Science.gov

Sample records for individual metal nanoparticles

  1. Virus templated metallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Aljabali, Alaa A. A.; Barclay, J. Elaine; Lomonossoff, George P.; Evans, David J.

    2010-12-01

    Plant viruses are considered as nanobuilding blocks that can be used as synthons or templates for novel materials. Cowpea mosaic virus (CPMV) particles have been shown to template the fabrication of metallic nanoparticles by an electroless deposition metallization process. Palladium ions were electrostatically bound to the virus capsid and, when reduced, acted as nucleation sites for the subsequent metal deposition from solution. The method, although simple, produced highly monodisperse metallic nanoparticles with a diameter of ca. <=35 nm. CPMV-templated particles were prepared with cobalt, nickel, iron, platinum, cobalt-platinum and nickel-iron.Plant viruses are considered as nanobuilding blocks that can be used as synthons or templates for novel materials. Cowpea mosaic virus (CPMV) particles have been shown to template the fabrication of metallic nanoparticles by an electroless deposition metallization process. Palladium ions were electrostatically bound to the virus capsid and, when reduced, acted as nucleation sites for the subsequent metal deposition from solution. The method, although simple, produced highly monodisperse metallic nanoparticles with a diameter of ca. <=35 nm. CPMV-templated particles were prepared with cobalt, nickel, iron, platinum, cobalt-platinum and nickel-iron. Electronic supplementary information (ESI) available: Additional experimental detail, agarose gel electrophoresis results, energy dispersive X-ray spectra, ζ-potential measurements, dynamic light scattering data, nanoparticle tracking analysis and an atomic force microscopy image of Ni-CPMV. See DOI: 10.1039/c0nr00525h

  2. Virus templated metallic nanoparticles.

    PubMed

    Aljabali, Alaa A A; Barclay, J Elaine; Lomonossoff, George P; Evans, David J

    2010-12-01

    Plant viruses are considered as nanobuilding blocks that can be used as synthons or templates for novel materials. Cowpea mosaic virus (CPMV) particles have been shown to template the fabrication of metallic nanoparticles by an electroless deposition metallization process. Palladium ions were electrostatically bound to the virus capsid and, when reduced, acted as nucleation sites for the subsequent metal deposition from solution. The method, although simple, produced highly monodisperse metallic nanoparticles with a diameter of ca. ≤35 nm. CPMV-templated particles were prepared with cobalt, nickel, iron, platinum, cobalt-platinum and nickel-iron. PMID:20877898

  3. Introduction to metallic nanoparticles.

    PubMed

    Mody, Vicky V; Siwale, Rodney; Singh, Ajay; Mody, Hardik R

    2010-10-01

    Metallic nanoparticles have fascinated scientist for over a century and are now heavily utilized in biomedical sciences and engineering. They are a focus of interest because of their huge potential in nanotechnology. Today these materials can be synthesized and modified with various chemical functional groups which allow them to be conjugated with antibodies, ligands, and drugs of interest and thus opening a wide range of potential applications in biotechnology, magnetic separation, and preconcentration of target analytes, targeted drug delivery, and vehicles for gene and drug delivery and more importantly diagnostic imaging. Moreover, various imaging modalities have been developed over the period of time such as MRI, CT, PET, ultrasound, SERS, and optical imaging as an aid to image various disease states. These imaging modalities differ in both techniques and instrumentation and more importantly require a contrast agent with unique physiochemical properties. This led to the invention of various nanoparticulated contrast agent such as magnetic nanoparticles (Fe(3)O(4)), gold, and silver nanoparticles for their application in these imaging modalities. In addition, to use various imaging techniques in tandem newer multifunctional nanoshells and nanocages have been developed. Thus in this review article, we aim to provide an introduction to magnetic nanoparticles (Fe(3)O(4)), gold nanoparticles, nanoshells and nanocages, and silver nanoparticles followed by their synthesis, physiochemical properties, and citing some recent applications in the diagnostic imaging and therapy of cancer. PMID:21180459

  4. Introduction to metallic nanoparticles

    PubMed Central

    Mody, Vicky V.; Siwale, Rodney; Singh, Ajay; Mody, Hardik R.

    2010-01-01

    Metallic nanoparticles have fascinated scientist for over a century and are now heavily utilized in biomedical sciences and engineering. They are a focus of interest because of their huge potential in nanotechnology. Today these materials can be synthesized and modified with various chemical functional groups which allow them to be conjugated with antibodies, ligands, and drugs of interest and thus opening a wide range of potential applications in biotechnology, magnetic separation, and preconcentration of target analytes, targeted drug delivery, and vehicles for gene and drug delivery and more importantly diagnostic imaging. Moreover, various imaging modalities have been developed over the period of time such as MRI, CT, PET, ultrasound, SERS, and optical imaging as an aid to image various disease states. These imaging modalities differ in both techniques and instrumentation and more importantly require a contrast agent with unique physiochemical properties. This led to the invention of various nanoparticulated contrast agent such as magnetic nanoparticles (Fe3O4), gold, and silver nanoparticles for their application in these imaging modalities. In addition, to use various imaging techniques in tandem newer multifunctional nanoshells and nanocages have been developed. Thus in this review article, we aim to provide an introduction to magnetic nanoparticles (Fe3O4), gold nanoparticles, nanoshells and nanocages, and silver nanoparticles followed by their synthesis, physiochemical properties, and citing some recent applications in the diagnostic imaging and therapy of cancer. PMID:21180459

  5. Method for producing metallic nanoparticles

    DOEpatents

    Phillips, Jonathan; Perry, William L.; Kroenke, William J.

    2004-02-10

    Method for producing metallic nanoparticles. The method includes generating an aerosol of solid metallic microparticles, generating non-oxidizing plasma with a plasma hot zone at a temperature sufficiently high to vaporize the microparticles into metal vapor, and directing the aerosol into the hot zone of the plasma. The microparticles vaporize in the hot zone to metal vapor. The metal vapor is directed away from the hot zone and to the plasma afterglow where it cools and condenses to form solid metallic nanoparticles.

  6. Metallic nanoparticles meet metadynamics

    NASA Astrophysics Data System (ADS)

    Pavan, L.; Rossi, K.; Baletto, F.

    2015-11-01

    Metadynamics coupled with classical molecular dynamics has been successfully applied to sample the configuration space of metallic and bimetallic nanoclusters. We implement a new set of collective variables related to the pair distance distribution function of the nanoparticle to achieve an exhaustive isomer sampling. As paradigmatic examples, we apply our methodology to Ag147, Pt147, and their alloy AgshellPtcore at 2:1 and 1:1 chemical compositions. The proposed scheme is able to reproduce the known solid-solid structural transformation pathways, based on the Lipscomb's diamond-square-diamond mechanisms, both in mono and bimetallic nanoparticles. A discussion of the free energy barriers involved in these processes is provided.

  7. Scanning electrochemical microscopy of individual catalytic nanoparticles.

    PubMed

    Sun, Tong; Yu, Yun; Zacher, Brian J; Mirkin, Michael V

    2014-12-15

    Electrochemistry at individual metal nanoparticles (NPs) can provide new insights into their electrocatalytic behavior. Herein, the electrochemical activity of single AuNPs attached to the catalytically inert carbon surface is mapped by using extremely small (≥3 nm radius) polished nanoelectrodes as tips in the scanning electrochemical microscope (SECM). The use of such small probes resulted in the spatial resolution significantly higher than in previously reported electrochemical images. The currents produced by either rapid electron transfer or the electrocatalytic hydrogen evolution reaction at a single 10 or 20 nm NP were measured and quantitatively analyzed. The developed methodology should be useful for studying the effects of nanoparticle size, geometry, and surface attachment on electrocatalytic activity in real-world application environment. PMID:25332196

  8. Metal Nanoparticle Aerogel Composites

    NASA Technical Reports Server (NTRS)

    Smith, David D.; Sibille, Laurent; Ignont, Erica; Snow, Lanee; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    We have fabricated sol-gels containing gold and silver nanoparticles. Formation of an aerogel produces a blue shift in the surface plasmon resonance as a result of the decrease in the dielectric constant of the matrix upon supercritical extraction of the solvent. However, as a result of chemical interface damping this blue shift does not obey effective medium theories. Annealing the samples in a reducing atmosphere at 400 C eliminates this discrepancy and results in narrowing and further blue shifting of the plasmon resonance. Metal particle aggregation also results in a deviation from the predictions of effective medium theories, but can be controlled through careful handling and by avoiding the use of alcohol. By applying effective medium theories to the heterogeneous interlayer surrounding each metal particle, we extend the technique of immersion spectroscopy to inhomogeneous materials characterized by spatially dependent dielectric constants, such as aerogels. We demonstrate that the shift in the surface plasmon wavelength provides the average fractional composition of each component (air and silica) in this inhomogeneous layer, i.e. the porosity of the aerogel or equivalently, for these materials, the catalytic dispersion. Additionally, the kinetics suggest that collective particle interactions in coagulated metal clusters are perturbed during silica gelation resulting in a change in the aggregate geometry.

  9. Synthesis metal nanoparticle

    DOEpatents

    Bunge, Scott D.; Boyle, Timothy J.

    2005-08-16

    A method for providing an anhydrous route for the synthesis of amine capped coinage-metal (copper, silver, and gold) nanoparticles (NPs) using the coinage-metal mesityl (mesityl=C.sub.6 H.sub.2 (CH.sub.3).sub.3 -2,4,6) derivatives. In this method, a solution of (Cu(C.sub.6 H.sub.2 (CH.sub.3).sub.3).sub.5, (Ag(C.sub.6 H.sub.2 (CH.sub.3).sub.3).sub.4, or (Au(C.sub.6 H.sub.2 (CH.sub.3).sub.3).sub.5 is dissolved in a coordinating solvent, such as a primary, secondary, or tertiary amine; primary, secondary, or tertiary phosphine, or alkyl thiol, to produce a mesityl precursor solution. This solution is subsequently injected into an organic solvent that is heated to a temperature greater than approximately 100.degree. C. After washing with an organic solvent, such as an alcohol (including methanol, ethanol, propanol, and higher molecular-weight alcohols), oxide free coinage NP are prepared that could be extracted with a solvent, such as an aromatic solvent (including, for example, toluene, benzene, and pyridine) or an alkane (including, for example, pentane, hexane, and heptane). Characterization by UV-Vis spectroscopy and transmission electron microscopy showed that the NPs were approximately 9.2.+-.2.3 nm in size for Cu.degree., (no surface oxide present), approximately 8.5.+-.1.1 nm Ag.degree. spheres, and approximately 8-80 nm for Au.degree..

  10. Measurements of Individual Magnetic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Wernsdorfer, Wolfgang

    2002-03-01

    Studying the limits between classical and quantum physics has become a very attractive field of research which is known as 'mesoscopic' physics. New and fascinating mesoscopic effects are expected. Nanometer-sized magnetic particles are situated at the frontier between classical and quantum magnetism. In addition, their magnetic properties are technologically very challenging (permanent magnets, information storage, etc.). First, we review briefly our micro-SQUID technique (For a review, see W. Wernsdorfer, Adv. Chem. Phys., 118, 99 (2001) or http://xxx.lanl.gov/abs/cond-mat/0101104) which allows us to study single nanometer-sized magnetic particles containing less than 1000 atoms, crystals of molecular clusters, or quantum spin chains. Then, we discuss our recent results concerning the magnetization reversal of individual Co and Fe clusters (3 nm). (M. Jamet, W. Wernsdorfer, C. Thirion, D. Mailly, V. Dupuis, P. Melinon, and A. Perez, Phys. Rev. Lett 86, 4676 (2001).) Using a generalized Stoner-Wohlfarth model, (E. Bonet, W. Wernsdorfer, B. Barbara, A. Benoit, D. Mailly, and A. Thiaville Phys. Rev. Lett., 83, 4188 (1999)) we show that 3D measurements of the angular dependence of the magnetization reversal yields the effective magnetic anisotropy function. The latter is important for our studies of the influence of temperature on the magnetization reversal. A new method allows us to study the magnetization switching up to the blocking temperature which is typically below 30 K. We achieved a new insight in the dynamics of magnetization reversal using ns-field pulses and micro-wave radiations. We conclude by showing how one might give a definite proof of the quantum character of a nanoparticle (S > 1000) at low temperatures.

  11. Antimicrobial Polymers with Metal Nanoparticles

    PubMed Central

    Palza, Humberto

    2015-01-01

    Metals, such as copper and silver, can be extremely toxic to bacteria at exceptionally low concentrations. Because of this biocidal activity, metals have been widely used as antimicrobial agents in a multitude of applications related with agriculture, healthcare, and the industry in general. Unlike other antimicrobial agents, metals are stable under conditions currently found in the industry allowing their use as additives. Today these metal based additives are found as: particles, ions absorbed/exchanged in different carriers, salts, hybrid structures, etc. One recent route to further extend the antimicrobial applications of these metals is by their incorporation as nanoparticles into polymer matrices. These polymer/metal nanocomposites can be prepared by several routes such as in situ synthesis of the nanoparticle within a hydrogel or direct addition of the metal nanofiller into a thermoplastic matrix. The objective of the present review is to show examples of polymer/metal composites designed to have antimicrobial activities, with a special focus on copper and silver metal nanoparticles and their mechanisms. PMID:25607734

  12. Optical Properties of Metallic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Vallée, F.

    The bright and changing colours obtained by dispersing metallic compounds in a glass matrix have been known empirically for centuries. Indeed, glasses have been coloured in the bulk by inclusion of metallic powders since ancient times to make jewellery and ornaments (see Chap. 25). Then in the Middle Ages, they were used for stained glass windows and later on for coloured glass artefacts, e.g., ruby red glass objects. However, the role played by nanoparticles in this colouring effect, i.e., the effects of nanoparticles on optical properties, were only first studied scientifically in the nineteenth century, by Michael Faraday [1].

  13. Metal Nanoparticles as Optical Nano-Sensors

    NASA Astrophysics Data System (ADS)

    Feldmann, Jochen

    2003-03-01

    When molecules approach metal nanoparticles their fluorescent properties are drastically changed [1]. In addition, the optical scattering spectra of individual nanoparticles [2] are shifted in energy. Potential biophotonic applications for resonant energy transfer (RET) studies and for molecular recognition are discussed. [1] E. Dulkeith, A.C. Morteani, T. Niedereichholz, T.A. Klar, J. Feldmann, S. Levi, F.C. van Veggel, D.N. Reinhoudt, and M. Moeller, Phys. Rev. Lett. 89, 203002 (2002). [2] C. Soennichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, Phys. Rev. Lett. 88, 077402 (2002).

  14. Preparation of uniform nanoparticles of ultra-high purity metal oxides, mixed metal oxides, metals, and metal alloys

    DOEpatents

    Woodfield, Brian F.; Liu, Shengfeng; Boerio-Goates, Juliana; Liu, Qingyuan; Smith, Stacey Janel

    2012-07-03

    In preferred embodiments, metal nanoparticles, mixed-metal (alloy) nanoparticles, metal oxide nanoparticles and mixed-metal oxide nanoparticles are provided. According to embodiments, the nanoparticles may possess narrow size distributions and high purities. In certain preferred embodiments, methods of preparing metal nanoparticles, mixed-metal nanoparticles, metal oxide nanoparticles and mixed-metal nanoparticles are provided. These methods may provide tight control of particle size, size distribution, and oxidation state. Other preferred embodiments relate to a precursor material that may be used to form nanoparticles. In addition, products prepared from such nanoparticles are disclosed.

  15. Synthesis of noble metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Bahadory, Mozhgan

    Improved methods were developed for the synthesis of noble metal nanoparticles. Laboratory experiments were designed for introducing of nanotechnology into the undergraduate curriculum. An optimal set of conditions for the synthesis of clear yellow colloidal silver was investigated. Silver nanoparticles were obtained by borohydride reduction of silver nitrate, a method which produces particles with average size of 12+/-2 nm, determined by Transmission Electron Microscopy (TEM). The plasmon absorbance is at 397 nm and the peak width at half maximum (PWHM) is 70-75 nm. The relationship between aggregation and optical properties was determined along with a method to protect the particles using polyvinylpyrrolidone (PVP). A laboratory experiment was designed in which students synthesize yellow colloidal silver, estimate particle size using visible spectroscopy, and study aggregation effects. The synthesis of the less stable copper nanoparticles is more difficult because copper nanopaticles are easily oxidized. Four methods were used for the synthesis of copper nanoparticles, including chemical reduction with sodium borohydride, sodium borohydride with potassium iodide, isopropyl alcohol with cetyltrimethylammonium bormide (CTAB) and reducing sugars. The latter method was also the basis for an undergraduate laboratory experiment. For each reaction, the dependence of stability of the copper nanoparticles on reagent concentrations, additives, relative amounts of reactants, and temperature is explored. Atomic force microscopy (AFM), TEM and UV-Visible Spectroscopy were used to characterize the copper nanoparticles. A laboratory experiment to produce copper nanoparticles from household chemicals was developed.

  16. Metal nanoparticle inks

    DOEpatents

    Lewis, Jennifer A.; Ahn, Bok Yeop; Duoss, Eric B.

    2011-04-12

    Stabilized silver particles comprise particles comprising silver, a short-chain capping agent adsorbed on the particles, and a long-chain capping agent adsorbed on the particles. The short-chain capping agent is a first anionic polyelectrolyte having a molecular weight (Mw) of at most 10,000, and the long-chain capping agent is a second anionic polyelectrolyte having a molecular weight (Mw) of at least 25,000. The stabilized silver particles have a solid loading of metallic silver of at least 50 wt %.

  17. Metallic nano-particles for trapping light

    PubMed Central

    2013-01-01

    We study metallic nano-particles for light trapping by investigating the optical absorption efficiency of the hydrogenated amorphous silicon thin film with and without metallic nano-particles on its top. The size and shape of these nano-particles are investigated as to their roles of light trapping: scattering light to the absorption medium and converting light to surface plasmons. The optical absorption enhancement in the red light region (e.g., 650nm) due to the light trapping of the metallic nano-particles is observed when a layer of metallic nano-particle array has certain structures. The investigation of the light with incident angles shows the importance of the coupling efficiency of light to surface plasmons in the metallic nano-particle light trapping. PACS 73.20.Mf, 42.25.s, 88.40.hj PMID:23391493

  18. Spin Electronics in Metallic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Birk, Felipe Tijiwa

    2011-12-01

    The work described in this thesis reflects a through investigation of spin-dependent transport through metallic nanoparticles, via tunnel junctions. Our devices consist of metallic nanoparticles embedded in an insulating matrix tunnel coupled to two metallic electrodes. At low temperatures, the small dimensions of the particles provide the necessary conditions to study the role played by discrete energy levels in the transport properties of these devices. In Chapter 1, a brief introduction to some of the relevant background topics related to this work, will be presented. Chapter 2 gives a detailed description of measurement procedures used on the experiments, and the adopted techniques for sample fabrication. In some of the devices presented here, the electrodes are made of ferromagnetic materials, which are used as source of spin-polarized current. The case where both electrodes are ferromagnetic, in a spin-valve configuration, will be discussed in Chapter 3, showing that spin accumulation mechanisms are responsible for the observed spin-polarized current. It will also be shown that the effect of an applied perpendicular magnetic field, relative to the magnetization orientation of the electrodes, indicates the suppression of spin precession in such small particles. Moreover, in the presence of an external non-collinear magnetic field, it is the local field "felt" by the particle that determines the character of the tunnel current. Even in samples where only one of the electrodes is ferromagnetic, spin-polarization of the tunnel current due to spin accumulation in the particle is observed. Asymmetries in the current-voltage (IV) characteristics as well as in the tunnel magnetoresistance (TMR) of these devices will be presented in Chapter 4. Another type of device, which will be addressed in Chapter 5, consists of ferromagnetic nanoparticles coupled to normal-metal electrodes. The rich electronic structure as well as a complex set of relaxation mechanisms in these

  19. Environmentally friendly preparation of metal nanoparticles

    EPA Science Inventory

    The book chapter summarizes the “state of the art” in the exploitation of various environmentally-friendly synthesis approaches, reaction precursors and conditions to manufacture metal and metal oxide nanoparticles for a vast variety of purposes.

  20. Method for producing metal oxide nanoparticles

    DOEpatents

    Phillips, Jonathan; Mendoza, Daniel; Chen, Chun-Ku

    2008-04-15

    Method for producing metal oxide nanoparticles. The method includes generating an aerosol of solid metallic microparticles, generating plasma with a plasma hot zone at a temperature sufficiently high to vaporize the microparticles into metal vapor, and directing the aerosol into the hot zone of the plasma. The microparticles vaporize in the hot zone into metal vapor. The metal vapor is directed away from the hot zone and into the cooler plasma afterglow where it oxidizes, cools and condenses to form solid metal oxide nanoparticles.

  1. Physiologically important metal nanoparticles and their toxicity.

    PubMed

    Sengupta, Jayeeta; Ghosh, Sourav; Datta, Poulami; Gomes, Aparna; Gomes, Antony

    2014-01-01

    Nanotechnology has been setting benchmarks for the last two decades, but the origins of this technology reach back to ancient history. Today, nanoparticles of both metallic and non-metallic origin are under research and development for applications in various fields of biology/therapeutics. Physiologically important metals are of concern because they are compatible with the human system in terms of absorption, assimilation, excretion, and side effects. There are several physiologically inorganic metals that are present in the human body with a wide range of biological activities. Some of these metals are magnesium, chromium, manganese, iron, cobalt, copper, zinc, selenium and molybdenum. These metals are synthesized in the form of nanoparticles by different physical and chemical methods. Physiologically important nanoparticles are currently under investigation for their bio-medical applications as well as for therapeutics. Along with the applicative aspects of nanoparticles, another domain that is of great concern is the risk assessment of these nanoparticles to avoid unnecessary hazards. It has been seen that these nanoparticles have been shown to possess toxicity in biological systems. Conventional physical and chemical methods of metal nanoparticle synthesis may be one possible reason for nanoparticle toxicity that can be overcome by synthesis of nanoparticles from biological sources. This review is an attempt to establish metal nanoparticles of physiological importance to be the best candidates for future nanotechnological tools and medicines, owing to the acceptability and safety in the human body. This can only be successful if these particles are synthesized with a better biocompatibility and low or no toxicity. PMID:24730316

  2. Metal-metal bonding using silver/copper nanoparticles

    NASA Astrophysics Data System (ADS)

    Kobayashi, Y.; Maeda, T.; Yasuda, Y.; Morita, T.

    2015-08-01

    A method for producing nanoparticles composed of silver and copper and a metal-metal bonding technique using the silver/copper nanoparticles are proposed. The method consists of three steps. First, copper oxide nanoparticles are produced by mixing Cu(NO3)2 aqueous solution and NaOH aqueous solution. Second, copper metal nanoparticles are fabricated by reducing the copper oxide nanoparticles with hydrazine in the presence of poly(vinylpyrrolidone) (PVP). Third, silver/copper nanoparticles are synthesized by reducing Ag+ ions with hydrazine in the presence of the copper metal nanoparticles. Initial concentrations in the final silver/copper particle colloid, composed of 0.0075 M Cu2+, 0.0025 M Ag+, 1.0 g/L PVP, and 0.6 M hydrazine, produced silver/copper nanoparticles with an average size of 49 nm and a crystal size of 16.8 nm. Discs of copper metal were successfully bonded by the silver/copper nanoparticles under annealing at 400 °C and pressurizing at 1.2 MPa for 5 min in not only hydrogen gas but also nitrogen gas. The shear force required to separate the bonded discs was 22.3 MPa for the hydrogen gas annealing and 14.9 MPa for the nitrogen gas annealing (namely, 66.8 % of that for hydrogen gas annealing).

  3. Metal-metal bonding using silver/copper nanoparticles

    NASA Astrophysics Data System (ADS)

    Kobayashi, Y.; Maeda, T.; Yasuda, Y.; Morita, T.

    2016-08-01

    A method for producing nanoparticles composed of silver and copper and a metal-metal bonding technique using the silver/copper nanoparticles are proposed. The method consists of three steps. First, copper oxide nanoparticles are produced by mixing Cu(NO3)2 aqueous solution and NaOH aqueous solution. Second, copper metal nanoparticles are fabricated by reducing the copper oxide nanoparticles with hydrazine in the presence of poly(vinylpyrrolidone) (PVP). Third, silver/copper nanoparticles are synthesized by reducing Ag+ ions with hydrazine in the presence of the copper metal nanoparticles. Initial concentrations in the final silver/copper particle colloid, composed of 0.0075 M Cu2+, 0.0025 M Ag+, 1.0 g/L PVP, and 0.6 M hydrazine, produced silver/copper nanoparticles with an average size of 49 nm and a crystal size of 16.8 nm. Discs of copper metal were successfully bonded by the silver/copper nanoparticles under annealing at 400 °C and pressurizing at 1.2 MPa for 5 min in not only hydrogen gas but also nitrogen gas. The shear force required to separate the bonded discs was 22.3 MPa for the hydrogen gas annealing and 14.9 MPa for the nitrogen gas annealing (namely, 66.8 % of that for hydrogen gas annealing).

  4. Enhanced potentiometry by metallic nanoparticles.

    PubMed

    Noyhouzer, T; Valdinger, I; Mandler, D

    2013-09-01

    Measuring the oxidation-reduction potential (Eh) requires an interface that is not selective toward specific species but exchanges electrons with all redox couples in the solution. Sluggish electron transfer (ET) kinetics with the species will not reflect the "true" Eh of the solution. Here, we present a novel approach by which adsorbed metal nanoparticles (NPs) are used for enhancing ET exchange rates between redox species and electrode surface and therefore affect significantly the measurement of the open circuit potential (OCP) and cyclic voltammetry (CV). The OCP and CV of various organic and inorganic species such as l-dopa, dopac, iron(II), and iodide are measured by bare stainless steel and by stainless steel modified by either Pt or Au NPs. We study the effect of the surface coverage of the stainless steel surface by NPs on the electrochemical response. Moreover, the stainless steel electrode was modified simultaneously by Au and Pt nanoparticles. This improved concurrently the stainless steel response (CV and potentiometry) toward two different species; l-dopa, which shows fast electron transfer on Pt, and catechol, which exhibits fast electron transfer on Au. We believe that this approach could be a first step toward developing a superior electrode for measuring the "true" Eh of complex aquatic systems. PMID:23947748

  5. Chemoelectronic circuits based on metal nanoparticles.

    PubMed

    Yan, Yong; Warren, Scott C; Fuller, Patrick; Grzybowski, Bartosz A

    2016-07-01

    To develop electronic devices with novel functionalities and applications, various non-silicon-based materials are currently being explored. Nanoparticles have unique characteristics due to their small size, which can impart functions that are distinct from those of their bulk counterparts. The use of semiconductor nanoparticles has already led to improvements in the efficiency of solar cells, the processability of transistors and the sensitivity of photodetectors, and the optical and catalytic properties of metal nanoparticles have led to similar advances in plasmonics and energy conversion. However, metals screen electric fields and this has, so far, prevented their use in the design of all-metal nanoparticle circuitry. Here, we show that simple electronic circuits can be made exclusively from metal nanoparticles functionalized with charged organic ligands. In these materials, electronic currents are controlled by the ionic gradients of mobile counterions surrounding the 'jammed' nanoparticles. The nanoparticle-based electronic elements of the circuitry can be interfaced with metal nanoparticles capable of sensing various environmental changes (humidity, gas, the presence of various cations), creating electronic devices in which metal nanoparticles sense, process and ultimately report chemical signals. Because the constituent nanoparticles combine electronic and chemical sensing functions, we term these systems 'chemoelectronic'. The circuits have switching times comparable to those of polymer electronics, selectively transduce parts-per-trillion chemical changes into electrical signals, perform logic operations, consume little power (on the scale of microwatts), and are mechanically flexible. They are also 'green', in the sense that they comprise non-toxic nanoparticles cast at room temperature from alcohol solutions. PMID:26974958

  6. Chemoelectronic circuits based on metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Yan, Yong; Warren, Scott C.; Fuller, Patrick; Grzybowski, Bartosz A.

    2016-07-01

    To develop electronic devices with novel functionalities and applications, various non-silicon-based materials are currently being explored. Nanoparticles have unique characteristics due to their small size, which can impart functions that are distinct from those of their bulk counterparts. The use of semiconductor nanoparticles has already led to improvements in the efficiency of solar cells, the processability of transistors and the sensitivity of photodetectors, and the optical and catalytic properties of metal nanoparticles have led to similar advances in plasmonics and energy conversion. However, metals screen electric fields and this has, so far, prevented their use in the design of all-metal nanoparticle circuitry. Here, we show that simple electronic circuits can be made exclusively from metal nanoparticles functionalized with charged organic ligands. In these materials, electronic currents are controlled by the ionic gradients of mobile counterions surrounding the ‘jammed’ nanoparticles. The nanoparticle-based electronic elements of the circuitry can be interfaced with metal nanoparticles capable of sensing various environmental changes (humidity, gas, the presence of various cations), creating electronic devices in which metal nanoparticles sense, process and ultimately report chemical signals. Because the constituent nanoparticles combine electronic and chemical sensing functions, we term these systems ‘chemoelectronic’. The circuits have switching times comparable to those of polymer electronics, selectively transduce parts-per-trillion chemical changes into electrical signals, perform logic operations, consume little power (on the scale of microwatts), and are mechanically flexible. They are also ‘green’, in the sense that they comprise non-toxic nanoparticles cast at room temperature from alcohol solutions.

  7. Assembly of metals and nanoparticles into novel nanocomposite superstructures

    PubMed Central

    Xu, Jiaquan; Chen, Lianyi; Choi, Hongseok; Konish, Hiromi; Li, Xiaochun

    2013-01-01

    Controlled assembly of nanoscale objects into superstructures is of tremendous interests. Many approaches have been developed to fabricate organic-nanoparticle superstructures. However, effective fabrication of inorganic-nanoparticle superstructures (such as nanoparticles linked by metals) remains a difficult challenge. Here we show a novel, general method to assemble metals and nanoparticles rationally into nanocomposite superstructures. Novel metal-nanoparticle superstructures are achieved by self-assembly of liquid metals and nanoparticles in immiscible liquids driven by reduction of free energy. Superstructures with various architectures, such as metal-core/nanoparticle-shell, nanocomposite-core/nanoparticle-shell, network of metal-linked core/shell nanostructures, and network of metal-linked nanoparticles, were successfully fabricated by simply tuning the volume ratio between nanoparticles and liquid metals. Our approach provides a simple, general way for fabrication of numerous metal-nanoparticle superstructures and enables a rational design of these novel superstructures with desired architectures for exciting applications.

  8. Metal nanoparticles functionalized with metal-ligand covalent bonds

    NASA Astrophysics Data System (ADS)

    Kang, Xiongwu

    Metal-organic contact has been recognized to play important roles in regulation of optical and electronic properties of nanoparticles. In this thesis, significant efforts have been devoted into synthesis of ruthenium nanoparticles with various metal-ligand interfacial linkages and investigation of their electronic and optical properties. Ruthenium nanoparticles were prepared by the self-assembly of functional group onto bare Ru colloid surface. As to Ru-alkyne nanoparticles, the formation of a Ru-vinylidene (Ru=C=CH--R) interfacial bonding linkage was confirmed by the specific reactivity of the nanoparticles with imine derivatives and olefin at the metal-ligand interface, as manifested in NMR, photoluminescence, and electrochemical measurements. Interestingly, it was found the electronic coupling coefficient (beta)for strongly depend upon such metal-ligand interfacial bonding. Next, such metal-ligand interfacial bonding was extended to ruthenium-nitrene pi bonds on ruthenium colloids, which were investigated by XPS. The nanoparticles exhibited a 1:1 atomic ratio of nitrogen to sulfur, consistent with that of sulfonyl nitrene fragments. In addition, the nanoparticle-bound nitrene moieties behaved analogously to azo derivatives, as manifested in UV-vis and fluorescence measurements. Further testimony of the formation of Ru=N interfacial linkages was highlighted in the unique reactivity of the nanoparticles with alkenes by imido transfer. Extensive conjugation between metal-ligand interfacial bond results in remarkable intraparticle charge delocalization on Ru-alkynide nanoparticles, which was manipulated by simple chemical reduction or oxidation. Charging of extra electrons into the nanoparticle cores led to an electron-rich metal core and hence red-shift of the triple bond stretching mode, lower binding energy of sp hybridized C 1s and dimmed fluorescence of nanoparticles. Instead, chemical oxidation resulted in the opposite impacts on these properties. By taking

  9. Antimicrobial activity of the metals and metal oxide nanoparticles.

    PubMed

    Dizaj, Solmaz Maleki; Lotfipour, Farzaneh; Barzegar-Jalali, Mohammad; Zarrintan, Mohammad Hossein; Adibkia, Khosro

    2014-11-01

    The ever increasing resistance of pathogens towards antibiotics has caused serious health problems in the recent years. It has been shown that by combining modern technologies such as nanotechnology and material science with intrinsic antimicrobial activity of the metals, novel applications for these substances could be identified. According to the reports, metal and metal oxide nanoparticles represent a group of materials which were investigated in respect to their antimicrobial effects. In the present review, we focused on the recent research works concerning antimicrobial activity of metal and metal oxide nanoparticles together with their mechanism of action. Reviewed literature indicated that the particle size was the essential parameter which determined the antimicrobial effectiveness of the metal nanoparticles. Combination therapy with the metal nanoparticles might be one of the possible strategies to overcome the current bacterial resistance to the antibacterial agents. However, further studies should be performed to minimize the toxicity of metal and metal oxide nanoparticles to apply as proper alternatives for antibiotics and disinfectants especially in biomedical applications. PMID:25280707

  10. Bulk photoemission from metal films and nanoparticles

    SciTech Connect

    Ikhsanov, R Sh; Babicheva, V E; Protsenko, I E; Uskov, A V; Guzhva, M E

    2015-01-31

    Internal emission of photoelectrons from metal films and nanoparticles (nanowires and nanospheres) into a semiconductor matrix is studied theoretically by taking into account the jump of the effective electron mass at the metal – semiconductor interface and the cooling effect of hot electrons due to electron – electron collisions in the metal. The internal quantum efficiency of photoemission for the film and nanoparticles of two types (nanospheres and nanowires) is calculated. It is shown that the reduction of the effective mass of the electron during its transition from metal to semiconductor may lead to a significant (orders of magnitude and higher) decrease in the internal quantum efficiency of bulk photoemission. (nanostructures)

  11. Metal hybrid nanoparticles for catalytic organic and photochemical transformations.

    PubMed

    Song, Hyunjoon

    2015-03-17

    functions, such as magnetism and light absorption, to the catalytic properties. In particular, metal-semiconductor hybrid nanostructures could behave as effective visible photocatalysts for hydrogen evolution and CO oxidation reactions. Resulting from the large surface area and high local concentration of the reactants, a double-shell hollow structure showed reaction activities higher than those of filled nanoparticles. The introduction of plasmonic Au probes into the Pt-CdS double-shell hollow particles facilitated the monitoring of photocatalytic hydrogen generation that occurred on an individual particle surface by single particle measurements. Further development of catalysis research using well-defined metal hybrid nanocatalysts with various in situ spectroscopic tools provides a means of maximizing catalytic performances until they are comparable to or better than those of homogeneous catalysts, and this would have possibly useful implications for industrial applications. PMID:25730414

  12. Spectral dependence of fluorescence near plasmon resonant metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Yeechi

    The optical properties of fluorophores are significantly modified when placed within the near field (0--100 nm) of plasmon resonant metal nanostructures, due to the competition between increased decay rates and "hotspots" of concentrated electric fields. The decay rates and effective electric field intensities are highly dependent on the relative position of dye and metal and the overlap between plasmon resonance and dye absorption and emission. Understanding these dependencies can greatly improve the performance of biosensing and nanophotonic devices. In this dissertation, the fluorescence intensity of organic dyes and CdSe quantum dots near single metal nanoparticles is studied as a function of the local surface plasmon resonance (LSPR) of the nanoparticle. Single metal nanoparticles have narrow, well-defined, intense local surface plasmon resonances that are tunable across the visible spectrum by changes in size and shape. First, we show that organic dyes can be self-assembled on single silver nanoprisms into known configurations by the hybridization of thiolated DNA oligomers. We correlate the fluorescence intensity of the dyes to the LSPR of the individual nanoprism to which they are attached. For each of three different organic dyes, we observe a strong correlation between the fluorescence intensity of the dye and the degree of spectral overlap with the plasmon resonance of the nanoparticle. On average, we observe the brightest fluorescence from dyes attached to metal nanoparticles that have a LSPR scattering peak 40--120 meV higher in energy than the emission peak of the fluorophore. Second, the plasmon-enhanced fluorescence from CdSe/CdS/CdZnS/ZnS core/shell quantum dots is studied near a variety of silver and gold nanoparticles. With single-particle scattering spectroscopy, the localized surface plasmon resonance spectra of single metal nanoparticles is correlated with the photoluminescence excitation (PLE) spectra of the nearby quantum dots. The PLE

  13. Neurotoxicity of engineered nanoparticles from metals.

    PubMed

    Sharma, Hari Shanker; Sharma, Aruna

    2012-02-01

    Human exposure to metal nanoparticles such as silver (Ag), copper (Cu) or aluminum (Al) is very common at work places involving automobile, aerospace industry, gun factories or defense related explosives making. Additional sources of exposure to engineered nanoparticles affecting human health are chemical, electronics and communication industries. The nanoparticles (ca. 20 to 120 nm) easily enter the body through inhalation and are deposited into various tissues and organs including brain, where they could stay there for long periods of time. However, the pathophysiological reactions of nanoparticles in vivo on brain function are still not well known. Previous observations from our laboratory showed that engineered nanoparticles from Ag, Cu or Al (50-60 nm) when administered through systemic or intracerebral routes in rats or mice induce neurotoxicity depending on their type, dose and duration of the exposure. These nanoparticles also altered sensory, motor and cognitive functions at the time of development of brain pathologies. Thus, neuronal, glial, axonal and endothelial cell damages are most pronounced following Ag and Cu intoxication as compared to Al in identical doses that are more pronounced in mice as compared to rats of similar age group. The functional significance of these findings and the probable mechanisms of metal nanoparticle-induced neurotoxicity are discussed in this review largely based on our own investigations. PMID:22229317

  14. Noble Metal Nanoparticles for Biosensing Applications

    PubMed Central

    Doria, Gonçalo; Conde, João; Veigas, Bruno; Giestas, Leticia; Almeida, Carina; Assunção, Maria; Rosa, João; Baptista, Pedro V.

    2012-01-01

    In the last decade the use of nanomaterials has been having a great impact in biosensing. In particular, the unique properties of noble metal nanoparticles have allowed for the development of new biosensing platforms with enhanced capabilities in the specific detection of bioanalytes. Noble metal nanoparticles show unique physicochemical properties (such as ease of functionalization via simple chemistry and high surface-to-volume ratios) that allied with their unique spectral and optical properties have prompted the development of a plethora of biosensing platforms. Additionally, they also provide an additional or enhanced layer of application for commonly used techniques, such as fluorescence, infrared and Raman spectroscopy. Herein we review the use of noble metal nanoparticles for biosensing strategies—from synthesis and functionalization to integration in molecular diagnostics platforms, with special focus on those that have made their way into the diagnostics laboratory. PMID:22438731

  15. Spectral variation of fluorescence lifetime near single metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Jia; Krasavin, Alexey V.; Webster, Linden; Segovia, Paulina; Zayats, Anatoly V.; Richards, David

    2016-02-01

    We explore the spectral dependence of fluorescence enhancement and the associated lifetime modification of fluorescent molecules coupled to single metal nanoparticles. Fluorescence lifetime imaging microscopy and single-particle dark-field spectroscopy are combined to correlate the dependence of fluorescence lifetime reduction on the spectral overlap between the fluorescence emission and the localised surface plasmon (LSP) spectra of individual gold nanoparticles. A maximum lifetime reduction is observed when the fluorescence and LSP resonances coincide, with good agreement provided by numerical simulations. The explicit comparison between experiment and simulation, that we obtain, offers an insight into the spectral engineering of LSP mediated fluorescence and may lead to optimized application in sensing and biomedicine.

  16. Alloy metal nanoparticles for multicolor cancer diagnostics

    NASA Astrophysics Data System (ADS)

    Baptista, Pedro V.; Doria, Gonçalo; Conde, João

    2011-03-01

    Cancer is a multigenic complex disease where multiple gene loci contribute to the phenotype. The ability to simultaneously monitor differential expression originating from each locus results in a more accurate indicator of degree of cancerous activity than either locus alone. Metal nanoparticles have been thoroughly used as labels for in vitro identification and quantification of target sequences. We have synthesized nanoparticles with assorted noble metal compositions in an alloy format and functionalized them with thiol-modified ssDNA (nanoprobes). These nanoprobes were then used for the simultaneous specific identification of several mRNA targets involved in cancer development - one pot multicolor detection of cancer expression. The different metal composition in the alloy yield different "colors" that can be used as tags for identification of a given target. Following a non-cross-linking hybridization procedure previously developed in our group for gold nanoprobes, these multicolor nanoprobes were used for the molecular recognition of several different targets including differently spliced variants of relevant genes (e.g. gene products involved in chronic myeloid leukemia BCR, ABL, BCR-ABL fusion product). Based on the spectral signature of mixtures, before and after induced aggregation of metal nanoparticles, the correct identification could be made. Further application to differentially quantify expression of each locus in relation to another will be presented. The differences in nanoparticle stability and labeling efficiency for each metal combination composing the colloids, as well as detection capability for each nanoprobe will be discussed. Additional studies will be conducted towards allele specific expression studies.

  17. Characterization, sorption, and exhaustion of metal oxide nanoparticles as metal adsorbents

    NASA Astrophysics Data System (ADS)

    Engates, Karen Elizabeth

    Safe drinking water is paramount to human survival. Current treatments do not adequately remove all metals from solution, are expensive, and use many resources. Metal oxide nanoparticles are ideal sorbents for metals due to their smaller size and increased surface area in comparison to bulk media. With increasing demand for fresh drinking water and recent environmental catastrophes to show how fragile water supplies are, new approaches to water conservation incorporating new technologies like metal oxide nanoparticles should be considered as an alternative method for metal contaminant adsorbents from typical treatment methods. This research evaluated the potential of manufactured iron, anatase, and aluminum nanoparticles (Al2O3, TiO2, Fe2O3) to remove metal contaminants (Pb, Cd, Cu, Ni, Zn) in lab-controlled and natural waters in comparison to their bulk counterparts by focusing on pH, contaminant and adsorbent concentrations, particle size, and exhaustive capabilities. Microscopy techniques (SEM, BET, EDX) were used to characterize the adsorbents. Adsorption experiments were performed using 0.01, 0.1, or 0.5 g/L nanoparticles in pH 8 solution. When results were normalized by mass, nanoparticles adsorbed more than bulk particles but when surface area normalized the opposite was observed. Adsorption was pH-dependent and increased with time and solid concentration. Aluminum oxide was found to be the least acceptable adsorbent for the metals tested, while titanium dioxide anatase (TiO2) and hematite (alpha-Fe2O3) showed great ability to remove individual and multiple metals from pH 8 and natural waters. Intraparticle diffusion was likely part of the complex kinetic process for all metals using Fe2O3 but not TiO 2 nanoparticles within the first hour of adsorption. Adsorption kinetics for all metals tested were described by a modified first order rate equation used to consider the diminishing equilibrium metal concentrations with increasing metal oxides, showing faster

  18. Synthesis of Graphite Encapsulated Metal Nanoparticles and Metal Catalyzed Nanotubes

    NASA Technical Reports Server (NTRS)

    vanderWal, R. L.; Dravid, V. P.

    1999-01-01

    This work focuses on the growth and inception of graphite encapsulated metal nanoparticles and metal catalyzed nanotubes using combustion chemistry. Deciphering the inception and growth mechanism(s) for these unique nanostructures is essential for purposeful synthesis. Detailed knowledge of these mechanism(s) may yield insights into alternative synthesis pathways or provide data on unfavorable conditions. Production of these materials is highly desirable given many promising technological applications.

  19. SERS of Individual Nanoparticles on a Mirror: Size Does Matter, but so Does Shape.

    PubMed

    Benz, Felix; Chikkaraddy, Rohit; Salmon, Andrew; Ohadi, Hamid; de Nijs, Bart; Mertens, Jan; Carnegie, Cloudy; Bowman, Richard W; Baumberg, Jeremy J

    2016-06-16

    Coupling noble metal nanoparticles by a 1 nm gap to an underlying gold mirror confines light to extremely small volumes, useful for sensing on the nanoscale. Individually measuring 10 000 of such gold nanoparticles of increasing size dramatically shows the different scaling of their optical scattering (far-field) and surface-enhanced Raman emission (SERS, near-field). Linear red-shifts of the coupled plasmon modes are seen with increasing size, matching theory. The total SERS from the few hundred molecules under each nanoparticle dramatically increases with increasing size. This scaling shows that maximum SERS emission is always produced from the largest nanoparticles, irrespective of tuning to any plasmonic resonances. Changes of particle facet with nanoparticle size result in vastly weaker scaling of the near-field SERS, without much modifying the far-field, and allows simple approaches for optimizing practical sensing. PMID:27223478

  20. SERS of Individual Nanoparticles on a Mirror: Size Does Matter, but so Does Shape

    PubMed Central

    2016-01-01

    Coupling noble metal nanoparticles by a 1 nm gap to an underlying gold mirror confines light to extremely small volumes, useful for sensing on the nanoscale. Individually measuring 10 000 of such gold nanoparticles of increasing size dramatically shows the different scaling of their optical scattering (far-field) and surface-enhanced Raman emission (SERS, near-field). Linear red-shifts of the coupled plasmon modes are seen with increasing size, matching theory. The total SERS from the few hundred molecules under each nanoparticle dramatically increases with increasing size. This scaling shows that maximum SERS emission is always produced from the largest nanoparticles, irrespective of tuning to any plasmonic resonances. Changes of particle facet with nanoparticle size result in vastly weaker scaling of the near-field SERS, without much modifying the far-field, and allows simple approaches for optimizing practical sensing. PMID:27223478

  1. Dissolution of metal and metal oxide nanoparticles in aqueous media.

    PubMed

    Odzak, Niksa; Kistler, David; Behra, Renata; Sigg, Laura

    2014-08-01

    The dissolution of Ag (citrate, gelatin, polyvinylpyrrolidone and chitosan coated), ZnO, CuO and carbon coated Cu nanoparticles (with two nominal sizes each) has been studied in artificial aqueous media, similar in chemistry to environmental waters, for up to 19 days. The dissolved fraction was determined using DGT (Diffusion Gradients in Thin films), dialysis membrane (DM) and ultrafiltration (UF). Relatively small fractions of Ag nanoparticles dissolved, whereas ZnO dissolved nearly completely within few hours. Cu and CuO dissolved as a function of pH. Using DGT, less dissolved Ag was measured compared to UF and DM, likely due to differences in diffusion of organic complexes. Similar dissolved metal concentrations of ZnO, Cu and CuO nanoparticles were determined using DGT and UF, but lower using DM. The results indicate that there is a need to apply complementary techniques to precisely determine dissolution of nanoparticles in aqueous media. PMID:24832924

  2. Dynamic depolarization in plasmonic metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Apell, S. Peter; Zorić, Igor; Langhammer, Christoph

    2016-08-01

    At very low photon energies most metals have a very large and negative dielectric function. For the response of a metal nanoparticle to an external field in this limit, this means that the particular choice of metal does not matter and the localized surface plasmon energy mainly depends on the shape and size of the particle. Here, we present a theoretical framework to describe this situation and unearth the interplay between the depolarization factor of the problem at hand and the dielectric function of the particle. Available experimental results compare favorably with our theoretical framework.

  3. Odyssey in Polyphasic Catalysis by Metal Nanoparticles.

    PubMed

    Denicourt-Nowicki, Audrey; Roucoux, Alain

    2016-08-01

    Nanometer-sized metal particles constitute an unavoidable family of catalysts, combining the advantages of molecular complexes in regards to their catalytic performances and the ones of heterogeneous systems in terms of easy recycling. As part of this research, our group aims at designing well-defined metal nanoparticles based-catalysts, in non-conventional media (ionic liquids or water), for various catalytic applications (hydrogenation, dehalogenation, carbon-carbon coupling, asymmetric catalysis) in mild reaction conditions. In the drive towards a more eco-responsible chemistry, the main focuses rely on the search of highly active and selective nanocatalysts, in association with an efficient recycling mainly under pure biphasic liquid-liquid conditions. In this Personal Account, we proposed our almost fifteen-years odyssey in the world of metal nanoparticles for a sustainable catalysis. PMID:27427501

  4. Metal nanoparticles in DBS card materials modification

    NASA Astrophysics Data System (ADS)

    Metelkin, A.; Frolov, G.; Kuznetsov, D.; Kolesnikov, E.; Chuprunov, K.; Kondakov, S.; Osipov, A.; Samsonova, J.

    2015-11-01

    In the recent years the method of collecting and storing Dried Blood Spots (DBS) on special cellulose membrane (paper) has gained wide popularity. But possible damage of biosamples caused by microorganisms in case of their incomplete drying is a disadvantage of the method. It can be overcome by treating sample-collection membranes with colloidal solutions of metal nanoparticles, having antibacterial effect. The team studied antibacterial properties of nonwoven material samples with various coatings (alcohol sols of copper, aluminium, iron, titanium, silver and vanadium nanoparticles). Colloidal solutions of nanoparticles were obtained by means of electroerosion method with further low-temperature plasma condensation. Antibacterial activity of fiberglass and cellulose membrane samples with nanoparticle coatings was studied using B. cereus and plaque bacteria cultures. It was revealed that nanostructured coatings can suppress bacterial activity; in addition they can diffuse from the membrane surface into medium which leads to widening the areas of inhibiting testing cultures’ growth. Thus, membrane materials treatment with alcohol-sols of metal nanoparticles can be seen as promising for conferring antibacterial properties to DBS carriers.

  5. Hyperspectral imaging of plasmon resonances in metallic nanoparticles.

    PubMed

    Zopf, David; Jatschka, Jacqueline; Dathe, André; Jahr, Norbert; Fritzsche, Wolfgang; Stranik, Ondrej

    2016-07-15

    The spectroscopy of metal nanoparticles shows great potential for label-free sensing. In this article we present a hyper-spectral imaging system combined with a microfluidic system, which allows full spectroscopic characterization of many individual nanoparticles simultaneously (>50 particles). With such a system we were able overcome several limitations that are present in LSPR sensing with nanoparticle ensemble. We experimentally quantified (incorporating atomic force microscopy as well) the correlation between geometry, position of plasmon resonance (λPeak) and sensitivity of the particles (Sb=1.63λPeak-812.47[nm/RIU]). We were able to follow the adsorption of protein layers and determined their spatial inhomogeneity with the help of the hyperspectral imaging. PMID:26974477

  6. Silicon nanocrystal-noble metal hybrid nanoparticles.

    PubMed

    Sugimoto, H; Fujii, M; Imakita, K

    2016-06-01

    We report a novel and facile self-limiting synthesis route of silicon nanocrystal (Si NC)-based colloidally stable semiconductor-metal (gold, silver and platinum) hybrid nanoparticles (NPs). For the formation of hybrid NPs, we employ ligand-free colloidal Si NCs with heavily boron (B) and phosphorus (P) doped shells. By simply mixing B and P codoped colloidal Si NCs with metal salts, hybrid NPs consisting of metal cores and Si NC shells are spontaneously formed. We demonstrate the synthesis of highly uniform and size controllable hybrid NPs. It is shown that codoped Si NCs act as a reducing agent for metal salts and also as a protecting layer to stop metal NP growth. The process is thus self-limiting. The development of a variety of Si NC-based hybrid NPs is a promising first step for the design of biocompatible multifunctional NPs with broad material choices for biosensing, bioimaging and solar energy conversion. PMID:27121127

  7. Metal-doped semiconductor nanoparticles and methods of synthesis thereof

    NASA Technical Reports Server (NTRS)

    Ren, Zhifeng (Inventor); Chen, Gang (Inventor); Poudel, Bed (Inventor); Kumar, Shankar (Inventor); Wang, Wenzhong (Inventor); Dresselhaus, Mildred (Inventor)

    2009-01-01

    The present invention generally relates to binary or higher order semiconductor nanoparticles doped with a metallic element, and thermoelectric compositions incorporating such nanoparticles. In one aspect, the present invention provides a thermoelectric composition comprising a plurality of nanoparticles each of which includes an alloy matrix formed of a Group IV element and Group VI element and a metallic dopant distributed within the matrix.

  8. Metal-doped semiconductor nanoparticles and methods of synthesis thereof

    DOEpatents

    Ren, Zhifeng; Chen, Gang; Poudel, Bed; Kumar, Shankar; Wang, Wenzhong; Dresselhaus, Mildred

    2009-09-08

    The present invention generally relates to binary or higher order semiconductor nanoparticles doped with a metallic element, and thermoelectric compositions incorporating such nanoparticles. In one aspect, the present invention provides a thermoelectric composition comprising a plurality of nanoparticles each of which includes an alloy matrix formed of a Group IV element and Group VI element and a metallic dopant distributed within the matrix.

  9. Noble Metal Nanoparticles Applications in Cancer

    PubMed Central

    Conde, João; Doria, Gonçalo; Baptista, Pedro

    2012-01-01

    Nanotechnology has prompted new and improved materials for biomedical applications with particular emphasis in therapy and diagnostics. Special interest has been directed at providing enhanced molecular therapeutics for cancer, where conventional approaches do not effectively differentiate between cancerous and normal cells; that is, they lack specificity. This normally causes systemic toxicity and severe and adverse side effects with concomitant loss of quality of life. Because of their small size, nanoparticles can readily interact with biomolecules both at surface and inside cells, yielding better signals and target specificity for diagnostics and therapeutics. This way, a variety of nanoparticles with the possibility of diversified modification with biomolecules have been investigated for biomedical applications including their use in highly sensitive imaging assays, thermal ablation, and radiotherapy enhancement as well as drug and gene delivery and silencing. Here, we review the available noble metal nanoparticles for cancer therapy, with particular focus on those already being translated into clinical settings. PMID:22007307

  10. Biosurfactant Mediated Biosynthesis of Selected Metallic Nanoparticles

    PubMed Central

    Płaza, Grażyna A.; Chojniak, Joanna; Banat, Ibrahim M.

    2014-01-01

    Developing a reliable experimental protocol for the synthesis of nanomaterials is one of the challenging topics in current nanotechnology particularly in the context of the recent drive to promote green technologies in their synthesis. The increasing need to develop clean, nontoxic and environmentally safe production processes for nanoparticles to reduce environmental impact, minimize waste and increase energy efficiency has become essential in this field. Consequently, recent studies on the use of microorganisms in the synthesis of selected nanoparticles are gaining increased interest as they represent an exciting area of research with considerable development potential. Microorganisms are known to be capable of synthesizing inorganic molecules that are deposited either intra- or extracellularly. This review presents a brief overview of current research on the use of biosurfactants in the biosynthesis of selected metallic nanoparticles and their potential importance. PMID:25110864

  11. Anderson localization in metallic nanoparticle arrays

    NASA Astrophysics Data System (ADS)

    Mai, Zhijie; Lin, Fang; Pang, Wei; Xu, Haitao; Tan, Suiyan; Fu, Shenhe; Li, Yongyao

    2016-06-01

    Anderson localization has been observed in various types of waves, such as matter waves, optical waves and acoustic waves. Here we reveal that the effect of Anderson localization can be also induced in metallic nonlinear nanoparticle arrays excited by a random electrically driving field. We find that the dipole-induced nonlinearity results in ballistic expansion of dipole intensity during evolution; while the randomness of the external driving field can suppress such an expansion. Increasing the strength of randomness above the threshold value, a localized pattern of dipole intensity can be generated in the metallic nanoparticle arrays. By means of statistics, the mean intensity distribution of the dipoles reveals the formation of Anderson localization. We further show that the generated Anderson localization is highly confined, with its size down to the scale of incident wavelength. The reported results might facilitate the manipulations of electromagnetic fields in the scale of wavelength.

  12. Anderson localization in metallic nanoparticle arrays.

    PubMed

    Mai, Zhijie; Lin, Fang; Pang, Wei; Xu, Haitao; Tan, Suiyan; Fu, Shenhe; Li, Yongyao

    2016-06-13

    Anderson localization has been observed in various types of waves, such as matter waves, optical waves and acoustic waves. Here we reveal that the effect of Anderson localization can be also induced in metallic nonlinear nanoparticle arrays excited by a random electrically driving field. We find that the dipole-induced nonlinearity results in ballistic expansion of dipole intensity during evolution; while the randomness of the external driving field can suppress such an expansion. Increasing the strength of randomness above the threshold value, a localized pattern of dipole intensity can be generated in the metallic nanoparticle arrays. By means of statistics, the mean intensity distribution of the dipoles reveals the formation of Anderson localization. We further show that the generated Anderson localization is highly confined, with its size down to the scale of incident wavelength. The reported results might facilitate the manipulations of electromagnetic fields in the scale of wavelength. PMID:27410338

  13. Microbial-mediated method for metal oxide nanoparticle formation

    SciTech Connect

    Rondinone, Adam J.; Moon, Ji Won; Love, Lonnie J.; Yeary, Lucas W.; Phelps, Tommy J.

    2015-09-08

    The invention is directed to a method for producing metal oxide nanoparticles, the method comprising: (i) subjecting a combination of reaction components to conditions conducive to microbial-mediated formation of metal oxide nanoparticles, wherein said combination of reaction components comprise: metal-reducing microbes, a culture medium suitable for sustaining said metal-reducing microbes, an effective concentration of one or more surfactants, a reducible metal oxide component containing one or more reducible metal species, and one or more electron donors that provide donatable electrons to said metal-reducing microbes during consumption of the electron donor by said metal-reducing microbes; and (ii) isolating said metal oxide nanoparticles, which contain a reduced form of said reducible metal oxide component. The invention is also directed to metal oxide nanoparticle compositions produced by the inventive method.

  14. Radio-frequency capacitance spectroscopy of metallic nanoparticles.

    PubMed

    Frake, James C; Kano, Shinya; Ciccarelli, Chiara; Griffiths, Jonathan; Sakamoto, Masanori; Teranishi, Toshiharu; Majima, Yutaka; Smith, Charles G; Buitelaar, Mark R

    2015-01-01

    Recent years have seen great progress in our understanding of the electronic properties of nanomaterials in which at least one dimension measures less than 100 nm. However, contacting true nanometer scale materials such as individual molecules or nanoparticles remains a challenge as even state-of-the-art nanofabrication techniques such as electron-beam lithography have a resolution of a few nm at best. Here we present a fabrication and measurement technique that allows high sensitivity and high bandwidth readout of discrete quantum states of metallic nanoparticles which does not require nm resolution or precision. This is achieved by coupling the nanoparticles to resonant electrical circuits and measurement of the phase of a reflected radio-frequency signal. This requires only a single tunnel contact to the nanoparticles thus simplifying device fabrication and improving yield and reliability. The technique is demonstrated by measurements on 2.7 nm thiol coated gold nanoparticles which are shown to be in excellent quantitative agreement with theory. PMID:26042729

  15. Radio-frequency capacitance spectroscopy of metallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Frake, James C.; Kano, Shinya; Ciccarelli, Chiara; Griffiths, Jonathan; Sakamoto, Masanori; Teranishi, Toshiharu; Majima, Yutaka; Smith, Charles G.; Buitelaar, Mark R.

    2015-06-01

    Recent years have seen great progress in our understanding of the electronic properties of nanomaterials in which at least one dimension measures less than 100 nm. However, contacting true nanometer scale materials such as individual molecules or nanoparticles remains a challenge as even state-of-the-art nanofabrication techniques such as electron-beam lithography have a resolution of a few nm at best. Here we present a fabrication and measurement technique that allows high sensitivity and high bandwidth readout of discrete quantum states of metallic nanoparticles which does not require nm resolution or precision. This is achieved by coupling the nanoparticles to resonant electrical circuits and measurement of the phase of a reflected radio-frequency signal. This requires only a single tunnel contact to the nanoparticles thus simplifying device fabrication and improving yield and reliability. The technique is demonstrated by measurements on 2.7 nm thiol coated gold nanoparticles which are shown to be in excellent quantitative agreement with theory.

  16. Radio-frequency capacitance spectroscopy of metallic nanoparticles

    PubMed Central

    Frake, James C.; Kano, Shinya; Ciccarelli, Chiara; Griffiths, Jonathan; Sakamoto, Masanori; Teranishi, Toshiharu; Majima, Yutaka; Smith, Charles G.; Buitelaar, Mark R.

    2015-01-01

    Recent years have seen great progress in our understanding of the electronic properties of nanomaterials in which at least one dimension measures less than 100 nm. However, contacting true nanometer scale materials such as individual molecules or nanoparticles remains a challenge as even state-of-the-art nanofabrication techniques such as electron-beam lithography have a resolution of a few nm at best. Here we present a fabrication and measurement technique that allows high sensitivity and high bandwidth readout of discrete quantum states of metallic nanoparticles which does not require nm resolution or precision. This is achieved by coupling the nanoparticles to resonant electrical circuits and measurement of the phase of a reflected radio-frequency signal. This requires only a single tunnel contact to the nanoparticles thus simplifying device fabrication and improving yield and reliability. The technique is demonstrated by measurements on 2.7 nm thiol coated gold nanoparticles which are shown to be in excellent quantitative agreement with theory. PMID:26042729

  17. Screening Methods for Metal-Containing Nanoparticles in Water

    EPA Science Inventory

    Screening-level analysis of water for metal-containing nanoparticles is achieved with single particle-inductively coupled plasma mass spectrometry (SP-ICPMS). This method measures both the concentration of nanoparticles containing an analyte metal and the mass of the metal in eac...

  18. The Effect of Metal Oxide on Nanoparticles from Thermite Reactions

    ERIC Educational Resources Information Center

    Moore, Lewis Ryan

    2006-01-01

    The purpose of this research was to determine how metal oxide used in a thermite reaction can impact the production of nanoparticles. The results showed the presence of nanoparticles (less than 1 micron in diameter) of at least one type produced by each metal oxide. The typical particles were metallic spheres, which ranged from 300 nanometers in…

  19. Silicon nanocrystal-noble metal hybrid nanoparticles

    NASA Astrophysics Data System (ADS)

    Sugimoto, H.; Fujii, M.; Imakita, K.

    2016-05-01

    We report a novel and facile self-limiting synthesis route of silicon nanocrystal (Si NC)-based colloidally stable semiconductor-metal (gold, silver and platinum) hybrid nanoparticles (NPs). For the formation of hybrid NPs, we employ ligand-free colloidal Si NCs with heavily boron (B) and phosphorus (P) doped shells. By simply mixing B and P codoped colloidal Si NCs with metal salts, hybrid NPs consisting of metal cores and Si NC shells are spontaneously formed. We demonstrate the synthesis of highly uniform and size controllable hybrid NPs. It is shown that codoped Si NCs act as a reducing agent for metal salts and also as a protecting layer to stop metal NP growth. The process is thus self-limiting. The development of a variety of Si NC-based hybrid NPs is a promising first step for the design of biocompatible multifunctional NPs with broad material choices for biosensing, bioimaging and solar energy conversion.We report a novel and facile self-limiting synthesis route of silicon nanocrystal (Si NC)-based colloidally stable semiconductor-metal (gold, silver and platinum) hybrid nanoparticles (NPs). For the formation of hybrid NPs, we employ ligand-free colloidal Si NCs with heavily boron (B) and phosphorus (P) doped shells. By simply mixing B and P codoped colloidal Si NCs with metal salts, hybrid NPs consisting of metal cores and Si NC shells are spontaneously formed. We demonstrate the synthesis of highly uniform and size controllable hybrid NPs. It is shown that codoped Si NCs act as a reducing agent for metal salts and also as a protecting layer to stop metal NP growth. The process is thus self-limiting. The development of a variety of Si NC-based hybrid NPs is a promising first step for the design of biocompatible multifunctional NPs with broad material choices for biosensing, bioimaging and solar energy conversion. Electronic supplementary information (ESI) available: Additional TEM images and extinction spectra of Si-metal hybrid NPs are shown in Fig. S1

  20. “Green” Nanotechnologies: Synthesis of Metal Nanoparticles Using Plants

    PubMed Central

    Makarov, V. V.; Love, A. J.; Sinitsyna, O. V.; Makarova, S. S.; Yaminsky, I. V.; Taliansky, M. E.; Kalinina, N. O.

    2014-01-01

    While metal nanoparticles are being increasingly used in many sectors of the economy, there is growing interest in the biological and environmental safety of their production. The main methods for nanoparticle production are chemical and physical approaches that are often costly and potentially harmful to the environment. The present review is devoted to the possibility of metal nanoparticle synthesis using plant extracts. This approach has been actively pursued in recent years as an alternative, efficient, inexpensive, and environmentally safe method for producing nanoparticles with specified properties. This review provides a detailed analysis of the various factors affecting the morphology, size, and yield of metal nanoparticles. The main focus is on the role of the natural plant biomolecules involved in the bioreduction of metal salts during the nanoparticle synthesis. Examples of effective use of exogenous biomatrices (peptides, proteins, and viral particles) to obtain nanoparticles in plant extracts are discussed. PMID:24772325

  1. Symmetry breaking in individual plasmonic nanoparticles

    PubMed Central

    Wang, Hui; Wu, Yanpeng; Lassiter, Britt; Nehl, Colleen L.; Hafner, Jason H.; Nordlander, Peter; Halas, Naomi J.

    2006-01-01

    The plasmon resonances of a concentric metallic nanoshell arise from the hybridization of primitive plasmon modes of the same angular momentum on its inner and outer surfaces. For a nanoshell with an offset core, the reduction in symmetry relaxes these selection rules, allowing for an admixture of dipolar components in all plasmon modes of the particle. This metallodielectric nanostructure with reduced symmetry exhibits a core offset-dependent multipeaked spectrum, seen in single-particle spectroscopic measurements, and exhibits significantly larger local-field enhancements on its external surface than the equivalent concentric spherical nanostructure. PMID:16829573

  2. Metal oxide nanoparticles with low toxicity.

    PubMed

    Ng, Alan Man Ching; Guo, Mu Yao; Leung, Yu Hang; Chan, Charis M N; Wong, Stella W Y; Yung, Mana M N; Ma, Angel P Y; Djurišić, Aleksandra B; Leung, Frederick C C; Leung, Kenneth M Y; Chan, Wai Kin; Lee, Hung Kay

    2015-10-01

    A number of different nanomaterials produced and incorporated into various products are rising. However, their environmental hazards are frequently unknown. Here we consider three different metal oxide compounds (SnO2, In2O3, and Al2O3), which have not been extensively studied and are expected to have low toxicity. This study aimed to comprehensively characterize the physicochemical properties of these nanomaterials and investigate their toxicity on bacteria (Escherichia coli) under UV illumination and in the dark, as well as on a marine diatom (Skeletonema costatum) under ambient illumination/dark (16-8h) cycles. The material properties responsible for their low toxicity have been identified based on comprehensive experimental characterizations and comparison to a metal oxide exhibiting significant toxicity under illumination (anatase TiO2). The metal oxide materials investigated exhibited significant difference in surface properties and interaction with the living organisms. In order for a material to exhibit significant toxicity, it needs to be able to both form a stable suspension in the culture medium and to interact with the cell walls of the test organism. Our results indicated that the observed low toxicities of the three nanomaterials could be attributed to the limited interaction between the nanoparticles and cell walls of the test organisms. This could occur either due to the lack of significant attachment between nanoparticles and cell walls, or due to their tendency to aggregate in solution. PMID:26143160

  3. Spectral variation of fluorescence lifetime near single metal nanoparticles

    PubMed Central

    Li, Jia; Krasavin, Alexey V.; Webster, Linden; Segovia, Paulina; Zayats, Anatoly V.; Richards, David

    2016-01-01

    We explore the spectral dependence of fluorescence enhancement and the associated lifetime modification of fluorescent molecules coupled to single metal nanoparticles. Fluorescence lifetime imaging microscopy and single-particle dark-field spectroscopy are combined to correlate the dependence of fluorescence lifetime reduction on the spectral overlap between the fluorescence emission and the localised surface plasmon (LSP) spectra of individual gold nanoparticles. A maximum lifetime reduction is observed when the fluorescence and LSP resonances coincide, with good agreement provided by numerical simulations. The explicit comparison between experiment and simulation, that we obtain, offers an insight into the spectral engineering of LSP mediated fluorescence and may lead to optimized application in sensing and biomedicine. PMID:26876780

  4. Apoferritin-Templated Synthesis of Encoded Metallic Phosphate Nanoparticle Tags

    SciTech Connect

    Liu, Guodong; Wu, Hong; Dohnalkova, Alice; Lin, Yuehe

    2007-07-31

    Encoded metallic-phosphate nanoparticle tags, with distinct encoding patterns, have been prepared using an apoferritin template. A center-cavity structure as well as the disassociation and reconstructive characteristics of apoferritin at different pH environments provide a facile route for preparing such encoded nanoparticle tags. Encapsulation and diffusion approaches have been investigated during the preparation. The encapsulation approach, which is based on the dissociation and reconstruction of apoferritin at different pHs, exhibits an effective route to prepare such encoded metallic-phosphate nanoparticle tags. The compositionally encoded nanoparticle tag leads to a high coding capacity with a large number of distinguishable voltammetric signals, reflecting the predetermined composition of the metal mixture solution (and hence the nanoparticle composition). Releasing the metal components from the nanoparticle tags at pH 4.6 acetate buffer avoids harsh dissolution conditions, such as strong acids. Such a synthesis of encoded nanoparticle tags, including single-component and compositionally encoded nanoparticle tags, is substantially simple, fast, and convenient compared to that of encoded metal nanowires and semiconductor nanoparticle (CdS, PbS, and ZnS) incorporated polystyrene beads. The encoded metallic-phosphate nanoparticle tags thus show great promise for bioanalytical or product-tracking/identification/protection applications.

  5. Ferroplasmons: Intense Localized Surface Plasmons in Metal-Ferromagnetic Nanoparticles

    SciTech Connect

    Sachan, Ritesh; Malasi, Abhinav; Ge, Jingxuan; Yadavali, Sagar P; Gangopadhyay, Anup; Krishna, Dr. Hare; Garcia, Hernando; Duscher, Gerd J M; Kalyanaraman, Ramki

    2014-01-01

    Interaction of photons with matter at length scales far below their wavelengths has given rise to many novel phenomena, including localized surface plasmon resonance (LSPR). However, LSPR with narrow bandwidth (BW) is observed only in a select few noble metals, and ferromagnets are not among them. Here, we report the discovery of LSPR in ferromagnetic Co and CoFe alloy (8% Fe) in contact with Ag in the form of bimetallic nanoparticles prepared by pulsed laser dewetting. These plasmons in metal-erromagnetic nanostructures, or ferroplasmons (FP) for short, are in the visible spectrum with comparable intensity and BW to those of the LSPRs from the Ag regions. This finding was enabled by electron energy-loss mapping across individual nanoparticles in a monochromated scanning transmission electron microscope. The appearance of the FP is likely due to plasmonic interaction between the contacting Ag and Co nanoparticles. Since there is no previous evidence for materials that simultaneously show ferromagnetism and such intense LSPRs, this discovery may lead to the design of improved plasmonic materials and applications. It also demonstrates that materials with interesting plasmonic properties can be synthesized using bimetallic nanostructures in contact with each other.

  6. Cell Surface-based Sensing with Metallic Nanoparticles

    PubMed Central

    Jiang, Ziwen; Rotello, Vincent M.

    2015-01-01

    Metallic nanoparticles provide versatile scaffolds for biosensing applications. In this review, we focus on the use of metallic nanoparticles for cell surface sensings. Examples of the use of both specific recognition and array-based “chemical nose” approaches to cell surface sensing will be discussed. PMID:25853985

  7. Ultrafast spectroscopic studies of metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Hu, Min

    An important aim of nanoparticle research is to understand how the properties of materials depend on their size and shape. In this thesis, time-resolved spectroscopy has been used to measure the physical properties of nanometer sized objects, such as the characteristic time scale for heat dissipation and their elastic moduli. In our experiments, metal nanoparticles are excited with a sub-picosecond laser pulse, which causes a rapid increase in the lattice temperature. In the first project, the rate of heat dissipation from Au nanoparticles to their surroundings was examined for different size gold nanospheres in aqueous solution. Laser induced lattice heating can also impulsively excite the phonon modes of the particle that correlate with the expansion co-ordinates. For spherical Au particles the symmetric breathing mode is excited. Experimental results for ˜50 nm diameter Au particles were compared to a model calculation where the expansion coordinate is treated as a damped harmonic oscillator. This gives information about the excitation mechanism. In the second project, the extensional and breathing modes of cylindrical gold nanorods were studied by time-resolved spectroscopy. These experiments yield values for the elastic constants for the rods. Both the extensional mode and the breathing mode results show that gold nanorods produced by wet chemical techniques have a smaller elastic moduli than bulk gold. HR-TEM and SAED studies show that the rods have a 5-fold twinned structure with growth along the [110] crystal direction. However, neither the growth direction nor the twinning provide a simple explanation for the reduced elastic moduli measured in the experiments. In a final project, polydisperse silver nanoparticle samples were investigated. A signal due to coherently excited vibrational motion was observed. The analysis shows that the observed signal arises from the triangular-shaped particles, rather than the rods or spheres that are present in the sample

  8. Strategic role of selected noble metal nanoparticles in medicine.

    PubMed

    Rai, Mahendra; Ingle, Avinash P; Birla, Sonal; Yadav, Alka; Santos, Carolina Alves Dos

    2016-09-01

    Noble metals and their compounds have been used as therapeutic agents from the ancient time in medicine for the treatment of various infections. Recently, much progress has been made in the field of nanobiotechnology towards the development of different kinds of nanomaterials with a wide range of applications. Among the metal nanoparticles, noble metal nanoparticles have demonstrated potential biomedical applications. Due to the small size, nanoparticles can easily interact with biomolecules both at surface and inside cells, yielding better signals and target specificity for diagnostics and therapeutics. Noble metal nanoparticles inspired the researchers due to their remarkable role in detection and treatment of dreadful diseases. In this review, we have attempted to focus on the biomedical applications of noble metal nanoparticles particularly, silver, gold, and platinum in diagnosis and treatment of dreaded diseases such as cancer, human immunodeficiency virus (HIV), tuberculosis (TB), and Parkinson disease. In addition, the role of silver nanoparticles (AgNPs) such as novel antimicrobials, gold nanoparticles (AuNPs) such as efficient drug carrier, uses of platinum nanoparticles (PtNPs) in bone allograft, dentistry, etc. have been critically reviewed. Moreover, the toxicity due to the use of metal nanoparticles and some unsolved challenges in the field have been discussed with their possible solutions. PMID:26089024

  9. Metal Nanoparticle Catalysts for Carbon Nanotube Growth

    NASA Technical Reports Server (NTRS)

    Pierce, Benjamin F.

    2003-01-01

    Work this summer involved and new and unique process for producing the metal nanoparticle catalysts needed for carbon nanotube (CNT) growth. There are many applications attributed to CNT's, and their properties have deemed them to be a hot spot in research today. Many groups have demonstrated the versatility in CNT's by exploring a wide spectrum of roles that these nanotubes are able to fill. A short list of such promising applications are: nanoscaled electronic circuitry, storage media, chemical sensors, microscope enhancement, and coating reinforcement. Different methods have been used to grow these CNT's. Some examples are laser ablation, flame synthesis, or furnace synthesis. Every single approach requires the presence of a metal catalyst (Fe, Co, and Ni are among the best) that is small enough to produce a CNT. Herein lies the uniqueness of this work. Microemulsions (containing inverse micelles) were used to generate these metal particles for subsequent CNT growth. The goal of this summer work was basically to accomplish as much preliminary work as possible. I strived to pinpoint which variable (experimental process, metal product, substrate, method of application, CVD conditions, etc.) was the determining factor in the results. The resulting SEM images were sufficient for the appropriate comparisons to be made. The future work of this project consists of the optimization of the more promising experimental procedures and further exploration onto what exactly dictated the results.

  10. Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium.

    PubMed

    Butet, Jérémy; Duboisset, Julien; Bachelier, Guillaume; Russier-Antoine, Isabelle; Benichou, Emmanuel; Jonin, Christian; Brevet, Pierre-François

    2010-05-12

    We report the optical second harmonic generation from individual 150 nm diameter gold nanoparticles dispersed in gelatin. The quadratic hyperpolarizability of the particles is determined and the input polarization dependence of the second harmonic intensity obtained. These results are found in excellent agreement with ensemble measurements and finite element simulations. These results open up new perspectives for the investigation of the nonlinear optical properties of noble metal nanoparticles. PMID:20420409

  11. Popping of graphite oxide: application in preparing metal nanoparticle catalysts.

    PubMed

    Gao, Yongjun; Chen, Xi; Zhang, Jiaguang; Asakura, Hiroyuki; Tanaka, Tsunehiro; Teramura, Kentaro; Ma, Ding; Yan, Ning

    2015-08-26

    A popcorn-like transformation of graphite oxide (GO) is reported and used to synthesize metal nanoparticle catalysts. The popping step is unique and essential, not only generating a high-surface-area support but also partially decomposing the metal precursors to form well-separated metal oxide nuclei, which would further evolve into highly dispersed and uniform-sized nanoparticles in the subsequent reduction. PMID:26179983

  12. Marine microorganisms as potential biofactories for synthesis of metallic nanoparticles.

    PubMed

    Manivasagan, Panchanathan; Nam, Seung Yun; Oh, Junghwan

    2016-11-01

    The use of marine microorganisms as potential biofactories for green synthesis of metallic nanoparticles is a relatively new field of research with considerable prospects. This method is eco-friendly, time saving, and inexpensive and can be easily scaled up for large-scale synthesis. The increasing need to develop simple, nontoxic, clean, and environmentally safe production methods for nanoparticles and to decrease environmental impact, minimize waste, and increase energy productivity has become important in this field. Marine microorganisms are tiny organisms that live in marine ecosystems and account for >98% of biomass of the world's ocean. Marine microorganisms synthesize metallic nanoparticles either intracellularly or extracellularly. Marine microbially-produced metallic nanoparticles have received considerable attention in recent years because of their expected impact on various applications such as medicine, energy, electronic, and space industries. The present review discusses marine microorganisms as potential biofactories for the green synthesis of metallic nanoparticles and their potential applications. PMID:26920850

  13. Paper surfaces for metal nanoparticle inkjet printing

    NASA Astrophysics Data System (ADS)

    Öhlund, Thomas; Örtegren, Jonas; Forsberg, Sven; Nilsson, Hans-Erik

    2012-10-01

    The widespread usage of paper and board offer largely unexploited possibilities for printed electronics applications. Reliability and performance of printed devices on comparatively rough and inhomogenous surfaces of paper does however pose challenges. Silver nanoparticle ink has been deposited on ten various paper substrates by inkjet printing. The papers are commercially available, and selected over a range of different types and construction. A smooth nonporous polyimide film was included as a nonporous reference substrate. The substrates have been characterized in terms of porosity, absorption rate, apparent surface energy, surface roughness and material content. The electrical conductivity of the resulting printed films have been measured after drying at 60 °C and again after additional curing at 110 °C. A qualitative analysis of the conductivity differences on the different substrates based on surface characterization and SEM examination is presented. Measurable parameters of importance to the final conductivity are pointed out, some of which are crucial to achieve conductivity. When certain criteria of the surfaces are met, paper media can be used as low cost, but comparably high performance substrates for metal nanoparticle inks in printed electronics applications.

  14. Misfit stabilized embedded nanoparticles in metallic alloys.

    PubMed

    Gornostyrev, Yu N; Katsnelson, M I

    2015-11-01

    Nanoscale inhomogeneities are typical for numerous metallic alloys and crucially important for their practical applications. At the same time, stabilization mechanisms of such a state are poorly understood. We present a general overview of the problem, together with a more detailed discussion of the prototype example, namely, Guinier-Preston zones in Al-based alloys. It is shown that coherent strain due to a misfit between inclusion and host crystal lattices plays a decisive role in the emergence of the inhomogeneous state. We suggest a model explaining the formation of ultrathin plates (with the thickness of a few lattice constants) typical for Al-Cu alloys. Discreteness of the array of misfit dislocations and long-ranged elastic interactions between them are the key ingredients of the model. This opens a way for a general understanding of the nature of (meta)stable embedded nanoparticles in practically important systems. PMID:26431075

  15. Interference between nanoparticles and metal homeostasis

    NASA Astrophysics Data System (ADS)

    Petit, A. N.; Aude Garcia, C.; Candéias, S.; Casanova, A.; Catty, P.; Charbonnier, P.; Chevallet, M.; Collin-Faure, V.; Cuillel, M.; Douki, T.; Herlin-Boime, N.; Lelong, C.; Luche, S.; Mintz, E.; Moulis, J. M.; Nivière, V.; Ollagnier de Choudens, S.; Rabilloud, T.; Ravanat, J. L.; Sauvaigo, S.; Carrière, M.; Michaud-Soret, I.

    2011-07-01

    The TiO2 nanoparticles (NPs) are now produced abundantly and widely used in a variety of consumer products. Due to the important increase in the production of TiO2-NPs, potential widespread exposure of humans and environment may occur during both the manufacturing process and final use. Therefore, the potential toxicity of TiO2-NPs on human health and environment has attracted particular attention. Unfortunately, the results of the large number of studies on the toxicity of TiO2-NPs differ significantly, mainly due to an incomplete characterization of the used nanomaterials in terms of size, shape and crystalline structure and to their unknown state of agglomeration/aggregation. The purpose of our project entitled NanoBioMet is to investigate if interferences between nanoparticles and metal homeostasis could be observed and to study the toxicity mechanisms of TiO2-NPs with well-characterized physicochemical parameters, using proteomic and molecular approaches. A perturbation of metal homeostasis will be evaluated upon TiO2-NPs exposure which could generate reactive oxygen species (ROS) production. Moreover, oxidative stress consequences such as DNA damage and lipid peroxidation will be studied. The toxicity of TiO2-NPs of different sizes and crystalline structures will be evaluated both in prokaryotic (E. coli) and eukaryotic cells (A549 human pneumocytes, macrophages, and hepatocytes). First results of the project will be presented concerning the dispersion of TiO2-NPs in bacterial medium, proteomic studies on total extracts of macrophages and genotoxicity on pneumocytes.

  16. Asymmetric light reflectance from metal nanoparticle arrays on dielectric surfaces

    PubMed Central

    Huang, K.; Pan, W.; Zhu, J. F.; Li, J. C.; Gao, N.; Liu, C.; Ji, L.; Yu, E. T.; Kang, J.Y.

    2015-01-01

    Asymmetric light reflectance associated with localized surface plasmons excited in metal nanoparticles on a quartz substrate is observed and analyzed. This phenomenon is explained by the superposition of two waves, the wave reflected by the air/quartz interface and that reflected by the metal nanoparticles, and the resulting interference effects. Far field behavior investigation suggests that zero reflection can be achieved by optimizing the density of metal nanoparticles. Near field behavior investigation suggests that the coupling efficiency of localized surface plasmon can be additionally enhanced by separating the metal NPs from substrates using a thin film with refractive index smaller than the substrate. The latter behavior is confirmed via surface-enhanced Raman spectroscopy studies using metal nanoparticles on Si/SiO2 substrates. PMID:26679353

  17. Surface free energy of alkali and transition metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Aqra, Fathi; Ayyad, Ahmed

    2014-09-01

    This paper addresses an interesting issue on the surface free energy of metallic nanoparticles as compared to the bulk material. Starting from a previously reported equation, a theoretical model, that involves a specific term for calculating the cohesive energy of nanoparticle, is established in a view to describe the behavior of surface free energy of metallic nanoparticles (using different shapes of particle: sphere, cube and disc). The results indicate that the behavior of surface energy is very appropriate for spherical nanoparticle, and thus, it is the most realistic shape of a nanoparticle. The surface energy of copper, silver, gold, platinum, tungsten, molybdenum, tantalum, paladium and alkali metallic nanoparticles is only prominent in the nanoscale size, and it decreases with the decrease of nanoparticle size. Thus, the surface free energy plays a more important role in determining the properties of nanoparticles than in bulk materials. It differs from shape to another, and falls down as the number of atoms (nanoparticle size) decreases. In the case of spherical nanoparticles, the onset of the sharp decrease in surface energy is observed at about 110 atom. A decrease of 16% and 45% in surface energy is found by moving from bulk to 110 atom and from bulk to 5 atom, respectively. The predictions are consistent with the reported data.

  18. Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle

    PubMed Central

    Zhen, Yu-Rong; Neumann, Oara; Polman, Albert; García de Abajo, F. Javier

    2013-01-01

    When an Au nanoparticle in a liquid medium is illuminated with resonant light of sufficient intensity, a nanometer scale envelope of vapor -a “nanobubble”- surrounding the particle, is formed. This is the nanoscale onset of the well-known process of liquid boiling, occurring at a single nanoparticle nucleation site, resulting from the photothermal response of the nanoparticle. Here we examine bubble formation at an individual metallic nanoparticle in detail. Incipient nanobubble formation is observed by monitoring the plasmon resonance shift of an individual, illuminated Au nanoparticle, when its local environment changes from liquid to vapor. The temperature on the nanoparticle surface is monitored during this process, where a dramatic temperature jump is observed as the nanoscale vapor layer thermally decouples the nanoparticle from the surrounding liquid. By increasing the intensity of the incident light or decreasing the interparticle separation, we observe the formation of micron sized bubbles resulting from the coalescence of nanoparticle-“bound” vapor envelopes. These studies provide the first direct and quantitative analysis of the evolution of light-induced steam generation by nanoparticles from the nanoscale to the macroscale, a process that is of fundamental interest for a growing number of applications. PMID:23517407

  19. Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle.

    PubMed

    Fang, Zheyu; Zhen, Yu-Rong; Neumann, Oara; Polman, Albert; García de Abajo, F Javier; Nordlander, Peter; Halas, Naomi J

    2013-04-10

    When an Au nanoparticle in a liquid medium is illuminated with resonant light of sufficient intensity, a nanometer scale envelope of vapor-a "nanobubble"-surrounding the particle, is formed. This is the nanoscale onset of the well-known process of liquid boiling, occurring at a single nanoparticle nucleation site, resulting from the photothermal response of the nanoparticle. Here we examine bubble formation at an individual metallic nanoparticle in detail. Incipient nanobubble formation is observed by monitoring the plasmon resonance shift of an individual, illuminated Au nanoparticle, when its local environment changes from liquid to vapor. The temperature on the nanoparticle surface is monitored during this process, where a dramatic temperature jump is observed as the nanoscale vapor layer thermally decouples the nanoparticle from the surrounding liquid. By increasing the intensity of the incident light or decreasing the interparticle separation, we observe the formation of micrometer-sized bubbles resulting from the coalescence of nanoparticle-"bound" vapor envelopes. These studies provide the first direct and quantitative analysis of the evolution of light-induced steam generation by nanoparticles from the nanoscale to the macroscale, a process that is of fundamental interest for a growing number of applications. PMID:23517407

  20. Ancient Metal Mirror Alloy Revisited: Quasicrystalline Nanoparticles Observed

    NASA Astrophysics Data System (ADS)

    Sekhar, J. A.; Mantri, A. S.; Yamjala, S.; Saha, Sabyasachi; Balamuralikrishnan, R.; Rao, P. Rama

    2015-12-01

    This article presents, for the first time, evidence of nanocrystalline structure, through direct transmission electron microscopy (TEM) observations, in a Cu-32 wt.% Sn alloy that has been made by an age-old, uniquely crafted casting process. This alloy has been used as a metal mirror for centuries. The TEM images also reveal five-sided projections of nano-particles. The convergent beam nano-diffraction patterns obtained from the nano-particles point to the nano-phase being quasicrystalline, a feature that has never before been reported for a copper alloy, although there have been reports of the presence of icosahedral `clusters' within large unit cell intermetallic phases. This observation has been substantiated by x-ray diffraction, wherein the observed peaks could be indexed to an icosahedral quasi-crystalline phase. The mirror alloy casting has been valued for its high hardness and high reflectance properties, both of which result from its unique internal microstructure that include nano-grains as well as quasi-crystallinity. We further postulate that this microstructure is a consequence of the raw materials used and the manufacturing process, including the choice of mold material. While the alloy consists primarily of copper and tin, impurity elements such as zinc, iron, sulfur, aluminum and nickel are also present, in individual amounts not exceeding one wt.%. It is believed that these trace impurities could have influenced the microstructure and, consequently, the properties of the metal mirror alloy.

  1. Electrochemical fabrication of nanocomposite films containing magnetic metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Hayashi, Yoshiaki; Hashi, Shuichiro; Kura, Hiroaki; Yanai, Takeshi; Ogawa, Tomoyuki; Ishiyama, Kazushi; Nakano, Masaki; Fukunaga, Hirotoshi

    2015-07-01

    Controlling the structure composed of soft and hard magnetic phases at the nanoscale is the key to fabricating nanocomposite magnets with efficient exchange coupling. In our previous study, nanocomposite films containing ferrite nanoparticles were fabricated by a combination of electrophoretic deposition and electroplating to show one possibility of controlling the structure of nanocomposite magnets three-dimensionally by applying self-assembly of magnetic nanoparticles. To expand this combination method to the fabrication of nanocomposite magnets, the use of magnetic metal nanoparticles is desired. In this paper, we attempted to fabricate nanocomposite films composed of Fe-Co nanoparticles in a Fe-Pt matrix by this combination method. Through cross-sectional observation and XRD analysis, a nanostructure composed of Fe-Co nanoparticles embedded in a L10 Fe-Pt matrix was confirmed. These results indicate that this method is capable of producing composite materials containing metal magnetic nanoparticles.

  2. Temperature and size-dependent Hamaker constants for metal nanoparticles.

    PubMed

    Jiang, K; Pinchuk, P

    2016-08-26

    Theoretical values of the Hamaker constant have been calculated for metal nanoparticles using Lifshitz theory. The theory describes the Hamaker constant in terms of the permittivity of the interacting bodies. Metal nanoparticles exhibit an internal size effect that alters the dielectric permittivity of the particle when its size falls below the mean free path of the conducting electrons. This size dependence of the permittivity leads to size-dependence of the Hamaker constant for metal nanoparticles. Additionally, the electron damping and the plasma frequency used to model the permittivity of the particle exhibit temperature-dependence, which lead to temperature dependence of the Hamaker constant. In this work, both the size and temperature dependence for gold, silver, copper, and aluminum nanoparticles is demonstrated. The results of this study might be of interest for studying the colloidal stability of nanoparticles in solution. PMID:27454147

  3. Temperature and size-dependent Hamaker constants for metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Jiang, K.; Pinchuk, P.

    2016-08-01

    Theoretical values of the Hamaker constant have been calculated for metal nanoparticles using Lifshitz theory. The theory describes the Hamaker constant in terms of the permittivity of the interacting bodies. Metal nanoparticles exhibit an internal size effect that alters the dielectric permittivity of the particle when its size falls below the mean free path of the conducting electrons. This size dependence of the permittivity leads to size-dependence of the Hamaker constant for metal nanoparticles. Additionally, the electron damping and the plasma frequency used to model the permittivity of the particle exhibit temperature-dependence, which lead to temperature dependence of the Hamaker constant. In this work, both the size and temperature dependence for gold, silver, copper, and aluminum nanoparticles is demonstrated. The results of this study might be of interest for studying the colloidal stability of nanoparticles in solution.

  4. Noble metal-based bimetallic nanoparticles: the effect of the structure on the optical, catalytic and photocatalytic properties.

    PubMed

    Zaleska-Medynska, Adriana; Marchelek, Martyna; Diak, Magdalena; Grabowska, Ewelina

    2016-03-01

    Nanoparticles composed of two different metal elements show novel electronic, optical, catalytic or photocatalytic properties from monometallic nanoparticles. Bimetallic nanoparticles could show not only the combination of the properties related to the presence of two individual metals, but also new properties due to a synergy between two metals. The structure of bimetallic nanoparticles can be oriented in random alloy, alloy with an intermetallic compound, cluster-in-cluster or core-shell structures and is strictly dependent on the relative strengths of metal-metal bond, surface energies of bulk elements, relative atomic sizes, preparation method and conditions, etc. In this review, selected properties, such as structure, optical, catalytic and photocatalytic of noble metals-based bimetallic nanoparticles, are discussed together with preparation routes. The effects of preparation method conditions as well as metal properties on the final structure of bimetallic nanoparticles (from alloy to core-shell structure) are followed. The role of bimetallic nanoparticles in heterogeneous catalysis and photocatalysis are discussed. Furthermore, structure and optical characteristics of bimetallic nanoparticles are described in relation to the some features of monometallic NPs. Such a complex approach allows to systematize knowledge and to identify the future direction of research. PMID:26805520

  5. Future prospects of antibacterial metal nanoparticles as enzyme inhibitor.

    PubMed

    Ahmed, Khan Behlol Ayaz; Raman, Thiagarajan; Veerappan, Anbazhagan

    2016-11-01

    Nanoparticles are being widely used as antibacterial agents with metal nanoparticles emerging as the most efficient antibacterial agents. There have been many studies which have reported the mechanism of antibacterial activity of nanoparticles on bacteria. In this review we aim to emphasize on all the possible mechanisms which are involved in the antibacterial activity of nanoparticles and also to understand their mode of action and role as bacterial enzyme inhibitor by comparing their antibacterial mechanism to that of antibiotics with enzyme inhibition as a major mechanism. With the emergence of widespread antibiotic resistance, nanoparticles offer a better alternative to our conventional arsenal of antibiotics. Once the biological safety of these nanoparticles is addressed, these nanoparticles can be of great medical importance in our fight against bacterial infections. PMID:27524096

  6. Synthesis and deposition of metal nanoparticles by gas condensation process

    SciTech Connect

    Maicu, Marina Glöß, Daniel; Frach, Peter; Schmittgens, Ralph; Gerlach, Gerald; Hecker, Dominic

    2014-03-15

    In this work, the synthesis of Pt and Ag nanoparticles by means of the inert gas phase condensation of sputtered atomic vapor is presented. The process parameters (power, sputtering time, and gas flow) were varied in order to study the relationship between deposition conditions and properties of the nanoparticles such as their quantity, size, and size distribution. Moreover, the gas phase condensation process can be combined with a plasma enhanced chemical vapor deposition procedure in order to deposit nanocomposite coatings consisting of metallic nanoparticles embedded in a thin film matrix material. Selected examples of application of the generated nanoparticles and nanocomposites are discussed.

  7. Biogenic synthesis of metallic nanoparticles and prospects toward green chemistry.

    PubMed

    Adil, Syed Farooq; Assal, Mohamed E; Khan, Mujeeb; Al-Warthan, Abdulrahman; Siddiqui, Mohammed Rafiq H; Liz-Marzán, Luis M

    2015-06-01

    The immense importance of nanoparticles and their applications is a strong motivation for exploring new synthetic techniques. However, due to strict regulations that manage the potential environmental impacts greener alternatives for conventional synthesis are the focus of intense research. In the scope of this perspective, a concise discussion about the use of green reducing and stabilizing agents toward the preparation of metal nanoparticles is presented. Reports on the synthesis of noble metal nanoparticles using plant extracts, ascorbic acid and sodium citrate as green reagents are summarized and discussed, pointing toward an urgent need of understanding the mechanistic aspects of the involved reactions. PMID:25633046

  8. Stabilization of electrocatalytic metal nanoparticles at metal-metal oxide-graphene triple junction points.

    PubMed

    Kou, Rong; Shao, Yuyan; Mei, Donghai; Nie, Zimin; Wang, Donghai; Wang, Chongmin; Viswanathan, Vilayanur V; Park, Sehkyu; Aksay, Ilhan A; Lin, Yuehe; Wang, Yong; Liu, Jun

    2011-03-01

    Carbon-supported precious metal catalysts are widely used in heterogeneous catalysis and electrocatalysis, and enhancement of catalyst dispersion and stability by controlling the interfacial structure is highly desired. Here we report a new method to deposit metal oxides and metal nanoparticles on graphene and form stable metal-metal oxide-graphene triple junctions for electrocatalysis applications. We first synthesize indium tin oxide (ITO) nanocrystals directly on functionalized graphene sheets, forming an ITO-graphene hybrid. Platinum nanoparticles are then deposited, forming a unique triple-junction structure (Pt-ITO-graphene). Our experimental work and periodic density functional theory (DFT) calculations show that the supported Pt nanoparticles are more stable at the Pt-ITO-graphene triple junctions. Furthermore, DFT calculations suggest that the defects and functional groups on graphene also play an important role in stabilizing the catalysts. These new catalyst materials were tested for oxygen reduction for potential applications in polymer electrolyte membrane fuel cells, and they exhibited greatly enhanced stability and activity. PMID:21302925

  9. Connecting Metallic Nanoparticles by Optical Printing.

    PubMed

    Gargiulo, Julián; Cerrota, Santiago; Cortés, Emiliano; Violi, Ianina L; Stefani, Fernando D

    2016-02-10

    Optical printing is a simple and flexible method to bring colloidal nanoparticles from suspension to specific locations of a substrate. However, its application has been limited to the fabrication of arrays of isolated nanoparticles because, until now, it was never possible to bring nanoparticles closer together than approximately 300 nm. Here, we propose this limitation is due to thermophoretic repulsive forces generated by plasmonic heating of the NPs. We show how to overcome this obstacle and demonstrate the optical printing of connected nanoparticles with well-defined orientation. These experiments constitute a key step toward the fabrication by optical printing of functional nanostructures and microcircuits based on colloidal nanoparticles. PMID:26745330

  10. Shape effects on nanoparticle engulfment for metal matrix nanocomposites

    NASA Astrophysics Data System (ADS)

    Ozsoy, Istemi Baris; Li, Gang; Choi, Hongseok; Zhao, Huijuan

    2015-07-01

    Obtaining a uniform dispersion of the nanoparticles and their structural integrity in metal matrix is a prominent obstacle to use the intrinsic properties of metal matrix nanocomposites (MMNCs) to the full extent. In this study, a potential way to overcome the scientific and technical barrier of nanoparticle dispersion in high performance lightweight MMNCs is presented. The goal is to identify the shape and size of Al2O3 nanoparticle for its optimal dispersion in Al matrix. Critical velocity of solidification is calculated numerically for spherical, cylindrical and disk-shaped nanoparticles using an analytical model which incorporates drag force, intermolecular force and inertia effect. The results show that it is possible to reduce the critical solidification velocity for nanoparticle capture by 6 times with proper shape modification.

  11. Transition metal-substituted cobalt ferrite nanoparticles for biomedical applications.

    PubMed

    Sanpo, Noppakun; Berndt, Christopher C; Wen, Cuie; Wang, James

    2013-03-01

    Transition metals of copper, zinc, chromium and nickel were substituted into cobalt ferrite nanoparticles via a sol-gel route using citric acid as a chelating agent. The microstructure and elemental composition were characterized using scanning electron microscopy combined with energy-dispersive X-ray spectroscopy. Phase analysis of transition metal-substituted cobalt ferrite nanoparticles was performed via X-ray diffraction. Surface wettability was measured using the water contact angle technique. The surface roughness of all nanoparticles was measured using profilometry. Moreover, thermogravimetric analysis and differential scanning calorimetry were performed to determine the temperature at which the decomposition and oxidation of the chelating agents took place. Results indicated that the substitution of transition metals influences strongly the microstructure, crystal structure and antibacterial property of the cobalt ferrite nanoparticles. PMID:23137676

  12. Fabrication of Metal Nanoparticles from Fungi and Metal Salts: Scope and Application

    NASA Astrophysics Data System (ADS)

    Siddiqi, Khwaja Salahuddin; Husen, Azamal

    2016-02-01

    Fungi secrete enzymes and proteins as reducing agents which can be used for the synthesis of metal nanoparticles from metal salts. Large-scale production of nanoparticles from diverse fungal strains has great potential since they can be grown even in vitro. In recent years, various approaches have been made to maximize the yield of nanoparticles of varying shape, size, and stability. They have been characterized by thermogravimetric analysis, X-ray diffractometry, SEM/TEM, zeta potential measurements, UV-vis, and Fourier transform infrared (FTIR) spectroscopy. In this review, we focus on the biogenic synthesis of metal nanoparticles by fungi to explore the chemistry of their formation extracellularly and intracellularly. Emphasis has been given to the potential of metal nanoparticles as an antimicrobial agent to inhibit the growth of pathogenic fungi, and on other potential applications.

  13. Fabrication of Metal Nanoparticles from Fungi and Metal Salts: Scope and Application.

    PubMed

    Siddiqi, Khwaja Salahuddin; Husen, Azamal

    2016-12-01

    Fungi secrete enzymes and proteins as reducing agents which can be used for the synthesis of metal nanoparticles from metal salts. Large-scale production of nanoparticles from diverse fungal strains has great potential since they can be grown even in vitro. In recent years, various approaches have been made to maximize the yield of nanoparticles of varying shape, size, and stability. They have been characterized by thermogravimetric analysis, X-ray diffractometry, SEM/TEM, zeta potential measurements, UV-vis, and Fourier transform infrared (FTIR) spectroscopy. In this review, we focus on the biogenic synthesis of metal nanoparticles by fungi to explore the chemistry of their formation extracellularly and intracellularly. Emphasis has been given to the potential of metal nanoparticles as an antimicrobial agent to inhibit the growth of pathogenic fungi, and on other potential applications. PMID:26909778

  14. Observing single molecule chemical reactions on metal nanoparticles.

    SciTech Connect

    Emory, S. R.; Ambrose, W. Patrick; Goodwin, P. M.; Keller, Richard A.

    2001-01-01

    We report the study of the photodecomposition of single Rhodamine 6G (R6G) dye molecules adsorbed on silver nanoparticles. The nanoparticles were immobilized and spatially isolated on polylysine-derivatized glass coverslips, and confocal laser microspectroscopy was used to obtain surface-enhanced Raman scattering (SERS) spectra from individual R6G molecules. The photodecomposition of these molecules was observed with 150-ms temporal resolution. The photoproduct was identified as graphitic carbon based on the appearance of broad SERS vibrational bands at 1592 cm{sup -1} and 1340 cm{sup -1} observed in both bulk and averaged single-molecule photoproduct spectra. In contrast, when observed at the single-molecule level, the photoproduct yielded sharp SERS spectra. The inhomogeneous broadening of the bulk SERS spectra is due to a variety of photoproducts in different surface orientations and is a characteristic of ensemble-averaged measurements of disordered systems. These single-molecule studies indicate a photodecomposition pathway by which the R6G molecule desorbs from the metal surface, an excited-state photoreaction occurs, and the R6G photoproduct(s) readsorbs to the surface. A SERS spectrum is obtained when either the intact R6G or the R6G photoproduct(s) are adsorbed on a SERS-active site. This work further illustrates the power of single-molecule spectroscopy (SMS) to reveal unique behaviors of single molecules that are not discernable with bulk measurements.

  15. Metallic nanoparticles arranged in a Helical geometry: route towards strong and broadband chiro-optical response

    NASA Astrophysics Data System (ADS)

    Nair, Greshma; Singh, Johnson Haobijam; Venkatapathi, Murugesan; Ghosh, Ambarish

    2014-02-01

    Recent advances in nanotechnology have paved ways to various techniques for designing and fabricating novel nanostructures incorporating noble metal nanoparticles, for a wide range of applications. The interaction of light with metal nanoparticles (NPs) can generate strongly localized electromagnetic fields (Localized Surface Plasmon Resonance, LSPR) at certain wavelengths of the incident beam. In assemblies or structures where the nanoparticles are placed in close proximity, the plasmons of individual metallic NPs can be strongly coupled to each other via Coulomb interactions. By arranging the metallic NPs in a chiral (e.g. helical) geometry, it is possible to induce collective excitations, which lead to differential optical response of the structures to right- and left circularly polarized light (e.g. Circular Dichroism - CD). Earlier reports in this field include novel techniques of synthesizing metallic nanoparticles on biological helical templates made from DNA, proteins etc. In the present work, we have developed new ways of fabricating chiral complexes made of metallic NPs, which demonstrate a very strong chiro-optical response in the visible region of the electromagnetic spectrum. Using DDA (Discrete Dipole Approximation) simulations, we theoretically studied the conditions responsible for large and broadband chiro-optical response. This system may be used for various applications, for example those related to polarization control of visible light, sensing of proteins and other chiral bio-molecules, and many more.

  16. Sensing with multipolar second harmonic generation from spherical metallic nanoparticles.

    PubMed

    Butet, Jérémy; Russier-Antoine, Isabelle; Jonin, Christian; Lascoux, Noëlle; Benichou, Emmanuel; Brevet, Pierre-François

    2012-03-14

    We show that sensing in the nonlinear optical regime using multipolar surface plasmon resonances is more sensitive in comparison to sensing in the linear optical regime. Mie theory, and its extension to the second harmonic generation from a metallic nanosphere, is used to describe multipolar second harmonic generation from silver metallic nanoparticles. The standard figure of merit of a potential plasmonic sensor based on this principle is then calculated. We finally demonstrate that such a sensor is more sensitive to optical refraction index changes occurring in the vicinity of the metallic nanoparticle than its linear counterpart. PMID:22375818

  17. Synthesis of supported metal oxide nanoparticles with narrow size distribution

    NASA Astrophysics Data System (ADS)

    Salem, Diana; Smolyakov, Georgiy; Schosseler, François; Petit, Pierre

    2012-06-01

    We report a versatile synthetic route allowing the formation of transition metal oxide nanoparticles supported on solid surfaces. Basically, the method lies on the complexation of metal cations with both anionic surfactant and hydroxilated surfaces, which results in the formation of small aggregates onto the surface. At thermodynamical equilibrium, the resulting balance between the loss of entropy due to the aggregation and the gain in enthalpy due to hydrophobic interactions between the alkyl chains of the surfactant governs the size of these aggregates. After calcination in air, metal oxide nanoparticles with very narrow size distribution are obtained.

  18. Optical properties of metal nanoparticles used in biosensors

    NASA Astrophysics Data System (ADS)

    Prokopyeva, Elena; Kaspar, Pavel; Tománek, Pavel; Grmela, Lubomír.

    2015-01-01

    Metal and semiconductor nanoparticles have excellent optical and electrochemical properties that strongly depend on their size and shape. Local biosensors are advanced devices, whose basic working principle is to analyze spectra of noble metal nanoparticles. Here a model of a local biosensor is described. It takes into account the interaction of the particle with a glass prism and the viewing angle of lens. The results for the layered particle made of a polystyrene latex core with a golden outer shell and for nanorods are presented. The influence of the metal shell thickness, particle diameter and the nanoscale rod form on the location of dissipation spectrum maximum is analyzed.

  19. Plasmonic and Catalytic Properties of Shape-Controlled Metal Nanoparticles and their Assemblies

    NASA Astrophysics Data System (ADS)

    Klinkova, Anna

    This work explores the effect of the shape of metal nanoscale building blocks on the structural, optical, and plasmonic properties of their assemblies, as well as on the catalytic performance and hydrogen interactions of individual nanoparticles with specific shapes. In Chapter 3, I describe the linear self-assembly of bifunctional metal nanoparticles in the presence of monofunctional nanoscale chain stoppers. Chain stoppers with controlled reactivity were synthesized allowing control over the morphology of the self-assembled structures. Analysis of the degree of polymerization of linear nanostructures provided information about self-assembly kinetics, side reactions, and the distribution of species in the reaction. This work facilitated testing of theoretical models developed for molecular polymerization and fabrication of linear nanoparticle assemblies with controllable properties. In Chapter 4, I developed linear solution-based self-assembly of cubic metal nanoparticles, examined the morphology of the nanocube chains and their optical characteristics. In comparison with chains of nanospheres with similar dimensions, compositions, and surface chemistry, predominant face-to-face assembly of nanocubes leads to a larger volume of plasmonic hot spots, uniform electromagnetic field enhancement in the gaps between nanocubes, and a new coupling mode for nanocube chains, associated with Fabry-Perot structure. In Chapter 5, I investigated plasmon-mediated enhancement of the catalysis by palladium-based nanoparticles with different shapes and composition, bearing surface plasmon resonance in visible range. The photocatalytic activity of palladium-based nanoparticles depended more on their shape than internal structure. These findings pave the way for the design of palladium nanocatalysts with enhanced performance acting under visible light illumination. In Chapter 6, I developed a facile scaled-up synthesis of monodisperse palladium nanoparticles with various shapes

  20. Fluorescence spectroscopy of individual semiconductor nanoparticles in different ethylene glycols.

    PubMed

    Flessau, Sandra; Wolter, Christopher; Pöselt, Elmar; Kröger, Elvira; Mews, Alf; Kipp, Tobias

    2014-06-14

    The optical properties of single colloidal semiconductor nanoparticles (NPs) are considerably influenced by the direct environment of the NPs. Here, the influence of different liquid and solid glycol matrices on CdSe-based NPs is investigated. Since the fluorescence of individual NPs varies from one NP to another, it is highly desirable to study the very same individual NPs in different matrices. This was accomplished by immobilizing NPs in a liquid cell sample holder or in microfluidic devices. The samples have been investigated by space-resolved wide-field fluorescence microscopy and energy- and time-resolved confocal scanning fluorescence microscopy with respect to fluorescence intensities, emission energies, blinking behavior, and fluorescence decay dynamics of individual NPs. During the measurements the NPs were exposed to air, to liquid ethylene glycols H(OCH2CH2)nOH (also called EGn) with different chain lengths (1 ≤ n ≤ 7), to liquid 2-methylpentane-2,3-diol, or to solid polyethylene oxide. It was found that EG6-7 (also known as PEG 300) is very well suited as a liquid matrix or solvent for experiments that correlate chemical and physical modifications of the surface and of the immediate environment of individual NPs to their fluorescence properties since it leads to intense and stable fluorescence emission of the NPs. PMID:24788878

  1. Toxicity of heavy metals and metal-containing nanoparticles on plants.

    PubMed

    Mustafa, Ghazala; Komatsu, Setsuko

    2016-08-01

    Plants are under the continual threat of changing climatic conditions that are associated with various types of abiotic stresses. In particular, heavy metal contamination is a major environmental concern that restricts plant growth. Plants absorb heavy metals along with essential elements from the soil and have evolved different strategies to cope with the accumulation of heavy metals. The use of proteomic techniques is an effective approach to investigate and identify the biological mechanisms and pathways affected by heavy metals and metal-containing nanoparticles. The present review focuses on recent advances and summarizes the results from proteomic studies aimed at understanding the response mechanisms of plants under heavy metal and metal-containing nanoparticle stress. Transport of heavy metal ions is regulated through the cell wall and plasma membrane and then sequestered in the vacuole. In addition, the role of different metal chelators involved in the detoxification and sequestration of heavy metals is critically reviewed, and changes in protein profiles of plants exposed to metal-containing nanoparticles are discussed in detail. Finally, strategies for gaining new insights into plant tolerance mechanisms to heavy metal and metal-containing nanoparticle stress are presented. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock. PMID:26940747

  2. Rebellious Rhapsody: Metal, Rap, Community, and Individuation.

    PubMed

    Reddick, Brad H.; Beresin, Eugene V.

    2002-03-01

    Music can be a powerful force and tool in the life of an adolescent. It forms a social context and informs the adolescent about the adult world through the lens of artists' lives, language, and presence as models. Allegiance to a form of music is allegiance to those who make it, a way to friendship and kinship, and a road to personal identity through belonging. In their relationships formed through music, teens can create a sense of community that may be lacking in the life of family. The rebellious music of earlier generations has given rise to complex musical genres, rap and heavy metal, that are strong in defiance and controversial in their violent and sexual content. What do these musical affiliations tell us about certain segments of adolescent development and culture? The authors consider this question by exploring the form and content of the music while using it to illuminate psychodynamic and psychosocial aspects of adolescent development. PMID:11867430

  3. Plasmonic nanocomposites: polymer-guided strategies for assembling metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Gao, Bo; Rozin, Matthew J.; Tao, Andrea R.

    2013-06-01

    Noble metal nanoparticles that support localized surface plasmon resonances (LSPRs) have the unique ability to manipulate and confine light at subwavelength dimensions. Utilizing these capabilities in devices and coatings requires the controlled organization of metal nanoparticles into ordered or hierarchical structures. Polymer grafts can be used as assembly-regulating molecules that bind to the nanoparticle surface and guide nanoparticle organization in solution, at interfaces, and within condensed phases. Here, we present an overview of polymer-directed assembly of plasmonic nanoparticles. We discuss how polymer grafts can be used to control short-range nanoparticle interactions that dictate interparticle gap distance and orientation. We also discuss how condensed polymer grafts can be used to control long-range order within condensed nanoparticle-polymer blends. The assembly of shaped plasmonic nanoparticles that have potential applications in enhanced spectroscopy and optical metamaterials is highlighted. We end with a summary of promising new directions toward the fabrication of plasmonic nanocomposites that are responsive and possess three-dimensional order.

  4. Enhanced Antimicrobial Activity Of Antibiotics Mixed With Metal Nanoparticles

    NASA Astrophysics Data System (ADS)

    Kumar, Sandeep; Kumar, Neeraj; Bhanjana, Gaurav; Thakur, Rajesh; Dilbaghi, Neeraj

    2011-12-01

    Current producers of antimicrobial technology have a long lasting, environmentally safe, non-leaching, water soluble solution that will eventually replace all poisons and heavy metals. The transition metal ions inevitably exist as metal complexes in biological systems by interaction with the numerous molecules possessing groupings capable of complexation or chelation. Nanoparticles of metal oxides offer a wide variety of potential applications in medicine due to the unprecedented advances in nanobiotechnology research. the bacterial action of antibiotics like penicillin, erythryomycin, ampicillin, streptomycin, kanamycin etc. and that of a mixture of antibiotics and metal and metal oxide nanoparticles like zinc oxide, zirconium, silver and gold on microbes was examined by the agar-well-diffusion method, enumeration of colony-forming units (CFU) and turbidimetry.

  5. Biomimetic metal oxides for the extraction of nanoparticles from water

    NASA Astrophysics Data System (ADS)

    Mallampati, Ramakrishna; Valiyaveettil, Suresh

    2013-03-01

    Contamination of nanomaterials in the environment will pose significant health risks in the future. A viable purification method is necessary to address this problem. Here we report the synthesis and application of a series of metal oxides prepared using a biological template for the removal of nanoparticles from the aqueous environment. A simple synthesis of metal oxides such as ZnO, NiO, CuO, Co3O4 and CeO2 employing eggshell membrane (ESM) as a biotemplate is reported. The morphology of the metal oxide powders was characterized using electron microscopes and the lattice structure was established using X-ray diffraction methods. Extraction of nanoparticles from water was carried out to compare the efficiency of metal oxides. NiO showed good extraction efficiency in removing gold and silver nanoparticles from spiked water samples within an hour. Easy access and enhanced stability of metal oxides makes them interesting candidates for applications in industrial effluent treatments and water purifications.Contamination of nanomaterials in the environment will pose significant health risks in the future. A viable purification method is necessary to address this problem. Here we report the synthesis and application of a series of metal oxides prepared using a biological template for the removal of nanoparticles from the aqueous environment. A simple synthesis of metal oxides such as ZnO, NiO, CuO, Co3O4 and CeO2 employing eggshell membrane (ESM) as a biotemplate is reported. The morphology of the metal oxide powders was characterized using electron microscopes and the lattice structure was established using X-ray diffraction methods. Extraction of nanoparticles from water was carried out to compare the efficiency of metal oxides. NiO showed good extraction efficiency in removing gold and silver nanoparticles from spiked water samples within an hour. Easy access and enhanced stability of metal oxides makes them interesting candidates for applications in industrial

  6. Engineered metal based nanoparticles and innate immunity.

    PubMed

    Petrarca, Claudia; Clemente, Emanuela; Amato, Valentina; Pedata, Paola; Sabbioni, Enrico; Bernardini, Giovanni; Iavicoli, Ivo; Cortese, Sara; Niu, Qiao; Otsuki, Takemi; Paganelli, Roberto; Di Gioacchino, Mario

    2015-01-01

    Almost all people in developed countries are exposed to metal nanoparticles (MeNPs) that are used in a large number of applications including medical (for diagnostic and therapeutic purposes). Once inside the body, absorbed by inhalation, contact, ingestion and injection, MeNPs can translocate to tissues and, as any foreign substance, are likely to encounter the innate immunity system that represent a non-specific first line of defense against potential threats to the host. In this review, we will discuss the possible effects of MeNPs on various components of the innate immunity (both specific cells and barriers). Most important is that there are no reports of immune diseases induced by MeNPs exposure: we are operating in a safe area. However, in vitro assays show that MeNPs have some effects on innate immunity, the main being toxicity (both cyto- and genotoxicity) and interference with the activity of various cells through modification of membrane receptors, gene expression and cytokine production. Such effects can have both negative and positive relevant impacts on humans. On the one hand, people exposed to high levels of MeNPs, as workers of industries producing or applying MeNPs, should be monitored for possible health effects. On the other hand, understanding the modality of the effects on immune responses is essential to develop medical applications for MeNPs. Indeed, those MeNPs that are able to stimulate immune cells could be used to develop of new vaccines, promote immunity against tumors and suppress autoimmunity. PMID:26180517

  7. Simulation of laser ablation of metals for nanoparticles production

    NASA Astrophysics Data System (ADS)

    Davydov, R. V.; Antonov, V. I.; Davydova, T. I.

    2016-03-01

    In this paper a mathematical model for femtosecond laser ablation of metals is proposed, based on standard two-temperature model connected with 1D hydrodynamic equations. Wide-range equation of state has been developed. The simulation results are compared with experimental data for aluminium and copper. A good agreement for both metals with numerical results and experiment shows that this model can be employed for choosing laser parameters to better accuracy in nanoparticles production by ablation of metals.

  8. Metallic nanoparticle synthesis within reverse micellar microemulsion systems

    NASA Astrophysics Data System (ADS)

    Kitchens, Christopher Lawrence

    The synthesis of metallic nanoparticles is integral for the advancement of the field of nanotechnology. Solution based nanomaterial synthesis is an effective method for the production of nanomaterials, particularly with the use of surfactants and other materials for directed assembly allowing control over the nanomaterials' physical properties. This dissertation presents research performed to study the synthesis of metallic nanoparticles within reverse micelle systems. A fundamental approach has been taken to carefully examine the role of each component of the reverse micelle system, specifically the surfactant, bulk solvent, and the aqueous micelle core. The role of the sodium bis(2-ethylhexyl) sulfosuccinate (AOT) surfactant is two fold. Initially, the surfactant forms reverse micelles, nano-sized water pools dispersed within the bulk organic solvent which act as nano-reactors for the chemical reduction of the metallic precursors and metallic nanoparticle synthesis. The surfactant also acts as a stabilizing agent, effectively dispersing synthesized particles in solution, preventing agglomeration. Previously it was thought that spherical reverse micelles acted as templates for nanoparticle synthesis despite the negligible effect of the initial micelle diameter on the on the diameter of nanoparticles synthesized. Rather the initial micelle diameter influences the nanoparticle growth rate. In contrast, the properties of the bulk organic solvent do influence the nanoparticle diameter. The nature of solvent interactions with the AOT surfactant tails in various liquid alkane solvents, compressed propane, and supercritical ethane demonstrates that steric stabilization of the metallic nanoparticles by the AOT surfactant determines the particle sizes synthesized, rather than the previously accepted templating effect. Time resolved UV-vis spectroscopy was used to study the kinetics of particle synthesis, Neutron Spin Echo spectroscopy and Small Angle Neutron Scattering

  9. Ultrafast magnetization dynamics of cobalt nanoparticles and individual ferromagnetic dots

    NASA Astrophysics Data System (ADS)

    Bigot, Jean-Yves

    2009-03-01

    The ultrafast magnetization dynamics of magnetic materials can be investigated using femtosecond laser pulses to perform femtosecond magneto-optical Kerr and Faraday measurements [1]. In this talk, we will focus on the magnetization dynamics of cobalt nanoparticles which are either ferromagnetic or super-paramagnetic at room temperature and on the dynamics of individual ferromagnetic dots. In the first case (Co nanoparticles), we will demonstrate that the magnetization dynamics preceding the fluctuations over the anisotropy energy barrier is coherent but exhibits a strongly damped precession [2]. These results, which have been obtained with a three dimensional analysis of the magnetization vector [3] will be discussed in the context of the N'eel-Brown models involving the gyromagnetic character of the magnetization. We will also examine the dynamics of self-organized supra-crystals of cobalt nanoparticles [4]. In the second case, we will present the ultrafast magnetization dynamics of individual ferromagnetic dots (CoPt3, Permalloy, Nickel) made either by e-beam lithography or induced optically on thin films deposited on sapphire and glass substrates. The technique employed is the magneto-optical pump probe imaging (MOPPI) which allows performing time resolved magneto-optical Kerr images with with spatial and temporal resolutions of 300 nm and 150 fs [5]. The study of the demagnetization of the dots for different laser intensities shows that it is possible to write and read ultrafast monodomains on thin films. [3pt] [1] E. Beaurepaire, J.-C. Merle, A. Daunois, J.-Y. Bigot Phys. Rev. Lett., 76, 4250 (1996) [0pt] [2] L.H.F. Andrade, A. Laraoui, M. Vomir, D. Muller, J.-P. Stoquert, C. Estournès, E. Beaurepaire, J.-Y. Bigot Phys. Rev. Lett. 97, 127401 (2006). [0pt] [3] M. Vomir, L. H.F. Andrade, L. Guidoni, E. Beaurepaire, J.-Y. Bigot Phys. Rev. Lett. 94, 237601 (2005). [0pt] [4] I. Lisiecki, V. Halt'e, C. Petit, M.-P. Pileni, J.-Y. Bigot Adv. Mater., 20, 4176 (2008

  10. Nonlinear optical properties of metal and semiconductor nanoparticles

    NASA Astrophysics Data System (ADS)

    Whelan, Aine M.; Benrezzak, Sakina; Brennan, Margaret E.; Kelly, John M.; Blau, Werner J.

    2003-03-01

    The synthesis of metal (Au,Ag) and semiconductor (PbS) nanoparticles of specific morphology and shape is reported. The shape of PbS nanoparticles has been varied from spherical to oval to cubic, by use of poly(vinyl alcohol) (PVA), DNA and ethylene glycol as stabilisers respectively. For the first time, a seeding method has been used to successfully prepare PVA stabilised gold and silver nanoparticles. Characterisation of the third order optical nonlinearity of the nanoparticles has been carried out using the Z-scan technique with values of Im ÷ (3) as large as 10-10. Modulation of the magnitude of the nonlinear optical response with morphology in the case of the PbS nanoparticles is presented.

  11. Incorporation of metal nanoparticles into wood substrate and methods

    SciTech Connect

    Rector, Kirk D; Lucas, Marcel

    2015-11-04

    Metal nanoparticles were incorporated into wood. Ionic liquids were used to expand the wood cell wall structure for nanoparticle incorporation into the cell wall structure. Nanoparticles of elemental gold or silver were found to be effective surface enhanced Raman spectroscopy (SERS) imaging contrast or sensing agents. Nanoparticles of elemental iron were found to be efficient microwave absorbers and caused localized heating for disrupting the integrity of the lignocellulosic matrix. Controls suggest that the localized heating around the iron nanoparticles reduces losses of cellulose in the form of water, volatiles and CO.sub.2. The ionic liquid is needed during the incorporation process at room temperature. The use of small amounts of ionic liquid combined with the absence of an ionic liquid purification step and a lower energy and water use are expected to reduce costs in an up-scaled pretreatment process.

  12. Cooperative interactions of metal nanoparticles in the ion-exchange matrix with oxygen dissolved in water

    NASA Astrophysics Data System (ADS)

    Khorolskaya, S. V.; Polyanskii, L. N.; Kravchenko, T. A.; Konev, D. V.

    2014-06-01

    The kinetics of the reduction of molecular oxygen dissolved in water with nanocomposites consisting of an ion-exchange matrix and copper nanoparticles deposited in it in various amounts was studied. As the metal content in the polymer increased, the amount of reduced oxygen initially increased and then reached the limiting value. At a certain metal content, ionization of individual particles with formation of metal counterions changes to the oxidation of particles assembly giving layers of oxide products. The mechanism changes at the percolation threshold of the electron conductivity of the nanocomposite and determines the maximum amount of absorbed oxygen.

  13. Ultrafast dynamics in unaligned MWCNTs decorated with metal nanoparticles.

    PubMed

    Manzoni, G; Ponzoni, S; Galimberti, G; Scarselli, M; Pulci, O; Camilli, L; Matthes, L; Castrucci, P; Pagliara, S

    2016-06-10

    The relaxation dynamics of unaligned multi-walled carbon nanotubes decorated with metallic nanoparticles have been studied by using transient optical measurements. The fast dynamics due to the short-lived free-charge carriers excited by the pump are not affected by the presence of nanoparticles. Conversely, a second long dynamics, absent in bare carbon nanotubes, appears only in the decorated samples. A combination of experiment and theory allows us to ascribe this long dynamics to relaxation channels involving electronic states localized at the tube-nanoparticle interface. PMID:27146216

  14. Ultrafast dynamics in unaligned MWCNTs decorated with metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Manzoni, G.; Ponzoni, S.; Galimberti, G.; Scarselli, M.; Pulci, O.; Camilli, L.; Matthes, L.; Castrucci, P.; Pagliara, S.

    2016-06-01

    The relaxation dynamics of unaligned multi-walled carbon nanotubes decorated with metallic nanoparticles have been studied by using transient optical measurements. The fast dynamics due to the short-lived free-charge carriers excited by the pump are not affected by the presence of nanoparticles. Conversely, a second long dynamics, absent in bare carbon nanotubes, appears only in the decorated samples. A combination of experiment and theory allows us to ascribe this long dynamics to relaxation channels involving electronic states localized at the tube-nanoparticle interface.

  15. Site-specific deposition of single gold nanoparticles by individual growth in electrohydrodynamically-printed attoliter droplet reactors

    NASA Astrophysics Data System (ADS)

    Schneider, Julian; Rohner, Patrik; Galliker, Patrick; Raja, Shyamprasad N.; Pan, Ying; Tiwari, Manish K.; Poulikakos, Dimos

    2015-05-01

    Gold nanoparticles with unique electronic, optical and catalytic properties can be efficiently synthesized in colloidal suspensions and are of broad scientific and technical interest and utility. However, their orderly integration on functional surfaces and devices remains a challenge. Here we show that single gold nanoparticles can be directly grown in individually printed, stabilized metal-salt ink attoliter droplets, using a nanoscale electrohydrodynamic printing method with a stable high-frequency dripping mode. This enables controllable sessile droplet nanoreactor formation and sustenance on non-wetting substrates, despite simultaneous rapid evaporation. The single gold nanoparticles can be formed inside such reactors in situ or by subsequent thermal annealing and plasma ashing. With this non-contact technique, single particles with diameters tunable in the range of 5-35 nm and with narrow size distribution, high yield and alignment accuracy are generated on demand and patterned into arbitrary arrays. The nanoparticles feature good catalytic activity as shown by the exemplary growth of silicon nanowires from the nanoparticles and the etching of nanoholes by the printed nanoparticles.Gold nanoparticles with unique electronic, optical and catalytic properties can be efficiently synthesized in colloidal suspensions and are of broad scientific and technical interest and utility. However, their orderly integration on functional surfaces and devices remains a challenge. Here we show that single gold nanoparticles can be directly grown in individually printed, stabilized metal-salt ink attoliter droplets, using a nanoscale electrohydrodynamic printing method with a stable high-frequency dripping mode. This enables controllable sessile droplet nanoreactor formation and sustenance on non-wetting substrates, despite simultaneous rapid evaporation. The single gold nanoparticles can be formed inside such reactors in situ or by subsequent thermal annealing and plasma

  16. Precipitation of heterogeneous nanostructures: Metal nanoparticles and dielectric nanocrystallites

    SciTech Connect

    Masai, Hirokazu; Takahashi, Yoshihiro; Fujiwara, Takumi; Tokuda, Yomei; Yoko, Toshinobu

    2010-07-15

    Heterogeneous precipitation of nanocrystallites of metallic Bi and anatase was observed in CaO-Bi{sub 2}O{sub 3}-B{sub 2}O{sub 3}-Al{sub 2}O{sub 3}-TiO{sub 2} glass-ceramics. Addition of AlN reduced the Bi{sub 2}O{sub 3} to Bi metal nanoparticles, which were uniformly dispersed in the glass. After heat-treatment of the Bi-precipitated glass around the glass transition temperature, nanocrystalline anatase precipitated out without aggregation of the Bi metal particles. It was found that the anatase nanocrystal size was affected by the distance between a nanocrystal and a precipitated Bi nanoparticle. The glass-ceramic produced is a functional material containing a random dispersion of different types of nanoparticles with different dielectric constants.

  17. Manipulation of metallic nanoparticle with evanescent vortex Bessel beam.

    PubMed

    Rui, Guanghao; Wang, Xiaoyan; Cui, Yiping

    2015-10-01

    In this work, we propose a novel strategy to optically trap and manipulate metallic nanoparticles using evanescent vortex Bessel beam (EVBB). A versatile method is presented to generate evanescent Bessel beam with tunable optical angular momentum by focusing a radially polarized vortex beam onto a one-dimensional photonics band gap structure. The behavior of a metallic nanoparticle in the EVBB is numerically studied. We show that such particle can be stably trapped near the surface. The orbital angular momentum drives the metallic nanoparticle to orbit around the beam axis, and the direction of the orbital motion is controlled by the handedness of the helical phase front. The technique demonstrated in this work may open up new avenues for optical manipulation, and the non-contact tunable orbiting dynamics of the trapped particle may find important applications in higher resolution imaging techniques. PMID:26480086

  18. Optical bistability in a nonlinear-shell-coated metallic nanoparticle

    PubMed Central

    Chen, Hongli; Zhang, Youming; Zhang, Baile; Gao, Lei

    2016-01-01

    We provide a self-consistent mean field approximation in the framework of Mie scattering theory to study the optical bistability of a metallic nanoparticle coated with a nonlinear shell. We demonstrate that the nanoparticle coated with a weakly nonlinear shell exhibits optical bistability in a broad range of incident optical intensity. This optical bistability critically relies on the geometry of the shell-coated nanoparticle, especially the fractional volume of the metallic core. The incident wavelength can also affect the optical bistability. Through an optimization-like process, we find a design with broader bistable region and lower threshold field by adjusting the size of the nonlinear shell, the fractional volume of the metallic core, and the incident wavelength. These results may find potential applications in optical bistable devices such as all-optical switches, optical transistors and optical memories. PMID:26907967

  19. Optical bistability in a nonlinear-shell-coated metallic nanoparticle

    NASA Astrophysics Data System (ADS)

    Chen, Hongli; Zhang, Youming; Zhang, Baile; Gao, Lei

    2016-02-01

    We provide a self-consistent mean field approximation in the framework of Mie scattering theory to study the optical bistability of a metallic nanoparticle coated with a nonlinear shell. We demonstrate that the nanoparticle coated with a weakly nonlinear shell exhibits optical bistability in a broad range of incident optical intensity. This optical bistability critically relies on the geometry of the shell-coated nanoparticle, especially the fractional volume of the metallic core. The incident wavelength can also affect the optical bistability. Through an optimization-like process, we find a design with broader bistable region and lower threshold field by adjusting the size of the nonlinear shell, the fractional volume of the metallic core, and the incident wavelength. These results may find potential applications in optical bistable devices such as all-optical switches, optical transistors and optical memories.

  20. Optical bistability in a nonlinear-shell-coated metallic nanoparticle.

    PubMed

    Chen, Hongli; Zhang, Youming; Zhang, Baile; Gao, Lei

    2016-01-01

    We provide a self-consistent mean field approximation in the framework of Mie scattering theory to study the optical bistability of a metallic nanoparticle coated with a nonlinear shell. We demonstrate that the nanoparticle coated with a weakly nonlinear shell exhibits optical bistability in a broad range of incident optical intensity. This optical bistability critically relies on the geometry of the shell-coated nanoparticle, especially the fractional volume of the metallic core. The incident wavelength can also affect the optical bistability. Through an optimization-like process, we find a design with broader bistable region and lower threshold field by adjusting the size of the nonlinear shell, the fractional volume of the metallic core, and the incident wavelength. These results may find potential applications in optical bistable devices such as all-optical switches, optical transistors and optical memories. PMID:26907967

  1. Metal nanoparticles as a conductive catalyst

    DOEpatents

    Coker, Eric N.

    2010-08-03

    A metal nanocluster composite material for use as a conductive catalyst. The metal nanocluster composite material has metal nanoclusters on a carbon substrate formed within a porous zeolitic material, forming stable metal nanoclusters with a size distribution between 0.6-10 nm and, more particularly, nanoclusters with a size distribution in a range as low as 0.6-0.9 nm.

  2. The Ligand Shell as an Energy Barrier in Surface Reactions on Transition Metal Nanoparticles.

    PubMed

    Smith, Jeremy G; Jain, Prashant K

    2016-06-01

    Transition metal nanoparticles, including those employed in catalytic, electrocatalytic, and photocatalytic conversions, have surfaces that are typically coated with a layer of short or long-chain ligands. There is little systematic understanding of how much this ligand layer affects the reactivity of the underlying surface. We show for Ag nanoparticles that a surface-adsorbed thiol layer greatly impedes the kinetics of an ionic chemical reaction taking place on the Ag surface. The model reaction studied is the galvanic exchange of Ag with Au(3+) ions, the kinetics of which is measured on individual thiol-coated nanoparticles using in situ optical scattering spectroscopy. We observe a systematic lowering of the reactivity of the nanoparticle as the chain length of the thiol is increased, from which we deduce that the ligand layer serves as an energy barrier to the transport of incoming/outgoing reactive ions. This barrier effect can be decreased by light irradiation, resulting from weakened binding of the thiol layer to the metal surface. We find that the influence of the surface ligand layer on reactivity is much stronger than factors such as nanoparticle size, shape, or crystallinity. These findings provide improved understanding of the role of ligand or adsorbates in colloidal catalysis and photocatalysis and have important implications for the transport of reactants and ions to surfaces and for engineering the reactivity of nanoparticles using surface passivation. PMID:27152595

  3. Metal enhanced fluorescence with gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Mattingly, Shaina LaRissa Strating

    A novel hybrid nanocomposite of Au nanoparticle-modified silicon nanowire was developed for surface enhanced fluorescence applications. The designed nanocomposite contained a silicon nanowire, gold nanoparticles and a silica layer doped with dye molecules. The hybrid nanomaterial was characterized using scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM), fluorescence measurements, Fourier transform infrared (FT-IR) spectroscopy, and energy-dispersive X-ray spectroscopy (EDS). The results showed that the gold nanoparticles were uniformly adhered on the silicon nanowires and covered by a thin silica layer. The nanostructure exhibited strong capacity for surface enhanced fluorescence. Different enhancement factors were obtained by changing synthetic conditions. The second goal of the project was to determine if the shape of gold nanoparticles affects the extent of its fluorescence enhancement under constant external factors. Two shapes of gold nanoparticles were synthesized and characterized by SEM, STEM, zeta potential and absorbance measurements. Then they were coated with fluorescent dye-doped silica and the fluorescence intensity was measured and compared to the pure fluorescent dye. Gold nanorods enhanced fluorescence more than gold nanostars and that the fluorescent dye Alexafluor 700 showed a greater fluorescence intensity change in the presence of nanoparticles than methylene blue.

  4. Towards stable catalysts by controlling collective properties of supported metal nanoparticles.

    PubMed

    Prieto, Gonzalo; Zečević, Jovana; Friedrich, Heiner; de Jong, Krijn P; de Jongh, Petra E

    2013-01-01

    Supported metal nanoparticles play a pivotal role in areas such as nanoelectronics, energy storage/conversion and as catalysts for the sustainable production of fuels and chemicals. However, the tendency of nanoparticles to grow into larger crystallites is an impediment for stable performance. Exemplarily, loss of active surface area by metal particle growth is a major cause of deactivation for supported catalysts. In specific cases particle growth might be mitigated by tuning the properties of individual nanoparticles, such as size, composition and interaction with the support. Here we present an alternative strategy based on control over collective properties, revealing the pronounced impact of the three-dimensional nanospatial distribution of metal particles on catalyst stability. We employ silica-supported copper nanoparticles as catalysts for methanol synthesis as a showcase. Achieving near-maximum interparticle spacings, as accessed quantitatively by electron tomography, slows down deactivation up to an order of magnitude compared with a catalyst with a non-uniform nanoparticle distribution, or a reference Cu/ZnO/Al(2)O(3) catalyst. Our approach paves the way towards the rational design of practically relevant catalysts and other nanomaterials with enhanced stability and functionality, for applications such as sensors, gas storage, batteries and solar fuel production. PMID:23142841

  5. The electrochemisty of surface modified <10 nm metal oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Roberts, Joseph J. P.

    Chapter One provides a general introduction of the research on metal oxide nanoparticles (MOx), highlighting their synthesis, surface modification, and functionalization. Emphasis is given to the different synthetic route for producing small (<10 nm) MOx nanoparticles with narrow size distributions. Different methods for modifying their surface with small organic molecules are discussed with focus given to silanes and phosphates. Furthermore, functionalizing surface modified nanoparticles for specific functions is addressed, with markers for analytically relevant nanoscale quantification being the primary focus. Chapter Two describes in detail the thermal degradation synthesis used for the generation of small MOx nanoparticles. It demonstrates the versatile of the synthesis by successfully synthesizing ZrO 2 and IrO2 nanoparticles. Preliminary work involving the formation of Bi2S3, Bi2O3, and RuO2 nanomaterials is also addressed. The solvothermal synthesis of indium tin oxide (ITO) is also shown for comparison to ITO produced by thermal degradation. Chapter Three details the surface modification of ITO nanoparticles and subsequent electrochemical tagging with a ferrocene moiety. ITO nanoparticles were synthesized via thermal degradation. These nanoparticles underwent a ligand exchange with a covalently binding mondentate silane terminated with a primary amine. Acyl chloride coupling between the amine and chlorocarbonylferrocene provided an electrochemical tag to quantify the level of surface modification. Electrochemisty of the quasi-diffusing nanoparticles was evaluated via cyclic voltammetry (CV), chronoamperometry (CA), and mircodisk electrode (microE) experiments. Chapter Four investigates spectroscopic tagging of ITO and ZrO2 nanoparticles as well as electrochemical tagging of ZrO 2 and IrO2 nanoparticles. An unbound azo-dye was synthesized and attempts were made to attach the dye to the surface of ITO nanoparticles. Imine couple between a spectroscopic tag

  6. Photoinduced electron transfer from phycoerythrin to colloidal metal semiconductor nanoparticles

    NASA Astrophysics Data System (ADS)

    Kathiravan, A.; Chandramohan, M.; Renganathan, R.; Sekar, S.

    2009-04-01

    Phycoerythrin is a water soluble pigment which absorbs in the visible region at 563 nm. The interaction of phycoerythrin with colloidal metal semiconductors was studied by absorption, FT-IR and fluorescence spectroscopy. Phycoerythrin adsorbed strongly on the surface of TiO 2 nanoparticles, the apparent association constant for the association between colloidal metal-TiO 2 nanoparticles and phycoerythrin was determined from fluorescence quenching data. The free energy change (Δ Get) for electron transfer process has been calculated by applying Rehm-Weller equation.

  7. Laser fabrication of 2D and 3D metal nanoparticle structures and arrays.

    PubMed

    Kuznetsov, A I; Kiyan, R; Chichkov, B N

    2010-09-27

    A novel method for fabrication of 2D and 3D metal nanoparticle structures and arrays is proposed. This technique is based on laser-induced transfer of molten metal nanodroplets from thin metal films. Metal nanoparticles are produced by solidification of these nanodroplets. The size of the transferred nanoparticles can be controllably changed in the range from 180 nm to 1500 nm. Several examples of complex 2D and 3D microstructures generated form gold nanoparticles are demonstrated. PMID:20941016

  8. Characterization, detection, and counting of metal nanoparticles using flow cytometry.

    PubMed

    Zucker, Robert M; Ortenzio, Jayna N R; Boyes, William K

    2016-02-01

    There is a need to accurately detect, characterize, and quantify nanoparticles in suspensions. This study helps to understand the complex interactions between similar types of nanoparticles. Before initiating a study of metal nanoparticles, five submicron PS beads with sizes between 200 nm and 1 µm were used to derive a reference scale that was useful in evaluating the flow cytometer for functionality, sensitivity, resolution, and reproducibility. Side scatter intensity (SSC) from metal nanoparticles was obtained simultaneously from 405 nm and 488 nm lasers. The 405 nm laser generally yielded histogram distributions with smaller CVs, less side scatter intensity, better separation indices between beads and decreased scatter differences between different sized particles compared with the 488 nm laser. Submicron particles must be diluted to 10(6) and 10(7) particles/mL before flow cytometer analysis to avoid coincidence counting artifacts. When particles were too concentrated the following occurred: swarm, electronic overload, coincidence counting, activation of doublet discrimination and rejection circuitry, increase of mean SSC histogram distributions, alterations of SSC and pulse width histogram shape, decrease and fluctuations in counting rate and decrease or elimination of particulate water noise and 1 µm reference bead. To insure that the concentrations were in the proper counting range, the nanoparticle samples were mixed with a known concentration of 1µm counting beads. Sequential dilutions of metal nanoparticles in a 1 µm counting bead suspension helped determine the diluted concentration needed for flow cytometer analysis. It was found that the original concentrated nanoparticle samples had to be diluted, between 1:10,000 and 1:100,000, before characterization by flow cytometry. The concentration of silver or gold nanoparticles in the undiluted sample were determined by comparing them with a known concentration (1.9 × 10(6) beads/mL) of 1 µm

  9. Kinetics of self-assembled monolayer formation on individual nanoparticles.

    PubMed

    Smith, Jeremy G; Jain, Prashant K

    2016-08-24

    Self-assembled monolayer (SAM) formation of alkanethiols on nanoparticle surfaces is an extensively studied surface reaction. But the nanoscale aspects of the rich microscopic kinetics of this reaction may remain hidden due to ensemble-averaging in colloidal samples, which is why we investigated in real-time how alkanethiol SAMs form on a single Ag nanoparticle. From single-nanoparticle trajectories obtained using in situ optical spectroscopy, the kinetics of SAM formation appears to be limited by the growth of the layer across the nanoparticle surface. A significant spread in the growth kinetics is seen between nanoparticles. The single-nanoparticle rate distributions suggest two distinct modes for SAM growth: spillover of adsorbed thiols from the initial binding sites on the nanoparticle and direct adsorption of thiol from solution. At low concentrations, wherein direct adsorption from solution is not prevalent and growth takes place primarily by adsorbate migration, the SAM formation rate was less variable from one nanoparticle to another. On the other hand, at higher thiol concentrations, when both modes of growth were operative, the population of nanoparticles with inherent variations in surface conditions and/or morphology exhibited a heterogeneous distribution of rates. These new insights into the complex dynamics of SAM formation may inform synthetic strategies for ligand passivation and functionalization of nanoparticles and models of reactive adsorption and catalysis on nanoparticles. PMID:27523488

  10. Optical Properties and Biological Applications of Electromagnetically Coupled Metal Nanoparticles

    NASA Astrophysics Data System (ADS)

    Sheikholeslami, Sassan Nathan

    The optical properties of metallic particles change dramatically as the size shrinks to the nanoscale. The familiar mirror-like sheen of bulk metals is replaced by the bright, sharp, colorful plasmonic resonances of nanoparticles. The resonances of plasmonic metal nanoparticles are highly tunable throughout the visible spectrum, depending on the size, shape, local dielectric environment, and proximity to other optical resonances. Fundamental and applied research in the nanoscience community in the past few decades has sought to understand and exploit these phenomena for biological applications. In this work, discrete nanoparticle assemblies were produced through biomolecular interactions and studied at the single particle level with darkfield spectroscopy. Pairs of gold nanoparticles tethered by DNA were utilized as molecular rulers to study the dynamics of DNA bending by the restriction enzyme EcoRV. These results substantiated that nanoparticle rulers, deemed "plasmon rulers", could measure the dynamics of single biomolecules with high throughput, long lifetime, and high temporal resolution. To extend these concepts for live cell studies, a plasmon ruler comprised of peptide-linked gold nanoparticle satellites around a core particle was synthesized and utilized to optically follow cell signaling pathways in vivo at the single molecule level. The signal provided by these plasmon rulers allowed continuous observation of caspase-3 activation at the single molecule level in living cells for over 2 hours, unambiguously identifying early stage activation of caspase-3 in apoptotic cells. In the last section of this dissertation, an experimental and theoretical study of electomagnetic coupling in asymmetric metal nanoparticle dimers is presented. A "heterodimer" composed of a silver particle and a gold particle is observed to have a novel coupling between a plasmon mode (free electron oscillations) and an inter-band absorption process (bound electron transitions). The

  11. Delineating the pathways for the site-directed synthesis of individual nanoparticles on surfaces

    PubMed Central

    Liu, Guoliang; Eichelsdoerfer, Daniel J.; Rasin, Boris; Zhou, Yu; Brown, Keith A.; Liao, Xing; Mirkin, Chad A.

    2013-01-01

    Although nanoparticles with exquisite properties have been synthesized for a variety of applications, their incorporation into functional devices is challenging owing to the difficulty in positioning them at specified sites on surfaces. In contrast with the conventional synthesis-then-assembly paradigm, scanning probe block copolymer lithography can pattern precursor materials embedded in a polymer matrix and synthesize desired nanoparticles on site, offering great promise for incorporating nanoparticles into devices. This technique, however, is extremely limited from a materials standpoint. To develop a materials-general method for synthesizing nanoparticles on surfaces for broader applications, a mechanistic understanding of polymer-mediated nanoparticle formation is crucial. Here, we design a four-step synthetic process that enables independent study of the two most critical steps for synthesizing single nanoparticles on surfaces: phase separation of precursors and particle formation. Using this process, we elucidate the importance of the polymer matrix in the diffusion of metal precursors to form a single nanoparticle and the three pathways that the precursors undergo to form nanoparticles. Based on this mechanistic understanding, the synthetic process is generalized to create metal (Au, Ag, Pt, and Pd), metal oxide (Fe2O3, Co2O3, NiO, and CuO), and alloy (AuAg) nanoparticles. This mechanistic understanding and resulting process represent a major advance in scanning probe lithography as a tool to generate patterns of tailored nanoparticles for integration with solid-state devices. PMID:23277538

  12. Noble Metal Nanoparticle-loaded Mesoporous Oxide Microspheres for Catalysis

    NASA Astrophysics Data System (ADS)

    Jin, Zhao

    Noble metal nanoparticles/nanocrystals have attracted much attention as catalysts due to their unique characteristics, including high surface areas and well-controlled facets, which are not often possessed by their bulk counterparts. To avoid the loss of their catalytic activities brought about by their size and shape changes during catalytic reactions, noble metal nanoparticles/nanocrystals are usually dispersed and supported finely on solid oxide supports to prevent agglomeration, nanoparticle growth, and therefore the decrease in the total surface area. Moreover, metal oxide supports can also play important roles in catalytic reactions through the synergistic interactions with loaded metal nanoparticles/nanocrystals. In this thesis, I use ultrasonic aerosol spray to produce hybrid microspheres that are composed of noble metal nanoparticles/nanocrystals embedded in mesoporous metal oxide matrices. The mesoporous metal oxide structure allows for the fast diffusion of reactants and products as well as confining and supporting noble metal nanoparticles. I will first describe my studies on noble metal-loaded mesoporous oxide microspheres as catalysts. Three types of noble metals (Au, Pt, Pd) and three types of metal oxide substrates (TiO2, ZrO2, Al 2O3) were selected, because they are widely used for practical catalytic applications involved in environmental cleaning, pollution control, petrochemical, and pharmaceutical syntheses. By considering every possible combination of the noble metals and oxide substrates, nine types of catalyst samples were produced. I characterized the structures of these catalysts, including their sizes, morphologies, crystallinity, and porosities, and their catalytic performances by using a representative reduction reaction from nitrobenzene to aminobenzene. Comparison of the catalytic results reveals the effects of the different noble metals, their incorporation amounts, and oxide substrates on the catalytic abilities. For this particular

  13. Resonances of nanoparticles with poor plasmonic metal tips

    NASA Astrophysics Data System (ADS)

    Ringe, Emilie; Desantis, Christopher J.; Collins, Sean M.; Duchamp, Martial; Dunin-Borkowski, Rafal E.; Skrabalak, Sara E.; Midgley, Paul A.

    2015-11-01

    The catalytic and optical properties of metal nanoparticles can be combined to create platforms for light-driven chemical energy storage and enhanced in-situ reaction monitoring. However, the heavily damped plasmon resonances of many catalytically active metals (e.g. Pt, Pd) prevent this dual functionality in pure nanostructures. The addition of catalytic metals at the surface of efficient plasmonic particles thus presents a unique opportunity if the resonances can be conserved after coating. Here, nanometer resolution electron-based techniques (electron energy loss, cathodoluminescence, and energy dispersive X-ray spectroscopy) are used to show that Au particles incorporating a catalytically active but heavily damped metal, Pd, sustain multiple size-dependent localized surface plasmon resonances (LSPRs) that are narrow and strongly localized at the Pd-rich tips. The resonances also couple with a dielectric substrate and other nanoparticles, establishing that the full range of plasmonic behavior is observed in these multifunctional nanostructures despite the presence of Pd.

  14. Metal nanoparticles: The protective nanoshield against virus infection.

    PubMed

    Rai, Mahendra; Deshmukh, Shivaji D; Ingle, Avinash P; Gupta, Indarchand R; Galdiero, Massimiliano; Galdiero, Stefania

    2016-01-01

    Re-emergence of resistance in different pathogens including viruses are the major cause of human disease and death, which is posing a serious challenge to the medical, pharmaceutical and biotechnological sectors. Though many efforts have been made to develop drug and vaccines against re-emerging viruses, researchers are continuously engaged in the development of novel, cheap and broad-spectrum antiviral agents, not only to fight against viruses but also to act as a protective shield against pathogens attack. Current advancement in nanotechnology provides a novel platform for the development of potential and effective agents by modifying the materials at nanolevel with remarkable physicochemical properties, high surface area to volume ratio and increased reactivity. Among metal nanoparticles, silver nanoparticles have strong antibacterial, antifungal and antiviral potential to boost the host immunity against pathogen attack. Nevertheless, the interaction of silver nanoparticles with viruses is a largely unexplored field. The present review discusses antiviral activity of the metal nanoparticles, especially the mechanism of action of silver nanoparticles, against different viruses such HSV, HIV, HBV, MPV, RSV, etc. It is also focused on how silver nanoparticles can be used in therapeutics by considering their cytotoxic level, to avoid human and environmental risks. PMID:24754250

  15. Oscillatory characteristics of metallic nanoparticles inside lipid nanotubes

    NASA Astrophysics Data System (ADS)

    Sadeghi, Fatemeh; Ansari, Reza; Darvizeh, Mansour

    2015-12-01

    This study is concerned with the oscillatory behavior of metallic nanoparticles, and in particular silver and gold nanoparticles, inside lipid nanotubes (LNTs) using the continuum approximation along with the 6-12 Lennard-Jones (LJ) potential function. The nanoparticle is modeled as a dense sphere and the LNT is assumed to be comprised of six layers including two head groups, two intermediate layers and two tail groups. To evaluate van der Waals (vdW) interactions, analytical expressions are first derived through undertaking surface and volume integrals which are then validated by a fully numerical scheme based on the differential quadrature (DQ) technique. Using the actual force distribution between the two interacting molecules, the equation of motion is directly solved utilizing the Runge-Kutta numerical integration scheme to arrive at the time history of displacement and velocity of the inner core. Also, a semi-analytical expression incorporating both geometrical parameters and initial conditions is introduced for the precise evaluation of oscillation frequency. A comprehensive study is conducted to gain an insight into the influences of nanoparticle radius, LNT length, head and tail group thicknesses and initial conditions on the oscillatory behavior of the metallic nanoparticles inside LNTs. It is found that the escape velocity and oscillation frequency of silver nanoparticles are higher than those of gold ones. It is further shown that the oscillation frequency is less affected by the tail group thickness when compared to the head group thickness.

  16. Improving proton therapy by metal-containing nanoparticles: nanoscale insights

    PubMed Central

    Schlathölter, Thomas; Eustache, Pierre; Porcel, Erika; Salado, Daniela; Stefancikova, Lenka; Tillement, Olivier; Lux, Francois; Mowat, Pierre; Biegun, Aleksandra K; van Goethem, Marc-Jan; Remita, Hynd; Lacombe, Sandrine

    2016-01-01

    The use of nanoparticles to enhance the effect of radiation-based cancer treatments is a growing field of study and recently, even nanoparticle-induced improvement of proton therapy performance has been investigated. Aiming at a clinical implementation of this approach, it is essential to characterize the mechanisms underlying the synergistic effects of nanoparticles combined with proton irradiation. In this study, we investigated the effect of platinum- and gadolinium-based nanoparticles on the nanoscale damage induced by a proton beam of therapeutically relevant energy (150 MeV) using plasmid DNA molecular probe. Two conditions of irradiation (0.44 and 3.6 keV/μm) were considered to mimic the beam properties at the entrance and at the end of the proton track. We demonstrate that the two metal-containing nanoparticles amplify, in particular, the induction of nanosize damages (>2 nm) which are most lethal for cells. More importantly, this effect is even more pronounced at the end of the proton track. This work gives a new insight into the underlying mechanisms on the nanoscale and indicates that the addition of metal-based nanoparticles is a promising strategy not only to increase the cell killing action of fast protons, but also to improve tumor targeting. PMID:27143877

  17. Individual Detection and Electrochemically Assisted Identification of Adsorbed Nanoparticles by Using Surface Plasmon Microscopy.

    PubMed

    Nizamov, Shavkat; Kasian, Olga; Mirsky, Vladimir M

    2016-06-13

    The increasing production and application of nanoparticles necessitates a highly sensitive analytical method for the quantification and identification of these potentially hazardous materials. We describe here an application of surface plasmon microscopy for the individual detection of each adsorbed nanoparticle and for visualization of its electrochemical conversion. Whereas the adsorption rate characterizes the number concentration of nanoparticles, the potential at which the adsorbed nanoparticles disappear during an anodic potential sweep characterizes the type of material. All the adsorbed nanoparticles are subjected to the potential sweep simultaneously; nevertheless, each of the up to a million adsorbed nanoparticles is identified individually by its electrochemical dissolution potential. The technique has been tested with silver and copper nanoparticles, but can be extended to many other electrochemically active nanomaterials. PMID:27139913

  18. Facile preparation of superhydrophobic surfaces based on metal oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Bao, Xue-Mei; Cui, Jin-Feng; Sun, Han-Xue; Liang, Wei-Dong; Zhu, Zhao-Qi; An, Jin; Yang, Bao-Ping; La, Pei-Qing; Li, An

    2014-06-01

    A novel method for fabrication of superhydrophobic surfaces was developed by facile coating various metal oxide nanoparticles, including ZnO, Al2O3 and Fe3O4, on various substrates followed by treatment with polydimethylsiloxane (PDMS) via chemical vapor deposition (CVD) method. Using ZnO nanoparticles as a model, the changes in the surface chemical composition and crystalline structures of the metal oxide nanoparticles by PDMS treatment were investigated by X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD) and Fourier transform infrared (FTIR) analysis. The results show that the combination of the improved surface roughness generated from of the nanoparticles aggregation with the low surface-energy of silicon-coating originated from the thermal pyrolysis of PDMS would be responsible for the surface superhydrophobicity. By a simple dip-coating method, we show that the metal oxide nanoparticles can be easily coated onto the surfaces of various textural and dimensional substrates, including glass slide, paper, fabric or sponge, for preparation of superhydrophobic surfaces for different purpose. The present strategy may provide an inexpensive and new route to surperhydrophobic surfaces, which would be of technological significance for various practical applications especially for separation of oils or organic contaminates from water.

  19. Imaging metal oxide nanoparticles in biological structures with CARS microscopy.

    PubMed

    Moger, Julian; Johnston, Blair D; Tyler, Charles R

    2008-03-01

    Metal oxide nanomaterials are being used for an increasing number of commercial applications, such as fillers, opacifiers, catalysts, semiconductors, cosmetics, microelectronics, and as drug delivery vehicles. The effects of these nanoparticles on the physiology of animals and in the environment are largely unknown and their potential associated health risks are currently a topic of hot debate. Information regarding the entry route of nanoparticles into exposed organisms and their subsequent localization within tissues and cells in the body are essential for understanding their biological impact. However, there is currently no imaging modality available that can simultaneously image these nanoparticles and the surrounding tissues without disturbing the biological structure. Due to their large nonlinear optical susceptibilities, which are enhanced by two-photon electronic resonance, metal oxides are efficient sources of coherent anti-Stokes Raman Scattering (CARS). We show that CARS microscopy can provide localization of metal oxide nanoparticles within biological structures at the cellular level. Nanoparticles of 20 - 70 nm in size were imaged within the fish gill; a structure that is a primary site of pollutant uptake into fish from the aquatic environment. PMID:18542432

  20. Resonance energy transfer: Dye to metal nanoparticles

    SciTech Connect

    Wari, M. N.; Pujar, G. H.; Inamdar, S. R.

    2015-06-24

    In the present study, surface energy transfer (SET) from Coumarin 540A (C540 A) to Gold nanoparticle (Au) is demonstrated. The observed results show pronounced effect on the photoluminescence intensity and shortening of the lifetime of Coumarin 540A upon interaction with the spherical gold nanoparticle, also there are measured effects on radiative rate of the dye. Experimental results are analyzed with fluorescence resonance energy transfer (FRET) and SET theories. The results obtained from distance-dependent quenching provide experimental evidence that the efficiency curve slope and distance of quenching is best modeled by surface energy transfer process.

  1. Resonance energy transfer: Dye to metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Wari, M. N.; Pujar, G. H.; Inamdar, S. R.

    2015-06-01

    In the present study, surface energy transfer (SET) from Coumarin 540A (C540 A) to Gold nanoparticle (Au) is demonstrated. The observed results show pronounced effect on the photoluminescence intensity and shortening of the lifetime of Coumarin 540A upon interaction with the spherical gold nanoparticle, also there are measured effects on radiative rate of the dye. Experimental results are analyzed with fluorescence resonance energy transfer (FRET) and SET theories. The results obtained from distance-dependent quenching provide experimental evidence that the efficiency curve slope and distance of quenching is best modeled by surface energy transfer process.

  2. Structure of reverse microemulsion-templated metal hexacyanoferrate nanoparticles

    PubMed Central

    2012-01-01

    The droplet phase of a reverse microemulsion formed by the surfactant cetyltrimethylammonium ferrocyanide was used as a matrix to synthesize nanoparticles of nickel hexacyanoferrate by adding just a solution of NiCl2 to the microemulsion media. Dynamic light scattering and small-angle neutron scattering measurements show that the reverse microemulsion droplets employed have a globular structure, with sizes that depend on water content. Transmission electron microscopy and electron diffraction are used to obtain information about the structure of the synthesized nanoparticles. The results show that the size and shape of the coordination compound nanoparticles correspond with the size and shape of the droplets, suggesting that the presented system constitutes an alternative method of the synthesis of metal hexacyanoferrate nanoparticles. PMID:22264404

  3. Phytochemicals and Biogenic Metallic Nanoparticles as Anticancer Agents.

    PubMed

    Rao, Pasupuleti Visweswara; Nallappan, Devi; Madhavi, Kondeti; Rahman, Shafiqur; Jun Wei, Lim; Gan, Siew Hua

    2016-01-01

    Cancer is a leading cause of death worldwide. Several classes of drugs are available to treat different types of cancer. Currently, researchers are paying significant attention to the development of drugs at the nanoscale level to increase their target specificity and to reduce their concentrations. Nanotechnology is a promising and growing field with multiple subdisciplines, such as nanostructures, nanomaterials, and nanoparticles. These materials have gained prominence in science due to their size, shape, and potential efficacy. Nanomedicine is an important field involving the use of various types of nanoparticles to treat cancer and cancerous cells. Synthesis of nanoparticles targeting biological pathways has become tremendously prominent due to the higher efficacy and fewer side effects of nanodrugs compared to other commercial cancer drugs. In this review, different medicinal plants and their active compounds, as well as green-synthesized metallic nanoparticles from medicinal plants, are discussed in relation to their anticancer activities. PMID:27057273

  4. Phytochemicals and Biogenic Metallic Nanoparticles as Anticancer Agents

    PubMed Central

    Rao, Pasupuleti Visweswara; Nallappan, Devi; Madhavi, Kondeti; Rahman, Shafiqur; Jun Wei, Lim; Gan, Siew Hua

    2016-01-01

    Cancer is a leading cause of death worldwide. Several classes of drugs are available to treat different types of cancer. Currently, researchers are paying significant attention to the development of drugs at the nanoscale level to increase their target specificity and to reduce their concentrations. Nanotechnology is a promising and growing field with multiple subdisciplines, such as nanostructures, nanomaterials, and nanoparticles. These materials have gained prominence in science due to their size, shape, and potential efficacy. Nanomedicine is an important field involving the use of various types of nanoparticles to treat cancer and cancerous cells. Synthesis of nanoparticles targeting biological pathways has become tremendously prominent due to the higher efficacy and fewer side effects of nanodrugs compared to other commercial cancer drugs. In this review, different medicinal plants and their active compounds, as well as green-synthesized metallic nanoparticles from medicinal plants, are discussed in relation to their anticancer activities. PMID:27057273

  5. Synthesis of high purity metal oxide nanoparticles for optical applications

    NASA Astrophysics Data System (ADS)

    Baker, C.; Kim, W.; Friebele, E. J.; Villalobos, G.; Frantz, J.; Shaw, L. B.; Sadowski, B.; Fontana, J.; Dubinskii, M.; Zhang, J.; Sanghera, J.

    2014-09-01

    In this paper we present our recent research results in synthesizing various metal oxide nanoparticles for use as laser gain media (solid state as well as fiber lasers) and transparent ceramic windows via two separate techniques, co-precipitation and flame spray pyrolysis. The nanoparticles were pressed into ceramic discs that exhibited optical transmission approaching the theoretical limit and showed very high optical-to-optical lasing slope efficiency. We have also synthesized sesquioxide nanoparticles using a Flame Spray Pyrolysis (FSP) technique that leads to the synthesis of a metastable phase of sesquioxide which allows fabricating excellent optical quality transparent windows with very fine grain sizes. Finally, we present our research in the synthesis of rare earth doped boehmite nanoparticles where the rareearth ion is encased in a cage of aluminum and oxygen to prevent ion-ion proximity and energy transfer. The preforms have been drawn into fibers exhibiting long lifetimes and high laser efficiencies.

  6. Controlled Variable Oxidative Doping of Individual Organometallic Nanoparticles.

    PubMed

    Feng, Ann; Cheng, Wei; Holter, Jennifer; Young, Neil; Compton, Richard G

    2016-05-10

    The charging and controlled oxidative doping of single organometallic ferrocene nanoparticles is reported in aqueous sodium tetrafluoroborate using the nano-impacts method. It is shown that ferrocene nanoparticles of approximately 105 nm diameter are essentially quantitatively oxidatively doped with the uptake of one tetrafluoroborate anion per ferrocene molecule at suitably high overpotentials. By using lower potentials, it is possible to achieve low doping levels of single nanoparticles in a controlled manner. PMID:27038252

  7. Lipidic nanovesicles stabilize suspensions of metal oxide nanoparticles.

    PubMed

    Jiménez-Rojo, Noemi; Lete, Marta G; Rojas, Elena; Gil, David; Valle, Mikel; Alonso, Alicia; Moya, Sergio E; Goñi, Félix M

    2015-10-01

    We have studied the effect of adding lipid nanovesicles (liposomes) on the aggregation of commercial titanium oxide (TiO2), zinc oxide (ZnO), or cerium oxide (CeO2) nanoparticles (NPs) suspensions in Hepes buffer. Liposomes were prepared with pure phospholipids or mixtures of phospholipids and/or cholesterol. Changes in turbidity were recorded as a function of time, either of metal nanoparticles alone, or for a mixture of nanoparticles and lipidic nanovesicles. Lipid nanovesicles markedly decrease the NPs tendency to sediment irrespective of size or lipid compositions, thus keeping the metal oxide NPs in suspension. Cryo-electron microscopy, fluorescence anisotropy of TMA-DPH and general polarization of laurdan failed to reveal any major effect of the NPs on the lipid bilayer structure or phase state of the lipids. The above data may help in developing studies of the interaction of inhaled particles with lung surfactant lipids and alveolar macrophages. PMID:26301898

  8. Applications of metal nanoparticles in environmental cleanup

    EPA Science Inventory

    Iron nanoparticles (INPs) are one of the fastest-developing fields. INPs have a number of key physicochemical properties, such as high surface area, reactivity, optical and magnetic properties, and oxidation and reduction capacities, that make them attractive for water purificati...

  9. Fabrication of metallic microstructures by micromolding nanoparticles

    SciTech Connect

    Morales, Alfredo M.; Winter, Michael R.; Domeier, Linda A.; Allan, Shawn M.; Skala, Dawn M.

    2002-01-01

    A method is provided for fabricating metallic microstructures, i.e., microcomponents of micron or submicron dimensions. A molding composition is prepared containing an optional binder and nanometer size (1 to 1000 nm in diameter) metallic particles. A mold, such as a lithographically patterned mold, preferably a LIGA or a negative photoresist mold, is filled with the molding composition and compressed. The resulting microstructures are then removed from the mold and the resulting metallic microstructures so provided are then sintered.

  10. Metallic nanoparticle deposition techniques for enhanced organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Cacha, Brian Joseph Gonda

    Energy generation via organic photovoltaic (OPV) cells provide many advantages over alternative processes including flexibility and price. However, more efficient OPVs are required in order to be competitive for applications. One way to enhance efficiency is through manipulation of exciton mechanisms within the OPV, for example by inserting a thin film of bathocuproine (BCP) and gold nanoparticles between the C60/Al and ZnPc/ITO interfaces, respectively. We find that BCP increases efficiencies by 330% due to gains of open circuit voltage (Voc) by 160% and short circuit current (Jsc) by 130%. However, these gains are complicated by the anomalous photovoltaic effect and an internal chemical potential. Exploration in the tuning of metallic nanoparticle deposition on ITO was done through four techniques. Drop casting Ag nanoparticle solution showed arduous control on deposited morphology. Spin-coating deposited very low densities of nanoparticles. Drop casting and spin-coating methods showed arduous control on Ag nanoparticle morphology due to clustering and low deposition density, respectively. Sputtered gold on glass was initially created to aid the adherence of Ag nanoparticles but instead showed a quick way to deposit aggregated gold nanoparticles. Electrodeposition of gold nanoparticles (AuNP) proved a quick method to tune nanoparticle morphology on ITO substrates. Control of deposition parameters affected AuNP size and distribution. AFM images of electrodeposited AuNPs showed sizes ranging from 39 to 58 nm. UV-Vis spectroscopy showed the presence of localized plasmon resonance through absorption peaks ranging from 503 to 614 nm. A linear correlation between electrodeposited AuNP size and peak absorbance was seen with a slope of 3.26 wavelength(nm)/diameter(nm).

  11. Biomimetic metal oxides for the extraction of nanoparticles from water.

    PubMed

    Mallampati, Ramakrishna; Valiyaveettil, Suresh

    2013-04-21

    Contamination of nanomaterials in the environment will pose significant health risks in the future. A viable purification method is necessary to address this problem. Here we report the synthesis and application of a series of metal oxides prepared using a biological template for the removal of nanoparticles from the aqueous environment. A simple synthesis of metal oxides such as ZnO, NiO, CuO, Co3O4 and CeO2 employing eggshell membrane (ESM) as a biotemplate is reported. The morphology of the metal oxide powders was characterized using electron microscopes and the lattice structure was established using X-ray diffraction methods. Extraction of nanoparticles from water was carried out to compare the efficiency of metal oxides. NiO showed good extraction efficiency in removing gold and silver nanoparticles from spiked water samples within an hour. Easy access and enhanced stability of metal oxides makes them interesting candidates for applications in industrial effluent treatments and water purifications. PMID:23471156

  12. Bismuth nanoparticles integration into heavy metal electrochemical stripping sensor.

    PubMed

    Cadevall, Miquel; Ros, Josep; Merkoçi, Arben

    2015-08-01

    Between their many applications bismuth nanoparticles (BiNPs) are showing interest as pre-concentrators in heavy metals detection while being applied as working electrode modifiers used in electrochemical stripping analysis. From the different reported methods to synthesize BiNPs we are focused on the typical polyol method, largely used in these types of metallic and semi-metallic nanoparticles. This study presents the strategy for an easy control of the shape and size of BiNPs including nanocubes, nanosferes and triangular nanostructures. To improve the BiNP size and shape, different reducing agents (ethylene glycol or sodium hypophosphite) and stabilizers (polyvinyl pyrrolidone, PVP, in different amounts) have been studied. The efficiency of BiNPs for heavy metals analysis in terms of detection sensitivity while being used as modifiers of screen-printed carbon electrodes including the applicability of the developed device in real sea water samples is shown. A parallel study between the obtained nanoparticles and their performance in heavy metal sensing has been described in this communication. PMID:25994368

  13. Ostwald ripening of charged supported metal nanoparticles: Schottky model

    NASA Astrophysics Data System (ADS)

    Zhdanov, Vladimir P.

    2015-07-01

    Due to high surface area, supported metal nanoparticles are thermodynamically prone to sintering. The experimental studies of this process exhibit sometimes transient bimodal particle size distributions. Such observations may result from the support heterogeneity. Looking retrospectively, one can also find the prediction that in the case of Ostwald ripening this feature can be related to charge of metal nanoparticles. In real systems, this charge is often associated with the metal-support interaction and can be interpreted in the framework of the Schottky model. Using this model, the author shows that the charge redistribution cannot be behind bimodal particle size distributions. Moreover, the corresponding contribution to the driving force for Ostwald ripening is typically much smaller than the conventional one.

  14. Studying the interaction between silica nanoparticles and metals by spectrophotometry

    NASA Astrophysics Data System (ADS)

    Revina, A. A.; Potapov, V. V.; Baranova, E. K.; Smirnov, Yu. V.

    2013-02-01

    The optical absorption spectra of water silica sols containing nanoparticles (NPs) of metals (Ag, Pd, Fe, and Pt) are investigated. Silica sols are obtained from natural hydrothermal solutions via membrane concentration (ultrafiltration). Water sols of silica with specific sizes, pH values, ζ potentials of SiO2 NP surfaces, and low concentrations of SiO2 NPs are used. Plasmon resonance in optical absorption spectra is used to study the interaction between silica and metal NPs. Parameters of plasmon resonance (position, height, and half-width of optical absorption bands), from which the degree of interaction is assessed, are determined. Relationships between the optical properties of the surfaces of nanoparticle-size silica particles, the method of their production, and the effect of adsorbed metal particles on these properties are established.

  15. Tailoring the Catalytic Properties of Metal Nanoparticles via Support Interactions.

    PubMed

    Ahmadi, M; Mistry, H; Roldan Cuenya, B

    2016-09-01

    The development of new catalysts for energy technology and environmental remediation requires a thorough knowledge of how the physical and chemical properties of a catalyst affect its reactivity. For supported metal nanoparticles (NPs), such properties can include the particle size, shape, composition, and chemical state, but a critical parameter which must not be overlooked is the role of the NP support. Here, we highlight the key mechanisms behind support-induced enhancement in the catalytic properties of metal NPs. These include support-induced changes in the NP morphology, stability, electronic structure, and chemical state, as well as changes in the support due to the NPs. Utilizing the support-dependent phenomena described in this Perspective may allow significant breakthroughs in the design and tailoring of the catalytic activity and selectivity of metal nanoparticles. PMID:27530730

  16. Fundamental Limits to Extinction by Metallic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Miller, O. D.; Hsu, C. W.; Reid, M. T. H.; Qiu, W.; DeLacy, B. G.; Joannopoulos, J. D.; Soljačić, M.; Johnson, S. G.

    2014-03-01

    We show that there are shape-independent upper bounds to the extinction cross section per unit volume of dilute, randomly arranged nanoparticles, given only material permittivity. Underlying the limits are restrictive sum rules that constrain the distribution of quasistatic eigenvalues. Surprisingly, optimally designed spheroids, with only a single quasistatic degree of freedom, reach the upper bounds for four permittivity values. Away from these permittivities, we demonstrate computationally optimized structures that surpass spheroids and approach the fundamental limits.

  17. Metal nanoparticles triggered persistent negative photoconductivity in silk protein hydrogels

    NASA Astrophysics Data System (ADS)

    Gogurla, Narendar; Sinha, Arun K.; Naskar, Deboki; Kundu, Subhas C.; Ray, Samit K.

    2016-03-01

    Silk protein is a natural biopolymer with intriguing properties, which are attractive for next generation bio-integrated electronic and photonic devices. Here, we demonstrate the negative photoconductive response of Bombyx mori silk protein fibroin hydrogels, triggered by Au nanoparticles. The room temperature electrical conductivity of Au-silk hydrogels is found to be enhanced with the incorporation of Au nanoparticles over the control sample, due to the increased charge transporting networks within the hydrogel. Au-silk lateral photoconductor devices show a unique negative photoconductive response under an illumination of 325 nm, with excitation energy higher than the characteristic metal plasmon resonance band. The enhanced photoconductance yield in the hydrogels over the silk protein is attributed to the photo-oxidation of amino groups in the β-pleated sheets of the silk around the Au nanoparticles followed by the breaking of charge transport networks. The Au-silk nanocomposite does not show any photoresponse under visible illumination because of the localization of excited charges in Au nanoparticles. The negative photoconductive response of hybrid Au-silk under UV illumination may pave the way towards the utilization of silk for future bio-photonic devices using metal nanoparticle platforms.

  18. Bulk Metallic Glass-like Scattering Signal in Small Metallic Nanoparticles

    SciTech Connect

    Doan-Nguyen, VVT; Kimber, SAJ; Pontoni, D; Hickey, DR; Diroll, BT; Yang, XH; Miglierini, M; Murray, CB; Billinge, SJL

    2014-06-01

    The atomic structure of Ni-Pd nanoparticles has been studied using atomic pair distribution function (PDF) analysis of X-ray total scattering data and with transmission electron microscopy (TEM). Larger nanoparticles have PDFs corresponding to the bulk face-centered cubic packing. However, the smallest nanoparticles have PDFs that strongly resemble those obtained from bulk metallic glasses (BMGs). In fact, by simply scaling the distance axis by the mean metallic radius, the curves may be collapsed onto each other and onto the PDF from a metallic glass sample. In common with a wide range of BMG materials, the intermediate range order may be fit with a damped single-frequency sine wave. When viewed in high-resolution TEM, these nanoparticles exhibit atomic fringes typical of those seen in small metallic clusters with icosahedral or decahedral order. These two seemingly contradictory results are reconciled by calculating the PDFs of models of icosahedra that would be consistent with the fringes seen in TEM. These model PDFs resemble the measured ones when significant atom-position disorder is introduced, drawing together the two diverse fields of metallic nanoparticles and BMGs and supporting the view that BMGs may contain significant icosahedral or decahedral order.

  19. Metal nanoparticles and DNA co-functionalized single-walled carbon nanotube gas sensors.

    PubMed

    Su, Heng C; Zhang, Miluo; Bosze, Wayne; Lim, Jae-Hong; Myung, Nosang V

    2013-12-20

    Metal/DNA/SWNT hybrid nanostructure-based gas sensor arrays were fabricated by means of ink jet printing of metal ion chelated DNA/SWNTs on microfabricated electrodes, followed by electroless deposition to reduce metal ions to metal. DNA served as a dispersing agent to effectively solubilize pristine SWNTs in water and as metal ion chelating centers for the formation of nanoparticles. Noble metals including palladium, platinum, and gold were used because the high binding affinity toward specific analytes enhances the selectivity and sensitivity. The sensitivity and selectivity of the gas sensors toward various gases such as H2, H2S, NH3, and NO2 were determined at room temperature. Sensing results indicated the enhancement of the sensitivity and selectivity toward certain analytes by functionalizing with different metal nanoparticles (e.g., Pd/DNA/SWNTs for H2 and H2S). The combined responses give a unique pattern or signature for each analyte by which the system can identify and quantify an individual gas. PMID:24284477

  20. Metal nanoparticles and DNA co-functionalized single-walled carbon nanotube gas sensors

    NASA Astrophysics Data System (ADS)

    Su, Heng C.; Zhang, Miluo; Bosze, Wayne; Lim, Jae-Hong; Myung, Nosang V.

    2013-12-01

    Metal/DNA/SWNT hybrid nanostructure-based gas sensor arrays were fabricated by means of ink jet printing of metal ion chelated DNA/SWNTs on microfabricated electrodes, followed by electroless deposition to reduce metal ions to metal. DNA served as a dispersing agent to effectively solubilize pristine SWNTs in water and as metal ion chelating centers for the formation of nanoparticles. Noble metals including palladium, platinum, and gold were used because the high binding affinity toward specific analytes enhances the selectivity and sensitivity. The sensitivity and selectivity of the gas sensors toward various gases such as H2, H2S, NH3, and NO2 were determined at room temperature. Sensing results indicated the enhancement of the sensitivity and selectivity toward certain analytes by functionalizing with different metal nanoparticles (e.g., Pd/DNA/SWNTs for H2 and H2S). The combined responses give a unique pattern or signature for each analyte by which the system can identify and quantify an individual gas.

  1. Effect of Metals, Metalloids and Metallic Nanoparticles on Microalgae Growth and Industrial Product Biosynthesis: A Review

    PubMed Central

    Miazek, Krystian; Iwanek, Waldemar; Remacle, Claire; Richel, Aurore; Goffin, Dorothee

    2015-01-01

    Microalgae are a source of numerous compounds that can be used in many branches of industry. Synthesis of such compounds in microalgal cells can be amplified under stress conditions. Exposure to various metals can be one of methods applied to induce cell stress and synthesis of target products in microalgae cultures. In this review, the potential of producing diverse biocompounds (pigments, lipids, exopolymers, peptides, phytohormones, arsenoorganics, nanoparticles) from microalgae cultures upon exposure to various metals, is evaluated. Additionally, different methods to alter microalgae response towards metals and metal stress are described. Finally, possibilities to sustain high growth rates and productivity of microalgal cultures in the presence of metals are discussed. PMID:26473834

  2. Mesoscopic stoner instability in metallic nanoparticles revealed by shot noise.

    PubMed

    Sothmann, Björn; König, Jürgen; Gefen, Yuval

    2012-04-20

    We study sequential tunneling through a metallic nanoparticle close to the Stoner instability coupled to parallel magnetized electrodes. Increasing the bias voltage successively opens transport channels associated with excitations of the nanoparticle's total spin. For the current this leads just to a steplike increase. The Fano factor, in contrast, shows oscillations between large super-Poissonian and sub-Poissonian values as a function of bias voltage. We explain the enhanced Fano factor in terms of generalized random-telegraph noise and propose the shot noise as a convenient tool to probe the mesoscopic Stoner instability. PMID:22680743

  3. Chemical sensing with nanoparticles as optical reporters: from noble metal nanoparticles to quantum dots and upconverting nanoparticles.

    PubMed

    Deng, Wei; Goldys, Ewa M

    2014-11-01

    A wide variety of biological and medical analyses are based on the use of optical signals to report specific molecular events. Thanks to advances in nanotechnology, various nanostructures have been extensively used as optical reporters in bio- and chemical assays. This review describes recent progress in chemical sensing using noble metal nanoparticles (gold and silver), quantum dots and upconverting nanoparticles. It provides insights into various nanoparticle-based sensing strategies including fluorescence/luminescence resonance energy transfer nanoprobes as well as activatable probes sensitive to specific changes in the biological environment. Finally we list some research challenges to be overcome in order to accelerate the development of applications of nanoparticle bio- and chemical sensors. PMID:25170528

  4. Antimicrobial properties of metal and metal-halide nanoparticles and their potential applications

    NASA Astrophysics Data System (ADS)

    Torrey, Jason Robert

    Heavy metals, including silver and copper, have been known to possess antimicrobial properties against bacterial, fungal, and viral pathogens. Metal nanoparticles (aggregations of metal atoms 1-200 nm in size) have recently become the subject of intensive study for their increased antimicrobial properties. In the current studies, metal and metal-halide nanoparticles were evaluated for their antibacterial efficacy. Silver (Ag), silver bromide (AgBr), silver iodide (AgI), and copper iodide (CuI) nanoparticles significantly reduced bacterial numbers of the Gram-negative Pseudomonas aeruginosa and the Gram-positive Staphylococcus aureus within 24 hours and were more effective against P. aeruginosa. CuI nanoparticles were found to be highly effective, reducing both organisms by >4.43 log 10 within 15 minutes at 60 ppm Cu. CuI nanoparticles formulated with different stabilizers (sodium dodecyl sulfate, SDS; polyvinyl pyrrolidone, PVP) were further tested against representative Gram-positive and Gram-negative bacteria, Mycobacteria, a fungus (Candida albicans ), and a non-enveloped virus (poliovirus). Both nanoparticles caused significant reductions in most of the Gram-negative bacteria within five minutes (>5.09-log10). The Gram-positive bacterial species and C. albicans were more sensitive to the CuI-SDS than the CuI-PVP nanoparticles. In contrast, the acid-fast Mycobacterium smegmatis was more resistant to CuI-SDS than CuI-PVP nanoparticles. Poliovirus was more resistant than the other organisms tested except for Mycobacterium fortuitum, which displayed the greatest resistance to CuI nanoparticles. As an example of a real world antimicrobial application, polymer coatings embedded with various concentrations of CuI nanoparticles were tested for antibacterial efficacy against P. aeruginosa and S. aureus. Polyester-epoxy powder coatings were found to display superior uniformity, stability and antimicrobial properties against both organisms (>4.92 log 10 after six hours at

  5. Formation of Metal Selenide and Metal-Selenium Nanoparticles using Distinct Reactivity between Selenium and Noble Metals.

    PubMed

    Park, Se Ho; Choi, Ji Yong; Lee, Young Hwan; Park, Joon T; Song, Hyunjoon

    2015-07-01

    Small Se nanoparticles with a diameter of ≈20 nm were generated by the reduction of selenium chloride with NaBH4 at -10 °C. The reaction with Ag at 60 °C yielded stable Ag2 Se nanoparticles, which subsequently were transformed into M-Se nanoparticles (M=Cd, Zn, Pb) through cation exchange reactions with corresponding ions. The reaction with Pt formed Pt layers that were evenly coated on the surface of the Se nanoparticles, and the dissolution of the Se cores with hydrazine generated uniform Pt hollow nanoparticles. The reaction with Au generated tiny Au clusters on the Se surface, and eventually formed acorn-shaped Au-Se nanoparticles through heat treatment. These results indicate that small Se nanoparticles with diameters of ≈20 nm can be used as a versatile platform for the synthesis of metal selenide and metal-selenium hybrid nanoparticles with complex structures. PMID:25883010

  6. Is Neurotoxicity of Metallic Nanoparticles the Cascades of Oxidative Stress?

    PubMed

    Song, Bin; Zhang, YanLi; Liu, Jia; Feng, XiaoLi; Zhou, Ting; Shao, LongQuan

    2016-12-01

    With the rapid development of nanotechnology, metallic (metal or metal oxide) nanoparticles (NPs) are widely used in many fields such as cosmetics, the food and building industries, and bio-medical instruments. Widespread applications of metallic NP-based products increase the health risk associated with human exposures. Studies revealed that the brain, a critical organ that consumes substantial amounts of oxygen, is a primary target of metallic NPs once they are absorbed into the body. Oxidative stress (OS), apoptosis, and the inflammatory response are believed to be the main mechanisms underlying the neurotoxicity of metallic NPs. Other studies have disclosed that antioxidant pretreatment or co-treatment can reverse the neurotoxicity of metallic NPs by decreasing the level of reactive oxygen species, up-regulating the activities of antioxidant enzymes, decreasing the proportion of apoptotic cells, and suppressing the inflammatory response. These findings suggest that the neurotoxicity of metallic NPs might involve a cascade of events following NP-induced OS. However, additional research is needed to determine whether NP-induced OS plays a central role in the neurotoxicity of metallic NPs, to develop a comprehensive understanding of the correlations among neurotoxic mechanisms and to improve the bio-safety of metallic NP-based products. PMID:27295259

  7. Is Neurotoxicity of Metallic Nanoparticles the Cascades of Oxidative Stress?

    NASA Astrophysics Data System (ADS)

    Song, Bin; Zhang, YanLi; Liu, Jia; Feng, XiaoLi; Zhou, Ting; Shao, LongQuan

    2016-06-01

    With the rapid development of nanotechnology, metallic (metal or metal oxide) nanoparticles (NPs) are widely used in many fields such as cosmetics, the food and building industries, and bio-medical instruments. Widespread applications of metallic NP-based products increase the health risk associated with human exposures. Studies revealed that the brain, a critical organ that consumes substantial amounts of oxygen, is a primary target of metallic NPs once they are absorbed into the body. Oxidative stress (OS), apoptosis, and the inflammatory response are believed to be the main mechanisms underlying the neurotoxicity of metallic NPs. Other studies have disclosed that antioxidant pretreatment or co-treatment can reverse the neurotoxicity of metallic NPs by decreasing the level of reactive oxygen species, up-regulating the activities of antioxidant enzymes, decreasing the proportion of apoptotic cells, and suppressing the inflammatory response. These findings suggest that the neurotoxicity of metallic NPs might involve a cascade of events following NP-induced OS. However, additional research is needed to determine whether NP-induced OS plays a central role in the neurotoxicity of metallic NPs, to develop a comprehensive understanding of the correlations among neurotoxic mechanisms and to improve the bio-safety of metallic NP-based products.

  8. Physicochemical Factors that Affect Metal and Metal Oxide Nanoparticle Passage Across Epithelial Barriers

    PubMed Central

    Elder, Alison; Vidyasagar, Sadasivan; DeLouise, Lisa

    2014-01-01

    The diversity of nanomaterials in terms of size, shape, and surface chemistry poses a challenge to those who are trying to characterize the human health and environmental risks associated with incidental and unintentional exposures. There are numerous products that are already commercially available that contain solid metal and metal oxide nanoparticles, either embedded in a matrix or in solution. Exposure assessments for these products are often incomplete or difficult due to technological challenges associated with detection and quantitation of nanoparticles in gaseous or liquid carriers. The main focus of recent research has been on hazard identification. However, risk is a product of hazard and exposure, and one significant knowledge gap is that of the target organ dose following in vivo exposures. In order to reach target organs, nanoparticles must first breech the protective barriers of the respiratory tract, gastrointestinal tract, or skin. The fate of those nanoparticles that reach physiological barriers is in large part determined by the properties of the particles and the barriers themselves. This article reviews the physiological properties of the lung, gut, and skin epithelia, the physicochemical properties of metal and metal oxide nanoparticles that are likely to affect their ability to breech epithelial barriers, and what is known about their fate following in vivo exposures. PMID:20049809

  9. Supported metal nanoparticles on porous materials. Methods and applications.

    PubMed

    White, Robin J; Luque, Rafael; Budarin, Vitaliy L; Clark, James H; Macquarrie, Duncan J

    2009-02-01

    Nanoparticles are regarded as a major step forward to achieving the miniaturisation and nanoscaling effects and properties that have been utilised by nature for millions of years. The chemist is no longer observing and describing the behaviour of matter but is now able to manipulate and produce new types of materials with specific desired physicochemical characteristics. Such materials are receiving extensive attention across a broad range of research disciplines. The fusion between nanoparticle and nanoporous materials technology represents one of the most interesting of these rapidly expanding areas. The harnessing of nanoscale activity and selectivity, potentially provides extremely efficient catalytic materials for the production of commodity chemicals, and energy needed for a future sustainable society. In this tutorial review, we present an introduction to the field of supported metal nanoparticles (SMNPs) on porous materials, focusing on their preparation and applications in different areas. PMID:19169462

  10. Poisson’s ratio of individual metal nanowires

    PubMed Central

    McCarthy, Eoin K.; Bellew, Allen T.; Sader, John E.; Boland, John J.

    2014-01-01

    The measurement of Poisson’s ratio of nanomaterials is extremely challenging. Here we report a lateral atomic force microscope experimental method to electromechanically measure the Poisson’s ratio and gauge factor of individual nanowires. Under elastic loading conditions we monitor the four-point resistance of individual metallic nanowires as a function of strain and different levels of electrical stress. We determine the gauge factor of individual wires and directly measure the Poisson’s ratio using a model that is independently validated for macroscopic wires. For macroscopic wires and nickel nanowires we find Poisson’s ratios that closely correspond to bulk values, whereas for silver nanowires significant deviations from the bulk silver value are observed. Moreover, repeated measurements on individual silver nanowires at different levels of mechanical and electrical stress yield a small spread in Poisson ratio, with a range of mean values for different wires, all of which are distinct from the bulk value. PMID:25000139

  11. Uncovering the design rules for peptide synthesis of metal nanoparticles.

    PubMed

    Tan, Yen Nee; Lee, Jim Yang; Wang, Daniel I C

    2010-04-28

    Peptides are multifunctional reagents (reducing and capping agents) that can be used for the synthesis of biocompatible metal nanoparticles under relatively mild conditions. However, the progress in peptide synthesis of metal nanoparticles has been slow due to the lack of peptide design rules. It is difficult to establish sequence-reactivity relationships from peptides isolated from biological sources (e.g., biomineralizing organisms) or selected by combinatorial display libraries because of their widely varying compositions and structures. The abundance of random and inactive amino acid sequences in the peptides also increases the difficulty in knowledge extraction. In this study, a "bottom-up" approach was used to formulate a set of rudimentary rules for the size- and shape-controlled peptide synthesis of gold nanoparticles from the properties of the 20 natural alpha-amino acids for AuCl(4)(-) reduction and binding to Au(0). It was discovered that the reduction capability of a peptide depends on the presence of certain reducing amino acid residues, whose activity may be regulated by neighboring residues with different Au(0) binding strengths. Another finding is the effect of peptide net charge on the nucleation and growth of the Au nanoparticles. On the basis of these understandings, several multifunctional peptides were designed to synthesize gold nanoparticles in different morphologies (nanospheres and nanoplates) and with sizes tunable by the strategic placement of selected amino acid residues in the peptide sequence. The methodology presented here and the findings are useful for establishing the scientific basis for the rational design of peptides for the synthesis of metal nanostructures. PMID:20355728

  12. Carbon composites with metal nanoparticles for Alcohol fuel cells

    NASA Astrophysics Data System (ADS)

    Ventrapragada, Lakshman; Siddhardha, R. S.; Podilla, Ramakrishna; Muthukumar, V. S.; Creager, Stephen; Rao, A. M.; Ramamurthy, Sai Sathish

    2015-03-01

    Graphene due to its high surface area and superior conductivity has attracted wide attention from both industrial and scientific communities. We chose graphene as a substrate for metal nanoparticle deposition for fuel cell applications. There are many chemical routes for fabrication of metal-graphene composites, but they have an inherent disadvantage of low performance due to the usage of surfactants, that adsorb on their surface. Here we present a design for one pot synthesis of gold nanoparticles and simultaneous deposition on graphene with laser ablation of gold strip and functionalized graphene. In this process there are two natural advantages, the nanoparticles are synthesized without any surfactants, therefore they are pristine and subsequent impregnation on graphene is linker free. These materials are well characterized with electron microscopy to find their morphology and spectroscopic techniques like Raman, UV-Vis. for functionality. This gold nanoparticle decorated graphene composite has been tested for its electrocatalytic oxidation of alcohols for alkaline fuel cell applications. An electrode made of this composite showed good stability for more than 200 cycles of operation and reported a low onset potential of 100 mV more negative, an important factor for direct ethanol fuel cells.

  13. Tunable Optical Properties of Metal Nanoparticle Sol-Gel Composites

    NASA Technical Reports Server (NTRS)

    Smith, David D.; Snow, Lanee A.; Sibille, Laurent; Ignont, Erica

    2001-01-01

    We demonstrate that the linear and non-linear optical properties of sol-gels containing metal nanoparticles are highly tunable with porosity. Moreover, we extend the technique of immersion spectroscopy to inhomogeneous hosts, such as aerogels, and determine rigorous bounds for the average fractional composition of each component, i.e., the porosity of the aerogel, or equivalently, for these materials, the catalytic dispersion. Sol-gels containing noble metal nanoparticles were fabricated and a significant blue-shift in the surface plasmon resonance (SPR) was observed upon formation of an aerogel, as a result of the decrease in the dielectric constant of the matrix upon supercritical extraction of the solvent. However, as a result of chemical interface damping and aggregation this blue-shift does not strictly obey standard effective medium theories. Mitigation of these complications is achieved by avoiding the use of alcohol and by annealing the samples in a reducing atmosphere.

  14. Central nervous system toxicity of metallic nanoparticles

    PubMed Central

    Feng, Xiaoli; Chen, Aijie; Zhang, Yanli; Wang, Jianfeng; Shao, Longquan; Wei, Limin

    2015-01-01

    Nanomaterials (NMs) are increasingly used for the therapy, diagnosis, and monitoring of disease- or drug-induced mechanisms in the human biological system. In view of their small size, after certain modifications, NMs have the capacity to bypass or cross the blood–brain barrier. Nanotechnology is particularly advantageous in the field of neurology. Examples may include the utilization of nanoparticle (NP)-based drug carriers to readily cross the blood–brain barrier to treat central nervous system (CNS) diseases, nanoscaffolds for axonal regeneration, nanoelectromechanical systems in neurological operations, and NPs in molecular imaging and CNS imaging. However, NPs can also be potentially hazardous to the CNS in terms of nano-neurotoxicity via several possible mechanisms, such as oxidative stress, autophagy, and lysosome dysfunction, and the activation of certain signaling pathways. In this review, we discuss the dual effect of NMs on the CNS and the mechanisms involved. The limitations of the current research are also discussed. PMID:26170667

  15. Metal nanoparticles with liquid-crystalline ligands: controlling nanoparticle superlattice structure and properties.

    PubMed

    Lewandowski, Wiktor; Wójcik, Michał; Górecka, Ewa

    2014-05-19

    Nanoparticle ordered aggregates are promising candidates for future application in a variety of sensing, optical and electronic technologies, mainly based on collective interactions between individual nano-building blocks. Physicochemical properties of such assemblies depend on nanoparticle spacing, therefore a lot of effort throughout the last years was put on development of assembly methods allowing control over aggregates structure. In this minireview we describe efficient self-assembly process based on the utilization of liquid-crystalline ligands grafted onto nanoparticle surface. We show strategies used to synthesize liquid-crystalline nanoparticles as well as discuss parameters influencing structural and thermal characteristic of aggregates. It is also demonstrated that the liquid-crystalline approach offers access to dynamic self-assembly and metamaterials with anisotropic plasmonic properties, which makes this strategy unique among others. PMID:24789440

  16. Single metallic nanoparticle imaging for protein detection in cells

    PubMed Central

    Cognet, L.; Tardin, C.; Boyer, D.; Choquet, D.; Tamarat, P.; Lounis, B.

    2003-01-01

    We performed a visualization of membrane proteins labeled with 10-nm gold nanoparticles in cells, using an all-optical method based on photothermal interference contrast. The high sensitivity of the method and the stability of the signals allows 3D imaging of individual nanoparticles without the drawbacks of photobleaching and blinking inherent to fluorescent markers. A simple analytical model is derived to account for the measurements of the signal amplitude and the spatial resolution. The photothermal interference contrast method provides an efficient, reproducible, and promising way to visualize low amounts of proteins in cells by optical means. PMID:13679586

  17. Functional Application of Noble Metal Nanoparticles In Situ Synthesized on Ramie Fibers

    NASA Astrophysics Data System (ADS)

    Tang, Bin; Yao, Ya; Li, Jingliang; Qin, Si; Zhu, Haijin; Kaur, Jasjeet; Chen, Wu; Sun, Lu; Wang, Xungai

    2015-09-01

    Different functions were imparted to ramie fibers through treatment with noble metal nanoparticles including silver and gold nanoparticles. The in situ synthesis of silver and gold nanoparticles was achieved by heating in the presence of ramie fibers in the corresponding solutions of precursors. The unique optical property of synthesized noble metal nanoparticles, i.e., localized surface plasmon resonance, endowed ramie fibers with bright colors. Color strength (K/S) of fibers increased with heating temperature. Silver nanoparticles were obtained in alkaline solution, while acidic condition was conducive to gold nanoparticles. The optical properties of treated ramie fibers were investigated using UV-vis absorption spectroscopy. Scanning electron microscopy (SEM) was employed to observe the morphologies of silver and gold nanoparticles in situ synthesized on fibers. The ramie fibers treated with noble metal nanoparticles showed remarkable catalytic activity for reduction of 4-nitrophenol (4-NP) by sodium borohydride. Moreover, the silver nanoparticle treatment showed significant antibacterial property on ramie fibers.

  18. Interrogating Circulating Microsomes and Exosomes Using Metal Nanoparticles.

    PubMed

    Zhou, Yi-Ge; Mohamadi, Reza M; Poudineh, Mahla; Kermanshah, Leyla; Ahmed, Sharif; Safaei, Tina Saberi; Stojcic, Jessica; Nam, Robert K; Sargent, Edward H; Kelley, Shana O

    2016-02-10

    A chip-based approach for electrochemical characterization and detection of microsomes and exosomes based on direct electro-oxidation of metal nanoparticles (MNPs) that specifically recognize surface markers of these vesicles is reported. It is found that exosomes and microsomes derived from prostate cancer cells can be identified by their surface proteins EpCAM and PSMA, suggesting the potential of exosomes and microsomes for use as diagnostic biomarkers. PMID:26707703

  19. Light-scattering Characteristics of Metal Nanoparticles on a Single Bacterial Cell.

    PubMed

    Kinoshita, Takamasa; Kiso, Keita; LE, Dung Q; Shiigi, Hiroshi; Nagaoka, Tsutomu

    2016-01-01

    Metal nanoparticles express unique light-scattering characteristics based on the localized surface plasmon resonance, which depends on the metal species, particle size, and aggregation state of the nanoparticles. Therefore, we focused on the light-scattering characteristics of metal nanoparticles, such as silver, gold, and copper oxide, adsorbed on a bacterium. Monodisperse silver nanoparticles expressed the strongest scattered light among them, and showed various colors of scattered light. Although a monodisperse gold nanoparticle produced monochromatic light (green color), the color of the scattered light strongly depended on the aggregation state of the nanoparticles on a bacterium. On the other hand, copper oxide nanoparticles expressed monochromatic light (blue color), regardless of their aggregation states on a bacterium. We examined details concerning the light-scattering characteristics of metal nanoparticles, and discussed the possibility of their applications to bacterial cell imaging. PMID:26960609

  20. Surface modification by metal ion implantation forming metallic nanoparticles in an insulating matrix

    NASA Astrophysics Data System (ADS)

    Salvadori, M. C.; Teixeira, F. S.; Sgubin, L. G.; Cattani, M.; Brown, I. G.

    2014-08-01

    There is special interest in the incorporation of metallic nanoparticles in a surrounding dielectric matrix for obtaining composites with desirable characteristics such as for surface plasmon resonance, which can be used in photonics and sensing, and controlled surface electrical conductivity. We have investigated nanocomposites produced by metal ion implantation into insulating substrates, where the implanted metal self-assembles into nanoparticles. The nanoparticles nucleate near the maximum of the implantation depth profile (projected range), which can be estimated by computer simulation using the TRIDYN code. TRIDYN is a Monte Carlo simulation program based on the TRIM (Transport and Range of Ions in Matter) code that takes into account compositional changes in the substrate due to two factors: previously implanted dopant atoms, and sputtering of the substrate surface. Our study show that the nanoparticles form a bidimentional array buried a few nanometers below the substrate surface. We have studied Au/PMMA (polymethylmethacrylate), Pt/PMMA, Ti/alumina and Au/alumina systems. Transmission electron microscopy of the implanted samples show that metallic nanoparticles form in the insulating matrix. These nanocomposites have been characterized by measuring the resistivity of the composite layer as a function of the implantation dose. The experimental results are compared with a model based on percolation theory, in which electron transport through the composite is explained by conduction through a random resistor network formed by the metallic nanoparticles. Excellent agreement is found between the experimental results and the predictions of the theory. We conclude in that the conductivity process is due only to percolation (when the conducting elements are in geometric contact) and that the contribution from tunneling conduction is negligible.

  1. Dynamic manipulation and separation of individual semiconducting and metallic nanowires

    PubMed Central

    Jamshidi, Arash; Pauzauskie, Peter J.; Schuck, P. James; Ohta, Aaron T.; Chiou, Pei-Yu; Chou, Jeffrey; Yang, Peidong; Wu, Ming C.

    2009-01-01

    The synthesis of nanowires has advanced in the last decade to a point where a vast range of insulating, semiconducting, and metallic materials1 are available for use in integrated, heterogeneous optoelectronic devices at nanometer scales 2. However, a persistent challenge has been the development of a general strategy for the manipulation of individual nanowires with arbitrary composition. Here we report that individual semiconducting and metallic nanowires with diameters below 20 nm, are addressable with forces generated by optoelectronic tweezers (OET) 3. Using 100,000× less optical power density than optical tweezers, OET is capable of transporting individual nanowires with speeds 4× larger than maximum speeds achieved by optical tweezers. A real-time array of silver nanowires is formed using photopatterned virtual-electrodes, demonstrating the potential for massively parallel assemblies. Furthermore, OET enables the separation of semiconducting and metallic nanowires, suggesting a broad range of applications for the separation and heterogenous integration of one-dimensional nanoscale materials. PMID:19789729

  2. Investigation of metal hydride nanoparticles templated in metal organic frameworks.

    SciTech Connect

    Jacobs, Benjamin W.; Herberg, Julie L.; Highley, Aaron M.; Grossman, Jeffrey; Wagner, Lucas; Bhakta, Raghu; Peaslee, D.; Allendorf, Mark D.; Liu, X.; Behrens, Richard, Jr.; Majzoub, Eric H.

    2010-11-01

    Hydrogen is proposed as an ideal carrier for storage, transport, and conversion of energy. However, its storage is a key problem in the development of hydrogen economy. Metal hydrides hold promise in effectively storing hydrogen. For this reason, metal hydrides have been the focus of intensive research. The chemical bonds in light metal hydrides are predominantly covalent, polar covalent or ionic. These bonds are often strong, resulting in high thermodynamic stability and low equilibrium hydrogen pressures. In addition, the directionality of the covalent/ionic bonds in these systems leads to large activation barriers for atomic motion, resulting in slow hydrogen sorption kinetics and limited reversibility. One method for enhancing reaction kinetics is to reduce the size of the metal hydrides to nano scale. This method exploits the short diffusion distances and constrained environment that exist in nanoscale hydride materials. In order to reduce the particle size of metal hydrides, mechanical ball milling is widely used. However, microscopic mechanisms responsible for the changes in kinetics resulting from ball milling are still being investigated. The objective of this work is to use metal organic frameworks (MOFs) as templates for the synthesis of nano-scale NaAlH4 particles, to measure the H2 desorption kinetics and thermodynamics, and to determine quantitative differences from corresponding bulk properties. Metal-organic frameworks (MOFs) offer an attractive alternative to traditional scaffolds because their ordered crystalline lattice provides a highly controlled and understandable environment. The present work demonstrates that MOFs are stable hosts for metal hydrides and their reactive precursors and that they can be used as templates to form metal hydride nanoclusters on the scale of their pores (1-2 nm). We find that using the MOF HKUST-1 as template, NaAlH4 nanoclusters as small as 8 formula units can be synthesized inside the pores. A detailed picture of

  3. Rapid laser sintering of metal nano-particles inks

    NASA Astrophysics Data System (ADS)

    Ermak, Oleg; Zenou, Michael; Bernstein Toker, Gil; Ankri, Jonathan; Shacham-Diamand, Yosi; Kotler, Zvi

    2016-09-01

    Fast sintering is of importance in additive metallization processes and especially on sensitive substrates. This work explores the mechanisms which set limits to the laser sintering rate of metal nano-particle inks. A comparison of sintering behavior of three different ink compositions with laser exposure times from micro-seconds to seconds reveals the dominant factor to be the organic content (OC) in the ink. With a low OC silver ink, of 2% only, sintering time falls below 100 μs with resistivity <×4 bulk silver. Still shorter exposure times result in line delamination and deformation with a similar outcome when the OC is increased.

  4. Hydride formation in core-shell alloyed metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhdanov, Vladimir P.

    2016-07-01

    The model and analysis presented are focused on hydride formation in nanoparticles with a Pd shell and a core formed by another metal. The arrangement of metal atoms is assumed to be coherent (no dislocations). The lattice strain distribution, elastic energy, and chemical potential of hydrogen atoms are scrutinized. The slope of the chemical potential (as a function of hydrogen uptake) is demonstrated to decrease with increasing the core volume, and accordingly the critical temperature for hydride formation and the corresponding hysteresis loops are predicted to decrease as well.

  5. Rapid laser sintering of metal nano-particles inks.

    PubMed

    Ermak, Oleg; Zenou, Michael; Toker, Gil Bernstein; Ankri, Jonathan; Shacham-Diamand, Yosi; Kotler, Zvi

    2016-09-23

    Fast sintering is of importance in additive metallization processes and especially on sensitive substrates. This work explores the mechanisms which set limits to the laser sintering rate of metal nano-particle inks. A comparison of sintering behavior of three different ink compositions with laser exposure times from micro-seconds to seconds reveals the dominant factor to be the organic content (OC) in the ink. With a low OC silver ink, of 2% only, sintering time falls below 100 μs with resistivity <×4 bulk silver. Still shorter exposure times result in line delamination and deformation with a similar outcome when the OC is increased. PMID:27514079

  6. Electronic temperature effects on the optical response of metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Faramarzi, Sh.

    2006-09-01

    At the present work we study the optical properties of spherical nanometals by Lindhard's quantum theory for the electron gas and then there is a theoretical study aiming at understanding the role of the electronic temperature on the optical response of simple metal clusters as the nanoparticles. The electronic temperature dependence of the optical response of simple metal clusters is investigated by many different quantum mechanical theories. The longitudinal and transverse dielectric functions are the most important quantities of a quantum many- electron system which are calculated at the present work.

  7. Unveiling the chemistry behind the green synthesis of metal nanoparticles.

    PubMed

    Santos, Sónia A O; Pinto, Ricardo J B; Rocha, Sílvia M; Marques, Paula A A P; Pascoal Neto, Carlos; Silvestre, Armando J D; Freire, Carmen S R

    2014-09-01

    Nanobiotechnology has emerged as a fundamental domain in modern science, and metallic nanoparticles (NPs) are one of the largest classes of NPs studied because of their wide spectrum of possible applications in several fields. The use of plant extracts as reducing and stabilizing agents in their synthesis is an interesting and reliable alternative to conventional methodologies. However, the role of the different components of such extracts in the reduction/stabilization of metal ions has not yet been understood clearly. Here we studied the behavior of the main components of a Eucalyptus globulus Labill. bark aqueous extract during metal-ion reduction followed by advanced chromatographic techniques, which allowed us to establish their specific role in the process. The obtained results showed that phenolic compounds, particularly galloyl derivatives, are mainly responsible for the metal-ion reduction, whereas sugars are essentially involved in the stabilization of the NPs. PMID:25088383

  8. Optical studies of ion-beam synthesized metal alloy nanoparticles

    SciTech Connect

    Magudapathy, P. Srivatsava, S. K.; Gangopadhyay, P.; Amirthapandian, S.; Sairam, T. N.; Panigrahi, B. K.

    2015-06-24

    Au{sub x}Ag{sub 1-x} alloy nanoparticles with tunable surface plasmon resonance (SPR) have been synthesized on a silica glass substrate. A small Au foil on an Ag foil is irradiated as target substrates such that ion beam falls on both Ag foil and Au foils. Silica slides are kept at an angle ∼45° with respect to the metallic foils. While irradiating the metallic foils with 100 keV Ar{sup +} ions, sputtered Au and Ag atoms get deposited on the silica-glass. In this configuration the foils have been irradiated by Ar{sup +} ions to various fluences at room temperature and the sputtered species are collected on silica slides. Formation of Au{sub x}Ag{sub 1-x} nanoparticles has been confirmed from the optical absorption measurements. With respect to the exposure area of Au and Ag foils to the ion beam, the SPR peak position varies from 450 to 500 nm. Green photoluminescence has been observed from these alloy metal nanoparticles.

  9. Formation of oriented nanostructures in diamond using metallic nanoparticles.

    PubMed

    Mehedi, H-A; Hebert, C; Ruffinatto, S; Eon, D; Omnes, F; Gheeraert, E

    2012-11-16

    A simple, fast and cost-effective etching technique to create oriented nanostructures such as pyramidal and cylindrical shaped nanopores in diamond membranes by self-assembled metallic nanoparticles is proposed. In this process, a diamond film is annealed with thin metallic layers in a hydrogen atmosphere. Carbon from the diamond surface is dissolved into nanoparticles generated from the metal film, then evacuated in the form of hydrocarbons and, consequently, the nanoparticles enter the crystal volume. In order to understand and optimize the etching process, the role of different parameters such as type of catalyst (Ni, Co, Pt, and Au), hydrogen gas, temperature and time of annealing, and microstructure of diamond (polycrystalline and nanocrystalline) were investigated. With this technique, nanopores with lateral sizes in the range of 10-100 nm, and as deep as about 600 nm, in diamond membranes were produced without any need for a lithography process, which opens the opportunities for fabricating porous diamond membranes for chemical sensing applications. PMID:23090452

  10. Thermoelectric Performance Enhancement by Surrounding Crystalline Semiconductors with Metallic Nanoparticles

    NASA Technical Reports Server (NTRS)

    Kim, Hyun-Jung; King, Glen C.; Park, Yeonjoon; Lee, Kunik; Choi, Sang H.

    2011-01-01

    Direct conversion of thermal energy to electricity by thermoelectric (TE) devices may play a key role in future energy production and utilization. However, relatively poor performance of current TE materials has slowed development of new energy conversion applications. Recent reports have shown that the dimensionless Figure of Merit, ZT, for TE devices can be increased beyond the state-of-the-art level by nanoscale structuring of materials to reduce their thermal conductivity. New morphologically designed TE materials have been fabricated at the NASA Langley Research Center, and their characterization is underway. These newly designed materials are based on semiconductor crystal grains whose surfaces are surrounded by metallic nanoparticles. The nanoscale particles are used to tailor the thermal and electrical conduction properties for TE applications by altering the phonon and electron transport pathways. A sample of bismuth telluride decorated with metallic nanoparticles showed less thermal conductivity and twice the electrical conductivity at room temperature as compared to pure Bi2Te3. Apparently, electrons cross easily between semiconductor crystal grains via the intervening metallic nanoparticle bridges, but phonons are scattered at the interfacing gaps. Hence, if the interfacing gap is larger than the mean free path of the phonon, thermal energy transmission from one grain to others is reduced. Here we describe the design and analysis of these new materials that offer substantial improvements in thermoelectric performance.

  11. Metal redox processes for the controlled synthesis of metal alloy nanoparticles.

    PubMed

    Kirkeminde, Alec; Spurlin, Stan; Draxler-Sixta, Laura; Cooper, Jamie; Ren, Shenqiang

    2015-03-27

    Nanocrystalline metals have received widespread interest and found various applications owing to their magnetic and catalytic properties and in energy-related fields. A flexible approach for the growth of nanoalloys with controlled properties and well-defined structures on the atomic scale is thus greatly desired. A new synthetic method that avoids incompatible reduction potentials and rates would be critical to grow metal nanostructures with high purities and the desired stoichiometries. A metal-redox strategy that employs spontaneous oxidation/reduction reactions to grow nanocrystalline alloys using molecular-scale zerovalent metal precursors is now described. The selection of suitable zerovalent metal species allows for thermodynamic control of the compositional stoichiometry during the temperature-dependent formation of the metal alloy nanoparticles. A practical and scalable strategy for nanoalloy growth that can potentially produce key metal components of superior metallurgical quality for catalytic and magnetic systems has thus been developed. PMID:25651105

  12. Metal and Metal Carbide Nanoparticle Synthesis Using Electrical Explosion of Wires Coupled with Epoxide Polymerization Capping.

    PubMed

    Abdelkader, Elseddik M; Jelliss, Paul A; Buckner, Steven W

    2015-06-15

    In this study, metal-containing nanoparticles (NPs) were produced using electrical explosion of wires (EEW) in organic solvents. The explosion chamber was constructed from Teflon to withstand the shockwave, allow growth and reaction of the incipient NPs in various organic solvents containing dissolved ligands, and allow a constant flow of argon to maintain an inert environment. A survey of different transition d-block metals was conducted with metals from groups 4-8, affording metal carbide NPs, while metals from groups 9-12 gave elemental metallic NPs. Tungsten carbide phase WC1-x, which has not been previously isolated as a single-phase material, was exclusively formed during EEW. We used polymerization initiation by electron-rich metallic nanoparticles (PIERMEN) as a capping technique for the nascent NPs with an alkyl epoxide employed as the monomers. Transmission electron microscopy showed spherical particles with the metallic core embedded in a polymer matrix with predominantly smaller particles (<50 nm), but also a broad size distribution with some larger particles (>100 nm). Powder X-ray diffraction (PXRD) was used to confirm the identity of the metallic NPs. The capping agents were characterized using ATR-FTIR spectroscopy. No evidence is observed for the formation of crystalline oxides during EEW for any metals used. Differential scanning calorimetry/thermal gravimetric analysis was used to study the NP's behavior upon heating under an air flow up to 800 °C with the product oxides characterized by PXRD. The bifurcation between metal-carbide NPs and metal NPs correlates with the enthalpy of formation of the product carbides. We observed PIERMEN capping of elemental metal NPs only when the metal has negative standard electrode potentials (relative to a bis(biphenyl) chromium(I)/(0) reference electrode). PMID:26011064

  13. Templated Dry Printing of Conductive Metal Nanoparticles

    NASA Astrophysics Data System (ADS)

    Rolfe, David Alexander

    Printed electronics can lower the cost and increase the ubiquity of electrical components such as batteries, sensors, and telemetry systems. Unfortunately, the advance of printed electronics has been held back by the limited minimum resolution, aspect ratio, and feature fidelity of present printing techniques such as gravure, screen printing and inkjet printing. Templated dry printing offers a solution to these problems by patterning nanoparticle inks into templates before drying. This dissertation shows advancements in two varieties of templated dry nanoprinting. The first, advective micromolding in vapor-permeable templates (AMPT) is a microfluidic approach that uses evaporation-driven mold filling to create submicron features with a 1:1 aspect ratio. We will discuss submicron surface acoustic wave (SAW) resonators made through this process, and the refinement process in the template manufacturing process necessary to make these devices. We also present modeling techniques that can be applied to future AMPT templates. We conclude with a modified templated dry printing that improves throughput and isolated feature patterning by transferring dry-templated features with laser ablation. This method utilizes surface energy-defined templates to pattern features via doctor blade coating. Patterned and dried features can be transferred to a polymer substrate with an Nd:YAG MOPA fiber laser, and printed features can be smaller than the laser beam width.

  14. Faceted metal and metal oxide nanoparticles: design, fabrication and catalysis

    NASA Astrophysics Data System (ADS)

    Pal, Jaya; Pal, Tarasankar

    2015-08-01

    The review addresses new advances in metal, bimetallic, metal oxide, and composite particles in their nanoregime for facet-selective catalytic applications. The synthesis and growth mechanisms of the particles have been summarized in brief in this review with a view to develop critical examination of the faceted morphology of the particles for catalysis. The size, shape and composition of the particles have been found to be largely irrelevant in comparison to the nature of facets in catalysis. Thus selective high- and low-index facets have been found to selectively promote adsorption, which eventually leads to an effective catalytic reaction. As a consequence, a high density of atoms rest at the corners, steps, stages, kinks etc on the catalyst surface in order to host the adsorbate efficiently and catalyze the reaction. Again, surface atomic arrangement and bond length have been found to play a dominant role in adsorption, leading to effective catalysis.

  15. Faceted metal and metal oxide nanoparticles: design, fabrication and catalysis.

    PubMed

    Pal, Jaya; Pal, Tarasankar

    2015-09-14

    The review addresses new advances in metal, bimetallic, metal oxide, and composite particles in their nanoregime for facet-selective catalytic applications. The synthesis and growth mechanisms of the particles have been summarized in brief in this review with a view to develop critical examination of the faceted morphology of the particles for catalysis. The size, shape and composition of the particles have been found to be largely irrelevant in comparison to the nature of facets in catalysis. Thus selective high- and low-index facets have been found to selectively promote adsorption, which eventually leads to an effective catalytic reaction. As a consequence, a high density of atoms rest at the corners, steps, stages, kinks etc on the catalyst surface in order to host the adsorbate efficiently and catalyze the reaction. Again, surface atomic arrangement and bond length have been found to play a dominant role in adsorption, leading to effective catalysis. PMID:26255749

  16. Individual and competitive removal of heavy metals using capacitive deionization.

    PubMed

    Huang, Zhe; Lu, Lu; Cai, Zhenxiao; Ren, Zhiyong Jason

    2016-01-25

    This study presents the viability and preference of capacitive deionization (CDI) for removing different heavy metal ions in various conditions. The removal performance and mechanisms of three ions, cadmium (Cd(2+)), lead (Pb(2+)) and chromium (Cr(3+)) were investigated individually and as a mixture under different applied voltages and ion concentrations. It was found that CDI could effectively remove these metals, and the performance was positively correlated with the applied voltage. When 1.2 V was applied into solution containing 0.5mM individual ions, the Cd(2+), Pb(2+), and Cr(3+) removal was 32%, 43%, and 52%, respectively, and the electrosorption played a bigger role in Cd(2+) removal than for the other two ions. Interestingly, while the removal of Pb(2+) and Cr(3+) remained at a similar level of 46% in the mixture of three ions, the Cd(2+) removal significantly decreased to 14%. Similar patterns were observed when 0.05 mM was used to simulate natural contaminated water condition, but the removal efficiencies were much higher, with the removal of Pb(2+), Cr(3+), and Cd(2+) increased to 81%, 78%, and 42%, respectively. The low valence charge and lack of physical sorption of Cd(2+) were believed to be the reason for the removal behavior, and advanced microscopic analysis showed clear deposits of metal ions on the cathode surface after operation. PMID:26476320

  17. Resonances of nanoparticles with poor plasmonic metal tips.

    PubMed

    Ringe, Emilie; DeSantis, Christopher J; Collins, Sean M; Duchamp, Martial; Dunin-Borkowski, Rafal E; Skrabalak, Sara E; Midgley, Paul A

    2015-01-01

    The catalytic and optical properties of metal nanoparticles can be combined to create platforms for light-driven chemical energy storage and enhanced in-situ reaction monitoring. However, the heavily damped plasmon resonances of many catalytically active metals (e.g. Pt, Pd) prevent this dual functionality in pure nanostructures. The addition of catalytic metals at the surface of efficient plasmonic particles thus presents a unique opportunity if the resonances can be conserved after coating. Here, nanometer resolution electron-based techniques (electron energy loss, cathodoluminescence, and energy dispersive X-ray spectroscopy) are used to show that Au particles incorporating a catalytically active but heavily damped metal, Pd, sustain multiple size-dependent localized surface plasmon resonances (LSPRs) that are narrow and strongly localized at the Pd-rich tips. The resonances also couple with a dielectric substrate and other nanoparticles, establishing that the full range of plasmonic behavior is observed in these multifunctional nanostructures despite the presence of Pd. PMID:26617270

  18. Resonances of nanoparticles with poor plasmonic metal tips

    PubMed Central

    Ringe, Emilie; DeSantis, Christopher J.; Collins, Sean M.; Duchamp, Martial; Dunin-Borkowski, Rafal E.; Skrabalak, Sara E.; Midgley, Paul A.

    2015-01-01

    The catalytic and optical properties of metal nanoparticles can be combined to create platforms for light-driven chemical energy storage and enhanced in-situ reaction monitoring. However, the heavily damped plasmon resonances of many catalytically active metals (e.g. Pt, Pd) prevent this dual functionality in pure nanostructures. The addition of catalytic metals at the surface of efficient plasmonic particles thus presents a unique opportunity if the resonances can be conserved after coating. Here, nanometer resolution electron-based techniques (electron energy loss, cathodoluminescence, and energy dispersive X-ray spectroscopy) are used to show that Au particles incorporating a catalytically active but heavily damped metal, Pd, sustain multiple size-dependent localized surface plasmon resonances (LSPRs) that are narrow and strongly localized at the Pd-rich tips. The resonances also couple with a dielectric substrate and other nanoparticles, establishing that the full range of plasmonic behavior is observed in these multifunctional nanostructures despite the presence of Pd. PMID:26617270

  19. Removal of Trichloroethylene and Heavy Metals by Zerovalent Iron Nanoparticles

    NASA Astrophysics Data System (ADS)

    Boparai, H. K.; O'Carroll, D. M.

    2009-05-01

    Heavy metals combined with chlorinated solvents are one class of mixed waste found at various hazardous waste sites in North America. Nano zerovalent iron (nZVI), an emerging technology, is being successfully used for treating chlorinated solvents and heavy metals independently, however comparatively little research has investigated the remediation of the wastes when they are present in the same mixture. The remediation of trichloroethylene (TCE)/heavy metal waste mixtures via nZVI has been investigated in the present study. Results suggest that some metals are reduced by nZVI to their zerovalent state and thus precipitate on nZVI particles. This improves the contaminant removal performance of nZVI by forming bimetallic iron nanoparticles. Other metals are directly precipitated or adsorbed on the nZVI particles in their original oxidation state and are rendered immobile. In some cases the presence of the heavy metals in the waste mixture enhanced the dechlorination of TCE while in other cases it did not. This study suggests that nano zerovalent iron particles can be effectively used for the remediation of mixed contamination of heavy metals and chlorinated solvents. Results have been supported by a variety of techniques including X-ray photoelectron spectroscopy (XPS) analysis.

  20. Metal nanoparticle direct inkjet printing for low-temperature 3D micro metal structure fabrication

    NASA Astrophysics Data System (ADS)

    Ko, Seung Hwan; Chung, Jaewon; Hotz, Nico; Nam, Koo Hyun; Grigoropoulos, Costas P.

    2010-12-01

    Inkjet printing of functional materials is a key technology toward ultra-low-cost, large-area electronics. We demonstrate low-temperature 3D micro metal structure fabrication by direct inkjet printing of metal nanoparticles (NPs) as a versatile, direct 3D metal structuring approach representing an alternative to conventional vacuum deposition and photolithographic methods. Metal NP ink was inkjet-printed to exploit the large melting temperature drop of the nanomaterial and the ease of the NP ink formulation. Parametric studies on the basic conditions for stable 3D inkjet printing of NP ink were carried out. Furthermore, diverse 3D metal microstructures, including micro metal pillar arrays, helices, zigzag and micro bridges were demonstrated and electrical characterization was performed. Since the process requires low temperature, it carries substantial potential for fabrication of electronics on a plastic substrate.

  1. Monodisperse metal nanoparticle catalysts on silica mesoporous supports: synthesis, characterizations, and catalytic reactions

    SciTech Connect

    Somorjai, G.A.

    2009-09-14

    The design of high performance catalyst achieving near 100% product selectivity at maximum activity is one of the most important goals in the modern catalytic science research. To this end, the preparation of model catalysts whose catalytic performances can be predicted in a systematic and rational manner is of significant importance, which thereby allows understanding of the molecular ingredients affecting the catalytic performances. We have designed novel 3-dimensional (3D) high surface area model catalysts by the integration of colloidal metal nanoparticles and mesoporous silica supports. Monodisperse colloidal metal NPs with controllable size and shape were synthesized using dendrimers, polymers, or surfactants as the surface stabilizers. The size of Pt, and Rh nanoparticles can be varied from sub 1 nm to 15 nm, while the shape of Pt can be controlled to cube, cuboctahedron, and octahedron. The 3D model catalysts were generated by the incorporation of metal nanoparticles into the pores of mesoporous silica supports via two methods: capillary inclusion (CI) and nanoparticle encapsulation (NE). The former method relies on the sonication-induced inclusion of metal nanoparticles into the pores of mesoporous silica, whereas the latter is performed by the encapsulation of metal nanoparticles during the hydrothermal synthesis of mesoporous silica. The 3D model catalysts were comprehensively characterized by a variety of physical and chemical methods. These catalysts were found to show structure sensitivity in hydrocarbon conversion reactions. The Pt NPs supported on mesoporous SBA-15 silica (Pt/SBA-15) displayed significant particle size sensitivity in ethane hydrogenolysis over the size range of 1-7 nm. The Pt/SBA-15 catalysts also exhibited particle size dependent product selectivity in cyclohexene hydrogenation, crotonaldehyde hydrogenation, and pyrrole hydrogenation. The Rh loaded SBA-15 silica catalyst showed structure sensitivity in CO oxidation reaction. In

  2. Nanoparticles reduce nickel allergy by capturing metal ions.

    PubMed

    Vemula, Praveen Kumar; Anderson, R Rox; Karp, Jeffrey M

    2011-05-01

    Approximately 10% of the population in the USA suffer from nickel allergy, and many are unable to wear jewellery or handle coins and other objects that contain nickel. Many agents have been developed to reduce the penetration of nickel through skin, but few formulations are safe and effective. Here, we show that applying a thin layer of glycerine emollient containing nanoparticles of either calcium carbonate or calcium phosphate on an isolated piece of pig skin (in vitro) and on the skin of mice (in vivo) prevents the penetration of nickel ions into the skin. The nanoparticles capture nickel ions by cation exchange, and remain on the surface of the skin, allowing them to be removed by simple washing with water. Approximately 11-fold fewer nanoparticles by mass are required to achieve the same efficacy as the chelating agent ethylenediamine tetraacetic acid. Using nanoparticles with diameters smaller than 500 nm in topical creams may be an effective way to limit the exposure to metal ions that can cause skin irritation. PMID:21460828

  3. Nanoparticles reduce nickel allergy by capturing metal ions

    NASA Astrophysics Data System (ADS)

    Vemula, Praveen Kumar; Anderson, R. Rox; Karp, Jeffrey M.

    2011-05-01

    Approximately 10% of the population in the USA suffer from nickel allergy, and many are unable to wear jewellery or handle coins and other objects that contain nickel. Many agents have been developed to reduce the penetration of nickel through skin, but few formulations are safe and effective. Here, we show that applying a thin layer of glycerine emollient containing nanoparticles of either calcium carbonate or calcium phosphate on an isolated piece of pig skin (in vitro) and on the skin of mice (in vivo) prevents the penetration of nickel ions into the skin. The nanoparticles capture nickel ions by cation exchange, and remain on the surface of the skin, allowing them to be removed by simple washing with water. Approximately 11-fold fewer nanoparticles by mass are required to achieve the same efficacy as the chelating agent ethylenediamine tetraacetic acid. Using nanoparticles with diameters smaller than 500 nm in topical creams may be an effective way to limit the exposure to metal ions that can cause skin irritation.

  4. Functionalized magnetite particles for adsorption of colloidal noble metal nanoparticles.

    PubMed

    Lopes, Joana L; Marques, Karine L; Girão, Ana V; Pereira, Eduarda; Trindade, Tito

    2016-08-01

    Magnetite (inverse spinel type) particles have been surface-modified with siliceous shells enriched in dithiocarbamate groups. The deposition of colloidal noble metal nanoparticles (Au, Ag, Pt, Pd) onto the modified magnetites can be performed by treating the respective hydrosols with the magnetic sorbents, thus allowing their uptake from water under a magnetic gradient. In particular, for Au colloids, these magnetic particles are very efficient sorbents that we ascribe to the strong affinity of sulfur-containing groups at the magnetite surfaces for this metal. Considering the extensive use of Au colloids in laboratorial and industrial contexts, the approach described here might have an impact on the development of nanotechnologies to recover this precious metal. En route to these findings, we varied several operational parameters in order to investigate this strategy as a new bottom-up assembly method for producing plasmonic-magnetic nanoassemblies. PMID:27156089

  5. Metal-Enhanced Fluorescence: Ultrafast Energy Transfer from Dyes in a Polymer Film to Metal Nanoparticles.

    PubMed

    Lee, Jaebeom; Pang, Yoonsoo

    2016-02-01

    Fluorescence from dye molecules dispersed in thin polymer layers increases by 20-25 times when a silver island film exists beneath the layer. Polymer layers of <100 nm thick cover the silver island film to minimize emission quenching from direct contact and also keep the dye molecules in close proximity to the metal nanosurface for possible fluorescence enhancements by silver island film. We report an ultrafast radiation process of ~400 ps lifetime from the surface plasmons of silver nanoparticles observed in time-resolved fluorescence of rhodamine 6G and DCM in thin polymer films coated on silver island surface. The ultrafast energy transfer and fluorescence from metal nanoparticles might be strongly related to the efficiency of metal-enhanced fluorescence. PMID:27433635

  6. Oil Phase Evaporation Induced Self-Assembly of Hydrophobic Nanoparticles into Spherical Clusters with Controlled Surface Chemistry in an Oil-in-Water Dispersion and Comparison of Behaviors of Individual and Clustered Iron Oxide Nanoparticles

    PubMed Central

    Qiu, Penghe; Jensen, Christina; Charity, Njoku; Towner, Rheal; Mao, Chuanbin

    2010-01-01

    We report a general method for preparing nanoparticle clusters (NPCs) in an oil-in-water emulsion system mediated by cetyl trimethylammonium bromide (CTAB) where previously, only individual nanoparticles were obtained. NPCs of magnetic, metallic and semiconductor nanoparticles have been prepared to demonstrate the generality of the method. The NPCs were spherical and composed of densely packed individual nanoparticles. The number density of nanoparticles in the oil phase was found to be critical for the formation, morphology and yield of NPCs. The method developed here is scalable and can produce NPCs in nearly 100% yield at a concentration of 5 mg/ml in water which is approximately 5 times higher than the highest value reported in literature. The surface chemistry of NPCs can also be controlled by replacing CTAB with polymers containing different functional groups via a similar procedure. The reproducible production of NPCs with well defined shapes has allowed us to compare the properties of individual and clustered iron oxide nanoparticles including magnetization, magnetic moments and contrast enhancement in magnetic resonance imaging (MRI). We found that due to their collective properties, NPCs are more responsive to an external magnetic field and can potentially serve as better contrast enhancement agents than individually dispersed magnetic NPs in MRI. PMID:21117657

  7. Checking the Biocompatibility of Plant-Derived Metallic Nanoparticles: Molecular Perspectives.

    PubMed

    Das, Ratul Kumar; Brar, Satinder Kaur; Verma, Mausam

    2016-06-01

    Understanding the biocompatibility of metallic nanoparticles (MNPs) is pivotal for biomedical applications. The biocompatibility of plant-derived MNPs has been mostly attributed to capped plant molecules. This claim seems to be straightforward but lacks conclusive evidence. The capped phytochemicals and the metallic core might have decisive and individual roles in imparting the overall biocompatibility. Whether capped phytochemicals really make sense in diminishing the toxicity effect of the otherwise naked or metallic core needs further analysis. Here, we readdress the biocompatibility of plant-derived MNPs with references to contemporary cellular assays, different reactants for green synthesis, possible epigenetic involvement, and nanobiocompatibility at the molecular level. Finally, we discuss relevant in vivo studies and large-scale production issues. PMID:26948438

  8. Plasmonic transparent conducting metal oxide nanoparticles and nanoparticle films for optical sensing applications

    SciTech Connect

    Ohodnicki, Paul R; Wang, Congjun; Andio, Mark

    2013-07-31

    The ability to monitor gas species selectively, sensitively, and reliably in extreme temperatures and harsh conditions is critically important for more efficient energy production using conventional fossil energy based production technologies, enabling advanced technologies for fossil based power plants of the future, and improving efficiency in domestic manufacturing industries. Optical waveguide based sensing platforms have become increasingly important but a need exists for materials that exhibit useful changes in optical properties in response to changing gas atmospheres at high temperatures. In this manuscript, the onset of a near-IR absorption associated with an increase in free carrier density in doped metal oxide nanoparticles to form so-called conducting metal oxides is discussed in the context of results obtained for undoped and Al-doped ZnO nanoparticle based films. Detailed film characterization results are presented along with measured changes in optical absorption resulting from various high temperature treatments in a range of gas atmospheres. Optical property changes are also discussed in the context of a simple model for optical absorption in conducting metal oxide nanoparticles and thin films. The combination of experimental results and theoretical modeling presented here suggests that such materials have potential for high temperature optical gas sensing applications. Simulated sensing experiments were performed at 500 °C and a useful, rapid, and reproducible near-IR optical sensing response to H{sub 2} confirms that this class of materials shows great promise for optical gas sensing.

  9. Fabrication of Metal and Metal Oxide Nanoparticles by Algae and their Toxic Effects.

    PubMed

    Siddiqi, Khwaja Salahuddin; Husen, Azamal

    2016-12-01

    Of all the aquatic organisms, algae are a good source of biomolecules. Since algae contain pigments, proteins, carbohydrates, fats, nucleic acids and secondary metabolites such as alkaloids, some aromatic compounds, macrolides, peptides and terpenes, they act as reducing agents to produce nanoparticles from metal salts without producing any toxic by-product. Once the algal biomolecules are identified, the nanoparticles of desired shape or size may be fabricated. The metal and metal oxide nanoparticles thus synthesized have been investigated for their antimicrobial activity against several gram-positive and gram-negative bacterial strains and fungi. Their dimension is controlled by temperature, incubation time, pH and concentration of the solution. In this review, we have attempted to update the procedure of nanoparticle synthesis from algae, their characterization by UV-vis, Fourier transform infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, x-ray diffraction, energy-dispersive x-ray spectroscopy, dynamic light scattering and application in cutting-edge areas. PMID:27530743

  10. Response of soil bacterial community to metal nanoparticles in biosolids.

    PubMed

    Shah, Vishal; Jones, Jamilee; Dickman, Jenifer; Greenman, Steven

    2014-06-15

    The increasing use of engineered nanoparticles (NPs) in industrial and household applications will very likely lead to the increased release of such materials into the public sewer systems. During the wastewater treatment process, some fraction of NPs would always be concentrated in the biosolids. When biosolids is applied on the agricultural land, NPs are introduced into the soil matrix. In the current study we investigate the influence of five different metal nanoparticles present in biosolids on soil microbial community as a function of time. Results indicate that ZnO and Zero Valent Cu NPs were not toxic to soil bacterial community. Biosolids mixed with Ag NPs and TiO2 (both anatase and rutile phase) in contrast changed the bacterial richness and composition in wavering pattern as a function of time. Based on the observations made in the study, we suggest caution when interpreting the toxicity of NPs based on single time point study. PMID:24801897

  11. Organic nano-floating-gate transistor memory with metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Van Tho, Luu; Baeg, Kang-Jun; Noh, Yong-Young

    2016-04-01

    Organic non-volatile memory is advanced topics for various soft electronics applications as lightweight, low-cost, flexible, and printable solid-state data storage media. As a key building block, organic field-effect transistors (OFETs) with a nano-floating gate are widely used and promising structures to store digital information stably in a memory cell. Different types of nano-floating-gates and their various synthesis methods have been developed and applied to fabricate nanoparticle-based non-volatile memory devices. In this review, recent advances in the classes of nano-floating-gate OFET memory devices using metal nanoparticles as charge-trapping sites are briefly reviewed. Details of device fabrication, characterization, and operation mechanisms are reported based on recent research activities reported in the literature.

  12. Few-cycle plasmon oscillations controlling photoemission from metal nanoparticles

    SciTech Connect

    Földi, Péter; Márton, István; Német, Nikolett; Dombi, Péter; Ayadi, Viktor

    2015-01-05

    Few-cycle optical excitation of nanosystems holds promise of fundamental discoveries and applications in ultrafast nanoscience, the development of nanostructured photocathodes, and many more. For these, surface plasmon generation on unprecedented timescales needs to be controlled. For this, few-cycle plasmon oscillations on a metal nanoparticle can be generated by keeping considerable electric field enhancement factors. As an initial application of such a high spatiotemporal localization of an ultrashort laser pulse, we numerically demonstrate the control of photoelectrons on a true sub-fs timescale in nanometric spatial domains. We show that it is only off-resonant nanoparticles that can provide few-cycle plasmons and electron control on this timescale.

  13. Synthesis of supported metal nanoparticle catalysts using ligand assisted methods.

    PubMed

    Costa, Natalia J S; Rossi, Liane M

    2012-09-28

    The synthesis and characterization methods of metal nanoparticles (NPs) have advanced greatly in the last few decades, allowing an increasing understanding of structure-property-performance relationships. However, the role played by the ligands used as stabilizers for metal NPs synthesis or for NPs immobilization on solid supports has been underestimated. Here, we highlight some recent progress in the preparation of supported metal NPs with the assistance of ligands in solution or grafted on solid supports, a modified deposition-reduction method, with special attention to the effects on NPs size, metal-support interactions and, more importantly, catalytic activities. After presenting the general strategies in metal NP synthesis assisted by ligands grafted on solid supports, we highlight some recent progress in the deposition of pre-formed colloidal NPs on functionalized solids. Another important aspect that will be reviewed is related to the separation and recovery of NPs. Finally, we will outline our personal understanding and perspectives on the use of supported metal NPs prepared through ligand-assisted methods. PMID:22915064

  14. Apoferritin Templated Synthesis of Metal Phosphate Nanoparticle Labels for Electrochemical Immunoassay

    SciTech Connect

    Liu, Guodong; Wu, Hong; Wang, Jun; Lin, Yuehe

    2006-08-29

    W have introduced template-synthesized metal phosphate nanoparticle labels for electrochemical immunoassay. Such use of an apoferritin template offers a simple and convenient route to prepare metallic nanoparticle labels for electrochemical immunoassays and avoid the complicated and time-consuming nanoparticle synthesis process (QD synthesis). Releasing metal ions from metal phosphate in an acetate buffer (pH 4.6) eliminates the harsh condition in the traditional metallic nanoparticle dissolution (e.g., strong acid dissolution of QDs and gold nanoparticles). This method is ultrasensitive and its DL is low to 77fM. The simultaneous detection of multiple protein targets is easily performed by using different metal phosphate nanoparticle labels (cadmium phosphate and lead phosphate). This approach can be extended to prepare multiple metal (such as zinc, lead, cadmium, copper, indium, gold, silver) phosphate nanoparticle labels or hybrid metal (bimetallic or trimetallic with predetermined ratios) phosphate nanoparticle labels for a multiplex electrochemical immunoassay. The new nanoparticle labels could be applicable to other electrochemical bioassays, such as DNA, and is thus expected to lead to wide applications for protein diagnostics and for bioanalysis in general.

  15. Optical scattering from isolated metal nanoparticles and arrays.

    SciTech Connect

    Wurtz, G. A.; Im, J. S.; Gray, S. K.; Wiederrecht, G. P.; Chemistry

    2003-12-25

    Near-field scanning optical microscopy (NSOM) is used to explore the optical scattering from isolated metal nanoparticles (MNPs) and arrays of MNPs. The optical excitation source is an evanescent wave created through total internal reflection of a continuous wave laser beam at the sample-air interface. For optical excitation of isolated Ag and Au MNPs, experimental results show that the scattered light propagates into the far field at an angle of 19{sup o} from the substrate. Finite-difference time-domain (FDTD) calculations are used to study simpler but related metallic nanowire systems under evanescent wave excitation. The FDTD results are found to be similar to the experimental results, indicating the generality of the scattering phenomenon. NSOM characterization of plasmonic arrays that consist of closely spaced Ag MNPs are subsequently reported. Confined optical signals within the array are observed along with a reduction in the far-field scattered signal. Simultaneous collection of the atomic force microscopy signal and near-field signals also shows that the spatial distribution of the near-field is strongly modified in the arrays compared to isolated MNPs. FDTD studies on arrays of nanowires also show large differences from the isolated metal nanoparticle calculations, including a decrease in the forward scattered angle (with chain length) and diminished overall forward scattering.

  16. Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications.

    PubMed

    Murphy, Catherine J; Sau, Tapan K; Gole, Anand M; Orendorff, Christopher J; Gao, Jinxin; Gou, Linfeng; Hunyadi, Simona E; Li, Tan

    2005-07-28

    This feature article highlights work from the authors' laboratories on the synthesis, assembly, reactivity, and optical applications of metallic nanoparticles of nonspherical shape, especially nanorods. The synthesis is a seed-mediated growth procedure, in which metal salts are reduced initially with a strong reducing agent, in water, to produce approximately 4 nm seed particles. Subsequent reduction of more metal salt with a weak reducing agent, in the presence of structure-directing additives, leads to the controlled formation of nanorods of specified aspect ratio and can also yield other shapes of nanoparticles (stars, tetrapods, blocks, cubes, etc.). Variations in reaction conditions and crystallographic analysis of gold nanorods have led to insight into the growth mechanism of these materials. Assembly of nanorods can be driven by simple evaporation from solution or by rational design with molecular-scale connectors. Short nanorods appear to be more chemically reactive than long nanorods. Finally, optical applications in sensing and imaging, which take advantage of the visible light absorption and scattering properties of the nanorods, are discussed. PMID:16852739

  17. Orientation-Preserving Transfer and Directional Light Scattering from Individual Light-Bending Nanoparticles

    SciTech Connect

    Zhang, Yu; Barhoumi, Aoune; Lassiter, J. Britt; Halas, Naomi J.

    2011-04-13

    A nanocup, or semishell, is an asymmetric plasmonic “Janus” nanoparticle with electric and magnetic plasmon modes; the latter scatters light in a direction controlled by nanoparticle orientation, making it the nanoscale analog of a parabolic antenna. Here we report a method for transferring nanocups from their growth substrate to oxide-terminated substrates that precisely preserves their three-dimensional orientation, enabling their use as nanophotonic components. This enables us to selectively excite and probe the electric and magnetic plasmon modes of individual nanocups, showing how the scattered light depends on the direction of incoming light and the orientation of this nanoparticle antenna.

  18. Nanoparticles of noble metals in the supergene zone

    NASA Astrophysics Data System (ADS)

    Zhmodik, S. M.; Kalinin, Yu. A.; Roslyakov, N. A.; Mironov, A. G.; Mikhlin, Yu. L.; Belyanin, D. K.; Nemirovskaya, N. A.; Spiridonov, A. M.; Nesterenko, G. V.; Airiyants, E. V.; Moroz, T. N.; Bul'bak, T. A.

    2012-04-01

    Formation of noble metal nanoparticles is related to various geological processes in the supergene zone. Dispersed mineral phases appear during weathering of rocks with active participation of microorganisms, formation of soil, in aqueous medium and atmosphere. Invisible gold and other noble metals are incorporated into oxides, hydroxides, and sulfides, as well as in dispersed organic and inorganic carbonic matter. Sulfide minerals that occur in bedrocks and ores unaltered by exogenic processes and in cementation zone are among the main concentrators of noble metal nanoparticles. The ability of gold particles to disaggregate is well-known and creates problems in technological and analytical practice. When Au and PGE nanoparticles and clusters occur, these problems are augmented because of their unusual reactions and physicochemical properties. The studied gold, magnetite, titanomagnetite and pyrite microspherules from cementation zone and clay minerals of laterites in Republic of Guinea widen the knowledge of their abundance and inferred formation conditions, in particular, in the contemporary supergene zone. Morphology and composition of micrometer-sized Au mineral spherules were studied with SEM and laser microprobe. The newly formed segregations of secondary gold on the surface of its residual grains were also an object of investigation. The character of such overgrowths is the most indicative for nanoparticles. The newly formed Au particles provide evidence for redistribution of ultradispersed gold during weathering. There are serious prerequisites to state that microorganisms substantially control unusual nano-sized microspherical morphology of gold particles in the supergene zone. This is supported by experiments indicating active absorption of gold by microorganisms and direct evidence for participation of Ralstonia metallidurans bacteria in the formation of peculiar corroded bacteriomorphic surface of gold grains. In addition, the areas enriched in carbon

  19. Pronounced Linewidth Narrowing of an Aluminum Nanoparticle Plasmon Resonance by Interaction with an Aluminum Metallic Film.

    PubMed

    Sobhani, Ali; Manjavacas, Alejandro; Cao, Yang; McClain, Michael J; García de Abajo, F Javier; Nordlander, Peter; Halas, Naomi J

    2015-10-14

    Aluminum nanocrystals and fabricated nanostructures are emerging as highly promising building blocks for plasmonics in the visible region of the spectrum. Even at the individual nanocrystal level, however, the localized plasmons supported by Al nanostructures possess a surprisingly broad spectral response. We have observed that when an Al nanocrystal is coupled to an underlying Al film, its dipolar plasmon resonance linewidth narrows remarkably and shows an enhanced scattering efficiency. This behavior is observable in other plasmonic metals, such as gold; however, it is far more dramatic in the aluminum nanoparticle-film system, reducing the dipolar plasmon linewidth by more than half. A substrate-mediated hybridization of the dipolar and quadrupolar plasmons of the nanoparticle reduces the radiative losses of the dipolar plasmon. While this is a general effect that applies to all metallic nanoparticle-film systems, this finding specifically provides a new mechanism for narrowing plasmon resonances in aluminum-based systems, quite possibly expanding the potential of Al-based plasmonics in real-world applications. PMID:26383818

  20. Plasmon hybridization reveals the interaction between individual colloidal gold nanoparticles confined in an optical potential well.

    PubMed

    Tong, Lianming; Miljković, Vladimir D; Johansson, Peter; Käll, Mikael

    2011-11-01

    The understanding of interaction forces between nanoparticles in colloidal suspension is central to a wide range of novel applications and processes in science and industry. However, few methods are available for actual characterization of such forces at the single particle level. Here we demonstrate the first measurements of colloidal interactions between two individual diffusing nanoparticles using a colorimetric assay based on plasmon hybridization, that is, strong near-field coupling between localized surface plasmon resonances. The measurements are possible because individual gold nanoparticle pairs can be loosely confined in an optical potential well created by a laser tweezers. We quantify the degree of plasmon hybridization for a large number of individual particle pairs as a function of increasing salt concentration. The data reveal a considerable heterogeneity at the single particle level but the estimated average surface separations are in excellent agreements with predictions based on the classical theory of Derjaguin, Landau, Verwey, and Overbeek. PMID:21142200

  1. Ballistic-diffusive approximation for the thermal dynamics of metallic nanoparticles in nanocomposite materials

    SciTech Connect

    Shirdel-Havar, A. H. Masoudian Saadabad, R.

    2015-03-21

    Based on ballistic-diffusive approximation, a method is presented to model heat transfer in nanocomposites containing metal nanoparticles. This method provides analytical expression for the temperature dynamics of metallic nanoparticles embedded in a dielectric medium. In this study, nanoparticles are considered as spherical shells, so that Boltzmann equation is solved using ballistic-diffusive approximation to calculate the electron and lattice thermal dynamics in gold nanoparticles, while thermal exchange between the particles is taken into account. The model was used to investigate the influence of particle size and metal concentration of the medium on the electron and lattice thermal dynamics. It is shown that these two parameters are crucial in determining the nanocomposite thermal behavior. Our results showed that the heat transfer rate from nanoparticles to the matrix decreases as the nanoparticle size increases. On the other hand, increasing the metal concentration of the medium can also decrease the heat transfer rate.

  2. Selective Catalysis in Nanoparticle Metal-Organic Framework Composites

    NASA Astrophysics Data System (ADS)

    Stephenson, Casey Justin

    The design of highly selective catalysts are becoming increasingly important, especially as chemical and pharmaceutical industries seek to improve atom economy and minimize energy intensive separations that are often required to separate side products from the desired product. Enzymes are among the most selective of all catalysts, generally operating through molecular recognition whereby an active site analogous to a lock and the substrate is analogous to a key. The assembly of a porous, crystalline material around a catalytically active metal particle could serve as an artificial enzyme. In this vein, we first synthesized the polyvinylpyrrolidone (PVP) coated nanoparticles of interest and then encapsulated them within zeolitic imidazolate framework 8 or ZIF-8. 2.8 nm Pt-PVP nanoparticles, which were encapsulated within ZIF-8 to form Pt ZIF-8 composite. Pt ZIF-8 was inactive for the hydrogenation of cyclic olefins such as cis-cyclooctene and cis-cyclohexene while the composite proved to be a highly selective catalyst for the hydrogenation of terminal olefins, hydrogenating trans-1,3-hexadiene to 3-hexene in 95% selectivity after 24 hours under 1 bar H2. We extended our encapsulation method to sub-2 nm Au nanoparticles to form Au ZIF-8. Au ZIF-8 served as a highly chemoselective catalyst for the hydrogenation of crotonaldehyde an alpha,beta-unsaturated aldehyde, to crotyl alcohol an alpha,beta-unsaturated alcohol, in 90-95% selectivity. In order to investigate nanoparticle size effects on selectivity, 6-10 nm Au nanoparticles were encapsulated within ZIF-8 to form Au6 ZIF-8. Control catalysts with nanoparticles supported on the surface of ZIF-8 were synthesized as well, Au/ZIF-8 and Au6/ZIF-8. Au6 ZIF-8 hydrogenated crotonaldehyde in 85% selectivity towards the unsaturated alcohol. Catalysts with nanoparticles supported on the exterior of ZIF-8 were far less selective towards the unsaturated alcohol. Post-catalysis transmission electron microscopy analysis of Au ZIF

  3. Plasmonic broadband absorber by stacking multiple metallic nanoparticle layers

    NASA Astrophysics Data System (ADS)

    Ji, Ting; Peng, Lining; Zhu, Yuntao; Yang, Fan; Cui, Yanxia; Wu, Xueyan; Liu, Liu; He, Sailing; Zhu, Furong; Hao, Yuying

    2015-04-01

    High efficiency, broadband plasmonic absorbers are constructed based on a stack of alternating metallic nanoparticle layers (MNLs) and SiO2 slabs on top of a reflective Ag substrate. Experimental results show that the stacks with thick MNLs absorb light better than those with thin MNLs when the number of MNL/SiO2 cells (N) is small (e.g., 1 or 2), but the situation gets reversed when N is greater than 3. When the nominal thickness of MNL is as thin as 5 nm, the acquired Ag nanoparticles are so small that light penetration through all of the stacked MNLs in the proposed design is possible. Thus, an increase in N leads to a growing number of light trapping elements. Our simulation reveals that the Ag nanoparticles at different layers are hybridized to excite rich localized plasmonic resonances, resulting in multiple absorption peaks at optical frequencies and thus a broader absorption band. The broadband absorbers with an integrated absorption efficiency of 96% over the 300-1100 nm wavelength range were achieved by stacking 18 MNL/SiO2 cells. The proposed absorbers can be used for applications in solar energy harvesting and thermal emission tailoring, due to their easy fabrication procedure and excellent optical properties.

  4. Coupling of Acoustic Vibrations to Plasmon Resonances in Metal Nanoparticles

    NASA Astrophysics Data System (ADS)

    Ahmed, Aftab; Pelton, Matthew; Guest, Jeffrey

    Measurements of acoustic vibrations in nanoparticles provide a unique opportunity to study mechanical phenomena at nanometer length scales and picosecond time scales. Phonon vibrations of plasmonic nanoparticles are of particular interest, due to their large extinction efficiencies, and high sensitivity to surrounding medium. There are two mechanisms that transduce the mechanical oscillations into plasmon resonance shift: (1) changes in polarizability; and (2) changes in electron density. These mechanisms have been used to explain qualitatively the origin of the transient-absorption signals, however, a quantitative connection has not yet been made except for simple geometries. Here, we present a method to quantitatively determine the coupling between vibrational modes and plasmon modes in noble-metal nanoparticles including spheres, shells, rods and cubes. We separately determine the parts of the optical response that are due to shape changes and to changes in electron density, and we relate the optical signals to the symmetries of the vibrational and plasmon modes. These results clarify reported experimental results, and should help guide the optimization of future experiments.

  5. Toxicity of metallic oxides nanoparticle suspensions to a freshwater sludge worm Tubifex tubifex Müller.

    PubMed

    Verma, Surabhi; Das, Sangita; Khangarot, B S

    2011-02-01

    Toxic effects of selected metallic oxides nanoparticles were studied using the short-term static bioassays. Nanoparticles were more toxic than comparable bulk metallic oxides. Freshwater sludge worm Tubifex tubifex can be used as suitable test model for nanoecotoxicological studies in future studies. PMID:21485877

  6. Multi-Order Investigation of the Nonlinear Susceptibility Tensors of Individual Nanoparticles

    NASA Astrophysics Data System (ADS)

    Schmidt, Cédric; Riporto, Jérémy; Uldry, Aline; Rogov, Andrii; Mugnier, Yannick; Dantec, Ronan Le; Wolf, Jean-Pierre; Bonacina, Luigi

    2016-05-01

    We use Hyper Rayleigh Scattering and polarization resolved multiphoton microscopy to investigate simultaneously the second and third-order nonlinear response of Potassium Niobate and Bismuth Ferrite harmonic nanoparticles. We first derive the second-to-third harmonic intensity ratio for colloidal ensembles and estimate the average third-order efficiency of these two materials. Successively, we explore the orientation dependent tensorial response of individual nanoparticles fixed on a substrate. The multi-order polarization resolved emission curves are globally fitted with an analytical model to retrieve individual elements of susceptibility tensors.

  7. Multi-Order Investigation of the Nonlinear Susceptibility Tensors of Individual Nanoparticles

    PubMed Central

    Schmidt, Cédric; Riporto, Jérémy; Uldry, Aline; Rogov, Andrii; Mugnier, Yannick; Dantec, Ronan Le; Wolf, Jean-Pierre; Bonacina, Luigi

    2016-01-01

    We use Hyper Rayleigh Scattering and polarization resolved multiphoton microscopy to investigate simultaneously the second and third-order nonlinear response of Potassium Niobate and Bismuth Ferrite harmonic nanoparticles. We first derive the second-to-third harmonic intensity ratio for colloidal ensembles and estimate the average third-order efficiency of these two materials. Successively, we explore the orientation dependent tensorial response of individual nanoparticles fixed on a substrate. The multi-order polarization resolved emission curves are globally fitted with an analytical model to retrieve individual elements of susceptibility tensors. PMID:27140074

  8. Multiple percolation tunneling staircase in metal-semiconductor nanoparticle composites

    SciTech Connect

    Mukherjee, Rupam; Huang, Zhi-Feng; Nadgorny, Boris

    2014-10-27

    Multiple percolation transitions are observed in a binary system of RuO{sub 2}-CaCu{sub 3}Ti{sub 4}O{sub 12} metal-semiconductor nanoparticle composites near percolation thresholds. Apart from a classical percolation transition, associated with the appearance of a continuous conductance path through RuO{sub 2} metal oxide nanoparticles, at least two additional tunneling percolation transitions are detected in this composite system. Such behavior is consistent with the recently emerged picture of a quantum conductivity staircase, which predicts several percolation tunneling thresholds in a system with a hierarchy of local tunneling conductance, due to various degrees of proximity of adjacent conducting particles distributed in an insulating matrix. Here, we investigate a different type of percolation tunneling staircase, associated with a more complex conductive and insulating particle microstructure of two types of non-spherical constituents. As tunneling is strongly temperature dependent, we use variable temperature measurements to emphasize the hierarchical nature of consecutive tunneling transitions. The critical exponents corresponding to specific tunneling percolation thresholds are found to be nonuniversal and temperature dependent.

  9. Doping of Metal-Organic Frameworks with Functional Guest Molecules and Nanoparticles

    NASA Astrophysics Data System (ADS)

    Schröder, Felicitas; Fischer, Roland A.

    Nanoparticle synthesis within metal-organic frameworks (MOFs) is performed by the adsorption of suitable precursor molecules for the metal component and subsequent decomposition to the composite materials nanoparticles@MOF. This chapter will review different approaches of loading MOFs with more complex organic molecules and metal-organic precursor molecules. The related reactions inside MOFs are discussed with a focus on stabilizing reactive intermediates in the corresponding cavities. The syntheses of metal and metal oxide nanoparticles inside MOFs are reviewed, and different synthetic routes compared. Emphasis is placed on the micro structural characterization of the materials nanoparticles@MOF with a particular focus on the location of embedded nanoparticles using TEM methods. Some first examples of applications of the doped MOFs in heterogeneous catalysis and hydrogen storage are described.

  10. Growth of metal oxide nanoparticles using pulsed laser ablation technique

    NASA Astrophysics Data System (ADS)

    Gondal, M. A.; Drmosh, Q. A.; Saleh, Tawfik A.; Yamani, Z. H.

    2011-02-01

    Nano particles exhibit physical and chemical properties distinctively different from that of bulk due to high number of surface atoms, surface energy and surface area to volume ratio. Laser is a unique source of radiation and has been applied in the synthesis of nano structured metal oxides. The pulsed laser ablation (PLA) technique in liquid medium has been proven an effective and simple technique for preparing nanoparticles of high purity. Pulsed laser deposition (PLD) is another way to fabricate nano structured single crystal thin films of metal oxides. PLA technique has been applied in our laboratory for the growth of metal oxides such as nano-ZnO, nano-ZnO2 nano- SnO2, nano-Bi2O3, nano-NiO and nano-MnO2. Different techniques such as AFM, UV, FT-IR, PL and XRD were applied to characterize these materials. We will present our latest development in the growth of nano metal oxides using PLA and PLD.

  11. Laser induced mechanisms controlling the size distribution of metallic nanoparticles.

    PubMed

    Liu, Zeming; Vitrant, Guy; Lefkir, Yaya; Bakhti, Said; Destouches, Nathalie

    2016-09-21

    This paper describes a model to simulate changes in the size distribution of metallic nanoparticles (NPs) in TiO2 films upon continuous wave light excitation. Interrelated laser induced physical and chemical processes initiated directly by photon absorption or by plasmon induced thermal heating are considered. Namely the model takes into account the NP coalescence, Ostwald ripening, the reduction of silver ions and the oxidation of metallic NPs, competitive mechanisms that can lead to counter-intuitive behaviors depending on the exposure conditions. Theoretical predictions are compared successfully to the experimental results deduced from a thorough analysis of scanning transmission electron microscopy (STEM) pictures of Ag:TiO2 films processed with a scanning visible laser beam at different speeds. Ag:TiO2 systems are considered for many applications in solar energy conversion, photocatalysis or secured data printing. Numerical investigations of such a system provide a better understanding of light induced growth and shrinking processes and open up prospects for designing more efficient photocatalytic devices based on metal NP doped TiO2 or for improving the size homogeneity in self-organized metallic NP patterns, for instance. PMID:27539293

  12. Alloyed Noble Metal Nanoparticles with Tunable Optical Properties

    NASA Astrophysics Data System (ADS)

    Wessler, Garrett C.; Gong, Chen; Rebello de Sousa Dias, Mariama; Tailon, Joshua A.; Salamanca-Riba, Lourdes G.; Leite, Marina S.

    Noble metal nanoparticles (NPs) have been widely used in sensing, optics, and catalysis applications by taking advantage of surface plasmon resonance (SPR). This response is slightly tuned by varying the size and shape of the NPs; however, a method to obtain truly on-demand plasmonic responses is still lacking due to the intrinsic nature of a metal's dielectric function. Here, we fabricate size and composition controlled metal alloy NP arrays by deposit-and-anneal methods and through-template depositions. We control the composition of the metal NPs by co-sputtering and by alternating electron-beam evaporation of the Ag and Au targets. To characterize the NPs, macroscopic transmission measurements are combined with spectrally dependent near-field scanning optical microscopy to show the local optical properties around the NPs. By varying the atomic fraction of Ag and Au in the alloys, we modulate the optical properties of the NPs for different applications. For example, hot carrier plasmonic devices necessitate high absorption in the visible range, while photovoltaic applications require low absorption by the NPs.

  13. Formation and properties of metallic nanoparticles on compound semiconductor surfaces

    NASA Astrophysics Data System (ADS)

    Kang, Myungkoo

    When electromagnetic radiation is incident upon metallic nanoparticles (NPs), a collective oscillation, termed a surface plasmon resonance (SPR), is generated. Recently, metallic NPs on semiconductor surfaces have enabled the generation of SPR, promising for enhanced light emission, efficient solar energy harvesting, biosensing, and metamaterials. Metallic NPs have been fabricated by focused ion beam (FIB) which has an advantage of cost-effectiveness over conventional lithography process requiring multi-step processes. Here, we report formation and properties of FIB-induced metallic NPs on compound semiconductor surfaces. Results presented in this thesis study suggest that FIB-induced Ga NPs can be a promising alternative plasmonic material. In particular, using a combined experimental-computational approach, we discovered a universal mechanism for ion-induced NP formation, which is governed by the sputtering yield of semiconductor surfaces. We also discovered a governing mechanism for ion-induced NP motion, which is driven by thermal fluctuation and anisotropic mass transport. Furthermore, we demonstrated Ga NP arrays with plasmon resonances with performance comparable to those of traditionally-used silver and gold NPs. We then finally demonstrated the Ga NP plasmoninduced enhancement of light emission from GaAs, which is the first ever combination of a new plasmonic material (Ga) and a new fabrication method (FIB) for the plasmon-enhanced light emission.

  14. Greener syntheses of metallic nanoparticles and zinc oxide nanopowders

    NASA Astrophysics Data System (ADS)

    Samson, Jacopo

    In recent years, nanotechnology and nanomaterials synthesis have attracted a great deal of attention in the scientific community. Nanomaterials display size and morphology-related optical properties that differ from their bulk counterparts and therefore can be used for many applications in different fields such as biomedicine, electronics, antibacterial agents, and energy. Attempts to fabricate different morphologies of metallic and metal oxide nanoparticles (NPs) have successfully yielded attractive nanostructures such as particles, rods, helices, combs, tetra-pods, and flowers, all displaying properties mainly related to their enhanced surface area and/or aspect ratios. Most of the above mentioned nanomaterials productions have employed harsh synthetic routes such as high temperatures, low pressures, and the use of costly equipments. Here we show how a greener approach to nanomaterials synthesis is feasible with both minimization of aqueous precursors, energy and employment of a multi-block heater for temperature control. We present in this thesis several methods for the preparation of NPs of several materials that focus on minimizing the environmental impact of the synthesis itself. First, we describe the use of the toroidal form of plasmid DNA as a rigid narrowly dispersed bio-polymeric nanocavity, which mold the formation of disc-shaped nanoparticles of several types of metals. This approach exploits several properties of plasmid DNA: (a) DNA affinity for metal cations, (b) toroidal plasmid DNA structures which are favored by metal ionic binding, and (c) the ability to vary plasmid size. Herein, we present a complementary synthetic method based on a kinetic approach wherein the plasmid DNA acts as a template to initiate and control the formation of Au and other metallic NPs by incubation at elevated temperatures. Also reported herein is a simple, scalable hydrothermal method to make ZnO NPs that exploits temperature to precisely control the range of pH values

  15. Metallic Nickel Nanoparticles May Exhibit Higher Carcinogenic Potential than Fine Particles in JB6 Cells

    PubMed Central

    Bowman, Linda; Zou, Baobo; Mao, Guochuan; Xu, Jin; Castranova, Vincent; Zhao, Jinshun; Ding, Min

    2014-01-01

    While numerous studies have described the pathogenic and carcinogenic effects of nickel compounds, little has been done on the biological effects of metallic nickel. Moreover, the carcinogenetic potential of metallic nickel nanoparticles is unknown. Activator protein-1 (AP-1) and nuclear factor-κB (NF-κB) have been shown to play pivotal roles in tumor initiation, promotion, and progression. Mutation of the p53 tumor suppressor gene is considered to be one of the steps leading to the neoplastic state. The present study examines effects of metallic nickel fine and nanoparticles on tumor promoter or suppressor gene expressions as well as on cell transformation in JB6 cells. Our results demonstrate that metallic nickel nanoparticles caused higher activation of AP-1 and NF-κB, and a greater decrease of p53 transcription activity than fine particles. Western blot indicates that metallic nickel nanoparticles induced a higher level of protein expressions for R-Ras, c-myc, C-Jun, p65, and p50 in a time-dependent manner. In addition, both metallic nickel nano- and fine particles increased anchorage-independent colony formation in JB6 P+ cells in the soft agar assay. These results imply that metallic nickel fine and nanoparticles are both carcinogenetic in vitro in JB6 cells. Moreover, metallic nickel nanoparticles may exhibit higher carcinogenic potential, which suggests that precautionary measures should be taken in the use of nickel nanoparticles or its compounds in nanomedicine. PMID:24691273

  16. Investigation of laser heating effect of metallic nanoparticles on cancer treatment

    NASA Astrophysics Data System (ADS)

    Shan, G. S.; Liu, X. M.; Chen, H. J.; Yu, J. S.; Chen, X. D.; Yao, Y.; Qi, L. M.; Chen, Z. J.

    2016-07-01

    Metallic nanoparticles can be applied for hyperthermia therapy of cancer treatment to enhance the efficacy because of their high absorption rate. The absorption of laser energy by metallic nanoparticles is strongly dependent on the concentration, shape, material of nanoparticles and the wavelength of the laser. However, there is no systematic investigation on the heating effect involving different material, concentration and laser wavelength. In this paper, gold nanoparticles (AuNPs), sliver nanoparticles (AgNPs) and sliver nanowires (AgNWs) with different concentrations are heated by 450nm and 532nm wavelength laser to investigate the heating effect. The result shows that the temperature distribution of heated metallic nanoparticles is non-uniform.

  17. Efficiency of Absorption of Solar Radiation By Liquids Containing Metallic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Astafyeva, L. G.; Pustovalov, V. K.

    2016-05-01

    We present the results of a comparative analysis of the optical properties of metallic nanoparticles that allows us to select their parameters for effective applications. The optical properties of several metallic (Ni, Ti, Pt, Zn, Mo, and Pd) monodisperse nanoparticles of radii 25 nm, 50 nm, and 75 nm were theoretically studied and analyzed in the spectral range 200-2500 nm. We studied the influence of the nanoparticle parameters (type of metal, radius and concentration of the nanoparticles, etc.) and the surrounding liquid (water) on the optical absorption cross section, scattering cross section, and extinction cross section for absorption, scattering, and extinction of radiation by the nanoparticles. We have established that titanium, nickel, and to a lesser extent molybdenum nanoparticles of radii ~75 nm can be used for efficient absorption and extinction of solar radiation by heterogeneous liquids.

  18. Charge Transfer Stabilization of Late Transition Metal Oxide Nanoparticles on a Layered Niobate Support.

    PubMed

    Strayer, Megan E; Senftle, Thomas P; Winterstein, Jonathan P; Vargas-Barbosa, Nella M; Sharma, Renu; Rioux, Robert M; Janik, Michael J; Mallouk, Thomas E

    2015-12-30

    Interfacial interactions between late transition metal/metal oxide nanoparticles and oxide supports impact catalytic activity and stability. Here, we report the use of isothermal titration calorimetry (ITC), electron microscopy and density functional theory (DFT) to explore periodic trends in the heats of nanoparticle-support interactions for late transition metal and metal oxide nanoparticles on layered niobate and silicate supports. Data for Co(OH)2, hydroxyiridate-capped IrOx·nH2O, Ni(OH)2, CuO, and Ag2O nanoparticles were added to previously reported data for Rh(OH)3 grown on nanosheets of TBA0.24H0.76Ca2Nb3O10 and a layered silicate. ITC measurements showed stronger bonding energies in the order Ag < Cu ≈ Ni ≈ Co < Rh < Ir on the niobate support, as expected from trends in M-O bond energies. Nanoparticles with exothermic heats of interaction were stabilized against sintering. In contrast, ITC measurements showed endothermic interactions of Cu, Ni, and Rh oxide/hydroxide nanoparticles with the silicate and poor resistance to sintering. These trends in interfacial energies were corroborated by DFT calculations using single-atom and four-atom cluster models of metal/metal oxide nanoparticles. Density of states and charge density difference calculations reveal that strongly bonded metals (Rh, Ir) transfer d-electron density from the adsorbed cluster to niobium atoms in the support; this mixing is absent in weakly binding metals, such as Ag and Au, and in all metals on the layered silicate support. The large differences between the behavior of nanoparticles on niobate and silicate supports highlight the importance of d-orbital interactions between the nanoparticle and support in controlling the nanoparticles' stability. PMID:26651875

  19. Metal-Based Nanoparticles and the Immune System: Activation, Inflammation, and Potential Applications

    PubMed Central

    Luo, Yueh-Hsia; Chang, Louis W.; Lin, Pinpin

    2015-01-01

    Nanomaterials, including metal-based nanoparticles, are used for various biological and medical applications. However, metals affect immune functions in many animal species including humans. Different physical and chemical properties induce different cellular responses, such as cellular uptake and intracellular biodistribution, leading to the different immune responses. The goals of this review are to summarize and discuss the innate and adaptive immune responses triggered by metal-based nanoparticles in a variety of immune system models. PMID:26125021

  20. Magneto-Optical Properties and Size Effect of Ferromagnetic Metal Nanoparticles

    NASA Astrophysics Data System (ADS)

    Kaihara, Terunori; Mizuguchi, Masaki; Takanashi, Koki; Shimizu, Hiromasa

    2013-07-01

    We investigated the magneto-optical (MO) effect with localized surface plasmon resonance (LSPR) on ferromagnetic metal (Fe and Co) nanoparticles. We estimated the electric-field enhancement of the ferromagnetic metal nanoparticles caused by LSPR based on Mie scattering theory and compared it with that of Au nanoparticles. The electric-field enhancement of the ferromagnetic metal nanoparticles was 15-17, which is half of that of the Au nanoparticles. In order to explain the calculated results, we prepared ferromagnetic metal nanoparticles by a self-assembly process. We measured the optical transmission spectra and Faraday effect of the ferromagnetic nanoparticles. Although remarkable MO enhancement was not observed, we found characteristic MO spectra and a peak shift at wavelengths longer than 800 nm in samples whose thickness was less than 6 nm. We numerically investigated the size effect and reproduced the experimental results. We concluded that localized plasmons of ferromagnetic metal nanoparticles can produce electric-field enhancement, but the enhancement is not enough to increase the MO effect, and that the MO effect of nanosized ferromagnetic metals could be influenced by size effects rather than by LSPR.

  1. Dynamics of laser induced metal nanoparticle and pattern formation

    SciTech Connect

    Peláez, R. J. Kuhn, T.; Rodríguez, C. E.; Afonso, C. N.

    2015-02-09

    Discontinuous metal films are converted into either almost round, isolated, and randomly distributed nanoparticles (NPs) or fringed patterns of alternate non transformed film and NPs by exposure to single pulses (20 ns pulse duration and 193 nm wavelength) of homogeneous or modulated laser beam intensity. The dynamics of NPs and pattern formation is studied by measuring in real time the transmission and reflectivity of the sample upon homogeneous beam exposure and the intensity of the diffraction orders 0 and 1 in transmission configuration upon modulated beam exposure. The results show that laser irradiation induces melting of the metal either completely or at regions around intensity maxima sites for homogeneous and modulated beam exposure, respectively, within ≤10 ns. The aggregation and/or coalescence of the initially irregular metal nanostructures is triggered upon melting and continues after solidification (estimated to occur at ≤80 ns) for more than 1 μs. The present results demonstrate that real time transmission rather than reflectivity measurements is a valuable and easy-to-use tool for following the dynamics of NPs and pattern formation. They provide insights on the heat-driven processes occurring both in liquid and solid phases and allow controlling in-situ the process through the fluence. They also evidence that there is negligible lateral heat release in discontinuous films upon laser irradiation.

  2. Biofilms Versus Activated Sludge: Considerations in Metal and Metal Oxide Nanoparticle Removal from Wastewater.

    PubMed

    Walden, Connie; Zhang, Wen

    2016-08-16

    The increasing application of metal and metal oxide nanoparticles [Me(O)NPs] in consumer products has led to a growth in concentration of these nanoparticles in wastewater as emerging contaminants. This may pose a threat to ecological communities (e.g., biological nutrient removal units) within treatment plants and those subject to wastewater effluents. Here, the toxicity, fate, and process implications of Me(O)NPs within wastewater treatment, specifically during activated sludge processing and biofilm systems are reviewed and compared. Research showed activated sludge achieves high removal rate of Me(O)NPs by the formation of aggregates through adsorption. However, recent literature reveals evidence that inhibition is likely for nutrient removal capabilities such as nitrification. Biofilm systems were much less studied, but show potential to resist Me(O)NP inhibition and achieve removal through possible retention by sorption. Implicating factors during bacteria-Me(O)NP interactions such as aggregation, surface functionalization, and the presence of organics are summarized. At current modeled levels, neither activated sludge nor biofilm systems can achieve complete removal of Me(O)NPs, thus allowing for long-term environmental exposure of diverse biological communities to Me(O)NPs in streams receiving wastewater effluents. Future research directions are identified throughout in order to minimize the impact of these nanoparticles released. PMID:27437755

  3. Engineered metal nanoparticles in the sub-nanomolar levels kill cancer cells

    PubMed Central

    Vodyanoy, Vitaly; Daniels, Yasmine; Pustovyy, Oleg; MacCrehan, William A; Muramoto, Shin; Stan, Gheorghe

    2016-01-01

    Background Small metal nanoparticles obtained from animal blood were observed to be toxic to cultured cancer cells, whereas noncancerous cells were much less affected. In this work, engineered zinc and copper metal nanoparticles were produced from bulk metal rods by an underwater high-voltage discharge method. The metal nanoparticles were characterized by atomic force microscopy and X-ray photoelectron spectroscopy. The metal nanoparticles, with estimated diameters of 1 nm–2 nm, were determined to be more than 85% nonoxidized. A cell viability assay and high-resolution light microscopy showed that exposure of RG2, cultured rat brain glioma cancer cells, to the zinc and copper nanoparticles resulted in cell morphological changes, including decreased cell adherence, shrinking/rounding, nuclear condensation, and budding from cell bodies. The metal-induced cell injuries were similar to the effects of staurosporine, an active apoptotic reagent. The viability experiments conducted for zinc and copper yielded values of dissociation constants of 0.22±0.08 nmol/L (standard error [SE]) and 0.12±0.02 nmol/L (SE), respectively. The noncancerous astrocytes were not affected at the same conditions. Because metal nanoparticles were lethal to the cancer cells at sub-nanomolar concentrations, they are potentially important as nanomedicine. Purpose Lethal concentrations of synthetic metal nanoparticles reported in the literature are a few orders of magnitude higher than the natural, blood-isolated metal nanoparticles; therefore, in this work, engineered metal nanoparticles were examined to mimic the properties of endogenous metal nanoparticles. Materials and methods RG2, rat brain glioma cells CTX TNA2 brain rat astrocytes, obtained from the American Type Culture Collection, high-voltage discharge, atomic force microscope, X-ray photoelectron spectroscopy, high-resolution light microscopy, zeta potential measurements, and 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium

  4. Role of metal nanoparticles on porosification of silicon by metal induced etching (MIE)

    NASA Astrophysics Data System (ADS)

    Saxena, Shailendra K.; Yogi, Priyanka; Yadav, Pooja; Mishra, Suryakant; Pandey, Haardik; Rai, Hari Mohan; Kumar, Vivek; Sagdeo, Pankaj R.; Kumar, Rajesh

    2016-06-01

    Porosification of silicon (Si) by metal induced etching (MIE) process has been studied here to understand the etching mechanism. The etching mechanism has been discussed on the basis of electron transfer from Si to metal ion (Ag+) and metal to H2O2. Role of silver nanoparticles (AgNPs) in the etching process has been investigated by studying the effect of AgNPs coverage on surface porosity. A quantitative analysis of SEM images, done using Image J, shows a direct correlation between AgNPs coverage and surface porosity after the porosification. Density of Si nanowires (NWs) also varies as a function of AgNPs fractional coverage which reasserts the fact that AgNPs governs the porosification process during MIE. The Raman and PL spectrum show the presence of Si NSs in the samples.

  5. Salt-Driven Deposition of Thermoresponsive Polymer-Coated Metal Nanoparticles on Solid Substrates.

    PubMed

    Zhang, Zhiyue; Maji, Samarendra; da Fonseca Antunes, André B; De Rycke, Riet; Hoogenboom, Richard; De Geest, Bruno G

    2016-06-13

    Here we report on a simple, generally applicable method for depositing metal nanoparticles on a wide variety of solid surfaces under all aqueous conditions. Noble-metal nanoparticles obtained by citrate reduction followed by coating with thermoresponsive polymers spontaneously form a monolayer-like structure on a wide variety of substrates in presence of sodium chloride whereas this phenomenon does not occur in salt-free medium. Interestingly, this phenomenon occurs below the cloud point temperature of the polymers and we hypothesize that salt ion-induced screening of electrostatic charges on the nanoparticle surface entropically favors hydrophobic association between the polymer-coated nanoparticles and a hydrophobic substrate. PMID:27142455

  6. Inhomogeneous depletion of oxygen ions in metal oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Vykhodets, Vladimir B.; Jarvis, Emily A. A.; Kurennykh, Tatiana E.; Beketov, Igor V.; Obukhov, Sviatoslav I.; Samatov, Oleg M.; Medvedev, Anatoly I.; Davletshin, Andrey E.; Whyte, Travis H.

    2016-02-01

    Zirconia and yttria stabilized zirconia (YSZ) have multiple uses, including catalysis, fuel cells, dental applications, and thermal coatings. We employ nuclear reaction analysis to determine elemental composition of YSZ nanoparticles synthesized by laser evaporation including 18O studies to distinguish between oxide and adsorbed oxygen content as a function of surface area. We see dramatic deviation from stoichiometry that can be traced to loss of oxygen from the oxide near the surface of these nanopowders. Density functional calculations are coupled with these experimental studies to explore the electronic structure of nonstoichiometric surfaces achieved through depletion of oxygen. Our results show oxygen-depleted surfaces present under oxygen potentials where stoichiometric, oxygen-terminated surfaces would be favored thermodynamically for crystalline systems. Oxygen depletion at nanopowder surfaces can create effective two-dimensional surface metallic states while maintaining stoichiometry in the underlying nanoparticle core. This insight into nanopowder surfaces applies to dissimilar oxides of aluminum and zirconium indicating synthesis conditions may be more influential than the inherent oxide properties and displaying need for distinct models for nanopowders of these important engineering materials where surface chemistry dominates performance.

  7. Plasmon-induced hot carriers in metallic nanoparticles.

    PubMed

    Manjavacas, Alejandro; Liu, Jun G; Kulkarni, Vikram; Nordlander, Peter

    2014-08-26

    Plasmon-induced hot carrier formation is attracting an increasing research interest due to its potential for applications in photocatalysis, photodetection and solar energy harvesting. However, despite very significant experimental effort, a comprehensive theoretical description of the hot carrier generation process is still missing. In this work we develop a theoretical model for the plasmon-induced hot carrier process and apply it to spherical silver nanoparticles and nanoshells. In this model, the conduction electrons of the metal are described as free particles in a finite spherical potential well, and the plasmon-induced hot carrier production is calculated using Fermi’s golden rule. We show that the inclusion of many-body interactions has only a minor influence on the results. Using the model we calculate the rate of hot carrier generation, finding that it closely follows the spectral profile of the plasmon. Our analysis reveals that particle size and hot carrier lifetime play a central role in determining both the production rate and the energy distribution of the hot carriers. Specifically, larger nanoparticle sizes and shorter lifetimes result in higher carrier production rates but smaller energies, and vice versa. We characterize the efficiency of the hot carrier generation process by introducing a figure of merit that measures the number of high energy carriers generated per plasmon. Furthermore, we analyze the spatial distribution and directionality of these excitations. The results presented here contribute to the basic understanding of plasmon-induced hot carrier generation and provide insight for optimization of the process. PMID:24960573

  8. Dirac plasmons in bipartite lattices of metallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Jebb Sturges, Thomas; Woollacott, Claire; Weick, Guillaume; Mariani, Eros

    2015-03-01

    We study theoretically ‘graphene-like’ plasmonic metamaterials constituted by two-dimensional arrays of metallic nanoparticles, including perfect honeycomb structures with and without inversion symmetry, as well as generic bipartite lattices. The dipolar interactions between localized surface plasmons (LSPs) in different nanoparticles gives rise to collective plasmons (CPs) that extend over the whole lattice. We study the band structure of CPs and unveil its tunability with the orientation of the dipole moments associated with the LSPs. Depending on the dipole orientation, we identify a phase diagram of gapless or gapped phases in the CP dispersion. We show that the gapless phases in the phase diagram are characterized by CPs behaving as massless chiral Dirac particles, in analogy with electrons in graphene. When the inversion symmetry of the honeycomb structure is broken, CPs are described as gapped chiral Dirac modes with an energy-dependent Berry phase. We further relax the geometric symmetry of the honeycomb structure by analysing generic bipartite hexagonal lattices. In this case we study the evolution of the phase diagram and unveil the emergence of a sequence of topological phase transitions when one hexagonal sublattice is progressively shifted with respect to the other.

  9. Polymer waveguide couplers based on metal nanoparticle-polymer nanocomposites.

    PubMed

    Signoretto, M; Suárez, I; Chirvony, V S; Abargues, R; Rodríguez-Cantó, P J; Martínez-Pastor, J

    2015-11-27

    In this work Au nanoparticles (AuNPs) are incorporated into poly(methyl methacrylate) (PMMA) waveguides to develop optical couplers that are compatible with planar organic polymer photonics. A method for growing AuNPs (of 10 to 100 nm in size) inside the commercially available Novolak resist is proposed with the intention of tuning the plasmon resonance and the absorption/scattering efficiencies inside the patterned structures. The refractive index of the MNP-Novolak nanocomposite (MNPs: noble metal nanoparticles) is carefully analysed both experimentally and numerically in order to find the appropriate fabrication conditions (filling factor and growth time) to optimize the scattering cross section at a desired wavelength. Then the nanocomposite is patterned inside a PMMA waveguide to exploit its scattering properties to couple and guide a normal incident laser light beam along the polymer. In this way, light coupling is experimentally demonstrated in a broad wavelength range (404-780 nm). Due to the elliptical shape of the MNPs the nanocomposite demonstrates a birefringence, which enhances the coupling to the TE mode up to efficiencies of around 1%. PMID:26526708

  10. Synthesis and optical properties of anisotropic metal nanoparticles.

    PubMed

    Hao, Encai; Schatz, George C; Hupp, Joseph T

    2004-07-01

    In this paper we overview our recent studies of anisotropic noble metal (e.g. gold and silver) nanoparticles, in which a combination of theory and experiment has been used to elucidate the extinction spectra of the particles, as well as information related to their surface enhanced Raman spectroscopy. We used wet-chemical methods to generate several structurally well-defined nanostructures other than solid spheres, including silver nanodisks and triangular nanoprisms, and gold nanoshells and multipods. When solid spheres are transformed into one of these shapes, the surface plasmon resonances in these particles are strongly affected, typically red-shifting and even splitting into distinctive dipole and quadrupole plasmon modes. In parallel, we have developed computational electrodynamics methods based on the discrete dipole approximation (DDA) method to determine the origins of these intriguing optical features. This has resulted in considerable insight concerning the variation of plasmon wavelength with nanoparticle size, shape and dielectric environment, as well as the use of these particles for optical sensing applications. PMID:15617376