Science.gov

Sample records for individual traffic-related air

  1. Mobile phone tracking: in support of modelling traffic-related air pollution contribution to individual exposure and its implications for public health impact assessment.

    PubMed

    Liu, Hai-Ying; Skjetne, Erik; Kobernus, Mike

    2013-01-01

    We propose a new approach to assess the impact of traffic-related air pollution on public health by mapping personal trajectories using mobile phone tracking technology in an urban environment. Although this approach is not based on any empirical studies, we believe that this method has great potential and deserves serious attention. Mobile phone tracking technology makes it feasible to generate millions of personal trajectories and thereby cover a large fraction of an urban population. Through analysis, personal trajectories are not only associated to persons, but it can also be associated with vehicles, vehicle type, vehicle speed, vehicle emission rates, and sources of vehicle emissions. Pollution levels can be estimated by dispersion models from calculated traffic emissions. Traffic pollution exposure to individuals can be estimated based on the exposure along the individual human trajectories in the estimated pollution concentration fields by utilizing modelling tools. By data integration, one may identify trajectory patterns of particularly exposed human groups. The approach of personal trajectories may open a new paradigm in understanding urban dynamics and new perspectives in population-wide empirical public health research. This new approach can be further applied to individual commuter route planning, land use planning, urban traffic network planning, and used by authorities to formulate air pollution mitigation policies and regulations. PMID:24188173

  2. Mobile phone tracking: in support of modelling traffic-related air pollution contribution to individual exposure and its implications for public health impact assessment

    PubMed Central

    2013-01-01

    We propose a new approach to assess the impact of traffic-related air pollution on public health by mapping personal trajectories using mobile phone tracking technology in an urban environment. Although this approach is not based on any empirical studies, we believe that this method has great potential and deserves serious attention. Mobile phone tracking technology makes it feasible to generate millions of personal trajectories and thereby cover a large fraction of an urban population. Through analysis, personal trajectories are not only associated to persons, but it can also be associated with vehicles, vehicle type, vehicle speed, vehicle emission rates, and sources of vehicle emissions. Pollution levels can be estimated by dispersion models from calculated traffic emissions. Traffic pollution exposure to individuals can be estimated based on the exposure along the individual human trajectories in the estimated pollution concentration fields by utilizing modelling tools. By data integration, one may identify trajectory patterns of particularly exposed human groups. The approach of personal trajectories may open a new paradigm in understanding urban dynamics and new perspectives in population-wide empirical public health research. This new approach can be further applied to individual commuter route planning, land use planning, urban traffic network planning, and used by authorities to formulate air pollution mitigation policies and regulations. PMID:24188173

  3. A Comparison of Exposure Metrics for Traffic-Related Air Pollutants: Application to Epidemiology Studies in Detroit, Michigan

    EPA Science Inventory

    Vehicles are major sources of air pollutant emissions, and individuals living near large roads endure high exposures and health risks associated with traffic-related air pollutants. Air pollution epidemiology, health risk, environmental justice, and transportation planning studi...

  4. Traffic-Related Air Pollution and Congenital Anomalies in Barcelona

    PubMed Central

    Nieuwenhuijsen, Mark J.; Salvador, Joaquin; de Nazelle, Audrey; Cirach, Marta; Dadvand, Payam; Beelen, Rob; Hoek, Gerard; Basagaña, Xavier; Vrijheid, Martine

    2014-01-01

    Background: A recent meta-analysis suggested evidence for an effect of exposure to ambient air pollutants on risk of certain congenital heart defects. However, few studies have investigated the effects of traffic-related air pollutants with sufficient spatial accuracy. Objectives: We estimated associations between congenital anomalies and exposure to traffic-related air pollution in Barcelona, Spain. Method: Cases with nonchromosomal anomalies (n = 2,247) and controls (n = 2,991) were selected from the Barcelona congenital anomaly register during 1994–2006. Land use regression models from the European Study of Cohorts for Air Pollution Effects (ESCAPE), were applied to residential addresses at birth to estimate spatial exposure to nitrogen oxides and dioxide (NOx, NO2), particulate matter with diameter ≤ 10 μm (PM10), 10–2.5 μm (PMcoarse), ≤ 2.5 μm (PM2.5), and PM2.5 absorbance. Spatial estimates were adjusted for temporal trends using data from routine monitoring stations for weeks 3–8 of each pregnancy. Logistic regression models were used to calculate odds ratios (ORs) for 18 congenital anomaly groups associated with an interquartile-range (IQR) increase in exposure estimates. Results: In spatial and spatiotemporal exposure models, we estimated statistically significant associations between an IQR increase in NO2 (12.2 μg/m3) and coarctation of the aorta (ORspatiotemporal = 1.15; 95% CI: 1.01, 1.31) and digestive system defects (ORspatiotemporal = 1.11; 95% CI: 1.00, 1.23), and between an IQR increase in PMcoarse (3.6 μg/m3) and abdominal wall defects (ORspatiotemporal = 1.93; 95% CI: 1.37, 2.73). Other statistically significant increased and decreased ORs were estimated based on the spatial model only or the spatiotemporal model only, but not both. Conclusions: Our results overall do not indicate an association between traffic-related air pollution and most groups of congenital anomalies. Findings for coarctation of the aorta are consistent with

  5. Traffic-related air pollution and brain development

    PubMed Central

    Woodward, Nicholas; Finch, Caleb E.; Morgan, Todd E.

    2016-01-01

    Automotive traffic-related air pollution (TRP) imposes an increasing health burden with global urbanization. Gestational and early child exposure to urban TRP is associated with higher risk of autism spectrum disorders and schizophrenia, as well as low birth weight. While cardio-respiratory effects from exposure are well documented, cognitive effects are only recently becoming widely recognized. This review discusses effects of TRP on brain and cognition in human and animal studies. The mechanisms underlying these epidemiological associations are studied with rodent models of pre- and neonatal exposure to TRP, which show persisting inflammatory changes and altered adult behaviors and cognition. Some behavioral and inflammatory changes show male bias. Rodent models may identify dietary and other interventions for neuroprotection to TRP. PMID:27099868

  6. Traffic-related Air Pollution and the Right Ventricle. The Multi-ethnic Study of Atherosclerosis

    PubMed Central

    Kaufman, Joel D.; Barr, R. Graham; Bluemke, David A.; Curl, Cynthia L.; Hough, Catherine L.; Lima, Joao A.; Szpiro, Adam A.; Van Hee, Victor C.; Kawut, Steven M.

    2014-01-01

    Rationale: Right heart failure is a cause of morbidity and mortality in common and rare heart and lung diseases. Exposure to traffic-related air pollution is linked to left ventricular hypertrophy, heart failure, and death. Relationships between traffic-related air pollution and right ventricular (RV) structure and function have not been studied. Objectives: To characterize the relationship between traffic-related air pollutants and RV structure and function. Methods: We included men and women with magnetic resonance imaging assessment of RV structure and function and estimated residential outdoor nitrogen dioxide (NO2) concentrations from the Multi-ethnic Study of Atherosclerosis, a study of individuals free of clinical cardiovascular disease at baseline. Multivariable linear regression estimated associations between NO2 exposure (averaged over the year prior to magnetic resonance imaging) and measures of RV structure and function after adjusting for demographics, anthropometrics, smoking status, diabetes mellitus, and hypertension. Adjustment for corresponding left ventricular parameters, traffic-related noise, markers of inflammation, and lung disease were considered in separate models. Secondary analyses considered oxides of nitrogen (NOx) as the exposure. Measurements and Main Results: The study sample included 3,896 participants. In fully adjusted models, higher NO2 was associated with greater RV mass and larger RV end-diastolic volume with or without further adjustment for corresponding left ventricular parameters, traffic-related noise, inflammatory markers, or lung disease (all P < 0.05). There was no association between NO2 and RV ejection fraction. Relationships between NOx and RV morphology were similar. Conclusions: Higher levels of NO2 exposure were associated with greater RV mass and larger RV end-diastolic volume. PMID:24593877

  7. Spatial resolution requirements for traffic-related air pollutant exposure evaluations

    NASA Astrophysics Data System (ADS)

    Batterman, Stuart; Chambliss, Sarah; Isakov, Vlad

    2014-09-01

    Vehicle emissions represent one of the most important air pollution sources in most urban areas, and elevated concentrations of pollutants found near major roads have been associated with many adverse health impacts. To understand these impacts, exposure estimates should reflect the spatial and temporal patterns observed for traffic-related air pollutants. This paper evaluates the spatial resolution and zonal systems required to estimate accurately intraurban and near-road exposures of traffic-related air pollutants. The analyses use the detailed information assembled for a large (800 km2) area centered on Detroit, Michigan, USA. Concentrations of nitrogen oxides (NOx) due to vehicle emissions were estimated using hourly traffic volumes and speeds on 9700 links representing all but minor roads in the city, the MOVES2010 emission model, the RLINE dispersion model, local meteorological data, a temporal resolution of 1 h, and spatial resolution as low as 10 m. Model estimates were joined with the corresponding shape files to estimate residential exposures for 700,000 individuals at property parcel, census block, census tract, and ZIP code levels. We evaluate joining methods, the spatial resolution needed to meet specific error criteria, and the extent of exposure misclassification. To portray traffic-related air pollutant exposure, raster or inverse distance-weighted interpolations are superior to nearest neighbor approaches, and interpolations between receptors and points of interest should not exceed about 40 m near major roads, and 100 m at larger distances. For census tracts and ZIP codes, average exposures are overestimated since few individuals live very near major roads, the range of concentrations is compressed, most exposures are misclassified, and high concentrations near roads are entirely omitted. While smaller zones improve performance considerably, even block-level data can misclassify many individuals. To estimate exposures and impacts of traffic-related

  8. Air Quality Modeling of Traffic-related Air Pollutants for the NEXUS Study

    EPA Science Inventory

    The paper presents the results of the model applications to estimate exposure metrics in support of an epidemiologic study in Detroit, Michigan. A major challenge in traffic-related air pollution exposure studies is the lack of information regarding pollutant exposure characteriz...

  9. Traffic-related air pollution exposure and incidence of stroke in four cohorts from Stockholm

    PubMed Central

    Korek, Michal J; Bellander, Tom D; Lind, Tomas; Bottai, Matteo; Eneroth, Kristina M; Caracciolo, Barbara; de Faire, Ulf H; Fratiglioni, Laura; Hilding, Agneta; Leander, Karin; Magnusson, Patrik K E; Pedersen, Nancy L; Östenson, Claes-Göran; Pershagen, Göran; Penell, Johanna C

    2015-01-01

    We investigated the risk of stroke related to long-term ambient air pollution exposure, in particular the role of various exposure time windows, using four cohorts from Stockholm County, Sweden. In total, 22,587 individuals were recruited from 1992 to 2004 and followed until 2011. Yearly air pollution levels resulting from local road traffic emissions were assessed at participant residences using dispersion models for particulate matter (PM10) and nitrogen oxides (NOX). Cohort-specific hazard ratios were estimated for time-weighted air pollution exposure during different time windows and the incidence of stroke, adjusted for common risk factors, and then meta-analysed. Overall, 868 subjects suffered a non-fatal or fatal stroke during 238,731 person-years of follow-up. An increment of 20 μg/m3 in estimated annual mean of road-traffic related NOX exposure at recruitment was associated with a hazard ratio of 1.16 (95% CI 0.83–1.61), with evidence of heterogeneity between the cohorts. For PM10, an increment of 10 μg/m3 corresponded to a hazard ratio of 1.14 (95% CI 0.68–1.90). Time-window analyses did not reveal any clear induction-latency pattern. In conclusion, we found suggestive evidence of an association between long-term exposure to NOX and PM10 from local traffic and stroke at comparatively low levels of air pollution. PMID:25827311

  10. Traffic-related air pollution exposure and incidence of stroke in four cohorts from Stockholm.

    PubMed

    Korek, Michal J; Bellander, Tom D; Lind, Tomas; Bottai, Matteo; Eneroth, Kristina M; Caracciolo, Barbara; de Faire, Ulf H; Fratiglioni, Laura; Hilding, Agneta; Leander, Karin; Magnusson, Patrik K E; Pedersen, Nancy L; Östenson, Claes-Göran; Pershagen, Göran; Penell, Johanna C

    2015-01-01

    We investigated the risk of stroke related to long-term ambient air pollution exposure, in particular the role of various exposure time windows, using four cohorts from Stockholm County, Sweden. In total, 22,587 individuals were recruited from 1992 to 2004 and followed until 2011. Yearly air pollution levels resulting from local road traffic emissions were assessed at participant residences using dispersion models for particulate matter (PM10) and nitrogen oxides (NOX). Cohort-specific hazard ratios were estimated for time-weighted air pollution exposure during different time windows and the incidence of stroke, adjusted for common risk factors, and then meta-analysed. Overall, 868 subjects suffered a non-fatal or fatal stroke during 238,731 person-years of follow-up. An increment of 20 μg/m(3) in estimated annual mean of road-traffic related NOX exposure at recruitment was associated with a hazard ratio of 1.16 (95% CI 0.83-1.61), with evidence of heterogeneity between the cohorts. For PM10, an increment of 10 μg/m(3) corresponded to a hazard ratio of 1.14 (95% CI 0.68-1.90). Time-window analyses did not reveal any clear induction-latency pattern. In conclusion, we found suggestive evidence of an association between long-term exposure to NOX and PM10 from local traffic and stroke at comparatively low levels of air pollution. PMID:25827311

  11. The Evaluation of Alternative Exposure Metrics for Traffic-related Air Pollutant Exposure in North Carolina

    EPA Science Inventory

    Transportation plays an important role in the modern society but can cause significant health impacts. To quantify the associated health impacts, an appropriate traffic-related air pollution exposure metric is required. In this study, we evaluate the suitability of four exposure ...

  12. Effect of geocoding errors on traffic-related air pollutant exposure and concentration estimates

    EPA Science Inventory

    Exposure to traffic-related air pollutants is highest very near roads, and thus exposure estimates are sensitive to positional errors. This study evaluates positional and PM2.5 concentration errors that result from the use of automated geocoding methods and from linearized approx...

  13. Preterm Birth: The Interaction of Traffic-related Air Pollution with Economic Hardship in Los Angeles Neighborhoods

    PubMed Central

    Ponce, Ninez A.; Hoggatt, Katherine J.; Wilhelm, Michelle; Ritz, Beate

    2013-01-01

    Preterm birth may be affected by the interaction of residential air pollution with neighborhood economic hardship. The authors examined variations in traffic-related pollution exposure—measured by distance-weighted traffic density—using a framework reflecting the social and physical environments. An adverse social environment was conceptualized as low socioeconomic status (SES) neighborhoods—census tracts with concentrated poverty, unemployment, and dependence on public assistance. An adverse physical environment was depicted by the winter season, when thermal inversions trap motor vehicle pollutants, thereby increasing traffic-related air pollution. Los Angeles County, California, birth records from 1994 to 1996 were linked to traffic counts, census data, and ambient air pollution measures. The authors fit multivariate logistic models of preterm birth, stratified by neighborhood SES and third pregnancy trimester season. Traffic-related air pollution exposure disproportionately affected low SES neighborhoods in the winter. Further, in these poorer neighborhoods, the winter season evidenced increased susceptibility among women with known risk factors. Health insurance was most beneficial to women residing in neighborhoods exposed to economic hardship and an adverse physical environment. Reducing preterm births warrants a concerted effort of social, economic, and environmental policies, focused on not only individual risk factors but also the reduction of localized air pollution, expansion of health-care coverage, and improvement of neighborhood resources. PMID:15972941

  14. The association between chronic exposure to traffic-related air pollution and ischemic heart disease.

    PubMed

    Beckerman, Bernardo S; Jerrett, Michael; Finkelstein, Murray; Kanaroglou, Pavlos; Brook, Jeffrey R; Arain, M Altaf; Sears, Malcolm R; Stieb, David; Balmes, John; Chapman, Kenneth

    2012-01-01

    Increasing evidence links air pollution to the risk of cardiovascular disease. This study investigated the association between ischemic heart disease (IHD) prevalence and exposure to traffic-related air pollution (nitrogen dioxide [NO₂], fine particulate matter [PM₂.₅], and ozone [O₃]) in a population of susceptible subjects in Toronto. Local (NO₂) exposures were modeled using land use regression based on extensive field monitoring. Regional exposures (PM₂.₅, O₃) were modeled as confounders using inverse distance weighted interpolation based on government monitoring data. The study sample consisted of 2360 patients referred during 1992 to 1999 to a pulmonary clinic at the Toronto Western Hospital in Toronto, Ontario, Canada, to diagnose or manage a respiratory complaint. IHD status was determined by clinical database linkages (ICD-9-CM 412-414). The association between IHD and air pollutants was assessed with a modified Poisson regression resulting in relative risk estimates. Confounding was controlled with individual and neighborhood-level covariates. After adjusting for multiple covariates, NO₂ was significantly associated with increased IHD risk, relative risk (RR) = 1.33 (95% confidence interval [CI]: 1.2, 1.47). Subjects living near major roads and highways had a trend toward an elevated risk of IHD, RR = 1.08 (95% CI: 0.99, 1.18). Regional PM₂.₅ and O₃ were not associated with risk of IHD. PMID:22524595

  15. Childhood Incident Asthma and Traffic-Related Air Pollution at Home and School

    PubMed Central

    McConnell, Rob; Islam, Talat; Shankardass, Ketan; Jerrett, Michael; Lurmann, Fred; Gilliland, Frank; Gauderman, Jim; Avol, Ed; Künzli, Nino; Yao, Ling; Peters, John; Berhane, Kiros

    2010-01-01

    Background Traffic-related air pollution has been associated with adverse cardiorespiratory effects, including increased asthma prevalence. However, there has been little study of effects of traffic exposure at school on new-onset asthma. Objectives We evaluated the relationship of new-onset asthma with traffic-related pollution near homes and schools. Methods Parent-reported physician diagnosis of new-onset asthma (n = 120) was identified during 3 years of follow-up of a cohort of 2,497 kindergarten and first-grade children who were asthma- and wheezing-free at study entry into the Southern California Children’s Health Study. We assessed traffic-related pollution exposure based on a line source dispersion model of traffic volume, distance from home and school, and local meteorology. Regional ambient ozone, nitrogen dioxide (NO2), and particulate matter were measured continuously at one central site monitor in each of 13 study communities. Hazard ratios (HRs) for new-onset asthma were scaled to the range of ambient central site pollutants and to the residential interquartile range for each traffic exposure metric. Results Asthma risk increased with modeled traffic-related pollution exposure from roadways near homes [HR 1.51; 95% confidence interval (CI), 1.25–1.82] and near schools (HR 1.45; 95% CI, 1.06–1.98). Ambient NO2 measured at a central site in each community was also associated with increased risk (HR 2.18; 95% CI, 1.18–4.01). In models with both NO2 and modeled traffic exposures, there were independent associations of asthma with traffic-related pollution at school and home, whereas the estimate for NO2 was attenuated (HR 1.37; 95% CI, 0.69–2.71). Conclusions Traffic-related pollution exposure at school and homes may both contribute to the development of asthma. PMID:20371422

  16. Effect of geocoding errors on traffic-related air pollutant exposure and concentration estimates.

    PubMed

    Ganguly, Rajiv; Batterman, Stuart; Isakov, Vlad; Snyder, Michelle; Breen, Michael; Brakefield-Caldwell, Wilma

    2015-01-01

    Exposure to traffic-related air pollutants is highest very near roads, and thus exposure estimates are sensitive to positional errors. This study evaluates positional and PM2.5 concentration errors that result from the use of automated geocoding methods and from linearized approximations of roads in link-based emission inventories. Two automated geocoders (Bing Map and ArcGIS) along with handheld GPS instruments were used to geocode 160 home locations of children enrolled in an air pollution study investigating effects of traffic-related pollutants in Detroit, Michigan. The average and maximum positional errors using the automated geocoders were 35 and 196 m, respectively. Comparing road edge and road centerline, differences in house-to-highway distances averaged 23 m and reached 82 m. These differences were attributable to road curvature, road width and the presence of ramps, factors that should be considered in proximity measures used either directly as an exposure metric or as inputs to dispersion or other models. Effects of positional errors for the 160 homes on PM2.5 concentrations resulting from traffic-related emissions were predicted using a detailed road network and the RLINE dispersion model. Concentration errors averaged only 9%, but maximum errors reached 54% for annual averages and 87% for maximum 24-h averages. Whereas most geocoding errors appear modest in magnitude, 5% to 20% of residences are expected to have positional errors exceeding 100 m. Such errors can substantially alter exposure estimates near roads because of the dramatic spatial gradients of traffic-related pollutant concentrations. To ensure the accuracy of exposure estimates for traffic-related air pollutants, especially near roads, confirmation of geocoordinates is recommended. PMID:25670023

  17. Effect of geocoding errors on traffic-related air pollutant exposure and concentration estimates

    PubMed Central

    Ganguly, Rajiv; Batterman, Stuart; Isakov, Vlad; Snyder, Michelle; Breen, Michael; Brakefield-Caldwell, Wilma

    2015-01-01

    Exposure to traffic-related air pollutants is highest very near roads, and thus exposure estimates are sensitive to positional errors. This study evaluates positional and PM2.5 concentration errors that result from the use of automated geocoding methods and from linearized approximations of roads in link-based emission inventories. Two automated geocoders (Bing Map and ArcGIS) along with handheld GPS instruments were used to geocode 160 home locations of children enrolled in an air pollution study investigating effects of traffic-related pollutants in Detroit, Michigan. The average and maximum positional errors using the automated geocoders were 35 and 196 m, respectively. Comparing road edge and road centerline, differences in house-to-highway distances averaged 23 m and reached 82 m. These differences were attributable to road curvature, road width and the presence of ramps, factors that should be considered in proximity measures used either directly as an exposure metric or as inputs to dispersion or other models. Effects of positional errors for the 160 homes on PM2.5 concentrations resulting from traffic-related emissions were predicted using a detailed road network and the RLINE dispersion model. Concentration errors averaged only 9%, but maximum errors reached 54% for annual averages and 87% for maximum 24-h averages. Whereas most geocoding errors appear modest in magnitude, 5% to 20% of residences are expected to have positional errors exceeding 100 m. Such errors can substantially alter exposure estimates near roads because of the dramatic spatial gradients of traffic-related pollutant concentrations. To ensure the accuracy of exposure estimates for traffic-related air pollutants, especially near roads, confirmation of geocoordinates is recommended. PMID:25670023

  18. Health effects of metropolitan traffic-related air pollutants on street vendors

    NASA Astrophysics Data System (ADS)

    Kongtip, P.; Thongsuk, W.; Yoosook, W.; Chantanakul, S.

    Traffic-related air pollutants are a commonly important source of air pollution. Research on the effects of multiple traffic-related air pollutants on street vendors is scarce. This study evaluated the health effect of traffic-related air pollutants in street vendors. It was designed as a panel study, covering 61 d of data collection, on the daily concentration of air pollutants and daily percentage of respiratory and other health symptoms reported. An adjusted odds ratio was used to estimate the risk of developing respiratory and other adverse health symptoms for street vendors exposed to multiple air pollutants, fine particulate (PM 2.5), nitrogen dioxide (NO 2), ozone (O 3), carbon monoxide (CO) and total volatile organic chemicals (VOCs), after controlling for confounding factors. In the first model, significant associations were found with the adjusted odds ratios of 1.022 and 1.027 for eye irritation and dizziness for PM 2.5 respectively. The adjusted odds ratio of total VOCs was 1.381 for phlegm, 4.840 for chest tightness and 1.429 for upper respiratory symptoms, and the adjusted odds ratio for CO was 1.748 for a sore throat and 1.880 for a cold and 1.655 for a cough. In the second model, the effect of PM 2.5, total VOCs and CO gave a slightly lower effect with the symptoms. The results clearly show the health effects of traffic-related air pollutants on street vendors, and imply suggestions about how to reduce exposure of street vendors.

  19. Traffic-related air pollution and lung cancer: A meta-analysis

    PubMed Central

    Chen, Gongbo; Wan, Xia; Yang, Gonghuan; Zou, Xiaonong

    2015-01-01

    Background We conducted a meta-analysis to evaluate the association between traffic-related air pollution and lung cancer in order to provide evidence for control of traffic-related air pollution. Methods Several databases were searched for relevant studies up to December 2013. The quality of articles obtained was evaluated by the Strengthening the Reporting of Observational Studies in Epidemiology checklist. Statistical analysis, including pooling effective sizes and confidential intervals, was performed. Results A total of 1106 records were obtained through the database and 36 studies were included in our analysis. Among the studies included, 14 evaluated the association between ambient exposure to traffic-related air pollution and lung cancer and 22 studies involved occupational exposure to air pollution among professional drivers. Twenty-two studies were marked A level regarding quality, 13 were B level, and one was C level. Exposure to nitrogen dioxide (meta-odds ratio [OR]: 1.06, 95% confidence interval [CI]: 0.99–1.13), nitrogen oxide (meta-OR: 1.04, 95% CI: 1.01–1.07), sulfur dioxide (meta-OR: 1.03, 95% CI: 1.02–1.05), and fine particulate matter (meta-OR: 1.11, 95% CI: 1.00–1.22) were positively associated with a risk of lung cancer. Occupational exposure to air pollution among professional drivers significantly increased the incidence (meta-OR: 1.27, 95% CI: 1.19–1.36) and mortality of lung cancer (meta-OR: 1.14, 95% CI: 1.04–1.26). Conclusion Exposure to traffic-related air pollution significantly increased the risk of lung cancer. PMID:26273377

  20. Traffic-related air pollution and risk for leukaemia of an adult population.

    PubMed

    Raaschou-Nielsen, Ole; Ketzel, Matthias; Harbo Poulsen, Aslak; Sørensen, Mette

    2016-03-01

    Air pollution causes lung cancer, but associations with other cancers have not been established. We investigated whether long-term exposure to traffic-related air pollution is associated with the risk of the general population for leukaemia. We identified 1,967 people in whom leukaemia was diagnosed in 1992-2010 from a nation-wide cancer registry and selected 3,381 control people at random, matched on sex and year of birth, from the entire Danish population. Residential addresses since 1971 were traced in a population registry, and outdoor concentrations of NOx and NO2 , as indicators of traffic-related air pollution, were calculated at each address in a dispersion model. We used conditional logistic regression to estimate the risk for leukaemia after adjustment for income, educational level, cohabitation status and co-morbidity. In linear analyses, we found odds ratios for acute myeloid leukaemia of 1.20 (95% confidence interval: 1.04-1.38) per 20 µg/m(3) increase in NOx and 1.31 (1.02-1.68) per 10 µg/m(3) increase in NO2 , calculated as time-weighted average exposure at all addresses since 1971. We found no association with chronic myeloid or lymphocytic leukaemia. This study indicates an association between long-term exposure to traffic-related air pollution and acute myeloid leukaemia in the general population, but not for other subtypes of leukaemia. PMID:26415047

  1. Development of outdoor exposure model of traffic-related air pollution for epidemiologic research in Japan.

    PubMed

    Kanda, Isao; Ohara, Toshimasa; Nataami, Taro; Nitta, Hiroshi; Tamura, Kenji; Hasegawa, Shuichi; Shima, Masayuki; Nakai, Satoshi; Sakamoto, Kazuhiko; Yokota, Hisashi

    2013-01-01

    We developed an exposure estimation model for an epidemiological study on the effect of traffic-related air pollutants on respiratory diseases. The model estimates annual average outdoor concentration of nitrogen oxides (NOx) and elemental carbon (EC). The model is composed of three nested plume dispersion type submodels treating different spatial scales from a few meters to tens of kilometers. The emissions from road traffic was estimated at high spatial resolution along the paths of roads taking into account the effects of individual building shape and traffic signals to secure accuracy near trunk roads where most of the subjects of the epidemiological study resided. Model performance was confirmed by field measurements at permanent local government stations and purpose-built temporary stations; the latter supplemented roadside monitoring points and provided EC concentrations, which are not measured routinely. We infer that EC emissions were underestimated by using the available database because there were significant contributions to EC concentrations from sources that did not emit much NOx. An adjustment concentration yielded good agreement between model estimates and field measurements. PMID:23715083

  2. Traffic-related air pollution and obesity formation in children: a longitudinal, multilevel analysis

    PubMed Central

    2014-01-01

    Background Biologically plausible mechanisms link traffic-related air pollution to metabolic disorders and potentially to obesity. Here we sought to determine whether traffic density and traffic-related air pollution were positively associated with growth in body mass index (BMI = kg/m2) in children aged 5–11 years. Methods Participants were drawn from a prospective cohort of children who lived in 13 communities across Southern California (N = 4550). Children were enrolled while attending kindergarten and first grade and followed for 4 years, with height and weight measured annually. Dispersion models were used to estimate exposure to traffic-related air pollution. Multilevel models were used to estimate and test traffic density and traffic pollution related to BMI growth. Data were collected between 2002–2010 and analyzed in 2011–12. Results Traffic pollution was positively associated with growth in BMI and was robust to adjustment for many confounders. The effect size in the adjusted model indicated about a 13.6% increase in annual BMI growth when comparing the lowest to the highest tenth percentile of air pollution exposure, which resulted in an increase of nearly 0.4 BMI units on attained BMI at age 10. Traffic density also had a positive association with BMI growth, but this effect was less robust in multivariate models. Conclusions Traffic pollution was positively associated with growth in BMI in children aged 5–11 years. Traffic pollution may be controlled via emission restrictions; changes in land use that promote jobs-housing balance and use of public transit and hence reduce vehicle miles traveled; promotion of zero emissions vehicles; transit and car-sharing programs; or by limiting high pollution traffic, such as diesel trucks, from residential areas or places where children play outdoors, such as schools and parks. These measures may have beneficial effects in terms of reduced obesity formation in children. PMID:24913018

  3. Time-space modeling of journey-time exposure to traffic-related air pollution using GIS.

    PubMed

    Gulliver, John; Briggs, David J

    2005-01-01

    Journey-time exposures represent an important, though as yet little-studied, component of human exposure to traffic-related air pollution, potentially with important health effects. Methods for assessing journey-time exposures, either as part of epidemiological studies or for policy assessment, are, however, poorly developed. This paper describes the development and testing of a GIS-based system for modeling human journey-time exposures to traffic-related air pollution: STEMS (Space-Time Exposure Modeling System). The model integrates data on source activity, pollutant dispersion, and travel behavior to derive individual- or group-level exposure measures to atmospheric pollution. The model, which is designed to simulate exposures of people as they move through a changing air pollution field, was developed, validated, and trialed in Northampton, UK. The system currently uses ArcInfo to couple four separate submodels: a source activity/emission model (SATURN), a proprietary atmospheric dispersion model (ADMS-Urban), an empirically derived background air pollution model, and a purposely designed time-activity-based exposure model (TOTEM). This paper describes the structure of the modeling system; presents results of field calibration, validation, and sensitivity analysis; and illustrates the use of the model to analyze journey-time exposures of schoolchildren. PMID:15476729

  4. Synergistic Effects of Traffic-Related Air Pollution and Exposure to Violence on Urban Asthma Etiology

    PubMed Central

    Clougherty, Jane E.; Levy, Jonathan I.; Kubzansky, Laura D.; Ryan, P. Barry; Suglia, Shakira Franco; Canner, Marina Jacobson; Wright, Rosalind J.

    2007-01-01

    Background Disproportionate life stress and consequent physiologic alteration (i.e., immune dysregulation) has been proposed as a major pathway linking socioeconomic position, environmental exposures, and health disparities. Asthma, for example, disproportionately affects lower-income urban communities, where air pollution and social stressors may be elevated. Objectives We aimed to examine the role of exposure to violence (ETV), as a chronic stressor, in altering susceptibility to traffic-related air pollution in asthma etiology. Methods We developed geographic information systems (GIS)–based models to retrospectively estimate residential exposures to traffic-related pollution for 413 children in a community-based pregnancy cohort, recruited in East Boston, Massachusetts, between 1987 and 1993, using monthly nitrogen dioxide measurements for 13 sites over 18 years. We merged pollution estimates with questionnaire data on lifetime ETV and examined the effects of both on childhood asthma etiology. Results Correcting for potential confounders, we found an elevated risk of asthma with a 1-SD (4.3 ppb) increase in NO2 exposure solely among children with above-median ETV [odds ratio (OR) = 1.63; 95% confidence interval (CI), 1.14–2.33)]. Among children always living in the same community, with lesser exposure measurement error, this association was magnified (OR = 2.40; 95% CI, 1.48–3.88). Of multiple exposure periods, year-of-diagnosis NO2 was most predictive of asthma outcomes. Conclusions We found an association between traffic-related air pollution and asthma solely among urban children exposed to violence. Future studies should consider socially patterned susceptibility, common spatial distributions of social and physical environmental factors, and potential synergies among these. Prospective assessment of physical and social exposures may help determine causal pathways and critical exposure periods. PMID:17687439

  5. Traffic-related air pollution. A pilot exposure assessment in Beirut, Lebanon.

    PubMed

    Borgie, Mireille; Garat, Anne; Cazier, Fabrice; Delbende, Agnes; Allorge, Delphine; Ledoux, Frederic; Courcot, Dominique; Shirali, Pirouz; Dagher, Zeina

    2014-02-01

    Traffic-related volatile organic compounds (VOCs) pollution has frequently been demonstrated to be a serious problem in the developing countries. Benzene and 1,3-butadiene (BD) have been classified as a human carcinogen based on evidence for an increased genotoxic and epigenotoxic effects in both occupational exposure assessment and in vivo/in vitro studies. We have undertaken a biomonitoring of 25 traffic policemen and 23 office policemen in Beirut, through personal air monitoring, assessed by diffusive samplers, as well as through the use of biomarkers of exposure to benzene and BD. Personal benzene, toluene, ethylbenzene, and xylene (BTEX) exposure were quantified by GC-MS/MS, urinary trans, trans-muconic acid (t,t-MA) by HPLC/UV, S-phenyl mercapturic acid (S-PMA), monohydroxy-butenyl mercapturic acid (MHBMA) and dihydroxybutyl mercapturic acid (DHBMA) by ultra-performance liquid chromatography-electrospray tandem mass spectrometry (UPLC/ESI(-)-MS/MS) in MRM (Multiple Reaction Monitoring) mode. We found that individual exposure to benzene in the traffic policemen was higher than that measured in traffic policemen in Prague, in Bologna, in Ioannina and in Bangkok. t,t-MA levels could distinguish between office and traffic policemen. However, median MHBMA levels in traffic policemen were slightly elevated, though not significantly higher than in office policemen. Alternatively, DHBMA concentrations could significantly distinguish between office and traffic policemen and showed a better correlation with personal total BTEX exposure. DHMBA, measured in the post-shift urine samples, correlated with both pre-shift MHMBA and pre-shift DHMBA. Moreover, there was not a marked effect of smoking habits on DHBMA. Taken together, these findings suggested that DHBMA is more suitable than MHBMA as biomarker of exposure to BD in humans. Traffic policemen, who are exposed to benzene and BD at the roadside in central Beirut, are potentially at a higher risk for development of

  6. Traffic-Related Air Toxics and Term Low Birth Weight in Los Angeles County, California

    PubMed Central

    Ghosh, Jo Kay; Su, Jason; Cockburn, Myles; Jerrett, Michael; Ritz, Beate

    2011-01-01

    Background: Numerous studies have linked criteria air pollutants with adverse birth outcomes, but there is less information on the importance of specific emission sources, such as traffic, and air toxics. Objectives: We used three exposure data sources to examine odds of term low birth weight (LBW) in Los Angeles, California, women when exposed to high levels of traffic-related air pollutants during pregnancy. Methods: We identified term births during 1 June 2004 to 30 March 2006 to women residing within 5 miles of a South Coast Air Quality Management District (SCAQMD) Multiple Air Toxics Exposure Study (MATES III) monitoring station. Pregnancy period average exposures were estimated for air toxics, including polycyclic aromatic hydrocarbons (PAHs), source-specific particulate matter < 2.5 μm in aerodynamic diameter (PM2.5) based on a chemical mass balance model, criteria air pollutants from government monitoring data, and land use regression (LUR) model estimates of nitric oxide (NO), nitrogen dioxide (NO2) and nitrogen oxides (NOx). Associations between these metrics and odds of term LBW (< 2,500 g) were examined using logistic regression. Results: Odds of term LBW increased approximately 5% per interquartile range increase in entire pregnancy exposures to several correlated traffic pollutants: LUR measures of NO, NO2, and NOx, elemental carbon, and PM2.5 from diesel and gasoline combustion and paved road dust (geological PM2.5). Conclusions: These analyses provide additional evidence of the potential impact of traffic-related air pollution on fetal growth. Particles from traffic sources should be a focus of future studies. PMID:21835727

  7. The association between greenness and traffic-related air pollution at schools.

    PubMed

    Dadvand, Payam; Rivas, Ioar; Basagaña, Xavier; Alvarez-Pedrerol, Mar; Su, Jason; De Castro Pascual, Montserrat; Amato, Fulvio; Jerret, Michael; Querol, Xavier; Sunyer, Jordi; Nieuwenhuijsen, Mark J

    2015-08-01

    Greenness has been reported to improve mental and physical health. Reduction in exposure to air pollution has been suggested to underlie the health benefits of greenness; however, the available evidence on the mitigating effect of greenness on air pollution remains limited and inconsistent. We investigated the association between greenness within and surrounding school boundaries and monitored indoor and outdoor levels of traffic-related air pollutants (TRAPs) including NO2, ultrafine particles, black carbon, and traffic-related PM2.5 at 39 schools across Barcelona, Spain, in 2012. TRAP levels at schools were measured twice during two one-week campaigns separated by 6months. Greenness within and surrounding school boundaries was measured as the average of satellite-derived normalized difference vegetation index (NDVI) within boundaries of school and a 50m buffer around the school, respectively. Mixed effects models were used to quantify the associations between school greenness and TRAP levels, adjusted for relevant covariates. Higher greenness within and surrounding school boundaries was consistently associated with lower indoor and outdoor TRAP levels. Reduction in indoor TRAP levels was partly mediated by the reduction in outdoor TRAP levels. We also observed some suggestions for stronger associations between school surrounding greenness and outdoor TRAP levels for schools with higher number of trees around them. Our observed reduction of TRAP levels at schools associated with school greenness can be of public importance, considering the burden of health effects of exposure to TRAPs in schoolchildren. PMID:25862991

  8. Traffic-Related Air Pollution and Perinatal Mortality: A Case–Control Study

    PubMed Central

    de Medeiros, Andréa Paula Peneluppi; Gouveia, Nelson; Machado, Reinaldo Paul Pérez; de Souza, Miriam Regina; Alencar, Gizelton Pereira; Novaes, Hillegonda Maria Dutilh; de Almeida, Márcia Furquim

    2009-01-01

    Background Ambient levels of air pollution may affect the health of children, as indicated by studies of infant and perinatal mortality. Scientific evidence has also correlated low birth weight and preterm birth, which are important determinants of perinatal death, with air pollution. However, most of these studies used ambient concentrations measured at monitoring sites, which may not consider differential exposure to pollutants found at elevated concentrations near heavy-traffic roadways. Objectives Our goal was to examine the association between traffic-related pollution and perinatal mortality. Methods We used the information collected for a case–control study conducted in 14 districts in the City of São Paulo, Brazil, regarding risk factors for perinatal deaths. We geocoded the residential addresses of cases (fetal and early neonatal deaths) and controls (children who survived the 28th day of life) and calculated a distance-weighted traffic density (DWTD) measure considering all roads contained in a buffer surrounding these homes. Results Logistic regression revealed a gradient of increasing risk of early neonatal death with higher exposure to traffic-related air pollution. Mothers exposed to the highest quartile of the DWTD compared with those less exposed exhibited approximately 50% increased risk (adjusted odds ratio = 1.47; 95% confidence interval, 0.67–3.19). Associations for fetal mortality were less consistent. Conclusions These results suggest that motor vehicle exhaust exposures may be a risk factor for perinatal mortality. PMID:19165399

  9. Exposure to traffic related air pollutants: self reported traffic intensity versus GIS modelled exposure

    PubMed Central

    Heinrich, J; Gehring, U; Cyrys, J; Brauer, M; Hoek, G; Fischer, P; Bellander, T; Brunekreef, B

    2005-01-01

    Background: In epidemiological studies of the potential health effects of traffic related air pollution, self reported traffic intensity is a commonly used, but rarely validated, exposure variable. Methods: As part of a study on the impact of Traffic Related Air Pollution on Childhood Asthma (TRAPCA), data from 2633 and 673 infants from the Dutch and the German-Munich cohorts, respectively, were available. Parents subjectively assessed traffic intensity at the home address. Objective exposures were estimated by a combination of spatial air pollution measurements and geographic information system (GIS) based modelling using an identical method for both cohorts. Results: The agreement rates between self reported and GIS modelled exposure—accumulated over the three strata of self assessed traffic intensity—were 55–58% for PM2.5, filter absorbance (PM2.5 abs), and nitrogen dioxide in Munich and 39–40% in the Netherlands. Of the self reported low traffic exposed group, 71–73% in Munich and 45–47% in the Netherlands had low modelled exposure to these three air pollutants. Of the self assessed high exposed subgroups in Munich (15% of the total population) and the Netherlands (22% of the total population), only 22–33% and 30–32% respectively had high modelled exposure to the three air pollutants. The subjective assessments tend to overestimate the modelled estimates for PM2.5 and NO2 in both study areas. When analysis was restricted to the portion of the Dutch cohort living in non-urban areas, the agreement rates were even lower. Conclusions: Self reported and modelled assessment of exposure to air pollutants are only weakly associated. PMID:16046603

  10. Association of Traffic-Related Air Pollution with Children’s Neurobehavioral Functions in Quanzhou, China

    PubMed Central

    Wang, Shunqin; Zhang, Jinliang; Zeng, Xiaodong; Zeng, Yimin; Wang, Shengchun; Chen, Shuyun

    2009-01-01

    Background With the increase of motor vehicles, ambient air pollution related to traffic exhaust has become an important environmental issue in China. Because of their fast growth and development, children are more susceptible to ambient air pollution exposure. Many chemicals from traffic exhaust, such as carbon monoxide, nitrogen dioxide, and lead, have been reported to show adverse effects on neurobehavioral functions. Several studies in China have suggested that traffic exhaust might affect neurobehavioral functions of adults who have occupational traffic exhaust exposure. However, few data have been reported on the effects on neurobehavioral function in children. Objectives The objective of this study was to explore the association between traffic-related air pollution exposure and its effects on neurobehavioral function in children. Methods This field study was conducted in Quanzhou, China, where two primary schools were chosen based on traffic density and monitoring data of ambient air pollutants. School A was located in a clear area and school B in a polluted area. We monitored NO2 and particulate matter with aerodynamic diameter ≤ 10 μm as indicators for traffic-related air pollution on the campuses and in classrooms for 2 consecutive days in May 2005. The children from second grade (8–9 years of age) and third grade (9–10 years of age) of the two schools (n = 928) participated in a questionnaire survey and manual-assisted neurobehavioral testing. We selected 282 third-grade children (school A, 136; school B, 146) to participate in computer-assisted neurobehavioral testing. We conducted the fieldwork between May and June 2005. We used data from 861 participants (school A, 431; school B, 430) with manual neurobehavioral testing and from all participants with computerized testing for data analyses. Results Media concentrations of NO2 in school A and school B campus were 7 μg/m3 and 36 μg/m3, respectively (p < 0.05). The ordinal logistic regression

  11. Maternal exposure to traffic-related air pollution and birth defects in Massachusetts.

    PubMed

    Girguis, Mariam S; Strickland, Matthew J; Hu, Xuefei; Liu, Yang; Bartell, Scott M; Vieira, Verónica M

    2016-04-01

    Exposures to particulate matter with diameter of 2.5µm or less (PM2.5) may influence risk of birth defects. We estimated associations between maternal exposure to prenatal traffic-related air pollution and risk of cardiac, orofacial, and neural tube defects among Massachusetts births conceived 2001 through 2008. Our analyses included 2729 cardiac, 255 neural tube, and 729 orofacial defects. We used satellite remote sensing, meteorological and land use data to assess PM2.5 and traffic-related exposures (distance to roads and traffic density) at geocoded birth addresses. We calculated adjusted odds ratios (OR) and confidence intervals (CI) using logistic regression models. Generalized additive models were used to assess spatial patterns of birth defect risk. There were positive but non-significant associations for a 10µg/m(3) increase in PM2.5 and perimembranous ventricular septal defects (OR=1.34, 95% CI: 0.98, 1.83), patent foramen ovale (OR=1.19, 95% CI: 0.92, 1.54) and patent ductus arteriosus (OR=1.20, 95% CI: 0.95, 1.62). There was a non-significant inverse association between PM2.5 and cleft lip with or without palate (OR=0.76, 95% CI: 0.50, 1.10), cleft palate only (OR=0.89, 95% CI: 0.54, 1.46) and neural tube defects (OR=0.77, 95% CI: 0.46, 1.05). Results for traffic related exposure were similar. Only ostium secundum atrial septal defects displayed significant spatial variation after accounting for known risk factors. PMID:26705853

  12. Socioeconomic Position and Low Birth Weight among Mothers Exposed to Traffic-Related Air Pollution

    PubMed Central

    Habermann, Mateus; Gouveia, Nelson

    2014-01-01

    Background Atmospheric pollution is a major public health concern. It can affect placental function and restricts fetal growth. However, scientific knowledge remains too limited to make inferences regarding causal associations between maternal exposure to air pollution and adverse effects on pregnancy. This study evaluated the association between low birth weight (LBW) and maternal exposure during pregnancy to traffic related air pollutants (TRAP) in São Paulo, Brazil. Methods and findings Analysis included 5,772 cases of term-LBW (<2,500 g) and 5,814 controls matched by sex and month of birth selected from the birth registration system. Mothers’ addresses were geocoded to estimate exposure according to 3 indicators: distance from home to heavy traffic roads, distance-weighted traffic density (DWTD) and levels of particulate matter ≤10 µg/m3 estimated through land use regression (LUR-PM10). Final models were evaluated using multiple logistic regression adjusting for birth, maternal and pregnancy characteristics. We found decreased odds in the risk of LBW associated with DWTD and LUR-PM10 in the highest quartiles of exposure with a significant linear trend of decrease in risk. The analysis with distance from heavy traffic roads was less consistent. It was also observed that mothers with higher education and neighborhood-level income were potentially more exposed to TRAP. Conclusions This study found an unexpected decreased risk of LBW associated with traffic related air pollution. Mothers with advantaged socioeconomic position (SEP) although residing in areas of higher vehicular traffic might not in fact be more expose to air pollution. It can also be that the protection against LBW arising from a better SEP is stronger than the effect of exposure to air pollution, and this exposure may not be sufficient to increase the risk of LBW for these mothers. PMID:25426640

  13. Traffic-Related Air Pollution and Dementia Incidence in Northern Sweden: A Longitudinal Study

    PubMed Central

    Oudin, Anna; Forsberg, Bertil; Adolfsson, Annelie Nordin; Lind, Nina; Modig, Lars; Nordin, Maria; Nordin, Steven; Adolfsson, Rolf; Nilsson, Lars-Göran

    2015-01-01

    Background Exposure to ambient air pollution is suspected to cause cognitive effects, but a prospective cohort is needed to study exposure to air pollution at the home address and the incidence of dementia. Objectives We aimed to assess the association between long-term exposure to traffic-related air pollution and dementia incidence in a major city in northern Sweden. Methods Data on dementia incidence over a 15-year period were obtained from the longitudinal Betula study. Traffic air pollution exposure was assessed using a land-use regression model with a spatial resolution of 50 m × 50 m. Annual mean nitrogen oxide levels at the residential address of the participants at baseline (the start of follow-up) were used as markers for long-term exposure to air pollution. Results Out of 1,806 participants at baseline, 191 were diagnosed with Alzheimer’s disease during follow-up, and 111 were diagnosed with vascular dementia. Participants in the group with the highest exposure were more likely than those in the group with the lowest exposure to be diagnosed with dementia (Alzheimer’s disease or vascular dementia), with a hazard ratio (HR) of 1.43 (95% CI: 0.998, 2.05 for the highest vs. the lowest quartile). The estimates were similar for Alzheimer’s disease (HR 1.38) and vascular dementia (HR 1.47). The HR for dementia associated with the third quartile versus the lowest quartile was 1.48 (95% CI: 1.03, 2.11). A subanalysis that excluded a younger sample that had been retested after only 5 years of follow-up suggested stronger associations with exposure than were present in the full cohort (HR = 1.71; 95% CI: 1.08, 2.73 for the highest vs. the lowest quartile). Conclusions If the associations we observed are causal, then air pollution from traffic might be an important risk factor for vascular dementia and Alzheimer’s disease. Citation Oudin A, Forsberg B, Nordin Adolfsson A, Lind N, Modig L, Nordin M, Nordin S, Adolfsson R, Nilsson LG. 2016. Traffic-related

  14. Predicting traffic-related air pollution in Los Angeles using a distance decay regression selection strategy

    PubMed Central

    Su, Jason G.; Jerrett, Michael; Beckerman, Bernardo; Wilhelm, Michelle; Ghosh, Jo Kay; Ritz, Beate

    2013-01-01

    Land use regression (LUR) has emerged as an effective means of estimating exposure to air pollution in epidemiological studies. We created the first LUR models of nitric oxide (NO), nitrogen dioxide (NO2) and nitrogen oxides (NOx) for the complex megalopolis of Los Angeles (LA), California. Two-hundred and one sampling sites (the largest sampling design to date for LUR estimation) for two seasons were selected using a location-allocation algorithm that maximized the potential variability in measured pollutant concentrations and represented populations in the health study. Traffic volumes, truck routes and road networks, land use data, satellite-derived vegetation greenness and soil brightness, and truck route slope gradients were used for predicting NOx concentrations. A novel model selection strategy known as “ADDRESS” (A Distance Decay REgression Selection Strategy) was used to select optimized buffer distances for potential predictor variables and maximize model performance. Final regression models explained 81%, 86% and 85% of the variance in measured NO, NO2 and NOx concentrations, respectively. Cross-validation analyses suggested a prediction accuracy of 87–91%. Remote sensing-derived variables were significantly correlated with NOx concentrations, suggesting these data are useful surrogates for modeling traffic-related pollution when certain land use data are unavailable. Our study also demonstrated that reactive pollutants such as NO and NO2 could have high spatial extents of influence (e.g., > 5000 m from expressway) and high background concentrations in certain geographic areas. This paper represents the first attempt to model traffic-related air pollutants at a fine scale within such a complex and large urban region. PMID:19540476

  15. Predicting traffic-related air pollution in Los Angeles using a distance decay regression selection strategy.

    PubMed

    Su, Jason G; Jerrett, Michael; Beckerman, Bernardo; Wilhelm, Michelle; Ghosh, Jo Kay; Ritz, Beate

    2009-08-01

    Land use regression (LUR) has emerged as an effective means of estimating exposure to air pollution in epidemiological studies. We created the first LUR models of nitric oxide (NO), nitrogen dioxide (NO2) and nitrogen oxides (NOX) for the complex megalopolis of Los Angeles (LA), California. Two-hundred and one sampling sites (the largest sampling design to date for LUR estimation) for two seasons were selected using a location-allocation algorithm that maximized the potential variability in measured pollutant concentrations and represented populations in the health study. Traffic volumes, truck routes and road networks, land use data, satellite-derived vegetation greenness and soil brightness, and truck route slope gradients were used for predicting NOX concentrations. A novel model selection strategy known as "ADDRESS" (A Distance Decay REgression Selection Strategy) was used to select optimized buffer distances for potential predictor variables and maximize model performance. Final regression models explained 81%, 86% and 85% of the variance in measured NO, NO2 and NOX concentrations, respectively. Cross-validation analyses suggested a prediction accuracy of 87-91%. Remote sensing-derived variables were significantly correlated with NOX concentrations, suggesting these data are useful surrogates for modeling traffic-related pollution when certain land use data are unavailable. Our study also demonstrated that reactive pollutants such as NO and NO2 could have high spatial extents of influence (e.g., > 5000 m from expressway) and high background concentrations in certain geographic areas. This paper represents the first attempt to model traffic-related air pollutants at a fine scale within such a complex and large urban region. PMID:19540476

  16. Subclinical responses in healthy cyclists briefly exposed to traffic-related air pollution: an intervention study

    PubMed Central

    2010-01-01

    Background Numerous epidemiological studies have demonstrated adverse health effects of a sedentary life style, on the one hand, and of acute and chronic exposure to traffic-related air pollution, on the other. Because physical exercise augments the amount of inhaled pollutants, it is not clear whether cycling to work in a polluted urban environment should be encouraged or not. To address this conundrum we investigated if a bicycle journey along a busy commuting road would induce changes in biomarkers of pulmonary and systematic inflammation in a group of healthy subjects. Methods 38 volunteers (mean age: 43 ± 8.6 years, 26% women) cycled for about 20 minutes in real traffic near a major bypass road (road test; mean UFP exposure: 28,867 particles per cm3) in Antwerp and in a laboratory with filtered air (clean room; mean UFP exposure: 496 particles per cm3). The exercise intensity (heart rate) and duration of cycling were similar for each volunteer in both experiments. Exhaled nitric oxide (NO), plasma interleukin-6 (IL-6), platelet function, Clara cell protein in serum and blood cell counts were measured before and 30 minutes after exercise. Results Percentage of blood neutrophils increased significantly more (p = 0.004) after exercise in the road test (3.9%; 95% CI: 1.5 to 6.2%; p = 0.003) than after exercise in the clean room (0.2%; 95% CI: -1.8 to 2.2%, p = 0.83). The pre/post-cycling changes in exhaled NO, plasma IL-6, platelet function, serum levels of Clara cell protein and number of total blood leukocytes did not differ significantly between the two scenarios. Conclusions Traffic-related exposure to particles during exercise caused a small increase in the distribution of inflammatory blood cells in healthy subjects. The health significance of this isolated change is unclear. PMID:20973949

  17. Influence of traffic-related noise and air pollution on self-reported fatigue.

    PubMed

    Jazani, Reza Khani; Saremi, Mahnaz; Rezapour, Tara; Kavousi, Amir; Shirzad, Hadi

    2015-01-01

    A growing body of evidence suggests that exposure to environmental pollutions is related to health problems. It is, however, questionable whether this condition affects working performance in occupational settings. The aim of this study is to determine the predictive value of age as well as traffic related air and noise pollutions for fatigue. 246 traffic officers participated in this study. Air pollution data were obtained from the local Air Quality Control Company. A sound level meter was used for measuring ambient noise. Fatigue was evaluated by the MFI-20 questionnaire. The general and physical scales showed the highest, while the reduced activity scale showed the lowest level of fatigue. Age had an independent direct effect on reduced activity and physical fatigue. The average of daytime equivalent noise level was between 71.63 and 88.51 dB(A). In the case of high noise exposure, older officers feel more fatigue than younger ones. Exposure to PM10 and O3 resulted in general and physical fatigue. Complex Interactions between SO2, CO and NO2 were found. Exposure to noise and some components of air pollution, especially O3 and PM10, increases fatigue. The authorities should adopt and rigorously implement environmental protection policies in order to protect people. PMID:26323778

  18. A comparison of exposure metrics for traffic-related air pollutants: application to epidemiology studies in Detroit, Michigan.

    PubMed

    Batterman, Stuart; Burke, Janet; Isakov, Vlad; Lewis, Toby; Mukherjee, Bhramar; Robins, Thomas

    2014-09-01

    Vehicles are major sources of air pollutant emissions, and individuals living near large roads endure high exposures and health risks associated with traffic-related air pollutants. Air pollution epidemiology, health risk, environmental justice, and transportation planning studies would all benefit from an improved understanding of the key information and metrics needed to assess exposures, as well as the strengths and limitations of alternate exposure metrics. This study develops and evaluates several metrics for characterizing exposure to traffic-related air pollutants for the 218 residential locations of participants in the NEXUS epidemiology study conducted in Detroit (MI, USA). Exposure metrics included proximity to major roads, traffic volume, vehicle mix, traffic density, vehicle exhaust emissions density, and pollutant concentrations predicted by dispersion models. Results presented for each metric include comparisons of exposure distributions, spatial variability, intraclass correlation, concordance and discordance rates, and overall strengths and limitations. While showing some agreement, the simple categorical and proximity classifications (e.g., high diesel/low diesel traffic roads and distance from major roads) do not reflect the range and overlap of exposures seen in the other metrics. Information provided by the traffic density metric, defined as the number of kilometers traveled (VKT) per day within a 300 m buffer around each home, was reasonably consistent with the more sophisticated metrics. Dispersion modeling provided spatially- and temporally-resolved concentrations, along with apportionments that separated concentrations due to traffic emissions and other sources. While several of the exposure metrics showed broad agreement, including traffic density, emissions density and modeled concentrations, these alternatives still produced exposure classifications that differed for a substantial fraction of study participants, e.g., from 20% to 50% of

  19. A Comparison of Exposure Metrics for Traffic-Related Air Pollutants: Application to Epidemiology Studies in Detroit, Michigan

    PubMed Central

    Batterman, Stuart; Burke, Janet; Isakov, Vlad; Lewis, Toby; Mukherjee, Bhramar; Robins, Thomas

    2014-01-01

    Vehicles are major sources of air pollutant emissions, and individuals living near large roads endure high exposures and health risks associated with traffic-related air pollutants. Air pollution epidemiology, health risk, environmental justice, and transportation planning studies would all benefit from an improved understanding of the key information and metrics needed to assess exposures, as well as the strengths and limitations of alternate exposure metrics. This study develops and evaluates several metrics for characterizing exposure to traffic-related air pollutants for the 218 residential locations of participants in the NEXUS epidemiology study conducted in Detroit (MI, USA). Exposure metrics included proximity to major roads, traffic volume, vehicle mix, traffic density, vehicle exhaust emissions density, and pollutant concentrations predicted by dispersion models. Results presented for each metric include comparisons of exposure distributions, spatial variability, intraclass correlation, concordance and discordance rates, and overall strengths and limitations. While showing some agreement, the simple categorical and proximity classifications (e.g., high diesel/low diesel traffic roads and distance from major roads) do not reflect the range and overlap of exposures seen in the other metrics. Information provided by the traffic density metric, defined as the number of kilometers traveled (VKT) per day within a 300 m buffer around each home, was reasonably consistent with the more sophisticated metrics. Dispersion modeling provided spatially- and temporally-resolved concentrations, along with apportionments that separated concentrations due to traffic emissions and other sources. While several of the exposure metrics showed broad agreement, including traffic density, emissions density and modeled concentrations, these alternatives still produced exposure classifications that differed for a substantial fraction of study participants, e.g., from 20% to 50% of

  20. Modeling exposures to traffic-related air pollutants for the NEXUS respiratory health study of asthmatic children in Detroit, MI

    EPA Science Inventory

    The Near-Road EXposures and Effects of Urban Air Pollutants Study (NEXUS) was designed to investigate associations between exposure to traffic-related air pollution and the respiratory health of asthmatic children living near major roadways in Detroit, MI. A combination of modeli...

  1. Dispersion Modeling of Traffic-Related Air Pollutant Exposures and Health Effects among Children with Asthma in Detroit, Michigan

    EPA Science Inventory

    Vehicular traffic is a major source of ambient air pollution in urban areas, and traffic-related air pollutants, including carbon monoxide, nitrogen oxides, particulate matter under 2.5 microns in diameter (PM2.5) and diesel exhaust emissions, have been associated with...

  2. Impact of bicycle route type on exposure to traffic-related air pollution.

    PubMed

    MacNaughton, Piers; Melly, Steven; Vallarino, Jose; Adamkiewicz, Gary; Spengler, John D

    2014-08-15

    Cyclists are exposed to traffic-related air pollution (TRAP) during their commutes due to their proximity to vehicular traffic. Two of the main components of TRAP are black carbon (BC) and nitrogen dioxide (NO2), which have both been causally associated with increased mortality. To assess the impact of cyclists' exposure to TRAP, a battery-powered mobile monitoring station was designed to sample air pollutants along five bike routes in Boston, Massachusetts. The bike routes were categorized into three types: bike paths, which are separated from vehicle traffic; bike lanes, which are adjacent to traffic; and designated bike lanes, which are shared traffic lanes for buses and cyclists. Bike lanes were found to have significantly higher concentrations of BC and NO2 than bike paths in both adjusted and unadjusted generalized linear models. Higher concentrations were observed in designated bike lanes than bike paths; however, this association was only significant for NO2. After adjusting for traffic density, background concentration, and proximity to intersections, bike lanes were found to have concentrations of BC and NO2 that were approximately 33% higher than bike paths. Distance from the road, vegetation barriers, and reduced intersection density appear to influence these variations. These findings suggest that cyclists can reduce their exposure to TRAP during their commute by using bike paths preferentially over bike lanes regardless of the potential increase of traffic near these routes. PMID:24840278

  3. High Resolution Spatial and Temporal Mapping of Traffic-Related Air Pollutants

    PubMed Central

    Batterman, Stuart; Ganguly, Rajiv; Harbin, Paul

    2015-01-01

    Vehicle traffic is one of the most significant emission sources of air pollutants in urban areas. While the influence of mobile source emissions is felt throughout an urban area, concentrations from mobile emissions can be highest near major roadways. At present, information regarding the spatial and temporal patterns and the share of pollution attributable to traffic-related air pollutants is limited, in part due to concentrations that fall sharply with distance from roadways, as well as the few monitoring sites available in cities. This study uses a newly developed dispersion model (RLINE) and a spatially and temporally resolved emissions inventory to predict hourly PM2.5 and NOx concentrations across Detroit (MI, USA) at very high spatial resolution. Results for annual averages and high pollution days show contrasting patterns, the need for spatially resolved analyses, and the limitations of surrogate metrics like proximity or distance to roads. Data requirements, computational and modeling issues are discussed. High resolution pollutant data enable the identification of pollutant “hotspots”, “project-level” analyses of transportation options, development of exposure measures for epidemiology studies, delineation of vulnerable and susceptible populations, policy analyses examining risks and benefits of mitigation options, and the development of sustainability indicators integrating environmental, social, economic and health information. PMID:25837345

  4. Redistribution of traffic related air pollution associated with a new road tunnel.

    PubMed

    Cowie, Christine T; Rose, Nectarios; Gillett, Robert; Walter, Scott; Marks, Guy B

    2012-03-01

    The aim of this study was to assess the effect of a new road tunnel on the concentration and distribution of traffic-related air pollution (TRAP), specifically nitrogen dioxide (NO(2)) and particulate matter (PM), and to determine its relationship to change in traffic flow. We used continuously recorded data from four monitoring stations at nonroadside locations within the study area and three regional monitors outside the area. The four monitors in the study area were in background locations where smaller pollutant changes were expected compared with changes near the bypassed main road. We also deployed passive samplers to assess finer spatial variability in NO(2) including application of a land use regression model (LUR). The study was conducted from 2006 to 2008. Analysis of the continuously recorded data showed that the tunnel intervention did not lead to consistent reductions in NO(2) or PM over the wider study area. However, there were significant decreases in NO(2), NO(x), and PM(10) in the eastern section of the study area. Analysis of passive sampler data indicated that the greatest reductions in NO(2) concentrations occurred within 100 m of the bypassed main road. The LUR model also demonstrated that changes in NO(2) were most marked adjacent to the bypassed main road. These findings support the use of methods that highlight fine spatial variability in TRAP and demonstrate the utility of traffic interventions in reducing air pollution exposures for populations living close to main roads. PMID:22289123

  5. Traffic-related air pollution and alveolar nitric oxide in southern California children.

    PubMed

    Eckel, Sandrah P; Zhang, Zilu; Habre, Rima; Rappaport, Edward B; Linn, William S; Berhane, Kiros; Zhang, Yue; Bastain, Theresa M; Gilliland, Frank D

    2016-05-01

    Mechanisms for the adverse respiratory effects of traffic-related air pollution (TRAP) have yet to be established. We evaluated the acute effects of TRAP exposure on proximal and distal airway inflammation by relating indoor nitric oxide (NO), a marker of TRAP exposure in the indoor microenvironment, to airway and alveolar sources of exhaled nitric oxide (FeNO).FeNO was collected online at four flow rates in 1635 schoolchildren (aged 12-15 years) in southern California (USA) breathing NO-free air. Indoor NO was sampled hourly and linearly interpolated to the time of the FeNO test. Estimated parameters quantifying airway wall diffusivity (DawNO) and flux (J'awNO) and alveolar concentration (CANO) sources of FeNO were related to exposure using linear regression to adjust for potential confounders.We found that TRAP exposure indoors was associated with elevated alveolar NO. A 10 ppb higher indoor NO concentration at the time of the FeNO test was associated with 0.10 ppb higher average CANO (95% CI 0.04-0.16) (equivalent to a 7.1% increase from the mean), 4.0% higher J'awNO (95% CI -2.8-11.3) and 0.2% lower DawNO (95% CI -4.8-4.6).These findings are consistent with an airway response to TRAP exposure that was most marked in the distal airways. PMID:26797034

  6. Traffic-related air pollution: Exposure and health effects in Copenhagen street cleaners and cemetery workers

    SciTech Connect

    Raaschou-Nielsen, O.; Nielsen, M.L.; Gehl, J.

    1995-05-01

    This questionaire-based study found a significantly higher prevalence of chronic bronchitis, asthma, and several other symptoms in 116 Copenhagen street cleaners who were exposed to traffic-related air pollution at levels that were slightly lower than the 1987 World Health Organization-recommended threshold values, compared with 115 Copenhagen cemetery workers exposed to lower pollution levels. Logistic regression analysis, controlling for age and smoking, was conducted, and odds ratios and 95% confidence intervals were calculated to be 2.5 for chronic bronchitis (95% confidence interval = 1.2-5.1), 2.3 for asthma (95% confidence interval = 1.0-5.1), and 1.8-7.9 for other symptoms (95% confidence interval = 1.0-28.2). Except for exposure to air pollution, the two groups were comparable, i.e., they had similar terms of employment and working conditions. the exposure ranges during an 8-h work day, averaged from readings taken at five monitored street positions, were: 41-257 ppb nitric oxide (1-h max: 865 ppb); 23-43 ppb nitrogen dioxide (1-h max: 208 ppb); 1.0-4.3 ppm carbon monoxide (8-h max: 7.1 ppm); 14-28 ppb sulfur dioxide (1-h max; 112 ppb); and 10-38 ppb ozone (1-h max: 72 ppb). 33 refs., 7 tabs.

  7. Developing Community-Level Policy and Practice to Reduce Traffic-Related Air Pollution Exposure

    PubMed Central

    Brugge, Doug; Patton, Allison P.; Bob, Alex; Reisner, Ellin; Lowe, Lydia; Bright, Oliver-John M.; Durant, John L.; Newman, Jim; Zamore, Wig

    2016-01-01

    The literature consistently shows associations of adverse cardiovascular and pulmonary outcomes with residential proximity to highways and major roadways. Air monitoring shows that traffic-related pollutants (TRAP) are elevated within 200–400 m of these roads. Community-level tactics for reducing exposure include the following: 1) HEPA filtration; 2) Appropriate air-intake locations; 3) Sound proofing, insulation and other features; 4) Land-use buffers; 5) Vegetation or wall barriers; 6) Street-side trees, hedges and vegetation; 7) Decking over highways; 8) Urban design including placement of buildings; 9) Garden and park locations; and 10) Active travel locations, including bicycling and walking paths. A multidisciplinary design charrette was held to test the feasibility of incorporating these tactics into near-highway housing and school developments that were in the planning stages. The resulting designs successfully utilized many of the protective tactics and also led to engagement with the designers and developers of the sites. There is a need to increase awareness of TRAP in terms of building design and urban planning. PMID:27413416

  8. Variations of traffic related air pollution on different time scales in Szeged, Hungary and Freiburg, Germany

    NASA Astrophysics Data System (ADS)

    Makra, László; Mayer, Helmut; Mika, János; Sánta, Tamás; Holst, Jutta

    Economic activities and everyday life may create weekly variations in concentrations of air pollutants in urban settings. The present study contributes to this experience on the example of two typical medium-sized towns in Central Europe, Szeged and Freiburg considering the following air pollutants: NO, NO 2, O 3, O x and PM 10. Five-year data sets of hourly observations (1997-2001) collected in downtown traffic junctions are analysed. In addition, the effect of the weekly variation on the diurnal course of the air pollutants is also demonstrated, which is especially important when we consider the possible extremes of these traffic related air pollutants. Since the annual variation of the pollutants explains only a minor part of the total variance and, furthermore, the weekly variation behaves rather similarly in the different seasons, the weekly variation of the diurnal peaks is quantified for the whole year. The average annual variations of NO, NO 2, O 3 and O x are very similar for both Szeged and Freiburg. Annual levels of NO 2 and O 3 are moderately higher, while those of PM 10 are extremely higher in Szeged, which is reflected in their average weekly and diurnal variations, too. In Freiburg the diurnal variation of PM 10 shows a clear daily course with only one wave, compared to that for Szeged with the shape of a double wave. In Szeged, highest percentile values of NO and NO 2 occur mostly in the evening, while in Freiburg either in the mourning or in the evening and generally there is very little difference between them. In Szeged, maximum of O 3 peak values, while in Freiburg minimum of them are found on weekends.

  9. Traffic-related air pollution and sleep in the Boston Area Community Health Survey.

    PubMed

    Fang, Shona C; Schwartz, Joel; Yang, May; Yaggi, H Klar; Bliwise, Donald L; Araujo, Andre B

    2015-01-01

    Little is known about environmental determinants of sleep. We investigated the association between black carbon (BC), a marker of traffic-related air pollution, and sleep measures among participants of the Boston Area Community Health Survey. We also sought to assess the impact of sociodemographic factors, health conditions, and season on associations. Residential 24-h BC was estimated from a validated land-use regression model for 3821 participants and averaged over 1-6 months and 1 year. Sleep measures included questionnaire-assessed sleep duration, sleep latency, and sleep apnea. Linear and logistic regression models controlling for confounders estimated the association between sleep measures and BC. Effect modification was tested with interaction terms. Main effects were not observed between BC and sleep measures. However, in stratified models, males experienced 0.23 h less sleep (95% CI: -0.42, -0.03) and those with low SES 0.25 h less sleep (95% CI: -0.48, -0.01) per IQR increase in annual BC (0.21 μg/m(3)). In blacks, sleep duration increased with annual BC (β=0.34 per IQR; 95% CI: 0.12, 0.57). Similar findings were observed for short sleep (≤5 h). BC was not associated with sleep apnea or sleep latency, however, long-term exposure may be associated with shorter sleep duration, particularly in men and those with low SES, and longer sleep duration in blacks. PMID:24984980

  10. Characteristics of DNA methylation changes induced by traffic-related air pollution.

    PubMed

    Ding, Rui; Jin, Yongtang; Liu, Xinneng; Zhu, Ziyi; Zhang, Yuan; Wang, Ting; Xu, Yinchun

    2016-01-15

    Traffic-related air pollution (TRAP) is a potential risk factor for numerous respiratory disorders, including lung cancer, while alteration of DNA methylation may be one of the underlying mechanisms. However, the effects of TRAP mixtures on DNA methylation have not been investigated. We have studied the effects of brief or prolonged TRAP exposures on DNA methylation in the rat. The exposures were performed in spring and autumn, with identical study procedures. In each season, healthy Wistar rats were exposed to TRAP at for 4 h, 7 d, 14 d, or 28 d. Global DNA methylation (LINE-1 and Alu) and specific gene methylation (p16(CDKN2A), APC, and iNOS) in the DNA from blood and lung tissues were quantified by pyrosequencing. Multiple linear regression was applied to assess the influence of air pollutants on DNA methylation levels. The levels of PM2.5, PM10, and NO2 in the high and moderate groups were significantly higher than in the control group. The DNA methylation levels were not significantly different between spring and autumn. When spring and autumn data were analyzed together, PM2.5, PM10, and NO2 exposures were associated with changes in%5mC (95% CI) in LINE-1, iNOS, p16(CDKN2A), and APC ranging from -0.088 (-0.150, -0.026) to 0.102 (0.049, 0.154) per 1 μg/m(3) increase in the pollutant concentration. Prolonged exposure to a high level of TRAP was negatively associated with LINE-1 and iNOS methylation, and positively associated with APC methylations in the DNA from lung tissues but not blood. These findings show that TRAP exposure is associated with decreased methylation of LINE-1 and iNOS, and increased methylation of p16(CDKN2A) and APC. PMID:26778509

  11. Populations potentially exposed to traffic-related air pollution in seven world cities.

    PubMed

    Su, Jason G; Apte, Joshua S; Lipsitt, Jonah; Garcia-Gonzales, Diane A; Beckerman, Bernardo S; de Nazelle, Audrey; Texcalac-Sangrador, José Luis; Jerrett, Michael

    2015-05-01

    Traffic-related air pollution (TRAP) likely exerts a large burden of disease globally, and in many places, traffic is increasing dramatically. The impact, however, of urban form on the portion of population potentially exposed to TRAP remains poorly understood. In this study, we estimate portions of population potentially exposed to TRAP across seven global cities of various urban forms. Data on population distributions and road networks were collected from the best available sources in each city and from remote sensing analysis. Using spatial mapping techniques, we first overlaid road buffers onto population data to estimate the portions of population potentially exposed for four plausible impact zones. Based on a most likely scenario with impacts from highways up to 300meters and major roadways up to 50meters, we identified that the portions of population potentially exposed for the seven cities ranged from 23 to 96%. High-income North American cities had the lowest potential exposure portions, while those in Europe had the highest. Second, we adjusted exposure zone concentration levels based on a literature suggested multiplier for each city using corresponding background concentrations. Though Beijing and Mexico City did not have the highest portion of population exposure, those in their exposure zones had the highest levels of exposure. For all seven cities, the portion of population potentially exposed was positively correlated with roadway density and, to a lesser extent, with population density. These analyses suggest that urban form may influence the portion of population exposed to TRAP and vehicle emissions and other factors may influence the exposure levels. Greater understanding of urban form and other factors influencing potential exposure to TRAP may help inform interventions that protect public health. PMID:25770919

  12. Antimony: a traffic-related element in the atmosphere of Buenos Aires, Argentina.

    PubMed

    Gómez, Darío R; Fernanda Giné, María; Claudia Sánchez Bellato, Ana; Smichowski, Patricia

    2005-12-01

    Vehicular traffic is one of the main sources of antimony in highly populated urban areas like Buenos Aires where an overall traffic density of 1 500 000 vehicles per day (corresponding to 7500 vehicles km(-2)) is estimated. In this context, a study was undertaken to ascertain the levels of Sb and other traffic-related elements (TRE) in the atmosphere of this city. To this end, sixty-seven samples of PM-10 particulate matter were collected during eight days in nine representative sampling sites located downtown Buenos Aires and spread over an area of about 30 km2. The collection of particulate matter was performed on ash-free glass-fibre filters using high volume samplers with PM-10 sampling heads. A combination of aqua regia and perchloric acid was used for leaching metals from filters. The resulting solutions were evaporated and then diluted with 0.1 mol l(-1) HCl. Antimony was determined by inductively coupled plasma-quadrupole mass spectrometry (ICP-QMS) at ng g(-1) levels. Concentrations of Sb varied from 12.9 +/- 0.9 to 375 +/- 23 microg g(-1)(equivalent to 0.87 +/- 0.06 to 15.3 +/- 0.8 ng m(-3)). Statistical analysis was performed on the data set including the measured PM-10 mass and Sb concentrations for the monitored period. Correlations of Sb with other TRE namely, Cu and Mo were also assessed. The highest concentrations of Sb were detected at two sites (Hospital Alemán and Casa Rapallini) located in streets with traffic consisting mostly of passenger cars and showing a "stop-and-go" pattern in peak hours. Antimony levels in the Buenos Aires PM-10 are by far below the level of 0.5 mg m(-3)(for an 8 hour workday, 40 hour work week) set by the US Occupational Safety and Health Administration (OSHA) for occupational exposure. However, monitoring of Sb and other TRE should be carried out in a systematic fashion to detect the possibility of increases in from the present levels. PMID:16307067

  13. Home outdoor models for traffic-related air pollutants do not represent personal exposure measurements in Southern California

    NASA Astrophysics Data System (ADS)

    Ducret-Stich, R.; Delfino, R. J.; Tjoa, T.; Gemperli, A.; Ineichen, A.; Wu, J.; Phuleria, H. C.; Liu, L.-J. S.

    2009-02-01

    Recent studies have used measurements or estimates of traffic-related air pollutants at home or school locations to link associations between exposure and health. However, little is known about the validity of these outdoor concentrations as an estimate for personal exposure to traffic. This paper compares modelled outdoor concentrations at home with personal exposure to traffic air pollution of 63 children in two areas in Los Angeles in 2003/2004. Exposure monitoring consisted of sixteen 10-day monitoring runs, with each run monitoring 4 subjects concurrently with the active personal DataRAM for particulate matter <2.5 μm (PM25), elemental carbon (EC) and organic carbon (OC). One child per run had concurrent indoor/outdoor home monitoring. Measurements at central sites (24-hr PM25, EC, OC) were taken daily and concentrations of PM25, EC, and OC from traffic sources were calculated using the CALINE4 model for individual residences. We modelled outdoor concentrations of PM2 5, EC and OC with multilinear regression including GIS and meteorological parameters and adjusted for auto-correlation between repeated measurements. The model fit (R2) for home outdoor estimates was 0.94, 0.74 and 0.80 for PM25, EC and OC, respectively. Comparisons between these outdoor estimates and the personal measurements showed a good agreement for PM25 (R2=0.65-0.70) with a mean bias of -0.7±11.8|ag for the smog receptor area, and 18.9±16.2|ag for the traffic impacted area. However the outdoor estimates were not related to personal exposure for EC (R2=0.01-0.29) and OC (R2=0.03- 0.14). Conclusions: Predictions of outdoor concentrations can be used as approximations of personal exposure to PM25. However, they are not appropriate for estimating personal exposure to traffic-related air pollutants including EC and OC in studies of acute exposure-response relationships.

  14. Acute effects of motor vehicle traffic-related air pollution exposures on measures of oxidative stress in human airways

    PubMed Central

    Laumbach, Robert J.; Kipen, Howard M.

    2014-01-01

    Epidemiological studies have linked exposure to traffic-related air pollutants to increased respiratory and cardiovascular morbidity and mortality. Evidence from human, animal, and in vitro studies supports an important role for oxidative stress in the pathophysiological pathways underlying the adverse health effects of air pollutants. In controlled-exposure studies of animals and humans, emissions from diesel engines, a major source of traffic-related air pollutants, cause pulmonary and systemic inflammation that is mediated by redox-sensitive signaling pathways. Assessment of human responses to traffic-related air pollution under realistic conditions is challenging due to the complex, dynamic nature of near-roadway exposure. Noninvasive measurement of biomarkers in breath and breath condensate may be particularly useful for evaluating the role of oxidative stress in acute responses to exposures that occur in vehicles or during near-roadway activities. Promising biomarkers include nitric oxide in exhaled breath, and nitrite/nitrate, malondialdehyde, and F2-isoprostanes in exhaled breath condensate. PMID:20716291

  15. Disability-adjusted life years in the assessment of health effects of traffic-related air pollution.

    PubMed

    Adamkiewicz, Ł; Badyda, A J; Gayer, A; Mucha, D

    2015-01-01

    Traffic-related air pollutants have an impact on human health and have been recognized as one of the main stressors that cause mortality and morbidity in urban areas. Research confirms that citizens living in the vicinity of main roads are strongly exposed to high concentrations of numerous air pollutants. In the present study the measurements of traffic-related parameters such as density, velocity, and structure were performed for cross-sections of selected street canyons in Warsaw, the capital city of Poland. In addition, the results of the general traffic measurements were used to describe the number of cars crossing the border of the city. Vehicle emissions of PM10 were calculated for the whole city area and changes of the PM10 concentration were modeled to present the exposure to this pollutant that could be attributable to traffic. The principles of the environmental burden of disease (EBD) were used. The assessment of the impact of traffic-related air pollutants on human health was made. The results, presented in disability-adjusted life years (DALY), were based on the outcomes of the study conducted in 2008-2012 in Warsaw, one the most congested agglomerations in Europe, and included the health damage effect of the exposure to high concentrations of air pollutants. DALY calculations were performed in accordance to the methodologies used in renowned international scientific research on EBD. PMID:25310938

  16. Increased micronuclei and bulky DNA adducts in cord blood after maternal exposures to traffic-related air pollution.

    PubMed

    Pedersen, M; Wichmann, J; Autrup, H; Dang, D A; Decordier, I; Hvidberg, M; Bossi, R; Jakobsen, J; Loft, S; Knudsen, L E

    2009-11-01

    Exposure to traffic-related air pollution in urban environment is common and has been associated with adverse human health effects. In utero exposures that result in DNA damage may affect health later in life. Early effects of maternal and in utero exposures to traffic-related air pollution were assessed through the use of validated biomarkers in blood cells from mother-newborn pairs. A cross-sectional biomonitoring study with healthy pregnant women living in the Greater Copenhagen area, Denmark, was conducted. Bulky DNA adducts and micronuclei (MN) were measured in blood from 75 women and 69 umbilical cords, concurrently collected at the time of planned Caesarean section. Modeled residential traffic density, a proxy measure of traffic-related air pollution exposures, was validated by indoor levels of nitrogen dioxide and polycyclic aromatic hydrocarbons in 42 non-smoking homes. DNA adduct levels were similar and positively correlated in maternal and cord blood (1.40 vs. 1.37 n/10(8) nucleotides; r=0.99; p<0.01). Maternal MN frequencies were significantly associated with age (p<0.01), and higher than those of the newborns (7.0 vs. 3.2 MN per 1000 binucleated cells). Adduct levels were highest among mother-newborn pairs who lived near medium-traffic-density (>400-2500 vehicle km/24h; p<0.01) places. MN frequencies among newborns from women who lived at high-traffic-density homes (>2500 vehicle km/24h) were significantly increased (p=0.02). This trend remained after adjusting for potential confounders and effect modifiers. For the first time increased bulky DNA adducts and MN in cord blood after maternal exposures to traffic-related air pollution are found, demonstrating that these transplacental environmental exposures induce DNA damage in newborns. Given that increased DNA damage early in life indicate an increased risk for adverse health effects later in life, these findings justify intervention of pregnant women. PMID:19783246

  17. Traffic-related air pollution and circulating levels of total and allergen-specific IgE among children in Detroit, Michigan

    EPA Science Inventory

    Introduction: There is a growing body of literature suggesting a relationship between traffic-related air pollution and allergic health outcomes. Animal studies have demonstrated that air pollution, particularly diesel exhaust particles, may stimulate or enhance atopic responses...

  18. Quantifying the impact of traffic-related air pollution on the indoor air quality of a naturally ventilated building.

    PubMed

    Tong, Zheming; Chen, Yujiao; Malkawi, Ali; Adamkiewicz, Gary; Spengler, John D

    2016-01-01

    Improper natural ventilation practices may deteriorate indoor air quality when in close proximity to roadways, although the intention is often to reduce energy consumption. In this study, we employed a CFD-based air quality model to quantify the impact of traffic-related air pollution on the indoor air quality of a naturally ventilated building. Our study found that the building envelope restricts dispersion and dilution of particulate matter. The indoor concentration in the baseline condition located 10m away from the roadway is roughly 16-21% greater than that at the edge of the roadway. The indoor flow recirculation creates a well-mixed zone with little variation in fine particle concentration (i.e., 253nm). For ultrafine particles (<100nm), a noticeable decrease in particle concentrations indoors with increasing distance from the road is observed due to Brownian and turbulent diffusion. In addition, the indoor concentration strongly depends on the distance between the roadway and building, particle size, wind condition, and window size and location. A break-even point is observed at D'~2.1 (normalized distance from the roadway by the width of the road). The indoor particle concentration is greater than that at the highway where D'<2.1, and vice versa. For new building planning, the distance from the roadway and the ambient wind condition need to be considered at the early design stage whereas the size and location of the window openings, the interior layout, and the placement of fresh air intakes are important to the indoor air quality of existing buildings adjacent to roadways. PMID:26829764

  19. Nitric Oxide and Superoxide Mediate Diesel Particle Effects in Cytokine-Treated Mice and Murine Lung Epithelial Cells ─ Implications for Susceptibility to Traffic-Related Air Pollution

    EPA Science Inventory

    Abstract Background: Epidemiologic studies associate childhood exposure to traffic-related air pollution with increased respiratory infections and asthmatic and allergic symptoms. The strongest associations between traffic exposure and negative health impacts are observed in in...

  20. Dispersion Modeling of Traffic-Related Air Pollutant Exposures and Health Effects Among Children with Asthma in Detroit, Michigan

    PubMed Central

    Batterman, Stuart; Ganguly, Rajiv; Isakov, Vlad; Burke, Janet; Arunachalam, Saravanan; Snyder, Michelle; Robins, Thomas; Lewis, Toby

    2015-01-01

    Vehicular traffic is a major source of ambient air pollution in urban areas. Traffic-related air pollutants, including carbon monoxide, nitrogen oxides, particulate matter less than 2.5 μm in diameter, and diesel exhaust emissions, have been associated with adverse human health effects, especially in areas near major roads. In addition to emissions from vehicles, ambient concentrations of air pollutants include contributions from stationary sources and background (or regional) sources. Although dispersion models have been widely used to evaluate air quality strategies and policies and can represent the spatial and temporal variation in environments near roads, the use of these models in health studies to estimate air pollutant exposures has been relatively limited. This paper summarizes the modeling system used to estimate exposures in the Near-Roadway Exposure and Urban Air Pollutant Study, an epidemiological study that examined 139 children with asthma or symptoms consistent with asthma, most of whom lived near major roads in Detroit, Michigan. Air pollutant concentrations were estimated with a hybrid modeling framework that included detailed inventories of mobile and stationary sources on local and regional scales; the RLINE, AERMOD, and CMAQ dispersion models; and monitored observations of pollutant concentrations. The temporal and spatial variability in emissions and exposures over the 2.5-year study period and at more than 300 home and school locations was characterized. The paper highlights issues with the development and understanding of the significance of traffic-related exposures through the use of dispersion models in urban-scale exposure assessments and epidemiology studies. PMID:26139957

  1. Association between Traffic-Related Air Pollution in Schools and Cognitive Development in Primary School Children: A Prospective Cohort Study

    PubMed Central

    Sunyer, Jordi; Esnaola, Mikel; Alvarez-Pedrerol, Mar; Forns, Joan; Rivas, Ioar; López-Vicente, Mònica; Suades-González, Elisabet; Foraster, Maria; Garcia-Esteban, Raquel; Basagaña, Xavier; Viana, Mar; Cirach, Marta; Moreno, Teresa; Alastuey, Andrés; Sebastian-Galles, Núria; Nieuwenhuijsen, Mark; Querol, Xavier

    2015-01-01

    Background Air pollution is a suspected developmental neurotoxicant. Many schools are located in close proximity to busy roads, and traffic air pollution peaks when children are at school. We aimed to assess whether exposure of children in primary school to traffic-related air pollutants is associated with impaired cognitive development. Methods and Findings We conducted a prospective study of children (n = 2,715, aged 7 to 10 y) from 39 schools in Barcelona (Catalonia, Spain) exposed to high and low traffic-related air pollution, paired by school socioeconomic index; children were tested four times (i.e., to assess the 12-mo developmental trajectories) via computerized tests (n = 10,112). Chronic traffic air pollution (elemental carbon [EC], nitrogen dioxide [NO2], and ultrafine particle number [UFP; 10–700 nm]) was measured twice during 1-wk campaigns both in the courtyard (outdoor) and inside the classroom (indoor) simultaneously in each school pair. Cognitive development was assessed with the n-back and the attentional network tests, in particular, working memory (two-back detectability), superior working memory (three-back detectability), and inattentiveness (hit reaction time standard error). Linear mixed effects models were adjusted for age, sex, maternal education, socioeconomic status, and air pollution exposure at home. Children from highly polluted schools had a smaller growth in cognitive development than children from the paired lowly polluted schools, both in crude and adjusted models (e.g., 7.4% [95% CI 5.6%–8.8%] versus 11.5% [95% CI 8.9%–12.5%] improvement in working memory, p = 0.0024). Cogently, children attending schools with higher levels of EC, NO2, and UFP both indoors and outdoors experienced substantially smaller growth in all the cognitive measurements; for example, a change from the first to the fourth quartile in indoor EC reduced the gain in working memory by 13.0% (95% CI 4.2%–23.1%). Residual confounding for social class could

  2. Mitochondrial Genetic Background Modifies the Relationship between Traffic-Related Air Pollution Exposure and Systemic Biomarkers of Inflammation

    PubMed Central

    Wittkopp, Sharine; Staimer, Norbert; Tjoa, Thomas; Gillen, Daniel; Daher, Nancy; Shafer, Martin; Schauer, James J.; Sioutas, Constantinos; Delfino, Ralph J.

    2013-01-01

    Background Mitochondria are the main source of reactive oxygen species (ROS). Human mitochondrial haplogroups are linked to differences in ROS production and oxidative-stress induced inflammation that may influence disease pathogenesis, including coronary artery disease (CAD). We previously showed that traffic-related air pollutants were associated with biomarkers of systemic inflammation in a cohort panel of subjects with CAD in the Los Angeles air basin. Objective We tested whether air pollutant exposure-associated inflammation was stronger in mitochondrial haplogroup H than U (high versus low ROS production) in this panel (38 subjects and 417 observations). Methods Inflammation biomarkers were measured weekly in each subject (≤12 weeks), including interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), C-reactive protein, interleukin-6 soluble receptor and tumor necrosis factor-soluble receptor II. We determined haplogroup by restriction fragment length polymorphism analysis. Air pollutants included nitrogen oxides (NOx), carbon monoxide (CO), organic carbon, elemental and black carbon (EC, BC); and particulate matter mass, three size fractions (<0.25 µm, 0.25–2.5 µm, and 2.5–10 µm in aerodynamic diameter). Particulate matter extracts were analyzed for organic compounds, including polycyclic aromatic hydrocarbons (PAH), and in vitro oxidative potential of aqueous extracts. Associations between exposures and biomarkers, stratified by haplogroup, were analyzed by mixed-effects models. Results IL-6 and TNF-α were associated with traffic-related air pollutants (BC, CO, NOx and PAH), and with mass and oxidative potential of quasi-ultrafine particles <0.25 µm. These associations were stronger for haplogroup H than haplogroup U. Conclusions Results suggest that mitochondrial haplogroup U is a novel protective factor for air pollution-related systemic inflammation in this small group of subjects. PMID:23717615

  3. Traffic-Related Air Pollution and Parkinson’s Disease in Denmark: A Case–Control Study

    PubMed Central

    Ritz, Beate; Lee, Pei-Chen; Hansen, Johnni; Lassen, Christina Funch; Ketzel, Matthias; Sørensen, Mette; Raaschou-Nielsen, Ole

    2015-01-01

    Background Very little is currently known about air pollutants’ adverse effects on neurodegenerative diseases even though recent studies have linked particulate exposures to brain pathologies associated with Parkinson’s and Alzheimer’s disease. Objective In the present study, we investigated long-term exposure to traffic-related air pollution and Parkinson’s disease. Methods In a case–control study of 1,696 Parkinson’s disease (PD) patients identified from Danish hospital registries and diagnosed 1996–2009 and 1,800 population controls matched by sex and year of birth, we assessed long-term traffic-related air pollutant exposures (represented by nitrogen dioxide; NO2) from a dispersion model, using residential addresses from 1971 to the date of diagnosis or first cardinal symptom for cases and the corresponding index date for their matched controls. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated with logistic regression, adjusting for matching factors and potential confounders. Results We found ambient air pollution from traffic sources to be associated with risk of PD, with a 9% higher risk (95% CI: 3, 16.0%) per interquartile range increase (2.97 μg/m3) in modeled NO2. For participants living for ≥ 20 years in the capital city, ORs were larger (OR = 1.21; 95% CI: 1.11, 1.31) than in provincial towns (OR = 1.10; 95% CI: 0.97, 1.26), whereas there was no association among rural residents. Conclusions Our findings raise concerns about potential effects of air pollution from traffic and other sources on the risk of PD, particularly in populations with high or increasing exposures. Citation Ritz B, Lee PC, Hansen J, Funch Lassen C, Ketzel M, Sørensen M, Raaschou-Nielsen O. 2016. Traffic-related air pollution and Parkinson’s disease in Denmark: a case–control study. Environ Health Perspect 124:351–356; http://dx.doi.org/10.1289/ehp.1409313 PMID:26151951

  4. Exposure Error Masks The Relationship Between Traffic-Related Air Pollution and Heart Rate Variability (HRV)

    PubMed Central

    Suh, Helen H.; Zanobetti, Antonella

    2010-01-01

    Objective We examined whether more precise exposure measures would better detect associations between traffic-related pollution, elemental carbon (EC) and nitrogen dioxide (NO2), and HRV. Methods Repeated 24-h personal and ambient PM2.5, EC, and NO2 were measured for 30 people living in Atlanta, GA. The association between HRV and either ambient concentrations or personal exposures was examined using linear mixed effects models. Results Ambient PM2.5, EC, and NO2 and personal PM2.5 were not associated with HRV. Personal EC and NO2 measured 24-h prior to HRV was associated with decreased rMSSD, PNN50, and HF and with increased LF/HF. RMSSD decreased by 10.97% (95% CI: -18.00,-3.34) for an IQR change in personal EC (0.81 ug/m3). Conclusions Results indicate decreased vagal tone in response to traffic pollutants, which can best be detected with precise personal exposure measures. PMID:20595912

  5. Parental stress increases the effect of traffic-related air pollution on childhood asthma incidence

    PubMed Central

    Shankardass, Ketan; McConnell, Rob; Jerrett, Michael; Milam, Joel; Richardson, Jean; Berhane, Kiros

    2009-01-01

    Exposure to traffic-related pollution (TRP) and tobacco smoke have been associated with new onset asthma in children. Psychosocial stress-related susceptibility has been proposed to explain social disparities in asthma. We investigated whether low socioeconomic status (SES) or high parental stress modified the effect of TRP and in utero tobacco smoke exposure on new onset asthma. We identified 2,497 children aged 5–9 years with no history of asthma or wheeze at study entry (2002–2003) into the Children's Health Study, a prospective cohort study in southern California. The primary outcome was parental report of doctor-diagnosed new onset asthma during 3 years of follow-up. Residential exposure to TRP was assessed using a line source dispersion model. Information about maternal smoking during pregnancy, parental education (a proxy for SES), and parental stress were collected in the study baseline questionnaire. The risk of asthma attributable to TRP was significantly higher for subjects with high parental stress (HR 1.51 across the interquartile range for TRP; 95% CI 1.16–1.96) than for subjects with low parental stress (HR 1.05, 95% CI 0.74–1.49; interaction P value 0.05). Stress also was associated with larger effects of in utero tobacco smoke. A similar pattern of increased risk of asthma was observed among children from low SES families who also were exposed to either TRP or in utero tobacco smoke. These results suggest that children from stressful households are more susceptible to the effects of TRP and in utero tobacco smoke on the development of asthma. PMID:19620729

  6. Prenatal Exposure to Traffic-Related Air Pollution and Ultrasound Measures of Fetal Growth in the INMA Sabadell Cohort

    PubMed Central

    Aguilera, Inmaculada; Garcia-Esteban, Raquel; Iñiguez, Carmen; Nieuwenhuijsen, Mark J.; Rodríguez, Àgueda; Paez, Montserrat; Ballester, Ferran; Sunyer, Jordi

    2010-01-01

    Background Few studies have used longitudinal ultrasound measurements to assess the effect of traffic-related air pollution on fetal growth. Objective We examined the relationship between exposure to nitrogen dioxide (NO2) and aromatic hydrocarbons [benzene, toluene, ethylbenzene, m/p-xylene, and o-xylene (BTEX)] on fetal growth assessed by 1,692 ultrasound measurements among 562 pregnant women from the Sabadell cohort of the Spanish INMA (Environment and Childhood) study. Methods We used temporally adjusted land-use regression models to estimate exposures to NO2 and BTEX. We fitted mixed-effects models to estimate longitudinal growth curves for femur length (FL), head circumference (HC), abdominal circumference (AC), biparietal diameter (BPD), and estimated fetal weight (EFW). Unconditional and conditional SD scores were calculated at 12, 20, and 32 weeks of gestation. Sensitivity analyses were performed considering time–activity patterns during pregnancy. Results Exposure to BTEX from early pregnancy was negatively associated with growth in BPD during weeks 20–32. None of the other fetal growth parameters were associated with exposure to air pollution during pregnancy. When considering only women who spent < 2 hr/day in nonresidential outdoor locations, effect estimates were stronger and statistically significant for the association between NO2 and growth in HC during weeks 12–20 and growth in AC, BPD, and EFW during weeks 20–32. Conclusions Our results lend some support to an effect of exposure to traffic-related air pollutants from early pregnancy on fetal growth during mid-pregnancy. PMID:20103496

  7. Spatial and temporal differences in traffic-related air pollution in three urban neighborhoods near an interstate highway.

    PubMed

    Patton, Allison P; Perkins, Jessica; Zamore, Wig; Levy, Jonathan I; Brugge, Doug; Durant, John L

    2014-12-01

    Relatively few studies have characterized differences in intra- and inter-neighborhood traffic-related air pollutant (TRAP) concentrations and distance-decay gradients in along an urban highway for the purposes of exposure assessment. The goal of this work was to determine the extent to which intra- and inter-neighborhood differences in TRAP concentrations can be explained by traffic and meteorology in three pairs of neighborhoods along Interstate 93 (I-93) in the metropolitan Boston area (USA). We measured distance-decay gradients of seven TRAPs (PNC, pPAH, NO, NOX, BC, CO, PM2.5) in near-highway (<400 m) and background areas (>1 km) in Somerville, Dorchester/South Boston, Chinatown and Malden to determine whether (1) spatial patterns in concentrations and inter-pollutant correlations differ between neighborhoods, and (2) variation within and between neighborhoods can be explained by traffic and meteorology. The neighborhoods ranged in area from 0.5 to 2.3 km(2). Mobile monitoring was performed over the course of one year in each pair of neighborhoods (one pair of neighborhoods per year in three successive years; 35-47 days of monitoring in each neighborhood). Pollutant levels generally increased with highway proximity, consistent with I-93 being a major source of TRAP; however, the slope and extent of the distance-decay gradients varied by neighborhood as well as by pollutant, season and time of day. Correlations among pollutants differed between neighborhoods (e.g., ρ = 0.35-0.80 between PNC and NOX and ρ = 0.11-0.60 between PNC and BC) and were generally lower in Dorchester/South Boston than in the other neighborhoods. We found that the generalizability of near-road gradients and near-highway/urban background contrasts was limited for near-highway neighborhoods in a metropolitan area with substantial local street traffic. Our findings illustrate the importance of measuring gradients of multiple pollutants under different ambient conditions in individual near

  8. Spatial and temporal differences in traffic-related air pollution in three urban neighborhoods near an interstate highway

    NASA Astrophysics Data System (ADS)

    Patton, Allison P.; Perkins, Jessica; Zamore, Wig; Levy, Jonathan I.; Brugge, Doug; Durant, John L.

    2014-12-01

    Relatively few studies have characterized differences in intra- and inter-neighborhood traffic-related air pollutant (TRAP) concentrations and distance-decay gradients in neighborhoods along an urban highway for the purposes of exposure assessment. The goal of this work was to determine the extent to which intra- and inter-neighborhood differences in TRAP concentrations can be explained by traffic and meteorology in three pairs of neighborhoods along Interstate 93 (I-93) in the metropolitan Boston area (USA). We measured distance-decay gradients of seven TRAPs (PNC, pPAH, NO, NOX, BC, CO, PM2.5) in near-highway (<400 m) and background areas (>1 km) in Somerville, Dorchester/South Boston, Chinatown and Malden to determine whether (1) spatial patterns in concentrations and inter-pollutant correlations differ between neighborhoods, and (2) variation within and between neighborhoods can be explained by traffic and meteorology. The neighborhoods ranged in area from 0.5 to 2.3 km2. Mobile monitoring was performed over the course of one year in each pair of neighborhoods (one pair of neighborhoods per year in three successive years; 35-47 days of monitoring in each neighborhood). Pollutant levels generally increased with highway proximity, consistent with I-93 being a major source of TRAP; however, the slope and extent of the distance-decay gradients varied by neighborhood as well as by pollutant, season and time of day. Spearman correlations among pollutants differed between neighborhoods (e.g., ρ = 0.35-0.80 between PNC and NOX and ρ = 0.11-0.60 between PNC and BC) and were generally lower in Dorchester/South Boston than in the other neighborhoods. We found that the generalizability of near-road gradients and near-highway/urban background contrasts was limited for near-highway neighborhoods in a metropolitan area with substantial local street traffic. Our findings illustrate the importance of measuring gradients of multiple pollutants under different ambient

  9. Spatial and temporal differences in traffic-related air pollution in three urban neighborhoods near an interstate highway

    PubMed Central

    Patton, Allison P.; Perkins, Jessica; Zamore, Wig; Levy, Jonathan I.; Brugge, Doug; Durant, John L.

    2014-01-01

    Relatively few studies have characterized differences in intra- and inter-neighborhood traffic-related air pollutant (TRAP) concentrations and distance-decay gradients in along an urban highway for the purposes of exposure assessment. The goal of this work was to determine the extent to which intra- and inter-neighborhood differences in TRAP concentrations can be explained by traffic and meteorology in three pairs of neighborhoods along Interstate 93 (I-93) in the metropolitan Boston area (USA). We measured distance-decay gradients of seven TRAPs (PNC, pPAH, NO, NOX, BC, CO, PM2.5) in near-highway (<400 m) and background areas (>1 km) in Somerville, Dorchester/South Boston, Chinatown and Malden to determine whether (1) spatial patterns in concentrations and inter-pollutant correlations differ between neighborhoods, and (2) variation within and between neighborhoods can be explained by traffic and meteorology. The neighborhoods ranged in area from 0.5 to 2.3 km2. Mobile monitoring was performed over the course of one year in each pair of neighborhoods (one pair of neighborhoods per year in three successive years; 35-47 days of monitoring in each neighborhood). Pollutant levels generally increased with highway proximity, consistent with I-93 being a major source of TRAP; however, the slope and extent of the distance-decay gradients varied by neighborhood as well as by pollutant, season and time of day. Correlations among pollutants differed between neighborhoods (e.g., ρ = 0.35-0.80 between PNC and NOX and ρ = 0.11-0.60 between PNC and BC) and were generally lower in Dorchester/South Boston than in the other neighborhoods. We found that the generalizability of near-road gradients and near-highway/urban background contrasts was limited for near-highway neighborhoods in a metropolitan area with substantial local street traffic. Our findings illustrate the importance of measuring gradients of multiple pollutants under different ambient conditions in individual near

  10. Spatial resolution requirements for traffic-related air pollutant exposure evaluations

    EPA Science Inventory

    Vehicle emissions represent one of the most important air pollution sources in most urban areas, and elevated concentrations of pollutants found near major roads have been associated with many adverse health impacts. To understand these impacts, exposure estimates should reflect ...

  11. A regression-based method for mapping traffic-related air pollution: application and testing in four contrasting urban environments.

    PubMed

    Briggs, D J; de Hoogh, C; Gulliver, J; Wills, J; Elliott, P; Kingham, S; Smallbone, K

    2000-05-15

    Accurate, high-resolution maps of traffic-related air pollution are needed both as a basis for assessing exposures as part of epidemiological studies, and to inform urban air-quality policy and traffic management. This paper assesses the use of a GIS-based, regression mapping technique to model spatial patterns of traffic-related air pollution. The model--developed using data from 80 passive sampler sites in Huddersfield, as part of the SAVIAH (Small Area Variations in Air Quality and Health) project--uses data on traffic flows and land cover in the 300-m buffer zone around each site, and altitude of the site, as predictors of NO2 concentrations. It was tested here by application in four urban areas in the UK: Huddersfield (for the year following that used for initial model development), Sheffield, Northampton, and part of London. In each case, a GIS was built in ArcInfo, integrating relevant data on road traffic, urban land use and topography. Monitoring of NO2 was undertaken using replicate passive samplers (in London, data were obtained from surveys carried out as part of the London network). In Huddersfield, Sheffield and Northampton, the model was first calibrated by comparing modelled results with monitored NO2 concentrations at 10 randomly selected sites; the calibrated model was then validated against data from a further 10-28 sites. In London, where data for only 11 sites were available, validation was not undertaken. Results showed that the model performed well in all cases. After local calibration, the model gave estimates of mean annual NO2 concentrations within a factor of 1.5 of the actual mean (approx. 70-90%) of the time and within a factor of 2 between 70 and 100% of the time. r2 values between modelled and observed concentrations are in the range of 0.58-0.76. These results are comparable to those achieved by more sophisticated dispersion models. The model also has several advantages over dispersion modelling. It is able, for example, to provide

  12. TRAFFIC-RELATED AIR POLLUTION AND CHILDREN'S RESPIRATORY HEALTH: BEYOND PROXIMITY TO MAJOR ROADWAYS

    EPA Science Inventory

    Introduction: Previous studies of the respiratory health impact of mobile source air pollutants on

    children have relied heavily on simple exposure metrics such as proximity to roadways and traffic

    density near the home or school. Few studies have conducted area-wide...

  13. An examination of population exposure to traffic related air pollution: Comparing spatially and temporally resolved estimates against long-term average exposures at the home location.

    PubMed

    Shekarrizfard, Maryam; Faghih-Imani, Ahmadreza; Hatzopoulou, Marianne

    2016-05-01

    Air pollution in metropolitan areas is mainly caused by traffic emissions. This study presents the development of a model chain consisting of a transportation model, an emissions model, and atmospheric dispersion model, applied to dynamically evaluate individuals' exposure to air pollution by intersecting daily trajectories of individuals and hourly spatial variations of air pollution across the study domain. This dynamic approach is implemented in Montreal, Canada to highlight the advantages of the method for exposure analysis. The results for nitrogen dioxide (NO2), a marker of traffic related air pollution, reveal significant differences when relying on spatially and temporally resolved concentrations combined with individuals' daily trajectories compared to a long-term average NO2 concentration at the home location. We observe that NO2 exposures based on trips and activity locations visited throughout the day were often more elevated than daily NO2 concentrations at the home location. The percentage of all individuals with a lower 24-hour daily average at home compared to their 24-hour mobility exposure is 89.6%, of which 31% of individuals increase their exposure by more than 10% by leaving the home. On average, individuals increased their exposure by 23-44% while commuting and conducting activities out of home (compared to the daily concentration at home), regardless of air quality at their home location. We conclude that our proposed dynamic modelling approach significantly improves the results of traditional methods that rely on a long-term average concentration at the home location and we shed light on the importance of using individual daily trajectories to understand exposure. PMID:26970897

  14. Prenatal Exposure to Traffic-related Air Pollution and Risk of Early Childhood Cancers

    PubMed Central

    Ghosh, Jo Kay C.; Heck, Julia E.; Cockburn, Myles; Su, Jason; Jerrett, Michael; Ritz, Beate

    2013-01-01

    Exposure to air pollution during pregnancy has been linked to the risk of childhood cancer, but the evidence remains inconclusive. In the present study, we used land use regression modeling to estimate prenatal exposures to traffic exhaust and evaluate the associations with cancer risk in very young children. Participants in the Air Pollution and Childhood Cancers Study who were 5 years of age or younger and diagnosed with cancer between 1988 and 2008 were had their records linked to California birth certificates, and controls were selected from birth certificates. Land use regression–based estimates of exposures to nitric oxide, nitrogen dioxide, and nitrogen oxides were assigned based on birthplace residence and temporally adjusted using routine monitoring station data to evaluate air pollution exposures during specific pregnancy periods. Logistic regression models were adjusted for maternal age, race/ethnicity, educational level, parity, insurance type, and Census-based socioeconomic status, as well as child's sex and birth year. The odds of acute lymphoblastic leukemia increased by 9%, 23%, and 8% for each 25-ppb increase in average nitric oxide, nitrogen dioxide, and nitrogen oxide levels, respectively, over the entire pregnancy. Second- and third-trimester exposures increased the odds of bilateral retinoblastoma. No associations were found for annual average exposures without temporal components or for any other cancer type. These results lend support to a link between prenatal exposure to traffic exhaust and the risk of acute lymphoblastic leukemia and bilateral retinoblastoma. PMID:23989198

  15. Prenatal exposure to traffic-related air pollution and risk of early childhood cancers.

    PubMed

    Ghosh, Jo Kay C; Heck, Julia E; Cockburn, Myles; Su, Jason; Jerrett, Michael; Ritz, Beate

    2013-10-15

    Exposure to air pollution during pregnancy has been linked to the risk of childhood cancer, but the evidence remains inconclusive. In the present study, we used land use regression modeling to estimate prenatal exposures to traffic exhaust and evaluate the associations with cancer risk in very young children. Participants in the Air Pollution and Childhood Cancers Study who were 5 years of age or younger and diagnosed with cancer between 1988 and 2008 were had their records linked to California birth certificates, and controls were selected from birth certificates. Land use regression-based estimates of exposures to nitric oxide, nitrogen dioxide, and nitrogen oxides were assigned based on birthplace residence and temporally adjusted using routine monitoring station data to evaluate air pollution exposures during specific pregnancy periods. Logistic regression models were adjusted for maternal age, race/ethnicity, educational level, parity, insurance type, and Census-based socioeconomic status, as well as child's sex and birth year. The odds of acute lymphoblastic leukemia increased by 9%, 23%, and 8% for each 25-ppb increase in average nitric oxide, nitrogen dioxide, and nitrogen oxide levels, respectively, over the entire pregnancy. Second- and third-trimester exposures increased the odds of bilateral retinoblastoma. No associations were found for annual average exposures without temporal components or for any other cancer type. These results lend support to a link between prenatal exposure to traffic exhaust and the risk of acute lymphoblastic leukemia and bilateral retinoblastoma. PMID:23989198

  16. Traffic-Related Air Pollution and Selected Birth Defects in the San Joaquin Valley of California

    PubMed Central

    Padula, Amy M.; Tager, Ira B.; Carmichael, Suzan L.; Hammond, S. Katharine; Yang, Wei; Lurmann, Frederick W.; Shaw, Gary M.

    2014-01-01

    BACKGROUND Birth defects are a leading cause of infant morbidity and mortality. Studies suggest associations between environmental contaminants and some structural anomalies, although evidence is limited and several anomalies have not been investigated previously. METHODS We used data from the California Center of the National Birth Defects Prevention Study and the Children's Health and Air Pollution Study to estimate the odds of 26 congenital birth defect phenotypes with respect to quartiles of seven ambient air pollutant and traffic exposures in California during the first 2 months of pregnancy, 1997 to 2006 (874 cases and 849 controls). We calculated odds ratios (adjusted for maternal race/ethnicity, education, and vitamin use; aOR) for 11 phenotypes that had at least 40 cases. RESULTS Few odds ratios had confidence intervals that did not include 1.0. Odds of esophageal atresia were increased for the highest versus lowest of traffic density (aOR = 2.8, 95% confidence interval [CI], 1.1–7.4) and PM10 exposure (aOR 4.9; 95% CI, 1.4–17.2). PM10 was associated with a decreased risk of hydrocephaly (aOR= 0.3; 95% CI, 0.1–0.9) and CO with decreased risk of anotia/microtia (aOR = 0.4; 95% CI, 0.2–0.8) and transverse limb deficiency (aOR = 0.4; 95% CI, 0.2–0.9), again reflecting highest versus lowest quartile comparisons. CONCLUSION Most analyses showed no substantive association between air pollution and the selected birth defects with few exceptions of mixed results. PMID:24108522

  17. Traffic Related Air Quality Trends in São Paulo, Brazil

    NASA Astrophysics Data System (ADS)

    Perez-Martinez, P.; Andrade, M. D. F.

    2014-12-01

    An air quality based approach is used to determine pollutant-trends of carbon monoxide (CO), nitrogen oxides (NOX), ozone (O3) and particle matter (PM10) mostly from road transport sources in the Metropolitan Region of São Paulo (MRSP) for the years 2000-2013. Road transport sources included flex (gasoline and ethanol) cars and motorcycles and diesel trucks and buses. Air pollutant concentrations for the transport sources were measured and related with the fuel sales by the emission factors (EFs) expressed in grams of pollutant per kilometer driven or unit of fuel consumed. Over the 14- year time period, pollutant concentrations of NOX, CO and PM10 decreased by 0.65, 0.37 and 0.71% month-1, respectively. Oppossitely during this time, fuel sales of gasoline, ethanol and diesel increased by 0.26, 1.96 and 0.38% month-1. Flex engines are the prevalent road source of CO, oppositely to diesel ones which appear to be the major source of NOX and PM10. Decrease in air pollutants are partially offset by the increment of fuel sales and related transport activity. For CO, there have been steep decreases in pollutant concentrations (rate of -5 parts per billion, ppb, month-1) for gasoline and ethanol engines between 2000 and 2013. Similarly, diesel related NOX and PM10 concentrations decreased but at slower time rates (-0.25 and -0.09 ppb month-1). Rates uncertainties are larger for diesel pollutants (coefficient of determination R of -0.47 and -0.41) than for gasoline and ethanol related CO (R equal to -0.72). This paper led to the following conclusions: (1) concentrations of gasoline and ethanol related CO, estimated by air quality network measurements, decreased at steeper rate than diesel pollutants NOX and PM10, (2) transport source contributions to the O3 formation differ significantly through the time period focus of this work, with higher contributions coming from gasoline and ethanol engines at the beinning of the reviewed period (2000-2007) and from diesel engines

  18. Cyclist route choice, traffic-related air pollution, and lung function: a scripted exposure study

    PubMed Central

    2013-01-01

    Background A travel mode shift to active transportation such as bicycling would help reduce traffic volume and related air pollution emissions as well as promote increased physical activity level. Cyclists, however, are at risk for exposure to vehicle-related air pollutants due to their proximity to vehicle traffic and elevated respiratory rates. To promote safe bicycle commuting, the City of Berkeley, California, has designated a network of residential streets as “Bicycle Boulevards.” We hypothesized that cyclist exposure to air pollution would be lower on these Bicycle Boulevards when compared to busier roads and this elevated exposure may result in reduced lung function. Methods We recruited 15 healthy adults to cycle on two routes – a low-traffic Bicycle Boulevard route and a high-traffic route. Each participant cycled on the low-traffic route once and the high-traffic route once. We mounted pollutant monitors and a global positioning system (GPS) on the bicycles. The monitors were all synced to GPS time so pollutant measurements could be spatially plotted. We measured lung function using spirometry before and after each bike ride. Results We found that fine and ultrafine particulate matter, carbon monoxide, and black carbon were all elevated on the high-traffic route compared to the low-traffic route. There were no corresponding changes in the lung function of healthy non-asthmatic study subjects. We also found that wind-speed affected pollution concentrations. Conclusions These results suggest that by selecting low-traffic Bicycle Boulevards instead of heavily trafficked roads, cyclists can reduce their exposure to vehicle-related air pollution. The lung function results indicate that elevated pollutant exposure may not have acute negative effects on healthy cyclists, but further research is necessary to determine long-term effects on a more diverse population. This study and broader field of research have the potential to encourage policy-makers and

  19. Short-term exposure to traffic-related air pollution and daily mortality in London, UK.

    PubMed

    Atkinson, Richard W; Analitis, Antonis; Samoli, Evangelia; Fuller, Gary W; Green, David C; Mudway, Ian S; Anderson, Hugh R; Kelly, Frank J

    2016-01-01

    Epidemiological studies have linked daily concentrations of urban air pollution to mortality, but few have investigated specific traffic sources that can inform abatement policies. We assembled a database of >100 daily, measured and modelled pollutant concentrations characterizing air pollution in London between 2011 and 2012. Based on the analyses of temporal patterns and correlations between the metrics, knowledge of local emission sources and reference to the existing literature, we selected, a priori, markers of traffic pollution: oxides of nitrogen (general traffic); elemental and black carbon (EC/BC) (diesel exhaust); carbon monoxide (petrol exhaust); copper (tyre), zinc (brake) and aluminium (mineral dust). Poisson regression accounting for seasonality and meteorology was used to estimate the percentage change in risk of death associated with an interquartile increment of each pollutant. Associations were generally small with confidence intervals that spanned 0% and tended to be negative for cardiovascular mortality and positive for respiratory mortality. The strongest positive associations were for EC and BC adjusted for particle mass and respiratory mortality, 2.66% (95% confidence interval: 0.11, 5.28) and 2.72% (0.09, 5.42) per 0.8 and 1.0 μg/m(3), respectively. These associations were robust to adjustment for other traffic metrics and regional pollutants, suggesting a degree of specificity with respiratory mortality and diesel exhaust containing EC/BC. PMID:26464095

  20. Short-term exposure to traffic-related air pollution and daily mortality in London, UK

    PubMed Central

    Atkinson, Richard W; Analitis, Antonis; Samoli, Evangelia; Fuller, Gary W; Green, David C; Mudway, Ian S; Anderson, Hugh R; Kelly, Frank J

    2016-01-01

    Epidemiological studies have linked daily concentrations of urban air pollution to mortality, but few have investigated specific traffic sources that can inform abatement policies. We assembled a database of >100 daily, measured and modelled pollutant concentrations characterizing air pollution in London between 2011 and 2012. Based on the analyses of temporal patterns and correlations between the metrics, knowledge of local emission sources and reference to the existing literature, we selected, a priori, markers of traffic pollution: oxides of nitrogen (general traffic); elemental and black carbon (EC/BC) (diesel exhaust); carbon monoxide (petrol exhaust); copper (tyre), zinc (brake) and aluminium (mineral dust). Poisson regression accounting for seasonality and meteorology was used to estimate the percentage change in risk of death associated with an interquartile increment of each pollutant. Associations were generally small with confidence intervals that spanned 0% and tended to be negative for cardiovascular mortality and positive for respiratory mortality. The strongest positive associations were for EC and BC adjusted for particle mass and respiratory mortality, 2.66% (95% confidence interval: 0.11, 5.28) and 2.72% (0.09, 5.42) per 0.8 and 1.0 μg/m3, respectively. These associations were robust to adjustment for other traffic metrics and regional pollutants, suggesting a degree of specificity with respiratory mortality and diesel exhaust containing EC/BC. PMID:26464095

  1. Traffic-Related Air Pollution, Noise at School, and Behavioral Problems in Barcelona Schoolchildren: A Cross-Sectional Study

    PubMed Central

    Forns, Joan; Dadvand, Payam; Foraster, Maria; Alvarez-Pedrerol, Mar; Rivas, Ioar; López-Vicente, Mònica; Suades-Gonzalez, Elisabet; Garcia-Esteban, Raquel; Esnaola, Mikel; Cirach, Marta; Grellier, James; Basagaña, Xavier; Querol, Xavier; Guxens, Mònica; Nieuwenhuijsen, Mark J.; Sunyer, Jordi

    2015-01-01

    Background: The available evidence of the effects of air pollution and noise on behavioral development is limited, and it overlooks exposure at schools, where children spend a considerable amount of time. Objective: We aimed to investigate the associations of exposure to traffic-related air pollutants (TRAPs) and noise at school on behavioral development of schoolchildren. Methods: We evaluated children 7–11 years of age in Barcelona (Catalonia, Spain) during 2012–2013 within the BREATHE project. Indoor and outdoor concentrations of elemental carbon (EC), black carbon (BC), and nitrogen dioxide (NO2) were measured at schools in two separate 1-week campaigns. In one campaign we also measured noise levels inside classrooms. Parents filled out the strengths and difficulties questionnaire (SDQ) to assess child behavioral development, while teachers completed the attention deficit/hyperactivity disorder criteria of the DSM-IV (ADHD-DSM-IV) list to assess specific ADHD symptomatology. Negative binomial mixed-effects models were used to estimate associations between the exposures and behavioral development scores. Results: Interquartile range (IQR) increases in indoor and outdoor EC, BC, and NO2 concentrations were positively associated with SDQ total difficulties scores (suggesting more frequent behavioral problems) in adjusted multivariate models, whereas noise was significantly associated with ADHD-DSM-IV scores. Conclusion: In our study population of 7- to 11-year-old children residing in Barcelona, exposure to TRAPs at school was associated with increased behavioral problems in schoolchildren. Noise exposure at school was associated with more ADHD symptoms. Citation: Forns J, Dadvand P, Foraster M, Alvarez-Pedrerol M, Rivas I, López-Vicente M, Suades-Gonzalez E, Garcia-Esteban R, Esnaola M, Cirach M, Grellier J, Basagaña X, Querol X, Guxens M, Nieuwenhuijsen MJ, Sunyer J. 2016. Traffic-related air pollution, noise at school, and behavioral problems in Barcelona

  2. Correlations between short-term mobile monitoring and long-term passive sampler measurements of traffic-related air pollution

    NASA Astrophysics Data System (ADS)

    Riley, Erin A.; Schaal, LaNae; Sasakura, Miyoko; Crampton, Robert; Gould, Timothy R.; Hartin, Kris; Sheppard, Lianne; Larson, Timothy; Simpson, Christopher D.; Yost, Michael G.

    2016-05-01

    consistent with published source profiles of traffic-related air pollutants than features based on the PSD data alone. Short-term mobile monitoring shows promise for capturing long-term spatial patterns of traffic-related air pollution, and is complementary to PSD sampling strategies.

  3. Exposure to Traffic-Related Air Pollution in Relation to Progression in Physical Disability among Older Adults

    PubMed Central

    Weuve, Jennifer; Kaufman, Joel D.; Szpiro, Adam A.; Curl, Cynthia; Puett, Robin C.; Beck, Todd; Evans, Denis A.; Mendes de Leon, Carlos F.

    2016-01-01

    Background: Physical disability is common though not inevitable in older age and has direct bearing on a person’s ability to perform activities essential for self-care and independent living. Air pollution appears to increase the risk of several chronic diseases that contribute to the progression of disability. Objective: We evaluated long-term exposure to traffic-related air pollution (TRAP) in relation to progression in physical disability. Methods: We conducted our investigation within the Chicago Health and Aging Project. We measured participants’ exposures to TRAP using two surrogates: residential proximity to major roads (1993 onwards) and ambient concentrations of oxides of nitrogen (NOX; 1999 onwards), predicted via a geographic information systems-based spatiotemporal smoothing model (cross-validation R2 = 0.87) that incorporated community-based monitoring and resolved intraurban exposure gradients at a spatial scale of tens of meters. Participants’ lower-extremity physical ability was assessed every 3 years (1993–2012) via tandem stand, chair stand, and timed walking speed. Results: In multivariable-adjusted analyses (n = 5,708), higher long-term NOX exposure was associated with significantly faster progression in disability. Compared with the 5-year decline in physical ability score among participants in the lowest quartile of NOX exposure, decline among those in the highest exposure quartile was 1.14 units greater (95% confidence interval [CI]: –1.86, –0.42), equivalent to 3 additional years of decline among those in the lowest exposure quartile. The association was linear across the continuum of NOX exposure: per 10-ppb increment in exposure, the 5-year decline in physical ability score was 0.87 unit greater (95% CI: –1.35, –0.39). Proximity to a major road was not associated with disability progression (n = 9,994). Conclusions: These data join a growing body of evidence suggesting that TRAP exposures may accelerate aging

  4. Correlations between short-term mobile monitoring and long-term passive sampler measurements of traffic-related air pollution

    NASA Astrophysics Data System (ADS)

    Riley, Erin A.; Schaal, LaNae; Sasakura, Miyoko; Crampton, Robert; Gould, Timothy R.; Hartin, Kris; Sheppard, Lianne; Larson, Timothy; Simpson, Christopher D.; Yost, Michael G.

    2016-05-01

    with published source profiles of traffic-related air pollutants than features based on the PSD data alone. Short-term mobile monitoring shows promise for capturing long-term spatial patterns of traffic-related air pollution, and is complementary to PSD sampling strategies.

  5. Traffic-related air quality trends in São Paulo, Brazil

    NASA Astrophysics Data System (ADS)

    Pérez-Martínez, Pedro José; Fátima Andrade, María.; Miranda, Regina Maura

    2015-06-01

    The urban population of South America has grown at 1.05%/yr, greater urbanization increasing problems related to air pollution. In most large cities in South America, there has been no continuous long-term measurement of regulated pollutants. One exception is São Paulo, Brazil, where an air quality monitoring network has been in place since the 1970s. In this paper, we used an air quality-based approach to determine pollutant trends for emissions of carbon monoxide (CO), nitrogen oxides (NOx), ozone (O3), and coarse particulate matter (PM10), mostly from mobile sources, in the Metropolitan Region of São Paulo for the 2000-2013 period. Mobile sources included light-duty vehicles (LDVs, comprising gasoline- or ethanol-powered cars and motorcycles) and heavy-duty vehicles (HDVs, comprising diesel-powered trucks and buses). Pollutant concentrations for mobile source emissions were measured and correlated with fuel sales by the emission factors. Over the 2000-2013 period, concentrations of NOx, CO, and PM10 decreased by 0.65, 0.37, and 0.71% month-1, respectively, whereas sales of gasoline, ethanol, and diesel increased by 0.26, 1.96, and 0.38% month-1, respectively. LDVs were the major mobile source of CO, whereas LDVs were the major source of NOx and PM10. Increases in fuel sales and in the corresponding traffic volume were partially offset by decreases in pollutant concentrations. Between 2000 and 2013, there was a sharp (-5 ppb month-1) decrease in the concentrations of LDV-emitted CO, together with (less dramatic) decreases in the concentrations of HDV-emitted NOx and PM10 (-0.25 and -0.09 ppb month-1, respectively). Variability was greater for HDV-emitted NOx and PM10 (R = -0.47 and -0.41, respectively) than for LDV-emitted CO (R = -0.72). We draw the following conclusions: the observed concentrations of LDV-emitted CO decreased at a sharper rate than did those of HDV-emitted NOx and PM10; mobile source contributions to O3 formation varied significantly, LDVs

  6. Impact of traffic-related air pollution on the expression of Platanus orientalis pollen allergens

    NASA Astrophysics Data System (ADS)

    Sedghy, Farnaz; Sankian, Mojtaba; Moghadam, Maliheh; Ghasemi, Ziba; Mahmoudi, Mahmoud; Varasteh, Abdol-Reza

    2016-06-01

    Air pollutants and their interaction with environmental allergens have been considered as an important reason for the recent increase in the prevalence of allergic diseases. The aim of this study was to investigate the traffic pollution effect, as a stressor, on Platanus orientalis pollen allergens messenger RNA (mRNA) and protein expression. P. orientalis pollen grains were collected along main streets of heavy traffic and from unpolluted sites in Mashhad city, in northeast Iran. The pollen samples were examined by scanning electron microscopy. To assess the abundance of pollen allergens (Pla or 1, Pla or 2, and Pla or 3) from polluted and unpolluted sites, immunoblotting was performed. Moreover, the sequences encoding P. orientalis allergens were amplified using real-time PCR. Scanning electron microscopy showed a number of particles of 150-550 nm on the surface of pollen from polluted sites. Also, protein and gene expression levels of Pla or 1 and Pla or 3 were considerably greater in pollen samples from highly polluted areas than in pollen from unpolluted areas (p < 0.05). In contrast, no statically significant difference in Pla or 2 protein and mRNA expression level was found between samples from the two areas. We found greater expression of allergens involved in plant defense mechanisms (Pla or 1 and Pla or 3) in polluted sites than in unpolluted ones. The high expression of these proteins can lead to an increase in the prevalence of allergic diseases. These findings suggest the necessity of supporting public policies aimed at controlling traffic pollution to improve air quality and prevent the subsequent clinical outcomes and new cases of asthma.

  7. Effects of long-term exposure to traffic-related air pollution on respiratory and cardiovascular mortality in the Netherlands: the NLCS-AIR study.

    PubMed

    Brunekreef, Bert; Beelen, Rob; Hoek, Gerard; Schouten, Leo; Bausch-Goldbohm, Sandra; Fischer, Paul; Armstrong, Ben; Hughes, Edward; Jerrett, Michael; van den Brandt, Piet

    2009-03-01

    black smoke (a simple marker for soot) and nitrogen dioxide (NO2) as indicators of traffic-related air pollution, as well as nitric oxide (NO), sulfur dioxide (SO2), and particulate matter with aerodynamic diameter < or = 2.5 microm (PM2.5), as estimated from measurements of particulate matter with aerodynamic diameter < or = 10 microm (PM10). Overall long-term exposure concentrations were considered to be a function of air pollution contributions at regional, urban, and local scales. We used interpolation from data obtained routinely at regional stations of the National Air Quality Monitoring Network (NAQMN) to estimate the regional component of exposure at the home address. Average pollutant concentrations were estimated from NAQMN measurements for the period 1976 through 1996. Land-use regression methods were used to estimate the urban exposure component. For the local exposure component, geographic information systems (GISs) were used to generate indicators of traffic exposure that included traffic intensity on and distance to nearby roads. A major effort was made to collect traffic intensity data from individual municipalities. The exposure variables were refined considerably from those used in the pilot study, but we also analyzed the data for the full cohort in the current study using the exposure indicators of the pilot study. We analyzed the data in models with the estimated overall pollutant concentration as a single variable and with the background concentration (the sum of regional and urban components) and the local exposure estimate from traffic indicators as separate variables. In the full-cohort analyses adjusted for the limited set of confounders, estimated overall exposure concentrations of black smoke, NO2, NO, and PM2.5 were associated with mortality. For a 10-microg/m3 increase in the black smoke concentration, the relative risk (RR) (95% confidence interval [CI]) was 1.05 (1.00-1.11) for natural-cause (nonaccidental) mortality, 1.04 (0.95-1.13) for

  8. Hydrogen sulfide and traffic-related air pollutants in association with increased mortality: a case-crossover study in Reykjavik, Iceland

    PubMed Central

    Finnbjornsdottir, Ragnhildur Gudrun; Elvarsson, Bjarki Thor; Gislason, Thorarinn; Rafnsson, Vilhjalmur

    2015-01-01

    Objectives To study the association between daily mortality and short-term increases in air pollutants, both traffic-related and the geothermal source-specific hydrogen sulfide (H2S). Design Population-based, time stratified case-crossover. A lag time to 4 days was considered. Seasonal, gender and age stratification were calculated. Also, the best-fit lag when introducing H2S >7 µg/m3 was selected by the Akaike Information Criterion (AIC). Setting The population of the greater Reykjavik area (n=181 558) during 2003–2009. Participants Cases were defined as individuals living in the Reykjavik capital area, 18 years or older (N=138 657), who died due to all natural causes (ICD-10 codes A00-R99) other than injury, poisoning and certain other consequences of external causes, or cardiovascular disease (ICD-10 codes I00-I99) during the study period. Main outcome measure Percentage increases in risk of death (IR%) following an interquartile range increase in pollutants. Results The total number of deaths due to all natural causes was 7679 and due to cardiovascular diseases was 3033. The interquartile range increased concentrations of H2S (2.6 µg/m3) were associated with daily all natural cause mortality in the Reykjavik capital area. The IR% was statistically significant during the summer season (lag 1: IR%=5.05, 95% CI 0.61 to 9.68; lag 2: IR%=5.09, 95% CI 0.44 to 9.97), among males (lag 0: IR%=2.26, 95% CI 0.23 to 4.44), and among the elderly (lag 0: IR%=1.94, 95% CI 0.12 to 1.04; lag 1: IR%=1.99, 95% CI 0.21 to 1.04), when adjusted for traffic-related pollutants and meteorological variables. The traffic-related pollutants were generally not associated with statistical significant IR%s. Conclusions The results suggest that ambient H2S air pollution may increase mortality in Reykjavik, Iceland. To the best of our knowledge, ambient H2S exposure has not previously been associated with increased mortality in population-based studies and therefore the results

  9. GIS-modeled indicators of traffic-related air pollutants and adverse pulmonary health among children in El Paso, Texas, USA.

    EPA Science Inventory

    The El Paso Children?s Health Study examined 5,654 children enrolled in the El Paso, Texas public school district by questionnaire in 2001. Exposure measurements were first collected in the late fall of 1999. Then school-level and residence-level exposures to traffic-related air ...

  10. Presence of other allergic disease modifies the effect of early childhood traffic-related air pollution exposure on asthma prevalence.

    PubMed

    Dell, Sharon D; Jerrett, Michael; Beckerman, Bernard; Brook, Jeffrey R; Foty, Richard G; Gilbert, Nicolas L; Marshall, Laura; Miller, J David; To, Teresa; Walter, Stephen D; Stieb, David M

    2014-04-01

    Nitrogen dioxide (NO2), a surrogate measure of traffic-related air pollution (TRAP), has been associated with incident childhood asthma. Timing of exposure and atopic status may be important effect modifiers. We collected cross-sectional data on asthma outcomes from Toronto school children aged 5-9years in 2006. Lifetime home, school and daycare addresses were obtained to derive birth and cumulative NO2 exposures for a nested case-control subset of 1497 children. Presence of other allergic disease (a proxy for atopy) was defined as self-report of one or more of doctor-diagnosed rhinitis, eczema, or food allergy. Generalized estimating equations were used to adjust for potential confounders, and examine hypothesized effect modifiers while accounting for clustering by school. In children with other allergic disease, birth, cumulative and 2006 NO2 were associated with lifetime asthma (OR 1.46, 95% CI 1.08-1.98; 1.37, 95% CI 1.00-1.86; and 1.60, 95% CI 1.09-2.36 respectively per interquartile range increase) and wheeze (OR 1.44, 95% CI 1.10-1.89; 1.31, 95% CI 1.02-1.67; and 1.60, 95% CI 1.16-2.21). No or weaker effects were seen in those without allergic disease, and effect modification was amplified when a more restrictive algorithm was used to define other allergic disease (at least 2 of doctor diagnosed allergic rhinitis, eczema or food allergy). The effects of modest NO2 levels on childhood asthma were modified by the presence of other allergic disease, suggesting a probable role for allergic sensitization in the pathogenesis of TRAP initiated asthma. PMID:24472824

  11. Willingness to pay to avoid health risks from road-traffic-related air pollution and noise across five countries.

    PubMed

    Istamto, Tifanny; Houthuijs, Danny; Lebret, Erik

    2014-11-01

    We conducted a multi-country study to estimate the perceived economic values of traffic-related air pollution and noise health risks within the framework of a large European project. We used contingent valuation as a method to assess the willingness-to-pay (WTP) for both types of pollutants simultaneously. We asked respondents how much they would be willing to pay annually to avoid certain health risks from specific pollutants. Three sets of vignettes with different levels of information were provided prior to the WTP questions. These vignettes described qualitative general health risks, a quantitative single health risk related to a pollutant, and a quantitative scenario of combined health risks related to a pollutant. The mean WTP estimates to avoid road-traffic air pollution effects for the three vignettes were: €130 per person per year (pp/y) for general health risks, €80 pp/y for a half year shorter in life expectancy, and €330 pp/y to a 50% decrease in road-traffic air pollution. Their medians were €40 pp/y, €10 pp/y and €50 pp/y, respectively. The mean WTP estimates to avoid road-traffic noise effects for the three vignettes were: €90 pp/y for general health risks, €100 pp/y for a 13% increase in severe annoyance, and €320 pp/y for a combined-risk scenario related to an increase of a noise level from 50 dB to 65 dB. Their medians were €20 pp/y, €20 pp/y and €50 pp/y, respectively. Risk perceptions and attitudes as well as environmental and pollutant concerns significantly affected WTP estimates. The observed differences in crude WTP estimates between countries changed considerably when perception-related variables were included in the WTP regression models. For this reason, great care should be taken when performing benefit transfer from studies in one country to another. PMID:25146911

  12. Exposure to traffic-related air pollution during pregnancy and term low birth weight: estimation of causal associations in a semiparametric model.

    PubMed

    Padula, Amy M; Mortimer, Kathleen; Hubbard, Alan; Lurmann, Frederick; Jerrett, Michael; Tager, Ira B

    2012-11-01

    Traffic-related air pollution is recognized as an important contributor to health problems. Epidemiologic analyses suggest that prenatal exposure to traffic-related air pollutants may be associated with adverse birth outcomes; however, there is insufficient evidence to conclude that the relation is causal. The Study of Air Pollution, Genetics and Early Life Events comprises all births to women living in 4 counties in California's San Joaquin Valley during the years 2000-2006. The probability of low birth weight among full-term infants in the population was estimated using machine learning and targeted maximum likelihood estimation for each quartile of traffic exposure during pregnancy. If everyone lived near high-volume freeways (approximated as the fourth quartile of traffic density), the estimated probability of term low birth weight would be 2.27% (95% confidence interval: 2.16, 2.38) as compared with 2.02% (95% confidence interval: 1.90, 2.12) if everyone lived near smaller local roads (first quartile of traffic density). Assessment of potentially causal associations, in the absence of arbitrary model assumptions applied to the data, should result in relatively unbiased estimates. The current results support findings from previous studies that prenatal exposure to traffic-related air pollution may adversely affect birth weight among full-term infants. PMID:23045474

  13. Exposure to Traffic-related Air Pollution During Pregnancy and Term Low Birth Weight: Estimation of Causal Associations in a Semiparametric Model

    PubMed Central

    Padula, Amy M.; Mortimer, Kathleen; Hubbard, Alan; Lurmann, Frederick; Jerrett, Michael; Tager, Ira B.

    2012-01-01

    Traffic-related air pollution is recognized as an important contributor to health problems. Epidemiologic analyses suggest that prenatal exposure to traffic-related air pollutants may be associated with adverse birth outcomes; however, there is insufficient evidence to conclude that the relation is causal. The Study of Air Pollution, Genetics and Early Life Events comprises all births to women living in 4 counties in California's San Joaquin Valley during the years 2000–2006. The probability of low birth weight among full-term infants in the population was estimated using machine learning and targeted maximum likelihood estimation for each quartile of traffic exposure during pregnancy. If everyone lived near high-volume freeways (approximated as the fourth quartile of traffic density), the estimated probability of term low birth weight would be 2.27% (95% confidence interval: 2.16, 2.38) as compared with 2.02% (95% confidence interval: 1.90, 2.12) if everyone lived near smaller local roads (first quartile of traffic density). Assessment of potentially causal associations, in the absence of arbitrary model assumptions applied to the data, should result in relatively unbiased estimates. The current results support findings from previous studies that prenatal exposure to traffic-related air pollution may adversely affect birth weight among full-term infants. PMID:23045474

  14. Land use regression modeling of intra-urban residential variability in multiple traffic-related air pollutants

    PubMed Central

    Clougherty, Jane E; Wright, Rosalind J; Baxter, Lisa K; Levy, Jonathan I

    2008-01-01

    Background There is a growing body of literature linking GIS-based measures of traffic density to asthma and other respiratory outcomes. However, no consensus exists on which traffic indicators best capture variability in different pollutants or within different settings. As part of a study on childhood asthma etiology, we examined variability in outdoor concentrations of multiple traffic-related air pollutants within urban communities, using a range of GIS-based predictors and land use regression techniques. Methods We measured fine particulate matter (PM2.5), nitrogen dioxide (NO2), and elemental carbon (EC) outside 44 homes representing a range of traffic densities and neighborhoods across Boston, Massachusetts and nearby communities. Multiple three to four-day average samples were collected at each home during winters and summers from 2003 to 2005. Traffic indicators were derived using Massachusetts Highway Department data and direct traffic counts. Multivariate regression analyses were performed separately for each pollutant, using traffic indicators, land use, meteorology, site characteristics, and central site concentrations. Results PM2.5 was strongly associated with the central site monitor (R2 = 0.68). Additional variability was explained by total roadway length within 100 m of the home, smoking or grilling near the monitor, and block-group population density (R2 = 0.76). EC showed greater spatial variability, especially during winter months, and was predicted by roadway length within 200 m of the home. The influence of traffic was greater under low wind speed conditions, and concentrations were lower during summer (R2 = 0.52). NO2 showed significant spatial variability, predicted by population density and roadway length within 50 m of the home, modified by site characteristics (obstruction), and with higher concentrations during summer (R2 = 0.56). Conclusion Each pollutant examined displayed somewhat different spatial patterns within urban neighborhoods

  15. Carotid Intima-Media Thickness and Long-Term Exposure to Traffic-Related Air Pollution in Middle-Aged Residents of Taiwan: A Cross-Sectional Study

    PubMed Central

    Su, Ta-Chen; Hwang, Juey-Jen; Shen, Yu-Cheng

    2015-01-01

    Background Associations between long-term exposure to air pollution and carotid intima-media thickness (CIMT) have inconsistent findings. Objectives In this study we aimed to evaluate association between 1-year average exposure to traffic-related air pollution and CIMT in middle-aged adults in Asia. Methods CIMT was measured in Taipei, Taiwan, between 2009 and 2011 in 689 volunteers 35–65 years of age who were recruited as the control subjects of an acute coronary heart disease cohort study. We applied land-use regression models developed by the European Study of Cohorts for Air Pollution Effects (ESCAPE) to estimate each subject’s 1-year average exposure to traffic-related air pollutants with particulate matter diameters ≤ 10 μm (PM10) and ≤ 2.5 μm (PM2.5) and the absorbance levels of PM2.5 (PM2.5abs), nitrogen dioxide (NO2), and nitrogen oxides (NOx) in the urban environment. Results One-year average air pollution exposures were 44.21 ± 4.19 μg/m3 for PM10, 27.34 ± 5.12 μg/m3 for PM2.5, and (1.97 ± 0.36) × 10–5/m for PM2.5abs. Multivariate regression analyses showed average percentage increases in maximum left CIMT of 4.23% (95% CI: 0.32, 8.13) per 1.0 × 10–5/m increase in PM2.5abs; 3.72% (95% CI: 0.32, 7.11) per 10-μg/m3 increase in PM10; 2.81% (95% CI: 0.32, 5.31) per 20-μg/m3 increase in NO2; and 0.74% (95% CI: 0.08, 1.41) per 10-μg/m3 increase in NOx. The associations were not evident for right CIMT, and PM2.5 mass concentration was not associated with the outcomes. Conclusions Long-term exposures to traffic-related air pollution of PM2.5abs, PM10, NO2, and NOx were positively associated with subclinical atherosclerosis in middle-aged adults. Citation Su TC, Hwang JJ, Shen YC, Chan CC. 2015. Carotid intima–media thickness and long-term exposure to traffic-related air pollution in middle-aged residents of Taiwan: a cross-sectional study. Environ Health Perspect 123:773–778; http://dx.doi.org/10.1289/ehp.1408553 PMID:25793433

  16. Nrf2-related gene expression and exposure to traffic-related air pollution in elderly subjects with cardiovascular disease: An exploratory panel study.

    PubMed

    Wittkopp, Sharine; Staimer, Norbert; Tjoa, Thomas; Stinchcombe, Timothy; Daher, Nancy; Schauer, James J; Shafer, Martin M; Sioutas, Constantinos; Gillen, Daniel L; Delfino, Ralph J

    2016-01-01

    Gene expression changes are linked to air pollutant exposures in in vitro and animal experiments. However, limited data are available on how these outcomes relate to ambient air pollutant exposures in humans. We performed an exploratory analysis testing whether gene expression levels were associated with air pollution exposures in a Los Angeles area cohort of elderly subjects with coronary artery disease. Candidate genes (35) were selected from published studies of gene expression-pollutant associations. Expression levels were measured weekly in 43 subjects (≤ 12 weeks) using quantitative PCR. Exposures included gaseous pollutants O3, nitrogen oxides (NOx), and CO; particulate matter (PM) pollutants elemental and black carbon (EC, BC); and size-fractionated PM mass. We measured organic compounds from PM filter extracts, including polycyclic aromatic hydrocarbons (PAHs), and determined the in vitro oxidative potential of particle extracts. Associations between exposures and gene expression levels were analyzed using mixed-effects regression models. We found positive associations of traffic-related pollutants (EC, BC, primary organic carbon, PM 0.25-2.5 PAH and/or PM 0.25 PAH, and NOx) with NFE2L2, Nrf2-mediated genes (HMOX1, NQO1, and SOD2), CYP1B1, IL1B, and SELP. Findings suggest that NFE2L2 gene expression links associations of traffic-related air pollution with phase I and II enzyme genes at the promoter transcription level. PMID:25564368

  17. Nrf2-related gene expression and exposure to traffic-related air pollution in elderly subjects with cardiovascular disease: An exploratory panel study

    PubMed Central

    Wittkopp, Sharine; Staimer, Norbert; Tjoa, Thomas; Stinchcombe, Timothy; Daher, Nancy; Schauer, James J.; Shafer, Martin M.; Sioutas, Constantinos; Gillen, Daniel L.; Delfino, Ralph J.

    2015-01-01

    Gene expression changes are linked to air pollutant exposures in in vitro and animal experiments. However, limited data are available on how these outcomes relate to ambient air pollutant exposures in humans. We performed an exploratory analysis testing whether gene expression levels were associated with air pollution exposures in a Los Angeles area cohort of elderly subjects with coronary artery disease. Candidate genes (35) were selected from published studies of gene expression-pollutant associations. Expression levels were measured weekly in 43 subjects (≤12 weeks) using quantitative PCR. Exposures included gaseous pollutants O3, nitrogen oxides (NOx), and CO; particulate matter (PM) pollutants elemental and black carbon (EC, BC); and size-fractionated PM mass. We measured organic compounds from PM filter extracts, including polycyclic aromatic hydrocarbons (PAHs), and determined the in vitro oxidative potential of particle extracts. Associations between exposures and gene expression levels were analyzed using mixed-effects regression models. We found positive associations of traffic-related pollutants (EC, BC, primary organic carbon, PM0.25-2.5 PAH and/or PM0.25 PAH, and NOx) with NFE2L2, Nrf2-mediated genes (HMOX1, NQO1, and SOD2), CYP1B1, IL1B, and SELP. Findings suggest that NFE2L2 gene expression links associations of traffic-related air pollution with phase I and II enzyme genes at the promoter transcription level. PMID:25564368

  18. Association between traffic-related air pollution and asthma in preschool children in a national Japanese nested case–control study

    PubMed Central

    Hasunuma, Hideki; Sato, Tosiya; Iwata, Tsutomu; Kohno, Yoichi; Nitta, Hiroshi; Odajima, Hiroshi; Ohara, Toshimasa; Omori, Takashi; Ono, Masaji; Yamazaki, Shin; Shima, Masayuki

    2016-01-01

    Objectives There has been little study on the effect of traffic-related air pollution on the incidence and persistence of asthma in preschool children. We evaluated the association of exposure to traffic-related air pollution with the incidence/persistence of asthma during the first 3 years of life using a population-based study. Methods A baseline survey was conducted in 1½-year-old children (n=63 266). A follow-up survey at 3 years of age (n=43 343) identified new-onset asthma cases (n=853) and persistence of asthma (n=214). In the prevalence/persistence study, the outdoor concentrations of nitrogen oxides (NOx) and elemental carbon (EC) at home during the first 1½ years of life were estimated by a dispersion model. In the nested case–control study, which regarded incidence of asthma as cases, the personal exposure levels were estimated by dispersion model including time-activity pattern. Results There was no statistically significant association between the incidence of asthma between age 1½ and 3 years and personal exposure levels to NOx nor EC. However, the persistence of asthmatic symptoms (between 1½ and 3 years) was significantly associated with outdoor concentrations of NOx. ORs for the persistence of asthmatic symptoms were 6.02 (95% CI 1.51 to 23.92) for the comparison between the upper 5th and lower 25th centiles of NOx. Conclusions While no statistically significant association was observed for the incidence of asthma, the persistence of asthmatic symptoms in preschool children was significantly associated with traffic-related air pollution. This supports its importance as a risk factor in childhood airway disease. PMID:26916696

  19. Nitric oxide and superoxide mediate diesel particle effects in cytokine-treated mice and murine lung epithelial cells — implications for susceptibility to traffic-related air pollution

    PubMed Central

    2012-01-01

    Background Epidemiologic studies associate childhood exposure to traffic-related air pollution with increased respiratory infections and asthmatic and allergic symptoms. The strongest associations between traffic exposure and negative health impacts are observed in individuals with respiratory inflammation. We hypothesized that interactions between nitric oxide (NO), increased during lung inflammatory responses, and reactive oxygen species (ROS), increased as a consequence of traffic exposure ─ played a key role in the increased susceptibility of these at-risk populations to traffic emissions. Methods Diesel exhaust particles (DEP) were used as surrogates for traffic particles. Murine lung epithelial (LA-4) cells and BALB/c mice were treated with a cytokine mixture (cytomix: TNFα, IL-1β, and IFNγ) to induce a generic inflammatory state. Cells were exposed to saline or DEP (25 μg/cm2) and examined for differential effects on redox balance and cytotoxicity. Likewise, mice undergoing nose-only inhalation exposure to air or DEP (2 mg/m3 × 4 h/d × 2 d) were assessed for differential effects on lung inflammation, injury, antioxidant levels, and phagocyte ROS production. Results Cytomix treatment significantly increased LA-4 cell NO production though iNOS activation. Cytomix +  DEP-exposed cells incurred the greatest intracellular ROS production, with commensurate cytotoxicity, as these cells were unable to maintain redox balance. By contrast, saline + DEP-exposed cells were able to mount effective antioxidant responses. DEP effects were mediated by: (1) increased ROS including superoxide anion (O2˙-), related to increased xanthine dehydrogenase expression and reduced cytosolic superoxide dismutase activity; and (2) increased peroxynitrite generation related to interaction of O2˙- with cytokine-induced NO. Effects were partially reduced by superoxide dismutase (SOD) supplementation or by blocking iNOS induction. In mice, cytomix +  DEP

  20. A national study of the association between traffic-related air pollution and adverse pregnancy outcomes in Canada, 1999-2008.

    PubMed

    Stieb, David M; Chen, Li; Hystad, Perry; Beckerman, Bernardo S; Jerrett, Michael; Tjepkema, Michael; Crouse, Daniel L; Omariba, D Walter; Peters, Paul A; van Donkelaar, Aaron; Martin, Randall V; Burnett, Richard T; Liu, Shiliang; Smith-Doiron, Marc; Dugandzic, Rose M

    2016-07-01

    Numerous studies have examined the association of air pollution with preterm birth and birth weight outcomes. Traffic-related air pollution has also increasingly been identified as an important contributor to adverse health effects of air pollution. We employed a national nitrogen dioxide (NO2) exposure model to examine the association between NO2 and pregnancy outcomes in Canada between 1999 and 2008. National models for NO2 (and particulate matter of median aerodynamic diameter <2.5µm (PM2.5) as a covariate) were developed using ground-based monitoring data, estimates from remote-sensing, land use variables and, for NO2, deterministic gradients relative to road traffic sources. Generalized estimating equations were used to examine associations with preterm birth, term low birth weight (LBW), small for gestational age (SGA) and term birth weight, adjusting for covariates including infant sex, gestational age, maternal age and marital status, parity, urban/rural place of residence, maternal place of birth, season, year of birth and neighbourhood socioeconomic status and per cent visible minority. Associations were reduced considerably after adjustment for individual covariates and neighbourhood per cent visible minority, but remained significant for SGA (odds ratio 1.04, 95%CI 1.02-1.06 per 20ppb NO2) and term birth weight (16.2g reduction, 95% CI 13.6-18.8g per 20ppb NO2). Associations with NO2 were of greater magnitude in a sensitivity analysis using monthly monitoring data, and among births to mothers born in Canada, and in neighbourhoods with higher incomes and a lower proportion of visible minorities. In two pollutant models, associations with NO2 were less sensitive to adjustment for PM2.5 than vice versa, and there was consistent evidence of a dose-response relationship for NO2 but not PM2.5. In this study of approximately 2.5 million Canadian births between 1999 and 2008, we found significant associations of NO2 with SGA and term birth weight which

  1. Traffic-related air pollution modeling during the 2008 Beijing Olympic Games: the effects of an odd-even day traffic restriction scheme.

    PubMed

    Cai, Hao; Xie, Shaodong

    2011-04-15

    An integrated urban air quality modeling system was applied to assess the effects of a short-term odd-even day traffic restriction scheme (TRS) on traffic-related air pollution in the urban area of Beijing (UAB) before, during and after the 2008 Olympic Games. Using traffic flow data retrieved from an on-line traffic monitoring system, concentration levels of CO, PM(10), NO(2) and O(3) on the 2nd, 3rd, 4th Ring Roads (RR) and Linkage Roads (LRs), the main roads distributed around the UAB, were predicted for the pre- (10th-19th, July), during- (20th July-20th September) and post-TRS (21st-30th, September) periods. A widely used statistical framework for model evaluation was adopted, the dependences of model performance on time-of-the-day and on wind direction were investigated, and the model predictions turned out reasonably satisfactory. Results showed that daily average concentrations on the 2nd, 3rd, 4th RR and LRs decreased significantly during the TRS period, by about 35.8, 38.5, 34.9 and 35.6% for CO, about 38.7, 31.8, 44.0 and 34.7% for PM(10), about 30.3, 31.9, 32.3 and 33.9% for NO(2), and about 36.7, 33.0, 33.4 and 34.7% for O(3), respectively, compared with the pre-TRS period. Hourly average concentrations were also reduced significantly, particularly for the morning and evening peaks for CO and PM(10), for the evening peak for NO(2), and for the afternoon peak for O(3). Consequently, both the daily and hourly concentration level of CO, PM(10), NO(2) and O(3) conformed to the China National Ambient Air Quality Standards Grade II during the Games. In addition, notable reduction of concentration levels was achieved in different regions of Beijing, with the traffic-related air pollution in the downwind northern and western areas relieved most significantly. The TRS policy was therefore effective in alleviating traffic-related air pollution and improving short-term air quality in Beijing during the Games. PMID:21353290

  2. Comparison of Highly Resolved Model-Based Exposure Metrics for Traffic-Related Air Pollutants to Support Environmental Health Studies

    PubMed Central

    Chang, Shih Ying; Vizuete, William; Breen, Michael; Isakov, Vlad; Arunachalam, Saravanan

    2015-01-01

    Human exposure to air pollution in many studies is represented by ambient concentrations from space-time kriging of observed values. Space-time kriging techniques based on a limited number of ambient monitors may fail to capture the concentration from local sources. Further, because people spend more time indoors, using ambient concentration to represent exposure may cause error. To quantify the associated exposure error, we computed a series of six different hourly-based exposure metrics at 16,095 Census blocks of three Counties in North Carolina for CO, NOx, PM2.5, and elemental carbon (EC) during 2012. These metrics include ambient background concentration from space-time ordinary kriging (STOK), ambient on-road concentration from the Research LINE source dispersion model (R-LINE), a hybrid concentration combining STOK and R-LINE, and their associated indoor concentrations from an indoor infiltration mass balance model. Using a hybrid-based indoor concentration as the standard, the comparison showed that outdoor STOK metrics yielded large error at both population (67% to 93%) and individual level (average bias between −10% to 95%). For pollutants with significant contribution from on-road emission (EC and NOx), the on-road based indoor metric performs the best at the population level (error less than 52%). At the individual level, however, the STOK-based indoor concentration performs the best (average bias below 30%). For PM2.5, due to the relatively low contribution from on-road emission (7%), STOK-based indoor metric performs the best at both population (error below 40%) and individual level (error below 25%). The results of the study will help future epidemiology studies to select appropriate exposure metric and reduce potential bias in exposure characterization. PMID:26670242

  3. Comparison of Highly Resolved Model-Based Exposure Metrics for Traffic-Related Air Pollutants to Support Environmental Health Studies.

    PubMed

    Chang, Shih Ying; Vizuete, William; Breen, Michael; Isakov, Vlad; Arunachalam, Saravanan

    2015-12-01

    Human exposure to air pollution in many studies is represented by ambient concentrations from space-time kriging of observed values. Space-time kriging techniques based on a limited number of ambient monitors may fail to capture the concentration from local sources. Further, because people spend more time indoors, using ambient concentration to represent exposure may cause error. To quantify the associated exposure error, we computed a series of six different hourly-based exposure metrics at 16,095 Census blocks of three Counties in North Carolina for CO, NO(x), PM(2.5), and elemental carbon (EC) during 2012. These metrics include ambient background concentration from space-time ordinary kriging (STOK), ambient on-road concentration from the Research LINE source dispersion model (R-LINE), a hybrid concentration combining STOK and R-LINE, and their associated indoor concentrations from an indoor infiltration mass balance model. Using a hybrid-based indoor concentration as the standard, the comparison showed that outdoor STOK metrics yielded large error at both population (67% to 93%) and individual level (average bias between -10% to 95%). For pollutants with significant contribution from on-road emission (EC and NO(x)), the on-road based indoor metric performs the best at the population level (error less than 52%). At the individual level, however, the STOK-based indoor concentration performs the best (average bias below 30%). For PM(2.5), due to the relatively low contribution from on-road emission (7%), STOK-based indoor metric performs the best at both population (error below 40%) and individual level (error below 25%). The results of the study will help future epidemiology studies to select appropriate exposure metric and reduce potential bias in exposure characterization. PMID:26670242

  4. Associations between Prenatal traffic-related air pollution exposure and birth weight: Modification by sex and maternal pre-pregnancy body mass index

    PubMed Central

    Coull, Brent A.; Just, Allan C.; Maxwell, Sarah L.; Schwartz, Joel; Gryparis, Alexandros; Kloog, Itai; Wright, Rosalind J.; Wright, Robert O.

    2015-01-01

    Background Prenatal traffic-related air pollution exposure is linked to adverse birth outcomes. However, modifying effects of maternal body mass index (BMI) and infant sex remain virtually unexplored. Objectives We examined whether associations between prenatal air pollution and birth weight differed by sex and maternal BMI in 670 urban ethnically mixed mother-child pairs. Methods Black carbon (BC) levels were estimated using a validated spatio-temporal land-use regression (LUR) model; fine particulate matter (PM2.5) was estimated using a hybrid LUR model incorporating satellite-derived Aerosol Optical Depth measures. Using stratified multivariable-adjusted regression analyses, we examined whether associations between prenatal air pollution and calculated birth weight for gestational age (BWGA) z-scores varied by sex and maternal pre-pregnancy BMI. Results Median birth weight was 3.3±0.6 kg; 33% of mothers were obese (BMI ≥30 kg/m3). In stratified analyses, the association between higher PM2.5 and lower birth weight was significant in males of obese mothers (−0.42 unit of BWGA z-score change per IQR increase in PM2.5, 95%CI: −0.79 to −0.06) ( PM2.5 × sex × obesity Pinteraction=0.02). Results were similar for BC models (Pinteraction=0.002). Conclusions Associations of prenatal exposure to traffic-related air pollution and reduced birth weight were most evident in males born to obese mothers. PMID:25601728

  5. Perinatal Exposure to Traffic-Related Air Pollution and Atopy at 1 Year of Age in a Multi-Center Canadian Birth Cohort Study

    PubMed Central

    Allen, Ryan W.; Becker, Allan; Brook, Jeffrey R.; Mandhane, Piush; Scott, James A.; Sears, Malcolm R.; Subbarao, Padmaja; Takaro, Tim K.; Turvey, Stuart E.; Brauer, Michael

    2015-01-01

    Background The role of traffic-related air pollution (TRAP) exposure in the development of allergic sensitization in children is unclear, and few birth cohort studies have incorporated spatiotemporal exposure assessment. Objectives We aimed to examine the association between TRAP and atopy in 1-year-old children from an ongoing national birth cohort study in four Canadian cities. Methods We identified 2,477 children of approximately 1 year of age with assessment of atopy for inhalant (Alternaria, Der p, Der f, cat, dog, cockroach) and food-related (milk, eggs, peanuts, soy) allergens. Exposure to nitrogen dioxide (NO2) was estimated from city-specific land use regression models accounting for residential mobility and temporal variability in ambient concentrations. We used mixed models to examine associations between atopy and exposure during pregnancy and the first year of life, including adjustment for covariates (maternal atopy, socioeconomic status, pets, mold, nutrition). We also conducted analyses stratified by time-location patterns, daycare attendance, and modeled home ventilation. Results Following spatiotemporal adjustment, TRAP exposure after birth increased the risk for development of atopy to any allergens [adjusted odds ratio (aOR) per 10 μg/m3 NO2 = 1.16; 95% CI: 1.00, 1.41], but not during pregnancy (aOR = 1.02; 95% CI: 0.86, 1.22). This association was stronger among children not attending daycare (aOR = 1.61; 95% CI: 1.28, 2.01) compared with daycare attendees (aOR = 1.05; 95% CI: 0.81, 1.28). Trends to increased risk were also found for food (aOR = 1.17; 95% CI: 0.95, 1.47) and inhalant allergens (aOR = 1.28; 95% CI: 0.93, 1.76). Conclusion Using refined exposure estimates that incorporated temporal variability and residential mobility, we found that traffic-related air pollution during the first year of life was associated with atopy. Citation Sbihi H, Allen RW, Becker A, Brook JR, Mandhane P, Scott JA, Sears MR, Subbarao P, Takaro TK, Turvey SE

  6. Traffic-related air toxics and preterm birth: a population-based case-control study in Los Angeles county, California

    PubMed Central

    2011-01-01

    Background Numerous studies have associated air pollutant exposures with adverse birth outcomes, but there is still relatively little information to attribute effects to specific emission sources or air toxics. We used three exposure data sources to examine risks of preterm birth in Los Angeles women when exposed to high levels of traffic-related air pollutants - including specific toxics - during pregnancy. Methods We identified births during 6/1/04-3/31/06 to women residing within five miles of a Southern California Air Quality Management District (SCAQMD) Multiple Air Toxics Exposure Study (MATES III) monitoring station. We identified preterm cases and, using a risk set approach, matched cases to controls based on gestational age at birth. Pregnancy period exposure averages were estimated for a number of air toxics including polycyclic aromatic hydrocarbons (PAHs), source-specific PM2.5 (fine particulates with aerodynamic diameter less than 2.5 μm) based on a Chemical Mass Balance model, criteria air pollutants based on government monitoring data, and land use regression (LUR) estimates of nitric oxide (NO), nitrogen dioxide (NO2) and nitrogen oxides (NOx). Associations between these metrics and odds of preterm birth were estimated using conditional logistic regression. Results Odds of preterm birth increased 6-21% per inter-quartile range increase in entire pregnancy exposures to organic carbon (OC), elemental carbon (EC), benzene, and diesel, biomass burning and ammonium nitrate PM2.5, and 30% per inter-quartile increase in PAHs; these pollutants were positively correlated and clustered together in a factor analysis. Associations with LUR exposure metrics were weaker (3-4% per inter-quartile range increase). Conclusions These latest analyses provide additional evidence of traffic-related air pollution's impact on preterm birth for women living in Southern California and indicate PAHs as a pollutant of concern that should be a focus of future studies. Other

  7. Effects of Exposure Measurement Error in the Analysis of Health Effects from Traffic-Related Air Pollution

    EPA Science Inventory

    In large epidemiological studies, many researchers use surrogates of air pollution exposure such as geographic information system (GIS)-based characterizations of traffic or simple housing characteristics. It is important to validate these surrogates against measured pollutant co...

  8. Characterization of traffic-related air pollutant metrics at four schools in El Paso, Texas, USA: Implications for exposure assessment and siting schools in urban areas

    NASA Astrophysics Data System (ADS)

    Raysoni, Amit U.; Stock, Thomas H.; Sarnat, Jeremy A.; Montoya Sosa, Teresa; Ebelt Sarnat, Stefanie; Holguin, Fernando; Greenwald, Roby; Johnson, Brent; Li, Wen-Whai

    2013-12-01

    Children spend substantial amount of time within school microenvironments; therefore, assessing school-based exposures is essential for characterizing and preventing children's health risks to air pollutants. Indeed, the importance of characterizing children's exposures in schools is recognized by the US Environmental Protection Agency's recent initiative to promote outdoor air monitoring networks near schools. As part of a health effects study investigating the impact of traffic-related air pollution on asthmatic children along the US-Mexico border, this research examines children's exposures to, and spatio-temporal heterogeneity in concentrations of, traffic-related air pollutants at four elementary schools in El Paso, Texas. Three schools were located in an area of high traffic density and one school in an area of low traffic density. Paired indoor and outdoor concentrations of 48-h fine and coarse particulate matter (PM2.5 and PM10-2.5), 48-h black carbon (BC), 96-h nitrogen dioxide (NO2), and 96-h volatile organic compounds (VOCs) were measured for 13 weeks at each school. Outdoor concentrations of PM, NO2, BC, and BTEX (benzene, toluene, ethylbenzene, m,p-xylene, o-xylene) compounds were similar among the three schools in the high-traffic zone in contrast to the school in the low-traffic zone. Results from this study and previous studies in this region corroborate the fact that PM pollution in El Paso is dominated by coarse PM (PM10-2.5) and fine fraction (PM2.5) accounts for only 25-30% of the total PM mass in PM10. BTEX species and BC are better surrogates for traffic air pollution in this region. Correlation analyses indicate a range of association between indoor and outdoor pollutant concentrations due to uncontrollable factors like student foot traffic and varying building and ventilation configurations across the four schools. Results suggest the need of micro-scale monitoring for children's exposure assessment, which may not be adequately characterized

  9. Traffic-related air pollution associated with prevalence of asthma and COPD/chronic bronchitis. A cross-sectional study in Southern Sweden

    PubMed Central

    Lindgren, Anna; Stroh, Emilie; Montnémery, Peter; Nihlén, Ulf; Jakobsson, Kristina; Axmon, Anna

    2009-01-01

    Background There is growing evidence that air pollution from traffic has adverse long-term effects on chronic respiratory disease in children, but there are few studies and more inconclusive results in adults. We examined associations between residential traffic and asthma and COPD in adults in southern Sweden. A postal questionnaire in 2000 (n = 9319, 18–77 years) provided disease status, and self-reported exposure to traffic. A Geographical Information System (GIS) was used to link geocoded residential addresses to a Swedish road database and an emission database for NOx. Results Living within 100 m of a road with >10 cars/minute (compared with having no heavy road within this distance) was associated with prevalence of asthma diagnosis (OR = 1.40, 95% CI = 1.04–1.89), and COPD diagnosis (OR = 1.64, 95%CI = 1.11–2.4), as well as asthma and chronic bronchitis symptoms. Self-reported traffic exposure was associated with asthma diagnosis and COPD diagnosis, and with asthma symptoms. Annual average NOx was associated with COPD diagnosis and symptoms of asthma and chronic bronchitis. Conclusion Living close to traffic was associated with prevalence of asthma diagnosis, COPD diagnosis, and symptoms of asthma and bronchitis. This indicates that traffic-related air pollution has both long-term and short-term effects on chronic respiratory disease in adults, even in a region with overall low levels of air pollution. PMID:19154599

  10. Association of Long-Term Exposure to Traffic-Related Air Pollution with Blood Pressure and Hypertension in an Adult Population–Based Cohort in Spain (the REGICOR Study)

    PubMed Central

    Basagaña, Xavier; Aguilera, Inmaculada; Rivera, Marcela; Agis, David; Bouso, Laura; Deltell, Alexandre; Marrugat, Jaume; Ramos, Rafel; Sunyer, Jordi; Vila, Joan; Elosua, Roberto; Künzli, Nino

    2014-01-01

    Background: Long-term exposure to traffic-related air pollution may increase blood pressure (BP) and induce hypertension. However, evidence supporting these associations is limited, and they may be confounded by exposure to traffic noise and biased due to inappropriate control for use of BP-lowering medications. Objectives: We evaluated the associations of long-term traffic-related air pollution with BP and prevalent hypertension, adjusting for transportation noise and assessing different methodologies to control for BP-lowering medications. Methods: We measured systolic (SBP) and diastolic BP (DBP) at baseline (years 2003–2005) in 3,700 participants, 35–83 years of age, from a population-based cohort in Spain. We estimated home outdoor annual average concentrations of nitrogen dioxide (NO2) with a land-use regression model. We used multivariate linear and logistic regression. Results: A 10-μg/m3 increase in NO2 levels was associated with 1.34 mmHg (95% CI: 0.14, 2.55) higher SBP in nonmedicated individuals, after adjusting for transportation noise. Results were similar in the entire population after adjusting for medication, as commonly done, but weaker when other methods were used to account for medication use. For example, when 10 mmHg were added to the measured SBP levels of medicated participants, the association was β = 0.78 (95% CI: –0.43, 2.00). NO2 was not associated with hypertension. Associations of NO2 with SBP and DBP were stronger in participants with cardiovascular disease, and the association with SBP was stronger in those exposed to high traffic density and traffic noise levels ≥ 55 dB(A). Conclusions: We observed a positive association between long-term exposure to NO2 and SBP, after adjustment for transportation noise, which was sensitive to the methodology used to account for medication. Citation: Foraster M, Basagaña X, Aguilera I, Rivera M, Agis D, Bouso L, Deltell A, Marrugat J, Ramos R, Sunyer J, Vila J, Elosua R, Künzli N. 2014

  11. Traffic-related air pollution and respiratory symptoms among asthmatic children, resident in Mexico City: the EVA cohort study

    PubMed Central

    Escamilla-Nuñez, Maria-Consuelo; Barraza-Villarreal, Albino; Hernandez-Cadena, Leticia; Moreno-Macias, Hortensia; Ramirez-Aguilar, Matiana; Sienra-Monge, Juan-Jose; Cortez-Lugo, Marlene; Texcalac, Jose-Luis; del Rio-Navarro, Blanca; Romieu, Isabelle

    2008-01-01

    Background Taffic-related air pollution has been related to adverse respiratory outcomes; however, there is still uncertainty concerning the type of vehicle emission causing most deleterious effects. Methods A panel study was conducted among 147 asthmatic and 50 healthy children, who were followed up for an average of 22 weeks. Incidence density of coughing, wheezing and breathing difficulty was assessed by referring to daily records of symptoms and child's medication. The association between exposure to pollutants and occurrence of symptoms was evaluated using mixed-effect models with binary response and poisson regression. Results Wheezing was found to relate significantly to air pollutants: an increase of 17.4 μg/m3 (IQR) of PM2.5 (24-h average) was associated with an 8.8% increase (95% CI: 2.4% to 15.5%); an increase of 34 ppb (IQR) of NO2 (1-h maximum) was associated with an 9.1% increase (95% CI: 2.3% to16.4%) and an increase of 48 ppb (IQR) in O3 levels (1 hr maximum) to an increase of 10% (95% CI: 3.2% to 17.3%). Diesel-fueled motor vehicles were significantly associated with wheezing and bronchodilator use (IRR = 1.29; 95% CI: 1.03 to 1.62, and IRR = 1.32; 95% CI: 0.99 to 1.77, respectively, for an increase of 130 vehicles hourly, above the 24-hour average). Conclusion Respiratory symptoms in asthmatic children were significantly associated with exposure to traffic exhaust, especially from natural gas and diesel-fueled vehicles. PMID:19014608

  12. Traffic-Related Air Pollution and Acute Changes in Heart Rate Variability and Respiratory Function in Urban Cyclists

    PubMed Central

    Kulka, Ryan; Dubeau, Aimee; Martin, Christina; Wang, Daniel; Dales, Robert

    2011-01-01

    Background: Few studies have examined the acute health effects of air pollution exposures experienced while cycling in traffic. Objectives: We conducted a crossover study to examine the relationship between traffic pollution and acute changes in heart rate variability. We also collected spirometry and exhaled nitric oxide measures. Methods: Forty-two healthy adults cycled for 1 hr on high- and low-traffic routes as well as indoors. Health measures were collected before cycling and 1–4 hr after the start of cycling. Ultrafine particles (UFPs; ≤ 0.1 μm in aerodynamic diameter), particulate matter ≤ 2.5 μm in aerodynamic diameter (PM2.5), black carbon, and volatile organic compounds were measured along each cycling route, and ambient nitrogen dioxide (NO2) and ozone (O3) levels were recorded from a fixed-site monitor. Mixed-effects models were used to estimate associations between air pollutants and changes in health outcome measures relative to precycling baseline values. Results: An interquartile range increase in UFP levels (18,200/cm3) was associated with a significant decrease in high-frequency power 4 hr after the start of cycling [β = –224 msec2; 95% confidence interval (CI), –386 to –63 msec2]. Ambient NO2 levels were inversely associated with the standard deviation of normal-to-normal (NN) intervals (β = –10 msec; 95% CI, –20 to –0.34 msec) and positively associated with the ratio of low-frequency to high-frequency power (β = 1.4; 95% CI, 0.35 to 2.5) 2 hr after the start of cycling. We also observed significant inverse associations between ambient O3 levels and the root mean square of successive differences in adjacent NN intervals 3 hr after the start of cycling. Conclusions: Short-term exposures to traffic pollution may contribute to altered autonomic modulation of the heart in the hours immediately after cycling. PMID:21672679

  13. Effects of Exposure Measurement Error in the Analysis of Health Effects from Traffic-Related Air Pollution

    PubMed Central

    Baxter, Lisa K.; Wright, Rosalind J.; Paciorek, Christopher J.; Laden, Francine; Suh, Helen H.; Levy, Jonathan I.

    2011-01-01

    In large epidemiological studies, many researchers use surrogates of air pollution exposure such as geographic information system (GIS)-based characterizations of traffic or simple housing characteristics. It is important to evaluate quantitatively these surrogates against measured pollutant concentrations to determine how their use affects the interpretation of epidemiological study results. In this study, we quantified the implications of using exposure models derived from validation studies, and other alternative surrogate models with varying amounts of measurement error, on epidemiological study findings. We compared previously developed multiple regression models characterizing residential indoor nitrogen dioxide (NO2), fine particulate matter (PM2.5), and elemental carbon (EC) concentrations to models with less explanatory power that may be applied in the absence of validation studies. We constructed a hypothetical epidemiological study, under a range of odds ratios, and determined the bias and uncertainty caused by the use of various exposure models predicting residential indoor exposure levels. Our simulations illustrated that exposure models with fairly modest R2 (0.3 to 0.4 for the previously developed multiple regression models for PM2.5 and NO2) yielded substantial improvements in epidemiological study performance, relative to the application of regression models created in the absence of validation studies or poorer-performing validation study models (e.g. EC). In many studies, models based on validation data may not be possible, so it may be necessary to use a surrogate model with more measurement error. This analysis provides a technique to quantify the implications of applying various exposure models with different degrees of measurement error in epidemiological research. PMID:19223939

  14. Personal Exposures to Traffic-Related Air Pollution and Acute Respiratory Health among Bronx Schoolchildren with Asthma

    PubMed Central

    Spira-Cohen, Ariel; Chen, Lung Chi; Kendall, Michaela; Lall, Ramona; Thurston, George D.

    2011-01-01

    Background Previous studies have reported relationships between adverse respiratory health outcomes and residential proximity to traffic pollution, but have not shown this at a personal exposure level. Objective We compared, among inner-city children with asthma, the associations of adverse asthma outcome incidences with increased personal exposure to particulate matter mass ≤ 2.5 μm in aerodynamic diameter (PM2.5) air pollution versus the diesel-related carbonaceous fraction of PM2.5. Methods Daily 24-hr personal samples of PM2.5, including the elemental carbon (EC) fraction, were collected for 40 fifth-grade children with asthma at four South Bronx schools (10 children per school) during approximately 1 month each. Spirometry and symptom scores were recorded several times daily during weekdays. Results We found elevated same-day relative risks of wheeze [1.45; 95% confidence interval (CI), 1.03–2.04)], shortness of breath (1.41; 95% CI, 1.01–1.99), and total symptoms (1.30; 95% CI, 1.04–1.62) with an increase in personal EC, but not with personal PM2.5 mass. We found increased risk of cough, wheeze, and total symptoms with increased 1-day lag and 2-day average personal and school-site EC. We found no significant associations with school-site PM2.5 mass or sulfur. The EC effect estimate was robust to addition of gaseous pollutants. Conclusion Adverse health associations were strongest with personal measures of EC exposure, suggesting that the diesel “soot” fraction of PM2.5 is most responsible for pollution-related asthma exacerbations among children living near roadways. Studies that rely on exposure to PM mass may underestimate PM health impacts. PMID:21216722

  15. Geographical information system and environmental epidemiology: a cross-sectional spatial analysis of the effects of traffic-related air pollution on population respiratory health

    PubMed Central

    2011-01-01

    Background Traffic-related air pollution is a potential risk factor for human respiratory health. A Geographical Information System (GIS) approach was used to examine whether distance from a main road (the Tosco-Romagnola road) affected respiratory health status. Methods We used data collected during an epidemiological survey performed in the Pisa-Cascina area (central Italy) in the period 1991-93. A total of 2841 subjects participated in the survey and filled out a standardized questionnaire on health status, socio-demographic information, and personal habits. A variable proportion of subjects performed lung function and allergy tests. Highly exposed subjects were defined as those living within 100 m of the main road, moderately exposed as those living between 100 and 250 m from the road, and unexposed as those living between 250 and 800 m from the road. Statistical analyses were conducted to compare the risks for respiratory symptoms and diseases between exposed and unexposed. All analyses were stratified by gender. Results The study comprised 2062 subjects: mean age was 45.9 years for men and 48.9 years for women. Compared to subjects living between 250 m and 800 m from the main road, subjects living within 100 m of the main road had increased adjusted risks for persistent wheeze (OR = 1.76, 95% CI = 1.08-2.87), COPD diagnosis (OR = 1.80, 95% CI = 1.03-3.08), and reduced FEV1/FVC ratio (OR = 2.07, 95% CI = 1.11-3.87) among males, and for dyspnea (OR = 1.61, 95% CI = 1.13-2.27), positivity to skin prick test (OR = 1.83, 95% CI = 1.11-3.00), asthma diagnosis (OR = 1.68, 95% CI = 0.97-2.88) and attacks of shortness of breath with wheeze (OR = 1.67, 95% CI = 0.98-2.84) among females. Conclusion This study points out the potential effects of traffic-related air pollution on respiratory health status, including lung function impairment. It also highlights the added value of GIS in environmental health research. PMID:21362158

  16. A new exposure metric for traffic-related air pollution? An analysis of determinants of hopanes in settled indoor house dust

    PubMed Central

    2013-01-01

    Background Exposure to traffic-related air pollution (TRAP) can adversely impact health but epidemiologic studies are limited in their abilities to assess long-term exposures and incorporate variability in indoor pollutant infiltration. Methods In order to examine settled house dust levels of hopanes, engine lubricating oil byproducts found in vehicle exhaust, as a novel TRAP exposure measure, dust samples were collected from 171 homes in five Canadian cities and analyzed by gas chromatography–mass spectrometry. To evaluate source contributions, the relative abundance of the highest concentration hopane monomer in house dust was compared to that in outdoor air. Geographic variables related to TRAP emissions and outdoor NO2 concentrations from city-specific TRAP land use regression (LUR) models were calculated at each georeferenced residence location and assessed as predictors of variability in dust hopanes. Results Hopanes relative abundance in house dust and ambient air were significantly correlated (Pearson’s r=0.48, p<0.05), suggesting that dust hopanes likely result from traffic emissions. The proportion of variance in dust hopanes concentrations explained by LUR NO2 was less than 10% in Vancouver, Winnipeg and Toronto while the correlations in Edmonton and Windsor explained 20 to 40% of the variance. Modeling with household factors such as air conditioning and shoe removal along with geographic predictors related to TRAP generally increased the proportion of explained variability (10-80%) in measured indoor hopanes dust levels. Conclusions Hopanes can consistently be detected in house dust and may be a useful tracer of TRAP exposure if determinants of their spatiotemporal variability are well-characterized, and when home-specific factors are considered. PMID:23782977

  17. The influence of childhood traffic-related air pollution exposure on asthma, allergy and sensitization: a systematic review and a meta-analysis of birth cohort studies.

    PubMed

    Bowatte, G; Lodge, C; Lowe, A J; Erbas, B; Perret, J; Abramson, M J; Matheson, M; Dharmage, S C

    2015-03-01

    The impact of early childhood traffic-related air pollution (TRAP) exposure on development of asthma and allergies remains unclear. Birth cohort studies are the best available study design to answer this question, but the evidence from such studies has not been synthesized to date. We conducted a systematic review and meta-analyses of published birth cohort studies to understand the association between early childhood TRAP exposure, and subsequent asthma, allergies and sensitization. Increased longitudinal childhood exposure to PM2.5 and black carbon was associated with increasing risk of subsequent asthma in childhood (PM2.5 : OR 1.14, 95%CI 1.00 to 1.30 per 2 μg/m(3) and black carbon: OR 1.20, 95%CI 1.05 to 1.38 per 1 × 10(-5) m(-1) ). Also, early childhood exposure to TRAP was associated with development of asthma across childhood up to 12 years of age. The magnitude of these associations increased with age, and the pattern was prominent for PM2.5 . Increasing exposure to PM2.5 was associated with sensitization to both aero- and food allergens. There was some evidence that TRAP was associated with eczema and hay fever. In summary, exposure to TRAP was related to asthma and allergic diseases. However, the substantial variability across studies warrants long-term birth cohort studies with regular repeated follow-ups to confirm these findings. PMID:25495759

  18. A novel mobile monitoring approach to characterize spatial and temporal variation in traffic-related air pollutants in an urban community

    NASA Astrophysics Data System (ADS)

    Yu, Chang Ho; Fan, Zhihua; Lioy, Paul J.; Baptista, Ana; Greenberg, Molly; Laumbach, Robert J.

    2016-09-01

    Air concentrations of traffic-related air pollutants (TRAPs) vary in space and time within urban communities, presenting challenges for estimating human exposure and potential health effects. Conventional stationary monitoring stations/networks cannot effectively capture spatial characteristics. Alternatively, mobile monitoring approaches became popular to measure TRAPs along roadways or roadsides. However, these linear mobile monitoring approaches cannot thoroughly distinguish spatial variability from temporal variations in monitored TRAP concentrations. In this study, we used a novel mobile monitoring approach to simultaneously characterize spatial/temporal variations in roadside concentrations of TRAPs in urban settings. We evaluated the effectiveness of this mobile monitoring approach by performing concurrent measurements along two parallel paths perpendicular to a major roadway and/or along heavily trafficked roads at very narrow scale (one block away each other) within short time period (<30 min) in an urban community. Based on traffic and particulate matter (PM) source information, we selected 4 neighborhoods to study. The sampling activities utilized real-time monitors, including battery-operated PM2.5 monitor (SidePak), condensation particle counter (CPC 3007), black carbon (BC) monitor (Micro-Aethalometer), carbon monoxide (CO) monitor (Langan T15), and portable temperature/humidity data logger (HOBO U12), and a GPS-based tracker (Trackstick). Sampling was conducted for ∼3 h in the morning (7:30-10:30) in 7 separate days in March/April and 6 days in May/June 2012. Two simultaneous samplings were made at 5 spatially-distributed locations on parallel roads, usually distant one block each other, in each neighborhood. The 5-min averaged BC concentrations (AVG ± SD, [range]) were 2.53 ± 2.47 [0.09-16.3] μg/m3, particle number concentrations (PNC) were 33,330 ± 23,451 [2512-159,130] particles/cm3, PM2.5 mass concentrations were 8.87 ± 7.65 [0

  19. Associations of short-term exposure to traffic-related air pollution with cardiovascular and respiratory hospital admissions in London, UK

    PubMed Central

    Samoli, Evangelia; Atkinson, Richard W; Analitis, Antonis; Fuller, Gary W; Green, David C; Mudway, Ian; Anderson, H Ross; Kelly, Frank J

    2016-01-01

    Objectives There is evidence of adverse associations between short-term exposure to traffic-related pollution and health, but little is known about the relative contribution of the various sources and particulate constituents. Methods For each day for 2011–2012 in London, UK over 100 air pollutant metrics were assembled using monitors, modelling and chemical analyses. We selected a priori metrics indicative of traffic sources: general traffic, petrol exhaust, diesel exhaust and non-exhaust (mineral dust, brake and tyre wear). Using Poisson regression models, controlling for time-varying confounders, we derived effect estimates for cardiovascular and respiratory hospital admissions at prespecified lags and evaluated the sensitivity of estimates to multipollutant modelling and effect modification by season. Results For single day exposure, we found consistent associations between adult (15–64 years) cardiovascular and paediatric (0–14 years) respiratory admissions with elemental and black carbon (EC/BC), ranging from 0.56% to 1.65% increase per IQR change, and to a lesser degree with carbon monoxide (CO) and aluminium (Al). The average of past 7 days EC/BC exposure was associated with elderly (65+ years) cardiovascular admissions. Indicated associations were higher during the warm period of the year. Although effect estimates were sensitive to the adjustment for other pollutants they remained consistent in direction, indicating independence of associations from different sources, especially between diesel and petrol engines, as well as mineral dust. Conclusions Our results suggest that exhaust related pollutants are associated with increased numbers of adult cardiovascular and paediatric respiratory hospitalisations. More extensive monitoring in urban centres is required to further elucidate the associations. PMID:26884048

  20. Traffic-related air pollution in the community of San Ysidro, CA, in relation to northbound vehicle wait times at the US-Mexico border Port of Entry

    NASA Astrophysics Data System (ADS)

    Quintana, Penelope J. E.; Dumbauld, Jill J.; Garnica, Lynelle; Chowdhury, M. Zohir; Velascosoltero, José; Mota-Raigoza, Arturo; Flores, David; Rodríguez, Edgar; Panagon, Nicolas; Gamble, Jamison; Irby, Travis; Tran, Cuong; Elder, John; Galaviz, Vanessa E.; Hoffman, Lisa; Zavala, Miguel; Molina, Luisa T.

    2014-05-01

    The San Diego/Tijuana US-Mexico border crossing at the San Ysidro Port of Entry (POE) is the world's busiest international land border crossing (GSA, 2013). San Ysidro, California, is the US community immediately adjacent to the border crossing. More than 90% of San Ysidro residents are Hispanic, and the average household income is less than 60% of the San Diego regional average. This study investigated the San Ysidro POE as a source of traffic-related air pollutants in San Ysidro, especially in relation to wind direction and northbound vehicle wait times. The pollutants ultrafine particulate matter (UFP), black carbon (BC), and particulate matter <2.5 μm in diameter (PM2.5) were periodically sampled through the course of 2010 at four rooftop locations: one commercial establishment near the POE, two elementary schools in San Ysidro, and a coastal estuary reference site. Weather data from two nearby sites and northbound border wait times were also collected. Results indicate consistently higher daytime BC and UFP concentrations at the measurement sites near the POE. Pollution concentrations were higher during low wind speeds or when wind was blowing from the POE towards San Ysidro. In February, March and November measurements, black carbon pollution appeared to be significantly positively associated with the POE northbound wait times when the wind direction was blowing from the POE towards San Ysidro or during low wind speeds, but not when the wind direction was from the west/northwest towards the POE. This pilot study is the first to investigate the potential effect of the POE, especially the long northbound traffic delays, on the nearby community of San Ysidro. Disparities in traffic exposures are an environmental justice issue and this should be taken into account during planning and operation of POEs.

  1. Impact of traffic-related air pollution on acute changes in cardiac autonomic modulation during rest and physical activity: a cross-over study.

    PubMed

    Cole-Hunter, Tom; Weichenthal, Scott; Kubesch, Nadine; Foraster, Maria; Carrasco-Turigas, Glòria; Bouso, Laura; Martínez, David; Westerdahl, Dane; de Nazelle, Audrey; Nieuwenhuijsen, Mark

    2016-01-01

    People are often exposed to traffic-related air pollution (TRAP) during physical activity (PA), but it is not clear if PA modifies the impact of TRAP on cardiac autonomic modulation. We conducted a panel study among 28 healthy adults in Barcelona, Spain to examine how PA may modify the impact of TRAP on cardiac autonomic regulation. Participants completed four 2-h exposure scenarios that included either rest or intermittent exercise in high- and low-traffic environments. Time- and frequency-domain measures of heart rate variability (HRV) were monitored during each exposure period along with continuous measures of TRAP. Linear mixed-effects models were used to estimate the impact of TRAP on HRV as well as potential effect modification by PA. Exposure to TRAP was associated with consistent decreases in HRV; however, exposure-response relationships were not always linear over the broad range of exposures. For example, each 10 μg/m(3) increase in black carbon was associated with a 23% (95% CI: -31, -13) decrease in high frequency power at the low-traffic site, whereas no association was observed at the high-traffic site. PA modified the impact of TRAP on HRV at the high-traffic site and tended to weaken inverse associations with measures reflecting parasympathetic modulation (P ≤ 0.001). Evidence of effect modification at the low-traffic site was less consistent. The strength and direction of the relationship between TRAP and HRV may vary across exposure gradients. PA may modify the impact of TRAP on HRV, particularly at higher concentrations. PMID:26486990

  2. Mobile monitoring of particle number concentration and other traffic-related air pollutants in a near-highway neighborhood over the course of a year

    PubMed Central

    Padró-Martínez, Luz T.; Patton, Allison P.; Trull, Jeffrey B.; Zamore, Wig; Brugge, Doug; Durant, John L.

    2012-01-01

    Accurate quantification of exposures to traffic-related air pollution in near-highway neighborhoods is challenging due to the high degree of spatial and temporal variation of pollutant levels. The objective of this study was to measure air pollutant levels in a near-highway urban area over a wide range of traffic and meteorological conditions using a mobile monitoring platform. The study was performed in a 2.3-km2 area in Somerville, Massachusetts (USA), near Interstate I-93, a highway that carries 150,000 vehicles per day. The mobile platform was equipped with rapid-response instruments and was driven repeatedly along a 15.4-km route on 55 days between September 2009 and August 2010. Monitoring was performed in 4–6-hour shifts in the morning, afternoon and evening on both weekdays and weekends in winter, spring, summer and fall. Measurements were made of particle number concentration (PNC; 4–3,000 nm), particle size distribution, fine particle mass (PM2.5), particle-bound polycyclic aromatic hydrocarbons (pPAH), black carbon (BC), carbon monoxide (CO), and nitrogen oxides (NO and NOx). The highest pollutant concentrations were measured within 0–50 m of I-93 with distance-decay gradients varying depending on traffic and meteorology. The most pronounced variations were observed for PNC. Annual median PNC 0–50 m from I-93 was two-fold higher compared to the background area (>1 km from I-93). In general, PNC levels were highest in winter and lowest in summer and fall, higher on weekdays and Saturdays compared to Sundays, and higher during morning rush hour compared to later in the day. Similar spatial and temporal trends were observed for NO, CO and BC, but not for PM2.5. Spatial variations in PNC distance-decay gradients were non-uniform largely due to contributions from local street traffic. Hour-to-hour, day-to-day and season-to-season variations in PNC were of the same magnitude as spatial variations. Datasets containing fine-scale temporal and spatial

  3. The associations between traffic-related air pollution and noise with blood pressure in children: results from the GINIplus and LISAplus studies.

    PubMed

    Liu, Chuang; Fuertes, Elaine; Tiesler, Carla M T; Birk, Matthias; Babisch, Wolfgang; Bauer, Carl-Peter; Koletzko, Sibylle; von Berg, Andrea; Hoffmann, Barbara; Heinrich, Joachim

    2014-01-01

    Although traffic emits both air pollution and noise, studies jointly examining the effects of both of these exposures on blood pressure (BP) in children are scarce. We investigated associations between land-use regression modeled long-term traffic-related air pollution and BP in 2368 children aged 10 years from Germany (1454 from Munich and 914 from Wesel). We also studied this association with adjustment of long-term noise exposure (defined as day-evening-night noise indicator "Lden" and night noise indicator "Lnight") in a subgroup of 605 children from Munich inner city. In the overall analysis including 2368 children, NO2, PM2.5 mass (particles with aerodynamic diameters below 2.5μm), PM10 mass (particles with aerodynamic diameters below 10μm) and PM2.5 absorbance were not associated with BP. When restricting the analysis to the subgroup of children with noise information (N=605), a significant association between NO2 and diastolic BP was observed (-0.88 (95% confidence interval: -1.67, -0.08)). However, upon adjusting the models for noise exposure, only noise remained independently and significantly positively associated with diastolic BP. Diastolic BP increased by 0.50 (-0.03, 1.02), 0.59 (0.05, 1.13), 0.55 (0.03, 1.07), and 0.58 (0.05, 1.11)mmHg for every five decibel increase in Lden and by 0.59 (-0.05, 1.22), 0.69 (0.04, 1.33), 0.64 (0.02, 1.27), and 0.68 (0.05, 1.32)mmHg for every five decibel increase in Lnight, in different models of NO2, PM2.5 mass, PM10 mass and PM2.5 absorbance as the main exposure, respectively. In conclusion, air pollution was not consistently associated with BP with adjustment for noise, noise was independently and positively associated with BP in children. PMID:24183515

  4. Air Pollution Exposure Model for Individuals (EMI) in Health Studies

    EPA Science Inventory

    In health studies, traffic-related air pollution is associated with adverse respiratory effects. Due to cost and participant burden of personal measurements, health studies often estimate exposures using local ambient air monitors. Since outdoor levels do not necessarily reflect ...

  5. A Modeling Investigation of Human Exposure to Select Traffic-Related Air Pollutants in the Tampa Area: Spatiotemporal Distributions of Concentrations, Social Distributions of Exposures, and Impacts of Urban Design on Both

    NASA Astrophysics Data System (ADS)

    Yu, Haofei

    Increasing vehicle dependence in the United States has resulted in substantial emissions of traffic-related air pollutants that contribute to the deterioration of urban air quality. Exposure to urban air pollutants trigger a number of public health concerns, including the potential of inequality of exposures and health effects among population subgroups. To better understand the impact of traffic-related pollutants on air quality, exposure, and exposure inequality, modeling methods that can appropriately characterize the spatiotemporally resolved concentration distributions of traffic-related pollutants need to be improved. These modeling methods can then be used to investigate the impacts of urban design and transportation management choices on air quality, pollution exposures, and related inequality. This work will address these needs with three objectives: 1) to improve modeling methods for investigating interactions between city and transportation design choices and air pollution exposures, 2) to characterize current exposures and the social distribution of exposures to traffic-related air pollutants for the case study area of Hillsborough County, Florida, and 3) to determine expected impacts of urban design and transportation management choices on air quality, air pollution exposures, and exposure inequality. To achieve these objectives, the impacts of a small-scale transportation management project, specifically the '95 Express' high occupancy toll lane project, on pollutant emissions and nearby air quality was investigated. Next, a modeling method capable of characterizing spatiotemporally resolved pollutant emissions, concentrations, and exposures was developed and applied to estimate the impact of traffic-related pollutants on exposure and exposure inequalities among several population subgroups in Hillsborough County, Florida. Finally, using these results as baseline, the impacts of sprawl and compact urban forms, as well as vehicle fleet electrification

  6. Inducible Nitric Oxide Synthase Promoter Haplotypes and Residential Traffic-Related Air Pollution Jointly Influence Exhaled Nitric Oxide Level in Children

    PubMed Central

    Salam, Muhammad T.; Lin, Pi-Chu; Eckel, Sandrah P.; Gauderman, W. James; Gilliland, Frank D.

    2015-01-01

    Background Exhaled nitric oxide (FeNO), a biomarker of airway inflammation, predicts asthma risk in children. We previously found that the promoter haplotypes in inducible nitric oxide synthase (NOS2) and exposure to residential traffic independently influence FeNO level. Because NOS2 is inducible by environmental exposures such as traffic-related exposure, we tested the hypothesis that common NOS2 promoter haplotypes modulate the relationship between residential traffic-related exposure and FeNO level in children. Methods In a cross-sectional population-based study, subjects (N = 2,457; 7–11 year-old) were Hispanic and non-Hispanic white children who participated in the Southern California Children’s Health Study and had FeNO measurements. For residential traffic, lengths of local roads within circular buffers (50m, 100m and 200m radii around homes) around the subjects’ homes were estimated using geographic information system (GIS) methods. We interrogated the two most common NOS2 promoter haplotypes that were found to affect FeNO level. Results The relationship between local road lengths within 100m and 200m circular buffers and FeNO level varied significantly by one of the NOS2 promoter haplotypes (P-values for interaction between road length and NOS2 promoter haplotype = 0.02 and 0.03, respectively). In children who had ≤250m of local road lengths within 100m buffer around their homes, those with two copies of the haplotype had significantly lower FeNO (adjusted geometric mean = 11.74ppb; 95% confidence intervals (CI): 9.99 to 13.80) than those with no copies (adjusted geometric mean = 15.28ppb; 95% CI: 14.04 to 16.63) with statistically significant trend of lower FeNO level with increasing number of haplotype copy (P-value for trend = 0.002). In contrast, among children who had >250m of local road lengths within 100m buffer, FeNO level did not significantly differ by the haplotype copy-number (P-value for trend = 0.34). Similar interactive effects of

  7. Traffic-Related Air Pollution and the Onset of Myocardial Infarction: Disclosing Benzene as a Trigger? A Small-Area Case-Crossover Study

    PubMed Central

    Bard, Denis; Kihal, Wahida; Schillinger, Charles; Fermanian, Christophe; Ségala, Claire; Glorion, Sophie; Arveiler, Dominique; Weber, Christiane

    2014-01-01

    Background and Objectives Exposure to traffic is an established risk factor for the triggering of myocardial infarction (MI). Particulate matter, mainly emitted by diesel vehicles, appears to be the most important stressor. However, the possible influence of benzene from gasoline-fueled cars has not been explored so far. Methods and Results We conducted a case-crossover study from 2,134 MI cases recorded by the local Coronary Heart Disease Registry (2000–2007) in the Strasbourg Metropolitan Area (France). Available individual data were age, gender, previous history of ischemic heart disease and address of residence at the time of the event. Nitrogen dioxide, particles of median aerodynamic diameter <10 µm (PM10), ozone, carbon monoxide and benzene air concentrations were modeled on an hourly basis at the census block level over the study period using the deterministic ADMS-Urban air dispersion model. Model input data were emissions inventories, background pollution measurements, and meteorological data. We have found a positive, statistically significant association between concentrations of benzene and the onset of MI: per cent increase in risk for a 1 µg/m3 increase in benzene concentration in the previous 0, 0–1 and 1 day was 10.4 (95% confidence interval 3–18.2), 10.7 (2.7–19.2) and 7.2 (0.3–14.5), respectively. The associations between the other pollutants and outcome were much lower and in accordance with the literature. Conclusion We have observed that benzene in ambient air is strongly associated with the triggering of MI. This novel finding needs confirmation. If so, this would mean that not only diesel vehicles, the main particulate matter emitters, but also gasoline-fueled cars –main benzene emitters–, should be taken into account for public health action. PMID:24932584

  8. Online laser desorption-multiphoton postionization mass spectrometry of individual aerosol particles: molecular source indicators for particles emitted from different traffic-related and wood combustion sources.

    PubMed

    Bente, Matthias; Sklorz, Martin; Streibel, Thorsten; Zimmermann, Ralf

    2008-12-01

    Direct inlet aerosol mass spectrometry plays an increasingly important role in applied and fundamental aerosol and nanoparticle research. Laser desorption/ionization (LDI) based techniques for single particle time-of-flight mass spectrometry (LDI-SP-TOFMS) are a promising approach in the chemical analysis of single aerosol particles, especially for the detection of inorganic species and distinction of particle classes. However, until now the detection of molecular organic compounds on a single particle basis has been difficult due to the high laser power densities which are required for the LDI process as well as due to the inherent matrix effects associated with this ionization technique. By the application of a two-step approach, where an IR desorption laser pulse is applied to perform a gentle desorption of organic material from the single particle surface and a second UV-laser performs the soft ionization of the desorbed species, this drawback of laser based single particles mass spectrometry can be overcome. The postionization of the desorbed molecules has been accomplished in this work by resonance enhanced multiphoton ionization (REMPI) using a KrF excimer laser (248 nm). REMPI allows an almost fragmentation free trace analysis of polycyclic aromatic hydrocarbons (PAHs) and their derivatives from individual single particles (laser desorption-REMPI postionization-single particle-time-of-flight mass spectrometry or LD-REMPI-SP-TOFMS). Crucial system parameters of the home-built aerosol mass spectrometer such as the power densities and the relative timing of both lasers were optimized with respect to the detectability of particle source specific organic signatures using well characterized standard particles. In a second step, the LD-REMPI-SP-TOFMS system was applied to analyze different real world aerosols (spruce wood combustion, gasoline car exhaust, beech wood combustion, and diesel car exhaust). It was possible to distinguish the particles from different

  9. A Near-Road Modeling System for Community-Scale Assessments of Traffic-Related AirPollution in the United States

    EPA Science Inventory

    The Community Line Source (C-LINE) modeling system estimates emissions and dispersion of toxic air pollutants for roadways within the continental United States. It accesses publicly available traffic and meteorological datasets, and is optimized for use on community-sized areas (...

  10. Toxicity of inhaled traffic related particulate matter

    NASA Astrophysics Data System (ADS)

    Gerlofs-Nijland, Miriam E.; Campbell, Arezoo; Miller, Mark R.; Newby, David E.; Cassee, Flemming R.

    2009-02-01

    Traffic generated ultrafine particulates may play a major role in the development of adverse health effects. However, little is known about harmful effects caused by recurring exposure. We hypothesized that repeated exposure to particulate matter results in adverse pulmonary and systemic toxic effects. Exposure to diesel engine exhaust resulted in signs of oxidative stress in the lung, impaired coagulation, and changes in the immune system. Pro-inflammatory cytokine levels were decreased in some regions of the brain but increased in the striatum implying that exposure to diesel engine exhaust may selectively aggravate neurological impairment. Data from these three studies suggest that exposure to traffic related PM can mediate changes in the vasculature and brain of healthy rats. To what extent these changes may contribute to chronic neurodegenerative or vascular diseases is at present unclear.

  11. Does traffic-related air pollution explain associations of aircraft and road traffic noise exposure on children's health and cognition? A secondary analysis of the United Kingdom sample from the RANCH project.

    PubMed

    Clark, Charlotte; Crombie, Rosanna; Head, Jenny; van Kamp, Irene; van Kempen, Elise; Stansfeld, Stephen A

    2012-08-15

    The authors examined whether air pollution at school (nitrogen dioxide) is associated with poorer child cognition and health and whether adjustment for air pollution explains or moderates previously observed associations between aircraft and road traffic noise at school and children's cognition in the 2001-2003 Road Traffic and Aircraft Noise Exposure and Children's Cognition and Health (RANCH) project. This secondary analysis of a subsample of the United Kingdom RANCH sample examined 719 children who were 9-10 years of age from 22 schools around London's Heathrow airport for whom air pollution data were available. Data were analyzed using multilevel modeling. Air pollution exposure levels at school were moderate, were not associated with a range of cognitive and health outcomes, and did not account for or moderate associations between noise exposure and cognition. Aircraft noise exposure at school was significantly associated with poorer recognition memory and conceptual recall memory after adjustment for nitrogen dioxide levels. Aircraft noise exposure was also associated with poorer reading comprehension and information recall memory after adjustment for nitrogen dioxide levels. Road traffic noise was not associated with cognition or health before or after adjustment for air pollution. Moderate levels of air pollution do not appear to confound associations of noise on cognition and health, but further studies of higher air pollution levels are needed. PMID:22842719

  12. Does Traffic-related Air Pollution Explain Associations of Aircraft and Road Traffic Noise Exposure on Children's Health and Cognition? A Secondary Analysis of the United Kingdom Sample From the RANCH Project

    PubMed Central

    Clark, Charlotte; Crombie, Rosanna; Head, Jenny; van Kamp, Irene; van Kempen, Elise; Stansfeld, Stephen A.

    2012-01-01

    The authors examined whether air pollution at school (nitrogen dioxide) is associated with poorer child cognition and health and whether adjustment for air pollution explains or moderates previously observed associations between aircraft and road traffic noise at school and children's cognition in the 2001–2003 Road Traffic and Aircraft Noise Exposure and Children's Cognition and Health (RANCH) project. This secondary analysis of a subsample of the United Kingdom RANCH sample examined 719 children who were 9–10 years of age from 22 schools around London's Heathrow airport for whom air pollution data were available. Data were analyzed using multilevel modeling. Air pollution exposure levels at school were moderate, were not associated with a range of cognitive and health outcomes, and did not account for or moderate associations between noise exposure and cognition. Aircraft noise exposure at school was significantly associated with poorer recognition memory and conceptual recall memory after adjustment for nitrogen dioxide levels. Aircraft noise exposure was also associated with poorer reading comprehension and information recall memory after adjustment for nitrogen dioxide levels. Road traffic noise was not associated with cognition or health before or after adjustment for air pollution. Moderate levels of air pollution do not appear to confound associations of noise on cognition and health, but further studies of higher air pollution levels are needed. PMID:22842719

  13. Traffic-related exposures, constrained restoration, and health in the residential context.

    PubMed

    von Lindern, Eike; Hartig, Terry; Lercher, Peter

    2016-05-01

    Traffic-related exposures may undermine the restorative character of the home, and this may in turn undermine health and residential satisfaction. We addressed this possibility with data for adults residing in a large valley near Innsbruck, Austria (N=572). We joined objective measures of traffic-related sound and air pollutants with reports from door-to-door surveys concerning perceived disturbance from traffic-related exposures, restorative qualities of the living environment, self-perceived health and residential satisfaction. We analyzed these data with successive tests of nested structural equation models, with and without the restorative quality variables. The results suggest that the negative impact of traffic-related exposures on self-perceived health and satisfaction with the living environment involves the constraint of restorative qualities of the living environment, over and above the share traditionally attributed to such exposures viewed as stressors. We discuss theoretical and practical implications of the distinction between environmental stressors and constraints on restoration. PMID:26995669

  14. Investigating the traffic-related environmental impacts of hydraulic-fracturing (fracking) operations.

    PubMed

    Goodman, Paul S; Galatioto, Fabio; Thorpe, Neil; Namdeo, Anil K; Davies, Richard J; Bird, Roger N

    2016-01-01

    Hydraulic fracturing (fracking) has been used extensively in the US and Canada since the 1950s and offers the potential for significant new sources of oil and gas supply. Numerous other countries around the world (including the UK, Germany, China, South Africa, Australia and Argentina) are now giving serious consideration to sanctioning the technique to provide additional security over the future supply of domestic energy. However, relatively high population densities in many countries and the potential negative environmental impacts that may be associated with fracking operations has stimulated controversy and significant public debate regarding if and where fracking should be permitted. Road traffic generated by fracking operations is one possible source of environmental impact whose significance has, until now, been largely neglected in the available literature. This paper therefore presents a scoping-level environmental assessment for individual and groups of fracking sites using a newly-created Traffic Impacts Model (TIM). The model produces estimates of the traffic-related impacts of fracking on greenhouse gas emissions, local air quality emissions, noise and road pavement wear, using a range of hypothetical fracking scenarios to quantify changes in impacts against baseline levels. Results suggest that the local impacts of a single well pad may be short duration but large magnitude. That is, whilst single digit percentile increases in emissions of CO2, NOx and PM are estimated for the period from start of construction to pad completion (potentially several months or years), excess emissions of NOx on individual days of peak activity can reach 30% over baseline. Likewise, excess noise emissions appear negligible (<1dBA) when normalised over the completion period, but may be considerable (+3.4dBA) in particular hours, especially in night-time periods. Larger, regional scale modelling of pad development scenarios over a multi-decade time horizon give modest CO2

  15. Platinum levels in nasal lavage fluid as a biomarker for traffic-related exposure and inflammation in children.

    PubMed

    Schins, R P F; Polat, D; Begerow, J; Turfeld, M; Becker, A; Borm, P J A

    2004-12-01

    Platinum (Pt) is a well-known constituent of particles emitted by catalytic converters during car operation. To evaluate Pt as a potential marker for traffic related particle exposure, we investigated Pt content along with metals vanadium (V) and chromium (Cr) in coarse and fine particulate matter (PM), sampled in four areas with different traffic density, as well as in the nasal lavage (NAL) of 67 children (average age: 6 years) living in these areas. The different sites were characterised by significant differences in air pollutants including PM, NO, NO(2), CO and Cr, but differences in V or Pt were absent. No significant differences in neutrophil and epithelial cell counts or concentrations of the neutrophil chemoattractant interleukin-8 (IL-8) were found in the NAL of children living in the different areas. In addition, the concentrations of V, Cr and Pt, which were detectable in 64%, 73% and 93% of the individuals, respectively, did not differ between the different locations. However, in the NAL of the children, a significant correlation between Pt and the number of neutrophils/ml (r=0.40, p<0.001) as well as of epithelial cells/ml (r=0.41, p<0.001) was found. No relation was present between nasal inflammation and nasal Cr levels, whereas a relatively weak association was observed between V and epithelial cells counts (r=0.30, p=0.018). In conclusion, our data suggests a role for nasal lavage Pt as a candidate biomarker for traffic-related PM, which is able to induce inflammation in the upper respiratory tract. PMID:15504530

  16. Modification of Traffic-related Respiratory Response by Asthma Control in a Population of Car Commuters

    PubMed Central

    Mirabelli, Maria C.; Golan, Rachel; Greenwald, Roby; Raysoni, Amit U.; Holguin, Fernando; Kewada, Priya; Winquist, Andrea; Flanders, W. Dana; Sarnat, Jeremy A.

    2015-01-01

    Background Effects of traffic-related exposures on respiratory health are well documented, but little information is available about whether asthma control influences individual susceptibility. We analyzed data from the Atlanta Commuter Exposure study to evaluate modification of associations between rush-hour commuting, in-vehicle air pollution, and selected respiratory health outcomes by asthma control status. Methods Between 2009 and 2011, 39 adults participated in Atlanta Commuter Exposure, and each conducted two scripted rush-hour highway commutes. In-vehicle particulate components were measured during all commutes. Among adults with asthma, we evaluated asthma control by questionnaire and spirometry. Exhaled nitric oxide, forced expiratory volume in 1 second (FEV1), and other metrics of respiratory health were measured precommute and 0, 1, 2, and 3 hours postcommute. We used mixed effects linear regression to evaluate associations between commute-related exposures and postcommute changes in metrics of respiratory health by level of asthma control. Results We observed increased exhaled nitric oxide across all levels of asthma control compared with precommute measurements, with largest postcommute increases observed among participants with below-median asthma control (2 hours postcommute: 14.6% [95% confidence interval {CI} = 5.7, 24.2]; 3 hours postcommute: 19.5% [95% CI = 7.8, 32.5]). No associations between in-vehicle pollutants and percent of predicted FEV1 were observed, although higher PM2.5 was associated with lower FEV1 % predicted among participants with below-median asthma control (3 hours postcommute: −7.2 [95% CI = −11.8, −2.7]). Conclusions Level of asthma control may influence respiratory response to in-vehicle exposures experienced during rush-hour commuting. PMID:25901844

  17. TRP channels and traffic-related environmental pollution-induced pulmonary disease.

    PubMed

    Akopian, Armen N; Fanick, E Robert; Brooks, Edward G

    2016-05-01

    Environmental pollutant exposures are major risk factors for adverse health outcomes, with increased morbidity and mortality in humans. Diesel exhaust (DE) is one of the major harmful components of traffic-related air pollution. Exposure to DE affects several physiological systems, including the airways, and pulmonary diseases are increased in highly populated urban areas. Hence, there are urgent needs to (1) create newer and lesser polluting fuels, (2) improve exhaust aftertreatments and reduce emissions, and (3) understand mechanisms of actions for toxic effects of both conventional and cleaner diesel fuels on the lungs. These steps could aid the development of diagnostics and interventions to prevent the negative impact of traffic-related air pollution on the pulmonary system. Exhaust from conventional, and to a lesser extent, clean fuels, contains particulate matter (PM) and more than 400 additional chemical constituents. The major toxic constituents are nitrogen oxides (NOx) and polycyclic aromatic hydrocarbons (PAHs). PM and PAHs could potentially act via transient receptor potential (TRP) channels. In this review, we will first discuss the associations between DE from conventional as well as clean fuel technologies and acute and chronic airway inflammation. We will then review possible activation and/or potentiation of TRP vanilloid type 1 (TRPV1) and ankyrin 1 (TRPA1) channels by PM and PAHs. Finally, we will discuss and summarize recent findings on the mechanisms whereby TRPs could control the link between DE and airway inflammation, which is a primary determinant leading to pulmonary disease. PMID:26837756

  18. TRP channels and traffic-related environmental pollution-induced pulmonary disease

    PubMed Central

    Akopian, Armen N.; Fanick, E. Robert

    2016-01-01

    Environmental pollutant exposures are major risk factors for adverse health outcomes, with increased morbidity and mortality in humans. Diesel exhaust (DE) is one of the major harmful components of traffic-related air pollution. Exposure to DE affects several physiological systems, including the airways, and pulmonary diseases are increased in highly populated urban areas. Hence, there are urgent needs to (1) create newer and lesser polluting fuels, (2) improve exhaust aftertreatments and reduce emissions, and (3) understand mechanisms of actions for toxic effects of both conventional and cleaner diesel fuels on the lungs. These steps could aid the development of diagnostics and interventions to prevent the negative impact of traffic-related air pollution on the pulmonary system. Exhaust from conventional, and to a lesser extent, clean fuels, contains particulate matter (PM) and more than 400 additional chemical constituents. The major toxic constituents are nitrogen oxides (NOx) and polycyclic aromatic hydrocarbons (PAHs). PM and PAHs could potentially act via transient receptor potential (TRP) channels. In this review, we will first discuss the associations between DE from conventional as well as clean fuel technologies and acute and chronic airway inflammation. We will then review possible activation and/or potentiation of TRP vanilloid type 1 (TRPV1) and ankyrin 1 (TRPA1) channels by PM and PAHs. Finally, we will discuss and summarize recent findings on the mechanisms whereby TRPs could control the link between DE and airway inflammation, which is a primary determinant leading to pulmonary disease. PMID:26837756

  19. Evaluating methods for estimating space-time paths of individuals in calculating long-term personal exposure to air pollution

    NASA Astrophysics Data System (ADS)

    Schmitz, Oliver; Soenario, Ivan; Vaartjes, Ilonca; Strak, Maciek; Hoek, Gerard; Brunekreef, Bert; Dijst, Martin; Karssenberg, Derek

    2016-04-01

    Air pollution is one of the major concerns for human health. Associations between air pollution and health are often calculated using long-term (i.e. years to decades) information on personal exposure for each individual in a cohort. Personal exposure is the air pollution aggregated along the space-time path visited by an individual. As air pollution may vary considerably in space and time, for instance due to motorised traffic, the estimation of the spatio-temporal location of a persons' space-time path is important to identify the personal exposure. However, long term exposure is mostly calculated using the air pollution concentration at the x, y location of someone's home which does not consider that individuals are mobile (commuting, recreation, relocation). This assumption is often made as it is a major challenge to estimate space-time paths for all individuals in large cohorts, mostly because limited information on mobility of individuals is available. We address this issue by evaluating multiple approaches for the calculation of space-time paths, thereby estimating the personal exposure along these space-time paths with hyper resolution air pollution maps at national scale. This allows us to evaluate the effect of the space-time path and resulting personal exposure. Air pollution (e.g. NO2, PM10) was mapped for the entire Netherlands at a resolution of 5×5 m2 using the land use regression models developed in the European Study of Cohorts for Air Pollution Effects (ESCAPE, http://escapeproject.eu/) and the open source software PCRaster (http://www.pcraster.eu). The models use predictor variables like population density, land use, and traffic related data sets, and are able to model spatial variation and within-city variability of annual average concentration values. We approximated space-time paths for all individuals in a cohort using various aggregations, including those representing space-time paths as the outline of a persons' home or associated parcel

  20. Prediction of traffic-related nitrogen oxides concentrations using Structural Time-Series models

    NASA Astrophysics Data System (ADS)

    Lawson, Anneka Ruth; Ghosh, Bidisha; Broderick, Brian

    2011-09-01

    Ambient air quality monitoring, modeling and compliance to the standards set by European Union (EU) directives and World Health Organization (WHO) guidelines are required to ensure the protection of human and environmental health. Congested urban areas are most susceptible to traffic-related air pollution which is the most problematic source of air pollution in Ireland. Long-term continuous real-time monitoring of ambient air quality at such urban centers is essential but often not realistic due to financial and operational constraints. Hence, the development of a resource-conservative ambient air quality monitoring technique is essential to ensure compliance with the threshold values set by the standards. As an intelligent and advanced statistical methodology, a Structural Time Series (STS) based approach has been introduced in this paper to develop a parsimonious and computationally simple air quality model. In STS methodology, the different components of a time-series dataset such as the trend, seasonal, cyclical and calendar variations can be modeled separately. To test the effectiveness of the proposed modeling strategy, average hourly concentrations of nitrogen dioxide and nitrogen oxides from a congested urban arterial in Dublin city center were modeled using STS methodology. The prediction error estimates from the developed air quality model indicate that the STS model can be a useful tool in predicting nitrogen dioxide and nitrogen oxides concentrations in urban areas and will be particularly useful in situations where the information on external variables such as meteorology or traffic volume is not available.

  1. Individual Differences in On-Air Television and Radio Personalities.

    ERIC Educational Resources Information Center

    Neupauer, Nicholas C.

    1996-01-01

    Examines on-air television and radio newscasters' traitlike communication dispositions. Finds that television and radio personalities were less apprehensive, less shy, less responsive, more assertive, and more extroverted than the average individual. Indicates that higher-paid personalities were more willing to communicate than their lesser-paid…

  2. Transport of traffic-related aerosols in urban areas.

    PubMed

    Wróbel, A; Rokita, E; Maenhaut, W

    2000-08-10

    This study was undertaken to assess the influence of traffic on particulate air pollution in an urban area, and to characterise the short-range transport of the aerosols generated by traffic. The study was conducted in Kraków, a city located in southern Poland with a population of approximately 800,000. Aerosol samples were collected using automatic sampling equipment at five sites located at different distances from the main road in Kraków, ranging from 5 to 1500 m. The sampling set-up allowed standardisation of the results due to continuous determination of the meteorological parameters (temperature, atmospheric pressure, wind speed and direction, rainfall and humidity). Aerosol particles were separated according to aerodynamic diameter into two size fractions: > 1.9 microm (coarse fraction); and 1.9-72 microm (fine fraction). The concentrations of 27 elements were measured in both size fractions (Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, Ge, As, Se, Br, Rb, Sr, Zr, Ba, Pb). The multielement analyses were performed by Particle-Induced X-ray Emission (PIXE) spectrometry. Traffic contribution to particulate air pollution was determined on the basis of 13 elements which were present above the detection limit in all samples (Mg, Al, Si, P, S, K, Ca, Ti, Mn, Fe, Cu, Zn, Pb). It was found that the traffic contribution in the coarse size fraction was approximately 80% up to 150 m from the road; it dropped abruptly by a factor of 2 over a distance of 150-200 m and declined further to 20% at 1500 m from the road. Traffic contribution for the fine particle concentrations of individual elements was 50-70% in the close vicinity of the road (5 m); then there was a decrease, followed by an increase at a greater distance from the road. Possible explanations for this behaviour of the fine particles are given. PMID:10989929

  3. Air Quality Modeling in Support of the Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS)

    EPA Science Inventory

    A major challenge in traffic-related air pollution exposure studies is the lack of information regarding pollutant exposure characterization. Air quality modeling can provide spatially and temporally varying exposure estimates for examining relationships between traffic-related a...

  4. Urban, traffic- related particles and lung tumors in urethane treated mice

    PubMed Central

    Pereira, Fernanda Alves Cangerana; Lemos, Miriam; Mauad, Thaís; de Assunção, João Vicente; Saldiva, Paulo Hilário Nascimento

    2011-01-01

    OBJECTIVE: The present study was designed to evaluate the effects of urban, traffic-related, fine particulate matter (PM2.5) on mice lung tumorigenesis under controlled exposure conditions. METHODS: Four groups of female Swiss mice were treated with intraperitonial injections of urethane and saline solution. Urethane was used to start the carcinogenesis process. The animals were housed in two chambers receiving filtered and polluted air. In the polluted air chamber, pollutant levels were low. After two months of exposure, the animals were euthanized and lung tumoral nodules were counted. RESULTS: Saline-treated animals showed no nodules. Urethane-treated animals showed 2.0+2.0 and 4.0+3.0 nodules respectively, in the filtered and non-filtered chambers (p = 0.02), thus showing experimental evidence of increased carcinogenic-induced lung cancer with increasing PM2.5 exposure. CONCLUSION: Our data support the concept that low levels of PM2.5 may increase the risk of developing lung tumors. PMID:21808874

  5. Spatial and Temporal Trends of Polycyclic Aromatic Hydrocarbons and Other Traffic-Related Airborne Pollutants in New York City

    PubMed Central

    NARVÁEZ, RAFAEL F.; HOEPNER, LORI; CHILLRUD, STEVEN N.; YAN, BEIZHAN; GARFINKEL, ROBIN; WHYATT, ROBIN; CAMANN, DAVID; PERERA, FREDERICA P.; KINNEY, PATRICK L.; MILLER, RACHEL L.

    2008-01-01

    Traffic-related air pollutants have been associated with adverse health effects. We hypothesized that exposure to polycyclic aromatic hydrocarbons (PAHs), elemental carbon (EC, diesel indicator), particulate matter (PM2.5), and a suite of metals declined from 1998 to 2006 in NYC due to policy interventions. PAH levels from personal monitoring of pregnant mothers participating in the Columbia’s Center for Children’s Environmental Health birth cohort study, and EC, PM2.5, and metal data from five New York State Department of Environmental Conservation stationary monitors were compared across sites and over time (1998–2006). Univariate analysis showed a decrease in personal PAHs exposures from 1998 to 2006 (p < 0.0001). After controlling for environmental tobacco smoke, indoor heat, and cooking, year of personal monitoring remained a predictor of decline in Σ8PAHs (β = −0.269, p < 0.001). Linear trend analysis also suggested that PM2.5 declined (p = 0.09). Concentrations of EC and most metals measured by stationary site monitors, as measured by ANOVA, did not decline. Across stationary sites, levels of airborne EC and metals varied considerably. By contrast PM2.5 levels were highly intercorrelated (values ranged from 0.725 to 0.922, p < 0.01). Further policy initiatives targeting traffic-related air pollutants may be needed for a greater impact on public health. PMID:18939566

  6. Symptoms and Medication Use in Children with Asthma and Traffic-Related Sources of Fine Particle Pollution

    PubMed Central

    Gent, Janneane F.; Koutrakis, Petros; Belanger, Kathleen; Triche, Elizabeth; Holford, Theodore R.; Bracken, Michael B.; Leaderer, Brian P.

    2009-01-01

    Background Exposure to ambient fine particles [particulate matter ≤ 2.5 μm diameter (PM2.5)] is a potential factor in the exacerbation of asthma. National air quality particle standards consider total mass, not composition or sources, and may not protect against health impacts related to specific components. Objective We examined associations between daily exposure to fine particle components and sources, and symptoms and medication use in children with asthma. Methods Children with asthma (n = 149) 4–12 years of age were enrolled in a year-long study. We analyzed particle samples for trace elements (X-ray fluorescence) and elemental carbon (light reflectance). Using factor analysis/source apportionment, we identified particle sources (e.g., motor vehicle emissions) and quantified daily contributions. Symptoms and medication use were recorded on study diaries. Repeated measures logistic regression models examined associations between health outcomes and particle exposures as elemental concentrations and source contributions. Results More than half of mean PM2.5 was attributed to traffic-related sources motor vehicles (42%) and road dust (12%). Increased likelihood of symptoms and inhaler use was largest for 3-day averaged exposures to traffic-related sources or their elemental constituents and ranged from a 10% increased likelihood of wheeze for each 5-μg/m3 increase in particles from motor vehicles to a 28% increased likelihood of shortness of breath for increases in road dust. Neither the other sources identified nor PM2.5 alone was associated with increased health outcome risks. Conclusions Linking respiratory health effects to specific particle pollution composition or sources is critical to efforts to protect public health. We associated increased risk of symptoms and inhaler use in children with asthma with exposure to traffic-related fine particles. PMID:19654929

  7. TRAFFIC-RELATED AIR POLLUTANTS AND CHILDREN'S RESPIRATORY HEALTH IN EL PASO AND DETROIT

    EPA Science Inventory

    Hypotheses -Specific Agent • Diesel exhaust particles • Ultrafine particles • Coarse-mode particles (road dust) • Noise and stress • Nonspecific irritants Previous Epidemiology • Kanawha Valley Health Study • Munich Traffic Study • Dutch Traffic Studies • S....

  8. Consideration of Exposures to Traffic-Related Air Pollution with Smart Growth Development

    EPA Science Inventory

    We address the near-road pollution problem as it relates to smart growth design strategies. Studies have shown that pollution levels tend to be high near heavily traveled roads and that road proximity is related to adverse health effects. These findings can conflict with urban ...

  9. A comparative study of traffic related air pollution next to a motorway and a motorway flyover

    NASA Astrophysics Data System (ADS)

    Van Poppel, Martine; Int Panis, Luc; Govarts, Eva; Van Houtte, Jeroen; Maenhaut, Willy

    2012-12-01

    The aim of this study was to investigate the influence of the vertical position of a motorway on the pollutant concentrations in the vicinity of the motorway. Therefore, a near-road monitoring campaign was performed along two adjoining motorway stretches: one motorway at ground level and a motorway flyover. PM2.5 and nitrogen oxides (NO, NO2 and NOx) were measured at both sides of the motorway on a 30-min resolution. In addition, EC (elemental carbon) was measured on both sides of the road on a daily basis using low volume samplers and thermal-optical transmission (TOT) analysis of filters. PNC (particle number concentration) was measured at one side. The measurement locations on each side of the road were located at 29 m and 102 m from the motorway at ground level and at 60 m and 120 m from the motorway flyover. Pollution roses, showed increased average concentrations in the direction of the road for nitrogen oxides and PM2.5. The impact of road traffic appeared to be higher at ground level compared to the flyover. The difference in concentration between both sides of the road for PM2.5, NO, NO2 and NOx was analysed using linear mixed models. The concentration difference, which can be seen as the contribution of road traffic to the pollutant concentration, was calculated taking into account prevailing wind directions. The results indicate that taking into account confounding parameters (time of day, day of the week, distance to the road and wind speed), the contribution of the motorway traffic to pollutant concentrations is significantly higher when the motorway is at ground level. Furthermore, time of day and day of the week also have a significant effect on the concentration difference. The linear mixed model estimated a reduced road increment at the motorway flyover compared to the ground level motorway of 119 ppb for NO, 29 ppb for NO2 and 3.5 μg m-3 for PM2.5. taking into account confounding parameters. The highest EC and PNC concentrations were measured downwind of the motorway at ground level.

  10. What can individuals do to reduce personal health risks from air pollution?

    PubMed Central

    Laumbach, Robert; Meng, Qingyu

    2015-01-01

    In many areas of the world, concentrations of ambient air pollutants exceed levels associated with increased risk of acute and chronic health problems. While effective policies to reduce emissions at their sources are clearly preferable, some evidence supports the effectiveness of individual actions to reduce exposure and health risks. Personal exposure to ambient air pollution can be reduced on high air pollution days by staying indoors, reducing outdoor air infiltration to indoors, cleaning indoor air with air filters, and limiting physical exertion, especially outdoors and near air pollution sources. Limited evidence suggests that the use of respirators may be effective in some circumstances. Awareness of air pollution levels is facilitated by a growing number of public air quality alert systems. Avoiding exposure to air pollutants is especially important for susceptible individuals with chronic cardiovascular or pulmonary disease, children, and the elderly. Research on mechanisms underlying the adverse health effects of air pollution have suggested potential pharmaceutical or chemopreventive interventions, such as antioxidant or antithrombotic agents, but in the absence of data on health outcomes, no sound recommendations can be made for primary prevention. Health care providers and their patients should carefully consider individual circumstances related to outdoor and indoor air pollutant exposure levels and susceptibility to those air pollutants when deciding on a course of action to reduce personal exposure and health risks from ambient air pollutants. Careful consideration is especially warranted when interventions may have unintended negative consequences, such as when efforts to avoid exposure to air pollutants lead to reduced physical activity or when there is evidence that dietary supplements, such as antioxidants, have potential adverse health effects. These potential complications of partially effective personal interventions to reduce exposure or

  11. The role of differences in individual and community attributes in perceived air quality.

    PubMed

    Kim, Myounghee; Yi, Okhee; Kim, Ho

    2012-05-15

    Most epidemiological studies on the adverse effects of air pollution on health have focused on scientific measurements of air quality provided by monitoring stations. However, many studies have indicated that self-reported health status, such as disease severity and depressive symptoms, are associated with perceived air pollution rather than measured air pollution. The main goal of this study was to investigate social factors that may affect perceived local air quality using a multilevel analysis among a Korean population. We used the Seoul Citizens Health Indicator Survey (SCHIS III) and five air pollutants. The total study population was 16,041. We considered individual-level and community-level variables that may affect perceived air quality, such as the percentage of college-educated individuals aged >20 years, satisfaction with public transportation, and the percentage of individuals below the poverty line. Measured air quality showed a negative or neutral relationship with perceived air quality. We found that the degree of perceived air pollution was associated with younger age (20-34 years; OR=1.40, 95% CI=1.18-1.65), married and divorced/separated/widowed people, a higher level of education (>17 years; OR=1.67, 95% CI=1.30-2.15), and lower household income. Communities that were more economically deprived were associated with poor perceived air quality. Differences in individual and community characteristics affected perceived air quality. Perception is a key factor influencing the public acceptance of environmental policy. This study may help policymakers understand the social distribution of environmental awareness. PMID:22483745

  12. A Wind Tunnel Study of the Effect of Roadway Configurations on the Dispersion of Traffic-Related Pollution

    EPA Science Inventory

    In this paper we examine the effect of different roadway configurations, including noise barriers and roadway elevation or depression relative to surrounding terrain, on the dispersion of traffic-related pollutants from winds perpendicular to the roadway.

  13. Non-stationary spatio-temporal modeling of traffic-related pollutants in near-road environments.

    PubMed

    Gilani, Owais; Berrocal, Veronica J; Batterman, Stuart A

    2016-08-01

    A problem often encountered in environmental epidemiological studies assessing the health effects associated with ambient exposure to air pollution is the spatial misalignment between monitors' locations and subjects' actual residential locations. Several strategies have been adopted to circumvent this problem and estimate pollutants concentrations at unsampled sites, including spatial statistical or geostatistical models that rely on the assumption of stationarity to model the spatial dependence in pollution levels. Although computationally convenient, the assumption of stationarity is often untenable for pollutants concentration, particularly in the near-road environment. Building upon the work of Fuentes (2001) and Schmidt et al. (2011), in this paper we present a non-stationary spatio-temporal model for three traffic-related pollutants in a localized near-road environment. Modeling each pollutant separately and independently, we express each pollutant's concentration as a mixture of two independent spatial processes, each equipped with a non-stationary covariance function with covariates driving the non-stationarity and the mixture weights. PMID:27494957

  14. Evidence of traffic-related pollutant control in soil-based sustainable urban drainage systems (SUDS).

    PubMed

    Napier, F; Jefferies, C; Heal, K V; Fogg, P; Arcy, B J D; Clarke, R

    2009-01-01

    SUDS are being increasingly employed to control highway runoff and have the potential to protect groundwater and surface water quality by minimising the risks of both point and diffuse sources of pollution. While these systems are effective at retaining polluted solids by filtration and sedimentation processes, less is known of the detail of pollutant behaviour within SUDS structures. This paper reports on investigations carried out as part of a co-ordinated programme of controlled studies and field measurements at soft-engineered SUDS undertaken in the UK, observing the accumulation and behaviour of traffic-related heavy metals, oil and PAHs. The field data presented were collected from two extended detention basins serving the M74 motorway in the south-west of Scotland. Additional data were supplied from an experimental lysimeter soil core leaching study. Results show that basin design influences pollutant accumulation and behaviour in the basins. Management and/or control strategies are discussed for reducing the impact of traffic-related pollutants on the aqueous environment. PMID:19587419

  15. Associations between Traffic-Related Black Carbon Exposure and Attention in a Prospective Birth Cohort of Urban Children

    PubMed Central

    Bellinger, David C.; Coull, Brent A.; Anderson, Shawn; Barber, Rachel; Wright, Robert O.; Wright, Rosalind J.

    2013-01-01

    Background: Ambient air pollution may have neurotoxic effects in children. Data examining associations between traffic-related air pollution and attention domains remain sparse. Objectives: We examined associations between black carbon (BC), a marker of traffic particles, and attention measures ascertained at 7–14 years of age among 174 children in a birth cohort based in the Boston, Massachusetts, area. Methods: We estimated BC levels using a validated spatial–temporal land-use regression model based on residence during children’s lifetime. Children completed the Conner’s Continuous Performance Test (CPT) measuring omission errors, commission errors, and hit reaction time (HRT), with higher scores indicating increased errors or slower reaction time. Multivariable-adjusted linear regression analyses were used to examine associations between BC and each attention outcome. Results: Children were primarily Hispanic (56%) and Caucasian (41%); 53% were boys. We found a positive association between higher BC levels with increased commission errors and slower HRT, adjusting for child IQ, age, sex, blood lead level, maternal education, pre- and postnatal tobacco smoke exposure, and community-level social stress. Notably, the association was weaker, though still positive, for the highest BC quartile relative to the middle two quartiles. Sex-stratified analysis demonstrated statistically significant associations between BC and both commission errors and HRT in boys, but BC was not significantly associated with any of the CPT outcomes in girls. Conclusions: In this population of urban children, we found associations between BC exposure and higher commission errors and slower reaction time. These associations were overall more apparent in boys than girls. PMID:23665743

  16. Personal exposures to traffic-related particle pollution among children with asthma in the South Bronx, NY

    PubMed Central

    Spira-Cohen, Ariel; Chen, Lung Chi; Kendall, Michaela; Sheesley, Rebecca; Thurston, George D.

    2014-01-01

    Personal exposures to fine Particulate Matter air pollution (PM2.5), and to its traffic-related fraction, were investigated in a group of urban children with asthma. The relationships of personal and outdoor school-site measurements of PM2.5 and elemental carbon (EC) were characterized for a total of forty fifth-grade children. These students, from four South Bronx, NY schools, each carried air pollution monitoring equipment with them 24 hours per day for approximately one month. Daily EC concentrations were estimated using locally calibrated reflectance of the PM2.5 samples. Personal EC was more closely related to outdoor school-site EC (median subject-specific r = 0.64) than was personal PM with school-site PM2.5 (median subject specific r = 0.33). Regression models also showed a stronger, more robust association of school-site with personal measurements for EC than for PM2.5. High traffic pollution exposure was found to coincide with the weekday early morning rush hour, with higher personal exposures for subjects living closer to a highway (< 500 ft). A significant linear relationship of home distance from a highway with personal EC pollution exposure was also found (up to 1000 ft.). This supports the assumptions by previous epidemiological studies using distance from a highway as an index of traffic PM exposure. These results are also consistent with the assumption that traffic, and especially diesel vehicles, are a significant contributor to personal PM exposure levels of children living in urban areas such as the South Bronx, NY. PMID:19865073

  17. Traffic-related injury prevention interventions for low-income countries.

    PubMed

    Forjuoh, Samuel N

    2003-01-01

    Traffic-related injuries have become a major public health concern worldwide. However, unlike developed or high-income countries (HICs), many developing or low-income countries (LICs) have made very little progress towards addressing this problem. Lack of the progress in LICs is attributable, in part, to their economic situation in terms of their governments' lack of resources to invest in traffic safety, cultural beliefs regarding the fatalism of injuries, competing health problems particularly with the emergence of HIV/AIDS, distinctive traffic mixes comprising a substantial number of vulnerable road users for whom less research has been done, low literacy rates precluding motorists to read and understand road signs, and peculiar political situations occasionally predominated by dictatorship and non-democratic governments. How then can LICs tackle the challenge of traffic safety from the experiences of HICs without reinventing the wheel? This paper reviews selected interventions and strategies that have been developed to counter traffic-related injuries in HICs in terms of their effectiveness and their applicability to LICs. Proven and promising interventions or strategies such as seat belt and helmet use, legislation and enforcement of seat belt use, sidewalks, roadway barriers, selected traffic-calming designs (e.g., speed ramps/bumps), pedestrian crossing signs combined with clearly marked crosswalks, and public education and behavior modification targeted at motorists are all feasible and useable in LICs as evidenced by data from many LICs. While numerous traffic-related injury policy interventions and strategies developed largely in HICs are potentially transferable to LICs, it is important to consider country-specific factors such as costs, feasibility, sustainability, and barriers, all of which must be factored into the assessment of effectiveness in specific LIC settings. Almost all interventions and strategies that have been proven effective in HICs will

  18. Factors Affecting Parent's Perception on Air Quality-From the Individual to the Community Level.

    PubMed

    Guo, Yulin; Liu, Fengfeng; Lu, Yuanan; Mao, Zongfu; Lu, Hanson; Wu, Yanyan; Chu, Yuanyuan; Yu, Lichen; Liu, Yisi; Ren, Meng; Li, Na; Chen, Xi; Xiang, Hao

    2016-01-01

    The perception of air quality significantly affects the acceptance of the public of the government's environmental policies. The aim of this research is to explore the relationship between the perception of the air quality of parents and scientific monitoring data and to analyze the factors that affect parents' perceptions. Scientific data of air quality were obtained from Wuhan's environmental condition reports. One thousand parents were investigated for their knowledge and perception of air quality. Scientific data show that the air quality of Wuhan follows an improving trend in general, while most participants believed that the air quality of Wuhan has deteriorated, which indicates a significant difference between public perception and reality. On the individual level, respondents with an age of 40 or above (40 or above: OR = 3.252; 95% CI: 1.170-9.040), a higher educational level (college and above: OR = 7.598; 95% CI: 2.244-25.732) or children with poor healthy conditions (poor: OR = 6.864; 95% CI: 2.212-21.302) have much more negative perception of air quality. On the community level, industrial facilities, vehicles and city construction have major effects on parents' perception of air quality. Our investigation provides baseline information for environmental policy researchers and makers regarding the public's perception and expectation of air quality and the benefits to the environmental policy completing and enforcing. PMID:27187432

  19. Polymorphisms in DNA repair genes, traffic-related polycyclic aromatic hydrocarbon exposure and breast cancer incidence.

    PubMed

    Mordukhovich, Irina; Beyea, Jan; Herring, Amy H; Hatch, Maureen; Stellman, Steven D; Teitelbaum, Susan L; Richardson, David B; Millikan, Robert C; Engel, Lawrence S; Shantakumar, Sumitra; Steck, Susan E; Neugut, Alfred I; Rossner, Pavel; Santella, Regina M; Gammon, Marilie D

    2016-07-15

    Vehicular traffic polycyclic aromatic hydrocarbons (PAHs) have been associated with breast cancer incidence in epidemiologic studies, including our own. Because PAHs damage DNA by forming adducts and oxidative lesions, genetic polymorphisms that alter DNA repair capacity may modify associations between PAH-related exposures and breast cancer risk. Our goal was to examine the association between vehicular traffic exposure and breast cancer incidence within strata of a panel of nine biologically plausible nucleotide excision repair (NER) and base excision repair (BER) genotypes. Residential histories of 1,508 cases and 1,556 controls were assessed in the Long Island Breast Cancer Study Project between 1996 and 1997 and used to reconstruct residential traffic exposures to benzo[a]pyrene, as a proxy for traffic-related PAHs. Likelihood ratio tests from adjusted unconditional logistic regression models were used to assess multiplicative interactions. A gene-traffic interaction was evident (p = 0.04) for ERCC2 (Lys751); when comparing the upper and lower tertiles of 1995 traffic exposure estimates, the odds ratio (95% confidence interval) was 2.09 (1.13, 3.90) among women with homozygous variant alleles. Corresponding odds ratios for 1960-1990 traffic were also elevated nearly 2-3-fold for XRCC1(Arg194Trp), XRCC1(Arg399Gln) and OGG1(Ser326Cys), but formal multiplicative interaction was not evident. When DNA repair variants for ERCC2, XRCC1 and OGG1 were combined, among women with 4-6 variants, the odds ratios were 2.32 (1.22, 4.49) for 1995 traffic and 2.96 (1.06, 8.21) for 1960-1990 traffic. Our study is first to report positive associations between traffic-related PAH exposure and breast cancer incidence among women with select biologically plausible DNA repair genotypes. PMID:26946191

  20. Status and determinants of individual actions to reduce health impacts of air pollution in US adults.

    PubMed

    Lissåker, Claudia T K; Talbott, Evelyn O; Kan, Haidong; Xu, Xiaohui

    2016-01-01

    Although regulation of emissions is the primary strategy to reduce air pollution-related morbidity, individual-level interventions are also helpful in mitigating health impacts. We used data from 2007-2008 National Health and Nutrition Examination Survey to study the prevalence of individual-level action among the US adult population if informed of air pollution, and to see if this differed by demographic and health factors. Only 13.5% (95% confidence interval [CI]: 11.6-15.4%) of participants aware of air quality reported changing their individual behaviors. Males (adjusted odds ratio [AOR]: 0.66, 95% CI: 0.56-0.77) and those without cardiovascular disease (AOR: 0.58, 95% CI: 0.47-0.71) were least likely to take action. Results show that individual action was infrequent among the population. Health promotion of individual intervention is necessary, and this effort may need to target specific subgroups of the population. Further studies on effective individual interventions are needed. PMID:25454076

  1. Analysis of traffic-related NO x and EC concentrations at various distances from major roads in Japan

    NASA Astrophysics Data System (ADS)

    Naser, Tarek Mohamed; Kanda, Isao; Ohara, Toshimasa; Sakamoto, Kazuhiko; Kobayashi, Shinji; Nitta, Hiroshi; Nataami, Taro

    Traffic-related air pollutants were monitored near major roads at 10 sites in Japan. Nitrogen oxides (NO x), suspended particulate matter (100% cut-off aerodynamic diameter at 10 μm), PM 2.5 (50% cut-off aerodynamic diameter at 2.5 μm), and black carbon, from which elemental carbon (EC) content was calculated, were instantaneously and continuously monitored at four stations at various distances (about 5, 35, 70, and 150 m) from each of the target roads. We analyzed concentration data from a 1-year monitoring period (Jan. 1-Dec. 31, 2006) at nine sites where credible estimation of emission rates was possible. For conditions of wind directions nearly perpendicular to the target roads, neutral atmospheric stability, and sufficiently high wind speed (>1 m s -1), we compared the observed concentrations with concentrations calculated by means of the conventional Gaussian plume model. Except for a site with densely packed high-rise buildings and another site with suspected additional emission sources that were not included in the model, the NO x and EC concentrations normalized by the values at the stations closest to the road agreed well between the Gaussian plume model and the observation. By assuming that the emission factor of EC was proportional to that of PM (total particulate matter at emission) and by using the emission factor of NO x, we estimated the emission factor of EC by evaluating the ratio (C-C)/(C-C). Good agreement between the observed and estimated ratios was obtained with a proportionality constant (EC/PM) of 0.4, indicating that the emission factor of EC was 0.4 times that of PM.

  2. A wind tunnel study of the effect of roadway configurations on the dispersion of traffic-related pollution

    NASA Astrophysics Data System (ADS)

    Heist, D. K.; Perry, S. G.; Brixey, L. A.

    In this paper we examine the effect of different roadway configurations, including noise barriers and roadway elevation or depression relative to the surrounding terrain, on the dispersion of traffic-related pollutants for winds perpendicular to the roadway. A wind tunnel experiment modeling 12 different configurations was performed to study the flow fields and the concentration distributions resulting from emissions from a simulated six-lane highway. All of the configurations examined here reduced the downwind ground-level concentrations relative to that for a flat, unobstructed roadway; however, the degree to which the concentrations were reduced varied widely depending on the particular situation. Ground-level concentration data from the cases considered in this research indicate that a constant entrainment velocity can be used over the region beginning downwind of any initial disturbance to the flow resulting from the roadway configuration (e.g., a recirculation region behind a noise barrier) and extending at least to the end of our measurements. For example, for the case of a single noise barrier on the downwind side of the road, this region extends from approximately four barrier heights downwind of the roadway to 40 barrier heights. It was also found that the virtual origin concept is useful in describing the initial mixing created by the particular roadway configuration. To effectively model the influence of the roadway configuration on the dispersion, a combination of a virtual origin and an entrainment velocity may be effective. The magnitude of the virtual origin shift appears to depend on the particular roadway configuration, while the entrainment velocity appears to be a function of the friction velocity and the roadway geometry. These results suggest that road configuration must be taken into account in modeling near-road air quality.

  3. Individual Oral Exams in Mathematics Courses: 10 Years of Experience at the Air Force Academy

    ERIC Educational Resources Information Center

    Boedigheimer, Ralph; Ghrist, Michelle; Peterson, Dale; Kallemyn, Benjamin

    2015-01-01

    Over the last 10 years faculty members in the Department of Mathematical Sciences at the United States Air Force Academy have incorporated individual oral exams into mathematics courses. We have experimented with various approaches, shared results and ideas with other department members, and refined our techniques. We have found that this…

  4. Asthmatics Exhibit Altered Oxylipin Profiles Compared to Healthy Individuals after Subway Air Exposure

    PubMed Central

    Nording, Malin; Klepczynska-Nyström, Anna; Sköld, Magnus; Haeggström, Jesper Z.; Grunewald, Johan; Svartengren, Magnus; Hammock, Bruce D.; Larsson, Britt-Marie; Eklund, Anders; Wheelock, Åsa M.; Wheelock, Craig E.

    2011-01-01

    Background Asthma is a chronic inflammatory lung disease that causes significant morbidity and mortality worldwide. Air pollutants such as particulate matter (PM) and oxidants are important factors in causing exacerbations in asthmatics, and the source and composition of pollutants greatly affects pathological implications. Objectives This randomized crossover study investigated responses of the respiratory system to Stockholm subway air in asthmatics and healthy individuals. Eicosanoids and other oxylipins were quantified in the distal lung to provide a measure of shifts in lipid mediators in association with exposure to subway air relative to ambient air. Methods Sixty-four oxylipins representing the cyclooxygenase (COX), lipoxygenase (LOX) and cytochrome P450 (CYP) metabolic pathways were screened using liquid chromatography-tandem mass spectrometry (LC-MS/MS) of bronchoalveolar lavage (BAL)-fluid. Validations through immunocytochemistry staining of BAL-cells were performed for 15-LOX-1, COX-1, COX-2 and peroxisome proliferator-activated receptor gamma (PPARγ). Multivariate statistics were employed to interrogate acquired oxylipin and immunocytochemistry data in combination with patient clinical information. Results Asthmatics and healthy individuals exhibited divergent oxylipin profiles following exposure to ambient and subway air. Significant changes were observed in 8 metabolites of linoleic- and α-linolenic acid synthesized via the 15-LOX pathway, and of the COX product prostaglandin E2 (PGE2). Oxylipin levels were increased in healthy individuals following exposure to subway air, whereas asthmatics evidenced decreases or no change. Conclusions Several of the altered oxylipins have known or suspected bronchoprotective or anti-inflammatory effects, suggesting a possible reduced anti-inflammatory response in asthmatics following exposure to subway air. These observations may have ramifications for sensitive subpopulations in urban areas. PMID:21897859

  5. Urban traffic-related determinants of health questionnaire (UTDHQ): an instrument developed for health impact assessments

    PubMed Central

    Nadrian, Haidar; Nedjat, Saharnaz; Taghdisi, Mohammad Hossein; Shojaeizadeh, Davoud

    2014-01-01

    Background: Traffic and transport is a substantial part of a range of economic, social and environmental factors distinguished to have impact on human health. This paper is a report on a preliminary section of a Health Impact Assessment (HIA) on urban traffic and transport initiatives, being conducted in Sanandaj, Iran. In this preliminary study, the psychometric properties of Urban Traffic related Determinants of Health Questionnaire (UTDHQ) were investigated. Methods: Multistage cluster sampling was employed to recruit 476 key informants in Sanandaj from April to June 2013 to participate in the study. The development of UTDHQ began with a comprehensive review of the literature. Then face, content and construct validity as well as reliability were determined. Results: Exploratory Factor Analysis showed optimal reduced solution including 40 items and 8 factors. Three of the factors identified were Physical Environment, Social Environment, Public Services Delivery and Accessibility. UTDHQ demonstrated an appropriate validity, reliability, functionality and simplicity. Conclusion: Despite the need for further studies on UTDHQ, this study showed that it can be a practical and useful tool for conducting HIAs in order to inform decision makers and stakeholders about the health influences of their decisions and measures. PMID:25664285

  6. Magnetic responses to traffic related contamination recorded by backfills: A case study from Tongling City, China

    NASA Astrophysics Data System (ADS)

    Ma, M. M.; Hu, S. Y.; Lin, H.; Cao, L. W.; Wang, L. S.

    2014-08-01

    With the development of urbanization and industrialization, traffic is creating a serious contamination problem. Conventional methods for contamination testing are generally expensive and time-consuming, while magnetic methods have been suggested to be an economic and non-destructive alternative. In this study, we measured magnetic properties and heavy metal contents in backfills along an urban road side in China, in situ on surface and on samples in vertical sections. Magnetic results and SEM images show the dominance of coarse magnetite, supposed to origin from human activities. Furthermore, there is an obvious decreasing trend of magnetic susceptibility (χ) and several heavy metals (Cu, Mn, Zn, Pb) with increasing distance from the road edge, symmetrically at both road sides, indicating that this is a typical traffic-related contamination signal. The detailed distribution patterns of χ and heavy metals exhibit slight variations in the surface data, probably due to the local topography and surface runoff due to rainfall. In vertical soil cores magnetic parameters show significant positive relationships (r = 0.88-0.99) with concentrations of heavy metals (Cu, Zn, Pb, Fe). Our results suggest that backfills unaffected by the traffic contamination signal and characterized by low χ value can be chosen for contamination monitoring. Despite the complex nature of backfills and the possibility of contamination prior to their transportation to the site, they are especially important for areas where undisturbed soil is not available.

  7. PGEs and other traffic-related elements in roadside soils from São Paulo, Brazil.

    PubMed

    Morcelli, C P R; Figueiredo, A M G; Sarkis, J E S; Enzweiler, J; Kakazu, M; Sigolo, J B

    2005-06-01

    The distribution of platinum, palladium, and rhodium in soils adjacent to a major road in São Paulo, Brazil, is presented. Sampling was made at four sites with varying traffic volumes and driving styles (stop/start vs. constant speed). High-resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) with NiS fire assay collection and Te coprecipitation was used as analytical procedure. The platinum group element (PGE) pattern distribution in the analyzed roadside soil was similar to that of other traffic-related elements such as Zn and Cu, characterized by a strong decrease of the PGE content with increasing distance from the traffic lane. The results indicate that the PGE concentrations in roadside soil are directly influenced by traffic conditions and distance, which characterize their catalytic converter origin. Pt, Pd, and Rh contents range between 0.3 and 17 ng g(-1), 1.1 and 58 ng g(-1), and 0.07 and 8.2 ng g(-1) respectively. Lower levels of Pt and lower Pt/Pd ratios in relation to similar studies in other countries were observed due to the different Pt/Pd ratios in Brazilian automobile catalytic converters. This is the first study to assess traffic-derived Pt, Pd, and Rh deposition in Brazil. PMID:15919530

  8. Evaluating socioeconomic and racial differences in traffic-related metrics in the United States using a GIS approach

    EPA Science Inventory

    Previous studies have reported that lower-income and minority populations are more likely to live near major roads. This study quantifies associations between socioeconomic status, racial/ethnic variables, and traffic-related exposure metrics for the United States. Using geograph...

  9. On the magnetic characterization and quantification of the superparamagnetic fraction of traffic-related urban airborne PM in Rome, Italy

    NASA Astrophysics Data System (ADS)

    Sagnotti, Leonardo; Winkler, Aldo

    2012-11-01

    The magnetic properties of traffic-related airborne particulate matter (PM) in the city of Rome, Italy, have been previously analyzed and interpreted as suitable proxies to discriminate between different vehicular sources. In this study, we carried out a new set of measurements and analyses specifically devoted to the identification and evaluation of the contribution of ultrafine superparamagnetic (SP) particles to the overall magnetic assemblage of traffic-related PM in Rome. In particular, the presence and the concentration of SP particles have been estimated on powders collected from disk brakes and gasoline exhaust pipes of circulating vehicles and from Quercus ilex leaves grown along high-traffic roads, measuring their hysteresis parameters in a range of temperatures from 293 K to 10 K and measuring the time decay of their saturation remanent magnetization (MRS) at room temperature. The SP fraction contributes for the 10-15% to the overall room temperature MRS and causes the observed changes in the hysteresis properties measured upon cooling down to 10 K. In all the analyzed samples the SP fraction is associated to a generally prevailing population of larger ferrimagnetic multidomain (MD) particles and we suppose that in traffic-related PM the SP fraction mainly occurs as coating of MD particles and originated by localized stress in the oxidized outer shell surrounding the unoxidized core of magnetite-like grains. Under this hypothesis, the estimate of SP content in traffic-related PM cannot be considered a robust proxy to estimate the overall concentration of nanometric particles.

  10. Assessment of Traffic-Related Noise in Three Cities in the United States

    PubMed Central

    Lee, Eunice Y.; Jerrett, Michael; Ross, Zev; Coogan, Patricia F.; Seto, Edmund Y. W.

    2014-01-01

    Background Traffic-related noise is a growing public health concern in developing and developed countries due to increasing vehicle traffic. Epidemiological studies have reported associations between noise exposure and high blood pressure, increased risk of hypertension and heart disease, and stress induced by sleep disturbance and annoyance. These findings motivate the need for regular noise assessments within urban areas. This paper assesses the relationships between traffic and noise in three US cities. Methods Noise measurements were conducted in downtown areas in three cities in the United States: Atlanta, Los Angeles, and New York City. For each city, we measured ambient noise levels, and assessed their correlation with simultaneously measured vehicle counts, and with traffic data provided by local Metropolitan Planning Organizations (MPO). Additionally, measured noise levels were compared to noise levels predicted by the Federal Highway Administration’s Traffic Noise Model using (1) simultaneously measured traffic counts or (2) MPO traffic data sources as model input. Results We found substantial variations in traffic and noise within and between cities. Total number of vehicle counts explained a substantial amount of variation in measured ambient noise in Atlanta (78%), Los Angeles (58%), and New York City (62%). Modeled noise levels were moderately correlated with measured noise levels when observed traffic counts were used as model input. Weaker correlations were found when MPO traffic data was used as model input. Conclusions Ambient noise levels measured in all three cities were correlated with traffic data, highlighting the importance of traffic planning in mitigating noise-related health effects. Model performance was sensitive to the traffic data used as input. Future noise studies that use modeled noise estimates should evaluate traffic data quality and should ideally include other factors, such as local roadway, building, and meteorological

  11. Participatory measurements of individual exposure to air pollution in urban areas

    NASA Astrophysics Data System (ADS)

    Madelin, Malika; Duché, Sarah; Dupuis, Vincent

    2016-04-01

    Air pollution is a major environmental issue in urban areas. Chronic and high concentration exposure presents a health risk with cardiovascular and respiratory problems and longer term nervous, carcinogenic and endocrine problems. In addition to the estimations based on simulations of both background and regional pollution and of the pollution induced by the traffic, knowing exposure of each individual is a key issue. This exposure reflects the high variability of pollution at fine spatial and time scales, according to the proximity of emission sources and the urban morphology outside. The emergence of citizen science and the progress of miniaturized electronics, low-cost and accessible to (almost) everyone, offers new opportunities for the monitoring of air pollution, but also for the citizens' awareness of their individual exposure to air pollution. In this communication, we propose to present a participatory research project 'What is your air?' (project funded by the Île-de-France region), which aims at raising awareness on the theme of air quality, its monitoring with sensors assembled in a FabLab workshop and an online participatory mapping. Beyond the discussion on technical choices, the stages of manufacture or the sensor calibration procedures, we discuss the measurements made, in this case the fine particle concentration measurements, which are dated and georeferenced (communication via a mobile phone). They show high variability between the measurements (in part linked to the substrates, land use, traffic) and low daily contrasts. In addition to the analysis of the measurements and their comparison with the official data, we also discuss the choice of representation of information, including mapping, and therefore the message about pollution to communicate.

  12. Individual exposure to air pollution and lung function in Korea: spatial analysis using multiple exposure approaches.

    PubMed

    Son, Ji-Young; Bell, Michelle L; Lee, Jong-Tae

    2010-11-01

    Interpolation methods can estimate individual-level exposures to air pollution from ambient monitors; however, few studies have evaluated how different approaches may affect health risk estimates. We applied multiple methods of estimating exposure for several air pollutants. We investigated how different methods of estimating exposure may influence health effect estimates in a case study of lung function data, forced expiratory volume in 1s (FEV1), and forced vital capacity (FVC), for 2102 cohort subjects in Ulsan, Korea, for 2003-2007. Measurements from 13 monitors for particulate matter <10 μm (PM(10)), ozone, nitrogen dioxide, sulfur dioxide, and carbon monoxide were used to estimate individual-level exposures by averaging across values from all monitors, selecting the value from the nearest monitor, inverse distance weighting, and kriging. We assessed associations between pollutants and lung function in linear regression models, controlling for age, sex, and body mass index. Cross-validation indicated that kriging provided the most accurate estimated exposures. FVC was associated with all air pollutants under all methods of estimating exposure. Only ozone was associated with FEV1. An 11 ppb increase in lag-0-2 8-h maximum ozone was associated with a 6.1% (95% confidence interval 5.0, 7.3%) decrease in FVC and a 0.50% (95% confidence interval 0.03, 0.96%) decrease in FEV1, based on kriged exposures. Central health effect estimates were generally higher using exposures based on averaging across all monitors or kriging. Results based on the nearest monitor approach had the lowest variance. Findings suggest that spatial interpolation methods may provide better estimates than monitoring values alone by reflecting the spatial variability of individual-level exposures and generating estimates for locations without monitors. PMID:20832787

  13. Modeling dispersion of traffic-related pollutants in the NEXUS health study

    EPA Science Inventory

    Dispersion modeling tools have traditionally provided critical information for air quality management decisions, but have been used recently to provide exposure estimates to support health studies. However, these models can be challenging to implement, particularly in near-road s...

  14. Improving Neural Network Prediction Accuracy for PM10 Individual Air Quality Index Pollution Levels

    PubMed Central

    Feng, Qi; Wu, Shengjun; Du, Yun; Xue, Huaiping; Xiao, Fei; Ban, Xuan; Li, Xiaodong

    2013-01-01

    Abstract Fugitive dust deriving from construction sites is a serious local source of particulate matter (PM) that leads to air pollution in cities undergoing rapid urbanization in China. In spite of this fact, no study has yet been published relating to prediction of high levels of PM with diameters <10 μm (PM10) as adjudicated by the Individual Air Quality Index (IAQI) on fugitive dust from nearby construction sites. To combat this problem, the Construction Influence Index (Ci) is introduced in this article to improve forecasting models based on three neural network models (multilayer perceptron, Elman, and support vector machine) in predicting daily PM10 IAQI one day in advance. To obtain acceptable forecasting accuracy, measured time series data were decomposed into wavelet representations and wavelet coefficients were predicted. Effectiveness of these forecasters were tested using a time series recorded between January 1, 2005, and December 31, 2011, at six monitoring stations situated within the urban area of the city of Wuhan, China. Experimental trials showed that the improved models provided low root mean square error values and mean absolute error values in comparison to the original models. In addition, these improved models resulted in higher values of coefficients of determination and AHPC (the accuracy rate of high PM10 IAQI caused by nearby construction activity) compared to the original models when predicting high PM10 IAQI levels attributable to fugitive dust from nearby construction sites. PMID:24381481

  15. Characterizing exposure in community health studies: A participant-based approach to indoor/outdoor air monitoring

    EPA Science Inventory

    Introduction: Traffic-related air pollution has been associated with numerous adverse outcomes. However, community health studies of traffic-related air pollution have been hampered by the cost and participant burden associated with estimating household-level exposure through te...

  16. Qualitative multiplatform microanalysis of individual heterogeneous atmospheric particles from high-volume air samples.

    PubMed

    Conny, Joseph M; Collins, Sean M; Herzing, Andrew A

    2014-10-01

    High-resolution microscopic analysis of individual atmospheric particles can be difficult, because the filters upon which particles are captured are often not suitable as substrates for microscopic analysis. Described here is a multiplatform approach for microscopically assessing chemical and optical properties of individual heterogeneous urban dust particles captured on fibrous filters during high-volume air sampling. First, particles embedded in fibrous filters are transferred to polished silicon or germanium wafers with electrostatically assisted high-speed centrifugation. Particles are clustered in an array of deposit areas, which allows for easily locating the same particle with different microscopy instruments. Second, particles with light-absorbing and/or light-scattering behavior are identified for further study from bright-field and dark-field light-microscopy modes, respectively. Third, particles identified from light microscopy are compositionally mapped at high definition with field-emission scanning electron microscopy and energy-dispersive X-ray spectroscopy. Fourth, compositionally mapped particles are further analyzed with focused ion-beam (FIB) tomography, whereby a series of thin slices from a particle are imaged, and the resulting image stack is used to construct a three-dimensional model of the particle. Finally, particle chemistry is assessed over two distinct regions of a thin FIB slice of a particle with energy-filtered transmission electron microscopy (TEM) and electron energy-loss spectroscopy associated with scanning transmission electron microscopy (STEM). PMID:25220253

  17. Preliminary study of the use of terrestrial moss (Pleurozium schreberi) for biomonitoring traffic-related Pt and Rh deposition.

    PubMed

    Niemelä, M; Piispanen, J; Poikolainen, J; Perämäki, P

    2007-04-01

    The use of Pt and Rh as active components in automobile catalytic converters has led to increasing concentrations of these elements in several natural matrices. Because of this, the suitability of the use of a terrestrial moss (Pleurozium schreberi) for the passive biomonitoring of traffic-related Pt and Rh deposition was studied. The moss samples collected from Finland in and around areas with heavy traffic had increased Pt and Rh concentrations, with maximum values of 12.2 and 4.5 ng g(-1), respectively. In addition, the concentrations of commonly used catalytic converter additives (Al, Ce, La, Y, and Zr) and some elements related to traffic or mineral dust (Cd, Cu, Fe, Hf, Pb, and Zn) were also measured to obtain more information about the sources of Pt and Rh. Multivariate principal component analysis and cluster analysis were applied for identification of the emission sources of the elements. The results indicated a common traffic-related source of Pt and Rh. However, the results also showed that Pt and Rh concentrations in mosses are increased only in areas located close to traffic lanes. PMID:17364241

  18. [The use of individual protective devices for decreasing the microbial contamination of the inhaled air].

    PubMed

    Sedov, A V; Akin'shin, A V; Tregub, T I

    1995-01-01

    The work was aimed to justify application of gas masks and respirators with autonomous air source fo lower bacterial contamination of inhaled air. The studies also covered possible catch of bacteria by cotton and filters FPP-15-1.5, those composed of antimicrobial materials, containing furagin or copper ions. As the studies proved, for lower bacterial contaminations of inhaled air one can apply autonomous air source apparatus with filters made of Petrianov tissue, antimicrobial tissue (containing furagin or copper ions), as they reduce fungal content of the air. Such filters are self-disinfecting, but do not influence total contamination of the air. PMID:7663856

  19. Daily and seasonal variation of traffic related aerosol pollution in Thessaloniki, Greece, during the financial crisis

    NASA Astrophysics Data System (ADS)

    Vouitsis, Ilias; Amanatidis, Stavros; Ntziachristos, Leonidas; Kelessis, Apostolos; Petrakakis, Maximos; Stamos, Iraklis; Mitsakis, Evangelos; Samaras, Zissis

    2015-12-01

    Airborne urban particulate and gaseous pollutants measurements were conducted at the kerbside of a busy road and at a nearby urban background site of Thessaloniki, Greece, during a winter and a summer period. The main objective was to observe how the financial crisis has affected the air quality in the city, compared to previous measurements. Compared to a study conducted in 2006, the current work suggests that although average concentrations at the traffic affected site remain higher that in the urban background station, the differences are much smaller than in the past. A number of observations suggest a scenario of decrease in traffic activity and increase in biomass burning for residential heating. On this basis, the results suggest that traffic may be less important as an air quality contributor in a financially hit city. On the contrary, domestic heating appears as a significant contributor and affects areas of the city that were earlier not being of environmental concern. Because of the impact of biomass burning in residential areas, exposure calculations are required to estimate whether traffic or biomass burning is the overall highest contributors to daily PM dosages that citizens of the city are exposed to.

  20. Factors Affecting Parent’s Perception on Air Quality—From the Individual to the Community Level

    PubMed Central

    Guo, Yulin; Liu, Fengfeng; Lu, Yuanan; Mao, Zongfu; Lu, Hanson; Wu, Yanyan; Chu, Yuanyuan; Yu, Lichen; Liu, Yisi; Ren, Meng; Li, Na; Chen, Xi; Xiang, Hao

    2016-01-01

    The perception of air quality significantly affects the acceptance of the public of the government’s environmental policies. The aim of this research is to explore the relationship between the perception of the air quality of parents and scientific monitoring data and to analyze the factors that affect parents’ perceptions. Scientific data of air quality were obtained from Wuhan’s environmental condition reports. One thousand parents were investigated for their knowledge and perception of air quality. Scientific data show that the air quality of Wuhan follows an improving trend in general, while most participants believed that the air quality of Wuhan has deteriorated, which indicates a significant difference between public perception and reality. On the individual level, respondents with an age of 40 or above (40 or above: OR = 3.252; 95% CI: 1.170–9.040), a higher educational level (college and above: OR = 7.598; 95% CI: 2.244–25.732) or children with poor healthy conditions (poor: OR = 6.864; 95% CI: 2.212–21.302) have much more negative perception of air quality. On the community level, industrial facilities, vehicles and city construction have major effects on parents’ perception of air quality. Our investigation provides baseline information for environmental policy researchers and makers regarding the public’s perception and expectation of air quality and the benefits to the environmental policy completing and enforcing. PMID:27187432

  1. Characterization of individual aerosol particles in workroom air of aluminium smelter potrooms.

    PubMed

    Hoflich, Burkard L W; Weinbruch, Stephan; Theissmann, Ralf; Gorzawski, Hauke; Ebert, Martin; Ortner, Hugo M; Skogstad, Asbjorn; Ellingsen, Dag G; Drablos, Per A; Thomassen, Yngvar

    2005-05-01

    Aerosol particles with aerodynamic diameters between 0.18 and 10 microm were collected in the workroom air of two aluminium smelter potrooms with different production processes (Soderberg and Prebake processes). Size, morphology and chemical composition of more than 2000 individual particles were determined by high resolution scanning electron microscopy and energy-dispersive X-ray microanalysis. Based on chemical composition and morphology, particles were classified into different groups. Particle groups with a relative abundance above 1%(by number) include aluminium oxides, cryolite, aluminium oxides-cryolite mixtures, soot, silicates and sea salt. In both production halls, mixtures of aluminium oxides and cryolite are the dominant particle group. Many particles have fluoride-containing surface coatings or show agglomerations of nanometer-sized fluoride-containing particles on their surface. The phase composition of approximately 100 particles was studied by transmission electron microscopy. According to selected area electron diffraction, sodium beta-alumina (NaAl(11)O(17)) is the dominant aluminium oxide and cryolite (Na(3)AlF(6)) the only sodium aluminium fluoride present. Implications of our findings for assessment of adverse health effects are discussed. PMID:15877161

  2. Assessment of the influence of traffic-related particles in urban dust using sequential selective extraction and oral bioaccessibility tests.

    PubMed

    Patinha, C; Durães, N; Sousa, P; Dias, A C; Reis, A P; Noack, Y; Ferreira da Silva, E

    2015-08-01

    Urban dust is a heterogeneous mix, where traffic-related particles can combine with soil mineral compounds, forming a unique and site-specific material. These traffic-related particles are usually enriched in potentially harmful elements, enhancing the health risk for population by inhalation or ingestion. Urban dust samples from Estarreja city and traffic-related particles (brake dust and white traffic paint) were studied to understand the relative contribution of the traffic particles in the geochemical behaviour of urban dust and to evaluate the long-term impacts of the metals on an urban environment, as well as the risk to the populations. It was possible to distinguish two groups of urban dust samples according to Cu behaviour: (1) one group with low amounts of fine particles (<38 µm), low contents of organic material, high percentage of Cu in soluble phases, and low Cu bioaccessible fraction (Bf) values. This group showed similar chemical behaviour with the brake dust samples of low- to mid-range car brands (with more than 10 years old), composed by coarser wear particles; and (2) another group with greater amounts of fine particles (<38 µm), with low percentage of Cu associated with soluble phases, and with greater Cu Bf values. This group behaved similar to those found for brake dust of mid- to high-range car brands (with less than 10 years old). The results obtained showed that there is no direct correlation between the geoavailability of metals estimated by sequential selective chemical extraction (SSCE) and the in vitro oral bioaccessibility (UBM) test. Thus, oral bioaccessibility of urban dust is site specific. Geoavailability was greatly dependent on particle size, where the bioaccessibility tended to increase with a reduction in particle diameter. As anthropogenic particles showed high metal concentration and a smaller size than mineral particles, urban dusts are of major concern to the populations' health, since fine particles are easily re

  3. The use of lidar for the evaluation of traffic-related urban pollution

    SciTech Connect

    Eichinger, W.; Cooper, D.; Buttler, W.; Cottingame, W.; Tellier, L.

    1993-10-01

    Lidar (Light Detection and Ranging) is demonstrated as a tool for the detection and tracking of sources of aerosol pollution. Existing elastic lidars have been used to demonstrate the potential of the application of this technology in urban areas. Data from several experiments is shown along with analysis methods used for interpretation of the data. The goal of the project is to develop a light-weight, low-cost, lidar system and data analysis methods which can be used by urban planners and local air quality managers. The ability to determine the sources, i.e. causes, of non-attainment may lead to more effective use of tax dollars. Future directions for the project are also discussed.

  4. Air Pollution and Its Effects on an Individual's Health and Exercise Performance.

    ERIC Educational Resources Information Center

    Singh, A. I. Clifford

    1988-01-01

    Air Pollution is a common environmental stressor affecting the training and competitive performance of athletes, commonly irritating the eyes, nose, and throat. The health and exercise effects of such primary and secondary air pollutants as carbon monoxide, sulfur dioxide, air particulates, ozone, and nitrogen dioxide are discussed. (CB)

  5. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  6. The semi-individual study in air pollution epidemiology: a valid design as compared to ecologic studies.

    PubMed Central

    Künzli, N; Tager, I B

    1997-01-01

    The assessment of long-term effects of air pollution in humans relies on epidemiologic studies. A widely used design consists of cross-sectional or cohort studies in which ecologic assignment of exposure, based on a fixed-site ambient monitor, is employed. Although health outcome and usually a large number of covariates are measured in individuals, these studies are often called ecological. We will introduce the term semi-individual design for these studies. We review the major properties and limitations with regard to causal inference of truly ecologic studies, in which outcome, exposure, and covariates are available on an aggregate level only. Misclassification problems and issues related to confounding and model specification in truly ecologic studies limit etiologic inference to individuals. In contrast, the semi-individual study shares its methodological and inferential properties with typical individual-level study designs. The major caveat relates to the case where too few study areas, e.g., two or three, are used, which render control of aggregate level confounding impossible. The issue of exposure misclassification is of general concern in epidemiology and not an exclusive problem of the semi-individual design. In a multicenter setting, the semi-individual study is a valuable tool to approach long-term effects of air pollution. Knowledge about the error structure of the ecologically assigned exposure allows consideration of the impact of ecologically assigned exposure on effect estimation. Semi-individual studies, i.e., individual level air pollution studies with ecologic exposure assignment, more readily permit valid inference to individuals and should not be labeled as ecologic studies. PMID:9349825

  7. Developing an indicator for the chronic health impact of traffic-related pollutant emissions

    SciTech Connect

    Lepicier, Veronique; Chiron, Mireille; Joumard, Robert

    2013-01-15

    The goal of this study is to develop an emission based indicator for the health impact of the air pollution caused by traffic. This indicator must make it possible to compare different situations, for example different Urban Travel Plans, or technical innovations. Our work is based on a literature survey of methods for evaluating health impacts and, more particularly, those which relate to the atmospheric pollution caused by transport. We then define a health impact indicator based on the traffic emissions, named IISCEP for Chronic health impact indicator of pollutant emission. Here health is understood in a restricted meaning, excluding well-being. Only primary pollutants can be considered, as the inputs are emission data and an indicator must be simple. The indicator is calculated as the sum of each pollutant emission multiplied by a dispersion and exposition factor and a substance specific toxicity factor taking account of the severity. Last, two examples are shown using the IISCEP: comparison between petrol and diesel vehicles, and Nantes urban district in 2008 vs 2002. Even if it could still be improved, IISCEP is a straightforward indicator which can be used to gauge the chronic effects of inhaling primary pollutants. It can only be used in comparisons, between different scenarios or different technologies. The quality of the emissions data and the choice of the pollutants that are considered are the two essential factors that determine its validity and reliability. - Highlights: Black-Right-Pointing-Pointer The goal of the study is to develop an emission based indicator for the health impact of the air pollution caused by traffic. Black-Right-Pointing-Pointer It is based on a literature survey of methods for evaluating health impacts related to the atmospheric pollution. Black-Right-Pointing-Pointer We define a composite indicator based on the traffic emissions and on local data as dispersion conditions and population. Black-Right-Pointing-Pointer The

  8. Effects of noise from non-traffic-related ambient sources on sleep: review of the literature of 1990-2010.

    PubMed

    Omlin, Sarah; Bauer, Georg F; Brink, Mark

    2011-01-01

    This article reviews the literature about the effects of specific non-traffic-related ambient noise sources on sleep that appeared in the last two decades. Although everybody is faced with noise of non-traffic and non-industry origin (e.g. sounds made by neighbors, talk, laughter, music, slamming doors, structural equipment, ventilation, heat pumps, noise from animals, barking dogs, outdoor events etc.), little scientific knowledge exists about its effects on sleep. The findings of the present extensive literature search and review are as follows: Only a small number of surveys, laboratory and field studies about mainly neighborhood, leisure and animal noise have been carried out. Most of them indicate that ambient noise has some effect on human sleep. However, a quantitative meta-analysis and comparison is not possible due to the small number of studies available and at times large differences in quality. PMID:21768734

  9. Effect of time-activity adjustment on exposure assessment for traffic-related ultrafine particles

    PubMed Central

    Lane, Kevin J; Levy, Jonathan I; Scammell, Madeleine Kangsen; Patton, Allison P; Durant, John L; Mwamburi, Mkaya; Zamore, Wig; Brugge, Doug

    2015-01-01

    Exposures to ultrafine particles (<100 nm, estimated as particle number concentration, PNC) differ from ambient concentrations because of the spatial and temporal variability of both PNC and people. Our goal was to evaluate the influence of time-activity adjustment on exposure assignment and associations with blood biomarkers for a near-highway population. A regression model based on mobile monitoring and spatial and temporal variables was used to generate hourly ambient residential PNC for a full year for a subset of participants (n=140) in the Community Assessment of Freeway Exposure and Health study. We modified the ambient estimates for each hour using personal estimates of hourly time spent in five micro-environments (inside home, outside home, at work, commuting, other) as well as particle infiltration. Time-activity adjusted (TAA)-PNC values differed from residential ambient annual average (RAA)-PNC, with lower exposures predicted for participants who spent more time away from home. Employment status and distance to highway had a differential effect on TAA-PNC. We found associations of RAA-PNC with high sensitivity C-reactive protein and Interleukin-6, although exposure-response functions were non-monotonic. TAA-PNC associations had larger effect estimates and linear exposure-response functions. Our findings suggest that time-activity adjustment improves exposure assessment for air pollutants that vary greatly in space and time. PMID:25827314

  10. Effects of physical activity on the deposition of traffic-related particles into the human lungs in silico.

    PubMed

    Oravisjärvi, Kati; Pietikäinen, Mari; Ruuskanen, Juhani; Rautio, Arja; Voutilainen, Arto; Keiski, Riitta L

    2011-10-01

    Traffic-related particle emissions have been a great concern over a number of years due to their adverse health effects. In this research project, traffic-related particle deposition in the human lungs is studied using lung deposition estimates based on the ICRP 66 model. This study covers four human groups, i.e. adult males, adult females and two groups of children aged 5 and 10 years. The study examines particle deposition in the human lungs in relation to four different physical exercise levels, i.e. sleeping, sitting, light exercise and heavy exercise. To conduct the study, the particle size distributions of diesel and compressed natural gas (CNG) busses were monitored in field laboratory conditions. The study indicates that the total number of diesel particles measured is greater than the total number of CNG particles. The results further display that most of the diesel particles measured are smaller than 0.2 μm, whereas the CNG particles are smaller than 0.05 μm in aerodynamic diameter. The level of physical exercise, as well as the age and gender of a person affects the deposition of particles in the lungs. An increase in the physical activity results in larger amounts of small-size particles penetrating deeper into the respiratory system. The lung deposition of particles in males was substantially different compared to that of females and children. The deposited dose of particles was generally lower for females than for males and further lower for children than for females. This article argues that these groups should be discussed separately when conducting exposure assessments and that the level of physical activity should be taken into account when assessing potential health consequences. PMID:21871649

  11. PAHs, PAH-induced carcinogenic potency, and particle-extract-Induced cytotoxicity of traffic-related nano/ultrafine particles.

    PubMed

    Lin, Chih-Chung; Chen, Shui-Jen; Huang, Kuo-Lin; Lee, Wen-Jhy; Lin, Wen-Yinn; Tsai, Jen-Hsiung; Chaung, Hso-Chi

    2008-06-01

    Polycyclic aromatic hydrocarbons (PAHs) bound in nano/ ultrafine particles from vehicle emissions may cause adverse health effects. However, little is known about the characteristics of the nanoparticle-bound PAHs and the PAH-associated carcinogenic potency/cytotoxicity; therefore, traffic-related nano/ultrafine particles were collected in this study using a microorifice uniform deposition impactor(MOUDI) and a nano-MOUDI. For PM0.056--18, the difference in size-distribution of particulate total-PAHs between non-after-rain and after-rain samples was statistically significant at alpha = 0.05; however, this difference was not significant for PM0.01--0.056. The PAH correlation between PM0.01--0.1 and PM0.1--1.8 was lower for the after-rain samples than forthe non-after-rain samples. The average particulate total-PAHs in five samplings displayed a trimodal distribution with a major peak in the Aitken mode (0.032--0.056 microm). About half of the particulate total-PAHs were in the ultrafine size range. The BaPeq sums of BaP, IND, and DBA (with toxic equivalence factors > or = 0.1) accounted for approximately 90% of the total-BaPeq in the nano/ultrafine particles, although these three compounds contributed little to the mass of the sampled particles. The mean content of the particle-bound total-PAHs/-BaPeqs and the PAH/BaPeq-derived carcinogenic potency followed the order nano > ultrafine > fine > coarse. For a sunny day sample, the cytotoxicity of particle extracts (using 1:1 (v/v) n-hexane/dichloromethane) was significantly higher (p < 0.05) for the nano (particularly the 10-18 nm)/ultrafine particles than for the coarser particles and bleomycin. Therefore, traffic-related nano and ultrafine particles are possibly cytotoxic. PMID:18589992

  12. Traffic-related differences in indoor and personal absorption coefficient measurements in Amsterdam, the Netherlands

    NASA Astrophysics Data System (ADS)

    Wichmann, Janine; Janssen, Nicole A. H.; van der Zee, Saskia; Brunekreef, Bert

    Population studies indicate that study participants living near major roads are more prone to chronic respiratory symptoms, lung function decrements and hospital admissions for asthma. The majority of the studies used proxy measures, such as distance to major roads or traffic intensity in the surroundings of the home. Few studies have communicated findings of concurrently performed measurements of outdoor, indoor and personal air pollution in urban streets with high- and low-traffic density. Measuring light absorption or reflectance of particulate matter (PM) collected on filters is an alternative method to determine elemental carbon, a marker for particles produced by incomplete combustion, compared to expensive and destructive analytical methods. This study sets out to test the null hypothesis that there is no difference in personal and indoor filter absorption coefficients for participants living along busy and quiet roads in Amsterdam. In one study we measured personal and indoor absorption coefficients in a sample of adults (50-70 years) and, in another study, the indoor levels in a population of adults (50-70 years) and school children (10-12 years). In the first study, the ratios of personal and indoor absorption coefficients in homes along busy roads compared with homes on quiet streets were significantly higher by 29% for personal measurements ( n=16 days, p<0.001), and by 19% for indoor measurements ( n=20, p<0.001), while in the second study, the ratio for the indoor measurements was higher by 26% ( n=25 days, p<0.05). Exposure differences between homes along busy compared to homes along quiet streets remained and significant after adjustment for potential indoor sources (such as cooking and use of unvented heating appliances). This study therefore provides tentative support for the use of the type of road as proxy measure for indoor and personal absorption coefficient measurements in epidemiological studies due to the limitations of the study.

  13. Air Pollution Exposure Model for Individuals (EMI) in Health Studies: Evaluation for Ambient PM2.5

    EPA Science Inventory

    Health studies of fine particulate matter (PM2.5) often use outdoor concentrations as exposure surrogates, which fail to account for indoor attenuation of ambient PM2.5 and time indoors. To address these limitations, we developed an air pollution exposure model for individuals (E...

  14. 38 CFR 3.7 - Individuals and groups considered to have performed active military, naval, or air service.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2011-07-01 2011-07-01 false Individuals and groups considered to have performed active military, naval, or air service. 3.7 Section 3.7 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS ADJUDICATION Pension, Compensation, and Dependency and Indemnity Compensation General §...

  15. 38 CFR 3.7 - Individuals and groups considered to have performed active military, naval, or air service.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false Individuals and groups considered to have performed active military, naval, or air service. 3.7 Section 3.7 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS ADJUDICATION Pension, Compensation, and Dependency and Indemnity Compensation General §...

  16. The impact of decreases in air temperature and increases in ozone on markers of endothelial function in individuals having type-2 diabetes

    EPA Science Inventory

    Several studies have reported an association between air pollution and endothelial dysfunction, especially in individuals having diabetes. However, very few studies have examined the impact of air temperature on endothelial function. The objective of this analysis was to investig...

  17. MICA-AIR: A PARTICIPANT-BASED APPROACH TO EXPOSURE ASSESSMENT IN EPIDEMIOLOGIC AND COMMUNITY HEALTH STUDIES

    EPA Science Inventory

    Objective. Epidemiologic and community health studies of traffic-related air pollution and childhood asthma have been limited by resource intensive exposure assessment techniques. The current study utilized a novel participant-based approach to collect air monitoring data f...

  18. An investigation into the traffic-related fraction of isoprene at an urban location

    NASA Astrophysics Data System (ADS)

    Borbon, Agnès; Fontaine, Hervé; Veillerot, M.; Locoge, N.; Galloo, J. C.; Guillermo, René

    Continuous hourly measurements of isoprene and 30 other hydrocarbons were performed at an urban centre site in Lille, France, from May 1997 to April 1999. Parallel mass emissions of the same hydrocarbons from in-service passenger vehicles were determined from measurements made on a chassis dynamometer using the European MVEG driving cycle. On the one hand, descriptive statistics and principal component analysis revealed the strong traffic origin of isoprene in winter months and its double biogenic and anthropogenic origin during the summer. On the other hand, the emission measurements of individual hydrocarbons in exhaust gases confirmed the presence of isoprene in petrol fuelled (with or without catalytic converters) and diesel car exhausts. Finally, the isoprene/acetylene ratios, both of them derived from ambient concentrations and emission factors, were compared. No statistically significant difference was found in winter, indicating the strict traffic origin of isoprene during that period. For the winter period, a simple regression analysis was performed on daily isoprene concentrations vs. those of acetylene and three other exhaust gases tracers—propene, ethylene and 1,3-butadiene. The established regression equations, together with the four tracer concentrations, were used to estimate the vehicle exhaust fractions of isoprene. From November to March, vehicle exhaust explained the totality of isoprene levels. While traffic remained the major source of isoprene with a contribution greater than 50% during the growing season, it still constituted a non-negligible source of isoprene in summer, anti-correlated to temperature and fluctuating between 10% and 50%. The application with 1,3-butadiene gives the greatest estimation of the anthropogenic fraction of isoprene. Other sources of 1,3-butadiene, acetylene, ethylene and propene were suspected in addition to their known traffic origin.

  19. Teaching Activity Report: A Concise and Simple Summary of Individual Instructional Effort. AIR Forum 1979 Paper.

    ERIC Educational Resources Information Center

    McCollester, Charles W.; Farrell, Richard L., Jr.

    The University of Notre Dame developed the Teaching Activity Report in an effort to present professors with meaningful summaries of their individual instructional efforts each semester. Geared to meet the needs of the individual instructors and their superiors, the Teaching Activity Report synthesizes all facets of the individual's instructional…

  20. Environmental and traffic-related parameters affecting road dust composition: A multi-technique approach applied to Venice area (Italy)

    NASA Astrophysics Data System (ADS)

    Valotto, Gabrio; Rampazzo, Giancarlo; Visin, Flavia; Gonella, Francesco; Cattaruzza, Elti; Glisenti, Antonella; Formenton, Gianni; Tieppo, Paulo

    2015-12-01

    Road dust is a non-exhaust source of atmospheric particulate by re-suspension. It is composed of particles originating from natural sources as well as other non-exhaust source such as tire, brake and asphalt wear. The discrimination between atmospheric particles directly emitted from abrasion process and those related to re-suspension is therefore an open issue, as far as the percentage contribution of non-exhaust emissions is becoming more considerable due also to the recent policy actions and the technological upgrades in the automotive field, focused on the reduction of exhaust emissions. In this paper, road dust collected along the bridge that connects Venice (Italy) to the mainland is characterized with a multi-technique approach in order to determine its composition depending on environmental as well as traffic-related conditions. Six pollutant sources of road dust particles were identified by cluster analysis: brake, railway, tire, asphalt, soil + marine, and mixed combustions. Considering the lack of information on this matrix in this area, this study is intended to provide useful information for future identification of road dust re-suspension source in atmospheric particulate.

  1. REACTIVE HAZARDOUS AIR POLLUTANTS (HAPS) IN THE RESPIRATORY TRACT; EFFECTS IN HEALTHY AND SUSCEPTIBLE INDIVIDUALS

    EPA Science Inventory

    Exposure-dose-effect linkages for chemically reactive air toxic compounds. The respiratory epithelium is coated with an "airway lining fluid" that serves as a defense against chlorine and other reactive gases because it contains proteins, lipids and antioxidants that can absorb...

  2. RECOMMENDED METHODS FOR AMBIENT AIR MONITORING OF NO, NO2, NOY, AND INDIVIDUAL NOZ SPECIES

    EPA Science Inventory

    The most appropriate monitoring methods for reactive nitrogen oxides are identified subject to the requirements for diagnostic testing of air quality simulation models. Measurements must be made over 1 h or less and with an uncertainty of

  3. Air Pollution and Individual and Neighborhood Socioeconomic Status: Evidence from the Multi-Ethnic Study of Atherosclerosis (MESA)

    PubMed Central

    Diez-Roux, Ana V.; Adar, Sara D.; Auchincloss, Amy H.; Lovasi, Gina S.; O’Neill, Marie S.; Sheppard, Lianne; Kaufman, Joel D.

    2013-01-01

    Background: Although research has shown that low socioeconomic status (SES) and minority communities have higher exposure to air pollution, few studies have simultaneously investigated the associations of individual and neighborhood SES with pollutants across multiple sites. Objectives: We characterized the distribution of ambient air pollution by both individual and neighborhood SES using spatial regression methods. Methods: The study population comprised 6,140 participants from the Multi-Ethnic Study of Atherosclerosis (MESA). Year 2000 annual average ambient PM2.5 and NOx concentrations were calculated for each study participant’s home address at baseline examination. We investigated individual and neighborhood (2000 U.S. Census tract level) SES measures corresponding to the domains of income, wealth, education, and occupation. We used a spatial intrinsic conditional autoregressive model for multivariable analysis and examined pooled and metropolitan area–specific models. Results: A 1-unit increase in the z-score for family income was associated with 0.03-μg/m3 lower PM2.5 (95% CI: –0.05, –0.01) and 0.93% lower NOx (95% CI: –1.33, –0.53) after adjustment for covariates. A 1-SD–unit increase in the neighborhood’s percentage of persons with at least a high school degree was associated with 0.47-μg/m3 lower mean PM2.5 (95% CI: –0.55, –0.40) and 9.61% lower NOx (95% CI: –10.85, –8.37). Metropolitan area–specific results exhibited considerable heterogeneity. For example, in New York, high-SES neighborhoods were associated with higher concentrations of pollution. Conclusions: We found statistically significant associations of SES measures with predicted air pollutant concentrations, demonstrating the importance of accounting for neighborhood- and individual-level SES in air pollution health effects research. Citation: Hajat A, Diez-Roux AV, Adar SD, Auchincloss AH, Lovasi GS, O’Neill MS, Sheppard L, Kaufman JD. 2013. Air pollution and

  4. Adaptive individual-cylinder thermal state control using intake air heating for a GDCI engine

    DOEpatents

    Roth, Gregory T.; Sellnau, Mark C.

    2016-08-09

    A system for a multi-cylinder compression ignition engine includes a plurality of heaters, at least one heater per cylinder, with each heater configured to heat air introduced into a cylinder. Independent control of the heaters is provided on a cylinder-by-cylinder basis. A combustion parameter is determined for combustion in each cylinder of the engine, and control of the heater for that cylinder is based on the value of the combustion parameter for combustion in that cylinder. A method for influencing combustion in a multi-cylinder compression ignition engine, including determining a combustion parameter for combustion taking place in a cylinder of the engine and controlling a heater configured to heat air introduced into that cylinder, is also provided.

  5. Using geographic information systems to assess individual historical exposure to air pollution from traffic and house heating in Stockholm.

    PubMed Central

    Bellander, T; Berglind, N; Gustavsson, P; Jonson, T; Nyberg, F; Pershagen, G; Järup, L

    2001-01-01

    A specific aim of a population-based case-control study of lung cancer in Stockholm, Sweden, was to use emission data, dispersion models, and geographic information systems (GIS) to assess historical exposure to several components of ambient air pollution. Data collected for 1,042 lung cancer cases and 2,364 population controls included information on residence from 1955 to the end of follow-up for each individual, 1990-1995. We assessed ambient air concentrations of pollutants from road traffic and heating throughout the study area for three points in time (1960, 1970, and 1980) using reconstructed emission data for the index pollutants nitrogen oxides (NO(x)/NO(2)) and sulfur dioxide together with dispersion modeling. NO(2) estimates for 1980 compared well with actual measurements, but no independently measured (study-external) data were available for SO(2), precluding similar validation. Subsequently, we used linear intra- and extrapolation to obtain estimates for all other years 1955-1990. Eleven thousand individual addresses were transformed into geographic coordinates through automatic and manual procedures, with an estimated error of < 100 m for 90% of the addresses. Finally, we linked annual air pollution estimates to annual residence coordinates, yielding long-term residential exposure indices for each individual. There was a wide range of individual long-term average exposure, with an 11-fold interindividual difference in NO(2) and an 18-fold difference in SO(2). The 30-year average for all study subjects was 20 microg/m(3) NO(2) from traffic and 53 microg/m(3) SO(2) from heating. The results indicate that GIS can be useful for exposure assessment in environmental epidemiology studies, provided that detailed geographically related exposure data are available for relevant time periods. PMID:11445519

  6. Relationship between air pollution and positivity of RA-related autoantibodies in individuals without established RA: a report on SERA

    PubMed Central

    Gan, Ryan W; Deane, Kevin D; Zerbe, Gary O; Demoruelle, M Kristen; Weisman, Michael H; Buckner, Jane H; Gregersen, Peter K; Mikuls, Ted R; O’Dell, James R; Keating, Richard M; Holers, V Michae; Norris, Jill M

    2013-01-01

    Introduction Studies suggest that respiratory exposures including smoking, proximity to traffic and air pollution might be associated with development of rheumatoid arthritis (RA). RA-related autoantibodies are predictive of the development of RA. Objective We evaluated the relationship between RA-related autoantibodies and exposure to particulate matter (PM), a measure of air pollution of interest to health, in individuals without RA. Methods The Studies of the Etiology of Rheumatoid Arthritis (SERA) is a multicentre study following first-degree relatives (FDRs) of a proband with RA. FDRs are without the 1987 ACR (American College of Rheumatology) classifiable RA at enrolment and are followed for the development of RA-related autoimmunity. RA-related autoantibody outcomes as well as tender and swollen joint outcomes were assessed. Exposure to PM was assigned using ambient air pollution monitoring data and interpolated with inverse distance weighting spatial analyses using Geographic Information Systems. PM exposures were linked to FDR’s residential zip codes. Results RA-related autoantibodies as well as tender or swollen joints are not associated with ambient PM concentrations. Discussion While other respiratory exposures may be associated with increased risk of RA, our data suggest that ambient PM is not associated with autoantibodies and joint signs among individuals without RA, but at increased risk of developing RA. PMID:23572338

  7. Do group responses mask the effects of air pollutants on potentially sensitive individuals in controlled human exposure studies?

    PubMed

    Goodman, Julie E; Seeley, Mara; Mattuck, Rosemary; Thakali, Sagar

    2015-04-01

    To establish primary National Ambient Air Quality Standards (NAAQS) for criteria air pollutants such as nitrogen dioxide (NO2), ozone (O3), and sulfur dioxide (SO2), US EPA relies in part on controlled human exposure studies. It has been suggested that evaluating average responses for all participants in these studies may not reflect the responses of sensitive participants in these studies. To evaluate this, we identified controlled exposure studies with multiple exposure concentrations or durations that provided individual-level lung function data. Based on individual lung function responses at specific exposure concentrations and the slope of individual concentration-response curves, we identified 12 participants out of a total of 208 participants in 12 studies who were potentially sensitive to O3, SO2, or sulfuric acid (H2SO4). We did not identify any participants sensitive to NO2. All of these participants were found to be potentially sensitive only at concentrations that were well above the NAAQS (SO2), above likely ambient concentrations (H2SO4), or at concentrations at which the study reported significant lung function effects for all participants (O3). Based on our analysis, average responses for all participants combined adequately reflect lung function responses for potentially sensitive study participants at concentrations in the range of the current NAAQS. PMID:25667955

  8. Pulmonary and cardiovascular effects of traffic-related particulate matter: 4-week exposure of rats to roadside and diesel engine exhaust particles.

    PubMed

    Gerlofs-Nijland, Miriam E; Totlandsdal, Annike I; Kilinç, Evren; Boere, A John F; Fokkens, Paul H B; Leseman, Daan L A C; Sioutas, Constantinos; Schwarze, Per E; Spronk, Henri M; Hadoke, Patrick W F; Miller, Mark R; Cassee, Flemming R

    2010-12-01

    Traffic-related particulate matter (PM) may play an important role in the development of adverse health effects, as documented extensively in acute toxicity studies. However, rather little is known about the impacts of prolonged exposure to PM. We hypothesized that long-term exposure to PM from traffic adversely affects the pulmonary and cardiovascular system through exacerbation of an inflammatory response. To examine this hypothesis, Fisher F344 rats, with a mild pulmonary inflammation at the onset of exposure, were exposed for 4 weeks, 5 days/week for 6 h a day to: (a) diluted diesel engine exhaust (PM(DEE)), or: (b) near roadside PM (PM(2.5)). Ultrafine particulates, which are largely present in diesel soot, may enter the systemic circulation and directly or indirectly trigger cardiovascular effects. Hence, we assessed the effects of traffic-related PM on pulmonary inflammation and activity of procoagulants, vascular function in arteries, and cytokine levels in the heart 24 h after termination of the exposures. No major adverse health effects of prolonged exposure to traffic-related PM were detected. However, some systemic effects due to PM(DEE) exposure occurred including decreased numbers of white blood cells and reduced von Willebrand factor protein in the circulation. In addition, lung tissue factor activity is reduced in conjunction with reduced lung tissue thrombin generation. To what extent these alterations contribute to thrombotic effects and vascular diseases remains to be established. In conclusion, prolonged exposure to traffic-related PM in healthy animals may not be detrimental due to various biological adaptive response mechanisms. PMID:21126152

  9. The toll of traffic-related fatalities in a metropolitan Italian area through the experience of the Department of Legal Medicine.

    PubMed

    Amadasi, Alberto; Cerutti, Elisa; Spagnoli, Laura; Blandino, Alberto; Rancati, Alessandra; Gallo, Carlotta; Mancini, Elisabetta; Rizzi, Vittorio; Cattaneo, Cristina

    2016-06-01

    Despite the introduction of new traffic laws in Italy, traffic-related deaths are still a huge burden. The study presents data and medico-legal issues behind traffic deaths in Milan between 2001 and 2012 (1506 traffic-related deaths). Data were collected from the database of the Department of Legal Medicine: 79.4% males and 20.6% females (mean age 44.14). The target group concerned traumatic deaths as a consequence of the accident as well as deaths not directly related to an accident. Although 6.1% were non-traumatic deaths (cause of death unconnected to the accident, i.e. because of a heart attack, or when death occurred after survival and cause of death was not related certainly to the accident), multiple skeletal/visceral injuries were the main cause of death (57.9%), occurring in motorcyclists the most (63.7%). Injuries to the skull and brain were the second cause of death (25.9%). Victims were mostly males (79.4%) and drivers (77.6%). Fifty-five per cent were deaths on-scene, while 45% survived. Other variables were also considered: medications, medical history, and drugs/alcohol/smoke. A downward trend in traffic-related fatalities was evident, but the toll is still high. This study should be a glimpse at the actual situation, since it is indicative of a metropolitan area where autopsies are systematically performed. PMID:25563928

  10. SENSOR FOR INDIVIDUAL BURNER CONTROL OF FIRING RATE, FUEL-AIR RATIO, AND COAL FINENESS CORRELATION

    SciTech Connect

    Wayne Hill; Roger Demler; Robert G. Mudry

    2004-10-01

    Instrumentation difficulties encountered in the previous reporting period were addressed early in this reporting period, resulting in a new instrumentation configuration that appears to be free of the noise issues found previously. This permitted the collection of flow calibration data to begin. The first issues in question are the effects of the type and location of the transducer mount. Data were collected for 15 different transducer positions (upstream and downstream of an elbow in the pipe), with both a stud mount and a magnetic transducer mount, for each of seven combinations of air and coal flow. Analysis of these data shows that the effects of the transducer mount type and location on the resulting dynamics are complicated, and not easily captured in a single analysis. To maximize the practical value of the calibration data, further detailed calibration data will be collected with both the magnetic and stud mounts, but at a single mounting location just downstream of a pipe elbow. This testing will be performed in the Coal Flow Test Facility in the next reporting period. The program progress in this reporting period was sufficient to put us essentially back on schedule.

  11. Microfluidic device for robust generation of two-component liquid-in-air slugs with individually controlled composition

    PubMed Central

    Liu, Kan; Chen, Yi-Chun; Tseng, Hsian-Rong

    2010-01-01

    Using liquid slugs as microreactors and microvessels enable precise control over the conditions of their contents on short-time scales for a wide variety of applications. Particularly for screening applications, there is a need for control of slug parameters such as size and composition. We describe a new microfluidic approach for creating slugs in air, each comprising a size and composition that can be selected individually for each slug. Two-component slugs are formed by first metering the desired volume of each reagent, merging the two volumes into an end-to-end slug, and propelling the slug to induce mixing. Volume control is achieved by a novel mechanism: two closed chambers on the chip are initially filled with air, and a valve in each is briefly opened to admit one of the reagents. The pressure of each reagent can be individually selected and determines the amount of air compression, and thus the amount of liquid that is admitted into each chamber. We describe the theory of operation, characterize the slug generation chip, and demonstrate the creation of slugs of different compositions. The use of microvalves in this approach enables robust operation with different liquids, and also enables one to work with extremely small samples, even down to a few slug volumes. The latter is important for applications involving precious reagents such as optimizing the reaction conditions for radiolabeling biological molecules as tracers for positron emission tomography. Electronic supplementary material The online version of this article (doi:10.1007/s10404-010-0617-0) contains supplementary material, which is available to authorized users. PMID:20930933

  12. GPS-based Microenvironment Tracker (MicroTrac) Model to Estimate Time-Location of Individuals for Air Pollution Exposure Assessments: Model Evaluation in Central North Carolina

    EPA Science Inventory

    A critical aspect of air pollution exposure assessment is the estimation of the time spent by individuals in various microenvironments (ME). Accounting for the time spent in different ME with different pollutant concentrations can reduce exposure misclassifications, while failure...

  13. Fine-scale characterization of traffic-related mortality associated with exposure to PM2.5

    EPA Science Inventory

    Emission from on-road vehicles is a major contributor of air pollution-related premature death. Previous studies have estimated that on-road emissions in the U.S. cause 29,000 to 53,000 ozone and PM2.5-related premature deaths. In these studies, air quality chemical transport mod...

  14. Chemical composition of individual aerosol particles in workplace air during production of manganese alloys.

    PubMed

    Gunst, S; Weinbruch, S; Wentzel, M; Ortner, H M; Skogstad, A; Hetland, S; Thomassen, Y

    2000-02-01

    Aerosol particle samples were collected at ELKEM ASA ferromanganese (FeMn) and silicomanganese (SiMn) smelters at Porsgrunn, Norway, during different production steps: raw material mixing, welding of protective steel casings, tapping of FeMn and slag, crane operation moving the ladles with molten metal, operation of the Metal Oxygen Refinement (MOR) reactor and casting of SiMn. Aerosol fractions were assessed for the analysis of the bulk elemental composition as well as for individual particle analysis. The bulk elemental composition was determined by inductively coupled plasma atomic emission spectrometry. For individual particle analysis, an electron microprobe was used in combination with wavelength-dispersive techniques. Most particles show a complex composition and cannot be attributed to a single phase. Therefore, the particles were divided into six groups according to their chemical composition: Group I, particles containing mainly metallic Fe and/or Mn; Group II, slag particles containing mainly Fe and/or Mn oxides; Group III, slag particles consisting predominantly of oxidized flux components such as Si, Al, Mg, Ca, Na and K; Group IV, particles consisting mainly of carbon; Group V, mixtures of particles from Groups II, III and IV; Group VI, mixtures of particles from Groups II and III. In raw material mixing, particles originating from the Mn ores were mostly found. In the welding of steel casings, most particles were assigned to Group II, Mn and Fe oxides. During the tapping of slag and metal, mostly slag particles from Group III were found (oxides of the flux components). During movement of the ladles, most particles came from Group II. At the MOR reactor, most of the particles belonged to the slag phase consisting of the flux components (Group III). The particles collected during the casting of SiMn were mainly attributed to the slag phase (Groups III and V). Due to the compositional complexity of the particles, toxicological investigations on the

  15. Sensitivity Analysis of Dispersion Model Results in the NEXUS Health Study Due to Uncertainties in Traffic-Related Emissions Inputs

    EPA Science Inventory

    Dispersion modeling tools have traditionally provided critical information for air quality management decisions, but have been used recently to provide exposure estimates to support health studies. However, these models can be challenging to implement, particularly in near-road s...

  16. Effect of air temperature and relative humidity at various fuel-air ratios on exhaust emissions on a per-mode basis of an Avco Lycoming 0-320 DIAD light aircraft engine. Volume 2: Individual data points

    NASA Technical Reports Server (NTRS)

    Skorobatckyi, M.; Cosgrove, D. V.; Meng, P. R.; Kempke, E. R.

    1976-01-01

    A carbureted four cylinder air cooled 0-320 DIAD Lycoming aircraft engine was tested to establish the effects of air temperature and humidity at various fuel-air ratios on the exhaust emissions on a per-mode basis. The test conditions included carburetor lean-out at air temperatures of 50, 59, 80, and 100 F at relative humidities of 0, 30, 60, and 80 percent. Temperature-humidity effects at the higher values of air temperature and relative humidity tested indicated that the HC and CO emissions increased significantly, while the NOx emissions decreased. Even at a fixed fuel-air ratio, the HC emissions increase and the NOx emissions decrease at the higher values of air temperature and humidity. Volume II contains the data taken at each of the individual test points.

  17. Between-airport heterogeneity in air toxics emissions associated with individual cancer risk thresholds and population risks

    PubMed Central

    2009-01-01

    Background Airports represent a complex source type of increasing importance contributing to air toxics risks. Comprehensive atmospheric dispersion models are beyond the scope of many applications, so it would be valuable to rapidly but accurately characterize the risk-relevant exposure implications of emissions at an airport. Methods In this study, we apply a high resolution atmospheric dispersion model (AERMOD) to 32 airports across the United States, focusing on benzene, 1,3-butadiene, and benzo [a]pyrene. We estimate the emission rates required at these airports to exceed a 10-6 lifetime cancer risk for the maximally exposed individual (emission thresholds) and estimate the total population risk at these emission rates. Results The emission thresholds vary by two orders of magnitude across airports, with variability predicted by proximity of populations to the airport and mixing height (R2 = 0.74–0.75 across pollutants). At these emission thresholds, the population risk within 50 km of the airport varies by two orders of magnitude across airports, driven by substantial heterogeneity in total population exposure per unit emissions that is related to population density and uncorrelated with emission thresholds. Conclusion Our findings indicate that site characteristics can be used to accurately predict maximum individual risk and total population risk at a given level of emissions, but that optimizing on one endpoint will be non-optimal for the other. PMID:19426510

  18. Gas-to-particle conversion of mercury, arsenic and selenium through reactions with traffic-related compounds? Indications from lead isotopes

    NASA Astrophysics Data System (ADS)

    Chiaradia, Massimo; Cupelin, François

    Relationships between metal (Cu, Zn, Pb, Cd, Hg, As, Se) concentrations and lead isotope compositions of Geneva aerosols for the period October 1996-September 1997 are investigated. Lead in Geneva is contributed by petrol, waste incineration and, only in winter, coal. Lead and copper during summer and copper and zinc during winter correlate positively with the lead isotope signature of the incinerator suggesting derivation of relevant amounts of these metals from such source. On the contrary, three volatile metals (Hg, As, Se), which can be present in the atmosphere as gaseous compounds at significant levels, display an anomalous strong correlation with the isotope signature of traffic-lead in summer. These metals are unlikely to be contributed by automotive combustion and their most probable summer source is also represented by waste incineration. We suggest that the correlation of Hg, As and Se with automotive lead could unveil conversion of these volatile metals from the gaseous to the particulate phase in concomitance with increasing concentration of traffic-related compounds of which lead isotopes are a valid tracer. Hg, As and Se do not correlate directly with traffic-related gases (e.g. CO, NO x, O 3, THC) while they do correlate only with automotive lead. This is probably due to an atmospheric residence time more similar to traffic-generated lead aerosols than to automotive gases. It has been suggested elsewhere that gaseous mercury can be transformed to the particulate phase through atmospheric reactions with traffic-related oxidants like ozone. Our data might indicate that similar processes are responsible for the gas-to-particle conversion not only of gaseous Hg, but also of As and Se in the atmosphere of Geneva.

  19. Identification of traffic-related metals and the effects of different environments on their enrichment in roadside soils along the Qinghai-Tibet highway.

    PubMed

    Zhang, Hua; Wang, Zhaofeng; Zhang, Yili; Ding, Mingjun; Li, Lanhui

    2015-07-15

    The road transportation could affect roadside soils environment detrimentally, including heavy metal enrichment. In order to identify and evaluate the enrichment of heavy metals resulted from road transportation on the Tibetan Plateau, the 11 heavy metals (V, Cr, Co, Ni, Cu, Zn, As, Cd, Rb, Pb and Tl) in the topsoil (0-10 cm depth) from four sites along the Qinghai-Tibet highway were discussed in this study. Our results indicate that heavy metals such as Cr, Cu, Zn, As, Cd and Pb are related to road transportation. The content of most of these heavy metals in roadside soils decreased exponentially with the distance from the road, as did some of the Nemero Synthesis Indexes (PN values). The contamination factor for the traffic-related metals ranged from 0.56 (no pollution) to 5.67 (considerable pollution) and the Nemero Synthesis Indexes of these heavy metals ranged from 0.80 (no pollution) to 4.49 (severe pollution). Cd was of priority concern as it had the highest contamination factor. The highest PN value for these traffic-related heavy metals was found in soils at site TTH (alpine steppe). Although transportation contributed to the high contents of these traffic-related metals in roadside environments, regional differences such as wind and the terrain also had significant relationship with their enrichment in these roadside soils. The roadside distance at which there is a potential risk to livestock and wildlife from the contamination of soils by heavy metals should be determined scientifically along the Qinghai-Tibet highway, based on the different natural environments found in the region. PMID:25835375

  20. Influence of angular exposure and proximity to vehicular traffic on the diversity of epiphytic lichens and the bioaccumulation of traffic-related elements.

    PubMed

    Paoli, Luca; Munzi, Silvana; Fiorini, Elisa; Gaggi, Carlo; Loppi, Stefano

    2013-01-01

    This study investigated the influence of angular exposure and distance from vehicular traffic on the diversity of epiphytic lichens and the bioaccumulation of traffic-related elements in a town of central Italy. An Index of Lichen Diversity (ILD) was calculated on the street-facing and the opposite side of road-lining trees and in a urban park 250 m away, and the content of selected trace elements (Al, Ba, Ce, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Sb, V, and Zn) was determined in samples of the lichen Punctelia borreri (Sm.) Krog growing on tree bark, both on the exposed and opposite sides. ILD increases with distance from traffic emissions. However, at the site with vehicle traffic, non-nitrophilous lichens decreased while nitrophilous ones increased. The concentration of the traffic-related elements Ba, Cr, Cu, Mn, Sb, and Zn accumulated in thalli of P. borreri was higher on roadside trees than in trees from the urban park. ILD was not affected by the angular exposure to the road and the bioaccumulation of traffic-related elements was similar in lichens from the side of the bole exposed to traffic emissions and particulate resuspension and from the opposite side. The angular exposure in respect to the traffic source does not influence trace element accumulation. These results are important when using lichens for biomonitoring purposes, both for planning future studies and for the reliability of the interpretation of past surveys that do not report information about the angular exposure of the collected lichen material. PMID:22528998

  1. The role of the African-American physician in reducing traffic-related injury and death among African Americans: consensus report of the National Medical Association.

    PubMed Central

    Daniels, Fernando; Moore, Wayne; Conti, Christopher; Norville Perez, Lucille C.; Gaines, Beverly M.; Hood, Rodney G.; Swain, Ian J. J.; Williams, Rudolph; Burgess, Chaka T.

    2002-01-01

    ISSUE: Traffic-related injuries and fatalities disproportionately affect the African American community. These high rates of traffic-related death and injury among African Americans manifest in multiple areas of traffic safety, including: Failure to use seat belts and child restraints. High incidence of alcohol-impaired driving. Failure to follow child passenger and seat belt safety laws and recommendations. High rates of pedestrian accidents, ofen brought on by impairments of drivers and/or pedestrians. Research indicates that national public information campaigns, with general messages only slightly modified for African American audiences, have not been culturally appropriate or effective in changing traffic safety behavior. In addition, traditional distribution mechanisms for these messages have not effectively reached the target population. Evidence suggests that in the African American community, there is a pervasive lack of knowledge of the devastating impact of traffic-related accidents on the overall health status of the community. This lack of information has resulted in a tragic cycle, in which parents fail to model safe operation of motor vehicles, and generation after generation copy this behavior, increasing the community's vulnerability to serious injuries and untimely deaths. This trend toward improper traffic safety habits among African Americans persists despite federal, state and local laws to enforce and promote sound traffic safety practices. OBJECTIVE: To study the existence of disparities in traffic-related injury and death among African Americans and to determine what kinds of traffic safety messages and campaigns will be effective in encouraging African Americans to respond to safety laws in sufficient numbers to reduce the disproportionately high rate of injury and death. Traffic safety issues were examined to effectively recommend policy, address barriers, best practices, and intervention strategies for the National Medical Association

  2. Individual determinants of fish choosing in open-air street markets from Santo André, SP/Brazil.

    PubMed

    Vasconcellos, Juliana Parreira; Vasconcellos, Silvio Arruda; Pinheiro, Sonia Regina; de Oliveira, Thaís Helena Nishikata; Ribeiro, Naassom Almeida Souza; Martins, Cassia Neves; Porfírio, Bruno Augusti; Sanches, Sandra Abelardo; de Souza, Orlando Bispo; Telles, Evelise Oliveira; Balian, Simone de Carvalho

    2013-09-01

    The objective of this study was to identify the determinants of fish consumption in the population that attends open-air street markets in the city of Santo André, SP, Brazil.We performed a survey, covering approximately 482 people in 49 street markets.It consisted of free-answer questions, half open choice and half multiple-choice options, for the identification and evaluation of socioeconomic factors that facilitate and hinder fish consumption.A descriptive analysis of the data and further tests were used to determine the association between variables and linearity with consumption, with a significance level of 5%. The most commonly cited types of fish consumed were hake, sardine and dogfish. The factors that facilitate the purchase and consumption of fish are listed as follows: a preference for purchasing fish at street markets, appearance, firmness, fresh presentation, frozen presentation, as well as the respondent's education and individual monthly income. Limiting factors were identified as the price and the presence of spines. Perishability, odour, ethnicity, proximity to points of sale of residence and work, gender, age, number of people in the household, presence of children and acquisition supermarket were not characteristics that influenced decisions about fish consumption. PMID:23643568

  3. An estimation of traffic related CO2 emissions from motor vehicles in the capital city of, Iran.

    PubMed

    Kakouei, Aliakbar; Vatani, Ali; Idris, Ahmed Kamal Bin

    2012-01-01

    Vehicle exhaust is a major source of anthropogenic carbon dioxide (CO2) in metropolitan cities. Popular community mode (buses and taxies) and about 2.4 million private cars are the main emission sources of air pollution in Tehran. A case survey has conducted to measure CO2 in four popular vehicles, bus, taxi, private car and motorcycle, which moved in the city with respectively 7800, 82358, 560000 and 2.4 million per day in 2012. Results indicated that the contribution of CO2 emissions increased in the following order: private car, motorcycle, bus and taxi. The overall average for the contribution of CO2 emissions in the private car, motorcycle, bus, and taxi were 26372, 1648, 1433 and 374 tons per day, respectively. Our results also showed that the urban transport operation consume an estimated 178 and 4224 million liter diesel and petrol per year, respectively, that have released about 10 million tons of CO2. The average contribution of CO2 emissions of private cars in Tehran was higher (88%) than other vehicles. It was concluded that high volume of traffic, transport consumption of fossil fuels and shortage of adequate public transport system are responsible for the high CO2 level in environment in Tehran. Thus, it is to be expected that CO2 as a greenhouse gas has risen in Tehran more than ever in the following years and this would be a matter of concern for the authorities to have a comprehensive plan to mitigate this phenomena. PMID:23369252

  4. An estimation of traffic related CO2 emissions from motor vehicles in the capital city of, Iran

    PubMed Central

    2012-01-01

    Vehicle exhaust is a major source of anthropogenic carbon dioxide (CO2) in metropolitan cities. Popular community mode (buses and taxies) and about 2.4 million private cars are the main emission sources of air pollution in Tehran. A case survey has conducted to measure CO2 in four popular vehicles, bus, taxi, private car and motorcycle, which moved in the city with respectively 7800, 82358, 560000 and 2.4 million per day in 2012. Results indicated that the contribution of CO2 emissions increased in the following order: private car, motorcycle, bus and taxi. The overall average for the contribution of CO2 emissions in the private car, motorcycle, bus, and taxi were 26372, 1648, 1433 and 374 tons per day, respectively. Our results also showed that the urban transport operation consume an estimated 178 and 4224 million liter diesel and petrol per year, respectively, that have released about 10 million tons of CO2. The average contribution of CO2 emissions of private cars in Tehran was higher (88%) than other vehicles. It was concluded that high volume of traffic, transport consumption of fossil fuels and shortage of adequate public transport system are responsible for the high CO2 level in environment in Tehran. Thus, it is to be expected that CO2 as a greenhouse gas has risen in Tehran more than ever in the following years and this would be a matter of concern for the authorities to have a comprehensive plan to mitigate this phenomena. PMID:23369252

  5. Short-term Effects of Air Temperature on Blood Markers of Coagulation and Inflammation in Potentially Susceptible Individuals

    EPA Science Inventory

    Objectives: Changes in air temperature are associated with an increase in cardiovascular events, but the role of pro-coagulant and pro-inflammatory blood markers is still poorly understood. We investigated the association between air temperature and fibrinogen, plasminogen act...

  6. Ambient ultrafine particles provide a strong adjuvant effect in the secondary immune response: implication for traffic-related asthma flares

    PubMed Central

    Li, Ning; Harkema, Jack R.; Lewandowski, Ryan P.; Wang, Meiying; Bramble, Lori A.; Gookin, Glenn R.; Ning, Zhi; Kleinman, Michael T.; Sioutas, Constantinos

    2010-01-01

    We have previously demonstrated that intranasal administration of ambient ultrafine particles (UFP) acts as an adjuvant for primary allergic sensitization to ovalbumin (OVA) in Balb/c mice. It is important to find out whether inhaled UFP exert the same effect on the secondary immune response as a way of explaining asthma flares in already-sensitized individuals due to traffic exposure near a freeway. The objective of this study is to determine whether inhalation exposure to ambient UFP near an urban freeway could enhance the secondary immune response to OVA in already-sensitized mice. Prior OVA-sensitized animals were exposed to concentrated ambient UFP at the time of secondary OVA challenge in our mobile animal laboratory in Los Angeles. OVA-specific antibody production, airway morphometry, allergic airway inflammation, cytokine gene expression, and oxidative stress marker were assessed. As few as five ambient UFP exposures were sufficient to promote the OVA recall immune response, including generating allergic airway inflammation in smaller and more distal airways compared with the adjuvant effect of intranasally instilled UFP on the primary immune response. The secondary immune response was characterized by the T helper 2 and IL-17 cytokine gene expression in the lung. In summary, our results demonstrated that inhalation of prooxidative ambient UFP could effectively boost the secondary immune response to an experimental allergen, indicating that vehicular traffic exposure could exacerbate allergic inflammation in already-sensitized subjects. PMID:20562226

  7. Ambient ultrafine particles provide a strong adjuvant effect in the secondary immune response: implication for traffic-related asthma flares.

    PubMed

    Li, Ning; Harkema, Jack R; Lewandowski, Ryan P; Wang, Meiying; Bramble, Lori A; Gookin, Glenn R; Ning, Zhi; Kleinman, Michael T; Sioutas, Constantinos; Nel, Andre E

    2010-09-01

    We have previously demonstrated that intranasal administration of ambient ultrafine particles (UFP) acts as an adjuvant for primary allergic sensitization to ovalbumin (OVA) in Balb/c mice. It is important to find out whether inhaled UFP exert the same effect on the secondary immune response as a way of explaining asthma flares in already-sensitized individuals due to traffic exposure near a freeway. The objective of this study is to determine whether inhalation exposure to ambient UFP near an urban freeway could enhance the secondary immune response to OVA in already-sensitized mice. Prior OVA-sensitized animals were exposed to concentrated ambient UFP at the time of secondary OVA challenge in our mobile animal laboratory in Los Angeles. OVA-specific antibody production, airway morphometry, allergic airway inflammation, cytokine gene expression, and oxidative stress marker were assessed. As few as five ambient UFP exposures were sufficient to promote the OVA recall immune response, including generating allergic airway inflammation in smaller and more distal airways compared with the adjuvant effect of intranasally instilled UFP on the primary immune response. The secondary immune response was characterized by the T helper 2 and IL-17 cytokine gene expression in the lung. In summary, our results demonstrated that inhalation of prooxidative ambient UFP could effectively boost the secondary immune response to an experimental allergen, indicating that vehicular traffic exposure could exacerbate allergic inflammation in already-sensitized subjects. PMID:20562226

  8. *A participant-based approach to indoor/outdoor air monitoring in Community Health Studies

    EPA Science Inventory

    Community health studies of traffic-related air pollution have been hampered by the cost and participant burden associated with collecting household-level exposure data. The current study utilized a participant-based approach to collect indoor and outdoor air monitoring data from...

  9. Traffic-related heavy metals uptake by wild plants grow along two main highways in Hunan Province, China: effects of soil factors, accumulation ability, and biological indication potential.

    PubMed

    Zhai, Yunbo; Dai, Qingyun; Jiang, Kang; Zhu, Yun; Xu, Bibo; Peng, Chuan; Wang, Tengfei; Zeng, Guangming

    2016-07-01

    This study was performed to investigate pollution of traffic-related heavy metals (HMs-Zn, Pb, Cu, Cr, and Cd) in roadside soils and their uptake by wild plants growing along highways in Hunan Province, China. For this, we analyzed the concentration and chemical fractionation of HMs in soils and plants. Soil samples were collected with different depths in the profile and different distances from highway edge. And leaves and barks of six high-frequency plants were collected. Results of the modified European Community Bureau of Reference (BCR) showed that the mobile fraction of these HMs was in the order of Cd > Pb > Zn > Cu > Cr. A high percentage of the mobile fraction indicates Cd, Pb, and Zn were labile and available for uptake by wild plants. The total concentration and values of risk assessment code (RAC) showed that Cd was the main risk factor, which were in the range high to very high risk. The accumulation ability of HMs in plants was evaluated by the biological accumulation factor (BAF) and the metal accumulation index (MAI), and the results showed that all those plant species have good phyto-extraction ability, while accumulation capacity for most HMs plants tissues was bark > leaf. The highest MAI value (5.99) in Cinnamomum camphora (L) Presl indicates the potential for bio-monitoring and a good choice for planting along highways where there is contamination with HMs. PMID:27026539

  10. Preparation and characterization of Pd/Al2O3 and Pd nanoparticles as standardized test material for chemical and biochemical studies of traffic related emissions.

    PubMed

    Leopold, K; Maier, M; Schuster, M

    2008-05-01

    Palladium model particles similar to those emitted from catalytic car exhaust converters were prepared and characterized with the intention of providing a standardized material for investigations of the chemical behavior and bioavailability of traffic related Pd emissions. Two series of Pd particles were prepared and characterized in detail: Pd nanoparticles (2-4 nm) dispersed on aluminum oxide particles of a diameter range between 0.1 to 30 microm and "Pd-only" nanoparticles of 5-10 nm in diameter. The Pd/alpha-Al2O3 particles are very similar to particles emitted from catalytic converters by mechanical abrasion. The Pd-only particles are useful e.g. for exposure studies in which the presence of aluminum could lead to interferences when studying biological and biochemical effects. The sample preparation procedure of both series was optimized in order to achieve elemental particles with proper sizes and a narrow size distribution. The obtained particles were characterized by transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), selective area diffraction (SAD), laser granulometry and graphite furnace atomic absorption spectrometry (GFAAS) for the measurement of Pd concentrations. PMID:18279916

  11. Respiratory health effects of air pollution: update on biomass smoke and traffic pollution.

    PubMed

    Laumbach, Robert J; Kipen, Howard M

    2012-01-01

    Mounting evidence suggests that air pollution contributes to the large global burden of respiratory and allergic diseases, including asthma, chronic obstructive pulmonary disease, pneumonia, and possibly tuberculosis. Although associations between air pollution and respiratory disease are complex, recent epidemiologic studies have led to an increased recognition of the emerging importance of traffic-related air pollution in both developed and less-developed countries, as well as the continued importance of emissions from domestic fires burning biomass fuels, primarily in the less-developed world. Emissions from these sources lead to personal exposures to complex mixtures of air pollutants that change rapidly in space and time because of varying emission rates, distances from source, ventilation rates, and other factors. Although the high degree of variability in personal exposure to pollutants from these sources remains a challenge, newer methods for measuring and modeling these exposures are beginning to unravel complex associations with asthma and other respiratory tract diseases. These studies indicate that air pollution from these sources is a major preventable cause of increased incidence and exacerbation of respiratory disease. Physicians can help to reduce the risk of adverse respiratory effects of exposure to biomass and traffic air pollutants by promoting awareness and supporting individual and community-level interventions. PMID:22196520

  12. Respiratory Health Effects of Air Pollution: Update on Biomass Smoke and Traffic Pollution

    PubMed Central

    Laumbach, Robert J.; Kipen, Howard M.

    2012-01-01

    Mounting evidence suggests that air pollution contributes to the large global burden of respiratory and allergic diseases including asthma, chronic obstructive pulmonary disease, pneumonia and possibly tuberculosis. Although associations between air pollution and respiratory disease are complex, recent epidemiologic studies have led to an increased recognition of the emerging importance of traffic-related air pollution in both developed and less-developed countries, as well as the continued importance of emissions from domestic fires burning biomass fuels primarily in the less-developed world. Emissions from these sources lead to personal exposures to complex mixtures of air pollutants that change rapidly in space and time due to varying emission rates, distances from source, ventilation rates, and other factors. Although the high degree of variability in personal exposure to pollutants from these sources remains a challenge, newer methods for measuring and modeling these exposures are beginning to unravel complex associations with asthma and other respiratory disease. These studies indicate that air pollution from these sources is a major preventable cause of increased incidence and exacerbation of respiratory disease. Physicians can help to reduce the risk of adverse respiratory effects of exposure to biomass and traffic air pollutants by promoting awareness and supporting individual and community-level interventions. PMID:22196520

  13. The human GARS-AIRS-GART gene encodes two proteins which are differentially expressed during human brain development and temporally overexpressed in cerebellum of individuals with Down syndrome.

    PubMed

    Brodsky, G; Barnes, T; Bleskan, J; Becker, L; Cox, M; Patterson, D

    1997-11-01

    Purines are critical for energy metabolism, cell signalling and cell reproduction. Nevertheless, little is known about the regulation of this essential biochemical pathway during mammalian development. In humans, the second, third and fifth steps of de novo purine biosynthesis are catalyzed by a trifunctional protein with glycinamide ribonucleotide synthetase (GARS), aminoimidazole ribonucleotide synthetase (AIRS) and glycinamide ribonucleotide formyltransferase (GART) enzymatic activities. The gene encoding this trifunctional protein is located on chromosome 21. The enzyme catalyzing the intervening fourth step of de novo purine biosynthesis, phosphoribosylformylglycineamide amidotransferase (FGARAT), is encoded by a separate gene on chromosome 17. To investigate the regulation of these proteins, we have generated monoclonal and/or polyclonal antibodies specific to each of these enzymatic domains. Using these antibodies on western blots of Chinese hamster ovary (CHO) cells transfected with the human GARS-AIRS-GART gene, we show that this gene encodes not only the trifunctional protein of 110 kDa, but also a monofunctional GARS protein of 50 kDa. This carboxy-truncated human GARS protein is produced by alternative splicing resulting in the use of a polyadenylation site in the intron between the terminal GARS and the first AIRS exons. The expression of both the GARS and GARS-AIRS-GART proteins are regulated during development of the human cerebellum, while the expression of FGARAT appears to be constitutive. All three proteins are expressed at high levels during normal prenatal cerebellum development while the GARS and GARS-AIRS-GART proteins become undetectable in this tissue shortly after birth. In contrast, the GARS and GARS-AIRS-GART proteins continue to be expressed during the postnatal development of the cerebellum in individuals with Down syndrome. PMID:9328467

  14. Biological availability of traffic-related platinum-group elements (palladium, platinum, and rhodium) and other metals to the zebra mussel (Dreissena polymorpha) in water containing road dust.

    PubMed

    Zimmermann, Sonja; Alt, Friedrich; Messerschmidt, Jürgen; von Bohlen, Alex; Taraschewski, Horst; Sures, Bernd

    2002-12-01

    The uptake and bioaccumulation of 15 road dust metals by the zebra mussel (Dreissena polymorpha) were investigated in laboratory exposure studies with emphasis on the traffic-related platinum-group elements (PGEs) palladium (Pd), platinum (Pt), and rhodium (Rh). The biological availability of the metals may depend on water characteristics, so the mussels were maintained in two types of water: nonchlorinated tap water and humic water of a bog lake, both of which contained dust of a moderately frequented road. After an exposure period of 26 weeks, soft tissues of the mussels were freeze-dried and analyzed for the metals. The metal concentrations in the mussel soft tissue ranged from several hundred micrograms per gram (e.g., for iron [Fe]) to less than 10 ng/g (for PGEs). Metal uptake from the road dust by the mussels was found for the PGEs and silver (Ag), bismuth (Bi), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), Fe, lead (Pb), and antimony (Sb). After maintenance of mussels in road dust-contaminated tap water, bioaccumulation factors (BAF = (C(exposed mussels) - C(control mussels))/C(total metal, water), where c is concentration) decreased in the following order: Cu > Cd > Ag > Pd > Sb > Pb > Fe > Pt > Rh. The biological availability of most metals was enhanced by humic water as compared to tap water. Our results show a hitherto unrecognized high availability of Pd for the mussels. Thus, this metal should be monitored more intensively in the environment to assess its distribution in the biosphere. PMID:12463569

  15. The impact of decreases in air temperature and increases in ozone on markers of endothelial function in individuals having type-2 diabetes.

    PubMed

    Lanzinger, Stefanie; Breitner, Susanne; Neas, Lucas; Cascio, Wayne; Diaz-Sanchez, David; Hinderliter, Alan; Peters, Annette; Devlin, Robert B; Schneider, Alexandra

    2014-10-01

    Several studies have reported an association between air pollution and endothelial dysfunction, especially in individuals having diabetes. However, very few studies have examined the impact of air temperature on endothelial function. The objective of this analysis was to investigate short-term effects of temperature and ozone on endothelial function in individuals having diabetes. Moreover, we investigated interactive effects between air temperature and air pollution on markers of endothelial function. Between November 2004 and December 2005 flow-mediated dilatation (FMD), nitroglycerin-mediated dilatation (NTGMD) and several blood markers representing endothelial function were measured using brachial artery ultrasound on four consecutive days in 22 individuals with type-2 diabetes mellitus in Chapel Hill, North Carolina (USA). Daily measurements of meteorological parameters, ozone and particulate matter with an aerodynamic diameter ≤2.5 µm (PM2.5) were obtained from fixed monitoring sites. We used additive mixed-models adjusting for time trend, day of the week, relative humidity and barometric pressure to assess temperature and ozone associations with endothelial function. A 1 °C decrease in the 24-h temperature average was associated with a decrease in mean FMD on the same day (-2.2% (95%-confidence interval:[-4.7;0.3%])) and with a delay of one and four days. A temperature decrement also led to an immediate (-1.7%[-3.3;-0.04]) decrease in NTGMD. Moreover, we observed an immediate (-14.6%[-26.3;-2.9%]) and a one day delayed (-13.5%[-27.0; 0.04%]) decrease in FMD in association with a 0.01 ppm increase in the maximum 8-h moving average of ozone. Temperature effects on FMD strengthened when PM2.5 and ozone concentrations were high. The associations were similar during winter and summer. We detected an association between temperature decreases and ozone increases on endothelial dysfunction in individuals having diabetes. We conclude that endothelial dysfunction

  16. Nectar production of Epilobium angustifolium L. at different air humidities; nectar sugar in individual flowers and the optimal foraging theory.

    PubMed

    Bertsch, A

    1983-08-01

    The nectar production of Epilobium angustifolium L. was investigated at 20°C and 50%, 78% and 94% ambient humidity in the climatic test chamber. By means of permanent pipettes, freshly produced nectar was sucked off immediately after secretion, and nectar samples were also taken at 10-h and 48-h intervals to investigate the postsecretory influence of ambient humidity. Volume and sugar concentration of samples from individual flowers were measured and the sugar contained was calculated. The rate of sugar production remains constant for all ambient humidities and extraction intervals investigated; the mean value for all 180 samples is 1.55 mg sucrose equivalents/24h. Sugar concentration of secretion nectar is linearly dependent on ambient humidity over the range investigated, and nectar volume and sugar concentration change according to the theoretically expected curve for solutions with a sugar content of 1.55 mg sucrose. The response of secretion nectar to steplike changes in ambient humidity was investigated and the transient function described. The nectaries respond immediately to changes in ambient humidity. The consequences of the results for nectar production and nectar reward of individual flowers in the field and for the optimal foraging of pollinators are discussed. Discussion concentrates particularly on the following questions: what influence the variability of nectar reward in individual flowers may have on flower-visiting bumble-bees; whether these animals have the sensory capabilities to measure sugar exactly; and whether the water relations of pollinators may also influence foraging behaviour. PMID:25024144

  17. Applicability of the Environmental Relative Moldiness Index for Quantification of Residential Mold Contamination in an Air Pollution Health Effects Study

    EPA Science Inventory

    As part of the Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS) investigating the respiratory health impacts of traffic-related air pollutants on asthmatic children in Detroit, Michigan, residential dust samples were collected to quantify mold exposure. Sett...

  18. Evaluation of US and UK Models in Simulating the Impact of Barriers on Near-Road Air Quality

    EPA Science Inventory

    The possibility that roadside noise barriers can act to mitigate traffic-related air pollution exposures for people living and working near major roadways is being considered in the context of public health protection. Air pollution dispersion models that can accurately simulate ...

  19. Meta-Analysis on Near-Road Air Pollutants Concentrations for Developing Traffic Indicators for Exposure Assessment

    EPA Science Inventory

    Near-road air pollution has been associated with various health risks in human populations living near roadways. To better understand relationship between vehicle emissions and spatial profiles of traffic-related air pollutants we performed a comprehensive and systematic literat...

  20. Outdoor air pollution and asthma

    PubMed Central

    Guarnieri, Michael; Balmes, John R.

    2015-01-01

    Traffic and power generation are the main sources of urban air pollution. The idea that outdoor air pollution can cause exacerbations of pre-existing asthma is supported by an evidence base that has been accumulating for several decades, with several studies suggesting a contribution to new-onset asthma as well. In this Series paper, we discuss the effects of particulate matter (PM), gaseous pollutants (ozone, nitrogen dioxide, and sulphur dioxide), and mixed traffic-related air pollution. We focus on clinical studies, both epidemiological and experimental, published in the previous 5 years. From a mechanistic perspective, air pollutants probably cause oxidative injury to the airways, leading to inflammation, remodelling, and increased risk of sensitisation. Although several pollutants have been linked to new-onset asthma, the strength of the evidence is variable. We also discuss clinical implications, policy issues, and research gaps relevant to air pollution and asthma. PMID:24792855

  1. GPS-based microenvironment tracker (MicroTrac) model to estimate time–location of individuals for air pollution exposure assessments: Model evaluation in central North Carolina

    PubMed Central

    Breen, Michael S.; Long, Thomas C.; Schultz, Bradley D.; Crooks, James; Breen, Miyuki; Langstaff, John E.; Isaacs, Kristin K.; Tan, Yu-Mei; Williams, Ronald W.; Cao, Ye; Geller, Andrew M.; Devlin, Robert B.; Batterman, Stuart A.; Buckley, Timothy J.

    2014-01-01

    A critical aspect of air pollution exposure assessment is the estimation of the time spent by individuals in various microenvironments (ME). Accounting for the time spent in different ME with different pollutant concentrations can reduce exposure misclassifications, while failure to do so can add uncertainty and bias to risk estimates. In this study, a classification model, called MicroTrac, was developed to estimate time of day and duration spent in eight ME (indoors and outdoors at home, work, school; inside vehicles; other locations) from global positioning system (GPS) data and geocoded building boundaries. Based on a panel study, MicroTrac estimates were compared with 24-h diary data from nine participants, with corresponding GPS data and building boundaries of home, school, and work. MicroTrac correctly classified the ME for 99.5% of the daily time spent by the participants. The capability of MicroTrac could help to reduce the time–location uncertainty in air pollution exposure models and exposure metrics for individuals in health studies. PMID:24619294

  2. Sensor for Individual Burner Control of Coal Firing Rate, Fuel-Air Ratio and Coal Fineness Correlation

    SciTech Connect

    R. Demler

    2006-04-01

    uniformity of the air or coal profile, the installation location need not be on a long, straight run of pipe. In fact, an optimal signal is obtained near a pipe elbow. This is fortuitous, as bends are often more accessible on pipes in a power plant than straight sections. In contrast to measurement systems that rely on the uniformity of the air and coal profile, the accuracy of the system under development will not compromised by varying levels of flow uniformity.

  3. Sensor for Individual Burner Control of Coal Firing Rate, Fuel-Air Ratio and Coal Fineness Correlation

    SciTech Connect

    Wayne Hill; Roger Demler

    2004-06-01

    The project's overall objective is to develop a commercially viable dynamic signature based sensing system that is used to infer the flow rate and fineness of pulverized coal. This eighteen month effort will focus on developments required to transfer the measurement system from the laboratory to a field ready prototype system. This objective will be achieved through the completion of the laboratory development of the sensor and data algorithm followed by full scale field tests of a portable measurement system. The sensing system utilizes accelerometers attached externally to coal feeder pipes. Raw data is collected from the impingement of the coal particles as well as the acoustic noise generated from the flow and is transformed into characteristic signatures through proper calibration that are meaningful to the operator. The laboratory testing will use a portable version of the sensing system to collect signature data from a variety of flow conditions including coal flow rates, flow orientations, and coal particle characteristics. This work will be conducted at the Coal Flow Measurement Laboratory that is sponsored by EPRI and operated by Airflow Sciences. The data will be used to enhance the algorithm and neural network required to perform real time analysis of the nonspecific signature data. The system will be installed at two full scale power plants to collect data in a real time operating scenario. These short term duration tests will evaluate the ability of the algorithm to accurately infer coal flow rates and determine if the measurement system can be used effectively in an active control loop for combustion diagnostics and burner balancing. At the completion of this project, prototype versions of both a portable system and a permanent installation will be available for final packaging and commercialization by one of the team members. Both types of systems will be marketed for conducting combustion diagnostics and balancing of individual flows to pulverized

  4. SENSOR FOR INDIVIDUAL BURNER CONTROL OF COAL FIRING RATE, FUEL-AIR RATIO AND COAL FINENESS CORRELATION

    SciTech Connect

    Wayne Hill

    2004-02-01

    The project's overall objective is to development a commercially viable dynamic signature based sensing system that is used to infer the flow rate and fineness of pulverized coal. This eighteen month effort will focus on developments required to transfer the measurement system from the laboratory to a field ready prototype system. This objective will be achieved through the completion of the laboratory development of the sensor and data algorithm followed by full scale field tests of a portable measurement system. The sensing system utilizes accelerometers attached externally to coal feeder pipes. Raw data is collected from the impingement of the coal particles as well as the acoustic noise generated from the flow and is transformed into characteristic signatures through proper calibration that are meaningful to the operator. The laboratory testing will use a portable version of the sensing system to collect signature data from a variety of flow conditions including coal flow rates, flow orientations, and coal particle characteristics. This work will be conducted at the Coal Flow Measurement Laboratory that is sponsored by EPRI and operated by Airflow Sciences. The data will be used to enhance the algorithm and neural network required to perform real time analysis of the non-specific signature data. The system will be installed at two full scale power plants to collect data in a real time operating scenario. These short term duration tests will evaluate the ability of the algorithm to accurately infer coal flow rates and determine if the measurement system can be used effectively in an active control loop for combustion diagnostics and burner balancing. At the completion of this project, prototype versions of both a portable system and a permanent installation will be available for final packaging and commercialization by one of the team members. Both types of systems will be marketed for conducting combustion diagnostics and balancing of individual flows to

  5. A modeling framework for characterizing near-road air pollutant concentration at community scales

    EPA Science Inventory

    In this study, we combine information from transportation network, traffic emissions, and dispersion model to develop a framework to inform exposure estimates for traffic-related air pollutants (TRAPs) with a high spatial resolution. A Research LINE source dispersion model (R-LIN...

  6. Chronic effects of air pollution on respiratory health in Southern California children: findings from the Southern California Children’s Health Study

    PubMed Central

    Chen, Zhanghua; Salam, Muhammad T.; Eckel, Sandrah P.; Breton, Carrie V.

    2015-01-01

    Outdoor air pollution is one of the leading contributors to adverse respiratory health outcomes in urban areas around the world. Children are highly sensitive to the adverse effects of air pollution due to their rapidly growing lungs, incomplete immune and metabolic functions, patterns of ventilation and high levels of outdoor activity. The Children’s Health Study (CHS) is a continuing series of longitudinal studies that first began in 1993 and has focused on demonstrating the chronic impacts of air pollution on respiratory illnesses from early childhood through adolescence. A large body of evidence from the CHS has documented that exposures to both regional ambient air and traffic-related pollutants are associated with increased asthma prevalence, new-onset asthma, risk of bronchitis and wheezing, deficits of lung function growth, and airway inflammation. These associations may be modulated by key genes involved in oxidative-nitrosative stress pathways via gene-environment interactions. Despite successful efforts to reduce pollution over the past 40 years, air pollution at the current levels still brings many challenges to public health. To further ameliorate adverse health effects attributable to air pollution, many more toxic pollutants may require regulation and control of motor vehicle emissions and other combustion sources may need to be strengthened. Individual interventions based on personal susceptibility may be needed to protect children’s health while control measures are being implemented. PMID:25694817

  7. Local-Scale Exposure Assessment of Air Pollutants in Source-Impacted Neighborhoods in Detroit, MI (Invited)

    NASA Astrophysics Data System (ADS)

    Vette, A. F.; Bereznicki, S.; Sobus, J.; Norris, G.; Williams, R.; Batterman, S.; Breen, M.; Isakov, V.; Perry, S.; Heist, D.; Community Action Against Asthma Steering Committee

    2010-12-01

    modeling techniques. Concentrations of traffic-related air pollutants will be measured and modeled indoors and outdoors of the children’s homes. Measurements will be made in a subset of homes each during fall 2010 and early spring 2011. High-time resolution measurements will be made of the chemical composition of traffic-related pollutants in the gas and particle phases adjacent to selected roadways. These data will be used to quantify the impact of traffic on the observed air quality data. Air pollutant dispersion and exposure models will be used in combination with measured data to estimate indoor/outdoor concentrations and personal exposures. Near-road spatial concentration patterns will be estimated at the children’s residences and schools across the study domain using dispersion modeling. These data will be used as input for an individual-level exposure model to estimate personal exposures from meteorology and questionnaire data on indoor sources, residential characteristics and operation, and time-location-activity patterns.

  8. Heart Rate and Heart Rate Variability Assessment Identifies Individual Differences in Fear Response Magnitudes to Earthquake, Free Fall, and Air Puff in Mice

    PubMed Central

    Kuang, Hui; Tsien, Joe Z.; Zhao, Fang

    2014-01-01

    Fear behaviors and fear memories in rodents have been traditionally assessed by the amount of freezing upon the presentation of conditioned cues or unconditioned stimuli. However, many experiences, such as encountering earthquakes or accidental fall from tree branches, may produce long-lasting fear memories but are behaviorally difficult to measure using freezing parameters. Here, we have examined changes in heartbeat interval dynamics as physiological readout for assessing fearful reactions as mice were subjected to sudden air puff, free-fall drop inside a small elevator, and a laboratory-version earthquake. We showed that these fearful events rapidly increased heart rate (HR) with simultaneous reduction of heart rate variability (HRV). Cardiac changes can be further analyzed in details by measuring three distinct phases: namely, the rapid rising phase in HR, the maximum plateau phase during which HRV is greatly decreased, and the recovery phase during which HR gradually recovers to baseline values. We showed that durations of the maximum plateau phase and HR recovery speed were quite sensitive to habituation over repeated trials. Moreover, we have developed the fear resistance index based on specific cardiac response features. We demonstrated that the fear resistance index remained largely consistent across distinct fearful events in a given animal, thereby enabling us to compare and rank individual mouse’s fear responsiveness among the group. Therefore, the fear resistance index described here can represent a useful parameter for measuring personality traits or individual differences in stress-susceptibility in both wild-type mice and post-traumatic stress disorder (PTSD) models. PMID:24667366

  9. Integrating smart-phone based momentary location tracking with fixed site air quality monitoring for personal exposure assessment.

    PubMed

    Su, Jason G; Jerrett, Michael; Meng, Ying-Ying; Pickett, Melissa; Ritz, Beate

    2015-02-15

    Epidemiological studies investigating relationships between environmental exposures from air pollution and health typically use residential addresses as a single point for exposure, while environmental exposures in transit, at work, school or other locations are largely ignored. Personal exposure monitors measure individuals' exposures over time; however, current personal monitors are intrusive and cannot be operated at a large scale over an extended period of time (e.g., for a continuous three months) and can be very costly. In addition, spatial locations typically cannot be identified when only personal monitors are used. In this paper, we piloted a study that applied momentary location tracking services supplied by smart phones to identify an individual's location in space-time for three consecutive months (April 28 to July 28, 2013) using available Wi-Fi networks. Individual exposures in space-time to the traffic-related pollutants Nitrogen Oxides (NOX) were estimated by superimposing an annual mean NOX concentration surface modeled using the Land Use Regression (LUR) modeling technique. Individual's exposures were assigned to stationary (including home, work and other stationary locations) and in-transit (including commute and other travel) locations. For the individual, whose home/work addresses were known and the commute route was fixed, it was found that 95.3% of the time, the individual could be accurately identified in space-time. The ambient concentration estimated at the home location was 21.01 ppb. When indoor/outdoor infiltration, indoor sources of air pollution and time spent outdoors were taken into consideration, the individual's cumulative exposures were 28.59 ppb and 96.49 ppb, assuming a respective indoor/outdoor ratio of 1.33 and 5.00. Integrating momentary location tracking services with fixed-site field monitoring, plus indoor-outdoor air exchange calibration, makes exposure assessment of a very large population over an extended time period

  10. Application of alternative spatiotemporal metrics of ambient air pollution exposure in a time-series epidemiological study in Atlanta

    EPA Science Inventory

    Exposure error in studies of ambient air pollution and health that use city-wide measures of exposure may be substantial for pollutants that exhibit spatiotemporal variability. Alternative spatiotemporal metrics of exposure for traffic-related and regional pollutants were applied...