles similar to those of hot extrusion dies. The samples were then gas nitrided under controlled nitriding potential. The uniformity and depth of nitride layers have been investigated in terms of compound layer and total nitride case depth for selected die features. The results of this study indicated the need to include the effect of profile on the nitride layer for the optimal die design with improved service life.

  11. Superfund record of decision (EPA Region 4): Beaunit Circular Knit and Dyeing, Greenville County, Fountain Inn, SC, September 29, 1995

    SciTech Connect

    1996-03-01

    This decision document presents the selected remedial action for the Beaunit Circular Knit and Dying Superfund Site (the Site) in Fountain Inn, South Carolina. The major components of the selected remedy include: containment of soils and sediments contaminated with volatile organic compounds (VOCs) and metals by capping of the lagoon area; and additional monitoring of groundwater and soils on a regular schedule to determine effects of construction of lagoon cap, and to insure effectiveness of cap after construction. Modifications to the frequency or termination of continued monitoring will be determined during the Remedial Action and the Five Year Review.

  12. Plasmonic spectral tunability of conductive ternary nitrides

    NASA Astrophysics Data System (ADS)

    Kassavetis, S.; Bellas, D. V.; Abadias, G.; Lidorikis, E.; Patsalas, P.

    2016-06-01

    Conductive binary transition metal nitrides, such as TiN and ZrN, have emerged as a category of promising alternative plasmonic materials. In this work, we show that ternary transition metal nitrides such as TixTa1-xN, TixZr1-xN, TixAl1-xN, and ZrxTa1-xN share the important plasmonic features with their binary counterparts, while having the additional asset of the exceptional spectral tunability in the entire visible (400-700 nm) and UVA (315-400 nm) spectral ranges depending on their net valence electrons. In particular, we demonstrate that such ternary nitrides can exhibit maximum field enhancement factors comparable with gold in the aforementioned broadband range. We also critically evaluate the structural features that affect the quality factor of the plasmon resonance and we provide rules of thumb for the selection and growth of materials for nitride plasmonics.

  13. Determination of nitrogen in titanium nitride

    NASA Technical Reports Server (NTRS)

    Philipp, W. H.; Tetzlaff, J. E.

    1970-01-01

    Quantitative determination of nitrogen in titanium nitride involves dissolution of TiN in 10M hydrofluoric acid containing an oxidant. Released nitrogen is determined as ammonia. Best oxidizers are ferric chloride, potassium iodate, and potassium dichromate.

  14. Joining of silicon nitrides using oxynitride glasses

    SciTech Connect

    O`Brien, M.H.

    1993-03-01

    This report presents a study on commercial silicon nitrides that were successfully joined using oxynitride glasses. Sintered silicon nitride was joined by either closed or glass-filled joints. Glass-filled joints were successfully used on hot-pressed silicon nitrides and were comparable in fast fracture strength to unjoined silicon nitrides up to approximately 1000C. Above that temperature, strengths decreased rapidly and glass flow failure began. The study observed that time-dependent failure currently limits the service temperatures of glass-filled joints. Creep failure occurred in excess of 1000C. Between 900 and 1000C, slow crack growth failure was observed. Cavitation (or viscous deformation) was the rate-controlling mechanism of slow crack growth.

  15. Method of nitriding refractory metal articles

    DOEpatents

    Tiegs, Terry N.; Holcombe, Cressie E.; Dykes, Norman L.; Omatete, Ogbemi O.; Young, Albert C.

    1994-01-01

    A method of nitriding a refractory-nitride forming metal or metalloid articles and composite articles. A consolidated metal or metalloid article or composite is placed inside a microwave oven and nitrogen containing gas is introduced into the microwave oven. The metal or metalloid article or composite is heated to a temperature sufficient to react the metal or metalloid with the nitrogen by applying a microwave energy within the microwave oven. The metal or metalloid article or composite is maintained at that temperature for a period of time sufficient to convert the article of metal or metalloid or composite to an article or composite of refractory nitride. In addition, a method of applying a coating, such as a coating of an oxide, a carbide, or a carbo-nitride, to an article of metal or metalloid by microwave heating.

  16. Silicon nitride reinforced with molybdenum disilicide

    SciTech Connect

    Petrovic, J.J.; Honnell, R.E.

    1990-12-31

    Compositions of matter comprised of silicon nitride and molybdenum disilicide and methods of making the compositions, where the molybdenum disilicide is present in amounts ranging from about 5 to about 50 vol%.

  17. Silicon nitride reinforced with molybdenum disilicide

    DOEpatents

    Petrovic, John J.; Honnell, Richard E.

    1991-01-01

    Compositions of matter comprised of silicon nitride and molybdenum disilicide and methods of making the compositions, where the molybdenum disilicide is present in amounts ranging from about 5 to about 50 vol. %.

  18. Low temperature route to uranium nitride

    DOEpatents

    Burrell, Anthony K.; Sattelberger, Alfred P.; Yeamans, Charles; Hartmann, Thomas; Silva, G. W. Chinthaka; Cerefice, Gary; Czerwinski, Kenneth R.

    2009-09-01

    A method of preparing an actinide nitride fuel for nuclear reactors is provided. The method comprises the steps of a) providing at least one actinide oxide and optionally zirconium oxide; b) mixing the oxide with a source of hydrogen fluoride for a period of time and at a temperature sufficient to convert the oxide to a fluoride salt; c) heating the fluoride salt to remove water; d) heating the fluoride salt in a nitrogen atmosphere for a period of time and at a temperature sufficient to convert the fluorides to nitrides; and e) heating the nitrides under vacuum and/or inert atmosphere for a period of time sufficient to convert the nitrides to mononitrides.

  19. Method of nitriding refractory metal articles

    DOEpatents

    Tiegs, T.N.; Holcombe, C.E.; Dykes, N.L.; Omatete, O.O.; Young, A.C.

    1994-03-15

    A method of nitriding a refractory-nitride forming metal or metalloid articles and composite articles. A consolidated metal or metalloid article or composite is placed inside a microwave oven and nitrogen containing gas is introduced into the microwave oven. The metal or metalloid article or composite is heated to a temperature sufficient to react the metal or metalloid with the nitrogen by applying a microwave energy within the microwave oven. The metal or metalloid article or composite is maintained at that temperature for a period of time sufficient to convert the article of metal or metalloid or composite to an article or composite of refractory nitride. In addition, a method of applying a coating, such as a coating of an oxide, a carbide, or a carbo-nitride, to an article of metal or metalloid by microwave heating.

  20. Indium-granulocyte scanning in the painful prosthetic joint

    SciTech Connect

    Pring, D.J.; Henderson, R.G.; Keshavarzian, A.; Rivett, A.G.; Krausz, T.; Coombs, R.R.; Lavender, J.P.

    1986-07-01

    The value of indium-111-labeled granulocyte scanning to determine the presence of infection was assessed in 50 prosthetic joints (41 of which were painful) in 40 patients. Granulocytes were obtained from the patients' blood and labeled in plasma with indium 111 tropolonate. Abnormal accumulation of indium 111 in the region of the prosthesis was noted. Proven infection occurred in 11 prostheses, and all of the infections were detected by indium-111-labeled granulocyte scanning. Nineteen were not infected (including nine asymptomatic controls) and only two produced false-positive scans. This represents a specificity of 89.5%, sensitivity of 100%, and overall accuracy of 93.2%. These results compare favorably with plain radiography. There was no radiologic evidence of infection in three of the infected prostheses, and 10 of the noninfected prostheses had some radiologic features that suggested sepsis. We conclude that indium-granulocyte scanning can reliably detect or exclude infection in painful prosthetic joints and should prove useful in clinical management.

  1. Highly Conducting Transparent Indium-Doped Zinc Oxide Thin Films

    NASA Astrophysics Data System (ADS)

    Singh, Budhi; Ghosh, Subhasis

    2014-09-01

    Highly conducting transparent indium-doped zinc oxide (IZO) thin films have been achieved by controlling different growth parameters using radio frequency magnetron sputtering. The structural, electrical, and optical properties of the IZO thin films have been investigated for varied indium content and growth temperature ( T G) in order to find out the optimum level of doping to achieve the highest conducting transparent IZO thin films. The highest mobility and carrier concentration of 11.5 cm2/V-s and 3.26 × 1020 cm-3, respectively, have been achieved in IZO doped with 2% indium. It has been shown that as T G of the 2% IZO thin films increase, more and more indium atoms are substituted into Zn sites leading to shift in (002) peaks towards higher angles which correspond to releasing the stress within the IZO thin film. The minimum resistivity of 5.3 × 10-4 Ω-cm has been achieved in 2% indium-doped IZO grown at 700°C.

  2. Piezoelectric aluminum nitride nanoelectromechanical actuators

    NASA Astrophysics Data System (ADS)

    Sinha, Nipun; Wabiszewski, Graham E.; Mahameed, Rashed; Felmetsger, Valery V.; Tanner, Shawn M.; Carpick, Robert W.; Piazza, Gianluca

    2009-08-01

    This letter reports the implementation of ultrathin (100 nm) aluminum nitride (AlN) piezoelectric layers for the fabrication of vertically deflecting nanoactuators. The films exhibit an average piezoelectric coefficient (d31˜-1.9 pC/N), which is comparable to its microscale counterpart. This allows vertical deflections as large as 40 nm from 18 μm long and 350 nm thick multilayer cantilever bimorph beams with 2 V actuation. Furthermore, in-plane stress and stress gradients have been simultaneously controlled. The films exhibit leakage currents lower than 2 nA/cm2 at 1 V, and have an average relative dielectric constant of approximately 9.2 (as in thicker films). These material characteristics and actuation results make the AlN nanofilms ideal candidates for the realization of nanoelectromechanical switches for low power logic applications.

  3. Band anticrossing in dilute nitrides

    SciTech Connect

    Shan, W.; Yu, K.M.; Walukiewicz, W.; Wu, J.; Ager III, J.W.; Haller, E.E.

    2003-12-23

    Alloying III-V compounds with small amounts of nitrogen leads to dramatic reduction of the fundamental band-gap energy in the resulting dilute nitride alloys. The effect originates from an anti-crossing interaction between the extended conduction-band states and localized N states. The interaction splits the conduction band into two nonparabolic subbands. The downward shift of the lower conduction subband edge is responsible for the N-induced reduction of the fundamental band-gap energy. The changes in the conduction band structure result in significant increase in electron effective mass and decrease in the electron mobility, and lead to a large enhance of the maximum doping level in GaInNAs doped with group VI donors. In addition, a striking asymmetry in the electrical activation of group IV and group VI donors can be attributed to mutual passivation process through formation of the nearest neighbor group-IV donor nitrogen pairs.

  4. Silicon nitride microwave photonic circuits.

    PubMed

    Roeloffzen, Chris G H; Zhuang, Leimeng; Taddei, Caterina; Leinse, Arne; Heideman, René G; van Dijk, Paulus W L; Oldenbeuving, Ruud M; Marpaung, David A I; Burla, Maurizio; Boller, Klaus-J

    2013-09-23

    We present an overview of several microwave photonic processing functionalities based on combinations of Mach-Zehnder and ring resonator filters using the high index contrast silicon nitride (TriPleX™) waveguide technology. All functionalities are built using the same basic building blocks, namely straight waveguides, phase tuning elements and directional couplers. We recall previously shown measurements on high spurious free dynamic range microwave photonic (MWP) link, ultra-wideband pulse generation, instantaneous frequency measurements, Hilbert transformers, microwave polarization networks and demonstrate new measurements and functionalities on a 16 channel optical beamforming network and modulation format transformer as well as an outlook on future microwave photonic platform integration, which will lead to a significantly reduced footprint and thereby enables the path to commercially viable MWP systems. PMID:24104179

  5. The Nitrogen-Nitride Anode.

    SciTech Connect

    Delnick, Frank M.

    2014-10-01

    Nitrogen gas N 2 can be reduced to nitride N -3 in molten LiCl-KCl eutectic salt electrolyte. However, the direct oxidation of N -3 back to N 2 is kinetically slow and only occurs at high overvoltage. The overvoltage for N -3 oxidation can be eliminated by coordinating the N -3 with BN to form the dinitridoborate (BN 2 -3 ) anion which forms a 1-D conjugated linear inorganic polymer with -Li-N-B-N- repeating units. This polymer precipitates out of solution as Li 3 BN 2 which becomes a metallic conductor upon delithiation. Li 3 BN 2 is oxidized to Li + + N 2 + BN at about the N 2 /N -3 redox potential with very little overvoltage. In this report we evaluate the N 2 /N -3 redox couple as a battery anode for energy storage.

  6. Mass dependence of nitride sputtering

    NASA Astrophysics Data System (ADS)

    Elovikov, S. S.; Khrustachev, I. K.; Mosunov, A. S.; Yurasova, V. E.

    2003-08-01

    A molecular dynamics simulation was performed to study the sputtering yield Y for BN, AlN and GaN polycrystals of wurtzite structure as a function of the masses m 1 of bombarding ions with energies from 200 to 2000 eV. A nonmonotonic behavior of the Y ( m 1 ) curve was obtained for the irradiation by low-energy ions, the curve having a maximum with a position being dependent on m 2 / m 1 ( m 2 is the average mass of atoms in a compound). For AlN and GaN the maximum was observed at m 2 / m 1 = 2, and for BN at m 2 / m 1 = 1. The effect of the mass of bombarding ions on the mean energies and energy spectra of sputtered particles, the depth of sputtering origin, and the generation of emitted atoms for nitrides was also investigated and discussed.

  7. Precursors for Carbon Nitride Synthesis

    SciTech Connect

    Prashantha, M.; Gopal, E. S. R.; Ramesh, K.

    2011-07-15

    Nano structured carbon nitride films were prepared by pyrolysis assisted chemical vapour deposition. Pyrrole (C{sub 4}H{sub 5}N), Pyrrolidine (C{sub 4}H{sub 9}N), Azabenzimidazole (C{sub 6}H{sub 5}N{sub 3}) and Triazine (C{sub 6}H{sub 15}N{sub 3}) were used as precursors. The vibrational modes observed for C-N and C = N from FTIR spectra confirms the bonding of nitrogen with carbon. XPS core level spectra of C 1s and N 1s also show the formation of bonding between carbon and nitrogen atoms. The nitrogen content in the prepared samples was found to be around 25 atomic %.

  8. Repair welding on nitrided carbon steel pipe

    SciTech Connect

    Baumert, K.L.

    1994-12-31

    A carbon steel pipe containing primarily ammonia at 750--850 F developed a nitrided case 15--20 mils (0.4--0.5mm) deep. This did not affect the performance of the pipe during operation, however, repair welding was not possible because of cracking. A laboratory procedure was developed wherein nitrided pipe could be successfully welded. The technique consisted of stress relieving the pipe before welding. No post weld stress relief was necessary to effect a sound weld.

  9. Method for forming indium oxide/n-silicon heterojunction solar cells

    DOEpatents

    Feng, Tom; Ghosh, Amal K.

    1984-03-13

    A high photo-conversion efficiency indium oxide/n-silicon heterojunction solar cell is spray deposited from a solution containing indium trichloride. The solar cell exhibits an Air Mass One solar conversion efficiency in excess of about 10%.

  10. Raman and transmission electron microscopy characterization of InN samples grown on GaN/Al2O3 by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Arvanitidis, J.; Katsikini, M.; Ves, S.; Delimitis, A.; Kehagias, Th.; Komninou, Ph.; Dimakis, E.; Iliopoulos, E.; Georgakilas, A.

    Raman spectroscopy and transmission electron microscopy were employed to study the vibrational properties and the microstructure of epitaxially grown InN films on GaN/Al2O3 templates. The variations of the InN lattice constants, as deduced by electron diffraction analysis, along with the red-shifted E22 mode frequency reveal that InN films exhibit residual tensile stress, strongly dependent on the epilayer growth temperature. Threading dislocations are the dominant structural defects in the films, having a density in the order of 109-1010 cm-2. Profile analysis of the E22 Raman peak by means of the Spatial Correlation Model provides useful information concerning the effective mean length for free phonon propagation (L), which is a measure of the structural quality of the samples. In all the studied samples, L monotonically increases with decreasing threading dislocation density of pure screw and mixed type character.

  11. Reduction of electron accumulation at InN(0001) surfaces via saturation of surface states by potassium and oxygen as donor- or acceptor-type adsorbates

    SciTech Connect

    Eisenhardt, A.; Reiß, S.; Krischok, S. Himmerlich, M.

    2014-01-28

    The influence of selected donor- and acceptor-type adsorbates on the electronic properties of InN(0001) surfaces is investigated implementing in-situ photoelectron spectroscopy. The changes in work function, surface band alignment, and chemical bond configurations are characterized during deposition of potassium and exposure to oxygen. Although an expected opponent charge transfer characteristic is observed with potassium donating its free electron to InN, while dissociated oxygen species extract partial charge from the substrate, a reduction of the surface electron accumulation occurs in both cases. This observation can be explained by adsorbate-induced saturation of free dangling bonds at the InN resulting in the disappearance of surface states, which initially pin the Fermi level and induce downward band bending.

  12. Nitride fuels irradiation performance data base

    SciTech Connect

    Brozak, D.E.; Thomas, J.K.; Peddicord, K.L.

    1987-01-01

    An irradiation performance data base for nitride fuels has been developed from an extensive literature search and review that emphasized uranium nitride, but also included performance data for mixed nitrides ((U,Pu)N) and carbonitrides ((U,Pu)C,N) to increase the quantity and depth of pin data available. This work represents a very extensive effort to systematically collect and organize irradiation data for nitride-based fuels. The data base has many potential applications. First, it can facilitate parametric studies of nitride-based fuels to be performed using a wide range of pin designs and operating conditions. This should aid in the identification of important parameters and design requirements for multimegawatt and SP-100 fuel systems. Secondly, the data base can be used to evaluate fuel performance models. For detailed studies, it can serve as a guide to selecting a small group of pin specimens for extensive characterization. Finally, the data base will serve as an easily accessible and expandable source of irradiation performance information for nitride fuels.

  13. Corrosion behavior of mesoporous transition metal nitrides

    SciTech Connect

    Yang, Minghui; Allen, Amy J.; Nguyen, Minh T.; Ralston, Walter T.; MacLeod, Michelle J.; DiSalvo, Francis J.

    2013-09-15

    Transition metal nitrides (TMN) have many desirable characteristics such as high hardness and good thermal stability under reducing conditions. This work reports an initial survey of the chemical stability of mesoporous TMNs (TM=Nb, V, Cr and Ti) in water at 80 °C at neutral, acidic and alkaline pH. The mesoporous TMNs had specific surface areas of 25–60 m{sup 2}/g with average pore sizes ranging from 10 to 50 nm. The high surface areas of these materials enhance the rate of corrosion per unit mass over that of a bulk material, making detection of corrosion much easier. The products were characterized by Rietveld refinement of powder X-ray diffraction (PXRD) patterns and by scanning electron microscopy (SEM). Several nitrides have corrosion rates that are, within error, not distinguishable from zero (±1 Å/day). Of the nitrides examined, CrN appears to be the most corrosion resistant under acidic conditions. None of the nitrides studied are corrosion resistant under alkaline conditions. - Graphical abstract: Corrosion behavior of mesoporous transition metal nitrides (TM=Nb, V, Cr and Ti) in acidic and alkaline solutions at 80 °C for 2 weeks. Display Omitted - highlights: • Corrosion rates of mesoporous transition metal nitrides in aqueous solution is reported. • The mesoporous TMNs had surface areas of 25–60 m{sup 2}/g. • CrN is the most corrosion resistant under the conditions studied.

  14. Stable xenon nitride at high pressures

    NASA Astrophysics Data System (ADS)

    Peng, Feng; Wang, Yanchao; Wang, Hui; Zhang, Yunwei; Ma, Yanming

    2015-09-01

    Nitrides in many ways are fascinating since they often appear as superconductors, high-energy density, and hard materials. Though there exist a large variety of nitrides, noble gas nitrides are missing in nature. Pursuit of noble gas nitrides has therefore become the subject of topical interests, but remains as a great challenge since molecular nitrogen (N2, a major form of nitrogen) and noble gases are both inert systems and do not interact at normal conditions. We show through a first-principles swarm-structure search that high pressure enables a direct interaction of N2 and xenon (Xe) above 146 GPa. The resultant Xe nitride has a peculiar stoichiometry of XeN6, possessing a high-energy density of approximately 2.4 kJg -1, rivaling that of the modern explosives. Structurally, XeN6 is intriguing with the appearance of chaired N6 hexagons and unusually high 12-coordination of Xe bonded with N. Our work opens up the possibility of achieving Xe nitride with superior high-energy density whose formation is long sought as impossible.

  15. Modelling of the layer evolution during nitriding processes

    SciTech Connect

    Figueroa, U.; Oseguera, J.; Schabes, P.

    1995-12-31

    The evolution of concomitant layers of nitrides is presented. The layer formation is experimentally achieved through two processes: Nitriding with a weakly ionized plasma and nitrogen post-discharge nitriding. The nitriding processes were performed on samples of pure iron and carbon steel. Nitriding temperatures were close but different from the eutectoid transformation point temperature. The experimental layer growth pattern is compared with a model of mass transfer, in which interface mass balance is considered. In the model the authors have considered the formation of one and two compact nitride layers. For short time of treatment, it is shown that a parabolic profile does not satisfactorily describe the layer growth.

  16. Indium-111-Photofrin-II scintillation scan

    SciTech Connect

    Origitano, T.C.; Karesh, S.M.; Reichman, O.H.; Henkin, R.E.; Caron, M.J.

    1989-04-01

    Photodynamic therapy is under intense investigation as an adjuvant treatment for malignant glial tumors of the central nervous system. Photofrin-II (HpD-II) is currently the most actively investigated photosensitizing agent. A crucial issue regarding the safe and efficacious usage of HpD-II-based photodynamic therapy is the individual in vivo kinetics of tumor uptake and retention, compared with normal brain clearance. The optimal time for photoactivation of sensitized tumor must be known to ensure a high target-to-nontarget ratio, resulting in the maximal tumor destruction while preserving normal brain. Our laboratory developed a radionuclide scan based on 111indium (111In)-labeled HpD-II to evaluate HpD-II localization and clearance noninvasively within a canine model of intracerebral gliosarcoma. Synthesis of the 111In-HpD-II complex in greater than 90% yield is achieved by a simple, rapid labeling method. Radiochemical purity and stability were verified by high-performance liquid chromatography. Using the canine model of intracerebral gliosarcoma, we followed the uptake of 111In-HpD-II in tumors with serial scintillation scanning. Localization of the tumor by 111In-HpD-II has been verified by contrast-enhanced computed tomographic scan followed by gross and histological examination of the enhancing brain region. Total body biodistribution of 111In-HpD-II at various times after injection has been evaluated. The ratio of uptake in tumor compared with surrounding brain peaked at 72 hours after injection. The knowledge of regional distribution and concentration of a photosensitizing agent within a tumor mass and surrounding brain allows for the most efficacious timing and localization of a photoactivating source.

  17. Materials flow of indium in the United States in 2008 and 2009

    USGS Publications Warehouse

    Goonan, Thomas G.

    2012-01-01

    Indium is a material that has many applications. It is used by anyone who watches television or views a computer screen. It is found in solar energy arrays and in soldering applications that are required to be lead free. In 2009, about 550 metric tons (t) of indium metal was produced from primary sources world-wide; it was estimated that the United States consumed about 110 t of indium metal (20 percent of world primary production). However, when imports of consumer products that contain indium are considered, the United States consumed about 200 t of indium (36 percent of world primary production). When one considers the recovery from the low-efficiency sputtering process that coats indium-tin oxide onto glass and other surfaces, the recycling rate (within the manufacturing process that uses indium-tin oxide in flat panel displays approaches 36 percent. However, indium recovery from old scrap generated from end-of-life consumer products is not sufficiently economic to add significantly to secondary production. Between 1988 and 2010, indium prices averaged $381 per kilogram (in constant 2000 dollars). However, prices have been quite volatile (deviating from the average of $381 per kilogram by ±$199 per kilogram, a 52 percent difference from the average), reflecting short-term disequilibrium of supply and demand but also responsiveness of supply to demand. The dynamics of zinc smelting govern the primary supply of indium because indium is a byproduct of zinc smelting. Secondary indium supply, which accounts for about one-half of total indium supply, is governed by indium prices and technological advances in recovery. Indium demand is expected to grow because the number and volume of cutting edge technology applications that depend on indium are expected to grow.

  18. Indium oxide inverse opal films synthesized by structure replication method

    NASA Astrophysics Data System (ADS)

    Amrehn, Sabrina; Berghoff, Daniel; Nikitin, Andreas; Reichelt, Matthias; Wu, Xia; Meier, Torsten; Wagner, Thorsten

    2016-04-01

    We present the synthesis of indium oxide (In2O3) inverse opal films with photonic stop bands in the visible range by a structure replication method. Artificial opal films made of poly(methyl methacrylate) (PMMA) spheres are utilized as template. The opal films are deposited via sedimentation facilitated by ultrasonication, and then impregnated by indium nitrate solution, which is thermally converted to In2O3 after drying. The quality of the resulting inverse opal film depends on many parameters; in this study the water content of the indium nitrate/PMMA composite after drying is investigated. Comparison of the reflectance spectra recorded by vis-spectroscopy with simulated data shows a good agreement between the peak position and calculated stop band positions for the inverse opals. This synthesis is less complex and highly efficient compared to most other techniques and is suitable for use in many applications.

  19. Synthesis and conductivity of indium-doped tin pyrophosphates

    SciTech Connect

    Garzon, Fernando H; Mukundan, Rangachary; Brosha, Eric L

    2008-01-01

    We have synthesized indium-doped tin pyrophosphates as high-temperature anhydrous proton conductors. The ratio of tin to indium was varied using two different synthetic methods. The first is a high-temperature reaction in which a paste containing the reactants in excess phosphoric acid was heated for various amounts of time at various temperatures. The second method is a solution precipitation procedure followed by calcination, which offers several advantages over traditional synthetic techniques. These advantages inc 1 ude better stoichiometric control, lower temperature requirements, and chemically uniform products. Several phosphate sources were investigated, including phosphoric acid, pyrophosphoric acid, and potassium pyrophosphate. The resulting indium-doped tin pyrophosphates had good proton conductivity over a wide temperature range with no humidification.

  20. Mobility of indium on the ZnO(0001) surface

    SciTech Connect

    Heinhold, R.; Reeves, R. J.; Allen, M. W.; Williams, G. T.; Evans, D. A.

    2015-02-02

    The mobility of indium on the Zn-polar (0001) surface of single crystal ZnO wafers was investigated using real-time x-ray photoelectron spectroscopy. A sudden transition in the wettability of the ZnO(0001) surface was observed at ∼520 °C, with indium migrating from the (0001{sup ¯}) underside of the wafer, around the non-polar (11{sup ¯}00) and (112{sup ¯}0) sidewalls, to form a uniform self-organized (∼20 Å) adlayer. The In adlayer was oxidized, in agreement with the first principles calculations of Northrup and Neugebauer that In{sub 2}O{sub 3} precipitation can only be avoided under a combination of In-rich and Zn-rich conditions. These findings suggest that unintentional In adlayers may form during the epitaxial growth of ZnO on indium-bonded substrates.

  1. Mobility of indium on the ZnO(0001) surface

    NASA Astrophysics Data System (ADS)

    Heinhold, R.; Reeves, R. J.; Williams, G. T.; Evans, D. A.; Allen, M. W.

    2015-02-01

    The mobility of indium on the Zn-polar (0001) surface of single crystal ZnO wafers was investigated using real-time x-ray photoelectron spectroscopy. A sudden transition in the wettability of the ZnO(0001) surface was observed at ˜520 °C, with indium migrating from the ( 000 1 ¯ ) underside of the wafer, around the non-polar ( 1 1 ¯ 00 ) and ( 11 2 ¯ 0 ) sidewalls, to form a uniform self-organized (˜20 Å) adlayer. The In adlayer was oxidized, in agreement with the first principles calculations of Northrup and Neugebauer that In2O3 precipitation can only be avoided under a combination of In-rich and Zn-rich conditions. These findings suggest that unintentional In adlayers may form during the epitaxial growth of ZnO on indium-bonded substrates.

  2. Direct access to macroporous chromium nitride and chromium titanium nitride with inverse opal structure.

    PubMed

    Zhao, Weitian; DiSalvo, Francis J

    2015-03-21

    We report a facile synthesis of single-phase, nanocrystalline macroporous chromium nitride and chromium titanium nitride with an inverse opal morphology. The material is characterized using XRD, SEM, HR-TEM/STEM, TGA and XPS. Interconversion of macroporous CrN to Cr2O3 and back to CrN while retaining the inverse opal morphology is also demonstrated. PMID:25705745

  3. Diffusion parameters of indium for silicon process modeling

    NASA Astrophysics Data System (ADS)

    Kizilyalli, I. C.; Rich, T. L.; Stevie, F. A.; Rafferty, C. S.

    1996-11-01

    The diffusion parameters of indium in silicon are investigated. Systematic diffusion experiments in dry oxidizing ambients at temperatures ranging from 800 to 1050 °C are conducted using silicon wafers implanted with indium. Secondary-ion-mass spectrometry (SIMS) is used to analyze the dopant distribution before and after heat treatment. The oxidation-enhanced diffusion parameter [R. B. Fair, in Semiconductor Materials and Process Technology Handbook, edited by G. E. McGuire (Noyes, Park Ridge, NJ, 1988); A. M. R. Lin, D. A. Antoniadis, and R. W. Dutton, J. Electrochem. Soc. Solid-State Sci. Technol. 128, 1131 (1981); D. A. Antoniadis and I. Moskowitz, J. Appl. Phys. 53, 9214 (1982)] and the segregation coefficient at the Si/SiO2 interface [R. B. Fair and J. C. C. Tsai, J. Electrochem. Soc. Solid-State Sci. Technol. 125, 2050 (1978)] (ratio of indium concentration in silicon to that in silicon dioxide) are extracted as a function of temperature using SIMS depth profiles and the silicon process simulator PROPHET [M. Pinto, D. M. Boulin, C. S. Rafferty, R. K. Smith, W. M. Coughran, I. C. Kizilyalli, and M. J. Thoma, in IEDM Technical Digest, 1992, p. 923]. It is observed that the segregation coefficient of indium at the Si/SiO2 interface is mIn≪1, similar to boron; however, unlike boron, the segregation coefficient of indium at the Si/SiO2 interface decreases with increasing temperature. Extraction results are summarized in analytical forms suitable for incorporation into other silicon process simulators. Finally, the validity of the extracted parameters is verified by comparing the simulated and measured SIMS profiles for an indium implanted buried-channel p-channel metal-oxide-semiconductor field-effect-transistor [I. C. Kizilyalli, F. A. Stevie, and J. D. Bude, IEEE Electron Device Lett. (1996)] process that involves a gate oxidation and various other thermal processes.

  4. Optical and structural characterization of nitrogen-rich InN: Transition from nearly intrinsic to strongly n-type degenerate with temperature

    SciTech Connect

    Hong Tran, Nhung; Huy Le, Binh; Fan, Shizhao; Zhao, Songrui; Mi, Zetian; Schmidt, Benjamin A.; Savard, Michel; Gervais, Guillaume; Butcher, Kenneth Scott A.

    2013-12-23

    We report on a detailed study of the structural and optical properties of nonstoichiometric nitrogen-rich InN grown on sapphire substrates, by migration enhanced afterglow deposition. The samples were polycrystalline, with the presence of InN dots. Unusually strong photoluminescence emission was measured at cryogenic temperatures, with the peak energy at ∼0.68 eV. Detailed analysis further shows that the sample has very low residual electron density in the range of ∼10{sup 16} cm{sup −3} at temperatures below 20 K.

  5. Growth of epitaxial iron nitride ultrathin film on zinc-blende gallium nitride

    SciTech Connect

    Pak, J.; Lin, W.; Wang, K.; Chinchore, A.; Shi, M.; Ingram, D. C.; Smith, A. R.; Sun, K.; Lucy, J. M.; Hauser, A. J.; Yang, F. Y.

    2010-07-15

    The authors report the growth of iron nitride on zinc-blende gallium nitride using molecular beam epitaxy. First, zinc-blende GaN is grown on a magnesium oxide substrate having (001) orientation; second, an ultrathin layer of FeN is grown on top of the GaN layer. In situ reflection high-energy electron diffraction is used to monitor the surface during growth, and a well-defined epitaxial relationship is observed. Cross-sectional transmission electron microscopy is used to reveal the epitaxial continuity at the gallium nitride-iron nitride interface. Surface morphology of the iron nitride, similar to yet different from that of the GaN substrate, can be described as plateau valley. The FeN chemical stoichiometry is probed using both bulk and surface sensitive methods, and the magnetic properties of the sample are revealed.

  6. Identification of nitriding mechanisms in high purity reaction bonded silicon nitride

    SciTech Connect

    Haggerty, J.S.

    1993-03-01

    The rapid, low-temperature nitriding results from surface effects on the Si particles beginning with loss of chemisorbed H and sequential formation of thin amorphous Si nitride layers. Rapid complete conversion to Si{sub 3}N{sub 4} during the fast reaction can be inhibited when either too few or too many nuclei form on Si particels. Optimally, {approximately} 10 Si{sub 3}N{sub 4} nuclei form per Si particles under rapid, complete nitridation conditions. Nitridation during the slow reaction period appears to progress by both continued reaction of nonpreferred Si{sub 3}N{sub 4} growth interfaces and direct nitridation of the remaining Si/vapor interfaces.

  7. Identification of nitriding mechanisms in high purity reaction bonded silicon nitride

    SciTech Connect

    Haggerty, J.S.

    1993-03-01

    The rapid, low-temperature nitriding results from surface effects on the Si particles beginning with loss of chemisorbed H and sequential formation of thin amorphous Si nitride layers. Rapid complete conversion to Si[sub 3]N[sub 4] during the fast reaction can be inhibited when either too few or too many nuclei form on Si particels. Optimally, [approximately] 10 Si[sub 3]N[sub 4] nuclei form per Si particles under rapid, complete nitridation conditions. Nitridation during the slow reaction period appears to progress by both continued reaction of nonpreferred Si[sub 3]N[sub 4] growth interfaces and direct nitridation of the remaining Si/vapor interfaces.

  8. Nitride Fuel Modeling Recommendation for Nitride Fuel Material Property Measurement Priority

    SciTech Connect

    William Carmack; Richard Moore

    2005-09-01

    The purpose of this effort was to provide the basis for a model that effectively predicts nitride fuel behavior. Material property models developed for the uranium nitride fuel system have been used to approximate the general behavior of nitride fuels with specific property models for the transuranic nitride fuels utilized as they become available. The AFCI fuel development program now has the means for predicting the behavior of the transuranic nitride fuel compositions. The key data and models needed for input into this model include: Thermal conductivity with burnup Fuel expansion coefficient Fuel swelling with burnup Fission gas release with burnup. Although the fuel performance model is a fully functional FEA analysis tool, it is limited by the input data and models.

  9. Nitride precipitation in compositionally heterogeneous alloys: Nucleation, growth and coarsening during nitriding

    NASA Astrophysics Data System (ADS)

    Van Landeghem, H. P.; Gouné, M.; Redjaïmia, A.

    2012-02-01

    A theoretical approach is proposed to take into the account nucleation, growth and coarsening of nitrides in alloys featuring heterogeneous nitrogen content. It is based on physical considerations and accounts for both bulk nitrogen diffusion, which results from the nitriding process and nitrides precipitation kinetics. It predicts local information such as average particle density, radius and volume fraction of nitrides as a function of depth. The work presented in this paper leads to two important conclusions. First, the precipitation rate is not so high that precipitation can be considered as infinitely faster than the diffusion of nitrogen into the bulk. Second, the precipitation state at a given depth depends on the local interaction between nucleation, growth and coarsening phenomena, themselves depending on the local nitrogen content. Finally, the precipitation in alloys with heterogeneous nitrogen content induced by nitriding is radically different from classical precipitation in a single phase where the driving force for precipitation is consumed.

  10. Low-resistivity and transparent indium-oxide-doped ZnO ohmic contact to p-type GaN

    SciTech Connect

    Lim, Jae-Hong; Hwang, Dae-Kue; Kim, Hyun-Sik; Oh, Jin-Yong; Yang, Jin-Ho; Navamathavan, R.; Park, Seong-Ju

    2004-12-20

    We report on the indium-oxide-doped ZnO (IZO) transparent ohmic contact to the p-GaN. The IZO transparent ohmic contact layer was deposited on p-GaN by e-beam evaporation. The transmittance of an IZO film with a thickness of 250 nm was 84%-92% for the light in the wavelength range of 400 and 600 nm. In addition, the IZO contact film yielded a low specific contact resistance of 3.4x10{sup -4} {omega} cm{sup 2} on p-GaN when annealed at 600 deg. C for 5 min under a nitrogen ambient. Auger electron spectroscopy and x-ray photoemission spectroscopy analyses of the IZO and p-GaN interface indicated that Ga atoms had out-diffused and an InN phase was formed at the interface region after the thermal annealing process, resulting in a decrease in contact resistance. The light output power of a light-emitting diode (LED) with an IZO ohmic contact layer was increased by 34% at 83 mW of electrical input power compared to that of a LED with a Ni/Au ohmic contact layer.

  11. Structure and Three-Dimensional Crystal Packing Preferences for mer-Tris (8-quinolinolato) Indium (III) Vapor-Phase-Grown Crystals

    SciTech Connect

    Sapochak, Linda S.; Ranasinghe, Asanga; Kohlmann, Holger; Ferris, Kim F.; Burrows, Paul E.

    2004-02-10

    Evaluation of indium(III) tris(8-quinolinolato) (Inq3) chelate crystals grown slowly from the vapor phase under vacuum ({approx}10-6 Torr) was compared to the aluminum analogue, Alq3. In both cases, a previously unidentified close - interaction is identified, which likely impacts charge conduction. In the case of Inq3, we observe a mixture of both meridianal (mer) and facial (fac) crystals. The larger pseudohexagon mer-Inq3 crystals were analyzed by single-crystal X-ray diffraction and showed average In-N and In-O bond lengths significantly longer (0.22 and 0.26 ?, respectively) than Alq3 and bond angles about the In3+ ion more distorted from an ideal octahedral geometry. The crystalline packing of mer-Inq3 is found to closely resemble the -Alq3 phase, where both metal chelates are characterized by pairing of symmetry-related mer-optical isomers in three-dimensional - stacking interactions ({approx}3.5 ? or less). The smaller needlelike crystals were determined to be pure fac-Inq3 by powder X-ray diffraction studies. An equivalent is not observed when Alq3 is processed in an identical manner.

  12. Phase mapping of aging process in InN nanostructures: oxygen incorporation and the role of the zinc blende phase

    NASA Astrophysics Data System (ADS)

    González, D.; Lozano, J. G.; Herrera, M.; Morales, F. M.; Ruffenach, S.; Briot, O.; García, R.

    2010-05-01

    Uncapped InN nanostructures undergo a deleterious natural aging process at ambient conditions by oxygen incorporation. The phases involved in this process and their localization is mapped by transmission electron microscopy (TEM)-related techniques. The parent wurtzite InN (InN-w) phase disappears from the surface and gradually forms a highly textured cubic layer that completely wraps up a InN-w nucleus which still remains from the original single-crystalline quantum dots. The good reticular relationships between the different crystals generate low misfit strains and explain the apparent easiness for phase transformations at room temperature and pressure conditions, but also disable the classical methods to identify phases and grains from TEM images. The application of the geometrical phase algorithm in order to form numerical moiré mappings and RGB multilayered image reconstructions allows us to discern among the different phases and grains formed inside these nanostructures. Samples aged for shorter times reveal the presence of metastable InN:O zinc blende (zb) volumes, which act as the intermediate phase between the initial InN-w and the most stable cubic In2O3 end phase. These cubic phases are highly twinned with a proportion of 50:50 between both orientations. We suggest that the existence of the intermediate InN:O-zb phase should be seriously considered to understand the reason for the widely scattered reported fundamental properties of thought to be InN-w, as its bandgap or superconductivity.

  13. InGaN nanowires with high InN molar fraction: growth, structural and optical properties

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Lourenço-Martins, Hugo; Meuret, Sophie; Kociak, Mathieu; Haas, Benedikt; Rouvière, Jean-Luc; Jouneau, Pierre-Henri; Bougerol, Catherine; Auzelle, T.; Jalabert, D.; Biquard, Xavier; Gayral, Bruno; Daudin, Bruno

    2016-05-01

    The structural and optical properties of axial GaN/InGaN/GaN nanowire heterostructures with high InN molar fractions grown by molecular beam epitaxy have been studied at the nanoscale by a combination of electron microscopy, extended x-ray absorption fine structure and nano-cathodoluminescence techniques. InN molar fractions up to 50% have been successfully incorporated without extended defects, as evidence of nanowire potentialities for practical device realisation in such a composition range. Taking advantage of the N-polarity of the self-nucleated GaN NWs grown by molecular beam epitaxy on Si(111), the N-polar InGaN stability temperature diagram has been experimentally determined and found to extend to a higher temperature than its metal-polar counterpart. Furthermore, annealing of GaN-capped InGaN NWs up to 800 °C has been found to result in a 20 times increase of photoluminescence intensity, which is assigned to point defect curing.

  14. InGaN nanowires with high InN molar fraction: growth, structural and optical properties.

    PubMed

    Zhang, Xin; Lourenço-Martins, Hugo; Meuret, Sophie; Kociak, Mathieu; Haas, Benedikt; Rouvière, Jean-Luc; Jouneau, Pierre-Henri; Bougerol, Catherine; Auzelle, T; Jalabert, D; Biquard, Xavier; Gayral, Bruno; Daudin, Bruno

    2016-05-13

    The structural and optical properties of axial GaN/InGaN/GaN nanowire heterostructures with high InN molar fractions grown by molecular beam epitaxy have been studied at the nanoscale by a combination of electron microscopy, extended x-ray absorption fine structure and nano-cathodoluminescence techniques. InN molar fractions up to 50% have been successfully incorporated without extended defects, as evidence of nanowire potentialities for practical device realisation in such a composition range. Taking advantage of the N-polarity of the self-nucleated GaN NWs grown by molecular beam epitaxy on Si(111), the N-polar InGaN stability temperature diagram has been experimentally determined and found to extend to a higher temperature than its metal-polar counterpart. Furthermore, annealing of GaN-capped InGaN NWs up to 800 °C has been found to result in a 20 times increase of photoluminescence intensity, which is assigned to point defect curing. PMID:27041669

  15. Wine Valley Inn: A mineral water spa in Calistoga, California. Geothermal-energy-system conceptual design and economic feasibility

    SciTech Connect

    Not Available

    1981-10-26

    The purpose of this study is to determine the engineering and economic feasibility for utilizing geothermal energy for air conditioning and service water heating at the Wine Valley Inn, a mineral water spa in Calistoga, California. The study evaluates heating, ventilating, air conditioning and water heating systems suitable for direct heat geothermal application. Due to the excellent geothermal temperatures available at this site, the mechanics and economics of a geothermally powered chilled water cooling system are evaluated. The Wine Valley Inn has the resource potential to have one of the few totally geothermal powered air conditioning and water heating systems in the world. This total concept is completely developed. A water plan was prepared to determine the quantity of water required for fresh water well development based on the special requirements of the project. An economic evaluation of the system is included to justify the added capital investment needed to build the geothermally powered mineral spa. Energy payback calculations are presented. A thermal cascade system is proposed to direct the geothermal water through the energy system to first power the chiller, then the space heating system, domestic hot water, the two spas and finally to heat the swimming pool. The Energy Management strategy required to automatically control this cascade process using industrial quality micro-processor equipment is described. Energy Management controls are selected to keep equipment sizing at a minimum, pump only the amount of geothermal water needed and be self balancing.

  16. Transition properties of low-lying states in atomic indium

    SciTech Connect

    Sahoo, B. K.; Das, B. P.

    2011-07-15

    We present here the results of our relativistic many-body calculations of various properties of the first six low-lying excited states of indium. The calculations were performed using the relativistic coupled-cluster method in the framework of the singles, doubles, and partial triples approximation. The lifetime of the [4p{sup 6}]5s{sup 2}5p{sub 3/2} state in this atom is determined. Our results could be used to shed light on the reliability of the lifetime measurements of the excited states of atomic indium that we have considered in the present work.

  17. Equation of state of liquid Indium under high pressure

    SciTech Connect

    Li, Huaming E-mail: mo.li@gatech.edu; Li, Mo E-mail: mo.li@gatech.edu; Sun, Yongli

    2015-09-15

    We apply an equation of state of a power law form to liquid Indium to study its thermodynamic properties under high temperature and high pressure. Molar volume of molten indium is calculated along the isothermal line at 710K within good precision as compared with the experimental data in an externally heated diamond anvil cell. Bulk modulus, thermal expansion and internal pressure are obtained for isothermal compression. Other thermodynamic properties are also calculated along the fitted high pressure melting line. While our results suggest that the power law form may be a better choice for the equation of state of liquids, these detailed predictions are yet to be confirmed by further experiment.

  18. Equation of state of liquid Indium under high pressure

    NASA Astrophysics Data System (ADS)

    Li, Huaming; Sun, Yongli; Li, Mo

    2015-09-01

    We apply an equation of state of a power law form to liquid Indium to study its thermodynamic properties under high temperature and high pressure. Molar volume of molten indium is calculated along the isothermal line at 710K within good precision as compared with the experimental data in an externally heated diamond anvil cell. Bulk modulus, thermal expansion and internal pressure are obtained for isothermal compression. Other thermodynamic properties are also calculated along the fitted high pressure melting line. While our results suggest that the power law form may be a better choice for the equation of state of liquids, these detailed predictions are yet to be confirmed by further experiment.

  19. Method for labelling leucocytes with indium In-111 oxine

    SciTech Connect

    Kaminsky, D.

    1992-03-03

    This patent describes an improved method for radio-labelling leucocytes with Indium In-111 oxine. It comprises separating the leucocytes from whole blood for obtaining separated leucocytes mixed with residual red blood cells; and then labelling the separated leucocytes with Indium In-111 oxine; wherein the improvement comprises the following further step: depleting residual red blood cells from the separated leucocytes by resuspending the leucocytes in an isotonic saline solution, then rocking the resuspended leucocytes for causing the leucocytes to preferentially settle out, and then removing residual red blood cells which remain suspended within the supernatant isotonic saline solution.

  20. Uptake of indium-111-labeled leukocytes by brain metastasis

    SciTech Connect

    Balachandran, S.; Husain, M.M.; Adametz, J.R.; Pallin, J.S.; Angtuaco, T.L.; Boyd, C.M.

    1987-04-01

    Uptake of indium-labeled leukocytes was seen in two cases of histologically proven brain metastasis. In one, this led to misdiagnosis of the lesion as an abscess. On histological evaluation, a large number of white blood cells or macrophages was seen at the neoplastic sites. Reasons for leukocyte accumulation around metastatic brain neoplasms are discussed. In contrast to the current reports that indium-labeled leukocyte scans can differentiate intracranial infection from tumor, these cases demonstrate their lack of specificity in the detection of brain abscess.

  1. Deep Subgap Feature in Amorphous Indium Gallium Zinc Oxide. Evidence Against Reduced Indium

    SciTech Connect

    Sallis, Shawn; Quackenbush, Nicholas F.; Williams, Deborah S.; Senger, Mikell; Woicik, Joseph C.; White, Bruce E.; Piper, Louis F.

    2015-01-14

    Amorphous indium gallium zinc oxide (a-IGZO) is the archetypal transparent amorphous oxide semiconductor. In spite of the gains made with a-IGZO over amorphous silicon in the last decade, the presence of deep subgap states in a-IGZO active layers facilitate instabilities in thin film transistor properties under negative bias illumination stress. Several candidates could contribute to the formation of states within the band gap. We present evidence against In+ lone pair active electrons as the origin of the deep subgap features. No In+ species are observed, only In0 nano-crystallites under certain oxygen deficient growth conditions. Our results further support under coordinated oxygen as the source of the deep subgap states.

  2. Indium tin oxide and indium phosphide heterojunction nanowire array solar cells

    SciTech Connect

    Yoshimura, Masatoshi Nakai, Eiji; Fukui, Takashi; Tomioka, Katsuhiro

    2013-12-09

    Heterojunction solar cells were formed with a position-controlled InP nanowire array sputtered with indium tin oxide (ITO). The ITO not only acted as a transparent electrode but also as forming a photovoltaic junction. The devices exhibited an open-circuit voltage of 0.436 V, short-circuit current of 24.8 mA/cm{sup 2}, and fill factor of 0.682, giving a power conversion efficiency of 7.37% under AM1.5 G illumination. The internal quantum efficiency of the device was higher than that of the world-record InP cell in the short wavelength range.

  3. Method of manufacture of atomically thin boron nitride

    DOEpatents

    Zettl, Alexander K

    2013-08-06

    The present invention provides a method of fabricating at least one single layer hexagonal boron nitride (h-BN). In an exemplary embodiment, the method includes (1) suspending at least one multilayer boron nitride across a gap of a support structure and (2) performing a reactive ion etch upon the multilayer boron nitride to produce the single layer hexagonal boron nitride suspended across the gap of the support structure. The present invention also provides a method of fabricating single layer hexagonal boron nitride. In an exemplary embodiment, the method includes (1) providing multilayer boron nitride suspended across a gap of a support structure and (2) performing a reactive ion etch upon the multilayer boron nitride to produce the single layer hexagonal boron nitride suspended across the gap of the support structure.

  4. Hybrid aluminum and indium conducting filaments for nonpolar resistive switching of Al/AlOx/indium tin oxide flexible device

    NASA Astrophysics Data System (ADS)

    Yuan, Fang; Wang, Jer-Chyi; Zhang, Zhigang; Ye, Yu-Ren; Pan, Liyang; Xu, Jun; Lai, Chao-Sung

    2014-02-01

    The nonpolar resistive switching characteristics of an Al/AlOx/indium tin oxide (ITO) device on a plastic flexible substrate are investigated. By analyzing the electron diffraction spectroscopy results and thermal coefficient of resistivity, it is discovered that the formation of aluminum and indium conducting filaments in AlOx film strongly depends on the polarity of the applied voltage. The metal ions arising from the Al and ITO electrodes respectively govern the resistive switching in corresponding operation polarity. After 104 times of mechanical bending, the device can perform satisfactorily in terms of resistance distribution, read sequence of high and low resistive states, and thermal retention properties.

  5. III-Nitride Dry Etching - Comparison of Inductively Coupled Plasma Chemistries

    SciTech Connect

    Abernathy, C.R.; Cho, H.; Donovan, S.M.; Hahn, Y-B.; Han, J.; Hays, D.C.; MacKenzie, J.D.; Pearton, S.J.; Shul, R.J.

    1998-11-10

    A systematic study of the etch characteristics of GaN, AlN and InN has been performed with boron halides- (BI{sub 3} and BBr{sub 3}) and interhalogen- (ICl and IBr) based Inductively Coupled Plasmas. Maximum etch selectivities of -100:1 were achieved for InN over both GaN and AlN in the BI{sub 3} mixtures due to the relatively high volatility of the InN etch products and the lower bond strength of InN. Maximum selectivies of- 14 for InN over GaN and >25 for InN over AlN were obtained with ICl and IBr chemistries. The etched surface morphologies of GaN in these four mixtures are similar or better than those of the control sample.

  6. Transition Metal Nitrides: A First Principles Study

    NASA Astrophysics Data System (ADS)

    Pathak, Ashish; Singh, A. K.

    2016-04-01

    The present work describes the structural stability and electronic and mechanical properties of transition metal nitrides (TmNs: B1 cubic structure (cF8, Fm ‾ overline 3 m)) using first principles density functional theory (DFT) within generalized gradient approximation (GGA). The lattice constant of TmNs increases with increasing the atomic radii of the transition metals. Stability of the TmNs decreases from IVB to VIB groups due to increase in formation energy/atom. The bonding characteristics of these nitrides have been explained based on electronic density of states and charge density. All the TmNs satisfy Born stability criteria in terms of elastic constants except CrN and MoN that do not exist in equilibrium binary phase diagrams. The groups IVB and V-VIB nitrides are associated with brittle and ductile behaviour based on G/B ratios, respectively. The estimated melting temperatures of these nitrides exhibit reasonably good agreement with calculated with B than those of the C11 for all nitrides.

  7. Silicon nitride ceramic having high fatigue life and high toughness

    DOEpatents

    Yeckley, Russell L.

    1996-01-01

    A sintered silicon nitride ceramic comprising between about 0.6 mol % and about 3.2 mol % rare earth as rare earth oxide, and between about 85 w/o and about 95 w/o beta silicon nitride grains, wherein at least about 20% of the beta silicon nitride grains have a thickness of greater than about 1 micron.

  8. X-ray diffraction investigation of ultrafine boron nitride powders

    SciTech Connect

    Gurov, S.V.; Chukalin, V.I.; Rezchikova, T.V.; Torbov, V.J.; Troitskii, V.N.

    1986-01-01

    This paper presents an x-ray diffraction analysis of ultrafine boron nitride powders of different mean particle sizes. Diffraction spectra of the ultrafine boron nitride powders were obtained using a DRON-1 apparatus. The experimental facts are indicative of a turbostratic character of deformation of the hexagonal lattice of ultrafinely divided boron nitride.

  9. Single gallium nitride nanowire lasers.

    PubMed

    Johnson, Justin C; Choi, Heon-Jin; Knutsen, Kelly P; Schaller, Richard D; Yang, Peidong; Saykally, Richard J

    2002-10-01

    There is much current interest in the optical properties of semiconductor nanowires, because the cylindrical geometry and strong two-dimensional confinement of electrons, holes and photons make them particularly attractive as potential building blocks for nanoscale electronics and optoelectronic devices, including lasersand nonlinear optical frequency converters. Gallium nitride (GaN) is a wide-bandgap semiconductor of much practical interest, because it is widely used in electrically pumped ultraviolet-blue light-emitting diodes, lasers and photodetectors. Recent progress in microfabrication techniques has allowed stimulated emission to be observed from a variety of GaN microstructures and films. Here we report the observation of ultraviolet-blue laser action in single monocrystalline GaN nanowires, using both near-field and far-field optical microscopy to characterize the waveguide mode structure and spectral properties of the radiation at room temperature. The optical microscope images reveal radiation patterns that correlate with axial Fabry-Perot modes (Q approximately 10(3)) observed in the laser spectrum, which result from the cylindrical cavity geometry of the monocrystalline nanowires. A redshift that is strongly dependent on pump power (45 meV microJ x cm(-2)) supports the idea that the electron-hole plasma mechanism is primarily responsible for the gain at room temperature. This study is a considerable advance towards the realization of electron-injected, nanowire-based ultraviolet-blue coherent light sources. PMID:12618824

  10. Boron nitride nanotubes and nanosheets.

    PubMed

    Golberg, Dmitri; Bando, Yoshio; Huang, Yang; Terao, Takeshi; Mitome, Masanori; Tang, Chengchun; Zhi, Chunyi

    2010-06-22

    Hexagonal boron nitride (h-BN) is a layered material with a graphite-like structure in which planar networks of BN hexagons are regularly stacked. As the structural analogue of a carbon nanotube (CNT), a BN nanotube (BNNT) was first predicted in 1994; since then, it has become one of the most intriguing non-carbon nanotubes. Compared with metallic or semiconducting CNTs, a BNNT is an electrical insulator with a band gap of ca. 5 eV, basically independent of tube geometry. In addition, BNNTs possess a high chemical stability, excellent mechanical properties, and high thermal conductivity. The same advantages are likely applicable to a graphene analogue-a monatomic layer of a hexagonal BN. Such unique properties make BN nanotubes and nanosheets a promising nanomaterial in a variety of potential fields such as optoelectronic nanodevices, functional composites, hydrogen accumulators, electrically insulating substrates perfectly matching the CNT, and graphene lattices. This review gives an introduction to the rich BN nanotube/nanosheet field, including the latest achievements in the synthesis, structural analyses, and property evaluations, and presents the purpose and significance of this direction in the light of the general nanotube/nanosheet developments. PMID:20462272

  11. p-type conduction in sputtered indium oxide films

    SciTech Connect

    Stankiewicz, Jolanta; Alcala, Rafael; Villuendas, Francisco

    2010-05-10

    We report p-type conductivity in intrinsic indium oxide (IO) films deposited by magnetron sputtering on fused quartz substrates under oxygen-rich ambient. Highly oriented (111) films were studied by x-ray diffraction, optical absorption, and Hall effect measurements. We fabricated p-n homojunctions on these films.

  12. Technique for depositing silicon dioxide on indium arsenide improves adhesion

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Planar array processing of indium arsenide wafers includes dicing into a prescribed geometry, then cleaning and drying, and finally pre-oxidizing in an oxygen atmosphere at 500 degrees C. The last step forms an oxide interface between the InAs surface and a glow discharge deposited layer of silicon dioxide.

  13. Indium-111 labeled anti-melanoma monoclonal antibodies

    DOEpatents

    Srivastava, S.C.; Fawwaz, R.A.; Ferrone, S.

    1984-04-30

    A monoclonal antibody to a high molecular weight melanoma-associated antigen was chelated and radiolabeled with indium-111. This material shows high affinity for melanoma and thus can be used in the detection, localization and imaging of melanoma. 1 figure.

  14. Properties and composition of anodic oxide layers of indium antimonide

    SciTech Connect

    Sorokin, I.N.; Gat'ko, L.E.; Nikitina, N.G.

    1985-09-01

    In recent years a number of optoelectronic devices based on narrowgap semiconductors of the AIIIBV type have been developed. One of the factors preventing widespread production of such devices is the inadequate study of the effect of the technology on the properties of insulator-semiconductor systems, of which anodic oxide films (AOF)--indium antimonide--are most promising. In this work the authors studied the dielectric properties and chemical composition of indium antimonide AOF as a function of their thicknesses and conditions of formation. It is determined that anodic indium antimonide oxide layers 90-110nm thick have high dielectric properties. It is also determined that an increase of the film thickness above 80100nm is accompanied by a decrease in the relative antimony content. The ratio of indium and antimony in oxide layers depends on the electrical conditions of oxidation of the semiconductor: the relative antimony content increases as a result of a decrease in the field intensity under conditions of constant voltage.

  15. Sub-micronewton thrust measurements of indium field emission thrusters

    NASA Technical Reports Server (NTRS)

    Ziemer, J. K.

    2003-01-01

    The performance of three indium field emission thrusters (In-FETs) developed by the Austrian Research Center Seibersdorf (ARCS) have been measured up to 200 muN, 2 mA, and 20 W using a submicronewton resolution thrust stand.

  16. Detection of accessory spleens with indium 111-labeled autologous platelets

    SciTech Connect

    Davis, H.H., II; Varki, A.; Heaton, W.A.; Siegel, B.A.

    1980-01-01

    In two patients with recurrent immune thrombocytopenia, accessory splenic tissue was demonstrated by radionuclide imaging following administration of indium 111-labeled autologous platelets. In one of these patients, no accessory splenic tissue was seen on images obtained with technetium 99m sulfur colloid. This new technique provides a simple means for demonstrating accessory spleens and simultaneously evaluating the life-span of autologous platelets.

  17. Indium segregation measured in InGaN quantum well layer

    PubMed Central

    Deng, Zhen; Jiang, Yang; Wang, Wenxin; Cheng, Liwen; Li, Wei; Lu, Wei; Jia, Haiqiang; Liu, Wuming; Zhou, Junming; Chen, Hong

    2014-01-01

    The indium segregation in InGaN well layer is confirmed by a nondestructive combined method of experiment and numerical simulation, which is beyond the traditional method. The pre-deposited indium atoms before InGaN well layer growth are first carried out to prevent indium atoms exchange between the subsurface layer and the surface layer, which results from the indium segregation. The uniform spatial distribution of indium content is achieved in each InGaN well layer, as long as indium pre-deposition is sufficient. According to the consistency of the experiment and numerical simulation, the indium content increases from 16% along the growth direction and saturates at 19% in the upper interface, which cannot be determined precisely by the traditional method. PMID:25339386

  18. Doping effects of C, Si and Ge in wurtzite [0001] GaN, AlN, and InN nanowires

    NASA Astrophysics Data System (ADS)

    Colussi, M. L.; Baierle, R. J.; Miwa, R. H.

    2011-08-01

    We have performed an ab initio investigation, within the spin-polarized density functional theory, of the energetic stability and electronic properties of substitutional Si, Ge, and C impurities in [0001] GaN, AlN, and InN nanowires (NWs). Our total energy results show that C impurities in the cation site (CGa, CAl, and CIn) present lower formation energies at the surface of the NWs as compared to their counterparts in the core of the NW or the bulk system. In these position donor likely properties are obtained for GaN and InN NWs, whereas for the AlN NW deep levels are observed inside the bandgap. In contrast, CN must be distributed uniformly along the NW diameter and gives rise to a deep electronic level inside the NW bandgap. Si in GaN and InN and Ge in InN are most stable at the cation site in the core of the NWs, and lead the systems to show a n-type semiconductor properties. For the AlN NW we obtain that Si and Ge are most likely in a N site at the surface of the NW and introduce deep levels inside the NW bandgap. Meanwhile, C and Ge impurities are amphoteric impurities in GaN NWs.

  19. Study of structural properties of cubic InN films on GaAs(001) substrates by molecular beam epitaxy and migration enhanced epitaxy

    SciTech Connect

    Casallas-Moreno, Y. L.; Perez-Caro, M.; Gallardo-Hernandez, S.; Ramirez-Lopez, M.; Martinez-Velis, I.; Lopez-Lopez, M.; Escobosa-Echavarria, A.

    2013-06-07

    InN epitaxial films with cubic phase were grown by rf-plasma-assisted molecular beam epitaxy (RF-MBE) on GaAs(001) substrates employing two methods: migration-enhanced epitaxy (MEE) and conventional MBE technique. The films were synthesized at different growth temperatures ranging from 490 to 550 Degree-Sign C, and different In beam fluxes (BEP{sub In}) ranging from 5.9 Multiplication-Sign 10{sup -7} to 9.7 Multiplication-Sign 10{sup -7} Torr. We found the optimum conditions for the nucleation of the cubic phase of the InN using a buffer composed of several thin layers, according to reflection high-energy electron diffraction (RHEED) patterns. Crystallographic analysis by high resolution X-ray diffraction (HR-XRD) and RHEED confirmed the growth of c-InN by the two methods. We achieved with the MEE method a higher crystal quality and higher cubic phase purity. The ratio of cubic to hexagonal components in InN films was estimated from the ratio of the integrated X-ray diffraction intensities of the cubic (002) and hexagonal (1011) planes measured by X-ray reciprocal space mapping (RSM). For MEE samples, the cubic phase of InN increases employing higher In beam fluxes and higher growth temperatures. We have obtained a cubic purity phase of 96.4% for a film grown at 510 Degree-Sign C by MEE.

  20. The daytime boundary layer in the Inn Valley - A model evaluation study with high-quality turbulence measurements

    NASA Astrophysics Data System (ADS)

    Goger, Brigitta; Rotach, Mathias W.; Gohm, Alexander; Fuhrer, Oliver; Stiperski, Ivana

    2016-04-01

    Atmospheric processes associated with complex terrain include various phenomena on the meso- and microscale, which contribute significantly to the local weather in mountainous areas of the Earth. One of the most prominent and well-known boundary-layer phenomena in mountainous terrain is the daytime valley wind circulation, which is very pronounced on clear-sky days with weak synoptic forcing. We use several chosen "valley wind days" in the Inn Valley, Austria, as case studies for the evaluation of the performance of the NWP model COSMO on a horizontal resolution of 1.1 km with a focus on boundary-layer processes and turbulent exchange. The overall goal is to evaluate the model setup and to investigate whether the model's physics schemes (initially developed for horizontally homogeneous and flat surroundings) are suitable for truly complex terrain. We evaluate the model by using measurements from the so-called "i-Box" located in the Inn Valley. The i-Box consists of six core sites that are located at representative locations in the Inn Valley, and two remote sensing systems (wind Lidar and HATPRO passive T/RH profiler) in the city of Innsbruck. The long-term data set provides a data pool of high-resolution velocity variances, turbulence variables, radiation, soil moisture, and vertical profiles of temperature, humidity, and wind in the lower troposphere, which allows a process-oriented analysis. A special focus is laid on the daytime valley boundary layer and its interaction with the developing up-valley wind. Vertical cross-sections show that the valley wind has an asymmetric structure, hence, the i-Box stations show a high spatial variability. While the station on the valley bottom and on the south-facing slope are clearly under the strong influence of the valley wind, the two stations on the north-facing slope are rather dominated by slope flows. We find that the valley wind has a strong (indirect) influence on the development of the local turbulence kinetic