Science.gov

Sample records for indole protects rodent

  1. Indole-3-carbinol protects against cisplatin-induced acute nephrotoxicity: role of calcitonin gene-related peptide and insulin-like growth factor-1

    PubMed Central

    El-Naga, Reem N.; Mahran, Yasmen F.

    2016-01-01

    Nephrotoxicity associated with the clinical use of the anticancer drug cisplatin is a limiting problem. Thus, searching for new protective measures is required. Indole-3-carbinol is a powerful anti-oxidant, anti-inflammatory and anti-tumor agent. The present study aimed to investigate the potential protective effect of indole-3-carbinol against cisplatin-induced acute nephrotoxicity in rats. Rats were pre-treated with 20 mg/kg indole-3-carbinol orally before giving cisplatin (7 mg/kg). Cisplatin-induced acute nephrotoxicity was demonstrated where relative kidney weight, BUN and serum creatinine were significantly increased. Increased oxidative stress was evident in cisplatin group where GSH and SOD tissue levels were significantly depleted. Also, lipid peroxidation and NOX-1 were increased as compared to the control. Additionally, renal expression of pro-inflammatory mediators was induced by cisplatin. Cisplatin-induced cell death was shown by increased caspase-3 and decreased expression of EGF, IGF-1 and IGF-1 receptor. Nephrotoxicity, oxidative stress, inflammation and apoptotic effects induced by cisplatin were significantly ameliorated by indole-3-carbinol pre-treatment. Besides, the role of CGRP in cisplatin-induced nephrotoxicity was explored. Furthermore, cisplatin cytotoxic activity was significantly enhanced by indole-3-carbinol pre-treatment in vitro. In conclusion, indole-3-carbinol provides protection against cisplatin-induced nephrotoxicity. Also, reduced expression of CGRP may play a role in the pathogenesis of cisplatin-induced renal injury. PMID:27417335

  2. Indole-3-carbinol protects against cisplatin-induced acute nephrotoxicity: role of calcitonin gene-related peptide and insulin-like growth factor-1.

    PubMed

    El-Naga, Reem N; Mahran, Yasmen F

    2016-01-01

    Nephrotoxicity associated with the clinical use of the anticancer drug cisplatin is a limiting problem. Thus, searching for new protective measures is required. Indole-3-carbinol is a powerful anti-oxidant, anti-inflammatory and anti-tumor agent. The present study aimed to investigate the potential protective effect of indole-3-carbinol against cisplatin-induced acute nephrotoxicity in rats. Rats were pre-treated with 20 mg/kg indole-3-carbinol orally before giving cisplatin (7 mg/kg). Cisplatin-induced acute nephrotoxicity was demonstrated where relative kidney weight, BUN and serum creatinine were significantly increased. Increased oxidative stress was evident in cisplatin group where GSH and SOD tissue levels were significantly depleted. Also, lipid peroxidation and NOX-1 were increased as compared to the control. Additionally, renal expression of pro-inflammatory mediators was induced by cisplatin. Cisplatin-induced cell death was shown by increased caspase-3 and decreased expression of EGF, IGF-1 and IGF-1 receptor. Nephrotoxicity, oxidative stress, inflammation and apoptotic effects induced by cisplatin were significantly ameliorated by indole-3-carbinol pre-treatment. Besides, the role of CGRP in cisplatin-induced nephrotoxicity was explored. Furthermore, cisplatin cytotoxic activity was significantly enhanced by indole-3-carbinol pre-treatment in vitro. In conclusion, indole-3-carbinol provides protection against cisplatin-induced nephrotoxicity. Also, reduced expression of CGRP may play a role in the pathogenesis of cisplatin-induced renal injury. PMID:27417335

  3. Palladium-catalyzed direct desulfitative C2 arylations of 3-halo-N-protected indoles using (hetero)arenesulfonyl chlorides.

    PubMed

    Hfaiedh, Anoir; Ben Ammar, Hamed; Soulé, Jean-François; Doucet, Henri

    2016-06-01

    The direct arylation of N-protected 3-haloindole derivatives with benzenesulfonyl chlorides as coupling partners using 5 mol% of bis(acetonitrile)dichloropalladium(ii) catalyst and lithium carbonate as a base in 1,4-dioxane was investigated. We demonstrated that both iodo and chloro substituents at the indolyl C3 position act as temporary blocking groups allowing the formation of 2-arylindoles through a direct desulfitative arylation, followed by in situ dehalogenation. While, from 3-bromoindole derivatives, 2-aryl-3-bromoindoles were obtained without debromination, and could be converted into 2,3-diarylindoles through a second palladium coupling. This method allows one to prepare in a few steps a very wide variety of indole derivatives, which are of interest in the synthesis of bioactive molecules. PMID:27171489

  4. Protective effects of melatonin and indole-3-propionic acid against lipid peroxidation, caused by potassium bromate in the rat kidney.

    PubMed

    Karbownik, Małgorzata; Stasiak, Magdalena; Zygmunt, Arkadiusz; Zasada, Krzysztof; Lewiński, Andrzej

    2006-01-01

    Potassium bromate (KBrO(3)) is classified as a carcinogenic agent. KBrO(3) induces tumors and pro-oxidative effects in kidneys. Melatonin is a well known antioxidant and free radical scavenger. Indole-3-propionic acid (IPA), an indole substance, also reveals antioxidative properties. Recently, some antioxidative effects of propylthiouracil (PTU)-an antithyroid drug-have been found. The aim of the study was to compare protective effects of melatonin, IPA, and PTU against lipid peroxidation in the kidneys and blood serum and, additionally, in the livers and the lungs, collected from rats, pretreated with KBrO(3). Male Wistar rats were administered KBrO(3) (110 mg/kg b.w., i.p., on the 10th day of the experiment) and/or melatonin, or IPA (0.0645 mmol/kg b.w., i.p., twice daily, for 10 days), or PTU (0.025% solution in drinking water, for 10 days). The level of lipid peroxidation products-malondialdehyde + 4-hydroxyalkenals (MDA + 4-HDA)-was measured spectrophotometrically in thyroid homogenates. KBrO(3), when injected to rats, significantly increased lipid peroxidation in the kidney homogenates and blood serum, but not in the liver and the lung homogenates. Co-treatment with either melatonin or with IPA, but not with PTU, decreased KBrO(3)-induced oxidative damage to lipids in the rat kidneys and serum. In conclusion, melatonin and IPA, which prevent KBrO(3)-induced lipid peroxidation in rat kidneys, may be of great value as protective agents under conditions of exposure to KBrO(3). PMID:16397908

  5. Protective effect of androgens against inflammation induced cartilage degradation in male rodents.

    PubMed Central

    Da Silva, J A; Larbre, J P; Spector, T D; Perry, L A; Scott, D L; Willoughby, D A

    1993-01-01

    OBJECTIVES--Rheumatoid arthritis (RA) is a disease which predominantly affects women. Interestingly, low serum androgen levels and clinical improvement with androgen replacement have been reported in male patients. The aetiopathogenic role of sex hormones in arthritis and their potential long term effects on joint destruction and disability remains unclear, however. This study was designed to investigate the potential influence of sex hormones on inflammation induced cartilage degradation in male rodents. METHODS--An in vivo model of cotton wrapped cartilage implants was used to assess the effects of androgen, oestradiol, and progesterone on inflammation induced cartilage degradation, and in vitro techniques were used to investigate the direct actions on cartilage metabolism and cytokine production in male animals. RESULTS--Orchidectomy resulted in accelerated cartilage damage which was reversed by replacement of physiological levels of androgens. Granulomatous tissue from castrated male rodents produced higher amounts of interleukin 1. Sex hormones reduced spontaneous proteoglycan loss in vitro but did not interfere with the effects of interleukin 1 on cultured cartilage. CONCLUSIONS--Androgens appear to protect cartilage from inflammation induced breakdown in male animals. These results support a pathogenic role for hypoandrogenism in rheumatoid arthritis and suggest that long term androgen replacement may help prevent joint damage and disability. PMID:8484695

  6. Cerium oxide nanoparticles protect rodent lungs from hypobaric hypoxia-induced oxidative stress and inflammation

    PubMed Central

    Arya, Aditya; Sethy, Niroj Kumar; Singh, Sushil Kumar; Das, Mainak; Bhargava, Kalpana

    2013-01-01

    Background Cerium oxide nanoparticles (nanoceria) are effective at quenching reactive oxygen species (ROS) in cell culture and animal models. Although nanoceria reportedly deposit in lungs, their efficacy in conferring lung protection during oxidative stress remains unexplored. Thus, the study evaluated the protective efficacy of nanoceria in rat lung tissue during hypobaric hypoxia. Methods A total of 48 animals were randomly divided into four equal groups (control [C], nanoceria treated [T], hypoxia [H], and nanoceria treated plus hypoxia [T+H]). Animals were injected intraperitoneally with either a dose of 0.5 μg/kg body weight/week of nanoceria (T and T+H groups) or vehicle (C and H groups) for 5 weeks. After the final dose, H and T+H animals were challenged with hypobaric hypoxia, while C and T animals were maintained at normoxia. Lungs were isolated and homogenate was obtained for analysis of ROS, lipid peroxidation, glutathione, protein carbonylation, and 4-hydroxynonenal-adduct formation. Plasma was used for estimating major inflammatory cytokines using enzyme-linked immunosorbent assay. Intact lung tissues were fixed and both transmission electron microscopy and histopathological examinations were carried out separately for detecting internalization of nanoparticles as well as altered lung morphology. Results Spherical nanoceria of 7–10 nm diameter were synthesized using a microemulsion method, and the lung protective efficacy of the nanoceria evaluated during hypobaric hypoxia. With repeated intraperitoneal injections of low micromole concentration, we successfully localized the nanoceria in rodent lung without any inflammatory response. The lung-deposited nanoceria limited ROS formation, lipid peroxidation, and glutathione oxidation, and prevented oxidative protein modifications like nitration and carbonyl formation during hypobaric hypoxia. We also observed reduced lung inflammation in the nanoceria-injected lungs, supporting the anti

  7. Palivizumab epitope-displaying virus-like particles protect rodents from RSV challenge.

    PubMed

    Schickli, Jeanne H; Whitacre, David C; Tang, Roderick S; Kaur, Jasmine; Lawlor, Heather; Peters, Cory J; Jones, Joyce E; Peterson, Darrell L; McCarthy, Michael P; Van Nest, Gary; Milich, David R

    2015-04-01

    Respiratory syncytial virus (RSV) is the most common cause of serious viral bronchiolitis in infants, young children, and the elderly. Currently, there is not an FDA-approved vaccine available for RSV, though the mAb palivizumab is licensed to reduce the incidence of RSV disease in premature or at-risk infants. The palivizumab epitope is a well-characterized, approximately 24-aa helix-loop-helix structure on the RSV fusion (F) protein (F254-277). Here, we genetically inserted this epitope and multiple site variants of this epitope within a versatile woodchuck hepadnavirus core-based virus-like particle (WHcAg-VLP) to generate hybrid VLPs that each bears 240 copies of the RSV epitope in a highly immunogenic arrayed format. A challenge of such an epitope-focused approach is that to be effective, the conformational F254-277 epitope must elicit antibodies that recognize the intact virus. A number of hybrid VLPs containing RSV F254-277 were recognized by palivizumab in vitro and elicited high-titer and protective neutralizing antibody in rodents. Together, the results from this proof-of-principle study suggest that the WHcAg-VLP technology may be an applicable approach to eliciting a response to other structural epitopes. PMID:25751145

  8. Rupatadine protects against pulmonary fibrosis by attenuating PAF-mediated senescence in rodents.

    PubMed

    Lv, Xiao-xi; Wang, Xiao-xing; Li, Ke; Wang, Zi-yan; Li, Zhe; Lv, Qi; Fu, Xiao-ming; Hu, Zhuo-wei

    2013-01-01

    A similar immune response is implicated in the pathogenesis of pulmonary fibrosis and allergic disorders. We investigated the potential therapeutic efficacy and mechanism of rupatadine, a dual antagonist of histamine and platelet-activation factor (PAF), in bleomycin- (BLM-) and silica-induced pulmonary fibrosis. The indicated dosages of rupatadine were administered in rodents with bleomycin or silica-induced pulmonary fibrosis. The tissue injury, fibrosis, inflammatory cells and cytokines, and lung function were examined to evaluate the therapeutic efficacy of rupatadine. The anti-fibrosis effect of rupatadine was compared with an H1 or PAF receptor antagonist, and efforts were made to reveal rupatadine's anti-fibrotic mechanism. Rupatadine promoted the resolution of pulmonary inflammation and fibrosis in a dose-dependent manner, as indicated by the reductions in inflammation score, collagen deposition and epithelial-mesenchymal transformation, and infiltration or expression of inflammatory cells or cytokines in the fibrotic lung tissue. Thus, rupatadine treatment improved the declined lung function and significantly decreased animal death. Moreover, rupatadine was able not only to attenuate silica-induced silicosis but also to produce a superior therapeutic efficacy compared to pirfenidone, histamine H1 antagonist loratadine, or PAF antagonist CV-3988. The anti-fibrotic action of rupatadine might relate to its attenuation of BLM- or PAF-induced premature senescence because rupatadine treatment protected against the in vivo and in vitro activation of the p53/p21-dependent senescence pathway. Our studies indicate that rupatadine promotes the resolution of pulmonary inflammation and fibrosis by attenuating the PAF-mediated senescence response. Rupatadine holds promise as a novel drug to treat the devastating disease of pulmonary fibrosis. PMID:23869224

  9. Fine Pathogen Discrimination within the APL1 Gene Family Protects Anopheles gambiae against Human and Rodent Malaria Species

    PubMed Central

    Mitri, Christian; Jacques, Jean-Claude; Thiery, Isabelle; Riehle, Michelle M.; Xu, Jiannong; Bischoff, Emmanuel; Morlais, Isabelle; Nsango, Sandrine E.; Vernick, Kenneth D.; Bourgouin, Catherine

    2009-01-01

    Genetically controlled resistance of Anopheles gambiae mosquitoes to Plasmodium falciparum is a common trait in the natural population, and a cluster of natural resistance loci were mapped to the Plasmodium-Resistance Island (PRI) of the A. gambiae genome. The APL1 family of leucine-rich repeat (LRR) proteins was highlighted by candidate gene studies in the PRI, and is comprised of paralogs APL1A, APL1B and APL1C that share ≥50% amino acid identity. Here, we present a functional analysis of the joint response of APL1 family members during mosquito infection with human and rodent Plasmodium species. Only paralog APL1A protected A. gambiae against infection with the human malaria parasite P. falciparum from both the field population and in vitro culture. In contrast, only paralog APL1C protected against the rodent malaria parasites P. berghei and P. yoelii. We show that anti-P. falciparum protection is mediated by the Imd/Rel2 pathway, while protection against P. berghei infection was shown to require Toll/Rel1 signaling. Further, only the short Rel2-S isoform and not the long Rel2-F isoform of Rel2 confers protection against P. falciparum. Protection correlates with the transcriptional regulation of APL1A by Rel2-S but not Rel2-F, suggesting that the Rel2-S anti-parasite phenotype results at least in part from its transcriptional control over APL1A. These results indicate that distinct members of the APL1 gene family display a mutually exclusive protective effect against different classes of Plasmodium parasites. It appears that a gene-for-pathogen-class system orients the appropriate host defenses against distinct categories of similar pathogens. It is known that insect innate immune pathways can distinguish between grossly different microbes such as Gram-positive bacteria, Gram-negative bacteria, or fungi, but the function of the APL1 paralogs reveals that mosquito innate immunity possesses a more fine-grained capacity to distinguish between classes of closely

  10. Rodent repellency

    USGS Publications Warehouse

    DeWitt, J.B.; Welch, J.F.; Bellack, E.

    1950-01-01

    In the course of studies involving more than 2,500 chemical repellents, it has been found that certain groups of- compounds containing nitrogen or sulfur are repellent to rats under the , test conditions and it appears probable that some of these compounds might be used for the protection of packaged goods against rodent attacks. Additional tests to determine optimum methods of application will be necessary before final evaluation of these compounds will be possible and extensive field trials will be required to establish the degree of protection which may be afforded by the use of these materials. Pending such final evaluation, it may be assumed that the results,to date offer a means of selecting the most promising types of'materials for further trial....On the basis of the test data, it appears that some amine derivative, such as a salt of some organic, acid, or a complex with trinitrobenzene or with a metallic salt of a dialkyl dithiocarbamic acid might offer promise of protection of packaging materials against rodent attacks....Protection might be obtained through the use of certain 'physical deterrents' such as plastics, waxes or drying oils.

  11. Fenamate NSAIDs inhibit the NLRP3 inflammasome and protect against Alzheimer's disease in rodent models

    PubMed Central

    Daniels, Michael J. D.; Rivers-Auty, Jack; Schilling, Tom; Spencer, Nicholas G.; Watremez, William; Fasolino, Victoria; Booth, Sophie J.; White, Claire S.; Baldwin, Alex G.; Freeman, Sally; Wong, Raymond; Latta, Clare; Yu, Shi; Jackson, Joshua; Fischer, Nicolas; Koziel, Violette; Pillot, Thierry; Bagnall, James; Allan, Stuart M.; Paszek, Pawel; Galea, James; Harte, Michael K.; Eder, Claudia; Lawrence, Catherine B.; Brough, David

    2016-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) inhibit cyclooxygenase-1 (COX-1) and COX-2 enzymes. The NLRP3 inflammasome is a multi-protein complex responsible for the processing of the proinflammatory cytokine interleukin-1β and is implicated in many inflammatory diseases. Here we show that several clinically approved and widely used NSAIDs of the fenamate class are effective and selective inhibitors of the NLRP3 inflammasome via inhibition of the volume-regulated anion channel in macrophages, independently of COX enzymes. Flufenamic acid and mefenamic acid are efficacious in NLRP3-dependent rodent models of inflammation in air pouch and peritoneum. We also show therapeutic effects of fenamates using a model of amyloid beta induced memory loss and a transgenic mouse model of Alzheimer's disease. These data suggest that fenamate NSAIDs could be repurposed as NLRP3 inflammasome inhibitors and Alzheimer's disease therapeutics. PMID:27509875

  12. Protective Effects of Indole-3-Carbinol-Loaded Poly(lactic-co-glycolic acid) Nanoparticles Against Glutamate-Induced Neurotoxicity.

    PubMed

    Jeong, Ji Heun; Kim, Jwa-Jin; Bak, Dong Ho; Yu, Kwang Sik; Lee, Je Hun; Lee, Nam Seob; Jeong, Young Gil; Kim, Do Kyung; Kim, Dong-Kwan; Han, Seung-Yun

    2015-10-01

    Indole-3-carbinol (I3C) has anti-oxidant and anti-inflammatory properties. Nonetheless, the potential of I3C to treat neurodegenerative diseases remains unclear because of its poor ability to penetrate the blood-brain barrier (BBB). Because polymer-based drug delivery systems stabilized by surfactants have been intensively utilized as a strategy to cross the blood-brain barrier, we prepared I3C-loaded poly(D,L-lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) that were stabilized by Tween 80 (T80) (I3C-PLGA-T80-NPs) and examined their neuroprotective potential in vitro. We prepared I3C-PLGA-T80-NPs with an oil-in-water (o/w) emulsion solvent evaporation technique and confirmed their successful synthesis with both transmission electron microscopy and Fourier transform-infrared spectroscopy. I3C-PLGA-T80-NPs were then used to treat PC12 neuronal cells injured by glutamate excitotoxicity (GE) and examined the resulting survival rates compared with PC12 cells treated with I3C only. The 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay revealed higher survival rates in I3C-PLGA-T80-NPs-treated cells after GE injury compared with those treated with I3C only. Furthermore, I3C-PLGA-T80-NPs decreased the levels of reactive oxygen species (ROS) and apoptosis-related enzymes (Caspase-3 and -8) in GE-damaged neuronal cells. Taken together, I3C-PLGA-T80-NPs might possess neuroprotective effects against GE through ROS scavenging and subsequent apoptosis blockage. PMID:26726441

  13. Lactobacillus casei strain Shirota protects against nonalcoholic steatohepatitis development in a rodent model.

    PubMed

    Okubo, Hirofumi; Sakoda, Hideyuki; Kushiyama, Akifumi; Fujishiro, Midori; Nakatsu, Yusuke; Fukushima, Toshiaki; Matsunaga, Yasuka; Kamata, Hideaki; Asahara, Takashi; Yoshida, Yasuto; Chonan, Osamu; Iwashita, Misaki; Nishimura, Fusanori; Asano, Tomoichiro

    2013-12-01

    Gut microbiota alterations are associated with various disorders. In this study, gut microbiota changes were investigated in a methionine-choline-deficient (MCD) diet-induced nonalcoholic steatohepatitis (NASH) rodent model, and the effects of administering Lactobacillus casei strain Shirota (LcS) on the development of NASH were also investigated. Mice were divided into three groups, given the normal chow diet (NCD), MCD diet, or the MCD diet plus daily oral administration of LcS for 6 wk. Gut microbiota analyses for the three groups revealed that lactic acid bacteria such as Bifidobacterium and Lactobacillus in feces were markedly reduced by the MCD diet. Interestingly, oral administration of LcS to MCD diet-fed mice increased not only the L. casei subgroup but also other lactic acid bacteria. Subsequently, NASH development was evaluated based on hepatic histochemical findings, serum parameters, and various mRNA and/or protein expression levels. LcS intervention markedly suppressed MCD-diet-induced NASH development, with reduced serum lipopolysaccharide concentrations, suppression of inflammation and fibrosis in the liver, and reduced colon inflammation. Therefore, reduced populations of lactic acid bacteria in the colon may be involved in the pathogenesis of MCD diet-induced NASH, suggesting normalization of gut microbiota to be effective for treating NASH. PMID:24113768

  14. Mild Sensory Stimulation Completely Protects the Adult Rodent Cortex from Ischemic Stroke

    PubMed Central

    Chen-Bee, Cynthia H.; Frostig, Ron D.

    2010-01-01

    Despite progress in reducing ischemic stroke damage, complete protection remains elusive. Here we demonstrate that, after permanent occlusion of a major cortical artery (middle cerebral artery; MCA), single whisker stimulation can induce complete protection of the adult rat cortex, but only if administered within a critical time window. Animals that receive early treatment are histologically and behaviorally equivalent to healthy controls and have normal neuronal function. Protection of the cortex clearly requires reperfusion to the ischemic area despite permanent occlusion. Using blood flow imaging and other techniques we found evidence of reversed blood flow into MCA branches from an alternate arterial source via collateral vessels (inter-arterial connections), a potential mechanism for reperfusion. These findings suggest that the cortex is capable of extensive blood flow reorganization and more importantly that mild sensory stimulation can provide complete protection from impending stroke given early intervention. Such non-invasive, non-pharmacological intervention has clear translational potential. PMID:20585659

  15. Discovery of novel non-steroidal reverse indole mineralocorticoid receptor antagonists.

    PubMed

    Ogawa, Anthony K; Bunte, Ellen Vande; Mal, Rudrajit; Lan, Ping; Sun, Zhongxiang; Crespo, Alejandro; Wiltsie, Judyann; Clemas, Joseph; Gibson, Jack; Contino, Lisa; Lisnock, JeanMarie; Zhou, Gaochao; Garcia-Calvo, Margarita; Jochnowitz, Nina; Ma, Xiuying; Pan, Yi; Brown, Patricia; Zamlynny, Beata; Bateman, Thomas; Leung, Dennis; Xu, Ling; Tong, Xinchun; Liu, Kun; Crook, Martin; Sinclair, Peter

    2016-06-15

    Reported herein are a series of reverse indoles that represent novel non-steroidal mineralocorticoid receptor (MR) antagonists. The key structure-activity relationships (SAR) are presented below. This reverse indole series is exemplified by a compound that demonstrated efficacy in an acute natriuresis rodent model comparable to marketed MR antagonists, spironolactone and eplerenone. PMID:27161805

  16. Treatment with hyperimmune equine immunoglobulin or immunoglobulin fragments completely protects rodents from Ebola virus infection.

    PubMed

    Zheng, Xuexing; Wong, Gary; Zhao, Yongkun; Wang, Hualei; He, Shihua; Bi, Yuhai; Chen, Weijin; Jin, Hongli; Gai, Weiwei; Chu, Di; Cao, Zengguo; Wang, Chong; Fan, Quanshui; Chi, Hang; Gao, Yuwei; Wang, Tiecheng; Feng, Na; Yan, Feihu; Huang, Geng; Zheng, Ying; Li, Nan; Li, Yuetao; Qian, Jun; Zou, Yong; Kobinger, Gary; Gao, George Fu; Qiu, Xiangguo; Yang, Songtao; Xia, Xianzhu

    2016-01-01

    Recent successes with monoclonal antibody cocktails ZMapp(TM) and MIL77 against Ebola virus (EBOV) infections have reignited interest in antibody-based therapeutics. Since the production process for monoclonal antibodies can be prolonged and costly, alternative treatments should be investigated. We produced purified equine antisera from horses hyperimmunized with EBOV virus-like particles, and tested the post-exposure efficacy of the antisera in a mouse model of infection. BALB/c mice were given up to 2 mg of purified equine antisera per animal, at 30 minutes, 1 or 2 days post-infection (dpi), in which all animals survived. To decrease the possibility of serum sickness, the equine antisera was digested with pepsin to generate F(ab')2 fragments, with in vitro neutralizing activity comparable to whole immunoglobulin. Full protection was achieved with when treatment was initiated at 1 dpi, but the suboptimal protection observed with the 30 minute and 2 dpi groups demonstrate that in addition to virus neutralization, other Fc-dependent antibody mechanisms may also contribute to survival. Guinea pigs given 20 mg of antisera or F(ab')2 at or starting at 1 or 2 dpi were also fully protected from EBOV infection. These results justify future efficacy studies for purified equine products in NHPs. PMID:27067649

  17. Treatment with hyperimmune equine immunoglobulin or immunoglobulin fragments completely protects rodents from Ebola virus infection

    PubMed Central

    Zheng, Xuexing; Wong, Gary; Zhao, Yongkun; Wang, Hualei; He, Shihua; Bi, Yuhai; Chen, Weijin; Jin, Hongli; Gai, Weiwei; Chu, Di; Cao, Zengguo; Wang, Chong; Fan, Quanshui; Chi, Hang; Gao, Yuwei; Wang, Tiecheng; Feng, Na; Yan, Feihu; Huang, Geng; Zheng, Ying; Li, Nan; Li, Yuetao; Qian, Jun; Zou, Yong; Kobinger, Gary; Gao, George Fu; Qiu, Xiangguo; Yang, Songtao; Xia, Xianzhu

    2016-01-01

    Recent successes with monoclonal antibody cocktails ZMappTM and MIL77 against Ebola virus (EBOV) infections have reignited interest in antibody-based therapeutics. Since the production process for monoclonal antibodies can be prolonged and costly, alternative treatments should be investigated. We produced purified equine antisera from horses hyperimmunized with EBOV virus-like particles, and tested the post-exposure efficacy of the antisera in a mouse model of infection. BALB/c mice were given up to 2 mg of purified equine antisera per animal, at 30 minutes, 1 or 2 days post-infection (dpi), in which all animals survived. To decrease the possibility of serum sickness, the equine antisera was digested with pepsin to generate F(ab′)2 fragments, with in vitro neutralizing activity comparable to whole immunoglobulin. Full protection was achieved with when treatment was initiated at 1 dpi, but the suboptimal protection observed with the 30 minute and 2 dpi groups demonstrate that in addition to virus neutralization, other Fc-dependent antibody mechanisms may also contribute to survival. Guinea pigs given 20 mg of antisera or F(ab′)2 at or starting at 1 or 2 dpi were also fully protected from EBOV infection. These results justify future efficacy studies for purified equine products in NHPs. PMID:27067649

  18. Marine Indole Alkaloids.

    PubMed

    Netz, Natalie; Opatz, Till

    2015-08-01

    Marine indole alkaloids comprise a large and steadily growing group of secondary metabolites. Their diverse biological activities make many compounds of this class attractive starting points for pharmaceutical development. Several marine-derived indoles were found to possess cytotoxic, antineoplastic, antibacterial and antimicrobial activities, in addition to the action on human enzymes and receptors. The newly isolated indole alkaloids of marine origin since the last comprehensive review in 2003 are reported, and biological aspects will be discussed. PMID:26287214

  19. Marine Indole Alkaloids

    PubMed Central

    Netz, Natalie; Opatz, Till

    2015-01-01

    Marine indole alkaloids comprise a large and steadily growing group of secondary metabolites. Their diverse biological activities make many compounds of this class attractive starting points for pharmaceutical development. Several marine-derived indoles were found to possess cytotoxic, antineoplastic, antibacterial and antimicrobial activities, in addition to the action on human enzymes and receptors. The newly isolated indole alkaloids of marine origin since the last comprehensive review in 2003 are reported, and biological aspects will be discussed. PMID:26287214

  20. Rodent Control

    ERIC Educational Resources Information Center

    Indian Journal of Adult Education, 1975

    1975-01-01

    Strategies for rodent control in crop fields, threshing yards, and rural residential areas are presented together with an operational plan for implementing a program for rodent control at the national level. Training personnel in rodent control procedures and procedures for educating the public in the necessity for control are covered. (EC)

  1. Benefits of protective fencing to plant and rodent communities of the western Mojave Desert, California

    NASA Astrophysics Data System (ADS)

    Brooks, Matthew L.

    1995-01-01

    Human disturbance in the western Mojave Desert takes many forms. The most pervasive are livestock grazing and off-highway vehicle use. Over the past few decades several areas within this region have been fenced to preclude human disturbance. These areas provide opportunities to study the impact of human activities in a desert ecosystem. This paper documents the response of plant and small mammal populations to fencing constructed between 1978 and 1979 at the Desert Tortoise Research Natural Area, Kern County, California. Aboveground live annual plant biomass was generally greater inside than outside the fenced plots during April 1990, 1991, and 1992. The alien grass Schismus barbatus was a notable exception, producing more biomass in the unprotected area. Forb biomass was greater than that of alien annual grasses inside the fence during all three years of the study. Outside the fence, forb biomass was significantly higher than that of alien grasses only during spring 1992. Percent cover of perennial shrubs was higher inside the fence than outside, while no significant trend was detected in density. There was als more seed biomass inside the fence; this may have contributed to the greater diversity and density of Merriam's kangaroo rats ( Dipodomys merriami), long-tailed pocket mice ( Chaetodipus formosus), and southern grasshopper mice ( Onychomys torridus) in the protected area. These results show that protection from human disturbance has many benefits, including greater overall community biomass and diversity. The significance and generality of these results can be further tested by studying other exclosures of varying age and configurations in different desert regions of the southwestern United States.

  2. Nucleophilic index value: implication in the protection by indole-3-carbinol from N-nitrosodimethylamine cyto and genotoxicity in mouse liver.

    PubMed

    Shertzer, H G; Tabor, M W

    1988-04-01

    A novel assay system was developed in order to quantitate the nucleophilicity of pure chemicals or tissue extracts. This Nucleophilic Index Value (NIV) assay was based on the ability of putative nucleophiles to inhibit the methylation of cysteine by limiting concentrations of the electrophilic source, N-methyl-N-nitrosourea (MNU). Efficacy of model and cellular nucleophiles was quantitated as nmol cysteine protected by the nucleophile from methylation by MNU/h/mM compound. The NIVs of the pure compounds ascorbate, glutathione, 4-(4-nitrobenzyl)-pyridine (NBP) and indole-3-carbinol (I-3-C) were 2400, 1600, 3 and 0, respectively. When mice were treated with I-3-C by gavage at dosages of 0, 25, 50, 75 or 100 mg/kg body wt, the NIV for ethyl acetate extracts of the livers 1 h after treatment were 0, 33, 47, 52 and 92 nmol cysteine preserved/h/g tissue, respectively. The I-3-C enhancement of NIV was not attributable to ascorbate or glutathione, neither of which were present in the ethyl extracts of liver. When mice were treated with 10 mg N-nitrosodimethylamine (NDMA)/kg body wt 1 h after the varying dosages of I-3-C, the 24 h post-NDMA plasma alanine transaminase (ALT) values were decreased by I-3-C pretreatment in a dose-dependent fashion. Plasma ALT values were used in this study as an indicator of hepatotoxicity. The coefficient of determination, r2, computed from the linear least squares correlation coefficient between NIV and ALT values, was 0.80 (0-100 mg I-3-C/kg) and 0.97 (0-75 mg/kg).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3379233

  3. Protective Effect of SAHA against LPS-induced Liver Damage in Rodents

    PubMed Central

    Zhao, Yili; Zhou, Peter; Liu, Baoling; Bambakidis, Ted; Mazitschek, Ralph; Alam, Hasan B.; Li, Yongqing

    2014-01-01

    BACKGROUND Lipopolysaccharide (LPS) has a deleterious effect on several organs including the liver and eventually leads to endotoxic shock and death. LPS-induced hepatotoxicity is characterized by disturbed intracellular redox balance and excessive reactive oxygen species (ROS) accumulation, leading to liver injury. We have shown that treatment with suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor (HDACI), improves survival in a murine model of LPS-induced shock, but the protective effect of SAHA against liver damage remains unknown. The goal of this study was to investigate the mechanism underlying SAHA action in murine livers. METHOD Male C57BL/6J mice (6-8 weeks) weighing 20-25 g were randomly divided into three groups: (A) a sham group was given isotonic sodium chloride solution (10 μL/g body weight, intraperitoneal, i.p.) with DMSO (1 μl/g body weight, i.p.); (B) a LPS group was challenged with LPS (20 mg/kg, i.p.) dissolved in isotonic sodium chloride solution with DMSO; (C) a LPS plus SAHA group was treated with SAHA (50 mg/kg, i.p.) dissolved in DMSO immediately after injection of LPS (20 mg/kg, i.p.). Mice were anesthetized, and their livers were harvested 6 or 24 hours after injection to analyze whether SAHA affected production of reactive oxygen species (ROS) and activation of apoptotic proteins in the liver cells of challenged mice. RESULTS SAHA counteracted LPS-induced production of ROS (thiobarbituric acid reactive substances (TBARS) and nitrite) and reversed an LPS-induced decrease in antioxidant enzyme, glutathione (GSH). SAHA also attenuated LPS-induced hepatic apoptosis. Moreover, SAHA inhibited activation of the redox-sensitive kinase, apoptosis signal-regulating kinase-1 (ASK1), and the mitogen-activated protein kinases (MAPKs) p38 and Jun N-terminal kinase (JNK). CONCLUSION Our data indicates, for the first time, that SAHA is capable of alleviating LPS-induced hepatotoxicity and suggests that a blockade of the upstream

  4. Comparison of potential protective effects of melatonin, indole-3-propionic acid, and propylthiouracil against lipid peroxidation caused by potassium bromate in the thyroid gland.

    PubMed

    Karbownik, Malgorzata; Stasiak, Magdalena; Zasada, Krzysztof; Zygmunt, Arkadiusz; Lewinski, Andrzej

    2005-05-01

    Potassium bromate (KBrO3) is a prooxidant and carcinogen, inducing thyroid tumors. Melatonin and indole-3-propionic acid (IPA) are effective antioxidants. Some antioxidative effects of propylthiouracil (PTU)--a thyrostatic drug--have been found. The aim of the study was to compare protective effects of melatonin, IPA, and PTU against lipid peroxidation in the thyroids, collected from rats treated with KBrO3, and in homogenates of porcine thyroids, incubated in the presence of KBrO3. Wistar rats were administered KBrO3 (110 mg/kg b.w., i.p., on the 10th day of the experiment) and/or melatonin, or IPA (0.0645 mmol/kg b.w., i.p., twice daily, for 10 days), or PTU (0.025% solution in drinking water, for 10 days). Homogenates of porcine thyroids were incubated for 30 min in the presence of KBrO3 (5 mM) plus one of the antioxidants: melatonin (0.01, 0.1, 0.5, 1.0, 5.0, 7.5 mM), or IPA (0.01, 0.1, 0.5, 1.0, 5.0, 7.5, 10.0 mM), or PTU (0.01, 0.1, 0.5, 1.0, 5.0, 7.5, 10.0 mM). The level of lipid peroxidation products (MDA + 4-HDA) was measured spectrophotometrically in thyroid homogenates. In vivo pretreatment with either melatonin or with IPA or with PTU decreased lipid peroxidation caused by KBrO3--injections in rat thyroid gland. Under in vitro conditions, PTU (5.0, 7.5, and 10.0 mM), but neither melatonin nor IPA, reduced KBrO3-related lipid peroxidation in the homogenates of porcine thyroids. In conclusion, melatonin and IPA may be of great value as protective agents under conditions of exposure to KBrO3. PMID:15723291

  5. Biosynthesis of Fungal Indole Alkaloids

    PubMed Central

    Xu, Wei; Gavia, Diego J.; Tang, Yi

    2014-01-01

    This review provides a summary of recent research advances in elucidating the biosynthesis of fungal indole alkaloids. Different strategies used to incorporate and derivatize the indole/indoline moieties in various families of fungal indole alkaloids will be discussed, including tryptophan-containing nonribosomal peptides and polyketide-nonribosomal peptide hybrids; and alkaloids derived from other indole building blocks. This review also includes discussion regarding the downstream modifications that generate chemical and structural diversity among indole alkaloids. PMID:25180619

  6. Repetitive live sporozoites inoculation under arteether chemoprophylaxis confers protection against subsequent sporozoite challenge in rodent malaria model.

    PubMed

    Bhardwaj, Jyoti; Siddiqui, Arif Jamal; Goyal, Manish; Prakash, Kirtika; Soni, Awakash; Puri, Sunil K

    2016-06-01

    Inoculation with live sporozoites under prophylactic antimalarial cover (CPS-immunization) represents an alternate approach to develop sterile, reproducible, and long-term protection against malaria. Here, we have employed arteether (ART), a semi synthetic derivative of artemisinin to explore its potential as a chemoprophylaxis candidate in CPS approach and systematically compared the protective potential of arteether with mefloquine, azithromycin and primaquine. Blood stage patency and quantitative RT-PCR of liver stage parasite load were monitored as primary key end-points for protection against malaria challenge infection. For this purpose, sequential exposures of Plasmodium yoelii sporozoites under prophylactic treatment with arteether (ART), mefloquine (MFQ), azithromycin (AZ) or primaquine (PQ) was conducted in experimental Swiss mice. Our results show that during the first three sequential exposures (1st, 2nd and 3rd challenge) no marked difference in the blood stage patency was observed between control and CPS-ART group. However, delayed patency was recorded following 4th sporozoite challenge and mice enjoyed sterile protection after 5th sporozoite challenge. A similar response was observed in CPS-MFQ group, whereas earlier protection was recorded in CPS-AZ group i.e., after 4th sprozoite challenge. However, mice under PQ cover did not show any protection/delay in patency even after five sequential sporozoite inoculations, possibly due to inhibition of liver stage development. Furthermore, protection acquired by CPS-immunization is stage-specific as the protected mice remained susceptible to challenge with blood stage parasites. In short, the present study demonstrates that sporozoite administration under ART, MFQ or AZ treatment confers strong protection against subsequent sporozoite infection and the acquired response is dependent on the presence of liver stage parasites. PMID:26925772

  7. Aqueous stem bark extract of Stereospermum kunthianum (Cham, Sandrine Petit) protects against generalized seizures in pentylenetetrazole and electro-convulsive models in rodents.

    PubMed

    Ching, F P; Omogbai, E K I; Otokiti, I O

    2009-01-01

    Stereospermum kunthianum, Cham Sandrine Petit (Bignoniaceae) known in English as pink jacaranda is used in traditional medicine to treat an array of ailments including febrile convulsions in infants and young children by the rural dwellers in Nigeria. This study examined the anticonvulsant activity of its aqueous stem bark extract (100 - 400mg/kg) against maximal electroshock and pentylenetetrazole-induced seizures in rodents. Phenobarbitone and ethosuximide were used as reference anticonvulsant drugs for comparison. Stereospermum kunthianum extract (200 - 400mg/kg, i.p.) remarkably protected (76.9% and 84.6 % respectively) the rats against electroshock-induced seizures. However, the extract (200- 400mg/kg) when administered orally showed a comparatively less effect (33.3% and 55.6% respectively) to the intraperitoneally administered extract in the maximal electroshock test. The extract (100-400mg/kg, i.p.) significantly delayed (p<0.05) the onset of pentylenetetrazole-induced clonic seizures but only slightly prolonged the time of death of the mice. Although the findings in the present study do not provide conclusive evidence, it appears that the aqueous stem bark extract of Stereospermum kunthianum produces its antiseizure effect by enhancing GABAergic neurotransmission and/or action in the brain. The results indicate that the aqueous extract possesses anticonvulsant activity in rodents and therefore tend to suggest that the shrub may be used as a natural supplementary remedy in the management, control and/or treatment of childhood convulsions. It can be concluded that the aqueous stem bark extract possesses anticonvulsant activity and therefore lend pharmacological credence to the traditionally claimed use in the treatment of childhood convulsions. PMID:20606775

  8. Calcineurin inhibitors cyclosporin A and tacrolimus protect against podocyte injury induced by puromycin aminonucleoside in rodent models.

    PubMed

    Shen, Xiujin; Jiang, Hong; Ying, Meike; Xie, Zhoutao; Li, Xiayu; Wang, Haibing; Zhao, Jie; Lin, Chuan; Wang, Yucheng; Feng, Shi; Shen, Jia; Weng, Chunhua; Lin, Weiqiang; Wang, Huiping; Zhou, Qin; Bi, Yan; Li, Meng; Wang, Lingyan; Zhu, Tongyu; Huang, Xiaoru; Lan, Hui-Yao; Zhou, Jing; Chen, Jianghua

    2016-01-01

    Podocyte injury and the appearance of proteinuria are features of minimal-change disease (MCD). Cyclosporin A (CsA) and tacrolimus (FK506) has been reported to reduce proteinuria in patients with nephrotic syndrome, but mechanisms remain unknown. We, therefore, investigated the protective mechanisms of CsA and FK506 on proteinuria in a rat model of MCD induced by puromycin aminonucleoside (PAN) and in vitro cultured mouse podocytes. Our results showed that CsA and FK506 treatment decreased proteinuria via a mechanism associated to a reduction in the foot-process fusion and desmin, and a recovery of synaptopodin and podocin. In PAN-treated mouse podocytes, pre-incubation with CsA and FK506 restored the distribution of the actin cytoskeleton, increased the expression of synaptopodin and podocin, improved podocyte viability, and reduced the migrating activities of podocytes. Treatment with CsA and FK506 also inhibited PAN-induced podocytes apoptosis, which was associated with the induction of Bcl-xL and inhibition of Bax, cleaved caspase 3, and cleaved PARP expression. Further studies revealed that CsA and FK506 inhibited PAN-induced p38 and JNK signaling, thereby protecting podocytes from PAN-induced injury. In conclusion, CsA and FK506 inhibit proteinuria by protecting against PAN-induced podocyte injury, which may be associated with inhibition of the MAPK signaling pathway. PMID:27580845

  9. Calcineurin inhibitors cyclosporin A and tacrolimus protect against podocyte injury induced by puromycin aminonucleoside in rodent models

    PubMed Central

    Shen, Xiujin; Jiang, Hong; Ying, Meike; Xie, Zhoutao; Li, Xiayu; Wang, Haibing; Zhao, Jie; Lin, Chuan; Wang, Yucheng; Feng, Shi; Shen, Jia; Weng, Chunhua; Lin, Weiqiang; Wang, Huiping; Zhou, Qin; Bi, Yan; Li, Meng; Wang, Lingyan; Zhu, Tongyu; Huang, Xiaoru; Lan, Hui-Yao; Zhou, Jing; Chen, Jianghua

    2016-01-01

    Podocyte injury and the appearance of proteinuria are features of minimal-change disease (MCD). Cyclosporin A (CsA) and tacrolimus (FK506) has been reported to reduce proteinuria in patients with nephrotic syndrome, but mechanisms remain unknown. We, therefore, investigated the protective mechanisms of CsA and FK506 on proteinuria in a rat model of MCD induced by puromycin aminonucleoside (PAN) and in vitro cultured mouse podocytes. Our results showed that CsA and FK506 treatment decreased proteinuria via a mechanism associated to a reduction in the foot-process fusion and desmin, and a recovery of synaptopodin and podocin. In PAN-treated mouse podocytes, pre-incubation with CsA and FK506 restored the distribution of the actin cytoskeleton, increased the expression of synaptopodin and podocin, improved podocyte viability, and reduced the migrating activities of podocytes. Treatment with CsA and FK506 also inhibited PAN-induced podocytes apoptosis, which was associated with the induction of Bcl-xL and inhibition of Bax, cleaved caspase 3, and cleaved PARP expression. Further studies revealed that CsA and FK506 inhibited PAN-induced p38 and JNK signaling, thereby protecting podocytes from PAN-induced injury. In conclusion, CsA and FK506 inhibit proteinuria by protecting against PAN-induced podocyte injury, which may be associated with inhibition of the MAPK signaling pathway. PMID:27580845

  10. Sulforaphane Protects Rodent Retinas against Ischemia-Reperfusion Injury through the Activation of the Nrf2/HO-1 Antioxidant Pathway

    PubMed Central

    Liu, Ruixing; Brecha, Nicholas C.; Yu, Albert Cheung Hoi; Pu, Mingliang

    2014-01-01

    Retinal ischemia-reperfusion (I/R) injury induces oxidative stress, leukocyte infiltration, and neuronal cell death. Sulforaphane (SF), which can be obtained in cruciferous vegetables such as broccoli, exerts protective effects in response to oxidative stress in various tissues. These effects can be initiated through nuclear factor E2-related factor 2 (Nrf2)-mediated induction of heme oxygenase-1 (HO-1). This investigation was designed to elucidate the neural protective mechanisms of SF in the retinal I/R rat model. Animals were intraperitoneally (i.p.) injected with SF (12.5 mg/kg) or vehicle (corn oil) once a day for 7 consecutive days. Then, retinal I/R was made by elevating the intraocular pressure (IOP) to 130 mmHg for 1 h. To determine if HO-1 was involved in the Nrf2 antioxidant pathway, rats were subjected to protoporphyrin IX zinc (II) (ZnPP, 30 mg/kg, i.p.) treatments at 24 h before retinal ischemia. The neuroprotective effects of SF were assessed by determining the morphology of the retina, counting the infiltrating inflammatory cells and the surviving retinal ganglion cells (RGCs) and amacrine cells, and measuring apoptosis in the retinal layers. The expression of Nrf2 and HO-1 was studied by immunofluorescence analysis and western blotting. I/R induced a marked increase of ROS generation, caused pronounced inflammation, increased the apoptosis of RGCs and amacrine cells and caused the thinning of the inner retinal layer (IRL), and these effects were diminished or abolished by SF pretreatment. Meanwhile, SF pretreatment significantly elevated the nuclear accumulation of Nrf2 and the level of HO-1 expression in the I/R retinas; however, ZnPP reversed the protective effects of SF on I/R retinas. Together, we offer direct evidence that SF had protective effects on I/R retinas, which could be attributed, at least in part, to the activation of the Nrf2/HO-1 antioxidant pathway. PMID:25470382

  11. Baculovirus-Vectored Multistage Plasmodium vivax Vaccine Induces Both Protective and Transmission-Blocking Immunities against Transgenic Rodent Malaria Parasites

    PubMed Central

    Mizutani, Masanori; Iyori, Mitsuhiro; Blagborough, Andrew M.; Fukumoto, Shinya; Funatsu, Tomohiro; Sinden, Robert E.

    2014-01-01

    A multistage malaria vaccine targeting the pre-erythrocytic and sexual stages of Plasmodium could effectively protect individuals against infection from mosquito bites and provide transmission-blocking (TB) activity against the sexual stages of the parasite, respectively. This strategy could help prevent malaria infections in individuals and, on a larger scale, prevent malaria transmission in communities of endemicity. Here, we describe the development of a multistage Plasmodium vivax vaccine which simultaneously expresses P. vivax circumsporozoite protein (PvCSP) and P25 (Pvs25) protein of this species as a fusion protein, thereby acting as a pre-erythrocytic vaccine and a TB vaccine, respectively. A new-concept vaccine platform based on the baculovirus dual-expression system (BDES) was evaluated. The BDES-Pvs25-PvCSP vaccine displayed correct folding of the Pvs25-PvCSP fusion protein on the viral envelope and was highly expressed upon transduction of mammalian cells in vitro. This vaccine induced high levels of antibodies to Pvs25 and PvCSP and elicited protective (43%) and TB (82%) efficacies against transgenic P. berghei parasites expressing the corresponding P. vivax antigens in mice. Our data indicate that our BDES, which functions as both a subunit and DNA vaccine, can offer a promising multistage vaccine capable of delivering a potent antimalarial pre-erythrocytic and TB response via a single immunization regimen. PMID:25092912

  12. Brain-Derived Neurotrophic Factor Regulates TRPC3/6 Channels and Protects Against Myocardial Infarction in Rodents

    PubMed Central

    Hang, Pengzhou; Zhao, Jing; Cai, Benzhi; Tian, Shanshan; Huang, Wei; Guo, Jing; Sun, Chuan; Li, Yue; Du, Zhimin

    2015-01-01

    Background: Brain-derived neurotrophic factor (BDNF) is associated with coronary artery diseases. However, its role and mechanism in myocardial infarction (MI) is not fully understood. Methods: Wistar rat and Kunming mouse model of MI were induced by the ligation of left coronary artery. Blood samples were collected from MI rats and patients. Plasma BDNF level, protein expression of BDNF, tropomyosin-related kinase B (TrkB) and its downstream transient receptor potential canonical (TRPC)3/6 channels were examined by enzyme-linked immunosorbent assay and Western blot. Infarct size, cardiac function and cardiomyocyte apoptosis were measured after intra-myocardium injection with recombinant human BDNF. Protective role of BDNF against cardiomyocyte apoptosis was confirmed by BDNF scavenger TrkB-Fc. The regulation of TRPC3/6 channels by BDNF was validated by pretreating with TRPC blocker (2-Aminoethyl diphenylborinate, 2-APB) and TRPC3/6 siRNAs. Results: Circulating BDNF was significantly enhanced in MI rats and patients. Protein expression of BDNF, TrkB and TRPC3/6 channels were upregulated in MI. 3 days post-MI, BDNF treatment markedly reduced the infarct size and serum lactate dehydrogenase activity. Meanwhile, echocardiography indicated that BDNF significantly improved cardiac function of MI mice. Furthermore, BDNF markedly inhibited cardiomyocyte apoptosis by upregulating Bcl-2 expression and downregulating caspase-3 expression and activity in ischemic myocardium. In neonatal rat ventricular myocytes, cell viability was dramatically increased by BDNF in hypoxia, which was restored by TrkB-Fc. Furthermore, protective role of BDNF against hypoxia-induced apoptosis was reversed by 2-APB and TRPC3/6 siRNAs. Conclusion: BDNF/TrkB alleviated cardiac ischemic injury and inhibited cardiomyocytes apoptosis by regulating TRPC3/6 channels, which provides a novel potential therapeutic candidate for MI. PMID:25892961

  13. Enhanced protection against renal ischemia-reperfusion injury with combined melatonin and exendin-4 in a rodent model.

    PubMed

    Chang, Yi-Chih; Hsu, Shu-Yuan; Yang, Chih-Chao; Sung, Pei-Hsun; Chen, Yi-Ling; Huang, Tien-Hung; Kao, Gour-Shenq; Chen, Sheng-Yi; Chen, Kuan-Hung; Chiang, Hsin-Ju; Yip, Hon-Kan; Lee, Fan-Yen

    2016-08-01

    We tested the hypothesis that combined treatment with melatonin, an anti-oxidant, and exendin-4, an anti-inflammatory agent, was superior to either alone for protecting the kidney from ischemia-reperfusion (IR) injury. Male adult Sprague-Dawley rats (n=40) were equally divided into group 1 (sham-operated control), group 2 (IR only, IR=1h/72h), group 3 (IR-exendin-4, 10 µg/kg at 30 min, 24 h, 48 h after IR procedure), group 4 (IR-melatonin, i.p. 50 mg at 30 min, then 20 mg at 6 and 18 h after IR procedure), and group 5 (combined IR-exendin-4-melatonin). All animals were sacrificed by 72 h after IR/sham procedure. The results showed that the kidney injury score, plasma creatinine, and blood urea nitrogen (BUN) levels were highest in group 2 and lowest in group 1, significantly higher in groups 3 and 4 than those in group 5 and significantly higher in group 3 than those in group 4 (all p < 0.001). The protein expressions of inflammatory (toll-like receptor 4, inducible nitric oxide synthase, interleukin-1β), apoptotic (mitochondrial Bax, cleaved caspase-3 and poly(ADP-ribose) polymerase, p53), podocyte integrity (E-cadherin, P-cadherin), and cell survival (phosphatidylinositol-3-kinase/AKT/mammalian target of rapamycin) biomarkers, as well the podocyte dysfunction biomarkers (Wnt1/Wnt4/β-catenin) displayed a pattern identical to that of creatinine level among the five groups (all p < 0.001). Microscopic findings demonstrated that podocyte dysfunction (Wnt1/Wnt4/β-catenin expression) and inflammatory (CD14 and F4/80-positively stained cells) biomarkers exhibited an identical pattern, whereas that of antioxidant (HO-1(+), NQO-1(+) cells) biomarkers showed an opposite pattern compared to that of creatinine level among the five groups (all p < 0.001). Combined melatonin-exendin-4 therapy offered an additional benefit in protecting the kidney from acute IR injury. PMID:27037275

  14. Toxicological evaluation of Terminalia paniculata bark extract and its protective effect against CCl4-induced liver injury in rodents

    PubMed Central

    2013-01-01

    Background Based on the reported antioxidant and anti-inflammatory potential of Terminalia paniculata, the bark aqueous extract (TPW) was investigated against liver damage. Methods Intrinsic cytotoxicity was tested on normal human liver (Chang) cell lines, followed by acute and sub-chronic toxicity studies in mice. TPW was then evaluated against CCl4-induced liver toxicity in rats. Liver enzymes (AST, ALT, and ALP) and antioxidant markers were assessed. The effect of TPW on isolated hepatic cells, post-CCl4 administration, was assessed by isolated mitochondrial membrane staining. The actions of TPW on apoptotic pathway in CCl4-treated Chang cells were also elucidated. Results TPW was found to be safe at all doses tested in both in vitro and in vivo toxicity studies. TPW (400 mg/kg, p.o.) significantly (*p <0.05) improved liver enzyme activity as compared to CCl4. Also, it improved antioxidant status (GSH, GST, MDA and total thiol) and preserved hepatic cell architecture. TPW pre-treatment significantly attenuated the levels of phospho-p53, p53, cleaved caspase-3, phospho-Bad, Bad and cleaved PARP in CCl4-treated Chang cells, improving the viability considerably. Conclusion The findings support a protective role for Terminalia paniculata in pathologies involving oxidative stress. PMID:23742226

  15. Protective effects of systemic treatment with methylprednisolone in a rodent model of non-arteritic anterior ischemic optic neuropathy (rAION).

    PubMed

    Huang, Tzu-Lun; Huang, Shun-Ping; Chang, Chung-Hsing; Lin, Kung-Hung; Chang, Shu-Wen; Tsai, Rong-Kung

    2015-02-01

    This study investigated the protective effects of the administration of steroids on optic nerves (ON) and retinal ganglion cells (RGCs) in a rodent model of non-arteritic anterior ischemic optic neuropathy (rAION). We induced rAION using rose bengal and argon laser irradiation in a photodynamic procedure on the optic discs of rats. The treated groups received methylprednisolone (MP) via peritoneal injection for 2 weeks. The control group received intraperitoneal injections of phosphate-buffered saline (PBS) post-rAION. At the 4th week post-infarct, MP treatments significantly rescued the RGCs (mm(2)) in the central retinas (1920 ± 210, p < 0.001) and mid-peripheral retinas (950 ± 240, respectively, p = 0.018) compared with those of the PBS-treated rats (central: 900 ± 210 and mid-peripheral: 440 ± 180). Functional assessment with flash visual-evoked potentials demonstrated that P1 latency (ms) was shortened in the MP group compared to the PBS group (108 ± 14 and 147 ± 9, respectively, p < 0.001). In addition, the P1 amplitude (uV) was enhanced in the MP group compared to the PBS group (55 ± 12 and 41 ± 13, respectively, p < 0.05). TUNEL assays showed a decrease in the number of apoptotic cells in the RGC layers of MP-treated retinas compared to the PBS-treated group (p < 0.05). ED1 positive cells (/HPF) were significantly decreased in the ONs of the MP group compared to the PBS group (p < 0.001). In conclusion, systemic administration of MP had neuroprotective effects on RGC survival and ON function in the rAION animal model. PMID:25543054

  16. Immunogenicity and Protective Efficacy of Brugia malayi Heavy Chain Myosin as Homologous DNA, Protein and Heterologous DNA/Protein Prime Boost Vaccine in Rodent Model.

    PubMed

    Gupta, Jyoti; Pathak, Manisha; Misra, Sweta; Misra-Bhattacharya, Shailja

    2015-01-01

    We earlier demonstrated the immunoprophylactic efficacy of recombinant heavy chain myosin (Bm-Myo) of Brugia malayi (B. malayi) in rodent models. In the current study, further attempts have been made to improve this efficacy by employing alternate approaches such as homologous DNA (pcD-Myo) and heterologous DNA/protein prime boost (pcD-Myo+Bm-Myo) in BALB/c mouse model. The gene bm-myo was cloned in a mammalian expression vector pcDNA 3.1(+) and protein expression was confirmed in mammalian Vero cell line. A significant degree of protection (79.2%±2.32) against L3 challenge in pcD-Myo+Bm-Myo immunized group was observed which was much higher than that exerted by Bm-Myo (66.6%±2.23) and pcD-Myo (41.6%±2.45). In the heterologous immunized group, the percentage of peritoneal leukocytes such as macrophages, neutrophils, B cells and T cells marginally increased and their population augmented further significantly following L3 challenge. pcD-Myo+Bm-Myo immunization elicited robust cellular and humoral immune responses as compared to pcD-Myo and Bm-Myo groups as evidenced by an increased accumulation of CD4+, CD8+ T cells and CD19+ B cells in the mouse spleen and activation of peritoneal macrophages. Though immunized animals produced antigen-specific IgG antibodies and isotypes, sera of mice receiving pcD-Myo+Bm-Myo or Bm-Myo developed much higher antibody levels than other groups and there was profound antibody-dependent cellular adhesion and cytotoxicity (ADCC) to B. malayi infective larvae (L3). pcD-Myo+Bm-Myo as well as Bm-Myo mice generated a mixed T helper cell phenotype as evidenced by the production of both pro-inflammatory (IL-2, IFN-γ) and anti-inflammatory (IL-4, IL-10) cytokines. Mice receiving pcD-Myo on contrary displayed a polarized pro-inflammatory immune response. The findings suggest that the priming of animals with DNA followed by protein booster generates heightened and mixed pro- and anti-inflammatory immune responses that are capable of providing

  17. Immunogenicity and Protective Efficacy of Brugia malayi Heavy Chain Myosin as Homologous DNA, Protein and Heterologous DNA/Protein Prime Boost Vaccine in Rodent Model

    PubMed Central

    Gupta, Jyoti; Pathak, Manisha; Misra, Sweta; Misra-Bhattacharya, Shailja

    2015-01-01

    We earlier demonstrated the immunoprophylactic efficacy of recombinant heavy chain myosin (Bm-Myo) of Brugia malayi (B. malayi) in rodent models. In the current study, further attempts have been made to improve this efficacy by employing alternate approaches such as homologous DNA (pcD-Myo) and heterologous DNA/protein prime boost (pcD-Myo+Bm-Myo) in BALB/c mouse model. The gene bm-myo was cloned in a mammalian expression vector pcDNA 3.1(+) and protein expression was confirmed in mammalian Vero cell line. A significant degree of protection (79.2%±2.32) against L3 challenge in pcD-Myo+Bm-Myo immunized group was observed which was much higher than that exerted by Bm-Myo (66.6%±2.23) and pcD-Myo (41.6%±2.45). In the heterologous immunized group, the percentage of peritoneal leukocytes such as macrophages, neutrophils, B cells and T cells marginally increased and their population augmented further significantly following L3 challenge. pcD-Myo+Bm-Myo immunization elicited robust cellular and humoral immune responses as compared to pcD-Myo and Bm-Myo groups as evidenced by an increased accumulation of CD4+, CD8+ T cells and CD19+ B cells in the mouse spleen and activation of peritoneal macrophages. Though immunized animals produced antigen-specific IgG antibodies and isotypes, sera of mice receiving pcD-Myo+Bm-Myo or Bm-Myo developed much higher antibody levels than other groups and there was profound antibody-dependent cellular adhesion and cytotoxicity (ADCC) to B. malayi infective larvae (L3). pcD-Myo+Bm-Myo as well as Bm-Myo mice generated a mixed T helper cell phenotype as evidenced by the production of both pro-inflammatory (IL-2, IFN-γ) and anti-inflammatory (IL-4, IL-10) cytokines. Mice receiving pcD-Myo on contrary displayed a polarized pro-inflammatory immune response. The findings suggest that the priming of animals with DNA followed by protein booster generates heightened and mixed pro- and anti-inflammatory immune responses that are capable of providing

  18. Rodents And Other Gnawers.

    ERIC Educational Resources Information Center

    Naturescope, 1986

    1986-01-01

    Presents information about rodents and lagomorphs, including definitions and the characteristics of these animals. Contains teaching activities such as "Habitats for Hoppers,""Cartoon Gnawers," and "The Great Rodent Expedition." Reproducible handouts for two of the activities are provided. (TW)

  19. Biochemical Characterization of Indole Prenyltransferases

    PubMed Central

    Yu, Xia; Liu, Yan; Xie, Xiulan; Zheng, Xiao-Dong; Li, Shu-Ming

    2012-01-01

    The putative prenyltransferase gene ACLA_031240 belonging to the dimethylallyltryptophan synthase superfamily was identified in the genome sequence of Aspergillus clavatus and overexpressed in Escherichia coli. The soluble His-tagged protein EAW08391 was purified to near homogeneity and used for biochemical investigation with diverse aromatic substrates in the presence of different prenyl diphosphates. It has shown that in the presence of dimethylallyl diphosphate (DMAPP), the recombinant enzyme accepted very well simple indole derivatives with l-tryptophan as the best substrate. Product formation was also observed for tryptophan-containing cyclic dipeptides but with much lower conversion yields. In contrast, no product formation was detected in the reaction mixtures of l-tryptophan with geranyl or farnesyl diphosphate. Structure elucidation of the enzyme products by NMR and MS analyses proved unequivocally the highly regiospecific regular prenylation at C-5 of the indole nucleus of the simple indole derivatives. EAW08391 was therefore termed 5-dimethylallyltryptophan synthase, and it filled the last gap in the toolbox of indole prenyltransferases regarding their prenylation positions. Km values of 5-dimethylallyltryptophan synthase were determined for l-tryptophan and DMAPP at 34 and 76 μm, respectively. Average turnover number (kcat) at 1.1 s−1 was calculated from kinetic data of l-tryptophan and DMAPP. Catalytic efficiencies of 5-dimethylallyltryptophan synthase for l-tryptophan at 25,588 s−1·m−1 and for other 11 simple indole derivatives up to 1538 s−1·m−1 provided evidence for its potential usage as a catalyst for chemoenzymatic synthesis. PMID:22123822

  20. Rodent Research-1 Validation of Rodent Hardware

    NASA Technical Reports Server (NTRS)

    Globus, Ruth; Beegle, Janet

    2013-01-01

    To achieve novel science objectives, validation of a rodent habitat on ISS will enable - In-flight analyses during long duration spaceflight- Use of genetically altered animals- Application of modern analytical techniques (e.g. genomics, proteomics, and metabolomics)

  1. The glucosinolate breakdown product indole-3-carbinol acts as an auxin antagonist in roots of Arabidopsis thaliana.

    PubMed

    Katz, Ella; Nisani, Sophia; Yadav, Brijesh S; Woldemariam, Melkamu G; Shai, Ben; Obolski, Uri; Ehrlich, Marcelo; Shani, Eilon; Jander, Georg; Chamovitz, Daniel A

    2015-05-01

    The glucosinolate breakdown product indole-3-carbinol functions in cruciferous vegetables as a protective agent against foraging insects. While the toxic and deterrent effects of glucosinolate breakdown on herbivores and pathogens have been studied extensively, the secondary responses that are induced in the plant by indole-3-carbinol remain relatively uninvestigated. Here we examined the hypothesis that indole-3-carbinol plays a role in influencing plant growth and development by manipulating auxin signaling. We show that indole-3-carbinol rapidly and reversibly inhibits root elongation in a dose-dependent manner, and that this inhibition is accompanied by a loss of auxin activity in the root meristem. A direct interaction between indole-3-carbinol and the auxin perception machinery was suggested, as application of indole-3-carbinol rescues auxin-induced root phenotypes. In vitro and yeast-based protein interaction studies showed that indole-3-carbinol perturbs the auxin-dependent interaction of Transport Inhibitor Response (TIR1) with auxin/3-indoleacetic acid (Aux/IAAs) proteins, further supporting the possibility that indole-3-carbinol acts as an auxin antagonist. The results indicate that chemicals whose production is induced by herbivory, such as indole-3-carbinol, function not only to repel herbivores, but also as signaling molecules that directly compete with auxin to fine tune plant growth and development. PMID:25758811

  2. Gait Analysis Methods for Rodent Models of Osteoarthritis

    PubMed Central

    Jacobs, Brittany Y.; Kloefkorn, Heidi E.; Allen, Kyle D.

    2014-01-01

    Patients with osteoarthritis (OA) primarily seek treatment due to pain and disability, yet the primary endpoints for rodent OA models tend to be histological measures of joint destruction. The discrepancy between clinical and preclinical evaluations is problematic, given that radiographic evidence of OA in humans does not always correlate to the severity of patient-reported symptoms. Recent advances in behavioral analyses have provided new methods to evaluate disease sequelae in rodents. Of particular relevance to rodent OA models are methods to assess rodent gait. While obvious differences exist between quadrupedal and bipedal gait sequences, the gait abnormalities seen in humans and in rodent OA models reflect similar compensatory behaviors that protect an injured limb from loading. The purpose of this review is to describe these compensations and current methods used to assess rodent gait characteristics, while detailing important considerations for the selection of gait analysis methods in rodent OA models. PMID:25160712

  3. Study on the synthesis of the cyclopenta[f]indole core of raputindole A.

    PubMed

    Marsch, Nils; Kock, Mario; Lindel, Thomas

    2016-01-01

    The raputindoles from the rutaceous tree Raputia simulans share a cyclopenta[f]indole partial structure the synthesis of which is subject of this investigation. An efficient route to a series of 1,5-di(indol-6-yl)pentenones was developed via Mo/Au-catalyzed Meyer-Schuster rearrangement of tertiary propargylic alcohol precursors. However, none of the enones underwent the desired Nazarov cyclization to a cyclopenta[f]indole. More suitable were 6-hydroxyallylated indolines which gave good yields of cyclopenta[f]indolines after treatment with SnCl4, as soon as sterically demanding β-cyclocitral adducts were reacted. Most successful were Pt(II) and Au(I)-catalyzed cyclizations of N-TIPS-protected indolin-6-yl-substituted propargylacetates which provided the hydrogenated tricyclic cyclopenta[f]indole core system in high yield. PMID:26977193

  4. Study on the synthesis of the cyclopenta[f]indole core of raputindole A

    PubMed Central

    Marsch, Nils; Kock, Mario

    2016-01-01

    Summary The raputindoles from the rutaceous tree Raputia simulans share a cyclopenta[f]indole partial structure the synthesis of which is subject of this investigation. An efficient route to a series of 1,5-di(indol-6-yl)pentenones was developed via Mo/Au-catalyzed Meyer–Schuster rearrangement of tertiary propargylic alcohol precursors. However, none of the enones underwent the desired Nazarov cyclization to a cyclopenta[f]indole. More suitable were 6-hydroxyallylated indolines which gave good yields of cyclopenta[f]indolines after treatment with SnCl4, as soon as sterically demanding β-cyclocitral adducts were reacted. Most successful were Pt(II) and Au(I)-catalyzed cyclizations of N-TIPS-protected indolin-6-yl-substituted propargylacetates which provided the hydrogenated tricyclic cyclopenta[f]indole core system in high yield. PMID:26977193

  5. Daily Movements and Microhabitat Selection of Hantavirus Reservoirs and Other Sigmodontinae Rodent Species that Inhabit a Protected Natural Area of Argentina.

    PubMed

    Maroli, Malena; Vadell, María Victoria; Iglesias, Ayelén; Padula, Paula Julieta; Gómez Villafañe, Isabel Elisa

    2015-09-01

    Abundance, distribution, movement patterns, and habitat selection of a reservoir species influence the dispersal of zoonotic pathogens, and hence, the risk for humans. Movements and microhabitat use of rodent species, and their potential role in the transmission of hantavirus were studied in Otamendi Natural Reserve, Buenos Aires, Argentina. Movement estimators and qualitative characteristics of rodent paths were determined by means of a spool and line device method. Sampling was conducted during November and December 2011, and March, April, June, October, and December 2012. Forty-six Oxymycterus rufus, 41 Akodon azarae, 10 Scapteromys aquaticus and 5 Oligoryzomys flavescens were captured. Movement patterns and distances varied according to sex, habitat type, reproductive season, and body size among species. O. flavescens, reservoir of the etiologic agent of hantavirus pulmonary syndrome in the region, moved short distances, had the most linear paths and did not share paths with other species. A. azarae had an intermediate linearity index, its movements were longer in the highland grassland than in the lowland marsh and the salty grassland, and larger individuals traveled longer distances. O. rufus had the most tortuous paths and the males moved more during the non-breeding season. S. aquaticus movements were associated with habitat type with longer distances traveled in the lowland marsh than in the salty grassland. Hantavirus antibodies were detected in 20% of A. azarae and were not detected in any other species. Seropositive individuals were captured during the breeding season and 85% of them were males. A. azarae moved randomly and shared paths with all the other species, which could promote hantavirus spillover events. PMID:26063039

  6. Auditing laboratory rodent biosecurity programs.

    PubMed

    Porter, William P; Horn, Mandy J; Cooper, Dale M; Klein, Hilton J

    2013-10-22

    A rodent biosecurity program that includes periodic evaluation of procedures used in an institution's vivarium can be used to ensure that best practices are in place to prevent a microbial pathogen outbreak. As a result of an ongoing comprehensive biosecurity review within their North American and European production facilities, the authors developed a novel biosecurity auditing process and worksheet that could be useful in other animal care and use operations. The authors encourage other institutions to consider initiating similar audits of their biosecurity programs to protect the health of their laboratory animals. PMID:24150170

  7. Responses of Pisum sativum L. to exogenous indole acetic acid application under manganese toxicity.

    PubMed

    Gangwar, Savita; Singh, Vijay Pratap; Maurya, Jagat Narayan

    2011-06-01

    Responses of pea (Pisum sativum L.) seedlings to manganese (50, 100 and 250 μM) and indole acetic acid (10 and 100 μM) treatments were investigated. Single and combined exposure of pea to manganese and 100 μM indole acetic acid decreased root and shoot fresh mass, chlorophyll, carotenoids, protein and nitrogen while ammonium content increased compared to the control. Combined treatment of pea with 250 μM manganese and 100 μM indole acetic acid decreased root and shoot fresh mass by 54% and 51%, chlorophyll and carotenoids by 31% and 26%, root and shoot protein by 47% and 44%, and root and shoot nitrogen by 44% and 40%, respectively. Activities of glutamine synthetase and glutamate synthase were decreased by the exposure of manganese and 100 μM indole acetic acid while glutamate dehydrogenase activity increased. Combined application of 250 μM manganese and 100 μM indole acetic acid decreased root and shoot glutamine synthetase activity by 44% and 39%, and glutamate synthase activity by 39% and 37% while root and shoot glutamate dehydrogenase activity increased by 47% and 42%, respectively compared to the control. In contrast, application of 10 μM indole acetic acid together with manganese decreased the negative impacts of manganese, and promoted seedling growth compared to the manganese treatments alone. This study has shown that 10 μM indole acetic acid protected pea seedlings appreciably from manganese toxicity by regulating ammonium content and the activities of enzymes of ammonium assimilation, while 100 μM of indole acetic acid exhibited opposite response under manganese toxicity. PMID:21516457

  8. Detoxification of Indole by an Indole-Induced Flavoprotein Oxygenase from Acinetobacter baumannii.

    PubMed

    Lin, Guang-Huey; Chen, Hao-Ping; Shu, Hung-Yu

    2015-01-01

    Indole, a derivative of the amino acid tryptophan, is a toxic signaling molecule, which can inhibit bacterial growth. To overcome indole-induced toxicity, many bacteria have developed enzymatic defense systems to convert indole to non-toxic, water-insoluble indigo. We previously demonstrated that, like other aromatic compound-degrading bacteria, Acinetobacter baumannii can also convert indole to indigo. However, no work has been published investigating this mechanism. Here, we have shown that the growth of wild-type A. baumannii is severely inhibited in the presence of 3.5 mM indole. However, at lower concentrations, growth is stable, implying that the bacteria may be utilizing a survival mechanism to oxidize indole. To this end, we have identified a flavoprotein oxygenase encoded by the iifC gene of A. baumannii. Further, our results suggest that expressing this recombinant oxygenase protein in Escherichia coli can drive indole oxidation to indigo in vitro. Genome analysis shows that the iif operon is exclusively present in the genomes of A. baumannii and Pseudomonas syringae pv. actinidiae. Quantitative PCR and Western blot analysis also indicate that the iif operon is activated by indole through the AraC-like transcriptional regulator IifR. Taken together, these data suggest that this species of bacteria utilizes a novel indole-detoxification mechanism that is modulated by IifC, a protein that appears to be, at least to some extent, regulated by IifR. PMID:26390211

  9. Detoxification of Indole by an Indole-Induced Flavoprotein Oxygenase from Acinetobacter baumannii

    PubMed Central

    Lin, Guang-Huey; Chen, Hao-Ping; Shu, Hung-Yu

    2015-01-01

    Indole, a derivative of the amino acid tryptophan, is a toxic signaling molecule, which can inhibit bacterial growth. To overcome indole-induced toxicity, many bacteria have developed enzymatic defense systems to convert indole to non-toxic, water-insoluble indigo. We previously demonstrated that, like other aromatic compound-degrading bacteria, Acinetobacter baumannii can also convert indole to indigo. However, no work has been published investigating this mechanism. Here, we have shown that the growth of wild-type A. baumannii is severely inhibited in the presence of 3.5 mM indole. However, at lower concentrations, growth is stable, implying that the bacteria may be utilizing a survival mechanism to oxidize indole. To this end, we have identified a flavoprotein oxygenase encoded by the iifC gene of A. baumannii. Further, our results suggest that expressing this recombinant oxygenase protein in Escherichia coli can drive indole oxidation to indigo in vitro. Genome analysis shows that the iif operon is exclusively present in the genomes of A. baumannii and Pseudomonas syringae pv. actinidiae. Quantitative PCR and Western blot analysis also indicate that the iif operon is activated by indole through the AraC-like transcriptional regulator IifR. Taken together, these data suggest that this species of bacteria utilizes a novel indole-detoxification mechanism that is modulated by IifC, a protein that appears to be, at least to some extent, regulated by IifR. PMID:26390211

  10. Degradation of indole by Alcaligenes spec.

    PubMed

    Claus, G; Kutzner, H J

    1983-01-01

    Alcaligenes spec. strain In 3 was isolated from an enrichment culture with indole inoculated with activated sludge. The organism was able to grow with indole as sole source of carbon and nitrogen. During growth with this substrate indigo and anthranilate accumulated in the culture broth. By measurement of the oxidation of intermediates (O(2)-uptake) and determination of the activity of enzymes responsible for ring cleavage the following pathway for indole degradation could be established: indole → indoxyl → isatin → anthranilate → gentisate → maleyl pyruvate → fumaryl pyruvate → fumarate + pyruvate. - Alcaligenes spec. strain In 3 was also able to grow with various aromatic compounds; these were degraded by ortho- or meta-cleavage or via the gentisinic acid pathway. PMID:23194589

  11. Activation of the Nrf2/HO-1 Antioxidant Pathway Contributes to the Protective Effects of Lycium Barbarum Polysaccharides in the Rodent Retina after Ischemia-Reperfusion-Induced Damage

    PubMed Central

    Chang, Raymond Chuen-Chung; So, Kwok-Fai; Brecha, Nicholas C.; Pu, Mingliang

    2014-01-01

    Lycium barbarum polysaccharides (LBP), extracts from the wolfberries, are protective to retina after ischemia-reperfusion (I/R). The antioxidant response element (ARE)–mediated antioxidant pathway plays an important role in maintaining the redox status of the retina. Heme oxygenase-1 (HO-1), combined with potent AREs in its promoter, is a highly effective therapeutic target for the protection against neurodegenerative diseases, including I/R-induced retinal damage. The aim of our present study was to investigate whether the protective effect of LBP after I/R damage was mediated via activation of the Nrf2/HO-1-antioxidant pathway in the retina. Retinal I/R was induced by an increase in intraocular pressure to 130 mm Hg for 60 minutes. Prior to the induction of ischemia, rats were orally treated with either vehicle (PBS) or LBP (1 mg/kg) once a day for 1 week. For specific experiments, zinc protoporphyrin (ZnPP, 20 mg/kg), an HO-1 inhibitor, was intraperitoneally administered at 24 h prior to ischemia. The protective effects of LBP were evaluated by quantifying ganglion cell and amacrine cell survival, and by measuring cell apoptosis in the retinal layers. In addition, HO-1 expression was examined using Western blotting and immunofluorescence analyses. Cytosolic and nuclear Nrf2 was measured using immunofluorescent staining. LBP treatment significantly increased Nrf2 nuclear accumulation and HO-1 expression in the retina after I/R injury. Increased apoptosis and a decrease in the number of viable cells were observed in the ganglion cell layer (GCL) and inner nuclear layer (INL) in the I/R retina, which were reversed by LBP treatment. The HO-1 inhibitor, ZnPP, diminished the LBP treatment-induced protective effects in the retina after I/R. Taken together, these results suggested that LBP partially exerted its beneficial neuroprotective effects via the activation of Nrf2 and an increase in HO-1 protein expression. PMID:24400114

  12. Hexarelin Protects Rodent Pancreatic Β-Cells Function from Cytotoxic Effects of Streptozotocin Involving Mitochondrial Signalling Pathways In Vivo and In Vitro

    PubMed Central

    Chen, Jiezhong; Lin, Chao; Shao, Renfu; Yan, Chunxia; Chen, Chen

    2016-01-01

    Mitochondrial functions are crucial for pancreatic β-cell survival and glucose-induced insulin secretion. Hexarelin (Hex) is a synthetic small peptide ghrelin analogue, which has been shown to protect cardiomyocytes from the ischemia-reperfusion process. In this study, we used in vitro and in vivo models of streptozotocin (STZ)-induced β-cell damage to study the protective effect of Hex and the associated mechanisms. We found that STZ produced a cytotoxic effect in a dose- and time-dependent manner in MIN6 cells (a mouse β-cell line). Hex (1.0 μM) decreased the STZ-induced damage in β-cells. Rhodamine 123 assay and superoxide DHE production assay revealed that Hex ameliorated STZ-induced mitochondrial damage and excessive superoxide activity in β-cells. In addition, Hex significantly reduced STZ-induced expression of cleaved Caspases-3, Caspases-9 and the ratio of pro-apoptotic protein Bax to anti-apoptotic protein Bcl-2 in MIN6 cells. We further examined the in vivo effect of Hex in a rat model of type 1 diabetes induced by STZ injection. Hex ameliorated STZ-induced decrease in plasma insulin and protected the structure of islets from STZ-induced disruption. Hex also ameliorated STZ-induced expression of cleaved Caspase-9 and the Bax in β-cells. In conclusion, our data indicate that Hex is able to protects β-cell mass from STZ-caused cytotoxic effects involving mitochondrial pathways in vitro and in vivo. Hex may serve as a potential protective agent for the management of diabetes. PMID:26918825

  13. Rhodium-catalyzed pyridannulation of indoles with diazoenals: a direct approach to pyrido[1,2-a]indoles.

    PubMed

    Dawande, Sudam Ganpat; Lad, Bapurao Sudam; Prajapati, Sunitkumar; Katukojvala, Sreenivas

    2016-06-28

    A novel rhodium catalyzed pyridannulation of 3-substituted indoles with diazoenals furnished privileged pyrido[1,2-a]indoles. The reaction is proposed to involve a [4 + 2]-annulation of the diacceptor rhodium enalcarbenoid via C-2 functionalization of the indole. The utility of the methodology was demonstrated with a short synthesis of the tetrahydropyrido[1,2-a]indole core, present in a large number of biologically important polycyclic indole alkaloids. PMID:26964882

  14. Indoles in edible members of the Cruciferae.

    PubMed

    Wall, M E; Taylor, H; Perera, P; Wani, M C

    1988-01-01

    Antimutagenic fractions from collards yielded indole-3-carboxaldehyde [4] and traces of indole-3-acetonitrile [2]. The compounds had no antimutagenic activity. An analytical procedure for various indoles in plants was developed based on reversed-phase hplc. The indoles studied included the 3-carbinol 1, the acetonitrile 2, the carboxaldehyde 4, the 3-carboxylic acid 5, and the 3-acetic acid 6. Many Cruciferae and non-Cruciferae were analyzed. The latter did not contain measurable quantities of these compounds. In the case of the Cruciferae--with the exception of collards, which consistently indicated the presence of the aldehyde 4--major indole found was the nitrile 2. Although a particularly careful search for the carbinol 1 was conducted, only trace levels were noted. A review of the literature indicates that the content and occurrence of this indole in plants have been heavily overestimated. Because of the low levels found in the Cruciferae, our studies indicate that the role of the compound as a dietary factor may be questionable. PMID:3373222

  15. Degradation of substituted indoles by an indole-degrading methanogenic consortium

    SciTech Connect

    Jidong Gu; Berry, D.F. )

    1991-09-01

    Degradation of indole-degrading methanogenic consortium enriched from sewage sludge proceeded through a two-step hydroxylation pathway yielding oxindole and isatin. The ability of this consortium to hydroxylate and subsequently degrade-substituted indoles was investigated. Of the substituted indoles tested, the consortium was able to transform or degrade 3-methylindole, and 3-indolyl acetate. Oxindole, 3-methyloxindole, and indoxyl were identified as metabolites of indole, 3-methylindole, and 3-indolyl acetate degradation, respectively. Isatin (indole-2, 3-dione) was produced as an intermediate when the acetate degradation, respectively, Isatin (indole-2,3-dione) was produced as an intermediate when the consortium was amended with oxindole, providing evidence that degradation of indole proceeded through successive hydroxylation of the 2- and 3-positions prior to ring cleavage between the C-2 and C-3 atoms on the pyrrole ring of indole. The presence of a methyl group ({emdash}CH{sub 3}) at either the 1- or 2-position of indole inhibited the initial hydroxylation reaction. The substituted indole, 3-methylindole, was hydroxylated in the 2-position but not in the 3 position and could not be further metabolized through the oxindole-isatin pathway. Indoxyl (indole-3-one), the deacetylated product of 3-indolyl acetate, was not hydroxylated in the 2-position and thus was not further metabolized by the consortium. When an H atom or electron-donating group (i.e., {emdash}CH{sub 3}) was present at the 3-position, hydroxylation proceeded at the 2-position, but the presence of electron-withdrawing substituent groups (i.e., {emdash}OH or {emdash}COOH) at the 3-position inhibited hydroxylation.

  16. Synthesis of pharmacologically active indoles.

    PubMed

    Hishmat, O H; Ebeid, M Y; Nakkady, S S; Fathy, M M; Mahmoud, S S

    1999-06-01

    Formylation of 6-methoxy-1-methyl and 5-methyl,2,3-diphenyl-1H-indole (Ib and IX) gave the 5- and 6- carboxaldehyde derivatives (II and X) respectively, which were treated with ethyl cyanoacetate to form the corresponding 2-cyano-3-substituted acrylic acid ethyl ester (III and XI). The latter compounds reacted with hydrazine hydrate, urea and thiourea to form the corresponding 5-amino-4-substituted 2,4,dihydropyrazol-3- one (IV), 6-indolyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidine-5-carbonitrile s (V and XII) and 6-indolyl-4-oxo-2-thixo-1,2,3,4-tetrahydropyrimidine-5-ca rbonitriles (VI and XIII). Reaction of the 5- and 6-carboxaldehyde derivatives with malononitrile afforded the 2-substituted malononitrile derivatives (VII and XIV). VII and XIV reacted readilly with aromatic ketones to give the 2-amino4,6-disubstituted nicotinonitriles (VIII a,b and XVa,b). The biological activity of compounds Ia, Ib, II, III, IX and X was tested for antiinflammatory, ulcerogenic and antispasmodic activities. PMID:10464975

  17. Indole Alkaloids from Marine Sources as Potential Leads against Infectious Diseases

    PubMed Central

    França, Paulo H. B.; Barbosa, Daniel P.; da Silva, Daniel L.; Ribeiro, Êurica A. N.; Santana, Antônio E. G.; Santos, Bárbara V. O.; Barbosa-Filho, José M.; Quintans, Jullyana S. S.; Barreto, Rosana S. S.; Quintans-Júnior, Lucindo J.; de Araújo-Júnior, João X.

    2014-01-01

    Indole alkaloids comprise a large and complex class of natural products found in a variety of marine sources. Infectious diseases remain a major threat to public health, and in the absence of long-term protective vaccines, the control of these infectious diseases is based on a small number of chemotherapeutic agents. Furthermore, the emerging resistance against these drugs makes it urgently necessary to discover and develop new, safe and, effective anti-infective agents. In this regard, the aim of this review is to highlight indole alkaloids from marine sources which have been shown to demonstrate activity against infectious diseases. PMID:24995289

  18. Catalytic functionalization of indoles in a new dimension.

    PubMed

    Bandini, Marco; Eichholzer, Astrid

    2009-01-01

    140 years ago Adolf von Baeyer proposed the structure of a heteroaromatic compound which revolutionized organic and medical chemistry: indole. After more than a century, indole itself and the complexity of naturally occurring indole derivatives continue to inspire and influence developments in synthetic chemistry. In particular, the ubiquitous presence of indole rings in pharmaceuticals, agrochemicals, and functional materials are testament to the ever increasing interest in the design of mild and efficient synthetic routes to functionalized indole derivatives. This Review emphasizes the achievements in the selective catalytic functionalization of indoles (C-C bond-forming processes) over the last four years. PMID:19946913

  19. Valproic Acid Treatment Inhibits Hypoxia-Inducible Factor 1α Accumulation and Protects against Burn-Induced Gut Barrier Dysfunction in a Rodent Model

    PubMed Central

    Luo, Hong-Min; Du, Ming-Hua; Lin, Zhi-Long; Zhang, Lin; Ma, Li; Wang, Huan; Yu, Wen; Lv, Yi; Lu, Jiang-Yang; Pi, Yu-Li; Hu, Sen; Sheng, Zhi-Yong

    2013-01-01

    Objective Burn-induced gut dysfunction plays an important role in the development of sepsis and multiple organ dysfunction. Emerging evidence suggests that hypoxia-inducible factor-1α (HIF-1α) is critical in paracelluar barrier functions via regulating vascular endothelial growth factor (VEGF) and myosin light chain kinase (MLCK) expression. Previous studies have also demonstrated that histone deacetylase inhibitors (HDACIs) can repress HIF-1α. This study aims to examine whether valproic acid (VPA), a HDACI, protects against burn-induced gut barrier dysfunction via repressing HIF-1α-dependent upregulation of VEGF and MLCK expression. Methods Rats were subjected to third degree 55% TBSA burns and treated with/ without VPA (300mg/kg). Intestinal barrier dysfunction was evaluated by permeability of intestinal mucosa to fluorescein isothiocyanate (FITC)-dextran and histologic evaluation. Histone acetylation, tight junction protein zonula occludens 1 (ZO-1), VEGF, MLCK and HIF-1α were measured. In addition, CaCO2 cells were transfected with siRNA directed against HIF-1α and were stimulated with CoCl2 (1mM) for 24 hours with/without VPA (2mM) followed by analysis of HIF-1α, MLCK, VEGF and ZO-1. Results Burn insults resulted in a significant increase in intestinal permeability and mucosal damage, accompanied by a significant reduction in histone acetylation, ZO-1, upregulation of VEGF, MLCK expression, and an increase in HIF-1α accumulation. VPA significantly attenuated the increase in intestinal permeability, mucosa damage, histone deacetylation and changes in ZO-1 expression. VPA also attenuated the increased VEGF, MLCK and HIF-1α protein levels. VPA reduced HIF-1α, MLCK and VEGF production and prevented ZO-1 loss in CoCl2-stimulated Caco-2 cells. Moreover, transfection of siRNA directed against HIF-1α led to inhibition of MLCK and VEGF production, accompanied by upregulation of ZO-1. Conclusions These results indicate that VPA can protect against burn

  20. Rodent models of osteoporosis

    PubMed Central

    Sophocleous, Antonia; Idris, Aymen I

    2014-01-01

    The aim of this protocol is to provide a detailed description of male and female rodent models of osteoporosis. In addition to indications on the methods of performing the surgical procedures, the choice of reliable and safe anaesthetics is also described. Post-operative care, including analgesia administration for pain management, is also discussed. Ovariectomy in rodents is a procedure where ovaries are surgically excised. Hormonal changes resulting from ovary removal lead to an oestrogen-deprived state, which enhances bone remodelling, causes bone loss and increases bone fracture risk. Therefore, ovariectomy has been considered as the most common preclinical model for understanding the pathophysiology of menopause-associated events and for developing new treatment strategies for tackling post-menopausal osteoporosis. This protocol also provides a detailed description of orchidectomy, a model for androgen-deficient osteoporosis in rodents. Endocrine changes following testes removal lead to hypogonadism, which results in accelerated bone loss, increasing osteoporosis risk. Orchidectomised rodent models have been proposed to mimic male osteoporosis and therefore remain a valuable tool for understanding androgen deficiency in aged men. Although it would have been particularly difficult to assemble an internationally acceptable description of surgical procedures, here we have attempted to provide a comprehensive guide for best practice in performing ovariectomy and orchidectomy in laboratory rodents. Research scientists are reminded that they should follow their own institution's interpretation of such guidelines. Ultimately, however, all animal procedures must be overseen by the local Animal Welfare and Ethical Review Body and conducted under licences approved by a regulatory ethics committee. PMID:25852854

  1. 7,8-dihydroxyflavone protects 6-OHDA and MPTP induced dopaminergic neurons degeneration through activation of TrkB in rodents.

    PubMed

    Luo, Dandan; Shi, Ying; Wang, Jun; Lin, Qing; Sun, Yi; Ye, Keqiang; Yan, Qiao; Zhang, Hai

    2016-05-01

    Brain-derived neurotrophic factor (BDNF) is a notably important neurotrophin which regulates neuronal survival and differentiation in the nervous system. However, its clinical usage is particularly limited. 7,8-dihydroxyflavone (7,8-DHF), which acts as a selective agonist of BDNF receptor TrkB, is reported to possess neuroprotective effects both in vitro and in vivo. Here we explored the potent neuroprotective effects of 7,8-DHF in 6-OHDA induced rat and MPTP induced mouse model of Parkinsonism. The results demonstrated that treatment with 7,8-DHF in drinking water for four weeks (two weeks before 6-OHDA+two weeks after 6-OHDA lesion) significantly improved dopamine-mediated behaviors in 6-OHDA rat model, and prevented the loss of dopaminergic neurons in the substantia nigra (SN). Phospho-Y816-TrkB immunostaining showed that TrkB phosphorylation was significantly elevated in the SN in 7,8-DHF pretreated group, indicating 7,8-DHF activated TrkB and likely contributed to its neuroprotective effects. 7,8-DHF also protected acute MPTP neurotoxicity in mice but did not affect the climbing behavior in pole test. Thus our study indicates the neuroprotective properties of 7,8-DHF through the activation of TrkB, which provides a novel therapeutic treatment for Parkinson's disease. PMID:27019033

  2. Glucocorticoid protects rodent hearts from ischemia/reperfusion injury by activating lipocalin-type prostaglandin D synthase–derived PGD2 biosynthesis

    PubMed Central

    Tokudome, Satori; Sano, Motoaki; Shinmura, Ken; Matsuhashi, Tomohiro; Morizane, Shintaro; Moriyama, Hidenori; Tamaki, Kayoko; Hayashida, Kentaro; Nakanishi, Hiroki; Yoshikawa, Noritada; Shimizu, Noriaki; Endo, Jin; Katayama, Takaharu; Murata, Mitsushige; Yuasa, Shinsuke; Kaneda, Ruri; Tomita, Kengo; Eguchi, Naomi; Urade, Yoshihiro; Asano, Koichiro; Utsunomiya, Yasunori; Suzuki, Takeshi; Taguchi, Ryo; Tanaka, Hirotoshi; Fukuda, Keiichi

    2009-01-01

    Lipocalin-type prostaglandin D synthase (L-PGDS), which was originally identified as an enzyme responsible for PGD2 biosynthesis in the brain, is highly expressed in the myocardium, including in cardiomyocytes. However, the factors that control expression of the gene encoding L-PGDS and the pathophysiologic role of L-PGDS in cardiomyocytes are poorly understood. In the present study, we demonstrate that glucocorticoids, which act as repressors of prostaglandin biosynthesis in most cell types, upregulated the expression of L-PGDS together with cytosolic calcium-dependent phospholipase A2 and COX2 via the glucocorticoid receptor (GR) in rat cardiomyocytes. Accordingly, PGD2 was the most prominently induced prostaglandin in vivo in mouse hearts and in vitro in cultured rat cardiomyocytes after exposure to GR-selective agonists. In isolated Langendorff-perfused mouse hearts, dexamethasone alleviated ischemia/reperfusion injury. This cardioprotective effect was completely abrogated by either pharmacologic inhibition of COX2 or disruption of the gene encoding L-PGDS. In in vivo ischemia/reperfusion experiments, dexamethasone reduced infarct size in wild-type mice. This cardioprotective effect of dexamethasone was markedly reduced in L-PGDS–deficient mice. In cultured rat cardiomyocytes, PGD2 protected against cell death induced by anoxia/reoxygenation via the D-type prostanoid receptor and the ERK1/2-mediated pathway. Taken together, these results suggest what we believe to be a novel interaction between glucocorticoid-GR signaling and the cardiomyocyte survival pathway mediated by the arachidonic acid cascade. PMID:19451694

  3. Antigenic and sequence diversity at the C-terminus of the merozoite surface protein-1 from rodent malaria isolates, and the binding of protective monoclonal antibodies.

    PubMed

    Benjamin, P A; Ling, I T; Clottey, G; Valero, L M; Ogun, S A; Fleck, S L; Walliker, D; Morgan, W D; Birdsall, B; Feeney, J; Holder, A A

    1999-11-30

    Merozoite surface protein-1 (MSP-1) is a major candidate in the development of a vaccine against malaria. Immunisation with a recombinant fusion protein containing the two Plasmodium yoelii MSP-1 C-terminal epidermal growth factor-like domains (MSP-1(19)) can protect mice against homologous but not heterologous challenge, and therefore, antigenic differences resulting from sequence diversity in MSP-1(19) may be crucial in determining the potential of this protein as a vaccine. Representative sequence variants from a number of distinct P. yoelii isolates were expressed in Escherichia coli and the resulting recombinant proteins were screened for binding to a panel of monoclonal antibodies (Mabs) capable of suppressing a P. yoelii YM challenge infection in passive immunisation experiments. The sequence polymorphisms affected the binding of the antibodies to the recombinant proteins. None of the Mabs recognised MSP-1(19) of P. yoelii yoelii 2CL or 33X or P. yoelii nigeriensis N67. The epitopes recognised by the Mabs were further distinguished by their reactivity with the other fusion proteins. The extent of sequence variation in MSP-1(19) among the isolates was extensive, with differences detected at 35 out of the 96 positions compared. Using the 3-dimensional structure of the Plasmodium falciparum MSP-1(19) as a model, the locations of the amino acid substitutions that may affect Mab binding were identified. The DNA sequence of MSP-1(19) from two Plasmodium vinckei isolates was also cloned and the deduced amino acid sequence compared with that in other species. PMID:10593171

  4. Fear Extinction in Rodents

    PubMed Central

    Chang, Chun-hui; Knapska, Ewelina; Orsini, Caitlin A.; Rabinak, Christine A.; Zimmerman, Joshua M.; Maren, Stephen

    2009-01-01

    Pavlovian conditioning paradigms have become important model systems for understanding the neuroscience of behavior. In particular, studies of the extinction of Pavlovian fear responses are yielding important information about the neural substrates of anxiety disorders in humans. These studies are germane to understanding the neural mechanisms underlying behavioral interventions that suppress fear, including exposure therapy. This chapter described detailed behavioral protocols for examining the nature and properties of fear extinction in laboratory rodents. PMID:19340814

  5. Microdialysis in Rodents

    PubMed Central

    Zapata, Agustin; Chefer, Vladimir I.; Shippenberg, Toni S.

    2010-01-01

    Microdialysis is an in vivo sampling technique that permits the quantification of various substances (e.g., neurotransmitters, peptides, electrolytes) in blood and tissue. It is also used to infuse substances into the brain and spinal cord. This unit describes methods for the construction and stereotaxic implantation of microdialysis probes into discrete brain regions of the rat and mouse. Procedures for the conduct of conventional and quantitative microdialysis experiments in the awake and anesthetized rodent are also provided. PMID:19340813

  6. Induced production of 1-methoxy-indol-3-ylmethyl glucosinolate by jasmonic acid and methyl jasmonate in sprouts and leaves of pak choi (Brassica rapa ssp. chinensis).

    PubMed

    Wiesner, Melanie; Hanschen, Franziska S; Schreiner, Monika; Glatt, Hansruedi; Zrenner, Rita

    2013-01-01

    Pak choi plants (Brassica rapa ssp. chinensis) were treated with different signaling molecules methyl jasmonate, jasmonic acid, linolenic acid, and methyl salicylate and were analyzed for specific changes in their glucosinolate profile. Glucosinolate levels were quantified using HPLC-DAD-UV, with focus on induction of indole glucosinolates and special emphasis on 1-methoxy-indol-3-ylmethyl glucosinolate. Furthermore, the effects of the different signaling molecules on indole glucosinolate accumulation were analyzed on the level of gene expression using semi-quantitative realtime RT-PCR of selected genes. The treatments with signaling molecules were performed on sprouts and mature leaves to determine ontogenetic differences in glucosinolate accumulation and related gene expression. The highest increase of indole glucosinolate levels, with considerable enhancement of the 1-methoxy-indol-3-ylmethyl glucosinolate content, was achieved with treatments of sprouts and mature leaves with methyl jasmonate and jasmonic acid. This increase was accompanied by increased expression of genes putatively involved in the indole glucosinolate biosynthetic pathway. The high levels of indole glucosinolates enabled the plant to preferentially produce the respective breakdown products after tissue damage. Thus, pak choi plants treated with methyl jasmonate or jasmonic acid, are a valuable tool to analyze the specific protection functions of 1-methoxy-indole-3-carbinole in the plants defense strategy in the future. PMID:23873294

  7. Induced Production of 1-Methoxy-indol-3-ylmethyl Glucosinolate by Jasmonic Acid and Methyl Jasmonate in Sprouts and Leaves of Pak Choi (Brassica rapa ssp. chinensis)

    PubMed Central

    Wiesner, Melanie; Hanschen, Franziska S.; Schreiner, Monika; Glatt, Hansruedi; Zrenner, Rita

    2013-01-01

    Pak choi plants (Brassica rapa ssp. chinensis) were treated with different signaling molecules methyl jasmonate, jasmonic acid, linolenic acid, and methyl salicylate and were analyzed for specific changes in their glucosinolate profile. Glucosinolate levels were quantified using HPLC-DAD-UV, with focus on induction of indole glucosinolates and special emphasis on 1-methoxy-indol-3-ylmethyl glucosinolate. Furthermore, the effects of the different signaling molecules on indole glucosinolate accumulation were analyzed on the level of gene expression using semi-quantitative realtime RT-PCR of selected genes. The treatments with signaling molecules were performed on sprouts and mature leaves to determine ontogenetic differences in glucosinolate accumulation and related gene expression. The highest increase of indole glucosinolate levels, with considerable enhancement of the 1-methoxy-indol-3-ylmethyl glucosinolate content, was achieved with treatments of sprouts and mature leaves with methyl jasmonate and jasmonic acid. This increase was accompanied by increased expression of genes putatively involved in the indole glucosinolate biosynthetic pathway. The high levels of indole glucosinolates enabled the plant to preferentially produce the respective breakdown products after tissue damage. Thus, pak choi plants treated with methyl jasmonate or jasmonic acid, are a valuable tool to analyze the specific protection functions of 1-methoxy-indole-3-carbinole in the plants defense strategy in the future. PMID:23873294

  8. Indoles: Industrial, Agricultural and Over-the-Counter Uses

    NASA Astrophysics Data System (ADS)

    Barden, Timothy C.

    Indole-containing compounds are best known for their medicinal properties in the pharmaceutical industry. Although to a lesser degree, the indole motif none-the-less appears in many significant products across the entire chemical industry. This chapter describes the role that indole plays in a more commodity setting and provides examples illustrating these uses.

  9. Searching for indole derivatives as potential mushroom tyrosinase inhibitors.

    PubMed

    Ferro, Stefania; Certo, Giovanna; De Luca, Laura; Germanò, Maria Paola; Rapisarda, Antonio; Gitto, Rosaria

    2016-06-01

    Tyrosinase is a copper-containing enzyme widely distributed in nature, involved in the biosynthesis of melanin whose role is to protect the skin from ultraviolet damage. A great interest has been shown on the melanin involvement in malignant melanoma and other carcinogenetic processes. These phenomena have encouraged the research of tyrosinase inhibitors useful in therapeutic field as well as in foods and cosmetics to prevent browning. The idea was to screen our "in house" database to select suitable lead compounds for the discovery of potential drug-inhibiting enzyme. The obtained biological results demonstrated that compounds containing 4-fluorobenzyl moiety at N - 1 position of indole system showed the best activity. In addition, the role of the portion linked to the carbonyl group at C - 3 was discussed. A Lineweaver-Burk kinetic analysis of the most active indoles, CHI 1043 and derivative 4, showed a mixed-type inhibition in the presence of l-3,4-dihydroxyphenylalanine (l-DOPA) as substrate. PMID:25826148

  10. Chemistry and biology of new marine alkaloids from the indole and annelated indole series.

    PubMed

    Aygün, Alparslan; Pindur, Ulf

    2003-07-01

    Chemistry and biology of marine natural products from the indole and annelated indole series have become an attractive research field for development of new pharmacological lead substances. In the past years some of the isolated natural organic compounds were synthesized by chemists and evaluated with great enthusiasm to find new lead natural compounds against different diseases. In this review the latest results for new compounds including isolation, biological evaluation, synthetic pathways and some retrosynthetic analyses are summarized. PMID:12678805

  11. Asymmetric Hydrogenation of Unprotected Indoles Catalyzed by η(6)-Arene/N-Me-sulfonyldiamine-Ru(II) Complexes.

    PubMed

    Touge, Taichiro; Arai, Takayoshi

    2016-09-01

    Protecting-group-free transformation is a challenging and important issue in atom-economical organic synthesis. The η(6)-arene/N-Me-sulfonyldiamine-Ru(II)-BF4 complex-catalyzed asymmetric hydrogenation of 2-substituted unprotected indoles in weakly acidic hexafluoroisopropanol gives optically active indoline compounds with up to >99% ee. Under mild reaction media, halogen atoms and synthetically important protecting groups (e.g., silyl ether, acetal, benzyl ether, and ester) on indoles are maintained, which is advantageous for the synthesis of further complex indoline molecules. PMID:27509089

  12. A new indole alkaloid from Ervatamia yunnanensis.

    PubMed

    Jin, Yong-Sheng; Du, Jing-Ling; Chen, Hai-Sheng; Jin, Li; Liang, Shuang

    2010-01-01

    The stems of Ervatamia yunnanensis have afforded a new indole alkaloid, ervataine (1), whose structure was determined by spectroscopic analysis. Five known compounds, ibogaine (2) coronaridine (3), heyneanine (4), voacangine hydroxyindolenine (5) and coronaridine hydroxyindolenine (6), were also isolated. PMID:19647051

  13. Reflections on Rodent Implantation.

    PubMed

    Cha, Jeeyeon M; Dey, Sudhansu K

    2015-01-01

    Embryo implantation is a complex process involving endocrine, paracrine, autocrine, and juxtacrine modulators that span cell-cell and cell-matrix interactions. The quality of implantation is predictive for pregnancy success. Earlier observational studies formed the basis for genetic and molecular approaches that ensued with emerging technological advances. However, the precise sequence and details of the molecular interactions involved have yet to be defined. This review reflects briefly on aspects of our current understanding of rodent implantation as a tribute to Roger Short's lifelong contributions to the field of reproductive physiology. PMID:26450495

  14. Indoles - A promising scaffold for drug development.

    PubMed

    Sravanthi, T V; Manju, S L

    2016-08-25

    Generally, heterocycles occupy a prominent place in chemistry due to their wide range of applications in the fields of drug design, photochemistry, agrochemicals, dyes and so on. Among them, indole scaffolds have been found in most of the important synthetic drug molecules and paved a faithful way to develop effective targets. Privileged structures bind to multiple receptors with high affinity, thus aiding the development of novel biologically active compounds. Among the indole class of compounds, 2-arylindoles appear to be a most promising lead for drug development. The derivatives of 2-arylindoles exhibits antibacterial, anticancer, anti-oxidants, anti-inflammatory, anti-diabetic, antiviral, antiproliferative, antituberculosis activity, etc. This article would provide a clear knowledge on the wide-ranging biological activities of 2-arylindoles over the past two decades, which would be beneficial for the designing of more potent drug targets in order to compete with the existing drugs. PMID:27237590

  15. Obinutuzumab for the treatment of indolent lymphoma.

    PubMed

    Edelmann, Jennifer; Gribben, John G

    2016-08-01

    Obinutuzumab is a humanized, type II anti-CD20 monoclonal antibody designed for strong induction of direct cell death and antibody-dependent cell-mediated cytotoxicity. The Phase III GADOLIN trial tested the clinical efficacy of obinutuzumab plus bendamustine followed by obinutuzumab monotherapy in rituximab-refractory indolent non-Hodgkin lymphoma versus treatment with bendamustine alone. It demonstrated significantly longer progression-free survival for the obinutuzumab-containing regimen in this difficult to treat patient group. Based on the results of this trial, US FDA approval was most recently granted for obinutuzumab in the treatment of follicular lymphoma that has relapsed after or was refractory to a rituximab-containing regimen. This article summarizes the available data on chemistry, pharmacokinetics, clinical efficacy and safety of obinutuzumab in the treatment of indolent non-Hodgkin lymphoma. PMID:27117452

  16. Indole-like Trk receptor antagonists.

    PubMed

    Tammiku-Taul, Jaana; Park, Rahel; Jaanson, Kaur; Luberg, Kristi; Dobchev, Dimitar A; Kananovich, Dzmitry; Noole, Artur; Mandel, Merle; Kaasik, Allen; Lopp, Margus; Timmusk, Tõnis; Karelson, Mati

    2016-10-01

    The virtual screening for new scaffolds for TrkA receptor antagonists resulted in potential low molecular weight drug candidates for the treatment of neuropathic pain and cancer. In particular, the compound (Z)-3-((5-methoxy-1H-indol-3-yl)methylene)-2-oxindole and its derivatives were assessed for their inhibitory activity against Trk receptors. The IC50 values were computationally predicted in combination of molecular and fragment-based QSAR. Thereafter, based on the structure-activity relationships (SAR), a series of new compounds were designed and synthesized. Among the final selection of 13 compounds, (Z)-3-((5-methoxy-1-methyl-1H-indol-3-yl)methylene)-N-methyl-2-oxindole-5-sulfonamide showed the best TrkA inhibitory activity using both biochemical and cellular assays and (Z)-3-((5-methoxy-1-methyl-1H-indol-3-yl)methylene)-2-oxindole-5-sulfonamide was the most potent inhibitor of TrkB and TrkC. PMID:27318978

  17. Unprecedented Utilization of Pelargonidin and Indole for the Biosynthesis of Plant Indole Alkaloids

    PubMed Central

    Warskulat, Anne‐Christin; Tatsis, Evangelos C.; Dudek, Bettina; Kai, Marco; Lorenz, Sybille

    2016-01-01

    Abstract Nudicaulins are a group of indole alkaloid glycosides responsible for the color of yellow petals of Papaver nudicaule (Iceland poppy). The unique aglycone scaffold of these alkaloids attracted our interest as one of the most unusual flavonoid‐indole hybrid structures that occur in nature. Stable isotope labeling experiments with sliced petals identified free indole, but not tryptamine or l‐tryptophan, as one of the two key biosynthetic precursors of the nudicaulin aglycone. Pelargonidin was identified as the second key precursor, contributing the polyphenolic unit to the nudicaulin molecule. This finding was inferred from the temporary accumulation of pelargonidin glycosides in the petals during flower bud development and a drop at the point in time when nudicaulin levels start to increase. The precursor‐directed incorporation of cyanidin into a new 3′‐hydroxynudicaulin strongly supports the hypothesis that anthocyanins are involved in the biosynthesis of nudicaulins. PMID:26670055

  18. Synthesis of New Functionalized Indoles Based on Ethyl Indol-2-carboxylate.

    PubMed

    Boraei, Ahmed T A; El Ashry, El Sayed H; Barakat, Assem; Ghabbour, Hazem A

    2016-01-01

    Successful alkylations of the nitrogen of ethyl indol-2-carboxylate were carried out using aq. KOH in acetone. The respective N-alkylated acids could be obtained without separating the N-alkylated esters by increasing the amount of KOH and water. The use of NaOMe in methanol led to transesterification instead of the alkylation, while the use of NaOEt led to low yields of the N-alkylated acids. Hydrazinolysis of the ester gave indol-2-carbohydrazide which then was allowed to react with different aromatic aldehydes and ketones in ethanol catalyzed by acetic acid. Indol-2-thiosemicarbazide was used in a heterocyclization reaction to form thiazoles. The new structures were confirmed using NMR, mass spectrometry and X-ray single crystal analysis. PMID:26978331

  19. Unprecedented Utilization of Pelargonidin and Indole for the Biosynthesis of Plant Indole Alkaloids.

    PubMed

    Warskulat, Anne-Christin; Tatsis, Evangelos C; Dudek, Bettina; Kai, Marco; Lorenz, Sybille; Schneider, Bernd

    2016-02-15

    Nudicaulins are a group of indole alkaloid glycosides responsible for the color of yellow petals of Papaver nudicaule (Iceland poppy). The unique aglycone scaffold of these alkaloids attracted our interest as one of the most unusual flavonoid-indole hybrid structures that occur in nature. Stable isotope labeling experiments with sliced petals identified free indole, but not tryptamine or l-tryptophan, as one of the two key biosynthetic precursors of the nudicaulin aglycone. Pelargonidin was identified as the second key precursor, contributing the polyphenolic unit to the nudicaulin molecule. This finding was inferred from the temporary accumulation of pelargonidin glycosides in the petals during flower bud development and a drop at the point in time when nudicaulin levels start to increase. The precursor-directed incorporation of cyanidin into a new 3'-hydroxynudicaulin strongly supports the hypothesis that anthocyanins are involved in the biosynthesis of nudicaulins. PMID:26670055

  20. Towards a facile and convenient synthesis of highly functionalized indole derivatives based on Multi-Component Reactions

    PubMed Central

    Neochoritis, Constantinos G.; Dömling, Alexander

    2014-01-01

    A library of potentially bioactive compounds through the novel 1H-indole-methyl-isocyanide and MCRs has been described. A flexible and efficient synthesis affording great complexity and diversity is achieved, with moderate to good yields with no need for protection and deprotection steps. PMID:24477767

  1. Emended descriptions of indole negative and indole positive isolates of Brachyspira (Serpulina) hyodysenteriae.

    PubMed

    Fellström, C; Karlsson, M; Pettersson, B; Zimmerman, U; Gunnarsson, A; Aspan, A

    1999-12-01

    Two type/reference strains of Brachyspira (B.) hyodysenteriae, 14 Belgian and German indole negative, and 14 Belgian, German and Swedish indole positive field isolates of strongly beta-haemolytic intestinal spirochaetes were compared by pulsed-field gel electrophoresis (PFGE) patterns, biochemical reaction patterns, 16S rDNA sequences and MIC determinations of six antibacterial substances. Three tests for indole production, including a spot indole test, were compared with congruent results. All field isolates were classified as B. hyodysenteriae due to a high genetic and phenotypic similarity with the type strains. The Belgian and German indole negative isolates had identical and unique PFGE patterns for the tested restriction enzymes MluI and SalI, as well as identical 16S rDNA sequences, and they could not be differentiated by any of the methods used. Seven unique PFGE patterns were achieved from the 14 indole positive field isolates. The patterns were identical and unique for epidemiologically related isolates. Type/reference strains and isolates without known relation to other tested isolates showed unique banding patterns. The MICs of tylosin, tiamulin, erythromycin, clindamycin, carbadox and virginiamycin were determined in broth for all isolates. In contrast to Belgian and German isolates, the majority of the Swedish field isolates were susceptible to tylosin, erythromycin and clindamycin. Probable pathways of infection for some of the Swedish isolates were determined. The PFGE patterns of epidemic clones of B. hyodysenteriae remained stable for a period of up to 8 years. In vivo development of resistance to macrolide and lincosamide antibiotics due to use of tylosin was clearly indicated for two epidemic clones. PMID:10596806

  2. Analysis of several iridoid and indole precursors of terpenoid indole alkaloids with a single HPLC run.

    PubMed

    Dagnino, D; Schripsema, J; Verpoorte, R

    1996-06-01

    An isocratic HPLC system is described which allows the separation of the iridoid and indole precursors of terpenoid indole alkaloids, which are present in a single crude extract. The system consists of a column of LiChrospher 60 RP select B 5 microm, 250 x 4 mm (Merck) with an eluent of 1% formic acid-acetonitrile-trichloroacetic acid (100:10:0.25, v:v:w) at a flow of 1.2 ml/min. In the suspension cultures of Catharanthus roseus secologanin and tryptophan were detected. in the cultures of Tabernaemontana divaricata loganin, tryptophan, and tryptamine accumulated. PMID:17252445

  3. Palladium-Catalyzed Oxidative Sulfenylation of Indoles and Related Electron-Rich Heteroarenes with Aryl Boronic Acids and Elemental Sulfur.

    PubMed

    Li, Jianxiao; Li, Chunsheng; Yang, Shaorong; An, Yanni; Wu, Wanqing; Jiang, Huanfeng

    2016-09-01

    An efficient and convenient palladium-catalyzed C-H bond oxidative sulfenylation of indoles and related electron-rich heteroarenes with aryl boronic acids and elemental sulfur has been described. This procedure provides a useful and direct approach for the assembly of a wide range of structurally diverse 3-sulfenylheteroarenes with moderate to excellent yields from simple and readily available starting materials. Moreover, this synthetic protocol is suitable for N-protected and unprotected indoles. Notably, the construction of two C-S bonds in one step was also achieved in this transformation. PMID:27500941

  4. Aerobic palladium(II)-catalyzed dehydrogenation of cyclohexene-1-carbonyl indole amides: an indole-directed aromatization.

    PubMed

    Kandukuri, Sandeep R; Oestreich, Martin

    2012-10-01

    A palladium(II)-catalyzed oxidative dehydrogenation of cyclohexene-1-carbonyl indole amides yielding the corresponding benzoylindoles is reported. The new aromatization is also applied to functionalized indoles such as tryptamine and tryptophan. The tethered indole is likely acting as a directing group for allylic C-H bond activation, and there is evidence for a mechanism proceeding through 1,3-diene formation followed by aromatization. PMID:22950832

  5. Astronaut Norman Thagard changes tray in RAHF for rodents

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Astronaut Norman Thagard changes a tray in the research animal holding facility (RAHF) for rodents at the Ames double rack facility aboard the Spacelab 3 science module in the cargo bay of the shuttle Challenger. Lending a hand is payload specialist Lodewijk van den Berg. Both men are wearing protective clothing and surgical masks for this procedure.

  6. Invasive rodent eradication on islands.

    PubMed

    Howald, Gregg; Donlan, C Josh; Galván, Juan Pablo; Russell, James C; Parkes, John; Samaniego, Araceli; Wang, Yiwei; Veitch, Dick; Genovesi, Piero; Pascal, Michel; Saunders, Alan; Tershy, Bernie

    2007-10-01

    Invasive mammals are the greatest threat to island biodiversity and invasive rodents are likely responsible for the greatest number of extinctions and ecosystem changes. Techniques for eradicating rodents from islands were developed over 2 decades ago. Since that time there has been a significant development and application of this conservation tool. We reviewed the literature on invasive rodent eradications to assess its current state and identify actions to make it more effective. Worldwide, 332 successful rodent eradications have been undertaken; we identified 35 failed eradications and 20 campaigns of unknown result. Invasive rodents have been eradicated from 284 islands (47,628 ha). With the exception of two small islands, rodenticides were used in all eradication campaigns. Brodifacoum was used in 71% of campaigns and 91% of the total area treated. The most frequent rodenticide distribution methods (from most to least) are bait stations, hand broadcasting, and aerial broadcasting. Nevertheless, campaigns using aerial broadcast made up 76% of the total area treated. Mortality of native vertebrates due to nontarget poisoning has been documented, but affected species quickly recover to pre-eradication population levels or higher. A variety of methods have been developed to mitigate nontarget impacts, and applied research can further aid in minimizing impacts. Land managers should routinely remove invasive rodents from islands <100 ha that lack vertebrates susceptible to nontarget poisoning. For larger islands and those that require nontarget mitigation, expert consultation and greater planning effort are needed. With the exception of house mice (Mus musculus), island size may no longer be the limiting factor for rodent eradications; rather, social acceptance and funding may be the main challenges. To be successful, large-scale rodent campaigns should be integrated with programs to improve the livelihoods of residents, island biosecurity, and reinvasion response

  7. Identification of New Metabolites of Bacterial Transformation of Indole by Gas Chromatography-Mass Spectrometry and High Performance Liquid Chromatography

    PubMed Central

    Arora, Pankaj Kumar

    2014-01-01

    Arthrobacter sp. SPG transformed indole completely in the presence of an additional carbon source. High performance liquid chromatography and gas chromatography-mass spectrometry detected indole-3-acetic acid, indole-3-glyoxylic acid, and indole-3-aldehyde as biotransformation products. This is the first report of the formation of indole-3-acetic acid, indole-3-glyoxylic acid, and indole-3-aldehyde from indole by any bacterium. PMID:25548566

  8. Indole compounds may be promising medicines for ulcerative colitis.

    PubMed

    Sugimoto, Shinya; Naganuma, Makoto; Kanai, Takanori

    2016-09-01

    Indole compounds are extracted from indigo plants and have been used as blue or purple dyes for hundreds of years. In traditional Chinese medicine, herbal agents in combination with Qing-Dai (also known as indigo naturalis) have been used to treat patients with ulcerative colitis (UC) and to remedy inflammatory conditions. Recent studies have noted that indole compounds can be biosynthesized from tryptophan metabolites produced by various enzymes derived from intestinal microbiota. In addition to their action on indole compounds, the intestinal microbiota produce various tryptophan metabolites that mediate critical functions through distinct pathways and enzymes. Furthermore, some indole compounds, such as indigo and indirubin, act as ligands for the aryl hydrocarbon receptor. This signaling pathway stimulates mucosal type 3 innate lymphoid cells to produce interleukin-22, which induces antimicrobial peptide and tight junction molecule production, suggesting a role for indole compounds during the mucosal healing process. Thus, indole compounds may represent a novel treatment strategy for UC patients. In this review, we describe the origin and function of this indole compound-containing Chinese herb, as well as the drug development of indole compounds. PMID:27160749

  9. Palladium-catalysed direct C-2 methylation of indoles.

    PubMed

    Tu, Daoquan; Cheng, Xiuzhi; Gao, Yadong; Yang, Panpan; Ding, Yousong; Jiang, Chao

    2016-08-21

    A direct C-2 methylation reaction of indoles bearing a readily removable N-2-pyrimidyl moiety as a site-specific directing group has been developed with a palladium catalyst. This reaction relied on the use of KF to promote efficient methylation. A moderate to good yield was achieved in a range of indole substrates. PMID:27424955

  10. Gold(I)-Catalyzed Hydroarylation of Allenes with Indoles

    PubMed Central

    Toups, Kristina L.; Liu, Gordon T.; Widenhoefer, Ross A.

    2010-01-01

    Reaction of a monosubstituted, 1,3-disubstituted, or tetrasubstituted allene with various indoles catalyzed by a 1:1 mixture of a gold(I) N-heterocyclic carbene complex and AgOTf at room temperature leads to hydroarylation with formation of 3-allyl-indoles in modest to good yield. PMID:20305794

  11. Gold(I)-Catalyzed Hydroarylation of Allenes with Indoles

    PubMed Central

    Toups, Kristina L.; Liu, Gordon T.; Widenhoefer, Ross A.

    2009-01-01

    Reaction of a monosubstituted, 1,3-disubstituted, or tetrasubstituted allene with various indoles catalyzed by a 1:1 mixture of a gold(I) N-heterocyclic carbene complex and AgOTf at room temperature leads to hydroarylation with formation of 3-allyl-indoles in modest to good yield. PMID:17428061

  12. New pathway for the biodegradation of indole in Aspergillus niger

    SciTech Connect

    Kamath, A.; Vaidyanathan, C.S. )

    1990-01-01

    Indole and its derivatives form a class of toxic recalcitrant environmental pollutants. The growth of Aspergillus niger was inhibited by very low concentrations (0.005 to 0.02%) of indole, even when 125- to 500-fold excess glucose was present in the medium. When 0.02% indole was added, the fungus showed a lag phase for about 30 h and the uptake of glucose was inhibited. Indole was metabolized by a new pathway via indoxyl (3-hydroxyindole), N-formylanthranilic acid, anthranilic acid, 2,3-dihydroxybenzoic acid, and catechol, which was further degraded by an ortho cleavage. The enzymes N-formylanthranilate deformylase, anthranilate hydroxylase, 2,3-dihydroxybenzoate decarboxylase, and catechol dioxygenase were induced by indole as early as after 5 h of growth, and their activities were demonstrated in a cell-free system.

  13. Antifungal Indole Alkaloids from Winchia calophylla.

    PubMed

    Yang, Mei-Li; Chen, Jia; Sun, Meng; Zhang, Dong-Bo; Gao, Kun

    2016-05-01

    Ten indole alkaloids (1-10) were obtained from an antifungal extract of Winchia calophylla, of which two (2 and 4) were new. N(4)-Methyl-10-hydroxyl-desacetylakuammilin (2) was an akuammiline-type indole alkaloid. N(1)-Methyl-echitaminic acid (4) was an unusual zwitterion with a basic vincorine-type skeleton. This is the first report of 10 in W. calophylla. The structures of all of the compounds were determined based on spectroscopic data, and their bioactivities were assessed. Compound 1 showed potent activity against the plant pathogenic fungi of Penicillium italicum and Fusarium oxysporum f.sp cubens with IC50 s of 10.4 and 11.5 µM, respectively, and 3 inhibited Rhizoctonia solani with an IC50 of 11.7 µM. Compounds 2 and 4 showed weak cytotoxicity against the human leukemic cell line HL-60 in vitro with IC50 s of 51.4 and 75.3 µM, respectively. Compounds 1 and 2 displayed weak activity against acetylcholinesterase with IC50 s around 61.3 and 52.6 µM, respectively. PMID:27002397

  14. Site-Specific Labeling of Protein Lysine Residues and N-Terminal Amino Groups with Indoles and Indole-Derivatives.

    PubMed

    Larda, Sacha Thierry; Pichugin, Dmitry; Prosser, Robert Scott

    2015-12-16

    Indoles and indole-derivatives can be used to site-specifically label proteins on lysine and N-terminal amino groups under mild, nondenaturing reaction conditions. Hen egg white lysozyme (HEWL) and α-lactalbumin were labeled with indole, fluoroindole, or fluoroindole-2-carboxylate via electrophilic aromatic substitutions to lysine side chain Nε- and N-terminal amino imines, formed in situ in the presence of formaldehyde. The reaction is highly site-selective, easily controlled by temperature, and does not eliminate the native charge of the protein, unlike many other common lysine-specific labeling strategies. (19)F NMR was used to monitor reaction progression, and in the case of HEWL, unique resonances for each labeled side chain could be resolved. We demonstrate that the indole tags are highly selective for primary amino groups. (19)F NMR demonstrates that each lysine exhibits a different rate of conjugation to indoles making it possible to employ these tags as a means of probing surface topology by NMR or mass spectrometry. Given the site-specificity of this tagging method, the mildness of the reaction conditions (aqueous, buffered, or unbuffered) and the low stoichiometry required for the reaction, indole-derivatives should serve as a valuable addition to the bioconjugation toolkit. We propose that labeling lysine side chains and N-terminal amino groups with indoles is a versatile and general strategy for bioconjugations with substituted indoles having broad implications for protein functionalization. PMID:26587689

  15. Synthesis and characterization of novel indole derivatives reveal improved therapeutic agents for treatment of ischemia/reperfusion (I/R) injury.

    PubMed

    Bi, Wei; Bi, Yue; Xue, Ping; Zhang, Yanrong; Gao, Xiang; Wang, Zhibo; Li, Meng; Baudy-Floc'h, Michèle; Ngerebara, Nathaniel; Gibson, K Michael; Bi, Lanrong

    2010-09-23

    To develop more potent therapeutic agents with therapeutic efficacy for ischemia/reperfusion (I/R) injury, we linked an antiinflammatory moiety (1,3-dioxane derivative) to the key pharmacophoric moiety of melatonin. We hypothesized that the resulting new indole derivatives might induce a synergistic protection against oxidative damage associated with I/R injury. Our results indicate that one of these indole derivatives (7) manifests potent antiinflammatory antioxidant effects and exerts a protective effect against skeletal muscle injury and associated lung injury following limb I/R in rats. PMID:20731361

  16. Glucose enhances indolic glucosinolate biosynthesis without reducing primary sulfur assimilation

    PubMed Central

    Miao, Huiying; Cai, Congxi; Wei, Jia; Huang, Jirong; Chang, Jiaqi; Qian, Hongmei; Zhang, Xin; Zhao, Yanting; Sun, Bo; Wang, Bingliang; Wang, Qiaomei

    2016-01-01

    The effect of glucose as a signaling molecule on induction of aliphatic glucosinolate biosynthesis was reported in our former study. Here, we further investigated the regulatory mechanism of indolic glucosinolate biosynthesis by glucose in Arabidopsis. Glucose exerted a positive influence on indolic glucosinolate biosynthesis, which was demonstrated by induced accumulation of indolic glucosinolates and enhanced expression of related genes upon glucose treatment. Genetic analysis revealed that MYB34 and MYB51 were crucial in maintaining the basal indolic glucosinolate accumulation, with MYB34 being pivotal in response to glucose signaling. The increased accumulation of indolic glucosinolates and mRNA levels of MYB34, MYB51, and MYB122 caused by glucose were inhibited in the gin2-1 mutant, suggesting an important role of HXK1 in glucose-mediated induction of indolic glucosinolate biosynthesis. In contrast to what was known on the function of ABI5 in glucose-mediated aliphatic glucosinolate biosynthesis, ABI5 was not required for glucose-induced indolic glucosinolate accumulation. In addition, our results also indicated that glucose-induced glucosinolate accumulation was due to enhanced sulfur assimilation instead of directed sulfur partitioning into glucosinolate biosynthesis. Thus, our data provide new insights into molecular mechanisms underlying glucose-regulated glucosinolate biosynthesis. PMID:27549907

  17. Glucose enhances indolic glucosinolate biosynthesis without reducing primary sulfur assimilation.

    PubMed

    Miao, Huiying; Cai, Congxi; Wei, Jia; Huang, Jirong; Chang, Jiaqi; Qian, Hongmei; Zhang, Xin; Zhao, Yanting; Sun, Bo; Wang, Bingliang; Wang, Qiaomei

    2016-01-01

    The effect of glucose as a signaling molecule on induction of aliphatic glucosinolate biosynthesis was reported in our former study. Here, we further investigated the regulatory mechanism of indolic glucosinolate biosynthesis by glucose in Arabidopsis. Glucose exerted a positive influence on indolic glucosinolate biosynthesis, which was demonstrated by induced accumulation of indolic glucosinolates and enhanced expression of related genes upon glucose treatment. Genetic analysis revealed that MYB34 and MYB51 were crucial in maintaining the basal indolic glucosinolate accumulation, with MYB34 being pivotal in response to glucose signaling. The increased accumulation of indolic glucosinolates and mRNA levels of MYB34, MYB51, and MYB122 caused by glucose were inhibited in the gin2-1 mutant, suggesting an important role of HXK1 in glucose-mediated induction of indolic glucosinolate biosynthesis. In contrast to what was known on the function of ABI5 in glucose-mediated aliphatic glucosinolate biosynthesis, ABI5 was not required for glucose-induced indolic glucosinolate accumulation. In addition, our results also indicated that glucose-induced glucosinolate accumulation was due to enhanced sulfur assimilation instead of directed sulfur partitioning into glucosinolate biosynthesis. Thus, our data provide new insights into molecular mechanisms underlying glucose-regulated glucosinolate biosynthesis. PMID:27549907

  18. Indole and 7-hydroxyindole diminish Pseudomonas aeruginosa virulence.

    PubMed

    Lee, Jintae; Attila, Can; Cirillo, Suat L G; Cirillo, Jeffrey D; Wood, Thomas K

    2009-01-01

    Indole is an extracellular biofilm signal for Escherichia coli, and many bacterial oxygenases readily convert indole to various oxidized compounds including 7-hydroxyindole (7HI). Here we investigate the impact of indole and 7HI on Pseudomonas aeruginosa PAO1 virulence and quorum sensing (QS)-regulated phenotypes; this strain does not synthesize these compounds but degrades them rapidly. Indole and 7HI both altered extensively gene expression in a manner opposite that of acylhomoserine lactones; the most repressed genes encode the mexGHI-opmD multidrug efflux pump and genes involved in the synthesis of QS-regulated virulence factors including pyocyanin (phz operon), 2-heptyl-3-hydroxy-4(1H)-quinolone (PQS) signal (pqs operon), pyochelin (pch operon) and pyoverdine (pvd operon). Corroborating these microarray results, indole and 7HI decreased production of pyocyanin, rhamnolipid, PQS and pyoverdine and enhanced antibiotic resistance. In addition, indole affected the utilization of carbon, nitrogen and phosphorus, and 7HI abolished swarming motility. Furthermore, 7HI reduced pulmonary colonization of P. aeruginosa in guinea pigs and increased clearance in lungs. Hence, indole-related compounds have potential as a novel antivirulence approach for the recalcitrant pathogen P. aeruginosa. PMID:21261883

  19. Strongly Acidic Auxin Indole-3-Methanesulfonic Acid

    PubMed Central

    Cohen, Jerry D.; Baldi, Bruce G.; Bialek, Krystyna

    1985-01-01

    A radiochemical synthesis is described for [14C]indole-3-methanesulfonic acid (IMS), a strongly acidic auxin analog. Techniques were developed for fractionation and purification of IMS using normal and reverse phase chromatography. In addition, the utility of both Fourier transform infrared spectrometry and fast atom bombardment mass spectrometry for analysis of IMS has been demonstrated. IMS was shown to be an active auxin, stimulating soybean hypocotyl elongation, bean first internode curvature, and ethylene production. IMS uptake by thin sections of soybean hypocotyl was essentially independent of solution pH and, when applied at a 100 micromolar concentration, IMS exhibited a basipetal polarity in its transport in both corn coleoptile and soybean hypocotyl sections. [14C]IMS should, therefore, be a useful compound to study fundamental processes related to the movement of auxins in plant tissues and organelles. PMID:16664007

  20. Synthesis of indoles from pyridinium salts

    SciTech Connect

    Gromov, S.P.; Bkhaumik, M.M.; Bundel', Yu.G.

    1987-10-01

    The detailed analysis of the products of the interaction of nitropyridinium salts with ketones and alkylamines resulted in new data testifying in favor of the previously proposed scheme for the formation of indoles from pyridinium salts. The PMR spectra were taken on a Bruker WM-500 spectrometer for the compounds (IXa,b) in CDCl/sub 3/, and (IVg, i-Z) in acetone-D/sub 6/, and a Varian T-60 spectrometer for the alkylindoles (IVa,c,h) in CDCl/sub 3/, with reference to HMDS. The /sup 13/C NMR spectra were taken on a Bruker WM-250 spectrometer in CDCl/sub 3/. The mass spectra were taken on a Finnigan-4021 instrument.

  1. Cytotoxic indole alkaloids from Tabernaemontana divaricata.

    PubMed

    Bao, Mei-Fen; Yan, Ju-Ming; Cheng, Gui-Guang; Li, Xing-Yao; Liu, Ya-Ping; Li, Yan; Cai, Xiang-Hai; Luo, Xiao-Dong

    2013-08-23

    Five new vobasinyl-ibogan-type bisindole alkaloids, tabernaricatines A-E (1-5), two new monomers, tabernaricatines F and G (6 and 7), and 24 known indole alkaloids were isolated from the aerial parts of Tabernaemontana divaricata. Alkaloids 1 and 2 are the first vobasinyl-ibogan-type alkaloids possessing a six-membered ring via an ether linkage between C-17 and C-21. All compounds except for 3 were evaluated for their cytotoxicity against five human cancer cell lines; conophylline showed significant bioactivity against HL-60, SMMC-7721, A-549, MCF-7, and SW480 cells with IC₅₀ values of 0.17, 0.35, 0.21, 1.02, and 1.49 μM, respectively. PMID:23944995

  2. 40 CFR 799.9305 - TSCA Repeated dose 28-day oral toxicity study in rodents.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 33 2013-07-01 2013-07-01 false TSCA Repeated dose 28-day oral toxicity study in rodents. 799.9305 Section 799.9305 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT (CONTINUED) IDENTIFICATION OF SPECIFIC CHEMICAL SUBSTANCE AND MIXTURE TESTING REQUIREMENTS Health...

  3. Lewis Acid and Fluoroalcohol Mediated Nucleophilic Addition to the C2 Position of Indoles.

    PubMed

    Morimoto, Naoki; Morioku, Kumika; Suzuki, Hideyuki; Takeuchi, Yasuo; Nishina, Yuta

    2016-05-01

    Indole readily undergoes nucleophilic substitution at the C3 site, and many indole derivatives have been functionalized using this property. Indole also forms indolium, which allows electrophilic addition in acidic conditions, but current examples have been limited to intramolecular reactions. C2 site-selective nucleophilic addition to indole derivatives using fluoroalcohol and a Lewis acid was developed. PMID:27119318

  4. Iridium(iii)-catalyzed regioselective C7-sulfonamidation of indoles.

    PubMed

    Song, Zengqiang; Antonchick, Andrey P

    2016-06-01

    Iridium(iii)-catalyzed direct C7-sulfonamidation of indoles with sulfonyl azides is described. The developed method has good compatibility with diverse functional groups, providing various 7-amino-substituted indoles with good to excellent yields in a short time under mild reaction conditions. The key feature of the developed method is the regioselective functionalization at the C7-position of 2,3-unsubstituted indoles. Biologically active compounds can be obtained using this protocol. The application of the iridium(iii) catalyst and directing group plays a crucial role in the regioselectivity of the developed reaction. PMID:27173668

  5. Synthesis and anti-inflammatory activity of indole glucosinolates.

    PubMed

    Vo, Quan V; Trenerry, Craige; Rochfort, Simone; Wadeson, Jenny; Leyton, Carolina; Hughes, Andrew B

    2014-01-15

    The nitronate and nitrovinyl methods to synthesize indole glucosinolates (GLs) have been investigated. The results were applied to generally the most prevalent natural indole glucosinolates to synthesize 4-methoxyglucobrassicin (MGB) and neo-glucobrassicin (NGB) in moderate overall yield for the first time. The anti-inflammatory activity of the synthetic indole GLs was determined by inhibition of TNF-α secretion in LPS-stimulated THP-1 cells. The data showed that glucobrassicin (GB) exhibited higher activity than other synthetic indolyl GLs. PMID:24360830

  6. Indole Glucosinolate Biosynthesis Limits Phenylpropanoid Accumulation in Arabidopsis thaliana

    PubMed Central

    2015-01-01

    Plants produce an array of metabolites (including lignin monomers and soluble UV-protective metabolites) from phenylalanine through the phenylpropanoid biosynthetic pathway. A subset of plants, including many related to Arabidopsis thaliana, synthesizes glucosinolates, nitrogen- and sulfur-containing secondary metabolites that serve as components of a plant defense system that deters herbivores and pathogens. Here, we report that the Arabidopsis thaliana reduced epidermal fluorescence5 (ref5-1) mutant, identified in a screen for plants with defects in soluble phenylpropanoid accumulation, has a missense mutation in CYP83B1 and displays defects in glucosinolate biosynthesis and in phenylpropanoid accumulation. CYP79B2 and CYP79B3 are responsible for the production of the CYP83B1 substrate indole-3-acetaldoxime (IAOx), and we found that the phenylpropanoid content of cyp79b2 cyp79b3 and ref5-1 cyp79b2 cyp79b3 plants is increased compared with the wild type. These data suggest that levels of IAOx or a subsequent metabolite negatively influence phenylpropanoid accumulation in ref5 and more importantly that this crosstalk is relevant in the wild type. Additional biochemical and genetic evidence indicates that this inhibition impacts the early steps of the phenylpropanoid biosynthetic pathway and restoration of phenylpropanoid accumulation in a ref5-1 med5a/b triple mutant suggests that the function of the Mediator complex is required for the crosstalk. PMID:25944103

  7. Translocation of radiolabeled indole-3-acetic acid and indole-3-acetyl-myo-inositol from kernel to shoot of Zea mays L

    NASA Technical Reports Server (NTRS)

    Chisnell, J. R.; Bandurski, R. S.

    1988-01-01

    Either 5-[3H]indole-3-acetic acid (IAA) or 5-[3H]indole-3-acetyl-myo-inositol was applied to the endosperm of kernels of dark-grown Zea mays seedlings. The distribution of total radioactivity, radiolabeled indole-3-acetic acid, and radiolabeled ester conjugated indole-3-acetic acid, in the shoots was then determined. Differences were found in the distribution and chemical form of the radiolabeled indole-3-acetic acid in the shoot depending upon whether 5-[3H]indole-3-acetic acid or 5-[3H]indole-3-acetyl-myo-inositol was applied to the endosperm. We demonstrated that indole-3-acetyl-myo-inositol applied to the endosperm provides both free and ester conjugated indole-3-acetic acid to the mesocotyl and coleoptile. Free indole-3-acetic acid applied to the endosperm supplies some of the indole-3-acetic acid in the mesocotyl but essentially no indole-3-acetic acid to the coleoptile or primary leaves. It is concluded that free IAA from the endosperm is not a source of IAA for the coleoptile. Neither radioactive indole-3-acetyl-myo-inositol nor IAA accumulates in the tip of the coleoptile or the mesocotyl node and thus these studies do not explain how the coleoptile tip controls the amount of IAA in the shoot.

  8. Indole-3-Acetic Acid Biosynthesis in Colletotrichum gloeosporioides f. sp. aeschynomene

    PubMed Central

    Robinson, M.; Riov, J.; Sharon, A.

    1998-01-01

    We characterized the biosynthesis of indole-3-acetic acid by the mycoherbicide Colletotrichum gloeosporioides f. sp. aeschynomene. Auxin production was tryptophan dependent. Compounds from the indole-3-acetamide and indole-3-pyruvic acid pathways were detected in culture filtrates. Feeding experiments and in vitro assay confirmed the presence of both pathways. Indole-3-acetamide was the major pathway utilized by the fungus to produce indole-3-acetic acid in culture. PMID:9835603

  9. Oxidative Furan-to-Indole Rearrangement. Synthesis of 2-(2-Acylvinyl)indoles and Flinderole C Analogues.

    PubMed

    Makarov, Anton S; Merkushev, Anton A; Uchuskin, Maxim G; Trushkov, Igor V

    2016-05-01

    Oxidative rearrangement of 2-(2-aminobenzyl)furans affording 2-(2-acylvinyl)indoles in a stereocontrolled manner in good-to-excellent yields has been developed. Thus, (2-aminobenzyl)furans with electron-releasing alkoxy substituents in the phenyl group form only E-isomers of 2-(2-acylvinyl)indoles. Conversely, substrates without such substituents produce target products as Z-isomers exclusively. A short diastereoselective method for the transformation of the obtained 2-(2-acylvinyl)indoles into antimalarial bisindole alkaloid flinderole A-C analogues has been developed. PMID:27074535

  10. Dearomative [2 + 2] Cycloaddition and Formal C-H Insertion Reaction of o-Carboryne with Indoles: Synthesis of Carborane-Functionalized Heterocycles.

    PubMed

    Zhao, Da; Zhang, Jiji; Xie, Zuowei

    2015-07-29

    o-Carboryne (1,2-dehydro-o-carborane) is a very useful synthon for the synthesis of a variety of carborane-functionalized heterocycles. Reaction of o-carboryne with N-protected indoles gave carborane-fused indolines if the protecting group was TMS via dearomative [2 + 2] cycloaddition or carboranyl indoles for N-alkyl ones through formal C-H insertion reaction. For N-aryl indoles, both reactions were observed, giving two products, in which the product ratio was dependent upon the nature of the substituents on the aryl rings. In general, electron-withdrawing substituents favor [2 + 2] cycloaddition, whereas electron-donating substituents promote a formal C-H insertion pathway. This reaction is also compatible with other heteroaromatics. Thus, a stepwise reaction mechanism was proposed to account for the experimental observations. These protocols offer general and efficient methods for the preparation of carborane-functionalized indoles and indolines as well as other heterocycles. The observed dearomative [2 + 2] cycloaddition represents the first example of indoles to undergo such reaction in the absence of transition metals or without UV irradiation. All new compounds were fully characterized by (1)H, (13)C, and (11)B NMR spectroscopy as well as HRMS spectrometry. Some were further confirmed by single-crystal X-ray analyses. PMID:26160111

  11. 21 CFR 1250.96 - Rodent control.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Rodent control. 1250.96 Section 1250.96 Food and... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.96 Rodent control. Vessels shall be maintained free of rodent infestation through the use of traps, poisons, and other generally accepted...

  12. 21 CFR 1250.96 - Rodent control.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Rodent control. 1250.96 Section 1250.96 Food and... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.96 Rodent control. Vessels shall be maintained free of rodent infestation through the use of traps, poisons, and other generally accepted...

  13. 21 CFR 1250.96 - Rodent control.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Rodent control. 1250.96 Section 1250.96 Food and... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.96 Rodent control. Vessels shall be maintained free of rodent infestation through the use of traps, poisons, and other generally accepted...

  14. 21 CFR 1250.96 - Rodent control.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Rodent control. 1250.96 Section 1250.96 Food and... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.96 Rodent control. Vessels shall be... of rodent control....

  15. 21 CFR 1250.96 - Rodent control.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Rodent control. 1250.96 Section 1250.96 Food and... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.96 Rodent control. Vessels shall be... of rodent control....

  16. Access to Indole Derivatives from Diaryliodonium Salts and 2-Alkynylanilines.

    PubMed

    Li, Pengfei; Weng, Yunxiang; Xu, Xianxiang; Cui, Xiuling

    2016-05-20

    An efficient, environmentally friendly, and operationally simple procedure to 1,2-disubstituted indoles from 2-alkynylanilines and diaryliodonium salts has been developed. This reaction proceeds smoothly under metal-free conditions. The products obtained could be transferred into 3,3'-diindolylmethane with DMSO catalyzed by palladium. The isotopic label experiments indicated that the methylene group in 3,3'-diindolylmethane is derived from DMSO. The diverse indoles were obtained in up to 90% yield for 28 examples. PMID:27156581

  17. Friedel-Crafts Fluoroacetylation of Indoles with Fluorinated Acetic Acids for the Synthesis of Fluoromethyl Indol-3-yl Ketones under Catalyst- and Additive-Free Conditions.

    PubMed

    Yao, Shun-Jiang; Ren, Zhi-Hui; Wang, Yao-Yu; Guan, Zheng-Hui

    2016-05-20

    A simple and efficient protocol for the fluoroacetylation of indoles is reported. The reaction uses fluorinated acetic acids as the fluoroacetylation reagents to synthesize diverse fluoromethyl indol-3-yl ketones in good yields under catalyst- and additive-free conditions. In addition, the only byproduct is water in this transformation. The synthetic utility of this reaction was also demonstrated by the concise synthesis of α-(trifluoromethyl)(indol-3-yl)methanol and indole-3-carboxylic acid. PMID:27101475

  18. Indole and 7-benzyloxyindole attenuate the virulence of Staphylococcus aureus.

    PubMed

    Lee, Jin-Hyung; Cho, Hyun Seob; Kim, Younghoon; Kim, Jung-Ae; Banskota, Suhrid; Cho, Moo Hwan; Lee, Jintae

    2013-05-01

    Human pathogens can readily develop drug resistance due to the long-term use of antibiotics that mostly inhibit bacterial growth. Unlike antibiotics, antivirulence compounds diminish bacterial virulence without affecting cell viability and thus, may not lead to drug resistance. Staphylococcus aureus is a major agent of nosocomial infections and produces diverse virulence factors, such as the yellow carotenoid staphyloxanthin, which promotes resistance to reactive oxygen species (ROS) and the host immune system. To identify novel antivirulence compounds, bacterial signal indole present in animal gut and diverse indole derivatives were investigated with respect to reducing staphyloxanthin production and the hemolytic activity of S. aureus. Treatment with indole or its derivative 7-benzyloxyindole (7BOI) caused S. aureus to become colorless and inhibited its hemolytic ability without affecting bacterial growth. As a result, S. aureus was more easily killed by hydrogen peroxide (H₂O₂) and by human whole blood in the presence of indole or 7BOI. In addition, 7BOI attenuated S. aureus virulence in an in vivo model of nematode Caenorhabditis elegans, which is readily infected and killed by S. aureus. Transcriptional analyses showed that both indole and 7BOI repressed the expressions of several virulence genes such as α-hemolysin gene hla, enterotoxin seb, and the protease genes splA and sspA and modulated the expressions of the important regulatory genes agrA and sarA. These findings show that indole derivatives are potential candidates for use in antivirulence strategies against persistent S. aureus infection. PMID:23318836

  19. Photoreaction of indole-containing mycotoxins to fluorescent products.

    PubMed

    Maragos, C M

    2009-06-01

    Photochemical reaction of the non-fluorescent mycotoxin cyclopiazonic acid (CPA) to fluorescent products was recently reported. Because CPA contains an indole moiety, believed to contribute to the fluorescence, it was of interest to determine whether the effect might be more generally applicable to indole-containing mycotoxins. Three indole-containing tremorgens (penitrem A, paxilline, verruculogen) that have not previously been reported to be fluorescent were rendered fluorescent by exposure to ultraviolet light in a photoreactor. Naturally fluorescent ergot alkaloids, which also contain an indole-moiety, exhibited a diminished response after exposure. This suggests that the phenomenon may be most useful for detection of indole-containing tremorgens that are non-fluorescent, rather than for the enhancement of materials that are already fluorescent, such as the ergot alkaloids. The extent to which fluorescence enhancement was seen was strongly influenced by the reaction environment, in particular the solvent used and whether cyclodextrins were present. In an HPLC format, placement of the photoreactor post-column allowed for the fluorescence detection of penitrem A, paxilline, and verruculogen. The ability to photoreact indole-containing tremorgens and detect them by fluorescence may open up new avenues for detection of these mycotoxins alone or in combination. PMID:23604981

  20. N-alkenyl indoles as useful intermediates for alkaloid synthesis.

    PubMed

    Li, Hao; Boonnak, Nawong; Padwa, Albert

    2011-11-18

    A mild cross-coupling reaction to access several N-alkenyl-substituted indoles has been developed. The coupling procedure involves treating a NH-indole with various alkenyl bromides using a combination of 10 mol % of copper(I) iodide and 20 mol % of ethylenediamine as the catalyst in dioxane at 110 °C in the presence of K(3)PO(4) as the base. When treated with acid, these unique enamines produce a dimeric product derived from a preferred protonation reaction at the enamine π-bond. A cationic cyclization reaction of the readily available 2-(2-(1H-indol-1-yl)allyl)cyclopentanol was utilized to construct tetracyclic indole derivatives with a quaternary stereocenter attached to the C(2)-position of the indole ring. An alternative strategy for selective functionalization at the C(2)-position of a N-alkenyl-substituted indole derivative that was also studied involves a radical cyclization of a xanthate derivative. The work described provides an attractive route to the tetracyclic core of some vinca alkaloids, including the tetrahydroisoquinocarbazole RS-2135. PMID:22007631

  1. UV-Photoelectron Spectroscopy of BN Indoles: Experimental and Computational Electronic Structure Analysis

    PubMed Central

    2015-01-01

    We present a comprehensive electronic structure analysis of two BN isosteres of indole using a combined UV-photoelectron spectroscopy (UV-PES)/computational chemistry approach. Gas-phase He I photoelectron spectra of external BN indole I and fused BN indole II have been recorded, assessed by density functional theory calculations, and compared with natural indole. The first ionization energies of these indoles are natural indole (7.9 eV), external BN indole I (7.9 eV), and fused BN indole II (8.05 eV). The computationally determined molecular dipole moments are in the order: natural indole (2.177 D) > fused BN indole II (1.512 D) > external BN indole I (0.543 D). The λmax in the UV–vis absorption spectra are in the order: fused BN indole II (292 nm) > external BN indole I (282 nm) > natural indole (270 nm). The observed relative electrophilic aromatic substitution reactivity of the investigated indoles with dimethyliminium chloride as the electrophile is as follows: fused BN indole II > natural indole > external BN indole I, and this trend correlates with the π-orbital coefficient at the 3-position. Nucleus-independent chemical shifts calculations show that the introduction of boron into an aromatic 6π-electron system leads to a reduction in aromaticity, presumably due to a stronger bond localization. Trends and conclusions from BN isosteres of simple monocyclic aromatic systems such as benzene and toluene are not necessarily translated to the bicyclic indole core. Thus, electronic structure consequences resulting from BN/CC isosterism will need to be evaluated individually from system to system. PMID:25089659

  2. Partial purification and characterization of indol-3-ylacetylglucose:myo-inositol indol-3-ylacetyltransferase (indoleacetic acid-inositol synthase)

    NASA Technical Reports Server (NTRS)

    Kesy, J. M.; Bandurski, R. S.

    1990-01-01

    A procedure is described for the purification of the enzyme indol-3-ylacetylglucose:myo-inositol indol-3-ylacetyltransferase (IAA-myo-inositol synthase). This enzyme catalyzes the transfer of indol-3-ylacetate from 1-0-indol-3-ylacetyl-beta-d-glucose to myo-inositol to form indol-3-ylacetyl-myo-inositol and glucose. A hexokinase or glucose oxidase based assay system is described. The enzyme has been purified approximately 16,000-fold, has an isoelectric point of pH 6.1 and yields three catalytically inactive bands upon acrylamide gel electrophoresis of the native protein. The enzyme shows maximum transferase activity with myo-inositol but shows some transferase activity with scyllo-inositol and myo-inosose-2. No transfer of IAA occurs with myo-inositol-d-galactopyranose, cyclohexanol, mannitol, or glycerol as acyl acceptor. The affinity of the enzyme for 1-0-indol-3-ylacetyl-beta-d-glucose is, Km = 30 micromolar, and for myo-inositol is, Km = 4 millimolar. The enzyme does not catalyze the exchange incorporation of glucose into IAA-glucose indicating the reaction mechanism involves binding of IAA glucose to the enzyme with subsequent hydrolytic cleavage of the acyl moiety by the hydroxyl of myo-inositol to form IAA myo-inositol ester.

  3. Bioactive indole alkaloids isolated from Alstonia angustifolia

    PubMed Central

    Pan, Li; Terrazas, César; Muñoz Acuña, Ulyana; Ninh, Tran Ngoc; Chai, Heebyung; Carcache de Blanco, Esperanza J.; Soejarto, Djaja D.; Satoskar, Abhay R.

    2014-01-01

    Bioassay-guided fractionation was conducted on a CHCl3-soluble extract of the stem bark of Alstonia angustifolia (Apocynaceae) collected in Vietnam using the HT-29 human colon cancer cell line, and led to the isolation of a new sarpagine-type indole alkaloid (1), together with nine known alkaloids, including four macroline-derived alkaloids (2–5), a sarpagine-type alkaloid (6), and four macroline-pleiocarpamine bisindole alkaloids (7–10). The structure of the new compound (1) was determined on the basis of spectroscopic data interpretation. Compounds 1–10 were evaluated in vitro for their NF-κB (p65) inhibitory activity against the Hela cells in an ELISA assay. The new sarpagine alkaloid, N(4)-methyltalpinine (1), was found to show significant NF-κB inhibitory activity (ED50 = 1.2 µM). Furthermore, all the isolates (1–10) were evaluated in vitro for their antileishmanial activity, and compounds (1–4, 6 and 8–10) exhibited leishmaniacidal activity against promastigotes of Leishmania mexicana. PMID:25584095

  4. Antitumor efficacy testing in rodents.

    PubMed

    Hollingshead, Melinda G

    2008-11-01

    The preclinical research and human clinical trials necessary for developing anticancer therapeutics are costly. One contributor to these costs is preclinical rodent efficacy studies, which, in addition to the costs associated with conducting them, often guide the selection of agents for clinical development. If inappropriate or inaccurate recommendations are made on the basis of these preclinical studies, then additional costs are incurred. In this commentary, I discuss the issues associated with preclinical rodent efficacy studies. These include the identification of proper preclinical efficacy models, the selection of appropriate experimental endpoints, and the correct statistical evaluation of the resulting data. I also describe important experimental design considerations, such as selecting the drug vehicle, optimizing the therapeutic treatment plan, properly powering the experiment by defining appropriate numbers of replicates in each treatment arm, and proper randomization. Improved preclinical selection criteria can aid in reducing unnecessary human studies, thus reducing the overall costs of anticancer drug development. PMID:18957675

  5. Rodent models of cerebral ischemia

    SciTech Connect

    Ginsberg, M.D.; Busto, R. )

    1989-12-01

    The use of physiologically regulated, reproducible animal models is crucial to the study of ischemic brain injury--both the mechanisms governing its occurrence and potential therapeutic strategies. Several laboratory rodent species (notably rats and gerbils), which are readily available at relatively low cost, are highly suitable for the investigation of cerebral ischemia and have been widely employed for this purpose. We critically examine and summarize several rodent models of transient global ischemia, resulting in selective neuronal injury within vulnerable brain regions, and focal ischemia, typically giving rise to localized brain infarction. We explore the utility of individual models and emphasize the necessity for meticulous experimental control of those variables that modulate the severity of ischemic brain injury.169 references.

  6. Influence of the tryptophan-indole-IFNγ axis on human genital Chlamydia trachomatis infection: role of vaginal co-infections

    PubMed Central

    Aiyar, Ashok; Quayle, Alison J.; Buckner, Lyndsey R.; Sherchand, Shardulendra P.; Chang, Theresa L.; Zea, Arnold H.; Martin, David H.; Belland, Robert J.

    2014-01-01

    The natural history of genital Chlamydia trachomatis infections can vary widely; infections can spontaneously resolve but can also last from months to years, potentially progressing to cause significant pathology. The host and bacterial factors underlying this wide variation are not completely understood, but emphasize the bacterium's capacity to evade/adapt to the genital immune response, and/or exploit local environmental conditions to survive this immune response. IFNγ is considered to be a primary host protective cytokine against endocervical C. trachomatis infections. IFNγ acts by inducing the host enzyme indoleamine 2,3-dioxgenase, which catabolizes tryptophan, thereby depriving the bacterium of this essential amino acid. In vitro studies have revealed that tryptophan deprivation causes Chlamydia to enter a viable but non-infectious growth pattern that is termed a persistent growth form, characterized by a unique morphology and gene expression pattern. Provision of tryptophan can reactivate the bacterium to the normal developmental cycle. There is a significant difference in the capacity of ocular and genital C. trachomatis serovars to counter tryptophan deprivation. The latter uniquely encode a functional tryptophan synthase to synthesize tryptophan via indole salvage, should indole be available in the infection microenvironment. In vitro studies have confirmed the capacity of indole to mitigate the effects of IFNγ; it has been suggested that a perturbed vaginal microbiome may provide a source of indole in vivo. Consistent with this hypothesis, the microbiome associated with bacterial vaginosis includes species that encode a tryptophanase to produce indole. In this review, we discuss the natural history of genital chlamydial infections, morphological and molecular changes imposed by IFNγ on Chlamydia, and finally, the microenvironmental conditions associated with vaginal co-infections that can ameliorate the effects of IFNγ on C. trachomatis. PMID

  7. Ag(I)-Catalyzed Indolization/C3-Functionalization Cascade of 2-Ethynylanilines via Ring Opening of Donor-Acceptor Cyclopropanes.

    PubMed

    Karmakar, Raju; Suneja, Arun; Singh, Vinod K

    2016-06-01

    A AgSbF6-catalyzed cascade involving the ring opening of donor-acceptor cyclopropanes (DACs) preceded by the cyclization of N-protected 2-ethynylaniline is described. The method discloses a step-economy route to 2,3-disubstituted indole, where a Ag catalyst is found to trigger the cascade by activating both alkyne and DACs. Various functionalities at different ends of both substrates offer rapid access to 2,3-disubstituted indole derivatives in one pot in good to excellent yields. Elaboration of the cascade product to useful intermediates is also depicted. PMID:27186903

  8. Design, synthesis and biological evaluation of novel chiral oxazino-indoles as potential and selective neuroprotective agents against Aβ25-35-induced neuronal damage.

    PubMed

    Chen, Jing; Tao, Ling-Xue; Xiao, Wei; Ji, Sha-Sha; Wang, Jian-Rong; Li, Xu-Wen; Zhang, Hai-Yan; Guo, Yue-Wei

    2016-08-01

    A series of chiral oxazino-indoles have been synthesized via a key intermolecular oxa-Pictet-Spengler reaction. These compounds exhibited significant and selective neuroprotective effects against Aβ25-35-induced neuronal damage. This is the first report of evaluating the influence of chiral diversity of oxazino-indoles on their neuroprotective activities, with the structure-activity relationship been analyzed. The highly active compounds 3f, 3g, 4g, 4h, and 6b all performed over 90% cell protection, providing a new direction for the development of neuroprotective agents against Alzheimer's disease. PMID:27301369

  9. Low-Dose Radiotherapy in Indolent Lymphoma

    SciTech Connect

    Rossier, Christine; Schick, Ulrike; Miralbell, Raymond; Mirimanoff, Rene O.; Weber, Damien C.; Ozsahin, Mahmut

    2011-11-01

    Purpose: To assess the response rate, duration of response, and overall survival after low-dose involved-field radiotherapy in patients with recurrent low-grade lymphoma or chronic lymphocytic leukemia (CLL). Methods and Materials: Forty-three (24 women, 19 men) consecutive patients with indolent lymphoma or CLL were treated with a total dose of 4 Gy (2 x 2 Gy) using 6- 18-MV photons. The median age was 73 years (range, 39-88). Radiotherapy was given either after (n = 32; 75%) or before (n = 11; 25%) chemotherapy. The median time from diagnosis was 48 months (range, 1-249). The median follow-up period was 20 months (range, 1-56). Results: The overall response rate was 90%. Twelve patients (28%) had a complete response, 15 (35%) had a partial response, 11 (26%) had stable disease, and 5 (11%) had progressive disease. The median overall survival for patients with a positive response (complete response/partial response/stable disease) was 41 months; for patients with progressive disease it was 6 months (p = 0.001). The median time to in-field progression was 21 months (range, 0-24), and the median time to out-field progression was 8 months (range, 0-40). The 3-year in-field control was 92% in patients with complete response (median was not reached). The median time to in-field progression was 9 months (range, 0.5-24) in patients with partial response and 6 months (range, 0.6-6) in those with stable disease (p < 0.05). Younger age, positive response to radiotherapy, and no previous chemotherapy were the best factors influencing the outcome. Conclusions: Low-dose involved-field radiotherapy is an effective treatment in the management of patients with recurrent low-grade lymphoma or CLL.

  10. Environmental factors affecting indole metabolism under anaerobic conditions

    SciTech Connect

    Madsen, E.L.; Francis, A.J.; Bollag, J.M.

    1988-01-01

    The influence of physiological and environmental factors on the accumulation of oxindole during anaerobic indole metabolism was investigated by high-performance liquid chromatography. Under methanogenic conditions, indole was temporarily converted to oxindole in stoichiometric amounts in media inoculated with three freshwater sediments and an organic soil. In media inoculated with methanogenic sewage sludge, the modest amounts of oxindole detected at 35/sup 0/C reached higher concentrations and persisted longer when the incubation temperature was decreased from 35 to 15/sup 0/C. Also, decreasing the concentration of sewage sludge used as an inoculum from 50 to 1% caused an increase in the accumulation of oxindole from 10 to 75% of the indole added. Under denitrifying conditions, regardless of the concentration or source of the inoculum, oxindole appeared in trace amounts but did not accumulate during indole metabolism. In addition, denitrifying consortia which previously metabolized indole degraded oxindole with no lag period. Our data suggest that oxindole accumulation under methanogenic, but not under denitrifying conditions is caused by differences between relative rates of oxindole production and destruction.

  11. Development and Characterization of Monoclonal Antibodies Specific for 3-(1-naphthoyl) Indole Derivatives.

    PubMed

    Nakayama, Hiroshi; Kenjyou, Noriko; Ito, Yuji

    2016-02-01

    3-(1-naphthoyl) indole is one of the raw materials that synthesizes a synthetic cannabinoid such as 1-pentyl-3-(1-naphthoyl) indole (JWH-018) and 1-butyl-3-(1-naphthoyl) indole (JWH-073). It is important to detect the 3-(1-naphthoyl) indole derivatives rapidly, sensitively, and comprehensively. We developed two monoclonal antibodies (MAb) against 3-(1-naphthoyl) indole derivatives, named NT1 (IgG1) and NT2 (IgG1), which were possibly effective for detecting 3-(1-naphthoyl) indole derivatives. The cross-reactive ability of these MAbs was evaluated using a competitive enzyme-linked immunosorbent assay (ELISA). In the results, we found both of these antibodies recognize 3-(1-naphthoyl) indole and its derivatives. However neither of these antibodies recognize naphtoic acid, 4-methyl-naphtoic acid, and indole. Sixty to 100 nanomole per liter of 3-(1-naphthoyl) indole derivatives, such as 1-methyl-3-(1-naphthoyl) indole, 1-ethyl-3-(1-naphthoyl) indole, and 1-octyl-3-(1-naphthoyl) indole, can be detected using both of the obtained MAbs. Thus, the MAbs produced in this study could be a useful tool for the detection of 3-(1-naphthoyl) indole derivatives. PMID:26871514

  12. Assessment of different formulations of oral Mycobacterium bovis Bacille Calmette-Guérin (BCG) vaccine in rodent models for immunogenicity and protection against aerosol challenge with M. bovis.

    PubMed

    Clark, Simon; Cross, Martin L; Smith, Alan; Court, Pinar; Vipond, Julia; Nadian, Allan; Hewinson, R Glyn; Batchelor, Hannah K; Perrie, Yvonne; Williams, Ann; Aldwell, Frank E; Chambers, Mark A

    2008-10-29

    Bovine tuberculosis (bTB) caused by infection with Mycobacterium bovis is causing considerable economic loss to farmers and Government in the United Kingdom as its incidence is increasing. Efforts to control bTB in the UK are hampered by the infection in Eurasian badgers (Meles meles) that represent a wildlife reservoir and source of recurrent M. bovis exposure to cattle. Vaccination of badgers with the human TB vaccine, M. bovis Bacille Calmette-Guérin (BCG), in oral bait represents a possible disease control tool and holds the best prospect for reaching badger populations over a wide geographical area. Using mouse and guinea pig models, we evaluated the immunogenicity and protective efficacy, respectively, of candidate badger oral vaccines based on formulation of BCG in lipid matrix, alginate beads, or a novel microcapsular hybrid of both lipid and alginate. Two different oral doses of BCG were evaluated in each formulation for their protective efficacy in guinea pigs, while a single dose was evaluated in mice. In mice, significant immune responses (based on lymphocyte proliferation and expression of IFN-gamma) were only seen with the lipid matrix and the lipid in alginate microcapsular formulation, corresponding to the isolation of viable BCG from alimentary tract lymph nodes. In guinea pigs, only BCG formulated in lipid matrix conferred protection to the spleen and lungs following aerosol route challenge with M. bovis. Protection was seen with delivery doses in the range 10(6)-10(7) CFU, although this was more consistent in the spleen at the higher dose. No protection in terms of organ CFU was seen with BCG administered in alginate beads or in lipid in alginate microcapsules, although 10(7) in the latter formulation conferred protection in terms of increasing body weight after challenge and a smaller lung to body weight ratio at necropsy. These results highlight the potential for lipid, rather than alginate, -based vaccine formulations as suitable delivery

  13. Prediction of rodent carcinogenicity for 30 chemicals

    SciTech Connect

    Ashby, J.

    1996-10-01

    Predictions of carcinogenic activity are made for 30 chemicals currently being assessed for rodent carcinogenicity by the U.S. National Toxicology Program. The predictions are based upon the chemical structure, the anticipated or reported mutagenicity, and the reported sub-chronic toxicity of each chemical. It is predicted that 13 chemicals will be noncarcinogenic to rodents, that 7 will be genotoxic carcinogens, and that 10 may show some evidence of presumed nongenotoxic rodent carcinogenesis. 3 refs., 1 fig.

  14. Clinical hematology of rodent species.

    PubMed

    Pilny, Anthony A

    2008-09-01

    Pet rodents, such as rats, guinea pigs, and chinchillas, differ from more traditional companion animal species in many aspects of their hematologic parameters. Animals within this order have much diversity in size, anatomy, methods of restraint, and blood collection technique. Appropriate sample collection is often the most challenging aspect of the diagnostic protocol, and inappropriate restraint may cause a stress response that interferes with blood test results. For many of these patients, sedation is required and can also affect results as well. In most cases, however, obtaining a standard database is necessary and very possible when providing medical care for this popular group of pets. PMID:18675732

  15. Sniffing and whisking in rodents

    PubMed Central

    Deschênes, Martin; Moore, Jeffrey; Kleinfeld, David

    2016-01-01

    Summary Sniffing and whisking are two rhythmic orofacial motor activities that enable rodents to localize and track objects in their environment. They have related temporal dynamics, possibly as a result of both shared musculature and shared sensory tasks. Sniffing and whisking also constitute the overt expression of an animal's anticipation of a reward. Yet, the neuronal mechanisms that underlie the control of these behaviors have not been established. Here, we review the similarities between sniffing and whisking and suggest that such similarities indicate a mechanistic link between these two rhythmic exploratory behaviors. PMID:22177596

  16. Toxic effects of brominated indoles and phenols on zebrafish embryos.

    PubMed

    Kammann, U; Vobach, M; Wosniok, W

    2006-07-01

    Organobromine compounds in the marine environment have been the focus of growing attention in past years. In contrast to anthropogenic brominated flame retardants, other brominated compounds are produced naturally, e.g., by common polychaete worms and algae. Brominated phenols and indoles assumed to be of biogenic origin have been detected in water and sediment extracts from the German Bight. These substances as well as some of their isomers have been tested with the zebrafish embryo test and were found to cause lethal as well as nonlethal malformations. The zebrafish test was able to detect a log K(OW)-related toxicity for bromophenols, suggesting nonpolar narcosis as a major mode of action. Different effect patterns could be observed for brominated indoles and bromophenols. The comparison of effective concentrations in the zebrafish embryo test with the concentrations determined in water samples suggests the possibility that brominated indoles may affect early life stages of marine fish species in the North Sea. PMID:16418895

  17. [Occurrence of indole alkaloids among secondary metabolites of soil Aspergillus].

    PubMed

    Vinokurova, N G; Khmel'nitskaia, I I; Baskunov, B P; Arinbasarov, M U

    2003-01-01

    The occurrence of indole alkaloids among secondary fungal metabolites was studied in species of the genus Aspergillus, isolated from soils that were sampled in various regions of Russia (a total of 102 isolates of the species A. niger, A. phoenicis, A. fumigatus, A. flavus, A. versicolor, A. ustus, A. clavatus, and A. ochraceus). Clavine alkaloids were represented by fumigaclavine, which was formed by A. fumigatus. alpha-Cyclopiazonic acid was formed by isolates of A. fumigatus, A. flavus, A. versicolor, A. phoenicis, and A. clavatus. The occurrence of indole-containing diketopiperazine alkaloids was documented for isolates of A. flavus, A. fumigatus, A. clavatus, and A. ochraceus. No indole-containing metabolites were found among the metabolites of A. ustus or A. niger. PMID:12722658

  18. Conversion of indole to oxindole under methanogenic conditions

    SciTech Connect

    Berry, D.F.; Madsen, E.L.; Bollag, J.M.

    1987-01-01

    Aromatic N-heterocyclic compounds are often present in aqueous effluents associated with coal mining and processing operations. The environmental fate of these chemicals is of great concern because they are toxic and may contaminate both surface water and groundwater. Previous investigations of microbial metabolism of aromatic chemicals under aerobic and anaerobic conditions suggest that microorganisms may play a key role in determining the fate of this class of compounds. When indole was incubated under methanogenic conditions with an inoculum of sewage sludge, the chemical was metabolized within 10 days and temporary formation of an intermediate was observed. The metabolite was isolated by thin-layer chromatography and determined to be 1,3-dihydro-2H-indol-2-one (oxindole) by UV spectroscopy (lambda/sub max/, 247 nm) and mass spectrometry (m/z, 133). The methane produced (net amount) indicated nearly complete mineralization of indole.

  19. Structure of the indole-benzene dimer revisited.

    PubMed

    Biswal, Himansu S; Gloaguen, Eric; Mons, Michel; Bhattacharyya, Surjendu; Shirhatti, Pranav R; Wategaonkar, Sanjay

    2011-09-01

    The structure of the indole-benzene dimer has been investigated using experimental techniques, namely, UV spectroscopy and infrared-ultraviolet (IR/UV) double resonance spectroscopy, combined with quantum chemical calculations such as MP2 and dispersion corrected DFT methods. The red shift of the indole N-H stretch frequency in the dimer provides direct evidence that the experimentally observed indole-benzene dimer is an N-H···π bound hydrogen bonded complex. Theoretical investigations suggest that the potential energy surface (PES) of the complex is rather flat along the coordinate describing the tilt angle between the molecular planes of indole and benzene, with several minima of similar energies, namely, parallel displaced (PD), right-angle T-shaped (T), and other intermediate structures which can be categorized as tilted T-shaped (T') and tilted parallel displaced (PD') structures. Three different computational methods, namely, RI-MP2, RI-B97-D, and PBE1-DCP, are used to arrive at a new structural assignment after assessing their performance in predicting the structure of the pyrrole dimer, for which accurate experimental data are available. By comparing the computed IR spectra of PD, T, and T'/PD' structures with the experimental IR spectrum, the tilted T-shaped (T') structure was assigned to the indole-benzene dimer. The empirically dispersion-corrected functionals (RI-B97-D and PBE1-DCP) correctly reproduce the experimental IR spectrum whereas the popular post-Hartree-Fock, MP2 method gives disappointing results. These results are also in agreement with the experimental dissociation energy (D(0)) reported in the literature. The N-H stretch frequency of the indole-benzene dimer has been found to be a more pertinent parameter for the structural assignment than the dissociation energy (D(0)). PMID:21413767

  20. Urban resident attitudes toward rodents, rodent control products, and environmental effects

    EPA Science Inventory

    Rodent control in urban areas can result in the inadvertent mortality of non-target species (e.g., bobcats). However, there is little detailed information about rodent control practices of urban residents. Our objective was to evaluate urban rodent control behaviors in two area...

  1. Indole Alkaloids from the Leaves of Nauclea officinalis.

    PubMed

    Fan, Long; Liao, Cheng-Hui; Kang, Qiang-Rong; Zheng, Kai; Jiang, Ying-Chun; He, Zhen-Dan

    2016-01-01

    Three new indole alkaloids, named naucleamide G (1), and nauclealomide B and C (5 and 6), were isolated from the n-BuOH-soluble fraction of an EtOH extract of the leaves of Nauclea officinalis, together with three known alkaloids, paratunamide C (2), paratunamide D (3) and paratunamide A (4). The structures with absolute configurations of the new compounds were identified on the basis of 1D and 2D NMR, HRESIMS, acid hydrolysis and quantum chemical circular dichroism (CD) calculation. According to the structures of isolated indole alkaloids, their plausible biosynthetic pathway was deduced. PMID:27455233

  2. Rodent sociality and parasite diversity.

    PubMed

    Bordes, Frédéric; Blumstein, Daniel T; Morand, Serge

    2007-12-22

    The risk of parasitism is considered to be a general cost of sociality and individuals living in larger groups are typically considered to be more likely to be infected with parasites. However, contradictory results have been reported for the relationship between group size and infection by directly transmitted parasites. We used independent contrasts to examine the relationship between an index of sociality in rodents and the diversity of their macroparasites (helminths and arthropods such as fleas, ticks, suckling lice and mesostigmatid mites). We found that the species richness of directly transmitted ectoparasites, but not endoparasites, decreased significantly with the level of rodent sociality. A greater homogeneity in the biotic environment (i.e. a reduced number of cohabiting host species) of the more social species may have reduced ectoparasites' diversity by impairing ectoparasites transmission and exchange. Our finding may also result from beneficial outcomes of social living that include behavioural defences, like allogrooming, and the increased avoidance of parasites through dilution effects. PMID:17925270

  3. The Miocene rodents of Serbia

    NASA Astrophysics Data System (ADS)

    Markovic, Z.

    2009-04-01

    During the Miocene period a group of shallow lakes was created in depressions at the territory of present-day Serbia. This caused the present wide distribution of lacustrine sediments, which occasionally alternate with the alluvial and marsh sediments. The remains of large mammals are relatively common, while the remains of small mammals used to be known only from two localities - Mala Miliva and Sibnica. The method of sediment sieving, used during the last decade, led to discovery of 6 new localities with remains of fossil vertebrates - Sibnica 1, Vračevići, village Lazarevac, Bele Vode, Brajkovac and Tavnik. Most of the fossil material is represented by osteological and odontological remains of small mammals. The best represented group of small mammals at each of the localities was the rodents. According to the odontological material presence was proven for 35 rodent species from 6 families. MN zonation was determined according to structure of associations. The geological age of fossil-bearing sediments was determined by using the method of correlation with the sites in Europe and Turkey.

  4. Inhibition of the MAP3 kinase Tpl2 protects rodent and human β-cells from apoptosis and dysfunction induced by cytokines and enhances anti-inflammatory actions of exendin-4

    PubMed Central

    Varin, E M; Wojtusciszyn, A; Broca, C; Muller, D; Ravier, M A; Ceppo, F; Renard, E; Tanti, J-F; Dalle, S

    2016-01-01

    Proinflammatory cytokines exert cytotoxic effects on β-cells, and are involved in the pathogenesis of type I and type II diabetes and in the drastic loss of β-cells following islet transplantation. Cytokines induce apoptosis and alter the function of differentiated β-cells. Although the MAP3 kinase tumor progression locus 2 (Tpl2) is known to integrate signals from inflammatory stimuli in macrophages, fibroblasts and adipocytes, its role in β-cells is unknown. We demonstrate that Tpl2 is expressed in INS-1E β-cells, mouse and human islets, is activated and upregulated by cytokines and mediates ERK1/2, JNK and p38 activation. Tpl2 inhibition protects β-cells, mouse and human islets from cytokine-induced apoptosis and preserves glucose-induced insulin secretion in mouse and human islets exposed to cytokines. Moreover, Tpl2 inhibition does not affect survival or positive effects of glucose (i.e., ERK1/2 phosphorylation and basal insulin secretion). The protection against cytokine-induced β-cell apoptosis is strengthened when Tpl2 inhibition is combined with the glucagon-like peptide-1 (GLP-1) analog exendin-4 in INS-1E cells. Furthermore, when combined with exendin-4, Tpl2 inhibition prevents cytokine-induced death and dysfunction of human islets. This study proposes that Tpl2 inhibitors, used either alone or combined with a GLP-1 analog, represent potential novel and effective therapeutic strategies to protect diabetic β-cells. PMID:26794660

  5. Indole-3-acetic acid biosynthetic pathways in the basidiomycetous yeast Rhodosporidium paludigenum.

    PubMed

    Nutaratat, Pumin; Srisuk, Nantana; Arunrattiyakorn, Panarat; Limtong, Savitree

    2016-07-01

    Microorganisms produce plant growth regulators, such as auxins, cytokinins and gibberellins, to promote plant growth. Auxins are a group of compounds with an indole ring that have a positive effect on plant growth. Indole-3-acetic acid (IAA) is a plant growth hormone classified as an indole derivative of the auxin family. IAA biosynthesis pathways have been reported and widely studied in several groups of bacteria. Only a few studies on IAA biosynthesis pathways have been conducted in yeast. This study aimed to investigate IAA biosynthesis pathways in a basidiomycetous yeast (Rhodosporidium paludigenum DMKU-RP301). Investigations were performed both with and without a tryptophan supplement. Indole compound intermediates were detected by gas chromatography-mass spectrometry. Indole-3-lactic acid and indole-3-ethanol were found as a result of the enzymatic reduction of indole-3-pyruvic acid and indole-3-acetaldehyde, in IAA biosynthesis via an indole-3-pyruvic acid pathway. In addition, we also found indole-3-pyruvic acid in culture supernatants determined by high-performance liquid chromatography. Identification of tryptophan aminotransferase activity supports indole-3-pyruvic acid-routed IAA biosynthesis in R. paludigenum DMKU-RP301. We hence concluded that R. paludigenum DMKU-RP301 produces IAA through an indole-3-pyruvic acid pathway. PMID:26899734

  6. Role of Indole Production on Virulence of Vibrio cholerae Using Galleria mellonella Larvae Model.

    PubMed

    Nuidate, Taiyeebah; Tansila, Natta; Saengkerdsub, Suwat; Kongreung, Jetnaphang; Bakkiyaraj, Dhamodharan; Vuddhakul, Varaporn

    2016-09-01

    Cell to cell communication facilitated by chemical signals plays crucial roles in regulating various cellular functions in bacteria. Indole, one such signaling molecule has been demonstrated to control various bacterial phenotypes such as biofilm formation and virulence in diverse bacteria including Vibrio cholerae. The present study explores some key factors involved in indole production and the subsequent pathogenesis of V. cholerae. Indole production was higher at 37 °C than at 30 °C, although the growth at 37 °C was slightly higher. A positive correlation was observed between indole production and biofilm formation in V. cholerae. Maximum indole production was detected at pH 7. There was no significant difference in indole production between clinical and environmental V. cholerae isolates, although indole production in one environmental isolate was significantly different. Both growth and indole production showed relevant changes with differences in salinity. An indole negative mutant strain was constructed using transposon mutagenesis and the direct effect of indole on the virulence of V. cholerae was evaluated using Galleria mellonella larvae model. Comparison to the wild type strain, the mutant significantly reduced the mortality of G. mellonella larvae which regained its virulence after complementation with exogenous indole. A gene involved in indole production and the virulence of V. cholerae was identified. PMID:27407302

  7. Rodents as agents of ecological change

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rodents have the potential to exert a wide array of ecological pressures in any given ecosystem. The negative impacts to plant communities in general, especially cultivated crops, are typically cited as examples of rodent grazing pressure. Considerable research has been conducted on the negative imp...

  8. Rodent Control: Seal Up! Trap Up! Clean Up!

    MedlinePlus

    ... successfully trapping rodents in and around the home. Seal Up! Seal up holes inside and outside the home to ... infested areas. Before cleaning, trap the rodents and seal up any entryways to ensure that no rodents ...

  9. A simple method for simultaneous RP-HPLC determination of indolic compounds related to bacterial biosynthesis of indole-3-acetic acid.

    PubMed

    Szkop, Michał; Bielawski, Wiesław

    2013-03-01

    In this short technical report, we present a fast and simple procedure for sample preparation and a single-run Reversed Phase High Performance Liquid Chromatography (RP-HPLC) determination of seven indoles (indole-3-acetic acid, indole-3-acetamide, indole-3-acetonitrile, indole-3-ethanol, indole-3-lactic acid, tryptamine and tryptophan) in bacterial culture supernatants. The separation of the analytes, after a single centrifugal filtration clean-up step, was performed using a gradient elution on a symmetry C8 column followed by fluorimetric detection (λ(ex) = 280/λ(em) = 350 nm). The calibration curves were linear for all of the studied compounds over the concentration range of 0.0625-125 μg mL(-1) (r ( 2 ) ≥ 0.998) and the limits of detection were below 0.015 μg mL(-1). The applicability of the method was confirmed by analysis of Pseudomonas putida culture supernatants. PMID:23111785

  10. Differential effects of indole and aliphatic glucosinolates on lepidopteran herbivores.

    PubMed

    Müller, René; de Vos, Martin; Sun, Joel Y; Sønderby, Ida E; Halkier, Barbara A; Wittstock, Ute; Jander, Georg

    2010-08-01

    Glucosinolates are a diverse group of defensive secondary metabolites that is characteristic of the Brassicales. Arabidopsis thaliana (L.) Heynh. (Brassicaceae) lines with mutations that greatly reduce abundance of indole glucosinolates (cyp79B2 cyp79B3), aliphatic glucosinolates (myb28 myb29), or both (cyp79B2 cyp79B3 myb28 myb29) make it possible to test the in vivo defensive function of these two major glucosinolate classes. In experiments with Lepidoptera that are not crucifer-feeding specialists, aliphatic and indole glucosinolates had an additive effect on Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae) larval growth, whereas Trichoplusia ni (Hübner) (Lepidoptera: Noctuidae) and Manduca sexta (L.) (Lepidoptera: Sphingidae) were affected only by the absence of aliphatic glucosinolates. In the case of two crucifer-feeding specialists, Pieris rapae (L.) (Lepidoptera: Pieridae) and Plutella xylostella (L.) (Lepidoptera: Plutellidae), there were no major changes in larval performance due to decreased aliphatic and/or indole glucosinolate content. Nevertheless, choice tests show that aliphatic and indole glucosinolates act in an additive manner to promote larval feeding of both species and P. rapae oviposition. Together, these results support the hypothesis that a diversity of glucosinolates is required to limit the growth of multiple insect herbivores. PMID:20617455

  11. Diastereoselective Synthesis of Biologically Active Cyclopenta[b]indoles.

    PubMed

    Santos, Marilia S; Fernandes, Daniara C; Rodrigues, Manoel T; Regiani, Thais; Andricopulo, Adriano D; Ruiz, Ana Lúcia T G; Vendramini-Costa, Débora B; de Carvalho, João E; Eberlin, Marcos N; Coelho, Fernando

    2016-08-01

    The cyclopenta[b]indole motif is present in several natural and synthetic biologically active compounds, being directly responsible for the biological effects some of them present. We described herein a three step sequence for the synthesis of cyclopenta[b]indoles with a great structural diversity. The method is based on an oxidative Michael addition of suitable indoles on the double bond of Morita-Baylis-Hillman adducts mediated by a hypervalent iodine reagent (IBX) to form β-ketoesters, which were chemoselectively reduced with NaBH4 in THF to give the corresponding β-hydroxy-esters. The diastereoisomeric mixture was then treated with a catalytic amount of triflic acid (20 mol %) to give cyclopenta[b]indoles with overall yields ranging from 8 to 73% (for 2 steps). The acid-catalyzed cyclization step gave the required heterocycles, via an intramolecular Friedel-Crafts reaction, with high diastereoselectivity, where only the trans product was observed. A mechanistic study monitored by ESI-(+)-MS was also conducted to collect evidence about the mechanism of this reaction. The new molecules herein synthesized were also evaluated against a panel of human cancer cells demonstrating a promising antitumoral profile. PMID:27403650

  12. Gas-phase electronic spectrum of the indole radical cation

    NASA Astrophysics Data System (ADS)

    Chalyavi, N.; Catani, K. J.; Sanelli, J. A.; Dryza, V.; Bieske, E. J.

    2015-08-01

    The visible and near-UV electronic spectrum of the indole radical cation is measured in the gas phase by photodissociation of indole+-Ar and indole+-He complexes in a tandem mass spectrometer. A series of resolved vibronic transitions extending from 610 to 460 nm are assigned to the D2 ← D0 band system, while weak transitions between 390 and 360 nm are assigned to the D3 ← D0 system, and a stronger, broad, unresolved absorption between 350 and 300 nm is attributed to the D4 ← D0 system. Time-dependent density functional theory calculations are used to assign vibronic structure of the D2 ← D0 band system, and show that the main active vibrational modes correspond to in-plane ring deformations. The strongest D2 ← D0 vibronic transitions of indole+-He do not correspond with any catalogued diffuse interstellar bands, even considering band displacements of up to 50 cm-1possibly caused by the attached He atom.

  13. Photolysis of Indole-Containing Mycotoxins to Fluorescent Products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Photochemical reaction of the non-fluorescent mycotoxin cyclopiazonic acid (CPA) to fluorescent products was recently reported. Because CPA contains an indole moiety, believed to contribute to the fluorescence, it was of interest to determine whether the effect might be more generally applicable to ...

  14. Copper-catalyzed intermolecular asymmetric propargylic dearomatization of indoles.

    PubMed

    Shao, Wen; Li, He; Liu, Chuan; Liu, Chen-Jiang; You, Shu-Li

    2015-06-22

    The first copper-catalyzed intermolecular dearomatization of indoles by an asymmetric propargylic substitution reaction was developed. This method provides a highly efficient synthesis of versatile furoindoline and pyrroloindoline derivatives containing a quaternary carbon stereogenic center and a terminal alkyne moiety with up to 86 % yield and 98 % ee. PMID:25968474

  15. Pediatric Rodent Models of Traumatic Brain Injury.

    PubMed

    Semple, Bridgette D; Carlson, Jaclyn; Noble-Haeusslein, Linda J

    2016-01-01

    Due to a high incidence of traumatic brain injury (TBI) in children and adolescents, age-specific studies are necessary to fully understand the long-term consequences of injuries to the immature brain. Preclinical and translational research can help elucidate the vulnerabilities of the developing brain to insult, and provide model systems to formulate and evaluate potential treatments aimed at minimizing the adverse effects of TBI. Several experimental TBI models have therefore been scaled down from adult rodents for use in juvenile animals. The following chapter discusses these adapted models for pediatric TBI, and the importance of age equivalence across species during model development and interpretation. Many neurodevelopmental processes are ongoing throughout childhood and adolescence, such that neuropathological mechanisms secondary to a brain insult, including oxidative stress, metabolic dysfunction and inflammation, may be influenced by the age at the time of insult. The long-term evaluation of clinically relevant functional outcomes is imperative to better understand the persistence and evolution of behavioral deficits over time after injury to the developing brain. Strategies to modify or protect against the chronic consequences of pediatric TBI, by supporting the trajectory of normal brain development, have the potential to improve quality of life for brain-injured children. PMID:27604726

  16. Indole molecules as inhibitors of tubulin polymerization: potential new anticancer agents, an update (2013-2015).

    PubMed

    Patil, Renukadevi; Patil, Siddappa A; Beaman, Kenneth D; Patil, Shivaputra A

    2016-07-01

    Discovery of new indole-based tubulin polymerization inhibitors will continue to dominate the synthetic efforts of many medicinal chemists working in the field. The indole ring system is an essential part of several tubulin inhibitors identified in the recent years. The present review article will update the synthesis, anticancer and tubulin inhibition activities of several important new indole classes such as 2-phenylindoles (28, 29 & 30), oxindoles (35 & 38), indole-3-acrylamides (44), indolines (46), aroylindoles (49), carbozoles (75, 76 & 82), azacarbolines (87) and annulated indoles (100-105). PMID:27476704

  17. Synthesis and biological evaluation of novel indole-2-one and 7-aza-2-oxindole derivatives as anti-inflammatory agents

    PubMed Central

    Chen, Gaozhi; Jiang, Lili; Dong, Lili; Wang, Zhe; Xu, Fengli; Ding, Ting; Fu, Lili; Fang, Qilu; Liu, Zhiguo; Shan, Xiaoou; Liang, Guang

    2014-01-01

    Sepsis, a typically acute inflammatory disease, is the biggest cause of death in ICU (intensive care unit). Novel anti-inflammatory alternatives are still in urgent need. In this study, we designed and synthesized 30 indole-2-one and 7-aza-2-oxindole derivatives based on the skeleton of tenidap, and their anti-inflammatory activity was determined by evaluating the inhibitory potency against lipopolysaccharide (LPS)-stimulated tumor necrosis factor (TNF)-α and interleukin (IL)-6 release in RAW264.7 macrophages. Quantitative SAR (structure–activity relationship) analysis revealed that a high molecular polarizability and low lipid/water partition coefficient (ALogP) in indole-2-one are beneficial for anti-inflammatory activity. Moreover, compounds 7i and 8e inhibited the expression of TNF-α, IL-6, COX-2, PGES, and iNOS in LPS-stimulated macrophages, and 7i exhibited a significant protection from LPS-induced septic death in mouse models. These data present a series of new indole-2-one compounds with potential therapeutic effects in acute inflammatory diseases. PMID:25378906

  18. Fecal Indole as a Biomarker of Susceptibility to Cryptosporidium Infection.

    PubMed

    Chappell, Cynthia L; Darkoh, Charles; Shimmin, Lawrence; Farhana, Naveed; Kim, Do-Kyun; Okhuysen, Pablo C; Hixson, James

    2016-08-01

    Cryptosporidium causes significant diarrhea worldwide, especially among children and immunocompromised individuals, and no effective drug treatment is currently available for those who need it most. In this report, previous volunteer infectivity studies have been extended to examine the association between fecal indole and indole-producing (IP) gut microbiota on the outcome of a Cryptosporidium infection. Fecal indole concentrations (FICs) of 50 subjects and 19 taxa of common gut microbiota, including six IP taxa (11 subjects) were determined in stool samples collected before and after a challenge with Cryptosporidium oocysts. At the baseline, the mean FIC (± the standard deviation) was 1.66 ± 0.80 mM in those who became infected after a challenge versus 3.20 ± 1.23 mM in those who remained uninfected (P = 0.0001). Only 11.1% of the subjects with a FIC of >2.5 mM became infected after a challenge versus 65.2% of the subjects with a FIC of <2.5 mM. In contrast, the FICs of infected subjects at the baseline or during diarrhea were not correlated with infection intensity or disease severity. The relative abundances (percent) of Escherichia coli, Bacillus spp., and Clostridium spp. were greater ≥2.5-fold in volunteers with a baseline FIC of >2.5 mM, while those of Bacteroides pyogenes, B. fragilis, and Akkermansia muciniphila were greater in those with a baseline FIC of <2.5 mM. These data indicate that some IP bacteria, or perhaps indole alone, can influence the ability of Cryptosporidium to establish an infection. Thus, preexisting indole levels in the gut join the oocyst dose and immune status as important factors that determine the outcome of Cryptosporidium exposure. PMID:27245413

  19. Simultaneous detection and quantification of indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) produced by rhizobacteria from l-tryptophan (Trp) using HPTLC.

    PubMed

    Goswami, Dweipayan; Thakker, Janki N; Dhandhukia, Pinakin C

    2015-03-01

    A simple, quick and reliable method is proposed for the detection and quantitation of indole-3-acetate (IAA) and indole-3-butyrate (IBA), an auxin phytohormone produced by rhizobacteria from l-tryptophan (Trp) metabolism using high performance thin-layer chromatography (HPTLC). Microbial auxin biosynthesis routes involve Trp as a precursor where other than IAA and IBA, products such as indole-3-pyruvate (IPA), indole-3-acetamide (IAM), tryptamine, indole-3-acetonitrile (IAN), indole-3-lactic acid (ILA) and indole-3-acetaldehyde (IAAld) are also produced. In traditional spectrophotometric method, Salkowski reagent develops color by reacting with indolic compounds. The color development is non-specific contributed by several Trp derivatives produced by rhizobacteria rather than IAA only. To overcome this limitation, HPTLC based protocol is developed to precisely detect and quantify IAA and IBA in the range of 100 to 1000ng per spot. This protocol is applicable to detect and quantify IAA and IBA from microbial samples ignoring other Trp derivatives. For microbial samples, the spectrophotometric method gives larger values as compared to HPTLC derived values which may be attributed by total indolic compounds reacting with Salkowski reagent rather than only IAA and/or IBA. PMID:25573587

  20. Isolation of Indole Utilizing Bacteria Arthrobacter sp. and Alcaligenes sp. From Livestock Waste.

    PubMed

    Kim, Minsu; Lee, Jin-Hyung; Kim, Eonmi; Choi, Hyukjae; Kim, Younghoon; Lee, Jintae

    2016-06-01

    Indole is an interspecies and interkingdom signaling molecule widespread in different environmental compartment. Although multifaceted roles of indole in different biological systems have been established, little information is available on the microbial utilization of indole in the context of combating odor emissions from different types of waste. The present study was aimed at identifying novel bacteria capable of utilizing indole as the sole carbon and energy source. From the selective enrichment of swine waste and cattle feces, we identified Gram-positive and Gram-negative bacteria belonging to the genera Arthrobacter and Alcaligenes. Bacteria belonging to the genus Alcaligenes showed higher rates of indole utilization than Arthrobacter. Indole at 1.0 mM for growth was completely utilized by Alcaligenes sp. in 16 h. Both strains produced two intermediates, anthranilic acid and isatin, during aerobic indole metabolism. These isolates were also able to grow on several indole derivatives. Interestingly, an adaptive response in terms of a decrease in cell size was observed in both strains in the presence of indole. The present study will help to explain the degradation of indole by different bacteria and also the pathways through which it is catabolized. Furthermore, these novel bacterial isolates could be potentially useful for the in situ attenuation of odorant indole and its derivatives emitted from different types of livestock waste. PMID:27570307

  1. Systematic investigation and microbial community profile of indole degradation processes in two aerobic activated sludge systems

    PubMed Central

    Ma, Qiao; Qu, Yuanyuan; Zhang, Xuwang; Liu, Ziyan; Li, Huijie; Zhang, Zhaojing; Wang, Jingwei; Shen, Wenli; Zhou, Jiti

    2015-01-01

    Indole is widely spread in various environmental matrices. Indole degradation by bacteria has been reported previously, whereas its degradation processes driven by aerobic microbial community were as-yet unexplored. Herein, eight sequencing batch bioreactors fed with municipal and coking activated sludges were constructed for aerobic treatment of indole. The whole operation processes contained three stages, i.e. stage I, glucose and indole as carbon sources; stage II, indole as carbon source; and stage III, indole as carbon and nitrogen source. Indole could be completely removed in both systems. Illumina sequencing revealed that alpha diversity was reduced after indole treatment and microbial communities were significantly distinct among the three stages. At genus level, Azorcus and Thauera were dominant species in stage I in both systems, while Alcaligenes, Comamonas and Pseudomonas were the core genera in stage II and III in municipal sludge system, Alcaligenes and Burkholderia in coking sludge system. In addition, four strains belonged to genera Comamonas, Burkholderia and Xenophilus were isolated using indole as sole carbon source. Burkholderia sp. IDO3 could remove 100 mg/L indole completely within 14 h, the highest degradation rate to date. These findings provide novel information and enrich our understanding of indole aerobic degradation processes. PMID:26657581

  2. Formation of Volatile Tea Constituent Indole During the Oolong Tea Manufacturing Process.

    PubMed

    Zeng, Lanting; Zhou, Ying; Gui, Jiadong; Fu, Xiumin; Mei, Xin; Zhen, Yunpeng; Ye, Tingxiang; Du, Bing; Dong, Fang; Watanabe, Naoharu; Yang, Ziyin

    2016-06-22

    Indole is a characteristic volatile constituent in oolong tea. Our previous study indicated that indole was mostly accumulated at the turn over stage of oolong tea manufacturing process. However, formation of indole in tea leaves remains unknown. In this study, one tryptophan synthase α-subunit (TSA) and three tryptophan synthase β-subunits (TSBs) from tea leaves were isolated, cloned, sequenced, and functionally characterized. Combination of CsTSA and CsTSB2 recombinant protein produced in Escherichia coli exhibited the ability of transformation from indole-3-glycerol phosphate to indole. CsTSB2 was highly expressed during the turn over process of oolong tea. Continuous mechanical damage, simulating the turn over process, significantly enhanced the expression level of CsTSB2 and amount of indole. These suggested that accumulation of indole in oolong tea was due to the activation of CsTSB2 by continuous wounding stress from the turn over process. Black teas contain much less indole, although wounding stress is also involved in the manufacturing process. Stable isotope labeling indicated that tea leaf cell disruption from the rolling process of black tea did not lead to the conversion of indole, but terminated the synthesis of indole. Our study provided evidence concerning formation of indole in tea leaves for the first time. PMID:27263428

  3. Indole alkaloids of Rauwolfia reflexa. Carbon-13 nuclear magnetic resonance structural analysis of the bis(indole) alkaloid flexicorine

    SciTech Connect

    Chatterjee, A.; Ghosh, A.K.; Hagaman, E.W.

    1982-01-01

    The /sup 13/C NMR spectra analysis of the new bis(indole) alkaloid flexicorine and of its chemically modified derivatives were used to determine the structure of the natural base. Flexicorine is, apparently, the first 10'-hydroxy N'-unsubstituted indoline which preferentially exists in the original iminoquinone form. 2 tables.

  4. 3-Methylindole (skatole) and indole production by mixed populations of pig fecal bacteria.

    PubMed Central

    Jensen, M T; Cox, R P; Jensen, B B

    1995-01-01

    Pig fecal slurries converted added L-tryptophan either to indole without detectable intermediates or to 3-methylindole (skatole) via indole-3-acetate. The initial rate of production of 3-methylindole was greatest at pH 6.5 and less at pH 5.0 and 8.0; the initial rates of indole production were similar at pH 6.5 and 8.0. More than 80% of the tryptophan added was converted to 3-methylindole at pH 5.0; at pH 8.0 85% was converted to indole. Both pathways had similar Km values for tryptophan and similar maximum rates. Indole-3-carbinol and indole-3-acetonitrile completely inhibited the production of 3-methylindole from indole-3-acetate but had no effect on the reactions involving L-tryptophan. PMID:7487051

  5. A Rapid and Specific Method for the Detection of Indole in Complex Biological Samples

    PubMed Central

    Chappell, Cynthia; Gonzales, Christopher; Okhuysen, Pablo

    2015-01-01

    Indole, a bacterial product of tryptophan degradation, has a variety of important applications in the pharmaceutical industry and is a biomarker in biological and clinical specimens. Yet, specific assays to quantitate indole are complex and require expensive equipment and a high level of training. Thus, indole in biological samples is often estimated using the simple and rapid Kovács assay, which nonspecifically detects a variety of commonly occurring indole analogs. We demonstrate here a sensitive, specific, and rapid method for measuring indole in complex biological samples using a specific reaction between unsubstituted indole and hydroxylamine. We compared the hydroxylamine-based indole assay (HIA) to the Kovács assay and confirmed that the two assays are capable of detecting microgram amounts of indole. However, the HIA is specific to indole and does not detect other naturally occurring indole analogs. We further demonstrated the utility of the HIA in measuring indole levels in clinically relevant biological materials, such as fecal samples and bacterial cultures. Mean and median fecal indole concentrations from 53 healthy adults were 2.59 mM and 2.73 mM, respectively, but varied widely (0.30 mM to 6.64 mM) among individuals. We also determined that enterotoxigenic Escherichia coli strain H10407 produces 3.3 ± 0.22 mM indole during a 24-h period in the presence of 5 mM tryptophan. The sensitive and specific HIA should be of value in a variety of settings, such as the evaluation of various clinical samples and the study of indole-producing bacterial species in the gut microbiota. PMID:26386049

  6. The role of mitoxantrone in the treatment of indolent lymphomas.

    PubMed

    Hagemeister, Fredrick; Cabanillas, Fernando; Coleman, Morton; Gregory, Stephanie A; Zinzani, Pier Luigi

    2005-02-01

    With the introduction of newer therapeutic approaches, survival in indolent non-Hodgkin's lymphoma (NHL) appears to be improving. Mitoxantrone (Novantrone; Serono, Inc.; Rockland, MA, http://www.seronousa.com), an anthracenedione with low cardiotoxic potential, has demonstrated activity in indolent NHL in combination with fludarabine (Fludara; Berlex Laboratories; Wayne, NJ, http://www.berlex.com) and other agents. In a Southwest Oncology Group trial (SWOG 9501), treatment with fludarabine and mitoxantrone (FM) induced a complete remission (CR) rate of 44% and a partial remission (PR) rate of 50% in untreated patients. The estimated 4-year progression-free survival (PFS) rate was 38%. In a multicenter Italian trial comparing the efficacy of FM with that of cyclophosphamide, doxorubicin (Adriamycin; Bedford Laboratories; Bedford, OH, http://www.bedfordlabs.com), vincristine (Oncovin; Eli Lilly and Company; Indianapolis, IN, http://www.lilly.com), and prednisone (Deltasone; Pfizer Pharmaceuticals; New York, NY, http://www.pfizer.com), CHOP, followed by rituximab (Rituxan; Genentech, Inc.; South San Francisco, CA, http://www.gene.com) for patients with incomplete clinical or molecular responses, the CR and molecular response rates were significantly higher in the FM arm, but the PFS and overall survival (OS) rates did not differ between the two arms. However, FM was also significantly less toxic than CHOP. The administration of rituximab following chemotherapy resulted in higher clinical and molecular response rates in both arms. In a separate trial, FM plus dexamethasone (Decadron; Merck and Co., Inc.; Whitehouse Station, NJ, http://www.merck.com), FND, plus concurrent rituximab produced a CR rate of 92%. In a randomized German study, patients with indolent lymphomas received FM plus cyclophosphamide (FCM) or FCM with rituximab. PFS and OS times were significantly better for patients who received combined chemoimmunotherapy. Mitoxantrone-based regimens are highly

  7. Indole-3-acetic acid: A widespread physiological code in interactions of fungi with other organisms

    PubMed Central

    Fu, Shih-Feng; Wei, Jyuan-Yu; Chen, Hung-Wei; Liu, Yen-Yu; Lu, Hsueh-Yu; Chou, Jui-Yu

    2015-01-01

    Plants as well as microorganisms, including bacteria and fungi, produce indole-3-acetic acid (IAA). IAA is the most common plant hormone of the auxin class and it regulates various aspects of plant growth and development. Thus, research is underway globally to exploit the potential for developing IAA-producing fungi for promoting plant growth and protection for sustainable agriculture. Phylogenetic evidence suggests that IAA biosynthesis evolved independently in bacteria, microalgae, fungi, and plants. Present studies show that IAA regulates the physiological response and gene expression in these microorganisms. The convergent evolution of IAA production leads to the hypothesis that natural selection might have favored IAA as a widespread physiological code in these microorganisms and their interactions. We summarize recent studies of IAA biosynthetic pathways and discuss the role of IAA in fungal ecology. PMID:26179718

  8. Can rodents conceive hyperbolic spaces?

    PubMed Central

    Urdapilleta, Eugenio; Troiani, Francesca; Stella, Federico; Treves, Alessandro

    2015-01-01

    The grid cells discovered in the rodent medial entorhinal cortex have been proposed to provide a metric for Euclidean space, possibly even hardwired in the embryo. Yet, one class of models describing the formation of grid unit selectivity is entirely based on developmental self-organization, and as such it predicts that the metric it expresses should reflect the environment to which the animal has adapted. We show that, according to self-organizing models, if raised in a non-Euclidean hyperbolic cage rats should be able to form hyperbolic grids. For a given range of grid spacing relative to the radius of negative curvature of the hyperbolic surface, such grids are predicted to appear as multi-peaked firing maps, in which each peak has seven neighbours instead of the Euclidean six, a prediction that can be tested in experiments. We thus demonstrate that a useful universal neuronal metric, in the sense of a multi-scale ruler and compass that remain unaltered when changing environments, can be extended to other than the standard Euclidean plane. PMID:25948611

  9. The multifaceted roles of the interspecies signalling molecule indole in Agrobacterium tumefaciens.

    PubMed

    Lee, Jin-Hyung; Kim, Yong-Guy; Baek, Kwang-Hyun; Cho, Moo Hwan; Lee, Jintae

    2015-04-01

    Bacteria utilize signal molecules to ensure their survival in environmental niches, and indole is an interspecies and interkingdom signalling molecule, which is widespread in the natural environment. In this study, we sought to identify novel roles of indole in soil-borne bacterium Agrobacterium tumefaciens. Agrobacterium tumefaciens was found not to synthesize indole and to degrade it rapidly. The addition of exogenous indole dose-dependently inhibited A. tumefaciens growth and decreased its motility. Surprisingly, indole markedly increased A. tumefaciens biofilm formation on polystyrene, glass and nylon membrane surfaces and enhanced its antibiotic tolerance. Transcriptional analysis showed that indole markedly up-regulated several biofilm-related (celA, cheA, exoR, phoB, flgE, fliR and motA), stress-related genes (clpB, dnaK, gsp, gyrB, marR and soxR) and efflux genes (emrA, norM, and Atu2551) in A. tumefaciens, which partially explained the increased biofilm formation and antibiotic tolerance. In contrast, the plant auxin indole-3-acetic acid did not affect biofilm formation, antibiotic tolerance or gene expression. Interestingly, indole was found to exhibit several similarities with antibiotics, as it inhibited the growth of non-indole-producing bacteria, whereas these bacteria countered its effects by rapidly degrading indole, and by enhancing biofilm formation and antibiotic tolerance. PMID:25040348

  10. Regulatory and Functional Aspects of Indolic Metabolism in Plant Systemic Acquired Resistance.

    PubMed

    Stahl, Elia; Bellwon, Patricia; Huber, Stefan; Schlaeppi, Klaus; Bernsdorff, Friederike; Vallat-Michel, Armelle; Mauch, Felix; Zeier, Jürgen

    2016-05-01

    Tryptophan-derived, indolic metabolites possess diverse functions in Arabidopsis innate immunity to microbial pathogen infection. Here, we investigate the functional role and regulatory characteristics of indolic metabolism in Arabidopsis systemic acquired resistance (SAR) triggered by the bacterial pathogen Pseudomonas syringae. Indolic metabolism is broadly activated in both P. syringae-inoculated and distant, non-inoculated leaves. At inoculation sites, camalexin, indol-3-ylmethylamine (I3A), and indole-3-carboxylic acid (ICA) are the major accumulating compounds. Camalexin accumulation is positively affected by MYB122, and the cytochrome P450 genes CYP81F1 and CYP81F2. Local I3A production, by contrast, occurs via indole glucosinolate breakdown by PEN2- dependent and independent pathways. Moreover, exogenous application of the defense hormone salicylic acid stimulates I3A generation at the expense of its precursor indol-3-ylmethylglucosinolate (I3M), and the SAR regulator pipecolic acid primes plants for enhanced P. syringae-induced activation of distinct branches of indolic metabolism. In uninfected systemic tissue, the metabolic response is more specific and associated with enhanced levels of the indolics I3A, ICA, and indole-3-carbaldehyde (ICC). Systemic indole accumulation fully depends on functional CYP79B2/3, PEN2, and MYB34/51/122, and requires functional SAR signaling. Genetic analyses suggest that systemically elevated indoles are dispensable for SAR and associated systemic increases of salicylic acid. However, soil-grown but not hydroponically -cultivated cyp79b2/3 and pen2 plants, both defective in indolic secondary metabolism, exhibit pre-induced immunity, which abrogates their intrinsic ability to induce SAR. PMID:26802249

  11. Transport and metabolism of indole-3-acetyl-myo-inositol-galactoside in seedlings of Zea mays

    NASA Technical Reports Server (NTRS)

    Komoszynski, M.; Bandurski, R. S.

    1986-01-01

    Indole-3-acetyl-myo-inositol galactoside labeled with 3H in the indole and 14C in the galactose moieties was applied to kernels of 5 day old germinating seedlings of Zea mays. Indole-3-acetyl-myo-inositol galactoside was not transported into either the shoot or root tissue as the intact molecule but was instead hydrolyzed to yield [3H]indole-3-acetyl-myo-inositol and [3H]indole-3-acetic acid which were then transported to the shoot with little radioactivity going to the root. With certain assumption concerning the equilibration of applied [3H]indole-3-acetyl-myo-inositol-[U-14C]galactose with the endogenous pool, it may be concluded that indole-3-acetyl-myo-inositol galactoside in the endosperm supplies about 2 picomoles per plant per hour of indole-3-acetyl-myo-inositol and 1 picomole per plant per hour of indole-3-acetic acid to the shoot and thus is comparable to indole-3-acetyl-myo-inositol as a source of indole-acetic acid for the shoot. Quantitative estimates of the amount of galactose in the kernels suggest that [3H]indole-3-acetyl-myo-inositol-[14C]galactose is hydrolyzed after the compound leaves the endosperm but before it reaches the shoot. In addition, [3H]indole-3-acetyl-myo-inositol-[14C]galactose supplies appreciable amounts of 14C to the shoot and both 14C and 3H to an uncharacterized insoluble fraction of the endosperm.

  12. Taichunamides: Prenylated Indole Alkaloids from Aspergillus taichungensis (IBT 19404).

    PubMed

    Kagiyama, Ippei; Kato, Hikaru; Nehira, Tatsuo; Frisvad, Jens C; Sherman, David H; Williams, Robert M; Tsukamoto, Sachiko

    2016-01-18

    Seven new prenylated indole alkaloids, taichunamides A-G, were isolated from the fungus Aspergillus taichungensis (IBT 19404). Taichunamides A and B contained an azetidine and 4-pyridone units, respectively, and are likely biosynthesized from notoamide S via (+)-6-epi-stephacidin A. Taichunamides C and D contain endoperoxide and methylsulfonyl units, respectively. This fungus produced indole alkaloids containing an anti-bicyclo[2.2.2]diazaoctane core, whereas A. protuberus and A. amoenus produced congeners with a syn-bicyclo[2.2.2]diazaoctane core. Plausible biosynthetic pathways to access these cores within the three species likely arise from an intramolecular hetero Diels-Alder reaction. PMID:26644336

  13. Unintentional wildlife poisoning and proposals for sustainable management of rodents.

    PubMed

    Coeurdassier, Michael; Riols, Romain; Decors, Anouk; Mionnet, Aymeric; David, Fabienne; Quintaine, Thomas; Truchetet, Denis; Scheifler, Renaud; Giraudoux, Patrick

    2014-04-01

    In Europe, bromadiolone, an anticoagulant rodenticide authorized for plant protection, may be applied intensively in fields to control rodents. The high level of poisoning of wildlife that follows such treatments over large areas has been frequently reported. In France, bromadiolone has been used to control water voles (Arvicola terrestris) since the 1980s. Both regulation and practices of rodent control have evolved during the last 15 years to restrict the quantity of poisoned bait used by farmers. This has led to a drastic reduction of the number of cases of poisoned wildlife reported by the French surveillance network SAGIR. During the autumn and winter 2011, favorable weather conditions and high vole densities led to the staging of several hundreds of Red Kites (Milvus milvus) in the Puy-de-Dôme department (central France). At the same time, intensive treatments with bromadiolone were performed in this area. Although no misuse has been mentioned by the authorities following controls, 28 Red Kites and 16 Common Buzzards (Buteo buteo) were found dead during surveys in November and December 2011. For all these birds, poisoning by bromadiolone as the main cause of death was either confirmed or highly suspected. Other observations suggest a possible impact of bromadiolone on the breeding population of Red Kites in this area during the spring 2011. French regulation of vole control for plant protection is currently under revision, and we believe this event calls for more sustainable management of rodent outbreaks. Based on large-scale experiments undertaken in eastern France, we propose that direct control of voles at low density (with trapping or limited chemical treatments) and mechanical destruction of vole tunnels, mole control, landscape management, and predator fostering be included in future regulation because such practices could help resolve conservation and agricultural issues. PMID:24405288

  14. Rodents as potential couriers for bioterrorism agents.

    PubMed

    Lõhmus, Mare; Janse, Ingmar; van de Goot, Frank; van Rotterdam, Bart J

    2013-09-01

    Many pathogens that can cause major public health, economic, and social damage are relatively easily accessible and could be used as biological weapons. Wildlife is a natural reservoir for many potential bioterrorism agents, and, as history has shown, eliminating a pathogen that has dispersed among wild fauna can be extremely challenging. Since a number of wild rodent species live close to humans, rodents constitute a vector for pathogens to circulate among wildlife, domestic animals, and humans. This article reviews the possible consequences of a deliberate spread of rodentborne pathogens. It is relatively easy to infect wild rodents with certain pathogens or to release infected rodents, and the action would be difficult to trace. Rodents can also function as reservoirs for diseases that have been spread during a bioterrorism attack and cause recurring disease outbreaks. As rats and mice are common in both urban and rural settlements, deliberately released rodentborne infections have the capacity to spread very rapidly. The majority of pathogens that are listed as potential agents of bioterrorism by the Centers for Disease Control and Prevention and the National Institute of Allergy and Infectious Diseases exploit rodents as vectors or reservoirs. In addition to zoonotic diseases, deliberately released rodentborne epizootics can have serious economic consequences for society, for example, in the area of international trade restrictions. The ability to rapidly detect introduced diseases and effectively communicate with the public in crisis situations enables a quick response and is essential for successful and cost-effective disease control. PMID:23971813

  15. Bioinspired Collective Syntheses of Iboga-Type Indole Alkaloids.

    PubMed

    Zhao, Gaoyuan; Xie, Xingang; Sun, Haiyu; Yuan, Ziyun; Zhong, Zhuliang; Tang, Shouchu; She, Xuegong

    2016-05-20

    We present the application of a bioinspired collective synthesis strategy in the total syntheses of seven iboga-type indole alkaloids: (±)-tabertinggine, (±)-ibogamine, (±)-ibogaine, (±)-ibogaine hydroxyindolenine, (±)-3-oxoibogaine hydroxyindolenine, (±)-iboluteine, and (±)-ervaoffines D. In particular, tabertinggine and its congeners serve as iboga precursors for the subsequent biomimetic transformations into other iboga-type alkaloids. PMID:27160167

  16. Cytotoxic indole alkaloids from the fruits of Melodinus cochinchinensis.

    PubMed

    Shao, Shun; Zhang, Hao; Yuan, Chun-Mao; Zhang, Yu; Cao, Ming-Ming; Zhang, Hai-Yuan; Feng, Yan; Ding, Xiao; Zhou, Qiang; Zhao, Qing; He, Hong-Ping; Hao, Xiao-Jiang

    2015-08-01

    Eight indole alkaloids, melosines A-H, together with 13 known alkaloids, were isolated from the fruits of Melodinus cochinchinensis. The structure elucidation of isolated secondary metabolites was based on comprehensive spectroscopic data analysis. Melosine B showed moderate cytotoxic activity against five human cancer cell lines, HL-60, SMMC-7721, A-549, MCF-7, and SW480 with IC50 values ranging from 1.6 to 8.1μM. PMID:25817833

  17. Monoterpenoid Indole Alkaloids from Catharanthus roseus Cultivated in Yunnan.

    PubMed

    Wang, Bei; Liu, Lu; Chen, Ying-ying; Li, Qiong; Li, Dan; Liu, Va-ping; Luo, Xiao-dong

    2015-12-01

    A new monoterpenoid indole alkaloid, 15,20-dehydro-3α-(2-oxopropyl) coronaridine (1), along with sixteen analogues (2-17) were isolated from the leaves of Catharanthus roseus cultivated in Yunnan. The new alkaloid was elucidated on the basis of extensive spectroscopic analysis, and the known alkaloids were identified by comparison with the reported spectroscopic data. Among them, alkaloid 16 was isolated from Catharanthus for the first time. PMID:26882670

  18. Enantioselective Synthesis of Indole-Annulated Medium-Sized Rings.

    PubMed

    Huang, Lin; Dai, Li-Xin; You, Shu-Li

    2016-05-11

    Asymmetric synthesis of indole-annulated medium-sized-ring compounds is developed through an iridium-catalyzed allylic dearomatization/retro-Mannich/hydrolysis cascade reaction. The reaction features mild conditions and a broad substrate scope. Under the optimal conditions, various seven-, eight-, or nine-membered-ring compounds can be afforded in good to excellent yields and excellent enantioselectivity. The proposed mechanism is supported by capturing the dearomatized intermediate through in situ reduction. PMID:27093370

  19. Relationship between indole production and differentiation of Klebsiella species: indole-positive and -negative isolates of Klebsiella determined to be clonal.

    PubMed Central

    Maslow, J N; Brecher, S M; Adams, K S; Durbin, A; Loring, S; Arbeit, R D

    1993-01-01

    Klebsiellae are an important cause of nosocomial infections. The two clinically relevant species, Klebsiella pneumoniae and Klebsiella oxytoca, are differentiated by the ability to produce indole from tryptophan, K. oxytoca being indole positive. We report here the detailed biochemical and molecular analysis of two isolates of Klebsiella, cultured from the same urine specimen, that differed only in their ability to produce indole. The two isolates were identical as determined by ribotyping and pulsed-field gel electrophoresis, and they differed from 10 epidemiologically unrelated strains. Probing with the Escherichia coli tryptophanase operon, tna, revealed seven restriction fragment length polymorphisms (RFLP) among the 12 strains. The two index strains had identical RFLP; no single RFLP could account for all of the indole-positive or -negative strains. Thus, the identification of epidemiologically related strains of Klebsiella differing only in indole production may warrant further examination to determine whether the strains are clonal. Images PMID:8370726

  20. Biosynthesis of ambiguine indole alkaloids in cyanobacterium Fischerella ambigua.

    PubMed

    Hillwig, Matthew L; Zhu, Qin; Liu, Xinyu

    2014-02-21

    Ambiguines belong to a family of hapalindole-type indole alkaloid natural products, with many of the members possessing up to eight consecutive carbon stereocenters in a fused pentacyclic 6-6-6-5-7 ring scaffold. Here, we report the identification of a 42 kbp ambiguine (amb) biosynthetic gene cluster that harbors 32 protein-coding genes in its native producer Fischerella ambigua UTEX1903. Association of the amb cluster with ambiguine biosynthesis was confirmed by both bioinformatic analysis and in vitro characterizations of enzymes responsible for 3-((Z)-2'-isocyanoethenyl) indole and geranyl pyrophosphate biosynthesis and a C-2 indole dimethylallyltransferase that regiospecifically tailors hapalindole G to ambiguine A. The presence of five nonheme iron-dependent oxygenase coding genes (including four Rieske-type oxygenases) within the amb cluster suggests late-stage C-H activations are likely responsible for the structural diversities of ambiguines by regio- and stereospecific chlorination, hydroxylation, epoxidation, and sp(2)-sp(3) C-C bond formation. PMID:24180436

  1. A Molecular Signature Predictive of Indolent Prostate Cancer

    PubMed Central

    Irshad, Shazia; Bansal, Mukesh; Castillo-Martin, Mireia; Zheng, Tian; Aytes, Alvaro; Wenske, Sven; Le Magnen, Clémentine; Guarnieri, Paolo; Sumazin, Pavel; Benson, Mitchell C.; Shen, Michael M.; Califano, Andrea; Abate-Shen, Cory

    2014-01-01

    Many newly diagnosed prostate cancers present as low Gleason score tumors that require no treatment intervention. Distinguishing the many indolent tumors from the minority of lethal ones remains a major clinical challenge. We now show that low Gleason score prostate tumors can be distinguished as indolent and aggressive subgroups on the basis of their expression of genes associated with aging and senescence. Using gene set enrichment analysis, we identified a 19-gene signature enriched in indolent prostate tumors. We then further classified this signature with a decision tree learning model to identify three genes—FGFR1, PMP22, and CDKN1A—that together accurately predicted outcome of low Gleason score tumors. Validation of this three-gene panel on independent cohorts confirmed its independent prognostic value as well as its ability to improve prognosis with currently used clinical nomograms. Furthermore, protein expression of this three-gene panel in biopsy samples distinguished Gleason 6 patients who failed surveillance over a 10-year period. We propose that this signature may be incorporated into prognostic assays for monitoring patients on active surveillance to facilitate appropriate courses of treatment. PMID:24027026

  2. Controlling bacterial behavior with indole-containing natural products and derivatives

    PubMed Central

    Melander, Roberta J.; Minvielle, Marine J.; Melander, Christian

    2014-01-01

    Indole has recently been implicated as an important small molecule signal utilized by many bacteria to coordinate various forms of behavior. Indole plays a role in numerous bacterial processes, including: biofilm formation and maintenance, virulence factor production, antibiotic resistance and persister cell formation. Intercepting indole-signaling pathways with appropriately designed small molecules provides a n opportunity to control unwanted bacterial behaviors, and is an attractive anti-virulence therapeutic strategy. In this review, we give an overview of the process controlled by indole signaling, and summarize current efforts to design indole-containing small molecules to intercept these pathways, and detail the synthetic efforts towards accessing indole derived bioactive small molecules. PMID:25267859

  3. Differential susceptibility of indole-positive and -negative strains of Klebsiella pneumoniae to cefazolin, choramphenicol and tetracycline.

    PubMed

    Nishida, M; Asano, H; Kamimura, T; Yokota, Y

    1978-01-01

    Biochemical properties and antibiotic susceptibilities of 168 clinical isolates of Klebsiella pneumoniae were tested. On the basis of the indole reaction, 30 isolates (18%) were indole-positive and 138 isolates (82%) were indole-negative. A significant difference in antibiotic susceptibility was found in each of the two groups of isolates. Of the indole-negative isolates, 82.6% were susceptible to cefazolin at 6.25 microgram/ml or lower, while the indole-positive isolates varied in susceptibility to cefazolin. All of the indole-positive isolates were susceptible to chloramphenicol and tetracycline, but the indole-negative isolates varied in their susceptibility to these antibiotics. Whereas there was no relationship between indole production and susceptibility to cephalothin among the K. pneumoniae isolates studied, it appeared that there was a correlation between the indole reaction and susceptibility to cefazolin, chloramphenicol and tetracycline. PMID:350514

  4. Copper-mediated direct C2-cyanation of indoles using acetonitrile as the cyanide source.

    PubMed

    Pan, Changduo; Jin, Hongming; Xu, Pan; Liu, Xu; Cheng, Yixiang; Zhu, Chengjian

    2013-09-20

    A copper-mediated C2-cyanation of indoles using cheap and commercially available acetonitrile as the "nonmetallic" cyanide source was achieved through sequential C-C and C-H bond cleavages. The installation of a removable pyrimidyl group on the indole nitrogen atom is the key for this C2 selectivity. This approach provides a novel and alternative route leading to indole-2-carbonitrile. PMID:23957858

  5. The effect of indole-3-carbinol on PIN1 and PIN2 in Arabidopsis roots.

    PubMed

    Katz, Ella; Nisani, Sophia; Sela, Mor; Behar, Hila; Chamovitz, Daniel A

    2015-01-01

    The phytochemical indole-3-carbinol is produced in Cruciferous plants upon tissue rapture and deters herbivores. We recently showed that indole-3-carbinol modulates auxin signaling in root tips. Here we present transcript profiling experiments which further reveal the influence of indole-3-carbinol on auxin signaling in root tips, and also show that I3C affects auxin transporters. Brief treatment with indole-3-carbinol led to a reduction in the amount of PIN1 and to mislocalization of PIN2. PMID:26252364

  6. Indole Alkaloids from the Sea Anemone Heteractis aurora and Homarine from Octopus cyanea.

    PubMed

    Shaker, Kamel H; Göhl, Matthias; Müller, Tobias; Seifert, Karlheinz

    2015-11-01

    The two new indole alkaloids 2-amino-1,5-dihydro-5-(1H-indol-3-ylmethyl)-4H-imidazol-4-one (1), 2-amino-5-[(6-bromo-1H-indol-3-yl)methyl]-3,5-dihydro-3-methyl-4H-imidazol-4-one (2), and auramine (3) have been isolated from the sea anemone Heteractis aurora. Both indole alkaloids were synthesized for the confirmation of the structures. Homarine (4), along with uracil (5), hypoxanthine (6), and inosine (7) have been obtained from Octopus cyanea. PMID:26567952

  7. The effect of indole-3-carbinol on PIN1 and PIN2 in Arabidopsis roots

    PubMed Central

    Katz, Ella; Nisani, Sophia; Sela, Mor; Behar, Hila; Chamovitz, Daniel A

    2015-01-01

    The phytochemical indole-3-carbinol is produced in Cruciferous plants upon tissue rapture and deters herbivores. We recently showed that indole-3-carbinol modulates auxin signaling in root tips. Here we present transcript profiling experiments which further reveal the influence of indole-3-carbinol on auxin signaling in root tips, and also show that I3C affects auxin transporters. Brief treatment with indole-3-carbinol led to a reduction in the amount of PIN1 and to mislocalization of PIN2. PMID:26252364

  8. Indole is an essential herbivore-induced volatile priming signal in maize

    PubMed Central

    Erb, Matthias; Veyrat, Nathalie; Robert, Christelle A. M.; Xu, Hao; Frey, Monika; Ton, Jurriaan; Turlings, Ted C. J.

    2015-01-01

    Herbivore-induced volatile organic compounds prime non-attacked plant tissues to respond more strongly to subsequent attacks. However, the key volatiles that trigger this primed state remain largely unidentified. In maize, the release of the aromatic compound indole is herbivore-specific and occurs earlier than other induced responses. We therefore hypothesized that indole may be involved in airborne priming. Using indole-deficient mutants and synthetic indole dispensers, we show that herbivore-induced indole enhances the induction of defensive volatiles in neighbouring maize plants in a species-specific manner. Furthermore, the release of indole is essential for priming of mono- and homoterpenes in systemic leaves of attacked plants. Indole exposure markedly increases the herbivore-induced production of the stress hormones jasmonate-isoleucine conjugate and abscisic acid, which represents a likely mechanism for indole-dependent priming. These results demonstrate that indole functions as a rapid and potent aerial priming agent that prepares systemic tissues and neighbouring plants for incoming attacks. PMID:25683900

  9. Discovery of isoquinolinone indole acetic acids as antagonists of chemoattractant receptor homologous molecule expressed on Th2 cells (CRTH2) for the treatment of allergic inflammatory diseases.

    PubMed

    Kaila, Neelu; Follows, Bruce; Leung, Louis; Thomason, Jennifer; Huang, Adrian; Moretto, Alessandro; Janz, Kristin; Lowe, Michael; Mansour, Tarek S; Hubeau, Cedric; Page, Karen; Morgan, Paul; Fish, Susan; Xu, Xin; Williams, Cara; Saiah, Eddine

    2014-02-27

    Previously we reported the discovery of CRA-898 (1), a diazine indole acetic acid containing CRTH2 antagonist. This compound had good in vitro and in vivo potency, low rates of metabolism, moderate permeability, and good oral bioavailability in rodents. However, it showed low oral exposure in nonrodent safety species (dogs and monkeys). In the current paper, we wish to report our efforts to understand and improve the poor PK in nonrodents and development of a new isoquinolinone subseries that led to identification of a new development candidate, CRA-680 (44). This compound was efficacious in both a house dust mouse model of allergic lung inflammation (40 mg/kg qd) as well as a guinea pig allergen challenge model of lung inflammation (20 mg/kg bid). PMID:24512187

  10. Enucleation for Treating Rodent Ocular Disease

    PubMed Central

    Wilding, Laura A; Uchihashi, Mayu; Bergin, Ingrid L; Nowland, Megan H

    2015-01-01

    Our standard of care for rodent corneal lesions previously included treatment of the primary lesion, application of topical NSAIDs, and systemic NSAIDs in severe cases. When intensive medical management was unsuccessful, animals were euthanized, leading to premature loss of valuable genetically modified animals and those on long-term studies. We investigated enucleation surgery as a treatment for 15 cases of rodent corneal disease that did not respond to medical management. Enucleation was performed under isoflurane anesthesia and involved removal of the globe, extensive hemostasis, and packing the orbital space with absorbable gelatin sponge. The lid margins were closed by tarsorrhaphy and tissue glue. Analgesia was provided by using buprenorphine preoperatively and carprofen chew tabs postoperatively. To date, we have a 100% success rate with this procedure (n = 20; 15 clinically affected rodents [2 rats, 13 mice], 5 healthy controls), which included a 60-d follow-up period. The single complication involved dehiscence of the tarsorrhaphy site and was repaired by trimming the lid margins to provide fresh tissue for closure. Histologic examination at both 1 and 3 mo after surgery revealed no evidence of infection of the enucleation site. Enucleation in rodents is a straightforward procedure that represents a refinement to our current standard of care for rodents, does not cause significant inflammation of remaining periocular structures, and has reduced the number of animals euthanized prior to study endpoint because of severe ocular lesions. PMID:26045460

  11. Photophysics of indole-2-carboxylic acid (I2C) and indole-5-carboxylic acid (I5C): heavy atom effect.

    PubMed

    Kowalska-Baron, Agnieszka; Gałęcki, Krystian; Wysocki, Stanisław

    2013-12-01

    In this study the effect of carboxylic group substitution in the 2 and 5 position of indole ring on the photophysics of the parent indole chromophore has been studied. The photophysical parameters crucial in triplet state decay mechanism of aqueous indole-2-carboxylic acid (I2C) and indole-5-carboxylic acid (I5C) have been determined applying our previously proposed methodology based on the heavy atom effect and fluorescence and phosphorescence decay kinetics [Kowalska-Baron et al., 2012]. The determined time-resolved phosphorescence spectra of I2C and I5C are red-shifted as compared to that of the parent indole. This red-shift was especially evident in the case of I2C and may indicate the possibility of hydrogen bonded complex formation incorporating carbonyl CO, the NH group of I2C and, possibly, surrounding water molecules. The possibility of the excited state charge transfer process and the subsequent electronic charge redistribution in such a hydrogen bonded complex may also be postulated. The resulting stabilization of the I2C triplet state is manifested by its relatively long phosphorescence lifetime in aqueous solution (912 μs). The relatively short phosphorescence lifetime of I5C (56 μs) may be the consequence of more effective ground-state quenching of I5 C triplet state. This hypothesis may be strengthened by the significantly larger value of the determined rate constant of I5C triplet state quenching by its ground-state (4.4 × 10(8)M(-1)s(-1)) as compared to that for indole (6.8 × 10(7)M(-1)s(-1)) and I2C (2.3 × 10(7)M(-1)s(-1)). The determined bimolecular rate constant for triplet state quenching by iodide [Formula: see text] is equal to 1 × 10(4)M(-1)s(-1); 6 × 10(3)M(-1)s(-1) and 2.7 × 10(4)M(-1)s(-1) for indole, I2 C and I5 C, respectively. In order to obtain a better insight into iodide quenching of I2C and I5C triplet states in aqueous solution, the temperature dependence of the bimolecular rate constants for iodide quenching of the

  12. New cytotoxic indolic metabolites from a marine Streptomyces.

    PubMed

    Sánchez López, José M; Martínez Insua, Marta; Pérez Baz, Julia; Fernández Puentes, José L; Cañedo Hernández, Librada M

    2003-06-01

    Three new cytotoxic 3,6-disubstituted indoles (1-3) were isolated from the mycelium of a strain identified as Streptomyces sp. (BL-49-58-005), which was separated from a Mexican marine invertebrate, and their structures established by analysis of NMR and mass spectral data. GI(50) values for 1 and 2 in cytotoxic bioassays against a panel of 14 different tumor cell lines were estimated at micromolar range, while compound 3 showed no activity in the same assays. PMID:12828477

  13. Biosynthesis and regulation of terpenoid indole alkaloids in Catharanthus roseus

    PubMed Central

    Zhu, Jianhua; Wang, Mingxuan; Wen, Wei; Yu, Rongmin

    2015-01-01

    Catharanthus roseus produces a wide range of terpenoid indole alkaloids (TIA). Many of them, such as vinblastine and vincristine, have significant bioactivity. They are valuable chemotherapy drugs used in combination with other drugs to treat lymphoma and leukemia. The TIA biosynthetic pathway has been investigated for many years, for scientific interest and for their potential in manufacturing applications, to fulfill the market demand. In this review, the progress and perspective of C. roseus TIA biosynthesis and its regulating enzymes are described. In addition, the culture condition, hormones, signaling molecules, precursor feeding on the accumulation of TIA, and gene expression are also evaluated and discussed. PMID:26009689

  14. Biosynthesis and regulation of terpenoid indole alkaloids in Catharanthus roseus.

    PubMed

    Zhu, Jianhua; Wang, Mingxuan; Wen, Wei; Yu, Rongmin

    2015-01-01

    Catharanthus roseus produces a wide range of terpenoid indole alkaloids (TIA). Many of them, such as vinblastine and vincristine, have significant bioactivity. They are valuable chemotherapy drugs used in combination with other drugs to treat lymphoma and leukemia. The TIA biosynthetic pathway has been investigated for many years, for scientific interest and for their potential in manufacturing applications, to fulfill the market demand. In this review, the progress and perspective of C. roseus TIA biosynthesis and its regulating enzymes are described. In addition, the culture condition, hormones, signaling molecules, precursor feeding on the accumulation of TIA, and gene expression are also evaluated and discussed. PMID:26009689

  15. Three new monoterpenoid indole alkaloids from Vinca major.

    PubMed

    Zhang, Zhi-Jun; Du, Ru-Nan; He, Juan; Wu, Xing-De; Li, Yan; Li, Rong-Tao; Zhao, Qin-Shi

    2016-04-01

    Three new monoterpenoid indole alkaloids, 19-hydroxyl-10-methoxy-19, 20-dihydrovinorine (1), 19-O-acetyl-10-methoxy-19, 20-dihydrovinorine (2), and 19, 21α-dihydroxyl-10-methoxy-19, 20-dihydrovinorine (3), along with five known analogues (4-8), were isolated from the whole plants of Vinca major. The new structures were elucidated by extensive NMR and MS analysis and comparison with known compounds. In addition, compounds 1-3 were evaluated for their cytotoxicities against five human cancer cell lines. PMID:26700398

  16. Attenuation of Carcinogenesis and the Mechanism Underlying by the Influence of Indole-3-carbinol and Its Metabolite 3,3′-Diindolylmethane: A Therapeutic Marvel

    PubMed Central

    Maruthanila, V. L.; Poornima, J.; Mirunalini, S.

    2014-01-01

    Rising evidence provides credible support towards the potential role of bioactive products derived from cruciferous vegetables such as broccoli, cauliflower, kale, cabbage, brussels sprouts, turnips, kohlrabi, bok choy, and radishes. Many epidemiological studies point out that Brassica vegetable protects humans against cancer since they are rich sources of glucosinolates in addition to possessing a high content of flavonoids, vitamins, and mineral nutrients. Indole-3-carbinol (I3C) belongs to the class of compounds called indole glucosinolate, obtained from cruciferous vegetables, and is well-known for tits anticancer properties. In particular, I3C and its dimeric product, 3,3′-diindolylmethane (DIM), have been generally investigated for their value against a number of human cancers in vitro as well as in vivo. This paper reviews an in-depth study of the anticancer activity and the miscellaneous mechanisms underlying the anticarcinogenicity thereby broadening its therapeutic marvel. PMID:24982671

  17. Attenuation of Carcinogenesis and the Mechanism Underlying by the Influence of Indole-3-carbinol and Its Metabolite 3,3'-Diindolylmethane: A Therapeutic Marvel.

    PubMed

    Maruthanila, V L; Poornima, J; Mirunalini, S

    2014-01-01

    Rising evidence provides credible support towards the potential role of bioactive products derived from cruciferous vegetables such as broccoli, cauliflower, kale, cabbage, brussels sprouts, turnips, kohlrabi, bok choy, and radishes. Many epidemiological studies point out that Brassica vegetable protects humans against cancer since they are rich sources of glucosinolates in addition to possessing a high content of flavonoids, vitamins, and mineral nutrients. Indole-3-carbinol (I3C) belongs to the class of compounds called indole glucosinolate, obtained from cruciferous vegetables, and is well-known for tits anticancer properties. In particular, I3C and its dimeric product, 3,3'-diindolylmethane (DIM), have been generally investigated for their value against a number of human cancers in vitro as well as in vivo. This paper reviews an in-depth study of the anticancer activity and the miscellaneous mechanisms underlying the anticarcinogenicity thereby broadening its therapeutic marvel. PMID:24982671

  18. Plasmodium liver load following parenteral sporozoite administration in rodents.

    PubMed

    Ploemen, Ivo H; Chakravarty, Sumana; van Gemert, Geert-Jan J; Annoura, Takeshi; Khan, Shahid M; Janse, Chris J; Hermsen, Cornelus C; Hoffman, Stephen L; Sauerwein, Robert W

    2013-07-25

    One of the bottlenecks in the development of a whole sporozoite malaria vaccine is the route and method of sporozoite administration. Immunization and challenge of human volunteers by mosquito bites is effective, but cannot be used as a vaccine. Intravenous immunization with sporozoites is effective in rodents and non-human primates, and being studied in humans, but is not yet used for licensed vaccines for infectious diseases. Intradermal and subcutaneous immunization regimens show a strong decrease in protective efficacy, which in rodents, is associated with a decreased degree of parasite liver infection during immunization. The objective of this study was to explore alternative routes of sporozoite administration to increase efficiency of liver infection. Using in vivo imaging, we found that IM injection of sporozoites resulted in a greater parasite liver load compared to ID and SC injection. The use of small inoculation volumes and multiple injections further increased the subsequent liver load. These observations were corroborated in a Plasmodium yoelii model using cryopreserved sporozoites administered ID. Our findings provide a rationale for the design of clinical trials to optimize needle and syringe administration of Plasmodium falciparum sporozoites. PMID:23063834

  19. A review on recent developments of indole-containing antiviral agents.

    PubMed

    Zhang, Ming-Zhi; Chen, Qiong; Yang, Guang-Fu

    2015-01-01

    Indole represents one of the most important privileged scaffolds in drug discovery. Indole derivatives have the unique property of mimicking the structure of peptides and to bind reversibly to enzymes, which provide tremendous opportunities to discover novel drugs with different modes of action. There are seven indole-containing commercial drugs in the Top-200 Best Selling Drugs by US Retail Sales in 2012. There are also an amazing number of approved indole-containing drugs in the market as well as compounds currently going through different clinical phases or registration statuses. This review focused on the recent development of indole derivatives as antiviral agents with the following objectives: 1) To present one of the most comprehensive listings of indole antiviral agents, drugs on market or compounds in clinical trials; 2) To focus on recent developments of indole compounds (including natural products) and their antiviral activities, summarize the structure property, hoping to inspire new and even more creative approaches; 3) To offer perspectives on how indole scaffolds as a privileged structure might be exploited in the future. PMID:25462257

  20. Intermolecular decarboxylative direct C-3 arylation of indoles with benzoic acids.

    PubMed

    Cornella, Josep; Lu, Pengfei; Larrosa, Igor

    2009-12-01

    A palladium catalyzed C-H activation of indoles and a silver catalyzed decarboxylative C-C activation of ortho substituted benzoic acids are synergistically combined to synthesize indoles arylated exclusively in the C-3 position. This novel decarboxylative C-H arylation methodology is compatible with electron-donating and -withdrawing substituents in both coupling partners. PMID:19877661

  1. Palladium(0)-Catalyzed Intermolecular Allylic Dearomatization of Indoles by a Formal [4+2] Cycloaddition Reaction.

    PubMed

    Gao, Run-Duo; Xu, Qing-Long; Zhang, Bo; Gu, Yiting; Dai, Li-Xin; You, Shu-Li

    2016-08-01

    Bridged indoline derivatives were synthesized by an intermolecular Pd-catalyzed allylic dearomatization reaction of substituted indoles. The reaction between indoles and allyl carbonates bearing a nucleophilic alcohol side-chain proceeds in a cascade fashion, providing bridged indolines in excellent enantioselectivity. PMID:27321285

  2. Metal free sulfenylation and bis-sulfenylation of indoles: persulfate mediated synthesis.

    PubMed

    Prasad, Ch Durga; Kumar, Shailesh; Sattar, Moh; Adhikary, Amit; Kumar, Sangit

    2013-12-14

    A method which avoids metal and halogen for the synthesis of 3-arylthioindoles from indoles and diaryl disulfides using ammonium persulfate in methanol has been presented. Moreover, double C-H sulfenylation of indoles at 2 and 3-positions has also been achieved using iodine and ammonium persulfate. PMID:24166084

  3. Synthesis and preliminary evaluation of 3-thiocyanato-1H-indoles as potential anticancer agents.

    PubMed

    Fortes, Margiani P; da Silva, Paulo B N; da Silva, Teresinha G; Kaufman, Teodoro S; Militão, Gardenia C G; Silveira, Claudio C

    2016-08-01

    A novel series of twenty 3-thiocyanato-1H-indoles, carrying diversification at positions N-1, C-2 and C-5 of the heterocyclic core, were synthesized; their antiproliferative activity against four human cancer cell lines (HL60, HEP-2, NCI-H292 and MCF-7) was evaluated, employing doxorubicin as positive control. Indole, N-methylindole and 2-(4-chlorophenyl)-N-methylindole demonstrated to be essentially inactive, whereas several of their congener 3-thiocyanato-1H-indoles displayed good to excellent levels of potency (IC50 ≤ 6 μM), while being non-hemolytic. N-Phenyl-3-thiocyanato-1H-indole and 1-methyl-2-(4-chlorophenyl)-3-thiocyanato-1H-indole showed good to high potency against all the cell lines. On the other side, the N-(4-chlorophenyl)-, 2-(4-chlorophenyl)- and 2-phenyl- 3-thiocyanato-1H-indole derivatives were slightly less active against the test cell lines. Overall, these results suggest that the indole-3-thiocyanate motif can be suitably decorated to afford highly cytotoxic compounds and that the substituted indole can be employed as a useful scaffold toward more potent compounds. PMID:27116711

  4. Electrochemical C-H/N-H Functionalization for the Synthesis of Highly Functionalized (Aza)indoles.

    PubMed

    Hou, Zhong-Wei; Mao, Zhong-Yi; Zhao, Huai-Bo; Melcamu, Yared Yohannes; Lu, Xin; Song, Jinshuai; Xu, Hai-Chao

    2016-08-01

    Indoles and azaindoles are among the most important heterocycles because of their prevalence in nature and their broad utility in pharmaceutical industry. Reported herein is an unprecedented noble-metal- and oxidant-free electrochemical method for the coupling of (hetero)arylamines with tethered alkynes to synthesize highly functionalized indoles, as well as the more challenging azaindoles. PMID:27240116

  5. Indole prenyltransferases from fungi: a new enzyme group with high potential for the production of prenylated indole derivatives.

    PubMed

    Steffan, N; Grundmann, A; Yin, W-B; Kremer, A; Li, S-M

    2009-01-01

    Prenylated indole derivatives are hybrid natural products containing both aromatic and isoprenoid moieties and are widely spread in plants, fungi and bacteria. Some of these complex natural products, e.g. the ergot alkaloids ergotamine and fumigaclavine C as well as the diketopiperazine derivative fumitremorgin C and its biosynthetic precursors tryprostatin A and B, show a wide range of biological and pharmacological activities. Prenyl transfer reactions catalysed by prenyltransferases represent key steps in the biosynthesis of these compounds and often result in formation of products which possess biological activities distinct from their non-prenylated precursors. Recently, a series of putative indole prenyltransferase genes could be identified in the genome sequences of different fungal strains including Aspergillus fumigatus. The gene products show significant sequence similarities to dimethylallyltryptophan synthases from fungi. We have cloned and overexpressed six of these genes, fgaPT1, fgaPT2, ftmPT1, ftmPT2, 7-dmats and cdpNPT from A. fumigatus in E. coli and S. cerevisiae. The overproduced enzymes were characterised biochemically. Three additional prenyltransferases, DmaW-Cs, TdiB and MaPT were identified and characterised in a Clavicipitalean fungus, Aspergillus nidulans and Malbranchea aurantiaca, respectively. Sequence analysis and alignments with known aromatic prenyltransferases as well as phylogenetic analysis revealed that these enzymes belong to a new group of "aromatic prenyltransferases". They differ clearly from membrane-bound aromatic prenyltransferases from different sources and soluble prenyltransferases from bacteria. The characterised enzymes are soluble proteins, catalyse different prenyl transfer reactions on indole moieties of various substrates and do not require divalent metal ions for their enzymatic reactions. All of the enzymes accepted only dimethylallyl diphosphate as prenyl donor. On the other hand, they showed broad substrate

  6. A multi-component domino reaction for the direct access to polyfunctionalized indoles via intermolecular allylic esterification and indolation†

    PubMed Central

    Jiang, Bo; Yi, Mian-Shuai; Shi, Feng; Pindi, Suresh; McDowell, Patrick

    2013-01-01

    A novel multi-component reaction for the synthesis of polyfunctionalized indoles and bis-indoles has been established. The reaction pathways were controlled by varying enamines with different substitution patterns to give polyfunctionalized indoles and bis-indoles selectively. The reaction proceeds at a fast speed within 15–30 min with water as the major byproduct, which makes work-up convenient. PMID:22038299

  7. 5-Meth­oxy-1-[(5-meth­oxy-1H-indol-2-yl)meth­yl]-1H-indole

    PubMed Central

    Attia, Mohamed I.; El-Brollosy, Nasser R.; Ghabbour, Hazem A.; Arshad, Suhana; Fun, Hoong-Kun

    2012-01-01

    In the title compound, C19H18N2O2, the two indole ring systems are essentially planar [maximum deviation = 0.015 (2) Å in both indole ring systems] and make a dihedral angle of 72.17 (7)° with each other. In the crystal, the mol­ecules are linked into a zigzag chain along the a axis via N—H⋯O hydrogen bonds. PMID:22590027

  8. Synthesis of 8-phenyl-10H-pyrido(1,2-. cap alpha. )indole salts from 2,3,3-trimethyl-3H-indole chlorides with cinnamaldehyde

    SciTech Connect

    Shachkus, A.A.; Degutis, Yu.A.

    1987-10-01

    Reaction of 2,3,3-trimethyl-3H-indole chloride with cinnamic and 4-dimethylaminocinnamic aldehydes led to salts of 8-phenyl and 8-(4-dimethylaminophenyl)-10,10-dimethyl-10H-pyrido(1,2-..cap alpha..)indole. PMR spectra were recorded on a Tesla BS-487C (80 MHz) instrument (internal standard HMDS) and IR spectra on a UR-20 spectrometer (KBr pellets).

  9. Hemagglutination by Pasteurellaceae isolated from rodents.

    PubMed

    Boot, R; Thuis, H; Teppema, J S

    1993-06-01

    Pasteurellaceae notably P. pneumotropica, have been associated with severe outbreaks of respiratory disease in several species of rodents. Host-specific parasitism of Pasteurellaceae in rodents has hardly been studied. Since host tropism in many bacteria involves adhesive mechanisms, we examined the hemagglutinating (HA) properties of 44 isolates from different rodent species (mouse (15) rat (8), hamster (9), gerbil (10) and Mastomys (2)). Only 13 mouse isolates and the 2 Mastomys isolates hemagglutinated human (type O Rh+) and canine red blood cells (RBCs). No HA was found using RBCs from 10 other animal species. HA was not inhibited by simple sugars and glycoconjugates, but was completely inhibited by heating of bacterial cells for 10 min at 80 or 100 degrees C, partially inhibited by glutaraldehyde and inhibited in a dose-dependent mode by NaIO4, suggesting the involvement of bacterial polysaccharide structures in the HA process. Enrichment procedures did not reveal the presence of HA- subpopulations in HA+ isolates or the presence of HA+ subpopulations in HA- isolates. Electron microscopy revealed the presence of fimbriae both in HA+ and HA- isolates. A regularly structured (RS) layer was detected on cells of part of the HA+ isolates only. Our results suggest that Pasteurellaceae of mice and Mastomys may be related and differ from isolates isolated from other rodent species. PMID:8219497

  10. Object Recognition Memory and the Rodent Hippocampus

    ERIC Educational Resources Information Center

    Broadbent, Nicola J.; Gaskin, Stephane; Squire, Larry R.; Clark, Robert E.

    2010-01-01

    In rodents, the novel object recognition task (NOR) has become a benchmark task for assessing recognition memory. Yet, despite its widespread use, a consensus has not developed about which brain structures are important for task performance. We assessed both the anterograde and retrograde effects of hippocampal lesions on performance in the NOR…

  11. Asymmetric synthesis of N-allylic indoles via regio- and enantioselective allylation of aryl hydrazines

    PubMed Central

    Xu, Kun; Gilles, Thomas; Breit, Bernhard

    2015-01-01

    The asymmetric synthesis of N-allylic indoles is important for natural product synthesis and pharmaceutical research. The regio- and enantioselective N-allylation of indoles is a true challenge due to the favourable C3-allylation. We develop here a new strategy to the asymmetric synthesis of N-allylic indoles via rhodium-catalysed N-selective coupling of aryl hydrazines with allenes followed by Fischer indolization. The exclusive N-selectivities and good to excellent enantioselectivities are achieved applying a rhodium(I)/DTBM-Segphos or rhodium(I)/DTBM-Binap catalyst. This method permits the practical synthesis of valuable chiral N-allylated indoles, and avoids the N- or C-selectivity issue. PMID:26137886

  12. Four new minor brominated indole related alkaloids with antibacterial activities from Laurencia similis.

    PubMed

    Li, Mei-Chen; Sun, Wen-Shuang; Cheng, Wei; Liu, Dong; Liang, Hong; Zhang, Qing-Ying; Lin, Wen-Han

    2016-08-01

    Four new minor brominated indole related alkaloids (one indoles, 1, one 1,3-dihydro-indole-2-one, 2, one carbazole, 3, and one 2-carbonylamino-benzoate, 4) were isolated and identified from Laurencia similis by extensive chromatographic and spectrometric methods. Among them, 1 and 2 were the first example of naturally occurring indole with 3-benzyl group and 1,3-dihydro-indole-2-one with 2-isopropylidene group, respectively, whereas 3 and 4 were the first carbazole alkaloids and 2-carbonylamino-benzoate, respectively, isolated from the genus Laurencia. Moreover, 1 showed the most potent antibacterial activity against seven bacterial strains with MIC values ranging from 2 to 8μg/mL. PMID:27318539

  13. The pyruvate kinase of Stigmatella aurantiaca is an indole binding protein and essential for development.

    PubMed

    Stamm, Irmela; Lottspeich, Friedrich; Plaga, Wulf

    2005-06-01

    Myxospore formation of the myxobacterium Stigmatella aurantiaca can be uncoupled from the cooperative development i.e. fruiting body formation, by low concentrations of indole. Two putative indole receptor proteins were isolated by their capacity to bind indole and identified as pyruvate kinase (PK) and aldehyde dehydrogenase. The PK activity of Stigmatella crude extracts was stimulated by indole. Cloning of the PK gene (pykA) and the construction of a pykA disruption mutant strikingly revealed that PK is essential for multicellular development: Fruiting body formation was abolished in the mutant strain and indole-induced spore formation was delayed. The developmental defects could be complemented by insertion of the pykA gene at the mtaB locus of the Stigmatella genome excluding any polar effects of the pykA disruption. PMID:15882428

  14. Asymmetric synthesis of N-allylic indoles via regio- and enantioselective allylation of aryl hydrazines.

    PubMed

    Xu, Kun; Gilles, Thomas; Breit, Bernhard

    2015-01-01

    The asymmetric synthesis of N-allylic indoles is important for natural product synthesis and pharmaceutical research. The regio- and enantioselective N-allylation of indoles is a true challenge due to the favourable C3-allylation. We develop here a new strategy to the asymmetric synthesis of N-allylic indoles via rhodium-catalysed N-selective coupling of aryl hydrazines with allenes followed by Fischer indolization. The exclusive N-selectivities and good to excellent enantioselectivities are achieved applying a rhodium(I)/DTBM-Segphos or rhodium(I)/DTBM-Binap catalyst. This method permits the practical synthesis of valuable chiral N-allylated indoles, and avoids the N- or C-selectivity issue. PMID:26137886

  15. A new indole glycoside from the seeds of Raphanus sativus.

    PubMed

    Jin, Hong-Guang; Ko, Hae Ju; Chowdhury, Md Anisuzzaman; Lee, Dong-Sung; Woo, Eun-Rhan

    2016-06-01

    A new indole glycoside, β-D-glucopyranosyl 2-(methylthio)-1H-indole-3-carboxylate, named raphanuside A (1), as well as eight known compounds, β-D-fructofuranosyl-(2 → 1)-(6-O-sinapoyl)-α-D-glucopyranoside (2), (3-O-sinapoyl)-β-D-fructofuranosyl-(2 → 1)-α-D-glucopyranoside (3), (3-O-sinapoyl)-β-D-fructofuranosyl-(2 → 1)-(6-O-sinapoyl)-α-D-glucopyranoside (4), (3,4-O-disinapoyl)-β-D-fructofuranosyl-(2 → 1)-(6-O-sinapoyl)-α-D-glucopyranoside (5), isorhamnetin 3,4'-di-O-β-D-glucoside (6), isorhamnetin 3-O-β-D-glucoside-7-O-α-L-rhamnoside (7), isorhamnetin 3-O-β-D-glucoside (8) and 3'-O-methyl-(-)-epicatechin 7-O-β-D-glucoside (9) were isolated from the seeds of Raphanus sativus. Furthermore, compounds 1-3 and 6-9, were isolated from this plant for the first time. The structures of compounds 1-9 were identified using 1D and 2D NMR, including (1)H-(1)H COSY, HSQC, HMBC and NOESY spectroscopic analyses. The inhibitory activity of these isolated compounds against interleukin-6 (IL-6) production in TNF-α stimulated MG-63 cells was also examined. PMID:27193305

  16. Indole generates quiescent and metabolically active Escherichia coli cultures.

    PubMed

    Chen, Chih-Chin; Walia, Rupali; Mukherjee, Krishna J; Mahalik, Subhashree; Summers, David K

    2015-04-01

    An inherent problem with bacterial cell factories used to produce recombinant proteins or metabolites is that resources are channeled into unwanted biomass as well as product. Over several years, attempts have been made to increase efficiency by unlinking biomass and product generation. One example was the quiescent cell (Q-Cell) expression system that generated non-growing but metabolically active Escherichia coli by over-expressing a regulatory RNA (Rcd) in a defined genetic background. Although effective at increasing the efficiency with which resources are converted to product, the technical complexity of the Rcd-based Q-Cell system limited its use. We describe here an alternative method for generating Q-Cells by the direct addition of indole, or related indole derivatives, to the culture medium of an E. coli strain carrying defined mutations in the hns gene. This simple and effective approach is shown to be functional in both shake-flask and fermenter culture. The cells remain metabolically active and analysis of their performance in the fermenter suggests that they may be particularly suitable for the production of cellular metabolites. PMID:25594833

  17. Biosynthetic pathway of terpenoid indole alkaloids in Catharanthus roseus.

    PubMed

    Zhu, Xiaoxuan; Zeng, Xinyi; Sun, Chao; Chen, Shilin

    2014-09-01

    Catharanthus roseus is one of the most extensively investigated medicinal plants, which can produce more than 130 alkaloids, including the powerful antitumor drugs vinblastine and vincristine. Here we review the recent advances in the biosynthetic pathway of terpenoid indole alkaloids (TIAs) in C. roseus, and the identification and characterization of the corresponding enzymes involved in this pathway. Strictosidine is the central intermediate in the biosynthesis of different TIAs, which is formed by the condensation of secologanin and tryptamine. Secologanin is derived from terpenoid (isoprenoid) biosynthetic pathway, while tryptamine is derived from indole biosynthetic pathway. Then various specific end products are produced by different routes during downstream process. Although many genes and corresponding enzymes have been characterized in this pathway, our knowledge on the whole TIA biosynthetic pathway still remains largely unknown up to date. Full elucidation of TIA biosynthetic pathway is an important prerequisite to understand the regulation of the TIA biosynthesis in the medicinal plant and to produce valuable TIAs by synthetic biological technology. PMID:25159992

  18. Stem cell transplantation for indolent lymphoma and chronic lymphocytic leukemia

    PubMed Central

    Gribben, John G; Hosing, Chitra; Maloney, David G.

    2012-01-01

    The indolent lymphomas, including chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL) remain incurable with standard therapy. Autologous hematopoietic stem cell transplantation (HSCT[JHA1]) is feasible and has low treatment related mortality in follicular lymphoma, but there are questions relating to optimal timing of the procedure, conditioning regimen and late effects. Myeloablative allogeneic HSCT is associated with high treatment related morbidity and mortality, few late relapses, but is applicable to only a small number of patients. The major focus of HSCT in these lymphomas has been with reduced intensity conditioning (RIC) allogeneic HSCT, which is applicable to the age distribution of these diseases and which exploit the graft versus lymphoma effect in these diseases. Steps to further decrease the morbidity and mortality of the RIC HSCT and in particular to reduce the incidence of chronic extensive graft versus host disease while maintaining tumor control remain the major focus. Many potential treatments are available for indolent lymphomas and CLL, and appropriate patient selection and the timing of HSCT remain controversial. The use of HSCT must always be weighed against the risk of the underlying disease, particularly in a setting where improvements in treatment are leading to improved outcome. PMID:21195313

  19. Hobartine: a tetracyclic indole alkaloid extracted from Aristotelia chilensis (maqui).

    PubMed

    Paz Robles, Cristian; Badilla Vidal, Natalia; Suarez, Sebastián; Baggio, Ricardo

    2014-11-01

    The natural compound hobartine {systematic name: (1R)-3-[(1S,5S)-(4,4,8-trimethylbicyclo[3.3.1]non-7-en-2-yl)methyl]-2,3-dihydro-1H-indole}, C20H26N2, (I), is an indole alkaloid isolated from Aristotelia chilensis as part of a study of secondary metabolites from Chilean flora. The colourless compound has a tetracyclic structure closely related to the strongly coloured polymorphic structures discussed in Paz et al. [Acta Cryst. (2013), C69, 1509-1512] and Watson et al. [Acta Cryst. (1989), C45, 1322-1324]. The main differences reside in the absence of a keto group in (I) compared with the previous structures, as well as an endo double bond in (I) contrasting with the exo double bond found in the previous structures. The supramolecular structure of (I) in strongly related to the twofold screw axis, around which isolated chains build up, internally linked by an N-H···N hydrogen bond which is the only significant intermolecular interaction present in the structure. PMID:25370110

  20. Synthesis and Biological Evaluation of Aminonaphthols Incorporated Indole Derivatives

    PubMed Central

    Anand Raghunath, Saundane; Nandibeoor Mathada, Kirankumar

    2014-01-01

    An efficient one pot condensation of naphthols (1), 2,5-disubstituted indole-3-carboxaldehydes (2), and secondary amines (3) has been achieved using dichloromethane as a solvent, stirring at room temperature. Some of the new [(disubstituted amino)(5-substituted 2-phenyl-1H-indol-3-yl)methyl]naphthalene-ols (4) derivatives were prepared in good yields. The significant features of this method are simple work-up procedure, inexpensive nontoxic solvent, shorter reaction times, and excellent product yields. The structures of newly synthesized compounds (4a–r) are confirmed by their elemental analysis, FTIR, 1H and 13C NMR, and mass spectral data. These compounds were screened for their in vitro antioxidant, antimicrobial, antitubercular, and anticancer activities. Among the synthesized compounds (4a–r), the compound 4e exhibited highest activity for radical scavenging and ferric ions reducing antioxidant power activities; compounds 4b, 4h, and 4k showed good metal chelating activity. Compounds 4n and 4q showed excellent antimicrobial activities with MIC value 08 µg/mL against tested strains. Compounds 4h, 4k, 4n, and 4q exhibited promising antitubercular activity with MIC value 12.5 µg/mL. Compounds 4k and 4q exhibited 100% cell lysis at concentration 10 µg/mL against MDA-MB-231 (human adenocarcinoma mammary gland) cell lines. PMID:25383220

  1. Simultaneous extraction and HPLC determination of 3-indole butyric acid and 3-indole acetic acid in pea plant by using ionic liquid-modified silica as sorbent.

    PubMed

    Sheikhian, Leila; Bina, Sedigheh

    2016-01-15

    In this study, ionic liquid-modified silica was used as sorbent for simultaneous extraction and preconcentration of 3-indole butyric acid and 3-indole acetic acid in pea plants. The effect of some parameters such as pH and ionic strength of sample solution, amount of sorbent, flow rate of aqueous sample solution and eluent solution, concentration of eluent solution, and temperature were studied for each hormone solution. Percent extraction of 3-indole butyric acid and 3-indole acetic acid was strongly affected by pH of aqueous sample solution. Ionic strength of aqueous phase and temperature showed no serious effects on extraction efficiency of studied plant hormones. Obtained breakthrough volume was 200mL for each of studied hormones. Preconcentration factor for spectroscopic and chromatographic determination of studied hormones was 100 and 4.0×10(3) respectively. Each solid sorbent phase was reusable for almost 10 times of extraction/stripping procedure. Relative standard deviations of extraction/stripping processes of 3-indole butyric acid and 3-indole acetic acid were 2.79% and 3.66% respectively. The calculated limit of detections for IBA and IAA were 9.1×10(-2)mgL(-1) and 1.6×10(-1)mgL(-1) respectively. PMID:26701202

  2. Meal-feeding rodents and toxicology research.

    PubMed

    Carey, Gale B; Merrill, Lisa C

    2012-08-20

    Most laboratory rodents used for toxicology studies are fed ad libitum, with unlimited access to food. As a result, ad libitum-fed rodents tend to overeat. Research demonstrates that ad libitum-fed rodents are physiologically and metabolically different from rodents fed controlled amounts of food at scheduled times (meal-fed). Ad libitum-fed rodents can develop hypertriglyceridemia, hypercholesterolemia, diet-induced obesity, nephropathy, cardiomyopathy, and pituitary, pancreatic, adrenal, and thyroid tumors, conditions likely to affect the results of toxicology research studies. In contrast, meal-feeding synchronizes biological rhythms and leads to a longer life span, lower body weight, lower body temperature, hypertrophy of the small intestine, and synchronization of hepatic and digestive enzymes. The circadian rhythms present in nearly all living organisms are entrained by light intensity and food intake, and peripheral clocks in all organs of the body, especially the GI tract and liver, are particularly sensitive to food intake. Feeding schedule has been demonstrated to alter the toxicity and metabolism of drugs including sodium valproate, chloral hydrate, acetaminophen, gentamicin, and methotrexate. Feeding schedule alters the expression of genes that code for Phase I, II, and III proteins, thereby altering the rate and amplitude of drug disposition. Rhythms of plasma insulin and glucagon that fluctuate with food ingestion are also altered by feeding schedule; ad libitum feeding promotes hyperinsulinemia which is a precursor for developing diabetes. The emerging field of chronopharmacology, the interaction of biological rhythms and drugs, will lead to optimizing the design and delivery of drugs in a manner that matches biological rhythms, but it is wise for toxicology researchers to consider feeding schedule when designing these experiments. It has been 10 years since the Society for Toxicologic Pathology voiced its position that feeding schedule is an

  3. 7 CFR 58.147 - Insect and rodent control program.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Insect and rodent control program. 58.147 Section 58... Service 1 Operations and Operating Procedures § 58.147 Insect and rodent control program. In addition to... made responsible for the performance of a regularly scheduled insect and rodent control...

  4. 7 CFR 58.247 - Insect and rodent control program.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Insect and rodent control program. 58.247 Section 58... Service 1 Operations and Operating Procedures § 58.247 Insect and rodent control program. In addition to... made responsible for the performance of a regularly scheduled insect and rodent control program...

  5. 7 CFR 58.247 - Insect and rodent control program.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Insect and rodent control program. 58.247 Section 58... Service 1 Operations and Operating Procedures § 58.247 Insect and rodent control program. In addition to... made responsible for the performance of a regularly scheduled insect and rodent control program...

  6. 7 CFR 58.247 - Insect and rodent control program.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Insect and rodent control program. 58.247 Section 58... Service 1 Operations and Operating Procedures § 58.247 Insect and rodent control program. In addition to... made responsible for the performance of a regularly scheduled insect and rodent control program...

  7. 20 CFR 654.415 - Insect and rodent control.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false Insect and rodent control. 654.415 Section 654.415 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR SPECIAL... Insect and rodent control. Housing and facilities shall be free of insects, rodents, and other vermin....

  8. 20 CFR 654.415 - Insect and rodent control.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 3 2014-04-01 2014-04-01 false Insect and rodent control. 654.415 Section 654.415 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR SPECIAL... Insect and rodent control. Housing and facilities shall be free of insects, rodents, and other vermin....

  9. 7 CFR 58.247 - Insect and rodent control program.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Insect and rodent control program. 58.247 Section 58... Service 1 Operations and Operating Procedures § 58.247 Insect and rodent control program. In addition to... made responsible for the performance of a regularly scheduled insect and rodent control program...

  10. 20 CFR 654.415 - Insect and rodent control.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 3 2013-04-01 2013-04-01 false Insect and rodent control. 654.415 Section 654.415 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR SPECIAL... Insect and rodent control. Housing and facilities shall be free of insects, rodents, and other vermin....

  11. 20 CFR 654.415 - Insect and rodent control.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Insect and rodent control. 654.415 Section 654.415 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR SPECIAL... Insect and rodent control. Housing and facilities shall be free of insects, rodents, and other vermin....

  12. 20 CFR 654.415 - Insect and rodent control.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 3 2012-04-01 2012-04-01 false Insect and rodent control. 654.415 Section 654.415 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR SPECIAL... Insect and rodent control. Housing and facilities shall be free of insects, rodents, and other vermin....

  13. 7 CFR 58.147 - Insect and rodent control program.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Insect and rodent control program. 58.147 Section 58... Service 1 Operations and Operating Procedures § 58.147 Insect and rodent control program. In addition to... made responsible for the performance of a regularly scheduled insect and rodent control...

  14. 7 CFR 58.147 - Insect and rodent control program.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Insect and rodent control program. 58.147 Section 58... Service 1 Operations and Operating Procedures § 58.147 Insect and rodent control program. In addition to... made responsible for the performance of a regularly scheduled insect and rodent control...

  15. 7 CFR 58.247 - Insect and rodent control program.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Insect and rodent control program. 58.247 Section 58... Service 1 Operations and Operating Procedures § 58.247 Insect and rodent control program. In addition to... made responsible for the performance of a regularly scheduled insect and rodent control program...

  16. 7 CFR 58.147 - Insect and rodent control program.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Insect and rodent control program. 58.147 Section 58... Service 1 Operations and Operating Procedures § 58.147 Insect and rodent control program. In addition to... made responsible for the performance of a regularly scheduled insect and rodent control...

  17. 7 CFR 58.147 - Insect and rodent control program.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Insect and rodent control program. 58.147 Section 58... Service 1 Operations and Operating Procedures § 58.147 Insect and rodent control program. In addition to... made responsible for the performance of a regularly scheduled insect and rodent control...

  18. Arenavirus Diversity and Phylogeography of Mastomys natalensis Rodents, Nigeria

    PubMed Central

    Obadare, Adeoba; Oyeyiola, Akinlabi; Igbokwe, Joseph; Fasogbon, Ayobami; Igbahenah, Felix; Ortsega, Daniel; Asogun, Danny; Umeh, Prince; Vakkai, Innocent; Abejegah, Chukwuyem; Pahlman, Meike; Becker-Ziaja, Beate; Günther, Stephan; Fichet-Calvet, Elisabeth

    2016-01-01

    Mastomys natalensis rodents are natural hosts for Lassa virus (LASV). Detection of LASV in 2 mitochondrial phylogroups of the rodent near the Niger and Benue Rivers in Nigeria underlines the potential for LASV emergence in fresh phylogroups of this rodent. A Mobala-like sequence was also detected in eastern Nigeria. PMID:26982388

  19. Transport of the two natural auxins, indole-3-butyric acid and indole-3-acetic acid, in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Rashotte, Aaron M.; Poupart, Julie; Waddell, Candace S.; Muday, Gloria K.; Brown, C. S. (Principal Investigator)

    2003-01-01

    Polar transport of the natural auxin indole-3-acetic acid (IAA) is important in a number of plant developmental processes. However, few studies have investigated the polar transport of other endogenous auxins, such as indole-3-butyric acid (IBA), in Arabidopsis. This study details the similarities and differences between IBA and IAA transport in several tissues of Arabidopsis. In the inflorescence axis, no significant IBA movement was detected, whereas IAA is transported in a basipetal direction from the meristem tip. In young seedlings, both IBA and IAA were transported only in a basipetal direction in the hypocotyl. In roots, both auxins moved in two distinct polarities and in specific tissues. The kinetics of IBA and IAA transport appear similar, with transport rates of 8 to 10 mm per hour. In addition, IBA transport, like IAA transport, is saturable at high concentrations of auxin, suggesting that IBA transport is protein mediated. Interestingly, IAA efflux inhibitors and mutations in genes encoding putative IAA transport proteins reduce IAA transport but do not alter IBA movement, suggesting that different auxin transport protein complexes are likely to mediate IBA and IAA transport. Finally, the physiological effects of IBA and IAA on hypocotyl elongation under several light conditions were examined and analyzed in the context of the differences in IBA and IAA transport. Together, these results present a detailed picture of IBA transport and provide the basis for a better understanding of the transport of these two endogenous auxins.

  20. [Aerosol deposition in nasal passages of burrowing and ground rodents when breathing dust-laden air].

    PubMed

    Moshkin, M P; Petrovskiĭ, D V; Akulov, A E; Romashchenko, A V; Gerlinskaia, L A; Muchnaia, M I; Ganimedov, V L; Sadovskiĭ, A S; Savelov, A A; Koptiug, I V; Troitskiĭ, S Iu; Bukhtiiarov, V I; Kolchanov, N A; Sagdeev, R Z; Fomin, V M

    2014-01-01

    In subterranean rodents, which dig down the passages with frontal teeth, adaptation to the underground mode of life presumes forming of mechanisms that provide protection against inhaling dust particles of different size when digging. One of such mechanisms can be specific pattern of air flow organization in the nasal cavity. To test this assumption, comparative study of geometry and aerodynamics of nasal passages has been conducted with regard to typical representative of subterranean rodents, the mole vole, and a representative of ground rodents, the house mouse. Numerical modeling of air flows and deposition of micro- and nanoparticle aerosols indicates that sedimentation of model particles over the whole surface of nasal cavity is higher in mole vole than in house mouse. On the contrary, particles deposition on the surface of olfactory epithelium turns out to be substantially less in the burrowing rodent as compared to the ground one. Adaptive significance of the latter observation has been substantiated by experimental study on the uptake ofnanoparticles of hydrated manganese oxide MnO x (H2O)x and Mn ions from nasal cavity into brain. It has been shown with use of magnetic resonance tomography method that there is no difference between studied species with respect to intake of particles or ions by olfactory bulb when they are introduced intranasally. Meanwhile, when inhaling nanoparticle aerosol of MnCl2, deposition of Mn in mouse's olfactory bulbs surpasses markedly that in vole's bulbs. Thereby, the morphology of nasal passages as a factor determining the aerodynamics of upper respiratory tract ensures for burrowing rodents more efficient protection of both lungs and brain against inhaled aerosols than for ground ones. PMID:25771679

  1. Brönsted Acid-Catalyzed One-Pot Synthesis of Indoles from o-Aminobenzyl Alcohols and Furans

    PubMed Central

    Kuznetsov, Alexey; Makarov, Anton; Rubtsov, Alexandr E.; Butin, Alexander V.; Gevorgyan, Vladimir

    2013-01-01

    Brönsted acid-catalyzed one-pot synthesis of indoles from o-aminobenzyl alcohols and furans has been developed. This method operates via the in situ formation of aminobenzylfuran, followed by its recyclization into the indole core. The method proved to be efficient for substrates possessing different functional groups, including -OMe, -CO2Cy, and -Br. The resulting indoles can easily be transformed into diverse scaffolds, including 2,3- and 1,2-fused indoles, and indole possessing an α,β-unsaturated ketone moiety at the C-2 position. PMID:24255969

  2. General Approach to the Total Synthesis of 9-Methoxy Substituted Indole Alkaloids: Synthesis of Mitragynine, as well as 9-Methoxygeissoschizol and 9-Methoxy-Nb-methylgeissoschizol

    PubMed Central

    Ma, Jun; Yin, Wenyuan; Zhou, Hao; Liao, Xuebin; Cook, James M.

    2009-01-01

    Herein the full details of the synthesis of the 9-methoxy-substituted Corynanthe indole alkaloids mitragynine (1), 9-methoxygeissoschizol (3) and 9-methoxy-Nb-methylgeissoschizol (4) are described. Initially an efficient synthetic route to the optically active 4-methoxytryptophan ethyl ester 20 on a multigram scale was developed via a Mori-Ban-Hegedus indole synthesis. The ethyl ester of (D)-4-methoxytryptophan 20 was obtained with a radical-mediated regioselective bromination of indoline 12 serving as a key step. Alternatively, the key 4-methoxytryptophan intermediate 22 could be synthesized by the Larock heteroannulation of aryl iodide 10b with the internal alkyne 21a. The use of the Boc protected aniline 10b was crucial to the success of this heteroannulation. The α,β-unsaturated ester 6 was synthesized via the Pictet-Spengler reaction as the pivotal step. This was followed by a Ni(COD)2 mediated cyclization to set up the stereocenter at C-15. The benzyloxy group in 31 was removed to provide the intermediate ester 5. This chiral tetracyclic ester 5 was employed to accomplish the first total synthesis of 9-methoxygeissoschizol (3) and 9-methoxy-Nb-methylgeisso-schizol (4) as well as the opioid agonistic indole alkaloid mitragynine (1). PMID:19046119

  3. Indole synthesis by conjugate addition of anilines to activated acetylenes and an unusual ligand-free copper(II)-mediated intramolecular cross-coupling.

    PubMed

    Gao, Detian; Back, Thomas G

    2012-11-12

    A versatile new synthesis of indoles was achieved by the conjugate addition of N-formyl-2-haloanilines to acetylenic sulfones, ketones, and esters followed by a copper-catalyzed intramolecular C-arylation. The conjugate addition step was conducted under exceptionally mild conditions at room temperature in basic, aqueous DMF. Surprisingly, the C-arylation was performed most effectively by employing copper(II) acetate as the catalyst in the absence of external ligands, without the need for protection from air or water. An unusual feature of this process, for the case of acetylenic ketones, is the ability of the initial conjugate-addition product to serve as a ligand for the catalyst, which enables it to participate in the catalysis of its further transformation to the final indole product. Mechanistic studies, including EPR experiments, indicated that copper(II) is reduced to the active copper(I) species by the formate ion that is produced by the base-catalyzed hydrolysis of DMF. This process also served to recycle any copper(II) that was produced by the adventitious oxidation of copper(I), thereby preventing deactivation of the catalyst. Several examples of reactions involving acetylenic sulfones attached to a modified Merrifield resin demonstrated the feasibility of solid-phase synthesis of indoles by using this protocol, and tricyclic products were obtained in one pot by employing acetylenic sulfones that contain chloroalkyl substituents. PMID:23019064

  4. An evaluation of synthetic indole derivatives as inhibitors of monoamine oxidase.

    PubMed

    Chirkova, Zhanna V; Kabanova, Mariya V; Filimonov, Sergey I; Abramov, Igor G; Petzer, Anél; Petzer, Jacobus P; Suponitsky, Kyrill Yu

    2016-05-01

    In a recent study we have shown that several indole-5,6-dicarbonitrile derivatives are potent inhibitors of human monoamine oxidase (MAO) A and B. To expand on these results and to further determine structure-activity relationships (SARs) for MAO inhibition by this chemical class, the present study investigates the MAO inhibition properties of additional indole-5,6-dicarbonitriles and related indole-5,6-dicarboxylic acid and pyrrolo[3,4-f]indole-5,7-dione derivatives. Among the active compounds two pyrrolo[3,4-f]indole-5,7-dione derivatives inhibited MAO-A (4g) and MAO-B (4d) with IC50 values of 0.250 and 0.581μM, respectively. In general indole-5,6-dicarbonitriles, however, exhibit higher MAO inhibition potencies while indole-5,6-dicarboxylic acids are weak MAO inhibitors. Active MAO inhibitors such as 4g and 4d may be used as leads for the development of drugs for the treatment of disease states such as Parkinson's disease and depression. MAO inhibitors are also under investigation as potential agents for the treatment of prostate cancer, certain types of cardiomyopathies and Alzheimer's disease. PMID:27020523

  5. Asymmetric distribution of glucose and indole-3-acetyl-myo-inositol in geostimulated Zea mays seedlings

    NASA Technical Reports Server (NTRS)

    Momonoki, Y. S.; Bandurski, R. S. (Principal Investigator)

    1988-01-01

    Indole-3-acetyl-myo-inositol occurs in both the kernel and vegetative shoot of germinating Zea mays seedlings. The effect of a gravitational stimulus on the transport of [3H]-5-indole-3-acetyl-myo-inositol and [U-14C]-D-glucose from the kernel to the seedling shoot was studied. Both labeled glucose and labeled indole-3-acetyl-myo-inositol become asymmetrically distributed in the mesocotyl cortex of the shoot with more radioactivity occurring in the bottom half of a horizontally placed seedling. Asymmetric distribution of [3H]indole-3-acetic acid, derived from the applied [3H]indole-3-acetyl-myo-inositol, occurred more rapidly than distribution of total 3H-radioactivity. These findings demonstrate that the gravitational stimulus can induce an asymmetric distribution of substances being transported from kernel to shoot. They also indicate that, in addition to the transport asymmetry, gravity affects the steady state amount of indole-3-acetic acid derived from indole-3-acetyl-myo-inositol.

  6. Characterization of a Novel Phenol Hydroxylase in Indoles Biotranformation from a Strain Arthrobacter sp. W1

    PubMed Central

    Li, Xinliang; Zhang, Xuwang; Zhou, Jiti

    2012-01-01

    Background Indigoids, as popular dyes, can be produced by microbial strains or enzymes catalysis. However, the new valuable products with their transformation mechanisms, especially inter-conversion among the intermediates and products have not been clearly identified yet. Therefore, it is necessary to investigate novel microbial catalytic processes for indigoids production systematically. Findings A phenol hydroxylase gene cluster (4,606 bp) from Arthrobacter sp. W1 (PHw1) was obtained. This cluster contains six components in the order of KLMNOP, which exhibit relatively low sequence identities (37–72%) with known genes. It was suggested that indole and all the tested indole derivatives except for 3-methylindole were transformed to various substituted indigoid pigments, and the predominant color products derived from indoles were identified by spectrum analysis. One new purple product from indole, 2-(7-oxo-1H-indol-6(7H)-ylidene) indolin-3-one, should be proposed as the dimerization of isatin and 7-hydroxylindole at the C-2 and C-6 positions. Tunnel entrance and docking studies were used to predict the important amino acids for indoles biotransformation, which were further proved by site-directed mutagenesis. Conclusions/Significance We showed that the phenol hydroxylase from genus Arthrobacter could transform indoles to indigoids with new chemical compounds being produced. Our work should show high insights into understanding the mechanism of indigoids bio-production. PMID:23028517

  7. Asymmetric distribution of glucose and indole-3-acetyl-myo-inositol in geostimulated Zea mays seedlings.

    PubMed

    Momonoki, Y S

    1988-01-01

    Indole-3-acetyl-myo-inositol occurs in both the kernel and vegetative shoot of germinating Zea mays seedlings. The effect of a gravitational stimulus on the transport of [3H]-5-indole-3-acetyl-myo-inositol and [U-14C]-D-glucose from the kernel to the seedling shoot was studied. Both labeled glucose and labeled indole-3-acetyl-myo-inositol become asymmetrically distributed in the mesocotyl cortex of the shoot with more radioactivity occurring in the bottom half of a horizontally placed seedling. Asymmetric distribution of [3H]indole-3-acetic acid, derived from the applied [3H]indole-3-acetyl-myo-inositol, occurred more rapidly than distribution of total 3H-radioactivity. These findings demonstrate that the gravitational stimulus can induce an asymmetric distribution of substances being transported from kernel to shoot. They also indicate that, in addition to the transport asymmetry, gravity affects the steady state amount of indole-3-acetic acid derived from indole-3-acetyl-myo-inositol. PMID:11537873

  8. Transformation of indole by methanogenic and sulfate-reducing microorganisms isolated from digested sludge

    SciTech Connect

    Shanker, R.; Bollag, J.M. )

    1990-01-01

    In the present study, mineralization of an aromatic N-heterocyclic molecule, indole, by microorganisms present in anaerobically digested sewage sludge was examined. The first step in indole mineralization was the formation of a hydroxylated intermediate, oxindole. The rate of transformation of indole to oxindole and its subsequent disappearance was dependent on the concentration of inoculum and indole and the incubation temperature. Methanogenesis appeared to be the dominant process in the mineralization of indole in 10% digested sludge even in the presence of high concentrations of sulfate. Enrichment of the digested sludge with sulfate as an electron acceptor allowed the isolation of a metabolically stable mixed culture of anaerobic bacteria which transformed indole to oxindole and acetate, and ultimately to methane and carbon dioxide. This mixed culture exhibited a predominance of sulfate-reducers over methanogens with more than 75% of the substrate mineralized to carbon dioxide. The investigation demonstrates that indole can be transformed by both methanogenic and sulfate-reducing microbial populations.

  9. Saddle-Shaped Cyclic Indole Tetramers: 3D Electroactive Molecules.

    PubMed

    Ruiz, Constanza; Monge, Ángeles; Gutiérrez-Puebla, Enrique; Alkorta, Ibon; Elguero, José; Navarrete, Juan T López; Ruiz Delgado, M Carmen; Gómez-Lor, Berta

    2016-07-18

    We present a joint theoretical and experimental study of a series of cyclic indole tetramers aimed at understanding the fundamental electronic properties of this 3D platform and evaluating its potential in the construction of new semiconductors. To this end, we combined absorption and Raman spectroscopy, cyclic voltammetry, and spectroelectrochemistry with DFT calculations. Our results suggest that this platform can be easily and reversibly oxidized. Additionally, it has a HOMO that matches very well with the workfunction of gold, therefore charge injection from a gold electrode is expected to occur without significant barriers. Interestingly, the cyclic tetraindoles allow for good electron delocalization in spite of their saddle-shaped structures. The steric constraints introduced by N-substitution significantly inhibits ring inversion of the central cyclooctatetraene unit, whereas it only barely affects the optical and electrochemical properties (a slightly higher oxidation potential and a blueshifted absorption upon alkylation are observed). PMID:27320301

  10. Development of indole sulfonamides as cannabinoid receptor negative allosteric modulators.

    PubMed

    Greig, Iain R; Baillie, Gemma L; Abdelrahman, Mostafa; Trembleau, Laurent; Ross, Ruth A

    2016-09-15

    Existing CB1 negative allosteric modulators (NAMs) fall into a limited range of structural classes. In spite of the theoretical potential of CB1 NAMs, published in vivo studies have generally not been able to demonstrate the expected therapeutically-relevant CB1-mediated effects. Thus, a greater range of molecular tools are required to allow definitive elucidation of the effects of CB1 allosteric modulation. In this study, we show a novel series of indole sulfonamides. Compounds 5e and 6c (ABD1075) had potencies of 4 and 3nM respectively, and showed good oral exposure and CNS penetration, making them highly versatile tools for investigating the therapeutic potential of allosteric modulation of the cannabinoid system. PMID:27542310