Science.gov

Sample records for induced autocrine signaling

  1. Shear stress-induced NO production is dependent on ATP autocrine signaling and capacitative calcium entry

    PubMed Central

    Andrews, Allison M.; Jaron, Dov; Buerk, Donald G.; Barbee, Kenneth A.

    2014-01-01

    Flow-induced production of nitric oxide (NO) by endothelial cells plays a fundamental role in vascular homeostasis. However, the mechanisms by which shear stress activates NO production remain unclear due in part to limitations in measuring NO, especially under flow conditions. Shear stress elicits the release of ATP, but the relative contribution of autocrine stimulation by ATP to flow-induced NO production has not been established. Furthermore, the importance of calcium in shear stress-induced NO production remains controversial, and in particular the role of capacitive calcium entry (CCE) has yet to be determined. We have utilized our unique NO measurement device to investigate the role of ATP autocrine signaling and CCE in shear stress-induced NO production. We found that endogenously released ATP and downstream activation of purinergic receptors and CCE plays a significant role in shear stress-induced NO production. ATP-induced eNOS phophorylation under static conditions is also dependent on CCE. Inhibition of protein kinase C significantly inhibited eNOS phosphorylation and the calcium response. To our knowledge, we are the first to report on the role of CCE in the mechanism of acute shear stress-induced NO response. In addition, our work highlights the importance of ATP autocrine signaling in shear stress-induced NO production. PMID:25386222

  2. Human neural stem cell-induced endothelial morphogenesis requires autocrine/paracrine and juxtacrine signaling.

    PubMed

    Chou, Chung-Hsing; Modo, Michel

    2016-01-01

    Transplanted neural stem cells (NSC) interact with the host brain microenvironment. A neovascularization is commonly observed in the vicinity of the cell deposit, which is correlated with behavioral improvements. To elucidate the signaling mechanisms between human NSCs and endothelial cells (ECs), these were cocultured in an in vitro model in which NSC-induced endothelial morphogenesis produced a neurovascular environment. Soluble (autocrine/paracrine) and contact-mediated (juxtacrine) signaling molecules were evaluated for two conditionally immortalized fetal NSC lines derived from the cortical anlage (CTXOE03) and ganglionic eminence (STROC05), as well as an adult EC line (D3) derived from the cerebral microvasculature of a hippocampal biopsy. STROC05 were 4 times as efficient to induce endothelial morphogenesis compared to CTXOE03. The cascade of reciprocal interactions between NSCs and ECs in this process was determined by quantifying soluble factors, receptor mapping, and immunocytochemistry for extracellular matrix molecules. The mechanistic significance of these was further evaluated by pharmacological blockade. The sequential cell-specific regulation of autocrine/paracrine and juxtacrine signaling accounted for the differential efficiency of NSCs to induce endothelial morphogenesis. These in vitro studies shed new light on the reciprocal interactions between NSCs and ECs, which are pivotal for our mechanistic understanding of the efficacy of NSC transplantation. PMID:27374240

  3. Human neural stem cell-induced endothelial morphogenesis requires autocrine/paracrine and juxtacrine signaling

    PubMed Central

    Chou, Chung-Hsing; Modo, Michel

    2016-01-01

    Transplanted neural stem cells (NSC) interact with the host brain microenvironment. A neovascularization is commonly observed in the vicinity of the cell deposit, which is correlated with behavioral improvements. To elucidate the signaling mechanisms between human NSCs and endothelial cells (ECs), these were cocultured in an in vitro model in which NSC-induced endothelial morphogenesis produced a neurovascular environment. Soluble (autocrine/paracrine) and contact–mediated (juxtacrine) signaling molecules were evaluated for two conditionally immortalized fetal NSC lines derived from the cortical anlage (CTXOE03) and ganglionic eminence (STROC05), as well as an adult EC line (D3) derived from the cerebral microvasculature of a hippocampal biopsy. STROC05 were 4 times as efficient to induce endothelial morphogenesis compared to CTXOE03. The cascade of reciprocal interactions between NSCs and ECs in this process was determined by quantifying soluble factors, receptor mapping, and immunocytochemistry for extracellular matrix molecules. The mechanistic significance of these was further evaluated by pharmacological blockade. The sequential cell-specific regulation of autocrine/paracrine and juxtacrine signaling accounted for the differential efficiency of NSCs to induce endothelial morphogenesis. These in vitro studies shed new light on the reciprocal interactions between NSCs and ECs, which are pivotal for our mechanistic understanding of the efficacy of NSC transplantation. PMID:27374240

  4. An Autocrine Cytokine/JAK/STAT-Signaling Induces Kynurenine Synthesis in Multidrug Resistant Human Cancer Cells

    PubMed Central

    Campia, Ivana; Buondonno, Ilaria; Castella, Barbara; Rolando, Barbara; Kopecka, Joanna; Gazzano, Elena; Ghigo, Dario; Riganti, Chiara

    2015-01-01

    Background Multidrug resistant cancer cells are hard to eradicate for the inefficacy of conventional anticancer drugs. Besides escaping the cytotoxic effects of chemotherapy, they also bypass the pro-immunogenic effects induced by anticancer drugs: indeed they are not well recognized by host dendritic cells and do not elicit a durable anti-tumor immunity. It has not yet been investigated whether multidrug resistant cells have a different ability to induce immunosuppression than chemosensitive ones. We addressed this issue in human and murine chemosensitive and multidrug resistant cancer cells. Results We found that the activity and expression of indoleamine 2,3-dioxygenase 1 (IDO1), which catalyzes the conversion of tryptophan into the immunosuppressive metabolite kynurenine, was higher in all the multidrug resistant cells analyzed and that IDO1 inhibition reduced the growth of drug-resistant tumors in immunocompetent animals. In chemoresistant cells the basal activity of JAK1/STAT1 and JAK1/STAT3 signaling was higher, the STAT3 inhibitor PIAS3 was down-regulated, and the autocrine production of STAT3-target and IDO1-inducers cytokines IL-6, IL-4, IL-1β, IL-13, TNF-α and CD40L, was increased. The disruption of the JAK/STAT signaling lowered the IDO1 activity and reversed the kynurenine-induced pro-immunosuppressive effects, as revealed by the restored proliferation of T-lymphocytes in STAT-silenced chemoresistant cells. Conclusions Our work shows that multidrug resistant cells have a stronger immunosuppressive attitude than chemosensitive cells, due to the constitutive activation of the JAK/STAT/IDO1 axis, thus resulting chemo- and immune-evasive. Disrupting this axis may significantly improve the efficacy of chemo-immunotherapy protocols against resistant tumors. PMID:25955018

  5. CXCR2 signaling regulates KRAS(G12D)-induced autocrine growth of pancreatic cancer

    PubMed Central

    Purohit, Abhilasha; Varney, Michelle; Rachagani, Satyanarayana; Ouellette, Michel M.; Batra, Surinder K.; Singh, Rakesh K.

    2016-01-01

    Pharmacological inhibition of RAS, the master regulator of pancreatic ductal adenocarcinoma (PDAC), continues to be a challenge. Mutations in various isoforms of RAS gene, including KRAS are known to upregulate CXC chemokines; however, their precise role in KRAS-driven pancreatic cancer remains unclear. In this report, we reveal a previously unidentified tumor cell-autonomous role of KRAS(G12D)-induced CXCR2 signaling in mediating growth of neoplastic PDAC cells. Progressively increasing expression of mCXCR2 and its ligands was detected in the malignant ductal cells of Pdx1-cre;LSL-Kras(G12D) mice. Knocking-down CXCR2 in KRAS(G12D)-bearing human pancreatic duct-derived cells demonstrated a significant decrease in the in vitro and in vivo tumor cell proliferation. Furthermore, CXCR2 antagonists showed selective growth inhibition of KRAS(G12D)-bearing cells in vitro. Intriguingly, both genetic and pharmacological inhibition of CXCR2 signaling in KRAS(G12D)-bearing pancreatic ductal cells reduced the levels of KRAS protein, strongly implying the presence of a KRAS-CXCR2 feed-forward loop. Together, these data demonstrate the role of CXCR2 signaling in KRAS(G12D)-induced growth transformation and progression in PDAC. PMID:26771140

  6. Autocrine signal transmission with extracellular ligand degradation

    NASA Astrophysics Data System (ADS)

    Muratov, C B; Posta, F; Shvartsman, S Y

    2009-03-01

    Traveling waves of cell signaling in epithelial layers orchestrate a number of important processes in developing and adult tissues. These waves can be mediated by positive feedback autocrine loops, a mode of cell signaling where binding of a diffusible extracellular ligand to a cell surface receptor can lead to further ligand release. We formulate and analyze a biophysical model that accounts for ligand-induced ligand release, extracellular ligand diffusion and ligand-receptor interaction. We focus on the case when the main mode for ligand degradation is extracellular and analyze the problem with the sharp threshold positive feedback nonlinearity. We derive expressions that link the speed of propagation and other characteristics of traveling waves to the parameters of the biophysical processes, such as diffusion rates, receptor expression level, etc. Analyzing the derived expressions we found that traveling waves in such systems can exhibit a number of unusual properties, e.g. non-monotonic dependence of the speed of propagation on ligand diffusivity. Our results for the fully developed traveling fronts can be used to analyze wave initiation from localized perturbations, a scenario that frequently arises in the in vitro models of epithelial wound healing, and guide future modeling studies of cell communication in epithelial layers.

  7. Defective platelet autocrine signaling in HPS.

    PubMed

    Storrie, Brian

    2015-03-01

    In this issue of Blood, Meng et al and Sharda et al use the Hermansky-Pudlak syndrome (HPS) as a model to show that adenosine 5′-diphosphate (ADP) released by dense granules serves as an autocrine signal to potentiate platelet release of α-granule and lysosome cargo and protein disulfide isomerase (PDI), all of which serve to stabilize thrombus formation. PMID:25745182

  8. Soluble gC1qR Is an Autocrine Signal That Induces B1R Expression on Endothelial Cells

    PubMed Central

    Ji, Yan; Valentino, Alisa; Pednekar, Lina; Ramadass, Mahalakshmi; Habiel, David; Kew, Richard R.; Hosszu, Kinga H.; Galanakis, Dennis K.; Kishore, Uday; Peerschke, Ellinor I. B.

    2014-01-01

    Bradykinin (BK) is one of the most potent vasodilator agonists known and belongs to the kinin family of proinflammatory peptides. BK induces its activity via two G protein–coupled receptors: BK receptor 1 (B1R) and BK receptor 2. Although BK receptor 2 is constitutively expressed on endothelial cells (ECs), B1R is induced by IL-1β. The C1q receptor, receptor for the globular heads of C1q (gC1qR), which plays a role in BK generation, is expressed on activated ECs and is also secreted as soluble gC1qR (sgC1qR). Because sgC1qR can bind to ECs, we hypothesized that it may also serve as an autocrine/paracrine signal for the induction of B1R expression. In this study, we show that gC1qR binds to ECs via a highly conserved domain consisting of residues 174–180, as assessed by solid-phase binding assay and deconvolution fluorescence microscopy. Incubation of ECs (24 h, 37°C) with sgC1qR resulted in enhancement of B1R expression, whereas incubation with gC1qR lacking aa 174–180 and 154–162 had a diminished effect. Binding of sgC1qR to ECs was through surface-bound fibrinogen and was inhibited by anti-fibrinogen. In summary, our data suggest that, at sites of inflammation, sgC1qR can enhance vascular permeability by upregulation of B1R expression through de novo synthesis, as well as rapid translocation of preformed B1R. PMID:24319267

  9. Probing Embryonic Stem Cell Autocrine and Paracrine Signaling Using Microfluidics

    NASA Astrophysics Data System (ADS)

    Przybyla, Laralynne; Voldman, Joel

    2012-07-01

    Although stem cell fate is traditionally manipulated by exogenously altering the cells' extracellular signaling environment, the endogenous autocrine and paracrine signals produced by the cells also contribute to their two essential processes: self-renewal and differentiation. Autocrine and/or paracrine signals are fundamental to both embryonic stem cell self-renewal and early embryonic development, but the nature and contributions of these signals are often difficult to fully define using conventional methods. Microfluidic techniques have been used to explore the effects of cell-secreted signals by controlling cell organization or by providing precise control over the spatial and temporal cellular microenvironment. Here we review how such techniques have begun to be adapted for use with embryonic stem cells, and we illustrate how many remaining questions in embryonic stem cell biology could be addressed using microfluidic technologies.

  10. HCV Infection Induces Autocrine Interferon Signaling by Human Liver Endothelial Cell and Release of Exosomes, Which Inhibits Viral Replication

    PubMed Central

    Giugliano, Silvia; Kriss, Michael; Golden-Mason, Lucy; Dobrinskikh, Evgenia; Stone, Amy E.L.; Soto-Gutierrez, Alejandro; Mitchell, Angela; Khetani, Salman R.; Yamane, Daisuke; Stoddard, Mark; Li, Hui; Shaw, George M.; Edwards, Michael G.; Lemon, Stanley M.; Gale, Michael; Shah, Vijay H.; Rosen, Hugo R.

    2014-01-01

    Background & Aims Liver sinusoidal endothelial cells (LSECs) make up a large proportion of the non-parenchymal cells in the liver. LSECs are involved in induction of immune tolerance, but little is known about their functions during hepatitis C virus (HCV) infection. Methods Primary human LSECs (HLSECs) and immortalized liver endothelial cells (TMNK-1) were exposed to various forms of HCV, including full-length transmitted/founder virus, sucrose-purified Japanese Fulminant Hepatitis-1 (JFH-1), a virus encoding a luciferase reporter, and the HCV-specific pathogen-associated molecular pattern molecules. Cells were analyzed by confocal immunofluorescence, immunohistochemical, and PCR assays. Results HLSECs internalized HCV, independent of cell–cell contacts; HCV RNA was translated but not replicated. Through pattern recognition receptors (TLR7 and retinoic acid inducible gene 1), HCV RNA induced consistent and broad transcription of multiple interferons (IFNs); supernatants from primary HLSECs transfected with HCV-specific pathogen-associated molecular pattern molecules increased induction of IFNs and IFN-stimulated genes in HLSECs. Recombinant type I and type III IFNs strongly up-regulated HLSEC transcription of interferon λ 3 (IFNL3) and viperin (RSAD2), which inhibit replication of HCV. Compared to CD8+ T cells, HLSECs suppressed HCV replication within Huh7.5.1 cells, also inducing IFN-stimulated genes in co-culture. Conditioned media from IFN-stimulated HLSECs induced expression of antiviral genes by uninfected primary human hepatocytes. Exosomes, derived from HLSECs following stimulation with either type I or type III IFNs, controlled HCV replication in a dose-dependent manner. Conclusions Cultured HLSECs produce factors that mediate immunity against HCV. HLSECs induce self-amplifying IFN-mediated responses and release of exosomes with antiviral activity. PMID:25447848

  11. K-RAS(V12) Induces Autocrine Production of EGFR Ligands and Mediates Radioresistance Through EGFR-Dependent Akt Signaling and Activation of DNA-PKcs

    SciTech Connect

    Minjgee, Minjmaa; Toulany, Mahmoud; Kehlbach, Rainer; Giehl, Klaudia; Rodemann, H. Peter

    2011-12-01

    Purpose: It is known that postirradiation survival of tumor cells presenting mutated K-RAS is mediated through autocrine activation of epidermal growth factor receptor (EGFR). In this study the molecular mechanism of radioresistance of cells overexpressing mutated K-RAS(V12) was investigated. Methods and Materials: Head-and-neck cancer cells (FaDu) presenting wild-type K-RAS were transfected with empty vector or vector expressing mutated K-RAS(V12). The effect of K-RAS(V12) on autocrine production of EGFR ligands, activation of EGFR downstream pathways, DNA damage repair, and postirradiation survival was analyzed. Results: Conditioned medium collected from K-RAS(V12)-transfected cells enhanced activation of the phosphatidylinositol-3-kinase-Akt pathway and increased postirradiation survival of wild-type K-RAS parental cells when compared with controls. These effects were reversed by amphiregulin (AREG)-neutralizing antibody. In addition, secretion of the EGFR ligands AREG and transforming growth factor {alpha} was significantly increased upon overexpression of K-RAS(V12). Expression of mutated K-RAS(V12) resulted in an increase in radiation-induced DNA-dependent protein kinase catalytic subunit (DNA-PKcs) phosphorylation at S2056. This increase was accompanied by increased repair of DNA double-strand breaks. Abrogation of DNA-PKcs phosphorylation by serum depletion or AREG-neutralizing antibody underscored the role of autocrine production of EGFR ligands, namely, AREG, in regulating DNA-PKcs activation in K-RAS mutated cells. Conclusions: These data indicate that radioresistance of K-RAS mutated tumor cells is at least in part due to constitutive production of EGFR ligands, which mediate enhanced repair of DNA double-strand breaks through the EGFR-phosphatidylinositol-3-kinase-Akt cascade.

  12. Reactive Oxygen Species Alter Autocrine and Paracrine Signaling

    SciTech Connect

    Zangar, Richard C.; Bollinger, Nikki; Weber, Thomas J.; Tan, Ruimin; Markillie, Lye Meng; Karin, Norman J.

    2011-12-01

    Cytochrome P450 (P450) 3A4 (CYP3A4) is the most abundant P450 protein in human liver and intestine and is highly inducible by a variety of drugs and other compounds. The P450 catalytic cycle is known to uncouple and release reactive oxygen species (ROS), but the effects of ROS from P450 and other enzymes in the endo-plasmic reticulum have been poorly studied from the perspective of effects on cell biology. In this study, we expressed low levels of CYP3A4 in HepG2 cells, a human hepatocarcinoma cell line, and examined effects on intracellular levels of ROS and on the secretion of a variety of growth factors that are important in extracellular communication. Using the redox-sensitive dye RedoxSensor red, we demonstrate that CYP3A4 expression increases levels of ROS in viable cells. A customELISA microarray platform was employed to demonstrate that expression of CYP3A4 increased secretion of amphiregulin, intracellular adhesion molecule 1, matrix metalloprotease 2, platelet-derived growth factor (PDGF), and vascular endothelial growth factor, but suppressed secretion of CD14. The antioxidant N-acetylcysteine suppressed all P450-dependent changes in protein secretion except for CD14. Quantitative RT-PCR demonstrated that changes in protein secretion were consistently associated with corresponding changes in gene expression. Inhibition of the NF-{kappa}B pathway blocked P450 effects on PDGF secretion. CYP3A4 expression also altered protein secretion in human mammary epithelial cells and C10 mouse lung cells. Overall, these results suggest that increased ROS production in the endoplasmic reticulum alters the secretion of proteins that have key roles in paracrine and autocrine signaling.

  13. Electrical stimulation induces IL-6 in skeletal muscle through extracellular ATP by activating Ca2+ signals and an IL-6 autocrine loop

    PubMed Central

    Bustamante, Mario; Fernández-Verdejo, Rodrigo; Jaimovich, Enrique

    2014-01-01

    Interleukin-6 (IL-6) is an important myokine that is highly expressed in skeletal muscle cells upon exercise. We assessed IL-6 expression in response to electrical stimulation (ES) or extracellular ATP as a known mediator of the excitation-transcription mechanism in skeletal muscle. We examined whether the canonical signaling cascade downstream of IL-6 (IL-6/JAK2/STAT3) also responds to muscle cell excitation, concluding that IL-6 influences its own expression through a positive loop. Either ES or exogenous ATP (100 μM) increased both IL-6 expression and p-STAT3 levels in rat myotubes, a process inhibited by 100 μM suramin and 2 U/ml apyrase. ATP also evoked IL-6 expression in both isolated skeletal fibers and extracts derived from whole FDB muscles. ATP increased IL-6 release up to 10-fold. STAT3 activation evoked by ATP was abolished by the JAK2 inhibitor HBC. Blockade of secreted IL-6 with a neutralizing antibody or preincubation with the STAT3 inhibitor VIII reduced STAT3 activation evoked by extracellular ATP by 70%. Inhibitor VIII also reduced by 70% IL-6 expression evoked by ATP, suggesting a positive IL-6 loop. In addition, ATP increased up to 60% the protein levels of SOCS3, a negative regulator of the IL-6 signaling pathway. On the other hand, intracellular calcium chelation or blockade of IP3-dependent calcium signals abolished STAT3 phosphorylation evoked by either extracellular ATP or ES. These results suggest that expression of IL-6 in stimulated skeletal muscle cells is mediated by extracellular ATP and nucleotide receptors, involving IP3-dependent calcium signals as an early step that triggers a positive IL-6 autocrine loop. PMID:24518675

  14. Electrical stimulation induces IL-6 in skeletal muscle through extracellular ATP by activating Ca(2+) signals and an IL-6 autocrine loop.

    PubMed

    Bustamante, Mario; Fernández-Verdejo, Rodrigo; Jaimovich, Enrique; Buvinic, Sonja

    2014-04-15

    Interleukin-6 (IL-6) is an important myokine that is highly expressed in skeletal muscle cells upon exercise. We assessed IL-6 expression in response to electrical stimulation (ES) or extracellular ATP as a known mediator of the excitation-transcription mechanism in skeletal muscle. We examined whether the canonical signaling cascade downstream of IL-6 (IL-6/JAK2/STAT3) also responds to muscle cell excitation, concluding that IL-6 influences its own expression through a positive loop. Either ES or exogenous ATP (100 μM) increased both IL-6 expression and p-STAT3 levels in rat myotubes, a process inhibited by 100 μM suramin and 2 U/ml apyrase. ATP also evoked IL-6 expression in both isolated skeletal fibers and extracts derived from whole FDB muscles. ATP increased IL-6 release up to 10-fold. STAT3 activation evoked by ATP was abolished by the JAK2 inhibitor HBC. Blockade of secreted IL-6 with a neutralizing antibody or preincubation with the STAT3 inhibitor VIII reduced STAT3 activation evoked by extracellular ATP by 70%. Inhibitor VIII also reduced by 70% IL-6 expression evoked by ATP, suggesting a positive IL-6 loop. In addition, ATP increased up to 60% the protein levels of SOCS3, a negative regulator of the IL-6 signaling pathway. On the other hand, intracellular calcium chelation or blockade of IP3-dependent calcium signals abolished STAT3 phosphorylation evoked by either extracellular ATP or ES. These results suggest that expression of IL-6 in stimulated skeletal muscle cells is mediated by extracellular ATP and nucleotide receptors, involving IP3-dependent calcium signals as an early step that triggers a positive IL-6 autocrine loop. PMID:24518675

  15. Direct Melanoma Cell Contact Induces Stromal Cell Autocrine Prostaglandin E2-EP4 Receptor Signaling That Drives Tumor Growth, Angiogenesis, and Metastasis.

    PubMed

    Inada, Masaki; Takita, Morichika; Yokoyama, Satoshi; Watanabe, Kenta; Tominari, Tsukasa; Matsumoto, Chiho; Hirata, Michiko; Maru, Yoshiro; Maruyama, Takayuki; Sugimoto, Yukihiko; Narumiya, Shuh; Uematsu, Satoshi; Akira, Shizuo; Murphy, Gillian; Nagase, Hideaki; Miyaura, Chisato

    2015-12-11

    The stromal cells associated with tumors such as melanoma are significant determinants of tumor growth and metastasis. Using membrane-bound prostaglandin E synthase 1 (mPges1(-/-)) mice, we show that prostaglandin E2 (PGE2) production by host tissues is critical for B16 melanoma growth, angiogenesis, and metastasis to both bone and soft tissues. Concomitant studies in vitro showed that PGE2 production by fibroblasts is regulated by direct interaction with B16 cells. Autocrine activity of PGE2 further regulates the production of angiogenic factors by fibroblasts, which are key to the vascularization of both primary and metastatic tumor growth. Similarly, cell-cell interactions between B16 cells and host osteoblasts modulate mPGES-1 activity and PGE2 production by the osteoblasts. PGE2, in turn, acts to stimulate receptor activator of NF-κB ligand expression, leading to osteoclast differentiation and bone erosion. Using eicosanoid receptor antagonists, we show that PGE2 acts on osteoblasts and fibroblasts in the tumor microenvironment through the EP4 receptor. Metastatic tumor growth and vascularization in soft tissues was abrogated by an EP4 receptor antagonist. EP4-null Ptger4(-/-) mice do not support B16 melanoma growth. In vitro, an EP4 receptor antagonist modulated PGE2 effects on fibroblast production of angiogenic factors. Our data show that B16 melanoma cells directly influence host stromal cells to generate PGE2 signals governing neoangiogenesis and metastatic growth in bone via osteoclast erosive activity as well as angiogenesis in soft tissue tumors. PMID:26475855

  16. Distinguishing autocrine and paracrine signals in hematopoietic stem cell culture using a biofunctional microcavity platform.

    PubMed

    Müller, Eike; Wang, Weijia; Qiao, Wenlian; Bornhäuser, Martin; Zandstra, Peter W; Werner, Carsten; Pompe, Tilo

    2016-01-01

    Homeostasis of hematopoietic stem cells (HSC) in the mammalian bone marrow stem cell niche is regulated by signals of the local microenvironment. Besides juxtacrine, endocrine and metabolic cues, paracrine and autocrine signals are involved in controlling quiescence, proliferation and differentiation of HSC with strong implications on expansion and differentiation ex vivo as well as in vivo transplantation. Towards this aim, a cell culture analysis on a polymer microcavity carrier platform was combined with a partial least square analysis of a mechanistic model of cell proliferation. We could demonstrate the discrimination of specific autocrine and paracrine signals from soluble factors as stimulating and inhibitory effectors in hematopoietic stem and progenitor cell culture. From that we hypothesize autocrine signals to be predominantly involved in maintaining the quiescent state of HSC in single-cell niches and advocate our analysis platform as an unprecedented option for untangling convoluted signaling mechanisms in complex cell systems being it of juxtacrine, paracrine or autocrine origin. PMID:27535453

  17. Distinguishing autocrine and paracrine signals in hematopoietic stem cell culture using a biofunctional microcavity platform

    PubMed Central

    Müller, Eike; Wang, Weijia; Qiao, Wenlian; Bornhäuser, Martin; Zandstra, Peter W.; Werner, Carsten; Pompe, Tilo

    2016-01-01

    Homeostasis of hematopoietic stem cells (HSC) in the mammalian bone marrow stem cell niche is regulated by signals of the local microenvironment. Besides juxtacrine, endocrine and metabolic cues, paracrine and autocrine signals are involved in controlling quiescence, proliferation and differentiation of HSC with strong implications on expansion and differentiation ex vivo as well as in vivo transplantation. Towards this aim, a cell culture analysis on a polymer microcavity carrier platform was combined with a partial least square analysis of a mechanistic model of cell proliferation. We could demonstrate the discrimination of specific autocrine and paracrine signals from soluble factors as stimulating and inhibitory effectors in hematopoietic stem and progenitor cell culture. From that we hypothesize autocrine signals to be predominantly involved in maintaining the quiescent state of HSC in single-cell niches and advocate our analysis platform as an unprecedented option for untangling convoluted signaling mechanisms in complex cell systems being it of juxtacrine, paracrine or autocrine origin. PMID:27535453

  18. Intracellular autocrine VEGF signaling promotes EBDC cell proliferation, which can be inhibited by Apatinib.

    PubMed

    Peng, Sui; Zhang, Yanyan; Peng, Hong; Ke, Zunfu; Xu, Lixia; Su, Tianhong; Tsung, Allan; Tohme, Samer; Huang, Hai; Zhang, Qiuyang; Lencioni, Riccardo; Zeng, Zhirong; Peng, Baogang; Chen, Minhu; Kuang, Ming

    2016-04-10

    Tumor cells produce vascular endothelial growth factor (VEGF) which can interact with membrane or cytoplasmic VEGF receptors (VEGFRs) to promote cell growth. We aimed to investigate the role of extracellular/intracellular autocrine VEGF signaling and Apatinib, a highly selective VEGFR2 inhibitor, in extrahepatic bile duct cancer (EBDC). We found conditioned medium or recombinant human VEGF treatment promoted EBDC cell proliferation through a phospholipase C-γ1-dependent pathway. This pro-proliferative effect was diminished by VEGF, VEGFR1 or VEGFR2 neutralizing antibodies, but more significantly suppressed by intracellular VEGFR inhibitor. The rhVEGF induced intracellular VEGF signaling by promoting nuclear accumulation of pVEGFR1/2 and enhancing VEGF promoter activity, mRNA and protein expression. Internal VEGFR2 inhibitor Apatinib significantly inhibited intracellular VEGF signaling, suppressed cell proliferation in vitro and delayed xenograft tumor growth in vivo, while anti-VEGF antibody Bevacizumab showed no effect. Clinically, overexpression of pVEGFR1 and pVEGFR2 was significantly correlated with poorer overall survival (P = .007 and P = .020, respectively). In conclusion, the intracellular autocrine VEGF loop plays a predominant role in VEGF-induced cell proliferation. Apatinib is an effective intracellular VEGF pathway blocker that presents a great therapeutic potential in EBDC. PMID:26805764

  19. An autocrine TGF-β/ZEB/miR-200 signaling network regulates establishment and maintenance of epithelial-mesenchymal transition

    PubMed Central

    Gregory, Philip A.; Bracken, Cameron P.; Smith, Eric; Bert, Andrew G.; Wright, Josephine A.; Roslan, Suraya; Morris, Melanie; Wyatt, Leila; Farshid, Gelareh; Lim, Yat-Yuen; Lindeman, Geoffrey J.; Shannon, M. Frances; Drew, Paul A.; Khew-Goodall, Yeesim; Goodall, Gregory J.

    2011-01-01

     Epithelial-mesenchymal transition (EMT) is a form of cellular plasticity that is critical for embryonic development and tumor metastasis. A double-negative feedback loop involving the miR-200 family and ZEB (zinc finger E-box-binding homeobox) transcription factors has been postulated to control the balance between epithelial and mesenchymal states. Here we demonstrate using the epithelial Madin Darby canine kidney cell line model that, although manipulation of the ZEB/miR-200 balance is able to repeatedly switch cells between epithelial and mesenchymal states, the induction and maintenance of a stable mesenchymal phenotype requires the establishment of autocrine transforming growth factor-β (TGF-β) signaling to drive sustained ZEB expression. Furthermore, we show that prolonged autocrine TGF-β signaling induced reversible DNA methylation of the miR-200 loci with corresponding changes in miR-200 levels. Collectively, these findings demonstrate the existence of an autocrine TGF-β/ZEB/miR-200 signaling network that regulates plasticity between epithelial and mesenchymal states. We find a strong correlation between ZEBs and TGF-β and negative correlations between miR-200 and TGF-β and between miR-200 and ZEBs, in invasive ductal carcinomas, consistent with an autocrine TGF-β/ZEB/miR-200 signaling network being active in breast cancers. PMID:21411626

  20. Soluble β-glucan from Grifola frondosa induces proliferation and Dectin-1/Syk signaling in resident macrophages via the GM-CSF autocrine pathway.

    PubMed

    Masuda, Yuki; Togo, Takuya; Mizuno, Shigeto; Konishi, Morichika; Nanba, Hiroaki

    2012-04-01

    MD-Fraction, a highly purified, soluble β-(1,3) (1,6)-glucan obtained from Grifola frondosa (an oriental edible mushroom), has been reported to inhibit tumor growth by modulating host immunity. β-Glucan, a major component of the fungal cell wall, is generally recognized by PRRs expressed on macrophages and DCs, such as Dectin-1, and the ability of β-glucans to modulate host immunity is influenced by their structure and purity. Most cellular studies have used particulate β-glucans, such as yeast zymosan (crude β-glucan) and curdlan (purified β-glucan). However, little is known about the cellular mechanism of soluble β-glucans, including MD-Fraction, despite significant therapeutic implications. In this study, we investigated the cellular mechanism of MD-Fraction in murine resident macrophages and compared it with two well-known β-glucan particles. MD-Fraction induced GM-CSF production rapidly through Dectin-1-independent ERK and p38 MAPK activation. Subsequently, MD-Fraction-induced GM-CSF enhanced proliferation and Dectin-1 expression, which permitted Dectin-1-mediated TNF-α induction through the Syk pathway. Curdlan induced not only the proliferation and activation of Dectin-1/Syk signaling in a manner similar to MD-Fraction but also the uncontrolled, proinflammatory cytokine response. Contrastingly, zymosan reduced proliferation and Dectin-1 expression significantly, indicating that the mechanism of macrophage activation by MD-Fraction differs from that of zymosan. This is the first study to demonstrate that purified β-glucans, such as MD-Fraction and curdlan, induce GM-CSF production directly, resulting in Dectin-1/Syk activation in resident macrophages. In conclusion, we demonstrated that MD-Fraction induces cell proliferation and cytokine production without excessive inflammation in resident macrophages, supporting its immunotherapeutic potential. PMID:22028332

  1. Shear stress induces a longitudinal Ca(2+) wave via autocrine activation of P2Y1 purinergic signalling in rat atrial myocytes.

    PubMed

    Kim, Joon-Chul; Woo, Sun-Hee

    2015-12-01

    Atrial myocytes are exposed to shear stress during the cardiac cycle and haemodynamic disturbance. In response, they generate a longitudinally propagating global Ca(2+) wave. Here, we investigated the cellular mechanisms underlying the shear stress-mediated Ca(2+) wave, using two-dimensional confocal Ca(2+) imaging combined with a pressurized microflow system in single rat atrial myocytes. Shear stress of ∼16 dyn cm(-2) for 8 s induced ∼1.2 aperiodic longitudinal Ca(2+) waves (∼79 μm s(-1)) with a delay of 0.2-3 s. Pharmacological blockade of ryanodine receptors (RyRs) or inositol 1,4,5-trisphosphate receptors (IP3 Rs) abolished shear stress-induced Ca(2+) wave generation. Furthermore, in atrial myocytes from type 2 IP3R (IP3R2) knock-out mice, shear stress failed to induce longitudinal Ca(2+) waves. The phospholipase C (PLC) inhibitor U73122, but not its inactive analogue U73343, abolished the shear-induced longitudinal Ca(2+) wave. However, pretreating atrial cells with blockers for stretch-activated channels, Na(+)-Ca(2+) exchanger, transient receptor potential melastatin subfamily 4, or nicotinamide adenine dinucleotide phosphate oxidase did not suppress wave generation under shear stress. The P2 purinoceptor inhibitor suramin, and the potent P2Y1 receptor antagonist MRS 2179, both suppressed the Ca(2+) wave, whereas the P2X receptor antagonist, iso-PPADS, did not alter it. Suppression of gap junction hemichannels permeable to ATP or extracellular application of ATP-metabolizing apyrase inhibited the wave. Removal of external Ca(2+) to enhance hemichannel opening facilitated the wave generation. Our data suggest that longitudinally propagating, regenerative Ca(2+) release through RyRs is triggered by P2Y1-PLC-IP3R2 signalling that is activated by gap junction hemichannel-mediated ATP release in atrial myocytes under shear stress. PMID:26377030

  2. Decreased autocrine EGFR signaling in metastatic breast cancer cells inhibits tumor growth in bone and mammary fat pad.

    PubMed

    Nickerson, Nicole K; Mohammad, Khalid S; Gilmore, Jennifer L; Crismore, Erin; Bruzzaniti, Angela; Guise, Theresa A; Foley, John

    2012-01-01

    Breast cancer metastasis to bone triggers a vicious cycle of tumor growth linked to osteolysis. Breast cancer cells and osteoblasts express the epidermal growth factor receptor (EGFR) and produce ErbB family ligands, suggesting participation of these growth factors in autocrine and paracrine signaling within the bone microenvironment. EGFR ligand expression was profiled in the bone metastatic MDA-MB-231 cells (MDA-231), and agonist-induced signaling was examined in both breast cancer and osteoblast-like cells. Both paracrine and autocrine EGFR signaling were inhibited with a neutralizing amphiregulin antibody, PAR34, whereas shRNA to the EGFR was used to specifically block autocrine signaling in MDA-231 cells. The impact of these was evaluated with proliferation, migration and gene expression assays. Breast cancer metastasis to bone was modeled in female athymic nude mice with intratibial inoculation of MDA-231 cells, and cancer cell-bone marrow co-cultures. EGFR knockdown, but not PAR34 treatment, decreased osteoclasts formed in vitro (p<0.01), reduced osteolytic lesion tumor volume (p<0.01), increased survivorship in vivo (p<0.001), and resulted in decreased MDA-231 growth in the fat pad (p<0.01). Fat pad shEGFR-MDA-231 tumors produced in nude mice had increased necrotic areas and decreased CD31-positive vasculature. shEGFR-MDA-231 cells also produced decreased levels of the proangiogenic molecules macrophage colony stimulating factor-1 (MCSF-1) and matrix metalloproteinase 9 (MMP9), both of which were decreased by EGFR inhibitors in a panel of EGFR-positive breast cancer cells. Thus, inhibiting autocrine EGFR signaling in breast cancer cells may provide a means for reducing paracrine factor production that facilitates microenvironment support in the bone and mammary gland. PMID:22276166

  3. Decreased Autocrine EGFR Signaling in Metastatic Breast Cancer Cells Inhibits Tumor Growth in Bone and Mammary Fat Pad

    PubMed Central

    Nickerson, Nicole K.; Mohammad, Khalid S.; Gilmore, Jennifer L.; Crismore, Erin; Bruzzaniti, Angela; Guise, Theresa A.; Foley, John

    2012-01-01

    Breast cancer metastasis to bone triggers a vicious cycle of tumor growth linked to osteolysis. Breast cancer cells and osteoblasts express the epidermal growth factor receptor (EGFR) and produce ErbB family ligands, suggesting participation of these growth factors in autocrine and paracrine signaling within the bone microenvironment. EGFR ligand expression was profiled in the bone metastatic MDA-MB-231 cells (MDA-231), and agonist-induced signaling was examined in both breast cancer and osteoblast-like cells. Both paracrine and autocrine EGFR signaling were inhibited with a neutralizing amphiregulin antibody, PAR34, whereas shRNA to the EGFR was used to specifically block autocrine signaling in MDA-231 cells. The impact of these was evaluated with proliferation, migration and gene expression assays. Breast cancer metastasis to bone was modeled in female athymic nude mice with intratibial inoculation of MDA-231 cells, and cancer cell-bone marrow co-cultures. EGFR knockdown, but not PAR34 treatment, decreased osteoclasts formed in vitro (p<0.01), reduced osteolytic lesion tumor volume (p<0.01), increased survivorship in vivo (p<0.001), and resulted in decreased MDA-231 growth in the fat pad (p<0.01). Fat pad shEGFR-MDA-231 tumors produced in nude mice had increased necrotic areas and decreased CD31-positive vasculature. shEGFR-MDA-231 cells also produced decreased levels of the proangiogenic molecules macrophage colony stimulating factor-1 (MCSF-1) and matrix metalloproteinase 9 (MMP9), both of which were decreased by EGFR inhibitors in a panel of EGFR-positive breast cancer cells. Thus, inhibiting autocrine EGFR signaling in breast cancer cells may provide a means for reducing paracrine factor production that facilitates microenvironment support in the bone and mammary gland. PMID:22276166

  4. Autocrine epidermal growth factor signaling stimulates directionally persistent mammary epithelial cell migration

    SciTech Connect

    Maheshwari, Gargi; Wiley, H Steven ); Lauffenburger, Douglas A.

    2001-12-24

    Autocrine receptor/ligand signaling loops were first identified in tumor cells, where it was found that transformation of cells resulted in overexpression of certain growth factors leading to unregulated proliferation of the tumor cells (Sporn and Todaro, 1980). However, in the ensuing decades autocrine signaling has been found to operate in numerous physiological situations (Sporn and Roberts, 1992), including wound healing (Tokumaru et al., 2000), angiogenesis (Seghezzi et al., 1998), and tissue organization during development (Wasserman and Freeman, 1998) and reproductive cycles (Xie et al., 1997). Although it is becoming evident that autocrine loops play crucial roles in regulation of cell function within tissue contexts, it is unclear whether their effects on cell responses are different from the effects of the same ligand presented in exogenous or paracrine manner.

  5. Regulation of Autocrine Signaling in Subsets of Sympathetic Neurons Has Regional Effects on Tissue Innervation

    PubMed Central

    McWilliams, Thomas G.; Howard, Laura; Wyatt, Sean; Davies, Alun M.

    2015-01-01

    Summary The regulation of innervation by target-derived factors like nerve growth factor (NGF) is the cornerstone of neurotrophic theory. Whereas autocrine signaling in neurons affecting survival and axon growth has been described, it is difficult to reconcile autocrine signaling with the idea that targets control their innervation. Here, we report that an autocrine signaling loop in developing mouse sympathetic neurons involving CD40L (TNFSF5) and CD40 (TNFRSF5) selectively enhances NGF-promoted axon growth and branching, but not survival, via CD40L reverse signaling. Because NGF negatively regulates CD40L and CD40 expression, this signaling loop operates only in neurons exposed to low levels of NGF. Consequently, the sympathetic innervation density of tissues expressing low NGF is significantly reduced in CD40-deficient mice, whereas the innervation density of tissues expressing high levels of NGF is unaffected. Our findings reveal how differential regulation of autocrine signaling in neurons has region-specific effects on axon growth and tissue innervation. PMID:25753410

  6. Autocrine activity of BDNF induced by the STAT3 signaling pathway causes prolonged TrkB activation and promotes human non-small-cell lung cancer proliferation

    PubMed Central

    Chen, Bo; Liang, Yan; He, Zheng; An, Yunhe; Zhao, Weihong; Wu, Jianqing

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin superfamily, which has been implicated in the pathophysiology of the nervous system. Recently, several studies have suggested that BDNF and/or its receptor, tropomyosin related kinase B (TrkB), are involved in tumor growth and metastasis in several cancers, including prostate cancer, neuroblastoma, pancreatic ductal carcinoma, hepatocellular carcinoma, and lung cancer. Despite the increasing emphasis on BDNF/TrkB signaling in human tumors, how it participates in primary tumors has not yet been determined. Additionally, little is known about the molecular mechanisms that elicit signaling downstream of TrkB in the progression of non-small-cell lung cancer (NSCLC). In this study, we report the significant expression of BDNF in NSCLC samples and show that BDNF stimulation increases the synthesis of BDNF itself through activation of STAT3 in lung cancer cells. The release of BDNF can in turn activate TrkB signaling. The activation of both TrkB and STAT3 contribute to downstream signaling and promote human non-small-cell lung cancer proliferation. PMID:27456333

  7. Autocrine and paracrine Shh signaling are necessary for tooth morphogenesis, but not tooth replacement in snakes and lizards (Squamata).

    PubMed

    Handrigan, Gregory R; Richman, Joy M

    2010-01-01

    Here we study the role of Shh signaling in tooth morphogenesis and successional tooth initiation in snakes and lizards (Squamata). By characterizing the expression of Shh pathway receptor Ptc1 in the developing dentitions of three species (Eublepharis macularius, Python regius, and Pogona vitticeps) and by performing gain- and loss-of-function experiments, we demonstrate that Shh signaling is active in the squamate tooth bud and is required for its normal morphogenesis. Shh apparently mediates tooth morphogenesis by separate paracrine- and autocrine-mediated functions. According to this model, paracrine Shh signaling induces cell proliferation in the cervical loop, outer enamel epithelium, and dental papilla. Autocrine signaling within the stellate reticulum instead appears to regulate cell survival. By treating squamate dental explants with Hh antagonist cyclopamine, we induced tooth phenotypes that closely resemble the morphological and differentiation defects of vestigial, first-generation teeth in the bearded dragon P. vitticeps. Our finding that these vestigial teeth are deficient in epithelial Shh signaling further corroborates that Shh is needed for the normal development of teeth in snakes and lizards. Finally, in this study, we definitively refute a role for Shh signaling in successional dental lamina formation and conclude that other pathways regulate tooth replacement in squamates. PMID:19850027

  8. Autocrine fibroblast growth factor 18 mediates dexamethasone-induced osteogenic differentiation of murine mesenchymal stem cells.

    PubMed

    Hamidouche, Zahia; Fromigué, Olivia; Nuber, Ulrike; Vaudin, Pascal; Pages, Jean-Christophe; Ebert, Regina; Jakob, Franz; Miraoui, Hichem; Marie, Pierre J

    2010-08-01

    The potential of mesenchymal stem cells (MSC) to differentiate into functional bone forming cells provides an important tool for bone regeneration. The identification of factors capable of promoting osteoblast differentiation in MSCs is therefore critical to enhance the osteogenic potential of MSCs. Using microarray analysis combined with biochemical and molecular approach, we found that FGF18, a member of the FGF family, is upregulated during osteoblast differentiation induced by dexamethasone in murine MSCs. We showed that overexpression of FGF18 by lentiviral (LV) infection, or treatment of MSCs with recombinant human (rh)FGF18 increased the expression of the osteoblast specific transcription factor Runx2, and enhanced osteoblast phenotypic marker gene expression and in vitro osteogenesis. Molecular silencing using lentiviral shRNA demonstrated that downregulation of FGFR1 or FGFR2 abrogated osteoblast gene expression induced by either LV-FGF18 or rhFGF18, indicating that FGF18 enhances osteoblast differentiation in MSCs via activation of FGFR1 or FGFR2 signaling. Biochemical and pharmacological analyses showed that the induction of phenotypic osteoblast markers by LV-FGF18 is mediated by activation of ERK1/2-MAPKs and PI3K signaling in MSCs. These results reveal that FGF18 is an essential autocrine positive regulator of the osteogenic differentiation program in murine MSCs and indicate that osteogenic differentiation induced by FGF18 in MSCs is triggered by FGFR1/FGFR2-mediated ERK1/2-MAPKs and PI3K signaling. PMID:20432451

  9. Sonic Hedgehog Signaling Protects Human Hepatocellular Carcinoma Cells Against Ionizing Radiation in an Autocrine Manner

    SciTech Connect

    Chen, Yu-Jen; Lin, Chin-Ping; Hsu, Ming-Ling; Shieh, Hui-Ru; Chao, Nicholas K.; Chao, K.S. Clifford

    2011-07-01

    Purpose: Sonic hedgehog (Shh) signaling is critical to embryogenesis and resistance to chemotherapy. We aimed to examine the role of Shh signaling in the response to radiation of human hepatocellular carcinoma (HCC) cells. Methods and Materials: Response to ionizing radiation therapy (RT) was evaluated by clonogenic assay. Quantitative RT-polymerase chain reaction for patched-1 (PTCH-1) expression was performed. Cytosolic accumulation of Shh and nuclear translocation of Gli-1 were assessed by immunofluorescence. Gli-1 knockdown was done by RNA interference (RNAi). Immunoprecipitation was performed to detect Shh ligand in conditioned medium. Immunofluorescent stain for {gamma}-H2AX was used as an index of DNA double strand breaks (DSB). Expression of proteins related to DNA damage repair was assessed by Western blotting. Results: We found that Shh ligand could protect human HCC HA22T and Sk-Hep1 cells against RT. In HA22T cells, Shh ligand activated the Shh signaling with upregulation of Shh, PTCH-1, and Gli-1 expression. The nuclear translocation of Gli-1 further supports the activation of Gli-1. The radioprotection by Shh ligand was partly blocked by Shh antibody neutralization and was abolished by Gli-1 RNAi, suggesting a critical role of Shh signaling in radiation resistance. Furthermore, we noted that soluble factors secreted into conditioned medium, either constitutively or responding to radiation, by HA22T or Sk-Hep1 cells protected subsequent culturing cells against RT. Immunoprecipitation shows the presence of Shh peptide in conditioned medium. Intriguingly, antibody neutralization of Shh ligand or knockdown of Gli-1 reversed the radioprotective effect of conditioned medium. Furthermore, Shh ligand reduced the RT-induced phosphorylation of checkpoint kinase 1 and impaired the repair of DNA DSB. Conclusions: Activation of Shh signaling protects HCC cells against ionizing radiation in an autocrine manner. Impairment of DNA damage repair might involve

  10. Autocrine Signaling Underlies Fast Repetitive Plasma Membrane Translocation of Conventional and Novel Protein Kinase C Isoforms in β Cells*

    PubMed Central

    Wuttke, Anne; Yu, Qian; Tengholm, Anders

    2016-01-01

    PKC signaling has been implicated in the regulation of many cell functions, including metabolism, cell death, proliferation, and secretion. Activation of conventional and novel PKC isoforms is associated with their Ca2+- and/or diacylglycerol (DAG)-dependent translocation to the plasma membrane. In β cells, exocytosis of insulin granules evokes brief (<10 s) local DAG elevations (“spiking”) at the plasma membrane because of autocrine activation of P2Y1 purinoceptors by ATP co-released with insulin. Using total internal reflection microscopy, fluorescent protein-tagged PKCs, and signaling biosensors, we investigated whether DAG spiking causes membrane recruitment of PKCs and whether different classes of PKCs show characteristic responses. Glucose stimulation of MIN6 cells triggered DAG spiking with concomitant repetitive translocation of the novel isoforms PKCδ, PKCϵ, and PKCη. The conventional PKCα, PKCβI, and PKCβII isoforms showed a more complex pattern with both rapid and slow translocation. K+ depolarization-induced PKCϵ translocation entirely mirrored DAG spiking, whereas PKCβI translocation showed a sustained component, reflecting the subplasma membrane Ca2+ concentration ([Ca2+]pm), with additional effect during DAG spikes. Interference with DAG spiking by purinoceptor inhibition prevented intermittent translocation of PKCs and reduced insulin secretion but did not affect [Ca2+]pm elevation or sustained PKCβI translocation. The muscarinic agonist carbachol induced pronounced transient PKCβI translocation and sustained recruitment of PKCϵ. When rise of [Ca2+]pm was prevented, the carbachol-induced DAG and PKCϵ responses were somewhat reduced, but PKCβI translocation was completely abolished. We conclude that exocytosis-induced DAG spikes efficiently recruit both conventional and novel PKCs to the β cell plasma membrane. PKC signaling is thus implicated in autocrine regulation of β cell function. PMID:27226533

  11. Autocrine Signaling Underlies Fast Repetitive Plasma Membrane Translocation of Conventional and Novel Protein Kinase C Isoforms in β Cells.

    PubMed

    Wuttke, Anne; Yu, Qian; Tengholm, Anders

    2016-07-15

    PKC signaling has been implicated in the regulation of many cell functions, including metabolism, cell death, proliferation, and secretion. Activation of conventional and novel PKC isoforms is associated with their Ca(2+)- and/or diacylglycerol (DAG)-dependent translocation to the plasma membrane. In β cells, exocytosis of insulin granules evokes brief (<10 s) local DAG elevations ("spiking") at the plasma membrane because of autocrine activation of P2Y1 purinoceptors by ATP co-released with insulin. Using total internal reflection microscopy, fluorescent protein-tagged PKCs, and signaling biosensors, we investigated whether DAG spiking causes membrane recruitment of PKCs and whether different classes of PKCs show characteristic responses. Glucose stimulation of MIN6 cells triggered DAG spiking with concomitant repetitive translocation of the novel isoforms PKCδ, PKCϵ, and PKCη. The conventional PKCα, PKCβI, and PKCβII isoforms showed a more complex pattern with both rapid and slow translocation. K(+) depolarization-induced PKCϵ translocation entirely mirrored DAG spiking, whereas PKCβI translocation showed a sustained component, reflecting the subplasma membrane Ca(2+) concentration ([Ca(2+)]pm), with additional effect during DAG spikes. Interference with DAG spiking by purinoceptor inhibition prevented intermittent translocation of PKCs and reduced insulin secretion but did not affect [Ca(2+)]pm elevation or sustained PKCβI translocation. The muscarinic agonist carbachol induced pronounced transient PKCβI translocation and sustained recruitment of PKCϵ. When rise of [Ca(2+)]pm was prevented, the carbachol-induced DAG and PKCϵ responses were somewhat reduced, but PKCβI translocation was completely abolished. We conclude that exocytosis-induced DAG spikes efficiently recruit both conventional and novel PKCs to the β cell plasma membrane. PKC signaling is thus implicated in autocrine regulation of β cell function. PMID:27226533

  12. Dendritic cell derived IL-2 inhibits survival of terminally mature cells via an autocrine signaling pathway.

    PubMed

    Balachander, Akhila; Nabti, Sabrina; Sobota, Radoslaw M; Foo, Shihui; Zolezzi, Francesca; Lee, Bernett T K; Poidinger, Michael; Ricciardi-Castagnoli, Paola

    2015-05-01

    DCs are crucial for sensing pathogens and triggering immune response. Upon activation by pathogen-associated molecular pattern (PAMP) ligands, GM-CSF myeloid DCs (GM-DCs) secrete several cytokines, including IL-2. DC IL-2 has been shown to be important for innate and adaptive immune responses; however, IL-2 importance in DC physiology has never been demonstrated. Here, we show that autocrine IL-2 signaling is functional in murine GM-DCs in an early time window after PAMPs stimulation. IL-2 signaling selectively activates the JAK/STAT5 pathway by assembling holo-receptor complexes at the cell surface. Using the sensitivity of targeted mass spectrometry, we show conclusively that GM-DCs express CD122, the IL-2 receptor β-chain, at steady state. In myeloid DCs, this cytokine pathway inhibits survival of PAMP-matured GM-DCs which is crucial for maintaining immune tolerance and preventing autoimmunity. Our findings suggest that immune regulation by this novel autocrine signaling pathway can potentially be used in DC immunotherapy. PMID:25652593

  13. Expression of hedgehog pathway components in prostate carcinoma microenvironment: shifting the balance towards autocrine signalling

    PubMed Central

    Tzelepi, Vassiliki; Karlou, Maria; Wen, Sijin; Hoang, Anh; Logothetis, Christopher; Troncoso, Patricia; Efstathiou, Eleni

    2016-01-01

    Aims The hedgehog (Hh) signalling pathway has been implicated in the pathogenesis and aggressiveness of prostate cancer through epithelial–mesenchymal interactions. The aim of this study was to elucidate the cell-type partitioned expression of the Hh pathway biomarkers in the non-neoplastic and tumour microenvironments and to correlate it with the grade and stage of prostate cancer. Methods and results Expression of the Hh pathway components (Shh, Smo, Ptch, Gli1) in the microenvironment of non-neoplastic peripheral zone (n = 119), hormone-naive primary prostate carcinoma (n = 141) and castrate-resistant bone marrow metastases (n = 53) was analysed using immunohistochemistry in tissue microarrays and bone marrow sections. Results showed that epithelial Shh, Smo and Ptch expression was up-regulated, whereas stromal Smo, Ptch, and Gli1 expression was down-regulated in prostate carcinomas compared to non-neoplastic peripheral zone tissue. Ptch expression was modulated further in high-grade and high-stage primary tumours and in bone marrow metastases. Hh signalling correlated with ki67 and vascular endothelial growth factor (VEGF) but not with CD31 expression. Conclusion Our results highlight the importance of Hh-mediated epithelial–mesenchymal interactions in the non-neoplastic prostate and imply that shifting the balance from paracrine towards autocrine signalling is important in the pathogenesis and progression of prostate carcinoma. PMID:21707705

  14. Autocrine MCP-1/CCR2 signaling stimulates proliferation and migration of renal carcinoma cells

    PubMed Central

    Küper, Christoph; Beck, Franz-Xaver; Neuhofer, Wolfgang

    2016-01-01

    The chemokine monocyte chemoattractant protein-1 [MCP-1; also known as chemokine (C-C motif) ligand 2] is an important mediator of monocyte recruitment during inflammatory processes. Pathologically high expression levels of MCP-1 by tumor cells have been observed in a variety of cancer types. In the majority of cases, high MCP-1 expression is associated with a poor prognosis, as infiltration of the tumor with inflammatory monocytes promotes tumor progression and metastasis. MCP-1 is also expressed in renal cell carcinoma (RCC). In the present study, the function and the regulation of MCP-1 was investigated in two RCC cell lines, CaKi-1 and 786-O. In both cell lines, expression of MCP-1 was significantly enhanced compared with non-cancerous control cells. As expected, secretion of MCP-1 into the medium facilitated the recruitment of peripheral blood monocytes via the chemokine (C-C motif) receptor type 2 (CCR2). As expression of CCR2 was also detected in 786-O and CaKi-1 cells, the effect of autocrine MCP-1/CCR2 signaling was evaluated in these cells. In proliferation assays, administration of an MCP-1 neutralizing antibody or of a CCR2 antagonist to CaKi-1 and 786-O cells significantly decreased cell growth; supplementation of the growth medium with recombinant human MCP-1 had no additional effect on proliferation. The migration ability of RCC cells was impaired by MCP-1 neutralization or pharmacological CCR2 inhibition, while it was stimulated by the addition of recombinant human MCP-1, compared with untreated control cells. Finally, substantial differences in the regulation of MCP-1 expression were observed between RCC cell lines. In CaKi-1 cells, expression of MCP-1 appears to be largely mediated by the transcription factor nuclear factor of activated T cells 5, while in 786-O cells, deletion of the tumor suppressor gene Von-Hippel-Lindau appeared to be responsible for MCP-1 upregulation, as suggested by previous studies. Taken together, the results of the

  15. Autocrine endocannabinoid signaling through CB1 receptors potentiates OX1 orexin receptor signaling.

    PubMed

    Jäntti, Maria H; Putula, Jaana; Turunen, Pauli M; Näsman, Johnny; Reijonen, Sami; Lindqvist, Christer; Kukkonen, Jyrki P

    2013-03-01

    It has been proposed that OX(1) orexin receptors and CB(1) cannabinoid receptors can form heteromeric complexes, which affect the trafficking of OX(1) receptors and potentiate OX(1) receptor signaling to extracellular signal-regulated kinase (ERK). We have recently shown that OX(1) receptor activity releases high levels of the endocannabinoid 2-arachidonoyl glycerol (2-AG), suggesting an alternative route for OX(1)-CB(1) receptor interaction in signaling, for instance, in retrograde synaptic transmission. In the current study, we set out to investigate this possibility utilizing recombinant Chinese hamster ovary K1 cells. 2-AG released from OX(1) receptor-expressing cells acted as a potent paracrine messenger stimulating ERK activity in neighboring CB(1) receptor-expressing cells. When OX(1) and CB(1) receptors were expressed in the same cells, OX(1) stimulation-induced ERK phosphorylation and activity were strongly potentiated. The potentiation but not the OX(1) response as such was fully abolished by specific inhibition of CB(1) receptors or the enzyme responsible for 2-AG generation, diacylglycerol lipase (DAGL). Although the results do not exclude the previously proposed OX(1)-CB(1) heteromerization, they nevertheless unequivocally identify DAGL-dependent 2-AG generation as the pivotal determinant of the OX(1)-CB(1) synergism and thus suggest a functional rather than a molecular interaction of OX(1) and CB(1) receptors. PMID:23233488

  16. Tumor necrosis factor as an autocrine and paracrine signal controlling the macrophage secretory response to Candida albicans.

    PubMed Central

    Blasi, E; Pitzurra, L; Bartoli, A; Puliti, M; Bistoni, F

    1994-01-01

    We have previously demonstrated that the hyphal form of Candida albicans (H-Candida), but not the yeast form (Y-Candida), acts as a macrophage-stimulating agent. The early response (1 to 3 h) of the macrophage cell line ANA-1 to H-Candida results in enhanced tumor necrosis factor (TNF) transcription and production. Here we show that when coincubation times are prolonged (3 to 24 h), Y-Candida also exhibits stimulatory properties. This phenomenon has been ascribed to the occurrence of the dimorphic transition, as demonstrated by microscopic evaluation of the cultures and by experiments in which both killed Y-Candida and the agerminative strain C. albicans PCA-2 failed to induce cytokine production. TNF produced in response to H-Candida acts as an autocrine and paracrine signal controlling the macrophage secretory response to C. albicans. In fact, addition of anti-TNF polyclonal antibodies to the coculture of ANA-1 macrophages and H-Candida results in a marked and time-dependent decrease of TNF transcript levels. Moreover, pretreatment of macrophages with recombinant TNF for 3 h enhances TNF and induces interleukin-1 production in response to both forms of Candida, while pretreatment for 18 h renders macrophages refractory to any stimuli. Interestingly, the kinetics of interleukin-1 transcription and secretion in response to H-Candida are delayed with respect to those of TNF. Overall, these data indicate that TNF, produced by macrophages in response to H-Candida, regulates its own production as well as that of other soluble factors, thus suggesting that this cytokine plays multiple roles in the immune mechanisms involved in Candida infection. Images PMID:8132326

  17. Overexpression of c-Met and CD44v6 receptors contributes to autocrine TGF-β1 signaling in interstitial lung disease.

    PubMed

    Ghatak, Shibnath; Bogatkevich, Galina S; Atnelishvili, Ilia; Akter, Tanjina; Feghali-Bostwick, Carol; Hoffman, Stanley; Fresco, Victor M; Fuchs, John C; Visconti, Richard P; Markwald, Roger R; Padhye, Subhas B; Silver, Richard M; Hascall, Vincent C; Misra, Suniti

    2014-03-14

    The hepatocyte growth factor (HGF) and the HGF receptor Met pathway are important in the pathogenesis of interstitial lung disease (ILD). Alternatively spliced isoforms of CD44 containing variable exon 6 (CD44v6) and its ligand hyaluronan (HA) alter cellular function in response to interaction between CD44v6 and HGF. TGF-β1 is the crucial cytokine that induces fibrotic action in ILD fibroblasts (ILDFbs). We have identified an autocrine TGF-β1 signaling that up-regulates both Met and CD44v6 mRNA and protein expression. Western blot analysis, flow cytometry, and immunostaining revealed that CD44v6 and Met colocalize in fibroblasts and in tissue sections from ILD patients and in lungs of bleomycin-treated mice. Interestingly, cell proliferation induced by TGF-β1 is mediated through Met and CD44v6. Further, cell proliferation mediated by TGF-β1/CD44v6 is ERK-dependent. In contrast, action of Met on ILDFb proliferation does not require ERK but does require p38(MAPK). ILDFbs were sorted into CD44v6(+)/Met(+) and CD44v6(-)/Met(+) subpopulations. HGF inhibited TGF-β1-stimulated collagen-1 and α-smooth muscle cell actin expression in both of these subpopulations by interfering with TGF-β1 signaling. HGF alone markedly stimulated CD44v6 expression, which in turn regulated collagen-1 synthesis. Our data with primary lung fibroblast cultures with respect to collagen-1, CD44v6, and Met expressions were supported by immunostaining of lung sections from bleomycin-treated mice and from ILD patients. These results define the relationships between CD44v6, Met, and autocrine TGF-β1 signaling and the potential modulating influence of HGF on TGF-β1-induced CD44v6-dependent fibroblast function in ILD fibrosis. PMID:24324260

  18. Autocrine abscisic acid plays a key role in quartz-induced macrophage activation.

    PubMed

    Magnone, Mirko; Sturla, Laura; Jacchetti, Emanuela; Scarfì, Sonia; Bruzzone, Santina; Usai, Cesare; Guida, Lucrezia; Salis, Annalisa; Damonte, Gianluca; De Flora, Antonio; Zocchi, Elena

    2012-03-01

    Inhalation of quartz induces silicosis, a lung disease where alveolar macrophages release inflammatory mediators, including prostaglandin-E(2) (PGE(2)) and tumor necrosis factor α (TNF-α). Here we report the pivotal role of abscisic acid (ABA), a recently discovered human inflammatory hormone, in silica-induced activation of murine RAW264.7 macrophages and of rat alveolar macrophages (AMs). Stimulation of both RAW264.7 cells and AMs with quartz induced a significant increase of ABA release (5- and 10-fold, respectively), compared to untreated cells. In RAW264.7 cells, autocrine ABA released after quartz stimulation sequentially activates the plasma membrane receptor LANCL2 and NADPH oxidase, generating a Ca(2+) influx resulting in NFκ B nuclear translocation and PGE(2) and TNF-α release (3-, 2-, and 3.5-fold increase, respectively, compared to control, unstimulated cells). Quartz-stimulated RAW264.7 cells silenced for LANCL2 or preincubated with a monoclonal antibody against ABA show an almost complete inhibition of NFκ B nuclear translocation and PGE(2) and TNF-α release compared to controls electroporated with a scramble oligonucleotide or preincubated with an unrelated antibody. AMs showed similar early and late ABA-induced responses as RAW264.7 cells. These findings identify ABA and LANCL2 as key mediators in quartz-induced inflammation, providing possible new targets for antisilicotic therapy. PMID:22042223

  19. Silencing of core transcription factors in human EC cells highlights the importance of autocrine FGF signaling for self-renewal

    PubMed Central

    Greber, Boris; Lehrach, Hans; Adjaye, James

    2007-01-01

    Background Despite their distinct origins, human embryonic stem (hES) and embryonic carcinoma (hEC) cells share a number of similarities such as surface antigen expression, growth characteristics, the ability to either self-renew or differentiate, and control of the undifferentiated state by the same core transcription factors. To obtain further insights into the regulation of self-renewal, we have silenced hES/hEC cell-specific genes in NCCIT hEC cells and analysed the downstream effects by means of microarrays. Results RNAi-mediated silencing of OCT4 and SOX2 induced differentiation with mesodermal characteristics. Markers of trophoblast induction were only transiently up-regulated in the OCT4 knock-down. Independent knock-downs of NANOG produced a proliferation rather than a differentiation phenotype, which may be due to high NANOG expression levels in the cell line used. Published ChIP-chip data from hES cells were used to identify putative direct targets. RNAi-mediated differentiation was accompanied by direct down-regulation of known hES/hEC cell markers. This included all three core transcription factors in the case of the OCT4 and SOX2 knock-downs, confirming previous findings of reciprocal activation in ES cells. Furthermore, large numbers of histone genes as well as epigenetic regulators were differentially expressed, pointing at chromatin remodeling as an additional regulatory level in the differentiation process. Moreover, loss of self-renewal was accompanied by the down-regulation of genes involved in FGF signaling. FGF receptor inhibition for short and prolonged periods of time revealed that the ERK/MAPK cascade is activated by endogenously expressed fibroblast growth factors and that FGF signaling is cruicial for maintaining the undifferentiated state of hEC cells, like in hES cells. Conclusion Control of self-renewal appears to be very similar in hEC and hES cells. This is supported by large numbers of common transcription factor targets and the

  20. Interleukin 6 promotes endometrial cancer growth through an autocrine feedback loop involving ERK–NF-κB signaling pathway

    SciTech Connect

    Che, Qi; Liu, Bin-Ya; Wang, Fang-Yuan; He, Yin-Yan; Lu, Wen; Liao, Yun; Gu, Wei; Wan, Xiao-Ping

    2014-03-28

    Highlights: • IL-6 could promote endometrial cancer cells proliferation. • IL-6 promotes its own production through an autocrine feedback loop. • ERK and NF-κB pathway inhibitors inhibit IL-6 production and tumor growth. • IL-6 secretion relies on the activation of ERK–NF-κB pathway axis. • An orthotopic nude endometrial carcinoma model confirms the effect of IL-6. - Abstract: Interleukin (IL)-6 as an inflammation factor, has been proved to promote cancer proliferation in several human cancers. However, its role in endometrial cancer has not been studied clearly. Previously, we demonstrated that IL-6 promoted endometrial cancer progression through local estrogen biosynthesis. In this study, we proved that IL-6 could directly stimulate endometrial cancer cells proliferation and an autocrine feedback loop increased its production even after the withdrawal of IL-6 from the medium. Next, we analyzed the mechanism underlying IL-6 production in the feedback loop and found that its production and IL-6-stimulated cell proliferation were effectively blocked by pharmacologic inhibitors of nuclear factor-kappa B (NF-κB) and extra-cellular signal-regulated kinase (ERK). Importantly, activation of ERK was upstream of the NF-κB pathways, revealing the hierarchy of this event. Finally, we used an orthotopic nude endometrial carcinoma model to confirm the effects of IL-6 on the tumor progression. Taken together, these data indicate that IL-6 promotes endometrial carcinoma growth through an expanded autocrine regulatory loop and implicate the ERK–NF-κB pathway as a critical mediator of IL-6 production, implying IL-6 to be an important therapeutic target in endometrial carcinoma.

  1. Interleukin 24 is induced by the RET/PTC3 oncoprotein and is an autocrine growth factor for epithelial cells.

    PubMed

    Shinohara, Shogo; Rothstein, Jay L

    2004-09-30

    Thyroid cancers, like hematological malignancies, are commonly associated with chromosomal translocations leading to the formation of fusion proteins. Through altered signaling by fusion proteins, cell death and survival pathways are disrupted and the physiological balance of cell-cell communication may be lost. A consequence of this disruption is the release of factors by stressed cells that alert the host. One type of host response is leukocytic infiltration that may develop into chronic inflammation or autoimmune disease. Although inflammation can be associated with neoplastic tissue, the mechanism driving this process is largely unknown. Therefore, to address the mechanism of cancer inflammation we investigated the effects of an oncogene in a murine model system. A comprehensive genetic analysis revealed several soluble factors that were induced by RET/papillary thyroid carcinoma (PTC)3 gene expression including several proinflammatory cytokines, chemokines and immunologically relevant costimulatory molecules. Following a large genetic screen using RP3-expressing thyroid cells, we identified a highly abundant transcript and later identified it as interleukin 24 (Il24), a cytokine with diverse tumor suppressor and inflammatory activities. We show that RET/PTC3 induces Il24 expression in rat thyrocytes and that this expression is dependent on the signaling properties of its tyrosine kinase. Likewise, RET/PTC3 induces large amounts of Il24 following expression in murine thyrocytes, but its expression is dramatically reduced in poorly differentiated carcinomas, a finding that parallels the loss of RET/PTC3 expression. Consistent with its behavior as a tumor suppressor, the loss of Il24 coincided with the loss of RET/PTC3 in poorly differentiated mouse tumors. A functional role of Il24 in the autocrine growth/survival of RET/PTC3-expressing thyroid cells was identified helping to support its role in cellular transformation. These data suggest that the induction of

  2. Interleukin 6 promotes endometrial cancer growth through an autocrine feedback loop involving ERK-NF-κB signaling pathway.

    PubMed

    Che, Qi; Liu, Bin-Ya; Wang, Fang-Yuan; He, Yin-Yan; Lu, Wen; Liao, Yun; Gu, Wei; Wan, Xiao-Ping

    2014-03-28

    Interleukin (IL)-6 as an inflammation factor, has been proved to promote cancer proliferation in several human cancers. However, its role in endometrial cancer has not been studied clearly. Previously, we demonstrated that IL-6 promoted endometrial cancer progression through local estrogen biosynthesis. In this study, we proved that IL-6 could directly stimulate endometrial cancer cells proliferation and an autocrine feedback loop increased its production even after the withdrawal of IL-6 from the medium. Next, we analyzed the mechanism underlying IL-6 production in the feedback loop and found that its production and IL-6-stimulated cell proliferation were effectively blocked by pharmacologic inhibitors of nuclear factor-kappa B (NF-κB) and extra-cellular signal-regulated kinase (ERK). Importantly, activation of ERK was upstream of the NF-κB pathways, revealing the hierarchy of this event. Finally, we used an orthotopic nude endometrial carcinoma model to confirm the effects of IL-6 on the tumor progression. Taken together, these data indicate that IL-6 promotes endometrial carcinoma growth through an expanded autocrine regulatory loop and implicate the ERK-NF-κB pathway as a critical mediator of IL-6 production, implying IL-6 to be an important therapeutic target in endometrial carcinoma. PMID:24582558

  3. Tachykinin acts upstream of autocrine Hedgehog signaling during nociceptive sensitization in Drosophila

    PubMed Central

    Im, Seol Hee; Takle, Kendra; Jo, Juyeon; Babcock, Daniel T; Ma, Zhiguo; Xiang, Yang; Galko, Michael J

    2015-01-01

    Pain signaling in vertebrates is modulated by neuropeptides like Substance P (SP). To determine whether such modulation is conserved and potentially uncover novel interactions between nociceptive signaling pathways we examined SP/Tachykinin signaling in a Drosophila model of tissue damage-induced nociceptive hypersensitivity. Tissue-specific knockdowns and genetic mutant analyses revealed that both Tachykinin and Tachykinin-like receptor (DTKR99D) are required for damage-induced thermal nociceptive sensitization. Electrophysiological recording showed that DTKR99D is required in nociceptive sensory neurons for temperature-dependent increases in firing frequency upon tissue damage. DTKR overexpression caused both behavioral and electrophysiological thermal nociceptive hypersensitivity. Hedgehog, another key regulator of nociceptive sensitization, was produced by nociceptive sensory neurons following tissue damage. Surprisingly, genetic epistasis analysis revealed that DTKR function was upstream of Hedgehog-dependent sensitization in nociceptive sensory neurons. Our results highlight a conserved role for Tachykinin signaling in regulating nociception and the power of Drosophila for genetic dissection of nociception. DOI: http://dx.doi.org/10.7554/eLife.10735.001 PMID:26575288

  4. Autocrine secretion of 15d-PGJ2 mediates simvastatin-induced apoptotic burst in human metastatic melanoma cells

    PubMed Central

    Wasinger, Christine; Künzl, Martin; Minichsdorfer, Christoph; Höller, Christoph; Zellner, Maria; Hohenegger, Martin

    2014-01-01

    Background and Purpose Despite new therapeutic approaches, metastatic melanomas still have a poor prognosis. Statins reduce low-density lipoprotein cholesterol and exert anti-inflammatory and anti-proliferative actions. We have recently shown that simvastatin triggers an apoptotic burst in human metastatic melanoma cells by the synthesis of an autocrine factor. Experimental Approach The current in vitro study was performed in human metastatic melanoma cell lines (A375, 518a2) and primary human melanocytes and melanoma cells. The secretome of simvastatin-stressed cells was analysed with two-dimensional difference gel electrophoresis and MS. The signalling pathways involved were analysed at the protein and mRNA level using pharmacological approaches and siRNA technology. Key Results Simvastatin was shown to activate a stress cascade, leading to the synthesis of 15-deoxy-12,14-PGJ2 (15d-PGJ2), in a p38- and COX-2-dependent manner. Significant concentrations of 15d-PGJ2 were reached in the medium of melanoma cells, which were sufficient to activate caspase 8 and the mitochondrial pathway of apoptosis. Inhibition of lipocalin-type PGD synthase, a key enzyme for 15d-PGJ2 synthesis, abolished the apoptotic effect of simvastatin. Moreover, 15d-PGJ2 was shown to bind to the fatty acid-binding protein 5 (FABP5), which was up-regulated and predominantly detected in the secretome of simvastatin-stressed cells. Knockdown of FABP5 abolished simvastatin-induced activation of PPAR-γ and amplified the apoptotic response. Conclusions and Implications We characterized simvastatin-induced activation of the 15d-PGJ2/FABP5 signalling cascades, which triggered an apoptotic burst in melanoma cells but did not affect primary human melanocytes. These data support the rationale for the pharmacological targeting of 15d-PGJ2 in metastatic melanoma. PMID:25091578

  5. Stable Ectopic Expression of ST6GALNAC5 Induces Autocrine MET Activation and Anchorage-Independence in MDCK Cells

    PubMed Central

    Chu, Chia; Bottaro, Donald P.; Betenbaugh, Michael J.; Shiloach, Joseph

    2016-01-01

    The epithelial-mesenchymal transition (EMT) is a complex cancer progression that can boost the metastatic potential of transformed cells by inducing migration, loss of cell adhesion, and promoting proliferation under anchorage-independent conditions. A DNA microarray analysis was performed comparing parental anchorage-dependent MDCK cells and anchorage-independent MDCK cells that were engineered to express human siat7e (ST6GALNAC5). The comparison identified several genes involved in the EMT process that were differentially expressed between the anchorage-dependent and the anchorage-independent MDCK cell lines. The hepatocyte growth factor gene (hgf) was found to be over-expressed in the engineered MDCK-siat7e cells at both transcription and protein expression levels. Phosphorylation analysis of the MET receptor tyrosine kinase confirmed the activation of an autocrine loop of the HGF/ MET signaling pathway in the MDCK-siat7e cells. When MET activities were suppressed by using the small-molecular inhibitor drug PF-02341066 (Crizotinib), the anchorage-independent MDCK-siat7e cells reverted to the cellular morphology of the parental anchorage-dependent MDCK cells. These observations indicate that the MET receptor plays a central role in the growth properties of the MDCK cells and its phosphorylation status is likely dependent on sialylation. Further investigation of the downstream signaling targets in the MET network showed that the degree of MDCK cell adhesion correlated with secretion levels of a matrix metalloproteinase, MMP1, suggesting a role of metalloproteinases in the EMT process. These results demonstrate that in addition to its application in biotechnology processes, MDCK-siat7e may serve as a model cell for metastasis studies to decipher the sequence of events leading up to the activation of EMT. PMID:26848584

  6. The Growth and Aggressive Behavior of Human Osteosarcoma Is Regulated by a CaMKII-Controlled Autocrine VEGF Signaling Mechanism

    PubMed Central

    Daft, Paul G.; Yang, Yang; Napierala, Dobrawa; Zayzafoon, Majd

    2015-01-01

    Osteosarcoma (OS) is a hyperproliferative malignant tumor that requires a high vascular density to maintain its large volume. Vascular Endothelial Growth Factor (VEGF) plays a crucial role in angiogenesis and acts as a paracrine and autocrine agent affecting both endothelial and tumor cells. The alpha-Ca2+/Calmodulin kinase two (α-CaMKII) protein is an important regulator of OS growth. Here, we investigate the role of α-CaMKII-induced VEGF in the growth and tumorigenicity of OS. We show that the pharmacologic and genetic inhibition of α-CaMKII results in decreases in VEGF gene expression (50%) and protein secretion (55%), while α- CaMKII overexpression increases VEGF gene expression (250%) and protein secretion (1,200%). We show that aggressive OS cells (143B) express high levels of VEGF receptor 2 (VEGFR-2) and respond to exogenous VEGF (100nm) by increasing intracellular calcium (30%). This response is ameliorated by the VEGFR inhibitor CBO-P11, suggesting that secreted VEGF results in autocrine stimulated α-CaMKII activation. Furthermore, we show that VEGF and α-CaMKII inhibition decreases the transactivation of the HIF-1α and AP-1 reporter constructs. Additionally, chromatin immunoprecipitation assay shows significantly decreased binding of HIF-1α and AP-1 to their responsive elements in the VEGF promoter. These data suggest that α-CaMKII regulates VEGF transcription by controlling HIF-1α and AP-1 transcriptional activities. Finally, CBO-P11, KN-93 (CaMKII inhibitor) and combination therapy significantly reduced tumor burden in vivo. Our results suggest that VEGF-induced OS tumor growth is controlled by CaMKII and dual therapy by CaMKII and VEGF inhibitors could be a promising therapy against this devastating adolescent disease. PMID:25860662

  7. Ovarian cancer stem-like cells differentiate into endothelial cells and participate in tumor angiogenesis through autocrine CCL5 signaling.

    PubMed

    Tang, Shu; Xiang, Tong; Huang, Shuo; Zhou, Jie; Wang, Zhongyu; Xie, Rongkai; Long, Haixia; Zhu, Bo

    2016-06-28

    Cancer stem cells (CSCs) are well known for their self-regeneration and tumorigenesis potential. In addition, the multi-differentiation potential of CSCs has become a popular issue and continues to attract increased research attention. Recent studies demonstrated that CSCs are able to differentiate into functional endothelial cells and participate in tumor angiogenesis. In this study, we found that ovarian cancer stem-like cells (CSLCs) activate the NF-κB and STAT3 signal pathways through autocrine CCL5 signaling and mediate their own differentiation into endothelial cells (ECs). Our data demonstrate that CSLCs differentiate into ECs morphologically and functionally. Anti-CCL5 antibodies and CCL5-shRNA lead to markedly inhibit EC differentiation and the tube formation of CSLCs, both in vitro and in vivo. Recombinant human-CCL5 significantly promotes ovarian CSLCs that differentiate into ECs and form microtube network. The CCL5-mediated EC differentiation of CSLCs depends on binding to receptors, such as CCR1, CCR3, and CCR5. The results demonstrated that CCL5-CCR1/CCR3/CCR5 activates the NF-κB and STAT3 signal pathways, subsequently mediating the differentiation of CSLCs into ECs. Therefore, this study was conducted based on the theory that CSCs improve tumor angiogenesis and provides a novel strategy for anti-angiogenesis in ovarian cancer. PMID:27033454

  8. Axin2 marks quiescent hair follicle bulge stem cells that are maintained by autocrine Wnt/β-catenin signaling

    PubMed Central

    Lim, Xinhong; Tan, Si Hui; Yu, Ka Lou; Lim, Sophia Beng Hui; Nusse, Roeland

    2016-01-01

    How stem cells maintain their identity and potency as tissues change during growth is not well understood. In mammalian hair, it is unclear how hair follicle stem cells can enter an extended period of quiescence during the resting phase but retain stem cell potential and be subsequently activated for growth. Here, we use lineage tracing and gene expression mapping to show that the Wnt target gene Axin2 is constantly expressed throughout the hair cycle quiescent phase in outer bulge stem cells that produce their own Wnt signals. Ablating Wnt signaling in the bulge cells causes them to lose their stem cell potency to contribute to hair growth and undergo premature differentiation instead. Bulge cells express secreted Wnt inhibitors, including Dickkopf (Dkk) and secreted frizzled-related protein 1 (Sfrp1). However, the Dickkopf 3 (Dkk3) protein becomes localized to the Wnt-inactive inner bulge that contains differentiated cells. We find that Axin2 expression remains confined to the outer bulge, whereas Dkk3 continues to be localized to the inner bulge during the hair cycle growth phase. Our data suggest that autocrine Wnt signaling in the outer bulge maintains stem cell potency throughout hair cycle quiescence and growth, whereas paracrine Wnt inhibition of inner bulge cells reinforces differentiation. PMID:26903625

  9. Axin2 marks quiescent hair follicle bulge stem cells that are maintained by autocrine Wnt/β-catenin signaling.

    PubMed

    Lim, Xinhong; Tan, Si Hui; Yu, Ka Lou; Lim, Sophia Beng Hui; Nusse, Roeland

    2016-03-15

    How stem cells maintain their identity and potency as tissues change during growth is not well understood. In mammalian hair, it is unclear how hair follicle stem cells can enter an extended period of quiescence during the resting phase but retain stem cell potential and be subsequently activated for growth. Here, we use lineage tracing and gene expression mapping to show that the Wnt target gene Axin2 is constantly expressed throughout the hair cycle quiescent phase in outer bulge stem cells that produce their own Wnt signals. Ablating Wnt signaling in the bulge cells causes them to lose their stem cell potency to contribute to hair growth and undergo premature differentiation instead. Bulge cells express secreted Wnt inhibitors, including Dickkopf (Dkk) and secreted frizzled-related protein 1 (Sfrp1). However, the Dickkopf 3 (Dkk3) protein becomes localized to the Wnt-inactive inner bulge that contains differentiated cells. We find that Axin2 expression remains confined to the outer bulge, whereas Dkk3 continues to be localized to the inner bulge during the hair cycle growth phase. Our data suggest that autocrine Wnt signaling in the outer bulge maintains stem cell potency throughout hair cycle quiescence and growth, whereas paracrine Wnt inhibition of inner bulge cells reinforces differentiation. PMID:26903625

  10. Arsenite evokes IL-6 secretion, autocrine regulation of STAT3 signaling, and miR-21 expression, processes involved in the EMT and malignant transformation of human bronchial epithelial cells

    SciTech Connect

    Luo, Fei; Xu, Yuan; Ling, Min; Zhao, Yue; Xu, Wenchao; Liang, Xiao; Jiang, Rongrong; Wang, Bairu; Bian, Qian; Liu, Qizhan

    2013-11-15

    Arsenite is an established human carcinogen, and arsenite-induced inflammation contributes to malignant transformation of cells, but the molecular mechanisms by which cancers are produced remain to be established. The present results showed that, evoked by arsenite, secretion of interleukin-6 (IL-6), a pro-inflammatory cytokine, led to the activation of STAT3, a transcription activator, and to increased levels of a microRNA, miR-21. Blocking IL-6 with anti-IL-6 antibody and inhibiting STAT3 activation reduced miR-21 expression. For human bronchial epithelial cells, cultured in the presence of anti-IL-6 antibody for 3 days, the arsenite-induced EMT and malignant transformation were reversed. Thus, IL-6, acting on STAT3 signaling, which up-regulates miR-21in an autocrine manner, contributes to the EMT induced by arsenite. These data define a link from inflammation to EMT in the arsenite-induced malignant transformation of HBE cells. This link, mediated through miRNAs, establishes a mechanism for arsenite-induced lung carcinogenesis. - Highlights: • Arsenite evokes IL-6 secretion. • IL-6 autocrine mediates STAT3 signaling and up-regulates miR-21expression. • Inflammation is involved in arsenite-induced EMT.

  11. Autocrine TGF-β/ZEB/microRNA-200 signal transduction drives epithelial-mesenchymal transition: Kinetic models predict minimal drug dose to inhibit metastasis.

    PubMed

    Rateitschak, Katja; Kaderali, Lars; Wolkenhauer, Olaf; Jaster, Robert

    2016-08-01

    The epithelial-mesenchymal transition (EMT) is the crucial step that cancer cells must pass before they can undergo metastasis. The transition requires the activity of complex functional networks that downregulate properties of the epithelial phenotype and upregulate characteristics of the mesenchymal phenotype. The networks frequently include reciprocal repressions between transcription factors (TFs) driving the EMT and microRNAs (miRs) inducing the reverse process, termed mesenchymal-epithelial transition (MET). In this work we develop four kinetic models that are based on experimental data and hypotheses describing how autocrine transforming growth factor-β (TGF-β) signal transduction induces and maintains an EMT by upregulating the TFs ZEB1 and ZEB2 which repress the expression of the miR-200b/c family members. After successful model calibration we validate our models by predicting requirements for the maintenance of the mesenchymal steady state which agree with experimental data. Finally, we apply our validated kinetic models for the design of experiments in cancer therapy. We demonstrate how steady state properties of the kinetic models, combined with data from tumor-derived cell lines of individual patients, can predict the minimal amount of an inhibitor to induce a MET. PMID:27000495

  12. Autocrine activity of cysteinyl leukotrienes in human vascular endothelial cells: Signaling through the CysLT₂ receptor.

    PubMed

    Capra, Valérie; Carnini, Chiara; Accomazzo, Maria Rosa; Di Gennaro, Antonio; Fiumicelli, Marco; Borroni, Emanuele; Brivio, Ivan; Buccellati, Carola; Mangano, Paolo; Carnevali, Silvia; Rovati, Gianenrico; Sala, Angelo

    2015-07-01

    We evaluated the autocrine activities of cysteinyl leukotrienes (cysteinyl-LTs) in HUVEC and studied the signaling and the pharmacological profile of the CysLT2 receptor (CysLT2R) expressed by ECs, finally assessing the role of the CysLT2R in permeability alterations in a model of isolated brain. Cysteinyl-LTs and their precursor LTA4 contracted HUVEC and increased permeability to macromolecules, increasing the formation of stress fibers through the phosphorylation of myosin light-chain (MLC) following Rho and PKC activation. Accordingly, in an organ model of cerebral vasculature with an intact intima, neutrophils challenge leaded to significant formation of cysteinyl-LTs and edema. Pretreatment with a selective CysLT2R antagonist prevented cytoskeleton rearrangement and HUVEC contraction, along with edema formation in the brain preparation, while leaving the synthesis of cysteinyl-LTs unaffected. We also demonstrate here that the CysLT1R antagonist zafirlukast, pranlukast, pobilukast and iralukast also possess CysLT2R antagonistic activity, which could help in reconsidering previous data on the role of cysteinyl-LTs in the cardiovascular system. The results obtained are further supporting a potential role for CysLT2R in cardiovascular disease. PMID:25839425

  13. Transcriptional expression of myelin basic protein in oligodendrocytes depends on functional syntaxin 4: a potential correlation with autocrine signaling.

    PubMed

    Bijlard, Marjolein; Klunder, Bert; de Jonge, Jenny C; Nomden, Anita; Tyagi, Sanjay; de Vries, Hans; Hoekstra, Dick; Baron, Wia

    2015-02-01

    Myelination of axons by oligodendrocytes is essential for saltatory nerve conduction. To form myelin membranes, a coordinated synthesis and subsequent polarized transport of myelin components are necessary. Here, we show that as part of the mechanism to establish membrane polarity, oligodendrocytes exploit a polarized distribution of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) machinery components syntaxins 3 and 4, localizing to the cell body and the myelin membrane, respectively. Our data further reveal that the expression of myelin basic protein (MBP), a myelin-specific protein that is synthesized "on site" after transport of its mRNA, depends on the correct functioning of the SNARE machinery, which is not required for mRNA granule assembly and transport per se. Thus, downregulation and overexpression of syntaxin 4 but not syntaxin 3 in oligodendrocyte progenitor cells but not immature oligodendrocytes impeded MBP mRNA transcription, thereby preventing MBP protein synthesis. The expression and localization of another myelin-specific protein, proteolipid protein (PLP), was unaltered. Strikingly, conditioned medium obtained from developing oligodendrocytes was able to rescue the block of MBP mRNA transcription in syntaxin 4-downregulated cells. These findings indicate that the initiation of the biosynthesis of MBP mRNA relies on a syntaxin 4-dependent mechanism, which likely involves activation of an autocrine signaling pathway. PMID:25512606

  14. Transcriptional Expression of Myelin Basic Protein in Oligodendrocytes Depends on Functional Syntaxin 4: a Potential Correlation with Autocrine Signaling

    PubMed Central

    Bijlard, Marjolein; Klunder, Bert; de Jonge, Jenny C.; Nomden, Anita; Tyagi, Sanjay; de Vries, Hans; Hoekstra, Dick

    2014-01-01

    Myelination of axons by oligodendrocytes is essential for saltatory nerve conduction. To form myelin membranes, a coordinated synthesis and subsequent polarized transport of myelin components are necessary. Here, we show that as part of the mechanism to establish membrane polarity, oligodendrocytes exploit a polarized distribution of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) machinery components syntaxins 3 and 4, localizing to the cell body and the myelin membrane, respectively. Our data further reveal that the expression of myelin basic protein (MBP), a myelin-specific protein that is synthesized “on site” after transport of its mRNA, depends on the correct functioning of the SNARE machinery, which is not required for mRNA granule assembly and transport per se. Thus, downregulation and overexpression of syntaxin 4 but not syntaxin 3 in oligodendrocyte progenitor cells but not immature oligodendrocytes impeded MBP mRNA transcription, thereby preventing MBP protein synthesis. The expression and localization of another myelin-specific protein, proteolipid protein (PLP), was unaltered. Strikingly, conditioned medium obtained from developing oligodendrocytes was able to rescue the block of MBP mRNA transcription in syntaxin 4-downregulated cells. These findings indicate that the initiation of the biosynthesis of MBP mRNA relies on a syntaxin 4-dependent mechanism, which likely involves activation of an autocrine signaling pathway. PMID:25512606

  15. Is Dynamic Autocrine Insulin Signaling Possible? A Mathematical Model Predicts Picomolar Concentrations of Extracellular Monomeric Insulin within Human Pancreatic Islets

    PubMed Central

    Wang, Minghu; Li, Jiaxu; Lim, Gareth E.; Johnson, James D.

    2013-01-01

    Insulin signaling is essential for -cell survival and proliferation in vivo. Insulin also has potent mitogenic and anti-apoptotic actions on cultured -cells, with maximum effect in the high picomolar range and diminishing effect at high nanomolar doses. In order to understand whether these effects of insulin are constitutive or can be subjected to physiological modulation, it is essential to estimate the extracellular concentration of monomeric insulin within an intact islet. Unfortunately, the in vivo concentration of insulin monomers within the islet cannot be measured directly with current technology. Here, we present the first mathematical model designed to estimate the levels of monomeric insulin within the islet extracellular space. Insulin is released as insoluble crystals that exhibit a delayed dissociation into hexamers, dimers, and eventually monomers, which only then can act as signaling ligands. The rates at which different forms of insulin dissolve in vivo have been estimated from studies of peripheral insulin injection sites. We used this and other information to formulate a mathematical model to estimate the local insulin concentration within a single islet as a function of glucose. Model parameters were estimated from existing literature. Components of the model were validated using experimental data, if available. Model analysis predicted that the majority of monomeric insulin in the islet is that which has been returned from the periphery, and the concentration of intra-islet monomeric insulin varies from 50–300 pM when glucose is in the physiological range. Thus, our results suggest that the local concentration of monomeric insulin within the islet is in the picomolar ‘sweet spot’ range of insulin doses that activate the insulin receptor and have the most potent effects on -cells in vitro. Together with experimental data, these estimations support the concept that autocrine/paracrine insulin signalling within the islet is dynamic, rather

  16. Constitutive IDO expression in human cancer is sustained by an autocrine signaling loop involving IL-6, STAT3 and the AHR.

    PubMed

    Litzenburger, Ulrike M; Opitz, Christiane A; Sahm, Felix; Rauschenbach, Katharina J; Trump, Saskia; Winter, Marcus; Ott, Martina; Ochs, Katharina; Lutz, Christian; Liu, Xiangdong; Anastasov, Natasa; Lehmann, Irina; Höfer, Thomas; von Deimling, Andreas; Wick, Wolfgang; Platten, Michael

    2014-02-28

    Indoleamine-2,3-dioxygenase (IDO) inhibitors have entered clinical trials based on their ability to restore anti-tumor immunity in preclinical studies. However, the mechanisms leading to constitutive expression of IDO in human tumors are largely unknown. Here we analyzed the pathways mediating constitutive IDO expression in human cancer. IDO-positive tumor cells and tissues showed basal phosphorylation and acetylation of STAT3 as evidenced by western blotting and immunoprecipitation. Inhibition of IL-6 or STAT3 using siRNA and/or pharmacological inhibitors reduced IDO mRNA and protein expression as well as kynurenine formation. In turn, IDO enzymatic activity activated the AHR as shown by the induction of AHR target genes. IDO-mediated AHR activation induced IL-6 expression, while inhibition or knockdown of the AHR reduced IL-6 expression. IDO activity thus sustains its own expression via an autocrine AHR-IL-6-STAT3 signaling loop. Inhibition of the AHR-IL-6-STAT3 signaling loop restored T-cell proliferation in mixed leukocyte reactions performed in the presence of IDO-expressing human cancer cells. Identification of the IDO-AHR-IL-6-STAT3 signaling loop maintaining IDO expression in human cancers reveals novel therapeutic targets for the inhibition of this core pathway promoting immunosuppression of human cancers. The relevance of the IDO-AHR-IL-6-STAT3 transcriptional circuit is underscored by the finding that high expression of its members IDO, STAT3 and the AHR target gene CYP1B1 is associated with reduced relapse-free survival in lung cancer patients. PMID:24657910

  17. Type I Interferons Function as Autocrine and Paracrine Factors to Induce Autotaxin in Response to TLR Activation

    PubMed Central

    Song, Jianwen; Guan, Ming; Zhao, Zhenwen; Zhang, Junjie

    2015-01-01

    Lysophosphatidic acid (LPA) is an important phospholipid mediator in inflammation and immunity. However, the mechanism of LPA regulation during inflammatory response is largely unknown. Autotaxin (ATX) is the key enzyme to produce extracellular LPA from lysophosphatidylcholine (LPC). In this study, we found that ATX was induced in monocytic THP-1 cells by TLR4 ligand lipopolysaccharide (LPS), TLR9 ligand CpG oligonucleotide, and TLR3 ligand poly(I:C), respectively. The ATX induction by TLR ligand was abolished by the neutralizing antibody against IFN-β or the knockdown of IFNAR1, indicating that type I IFN autocrine loop is responsible for the ATX induction upon TLR activation. Both IFN-β and IFN-α were able to induce ATX expression via the JAK-STAT and PI3K-AKT pathways but with different time-dependent manners. The ATX induction by IFN-β was dramatically enhanced by IFN-γ, which had no significant effect on ATX expression alone, suggesting a synergy effect between type I and type II IFNs in ATX induction. Extracellular LPA levels were significantly increased when THP-1 cells were treated with IFN-α/β or TLR ligands. In addition, the type I IFN-mediated ATX induction was identified in human monocyte-derived dendritic cells (moDCs) stimulated with LPS or poly(I:C), and IFN-α/β could induce ATX expression in human peripheral blood mononuclear cells (PBMCs) and monocytes isolated form blood samples. These results suggest that, in response to TLR activation, ATX is induced through a type I INF autocrine-paracrine loop to enhance LPA generation. PMID:26313906

  18. Targeting autocrine HB-EGF signaling with specific ADAM12 inhibition using recombinant ADAM12 prodomain

    NASA Astrophysics Data System (ADS)

    Miller, Miles A.; Moss, Marcia L.; Powell, Gary; Petrovich, Robert; Edwards, Lori; Meyer, Aaron S.; Griffith, Linda G.; Lauffenburger, Douglas A.

    2015-10-01

    Dysregulation of ErbB-family signaling underlies numerous pathologies and has been therapeutically targeted through inhibiting ErbB-receptors themselves or their cognate ligands. For the latter, “decoy” antibodies have been developed to sequester ligands including heparin-binding epidermal growth factor (HB-EGF); however, demonstrating sufficient efficacy has been difficult. Here, we hypothesized that this strategy depends on properties such as ligand-receptor binding affinity, which varies widely across the known ErbB-family ligands. Guided by computational modeling, we found that high-affinity ligands such as HB-EGF are more difficult to target with decoy antibodies compared to low-affinity ligands such as amphiregulin (AREG). To address this issue, we developed an alternative method for inhibiting HB-EGF activity by targeting its cleavage from the cell surface. In a model of the invasive disease endometriosis, we identified A Disintegrin and Metalloproteinase 12 (ADAM12) as a protease implicated in HB-EGF shedding. We designed a specific inhibitor of ADAM12 based on its recombinant prodomain (PA12), which selectively inhibits ADAM12 but not ADAM10 or ADAM17. In endometriotic cells, PA12 significantly reduced HB-EGF shedding and resultant cellular migration. Overall, specific inhibition of ligand shedding represents a possible alternative to decoy antibodies, especially for ligands such as HB-EGF that exhibit high binding affinity and localized signaling.

  19. Autocrine IL-8 promotes F-actin polymerization and mediate mesenchymal transition via ELMO1-NF-κB-Snail signaling in glioma

    PubMed Central

    Zhang, Baogang; Shi, Lihong; Lu, Shijun; Sun, Xiuning; Liu, Yuqing; Li, Hongli; Wang, Xuejian; Zhao, Chunzhen; Zhang, Heng; Wang, Ying

    2015-01-01

    Glioma is the most common form of primary malignant brain cancers. Tumor cell invasiveness is a critical challenge in the clinical management of glioma patients. The invasive biological feature of glioma cell is stimulated by both autocrine and paracrine factors including chemokine IL-8. In this study, we report that the production of IL-8 is higher in glioma tissues and cells than adjacent nontumor tissues (ANT) and normal glial cells. Autocrine IL-8 can increase the invasive ability of glioma cells by binding to CXCR1. In addition, high expression of IL-8 indicates poor prognosis of glioma patients. Furthermore, IL-8 is capable of modulating cell migration and invasion by regulating the activation of RAC1 which resulted in cytoskeletal reorganisation in an ELMO1 dependent manner. Finally, we found that IL-8 could enhance mesenchymal transition(MT) of glioma cells by activating ELMO1-NF-κB-Snail signaling. Our data indicate that IL-8 autocrine is responsible for the invasive phenotype of glioma and IL-8 may be a useful prognostic marker for glioma and novel therapeutic target for glioma invasion intervention. PMID:25870011

  20. Autocrine IL-8 promotes F-actin polymerization and mediate mesenchymal transition via ELMO1-NF-κB-Snail signaling in glioma.

    PubMed

    Zhang, Baogang; Shi, Lihong; Lu, Shijun; Sun, Xiuning; Liu, Yuqing; Li, Hongli; Wang, Xuejian; Zhao, Chunzhen; Zhang, Heng; Wang, Ying

    2015-01-01

    Glioma is the most common form of primary malignant brain cancers. Tumor cell invasiveness is a critical challenge in the clinical management of glioma patients. The invasive biological feature of glioma cell is stimulated by both autocrine and paracrine factors including chemokine IL-8. In this study, we report that the production of IL-8 is higher in glioma tissues and cells than adjacent nontumor tissues (ANT) and normal glial cells. Autocrine IL-8 can increase the invasive ability of glioma cells by binding to CXCR1. In addition, high expression of IL-8 indicates poor prognosis of glioma patients. Furthermore, IL-8 is capable of modulating cell migration and invasion by regulating the activation of RAC1 which resulted in cytoskeletal reorganisation in an ELMO1 dependent manner. Finally, we found that IL-8 could enhance mesenchymal transition(MT) of glioma cells by activating ELMO1-NF-κB-Snail signaling. Our data indicate that IL-8 autocrine is responsible for the invasive phenotype of glioma and IL-8 may be a useful prognostic marker for glioma and novel therapeutic target for glioma invasion intervention. PMID:25870011

  1. Semaphorin 3D autocrine signaling mediates the metastatic role of annexin A2 in pancreatic cancer.

    PubMed

    Foley, Kelly; Rucki, Agnieszka A; Xiao, Qian; Zhou, Donger; Leubner, Ashley; Mo, Guanglan; Kleponis, Jennifer; Wu, Annie A; Sharma, Rajni; Jiang, Qingguang; Anders, Robert A; Iacobuzio-Donahue, Christine A; Hajjar, Katherine A; Maitra, Anirban; Jaffee, Elizabeth M; Zheng, Lei

    2015-08-01

    Most patients with pancreatic ductal adenocarcinoma (PDA) present with metastatic disease at the time of diagnosis or will recur with metastases after surgical treatment. Semaphorin-plexin signaling mediates the migration of neuronal axons during development and of blood vessels during angiogenesis. The expression of the gene encoding semaphorin 3D (Sema3D) is increased in PDA tumors, and the presence of antibodies against the pleiotropic protein annexin A2 (AnxA2) in the sera of some patients after surgical resection of PDA is associated with longer recurrence-free survival. By knocking out AnxA2 in a transgenic mouse model of PDA (KPC) that recapitulates the progression of human PDA from premalignancy to metastatic disease, we found that AnxA2 promoted metastases in vivo. The expression of AnxA2 promoted the secretion of Sema3D from PDA cells, which coimmunoprecipitated with the co-receptor plexin D1 (PlxnD1) on PDA cells. Mouse PDA cells in which SEMA3D was knocked down or ANXA2-null PDA cells exhibited decreased invasive and metastatic potential in culture and in mice. However, restoring Sema3D in AnxA2-null cells did not entirely rescue metastatic behavior in culture and in vivo, suggesting that AnxA2 mediates additional prometastatic mechanisms. Patients with primary PDA tumors that have abundant Sema3D have widely metastatic disease and decreased survival compared to patients with tumors that have relatively low Sema3D abundance. Thus, AnxA2 and Sema3D may be new therapeutic targets and prognostic markers of metastatic PDA. PMID:26243191

  2. Mucin1 mediates autocrine transforming growth factor beta signaling through activating the c-Jun N-terminal kinase/activator protein 1 pathway in human hepatocellular carcinoma cells.

    PubMed

    Li, Qiongshu; Liu, Guomu; Shao, Dan; Wang, Juan; Yuan, Hongyan; Chen, Tanxiu; Zhai, Ruiping; Ni, Weihua; Tai, Guixiang

    2015-02-01

    In a previous study, we observed by global gene expression analysis that oncogene mucin1 (MUC1) silencing decreased transforming growth factor beta (TGF-β) signaling in the human hepatocellular carcinoma (HCC) cell line SMMC-7721. In this study, we report that MUC1 overexpression enhanced the levels of phosphorylated Smad3 linker region (p-Smad3L) (Ser-213) and its target gene MMP-9 in HCC cells, suggesting that MUC1 mediates TGF-β signaling. To investigate the effect of MUC1 on TGF-β signaling, we determined TGF-β secretion in MUC1 gene silencing and overexpressing cell lines. MUC1 expression enhanced not only TGF-β1 expression at the mRNA and protein levels but also luciferase activity driven by a TGF-β promoter, as well as elevated the activation of c-Jun N-terminal kinase (JNK) and c-Jun, a member of the activation protein 1 (AP-1) transcription factor family. Furthermore, pharmacological reduction of TGF-β receptor (TβR), JNK and c-Jun activity inhibited MUC1-induced autocrine TGF-β signaling. Moreover, a co-immunoprecipitation assay showed that MUC1 directly bound and activated JNK. In addition, both MUC1-induced TGF-β secretion and exogenous TGF-β1 significantly increased Smad signaling and cell migration, which were markedly inhibited by either TβR inhibitor or small interfering RNA silencing of TGF-β1 gene in HCC cells. The high correlation between MUC1 and TGF-β1 or p-Smad3L (Ser-213) expression was shown in tumor tissues from HCC patients by immunohistochemical staining analysis. Collectively, these results indicate that MUC1 mediates autocrine TGF-β signaling by activating the JNK/AP-1 pathway in HCC cells. Therefore, MUC1 plays a key role in HCC progression and could serve as an attractive target for HCC therapy. PMID:25526895

  3. Neoalbaconol induces cell death through necroptosis by regulating RIPK-dependent autocrine TNFα and ROS production

    PubMed Central

    Li, Wei; Xiao, Lanbo; Luo, Xiangjian; Liu, Xiaolan; Yang, Lifang; Peng, Songling; Ding, Zhihui; Feng, Tao; Zhou, Jian; Fan, Jia; Bode, Ann M.; Dong, Zigang; Liu, Jikai; Cao, Ya

    2015-01-01

    Necroptosis/regulated necrosis is a caspase-independent, but receptor interacting protein kinase (RIPK)-dependent form of cell death. In previous studies, neoalbaconol (NA), a constituent extracted from Albatrellus confluens, was demonstrated to induce necroptosis in some cancer cell lines. The molecular mechanism of NA-induced necroptosis is described in this research study. We determined that NA-induced cell death is partly dependent on tumor necrosis factor α (TNFα) feed-forward signaling. More importantly, NA abolished the ubiquitination of RIPK1 by down-regulating E3 ubiquitin ligases, cellular inhibitors of apoptosis protein 1/2 (cIAP1/2) and TNFα receptor-associated factors (TRAFs). The suppression of RIPK1 ubiquitination induced the activation of the non-canonical nuclear factor-κB (NF-κB) pathway and stimulated the transcription of TNFα. Moreover, we also found that NA caused RIPK3-mediated reactive oxygen species (ROS) production and contribution to cell death. Taken together, these results suggested that two distinct mechanisms are involved in NA-induced necroptosis and include RIPK1/NF-κB-dependent expression of TNFα and RIPK3-dependent generation of ROS. PMID:25575821

  4. Neoalbaconol induces cell death through necroptosis by regulating RIPK-dependent autocrine TNFα and ROS production.

    PubMed

    Yu, Xinfang; Deng, Qipan; Li, Wei; Xiao, Lanbo; Luo, Xiangjian; Liu, Xiaolan; Yang, Lifang; Peng, Songling; Ding, Zhihui; Feng, Tao; Zhou, Jian; Fan, Jia; Bode, Ann M; Dong, Zigang; Liu, Jikai; Cao, Ya

    2015-02-10

    Necroptosis/regulated necrosis is a caspase-independent, but receptor interacting protein kinase (RIPK)-dependent form of cell death. In previous studies, neoalbaconol (NA), a constituent extracted from Albatrellus confluens, was demonstrated to induce necroptosis in some cancer cell lines. The molecular mechanism of NA-induced necroptosis is described in this research study. We determined that NA-induced cell death is partly dependent on tumor necrosis factor α (TNFα) feed-forward signaling. More importantly, NA abolished the ubiquitination of RIPK1 by down-regulating E3 ubiquitin ligases, cellular inhibitors of apoptosis protein 1/2 (cIAP1/2) and TNFα receptor-associated factors (TRAFs). The suppression of RIPK1 ubiquitination induced the activation of the non-canonical nuclear factor-κB (NF-κB) pathway and stimulated the transcription of TNFα. Moreover, we also found that NA caused RIPK3-mediated reactive oxygen species (ROS) production and contribution to cell death. Taken together, these results suggested that two distinct mechanisms are involved in NA-induced necroptosis and include RIPK1/NF-κB-dependent expression of TNFα and RIPK3-dependent generation of ROS. PMID:25575821

  5. High salt induces autocrine actions of ET-1 on inner medullary collecting duct NO production via upregulated ETB receptor expression.

    PubMed

    Hyndman, Kelly Anne; Dugas, Courtney; Arguello, Alexandra M; Goodchild, Traci T; Buckley, Kathleen M; Burch, Mariah; Yanagisawa, Masashi; Pollock, Jennifer S

    2016-08-01

    The collecting duct endothelin-1 (ET-1), endothelin B (ETB) receptor, and nitric oxide synthase-1 (NOS1) pathways are critical for regulation of fluid-electrolyte balance and blood pressure control during high-salt feeding. ET-1, ETB receptor, and NOS1 are highly expressed in the inner medullary collecting duct (IMCD) and vasa recta, suggesting that there may be cross talk or paracrine signaling between the vasa recta and IMCD. The purpose of this study was to test the hypothesis that endothelial cell-derived ET-1 (paracrine) and collecting duct-derived ET-1 (autocrine) promote IMCD nitric oxide (NO) production through activation of the ETB receptor during high-salt feeding. We determined that after 7 days of a high-salt diet (HS7), there was a shift to 100% ETB expression in IMCDs, as well as a twofold increase in nitrite production (a metabolite of NO), and this increase could be prevented by acute inhibition of the ETB receptor. ETB receptor blockade or NOS1 inhibition also prevented the ET-1-dependent decrease in ion transport from primary IMCDs, as determined by transepithelial resistance. IMCD were also isolated from vascular endothelial ET-1 knockout mice (VEETKO), collecting duct ET-1 KO (CDET-1KO), and flox controls. Nitrite production by IMCD from VEETKO and flox mice was similarly increased twofold with HS7. However, IMCD NO production from CDET-1KO mice was significantly blunted with HS7 compared with flox control. Taken together, these data indicate that during high-salt feeding, the autocrine actions of ET-1 via upregulation of the ETB receptor are critical for IMCD NO production, facilitating inhibition of ion reabsorption. PMID:27280426

  6. Autocrine CSF1R signaling mediates switching between invasion and proliferation downstream of TGFβ in claudin-low breast tumor cells

    PubMed Central

    Patsialou, Antonia; Wang, Yarong; Pignatelli, Jeanine; Chen, Xiaoming; Entenberg, David; Oktay, Maja; Condeelis, John S.

    2014-01-01

    Patient data suggest that colony stimulating factor-1 (CSF1) and its receptor (CSF1R) play critical roles during breast cancer progression. We have previously shown that in human breast tumors expressing both CSF1 and CSF1R, invasion in vivo is dependent both on a paracrine interaction with tumor-associated macrophages and an autocrine regulation of CSF1R in the tumor cells themselves. Although the role of the paracrine interaction between tumor cells and macrophages has been extensively studied, very little is known about the mechanism by which the autocrine CSF1R signaling contributes to tumor progression. We show here that breast cancer patients of the claudin-low subtype have significantly increased expression of CSF1R. Using a panel of breast cancer cells lines, we confirm that CSF1R expression is elevated and regulated by TGFβ specifically in claudin-low cell lines. Abrogation of autocrine CSF1R signaling in MDA-MB-231 xenografts (a claudin-low cell line) leads to increased tumor size by enhanced proliferation, but significantly reduced invasion, dissemination and metastasis. Indeed, we show that proliferation and invasion are oppositely regulated by CSF1R downstream of TGFβ only in claudin-low cells lines. Intravital multiphoton imaging revealed that inhibition of CSF1R in the tumor cells leads to decreased in vivo motility and a more cohesive morphology. We show that, both in vitro and in vivo, CSF1R inhibition results in a reversal of claudin-low marker expression by significant upregulation of luminal keratins and tight junction proteins such as claudins. Finally, we show that artificial overexpression of claudins in MDA-MB-231 cells is sufficient to tip the cells from an invasive state to a proliferative state. Our results suggest that autocrine CSF1R signaling is essential in maintaining low claudin expression and that it mediates a switch between the proliferative and the invasive state in claudin-low tumor cells downstream of TGFβ. PMID:25088194

  7. Lipopolysaccharide induces the expression of an autocrine prolactin loop enhancing inflammatory response in monocytes

    PubMed Central

    2013-01-01

    Background Prolactin from pituitary gland helps maintain homeostasis but it is also released in immune cells where its function is not completely understood. Pleiotropic functions of prolactin (PRL) might be mediated by different isoforms of its receptor (PRLr). Methods The aim of this study was to investigate the relationship between the eventual synthesis of PRL and PRLr isoforms with the inflammatory response in monocytes. We used THP-1 and monocytes isolated from healthy subjects stimulated with lipopolysaccharide (LPS). Western blot, real time PCR and immunocytochemistry were performed to identify both molecules. The bioactivity of the PRL was assessed using a bioassay and ELISA to detect pro inflammatory cytokines. Results PRLr mRNA and PRL mRNA were synthesized in THP-1 monocytes activated with LPS with peaks of 300-fold and 130-fold, respectively. The long (100 kDa) and the intermediate (50 kDa) isoforms of PRLr and big PRL (60 kDa) were time-dependent upregulated for monocytes stimulated with LPS. This expression was confirmed in monocytes from healthy subjects. The PRLr intermediate isoform and the big PRL were found soluble in the culture media and later in the nucleus in THP-1 monocytes stimulated with LPS. Big PRL released by monocytes showed bioactivity in Nb2 Cells, and both PRL and PRLr, synthesized by monocytes were related with levels of nitrites and proinflammatory citokines. Conclusions Our results suggest the expression of a full-autocrine loop of PRL enhances the inflammatory response in activated monocytes. This response mediated by big PRL may contribute to the eradication of potential pathogens during innate immune response in monocytes but may also contribute to inflammatory disorders. PMID:23731754

  8. Autocrine growth factors and solid tumor malignancy.

    PubMed Central

    Walsh, J. H.; Karnes, W. E.; Cuttitta, F.; Walker, A.

    1991-01-01

    The ability of malignant cells to escape the constraint that normally regulate cell growth and differentiation has been a primary focus of attention for investigators of cancer cell biology. An outcome of this attention has been the discovery that the protein products of oncogenes play a role in the activation of growth signal pathways. A second outcome, possibly related to abnormal oncogene expression, has been the discovery that malignant cells frequently show an ability to regulate their own growth by the release of autocrine growth modulatory substances. Most important, the growth of certain malignant cell types has been shown to depend on autocrine growth circuits. A malignant tumor whose continued growth depends on the release of an autocrine growth factor may be vulnerable to treatment with specific receptor antagonists or immunoneutralizing antibodies designed to break the autocrine circuit. Information is rapidly emerging concerning autocrine growth factors in selected human solid tissue malignancy. Images PMID:1926844

  9. Combination of hypoxia and RNA-interference targeting VEGF induces apoptosis in hepatoma cells via autocrine mechanisms.

    PubMed

    Raskopf, Esther; Vogt, Annabelle; Decker, Georges; Hirt, Sarah; Daskalow, Katjana; Cramer, Thorsten; Standop, Jens; Gonzalez-Carmona, Maria-Angeles; Sauerbruch, Tilman; Schmitz, Volker

    2012-09-01

    Control of VEGF signaling is an intense objective of pre-clinical and clinical studies in HCC disease with steadily increasing clinical application. Despite its emerging role, several aspects of anti-VEGF based treatments are poorly investigated, like the impact on tumor cells themselves, such as the effect on intracellular signaling and apoptosis induction in hepatoma cells. Effects of siRNA-VEGF on VEGF, VEGF-receptor expression and VEGF-A signaling such as AKT and JNK phosphorylation were determined under normoxic or hypoxic conditions in murine hepatoma cells. Apoptosis induction was analyzed by SubG1-fraction, JC1-staining and caspase-8 activation. VEGF receptor expression was analysed by semiquantitative real time PCR. Independent of oxygen status, siRNA-VEGF reduced VEGF levels resulting in decreased AKT and increased JNK phosphorylation in Hepa129 cells. The VEGF-receptors neuropilin-1 (Nrp1) and neuropilin-2 (Nrp2) were downregulated following siRNA-VEGF treatment or hypoxia induction respectively. Functionally, hypoxia significantly increased the apoptosis rate (as analyzed by SubG1-fraction, JC1-staining and JNKphosphorylation) which was further stimulated by siRNA-VEGF treatment. Our data indicate that antitumoral efficacy of an anti-VEGF based treatment with siRNA is partly based on negative autocrine feedback mechanisms which are even enhanced under hypoxic conditions. This observation helps to understand why antitumoral efficacy can be maintained despite of counteracting stimulation of tumoral VEGF secretion due to hypoxia. The direct impact on tumor cells further underscores the attractiveness of an anti-VEGF based siRNA treatment. PMID:21605070

  10. Heme induces programmed necrosis on macrophages through autocrine TNF and ROS production.

    PubMed

    Fortes, Guilherme B; Alves, Leticia S; de Oliveira, Rosane; Dutra, Fabianno F; Rodrigues, Danielle; Fernandez, Patricia L; Souto-Padron, Thais; De Rosa, María José; Kelliher, Michelle; Golenbock, Douglas; Chan, Francis K M; Bozza, Marcelo T

    2012-03-01

    Diseases that cause hemolysis or myonecrosis lead to the leakage of large amounts of heme proteins. Free heme has proinflammatory and cytotoxic effects. Heme induces TLR4-dependent production of tumor necrosis factor (TNF), whereas heme cytotoxicity has been attributed to its ability to intercalate into cell membranes and cause oxidative stress. We show that heme caused early macrophage death characterized by the loss of plasma membrane integrity and morphologic features resembling necrosis. Heme-induced cell death required TNFR1 and TLR4/MyD88-dependent TNF production. Addition of TNF to Tlr4(-/-) or to Myd88(-/-) macrophages restored heme-induced cell death. The use of necrostatin-1, a selective inhibitor of receptor-interacting protein 1 (RIP1, also known as RIPK1), or cells deficient in Rip1 or Rip3 revealed a critical role for RIP proteins in heme-induced cell death. Serum, antioxidants, iron chelation, or inhibition of c-Jun N-terminal kinase (JNK) ameliorated heme-induced oxidative burst and blocked macrophage cell death. Macrophages from heme oxygenase-1 deficient mice (Hmox1(-/-)) had increased oxidative stress and were more sensitive to heme. Taken together, these results revealed that heme induces macrophage necrosis through 2 synergistic mechanisms: TLR4/Myd88-dependent expression of TNF and TLR4-independent generation of ROS. PMID:22262768

  11. Tumor necrosis factor alpha transcription in macrophages is attenuated by an autocrine factor that preferentially induces NF-kappaB p50.

    PubMed

    Baer, M; Dillner, A; Schwartz, R C; Sedon, C; Nedospasov, S; Johnson, P F

    1998-10-01

    Macrophages are a major source of proinflammatory cytokines such as tumor necrosis factor alpha (TNF-alpha), which are expressed during conditions of inflammation, infection, or injury. We identified an activity secreted by a macrophage tumor cell line that negatively regulates bacterial lipopolysaccharide (LPS)-induced expression of TNF-alpha. This activity, termed TNF-alpha-inhibiting factor (TIF), suppressed the induction of TNF-alpha expression in macrophages, whereas induction of three other proinflammatory cytokines (interleukin-1beta [IL-1beta], IL-6, and monocyte chemoattractant protein 1) was accelerated or enhanced. A similar or identical inhibitory activity was secreted by IC-21 macrophages following LPS stimulation. Inhibition of TNF-alpha expression by macrophage conditioned medium was associated with selective induction of the NF-kappaB p50 subunit. Hyperinduction of p50 occurred with delayed kinetics in LPS-stimulated macrophages but not in fibroblasts. Overexpression of p50 blocked LPS-induced transcription from a TNF-alpha promoter reporter construct, showing that this transcription factor is an inhibitor of the TNF-alpha gene. Repression of the TNF-alpha promoter by TIF required a distal region that includes three NF-kappaB binding sites with preferential affinity for p50 homodimers. Thus, the selective repression of the TNF-alpha promoter by TIF may be explained by the specific binding of inhibitory p50 homodimers. We propose that TIF serves as a negative autocrine signal to attenuate TNF-alpha expression in activated macrophages. TIF is distinct from the known TNF-alpha-inhibiting factors IL-4, IL-10, and transforming growth factor beta and may represent a novel cytokine. PMID:9742085

  12. Tumor Necrosis Factor Alpha Transcription in Macrophages Is Attenuated by an Autocrine Factor That Preferentially Induces NF-κB p50

    PubMed Central

    Baer, Mark; Dillner, Allan; Schwartz, Richard C.; Sedon, Constance; Nedospasov, Sergei; Johnson, Peter F.

    1998-01-01

    Macrophages are a major source of proinflammatory cytokines such as tumor necrosis factor alpha (TNF-α), which are expressed during conditions of inflammation, infection, or injury. We identified an activity secreted by a macrophage tumor cell line that negatively regulates bacterial lipopolysaccharide (LPS)-induced expression of TNF-α. This activity, termed TNF-α-inhibiting factor (TIF), suppressed the induction of TNF-α expression in macrophages, whereas induction of three other proinflammatory cytokines (interleukin-1β [IL-1β], IL-6, and monocyte chemoattractant protein 1) was accelerated or enhanced. A similar or identical inhibitory activity was secreted by IC-21 macrophages following LPS stimulation. Inhibition of TNF-α expression by macrophage conditioned medium was associated with selective induction of the NF-κB p50 subunit. Hyperinduction of p50 occurred with delayed kinetics in LPS-stimulated macrophages but not in fibroblasts. Overexpression of p50 blocked LPS-induced transcription from a TNF-α promoter reporter construct, showing that this transcription factor is an inhibitor of the TNF-α gene. Repression of the TNF-α promoter by TIF required a distal region that includes three NF-κB binding sites with preferential affinity for p50 homodimers. Thus, the selective repression of the TNF-α promoter by TIF may be explained by the specific binding of inhibitory p50 homodimers. We propose that TIF serves as a negative autocrine signal to attenuate TNF-α expression in activated macrophages. TIF is distinct from the known TNF-α-inhibiting factors IL-4, IL-10, and transforming growth factor β and may represent a novel cytokine. PMID:9742085

  13. Pulsed ultrasound promotes melanoblast migration through upregulation of macrophage colony-stimulating factor/focal adhesion kinase autocrine signaling and paracrine mechanisms.

    PubMed

    Liao, Yi-Hua; Huang, Yu-Ting; Deng, Jhu-Yun; Chen, Wen-Shiang; Jee, Shiou-Hwa

    2013-09-01

    Repigmentation of vitiliginous lesions relies on the proliferation and migration of melanoblasts from hair follicles to the epidermis. Pulsed ultrasound has been demonstrated to have stimulatory effects on cell proliferation and migration and has been applied clinically to enhance tissue repair. To clarify the biologic effects and signaling mechanisms of pulsed ultrasound on melanoblast proliferation and migration, two melanoblast cell lines, the undifferentiated NCCmelb4 cells and the differentiated NCCmelan5 cells, were examined. We demonstrated that pulsed ultrasound increased cell migration in a dose-dependent manner without altering cell proliferation. Pulsed ultrasound enhanced autocrine secretion of macrophage colony-stimulating factor (M-CSF), which subsequently activated the focal adhesion kinase (FAK) pathway to promote melanoblast migration. Furthermore, conditioned medium from mouse embryonic fibroblasts NIH 3T3 and primary human keratinocytes treated with pulsed ultrasound could stimulate melanoblast migration through a paracrine effect. Our results provide a novel mechanism to promote migration of melanoblasts by pulsed ultrasound stimulation. PMID:23725022

  14. Regulation of Prostate Development and Benign Prostatic Hyperplasia by Autocrine Cholinergic Signaling via Maintaining the Epithelial Progenitor Cells in Proliferating Status.

    PubMed

    Wang, Naitao; Dong, Bai-Jun; Quan, Yizhou; Chen, Qianqian; Chu, Mingliang; Xu, Jin; Xue, Wei; Huang, Yi-Ran; Yang, Ru; Gao, Wei-Qiang

    2016-05-10

    Regulation of prostate epithelial progenitor cells is important in prostate development and prostate diseases. Our previous study demonstrated a function of autocrine cholinergic signaling (ACS) in promoting prostate cancer growth and castration resistance. However, whether or not such ACS also plays a role in prostate development is unknown. Here, we report that ACS promoted the proliferation and inhibited the differentiation of prostate epithelial progenitor cells in organotypic cultures. These results were confirmed by ex vivo lineage tracing assays and in vivo renal capsule recombination assays. Moreover, we found that M3 cholinergic receptor (CHRM3) was upregulated in a large subset of benign prostatic hyperplasia (BPH) tissues compared with normal tissues. Activation of CHRM3 also promoted the proliferation of BPH cells. Together, our findings identify a role of ACS in maintaining prostate epithelial progenitor cells in the proliferating state, and blockade of ACS may have clinical implications for the management of BPH. PMID:27167157

  15. Autocrine and exogenous transforming growth factor beta control cell cycle inhibition through pathways with different sensitivity.

    PubMed

    Wang, Jing; Sergina, Natalia; Ko, Tien C; Gong, Jiangeng; Brattain, Michael G

    2004-09-17

    Human colon carcinoma cells HCT116 that lack transforming growth factor beta (TGF-beta) type II receptor (RII) demonstrated restoration of autocrine TGF-beta activity upon reexpression of RII without restoring inhibitory responses to exogenous TGF-beta treatment. RII transfectants (designated RII Cl 37) had a longer lag phase relative to NEO-transfected control cells (designated NEO pool) before entering exponential growth in tissue culture. The prolonged growth arrest of RII Cl 37 cells was associated with markedly reduced cyclin-dependent kinase (CDK)2 activity. Our results demonstrate that p21 induction by autocrine TGF-beta is responsible for reduced CDK2 activity, which at least partially contributes to prolonged growth arrest and reduced cell proliferation in RII Cl 37 cells. In contrast to RII transfectants, HCT116 cells transfected with chromosome 3 (designated HCT116Ch3), which bears the RII gene, restored the response to exogenous TGF-beta as well as autocrine TGF-beta activity. Autocrine TGF-beta activity in HCT116Ch3 cells induced p21 expression as seen in RII Cl 37 cells; however, in addition to autocrine activity, HCT116Ch3 cells responded to exogenous TGF-beta as decreased CDK4 expression and reduced pRb phosphorylation mediated a TGF-beta inhibitory response in these cells. These results indicate that autocrine TGF-beta regulates the cell cycle through a pathway different from exogenous TGF-beta in the sense that p21 is a more sensitive effector of the TGF-beta signaling pathway, which can be induced and saturated by autocrine TGF-beta, whereas CDK4 inhibition is a less sensitive effector, which can only be activated by high levels of exogenous TGF-beta PMID:15271980

  16. Autocrine EGF receptor activation mediates endothelial cell migration and vascular morphogenesis induced by VEGF under interstitial flow

    SciTech Connect

    Semino, Carlos E. . E-mail: semino@mit.edu; Kamm, Roger D.; Lauffenburger, Douglas A.

    2006-02-01

    We show here that autocrine ligand activation of epidermal growth factor (EGF) receptor in combination with interstitial flow is critically involved in the morphogenetic response of endothelial cells to VEGF stimulation. Human umbilical vein endothelial cell (HUVEC) monolayers cultured on a collagen gel and exposed to low interstitial flow in the absence of EGF and VEGF remained viable and mitotic but exhibited little evidence of vascular morphogenesis. Addition of VEGF produced a flow-dependent morphogenetic response within 48 to 72 h, characterized by branched capillary-like structures. The response was substantially abolished by inhibitors related to the autocrine EGF receptor pathway including Galardin, AG1478, PD98059, and an EGF receptor-blocking antibody, indicating that regulation of the morphogenetic process operates via autocrine EGF receptor activation. Moreover, we observed that in our system the EGF receptor was always activated independently of the interstitial flow, and, in addition, the EGF receptor inhibitors used above reduced the phosphorylation state of the receptor, correlating with inhibition of capillary morphogenesis. Finally, 5'bromo-2'-deoxyuridine (BrdU) labeling identified dividing cells at the monolayer but not in the extending capillary-like structures. EGF pathway inhibitors Galardin and AG1478 did not reduce BrdU incorporation in the monolayer, indicating that the EGF-receptor-mediated morphogenetic behavior is mainly due to cell migration rather than proliferation. Based on these results, we propose a two-step model for in vitro capillary morphogenesis in response to VEGF stimulation with interstitial fluid flow: monolayer maintenance by mitotic activity independent of EGF receptors and a migratory response mediated by autocrine EGF receptor activation wherein cells establish capillary-like structures.

  17. Melanoma cell-derived exosomes promote epithelial-mesenchymal transition in primary melanocytes through paracrine/autocrine signaling in the tumor microenvironment.

    PubMed

    Xiao, Deyi; Barry, Samantha; Kmetz, Daniel; Egger, Michael; Pan, Jianmin; Rai, Shesh N; Qu, Jifu; McMasters, Kelly M; Hao, Hongying

    2016-07-01

    The tumor microenvironment is abundant with exosomes that are secreted by the cancer cells themselves. Exosomes are nanosized, organelle-like membranous structures that are increasingly being recognized as major contributors in the progression of malignant neoplasms. A critical element in melanoma progression is its propensity to metastasize, but little is known about how melanoma cell-derived exosomes modulate the microenvironment to optimize conditions for tumor progression and metastasis. Here, we provide evidence that melanoma cell-derived exosomes promote phenotype switching in primary melanocytes through paracrine/autocrine signaling. We found that the mitogen-activated protein kinase (MAPK) signaling pathway was activated during the exosome-mediated epithelial-to-mesenchymal transition (EMT)-resembling process, which promotes metastasis. Let-7i, an miRNA modulator of EMT, was also involved in this process. We further defined two other miRNA modulators of EMT (miR-191 and let-7a) in serum exosomes for differentiating stage I melanoma patients from non-melanoma subjects. These results provide the first strong molecular evidence that melanoma cell-derived exosomes promote the EMT-resembling process in the tumor microenvironment. Thus, novel strategies targeting EMT and modulating the tumor microenvironment may emerge as important approaches for the treatment of metastatic melanoma. PMID:27063098

  18. Kiss2 as a Regulator of Lh and Fsh Secretion via Paracrine/Autocrine Signaling in the Teleost Fish European Sea Bass (Dicentrarchus labrax).

    PubMed

    Espigares, Felipe; Zanuy, Silvia; Gómez, Ana

    2015-11-01

    Kisspeptins are key players in the neuroendocrine control of puberty and other reproductive processes in mammals. Several studies have demonstrated that the KISS/GPR54 system is expressed by gonadotrophs, but in vitro studies assessing the direct stimulatory effects of kisspeptin on gonadotropin secretion in the pituitary have provided conflicting results. In this study, we investigated whether kisspeptin directly influences the reproductive function of sea bass pituitary. First, the highly active peptides Kiss1-15 and Kiss2-12 were used to stimulate dispersed sea bass pituitary cells obtained from mature males. Our results show that, first, Kiss2-12 induced luteinizing hormone (Lh) and follicle-stimulating hormone (Fsh) release, whereas Kiss1-15 had no effect on gonadotropin secretion at full spermiation stage. Second, the distribution and nature of Kiss2 and its potential interactions with the gonadotropin-releasing hormone 1 (Gnrh1) system in the pituitary were analyzed using dual fluorescence immunohistochemistry. Kiss2 cells were found in the proximal pars distalis and colocalized with gonadotropin-immunoreactive cells. In summary, our results provide, for the first time in a teleost species, functional and neuroanatomical evidence that Kiss2 may act through different routes to directly modulate the activity of gonadotrophs, either as a hypophysiotropic neuropeptide or as an autocrine/paracrine factor. PMID:26400402

  19. Hepatitis C virus regulates the production of monocytic myeloid-derived suppressor cells from peripheral blood mononuclear cells through PI3K pathway and autocrine signaling.

    PubMed

    Pang, Xiaoli; Song, Hongxiao; Zhang, Qianqian; Tu, Zhengkun; Niu, Junqi

    2016-03-01

    Hepatitis C virus (HCV) infection is a major liver disease that ultimately develops into chronic hepatitis. Consequently, such patients are predisposed to serious complications, such as hepatocellular carcinoma. In HCV-infected patients, impaired T-cell responses are associated with persistent infection. Myeloid-derived suppressor cells (MDSCs) play a pivotal role in suppressing T-cell responses. In this study, we investigated the capacity and mechanism through which HCV transforms CD14+ monocytes into monocytic (Mo)-MDSCs. We showed that HCV core protein promotes CD14+ monocytes to develop a CD14+HLA-DR/low phenotype with upregulated indoleamine 2,3-dioxygenase (IDO) expression and suppressed T-cell proliferation. Importantly, HCV-induced Mo-MDSC production was attributed to the PI3K pathway via induction of IL-10 and TNF-α secretion. This process could be reversed by polyinosinic:polycytidylic acid (polyI:C) treatment. In conclusion, our results suggest that HCV regulates Mo-MDSC production from monocytes through the PI3K pathway and autocrine cytokines. The latter can serve as effective targets for novel HCV therapies. PMID:26821305

  20. Interleukin 22 protects colorectal cancer cells from chemotherapy by activating the STAT3 pathway and inducing autocrine expression of interleukin 8.

    PubMed

    Wu, Tingyu; Wang, Zhongchuan; Liu, Yun; Mei, Zubing; Wang, Guanghui; Liang, Zhonglin; Cui, Ang; Hu, Xuguang; Cui, Long; Yang, Yili; Liu, Chen-Ying

    2014-10-01

    Resistance to chemotherapy is the major cause of colorectal cancer (CRC) treatment failure. The cytokine IL-22, which is produced by T cells and NK cells, is associated with tumorigenesis and tumor progression in cancers. However, the role of IL-22 in chemoresistance has not been investigated. We found that IL-22 levels in tumor tissues and peripheral blood were associated with chemoresistance and indicate poor prognosis for patients who received FOLFOX chemotherapy. In CRC cells, IL-22 was able to attenuate the cytotoxic and apoptosis-inducing effects of 5-FU and OXA by activating the STAT3 pathway and subsequently increasing the expression of anti-apoptotic genes. In addition, IL-22 conferred resistance to 5-FU and OXA by inducing IL-8 autocrine expression through STAT3 activation. Our findings identify IL-22 as a novel chemoresistance cytokine and may be a useful prognostic biomarker for CRC patients receiving FOLFOX chemotherapy. PMID:25063444

  1. The Role of Paracrine and Autocrine Signaling in the Early Phase of Adipogenic Differentiation of Adipose-derived Stem Cells

    PubMed Central

    Hemmingsen, Mette; Vedel, Søren; Skafte-Pedersen, Peder; Sabourin, David; Collas, Philippe; Bruus, Henrik; Dufva, Martin

    2013-01-01

    Introduction High cell density is known to enhance adipogenic differentiation of mesenchymal stem cells, suggesting secretion of signaling factors or cell-contact-mediated signaling. By employing microfluidic biochip technology, we have been able to separate these two processes and study the secretion pathways. Methods and results Adipogenic differentiation of human adipose-derived stem cells (ASCs) cultured in a microfluidic system was investigated under perfusion conditions with an adipogenic medium or an adipogenic medium supplemented with supernatant from differentiating ASCs (conditioned medium). Conditioned medium increased adipogenic differentiation compared to adipogenic medium with respect to accumulation of lipid-filled vacuoles and gene expression of key adipogenic markers (C/EBPα, C/EBPβ, C/EBPδ, PPARγ, LPL and adiponectin). The positive effects of conditioned medium were observed early in the differentiation process. Conclusions Using different cell densities and microfluidic perfusion cell cultures to suppress the effects of cell-released factors, we have demonstrated the significant role played by auto- or paracrine signaling in adipocyte differentiation. The cell-released factor(s) were shown to act in the recruitment phase of the differentiation process. PMID:23723991

  2. Overexpressed GRP78 affects EMT and cell-matrix adhesion via autocrine TGF-β/Smad2/3 signaling.

    PubMed

    Zhang, Lichao; Li, Zongwei; Fan, Yongsheng; Li, Hanqing; Li, Zhouyu; Li, Yaoping

    2015-07-01

    Glucose-regulated protein of 78kD (GRP78) is a multifunctional protein belonging to the heat shock protein 70 family. Overexpression of GRP78 triggered by environmental and physiological stresses is positively correlated with the occurrence and progression of various tumors, but the molecular mechanisms have not been well established. The present study indicated that overexpression of GRP78 in colon cancer cells could promote cell-matrix adhesion through the upregulation of fibronectin, integrin-β1 and phosphorylated FAK. Meanwhile, it resulted in a visible epithelial-mesenchymal transition in DLD1 cells, and the Snail-2 played the key role during the process. More importantly, the data indicated that GRP78 overexpression facilitated the expression and secretion of TGF-β1, which further activated the downstream Smad2/3 signaling module to effectuate the cell-matrix adhesion and epithelial-mesenchymal transition. Taken together, this study provides a novel molecular mechanism involving in the effects of GRP78 on colon cancer metastasis. PMID:25934251

  3. Autocrine fibronectin from differentiating mesenchymal stem cells induces the neurite elongation in vitro and promotes nerve fiber regeneration in transected spinal cord injury.

    PubMed

    Zeng, Xiang; Ma, Yuan-Huan; Chen, Yuan-Feng; Qiu, Xue-Cheng; Wu, Jin-Lang; Ling, Eng-Ang; Zeng, Yuan-Shan

    2016-08-01

    Extracellular matrix (ECM) expression is temporally and spatially regulated during the development of stem cells. We reported previously that fibronectin (FN) secreted by bone marrow mesenchymal stem cells (MSCs) was deposited on the surface of gelatin sponge (GS) soon after culture. In this study, we aimed to assess the function of accumulated FN on neuronal differentiating MSCs as induced by Schwann cells (SCs) in three dimensional transwell co-culture system. The expression pattern and amount of FN of differentiating MSCs was examined by immunofluorescence, Western blot and immunoelectron microscopy. The results showed that FN accumulated inside GS scaffold, although its mRNA expression in MSCs was progressively decreased during neural induction. MSC-derived neuron-like cells showed spindle-shaped cell body and long extending processes on FN-decorated scaffold surface. However, after blocking of FN function by application of monoclonal antibodies, neuron-like cells showed flattened cell body with short and thick neurites, together with decreased expression of integrin β1. In vivo transplantation study revealed that autocrine FN significantly facilitated endogenous nerve fiber regeneration in spinal cord transection model. Taken together, the present results showed that FN secreted by MSCs in the early stage accumulated on the GS scaffold and promoted the neurite elongation of neuronal differentiating MSCs as well as nerve fiber regeneration after spinal cord injury. This suggests that autocrine FN has a dynamic influence on MSCs in a three dimensional culture system and its potential application for treatment of traumatic spinal cord injury. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1902-1911, 2016. PMID:26991461

  4. Autocrine Regulation of UVA-Induced IL-6 Production via Release of ATP and Activation of P2Y Receptors

    PubMed Central

    Kawano, Ayumi; Kadomatsu, Remi; Ono, Miyu; Kojima, Shuji; Tsukimoto, Mitsutoshi; Sakamoto, Hikaru

    2015-01-01

    Extracellular nucleotides, such as ATP, are released from cells in response to various stimuli and act as intercellular signaling molecules through activation of P2 receptors. Exposure to the ultraviolet radiation A (UVA) component of sunlight causes molecular and cellular damage, and in this study, we investigated the involvement of extracellular nucleotides and P2 receptors in the UVA-induced cellular response. Human keratinocyte-derived HaCaT cells were irradiated with a single dose of UVA (2.5 J/cm2), and ATP release and interleukin (IL)-6 production were measured. ATP was released from cells in response to UVA irradiation, and the release was blocked by pretreatment with inhibitors of gap junction hemichannels or P2X7 receptor antagonist. IL-6 production was increased after UVA irradiation, and this increase was inhibited by ecto-nucleotidase or by antagonists of P2Y11 or P2Y13 receptor. These results suggest that UVA-induced IL-6 production is mediated by release of ATP through hemichannels and P2X7 receptor, followed by activation of P2Y11 and P2Y13 receptors. Interestingly, P2Y11 and P2Y13 were associated with the same pattern of IL-6 production, though they trigger different intracellular signaling cascades: Ca2+-dependent and PI3K-dependent, respectively. Thus, IL-6 production in response to UVA-induced ATP release involves at least two distinct pathways, mediated by activation of P2Y11 and P2Y13 receptors. PMID:26030257

  5. Disruption of Interleukin-1β Autocrine Signaling Rescues Complex I Activity and Improves ROS Levels in Immortalized Epithelial Cells with Impaired Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Function

    PubMed Central

    Clauzure, Mariángeles; Valdivieso, Angel G.; Massip Copiz, María M.; Schulman, Gustavo; Teiber, María Luz; Santa-Coloma, Tomás A.

    2014-01-01

    Patients with cystic fibrosis (CF) have elevated concentration of cytokines in sputum and a general inflammatory condition. In addition, CF cells in culture produce diverse cytokines in excess, including IL-1β. We have previously shown that IL-1β, at low doses (∼30 pM), can stimulate the expression of CFTR in T84 colon carcinoma cells, through NF-κB signaling. However, at higher doses (>2.5 ng/ml, ∼150 pM), IL-1β inhibit CFTR mRNA expression. On the other hand, by using differential display, we found two genes with reduced expression in CF cells, corresponding to the mitochondrial proteins CISD1 and MTND4. The last is a key subunit for the activity of mitochondrial Complex I (mCx-I); accordingly, we later found a reduced mCx-I activity in CF cells. Here we found that IB3-1 cells (CF cells), cultured in serum-free media, secrete 323±5 pg/ml of IL-1β in 24 h vs 127±3 pg/ml for S9 cells (CFTR-corrected IB3-1 cells). Externally added IL-1β (5 ng/ml) reduces the mCx-I activity and increases the mitochondrial (MitoSOX probe) and cellular (DCFH-DA probe) ROS levels of S9 (CFTR-corrected IB3-1 CF cells) or Caco-2/pRSctrl cells (shRNA control cells) to values comparable to those of IB3-1 or Caco-2/pRS26 cells (shRNA specific for CFTR). Treatments of IB3-1 or Caco-2/pRS26 cells with either IL-1β blocking antibody, IL-1 receptor antagonist, IKK inhibitor III (NF-κB pathway) or SB203580 (p38 MAPK pathway), restored the mCx-I activity. In addition, in IB3-1 or Caco-2/pRS26 cells, IL-1β blocking antibody, IKK inhibitor III or SB203580 reduced the mitochondrial ROS levels by ∼50% and the cellular ROS levels near to basal values. The AP-1 inhibitors U0126 (MEK1/2) or SP600125 (JNK1/2/3 inhibitor) had no effects. The results suggest that in these cells IL-1β, through an autocrine effect, acts as a bridge connecting the CFTR with the mCx-I activity and the ROS levels. PMID:24901709

  6. PGE2 maintains self-renewal of human adult stem cells via EP2-mediated autocrine signaling and its production is regulated by cell-to-cell contact

    PubMed Central

    Lee, Byung-Chul; Kim, Hyung-Sik; Shin, Tae-Hoon; Kang, Insung; Lee, Jin Young; Kim, Jae-Jun; Kang, Hyun Kyoung; Seo, Yoojin; Lee, Seunghee; Yu, Kyung-Rok; Choi, Soon Won; Kang, Kyung-Sun

    2016-01-01

    Mesenchymal stem cells (MSCs) possess unique immunomodulatory abilities. Many studies have elucidated the clinical efficacy and underlying mechanisms of MSCs in immune disorders. Although immunoregulatory factors, such as Prostaglandin E2 (PGE2), and their mechanisms of action on immune cells have been revealed, their effects on MSCs and regulation of their production by the culture environment are less clear. Therefore, we investigated the autocrine effect of PGE2 on human adult stem cells from cord blood or adipose tissue, and the regulation of its production by cell-to-cell contact, followed by the determination of its immunomodulatory properties. MSCs were treated with specific inhibitors to suppress PGE2 secretion, and proliferation was assessed. PGE2 exerted an autocrine regulatory function in MSCs by triggering E-Prostanoid (EP) 2 receptor. Inhibiting PGE2 production led to growth arrest, whereas addition of MSC-derived PGE2 restored proliferation. The level of PGE2 production from an equivalent number of MSCs was down-regulated via gap junctional intercellular communication. This cell contact-mediated decrease in PGE2 secretion down-regulated the suppressive effect of MSCs on immune cells. In conclusion, PGE2 produced by MSCs contributes to maintenance of self-renewal capacity through EP2 in an autocrine manner, and PGE2 secretion is down-regulated by cell-to-cell contact, attenuating its immunomodulatory potency. PMID:27230257

  7. PGE2 maintains self-renewal of human adult stem cells via EP2-mediated autocrine signaling and its production is regulated by cell-to-cell contact.

    PubMed

    Lee, Byung-Chul; Kim, Hyung-Sik; Shin, Tae-Hoon; Kang, Insung; Lee, Jin Young; Kim, Jae-Jun; Kang, Hyun Kyoung; Seo, Yoojin; Lee, Seunghee; Yu, Kyung-Rok; Choi, Soon Won; Kang, Kyung-Sun

    2016-01-01

    Mesenchymal stem cells (MSCs) possess unique immunomodulatory abilities. Many studies have elucidated the clinical efficacy and underlying mechanisms of MSCs in immune disorders. Although immunoregulatory factors, such as Prostaglandin E2 (PGE2), and their mechanisms of action on immune cells have been revealed, their effects on MSCs and regulation of their production by the culture environment are less clear. Therefore, we investigated the autocrine effect of PGE2 on human adult stem cells from cord blood or adipose tissue, and the regulation of its production by cell-to-cell contact, followed by the determination of its immunomodulatory properties. MSCs were treated with specific inhibitors to suppress PGE2 secretion, and proliferation was assessed. PGE2 exerted an autocrine regulatory function in MSCs by triggering E-Prostanoid (EP) 2 receptor. Inhibiting PGE2 production led to growth arrest, whereas addition of MSC-derived PGE2 restored proliferation. The level of PGE2 production from an equivalent number of MSCs was down-regulated via gap junctional intercellular communication. This cell contact-mediated decrease in PGE2 secretion down-regulated the suppressive effect of MSCs on immune cells. In conclusion, PGE2 produced by MSCs contributes to maintenance of self-renewal capacity through EP2 in an autocrine manner, and PGE2 secretion is down-regulated by cell-to-cell contact, attenuating its immunomodulatory potency. PMID:27230257

  8. GM-CSF provides autocrine protection for murine alveolar epithelial cells from oxidant-induced mitochondrial injury.

    PubMed

    Sturrock, Anne; Seedahmed, Elfateh; Mir-Kasimov, Mustafa; Boltax, Jonathan; McManus, Michael L; Paine, Robert

    2012-02-01

    Exposure of mice to hyperoxia induces alveolar epithelial cell (AEC) injury, acute lung injury and death. Overexpression of granulocyte-macrophage colony-stimulating factor (GM-CSF) in the lung protects against these effects, although the mechanisms are not yet clear. Hyperoxia induces cellular injury via effects on mitochondrial integrity, associated with induction of proapoptotic members of the Bcl-2 family. We hypothesized that GM-CSF protects AEC through effects on mitochondrial integrity. MLE-12 cells (a murine type II cell line) and primary murine type II AEC were subjected to oxidative stress by exposure to 80% oxygen and by exposure to H(2)O(2). Exposure to H(2)O(2) induced cytochrome c release and decreased mitochondrial reductase activity in MLE-12 cells. Incubation with GM-CSF significantly attenuated these effects. Protection induced by GM-CSF was associated with Akt activation. GM-CSF treatment also resulted in increased expression of the antiapoptotic Bcl-2 family member, Mcl-1. Primary murine AEC were significantly more tolerant of oxidative stress than MLE-12 cells. In contrast to MLE-12 cells, primary AEC expressed significant GM-CSF at baseline and demonstrated constitutive activation of Akt and increased baseline expression of Mcl-1. Treatment with exogenous GM-CSF further increased Akt activation and Mcl-1 expression in primary AEC. Conversely, suppression of AEC GM-CSF expression by use of GM-CSF-specific small interfering RNA resulted in decreased tolerance of oxidative stress, Furthermore, silencing of Mcl-1 prevented GM-CSF-induced protection. We conclude that GM-CSF protects alveolar epithelial cells against oxidative stress-induced mitochondrial injury via the Akt pathway and its downstream components, including Mcl-1. Epithelial cell-derived GM-CSF may contribute to intrinsic defense mechanisms limiting lung injury. PMID:22140071

  9. Tolerogenic Phenotype of IFN-γ-Induced IDO+ Dendritic Cells Is Maintained via an Autocrine IDO-Kynurenine/AhR-IDO Loop.

    PubMed

    Li, Qingsheng; Harden, Jamie L; Anderson, Charles D; Egilmez, Nejat K

    2016-08-01

    Previous studies demonstrated that IL-12-driven antitumor activity is short-circuited by a rapid switch in dendritic cell (DC) function from immunogenic to tolerogenic activity. This process was dependent on IFN-γ and the tolerogenic phenotype was conferred by IDO. Extended monitoring of IDO(+) DC in the tumor-draining lymph nodes of IL-12 plus GM-CSF-treated tumor-bearing mice revealed that whereas IFN-γ induction was transient, IDO expression in DC was maintained long-term. An in vitro system modeling the IFN-γ-mediated change in DC function was developed to dissect the molecular basis of persistent IDO expression in post-IL-12 DC. Stimulation of DC with IFN-γ and CD40L resulted in rapid induction of IDO1 and IDO2 transcription and recapitulated the in vivo switch from immunogenic to tolerogenic activity. Long-term maintenance of IDO expression was found to be independent of exogenous and autocrine IFN-γ, or the secondary cytokines TGF-β, TNF-α, and IL-6. In contrast, both IDO enzymatic activity and IFN-γ-induced AhR expression were required for continued IDO transcription in vitro and in vivo. Addition of the tryptophan catabolite kynurenine to DC cultures in which IDO activity was blocked restored long-term IDO expression in wild-type DC but not in AhR-deficient DC, establishing the central role of the kynurenine-AhR pathway in maintaining IDO expression in tolerogenic DC. These findings shed further light on the cellular and molecular biology of the post-IL-12 regulatory rebound and provide insight into how feedback inhibitory mechanisms dominate in the long-term. PMID:27316681

  10. Angiotensin II induces skeletal muscle wasting through enhanced protein degradation and down-regulates autocrine insulin-like growth factor I.

    PubMed

    Brink, M; Price, S R; Chrast, J; Bailey, J L; Anwar, A; Mitch, W E; Delafontaine, P

    2001-04-01

    We previously showed that angiotensin II (ang II) infusion in the rat produces cachexia and decreases circulating insulin-like growth factor I (IGF-I). The weight loss derives from an anorexigenic response and a catabolic effect of ang II. In these experiments we assessed potential catabolic mechanisms and the involvement of the IGF-I system in these responses to ang II. Ang II infusion caused a significant decrease in body weight compared with that of pair-fed control rats. Kidney and left ventricular weights were significantly increased by ang II, whereas fat tissue was unchanged. Skeletal muscle mass was significantly decreased in the ang II-infused rats, and a reduction in lean muscle mass was a major reason for their overall loss of body weight. In skeletal muscles, ang II did not significantly decrease protein synthesis, but overall protein breakdown was accelerated; inhibiting lysosomal and calcium-activated proteases did not reduce the ang II-induced increase in muscle proteolysis. Circulating IGF-I levels were 33% lower in ang II rats vs. control rats, and this difference was reflected in lower IGF-I messenger RNA levels in the liver. Moreover, IGF-I, IGF-binding protein-3, and IGF-binding protein-5 messenger RNAs in the gastrocnemius were significantly reduced. To investigate whether the reduced circulating IGF-I accounts for the loss in muscle mass, we increased circulating IGF-I by coinfusing ang II and IGF-I, but this did not prevent muscle loss. Our data suggest that ang II causes a loss in skeletal muscle mass by enhancing protein degradation probably via its inhibitory effect on the autocrine IGF-I system. PMID:11250929

  11. Myostatin acts as an autocrine/paracrine negative regulator in myoblast differentiation from human induced pluripotent stem cells

    SciTech Connect

    Gao, Fei; Kishida, Tsunao; Ejima, Akika; Gojo, Satoshi; Mazda, Osam

    2013-02-08

    Highlights: ► iPS-derived cells express myostatin and its receptor upon myoblast differentiation. ► Myostatin inhibits myoblast differentiation by inhibiting MyoD and Myo5a induction. ► Silencing of myostatin promotes differentiation of human iPS cells into myoblasts. -- Abstract: Myostatin, also known as growth differentiation factor (GDF-8), regulates proliferation of muscle satellite cells, and suppresses differentiation of myoblasts into myotubes via down-regulation of key myogenic differentiation factors including MyoD. Recent advances in stem cell biology have enabled generation of myoblasts from pluripotent stem cells, but it remains to be clarified whether myostatin is also involved in regulation of artificial differentiation of myoblasts from pluripotent stem cells. Here we show that the human induced pluripotent stem (iPS) cell-derived cells that were induced to differentiate into myoblasts expressed myostatin and its receptor during the differentiation. An addition of recombinant human myostatin (rhMyostatin) suppressed induction of MyoD and Myo5a, resulting in significant suppression of myoblast differentiation. The rhMyostatin treatment also inhibited proliferation of the cells at a later phase of differentiation. RNAi-mediated silencing of myostatin promoted differentiation of human iPS-derived embryoid body (EB) cells into myoblasts. These results strongly suggest that myostatin plays an important role in regulation of myoblast differentiation from iPS cells of human origin. The present findings also have significant implications for potential regenerative medicine for muscular diseases.

  12. A Lys49-PLA2 myotoxin of Bothrops asper triggers a rapid death of macrophages that involves autocrine purinergic receptor signaling.

    PubMed

    Tonello, F; Simonato, M; Aita, A; Pizzo, P; Fernández, J; Lomonte, B; Gutiérrez, J M; Montecucco, C

    2012-01-01

    Lys49-PLA(2) myotoxins, an important component of various viperid snake venoms, are a class of PLA(2)-homolog proteins deprived of catalytic activity. Similar to enzymatically active PLA(2) (Asp49) and to other classes of myotoxins, they cause severe myonecrosis. Moreover, these toxins are used as tools to study skeletal muscle repair and regeneration, a process that can be very limited after snakebites. In this work, the cytotoxic effect of different myotoxins, Bothrops asper Lys49 and Asp49-PLA(2), Notechis scutatus notexin and Naja mossambica cardiotoxin, was evaluated on macrophages, cells that have a key role in muscle regeneration. Only the Lys49-myotoxin was found to trigger a rapid asynchronous death of mouse peritoneal macrophages and macrophagic cell lines through a process that involves ATP release, ATP-induced ATP release and that is inhibited by various purinergic receptor antagonists. ATP leakage is induced also at sublytical doses of the Lys49-myotoxin, it involves Ca(2+) release from intracellular stores, and is reduced by inhibitors of VSOR and the maxi-anion channel. The toxin-induced cell death is different from that caused by high concentration of ATP and appears to be linked to localized purinergic signaling. Based on present findings, a mechanism of cell death is proposed that can be extended to other cytolytic proteins and peptides. PMID:22764102

  13. Autocrine CCL5 signaling promotes invasion and migration of CD133+ ovarian cancer stem-like cells via NF-κB-mediated MMP-9 upregulation.

    PubMed

    Long, Haixia; Xie, Rongkai; Xiang, Tong; Zhao, Zhongquan; Lin, Sheng; Liang, Zhiqing; Chen, Zhengtang; Zhu, Bo

    2012-10-01

    The concept of cancer stem cells (CSCs) proposes that solely CSCs are capable of generating tumor metastases. However, how CSCs maintain their invasion and migration abilities, the most important properties of metastatic cells, still remains elusive. Here we used CD133 to mark a specific population from human ovarian cancer cell line and ovarian cancer tissue and determined its hyperactivity in migration and invasion. Therefore, we labeled this population as cancer stem-like cells (CSLCs). In comparison to CD133- non-CSLCs, chemokine CCL5 and its receptors, CCR1, CCR3, and CCR5, were consistently upregulated in CSLCs, and most importantly, blocking of CCL5, CCR1, or CCR3 effectively inhibits the invasive capacity of CSLCs. Mechanistically, we identified that this enhanced invasiveness is mediated through nuclear factor κB (NF-κB) activation and the consequently elevated MMP9 secretion. Our results suggested that the autocrine activation of CCR1 and CCR3 by CCL5 represents one of major mechanisms underlying the metastatic property of ovarian CSLCs. PMID:22887854

  14. Interleukin-8 (IL-8) over-production and autocrine cell activation are key factors in monomethylarsonous acid [MMA(III)]-induced malignant transformation of urothelial cells

    SciTech Connect

    Escudero-Lourdes, C.; Wu, T.; Camarillo, J.M.; Gandolfi, A.J.

    2012-01-01

    The association between chronic human exposure to arsenicals and bladder cancer development is well recognized; however, the underlying molecular mechanisms have not been fully determined. We propose that inflammatory responses can play a pathogenic role in arsenic-related bladder carcinogenesis. In previous studies, it was demonstrated that chronic exposure to 50 nM monomethylarsenous acid [MMA(III)] leads to malignant transformation of an immortalized model of urothelial cells (UROtsa), with only 3 mo of exposure necessary to trigger the transformation-related changes. In the three-month window of exposure, the cells over-expressed pro-inflammatory cytokines (IL-1β, IL-6 and IL-8), consistent with the sustained activation of NFKβ and AP1/c-jun, ERK2, and STAT3. IL-8 was over-expressed within hours after exposure to MMA(III), and sustained over-expression was observed during chronic exposure. In this study, we profiled IL-8 expression in UROtsa cells exposed to 50 nM MMA(III) for 1 to 5 mo. IL-8 expression was increased mainly in cells after 3 mo MMA(III) exposure, and its production was also found increased in tumors derived from these cells after heterotransplantation in SCID mice. UROtsa cells do express both receptors, CXCR1 and CXCR2, suggesting that autocrine cell activation could be important in cell transformation. Supporting this observation and consistent with IL-8 over-expression, CXCR1 internalization was significantly increased after three months of exposure to MMA(III). The expression of MMP-9, cyclin D1, bcl-2, and VGEF was significantly increased in cells exposed to MMA(III) for 3 mo, but these mitogen-activated kinases were significantly decreased after IL-8 gene silencing, together with a decrease in cell proliferation rate and in anchorage-independent colony formation. These results suggest a relevant role of IL-8 in MMA(III)-induced UROtsa cell transformation. -- Highlights: ► IL-8 is over-expressed in human MMA(III)-exposed urothelial

  15. Acoustically-Induced Electrical Signals

    NASA Astrophysics Data System (ADS)

    Brown, S. R.

    2014-12-01

    We have observed electrical signals excited by and moving along with an acoustic pulse propagating in a sandstone sample. Using resonance we are now studying the characteristics of this acousto-electric signal and determining its origin and the controlling physical parameters. Four rock samples with a range of porosities, permeabilities, and mineralogies were chosen: Berea, Boise, and Colton sandstones and Austin Chalk. Pore water salinity was varied from deionized water to sea water. Ag-AgCl electrodes were attached to the sample and were interfaced to a 4-wire electrical resistivity system. Under computer control, the acoustic signals were excited and the electrical response was recorded. We see strong acoustically-induced electrical signals in all samples, with the magnitude of the effect for each rock getting stronger as we move from the 1st to the 3rd harmonics in resonance. Given a particular fluid salinity, each rock has its own distinct sensitivity in the induced electrical effect. For example at the 2nd harmonic, Berea Sandstone produces the largest electrical signal per acoustic power input even though Austin Chalk and Boise Sandstone tend to resonate with much larger amplitudes at the same harmonic. Two effects are potentially responsible for this acoustically-induced electrical response: one the co-seismic seismo-electric effect and the other a strain-induced resistivity change known as the acousto-electric effect. We have designed experimental tests to separate these mechanisms. The tests show that the seismo-electric effect is dominant in our studies. We note that these experiments are in a fluid viscosity dominated seismo-electric regime, leading to a simple interpretation of the signals where the electric potential developed is proportional to the local acceleration of the rock. Toward a test of this theory we have measured the local time-varying acoustic strain in our samples using a laser vibrometer.

  16. The transient pore formed by homologous terminal complement complexes functions as a bidirectional route for the transport of autocrine and paracrine signals across human cell membranes.

    PubMed Central

    Acosta, J. A.; Benzaquen, L. R.; Goldstein, D. J.; Tosteson, M. T.; Halperin, J. A.

    1996-01-01

    BACKGROUND: We have previously shown that the membrane attack complex (MAC) of complement stimulates cell proliferation and that insertion of homologous MAC into the membranes of endothelial cells results in the release of potent mitogens, including basic fibroblast growth factor (bFGF). The mechanism of secretion of bFGF and other polypeptides devoid of signal peptides, such as interleukin 1 (IL-1) is still an open problem in cell biology. We have hypothesized that the homologous MAC pore itself could constitute a transient route for the diffusion of biologically active macromolecules in and out of the target cells. MATERIALS AND METHODS: Human red blood cell ghosts and artificial lipid vesicles were loaded with labeled growth factors, cytokines and IgG, and exposed to homologous MAC. The release of the 125I-macromolecules was followed as a function of time. The incorporation of labeled polypeptides and fluorescent dextran (MW: 10,000) was measured in MAC-impacted human red blood cells and human umbilical endothelial cells (HUVEC), respectively. RESULTS: Homologous MAC insertion into HUVEC resulted in the massive uptake of 10-kD dextran and induced the release of bFGF, in the absence of any measurable lysis. Red blood cell ghosts preloaded with bFGF, IL-1 beta, and the alpha-chain of interferon-gamma (IFN-gamma) released the polypeptides upon MAC insertion, but they did not release preloaded IgG. MAC-impacted ghosts took up radioactive IFN-gamma from the extracellular medium. Vesicles loaded with IL-I released the polypeptide when exposed to MAC. CONCLUSIONS: The homologous MAC pore in its nonlytic form allows for the export of cytosolic proteins devoid of signal peptides that are not secreted through the classical endoplasmic reticulum/Golgi exocytotic pathways. Our results suggest that the release, and perhaps the uptake, of biologically active macromolecules through the homologous MAC pore is a novel biological function of the complement system in mammals

  17. Boolean approach to signalling pathway modelling in HGF-induced keratinocyte migration

    PubMed Central

    Singh, Amit; Nascimento, Juliana M.; Kowar, Silke; Busch, Hauke; Boerries, Melanie

    2012-01-01

    Motivation: Cell migration is a complex process that is controlled through the time-sequential feedback regulation of protein signalling and gene regulation. Based on prior knowledge and own experimental data, we developed a large-scale dynamic network describing the onset and maintenance of hepatocyte growth factor-induced migration of primary human keratinocytes. We applied Boolean logic to capture the qualitative behaviour as well as short-and long-term dynamics of the complex signalling network involved in this process, comprising protein signalling, gene regulation and autocrine feedback. Results: A Boolean model has been compiled from time-resolved transcriptome data and literature mining, incorporating the main pathways involved in migration from initial stimulation to phenotype progress. Steady-state analysis under different inhibition and stimulation conditions of known key molecules reproduces existing data and predicts novel interactions based on our own experiments. Model simulations highlight for the first time the necessity of a temporal sequence of initial, transient MET receptor (met proto-oncogene, hepatocyte growth factor receptor) and subsequent, continuous epidermal growth factor/integrin signalling to trigger and sustain migration by autocrine signalling that is integrated through the Focal adhesion kinase protein. We predicted in silico and verified in vitro that long-term cell migration is stopped if any of the two feedback loops are inhibited. Availability: The network file for analysis with the R BoolNet library is available in the Supplementary Information. Contact: melanie.boerries@frias.uni-freiburg.de or hauke.busch@frias.uni-freiburg.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID:22962472

  18. GLI1 regulates a novel neuropilin-2/α6β1 integrin based autocrine pathway that contributes to breast cancer initiation.

    PubMed

    Goel, Hira Lal; Pursell, Bryan; Chang, Cheng; Shaw, Leslie M; Mao, Junhao; Simin, Karl; Kumar, Prashant; Vander Kooi, Craig W; Shultz, Leonard D; Greiner, Dale L; Norum, Jens Henrik; Toftgard, Rune; Kuperwasser, Charlotte; Mercurio, Arthur M

    2013-04-01

    The characterization of cells with tumour initiating potential is significant for advancing our understanding of cancer and improving therapy. Aggressive, triple-negative breast cancers (TNBCs) are enriched for tumour-initiating cells (TICs). We investigated that hypothesis that VEGF receptors expressed on TNBC cells mediate autocrine signalling that contributes to tumour initiation. We discovered the VEGF receptor neuropilin-2 (NRP2) is expressed preferentially on TICs, involved in the genesis of TNBCs and necessary for tumour initiation. The mechanism by which NRP2 signalling promotes tumour initiation involves stimulation of the α6β1 integrin, focal adhesion kinase-mediated activation of Ras/MEK signalling and consequent expression of the Hedgehog effector GLI1. GLI1 also induces BMI-1, a key stem cell factor, and it enhances NRP2 expression and the function of α6β1, establishing an autocrine loop. NRP2 can be targeted in vivo to retard tumour initiation. These findings reveal a novel autocrine pathway involving VEGF/NRP2, α6β1 and GLI1 that contributes to the initiation of TNBC. They also support the feasibility of NRP2-based therapy for the treatment of TNBC that targets and impedes the function of TICs. PMID:23436775

  19. Lactate Stimulates Vasculogenic Stem Cells via the Thioredoxin System and Engages an Autocrine Activation Loop Involving Hypoxia-Inducible Factor 1▿

    PubMed Central

    Milovanova, Tatyana N.; Bhopale, Veena M.; Sorokina, Elena M.; Moore, Jonni S.; Hunt, Thomas K.; Hauer-Jensen, Martin; Velazquez, Omaida C.; Thom, Stephen R.

    2008-01-01

    The recruitment and differentiation of circulating stem/progenitor cells (SPCs) in subcutaneous Matrigel in mice was assessed. There were over one million CD34+ SPCs per Matrigel plug 18 h after Matrigel implantation, and including a polymer to elevate the lactate concentration increased the number of SPCs by 3.6-fold. Intricate CD34+ cell-lined channels were linked to the systemic circulation, and lactate accelerated cell differentiation as evaluated based on surface marker expression and cell cycle entry. CD34+ SPCs from lactate-supplemented Matrigel exhibited significantly higher concentrations of thioredoxin 1 (Trx1) and hypoxia-inducible factor 1 (HIF-1) than cells from unsupplemented Matrigel, whereas Trx1 and HIF-1 in CD45+ leukocytes were not elevated by lactate. Results obtained using small inhibitory RNA (siRNA) specific to HIF-1 and mice with conditionally HIF-1 null myeloid cells indicated that SPC recruitment and lactate-mediated effects were dependent on HIF-1. Cells from lactate-supplemented Matrigel had higher concentrations of phosphorylated extracellular signal-regulated kinases 1 and 2, Trx1, Trx reductase (TrxR), vascular endothelial growth factor (VEGF), and stromal cell-derived factor 1 (SDF-1) than cells from unsupplemented Matrigel. SPC recruitment and protein changes were inhibited by siRNA specific to lactate dehydrogenase, TrxR, or HIF-1 and by oxamate, apocynin, U0126, N-acetylcysteine, dithioerythritol, and antibodies to VEGF or SDF-1. Oxidative stress from lactate metabolism by SPCs accelerated further SPC recruitment and differentiation through Trx1-mediated elevations in HIF-1 levels and the subsequent synthesis of HIF-1-dependent growth factors. PMID:18710947

  20. SDF-1α is a novel autocrine activator of platelets operating through its receptor CXCR4.

    PubMed

    Walsh, Tony G; Harper, Matthew T; Poole, Alastair W

    2015-01-01

    Platelets store and secrete the chemokine stromal cell-derived factor (SDF)-1α upon platelet activation, but the ability of platelet-derived SDF-1α to signal in an autocrine/paracrine manner mediating functional platelet responses relevant to thrombosis and haemostasis is unknown. We sought to explore the role of platelet-derived SDF-1α and its receptors, CXCR4 and CXCR7 in facilitating platelet activation and determine the mechanism facilitating SDF-1α-mediated regulation of platelet function. Using human washed platelets, CXCR4 inhibition, but not CXCR7 blockade significantly abrogated collagen-mediated platelet aggregation, dense granule secretion and thromboxane (Tx) A2 production. Time-dependent release of SDF-1α from collagen-activated platelets supports a functional role for SDF-1α in this regard. Using an in vitro whole blood perfusion assay, collagen-induced thrombus formation was substantially reduced with CXCR4 inhibition. In washed platelets, recombinant SDF-1α in the range of 20-100 ng/mL(-1) could significantly enhance platelet aggregation responses to a threshold concentration of collagen. These enhancements were completely dependent on CXCR4, but not CXCR7, which triggered TxA2 production and dense granule secretion. Rises in cAMP were significantly blunted by SDF-1α, which could also enhance collagen-mediated Ca2+ mobilisation, both of which were mediated by CXCR4. This potentiating effect of SDF-1α primarily required TxA2 signalling acting upstream of dense granule secretion, whereas blockade of ADP signalling could only partially attenuate SDF-1α-induced platelet activation. Therefore, this study supports a potentially novel autocrine/paracrine role for platelet-derived SDF-1α during thrombosis and haemostasis, through a predominantly TxA2-dependent and ADP-independent pathway. PMID:25283599

  1. Axotomy-induced HIF-serotonin signalling axis promotes axon regeneration in C. elegans.

    PubMed

    Alam, Tanimul; Maruyama, Hiroki; Li, Chun; Pastuhov, Strahil Iv; Nix, Paola; Bastiani, Michael; Hisamoto, Naoki; Matsumoto, Kunihiro

    2016-01-01

    The molecular mechanisms underlying the ability of axons to regenerate after injury remain poorly understood. Here we show that in Caenorhabditis elegans, axotomy induces ectopic expression of serotonin (5-HT) in axotomized non-serotonergic neurons via HIF-1, a hypoxia-inducible transcription factor, and that 5-HT subsequently promotes axon regeneration by autocrine signalling through the SER-7 5-HT receptor. Furthermore, we identify the rhgf-1 and rga-5 genes, encoding homologues of RhoGEF and RhoGAP, respectively, as regulators of axon regeneration. We demonstrate that one pathway initiated by SER-7 acts upstream of the C. elegans RhoA homolog RHO-1 in neuron regeneration, which functions via G12α and RHGF-1. In this pathway, RHO-1 inhibits diacylglycerol kinase, resulting in an increase in diacylglycerol. SER-7 also promotes axon regeneration by activating the cyclic AMP (cAMP) signalling pathway. Thus, HIF-1-mediated activation of 5-HT signalling promotes axon regeneration by activating both the RhoA and cAMP pathways. PMID:26790951

  2. Axotomy-induced HIF-serotonin signalling axis promotes axon regeneration in C. elegans

    PubMed Central

    Alam, Tanimul; Maruyama, Hiroki; Li, Chun; Pastuhov, Strahil Iv.; Nix, Paola; Bastiani, Michael; Hisamoto, Naoki; Matsumoto, Kunihiro

    2016-01-01

    The molecular mechanisms underlying the ability of axons to regenerate after injury remain poorly understood. Here we show that in Caenorhabditis elegans, axotomy induces ectopic expression of serotonin (5-HT) in axotomized non-serotonergic neurons via HIF-1, a hypoxia-inducible transcription factor, and that 5-HT subsequently promotes axon regeneration by autocrine signalling through the SER-7 5-HT receptor. Furthermore, we identify the rhgf-1 and rga-5 genes, encoding homologues of RhoGEF and RhoGAP, respectively, as regulators of axon regeneration. We demonstrate that one pathway initiated by SER-7 acts upstream of the C. elegans RhoA homolog RHO-1 in neuron regeneration, which functions via G12α and RHGF-1. In this pathway, RHO-1 inhibits diacylglycerol kinase, resulting in an increase in diacylglycerol. SER-7 also promotes axon regeneration by activating the cyclic AMP (cAMP) signalling pathway. Thus, HIF-1-mediated activation of 5-HT signalling promotes axon regeneration by activating both the RhoA and cAMP pathways. PMID:26790951

  3. MTMR3 risk allele enhances innate receptor-induced signaling and cytokines by decreasing autophagy and increasing caspase-1 activation

    PubMed Central

    Lahiri, Amit; Hedl, Matija; Abraham, Clara

    2015-01-01

    Inflammatory bowel disease (IBD) is characterized by dysregulated host:microbial interactions and cytokine production. Host pattern recognition receptors (PRRs) are critical in regulating these interactions. Multiple genetic loci are associated with IBD, but altered functions for most, including in the rs713875 MTMR3/HORMAD2/LIF/OSM region, are unknown. We identified a previously undefined role for myotubularin-related protein 3 (MTMR3) in amplifying PRR-induced cytokine secretion in human macrophages and defined MTMR3-initiated mechanisms contributing to this amplification. MTMR3 decreased PRR-induced phosphatidylinositol 3-phosphate (PtdIns3P) and autophagy levels, thereby increasing PRR-induced caspase-1 activation, autocrine IL-1β secretion, NFκB signaling, and, ultimately, overall cytokine secretion. This MTMR3-mediated regulation required the N-terminal pleckstrin homology-GRAM domain and Cys413 within the phosphatase domain of MTMR3. In MTMR3-deficient macrophages, reducing the enhanced autophagy or restoring NFκB signaling rescued PRR-induced cytokines. Macrophages from rs713875 CC IBD risk carriers demonstrated increased MTMR3 expression and, in turn, decreased PRR-induced PtdIns3P and autophagy and increased PRR-induced caspase-1 activation, signaling, and cytokine secretion. Thus, the rs713875 IBD risk polymorphism increases MTMR3 expression, which modulates PRR-induced outcomes, ultimately leading to enhanced PRR-induced cytokines. PMID:26240347

  4. Evidence of substance P autocrine circuitry that involves TNF-α, IL-6, and PGE2 in endogenous pyrogen-induced fever.

    PubMed

    Brito, Haissa Oliveira; Barbosa, Felipe L; Reis, Renata Cristiane Dos; Fraga, Daniel; Borges, Beatriz S; Franco, Celia R C; Zampronio, Aleksander Roberto

    2016-04-15

    Substance P (SP) is involved in fever that is induced by lipopolysaccharide (LPS) but not by interleukin-1β or macrophage inflammatory protein-1α. Intracerebroventricular (i.c.v.) administration of the neurokinin-1 (NK1) receptor antagonist SR140333B in rats reduced fever that was induced by an i.c.v. injection of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), prostaglandin E2 (PGE2), corticotropin-releasing factor (CRF), endothelin-1 (ET-1), and morphine (MOR). Furthermore, an i.c.v. injection of SP induced a febrile response that was inhibited by indomethacin concomitant with an increase in PGE2 levels in cerebrospinal fluid. Lipopolysaccharide and PGE2 caused higher expression and internalization of NK1 receptors in the hypothalamus which were prevented by SR140333B. These data suggest that SP is an important mediator of fever, in which it induces a prostaglandin-dependent response and is released after TNF-α, IL-6, PGE2, CRF, endogenous opioids, and ET-1. PMID:27049554

  5. Long-term exposure of proximal tubular epithelial cells to glucose induces transforming growth factor-beta 1 synthesis via an autocrine PDGF loop.

    PubMed

    Fraser, Donald; Brunskill, Nigel; Ito, Takafumi; Phillips, Aled

    2003-12-01

    We have recently reported increased transforming growth factor (TGF)-beta1 gene transcription in proximal tubular cells within 12 hours of exposure to 25 mmol/L D-glucose, with a requirement for a second stimulus such as platelet-derived growth factor (PDGF) to increase its translation in short-term experiments. In the current study we investigated the effect on TGF-beta 1 production of prolonged exposure of proximal tubular cells to high glucose concentrations. Enzyme-linked immunosorbent assay of cell culture supernatant showed significant increase in latent TGF-beta 1 only after 7 days exposure to high glucose. Radiolabeling of glucose-stimulated cells with (3)H amino acids and subsequent immunoprecipitation of TGF-beta 1 demonstrated de novo synthesis from day 5 of high glucose exposure onwards. Similarly, polysome analysis showed enhanced translation of TGF-beta mRNA after 4 or more days of high glucose exposure. TGF-beta 1 synthesis, following addition of glucose, was inhibited by blockade of the PDGF-alpha receptor subunit. Glucose did not alter PDGF expression, nor expression of PDGF alpha-receptors. Activation of the receptor following addition of 25 mm D-glucose could be demonstrated suggesting increased sensitivity to endogenous PDGF. Exposure to glucose activated p38MAP kinase, and inhibition of this activation abrogated both glucose induced TGF-beta 1 transcriptional activation and TGF-beta 1 synthesis. Inhibition of p38MAP kinase did not influence the effect of exogenous PDGF when cells were stimulated sequentially by glucose and PDGF. We postulate that glucose induces an early increase in TGF-beta 1 transcription via activation of p38MAP kinase. In addition, glucose causes a late increase in PDGF-dependent TGF-beta 1 translation by enhancing cellular sensitivity to PDGF. This provides a potential explanation for the clinical observation that prolonged poor glycemic control may contribute to progression of diabetic nephropathy. PMID:14633628

  6. Adenosine A2A receptor signaling attenuates LPS-induced pro-inflammatory cytokine formation of mouse macrophages by inducing the expression of DUSP1.

    PubMed

    Köröskényi, Krisztina; Kiss, Beáta; Szondy, Zsuzsa

    2016-07-01

    Adenosine is known to reduce inflammation by suppressing the activity of most immune cells. Previous studies have shown that lipopolysaccharide (LPS) stimulated mouse macrophages produce adenosine, and the adenosine A2A receptor (A2AR) signaling activated in an autocrine manner attenuates LPS-induced pro-inflammatory cytokine formation. It has been suggested that A2AR signaling inhibits LPS-induced pro-inflammatory cytokine production through a unique cAMP-dependent, but PKA- and Epac-independent signaling pathway. However, the mechanism of inhibition was not identified so far. Here we report that LPS stimulation enhances A2AR expression in mouse bone marrow derived macrophages, and loss of A2ARs results in enhanced LPS-induced pro-inflammatory response. Loss of A2ARs in A2AR null macrophages did not alter the LPS-induced NF-κB activation, but an enhanced basal and LPS-induced phosphorylation of MAP kinases (especially that of JNKs) was detected in A2AR null cells. A2AR signaling did not alter the LPS-induced phosphorylation of their upstream kinases, but by regulating adenylate cyclase activity it enhanced the expression of dual specific phosphatase (DUSP)1, a negative regulator of MAP kinases. As a result, lower basal and LPS-induced DUSP1 mRNA and protein levels can be detected in A2AR null macrophages. Silencing of DUSP1 mRNA expression resulted in higher basal and LPS-induced JNK phosphorylation and LPS-induced pro-inflammatory cytokine formation in wild type macrophages, but had no effect on that in A2AR null cells. Our data indicate that A2AR signaling regulates both basal and LPS-induced DUSP1 levels in macrophages via activating the adenylate cyclase pathway. PMID:27066978

  7. Autocrine effects of neuromedin B stimulate the proliferation of rat primary osteoblasts.

    PubMed

    Saito, Hiroki; Nakamachi, Tomoya; Inoue, Kazuhiko; Ikeda, Ryuji; Kitamura, Kazuo; Minamino, Naoto; Shioda, Seiji; Miyata, Atsuro

    2013-05-01

    Neuromedin B (NMB) is a mammalian bombesin-like peptide that regulates exocrine/endocrine secretion, smooth muscle contraction, body temperature, and the proliferation of some cell types. Here, we show that mRNA encoding Nmb and its receptor (Nmbr) are expressed in rat bone tissue. Immunohistochemical analysis demonstrated that NMB and NMBR colocalize in osteoblasts, epiphyseal chondrocytes, and proliferative chondrocytes of growth plates from mouse hind limbs. Then, we investigated the effect of NMB on the proliferation of rat primary cultured osteoblasts. Proliferation assays and 5-bromo-2'-deoxyuridine incorporation assays demonstrated that NMB augments the cell number and enhances DNA synthesis in osteoblasts. Pretreatment with the NMBR antagonist BIM23127 inhibited NMB-induced cell proliferation and DNA synthesis. Western blot analysis showed that NMB activates ERK1/2 MAPK signaling in osteoblasts. Pretreatment with the MAPK/ERK kinase inhibitor U0126 attenuated NMB-induced cell proliferation and DNA synthesis. We also investigated the effects of molecules that contribute to osteoblast proliferation and differentiation on Nmb expression in osteoblasts. Real-time PCR analysis demonstrated that 17β-estradiol (E2) and transforming growth factor β1 increase and decrease Nmb mRNA expression levels respectively. Finally, proliferation assays revealed that the NMBR antagonist BIM23127 suppresses E2-induced osteoblast proliferation. These results suggest that NMB/NMBR signaling plays an autocrine or paracrine role in osteoblast proliferation and contributes to the regulation of bone formation. PMID:23428580

  8. Ethanol induced impairment of glucose metabolism involves alterations of GABAergic signaling in pancreatic β-cells.

    PubMed

    Wang, Shuanglian; Luo, Yan; Feng, Allen; Li, Tao; Yang, Xupeng; Nofech-Mozes, Roy; Yu, Meng; Wang, Changhui; Li, Ziwei; Yi, Fan; Liu, Chuanyong; Lu, Wei-Yang

    2014-12-01

    Alcohol overindulgence is a risk factor of type 2 diabetes mellitus. However, the mechanisms by which alcohol overindulgence damages glucose metabolism remain unclear. Pancreatic islet β-cells are endowed with type-A γ-aminobutyric acid receptor (GABAAR) mediated autocrine signaling mechanism, which regulates insulin secretion and fine-tunes glucose metabolism. In neurons GABAAR is one of the major targets for alcohol. This study investigated whether ethanol alters glucose metabolism by affecting GABAAR signaling in pancreatic β-cells. Blood glucose level of test mice was measured using a blood glucose meter. Insulin secretion by the pancreatic β-cell line INS-1 cells was examined using a specific insulin ELISA kit. Whole-cell patch-clamp recording was used to evaluate GABA-elicited current in INS-1 cells. Western blot and immunostaining were used to measure the expression of GABAAR subunits in mouse pancreatic tissues or in INS-1 cells. Intraperitoneal (i.p.) administration of ethanol (3.0g/kg body weight) to mice altered glucose metabolism, which was associated with decreased expression of GABAAR α1- and δ- subunits on the surface of pancreatic β-cells. Acute treatment of cultured INS-1cells with ethanol (60mM) decreased the GABA-induced current and reduced insulin secretion. In contrast, treating INS-1 cells with GABA (100μM) largely prevented the ethanol-induced reduction of insulin release. Importantly, pre-treating mice with GABA (i.p., 1.5mg/kg body weight) partially reversed ethanol-induced impairment of glucose homeostasis in mice. Our data suggest a novel role of pancreatic GABA signaling in protecting pancreatic islet β-cells from ethanol-induced dysfunction. PMID:25456265

  9. Wnt signaling induces gene expression of factors associated with bone destruction in lung and breast cancer.

    PubMed

    Johnson, Rachelle W; Merkel, Alyssa R; Page, Jonathan M; Ruppender, Nazanin S; Guelcher, Scott A; Sterling, Julie A

    2014-12-01

    Parathyroid hormone-related protein (PTHrP) is an important regulator of bone destruction in bone metastatic tumors. Transforming growth factor-beta (TGF-β) stimulates PTHrP production in part through the transcription factor Gli2, which is regulated independent of the Hedgehog signaling pathway in osteolytic cancer cells. However, inhibition of TGF-β in vivo does not fully inhibit tumor growth in bone or tumor-induced bone destruction, suggesting other pathways are involved. While Wnt signaling regulates Gli2 in development, the role of Wnt signaling in bone metastasis is unknown. Therefore, we investigated whether Wnt signaling regulates Gli2 expression in tumor cells that induce bone destruction. We report here that Wnt activation by β-catenin/T cell factor 4 (TCF4) over-expression or lithium chloride (LiCl) treatment increased Gli2 and PTHrP expression in osteolytic cancer cells. This was mediated through the TCF and Smad binding sites within the Gli2 promoter as determined by promoter mutation studies, suggesting cross-talk between TGF-β and Wnt signaling. Culture of tumor cells on substrates with bone-like rigidity increased Gli2 and PTHrP production, enhanced autocrine Wnt activity and led to an increase in the TCF/Wnt signaling reporter (TOPFlash), enriched β-catenin nuclear accumulation, and elevated Wnt-related genes by PCR-array. Stromal cells serve as an additional paracrine source of Wnt ligands and enhanced Gli2 and PTHrP mRNA levels in MDA-MB-231 and RWGT2 cells in vitro and promoted tumor-induced bone destruction in vivo in a β-catenin/Wnt3a-dependent mechanism. These data indicate that a combination of matrix rigidity and stromal-secreted factors stimulate Gli2 and PTHrP through Wnt signaling in osteolytic breast cancer cells, and there is significant cross-talk between the Wnt and TGF-β signaling pathways. This suggests that the Wnt signaling pathway may be a potential therapeutic target for inhibiting tumor cell response to the bone

  10. Wnt signaling induces gene expression of factors associated with bone destruction in lung and breast cancer

    PubMed Central

    Johnson, Rachelle W.; Merkel, Alyssa R.; Page, Jonathan M.; Ruppender, Nazanin S.; Guelcher, Scott A.; Sterling, Julie A.

    2014-01-01

    Parathyroid hormone-related protein (PTHrP) is an important regulator of bone destruction in bone metastatic tumors. Transforming growth factor-beta (TGF-β) stimulates PTHrP production in part through the transcription factor Gli2, which is regulated independent of the Hedgehog signaling pathway in osteolytic cancer cells. However, inhibition of TGF-β in vivo does not fully inhibit tumor growth in bone or tumor-induced bone destruction, suggesting other pathways are involved. While Wnt signaling regulates Gli2 in development, the role of Wnt signaling in bone metastasis is unknown. Therefore, we investigated whether Wnt signaling regulates Gli2 expression in tumor cells that induce bone destruction. We report here that Wnt activation by β-catenin/T-cell factor 4 (TCF4) over-expression or lithium chloride (LiCl) treatment increased Gli2 and PTHrP expression in osteolytic cancer cells. This was mediated through the TCF and Smad binding sites within the Gli2 promoter as determined by promoter mutation studies, suggesting cross-talk between TGF-β and Wnt signaling. Culture of tumor cells on substrates with bone-like rigidity increased Gli2 and PTHrP production, enhanced autocrine Wnt activity and led to an increase in the TCF/Wnt signaling reporter (TOPFlash), enriched β-catenin nuclear accumulation, and elevated Wnt-related genes by PCR-array. Stromal cells serve as an additional paracrine source of Wnt ligands and enhanced Gli2 and PTHrP mRNA levels in MDA-MB-231 and RWGT2 cells in vitro and promoted tumor-induced bone destruction in vivo in a β-catenin/Wnt3a-dependent mechanism. These data indicate that a combination of matrix rigidity and stromal-secreted factors stimulate Gli2 and PTHrP through Wnt signaling in osteolytic breast cancer cells, and there is significant cross-talk between the Wnt and TGF-β signaling pathways. This suggests that the Wnt signaling pathway may be a potential therapeutic target for inhibiting tumor cell response to the bone

  11. TNF signaling mediates an enzalutamide-induced metastatic phenotype of prostate cancer and microenvironment cell co-cultures

    PubMed Central

    Sha, Kai; Yeh, Shuyuan; Chang, Chawnshang; Nastiuk, Kent L.; Krolewski, John J.

    2015-01-01

    The dramatic responses tumors display to targeted therapies are limited by acquired or pre-existing mechanisms of therapy resistance. We recently discovered that androgen receptor blockade by the anti-androgen enzalutamide paradoxically enhanced metastasis and that these pro-metastatic effects were mediated by the chemoattractant CCL2. CCL2 is regulated by TNF, which is negatively regulated by androgen signaling. Thus, we asked if TNF mediates the pro-metastatic effects of enzalutamide. We found that androgen withdrawal or enzalutamide induced TNF mRNA and protein secretion in castration resistant prostate cancer (C4-2) cells, but not in macrophage-like (THP1) or myofibroblast-like (WPMY1) cells. Androgen deprivation therapy (ADT) induced autocrine CCL2 expression in C4-2 (as well as a murine CRPC cell line), while exogenous TNF induced CCL2 in THP1 and WPMY1. TNF was most potent in myofibroblast cultures, suggesting ADT induces CCL2 via paracrine interactions within the tumor microenvironment. A soluble TNF receptor (etanercept) blocked enzalutamide-induced CCL2 protein secretion and mRNA, implying dependence on secreted TNF. A small molecule inhibitor of CCR2 (the CCL2 receptor) significantly reduced TNF induced migration, while etanercept inhibited enzalutamide-induced migration and invasion of C4-2. Analysis of human prostate cancers suggests that a TNF-CCL2 paracrine loop is induced in response to ADT and might account for some forms of prostate cancer therapy resistance. PMID:26327448

  12. Inhibition of KRAS-driven tumorigenicity by interruption of an autocrine cytokine circuit.

    PubMed

    Zhu, Zehua; Aref, Amir R; Cohoon, Travis J; Barbie, Thanh U; Imamura, Yu; Yang, Shenghong; Moody, Susan E; Shen, Rhine R; Schinzel, Anna C; Thai, Tran C; Reibel, Jacob B; Tamayo, Pablo; Godfrey, Jason T; Qian, Zhi Rong; Page, Asher N; Maciag, Karolina; Chan, Edmond M; Silkworth, Whitney; Labowsky, Mary T; Rozhansky, Lior; Mesirov, Jill P; Gillanders, William E; Ogino, Shuji; Hacohen, Nir; Gaudet, Suzanne; Eck, Michael J; Engelman, Jeffrey A; Corcoran, Ryan B; Wong, Kwok-Kin; Hahn, William C; Barbie, David A

    2014-04-01

    Although the roles of mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) signaling in KRAS-driven tumorigenesis are well established, KRAS activates additional pathways required for tumor maintenance, the inhibition of which are likely to be necessary for effective KRAS-directed therapy. Here, we show that the IκB kinase (IKK)-related kinases Tank-binding kinase-1 (TBK1) and IKKε promote KRAS-driven tumorigenesis by regulating autocrine CCL5 and interleukin (IL)-6 and identify CYT387 as a potent JAK/TBK1/IKKε inhibitor. CYT387 treatment ablates RAS-associated cytokine signaling and impairs Kras-driven murine lung cancer growth. Combined CYT387 treatment and MAPK pathway inhibition induces regression of aggressive murine lung adenocarcinomas driven by Kras mutation and p53 loss. These observations reveal that TBK1/IKKε promote tumor survival by activating CCL5 and IL-6 and identify concurrent inhibition of TBK1/IKKε, Janus-activated kinase (JAK), and MEK signaling as an effective approach to inhibit the actions of oncogenic KRAS. PMID:24444711

  13. Inhibition of KRAS-driven tumorigenicity by interruption of an autocrine cytokine circuit

    PubMed Central

    Zhu, Zehua; Aref, Amir R.; Cohoon, Travis J.; Barbie, Thanh U.; Imamura, Yu; Yang, Shenghong; Moody, Susan E.; Shen, Rhine R.; Schinzel, Anna C.; Thai, Tran C.; Reibel, Jacob B.; Tamayo, Pablo; Godfrey, Jason T.; Qian, Zhi Rong; Page, Asher N.; Maciag, Karolina; Chan, Edmond M.; Silkworth, Whitney; Labowsky, Mary T.; Rozhansky, Lior; Mesirov, Jill P.; Gillanders, William E.; Ogino, Shuji; Hacohen, Nir; Gaudet, Suzanne; Eck, Michael J.; Engelman, Jeffrey A.; Corcoran, Ryan B.; Wong, Kwok-Kin; Hahn, William C.; Barbie, David A.

    2014-01-01

    Although the roles of mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3 kinase (PI3K) signaling in KRAS-driven tumorigenesis are well established, KRAS activates additional pathways required for tumor maintenance, inhibition of which are likely to be necessary for effective KRAS-directed therapy. Here we show that the IKK-related kinases TBK1 and IKKε promote KRAS-driven tumorigenesis by regulating autocrine CCL5 and IL-6 and identify CYT387 as a potent JAK/TBK1/IKKε inhibitor. CYT387 treatment ablates RAS-associated cytokine signaling and impairs Kras-driven murine lung cancer growth. Combined CYT387 and MEK inhibitor therapy induces regression of aggressive murine lung adenocarcinomas driven by Kras mutation and p53 loss. These observations reveal that TBK1/IKKε promote tumor survival by activating CCL5 and IL-6 and identify concurrent inhibition of TBK1/IKKε, JAK, and MEK signaling as an effective approach to inhibit the actions of oncogenic KRAS. PMID:24444711

  14. Autocrine and Paracrine Actions of Vitamin D

    PubMed Central

    Anderson, Paul H

    2010-01-01

    Vitamin D deficiency continues to attract considerable attention because of claims that an adequate status can reduce the risk of a wide range of diseases. The facts are that this hormone modulates the expression of a very large number of genes, possibly some 5 to 10% of the genome; that it has been subject to very strong evolutionary pressures; and that its biological activities are exerted across a wide range of tissues, and these all contribute to the plausibility that such claims may eventually be found to be valid. While the endocrine action of the active metabolite, 1,25-dihydroxyvitamin D, has been well-characterised to contribute to maintaining plasma calcium and phosphate homeostasis through regulation of intestinal absorption, recent research has focused on its autocrine and/or paracrine activities. Such activities of vitamin D have been best characterised in skin tissues and the immune system where it regulates cell differentiation and maturation as well as the innate immune system. Recent data are now available to implicate autocrine/paracrine activities in each of the major bone cell types where it also regulates cell proliferation and differentiation. In rodent models, adequate levels of serum 25-hydroxyvitamin D have been found to be critical to optimise bone health and to protect against osteoporosis. These findings are consistent with clinical data that such activity is present in humans. The introduction of an autocrine/paracrine paradigm for vitamin D has significant implications for critical levels of serum 25-hydroxyvitamin D for optimal health. PMID:21170259

  15. Apatinib inhibits VEGF signaling and promotes apoptosis in intrahepatic cholangiocarcinoma

    PubMed Central

    Zhang, Ning; Hua, Yunpeng; Xu, Lixia; Deng, Yubin; Lai, Jiaming; Peng, Zhenwei; Peng, Baogang; Chen, Minhu; Peng, Sui; Kuang, Ming

    2016-01-01

    Tumor cells co-express vascular endothelial growth factor (VEGF) and VEGF receptors (VEGFRs) that interact each other to support a self-sustainable cell growth. So far, this autocrine VEGF loop is not reported in human intrahepatic cholangiocarcinoma (ICC). Apatinib is a highly selective VEGFR2 inhibitor, but its effects on ICC have not been investigated. In this study, we reported that VEGF and phosphorylated VEGFR2 were expressed at a significantly high level in ICC patient tissues (P<0.05). In vitro, treating ICC cell lines RBE and SSP25 with recombinant human VEGF (rhVEGF) induced phosphorylation of VEGFR1 (pVEGFR1) and VEGFR2 (pVEGFR2); however, only the VEGFR2 played a role in the anti-apoptotic cell growth through activating a PI3K-AKT-mTOR anti-apoptotic signaling pathway which generated more VEGF to enter this autocrine loop. Apatinib inhibited the anti-apoptosis induced by VEGF signaling, and promoted cell death in vitro. In addition, Apatinib treatment delayed xenograft tumor growth in vivo. In conclusion, the autocrine VEGF/VEGFR2 signaling promotes ICC cell survival. Apatinib inhibits anti-apoptotic cell growth through suppressing the autocrine VEGF signaling, supporting a potential role for using Apatinib in the treatment of ICC. PMID:26967384

  16. Apatinib inhibits VEGF signaling and promotes apoptosis in intrahepatic cholangiocarcinoma.

    PubMed

    Peng, Hong; Zhang, Qiuyang; Li, Jiali; Zhang, Ning; Hua, Yunpeng; Xu, Lixia; Deng, Yubin; Lai, Jiaming; Peng, Zhenwei; Peng, Baogang; Chen, Minhu; Peng, Sui; Kuang, Ming

    2016-03-29

    Tumor cells co-express vascular endothelial growth factor (VEGF) and VEGF receptors (VEGFRs) that interact each other to support a self-sustainable cell growth. So far, this autocrine VEGF loop is not reported in human intrahepatic cholangiocarcinoma (ICC). Apatinib is a highly selective VEGFR2 inhibitor, but its effects on ICC have not been investigated. In this study, we reported that VEGF and phosphorylated VEGFR2 were expressed at a significantly high level in ICC patient tissues (P<0.05). In vitro, treating ICC cell lines RBE and SSP25 with recombinant human VEGF (rhVEGF) induced phosphorylation of VEGFR1 (pVEGFR1) and VEGFR2 (pVEGFR2); however, only the VEGFR2 played a role in the anti-apoptotic cell growth through activating a PI3K-AKT-mTOR anti-apoptotic signaling pathway which generated more VEGF to enter this autocrine loop. Apatinib inhibited the anti-apoptosis induced by VEGF signaling, and promoted cell death in vitro. In addition, Apatinib treatment delayed xenograft tumor growth in vivo. In conclusion, the autocrine VEGF/VEGFR2 signaling promotes ICC cell survival. Apatinib inhibits anti-apoptotic cell growth through suppressing the autocrine VEGF signaling, supporting a potential role for using Apatinib in the treatment of ICC. PMID:26967384

  17. Endogenous PGE(2) induces MCP-1 expression via EP4/p38 MAPK signaling in melanoma.

    PubMed

    Tang, Mingrui; Wang, Yuxin; Han, Sihuan; Guo, Shu; Xu, Nan; Guo, Jiayan

    2013-02-01

    It has been demonstrated that cyclooxygenase-2 (COX-2) is expressed in melanoma tissues and prostaglandin E(2) (PGE(2)) is produced by melanoma cells in vitro. However, the roles of COX-2/PGE(2) in melanoma are largely unknown. In the present study, we set out to analyze the correlation of endogenous PGE(2) with the expression of macrophage chemoattractant protein-1 (MCP-1) and to identify the signaling pathway involved. It was found that MCP-1 mRNA was heterogeneously expressed in 18 melanoma tissue specimens, and the levels of MCP-1 mRNA were positively correlated with those of COX-2 mRNA. Inhibition of endogenous PGE(2) production by a COX-2 inhibitor, COX-2 siRNA or an NFκB inhibitor suppressed MCP-1 expression, whereas treatment with TNF-α (to stimulate endogenous PGE(2) production) or exogenous PGE(2) enhanced MCP-1 expression in melanoma cells. Both the EP4 antagonist and the p38 MAPK inhibitor reduced MCP-1 production in melanoma cells, and abrogated the increased MCP-1 secretion induced by TNF-α or exogenous PGE(2). Conditioned medium from melanoma cells promoted macrophage migration, which was blocked by inhibitors of the PGE(2)/EP4/p38 MAPK signaling pathway. These results indicate that endogenous PGE(2) induces MCP-1 expression via EP4/p38 MAPK signaling in an autocrinal manner in melanoma, and melanoma cell-derived PGE(2) may be involved in macrophage recruitment in the melanoma microenvironment. PMID:23420676

  18. U1 RNA Induces Innate Immunity Signaling

    PubMed Central

    Hoffman, Robert W.; Gazitt, Tal; Foecking, Mark F.; Ortmann, Robert A.; Misfeldt, Michael; Jorgenson, Rebecca; Young, Steven L.; Greidinger, Eric L.

    2006-01-01

    Objective The U1–70-kd RNP is a prominent target of autoimmunity in connective tissue diseases. In this study, we explored whether its endogenous ligand, U1 RNA, mediates a proimmune signal and may be immunogenic. Methods We assayed the proliferation of control and MyD88-knockout splenocytes in response to in vitro–synthesized U1 RNA, and measured interleukin-6 (IL-6) and IL-8 secretion induced by U1 RNA in a human cell line competent for signaling through Toll-like receptor 3 (TLR-3) and TLR-5. Results Treatment with U1 RNA or with poly(I-C), a known agonist of TLR-3, induced approximately twice as much control splenocyte proliferation as did treatment with RNase-digested U1 RNA. Proliferation in response to either poly(I-C) or U1 RNA by MyD88-knockout splenocytes was similarly attenuated. Similar to poly(I-C), U1 RNA induced significant secretion of both IL-6 and IL-8 from a TLR-3–expressing human cell line; in contrast, the TLR-5 agonist flagellin induced predominantly IL-8 secretion. Pretreatment of U1 RNA with RNase abolished IL-6 and IL-8 secretion. Conclusion U1 RNA is capable of inducing manifestations consistent with TLR-3 activation. The ability of U1 RNA (which has a substantial double-stranded secondary structure) to activate TLR-3 may contribute to the immunogenicity of the U1–70-kd autoantigen. Stimulation of innate immunity by native RNA molecules with a double-stranded secondary structure may help explain the high prevalence of autoimmunity to RNA binding proteins. PMID:15457457

  19. Calcium phosphate-bearing matrices induce osteogenic differentiation of stem cells through adenosine signaling

    PubMed Central

    Shih, Yu-Ru V.; Hwang, YongSung; Phadke, Ameya; Kang, Heemin; Hwang, Nathaniel S.; Caro, Eduardo J.; Nguyen, Steven; Siu, Michael; Theodorakis, Emmanuel A.; Gianneschi, Nathan C.; Vecchio, Kenneth S.; Chien, Shu; Lee, Oscar K.; Varghese, Shyni

    2014-01-01

    Synthetic matrices emulating the physicochemical properties of tissue-specific ECMs are being developed at a rapid pace to regulate stem cell fate. Biomaterials containing calcium phosphate (CaP) moieties have been shown to support osteogenic differentiation of stem and progenitor cells and bone tissue formation. By using a mineralized synthetic matrix mimicking a CaP-rich bone microenvironment, we examine a molecular mechanism through which CaP minerals induce osteogenesis of human mesenchymal stem cells with an emphasis on phosphate metabolism. Our studies show that extracellular phosphate uptake through solute carrier family 20 (phosphate transporter), member 1 (SLC20a1) supports osteogenic differentiation of human mesenchymal stem cells via adenosine, an ATP metabolite, which acts as an autocrine/paracrine signaling molecule through A2b adenosine receptor. Perturbation of SLC20a1 abrogates osteogenic differentiation by decreasing intramitochondrial phosphate and ATP synthesis. Collectively, this study offers the demonstration of a previously unknown mechanism for the beneficial role of CaP biomaterials in bone repair and the role of phosphate ions in bone physiology and regeneration. These findings also begin to shed light on the role of ATP metabolism in bone homeostasis, which may be exploited to treat bone metabolic diseases. PMID:24395775

  20. Obesity-Induced Hypertension: Brain Signaling Pathways.

    PubMed

    do Carmo, Jussara M; da Silva, Alexandre A; Wang, Zhen; Fang, Taolin; Aberdein, Nicola; de Lara Rodriguez, Cecilia E P; Hall, John E

    2016-07-01

    Obesity greatly increases the risk for cardiovascular, metabolic, and renal diseases and is one of the most significant and preventable causes of increased blood pressure (BP) in patients with essential hypertension. This review highlights recent advances in our understanding of central nervous system (CNS) signaling pathways that contribute to the etiology and pathogenesis of obesity-induced hypertension. We discuss the role of excess adiposity and activation of the brain leptin-melanocortin system in causing increased sympathetic activity in obesity. In addition, we highlight other potential brain mechanisms by which increased weight gain modulates metabolic and cardiovascular functions. Unraveling the CNS mechanisms responsible for increased sympathetic activation and hypertension and how circulating hormones activate brain signaling pathways to control BP offer potentially important therapeutic targets for obesity and hypertension. PMID:27262997

  1. Basal Release of ATP: An Autocrine-Paracrine Mechanism for Cell Regulation

    PubMed Central

    Corriden, Ross; Insel, Paul A.

    2011-01-01

    Cells release adenosine triphosphate (ATP), which activates plasma membrane–localized P2X and P2Y receptors and thereby modulates cellular function in an autocrine or paracrine manner. Release of ATP and the subsequent activation of P2 receptors help establish the basal level of activation (sometimes termed “the set point”) for signal transduction pathways and regulate a wide array of responses that include tissue blood flow, ion transport, cell volume regulation, neuronal signaling, and host-pathogen interactions. Basal release and autocrine or paracrine responses to ATP are multifunctional and evolutionarily conserved, and they provide an economical means for the modulation of cell, tissue, and organismal biology. PMID:20068232

  2. FGF19 functions as autocrine growth factor for hepatoblastoma

    PubMed Central

    Elzi, David J.; Song, Meihua; Blackman, Barron; Weintraub, Susan T.; López-Terrada, Dolores; Chen, Yidong; Tomlinson, Gail E.; Shiio, Yuzuru

    2016-01-01

    Hepatoblastoma is the most common liver cancer in children, accounting for over 65% of all childhood liver malignancies. Hepatoblastoma is distinct from adult liver cancer in that it is not associated with hepatitis virus infection, cirrhosis, or other underlying liver pathology. The paucity of appropriate cell and animal models has been hampering the mechanistic understanding of hepatoblastoma pathogenesis. Consequently, there is no molecularly targeted therapy for hepatoblastoma. To gain insight into cytokine signaling in hepatoblastoma, we employed mass spectrometry to analyze the proteins secreted from Hep293TT hepatoblastoma cell line we established and identified the specific secretion of fibroblast growth factor 19 (FGF19), a growth factor for liver cells. We determined that silencing FGF19 by shRNAs or neutralizing secreted FGF19 by anti-FGF19 antibody inhibits the proliferation of hepatoblastoma cells. Furthermore, blocking FGF19 signaling by an FGF receptor kinase inhibitor suppressed hepatoblastoma growth. RNA expression analysis in hepatoblastoma tumors revealed that the high expression of FGF19 signaling pathway components as well as the low expression of FGF19 signaling repression targets correlates with the aggressiveness of the tumors. These results suggest the role of FGF19 as autocrine growth factor for hepatoblastoma. PMID:27382436

  3. YAP forms autocrine loops with the ERBB pathway to regulate ovarian cancer initiation and progression

    PubMed Central

    He, Chunbo; Lv, Xiangmin; Hua, Guohua; Lele, Subodh M; Remmenga, Steven; Dong, Jixin; Davis, John S; Wang, Cheng

    2014-01-01

    Mechanisms underlying ovarian cancer initiation and progression are unclear. Herein, we report that the Yes-associated protein (YAP), a major effector of the Hippo tumor suppressor pathway, interacts with ERBB signaling pathways to regulate the initiation and progression of ovarian cancer. Immunohistochemistry studies indicate that YAP expression is associated with poor clinical outcomes in patients. Overexpression or constitutive activation of YAP leads to transformation and tumorigenesis in human ovarian surface epithelial cells, and promotes growth of cancer cells in vivo and in vitro. YAP induces expression of EGF receptors (EGFR, ERBB3) and production of EGF-like ligands (HBEGF, NRG1 and NRG2). HBEGF or NRG1, in turn, activates YAP and stimulates cancer cell growth. Knockdown of ERBB3 or HBEGF eliminates YAP effects on cell growth and transformation, while knockdown of YAP abrogates NRG1- and HBEGF-stimulated cell proliferation. Collectively, our study demonstrates the existence of HBEGF&NRGs/ERBBs/YAP/HBEGF&NRGs autocrine loop that controls ovarian cell tumorigenesis and cancer progression. PMID:25798835

  4. Autocrine effects of transgenic resistin reduce palmitate and glucose oxidation in brown adipose tissue.

    PubMed

    Pravenec, Michal; Mlejnek, Petr; Zídek, Václav; Landa, Vladimír; Šimáková, Miroslava; Šilhavý, Jan; Strnad, Hynek; Eigner, Sebastian; Eigner Henke, Kateřina; Škop, Vojtěch; Malínská, Hana; Trnovská, Jaroslava; Kazdová, Ludmila; Drahota, Zdeněk; Mráček, Tomáš; Houštěk, Josef

    2016-06-01

    Resistin has been originally identified as an adipokine that links obesity to insulin resistance in mice. In our previous studies in spontaneously hypertensive rats (SHR) expressing a nonsecreted form of mouse resistin (Retn) transgene specifically in adipose tissue (SHR-Retn), we have observed an increased lipolysis and serum free fatty acids, ectopic fat accumulation in muscles, and insulin resistance. Recently, brown adipose tissue (BAT) has been suggested to play an important role in the pathogenesis of metabolic disturbances. In the current study, we have analyzed autocrine effects of transgenic resistin on BAT glucose and lipid metabolism and mitochondrial function in the SHR-Retn vs. nontransgenic SHR controls. We observed that interscapular BAT isolated from SHR-Retn transgenic rats compared with SHR controls showed a lower relative weight (0.71 ± 0.05 vs. 0.91 ± 0.08 g/100 g body wt, P < 0.05), significantly reduced both basal and insulin stimulated incorporation of palmitate into BAT lipids (658 ± 50 vs. 856 ± 45 and 864 ± 47 vs. 1,086 ± 35 nmol/g/2 h, P ≤ 0.01, respectively), and significantly decreased palmitate oxidation (37.6 ± 4.5 vs. 57 ± 4.1 nmol/g/2 h, P = 0.007) and glucose oxidation (277 ± 34 vs. 458 ± 38 nmol/g/2 h, P = 0.001). In addition, in vivo microPET imaging revealed significantly reduced (18)F-FDG uptake in BAT induced by exposure to cold in SHR-Retn vs. control SHR (232 ± 19 vs. 334 ± 22 kBq/ml, P < 0.05). Gene expression profiles in BAT identified differentially expressed genes involved in skeletal muscle and connective tissue development, inflammation and MAPK and insulin signaling. These results provide evidence that autocrine effects of resistin attenuate differentiation and activity of BAT and thus may play a role in the pathogenesis of insulin resistance in the rat. PMID:27113533

  5. VEGF elicits epithelial-mesenchymal transition (EMT) in prostate intraepithelial neoplasia (PIN)-like cells via an autocrine loop

    SciTech Connect

    Gonzalez-Moreno, Oscar; Lecanda, Jon; Green, Jeffrey E.; Segura, Victor; Catena, Raul; Serrano, Diego; Calvo, Alfonso

    2010-02-15

    Vascular endothelial growth factor (VEGF) is overexpressed during the transition from prostate intraepithelial neoplasia (PIN) to invasive carcinoma. We have mimicked such a process in vitro using the PIN-like C3(1)/Tag-derived Pr-111 cell line, which expresses low levels of VEGF and exhibits very low tumorigenicity in vivo. Elevated expression of VEGF164 in Pr-111 cells led to a significant increase in tumorigenicity, invasiveness, proliferation rates and angiogenesis. Moreover, VEGF164 induced strong changes in cell morphology and cell transcriptome through an autocrine mechanism, with changes in TGF-beta1- and cytoskeleton-related pathways, among others. Further analysis of VEGF-overexpressing Pr-111 cells or following exogenous addition of recombinant VEGF shows acquisition of epithelial-mesenchymal transition (EMT) features, with an increased expression of mesenchymal markers, such as N-cadherin, Snail1, Snail2 (Slug) and vimentin, and a decrease in E-cadherin. Administration of VEGF led to changes in TGF-beta1 signaling, including reduction of Smad7 (TGF-beta inhibitory Smad), increase in TGF-betaR-II, and translocation of phospho-Smad3 to the nucleus. Our results suggest that increased expression of VEGF in malignant cells during the transition from PIN to invasive carcinoma leads to EMT through an autocrine loop, which would promote tumor cell invasion and motility. Therapeutic blockade of VEGF/TGF-beta1 in PIN lesions might impair not only tumor angiogenesis, but also the early dissemination of malignant cells outside the epithelial layer.

  6. Purinergic signaling is required for fluid shear stress-induced NF-{kappa}B translocation in osteoblasts

    SciTech Connect

    Genetos, Damian C.; Karin, Norman J.; Geist, Derik J.; Donahue, Henry J.; Duncan, Randall L.

    2011-04-01

    Fluid shear stress regulates gene expression in osteoblasts, in part by activation of the transcription factor NF-{kappa}B. We examined whether this process was under the control of purinoceptor activation. MC3T3-E1 osteoblasts under static conditions expressed the NF-{kappa}B inhibitory protein I{kappa}B{alpha} and exhibited cytosolic localization of NF-{kappa}B. Under fluid shear stress, I{kappa}B{alpha} levels decreased, and concomitant nuclear localization of NF-{kappa}B was observed. Cells exposed to fluid shear stress in ATP-depleted medium exhibited no significant reduction in I{kappa}B{alpha}, and NF-{kappa}B remained within the cytosol. Similar results were found using oxidized ATP or Brilliant Blue G, P2X{sub 7} receptor antagonists, indicating that the P2X{sub 7} receptor is responsible for fluid shear-stress-induced I{kappa}B{alpha} degradation and nuclear accumulation of NF-{kappa}B. Pharmacologic blockage of the P2Y6 receptor also prevented shear-induced I{kappa}B{alpha} degradation. These phenomena involved neither ERK1/2 signaling nor autocrine activation by P2X{sub 7}-generated lysophosphatidic acid. Our results suggest that fluid shear stress regulates NF-{kappa}B activity through the P2Y{sub 6} and P2X{sub 7} receptor.

  7. Purinergic Signaling is Required for Fluid Shear Stress-Induced NF-kB Translocation in Osteoblasts

    SciTech Connect

    Genetos, Damian C.; Karin, Norman J.; Geist, Derik J.; Donahue, Henry J.; Duncan, Randall L.

    2011-04-01

    Fluid shear stress regulates gene expression in osteoblasts, in part by activation of the transcription factor NF-kB. We examined whether this process was under control of purinoceptor activation. MC3T3-E1 osteoblasts under static conditions expressed the NF-kB inhibitory protein IkB alpha and exhibited cytosolic localization of NF-kB. Under fluid shear stress, IκBα levels decreased, and concomitant nuclear localization of NF-kB was observed. Cells exposed to fluid shear stress in ATP-depleted medium exhibited no significant reduction in IκBα, and NF-kB remained within the cytosol. Similar results were found using oxidized ATP or Brilliant Blue G, P2X7 receptor antagonists, indicating that the P2X7 receptor is responsible for fluid shear-stress-induced IκBα degradation and nuclear accumulation of NF-kB. Pharmacologic blockage of the P2Y6 receptor also prevented shear-induced IkB alpha degradation. These phenomena involved neither ERK1/2 signaling nor autocrine activation by P2X7-generated lysophosphatidic acid. Our results suggest that fluid shear stress regulates NF-kB activity through the P2Y6 and P2X7 receptor.

  8. Autocrine-paracrine regulation of the mammary gland.

    PubMed

    Weaver, S R; Hernandez, L L

    2016-01-01

    The mammary gland has a remarkable capacity for regulation at a local level, particularly with respect to its main function: milk secretion. Regulation of milk synthesis has significant effects on animal and human health, at the level of both the mother and the neonate. Control by the mammary gland of its essential function, milk synthesis, is an evolutionary necessity and is therefore tightly regulated at a local level. For at least the last 60 yr, researchers have been interested in elucidating the mechanisms underpinning the mammary gland's ability to self-regulate, largely without the influence from systemic hormones or signals. By the 1960s, scientists realized the importance of milk removal in the capacity of the gland to produce milk and that the dynamics of this removal, including emptying of the alveolar spaces and frequency of milking, were controlled locally as opposed to traditional systemic hormonal regulation. Using both in vitro systems and various mammalian species, including goats, marsupials, humans, and dairy cows, it has been demonstrated that the mammary gland is largely self-regulating in its capacity to support the young, which is the evolutionary basis for milk production. Local control occurs at the level of the mammary epithelial cell through pressure and stretching negative-feedback mechanisms, and also in an autocrine fashion through bioactive factors within the milk which act as inhibitors, regulating milk secretion within the alveoli themselves. It is only within the last 20 to 30 yr that potential candidates for these bioactive factors have been examined at a molecular level. Several, including parathyroid hormone-related protein, growth factors (transforming growth factor, insulin-like growth factor, epidermal growth factor), and serotonin, are synthesized within and act upon the gland and possess dynamic receptor activity resulting in diverse effects on growth, calcium homeostasis, and milk composition. This review will focus on the

  9. Autocrine production of TGF-β1 promotes myofibroblastic differentiation of neonatal lung mesenchymal stem cells

    PubMed Central

    Popova, Antonia P.; Bozyk, Paul D.; Goldsmith, Adam M.; Linn, Marisa J.; Lei, Jing; Bentley, J. Kelley

    2010-01-01

    We have isolated mesenchymal stem cells (MSCs) from tracheal aspirates of premature infants with respiratory distress. We examined the capacity of MSCs to differentiate into myofibroblasts, cells that participate in lung development, injury, and repair. Gene expression was measured by array, qPCR, immunoblot, and immunocytochemistry. Unstimulated MSCs expressed mRNAs encoding contractile (e.g., ACTA2, TAGLN), extracellular matrix (COL1A1 and ELN), and actin-binding (DBN1, PXN) proteins, consistent with a myofibroblast phenotype, although there was little translation into immunoreactive protein. Incubation in serum-free medium increased contractile protein (ACTA2, MYH11) gene expression. MSC-conditioned medium showed substantial levels of TGF-β1, and treatment of serum-deprived cells with a type I activin receptor-like kinase inhibitor, SB-431542, attenuated the expression of genes encoding contractile and extracellular matrix proteins. Treatment of MSCs with TGF-β1 further induced the expression of mRNAs encoding contractile (ACTA2, MYH11, TAGLN, DES) and extracellular matrix proteins (FN1, ELN, COL1A1, COL1A2), and increased the protein expression of α-smooth muscle actin, myosin heavy chain, and SM22. In contrast, human bone marrow-derived MSCs failed to undergo TGF-β1-induced myofibroblastic differentiation. Finally, primary cells from tracheal aspirates behaved in an identical manner as later passage cells. We conclude that human neonatal lung MSCs demonstrate an mRNA expression pattern characteristic of myofibroblast progenitor cells. Autocrine production of TGF-β1 further drives myofibroblastic differentiation, suggesting that, in the absence of other signals, fibrosis represents the “default program” for neonatal lung MSC gene expression. These data are consistent with the notion that MSCs play a key role in neonatal lung injury and repair. PMID:20190033

  10. Autocrine Acetylcholine, Induced by IL-17A via NFκB and ERK1/2 Pathway Activation, Promotes MUC5AC and IL-8 Synthesis in Bronchial Epithelial Cells

    PubMed Central

    Montalbano, Angela Marina; Albano, Giusy Daniela; Bonanno, Anna; Riccobono, Loredana; Di Sano, Caterina; Ferraro, Maria; Siena, Liboria; Anzalone, Giulia; Gagliardo, Rosalia; Pieper, Michael Paul; Gjomarkaj, Mark; Profita, Mirella

    2016-01-01

    IL-17A is overexpressed in the lung during acute neutrophilic inflammation. Acetylcholine (ACh) increases IL-8 and Muc5AC production in airway epithelial cells. We aimed to characterize the involvement of nonneuronal components of cholinergic system on IL-8 and Muc5AC production in bronchial epithelial cells stimulated with IL-17A. Bronchial epithelial cells were stimulated with recombinant human IL-17A (rhIL-17A) to evaluate the ChAT expression, the ACh binding and production, the IL-8 release, and the Muc5AC production. Furthermore, the effectiveness of PD098,059 (inhibitor of MAPKK activation), Bay11-7082 (inhibitor of IkBα phosphorylation), Hemicholinium-3 (HCh-3) (choline uptake blocker), and Tiotropium bromide (Spiriva®) (anticholinergic drug) was tested in our in vitro model. We showed that rhIL-17A increased the expression of ChAT, the levels of ACh binding and production, and the IL-8 and Muc5AC production in stimulated bronchial epithelial cells compared with untreated cells. The pretreatment of the cells with PD098,059 and Bay11-7082 decreased the ChAT expression and the ACh production/binding, while HCh-3 and Tiotropium decreased the IL-8 and Muc5AC synthesis in bronchial epithelial cells stimulated with rhIL-17A. IL-17A is involved in the IL-8 and Muc5AC production promoting, via NFκB and ERK1/2 pathway activation, the synthesis of ChAT, and the related activity of autocrine ACh in bronchial epithelial cells. PMID:27298519

  11. WNT4 mediates the autocrine effects of growth hormone in mammary carcinoma cells.

    PubMed

    Vouyovitch, Cécile M; Perry, Jo K; Liu, Dong Xu; Bezin, Laurent; Vilain, Eric; Diaz, Jean-Jacques; Lobie, Peter E; Mertani, Hichem C

    2016-07-01

    The expression of Wingless and Int-related protein (Wnt) ligands is aberrantly high in human breast cancer. We report here that WNT4 is significantly upregulated at the mRNA and protein level in mammary carcinoma cells expressing autocrine human growth hormone (hGH). Depletion of WNT4 using small interfering (si) RNA markedly decreased the rate of human breast cancer cell proliferation induced by autocrine hGH. Forced expression of WNT4 in the nonmalignant human mammary epithelial cell line MCF-12A stimulated cell proliferation in low and normal serum conditions, enhanced cell survival and promoted anchorage-independent growth and colony formation in soft agar. The effects of sustained production of WNT4 were concomitant with upregulation of proliferative markers (c-Myc, Cyclin D1), the survival marker BCL-XL, the putative WNT4 receptor FZD6 and activation of ERK1 and STAT3. Forced expression of WNT4 resulted in phenotypic conversion of MCF-12A cells, such that they exhibited the molecular and morphological characteristics of mesenchymal cells with increased cell motility. WNT4 production resulted in increased mesenchymal and cytoskeletal remodeling markers, promoted actin cytoskeleton reorganization and led to dissolution of cell-cell contacts. In xenograft studies, tumors with autocrine hGH expressed higher levels of WNT4 and FZD6 when compared with control tumors. In addition, Oncomine data indicated that WNT4 expression is increased in neoplastic compared with normal human breast tissue. Accordingly, immunohistochemical detection of WNT4 in human breast cancer biopsies revealed higher expression in tumor tissue vs normal breast epithelium. WNT4 is thus an autocrine hGH-regulated gene involved in the growth and development of the tumorigenic phenotype. PMID:27323961

  12. Autocrine HBEGF expression promotes breast cancer intravasation, metastasis and macrophage-independent invasion in vivo

    SciTech Connect

    Zhou, Z. N.; Sharma, V. P.; Beaty, B. T.; Roh-Johnson, M.; Peterson, E. A.; Van Rooijen, N.; Kenny, P. A.; Wiley, H. S.; Condeelis, J. S.; Segall, J. E.

    2014-10-13

    Increased expression of HBEGF in estrogen receptor-negative breast tumors is correlated with enhanced metastasis to distant organ sites and more rapid disease recurrence upon removal of the primary tumor. Our previous work has demonstrated a paracrine loop between breast cancer cells and macrophages in which the tumor cells are capable of stimulating macrophages through the secretion of colony-stimulating factor-1 while the tumor-associated macrophages (TAMs), in turn, aid in tumor cell invasion by secreting epidermal growth factor. To determine how the autocrine expression of epidermal growth factor receptor (EGFR) ligands by carcinoma cells would affect this paracrine loop mechanism, and in particular whether tumor cell invasion depends on spatial ligand gradients generated by TAMs, we generated cell lines with increased HBEGF expression. We found that autocrine HBEGF expression enhanced in vivo intravasation and metastasis and resulted in a novel phenomenon in which macrophages were no longer required for in vivo invasion of breast cancer cells. In vitro studies revealed that expression of HBEGF enhanced invadopodium formation, thus providing a mechanism for cell autonomous invasion. The increased invadopodium formation was directly dependent on EGFR signaling, as demonstrated by a rapid decrease in invadopodia upon inhibition of autocrine HBEGF/EGFR signaling as well as inhibition of signaling downstream of EGFR activation. HBEGF expression also resulted in enhanced invadopodium function via upregulation of matrix metalloprotease 2 (MMP2) and MMP9 expression levels. We conclude that high levels of HBEGF expression can short-circuit the tumor cell/macrophage paracrine invasion loop, resulting in enhanced tumor invasion that is independent of macrophage signaling.

  13. Autocrine HBEGF expression promotes breast cancer intravasation, metastasis and macrophage-independent invasion in vivo.

    PubMed

    Zhou, Z N; Sharma, V P; Beaty, B T; Roh-Johnson, M; Peterson, E A; Van Rooijen, N; Kenny, P A; Wiley, H S; Condeelis, J S; Segall, J E

    2014-07-17

    Increased expression of HBEGF in estrogen receptor-negative breast tumors is correlated with enhanced metastasis to distant organ sites and more rapid disease recurrence upon removal of the primary tumor. Our previous work has demonstrated a paracrine loop between breast cancer cells and macrophages in which the tumor cells are capable of stimulating macrophages through the secretion of colony-stimulating factor-1 while the tumor-associated macrophages (TAMs), in turn, aid in tumor cell invasion by secreting epidermal growth factor. To determine how the autocrine expression of epidermal growth factor receptor (EGFR) ligands by carcinoma cells would affect this paracrine loop mechanism, and in particular whether tumor cell invasion depends on spatial ligand gradients generated by TAMs, we generated cell lines with increased HBEGF expression. We found that autocrine HBEGF expression enhanced in vivo intravasation and metastasis and resulted in a novel phenomenon in which macrophages were no longer required for in vivo invasion of breast cancer cells. In vitro studies revealed that expression of HBEGF enhanced invadopodium formation, thus providing a mechanism for cell autonomous invasion. The increased invadopodium formation was directly dependent on EGFR signaling, as demonstrated by a rapid decrease in invadopodia upon inhibition of autocrine HBEGF/EGFR signaling as well as inhibition of signaling downstream of EGFR activation. HBEGF expression also resulted in enhanced invadopodium function via upregulation of matrix metalloprotease 2 (MMP2) and MMP9 expression levels. We conclude that high levels of HBEGF expression can short-circuit the tumor cell/macrophage paracrine invasion loop, resulting in enhanced tumor invasion that is independent of macrophage signaling. PMID:24013225

  14. Plexin-A4-semaphorin 3A signaling is required for Toll-like receptor- and sepsis-induced cytokine storm.

    PubMed

    Wen, Haitao; Lei, Yu; Eun, So-Young; Ting, Jenny P-Y

    2010-12-20

    Plexins and semaphorins are ligand-receptor pairs that serve as guidance molecules in the nervous system and play some roles in immunity. Plexins are similar to the Toll-like receptors (TLRs) in their evolutionary conservation from flies to mammals. By studying plexin-A4-deficient (Plxna4(-/-)) innate immune cells, in this study we show a novel influence of plexin-A4 on TLR signaling. Plxna4(-/-) cells exhibit defective inflammatory cytokine production upon activation by a spectrum of TLR agonists and bacteria. Plexin-A4 is required for TLR-induced activation of the small guanosine triphosphate hydrolase (GTPase) Rac1 (ras-related C3 botulinum toxin substrate 1). Rac1 activation is accompanied by JNK (c-Jun N-terminal kinase) and NF-κB activation, culminating in TLR-induced binding of NF-κB and AP-1 to the promoters of inflammatory cytokines. Plxna4(-/-) mice are remarkably resistant to TLR agonist-induced inflammation and polymicrobial peritonitis caused by cecal ligation and puncture. Administration of a ligand of plexin-A4, Sema3A (semaphorin 3A), exacerbates the cytokine storm caused by TLR agonists and bacterial sepsis. TLR engagement can induce Sema3A expression, thus completing an autocrine loop. These findings expand the role of plexins to TLR signaling and suggest plexin-A4 and Sema3A as new intervention points for treating sepsis. PMID:21098092

  15. Cardioprotective Actions of TGFβRI Inhibition Through Stimulating Autocrine/Paracrine of Survivin and Inhibiting Wnt in Cardiac Progenitors.

    PubMed

    Ho, Yu-Sian; Tsai, Wan-Hsuan; Lin, Fen-Chiung; Huang, Wei-Pang; Lin, Lung-Chun; Wu, Sean M; Liu, Yu-Ru; Chen, Wen-Pin

    2016-02-01

    Heart failure due to myocardial infarction (MI) is a major cause of morbidity and mortality in the world. We found previously that A83-01, a TGFβRI inhibitor, could facilitate cardiac repair in post-MI mice and induce the expansion of a Nkx2.5 + cardiomyoblast population. This study aimed to investigate the key autocrine/paracrine factors regulated by A83-01 in the injured heart and the mechanism of cardioprotection by this molecule. Using a previously described transgenic Nkx2.5 enhancer-green fluorescent protein (GFP) reporter mice, we isolated cardiac progenitor cells (CPC) including Nkx2.5-GFP + (Nkx2.5+), sca1+, and Nkx2.5+/sca1 + cells. A83-01 was found to induce proliferation of these three subpopulations mainly through increasing Birc5 expression in the MEK/ERK-dependent pathway. Survivin, encoded by Birc5, could also directly proliferate Nkx2.5 + cells and enhance cultured cardiomyocytes viability. A83-01 could also reverse the downregulation of Birc5 in postinjured mice hearts (n = 6) to expand CPCs. Moreover, the increased Wnt3a in postinjured hearts could decrease CPCs, which could be reversed by A83-01 via inhibiting Fzd6 and Wnt1-induced signaling protein 1 expressions in CPCs. Next, we used inducible αMHC-cre/mTmG mice to label cardiomyocytes with GFP and nonmyocytes with RFP. We found A83-01 preserved more GFP + myocytes (68.6% ± 3.1% vs. 80.9% ± 3.0%; p < .05, n = 6) and fewer renewed RFP + myocytes (0.026% ± 0.005% vs. 0.062% ± 0.008%; p < .05, n = 6) in parallel with less cardiac fibrosis in isoprenaline-injected mice treated with A83-01. TGFβRI inhibition in an injured adult heart could both stimulate the autocrine/paracrine activity of survivin and inhibit Wnt in CPCs to mediate cardioprotection and improve cardiac function. PMID:26418219

  16. Vasoactive Intestinal Peptide modulates trophoblast-derived cell line function and interaction with phagocytic cells through autocrine pathways

    PubMed Central

    Vota, Daiana; Paparini, Daniel; Hauk, Vanesa; Toro, Ayelén; Merech, Fatima; Varone, Cecilia; Ramhorst, Rosanna; Pérez Leirós, Claudia

    2016-01-01

    Trophoblast cells migrate and invade the decidual stroma in a tightly regulated process to maintain immune homeostasis at the maternal-placental interface during the first weeks of pregnancy. Locally synthesized factors modulate trophoblast cell function and their interaction with maternal leukocytes to promote the silent clearance of apoptotic cells. The vasoactive intestinal peptide (VIP) is a pleiotropic polypeptide with trophic and anti-inflammatory effects in murine pregnancy models. We explored the effect of VIP on two human first trimester trophoblast cell lines, particularly on their migration, invasiveness and interaction with phagocytic cells, and the signalling and regulatory pathways involved. We found that VIP enhanced trophoblast cell migration and invasion through the activation of high affinity VPAC receptors and PKA-CRE signalling pathways. VIP knocked-down trophoblast cells showed reduced migration in basal and leukemic inhibitor factor (LIF)-elicited conditions. In parallel, VIP-silenced trophoblast cells failed to induce the phagocytosis of apoptotic bodies and the expression of immunosuppressant markers by human monocytes. Our results suggest that VIP-mediated autocrine pathways regulate trophoblast cell function and contribute to immune homeostasis maintenance at placentation and may provide new clues for therapeutic intervention in pregnancies complicated by defective deep placentation. PMID:27212399

  17. Vasoactive Intestinal Peptide modulates trophoblast-derived cell line function and interaction with phagocytic cells through autocrine pathways.

    PubMed

    Vota, Daiana; Paparini, Daniel; Hauk, Vanesa; Toro, Ayelén; Merech, Fatima; Varone, Cecilia; Ramhorst, Rosanna; Pérez Leirós, Claudia

    2016-01-01

    Trophoblast cells migrate and invade the decidual stroma in a tightly regulated process to maintain immune homeostasis at the maternal-placental interface during the first weeks of pregnancy. Locally synthesized factors modulate trophoblast cell function and their interaction with maternal leukocytes to promote the silent clearance of apoptotic cells. The vasoactive intestinal peptide (VIP) is a pleiotropic polypeptide with trophic and anti-inflammatory effects in murine pregnancy models. We explored the effect of VIP on two human first trimester trophoblast cell lines, particularly on their migration, invasiveness and interaction with phagocytic cells, and the signalling and regulatory pathways involved. We found that VIP enhanced trophoblast cell migration and invasion through the activation of high affinity VPAC receptors and PKA-CRE signalling pathways. VIP knocked-down trophoblast cells showed reduced migration in basal and leukemic inhibitor factor (LIF)-elicited conditions. In parallel, VIP-silenced trophoblast cells failed to induce the phagocytosis of apoptotic bodies and the expression of immunosuppressant markers by human monocytes. Our results suggest that VIP-mediated autocrine pathways regulate trophoblast cell function and contribute to immune homeostasis maintenance at placentation and may provide new clues for therapeutic intervention in pregnancies complicated by defective deep placentation. PMID:27212399

  18. Autocrine regulation of macrophage activation via exocytosis of ATP and activation of P2Y11 receptor.

    PubMed

    Sakaki, Hayato; Tsukimoto, Mitsutoshi; Harada, Hitoshi; Moriyama, Yoshinori; Kojima, Shuji

    2013-01-01

    It is important to understand the mechanisms that regulate macrophage activation to establish novel therapies for inflammatory diseases, such as sepsis; a systemic inflammatory response syndrome generally caused by bacterial lipopolysaccharide (LPS). In this study, we investigated the involvement of extracellular ATP-mediated autocrine signaling in LPS-induced macrophage activation. We show here that ATP release via exocytosis, followed by activation of P2Y11 receptor, is a major pathway of the macrophage activation, leading to release of cytokines. Treatment of human monocyte THP-1 cells with LPS induced rapid ATP release from cells, and this release was blocked by knockdown of SLC17A9 (vesicular nucleotide transporter, VNUT), which is responsible for exocytosis of ATP. ATP-enriched vesicles were found in cytosol of THP-1 cells. These data suggest the involvement of vesicular exocytosis in the release of ATP. Knockdown of SLC17A9, the P2Y11 antagonist NF157 or knockdown of P2Y11 receptor significantly suppressed both M1-type polarization and IL-6 production in THP-1 cells, indicating an important role of activation of P2Y11 receptor by released ATP in macrophage activation. Next, the effect of NF157 on LPS-induced immune activation was examined in vivo. Administration of LPS to mice caused increase of serum IL-1ß, IL-6, IL-12 and TNF-alpha levels at 3-24 h after the administration. Pre-treatment of LPS-treated mice with NF157 suppressed both elevation of proinflammatory cytokines in serum and M1 polarization of peritoneal/spleen macrophages. Moreover, post-treatment with NF157 at 30 min after administration of LPS also suppressed the elevation of serum cytokines levels. We conclude that vesicular exocytosis of ATP and autocrine, positive feedback through P2Y11 receptors is required for the effective activation of macrophages. Consequently, P2Y11 receptor antagonists may be drug candidates for treatment of inflammatory diseases such as sepsis. PMID:23577075

  19. Bradykinin-induced proinflammatory signaling mechanisms.

    PubMed

    Shigematsu, Sakuji; Ishida, Shuji; Gute, Dean C; Korthuis, Ronald J

    2002-12-01

    Intravital microscopic techniques were used to examine the mechanisms underlying bradykinin-induced leukocyte/endothelial cell adhesive interactions (LECA) and venular protein leakage (VPL) in single postcapillary venules of the rat mesentery. The effects of bradykinin superfusion to increase LECA and VPL were prevented by coincident topical application of either a bradykinin-B(2) receptor antagonist, a cell-permeant superoxide dismutase (SOD) mimetic or antioxidant, or inhibitors of cytochrome P-450 epoxygenase (CYPE) or protein kinase C (PKC) but not by concomitant treatment with either SOD, a mast cell stabilizer, or inhibitors of nitric oxide synthase, cyclooxygenase, xanthine oxidase, NADPH oxidase, or platelet-activating factor. Immunoneutralizing P-selectin or intercellular adhesion molecule-1 (ICAM-1) completely prevented bradykinin-induced leukocyte adhesion and emigration but did not affect VPL. On the other hand, stabilization of F-actin with phalloidin prevented bradykinin-induced leukocyte emigration and VPL but did not alter leukocyte adhesion. These data indicate that bradykinin induces LECA in rat mesenteric venules via a B(2)-receptor-initiated, CYPE-, oxidant- and PKC-mediated, P-selectin- and ICAM-1-dependent mechanism. Bradykinin also produced VPL, an effect that was initiated by stimulation of B(2) receptors and involved CYPE and PKC activation, oxidant generation, and cytoskeletal reorganization but was independent of leukocyte adherence and emigration. PMID:12388246

  20. Alcohol-Induced Disruption of Endocrine Signaling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This article contains the proceedings of a symposium at the 2006 ISBRA Meeting in Sydney Australia, organized and co-chaired by Martin J. Ronis and Thomas M. Badger. The presentations were (1) Effects of long term ethanol consumption on liver injury and repair, by Jack R. Wands; (2) Alcohol-induced...

  1. Multiple Stress Signals Induce p73β Accumulation1

    PubMed Central

    Lin, Kai Wei; Nam, Shin Yuen; Toh, Wen Hong; Dulloo, Iqbal; Sabapathy, Kanaga

    2004-01-01

    Abstract Although p73 is a structural and functional homologue of the tumor-suppressor gene p53, it is not mutated in many human cancers as p53. Besides, p73 was shown to be activated by only a subset of signals that activate p53, such as γ-irradiation and cisplatin, but not by other common genotoxic stress-inducing agents such as ultraviolet (UV) irradiation, although many of these signals are also capable of inducing p53-independent cell death. Using a p73-specific antibody, we confirmed that c-Abl is required for cisplatin-induced p73 upregulation, and further demonstrate that the p73 protein is upregulated by UV irradiation and other stress stimuli including sorbitol, hydrogen peroxide, nocodazol, and taxol. These stress signals upregulate both p73 mRNA and increases the stability of p73, indicating that p73 is regulated transcriptionally and posttranslationally. Cells stably expressing the dominant-negative p73 inhibitor protein (p73DD) and p73-/- fibroblasts are more resistant than control cells to apoptosis induced by these stress signals, suggesting that p73 contributes to apoptosis induction. Together, the data demonstrate that several stress signals can signal to p73 in vivo, which raises the possibility of eradicating cancers with an unmutated p73 gene by activating them with stress-inducing agents or their mimetics. PMID:15548364

  2. Quantitative Analysis of the EGF Receptor Autocrine System Reveals Cryptic Regulation of Cell Response by Ligand Capture

    SciTech Connect

    Dewitt, Ann E.; Dong, Jian Y.; Wiley, H S.; Lauffenburger, Douglas A.

    2001-06-15

    Autocrine signaling is important in normal tissue physiology as well as pathological conditions. It is difficult to analyze these systems, however, because they are both self-contained and recursive. To understand how parameters, such as ligand production and receptor expression influence autocrine activity, we investigated a human epidermal growth factor/epidermal growth factor receptor (EGF/EGFR) loop engineered into mouse B82 fibroblasts. We varied the level of ligand production using the tet-off expression system and used metalloprotease inhibitors to modulate ligand release. Receptor expression was varied using antagonistic, blocking antibodies. We compared autocrine ligand release to receptor activation using a microphysiometer-based assay and analyzed our data with a quantitative model of ligand release and receptor dynamics. We found that the activity of our autocrine system could be described in terms of a simple ratio between the rate of ligand production (VL) and the rate of receptor production (VR). At a VL/VR ratio of < 0.3, essentially no ligand was found in the extracellular medium, but a significant number cell receptors (30-40%) were occupied. As the VL/VR ratio increased from 0.3 towards unity, receptor occupancy increased, and significant amounts of ligand now appeared in the medium. Above a VL/VR ratio of 1.0, receptor occupancy approached saturation and most of the released ligand was lost into the medium. Analysis of human mammary epithelial cells showed that a VL/VR ratio of < 5 x 10 -4 was sufficient to evoke >20% of a maximal proliferative response. This suggests that natural autocrine systems are active even when no ligand appears in the extracellular medium; i.e., they operate 'invisibly' to general detection.

  3. Calcium signaling in UV-induced damage

    NASA Astrophysics Data System (ADS)

    Sun, Dan; Zhang, Su-juan; Li, Yuan-yuan; Qu, Ying; Ren, Zhao-Yu

    2007-05-01

    Hepa1-6 cells were irradiated with UV and incubated for varying periods of time. [Ca 2+] i (intracellular calcium concentration) of UV-irradiated cell was measured by ratio fluorescence imaging system. The comet assay was used to determine DNA damage. During the UVB-irradiation, [Ca 2+] i had an ascending tendency from 0.88 J/m2 to 92.4J/m2. Comet assay instant test indicated that when the irradiation dosage was above 0.88J/m2, DNA damage was observed. Even after approximate 2 h of incubation, DNA damage was still not detected by 0.88J/m2 of UVB irradiation. During UVA-irradiation, the elevation of [Ca 2+] i was not dose-dependent in a range of 1200 J/m2-6000J/m2 and DNA damage was not observed by comet assay. These results suggested that several intracellular UV receptors might induce [Ca 2+] i rising by absorption of the UV energy. Just [Ca 2+] i rising can't induce DNA damage certainly, it is very likely that the breakdown of calcium steady state induces DNA damage.u

  4. Autocrine regulation of human urothelial cell proliferation and migration during regenerative responses in vitro

    SciTech Connect

    Varley, Claire; Hill, Gemma; Pellegrin, Stephanie; Shaw, Nicola J.; Selby, Peter J.; Trejdosiewicz, Ludwik K.; Southgate, Jennifer . E-mail: js35@york.ac.uk

    2005-05-15

    Regeneration of the urothelium is rapid and effective in order to maintain a barrier to urine following tissue injury. Whereas normal human urothelial (NHU) cells are mitotically quiescent and G0 arrested in situ, they rapidly enter the cell cycle upon seeding in primary culture and show reversible growth arrest at confluency. We have used this as a model to investigate the role of EGF receptor signaling in urothelial regeneration and wound-healing. Transcripts for HER-1, HER-2, and HER-3 were expressed by quiescent human urothelium in situ. Expression of HER-1 was upregulated in proliferating cultures, whereas HER-2 and HER-3 were more associated with a growth-arrested phenotype. NHU cells could be propagated in the absence of exogenous EGF, but autocrine signaling through HER-1 via the MAPK and PI3-kinase pathways was essential for proliferation and migration during urothelial wound repair. HB-EGF was expressed by urothelium in situ and HB-EGF, epiregulin, TGF-{alpha}, and amphiregulin were expressed by proliferating NHU cells. Urothelial wound repair in vitro was attenuated by neutralizing antibodies against HER-1 ligands, particularly amphiregulin. By contrast, the same ligands applied exogenously promoted migration, but inhibited proliferation, implying that HER-1 ligands provoke differential effects in NHU cells depending upon whether they are presented as soluble or juxtacrine ligands. We conclude that proliferation and migration during wound healing in NHU cells are mediated through an EGFR autocrine signalling loop and our results implicate amphiregulin as a key mediator.

  5. Elevated hepatocyte growth factor expression as an autocrine c-Met activation mechanism in acquired resistance to sorafenib in hepatocellular carcinoma cells.

    PubMed

    Firtina Karagonlar, Zeynep; Koc, Dogukan; Iscan, Evin; Erdal, Esra; Atabey, Neşe

    2016-04-01

    Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and the third leading cause of cancer-related deaths worldwide. Limitations in HCC treatment result due to poor prognosis and resistance against traditional radiotherapy and chemotherapies. The multikinase inhibitor sorafenib is the only FDA approved drug available for advanced HCC patients, and development of second-line treatment options for patients who cannot tolerate or develop resistance to sorafenib is an urgent medical need. In this study, we established sorafenib-resistant cells from Huh7 and Mahlavu cell lines by long-term sorafenib exposure. Sorafenib-resistant HCC cells acquired spindle-shape morphology, upregulated mesenchymal markers, and showed significant increase in both migration and invasion abilities compared to their parental counterparts. Moreover, after long-term sorafenib treatment, HCC cells showed induction of hepatocyte growth factor (HGF) synthesis and secretion along with increased levels of c-Met kinase and its active phosphorylated form, indicating autocrine activation of HGF/c-Met signaling. Importantly, the combined treatment of the resistant cells with c-Met kinase inhibitor SU11274 and HGF neutralizing antibody significantly reversed the increased invasion ability of the cells. The combined treatment also significantly augmented sorafenib-induced apoptosis, suggesting restoration of sorafenib sensitivity. These results describe, for the first time, compensatory upregulation of HGF synthesis leading to autocrine activation of HGF/c-Met signaling as a novel cellular strategy in the acquisition of sorafenib resistance. Therefore, we suggest that combinatorial therapeutic strategies with HGF and c-Met inhibitors comprise promising candidates for overcoming sorafenib resistance. PMID:26790028

  6. Properties of light induced EPR signals in enamel and their possible interference with gamma-induced signals

    SciTech Connect

    Shalom, S.V.; Chumak, V.V.; Haskell, E.H.; Hayes, R.B.; Kenner, G.H.

    1996-01-01

    Exposure of enamel to UV light (sunlight and artificial) results in EPR signals with g-factors of 2.0018 (perpendicular),1.9975 (parallel), 2.0045, 20052, and 2.0083. The first two signals correspond to the components of the radiation induced signal and the third signal corresponds to the native signal reported in dosimetry and dating studies. The remaining signals were found to be stable and sensitive to both gamma and sunlight exposure. Their sensitivity response to light and radiation was considerably different which gives rise to the possibility that the g=2.0052 and g=2.0083 signals might be used as indicators of the dose resulting from light exposure.

  7. [Identification of chemical signals and haustorium induced of Thesium chinense].

    PubMed

    Liu, Bo; Zhang, Xiao-Ming; Guo, Qiao-Sheng; Wang, Chang-Lin; Chen, Lu; Song, Ling-Shan; An, Kai-Long

    2014-12-01

    To separate and identify chemical signals which induce Thesium chinense haustorium formation, the components of T. chinense roots secretion collected with XAD-4 resin were detected by GC-MS. The effect of DMBQ as exogenous signals to induce haustorium formation in T. chinense was studied. Fifty-three compounds of 9 types had been detected, including hydrocarbons, esters, organic acids, ketones, alcohols, nitrogen containing compounds, phenolic acids, aldehyde and quinine. It is worth noting that the 2, 5-di-tert-butyl-1,4-benzoquinone has the core structure of 1,4-benzoquinone, which may play an important role in the parasitic relationship of Prunella vulgaris and T. chinense: DMBQ worked effectively on inducing haustoria, but induction effects vary widely in different concentrations. DMBQ with the concentration of 1 μmol x L(-1) showed the best effect of the inducing ability with a ratio of 110.52 when treated to induce haustoria. PMID:25911798

  8. Prion protein induced signaling cascades in monocytes

    SciTech Connect

    Krebs, Bjarne; Dorner-Ciossek, Cornelia; Vassallo, Neville; Herms, Jochen; Kretzschmar, Hans A. . E-mail: Hans.Kretzschmar@med.uni-muenchen.de

    2006-02-03

    Prion proteins play a central role in transmission and pathogenesis of transmissible spongiform encephalopathies. The cellular prion protein (PrP{sup C}), whose physiological function remains elusive, is anchored to the surface of a variety of cell types including neurons and cells of the lymphoreticular system. In this study, we investigated the response of a mouse monocyte/macrophage cell line to exposure with PrP{sup C} fusion proteins synthesized with a human Fc-tag. PrP{sup C} fusion proteins showed an attachment to the surface of monocyte/macrophages in nanomolar concentrations. This was accompanied by an increase of cellular tyrosine phosphorylation as a result of activated signaling pathways. Detailed investigations exhibited activation of downstream pathways through a stimulation with PrP fusion proteins, which include phosphorylation of ERK{sub 1,2} and Akt kinase. Macrophages opsonize and present antigenic structures, contact lymphocytes, and deliver cytokines. The findings reported here may become the basis of understanding the molecular function of PrP{sup C} in monocytes and macrophages.

  9. Injury-induced BMP signaling negatively regulates Drosophila midgut homeostasis

    PubMed Central

    Guo, Zheng; Driver, Ian

    2013-01-01

    Although much is known about injury-induced signals that increase rates of Drosophila melanogaster midgut intestinal stem cell (ISC) proliferation, it is largely unknown how ISC activity returns to quiescence after injury. In this paper, we show that the bone morphogenetic protein (BMP) signaling pathway has dual functions during midgut homeostasis. Constitutive BMP signaling pathway activation in the middle midgut mediated regional specification by promoting copper cell differentiation. In the anterior and posterior midgut, injury-induced BMP signaling acted autonomously in ISCs to limit proliferation and stem cell number after injury. Loss of BMP signaling pathway members in the midgut epithelium or loss of the BMP signaling ligand decapentaplegic from visceral muscle resulted in phenotypes similar to those described for juvenile polyposis syndrome, a human intestinal tumor caused by mutations in BMP signaling pathway components. Our data establish a new link between injury and hyperplasia and may provide insight into how BMP signaling mutations drive formation of human intestinal cancers. PMID:23733344

  10. PKCδ maintains phenotypes of tumor initiating cells through cytokine-mediated autocrine loop with positive feedback.

    PubMed

    Kim, R-K; Suh, Y; Hwang, E; Yoo, K-C; Choi, K-S; An, S; Hwang, S-G; Kim, I-G; Kim, M-J; Lee, H-J; Lee, S-J

    2015-11-12

    The existence of tumor initiating cells (TICs) has been emerged as a good therapeutic target for treatment of glioblastoma that is the most aggressive brain tumor with poor prognosis. However, the molecular mechanisms that regulate the phenotypes of TICs still remain obscure. In this study, we found that PKCδ, among PKC isoforms, is preferentially activated in TICs and acts as a critical regulator for the maintenance of TICs in glioblastoma. By modulating the expression levels or activity of PKCδ, we demonstrated that PKCδ promotes self-renewal and tumorigenic potentials of TICs. Importantly, we found that the activation of PKCδ persists in TICs through an autocrine loop with positive feedback that was driven by PKCδ/STAT3/IL-23/JAK signaling axis. Moreover, for phenotypes of TICs, we showed that PKCδ activates AKT signaling component by phosphorylation specifically on Ser473. Taken together, we proposed that TICs regulate their own population in glioblastoma through an autocrine loop with positive feedback that is driven by PKCδ-dependent secretion of cytokines. PMID:25746003

  11. Diacerein-mediated inhibition of IL-6/IL-6R signaling induces apoptotic effects on breast cancer.

    PubMed

    Bharti, R; Dey, G; Ojha, P K; Rajput, S; Jaganathan, S K; Sen, R; Mandal, M

    2016-07-28

    Interleukin-6 (IL-6) signaling network has been implicated in oncogenic transformations making it attractive target for the discovery of novel cancer therapeutics. In this study, potent antiproliferative and apoptotic effect of diacerein were observed against breast cancer. In vitro apoptosis was induced by this drug in breast cancer cells as verified by increased sub-G1 population, LIVE/DEAD assay, cell cytotoxicity and presence of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells, as well as downregulation of antiapoptotic proteins Bcl-2 and Bcl-xL and upregulation of apoptotic protein Bax. In addition, apoptosis induction was found to be caspase dependent. Further molecular investigations indicated that diacerein instigated apoptosis was associated with inhibition of IL-6/IL-6R autocrine signaling axis. Suppression of STAT3, MAPK and Akt pathways were also observed as a consequence of diacerein-mediated upstream inhibition of IL-6/IL-6R. Fluorescence study and western blot analysis revealed cytosolic accumulation of STAT3 in diacerein-treated cells. The docking study showed diacerein/IL-6R interaction that was further validated by competitive binding assay and isothermal titration calorimetry. Most interestingly, it was found that diacerein considerably suppressed tumor growth in MDA-MB-231 xenograft model. The in vivo antitumor effect was correlated with decreased proliferation (Ki-67), increased apoptosis (TUNEL) and inhibition of IL-6/IL-6R-mediated STAT3, MAPK and Akt pathway in tumor remnants. Taken together, diacerein offered a novel blueprint for cancer therapy by hampering IL-6/IL-6R/STAT3/MAPK/Akt network. PMID:26616855

  12. Activation of the Canonical Wnt Signaling Pathway Induces Cementum Regeneration.

    PubMed

    Han, Pingping; Ivanovski, Saso; Crawford, Ross; Xiao, Yin

    2015-07-01

    Canonical Wnt signaling is important in tooth development but it is unclear whether it can induce cementogenesis and promote the regeneration of periodontal tissues lost because of disease. Therefore, the aim of this study is to investigate the influence of canonical Wnt signaling enhancers on human periodontal ligament cell (hPDLCs) cementogenic differentiation in vitro and cementum repair in a rat periodontal defect model. Canonical Wnt signaling was induced by (1) local injection of lithium chloride; (2) local injection of sclerostin antibody; and (3) local injection of a lentiviral construct overexpressing β-catenin. The results showed that the local activation of canonical Wnt signaling resulted in significant new cellular cementum deposition and the formation of well-organized periodontal ligament fibers, which was absent in the control group. In vitro experiments using hPDLCs showed that the Wnt signaling pathway activators significantly increased mineralization, alkaline phosphatase (ALP) activity, and gene and protein expression of the bone and cementum markers osteocalcin (OCN), osteopontin (OPN), cementum protein 1 (CEMP1), and cementum attachment protein (CAP). Our results show that the activation of the canonical Wnt signaling pathway can induce in vivo cementum regeneration and in vitro cementogenic differentiation of hPDLCs. PMID:25556853

  13. Modelling of Ocean Induced Magnetic Signals in Swarm Satellite Data

    NASA Astrophysics Data System (ADS)

    Einspigel, D.; Velimsky, J.; Martinec, Z.; Sachl, L.

    2015-12-01

    It is well known that the motion of sea water in the Earth's main magnetic field induces the secondary magnetic field which can be measured by satellite, land-based or sea surface magnetic measurements, despite being rather weak, reaching intensities of up to a few nT. We focus on the extraction of ocean induced signals from Swarm satellite data and their interpretation by a comparison with synthetic signals. Results of our modeling and data processing efforts will be presented. We use two ocean circulation models: 1) DEBOT, a barotropic model of ocean tide flow and 2) LSOMG, a baroclinic model of global ocean circulation; and two different approaches for modelling the secondary magnetic field: 1) a single-layer approximation model and 2) a three-dimensional time-domain electromagnetic induction model. Swarm data are analyzed along night-time tracks of the satellites. Only a small amount of the data can be used for the analysis of ocean-induced signals because of permanently present strong signals from the magnetosphere and disruptive effects of polar electrojets. Nevertheless, the extracted signals from selected Swarm data tracks show a relatively good coincidence with predicted signals.

  14. Hedgehog signaling and radiation induced liver injury: a delicate balance

    PubMed Central

    Kabarriti, Rafi

    2016-01-01

    Radiation-induced liver disease (RILD) is a major limitation of radiation therapy (RT) for the treatment of liver cancer. Emerging data indicate that hedgehog (Hh) signaling plays a central role in liver fibrosis and regeneration after liver injury. Here, we review the potential role of Hh signaling in RILD and propose the temporary use of Hh inhibition during liver RT to radiosensitize HCC tumor cells and inhibit their progression, while blocking the initiation of the radiation-induced fibrotic response in the surrounding normal liver. PMID:26202634

  15. Hedgehog signaling and radiation induced liver injury: a delicate balance.

    PubMed

    Kabarriti, Rafi; Guha, Chandan

    2014-07-01

    Radiation-induced liver disease (RILD) is a major limitation of radiation therapy (RT) for the treatment of liver cancer. Emerging data indicate that hedgehog (Hh) signaling plays a central role in liver fibrosis and regeneration after liver injury. Here, we review the potential role of Hh signaling in RILD and propose the temporary use of Hh inhibition during liver RT to radiosensitize HCC tumor cells and inhibit their progression, while blocking the initiation of the radiation-induced fibrotic response in the surrounding normal liver. PMID:26202634

  16. Autocrine Action of IGF2 Regulates Adult β-Cell Mass and Function.

    PubMed

    Modi, Honey; Jacovetti, Cecile; Tarussio, David; Metref, Salima; Madsen, Ole D; Zhang, Fu-Ping; Rantakari, Pia; Poutanen, Matti; Nef, Serge; Gorman, Tracy; Regazzi, Romano; Thorens, Bernard

    2015-12-01

    Insulin-like growth factor 2 (IGF2), produced and secreted by adult β-cells, functions as an autocrine activator of the β-cell insulin-like growth factor 1 receptor signaling pathway. Whether this autocrine activity of IGF2 plays a physiological role in β-cell and whole-body physiology is not known. Here, we studied mice with β-cell-specific inactivation of Igf2 (βIGF2KO mice) and assessed β-cell mass and function in aging, pregnancy, and acute induction of insulin resistance. We showed that glucose-stimulated insulin secretion (GSIS) was markedly reduced in old female βIGF2KO mice; glucose tolerance was, however, normal because of increased insulin sensitivity. While on a high-fat diet, both male and female βIGF2KO mice displayed lower GSIS compared with control mice, but reduced β-cell mass was observed only in female βIGF2KO mice. During pregnancy, there was no increase in β-cell proliferation and mass in βIGF2KO mice. Finally, β-cell mass expansion in response to acute induction of insulin resistance was lower in βIGF2KO mice than in control mice. Thus, the autocrine action of IGF2 regulates adult β-cell mass and function to preserve in vivo GSIS in aging and to adapt β-cell mass in response to metabolic stress, pregnancy hormones, and acute induction of insulin resistance. PMID:26384384

  17. P17.15AUTOCRINE SPHINGOSINE-1-PHOSPHATE FUELS GROWTH AND STEMNESS IN GLIOBLASTOMA STEM CELLS

    PubMed Central

    Di Vito, C.; Navone, S.; Abdel Hadi, L.; Giussani, P.; Viani, P.; Rampini, P.M.; Caroli, M.; Marfia, G.; Campanella, R.; Riboni, L.

    2014-01-01

    Sphingosine-1-phosphate (S1P) is an onco-promoter lipid that, after interaction with specific membrane receptors, acts as a key regulator of growth, invasion, and therapy-resistance of different tumors, including human glioblastomas (GBMs). These are the most common and lethal primary brain cancer in adults, exhibiting a dismal prognosis, despite diverse therapeutic approaches. Accumulating reports suggest that human GBMs contain glioblastoma stem cells (GSCs), a small subpopulation of cells determinant in tumor growth, and malignant progression. Little is known about the role of S1P in GSCs. Using GSCs derived from human GBM specimens with different proliferative index and stemness marker expression, we investigated the possible role of S1P in the proliferative and stemness properties of GSCs. Metabolic studies demonstrated that GSCs can rapidly export newly synthesized S1P, this process being enhanced in fast proliferating cells. Released S1P levels reached nM concentrations in response to increased extracellular sphingosine. Moreover, EGF and bFGF, recognized autocrine factors in GSC, potentiated the constitutive capacity of GSCs to secrete S1P, suggesting that cooperation between S1P and these growth factors is of relevance in GSC maintenance and proliferation. Of relevance, we then found that S1P is able to act as a proliferative and pro-stemness autocrine factor for GSCs, promoting both cell cycle progression and stemness phenotypic profile, in a receptor-dependent fashion. Overall, our results suggest that the GSC population is critically modulated by microenvironmental S1P, that acts as an autocrine signal to maintain a pro-stemness microenvironment and favoring GSC survival, proliferation and maintenance of stem properties. These findings could open novel opportunities for the development of effective treatments for GBMs.

  18. Signaling induced by hop/STI-1 depends on endocytosis

    SciTech Connect

    Americo, Tatiana A.; Chiarini, Luciana B.; Linden, Rafael . E-mail: rlinden@biof.ufrj.br

    2007-06-29

    The co-chaperone hop/STI-1 is a ligand of the cell surface prion protein (PrP{sup C}), and their interaction leads to signaling and biological effects. Among these, hop/STI-1 induces proliferation of A172 glioblastoma cells, dependent on both PrP{sup C} and activation of the Erk pathway. We tested whether clathrin-mediated endocytosis affects signaling induced by hop/STI-1. Both hyperosmolarity induced by sucrose and monodansyl-cadaverine blocked Erk activity induced by hop/STI-1, without affecting the high basal Akt activity typical of A172. The endocytosis inhibitors also affected the sub-cellular distribution of phosphorylated Erk, consistent with blockade of the latter's activity. The data indicate that signaling induced by hop/STI-1 depends on endocytosis. These findings are consistent with a role of sub-cellular trafficking in signal transduction following engagement by PrP{sup C} by ligands such as hop/STI-1, and may help help unravel both the functions of the prion protein, as well as possible loss-of-function components of prion diseases.

  19. Role of Notch signaling during lipopolysaccharide-induced preterm labor.

    PubMed

    Agrawal, Varkha; Jaiswal, Mukesh K; Pamarthy, Sahithi; Katara, Gajendra K; Kulshrestha, Arpita; Gilman-Sachs, Alice; Hirsch, Emmet; Beaman, Kenneth D

    2016-08-01

    Notch signaling pathways exert effects throughout pregnancy and are activated in response to TLR ligands. To investigate the role of Notch signaling in preterm labor, Notch receptors (Notch1-4), its ligand Delta-like protein-1, transcriptional repressor hairy and enhancer of split-1, and Notch deregulator Numb were assessed. Preterm labor was initiated on gestation d 14.5 by 1 of 2 methods: 1) inflammation-induced preterm labor: intrauterine injection of LPS (a TLR4 agonist) and 2) hormonally induced preterm labor: subcutaneous injection of mifepristone. Delta-like protein-1, Notch1, and hairy and enhancer of split-1 were elevated significantly, and Numb was decreased in the uterus and placenta of inflammation-induced preterm labor mice but remained unchanged in hormonally induced preterm labor compared with their respective controls. F4/80(+) macrophage polarization was skewed in the uterus of inflammation-induced preterm labor toward M1-positive (CD11c(+)) and double-positive [CD11c(+) (M1) and CD206(+) (M2)] cells. This process is dependent on activation of Notch signaling, as shown by suppression of M1 and M2 macrophage-associated cytokines in decidual macrophages in response to γ-secretase inhibitor (an inhibitor of Notch receptor processing) treatment ex vivo. γ-Secretase inhibitor treatment also diminished the LPS-induced secretion of proinflammatory cytokines and chemokines in decidual and placental cells cultured ex vivo. Furthermore, treatment with recombinant Delta-like protein-1 ligand enhanced the LPS-induced proinflammatory response. Notch ligands (Jagged 1 and 2 and Delta-like protein-4) and vascular endothelial growth factor and its receptor involved in angiogenesis were reduced significantly in the uterus and placenta during inflammation-induced preterm labor. These results suggest that up-regulation of Notch-related inflammation and down-regulation of angiogenesis factors may be associated with inflammation-induced preterm labor but not with

  20. Ionizing radiation induces a motile phenotype in human carcinoma cells in vitro through hyperactivation of the TGF-beta signaling pathway.

    PubMed

    Carl, Cedric; Flindt, Anne; Hartmann, Julian; Dahlke, Markus; Rades, Dirk; Dunst, Jürgen; Lehnert, Hendrik; Gieseler, Frank; Ungefroren, Hendrik

    2016-01-01

    Radiotherapy, a major treatment modality against cancer, can lead to secondary malignancies but it is uncertain as to whether tumor cells that survive ionizing radiation (IR) treatment undergo epithelial-mesenchymal transition (EMT) and eventually become invasive or metastatic. Here, we have tested the hypothesis that the application of IR (10 MeV photon beams, 2-20 Gy) to lung and pancreatic carcinoma cells induces a migratory/invasive phenotype in these cells by hyperactivation of TGF-β and/or activin signaling. In accordance with this assumption, IR induced gene expression patterns and migratory responses consistent with an EMT phenotype. Moreover, in A549 cells, IR triggered the synthesis and secretion of both TGF-β1 and activin A as well as activation of intracellular TGF-β/activin signaling as evidenced by Smad phosphorylation and transcriptional activation of a TGF-β-responsive reporter gene. These responses were sensitive to SB431542, an inhibitor of type I receptors for TGF-β and activin. Likewise, specific antibody-mediated neutralization of soluble TGF-β, or dominant-negative inhibition of the TGF-β receptors, but not the activin type I receptor, alleviated IR-induced cell migration. Moreover, the TGF-β-specific approaches also blocked IR-dependent TGF-β1 secretion, Smad phosphorylation, and reporter gene activity, collectively indicating that autocrine production of TGF-β(s) and subsequent activation of TGF-β rather than activin signaling drives these changes. IR strongly sensitized cells to further increase their migration in response to recombinant TGF-β1 and this was accompanied by upregulation of TGF-β receptor expression. Our data raise the possibility that hyperactivation of TGF-β signaling during radiotherapy contributes to EMT-associated changes like metastasis, cancer stem cell formation and chemoresistance of tumor cells. PMID:26238393

  1. The Role of Hedgehog Signaling in Tumor Induced Bone Disease

    PubMed Central

    Cannonier, Shellese A.; Sterling, Julie A.

    2015-01-01

    Despite significant progress in cancer treatments, tumor induced bone disease continues to cause significant morbidities. While tumors show distinct mutations and clinical characteristics, they behave similarly once they establish in bone. Tumors can metastasize to bone from distant sites (breast, prostate, lung), directly invade into bone (head and neck) or originate from the bone (melanoma, chondrosarcoma) where they cause pain, fractures, hypercalcemia, and ultimately, poor prognoses and outcomes. Tumors in bone secrete factors (interleukins and parathyroid hormone-related protein) that induce RANKL expression from osteoblasts, causing an increase in osteoclast mediated bone resorption. While the mechanisms involved varies slightly between tumor types, many tumors display an increase in Hedgehog signaling components that lead to increased tumor growth, therapy failure, and metastasis. The work of multiple laboratories has detailed Hh signaling in several tumor types and revealed that tumor establishment in bone can be controlled by both canonical and non-canonical Hh signaling in a cell type specific manner. This review will explore the role of Hh signaling in the modulation of tumor induced bone disease, and will shed insight into possible therapeutic interventions for blocking Hh signaling in these tumors. PMID:26343726

  2. Using Imaging Methods to Interrogate Radiation-Induced Cell Signaling

    SciTech Connect

    Shankaran, Harish; Weber, Thomas J.; Freiin von Neubeck, Claere H.; Sowa, Marianne B.

    2012-04-01

    There is increasing emphasis on the use of systems biology approaches to define radiation induced responses in cells and tissues. Such approaches frequently rely on global screening using various high throughput 'omics' platforms. Although these methods are ideal for obtaining an unbiased overview of cellular responses, they often cannot reflect the inherent heterogeneity of the system or provide detailed spatial information. Additionally, performing such studies with multiple sampling time points can be prohibitively expensive. Imaging provides a complementary method with high spatial and temporal resolution capable of following the dynamics of signaling processes. In this review, we utilize specific examples to illustrate how imaging approaches have furthered our understanding of radiation induced cellular signaling. Particular emphasis is placed on protein co-localization, and oscillatory and transient signaling dynamics.

  3. Purmorphamine induces osteogenesis by activation of the hedgehog signaling pathway.

    PubMed

    Wu, Xu; Walker, John; Zhang, Jie; Ding, Sheng; Schultz, Peter G

    2004-09-01

    Previously, a small molecule, purmorphamine, was identified that selectively induces osteogenesis in multipotent mesenchymal progenitor cells. In order to gain insights into the mechanism of action of purmorphamine, high-density oligonucleotide microarrays were used to profile gene expression in multipotent mesenchymal progenitor cells treated with either purmorphamine or bone morphogenetic protein-4 (BMP-4). In contrast to BMP-4 treatment, purmorphamine activates the Hedgehog (Hh) signaling pathway, resulting in the up- and downregulation of its downstream target genes, including Gli1 and Patched. Moreover, the known Hh signaling antagonists, cyclopamine and forskolin, completely block the osteogenesis and Glimediated transcription induced by purmorphamine. These results demonstrate that purmorphamine is a small molecule agonist of Hedgehog signaling, and it may ultimately be useful in the treatment of bone-related disease and neurodegenerative disease. PMID:15380183

  4. LIG4 mediates Wnt signalling-induced radioresistance.

    PubMed

    Jun, Sohee; Jung, Youn-Sang; Suh, Han Na; Wang, Wenqi; Kim, Moon Jong; Oh, Young Sun; Lien, Esther M; Shen, Xi; Matsumoto, Yoshihisa; McCrea, Pierre D; Li, Lei; Chen, Junjie; Park, Jae-Il

    2016-01-01

    Despite the implication of Wnt signalling in radioresistance, the underlying mechanisms are unknown. Here we find that high Wnt signalling is associated with radioresistance in colorectal cancer (CRC) cells and intestinal stem cells (ISCs). We find that LIG4, a DNA ligase in DNA double-strand break repair, is a direct target of β-catenin. Wnt signalling enhances non-homologous end-joining repair in CRC, which is mediated by LIG4 transactivated by β-catenin. During radiation-induced intestinal regeneration, LIG4 mainly expressed in the crypts is conditionally upregulated in ISCs, accompanied by Wnt/β-catenin signalling activation. Importantly, among the DNA repair genes, LIG4 is highly upregulated in human CRC cells, in correlation with β-catenin hyperactivation. Furthermore, blocking LIG4 sensitizes CRC cells to radiation. Our results reveal the molecular mechanism of Wnt signalling-induced radioresistance in CRC and ISCs, and further unveils the unexpected convergence between Wnt signalling and DNA repair pathways in tumorigenesis and tissue regeneration. PMID:27009971

  5. LIG4 mediates Wnt signalling-induced radioresistance

    PubMed Central

    Jun, Sohee; Jung, Youn-Sang; Suh, Han Na; Wang, Wenqi; Kim, Moon Jong; Oh, Young Sun; Lien, Esther M.; Shen, Xi; Matsumoto, Yoshihisa; McCrea, Pierre D.; Li, Lei; Chen, Junjie; Park, Jae-Il

    2016-01-01

    Despite the implication of Wnt signalling in radioresistance, the underlying mechanisms are unknown. Here we find that high Wnt signalling is associated with radioresistance in colorectal cancer (CRC) cells and intestinal stem cells (ISCs). We find that LIG4, a DNA ligase in DNA double-strand break repair, is a direct target of β-catenin. Wnt signalling enhances non-homologous end-joining repair in CRC, which is mediated by LIG4 transactivated by β-catenin. During radiation-induced intestinal regeneration, LIG4 mainly expressed in the crypts is conditionally upregulated in ISCs, accompanied by Wnt/β-catenin signalling activation. Importantly, among the DNA repair genes, LIG4 is highly upregulated in human CRC cells, in correlation with β-catenin hyperactivation. Furthermore, blocking LIG4 sensitizes CRC cells to radiation. Our results reveal the molecular mechanism of Wnt signalling-induced radioresistance in CRC and ISCs, and further unveils the unexpected convergence between Wnt signalling and DNA repair pathways in tumorigenesis and tissue regeneration. PMID:27009971

  6. Laser-induced thermal acoustics (LITA) signals from finite beams

    NASA Astrophysics Data System (ADS)

    Cummings, E. B.; Leyva, I. A.; Hornung, H. G.

    1995-06-01

    Laser-induced thermal acoustics (LITA) is a four-wave mixing technique that may be employed to measure sound speeds, transport properties, velocities, and susceptibilities of fluids. It is particularly effective in high-pressure gases ( greater than 1 bar). An analytical expression for LITA signals is derived by the use of linearized equations of hydrodynamics and light scattering. This analysis, which includes full finite-beam-size effects and the optoacoustic effects of thermalization and electrostriction, predicts the amplitude and the time history of narrow-band time-resolved LITA and broadband spectrally resolved (mulitplex) LITA signals. The time behavior of the detected LITA signal depends significantly on the detection solid angle, with implications for the measurement of diffusivities by the use of LITA and the proper physical picture of LITA scattering. This and other elements of the physics of LITA that emerge from the analysis are discussed. Theoretical signals are compared with experimental LITA data.

  7. Autocrine androgen action is essential for Leydig cell maturation and function, and protects against late-onset Leydig cell apoptosis in both mice and men

    PubMed Central

    O’Hara, Laura; McInnes, Kerry; Simitsidellis, Ioannis; Morgan, Stephanie; Atanassova, Nina; Slowikowska-Hilczer, Jolanta; Kula, Krzysztof; Szarras-Czapnik, Maria; Milne, Laura; Mitchell, Rod T.; Smith, Lee B.

    2015-01-01

    Leydig cell number and function decline as men age, and low testosterone is associated with all “Western” cardio-metabolic disorders. However, whether perturbed androgen action within the adult Leydig cell lineage predisposes individuals to this late-onset degeneration remains unknown. To address this, we generated a novel mouse model in which androgen receptor (AR) is ablated from ∼75% of adult Leydig stem cell/cell progenitors, from fetal life onward (Leydig cell AR knockout mice), permitting interrogation of the specific roles of autocrine Leydig cell AR signaling through comparison to adjacent AR-retaining Leydig cells, testes from littermate controls, and to human testes, including from patients with complete androgen insensitivity syndrome (CAIS). This revealed that autocrine AR signaling is dispensable for the attainment of final Leydig cell number but is essential for Leydig cell maturation and regulation of steroidogenic enzymes in adulthood. Furthermore, these studies reveal that autocrine AR signaling in Leydig cells protects against late-onset degeneration of the seminiferous epithelium in mice and inhibits Leydig cell apoptosis in both adult mice and patients with CAIS, possibly via opposing aberrant estrogen signaling. We conclude that autocrine androgen action within Leydig cells is essential for the lifelong support of spermatogenesis and the development and lifelong health of Leydig cells.—O’Hara, L., McInnes, K., Simitsidellis, I., Morgan, S., Atanassova, N., Slowikowska-Hilczer, J., Kula, K., Szarras-Czapnik, M., Milne, L., Mitchell, R. T., Smith, L. B. Autocrine androgen action is essential for Leydig cell maturation and function, and protects against late-onset Leydig cell apoptosis in both mice and men. PMID:25404712

  8. Transforming growth factor-beta1-induced activation of the Raf-MEK-MAPK signaling pathway in rat lung fibroblasts via a PKC-dependent mechanism.

    PubMed

    Axmann, A; Seidel, D; Reimann, T; Hempel, U; Wenzel, K W

    1998-08-19

    In fibroblasts transforming growth factor-beta1 (TGF-beta1) regulates cell proliferation and turnover of macromolecular components of the extracellular matrix. Here, intracellular signaling events in growth-inhibited embryonic rat lung fibroblasts (RFL-6) upon stimulation with TGF-beta1 were investigated. TGF-beta1 rapidly induced the activation of c-Raf-1, MEK-1, and MAPK p42 and p44. The activation of this pathway by TGF-beta1 did not depend on autocrine platelet-derived growth factor (PDGF) or basic fibroblast growth factor (bFGF). Inhibition of the binding of growth factors to their tyrosine kinase receptors did not affect MAPK activation by TGF-beta1. Ras activation by TGF-beta1 was significantly lower compared to the activation by PDGF or bFGF. The intracellular transduction of the TGF-beta1 signal was completely suppressed by depletion or inhibition of protein kinase C (PKC). It is shown that calcium-dependent isoforms of PKC are required for MAPK activation by TGF-beta1. PMID:9712718

  9. ATR inhibition rewires cellular signaling networks induced by replication stress.

    PubMed

    Wagner, Sebastian A; Oehler, Hannah; Voigt, Andrea; Dalic, Denis; Freiwald, Anja; Serve, Hubert; Beli, Petra

    2016-02-01

    The slowing down or stalling of replication forks is commonly known as replication stress and arises from multiple causes such as DNA lesions, nucleotide depletion, RNA-DNA hybrids, and oncogene activation. The ataxia telangiectasia and Rad3-related kinase (ATR) plays an essential role in the cellular response to replication stress and inhibition of ATR has emerged as therapeutic strategy for the treatment of cancers that exhibit high levels of replication stress. However, the cellular signaling induced by replication stress and the substrate spectrum of ATR has not been systematically investigated. In this study, we employed quantitative MS-based proteomics to define the cellular signaling after nucleotide depletion-induced replication stress and replication fork collapse following ATR inhibition. We demonstrate that replication stress results in increased phosphorylation of a subset of proteins, many of which are involved in RNA splicing and transcription and have previously not been associated with the cellular replication stress response. Furthermore, our data reveal the ATR-dependent phosphorylation following replication stress and discover novel putative ATR target sites on MCM6, TOPBP1, RAD51AP1, and PSMD4. We establish that ATR inhibition rewires cellular signaling networks induced by replication stress and leads to the activation of the ATM-driven double-strand break repair signaling. PMID:26572502

  10. Akt and MAPK signaling mediate pregnancy-induced cardiac adaptation.

    PubMed

    Chung, Eunhee; Yeung, Fan; Leinwand, Leslie A

    2012-05-01

    Although the signaling pathways underlying exercise-induced cardiac adaptation have been extensively studied, little is known about the molecular mechanisms that result in the response of the heart to pregnancy. The objective of this study was to define the morphological, functional, and gene expression patterns that define the hearts of pregnant mice, and to identify the signaling pathways that mediate this response. Mice were divided into three groups: nonpregnant diestrus control, midpregnancy, and late pregnancy. Both time points of pregnancy were associated with significant cardiac hypertrophy. The prosurvival signaling cascades of Akt and ERK1/2 were activated in the hearts of pregnant mice, while the stress kinase, p38, was decreased. Given the activation of Akt in pregnancy and its known role in cardiac hypertrophy, the hypertrophic response to pregnancy was tested in mice expressing a cardiac-specific activated (myristoylated) form of Akt (myrAkt) or a cardiac-specific constitutively active (antipathologic hypertrophic) form of its downstream target, glycogen synthase kinase 3β (caGSK3β). The pregnancy-induced hypertrophic responses of hearts from these mice were significantly attenuated. Finally, we tested whether pregnancy-associated sex hormones could induce hypertrophy and alter signaling pathways in isolated neonatal rat ventricular myocytes (NRVMs). In fact, progesterone, but not estradiol treatment increased NRVM cell size via phosphorylation of ERK1/2. Inhibition of MEK1 effectively blocked progesterone-induced cellular hypertrophy. Taken together, our study demonstrates that pregnancy-induced cardiac hypertrophy is mediated by activation of Akt and ERK1/2 pathways. PMID:22345431

  11. Stanniocalcin-1 inhibits thrombin-induced signaling and protects from bleomycin-induced lung injury

    PubMed Central

    Huang, Luping; Zhang, Lin; Ju, Huiming; Li, Qingtian; Pan, Jenny Szu-Chin; Al-Lawati, Zahraa; Sheikh-Hamad, David

    2015-01-01

    Thrombin-induced and proteinase-activated receptor 1 (PAR1)-mediated signaling increases ROS production, activates ERK, and promotes inflammation and fibroblast proliferation in bleomycin-induced lung injury. Stanniocalcin-1 (STC1) activates anti-oxidant pathways, inhibits inflammation and provides cytoprotection; hence, we hypothesized that STC1 will inhibit thrombin/PAR1 signaling and protect from bleomycin-induced pneumonitis. We determined thrombin level and activity, thrombin-induced PAR-1-mediated signaling, superoxide generation and lung pathology after intra-tracheal administration of bleomycin to WT and STC1 Tg mice. Lungs of bleomycin-treated WT mice display: severe pneumonitis; increased generation of superoxide; vascular leak; increased thrombin protein abundance and activity; activation of ERK; greater cytokine/chemokine release and infiltration with T-cells and macrophages. Lungs of STC1 Tg mice displayed none of the above changes. Mechanistic analysis in cultured pulmonary epithelial cells (A549) suggests that STC1 inhibits thrombin-induced and PAR1-mediated ERK activation through suppression of superoxide. In conclusion, STC1 blunts bleomycin-induced rise in thrombin protein and activity, diminishes thrombin-induced signaling through PAR1 to ERK, and inhibits bleomycin-induced pneumonitis. Moreover, our study identifies a new set of cytokines/chemokines, which play a role in the pathogenesis of bleomycin-induced lung injury. These findings broaden the array of potential therapeutic targets for the treatment of lung diseases characterized by thrombin activation, oxidant stress and inflammation. PMID:26640170

  12. An EGFR autocrine loop encodes a slow-reacting but dominant mode of mechanotransduction in a polarized epithelium

    PubMed Central

    Kojic, Nikola; Chung, Euiheon; Kho, Alvin T.; Park, Jin-Ah; Huang, Austin; So, Peter T. C.; Tschumperlin, Daniel J.

    2010-01-01

    The mechanical landscape in biological systems can be complex and dynamic, with contrasting sustained and fluctuating loads regularly superposed within the same tissue. How resident cells discriminate between these scenarios to respond accordingly remains largely unknown. Here, we show that a step increase in compressive stress of physiological magnitude shrinks the lateral intercellular space between bronchial epithelial cells, but does so with strikingly slow exponential kinetics (time constant ∼110 s). We confirm that epidermal growth factor (EGF)-family ligands are constitutively shed into the intercellular space and demonstrate that a step increase in compressive stress enhances EGF receptor (EGFR) phosphorylation with magnitude and onset kinetics closely matching those predicted by constant-rate ligand shedding in a slowly shrinking intercellular geometry. Despite the modest degree and slow nature of EGFR activation evoked by compressive stress, we find that the majority of transcriptomic responses to sustained mechanical loading require ongoing activity of this autocrine loop, indicating a dominant role for mechanotransduction through autocrine EGFR signaling in this context. A slow deformation response to a step increase in loading, accompanied by synchronous increases in ligand concentration and EGFR activation, provides one means for cells to mount a selective and context-appropriate response to a sustained change in mechanical environment.—Kojic, N., Chung, E., Kho, A. T., Park, J.-A., Huang, A., So, P. T. C., Tschumperlin, D. J. An EGFR autocrine loop encodes a slow-reacting but dominant mode of mechanotransduction in a polarized epithelium. PMID:20056713

  13. Notch Signaling in Inflammation-Induced Preterm Labor

    PubMed Central

    Jaiswal, Mukesh K.; Agrawal, Varkha; Pamarthy, Sahithi; Katara, Gajendra K.; Kulshrestha, Arpita; Gilman-Sachs, Alice; Beaman, Kenneth D.; Hirsch, Emmet

    2015-01-01

    Notch signaling plays an important role in regulation of innate immune responses and trophoblast function during pregnancy. To identify the role of Notch signaling in preterm labor, Notch receptors (Notch1-4), its ligands (DLL (Delta-like protein)-1/3/4), Jagged 1/2) and Notch-induced transcription factor Hes1 were assessed during preterm labor. Preterm labor was initiated on gestation day 14.5 by intrauterine (IU) injection of peptidoglycan (PGN) and polyinosinic:cytidylic acid (poly(I:C). Notch1, Notch2, Notch4, DLL-1 and nuclear localization of Hes1 were significantly elevated in uterus and placenta during PGN+poly(I:C)-induced preterm labor. Ex vivo, Gamma secretase inhibitor (GSI) (inhibitor of Notch receptor processing) significantly diminished the PGN+poly(I:C)-induced secretion of M1- and M2-associated cytokines in decidual macrophages, and of proinflammatory cytokines (IFN-γ, TNF-α and IL-6) and chemokines (MIP-1β) in decidual and placental cells. Conversely, angiogenesis factors including Notch ligands Jagged 1/2 and DLL-4 and VEGF were significantly reduced in uterus and placenta during PGN+poly(I:C)-induced preterm labor. In vivo GSI treatment prevents PGN+poly(I:C)-induced preterm delivery by 55.5% and increased the number of live fetuses in-utero significantly compared to respective controls 48 hrs after injections. In summary, Notch signaling is activated during PGN+poly(I:C)-induced preterm labor, resulting in upregulation of pro-inflammatory responses, and its inhibition improves in-utero survival of live fetuses. PMID:26472156

  14. Notch Signaling in Inflammation-Induced Preterm Labor.

    PubMed

    Jaiswal, Mukesh K; Agrawal, Varkha; Pamarthy, Sahithi; Katara, Gajendra K; Kulshrestha, Arpita; Gilman-Sachs, Alice; Beaman, Kenneth D; Hirsch, Emmet

    2015-01-01

    Notch signaling plays an important role in regulation of innate immune responses and trophoblast function during pregnancy. To identify the role of Notch signaling in preterm labor, Notch receptors (Notch1-4), its ligands (DLL (Delta-like protein)-1/3/4), Jagged 1/2) and Notch-induced transcription factor Hes1 were assessed during preterm labor. Preterm labor was initiated on gestation day 14.5 by intrauterine (IU) injection of peptidoglycan (PGN) and polyinosinic:cytidylic acid (poly(I:C). Notch1, Notch2, Notch4, DLL-1 and nuclear localization of Hes1 were significantly elevated in uterus and placenta during PGN+poly(I:C)-induced preterm labor. Ex vivo, Gamma secretase inhibitor (GSI) (inhibitor of Notch receptor processing) significantly diminished the PGN+poly(I:C)-induced secretion of M1- and M2-associated cytokines in decidual macrophages, and of proinflammatory cytokines (IFN-γ, TNF-α and IL-6) and chemokines (MIP-1β) in decidual and placental cells. Conversely, angiogenesis factors including Notch ligands Jagged 1/2 and DLL-4 and VEGF were significantly reduced in uterus and placenta during PGN+poly(I:C)-induced preterm labor. In vivo GSI treatment prevents PGN+poly(I:C)-induced preterm delivery by 55.5% and increased the number of live fetuses in-utero significantly compared to respective controls 48 hrs after injections. In summary, Notch signaling is activated during PGN+poly(I:C)-induced preterm labor, resulting in upregulation of pro-inflammatory responses, and its inhibition improves in-utero survival of live fetuses. PMID:26472156

  15. Autocrine regulation of biliary pathology by activated cholangiocytes

    PubMed Central

    Jensen, Kendal; Marzioni, Marco; Munshi, Kamruzzaman; Afroze, Syeda

    2012-01-01

    The bile duct system of the liver is lined by epithelial cells (i.e., cholangiocytes) that respond to a large number of neuroendocrine factors through alterations in their proliferative activities and the subsequent modification of the microenvironment. As such, activation of biliary proliferation compensates for the loss of cholangiocytes due to apoptosis and slows the progression of toxic injury and cholestasis. Over the course of the last three decades, much progress has been made in identifying the factors that trigger the biliary epithelium to remodel and grow. Because a large number of autocrine factors have recently been identified as relevant clinical targets, a compiled review of their contributions and function in cholestatic liver diseases would be beneficial. In this context, it is important to define the specific processes triggered by autocrine factors that promote cholangiocytes to proliferate, activate neighboring cells, and ultimately lead to extracellular matrix deposition. In this review, we discuss the role of each of the known autocrine factors with particular emphasis on proliferation and fibrogenesis. Because many of these molecules interact with one another throughout the progression of liver fibrosis, a model speculating their involvement in the progression of cholestatic liver disease is also presented. PMID:22194419

  16. Pneumococcal Hydrogen Peroxide–Induced Stress Signaling Regulates Inflammatory Genes

    PubMed Central

    Loose, Maria; Hudel, Martina; Zimmer, Klaus-Peter; Garcia, Ernesto; Hammerschmidt, Sven; Lucas, Rudolf; Chakraborty, Trinad; Pillich, Helena

    2015-01-01

    Microbial infections can induce aberrant responses in cellular stress pathways, leading to translational attenuation, metabolic restriction, and activation of oxidative stress, with detrimental effects on cell survival. Here we show that infection of human airway epithelial cells with Streptococcus pneumoniae leads to induction of endoplasmic reticulum (ER) and oxidative stress, activation of mitogen-associated protein kinase (MAPK) signaling pathways, and regulation of their respective target genes. We identify pneumococcal H2O2 as the causative agent for these responses, as both catalase-treated and pyruvate oxidase-deficient bacteria lacked these activities. Pneumococcal H2O2 induced nuclear NF-κB translocation and transcription of proinflammatory cytokines. Inhibition of translational arrest and ER stress by salubrinal or of MAPK signaling pathways attenuate cytokine transcription. These results provide strong evidence for the notion that inhibition of translation is an important host pathway in monitoring harmful pathogen-associated activities, thereby enabling differentiation between pathogenic and nonpathogenic bacteria. PMID:25183769

  17. Interleukin-6/Soluble Interleukin-6 Receptor Signaling Attenuates Proliferation and Invasion, and Induces Morphological Changes of a Newly Established Pleomorphic Malignant Fibrous Histiocytoma Cell Line

    PubMed Central

    Nakanishi, Hirofumi; Yoshioka, Kiyoko; Joyama, Susumu; Araki, Nobuhito; Myoui, Akira; Ishiguro, Shingo; Ueda, Takafumi; Yoshikawa, Hideki; Itoh, Kazuyuki

    2004-01-01

    Pleomorphic malignant fibrous histiocytoma (MFH) is occasionally associated with inflammatory paraneoplastic syndrome (PNS). Recently, we reported that interleukin (IL)-6, one of the candidate cytokines, which induces such systemic inflammatory reaction, may be a tumor-associated factor involved in the pathogenesis and its clinical manifestations of MFH. In the local microenvironment, tumor-induced inflammatory reaction may play a role favoring tumor progression. To clarify the biological relevance of IL-6 in MFH, we established a human MFH cell line, named MIPS-2, derived from a resected specimen of a patient presenting with PNS. In this patient, the serum IL-6 level ran parallel to the disease course: elevated serum IL-6 concentration normalized immediately after radical surgery, and re-elevation occurred on tumor recurrence. MIPS-2 presented pleomorphic appearance, severe nuclear abnormalities with prominent nucleoli, and tumorigenesis in nude mice. MIPS-2 expressed IL-6, IL-6 receptor (IL-6R), and glycoprotein 130 (gp130) but lacked the soluble form of IL-6R (sIL-6R), as determined by flow cytometry and reverse transcriptase-polymerase chain reaction analyses. Stimulation of MIPS-2 with IL-6 combined with exogenous sIL-6R induced phosphorylation of both signal transducer and activator of transcription 3 (STAT3) and mitogen-activated protein kinase (MAPK), decreased cell proliferation, attenuated invasion, and induced morphological changes. Collectively, these data suggested that the IL-6/sIL-6R signaling pathway plays a pivotal role for proliferation, invasion, and morphology of MFH via STAT3 and MAPK pathway as autocrine and/or paracrine manner, and proposed the therapeutic potential for the use of both anti-growth factor and proinflammatory cytokine-targeting strategies to combat devastating MFH. PMID:15277221

  18. Optical communication system performance with tracking error induced signal fading.

    NASA Technical Reports Server (NTRS)

    Tycz, M.; Fitzmaurice, M. W.; Premo, D. A.

    1973-01-01

    System performance is determined for an optical communication system using noncoherent detection in the presence of tracking error induced signal fading assuming (1) binary on-off modulation (OOK) with both fixed and adaptive threshold receivers, and (2) binary polarization modulation (BPM). BPM is shown to maintain its inherent 2- to 3-dB advantage over OOK when adaptive thresholding is used, and to have a substantially greater advantage when the OOK system is restricted to a fixed decision threshold.

  19. Insulin-like growth factor-binding protein-3 inhibits IGF-1-induced proliferation of human hepatocellular carcinoma cells by controlling bFGF and PDGF autocrine/paracrine loops.

    PubMed

    Ma, Yang; Han, Chen-Chen; Li, Yifan; Wang, Yang; Wei, Wei

    2016-09-16

    Basic fibroblast growth factor (bFGF) and platelet-derived growth factor (PDGF) produced by hepatocellular carcinoma (HCC) cells are responsible for the growth of HCC cells. Accumulating evidence shows that insulin-like growth factor-binding protein-3 (IGFBP-3) suppresses HCC cell proliferation in both IGF-dependent and independent manners. It's unknown, however, whether treatment with exogenous IGFBP-3 inhibits bFGF and PDGF production in HCC cells. The present study demonstrates that IGFBP-3 suppressed IGF-1-induced bFGF and PDGF expression while it does not affect their expression in the absence of IGF-1. To delineate the underlying mechanism, western-blot and RT-PCR assays confirmed that the transcription factor early growth response protein 1 (EGR1) is involved in IGFBP-3 regulation of bFGF and PDGF. IGFBP-3 inhibition of type 1 insulin-like growth factor receptor (IGF1R), ERK and AKT activation is IGF-1-dependent. Furthermore, transient transfection with constitutively activated AKT or MEK partially blocks the IGFBP-3 inhibition of EGR1, bFGF and PDGF expression. In conclusion, these findings suggest that IGFBP-3 suppresses transcription of EGR1 and its target genes bFGF and PDGF through inhibiting IGF-1-dependent ERK and AKT activation. It demonstrates the importance of IGFBP-3 in the regulation of HCC cell proliferation, suggesting that IGFBP-3 could be a target for the treatment of HCC. PMID:27521890

  20. Piperlongumine induces autophagy by targeting p38 signaling.

    PubMed

    Wang, Y; Wang, J-W; Xiao, X; Shan, Y; Xue, B; Jiang, G; He, Q; Chen, J; Xu, H-G; Zhao, R-X; Werle, K D; Cui, R; Liang, J; Li, Y-L; Xu, Z-X

    2013-01-01

    Piperlongumine (PL), a natural product isolated from the plant species Piper longum L., can selectively induce apoptotic cell death in cancer cells by targeting the stress response to reactive oxygen species (ROS). Here we show that PL induces cell death in the presence of benzyloxycarbonylvalyl-alanyl-aspartic acid (O-methyl)-fluoro-methylketone (zVAD-fmk), a pan-apoptotic inhibitor, and in the presence of necrostatin-1, a necrotic inhibitor. Instead PL-induced cell death can be suppressed by 3-methyladenine, an autophagy inhibitor, and substantially attenuated in cells lacking the autophagy-related 5 (Atg5) gene. We further show that PL enhances autophagy activity without blocking autophagy flux. Application of N-acetyl-cysteine, an antioxidant, markedly reduces PL-induced autophagy and cell death, suggesting an essential role for intracellular ROS in PL-induced autophagy. Furthermore, PL stimulates the activation of p38 protein kinase through ROS-induced stress response and p38 signaling is necessary for the action of PL as SB203580, a p38 inhibitor, or dominant-negative p38 can effectively reduce PL-mediated autophagy. Thus, we have characterized a new mechanism for PL-induced cell death through the ROS-p38 pathway. Our findings support the therapeutic potential of PL by triggering autophagic cell death. PMID:24091667

  1. Constitutive and ligand-induced EGFR signaling triggers distinct and mutually exclusive downstream signaling networks

    PubMed Central

    Chakraborty, Sharmistha; Li, Li; Puliyappadamba, VineshkumarThidil; Guo, Gao; Hatanpaa, Kimmo J.; Mickey, Bruce; Souza, Rhonda F.; Vo, Peggy; Herz, Joachim; Chen, Mei-Ru; Boothman, David A.; Pandita, Tej K.; Wang, David H.; Sen, Ganes C.; Habib, Amyn A.

    2014-01-01

    EGFR overexpression plays an important oncogenic role in cancer. Regular EGFR protein levels are increased in cancer cells and the receptor then becomes constitutively active. However, downstream signals generated by constitutively activated EGFR are unknown. Here we report that the overexpressed EGFR oscillates between two distinct and mutually exclusive modes of signaling. Constitutive or non-canonical EGFR signaling activates the transcription factor IRF3 leading to expression of IFI27, IFIT1, and TRAIL. Ligand-mediated activation of EGFR switches off IRF3 dependent transcription, activates canonical ERK and Akt signals, and confers sensitivity to chemotherapy and virus-induced cell death. Mechanistically, the distinct downstream signals result from a switch of EGFR associated proteins. EGFR constitutively complexes with IRF3 and TBK1 leading to TBK1 and IRF3 phosphorylation. Addition of EGF dissociates TBK1, IRF3, and EGFR leading to a loss of IRF3 activity, Shc-EGFR association and ERK activation. Finally, we provide evidence for non-canonical EGFR signaling in glioblastoma. PMID:25503978

  2. Expression of GADS enhances FLT3-induced mitogenic signaling.

    PubMed

    Chougule, Rohit A; Cordero, Eugenia; Moharram, Sausan A; Pietras, Kristian; Rönnstrand, Lars; Kazi, Julhash U

    2016-03-22

    GADS is a member of a family of SH2 and SH3 domain-containing adaptors that functions in tyrosine kinase-mediated signaling cascades. Its expression is largely restricted to hematopoietic tissues and cell lines. Therefore, GADS is mainly involved in leukocyte-specific protein tyrosine kinase signaling. GADS is known to interact with tyrosine-phosphorylated SHC, BCR-ABL and KIT. The SH2 domain of GADS has a similar binding specificity to that of GRB2 but its SH3 domain displays a different binding specificity, and thus it is involved in other downstream signaling pathways than GRB2. In the present study, we examined the role of GADS in FLT3 signaling. FLT3 is a type III receptor tyrosine kinase, which is mutated in more than 30% of acute myeloid leukemia (AML) and the most common mutations is the internal tandem duplication (ITD) mutations. We observed that expression of GADS enhanced oncogenic FLT3-ITD-induced cell proliferation and colony formation in vitro. In a mouse xenograft model, GADS accelerated FLT3-ITD-dependent tumor formation. Furthermore, expression of GADS induced a transcriptional program leading to upregulation of MYC and mTORC1 target genes. GADS localizes to the cell membrane and strongly binds to ligand-stimulated wild-type FLT3 or is constitutively associated with the oncogenic mutant FLT3-ITD. We mapped the binding sites in FLT3 to pY955 and pY969 which overlaps with the GRB2 binding sites. Expression of GADS enhanced FLT3-mediated phosphorylation of AKT, ERK1/2, p38 and STAT5. Taken together, our data suggests that GADS is an important downstream component of FLT3 signaling and expression of GADS potentiates FLT3-mediated mitogenic signaling. PMID:26895103

  3. Expression of GADS enhances FLT3-induced mitogenic signaling

    PubMed Central

    Chougule, Rohit A.; Cordero, Eugenia; Moharram, Sausan A.; Pietras, Kristian; Rönnstrand, Lars; Kazi, Julhash U.

    2016-01-01

    GADS is a member of a family of SH2 and SH3 domain-containing adaptors that functions in tyrosine kinase-mediated signaling cascades. Its expression is largely restricted to hematopoietic tissues and cell lines. Therefore, GADS is mainly involved in leukocyte-specific protein tyrosine kinase signaling. GADS is known to interact with tyrosine-phosphorylated SHC, BCR-ABL and KIT. The SH2 domain of GADS has a similar binding specificity to that of GRB2 but its SH3 domain displays a different binding specificity, and thus it is involved in other downstream signaling pathways than GRB2. In the present study, we examined the role of GADS in FLT3 signaling. FLT3 is a type III receptor tyrosine kinase, which is mutated in more than 30% of acute myeloid leukemia (AML) and the most common mutations is the internal tandem duplication (ITD) mutations. We observed that expression of GADS enhanced oncogenic FLT3-ITD-induced cell proliferation and colony formation in vitro. In a mouse xenograft model, GADS accelerated FLT3-ITD-dependent tumor formation. Furthermore, expression of GADS induced a transcriptional program leading to upregulation of MYC and mTORC1 target genes. GADS localizes to the cell membrane and strongly binds to ligand-stimulated wild-type FLT3 or is constitutively associated with the oncogenic mutant FLT3-ITD. We mapped the binding sites in FLT3 to pY955 and pY969 which overlaps with the GRB2 binding sites. Expression of GADS enhanced FLT3-mediated phosphorylation of AKT, ERK1/2, p38 and STAT5. Taken together, our data suggests that GADS is an important downstream component of FLT3 signaling and expression of GADS potentiates FLT3-mediated mitogenic signaling. PMID:26895103

  4. Signaling factors and pathways of α-particle irradiation induced bilateral bystander responses between Beas-2B and U937 cells.

    PubMed

    Fu, Jiamei; Wang, Juan; Wang, Xiangdong; Wang, Ping; Xu, Jinping; Zhou, Cuiping; Bai, Yang; Shao, Chunlin

    2016-07-01

    Although radiation induced bystander effects (RIBE) have been investigated for decades for their potential health risk, the underlying gene regulation is still largely unclear, especially the roles of immune system and inflammatory response in RIBE. In the present study, macrophage U937 cells and epithelial Beas-2B cells were co-cultured to disclose the cascades of bystander signaling factors and intercellular communications. After α-particle irradiation, both ERK and p38 pathways were activated in Beas-2B cells and were associated with the autocrine and paracrine signaling of TNF-α and IL-8, resulting in direct damage to the irradiated cells. Similar upregulation of TNF-α and IL-8 was induced in the bystander U937 cells after co-culture with α-irradiated Beas-2B cells. This upregulation was dependent on the activation of NF-κB pathway and was responsible for the enhanced damage of α-irradiated Beas-2B cells. Interestingly, the increased expressions of TNF-α and IL-8 mRNAs in the bystander U937 cells were clearly relayed on the activated ERK and p38 pathways in the irradiated Beas-2B cells, and the upregulation of TNF-α and IL-8 mRNAs in co-cultured Beas-2B cells was also partly due to the activated NF-κB pathway in the bystander U937 cells. With the pretreatment of U0126 (MEK1/2 inhibitor), SB203580 (p38 inhibitor) or BAY 11-7082 (NF-κB inhibitor), the aggravated damage in the α-irradiated Beas-2B cells could be largely alleviated. Our results disclosed novel signaling cascades of macrophage-mediated bilateral bystander responses that the release of TNF-α and IL-8 regulated by MAPK and NF-κB pathways synergistically increased cellular injury after α-particle irradiation. PMID:27155559

  5. Leptin-Induced JAK/STAT Signaling and Cancer Growth.

    PubMed

    Mullen, McKay; Gonzalez-Perez, Ruben Rene

    2016-01-01

    Growth factor and cytokine signaling can influence the development of several cancer types. One of the key players in the development of cancer is the Janus kinas (JAK) signal transducer of activators of transcription (STAT) signaling pathway. The majority of growth factors and cytokine interactions with their membrane-bound receptors trigger JAK-STAT activation. The influential relationship between obesity and cancer is a fact. However, there is a complex sequence of events contributing to the regulation of this mechanism to promote tumor growth, yet to be fully elucidated. The JAK-STAT pathway is influenced by obesity-associated changes that have been shown to impact cancer growth and progression. This intricate process is highly regulated by a vast array of adipokines and cytokines that exert their pleiotropic effects on cancer cells to enhance metastasis to distant target sites. Leptin is a cytokine, or more precise, an adipokine secreted mainly by adipose tissue that requires JAK-STAT activation to exert its biological functions. Leptin is the central regulator of energy balance and appetite. Leptin binding to its receptor OB-R in turn activates JAK-STAT, which induces proliferation, angiogenesis, and anti-apoptotic events in normal cells and malignant cells expressing the receptor. Leptin also induces crosstalk with Notch and IL-1 (NILCO), which involves other angiogenic factors promoting tumor growth. Therefore, the existence of multiple novel classes of therapeutics that target the JAK/STAT pathway has significant clinical implications. Then, the identification of the signaling networks and factors that regulate the obesity-cancer link to which potential pharmacologic interventions can be implemented to inhibit tumor growth and metastasis. In this review, we will discuss the specific relationship between leptin-JAK-STAT signaling and cancer. PMID:27472371

  6. Identification and targeting of a TACE-dependent autocrine loopwhich predicts poor prognosis in breast cancer

    SciTech Connect

    Kenny, Paraic A.; Bissell, Mina J.

    2005-06-15

    The ability to proliferate independently of signals from other cell types is a fundamental characteristic of tumor cells. Using a 3D culture model of human breast cancer progression, we have delineated a protease-dependent autocrine loop which provides an oncogenic stimulus in the absence of proto-oncogene mutation. Inhibition of this protease, TACE/ADAM17, reverts the malignant phenotype by preventing mobilization of two crucial growth factors, Amphiregulin and TGF{alpha}. We show further that the efficacy of EGFR inhibitors is overcome by physiological levels of growth factors and that successful EGFR inhibition is dependent on reducing ligand bioavailability. Using existing patient outcome data, we demonstrate a strong correlation between TACE and TGF{alpha} expression in human breast cancers that is predictive of poor prognosis.

  7. Dopamine-mediated autocrine inhibitory circuit regulating human insulin secretion in vitro.

    PubMed

    Simpson, Norman; Maffei, Antonella; Freeby, Matthew; Burroughs, Steven; Freyberg, Zachary; Javitch, Jonathan; Leibel, Rudolph L; Harris, Paul E

    2012-10-01

    We describe a negative feedback autocrine regulatory circuit for glucose-stimulated insulin secretion in purified human islets in vitro. Using chronoamperometry and in vitro glucose-stimulated insulin secretion measurements, evidence is provided that dopamine (DA), which is loaded into insulin-containing secretory granules by vesicular monoamine transporter type 2 in human β-cells, is released in response to glucose stimulation. DA then acts as a negative regulator of insulin secretion via its action on D2R, which are also expressed on β-cells. We found that antagonism of receptors participating in islet DA signaling generally drive increased glucose-stimulated insulin secretion. These in vitro observations may represent correlates of the in vivo metabolic changes associated with the use of atypical antipsychotics, such as increased adiposity. PMID:22915827

  8. Adiponectin Action: A Combination of Endocrine and Autocrine/Paracrine Effects

    PubMed Central

    Dadson, Keith; Liu, Ying; Sweeney, Gary

    2011-01-01

    The widespread physiological actions of adiponectin have now been well characterized as clinical studies and works in animal models have established strong correlations between circulating adiponectin level and various disease-related outcomes. Thus, conventional thinking attributes many of adiponectin’s beneficial effects to endocrine actions of adipose-derived adiponectin. However, it is now clear that several tissues can themselves produce adiponectin and there is growing evidence that locally produced adiponectin can mediate functionally important autocrine or paracrine effects. In this review article we discuss regulation of adiponectin production, its mechanism of action via receptor isoforms and signaling pathways, and its principal physiological effects (i.e., metabolic and cardiovascular). The role of endocrine actions of adiponectin and changes in local production of adiponectin or its receptors in whole body physiology is discussed. PMID:22649379

  9. Dopamine-Mediated Autocrine Inhibitory Circuit Regulating Human Insulin Secretion in Vitro

    PubMed Central

    Simpson, Norman; Maffei, Antonella; Freeby, Matthew; Burroughs, Steven; Freyberg, Zachary; Javitch, Jonathan; Leibel, Rudolph L.

    2012-01-01

    We describe a negative feedback autocrine regulatory circuit for glucose-stimulated insulin secretion in purified human islets in vitro. Using chronoamperometry and in vitro glucose-stimulated insulin secretion measurements, evidence is provided that dopamine (DA), which is loaded into insulin-containing secretory granules by vesicular monoamine transporter type 2 in human β-cells, is released in response to glucose stimulation. DA then acts as a negative regulator of insulin secretion via its action on D2R, which are also expressed on β-cells. We found that antagonism of receptors participating in islet DA signaling generally drive increased glucose-stimulated insulin secretion. These in vitro observations may represent correlates of the in vivo metabolic changes associated with the use of atypical antipsychotics, such as increased adiposity. PMID:22915827

  10. Silymarin Suppresses Cellular Inflammation By Inducing Reparative Stress Signaling.

    PubMed

    Lovelace, Erica S; Wagoner, Jessica; MacDonald, James; Bammler, Theo; Bruckner, Jacob; Brownell, Jessica; Beyer, Richard P; Zink, Erika M; Kim, Young-Mo; Kyle, Jennifer E; Webb-Robertson, Bobbie-Jo M; Waters, Katrina M; Metz, Thomas O; Farin, Federico; Oberlies, Nicholas H; Polyak, Stephen J

    2015-08-28

    Silymarin, a characterized extract of the seeds of milk thistle (Silybum marianum), suppresses cellular inflammation. To define how this occurs, transcriptional profiling, metabolomics, and signaling studies were performed in human liver and T cell lines. Cellular stress and metabolic pathways were modulated within 4 h of silymarin treatment: activation of Activating Transcription Factor 4 (ATF-4) and adenosine monophosphate protein kinase (AMPK) and inhibition of mammalian target of rapamycin (mTOR) signaling, the latter being associated with induction of DNA-damage-inducible transcript 4 (DDIT4). Metabolomics analyses revealed silymarin suppression of glycolytic, tricarboxylic acid (TCA) cycle, and amino acid metabolism. Anti-inflammatory effects arose with prolonged (i.e., 24 h) silymarin exposure, with suppression of multiple pro-inflammatory mRNAs and signaling pathways including nuclear factor kappa B (NF-κB) and forkhead box O (FOXO). Studies with murine knock out cells revealed that silymarin inhibition of both mTOR and NF-κB was partially AMPK dependent, whereas silymarin inhibition of mTOR required DDIT4. Other natural products induced similar stress responses, which correlated with their ability to suppress inflammation. Thus, natural products activate stress and repair responses that culminate in an anti-inflammatory cellular phenotype. Natural products like silymarin may be useful as tools to define how metabolic, stress, and repair pathways regulate cellular inflammation. PMID:26186142

  11. Silymarin Suppresses Cellular Inflammation By Inducing Reparative Stress Signaling

    SciTech Connect

    Lovelace, Erica S.; Wagoner, Jessica; MacDonald, James; Bammler, Theo; Bruckner, Jacob; Brownell, Jessica; Beyer, Richard; Zink, Erika M.; Kim, Young-Mo; Kyle, Jennifer E.; Webb-Robertson, Bobbie-Jo M.; Waters, Katrina M.; Metz, Thomas O.; Farin, Federico; Oberlies, Nicholas H.; Polyak, Steve

    2015-08-28

    Silymarin (SM), a natural product, is touted as a liver protectant and preventer of both chronic inflammation and diseases. To define how SM elicits these effects at a systems level, we performed transcriptional profiling, metabolomics, and signaling studies in human liver and T cell lines. Multiple pathways associated with cellular stress and metabolism were modulated by SM treatment within 0.5 to four hours: activation of Activating Transcription Factor 4 (ATF-4) and adenosine monophosphate protein kinase (AMPK) and inhibition of mammalian target of rapamycin (mTOR) signaling, the latter being associated with induction of DNA-damage-inducible transcript 4 (DDIT4). Metabolomics analyses revealed suppression of glycolytic, TCA cycle, and amino acid metabolism by SM treatment. Antiinflammatory effects arose with prolonged (i.e. 24 hours) SM exposure, with suppression of multiple proinflammatory mRNAs and nuclear factor kappa B (NF-κB) and forkhead box O (FOXO) signaling. Studies with murine knock out cells revealed that SM inhibition of both mTOR and NF-κB was partially AMPK dependent, while SM inhibition of the mTOR pathway in part required DDIT4. Thus, SM activates stress and repair responses that culminate in an anti-inflammatory phenotype. Other natural products induced similar stress responses, which correlated with their ability to suppress inflammation. Therefore, natural products like SM may be useful as tools to define how metabolic, stress, and repair pathways regulate cellular inflammation.

  12. Loss of apical monocilia on collecting duct principal cells impairs ATP secretion across the apical cell surface and ATP-dependent and flow-induced calcium signals.

    PubMed

    Hovater, Michael B; Olteanu, Dragos; Hanson, Elizabeth L; Cheng, Nai-Lin; Siroky, Brian; Fintha, Attila; Komlosi, Peter; Liu, Wen; Satlin, Lisa M; Bell, P Darwin; Yoder, Bradley K; Schwiebert, Erik M

    2008-06-01

    mechanical pipetting stimuli trigger release of a common ATP pool. Cilium-competent monolayers responded to flow with an increase in cell Ca(2+) derived from both extracellular and intracellular stores. This flow-induced Ca(2+) signal was less robust in cilium-deficient monolayers. Flow-induced Ca(2+) signals in both preparations were attenuated by extracellular gadolinium and by extracellular apyrase, an ATPase/ADPase. Taken together, these data suggest that apical monocilia are sensory organelles and that their presence in the apical membrane facilitates the formation of a mature ATP secretion apparatus responsive to chemical, osmotic, and mechanical stimuli. The cilium and autocrine ATP signaling appear to work in concert to control cell Ca(2+). Loss of a cilium-dedicated autocrine purinergic signaling system may be a critical underlying etiology for ARPKD and may lead to disinhibition and/or upregulation of multiple sodium (Na(+)) absorptive mechanisms and a resultant severe hypertensive phenotype in ARPKD and, possibly, other diseases. PMID:18368523

  13. Adenosine signaling and the energetic costs of induced immunity.

    PubMed

    Lazzaro, Brian P

    2015-04-01

    Life history theory predicts that trait evolution should be constrained by competing physiological demands on an organism. Immune defense provides a classic example in which immune responses are presumed to be costly and therefore come at the expense of other traits related to fitness. One strategy for mitigating the costs of expensive traits is to render them inducible, such that the cost is paid only when the trait is utilized. In the current issue of PLOS Biology, Bajgar and colleagues elegantly demonstrate the energetic and life history cost of the immune response that Drosophila melanogaster larvae induce after infection by the parasitoid wasp Leptopilina boulardi. These authors show that infection-induced proliferation of defensive blood cells commands a diversion of dietary carbon away from somatic growth and development, with simple sugars instead being shunted to the hematopoetic organ for rapid conversion into the raw energy required for cell proliferation. This metabolic shift results in a 15% delay in the development of the infected larva and is mediated by adenosine signaling between the hematopoietic organ and the central metabolic control organ of the host fly. The adenosine signal thus allows D. melanogaster to rapidly marshal the energy needed for effective defense and to pay the cost of immunity only when infected. PMID:25915419

  14. Hypoxia-inducible factors and sphingosine 1-phosphate signaling.

    PubMed

    Cuvillier, Olivier; Ader, Isabelle

    2011-11-01

    Hypoxia, defined as reduced tissue oxygen concentration, is a characteristic of solid tumors and is an indicator of unfavorable diagnosis in patients. At the cellular level, the adaptation to hypoxia is under the control of two related transcription factors, HIF-1α and HIF-2α (Hypoxia-Inducible Factor), which activate expression of genes promoting angiogenesis, metastasis, increased tumor growth and resistance to treatments. A role for HIF-1α and HIF-2α is also emerging in hematologic malignancies such as lymphoma and l eukemia. Recent studies have identified the sphingosine kinase 1/sphingosine 1-phosphate (SphK1/S1P) signaling pathway - which elicits various cellular processes including cell proliferation, cell survival or angiogenesis - as a new regulator of HIF-1α or HIF-2α activity. This review will consider how targeting the SphK1/S1P signaling could represent an attractive strategy for therapeutic intervention in cancer. PMID:21707486

  15. Adipocytes promote prostate cancer stem cell self-renewal through amplification of the cholecystokinin autocrine loop

    PubMed Central

    Tang, Kai-Dun; Liu, Ji; Jovanovic, Lidija; An, Jiyuan; Hill, Michelle M.; Vela, Ian; Lee, Terence Kin-Wah; Ma, Stephanie; Nelson, Colleen; Russell, Pamela J.; Clements, Judith A.; Ling, Ming-Tat

    2016-01-01

    Obesity has long been linked with prostate cancer progression, although the underlying mechanism is still largely unknown. Here, we report that adipocytes promote the enrichment of prostate cancer stem cells (CSCs) through a vicious cycle of autocrine amplification. In the presence of adipocytes, prostate cancer cells actively secrete the peptide hormone cholecystokinin (CCK), which not only stimulates prostate CSC self-renewal, but also induces cathepsin B (CTSB) production of the adipocytes. In return, CTSB facilitates further CCK secretion by the cancer cells. More importantly, inactivation of CCK receptor not only suppresses CTSB secretion by the adipocytes, but also synergizes the inhibitory effect of CTSB inhibitor on adipocyte-promoted prostate CSC self-renewal. In summary, we have uncovered a novel mechanism underlying the mutual interplay between adipocytes and prostate CSCs, which may help explaining the role of adipocytes in prostate cancer progression and provide opportunities for effective intervention. PMID:26700819

  16. Growth hormone and ocular dysfunction: Endocrine, paracrine or autocrine etiologies?

    PubMed

    Harvey, Steve; Martinez-Moreno, Carlos G

    2016-08-01

    The eye is a target site for GH action and growth hormone has been implicated in diabetic retinopathy and other ocular dysfunctions. However, while this could reflect the hypersecretion of pituitary GH, the expression of the GH gene is now known to occur in ocular tissues and it could thus also reflect excess GH production within the eye itself. The possibility that ocular dysfunctions might arise from endocrine, autocrine or paracrine etiologies of GH overexpression is therefore the focus of this brief review. PMID:27082451

  17. Semaphorin signaling in bone.

    PubMed

    Verlinden, Lieve; Vanderschueren, Dirk; Verstuyf, Annemieke

    2016-09-01

    Semaphorin molecules regulate cell adhesion and motility in a wide variety of cell types and are therefore involved in numerous processes including axon guidance, angiogenesis, cardiogenesis, tumor growth, and immune response. Increasing evidence points to a role of transmembrane, membrane-associated and soluble semaphorins during bone development as well as in the control of normal bone homeostasis. Within bone, semaphorins are implicated in the communication between different cell types by relaying signals in an autocrine or paracrine way. Semaphorins are not only involved in bone resorption but also in bone formation. Therefore, targeting semaphorin-induced signaling in bone may constitute an interesting new therapeutic strategy in osteoporosis. However, all the pioneering research on semaphorins is performed in mice and it remains to be established to what extent semaphorin signaling pathways are conserved between mice and men. In addition, knowledge of semaphorin signaling in bone mostly arises from loss/gain of function studies of one single semaphorin and/or receptor. However, different semaphorin molecules are co-expressed in bone and their signaling pathways are likely to interact in a complex and coherent way that needs proper understanding before targeting semaphorin signaling can be therapeutically exploited. PMID:26365296

  18. Signaling Pathways Involved in Lunar Dust Induced Cytotoxicity

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Lam, Chiu-Wing; Scully, Robert R.; Williams, Kyle; Zalesak, Selina; Wu, Honglu; James, John T.

    2014-01-01

    The Moon's surface is covered by a layer of fine, reactive dust. Lunar dust contain about 1-2% of very fine dust (< 3 micron), that is respirable. The habitable area of any lunar landing vehicle and outpost would inevitably be contaminated with lunar dust that could pose a health risk. The purpose of the study is to evaluate the toxicity of Apollo moon dust in rodents to assess the health risk of dust exposures to humans. One of the particular interests in the study is to evaluate dust-induced changes of the expression of fibrosis-related genes, and to identify specific signaling pathways involved in lunar dust-induced toxicity. F344 rats were exposed for 4 weeks (6h/d; 5d/wk) in nose-only inhalation chambers to concentrations of 0 (control air), 2.1, 6.1, 21, and 61 mg/m(exp 3) of lunar dust. Five rats per group were euthanized 1 day, 1 week, 1 month, and 3 months after the last inhalation exposure. The total RNAs were isolated from the blood or lung tissue after being lavaged, using the Qigen RNeasy kit. The Rat Fibrosis RT2 Profile PCR Array was used to profile the expression of 84 genes relevant to fibrosis. The genes with significant expression changes are identified and the gene expression data were further analyzed using IPA pathway analysis tool to determine the signaling pathways with significant changes.

  19. Analysis of oxidative signalling induced by ozone in Arabidopsis thaliana.

    PubMed

    Mahalingam, Ramamurthy; Jambunathan, Niranjani; Gunjan, Samir Kumar; Faustin, Enock; Weng, Hua; Ayoubi, Patricia

    2006-07-01

    We are using acute ozone as an elicitor of endogenous reactive oxygen species (ROS) to understand oxidative signalling in Arabidopsis. Temporal patterns of ROS following a 6 h exposure to 300 nL L(-1) of ozone in ozone-sensitive Wassilewskija (Ws-0) ecotype showed a biphasic ROS burst with a smaller peak at 4 h and a larger peak at 16 h. This was accompanied by a nitric oxide (NO) burst that peaked at 9 h. An analysis of antioxidant levels showed that both ascorbate (AsA) and glutathione (GSH) were at their lowest levels, when ROS levels were high in ozone-stressed plants. Whole genome expression profiling analysis at 1, 4, 8, 12 and 24 h after initiation of ozone treatment identified 371 differentially expressed genes. Early induction of proteolysis and hormone-responsive genes indicated that an oxidative cell death pathway was triggered rapidly. Down-regulation of genes involved in carbon utilization, energy pathways and signalling suggested an inefficient defense response. Comparisons with other large-scale expression profiling studies indicated some overlap between genes induced by ethylene and ozone, and a significant overlap between genes repressed by ozone and methyl jasmonate treatment. Further, analysis of cis elements in the promoters of ozone-responsive genes also supports the view that phytohormones play a significant role in ozone-induced cell death. PMID:17080957

  20. Modulation of the biliary expression of arylalkylamine N-acetyltransferase alters the autocrine proliferative responses of cholangiocytes

    PubMed Central

    Renzi, Anastasia; DeMorrow, Sharon; Onori, Paolo; Carpino, Guido; Mancinelli, Romina; Meng, Fanyin; Venter, Julie; White, Mellanie; Franchitto, Antonio; Francis, Heather; Han, Yuyan; Ueno, Yoshiyuki; Dusio, Giuseppina; Jensen, Kendal J; Greene, John J; Glaser, Shannon; Gaudio, Eugenio; Alpini, Gianfranco

    2012-01-01

    Background & Aims Secretin stimulates ductal secretion by interacting with secretin receptor (SR) activating cAMP⇒CFTR⇒Cl−/HCO3− AE2 signaling that is elevated by biliary hyperplasia. Cholangiocytes secrete several neuroendocrine factors regulating biliary functions by autocrine mechanisms. Melatonin inhibits biliary growth and secretin-stimulated choleresis in cholestatic bile duct ligated (BDL) rats by interaction with melatonin type 1 (MT1) receptor via downregulation of cAMP-dependent signaling. No data exists regarding the role of melatonin synthesized locally by cholangiocytes in the autocrine regulation of biliary growth and function. Methods In this study, we evaluated: (i) the expression of arylalkylamine N-acetyltransferase (AANAT, the rate-limiting enzyme for melatonin synthesis from serotonin) in cholangiocytes; and (ii) the effect of local modulation of biliary AANAT expression on the autocrine proliferative/secretory responses of cholangiocytes. Results In the liver, cholangiocytes (and to lower extent BDL hepatocytes) expressed AANAT. AANAT expression and melatonin secretion: (i) increased in BDL compared to normal rats and BDL rats treated with melatonin; and (ii) decreased in normal and BDL rats treated with AANAT Vivo-Morpholino compared to controls. The decrease in AANAT expression and subsequent lower melatonin secretion by cholangiocytes was associated with increased biliary proliferation and increased SR, CFTR, and Cl−/HCO3− AE2 expression. Overexpression of AANAT in cholangiocyte cell lines decreased the basal proliferative rate and expression of SR, CFTR, and Cl−/HCO3− AE2 and ablated secretin-stimulated biliary secretion in these cells. Conclusion Local modulation of melatonin synthesis may be important for the management of the balance between biliary proliferation/damage that is typical of cholangiopathies. PMID:23080076

  1. Autocrine netrin function inhibits glioma cell motility and promotes focal adhesion formation.

    PubMed

    Jarjour, Andrew A; Durko, Margaret; Luk, Tamarah L; Marçal, Nathalie; Shekarabi, Masoud; Kennedy, Timothy E

    2011-01-01

    Deregulation of mechanisms that control cell motility plays a key role in tumor progression by promoting tumor cell dissemination. Secreted netrins and their receptors, Deleted in Colorectal Cancer (DCC), neogenin, and the UNC5 homologues, regulate cell and axon migration, cell adhesion, and tissue morphogenesis. Netrin and netrin receptor expression have previously been shown to be disrupted in invasive tumors, including glioblastoma. We determined that the human glioblastoma cell lines U87, U343, and U373 all express neogenin, UNC5 homologues, and netrin-1 or netrin-3, but only U87 cells express DCC. Using transfilter migration assays, we demonstrate DCC-dependent chemoattractant migration of U87 cells up a gradient of netrin-1. In contrast, U343 and U373 cells, which do not express DCC, were neither attracted nor repelled. Ectopic expression of DCC by U343 and U373 cells resulted in these cells becoming competent to respond to a gradient of netrin-1 as a chemoattractant, and also slowed their rate of spontaneous migration. Here, in addition to netrins' well-characterized chemotropic activity, we demonstrate an autocrine function for netrin-1 and netrin-3 in U87 and U373 cells that slows migration. We provide evidence that netrins promote the maturation of focal complexes, structures associated with cell movement, into focal adhesions. Consistent with this, netrin, DCC, and UNC5 homologues were associated with focal adhesions, but not focal complexes. Disrupting netrin or DCC function did not alter cell proliferation or survival. Our findings provide evidence that DCC can slow cell migration, and that neogenin and UNC5 homologues are not sufficient to substitute for DCC function in these cells. Furthermore, we identify a role for netrins as autocrine inhibitors of cell motility that promote focal adhesion formation. These findings suggest that disruption of netrin signalling may disable a mechanism that normally restrains inappropriate cell migration. PMID

  2. CD163 and IgG codefend against cytotoxic hemoglobin via autocrine and paracrine mechanisms.

    PubMed

    Subramanian, Karthik; Du, Ruijuan; Tan, Nguan Soon; Ho, Bow; Ding, Jeak Ling

    2013-05-15

    Lysis of RBCs during numerous clinical settings such as severe hemolytic anemia, infection, tissue injury, or blood transfusion releases the endogenous damage-associated molecular pattern, hemoglobin (Hb), into the plasma. The redox-reactive Hb generates cytotoxic reactive oxygen species, disrupting the redox balance and impairing the immune-responsive blood cells. Therefore, it is crucial to understand how the immune system defends against the cytotoxic Hb. We identified a shortcut "capture and quench" mechanism of detoxification of Hb by the monocyte scavenger receptor CD163, independent of the well-known dominant antioxidant, haptoglobin. Our findings support a highly efficient two-pass mechanism of detoxification and clearance of Hb: 1) a direct suppression of Hb-pseudoperoxidase activity by CD163, involving an autocrine loop of CD163 shedding, sequestration of Hb, recycling, and homeostasis of CD163 in human monocytes and 2) paracrine transactivation of endothelial cells by the shedded soluble CD163 (sCD163), which further detoxifies and clears residual Hb. We showed that sCD163 and IgG interact with free Hb in the plasma and subsequently the sCD163-Hb-IgG complex is endocytosed into monocytes via FcγR. The endocytosed sCD163 is recycled to restore the homeostasis of CD163 on the monocyte membrane in an autocrine cycle, whereas the internalized Hb is catabolized. Using ex vivo coculture experiments, we demonstrated that the monocyte-derived sCD163 and IgG shuttle residual plasma Hb into the proximal endothelial cells. These findings suggest that CD163 and IgG collaborate to engage monocytes and endothelial cells in a two-pass detoxification mechanism to mount a systemic defense against Hb-induced oxidative stress. PMID:23589619

  3. IL-17-induced Act1-mediated signaling is critical for cuprizone-induced demyelination

    PubMed Central

    Kang, Zizhen; Liu, Liping; Spangler, Roo; Spear, Charles; Wang, Chenhui; Gulen, Muhammet Fatih; Veenstra, Mike; Ouyang, Wenjun; Ransohoff, Richard M.; Li, Xiaoxia

    2012-01-01

    Cuprizone inhibits mitochondrial function and induces demyelination in the corpus callosum which resembles pattern III lesions in multiple sclerosis (MS) patients. However, the molecular and cellular mechanism by which cuprizone induces demyelination remains unclear. Interleukin-17 (IL-17) secreted by T helper 17 (Th17) cells and γδT cells are essential in the development of experimental autoimmune encephalomyelitis (EAE). In this study, we examined the importance of IL-17 signaling in cuprizone-induced demyelination. We found that mice deficient in IL-17A, IL-17RC and adaptor protein Act1 (of IL-17R) all had reduced demyelination accompanied by lessened microglial and polydendrocyte cellular reactivity compared to that in wild-type mice in response to cuprizone feeding, demonstrating the essential role of IL-17-induced Act1-mediated signaling in cuprizone-induced demyelination. Importantly, specific deletion of Act1 in astrocytes reduced the severity of tissue injury in this model, indicating the critical role of CNS resident cells in the pathogenesis of cuprizone-induced demyelination. In cuprizone-fed mice IL-17 was produced by CNS CD3+ T cells suggesting a source of IL-17 in CNS upon cuprizone treatment. PMID:22699909

  4. IL-17-induced Act1-mediated signaling is critical for cuprizone-induced demyelination.

    PubMed

    Kang, Zizhen; Liu, Liping; Spangler, Roo; Spear, Charles; Wang, Chenhui; Gulen, Muhammet Fatih; Veenstra, Mike; Ouyang, Wenjun; Ransohoff, Richard M; Li, Xiaoxia

    2012-06-13

    Cuprizone inhibits mitochondrial function and induces demyelination in the corpus callosum, which resembles pattern III lesions in multiple sclerosis patients. However, the molecular and cellular mechanism by which cuprizone induces demyelination remains unclear. Interleukin-17 (IL-17) secreted by T helper 17 cells and γδT cells are essential in the development of experimental autoimmune encephalomyelitis. In this study, we examined the importance of IL-17 signaling in cuprizone-induced demyelination. We found that mice deficient in IL-17A, IL-17 receptor C (IL-17RC), and adaptor protein Act1 (of IL-17R) all had reduced demyelination accompanied by lessened microglial and polydendrocyte cellular reactivity compared with that in wild-type mice in response to cuprizone feeding, demonstrating the essential role of IL-17-induced Act1-mediated signaling in cuprizone-induced demyelination. Importantly, specific deletion of Act1 in astrocytes reduced the severity of tissue injury in this model, indicating the critical role of CNS resident cells in the pathogenesis of cuprizone-induced demyelination. In cuprizone-fed mice, IL-17 was produced by CNS CD3(+) T cells, suggesting a source of IL-17 in CNS upon cuprizone treatment. PMID:22699909

  5. Kavain Involvement in LPS-Induced Signaling Pathways.

    PubMed

    Tang, Xiaoren; Amar, Salomon

    2016-10-01

    Kavain, a compound extracted from the Kava plant, Piper methysticum, is found to be involved in TNF-α expression in human and mouse cells via regulation of transcriptional factors such as NF-kB and LITAF. LITAF is known to activate the transcription of more than 20 cytokines that are involved in a variety of cellular processes and is associated with many inflammatory diseases, including angiogenesis, cancer, arthritis, and more. The modulation of LITAF is expected to positively affect cytokine-mediated diseases. Thus, intensive efforts have been deployed in search of LITAF inhibitors. In this work, we found that, in vitro, Kavain reduced LPS- induced TNF-α secretion in mouse macrophages, mouse bone marrow macrophages (BMM), and human peripheral blood mononuclear cells (HPBMC). We also found that Kavain treatment in RAW264.7 cells deactivated MyD88 and Akt, inhibited LITAF, and reduced the production of TNF-α, IL-27, and MIG in response to LPS. Similarly, it had a significant in vivo anti-inflammatory effect on wild-type (WT) mice that developed Collagen Antibody Induced Arthritis (CAIA). Overall, MyD88 was found to be an important mediator of the LPS-induced inflammatory response that can be distinguished from the NF-κB pathway. We also found that MyD88 is involved in the pathway linking LPS/LITAF to TNF-α. Therefore, given that Kavain modulates LPS-induced signaling pathways leading to cytokine expression, therapeutic interventions involving Kavain in inflammatory diseases are warranted. J. Cell. Biochem. 117: 2272-2280, 2016. © 2016 Wiley Periodicals, Inc. PMID:26917453

  6. Enhancement of endocannabinoid signaling protects against cocaine-induced neurotoxicity

    SciTech Connect

    Vilela, Luciano R.; Gobira, Pedro H.; Viana, Thercia G.; Medeiros, Daniel C.; Ferreira-Vieira, Talita H.; Doria, Juliana G.; Rodrigues, Flávia; Aguiar, Daniele C.; Pereira, Grace S.; Massessini, André R.; Ribeiro, Fabíola M.; Oliveira, Antonio Carlos P. de; Moraes, Marcio F.D.; Moreira, Fabricio A.

    2015-08-01

    Cocaine is an addictive substance with a potential to cause deleterious effects in the brain. The strategies for treating its neurotoxicity, however, are limited. Evidence suggests that the endocannabinoid system exerts neuroprotective functions against various stimuli. Thus, we hypothesized that inhibition of fatty acid amide hydrolase (FAAH), the main enzyme responsible for terminating the actions of the endocannabinoid anandamide, reduces seizures and cell death in the hippocampus in a model of cocaine intoxication. Male Swiss mice received injections of endocannabinoid-related compounds followed by the lowest dose of cocaine that induces seizures, electroencephalographic activity and cell death in the hippocampus. The molecular mechanisms were studied in primary cell culture of this structure. The FAAH inhibitor, URB597, reduced cocaine-induced seizures and epileptiform electroencephalographic activity. The cannabinoid CB{sub 1} receptor selective agonist, ACEA, mimicked these effects, whereas the antagonist, AM251, prevented them. URB597 also inhibited cocaine-induced activation and death of hippocampal neurons, both in animals and in primary cell culture. Finally, we investigated if the PI3K/Akt/ERK intracellular pathway, a cell surviving mechanism coupled to CB{sub 1} receptor, mediated these neuroprotective effects. Accordingly, URB597 injection increased ERK and Akt phosphorylation in the hippocampus. Moreover, the neuroprotective effect of this compound was reversed by the PI3K inhibitor, LY294002. In conclusion, the pharmacological facilitation of the anandamide/CB1/PI3K signaling protects the brain against cocaine intoxication in experimental models. This strategy may be further explored in the development of treatments for drug-induced neurotoxicity. - Highlights: • Cocaine toxicity is characterized by seizures and hippocampal cell death. • The endocannabinoid anandamide acts as a brain protective mechanism. • Inhibition of anandamide hydrolysis

  7. Inhibition of the autocrine IL-6–JAK2–STAT3–calprotectin axis as targeted therapy for HR−/HER2+ breast cancers

    PubMed Central

    Rodriguez-Barrueco, Ruth; Yu, Jiyang; Saucedo-Cuevas, Laura P.; Olivan, Mireia; Llobet-Navas, David; Putcha, Preeti; Castro, Veronica; Murga-Penas, Eva M.; Collazo-Lorduy, Ana; Castillo-Martin, Mireia; Alvarez, Mariano; Cordon-Cardo, Carlos; Kalinsky, Kevin; Maurer, Matthew; Califano, Andrea; Silva, Jose M.

    2015-01-01

    HER2-positive (HER2+) breast adenocarcinomas are a heterogeneous group in which hormone receptor (HR) status influences therapeutic decisions and patient outcome. By combining genome-wide RNAi screens with regulatory network analysis, we identified STAT3 as a critically activated master regulator of HR−/HER2+ tumors, eliciting tumor dependency in these cells. Mechanistically, HR−/HER2+ cells secrete high levels of the interleukin-6 (IL-6) cytokine, inducing the activation of STAT3, which in turn promotes a second autocrine stimulus to increase S100A8/9 complex (calprotectin) production and secretion. Increased calprotectin levels activate signaling pathways involved in proliferation and resistance. Importantly, we demonstrated that inhibition of the IL-6–Janus kinase 2 (JAK2)–STAT3–calprotectin axis with FDA-approved drugs, alone and in combination with HER2 inhibitors, reduced the tumorigenicity of HR−/HER2+ breast cancers, opening novel targeted therapeutic opportunities. PMID:26227964

  8. Signal-Induced Noise Effects in a Photon Counting System for Stratospheric Ozone Measurement

    NASA Technical Reports Server (NTRS)

    Harper, David B.; DeYoung, Russell J.

    1998-01-01

    A significant source of error in making atmospheric differential absorption lidar ozone measurements is the saturation of the photomultiplier tube by the strong, near field light return. Some time after the near field light signal is gone, the photomultiplier tube gate is opened and a noise signal, called signal-induced noise, is observed. Research reported here gives experimental results from measurement of photomultiplier signal-induced noise. Results show that signal-induced noise has several decaying exponential signals, suggesting that electrons are slowly emitted from different surfaces internal to the photomultiplier tube.

  9. Autocrine selection of a GLP-1R G-protein biased agonist with potent antidiabetic effects

    PubMed Central

    Zhang, Hongkai; Sturchler, Emmanuel; Zhu, Jiang; Nieto, Ainhoa; Cistrone, Philip A.; Xie, Jia; He, LinLing; Yea, Kyungmoo; Jones, Teresa; Turn, Rachel; Di Stefano, Peter S.; Griffin, Patrick R.; Dawson, Philip E.; McDonald, Patricia H.; Lerner, Richard A.

    2015-01-01

    Glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) agonists have emerged as treatment options for type 2 diabetes mellitus (T2DM). GLP-1R signals through G-protein-dependent, and G-protein-independent pathways by engaging the scaffold protein β-arrestin; preferential signalling of ligands through one or the other of these branches is known as ‘ligand bias'. Here we report the discovery of the potent and selective GLP-1R G-protein-biased agonist, P5. We identified P5 in a high-throughput autocrine-based screening of large combinatorial peptide libraries, and show that P5 promotes G-protein signalling comparable to GLP-1 and Exendin-4, but exhibited a significantly reduced β-arrestin response. Preclinical studies using different mouse models of T2DM demonstrate that P5 is a weak insulin secretagogue. Nevertheless, chronic treatment of diabetic mice with P5 increased adipogenesis, reduced adipose tissue inflammation as well as hepatic steatosis and was more effective at correcting hyperglycaemia and lowering haemoglobin A1c levels than Exendin-4, suggesting that GLP-1R G-protein-biased agonists may provide a novel therapeutic approach to T2DM. PMID:26621478

  10. Paracrine tumor signaling induces transdifferentiation of surrounding fibroblasts.

    PubMed

    Heneberg, Petr

    2016-01-01

    Growth stimuli in cancer growth resemble those exhibited in wound healing. However, the process of nemosis is absent in cancer-associated fibroblasts (CAFs), which remain constitutively active. CAFs are present in almost all solid tumors but are most abundant in breast, prostate and pancreatic cancers. TGF-β1, TGF-β2, PDGF, IL-6, bFGF, reactive oxide species and protein kinase C are considered the key players in tumor-induced transdifferentiation of surrounding fibroblasts. Full-extent transdifferentiation was obtained only when the medium contained TGF-β1 or TGF-β2 (with or without other factors), whereas PDGF, bFGF or IL-6 (each alone) induced only partial transdifferentiation. Recent evidence suggests that the fibroblasts associated with primary cancers differ from those associated with metastases. The metastases-associated fibroblasts are converted by a metastasis-specific spectrum of factors. A large portion of paracrine tumor signaling is mediated by cancer cell-derived vesicles termed exosomes and microvesicles. The cancer cell-derived exosomes contain abundant and diverse proteomes and a number of signaling factors (TGF-ß1, TGF-ß2, IL-6, MMP2 and MMP9), particularly under hypoxic conditions. In contrast to the traditional view, the clonal expansion and selection of neoplastic cells should not be viewed outside the host body context. It is vital for a neoplastic cell to achieve the ability to re-program host body cells into CAFs and by this influence to modulate its microenvironment and receive positive feedback for growth and drug resistance. Neoplastic cells, which fail to develop such capacity, do not pass critical barriers in tumorigenesis and remain dormant and benign. PMID:26467073

  11. Magnetic torquer induced disturbing signals within GRACE accelerometer data

    NASA Astrophysics Data System (ADS)

    Peterseim, Nadja; Flury, Jakob; Schlicht, Anja

    2012-05-01

    The GRACE (Gravity Recovery And Climate Experiment) gravity field satellite mission was launched in 2002. Although many investigations have been carried out, not all disturbances and perturbations upon satellite instruments and sensors are resolved yet. In this work the issue of acceleration disturbances onboard of GRACE due to magnetic torquers is investigated and discussed. Each of the GRACE satellites is equipped with a three-axes capacitive accelerometer to measure non-gravitational forces acting on the spacecraft. We used 10 Hz Level 1a raw accelerometer data in order to determine the impact of electric current changes on the accelerometer. After reducing signals which are induced by highly dominating processes in the low frequency range, such as thermospheric drag and solar radiation pressure, which can easily be done by applying a high-pass filter, disturbing signals from onboard instruments such as thruster firing events or heater switch events need to be removed from the previously filtered data. Afterwards the spikes which are induced by the torquers can be very well observed. Spikes vary in amplitude with respect to an increasing or decreasing current used for magnetic torquers, and can be as large as 20 nm/s2. Furthermore, we were able to set up a model for the spikes of each scenario with which we were able to compute model spike time series. With these time series the spikes can successfully be removed from the 10 Hz raw accelerometer data. Spectral analysis of the time series reveal that an influence onto gravity field determination due to these effects is very unlikely, but can theoretically not be excluded.

  12. Thermally Induced Osteocyte Damage Initiates a Remodelling Signaling Cascade

    PubMed Central

    Dolan, Eimear B.; McNamara, Laoise M.

    2015-01-01

    Thermal elevations experienced by bone during orthopaedic procedures, such as cutting and drilling, exothermal reactions from bone cement, and thermal therapies such as tumor ablation, can result in thermal damage leading to death of native bone cells (osteocytes, osteoblasts, osteoclasts and mesenchymal stem cells). Osteocytes are believed to be the orchestrators of bone remodeling, which recruit nearby osteoclast and osteoblasts to control resorption and bone growth in response to mechanical stimuli and physical damage. However, whether heat-induced osteocyte damage can directly elicit bone remodelling has yet to be determined. This study establishes the link between osteocyte thermal damage and the remodeling cascade. We show that osteocytes directly exposed to thermal elevations (47°C for 1 minute) become significantly apoptotic and alter the expression of osteogenic genes (Opg and Cox2). The Rankl/Opg ratio is consistently down-regulated, at days 1, 3 and 7 in MLO-Y4s heat-treated to 47°C for 1 minute. Additionally, the pro-osteoblastogenic signaling marker Cox2 is significantly up-regulated in heat-treated MLO-Y4s by day 7. Furthermore, secreted factors from heat-treated MLO-Y4s administered to MSCs using a novel co-culture system are shown to activate pre-osteoblastic MSCs to increase production of the pro-osteoblastic differentiation marker, alkaline phosphatase (day 7, 14), and calcium deposition (day 21). Most interestingly, an initial pro-osteoclastogenic signaling response (increase Rankl and Rankl/Opg ratio at day 1) followed by later stage pro-osteoblastogenic signaling (down-regulation in Rankl and the Rankl/Opg ratio and an up-regulation in Opg and Cox2 by day 7) was observed in non-heat-treated MLO-Y4s in co-culture when these were exposed to the biochemicals produced by heat-treated MLO-Y4s. Taken together, these results elucidate the vital role of osteocytes in detecting and responding to thermal damage by means of thermally induced apoptosis

  13. Thermally induced osteocyte damage initiates a remodelling signaling cascade.

    PubMed

    Dolan, Eimear B; Haugh, Matthew G; Voisin, Muriel C; Tallon, David; McNamara, Laoise M

    2015-01-01

    Thermal elevations experienced by bone during orthopaedic procedures, such as cutting and drilling, exothermal reactions from bone cement, and thermal therapies such as tumor ablation, can result in thermal damage leading to death of native bone cells (osteocytes, osteoblasts, osteoclasts and mesenchymal stem cells). Osteocytes are believed to be the orchestrators of bone remodeling, which recruit nearby osteoclast and osteoblasts to control resorption and bone growth in response to mechanical stimuli and physical damage. However, whether heat-induced osteocyte damage can directly elicit bone remodelling has yet to be determined. This study establishes the link between osteocyte thermal damage and the remodeling cascade. We show that osteocytes directly exposed to thermal elevations (47°C for 1 minute) become significantly apoptotic and alter the expression of osteogenic genes (Opg and Cox2). The Rankl/Opg ratio is consistently down-regulated, at days 1, 3 and 7 in MLO-Y4s heat-treated to 47°C for 1 minute. Additionally, the pro-osteoblastogenic signaling marker Cox2 is significantly up-regulated in heat-treated MLO-Y4s by day 7. Furthermore, secreted factors from heat-treated MLO-Y4s administered to MSCs using a novel co-culture system are shown to activate pre-osteoblastic MSCs to increase production of the pro-osteoblastic differentiation marker, alkaline phosphatase (day 7, 14), and calcium deposition (day 21). Most interestingly, an initial pro-osteoclastogenic signaling response (increase Rankl and Rankl/Opg ratio at day 1) followed by later stage pro-osteoblastogenic signaling (down-regulation in Rankl and the Rankl/Opg ratio and an up-regulation in Opg and Cox2 by day 7) was observed in non-heat-treated MLO-Y4s in co-culture when these were exposed to the biochemicals produced by heat-treated MLO-Y4s. Taken together, these results elucidate the vital role of osteocytes in detecting and responding to thermal damage by means of thermally induced apoptosis

  14. Alcohol induced changes in phosphoinositide signaling system in rat brain

    SciTech Connect

    Pandey, S.; Piano, M.; Schwertz, D.; Davis, J.; Pandey, G. )

    1991-03-11

    Agonist-induced phosphoinositide break down functions as a signal generating system in a manner similar to the C-AMP system. In order to examine if the changes produced by chronic ethanol treatment on membrane lipid composition and metabolism effect the cellular functions of the neuron, the authors have examined the effect of chronic ethanol exposure on norepinephrine (NE) serotonin (5HT) and calcium ionophore (CI) stimulated phosphoinositide (PI) hydrolysis in rat cortical slices. Rats were maintained on liber-decarli diet alcohol and control liquid diet containing isocaloric sucrose substitute for two months. They were then sacrificed and brain was removed for determination of PI turnover. 5HT stimulated {sup 3}H- inositol monophosphate ({sup 3}H-IPI) formation was significantly lower in the cortex of alcohol treated rats as compared to control rats. However, neither CI nor NE stimulated IP1 formation was significantly different from control rats. The results thus indicate that chronic exposure to ethanol decreases 5HT induced PI breakdown in rat cortex. In order to examine if this decrease is related to a decrease in 5HT2 receptors, or decreased in coupling of receptor to the effector pathway, the authors are currently determining the number and affinity of 5HT2 receptors in alcohol treated rats.

  15. Extract of Pleurotus pulmonarius Suppresses Liver Cancer Development and Progression through Inhibition of VEGF-Induced PI3K/AKT Signaling Pathway

    PubMed Central

    Xu, Wenwen; Huang, Jim Jun-hui; Cheung, Peter Chi Keung

    2012-01-01

    Liver cancer or hepatocellular carcinoma is one of the leading causes of cancer-related deaths. Conventional chemotherapies are limited by the development of drug resistance and various side effects. Because of its non-toxicity and potent biopharmacological activity, metabolites derived from mushrooms have received more attention in cancer therapy. Our previous studies have demonstrated the anticancer effects of polysaccharide-protein complexes derived from the Pleurotus mushrooms. The aim of this study was to investigate the underlying molecular mechanism of the anticancer activity of a hot water extract containing a polysaccharide-protein complex isolated from Pleurotus pulmonarius (PP) in liver cancer cells. Our results indicated that exposure of liver cancer cells to PP not only significantly reduced the in vitro cancer cell proliferation and invasion but also enhanced the drug-sensitivity to the chemotherapeutic drug Cisplatin. Both oral administration and intraperitoneal injection of PP significantly inhibited the tumor growth in xenograft BALB/c nude mice. PP triggered a marked suppression of the PI3K/AKT signaling pathway in liver cancer cells in vitro and in vivo, and overexpression of the constitutively active form of AKT, Myr-AKT, abrogated this effect and the inhibited proliferation and invasion by PP. Both western blot and ELISA results showed that PP-treated liver cancer cells had reduced expression and secretion of vascular endothelial growth factor (VEGF). Addition of recombinant human VEGF attenuated the inhibitory effects of PP on PI3K/AKT pathway and the cancer phenotypes. Our results demonstrated that PP suppressed the proliferation, invasion, and drug-resistance of liver cancer cells in vitro and in vivo, mediated by the inhibition of autocrine VEGF-induced PI3K/AKT signaling pathway. This study suggests the potential therapeutic implication of PP in the treatment of human liver cancer. PMID:22470568

  16. Endocrine, paracrine and autocrine regulation of trophoblastic metalloproteinases.

    PubMed

    Bischof, P

    2001-01-01

    Gelatinase A and B (MMP-2 and MMP-9) are secreted by cytotrophoblast (CTB); these enzymes digest the major constituents of the endometrial extracellular matrices (ECM). Direct evidence links the expression of MMPs to the metastatic phenotype of tumour cells and tissue inhibitor of metalloproteinases (TIMP) to the inhibition of metastatisation. Gelatinase B (MMP-9, and no other MMP) has been shown in vitro to mediate CTB invasion. ECM components are known to influence adhesion, spreading, migration and differentiation of cells through specific cell surface receptors called integrins. While CTB migrate from the villous into the decidua they modulate their integrin repertoire, secrete MMP-9 and acquire the capacity to digest their environment. Although CTB behave like metastatic cells, in vivo they are only transiently invasive (first trimester) and their invasion is essentially limited to the endometrium and to the proximal myometrium. This temporal and spatial regulation seems to be mediated in a paracrine way by uterine factors and in an autocrine way by trophoblastic factors. We investigated the effects of endometrial regulators such as leukaemia inhibitory factor (LIF), tumour necrosis factor (TNF), transforming growth factor beta (TGFb), interleukin-1 and 6 (IL-1, IL-6) and insulin-like growth factor binding protein-1 (IGFBP-1) as well as trophoblastic factors such as hCG and leptin. All these factors markedly influenced the secretion and/or activation of MMP-2 and MMP-9. Most cytokines influence cell behaviour by modulating phosphorylation of transcription factors. Among these we identified two oncogene products (Jun and Fos) which were activated by TNF or phorbol esters and which promoted the synthesis of MMP-9. We conclude that decidual and trophoblastic products are autocrine or paracrine regulators of trophoblastic invasion of the endometrium and that some of these products act by activating the transcription of early response genes such as transcription

  17. Apelin/APJ signaling promotes hypoxia-induced proliferation of endothelial progenitor cells via phosphoinositide-3 kinase/Akt signaling.

    PubMed

    Zhang, Jingchang; Liu, Qiming; Hu, Xinqun; Fang, Zhenfei; Huang, Feng; Tang, Liang; Zhou, Shenghua

    2015-09-01

    Endothelial progenitor cells (EPCs) can adhere to the endothelium at sites of hypoxia/ischemia and participate in the formation of novel vessels through differentiating into endothelial cells (ECs). Apelin is an endogenous ligand for the G protein‑coupled receptor APJ, and apelin/APJ signaling has a role in cardiovascular function. The present study aimed to investigate the role of apelin/APJ signaling in the regulation of EPC proliferation under hypoxia. The results showed that hypoxia was able to induce EPC proliferation, accompanied with an upregulation of hypoxia‑inducible factor (HIF)‑1α as well as apelin/APJ signaling. Further investigation indicated that siRNA‑mediated knockdown of apelin or APJ expression attenuated the hypoxia‑induced proliferation of EPCs, suggesting that apelin/APJ signaling has an important role in hypoxia‑induced EPC proliferation. Moreover, the phosphoinositide‑3 kinase (PI3K)/Akt signaling pathway was found to be involved in the apelin/APJ‑mediated EPC proliferation under hypoxia. Based on these findings, the present study suggested that hypoxia‑induced upregulation of HIF‑1α promotes the expression of apelin and APJ, which further activate the downstream PI3K/Akt signaling pathway, a key promoter of EPC proliferation. In conclusion, the present study highlighted the role of apelin/APJ in the regulation of EPC proliferation, and apelin/APJ may therefore serve as a potential target for the prevention of hypoxic ischemic injury. PMID:26018184

  18. Knockdown of lncRNA-ATB suppresses autocrine secretion of TGF-β2 by targeting ZNF217 via miR-200c in keloid fibroblasts

    PubMed Central

    Zhu, Hua-Yu; Bai, Wen-Dong; Li, Chao; Zheng, Zhao; Guan, Hao; Liu, Jia-Qi; Yang, Xue-Kang; Han, Shi-Chao; Gao, Jian-Xin; Wang, Hong-Tao; Hu, Da-Hai

    2016-01-01

    Abnormally high activation of transforming growth factor-β (TGF-β) signaling has been demonstrated to be involved in the initiation and progression of keloids. However, the functional role of long non-coding RNA (lncRNA)-activated by TGF-β (lncRNA-ATB) in keloids has not been documented. Here we investigated the role of lncRNA-ATB in the autocrine secretion of TGF-β in keloid fibroblasts (KFs) and explored the underlying molecular mechanism. Using immunohistochemistry and quantitative RT-PCR analysis, we showed that lncRNA-ATB and ZNF217, a transcriptional activator of TGF-β, were overexpressed and miR-200c, which targets ZNF217, was under-expressed in keloid tissue and keloid fibroblasts. Through gain- and loss-of-function studies, we demonstrated that knockdown of lncRNA-ATB decreased autocrine secretion of TGF-β2 and ZNF217 expression but upregulated expression of miR-200c in KFs. Stable downregulation of ZNF217 expression decreased the autocrine secretion of TGF-β2. miR-200c was endogenously associated with lncRNA-ATB, and inhibition of miR-200c overcame the decrease in ZNF217 expression in KFs. Taken together, these findings indicate that lncRNA-ATB governs the autocrine secretion of TGF-β2 in KFs, at least in part, by downregulating the expression level of ZNF217 via miR-200c, suggesting a signaling axis consisting of lncRNA-ATB/miR-200c/ZNF217/TGF-β2. These findings may provide potential biomarkers and targets for novel diagnostic and therapeutic approaches for keloids. PMID:27090737

  19. Knockdown of lncRNA-ATB suppresses autocrine secretion of TGF-β2 by targeting ZNF217 via miR-200c in keloid fibroblasts.

    PubMed

    Zhu, Hua-Yu; Bai, Wen-Dong; Li, Chao; Zheng, Zhao; Guan, Hao; Liu, Jia-Qi; Yang, Xue-Kang; Han, Shi-Chao; Gao, Jian-Xin; Wang, Hong-Tao; Hu, Da-Hai

    2016-01-01

    Abnormally high activation of transforming growth factor-β (TGF-β) signaling has been demonstrated to be involved in the initiation and progression of keloids. However, the functional role of long non-coding RNA (lncRNA)-activated by TGF-β (lncRNA-ATB) in keloids has not been documented. Here we investigated the role of lncRNA-ATB in the autocrine secretion of TGF-β in keloid fibroblasts (KFs) and explored the underlying molecular mechanism. Using immunohistochemistry and quantitative RT-PCR analysis, we showed that lncRNA-ATB and ZNF217, a transcriptional activator of TGF-β, were overexpressed and miR-200c, which targets ZNF217, was under-expressed in keloid tissue and keloid fibroblasts. Through gain- and loss-of-function studies, we demonstrated that knockdown of lncRNA-ATB decreased autocrine secretion of TGF-β2 and ZNF217 expression but upregulated expression of miR-200c in KFs. Stable downregulation of ZNF217 expression decreased the autocrine secretion of TGF-β2. miR-200c was endogenously associated with lncRNA-ATB, and inhibition of miR-200c overcame the decrease in ZNF217 expression in KFs. Taken together, these findings indicate that lncRNA-ATB governs the autocrine secretion of TGF-β2 in KFs, at least in part, by downregulating the expression level of ZNF217 via miR-200c, suggesting a signaling axis consisting of lncRNA-ATB/miR-200c/ZNF217/TGF-β2. These findings may provide potential biomarkers and targets for novel diagnostic and therapeutic approaches for keloids. PMID:27090737

  20. Cell signalling pathways underlying induced pluripotent stem cell reprogramming

    PubMed Central

    Hawkins, Kate; Joy, Shona; McKay, Tristan

    2014-01-01

    Induced pluripotent stem (iPS) cells, somatic cells reprogrammed to the pluripotent state by forced expression of defined factors, represent a uniquely valuable resource for research and regenerative medicine. However, this methodology remains inefficient due to incomplete mechanistic understanding of the reprogramming process. In recent years, various groups have endeavoured to interrogate the cell signalling that governs the reprogramming process, including LIF/STAT3, BMP, PI3K, FGF2, Wnt, TGFβ and MAPK pathways, with the aim of increasing our understanding and identifying new mechanisms of improving safety, reproducibility and efficiency. This has led to a unified model of reprogramming that consists of 3 stages: initiation, maturation and stabilisation. Initiation of reprogramming occurs in almost all cells that receive the reprogramming transgenes; most commonly Oct4, Sox2, Klf4 and cMyc, and involves a phenotypic mesenchymal-to-epithelial transition. The initiation stage is also characterised by increased proliferation and a metabolic switch from oxidative phosphorylation to glycolysis. The maturation stage is considered the major bottleneck within the process, resulting in very few “stabilisation competent” cells progressing to the final stabilisation phase. To reach this stage in both mouse and human cells, pre-iPS cells must activate endogenous expression of the core circuitry of pluripotency, comprising Oct4, Sox2, and Nanog, and thus reach a state of transgene independence. By the stabilisation stage, iPS cells generally use the same signalling networks that govern pluripotency in embryonic stem cells. These pathways differ between mouse and human cells although recent work has demonstrated that this is context dependent. As iPS cell generation technologies move forward, tools are being developed to interrogate the process in more detail, thus allowing a greater understanding of this intriguing biological phenomenon. PMID:25426259

  1. ERβ induces the differentiation of cultured osteoblasts by both Wnt/β-catenin signaling pathway and estrogen signaling pathways

    SciTech Connect

    Yin, Xinhua; Wang, Xiaoyuan; Hu, Xiongke; Chen, Yong; Zeng, Kefeng; Zhang, Hongqi

    2015-07-01

    Although 17β-estradial (E2) is known to stimulate bone formation, the underlying mechanisms are not fully understood. Recent studies have implicated the Wnt/β-catenin pathway as a major signaling cascade in bone biology. The interactions between Wnt/β-catenin signaling pathway and estrogen signaling pathways have been reported in many tissues. In this study, E2 significantly increased the expression of β-catenin by inducing phosphorylations of GSK3β at serine 9. ERβ siRNAs were transfected into MC3T3-E1 cells and revealed that ERβ involved E2-induced osteoblasts proliferation and differentiation via Wnt/β-catenin signaling. The osteoblast differentiation genes (BGP, ALP and OPN) and proliferation related gene (cyclin D1) expression were significantly induced by E2-mediated ERβ. Furthermore immunofluorescence and immunoprecipitation analysis demonstrated that E2 induced the accumulation of β-catenin protein in the nucleus which leads to interaction with T-cell-specific transcription factor/lymphoid enhancer binding factor (TCF/LEF) transcription factors. Taken together, these findings suggest that E2 promotes osteoblastic proliferation and differentiation by inducing proliferation-related and differentiation-related gene expression via ERβ/GSK-3β-dependent Wnt/β-catenin signaling pathway. Our findings provide novel insights into the mechanisms of action of E2 in osteoblastogenesis. - Highlights: • 17β-estradial (E2) promotes GSK3-β phosphorylation. • E2 activates the Wnt/β-catenin signaling pathway. • The Wnt/β-catenin signaling pathway interacts with estrogen signaling pathways. • E2-mediated ER induced osteoblast differentiation and proliferation related genes expression.

  2. Brain-borne IL-1 adjusts glucoregulation and provides fuel support to astrocytes and neurons in an autocrine/paracrine manner.

    PubMed

    Del Rey, A; Verdenhalven, M; Lörwald, A C; Meyer, C; Hernangómez, M; Randolf, A; Roggero, E; König, A M; Heverhagen, J T; Guaza, C; Besedovsky, H O

    2016-09-01

    It is still controversial which mediators regulate energy provision to activated neural cells, as insulin does in peripheral tissues. Interleukin-1β (IL-1β) may mediate this effect as it can affect glucoregulation, it is overexpressed in the 'healthy' brain during increased neuronal activity, and it supports high-energy demanding processes such as long-term potentiation, memory and learning. Furthermore, the absence of sustained neuroendocrine and behavioral counterregulation suggests that brain glucose-sensing neurons do not perceive IL-1β-induced hypoglycemia. Here, we show that IL-1β adjusts glucoregulation by inducing its own production in the brain, and that IL-1β-induced hypoglycemia is myeloid differentiation primary response 88 protein (MyD88)-dependent and only partially counteracted by Kir6.2-mediated sensing signaling. Furthermore, we found that, opposite to insulin, IL-1β stimulates brain metabolism. This effect is absent in MyD88-deficient mice, which have neurobehavioral alterations associated to disorders in glucose homeostasis, as during several psychiatric diseases. IL-1β effects on brain metabolism are most likely maintained by IL-1β auto-induction and may reflect a compensatory increase in fuel supply to neural cells. We explore this possibility by directly blocking IL-1 receptors in neural cells. The results showed that, in an activity-dependent and paracrine/autocrine manner, endogenous IL-1 produced by neurons and astrocytes facilitates glucose uptake by these cells. This effect is exacerbated following glutamatergic stimulation and can be passively transferred between cell types. We conclude that the capacity of IL-1β to provide fuel to neural cells underlies its physiological effects on glucoregulation, synaptic plasticity, learning and memory. However, deregulation of IL-1β production could contribute to the alterations in brain glucose metabolism that are detected in several neurologic and psychiatric diseases. PMID:26643538

  3. Nitric Oxide Signaling in Hypergravity-Induced Neuronal Plasticity

    NASA Technical Reports Server (NTRS)

    Holstein, Gay R.

    2003-01-01

    The goal of this research project was to identify the neurons and circuits in the vestibular nuclei and nucleus prepositus hypoglossi that utilize nitric oxide (NO) for intercellular signaling during gravity-induced plasticity. This objective was pursued using histochemical and immunocytochemical approaches to localize NO-producing neurons and characterize the fine morphology of the cells in ground-based studies of normal rats, rats adapted to hypergravity, and rats adapted to hypergravity and then re-adapted to the 1G environment. NO-producing neurons were identified and studied using four methodologies: i) immunocytochemistry employing polyclonal antibodies directed against neuronal nitric oxide synthase (nNOS), to provide an indication of the capacity of a cell for NO production; ii) immunocytochemistry employing a monoclonal antibody directed against L-citrulline, to provide an indirect index of the enzyme's activity; iii) histochemistry based on the NADPH-diaphorase reaction, for fuI1 cytological visualization of neurons; and iv) double immunofluorescence to co-localize nNOS and L-citrulline in individual vestibular nuclei (VN) and neurons.

  4. Informative inducement: study payment as a signal of risk.

    PubMed

    Cryder, Cynthia E; John London, Alex; Volpp, Kevin G; Loewenstein, George

    2010-02-01

    In research involving human subjects, large participation payments often are deemed undesirable because they may provide 'undue inducement' for potential participants to expose themselves to risk. However, although large incentives may encourage participation, they also may signal the riskiness of a study's procedures. In three experiments, we measured people's interest in participating in potentially risky research studies, and their perception of the risk associated with those studies, as functions of participation payment amounts. All experiments took place 2007-2008 with an on-line nationwide sample or a sample from a northeastern U.S. city. We tested whether people judge studies that offer higher participation payments to be riskier, and, if so, whether this increased perception of risk increases time and effort spent learning about the risks. We found that high participation payments increased willingness to participate, but, consistent with the idea that people infer riskiness from payment amount, high payments also increased perceived risk and time spent viewing risk information. Moreover, when a link between payment amount and risk level was made explicit in Experiment 3, the relationship between high payments and perceived risk strengthened. Research guidelines usually prohibit studies from offering participation incentives that compensate for risks, yet these experiments' results indicate that potential participants naturally assume that the magnitude of risks and incentives are related. This discrepancy between research guidelines and participants' assumptions about those guidelines has implications for informed consent in human subjects research. PMID:19926187

  5. Adenosine signaling in reserpine-induced depression in rats.

    PubMed

    Minor, Thomas R; Hanff, Thomas C

    2015-06-01

    A single, 6 mg/kg intraperitoneal injection of reserpine increased floating time during forced swim testing 24h after administration in rats in five experiments. Although such behavioral depression traditionally is attributed to drug-induced depletion of brain monoamines, we examined the potential contribution of adenosine signaling, which is plausibly activated by reserpine treatment and contributes to behavioral depression in other paradigms. Whereas peripheral administration of the highly selective A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (0.5, 1.0, or 5.0mg/kg i.p.) 15 min before swim testing failed to improve performance in reserpine-treated rats, swim deficits were completely reversed by 7 mg/kg of the nonselective receptor antagonist caffeine. Performance deficits were also reversed by the nonselective A2 antagonist 3,7-dimethylxanthine (0, 0.5, 1.0mg/kg i.p.), and the highly selective A2A receptor antagonist (CSC: 8-(3 chlorostyral)caffeine) (0.01, 0.1, or 1.0mg/kg i.p.) in a dose-dependent manner. The highly selective A2B antagonist alloxazine had no beneficial effect on swim performance at any dose under study (0.1, 1.0, and 5.0mg/kg i.p.). PMID:25721738

  6. Optimizing Electromagnetically Induced Transparency Signals with Laguerre-Gaussian Beams

    NASA Astrophysics Data System (ADS)

    Holtfrerich, Matthew; Akin, Tom; Krzyzewski, Sean; Marino, Alberto; Abraham, Eric

    2016-05-01

    We have performed electromagnetically induced transparency in ultracold Rubidium atoms using a Laguerre-Gaussian laser mode as the control beam. Laguerre-Gaussian modes are characterized by a ring type transverse intensity profile and carry intrinsic orbital angular momentum. This angular momentum carried by the control beam can be utilized in optical computing applications which is unavailable to the more common Gaussian laser field. Specifically, we use a Laguerre-Gaussian control beam with a Gaussian probe to show that the linewidth of the transmission spectrum can be narrowed when compared to a Gaussian control beam that has the same peak intensity. We present data extending this work to compare control fields in both the Gaussian and Laguerre-Gaussian modes with constant total power. We have made efforts to find the optical overlap that best minimizes the transmission linewidth while also maintaining signal contrast. This was done by changing the waist size of the control beam with respect to the probe. The best results were obtained when the waist of a Laguerre-Gaussian control beam is equal to the waist of the Gaussian probe resulting in narrow linewidth features.

  7. Weaker signals induce more precise temporal-integration

    PubMed Central

    Tsushima, Yoshiaki

    2014-01-01

    It is well known that our perceptual system integrates local information to generate global percepts. Although events in the real world occur over time, it is still unclear how we integrate temporally dispersed information. Here, I systematically explore the relation between the intensity of local signals and the resultant of temporal-integration. Presented sequentially with two directions of variably coherent random dot patterns (40 degrees apart), participants were instructed to report a perceived motion direction by using a mouse driven cursor. As the strength of the motion signal was varied, the behavioral results and qualitative analyses indicate existence of two aspects of temporal-integration, subthreshold integration and suprathreshold integration. In subthreshold integration (when the local signals are subthreshold), stronger signals enhance integration. On the other hand, in suprathreshold integration (when the signals are above threshold), stronger signals decrease integration. As a result, relatively weaker, subthreshold or near threshold signals produce more precise temporal-integration than suprathreshold signals. PMID:24722465

  8. BDNF, produced by a TPO-stimulated megakaryocytic cell line, regulates autocrine proliferation

    SciTech Connect

    Tamura, Shogo; Nagasawa, Ayumi; Masuda, Yuya; Tsunematsu, Tetsuya; Hayasaka, Koji; Matsuno, Kazuhiko; Shimizu, Chikara; Ozaki, Yukio; Moriyama, Takanori

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer It has been thought that BDNF is not produced in the megakaryocytic lineage. Black-Right-Pointing-Pointer MEG-01 produces BDNF upon TPO stimulation and regulates its proliferation. Black-Right-Pointing-Pointer BDNF accelerates proliferation of MEG-01 in an autocrine manner. Black-Right-Pointing-Pointer BDNF may be an autocrine MEG-CSF, which regulates megakaryopoiesis. -- Abstract: While human platelets release endogenous brain-derived neurotrophic factor (BDNF) upon activation, a previous report on MEG-01, a megakaryocytic cell line, found no trace of BDNF production, and the pathophysiological function of platelet BDNF has remained elusive. In the present study, we demonstrate that MEG-01 produces BDNF in the presence of TPO and that this serves to potentiate cell proliferation. Our in vitro findings suggest that BDNF regulates MEG-01 proliferation in an autocrine manner, and we suggest that BDNF may be a physiological autocrine regulator of megakaryocyte progenitors.

  9. Elevated autocrine chemokine ligand 18 expression promotes oral cancer cell growth and invasion via Akt activation

    PubMed Central

    Hong, Yun; Wu, Tong; Chen, Xiaobing; Xia, Juan; Cheng, Bin

    2016-01-01

    Chemokine (C-C motif) ligand 18 (CCL18) has been implicated in the pathogenesis and progression of various cancers; however, in oral squamous cell carcinoma (OSCC), the role of CCL18 is unknown. In this study, we found that CCL18 was overexpressed in primary OSCC tissues and was associated with an advanced clinical stage. CCL18 was found in both the cytoplasm and cell membrane of OSCC cells and was predominantly produced by cancer epithelial cells, as opposed to tumor-infiltrating macrophages. In vitro studies indicated that the effects of endogenous CCL18 on OSCC cell growth, migration, and invasion could be blocked by treatment with a neutralizing anti-CCL18 antibody or CCL18 knockdown, while exogenous recombinant CCL18 (rCCL18) rescued those effects. Akt was activated in rCCL18-treated OSCC cells, while LY294002, a pan-PI3K inhibitor, abolished both endogenous and exogenous CCL18-induced OSCC cell invasion. In vivo, LY294002 treatment attenuated rCCL18-induced OSCC cell growth. Our results indicate that CCL18 acts in an autocrine manner via Akt activation to stimulate OSCC cell growth and invasion during OSCC progression. They also provide a potential therapeutic target for the treatment of oral cancer. PMID:26919103

  10. A peptide corresponding to the neuropilin-1-binding site on VEGF165 induces apoptosis of neuropilin-1-expressing breast tumour cells

    PubMed Central

    Barr, M P; Byrne, A M; Duffy, A M; Condron, C M; Devocelle, M; Harriott, P; Bouchier-Hayes, D J; Harmey, J H

    2005-01-01

    There is increasing evidence that vascular endothelial growth factor (VEGF) has autocrine as well as paracrine functions in tumour biology. Vascular endothelial growth factor-mediated cell survival signalling occurs via the classical tyrosine kinase receptors Flt-1, KDR/Flk-1 and the more novel neuropilin (NP) receptors, NP-1 and NP-2. A 24-mer peptide, which binds to neuropilin-1, induced apoptosis of murine and human breast carcinoma cells, whereas a peptide directed against KDR had no effect. Both anti-NP1 and anti-KDR peptides induced endothelial cell apoptosis. Confocal microscopy using 5-(6)-carboxyfluorescein-labelled peptides showed that anti-NP1 bound to both tumour and endothelial cells, whereas anti-KDR bound endothelial cells only. This study demonstrates that NP-1 plays an essential role in autocrine antiapoptotic signalling by VEGF in tumour cells and that NP1-blockade induces tumour cell and endothelial cell apoptosis. Specific peptides can therefore be used to target both autocrine (tumour cells) and paracrine (endothelial cells) signalling by VEGF. PMID:15655556

  11. Autocrine protective mechanisms of human granulocyte colony-stimulating factor (G-CSF) on retinal ganglion cells after optic nerve crush.

    PubMed

    Huang, Shun-Ping; Fang, Kan-Tang; Chang, Chung-Hsing; Huang, Tzu-Lun; Wen, Yao-Tseng; Tsai, Rong-Kung

    2016-02-01

    This study investigated the role of autocrine mechanisms in the anti-apoptotic effects of human granulocyte colony-stimulating factor (G-CSF) on retinal ganglion cells (RGCs) after optic nerve (ON) crush. We observed that both G-CSF and G-CSF receptor (G-CSFR) are expressed in normal rat retina. Further dual immunofluorescence staining showed G-CSFR immunoreactive cells were colocalized with RGCs, Müller cells, horizontal and amacrine cells. These results confirm that G-CSF is an endogenous ligand in the retina. The semi-quantitative RT-PCR finding demonstrated the transcription levels of G-CSF and G-CSFR were up-regulated after ON crush injury. G-CSF treatment further increased and prolonged the expression level of G-CSFR in the retina. G-CSF has been shown to enhance transdifferentiation of the mobilized hematopoietic stem cells into tissue to repair central nervous system injury. We test the hypothesis that the hematopoietic stem cells recruited by G-CSF treatment can transdifferentiate into RGCs after ON crush by performing sublethal irradiation of the rats 5 days before ON crush. The flow cytometric analysis showed the number of CD34 positive cells in the peripheral blood is significantly lower in the irradiated, crushed and G-CSF-treated group than the sham control group or crush and G-CSF treated group. Nevertheless, the G-CSF treatment enhances the RGC survival after sublethal irradiation and ON crush injury. These data indicate that G-CSF seems unlikely to induce hematopoietic stem cell transdifferentiation into RGCs after ON crush injury. In conclusion, G-CSF may serve an endogenous protective signaling in the retina through direct activation of intrinsic G-CSF receptors and downstream signaling pathways to rescue RGCs after ON crush injury, exogenous G-CSF administration can enhance the anti-apoptotic effects on RGCs. PMID:26518178

  12. Stromal TGF-β signaling induces AR activation in prostate cancer

    PubMed Central

    Yang, Feng; Chen, Yizhen; Shen, Tao; Guo, Dan; Dakhova, Olga; Ittmann, Michael M.; Creighton, Chad J.; Zhang, Yiqun; Dang, Truong D.; Rowley, David R.

    2014-01-01

    AR signaling is essential for the growth and survival of prostate cancer (PCa), including most of the lethal castration-resistant PCa (CRPC). We previously reported that TGF-β signaling in prostate stroma promotes prostate tumor angiogenesis and growth. By using a PCa/stroma co-culture model, here we show that stromal TGF-β signaling induces comprehensive morphology changes of PCa LNCaP cells. Furthermore, it induces AR activation in LNCaP cells in the absence of significant levels of androgen, as evidenced by induction of several AR target genes including PSA, TMPRSS2, and KLK4. SD-208, a TGF-β receptor 1 specific inhibitor, blocks this TGF-β induced biology. Importantly, stromal TGF-β signaling together with DHT induce robust activation of AR. MDV3100 effectively blocks DHT-induced, but not stromal TGF-β signaling induced AR activation in LNCaP cells, indicating that stromal TGF-β signaling induces both ligand-dependent and ligand-independent AR activation in PCa. TGF-β induces the expression of several growth factors and cytokines in prostate stromal cells, including IL-6, and BMP-6. Interestingly, BMP-6 and IL-6 together induces robust AR activation in these co-cultures, and neutralizing antibodies against BMP-6 and IL-6 attenuate this action. Altogether, our study strongly suggests tumor stromal microenvironment induced AR activation as a direct mechanism of CRPC. PMID:25333263

  13. Oncogenic Fusion Gene CD74-NRG1 Confers Cancer Stem Cell-like Properties in Lung Cancer through a IGF2 Autocrine/Paracrine Circuit.

    PubMed

    Murayama, Takahiko; Nakaoku, Takashi; Enari, Masato; Nishimura, Tatsunori; Tominaga, Kana; Nakata, Asuka; Tojo, Arinobu; Sugano, Sumio; Kohno, Takashi; Gotoh, Noriko

    2016-02-15

    The CD74-Neuregulin1 (NRG1) fusion gene was recently identified as novel driver of invasive mucinous adenocarcinoma, a malignant form of lung cancer. However, the function of the CD74-NRG1 fusion gene in adenocarcinoma pathogenesis and the mechanisms by which it may impart protumorigenic characteristics to cancer stem cells (CSC) is still unclear. In this study, we found that the expression of the CD74-NRG1 fusion gene increased the population of lung cancer cells with CSC-like properties. CD74-NRG1 expression facilitated sphere formation not only of cancer cells, but also of nonmalignant lung epithelial cells. Using a limiting dilution assay in a xenograft model, we further show that the CD74-NRG1 fusion gene enhanced tumor initiation. Mechanistically, we found that CD74-NRG1 expression promoted the phosphorylation of ErbB2/3 and activated the PI3K/Akt/NF-κB signaling pathway. Furthermore, the expression of the secreted insulin-like growth factor 2 (IGF2) and phosphorylation of its receptor, IGF1R, were enhanced in an NF-κB-dependent manner in cells expressing CD74-NRG1. These findings suggest that CD74-NRG1-induced NF-κB activity promotes the IGF2 autocrine/paracrine circuit. Moreover, inhibition of ErbB2, PI3K, NF-κB, or IGF2 suppressed CD74-NRG1-induced tumor sphere formation. Therefore, our study provides a preclinical rationale for developing treatment approaches based on these identified pathways to suppress CSC properties that promote tumor progression and recurrence. PMID:26837769

  14. Kurarinol induces hepatocellular carcinoma cell apoptosis through suppressing cellular signal transducer and activator of transcription 3 signaling

    SciTech Connect

    Shu, Guangwen; Yang, Jing; Zhao, Wenhao; Xu, Chan; Hong, Zongguo; Mei, Zhinan; Yang, Xinzhou

    2014-12-01

    Kurarinol is a flavonoid isolated from roots of the medical plant Sophora flavescens. However, its cytotoxic activity against hepatocellular carcinoma (HCC) cells and toxic effects on mammalians remain largely unexplored. Here, the pro-apoptotic activities of kurarinol on HCC cells and its toxic impacts on tumor-bearing mice were evaluated. The molecular mechanisms underlying kurarinol-induced HCC cell apoptosis were also investigated. We found that kurarinol dose-dependently provoked HepG2, Huh-7 and H22 HCC cell apoptosis. In addition, kurarinol gave rise to a considerable decrease in the transcriptional activity of signal transducer and activator of transcription 3 (STAT3) in HCC cells. Suppression of STAT3 signaling is involved in kurarinol-induced HCC cell apoptosis. In vivo studies showed that kurarinol injection substantially induced transplanted H22 cell apoptosis with low toxic impacts on tumor-bearing mice. Similarly, the transcriptional activity of STAT3 in transplanted tumor tissues was significantly suppressed after kurarinol treatment. Collectively, our current research demonstrated that kurarinol has the capacity of inducing HCC cell apoptosis both in vitro and in vivo with undetectable toxic impacts on the host. Suppressing STAT3 signaling is implicated in kurarinol-mediated HCC cell apoptosis. - Highlights: • Kurarinol induces hepatocellular carcinoma (HCC) cell apoptosis. • Kurarinol induces HCC cell apoptosis via inhibiting STAT3. • Kurarinol exhibits low toxic effects on tumor-bearing animals.

  15. Calorie-induced ER stress suppresses uroguanylin satiety signaling in diet-induced obesity

    PubMed Central

    Kim, G W; Lin, J E; Snook, A E; Aing, A S; Merlino, D J; Li, P; Waldman, S A

    2016-01-01

    Background/Objectives: The uroguanylin-GUCY2C gut–brain axis has emerged as one component regulating feeding, energy homeostasis, body mass and metabolism. Here, we explore a role for this axis in mechanisms underlying diet-induced obesity (DIO). Subjects/Methods: Intestinal uroguanylin expression and secretion, and hypothalamic GUCY2C expression and anorexigenic signaling, were quantified in mice on high-calorie diets for 14 weeks. The role of endoplasmic reticulum (ER) stress in suppressing uroguanylin in DIO was explored using tunicamycin, an inducer of ER stress, and tauroursodeoxycholic acid (TUDCA), a chemical chaperone that inhibits ER stress. The impact of consumed calories on uroguanylin expression was explored by dietary manipulation. The role of uroguanylin in mechanisms underlying obesity was examined using Camk2a-Cre-ERT2-Rosa-STOPloxP/loxP-Guca2b mice in which tamoxifen induces transgenic hormone expression in brain. Results: DIO suppressed intestinal uroguanylin expression and eliminated its postprandial secretion into the circulation. DIO suppressed uroguanylin through ER stress, an effect mimicked by tunicamycin and blocked by TUDCA. Hormone suppression by DIO reflected consumed calories, rather than the pathophysiological milieu of obesity, as a diet high in calories from carbohydrates suppressed uroguanylin in lean mice, whereas calorie restriction restored uroguanylin in obese mice. However, hypothalamic GUCY2C, enriched in the arcuate nucleus, produced anorexigenic signals mediating satiety upon exogenous agonist administration, and DIO did not impair these responses. Uroguanylin replacement by transgenic expression in brain repaired the hormone insufficiency and reconstituted satiety responses opposing DIO and its associated comorbidities, including visceral adiposity, glucose intolerance and hepatic steatosis. Conclusions: These studies reveal a novel pathophysiological mechanism contributing to obesity in which calorie-induced suppression

  16. Activation of endothelial β-catenin signaling induces heart failure

    PubMed Central

    Nakagawa, Akito; Naito, Atsuhiko T.; Sumida, Tomokazu; Nomura, Seitaro; Shibamoto, Masato; Higo, Tomoaki; Okada, Katsuki; Sakai, Taku; Hashimoto, Akihito; Kuramoto, Yuki; Oka, Toru; Lee, Jong-Kook; Harada, Mutsuo; Ueda, Kazutaka; Shiojima, Ichiro; Limbourg, Florian P.; Adams, Ralf H.; Noda, Tetsuo; Sakata, Yasushi; Akazawa, Hiroshi; Komuro, Issei

    2016-01-01

    Activation of β-catenin-dependent canonical Wnt signaling in endothelial cells plays a key role in angiogenesis during development and ischemic diseases, however, other roles of Wnt/β-catenin signaling in endothelial cells remain poorly understood. Here, we report that sustained activation of β-catenin signaling in endothelial cells causes cardiac dysfunction through suppressing neuregulin-ErbB pathway in the heart. Conditional gain-of-function mutation of β-catenin, which activates Wnt/β-catenin signaling in Bmx-positive arterial endothelial cells (Bmx/CA mice) led to progressive cardiac dysfunction and 100% mortality at 40 weeks after tamoxifen treatment. Electron microscopic analysis revealed dilatation of T-tubules and degeneration of mitochondria in cardiomyocytes of Bmx/CA mice, which are similar to the changes observed in mice with decreased neuregulin-ErbB signaling. Endothelial expression of Nrg1 and cardiac ErbB signaling were suppressed in Bmx/CA mice. The cardiac dysfunction of Bmx/CA mice was ameliorated by administration of recombinant neuregulin protein. These results collectively suggest that sustained activation of Wnt/β-catenin signaling in endothelial cells might be a cause of heart failure through suppressing neuregulin-ErbB signaling, and that the Wnt/β-catenin/NRG axis in cardiac endothelial cells might become a therapeutic target for heart failure. PMID:27146149

  17. Activation of endothelial β-catenin signaling induces heart failure.

    PubMed

    Nakagawa, Akito; Naito, Atsuhiko T; Sumida, Tomokazu; Nomura, Seitaro; Shibamoto, Masato; Higo, Tomoaki; Okada, Katsuki; Sakai, Taku; Hashimoto, Akihito; Kuramoto, Yuki; Oka, Toru; Lee, Jong-Kook; Harada, Mutsuo; Ueda, Kazutaka; Shiojima, Ichiro; Limbourg, Florian P; Adams, Ralf H; Noda, Tetsuo; Sakata, Yasushi; Akazawa, Hiroshi; Komuro, Issei

    2016-01-01

    Activation of β-catenin-dependent canonical Wnt signaling in endothelial cells plays a key role in angiogenesis during development and ischemic diseases, however, other roles of Wnt/β-catenin signaling in endothelial cells remain poorly understood. Here, we report that sustained activation of β-catenin signaling in endothelial cells causes cardiac dysfunction through suppressing neuregulin-ErbB pathway in the heart. Conditional gain-of-function mutation of β-catenin, which activates Wnt/β-catenin signaling in Bmx-positive arterial endothelial cells (Bmx/CA mice) led to progressive cardiac dysfunction and 100% mortality at 40 weeks after tamoxifen treatment. Electron microscopic analysis revealed dilatation of T-tubules and degeneration of mitochondria in cardiomyocytes of Bmx/CA mice, which are similar to the changes observed in mice with decreased neuregulin-ErbB signaling. Endothelial expression of Nrg1 and cardiac ErbB signaling were suppressed in Bmx/CA mice. The cardiac dysfunction of Bmx/CA mice was ameliorated by administration of recombinant neuregulin protein. These results collectively suggest that sustained activation of Wnt/β-catenin signaling in endothelial cells might be a cause of heart failure through suppressing neuregulin-ErbB signaling, and that the Wnt/β-catenin/NRG axis in cardiac endothelial cells might become a therapeutic target for heart failure. PMID:27146149

  18. Monocyte/Macrophage-derived IGF-1 Orchestrates Murine Skeletal Muscle Regeneration and Modulates Autocrine Polarization.

    PubMed

    Tonkin, Joanne; Temmerman, Lieve; Sampson, Robert D; Gallego-Colon, Enrique; Barberi, Laura; Bilbao, Daniel; Schneider, Michael D; Musarò, Antonio; Rosenthal, Nadia

    2015-07-01

    Insulin-like growth factor 1 (IGF-1) is a potent enhancer of tissue regeneration, and its overexpression in muscle injury leads to hastened resolution of the inflammatory phase. Here, we show that monocytes/macrophages constitute an important initial source of IGF-1 in muscle injury, as conditional deletion of the IGF-1 gene specifically in mouse myeloid cells (ϕIGF-1 CKO) blocked the normal surge of local IGF-1 in damaged muscle and significantly compromised regeneration. In injured muscle, Ly6C+ monocytes/macrophages and CD206+ macrophages expressed equivalent IGF-1 levels, which were transiently upregulated during transition from the inflammation to repair. In injured ϕIGF-1 CKO mouse muscle, accumulation of CD206+ macrophages was impaired, while an increase in Ly6C+ monocytes/macrophages was favored. Transcriptional profiling uncovered inflammatory skewing in ϕIGF-1 CKO macrophages, which failed to fully induce a reparative gene program in vitro or in vivo, revealing a novel autocrine role for IGF-1 in modulating murine macrophage phenotypes. These data establish local macrophage-derived IGF-1 as a key factor in inflammation resolution and macrophage polarization during muscle regeneration. PMID:25896247

  19. Superantigen-induced CD4 Memory T Cell Anergy. I. Staphylococcal Enterotoxin B Induces Fyn-mediated Negative Signaling1

    PubMed Central

    Watson, Andrew R. O.; Janik, David K.; Lee, William T.

    2012-01-01

    Memory CD4 T cells must provide robust protection for an organism while still maintaining self-tolerance. Superantigens reveal a memory cell-specific regulatory pathway, by which signaling through the TCR can lead to clonal tolerance (anergy). Here we show that the src kinase Fyn is a critical regulator of anergy in murine memory CD4 T cells induced by the bacterial superantigen staphylococcal enterotoxin B (SEB). Exposure to SEB results in impaired TCR signaling due to failed CD3/ZAP-70 complex formation. Further, signal transduction through the TCR remains similarly blocked when anergic memory cells are subsequently exposed to agonist peptide antigen. Pharmacological inhibition or genetic elimination of Fyn kinase reverses memory cell anergy, resulting in SEB-induced cell proliferation. The mechanism underlying impaired TCR signaling and subsequent memory cell anergy must involve a Fyn signaling pathway given that the suppression of Fyn activity restores CD3/ZAP-70 complex formation and TCR proximal signaling. PMID:22386537

  20. Autocrine/paracrine proliferative effect of ovarian GH and IGF-I in chicken granulosa cell cultures.

    PubMed

    Ahumada-Solórzano, S Marisela; Martínez-Moreno, Carlos G; Carranza, Martha; Ávila-Mendoza, José; Luna-Acosta, José Luis; Harvey, Steve; Luna, Maricela; Arámburo, Carlos

    2016-08-01

    It is known that growth hormone (GH) and its receptor (GHR) are expressed in granulosa cells (GC) and thecal cells during the follicular development in the hen ovary, which suggests GH is involved in autocrine/paracrine actions in the female reproductive system. In this work, we show that the knockdown of local ovarian GH with a specific cGH siRNA in GC cultures significantly decreased both cGH mRNA expression and GH secretion to the media, and also reduced their proliferative rate. Thus, we analyzed the effect of ovarian GH and recombinant chicken GH (rcGH) on the proliferation of pre-hierarchical GCs in primary cultures. Incubation of GCs with either rcGH or conditioned media, containing predominantly a 15-kDa GH isoform, showed that both significantly increased proliferation as determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, proliferating cell nuclear antigen (PCNA) quantification and ((3)H)-thymidine incorporation ((3)H-T) assays in a dose response fashion. Both, locally produced GH and rcGH also induced the phosphorylation of Erk1/2 in GC cultures. Furthermore, GH increased IGF-I synthesis and its release into the GC culture incubation media. These results suggest that GH may act through local IGF-I to induce GC proliferation, since IGF-I immunoneutralization completely abolished the GH-induced proliferative effect. These data suggest that GH and IGF-I may play a role as autocrine/paracrine regulators during the follicular development in the hen ovary at the pre-hierarchical stage. PMID:27174747

  1. Synergistic effect of nanomaterials and BMP-2 signalling in inducing osteogenic differentiation of adipose tissue-derived mesenchymal stem cells.

    PubMed

    Lu, ZuFu; Roohani-Esfahani, Seyed-Iman; Li, JiaoJiao; Zreiqat, Hala

    2015-01-01

    The lack of complete understanding in the signalling pathways that control the osteogenic differentiation of mesenchymal stem cells hinders their clinical application in the reconstruction of large bone defects and non-union bone fractures. The aim of this study is to gain insight into the interactions of bone morphogenetic protein-2 (BMP-2) and bone biomimetic scaffolds in directing osteogenic differentiation of adipose tissue-derived mesenchymal stem cells (ASCs) and the underlying signalling pathways involved. We demonstrated that bioactive glass nanoparticles (nBG) incorporated polycaprolactone (PCL) coating on hydroxyapatite/β-tricalcium phosphate (HA/TCP) scaffold exerted a synergistic effect with 3days of BMP-2 treatment in promoting osteogenic gene expression levels (Runx-2, collagen I, osteopontin and bone sialoprotein) and alkaline phosphatase activity in ASCs. Furthermore, we revealed that the synergistic effect was mediated through a mechanism of activating β1-integrin and induction of Wnt-3a autocrine signalling pathways by nBG incorporated scaffold. PMID:25262582

  2. LIMB DEFECTS INDUCED BY RETINOIC ACID SIGNALING ANTAGONISM AND SYNTHESIS INHIBITION ARE CONSISTENT WITH ETHANOL-INDUCED LIMB DEFECTS

    EPA Science Inventory

    Limb defects induced by retinoic acid signaling antagonism and synthesis inhibition are consistent with ethanol-induced limb defects

    Johnson CS1, Sulik KK1,2, Hunter, ES III3
    1Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, NC....

  3. Hyperactivated Wnt signaling induces synthetic lethal interaction with Rb inactivation by elevating TORC1 activities.

    PubMed

    Zhang, Tianyi; Liao, Yang; Hsu, Fu-Ning; Zhang, Robin; Searle, Jennifer S; Pei, Xun; Li, Xuan; Ryoo, Hyung Don; Ji, Jun-Yuan; Du, Wei

    2014-05-01

    Inactivation of the Rb tumor suppressor can lead to increased cell proliferation or cell death depending on specific cellular context. Therefore, identification of the interacting pathways that modulate the effect of Rb loss will provide novel insights into the roles of Rb in cancer development and promote new therapeutic strategies. Here, we identify a novel synthetic lethal interaction between Rb inactivation and deregulated Wg/Wnt signaling through unbiased genetic screens. We show that a weak allele of axin, which deregulates Wg signaling and increases cell proliferation without obvious effects on cell fate specification, significantly alters metabolic gene expression, causes hypersensitivity to metabolic stress induced by fasting, and induces synergistic apoptosis with mutation of fly Rb ortholog, rbf. Furthermore, hyperactivation of Wg signaling by other components of the Wg pathway also induces synergistic apoptosis with rbf. We show that hyperactivated Wg signaling significantly increases TORC1 activity and induces excessive energy stress with rbf mutation. Inhibition of TORC1 activity significantly suppressed synergistic cell death induced by hyperactivated Wg signaling and rbf inactivation, which is correlated with decreased energy stress and decreased induction of apoptotic regulator expression. Finally the synthetic lethality between Rb and deregulated Wnt signaling is conserved in mammalian cells and that inactivation of Rb and APC induces synergistic cell death through a similar mechanism. These results suggest that elevated TORC1 activity and metabolic stress underpin the evolutionarily conserved synthetic lethal interaction between hyperactivated Wnt signaling and inactivated Rb tumor suppressor. PMID:24809668

  4. Oscillation-induced signal transmission and gating in neural circuits.

    PubMed

    Jahnke, Sven; Memmesheimer, Raoul-Martin; Timme, Marc

    2014-12-01

    Reliable signal transmission constitutes a key requirement for neural circuit function. The propagation of synchronous pulse packets through recurrent circuits is hypothesized to be one robust form of signal transmission and has been extensively studied in computational and theoretical works. Yet, although external or internally generated oscillations are ubiquitous across neural systems, their influence on such signal propagation is unclear. Here we systematically investigate the impact of oscillations on propagating synchrony. We find that for standard, additive couplings and a net excitatory effect of oscillations, robust propagation of synchrony is enabled in less prominent feed-forward structures than in systems without oscillations. In the presence of non-additive coupling (as mediated by fast dendritic spikes), even balanced oscillatory inputs may enable robust propagation. Here, emerging resonances create complex locking patterns between oscillations and spike synchrony. Interestingly, these resonances make the circuits capable of selecting specific pathways for signal transmission. Oscillations may thus promote reliable transmission and, in co-action with dendritic nonlinearities, provide a mechanism for information processing by selectively gating and routing of signals. Our results are of particular interest for the interpretation of sharp wave/ripple complexes in the hippocampus, where previously learned spike patterns are replayed in conjunction with global high-frequency oscillations. We suggest that the oscillations may serve to stabilize the replay. PMID:25503492

  5. Oscillation-Induced Signal Transmission and Gating in Neural Circuits

    PubMed Central

    Jahnke, Sven; Memmesheimer, Raoul-Martin; Timme, Marc

    2014-01-01

    Reliable signal transmission constitutes a key requirement for neural circuit function. The propagation of synchronous pulse packets through recurrent circuits is hypothesized to be one robust form of signal transmission and has been extensively studied in computational and theoretical works. Yet, although external or internally generated oscillations are ubiquitous across neural systems, their influence on such signal propagation is unclear. Here we systematically investigate the impact of oscillations on propagating synchrony. We find that for standard, additive couplings and a net excitatory effect of oscillations, robust propagation of synchrony is enabled in less prominent feed-forward structures than in systems without oscillations. In the presence of non-additive coupling (as mediated by fast dendritic spikes), even balanced oscillatory inputs may enable robust propagation. Here, emerging resonances create complex locking patterns between oscillations and spike synchrony. Interestingly, these resonances make the circuits capable of selecting specific pathways for signal transmission. Oscillations may thus promote reliable transmission and, in co-action with dendritic nonlinearities, provide a mechanism for information processing by selectively gating and routing of signals. Our results are of particular interest for the interpretation of sharp wave/ripple complexes in the hippocampus, where previously learned spike patterns are replayed in conjunction with global high-frequency oscillations. We suggest that the oscillations may serve to stabilize the replay. PMID:25503492

  6. Wnt signaling induces epithelial differentiation during cutaneous wound healing

    PubMed Central

    Houschyar, Khosrow S; Momeni, Arash; Pyles, Malcolm N; Maan, Zeshaan N; Whittam, Alexander J; Siemers, Frank

    2015-01-01

    ABSTRACT Cutaneous wound repair in adult mammals typically does not regenerate original dermal architecture. Skin that has undergone repair following injury is not identical to intact uninjured skin. This disparity may be caused by differences in the mechanisms that regulate postnatal cutaneous wound repair compared to embryonic skin development and thus we seek a deeper understanding of the role that Wnt signaling plays in the mechanisms of skin repair in both fetal and adult wounds. The influence of secreted Wnt signaling proteins in tissue homeostasis has galvanized efforts to identify small molecules that target Wnt-mediated cellular responses. Wnt signaling is activated by wounding and participates in every subsequent stage of the healing process from the control of inflammation and programmed cell death, to the mobilization of stem cell reservoirs within the wound site. Endogenous Wnt signaling augmentation represents an attractive option to aid in the restoration of cutaneous wounds, as the complex mechanisms of the Wnt pathway have been increasingly investigated over the years. In this review, we summarize recent data elucidating the roles that Wnt signaling plays in cutaneous wound healing process. PMID:26309090

  7. Intraspecific Signals Inducing Aggregation in Periplaneta americana (Insecta: Dictyoptera).

    PubMed

    Imen, Saïd; Christian, Malosse; Virginie, Durier; Colette, Rivault

    2015-06-01

    Chemical communication is necessary to induce aggregation and to maintain the cohesion of aggregates in Periplaneta americana (L.) cockroaches. We aimed to identify the chemical message inducing aggregation in this species. Two types of bioassays were used-binary choice tests in Petri dishes and tests in Y-olfactometer. Papers conditioned by direct contact of conspecifics induce aggregation when proposed in binary choice tests and were attractive in a Y-olfactometer. The identification of the molecules present on these conditioned papers indicated that dichloromethane extracts contained mainly cuticular hydrocarbons whereas methanol extracts contained more volatile molecules. Only a mixture of extracts in both solvents induced aggregation. High concentrations of cuticular hydrocarbons are necessary to induce aggregation when presented alone. When presented with volatile molecules present in methanol extracts, low concentrations of cuticular hydrocarbons are sufficient to induce aggregation if they are presented in contact. Among volatile molecules collected on filter paper, a mixture of three compounds-hexadecanoic acid, pentadecanoic acid, and pentaethylene glycol-induced aggregation. Our results provide evidence that aggregation processes in P. americana relies on a dual mechanism: attraction over long distances by three volatile molecules and maintenance on site by contact with cuticular hydrocarbons. PMID:26313978

  8. Genetic variation in insulin-induced kinase signaling

    PubMed Central

    Wang, Isabel Xiaorong; Ramrattan, Girish; Cheung, Vivian G

    2015-01-01

    Individual differences in sensitivity to insulin contribute to disease susceptibility including diabetes and metabolic syndrome. Cellular responses to insulin are well studied. However, which steps in these response pathways differ across individuals remains largely unknown. Such knowledge is needed to guide more precise therapeutic interventions. Here, we studied insulin response and found extensive individual variation in the activation of key signaling factors, including ERK whose induction differs by more than 20-fold among our subjects. This variation in kinase activity is propagated to differences in downstream gene expression response to insulin. By genetic analysis, we identified cis-acting DNA variants that influence signaling response, which in turn affects downstream changes in gene expression and cellular phenotypes, such as protein translation and cell proliferation. These findings show that polymorphic differences in signal transduction contribute to individual variation in insulin response, and suggest kinase modulators as promising therapeutics for diseases characterized by insulin resistance. PMID:26202599

  9. Asbestos and erionite prime and activate the NLRP3 inflammasome that stimulates autocrine cytokine release in human mesothelial cells

    PubMed Central

    2013-01-01

    Background Pleural fibrosis and malignant mesotheliomas (MM) occur after exposures to pathogenic fibers, yet the mechanisms initiating these diseases are unclear. Results We document priming and activation of the NLRP3 inflammasome in human mesothelial cells by asbestos and erionite that is causally related to release of IL-1β, IL-6, IL-8, and Vascular Endothelial Growth Factor (VEGF). Transcription and release of these proteins are inhibited in vitro using Anakinra, an IL-1 receptor antagonist that reduces these cytokines in a human peritoneal MM mouse xenograft model. Conclusions These novel data show that asbestos-induced priming and activation of the NLRP3 inflammasome triggers an autocrine feedback loop modulated via the IL-1 receptor in mesothelial cell type targeted in pleural infection, fibrosis, and carcinogenesis. PMID:23937860

  10. Grape seed extract inhibits EGF-induced and constitutively active mitogenic signaling but activates JNK in human prostate carcinoma DU145 cells: possible role in antiproliferation and apoptosis.

    PubMed

    Tyagi, Alpana; Agarwal, Rajesh; Agarwal, Chapla

    2003-03-01

    A loss of functional androgen receptor and an enhanced expression of growth factor receptors and associated ligands are causal genetic events in prostate cancer (PCA) progression. These genetic alterations lead to an epigenetic mechanism where a feedback autocrine loop between membrane receptor and ligand (e.g. EGFR-TGFalpha) results in a constitutive activation of MAPK-Elk1-AP1-mediated mitogenic signaling in human PCA at an advanced and androgen-independent stage. We rationalized that inhibiting these epigenetic events could be useful in controlling advanced PCA growth. Recently, we found that grape seed extract (GSE), a dietary supplement rich in flavonoid procyanidins, inhibits advanced and androgen-independent human PCA DU145 cell growth in culture and nude mice. Here, we performed detailed mechanistic studies to define the effect of GSE on EGFR-Shc-MAPK-Elk1-AP1-mediated mitogenic signaling in DU145 cells. Pretreatment of serum-starved cells with GSE resulted in 70% to almost complete inhibition of EGF-induced EGFR activation and 50% to complete inhibition of Shc activation, which corroborated with a comparable decrease in EGF-induced Shc binding to EGFR. Conversely, EGF-induced ERK1/2 phosphorylation was inhibited only by lower doses of GSE; in fact, higher doses showed an increase. Additional studies showed that GSE alone causes a dose- and time-dependent increase in ERK1/2 phosphorylation in starved DU145 cells that is inhibited by an MEK1 inhibitor PD98059. Independent of this increase in ERK1/2 phosphorylation, GSE showed a strong inhibition of ERK1/2 kinase activity to Elk1 in both cellular and cell-free systems. GSE treatment of cells also inhibited both EGF-induced and constitutively active Elk1 phosphorylation and AP1 activation. GSE treatment also showed DNA synthesis inhibition in starved and EGF-stimulated cells as well as loss of cell viability and apoptotic death that was further increased by adding MEK1 inhibitor. Since GSE strongly induced