Science.gov

Sample records for induced fission reactions

  1. Multimodal Fission in Heavy-Ion Induced Reactions

    SciTech Connect

    Pokrovskiy, I. V.; Bogachev, A. A.; Iitkis, M. G.; Iitkis, J. M.; Kondratiev, N. A.; Kozulin, E. M.; Dorvaux, O.; Rowley, N.; Schmitt, Ch.; Stuttge, L.

    2006-08-14

    Mass, energy and folding angle distributions of the fission fragments as well as multiplicities of neutron and gamma-quanta emissions accompanying the fission process were measured for fission of 226Th, 227Pa and 234Pu compound nuclei produced in reactions with 18O and 26Mg projectiles over a wide energy range. Data were analyzed with respect to the presence of fission modes. Asymmetric fission was observed even at very high initial excitation for all the measured systems. The so-called fission mode S1 (caused by the proton shell Z{approx}50 and neutron shell N{approx}82 in heavy fragment) was found to be dominant in asymmetric fission of 234Pu. Reactions with not full linear momentum transfer were observed in the folding spectra for all the measured systems.

  2. Fission probabilities of 242Am,243Cm , and 244Cm induced by transfer reactions

    NASA Astrophysics Data System (ADS)

    Kessedjian, G.; Jurado, B.; Barreau, G.; Marini, P.; Mathieu, L.; Tsekhanovich, I.; Aiche, M.; Boutoux, G.; Czajkowski, S.; Ducasse, Q.

    2015-04-01

    We have measured the fission probabilities of 242Am,243Cm , and 244Cm induced by the transfer reactions 243Am(3He,4He) ,243Am(3He,t ) , and 243Am(3He,d ) , respectively. The details of the experimental procedure and a rigorous uncertainty analysis, including a correlation matrix, are presented. For 243Cm our data show clear structures well below the fission threshold. To our knowledge, it is the first time that these structures have been observed for this nucleus. We have compared the measured fission probabilities to calculations based on the statistical model to obtain information on the fission barriers of the produced fissioning nuclei.

  3. Complete and Incomplete Fusion Competition in 11B-INDUCED Fission Reactions on 197Au at the Intermediate Energy

    NASA Astrophysics Data System (ADS)

    Demekhina, N. A.; Karapetyan, G. S.; Balabekyan, A. R.

    2015-06-01

    Above Coulomb barrier cross sections of fission fragment production were measured in reactions of 11B with 197Au target. Induced-activity method was used for measurement the fission decay channel of the composite nuclei. Systematic of the fission fragment charge and mass distributions was used for fission cross section calculation. Fission fraction of the composite nuclei decay was compared with PACE-4 mode calculations. Estimated suppression for fission fraction followed the complete fusion have been obtained 35%.

  4. Neutron-induced fission cross sections of short-lived actinides with the surrogate reaction method.

    SciTech Connect

    Kessedijian, G.; Jurado, B.; Aiche, M.; Barreau, G.; Bidaud, A.; Czajkowski, S.; Dassie, D.; Haas, B.; Mathieu, L.; Audouin, L.; Capellan, N.; Tassan-Got, L.; Wilson, J. N.; Berthoumieux, E.; Gunsing, F.; Theisen, Ch.; Serot, O.; Bauge, E.; Ahmad, I.; Greene, J. P.; Janssens, R. V. F.

    2010-09-13

    Neutron-induced fission cross sections for {sup 242,243}Cm and {sup 241}Am have been obtained with the surrogate reaction method. Recent results for the neutron-induced cross section of {sup 243}Cm are questioned by the present data. For the first time, the {sup 242}Cm cross section has been determined up to the onset of second-chance fission. The good agreement at the lowest excitation energies between the present results and the existing neutron-induced data indicates that the distributions in spin and parity of states populated with both techniques are similar.

  5. Observation of fission modes in heavy ion induced reactions

    SciTech Connect

    Itkis, M. G.; Kondratiev, N. A.; Kozulin, E. M.; Oganessian, Yu. Ts.; Pashkevich, V. V.; Pokrovsky, I. V.; Salamatin, V. S.; Rusanov, A. Ya.; Calabretta, L.; Maiolino, C.; Lukashin, K.; Agodi, C.; Bellia, G.; Chubarian, G. G.; Hurst, B. J.; O'Kelly, D.; Schmitt, R. P.; Hanappe, F.; Liatard, E.; Huck, A.

    1998-02-15

    The fission of the systems {sup 220,224,226}Th was investigated by measuring the mass-energy distributions of the fission fragments. The corresponding excitation energies at the saddle point, E{sub sp}*, ranged from 16 to 40 MeV. As E{sub sp*} decreases, an asymmetric mass component becomes visible on the predominately symmetric mass distribution. The contribution of the asymmetric mode is characterized by the total yield ratio Y{sub s}/Y{sub a}, which decreases rapidly for the heavier isotopes of thorium. This behavior of Y{sub s}/Y{sub a} is in qualitative agreement with theoretical calculations. For all isotopes studied, the subtracted asymmetric fission component, Y{sub a}=Y{sub 1}-Y{sub s}, exhibits a complex structure, actually showing two components, Y{sub a}=Y{sub a1}+Y{sub a0}, which have average masses M{sub a1}=132 and M{sub a0}=140.

  6. Observation of fission modes in heavy ion induced reactions

    SciTech Connect

    Itkis, M.G.; Kondratiev, N.A.; Kozulin, E.M.; Oganessian, Y.T.; Pashkevich, V.V.; Pokrovsky, I.V.; Salamatin, V.S.; Rusanov, A.Y.; Calabretta, L.; Maiolino, C.; Lukashin, K.; Agodi, C.; Bellia, G.; Chubarian, G.G.; Hurst, B.J.; OKelly, D.; Schmitt, R.P.; Hanappe, F.; Liatard, E.; Huck, A.; Stuttge, L.

    1998-02-01

    The fission of the systems {sup 220,224,226}Th was investigated by measuring the mass-energy distributions of the fission fragments. The corresponding excitation energies at the saddle point, E{sub sp}{sup {asterisk}}, ranged from 16 to 40 MeV. As E{sub sp{sup {asterisk}}} decreases, an asymmetric mass component becomes visible on the predominately symmetric mass distribution. The contribution of the asymmetric mode is characterized by the total yield ratio Y{sub s}/Y{sub a}, which decreases rapidly for the heavier isotopes of thorium. This behavior of Y{sub s}/Y{sub a} is in qualitative agreement with theoretical calculations. For all isotopes studied, the subtracted asymmetric fission component, Y{sub a}=Y{sub 1}{minus}Y{sub s}, exhibits a complex structure, actually showing two components, Y{sub a}=Y{sub a1}+Y{sub a0}, which have average masses M{sub a1}=132 and M{sub a0}=140. {copyright} {ital 1998 American Institute of Physics.}

  7. Advanced Monte Carlo modeling of prompt fission neutrons for thermal and fast neutron-induced fission reactions on Pu239

    NASA Astrophysics Data System (ADS)

    Talou, P.; Becker, B.; Kawano, T.; Chadwick, M. B.; Danon, Y.

    2011-06-01

    Prompt fission neutrons following the thermal and 0.5 MeV neutron-induced fission reaction of Pu239 are calculated using a Monte Carlo approach to the evaporation of the excited fission fragments. Exclusive data such as the multiplicity distribution P(ν), the average multiplicity as a function of fragment mass ν¯(A), and many others are inferred in addition to the most used average prompt fission neutron spectrum χ(Ein,Eout), as well as average neutron multiplicity ν¯. Experimental information on these more exclusive data help constrain the Monte Carlo model parameters. The calculated average total neutron multiplicity is ν¯c=2.871 in very close agreement with the evaluated value ν¯e=2.8725 present in the ENDF/B-VII.0 library. The neutron multiplicity distribution P(ν) is in very good agreement with the evaluation by Holden and Zucker. The calculated average spectrum differs in shape from the ENDF/B-VII.0 spectrum, evaluated with the Madland-Nix model. In particular, we predict more neutrons in the low-energy tail of the spectrum (below about 300 keV) than the Madland-Nix calculations, casting some doubts on how much scission neutrons contribute to the shape of the low-energy tail of the spectrum. The spectrum high-energy tail is very sensitive to the total kinetic energy distribution of the fragments as well as to the total excitation energy sharing at scission. Present experimental uncertainties on measured spectra above 6 MeV are too large to distinguish between various theoretical hypotheses. Finally, comparisons of the Monte Carlo results with experimental data on ν¯(A) indicate that more neutrons are emitted from the light fragments than the heavy ones, in agreement with previous works.

  8. Fusion hindrance and quasi-fission in heavy-ion induced reactions: disentangling the effect of different parameters

    SciTech Connect

    Fioretto, E.; Stefanini, A. M.; Behera, B. R.; Corradi, L.; Gadea, A.; Latina, A.; Trotta, M.; Beghini, S.; Montagnoli, G.; Scarlassara, F.; Chizhov, A. Yu.; Itkis, I. M.; Itkis, M. G.; Kniajeva, G. N.; Kondratiev, N. A.; Kozulin, E. M.; Pokrovsky, I. V.; Sagaidak, R. N.; Voskressensky, V. M.; Courtin, S.

    2006-04-26

    Experimental results on the fusion inhibition effect near the Coulomb barrier due to the onset of the quasi-fission mechanism are presented. The investigation was focused on reactions induced by 48Ca projectiles on different heavy targets and comparing them to reactions induced by light ions such as 12C and 16O leading to the same compound nuclei. Cross sections and angular distributions of evaporation residues and fission fragments have been measured.

  9. Fission Time of α-INDUCED Reactions Measured by the Crystal Blocking Technique

    NASA Astrophysics Data System (ADS)

    Drozdov, V. A.; Eremenko, D. O.; Fotina, O. V.; Platonov, S. Yu.; Yuminov, O. A.; Giardina, G.; Fazio, G.; Malaguti, F.; Olivo, P.; Togo, V.

    A large set of experimental observables for the 232Th, 235U(α, xnf) reactions has been analyzed within the dynamic-statistical approach with allowance for the nuclear dissipation phenomenon, the double humped structure of fission barrier, and also the temperature damping of shell effects. The energy dependences of the lifetime effect (experimentally measured by the crystal blocking technique) along the corresponding data on the fission fragment angular anisotropy and also fission probabilities of U and Pu isotopes produced in the reactions were chosen for the analysis. Reliable information on the nuclear viscosity at the low excitation energies (< 30 MeV) was obtained.

  10. ''Subthreshold'' reactions involving nuclear fission

    SciTech Connect

    Goldhaber, M.; Shrock, R.

    2001-02-01

    We analyze reactions of several types that are naively below threshold but can proceed because of the release of binding energy from nuclear fission and occasionally the formation of Coulombic bound states. These reactions include (i) photofission with pion production and (ii) charged current neutrino-nucleus reactions that lead to fission and/or formation of a Coulomb bound state of a {mu}{sup -} with the nucleus of a fission fragment. We comment on the possible experimental observation of these reactions.

  11. Energy dependence of fission fragment angular distributions for 19F, 24Mg and 28Si induced reactions on 208Pb

    NASA Astrophysics Data System (ADS)

    Tsang, M. B.; Utsunomiya, H.; Gelbke, C. K.; Lynch, W. G.; Back, B. B.; Saini, S.; Baisden, P. A.; McMahan, M. A.

    1983-09-01

    The energy dependence of fission fragment angular distributions was measured for reaction induced by 19F, 24Mg, and 28Si on 208Pb over the range of incident energies of {E}/{A} = 5.6-10 MeV. For all three systems the angular distributions are inconsistent with the saddle point deformations of the rotating liquid drop model.

  12. Capture and Fusion-Fission Processes in Heavy Ion Induced Reactions

    NASA Astrophysics Data System (ADS)

    Itkis, M. G.; Beghini, S.; Behera, B. R.; Bogatchev, A. A.; Bouchat, V.; Corradi, L.; Dorvaux, O.; Fioretto, E.; Gadea, A.; Hanappe, F.; Itkis, I. M.; Jandel, M.; Kliman, J.; Knyazheva, G. N.; Kondratiev, N. A.; Kozulin, E. M.; Krupa, L.; Latina, A.; Lyapin, V. G.; Materna, T.; Montagnoli, G.; Oganessian, Yu. Ts.; Pokrovsky, I. V.; Prokhorova, E. V.; Rowley, N.; Rubchenya, V. A.; Rusanov, A. Ya.; Sagaidak, R. N.; Scarlassara, F.; Schmitt, C.; Stefanini, A. M.; Stuttge, L.; Szilner, S.; Trotta, M.; Trzaska, W. H.; Voskresenski, V. M.

    2005-11-01

    Results of the experiments aimed at the study of fission and quasi-fission processes in the reactions 12C+204Pb, 48Ca+144,154Sm, 168Er, 208Pb, 238U, 244Pu, 248Cm; 58Fe+208Pb, 244Pu, 248Cm, and 64Ni+186W, 242Pu are presented. The choice of the above-mentioned reactions was inspired by the experiments on the production of the isotopes 283112, 289114 and 283116 at Dubna using the same reactions. The 58Fe and 64Ni projectiles were chosen since the corresponding projectile-target combinations lead to the synthesis of even heavier elements. The experiments were carried out at the U-400 accelerator of the Flerov Laboratory of Nuclear Reactions (JINR, Russia), the XTU Tandem accelerator of the National Laboratory of Legnaro (LNL, Italy) and the Accelerator of the Laboratory of University of Jyvaskyla (JYFL, Finland) using the time-of-flight spectrometer of fission fragments CORSET and the neutron multi-detector DEMON. The role of shell effects and the influence of the entrance channel asymmetry and the deformations of colliding nucleus on the mechanism of the fusion-fission and the competitive process of quasi-fission are discussed.

  13. Rotation of Nuclei as Observed in Ternary Fission of the Reaction 235U(nth,f) Induced by Polarized Neutron

    NASA Astrophysics Data System (ADS)

    Gönnenwein, F.; Gagarski, A.; Guseva, I.; Petrov, G.; Sokolov, V.; Zavarukhkina, T.; Mutterer, M.; Nesvizhevski, V.; Bunakov, V.; Kadmensky, S.

    2007-05-01

    Ternary fission of the standard reaction 235U(nth,f) induced by cold polarized neutrons has been investigated. Fission fragments and light charged particles were recorded in coincidence. Following cold neutron capture the compound nucleus 236U* has spin 3- or 4-. At the saddle point of the fissioning 236U* nucleus these states are collective. They are expected to retain a sizable collectivity down to the scission point. In fact, a collective rotation has been sensed by the shift in the angular distribution of the light charged particles which depends on the orientation of neutron polarization. Direct observation of the rotation of 236U* excited in a cold neutron reaction is reported here for the first time. It is proposed to call the new phenomenon the "ROT-effect".

  14. Measurement of Neutron-Induced, Angular-Momentum-Dependent Fission Probabilities Direct Reactions

    NASA Astrophysics Data System (ADS)

    Koglin, Johnathon; Jovanovic, Igor; Burke, Jason; Casperson, Robert

    2015-04-01

    The surrogate method has previously been used to successfully measure (n , f) cross sections of a variety of difficult to produce actinide isotopes. These measurements are inaccurate at excitation energies below 1.5 MeV where the distribution of angular momentum states populated in the compound nucleus created by neutron absorption significantly differs from that arising from direct reactions. A method to measure the fission probability of individual angular momentum states arising from 239 Pu(d , pf) and 239 Pu(α ,α' f) reactions has been developed. This method consists on charged particle detectors with 40 keV FWHM resolution at 13 angles up and downstream of the beam. An array of photovoltaic (solar) cells is used to measure the angular distribution of fission fragments with high angular resolution. This distribution uniquely identifies the populated angular momentum states. These are fit to expected distributions to determine the contribution of each state. The charged particle and fission matrix obtained from these measurements determines fission probabilities of specific angular momentum states in the transition nucleus. Development of this scheme and first results will be discussed. This material is based upon work supported by the U.S. Department of Homeland Security under Grant Award Number 2012-DN-130-NF0001.

  15. Measurement of fragment mass distributions in neutron-induced fission reactions at intermediate energies

    NASA Astrophysics Data System (ADS)

    Simutkin, V. D.; Ryzhov, I. V.; Tutin, G. A.; Vaishnene, L. A.; Blomgren, J.; Pomp, S.; Österlund, M.; Andersson, P.; Bevilacqua, R.; Meulders, J. P.; Prieels, R.

    2009-10-01

    Fragment mass distributions from neutron-induced fission of 232Th and 238U have been measured at quasi-monoenergetic neutron beam of the Louvain-la-Neuve cyclotron facility CYCLONE. The measurements have been carried out making use of a multi-section Frisch-gridded ionization chamber. The measurement technique as well as the data processing is described. Preliminary data on primary fragment mass yields are given for an incident neutron energy of 32.8 MeV.

  16. Fission induced plasmas

    NASA Technical Reports Server (NTRS)

    Harries, W. L.

    1977-01-01

    The possibility of creating a plasma from fission fragments was investigated, as well as the probability of utilizing the energy of these particles to create population inversion leading to laser action. Eventually, it is hoped that the same medium could be used for both fissioning and lasing, thus avoiding inefficiences in converting one form of energy to the other. A central problem in understanding a fission induced plasma is to obtain an accurate model of the electron behavior; some calculations are presented to this end. The calculations are simple, providing a compendium of processes for reference.

  17. A new set-up for the simultaneous measurement of neutron-induced capture and fission reactions

    SciTech Connect

    Guerrero, C.; Berthoumieux, E.; Cano-Ott, D.; Gunsing, F.; Andriamonje, S.

    2011-07-01

    The measurement of the capture cross section of fissile elements, of upmost importance for the design of innovative nuclear reactors and the management of nuclear waste, involves particular difficulties related to the {gamma}-ray background produced in the fission reactions. These difficulties are the reason why five out of the six actinide {sigma}(n,{gamma}) measurements in the NEA High Request Priority List are fissile isotopes. At n-TOF we have combined the Total Absorption Calorimeter capture detector with a set of three {sup 235}U loaded MicroMegas fission detectors for measuring simultaneously the two reactions: capture and fission. In a first test measurement we have succeeded in measuring simultaneously with high efficiency the {sup 235}U capture and fission cross sections, disentangling accurately the two types of reactions. (authors)

  18. Fission and quasifission modes in heavy-ion-induced reactions leading to the formation of Hs{sup *}

    SciTech Connect

    Itkis, I. M.; Kozulin, E. M.; Itkis, M. G.; Knyazheva, G. N.; Bogachev, A. A.; Chernysheva, E. V.; Krupa, L.; Oganessian, Yu. Ts.; Zagrebaev, V. I.; Rusanov, A. Ya.; Goennenwein, F.; Dorvaux, O.; Stuttge, L.; Hanappe, F.; Vardaci, E.; Goes Brennand, E. de

    2011-06-15

    Mass and energy distributions of binary reaction products obtained in the reactions {sup 22}Ne+{sup 249}Cf,{sup 26}Mg+{sup 248}Cm, {sup 36}S+{sup 238}U, and {sup 58}Fe+{sup 208}Pb have been measured. All reactions lead to Hs isotopes. At energies below the Coulomb barrier the bimodal fission of Hs{sup *}, formed in the reaction {sup 26}Mg+{sup 248}Cm, is observed. In the reaction {sup 36}S+{sup 238}U, leading to the formation of a similar compound nucleus, the main part of the symmetric fragments arises from the quasifission process. At energies above the Coulomb barrier fusion-fission is the main process leading to the formation of symmetric fragments for both reactions with Mg and S ions. In the case of the {sup 58}Fe+{sup 208}Pb reaction the quasifission process dominates at all measured energies.

  19. Fission-induced plasmas

    NASA Technical Reports Server (NTRS)

    Harries, W. L.; Shiu, Y. J.

    1979-01-01

    The possibility of creating a plasma from fission fragments, and to utilize the energy of the particles to create population inversion that would lead to laser action is investigated. An investigation was made of various laser materials which could be used for nuclear-pumped lasing. The most likely candidate for a fissioning material in the gaseous form is uranium hexafluoride - UF6, and experiments were performed to investigate materials that would be compatible with it. One of the central problems in understanding a fission-induced plasma is to obtain a model of the electron behavior, and some preliminary calculations are presented. In particular, the rates of various processes are discussed. A simple intuitive model of the electron energy distribution function is also shown. The results were useful for considering a mathematical model of a nuclear-pumped laser. Next a theoretical model of a (3)He-Ar nuclear-pumped laser is presented. The theory showed good qualitative agreement with the experimental results.

  20. Competition between fusion and quasi-fission in heavy ion induced reactions

    SciTech Connect

    Back, B.B.

    1986-09-01

    Quantitative analyses of angular distributions and angle-mass correlations have been applied to the U + Ca reaction to obtain upper limit estimates for the cross sections for complete fusion near or below the interaction barrier. Extrapolating to the systems Ca + Cm and Ca + Es using the well established scaling properties of the extra push model, an estimate of the cross sections relevant to the efforts of synthesizing super-heavy elements in the region Z = 116 and N = 184 via heavy-ion fusion reactions are obtained. A simple evaporation calculation using properties of the super heavy elements shows that the failure to observe super-heavy elements with the Ca + Cm reaction is consistent with estimates of the complete fusion process. 33 refs., 9 figs., 1 tab.

  1. Rotation of the compound nucleus 236U ∗ in the fission reaction 235U( n,f) induced by cold polarised neutrons

    NASA Astrophysics Data System (ADS)

    Goennenwein, F.; Mutterer, M.; Gagarski, A.; Guseva, I.; Petrov, G.; Sokolov, V.; Zavarukhina, T.; Gusev, Yu.; von Kalben, J.; Nesvizhevski, V.; Soldner, T.

    2007-08-01

    Surprisingly, for one of the best investigated nuclear reactions a new phenomenon was discovered. In an experiment performed at the High Flux Reactor of the Institut Laue Langevin in Grenoble, France, the reaction 235U(n , f) was studied. Fission was induced by cold polarised neutrons. Besides the two main fragments also ternary light charged particles were measured. The centres or the detector assemblies for fragments and light particles were positioned at right angles relative to each other in a plane perpendicular to the neutron beam. It is well known that the majority of ternary particles are emitted closely perpendicular to the fission axis. With the neutron spin pointing parallel or anti-parallel to the neutron beam it was observed that, upon flipping periodically the neutron spin, the distributions of angles between fragments and light particles are wobbling back and forth. The phenomenon is traced to the rotation of the scissioning nucleus while the light particles are ejected. This interpretation is corroborated by trajectory calculations for ternary α-particles being accelerated in a rotating Coulomb field provided by the two main fragments. The angle through which the fission axis and the trajectories of α-particles rotate is very small and barely exceeds 0.2°. This so far unreported feature of nuclear fission has been called the “ROT-effect”.

  2. Transfer-induced fission of superheavy nuclei

    SciTech Connect

    Adamian, G. G.; Antonenko, N. V.; Zubov, A. S.; Sargsyan, V. V.; Scheid, W.

    2010-07-15

    Possibilities of transfer-induced fission of new isotopes of superheavy nuclei with charge numbers 103-108 are studied for the first time in the reactions {sup 48}Ca+{sup 244,246,248}Cm at energies near the corresponding Coulomb barriers. The predicted cross sections are found to be measurable with the detection of three-body final states.

  3. Experiments on nuclear fission induced by radioactive beams

    SciTech Connect

    Skobelev, N.K.

    1994-07-01

    The cross sections of {sup 209}Bi nuclear fission induced by secondary beams of {sup 6}He and {sup 4}He are measured under identical conditions. The experimental data are in good agreement with earlier results on the fission cross section of the {sup 4}He + {sup 209}Bi reaction. The measured values of the cross section of {sup 209}Bi fission induced by {sup 6}He ions are much higher than the cross sections of fission induced by {alpha}-particles. It is found that the fission threshold for the {sup 6}He + {sup 209}Bi reaction is shifted as compared to that of the {sup 4}He + {sup 209}Bi reaction. Various factors that can be responsible for the observed peculiarities in the {sup 209}Bi fission induced by the {sup 6}He ions are analyzed. 25 refs., 5 figs.

  4. Fission Cross Sections and Fission-Fragment Mass Yields via the Surrogate Reaction Method

    SciTech Connect

    Jurado, B.; Kessedjian, G.; Aiche, M.; Barreau, G.; Bidaud, A.; Czajkowski, S.; Dassie, D.; Haas, B.; Mathieu, L.; Osmanov, B.; Ahmad, I.

    2008-04-17

    The surrogate reaction method is a powerful tool to infer neutron-induced data of short-lived nuclei. After a short overview of the experimental techniques employed in the present surrogate experiments, we will concentrate on a recent measurement to determine neutron-induced fission cross sections for the actinides {sup 242,243}Cm and {sup 241}Am. The latest direct neutron-induced measurement for the {sup 243}Cm fission cross section is questioned by our results, since there are differences of more than 60% in the 0.7 to 7 MeV neutron energy range. Our experimental set-up has also enabled us to measure for the first time the fission fragment ''pseudo-mass'' distributions of {sup 243,244,245}Cm and {sup 242}Am compound nuclei in the excitation energy range from a few MeV to about 25 MeV.

  5. Fission in intermediate energy heavy ion reactions

    SciTech Connect

    Wilhelmy, J.B.; Begemann-Blaich, M.; Blaich, T.; Boissevain, J.; Fowler, M.M.; Gavron, A.; Jacak, B.V.; Lysaght, P.S.; Britt, H.C.; Fields, D.J.

    1989-04-01

    A systematic study of reaction mechanisms at intermediate energies (50--100 MeV/A) has been performed at the Lawrence Berkeley Laboratory's BeValac using medium weight projectiles on medium and heavy element targets. A gas and plastic phoswich detector system was employed which gave large geometric coverage and a wide dynamic response. The particles identified with the gas detectors could be characterized into three components--intermediate mass fragments (IMF), fission fragments (FF) and heavy residues (HR). Major observed features are: the reaction yields are similar in the 50 to 100 MeV/A range, central collisions have high multiplicity of IMF's with broad angular correlations consistent with a large participant region, effects of final state Coulomb interactions are observed and give information on the size and temporal behavior of the source, true fission yields are dependent on target fissility and correlated with relatively peripheral collisions. Analysis of fission and evaporation yields implies limiting conditions for which fission decay remains a viable deexcitation channel. 15 refs., 7 figs.

  6. Mass distributions for induced fission of different Hg isotopes

    NASA Astrophysics Data System (ADS)

    Andreev, A. V.; Adamian, G. G.; Antonenko, N. V.

    2012-10-01

    With the improved scission-point model mass distributions are calculated for induced fission of different Hg isotopes with even mass numbers A=180, 184, 188, 192, 196, and 198. The calculated mass distribution and mean total kinetic energy of fission fragments are in good agreement with the existing experimental data. The asymmetric mass distribution of fission fragments of 180Hg observed in the recent experiment is explained. The change in the shape of the mass distribution from asymmetric to more symmetric is revealed with increasing A of the fissioning AHg nucleus, and reactions are proposed to verify this prediction experimentally.

  7. Fission of Actinides Induced by Neutrons at nTOF

    SciTech Connect

    Tassan-Got, L.; Audouin, L.; Berthier, B.; Ferrant, L.; Isaev, S.; Le Naour, C.; Stephan, C.; Trubert, D.; Duran, I.; Paradela, C.; Moreau, C.

    2005-05-24

    The neutron-induced fission cross sections of 233U, 234U, 232Th, 237Np, 209Bi, natPb have been measured on the nTOF facility at CERN, which allows an accurate energy measurement owing to the long path. Parallel plate avalanche counters were used to detect the 2 fission fragments in coincidence. This method allows an efficient discrimination of fission reactions among other types of reactions especially at high energies, and it is well suited for the very large energy range available at nTOF. The case of 234U will be used as an example of the quality of the data obtained in these measurements.

  8. Angular momentum effects in fusion-fission and fusion-evaporation reactions

    SciTech Connect

    Plasil, F.

    1980-01-01

    The study of heavy-ion fusion reactions is complicated by the possible contributions of several mechanisms. The various types of heavy-ion-induced fission are discussed. Then compound-nucleus fission is considered with reference to fission barriers deduced from heavy-ion-induced fission. Next, the problems associated with measured values of evaporation-residue cross sections and the angular momentum dependence of incomplete fusion are examined. Finally, the de-excitation of compound nuclei is again taken up, this time with reference to the greatly enhanced ..cap alpha.. emission predicted on the basis of the rotating liquid drop model. 24 figures. (RWR)

  9. Fission Study Using Multi-Nucleon Transfer Reactions

    NASA Astrophysics Data System (ADS)

    Nishio, K.; Hirose, K.; Lėguillon, R.; Makii, H.; Nishinaka, I.; Orlandi, R.; Smallcombe, J.; Ishii, T.; Tsukada, K.; Asai, M.; Chiba, S.; Ohtsuki, T.; Tatsuzawa, R.; Takaki, N.

    2015-06-01

    Fission study using multi-nucleon transfer reaction will be discussed. This approach has an advantage that we can study fission of neutron-rich nuclei which cannot be accessed by particle or charged-particle capture reactions. Unique feature in our setup is that we can produce fission data for many nuclei using many transfer-channels. Also wide excitation energy range can be covered in this set up, allowing us to measure the excitation energy dependence of the fission properties. Preliminary data obtained in the 18O + 238U reaction will be presented..

  10. Fission of actinide nuclei using multi-nucleon transfer reactions

    NASA Astrophysics Data System (ADS)

    Léguillon, Romain; Nishio, Katsuhisa; Hirose, Kentaro; Orlandi, Riccardo; Makii, Hiroyuki; Nishinaka, Ichiro; Ishii, Tetsuro; Tsukada, Kazuaki; Asai, Masato; Chiba, Satoshi; Ohtsuki, Tsutomu; Araki, Shohei; Watanabe, Yukinobu; Tatsuzawa, Ryotaro; Takaki, Naoyuki

    2014-09-01

    We are promoting a campaign to measure fission-fragment mass distributions for neutron-rich actinide nuclei populated by transfer reactions from their ground state up to an excitation energy of several tens MeV. We thus obtain the excitation energy dependence of the mass distribution. The experiment was carried out at the 20 MV JAEA tandem facility at Tokai. We report on the data obtained in the direct reaction 18 O + 232 Th . Transfer-channels and excitation energies of the fissioning nuclei were identified using silicon dE-E detectors located at forward angle. Two fission fragments were detected in coincidence using multi-wire proportional counters. Fission fragment masses were determined by kinematic consideration. We obtained the fission fragment mass distributions for 13 nuclei from actinium to uranium and some fission barrier heights. We are promoting a campaign to measure fission-fragment mass distributions for neutron-rich actinide nuclei populated by transfer reactions from their ground state up to an excitation energy of several tens MeV. We thus obtain the excitation energy dependence of the mass distribution. The experiment was carried out at the 20 MV JAEA tandem facility at Tokai. We report on the data obtained in the direct reaction 18 O + 232 Th . Transfer-channels and excitation energies of the fissioning nuclei were identified using silicon dE-E detectors located at forward angle. Two fission fragments were detected in coincidence using multi-wire proportional counters. Fission fragment masses were determined by kinematic consideration. We obtained the fission fragment mass distributions for 13 nuclei from actinium to uranium and some fission barrier heights. Present study is supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan.

  11. Ternary fission induced by polarized neutrons

    NASA Astrophysics Data System (ADS)

    Gönnenwein, Friedrich

    2013-12-01

    Ternary fission of (e,e) U- and Pu- isotopes induced by cold polarized neutrons discloses some new facets of the process. In the so-called ROT effect shifts in the angular distributions of ternary particles relative to the fission fragments show up. In the so-called TRI effect an asymmetry in the emission of ternary particles relative to a plane formed by the fragment momentum and the spin of the neutron appear. The two effects are shown to be linked to the components of angular momentum perpendicular and parallel to the fission axis at the saddle point of fission. Based on theoretical models the spectroscopic properties of the collective transitional states at the saddle point are inferred from experiment.

  12. 231Pa and 233Pa Neutron-Induced Fission Data Analysis

    SciTech Connect

    Maslov, V.M.; Tetereva, N.A.; Baba, M.; Hasegawa, A.; Kornilov, N.V.; Kagalenko, A.B.

    2005-05-24

    The 231Pa and 233Pa neutron-induced fission cross-section database is analyzed within the Hauser-Feshbach approach. The consistency of neutron-induced fission cross-section data and data extracted from transfer reactions is investigated. The fission probabilities of Pa, fissioning in 231,233Pa(n,nf) reactions, are defined by fitting (3He,d) or (3He,t) transfer-reaction data. The present estimate of the 233Pa(n,f) fission cross section above the emissive fission threshold is supported by smooth level-density parameter systematics, validated in the case of the 231Pa(n,f) data description up to En =20 MeV.

  13. Fission-product SiC reaction in HTGR fuel

    SciTech Connect

    Montgomery, F.

    1981-07-13

    The primary barrier to release of fission product from any of the fuel types into the primary circuit of the HTGR are the coatings on the fuel particles. Both pyrolytic carbon and silicon carbide coatings are very effective in retaining fission gases under normal operating conditions. One of the possible performance limitations which has been observed in irradiation tests of TRISO fuel is chemical interaction of the SiC layer with fission products. This reaction reduces the thickness of the SiC layer in TRISO particles and can lead to release of fission products from the particles if the SiC layer is completely penetrated. The experimental section of this report describes the results of work at General Atomic concerning the reaction of fission products with silicon carbide. The discussion section describes data obtained by various laboratories and includes (1) a description of the fission products which have been found to react with SiC; (2) a description of the kinetics of silicon carbide thinning caused by fission product reaction during out-of-pile thermal gradient heating and the application of these kinetics to in-pile irradiation; and (3) a comparison of silicon carbide thinning in LEU and HEU fuels.

  14. Prompt Emission in Fission Induced with Fast Neutrons

    NASA Astrophysics Data System (ADS)

    Wilson, J. N.; Lebois, M.; Halipré, P.; Oberstedt, S.; Oberstedt, A.

    Prompt gamma-ray and neutron emission data in fission integrates a large amount of information on the fission process and can shed light on the partition of energy. Measured emission spectra, average energies and multiplicities also provide important information for energy applications. While current reactors mostly use thermal neutron spectra, the future reactors of Generation IV will use fast neutron spectra for which little experimental prompt emission data exist. Initial investigations on prompt emission in fast neutron induced fission have recently been carried out at the LICORNE facility at the IPN Orsay, which exploits inverse reactions to produce naturally collimated, intense beams of neutrons. We report on first results with LICORNE to measure prompt fission gamma-ray spectra, average energies and multiplicities for 235U and 238U. Current improvements and upgrades being carried out on the LICORNE facility will also be described, including the development of a H2 gas target to reduce parasitic backgrounds and increase intensities, and the deployment of 11B beams to extend the effective LICORNE neutron energy range up to 12 MeV. Prospects for future experimental studies of prompt gamma-ray and neutron emission in fast neutron induced fission will be presented.

  15. Analysis of prompt fission neutrons in 235U(nth,f) and fission fragment distributions for the thermal neutron induced fission of 234U

    NASA Astrophysics Data System (ADS)

    Al-Adili, A.; Tarrío, D.; Hambsch, F.-J.; Göök, A.; Jansson, K.; Solders, A.; Rakopoulos, V.; Gustafsson, C.; Lantz, M.; Mattera, A.; Oberstedt, S.; Prokofiev, A. V.; Vidali, M.; Österlund, M.; Pomp, S.

    2016-06-01

    This paper presents the ongoing analysis of two fission experiments. Both projects are part of the collaboration between the nuclear reactions group at Uppsala and the JRC-IRMM. The first experiment deals with the prompt fission neutron multiplicity in the thermal neutron induced fission of 235U(n,f). The second, on the fission fragment properties in the thermal fission of 234U(n,f). The prompt fission neutron multiplicity has been measured at the JRC-IRMM using two liquid scintillators in coincidence with an ionization chamber. The first experimental campaign focused on 235U(nth,f) whereas a second experimental campaign is foreseen later for the same reaction at 5.5 MeV. The goal is to investigate how the so-called sawtooth shape changes as a function of fragment mass and excitation energy. Some harsh experimental conditions were experienced due to the large radiation background. The solution to this will be discussed along with preliminary results. In addition, the analysis of thermal neutron induced fission of 234U(n,f) will be discussed. Currently analysis of data is ongoing, originally taken at the ILL reactor. The experiment is of particular interest since no measurement exist of the mass and energy distributions for this system at thermal energies. One main problem encountered during analysis was the huge background of 235U(nth,f). Despite the negligible isotopic traces in the sample, the cross section difference is enormous. Solution to this parasitic background will be highlighted.

  16. Neutron induced fission of 234U

    NASA Astrophysics Data System (ADS)

    Hambsch, F.-J.; Al-Adili, A.; Oberstedt, S.; Pomp, S.

    2012-02-01

    The fission fragment properties of 234U(n,f) were investigated as a function of incident neutron energy from 0.2 MeV up to 5 MeV. The fission fragment mass, angular distribution and kinetic energy were measured with a double Frisch-grid ionization chamber using both analogue and digital data acquisition techniques. The reaction 234U(n,f) is relevant, since it involves the same compound nucleus as formed after neutron evaporation from highly excited 236U*, the so-called second-chance fission of 235U. Experimental data on fission fragment properties like fission fragment mass and total kinetic energy (TKE) as a function of incident neutron energy are rather scarce for this reaction. For the theoretical modelling of the reaction cross sections for Uranium isotopes this information is a crucial input parameter. In addition, 234U is also an important isotope in the Thorium-based fuel cycle. The strong anisotropy of the angular distribution around the vibrational resonance at En = 0.77 MeV could be confirmed using the full angular range. Fluctuations in the fragment TKE have been observed in the threshold region around the strong vibrational resonance at En = 0.77 MeV. The present results are in contradiction with corresponding literature values. Changes in the mass yield around the vibrational resonance and at En = 5 MeV relative to En = 2 MeV show a different signature. The drop in mean TKE around 2.5 to 3 MeV points to pair breaking as also observed in 235,238U(n,f). The measured two-dimensional mass yield and TKE distribution have been described in terms of fission modes. The yield of the standard 1 (S1) mode shows fluctuations in the threshold of the fission cross section due to the influence of the resonance and levels off at about 20% yield for higher incident neutron energies. The S2 mode shows the respective opposite behaviour. The mean TKE of both modes decreases with En. The decrease in mean TKE overrules the increase in S1 yield, so the mean TKE is dropping

  17. Compound Nucleus Reactions in LENR, Analogy to Uranium Fission

    NASA Astrophysics Data System (ADS)

    Hora, Heinrich; Miley, George; Philberth, Karl

    2008-03-01

    The discovery of nuclear fission by Hahn and Strassmann was based on a very rare microanalytical result that could not initially indicate the very complicated details of this most important process. A similarity is discussed for the low energy nuclear reactions (LENRs) with analogies to the yield structure found in measurements of uranium fission. The LENR product distribution measured earlier in a reproducible way in experiments with thin film electrodes and a high density deuteron concentration in palladium has several striking similarities with the uranium fission fragment yield curve.ootnotetextG.H. Miley and J.A. Patterson, J. New Energy 1, 11 (1996); G.H. Miley et al, Proc ICCF6, p. 629 (1997).This comparison is specifically focussed to the Maruhn-Greiner local maximum of the distribution within the large-scale minimum when the fission nuclei are excited. Implications for uranium fission are discussed in comparison with LENR relative to the identification of fission a hypothetical compound nuclear reaction via a element ^306X126 with double magic numbers.

  18. Prompt Fission Neutron Energy Spectra Induced by Fast Neutrons

    NASA Astrophysics Data System (ADS)

    Staples, Parrish Alan

    Prompt fission neutron energy spectra for ^{235}U and ^{239 }Pu have been measured for fission neutron energies greater than the energy of the incident neutrons inducing fission. The measurements were undertaken to investigate the shape dependence of the fission neutron spectra upon both the incident neutron energy and the mass of the nucleus undergoing fission. Measurements were made for both nuclides at the following incident neutron energies; 0.50 MeV, 1.50 MeV, 2.50 MeV and 3.50 MeV. The data are presented either as relative yields or as ratios of a measured spectrum to the ^{235}U spectrum at 0.50 MeV. Incident neutrons were produced by the ^7Li(p,n)^7Be reaction using a pulsed, bunched proton beam from the 5.5 MV Van de Graaff accelerator at the University of Massachusetts Lowell Pinanski Energy Center. The neutrons were detected by a thin liquid scintillator with good time resolution capabilities; time-of-flight techniques were used for neutron energy determination; in addition pulse-shape-discrimination was used to reduce gamma-ray background levels. The measurements are compared to calculations based on the Los Alamos Model of Madland and Nix to test its predictive capabilities. The data are fit by the Watt equation to determine the mean energy of the spectra, and to facilitate comparison of the results to previous measurements. The data are also compared directly to previous measurements.

  19. Fission and Quasifission in the 'Warm' Fusion Reactions

    SciTech Connect

    Itkis, M. G.; Bogachev, A. A.; Chernysheva, E. V.; Itkis, I. M.; Knyazheva, G. N.; Kozulin, E. M.

    2010-06-01

    Mass-energy distributions, as well as capture cross-section of fission-like fragments for the reactions of {sup 48}Ca, {sup 58}Fe and {sup 64}Ni ions with actinides leading to the formation of superheavy compound system with Z = 112-120 at energies near the Coulomb barrier have been measured. Fusion-fission cross sections were estimated from the analysis of mass and total kinetic energy distributions. It was found that the fusion probability is approximately the same for the reactions with {sup 48}Ca ions and drops three orders of magnitude at the transition to {sup 64}Ni ions.

  20. Fission Reaction Event Yield Algorithm, FREYA - For event-by-event simulation of fission

    NASA Astrophysics Data System (ADS)

    Verbeke, J. M.; Randrup, J.; Vogt, R.

    2015-06-01

    From nuclear materials accountability to detection of special nuclear material, SNM, the need for better modeling of fission has grown over the past decades. Current radiation transport codes compute average quantities with great accuracy and performance, but performance and averaging come at the price of limited interaction-by-interaction modeling. For fission applications, these codes often lack the capability of modeling interactions exactly: energy is not conserved, energies of emitted particles are uncorrelated, prompt fission neutron and photon multiplicities are uncorrelated. Many modern applications require more exclusive quantities than averages, such as the fluctuations in certain observables (e.g. the neutron multiplicity) and correlations between neutrons and photons. The new computational model, FREYA (Fission Reaction Event Yield Algorithm), aims to meet this need by modeling complete fission events. Thus it automatically includes fluctuations as well as correlations resulting from conservation of energy and momentum. FREYA has been integrated into the LLNL Fission Library, and will soon be part of MCNPX2.7.0, MCNP6, TRIPOLI-4.9, and Geant4.10.

  1. Recent advances in heavy-ion-induced fission

    SciTech Connect

    Plasil, F.

    1984-01-01

    Three topics are discussed. The first deals with results that have been published recently on angular-momentum-dependent fission barriers. They are discussed because of the significance that we attach to them. We feel that, after a decade of study and controversy, we have arrived at a quantitative understanding of the competition between heavy-ion-induced fission and particle emission from compound nuclei at relatively low bombarding energies. The second topic concerns the extension of our heavy-ion-induced fission studies to higher energies. It is clear that in this regime the effects, both of fission following incomplete fusion and of extra-push requirements, need to be considered. Finally, discussed are our recent conclusions concerning the fissionlike decay of products from reactions between two /sup 58/Ni nuclei at an incident energy, E/A, of 15.3 MeV, as well as the impact of our findings on the conclusions drawn from previous, similar measurements. 39 references.

  2. Measurement of Neutron Induced and Spontaneous Fission in Pu-242 at DANCE

    NASA Astrophysics Data System (ADS)

    Chyzh, Andrii; Wu, C. Y.; Henderson, R.; Couture, A.; Lee, H. Y.; Ullmann, J.; O'Donnell, J. M.; Jandel, M.; Haight, R. C.; Bredeweg, T. A.; Dance Collaboration

    2013-10-01

    Neutron capture and fission reactions are important in nuclear engineering and physics. DANCE (Detector for Advanced Neutron Capture Measurement, LANL) combined with PPAC (avalanche technique based fission tagging detector, LLNL) were used to study neutron induced and spontaneous fission in 242Pu. 2 measurements were performed in 2013. The first experiment was done without the incident neutron beam with the fission tagging ability to study γ-rays emitted in the spontaneous fission of 242Pu. The second one - with the neutron beam to measure both the neutron capture and fission reactions. This is the first direct measurement of prompt fission γ-rays in 242Pu. The γ-ray multiplicity, γ-ray energy, and total energy of γ-rays per fission in 242Pu will be presented. These distributions of the 242Pu spontaneous fission will be compared to those in the 241Pu neutron induced fission. This work was performed under the auspices of the US Department of Energy by Los Alamos National Laboratory under Contract DE-AC52-06NA25396 and Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  3. Fission Mode Influence on Prompt Neutrons and γ-rays Emitted in the Reaction 239Pu(nth,f)

    NASA Astrophysics Data System (ADS)

    Serot, O.; Litaize, O.; Regnier, D.

    Recently, a Monte-Carlo code, which simulates the fission fragment de-excitation process, has been developed at CEA- Cadarache. Our aim is to get a tool capable to predict spectra and multiplicities of prompt particles (neutron and gamma) and to investigate possible correlations between fission observables. One of the main challenges is to define properly the share of the available excitation energy at scission between the two nascent fission fragments. Initially, after the full acceleration of the fission fragments, these excitation energies were treated within a Fermi-gas approximation in aT2 (where a and T stand for the level density parameter and the nuclear temperature) and a mass dependent law of the temperature ratio (RT=TL/TH, with TL and TH the temperature of the light and heavy fragment) has been proposed. With this RT-law, the main fission observables of the 252Cf(sf) could be reproduced. Here, in order to take into account the fission modes by which the fissioning nucleus undergoes to fission, we have adopted a specific RT-law for each fission mode. For actinides, the main fission modes are called Standard I, Standard II and Super Long (following Brosa's terminology). This new procedure has been applied in the case of the thermal neutron induced fission of 239Pu, reaction for which fission modes are rather well known.

  4. Fission dynamics within time-dependent Hartree-Fock. II. Boost-induced fission

    NASA Astrophysics Data System (ADS)

    Goddard, Philip; Stevenson, Paul; Rios, Arnau

    2016-01-01

    Background: Nuclear fission is a complex large-amplitude collective decay mode in heavy nuclei. Microscopic density functional studies of fission have previously concentrated on adiabatic approaches based on constrained static calculations ignoring dynamical excitations of the fissioning nucleus and the daughter products. Purpose: We explore the ability of dynamic mean-field methods to describe induced fission processes, using quadrupole boosts in the nuclide 240Pu as an example. Methods: Following upon the work presented in Goddard et al. [Phys. Rev. C 92, 054610 (2015)], 10.1103/PhysRevC.92.054610, quadrupole-constrained Hartree-Fock calculations are used to create a potential energy surface. An isomeric state and a state beyond the second barrier peak are excited by means of instantaneous as well as temporally extended gauge boosts with quadrupole shapes. The subsequent deexcitation is studied in a time-dependent Hartree-Fock simulation, with emphasis on fissioned final states. The corresponding fission fragment mass numbers are studied. Results: In general, the energy deposited by the quadrupole boost is quickly absorbed by the nucleus. In instantaneous boosts, this leads to fast shape rearrangements and violent dynamics that can ultimately lead to fission. This is a qualitatively different process than the deformation-induced fission. Boosts induced within a finite time window excite the system in a relatively gentler way and do induce fission but with a smaller energy deposition. Conclusions: The fission products obtained using boost-induced fission in time-dependent Hartree-Fock are more asymmetric than the fragments obtained in deformation-induced fission or the corresponding adiabatic approaches.

  5. Reaction behavior of zircaloy with simulated fission products

    SciTech Connect

    Kohli, R.

    1981-01-01

    The investigation reported in this paper was prompted by the lack of information on the reaction behavior of Zircaloy on long-term exposure to fission product environments in the temperature range 573 - 973 K. Small Zircaloy-2 (Zircaloy-2 contains by weight 1.5% Sn; 0.15% Fe; 0.08% Cr; 0.05% Ni; rest Zr) strip specimens (ca. 25mm x 3mm x 0.75 mm thick) were exposed to various simulated fission product environments (Cs, I, Br, Cd, In, Sb, Sn, Se as vapor; all others as powders) for times to 5.4 Ms (1500 h) in the temperature range 673 - 973 K. The reaction behavior was characterized by scanning electron microscopy with an EDAX analyzer, optical metallography, and x-ray diffraction.

  6. Membrane Fission Reactions of the Mammalian ESCRT Pathway

    PubMed Central

    McCullough, John; Colf, Leremy A.; Sundquist, Wesley I.

    2014-01-01

    The endosomal sorting complexes required for transport (ESCRT) pathway was initially defined in yeast genetic screens that identified the factors necessary to sort membrane proteins into intraluminal endosomal vesicles. Subsequent studies have revealed that the mammalian ESCRT pathway also functions in a series of other key cellular processes, including formation of extracellular microvesicles, enveloped virus budding, and the abscission stage of cytokinesis. The core ESCRT machinery comprises Bro1 family proteins and ESCRT-I, ESCRT-II, ESCRT-III, and VPS4. Site-specific adaptors recruit these soluble factors to assemble on different cellular membranes, where they carry out membrane fission reactions. ESCRT-III proteins form filaments that draw membranes together from the cytoplasmic face, and mechanistic models have been advanced to explain how ESCRT-III filaments and the VPS4 ATPase can work together to catalyze membrane fission. PMID:23527693

  7. Microscopic dynamical description of proton-induced fission with the constrained molecular dynamics model

    NASA Astrophysics Data System (ADS)

    Vonta, N.; Souliotis, G. A.; Veselsky, M.; Bonasera, A.

    2015-08-01

    The microscopic description of nuclear fission still remains a topic of intense basic research. Understanding nuclear fission, apart from a theoretical point of view, is of practical importance for energy production and the transmutation of nuclear waste. In nuclear astrophysics, fission sets the upper limit to the nucleosynthesis of heavy elements via the r process. In this work we initiated a systematic study of intermediate-energy proton-induced fission using the constrained molecular dynamics (CoMD) code. The CoMD code implements an effective interaction with a nuclear matter compressibility of K =200 (soft equation of state) with several forms of the density dependence of the nucleon-nucleon symmetry potential. Moreover, a constraint is imposed in the phase-space occupation for each nucleon restoring the Pauli principle at each time step of the collision. A proper choice of the surface parameter of the effective interaction has been made to describe fission. In this work, we present results of fission calculations for proton-induced reactions on: (a) 232Th at 27 and 63 MeV; (b) 235U at 10, 30, 60, and 100 MeV; and (c) 238U at 100 and 660 MeV. The calculated observables include fission-fragment mass distributions, total fission energies, neutron multiplicities, and fission times. These observables are compared to available experimental data. We show that the microscopic CoMD code is able to describe the complicated many-body dynamics of the fission process at intermediate and high energy and give a reasonable estimate of the fission time scale. Sensitivity of the results to the density dependence of the nucleon symmetry potential (and, thus, the nuclear symmetry energy) is found. Further improvements of the code are necessary to achieve a satisfactory description of low-energy fission in which shell effects play a dominant role.

  8. Protactinium neutron-induced fission up to 200 MeV

    NASA Astrophysics Data System (ADS)

    Maslov, V.

    2010-03-01

    The theoretical evaluation of 230-233Pa(n,F) cross sections is based on direct data, 230-234Pa fission probabilities and ratios of fission probabilities in first-chance and emissive fission domains, surrogate for neutroninduced fission. First chance fission cross sections trends of Pa are based on consistent description of 232Th(n,F), 232Th(n,2n) and 238U(n,F), 238U(n,xn) data, supported by the ratio surrogate data by Burke et al., 2006, for the 237U(n,F) reaction. Ratio surrogate data on fission probabilities of 232Th(6 Li,4 He)234Pa and 232 Th(6 Li,d)236U by Nayak et al., 2008, support the predicted 233Pa(n, F) cross section at En=11.5-16.5 MeV. The predicted trends of 230-232Pa(n, F) cross section up to En=20 MeV, are consistent with fissilities of Pa nuclides, extracted by 232Th(p,F) (Isaev et al., 2008) and 232Th(p,3n) (Morgenstern et al., 2008) data analysis. The excitation energy and nucleon composition dependence of the transition from asymmetric to symmetric scission for fission observables of Pa nuclei is defined by analysis of p-induced fission of 232Th at Ep=1-200 MeV. Predominantly symmetric fission in 232Th(p,F) at En( p)=200 MeV as revealed by experimental branching ratios (Dujvestijn et al., 1999) is reproduced. Steep transition from asymmetric to symmetric fission with increase of nucleon incident energy is due to fission of neutron-deficient Pa (A≤229) nuclei. A structure of the potential energy surface (a drop of f f symmetric and asymmetric fission barriers difierence (EfSYM - EfASYM) from ~3.5 MeV to ~1 MeV) of N-deficient Pa nuclides (A≤226) and available phase space at outer fission saddles, are shown to be responsible for the sharp increase with En( p) of the symmetric fission component contribution for 232Th(p,F) and 230-233 Pa(n, F) reactions. That is a strong evidence of emissive fission nature of moderately excited Pa nuclides, reliably quantified only up to En( p)~20(30) MeV. Predicted fission cross section of 232Pa(n,F) coincides

  9. Transfer-induced fission in inverse kinematics: Impact on experimental and evaluated nuclear data bases

    NASA Astrophysics Data System (ADS)

    Farget, F.; Caamaño, M.; Ramos, D.; Rodrıguez-Tajes, C.; Schmidt, K.-H.; Audouin, L.; Benlliure, J.; Casarejos, E.; Clément, E.; Cortina, D.; Delaune, O.; Derkx, X.; Dijon, A.; Doré, D.; Fernández-Domınguez, B.; Gaudefroy, L.; Golabek, C.; Heinz, A.; Jurado, B.; Lemasson, A.; Paradela, C.; Roger, T.; Salsac, M. D.; Schmitt, C.

    2015-12-01

    Inverse kinematics is a new tool to study nuclear fission. Its main advantage is the possibility to measure with an unmatched resolution the atomic number of fission fragments, leading to new observables in the properties of fission-fragment distributions. In addition to the resolution improvement, the study of fission based on nuclear collisions in inverse kinematics beneficiates from a larger view with respect to the neutron-induced fission, as in a single experiment the number of fissioning systems and the excitation energy range are widden. With the use of spectrometers, mass and kinetic-energy distributions may now be investigated as a function of the proton and neutron number sharing. The production of fissioning nuclei in transfer reactions allows studying the isotopic yields of fission fragments as a function of the excitation energy. The higher excitation energy resulting in the fusion reaction leading to the compound nucleus 250Cf at an excitation energy of 45MeV is also presented. With the use of inverse kinematics, the charge polarisation of fragments at scission is now revealed with high precision, and it is shown that it cannot be neglected, even at higher excitation energies. In addition, the kinematical properties of the fragments inform on the deformation configuration at scission.

  10. Neutron Induced Capture and Fission Processes on 238U

    NASA Astrophysics Data System (ADS)

    Oprea, Cristiana; Oprea, Alexandru

    2016-03-01

    Nuclear data on Uranium isotopes are of crucial interest for new generation of nuclear reactors. Processes of interest are the nuclear reactions induced by neutrons and in this work mainly the capture and the fission process on 238U will be analyzed in a wide energy interval. For slow and resonant neutrons the many levels Breit - Wigner formalism is necessary. In the case of fast and very fast neutrons up to 200 MeV the nuclear reaction mechanism implemented in Talys will be used. The present evaluations are necessary in order to obtain the field of neutrons in the design of nuclear reactors and they are compared with experimental data from literature obtained from capture and (n,xn) processes.

  11. Nuclear fission: reaction to the discovery in 1939

    SciTech Connect

    Badash, L.; Hodes, E.; Tiddens, A.

    1985-01-01

    Historical aspects of the behavior of scientists in the aftermath of the discovery of nuclear fission are presented. An extensive background section is given which documents the worldwide discussion of atomic energy over the preceding four decades. A second section briefly surveys the research highlights of 1939. The third section examines the reactions of scientists, primarily in the United States, and includes coverage by newspapers, magazines and radio. The final section includes a number of themes to explain why there was little acknowledgment of the potential of the bomb to affect personal morality, the scientific community and international relations.

  12. Fission-Fusion: A new reaction mechanism for nuclear astrophysics based on laser-ion acceleration

    NASA Astrophysics Data System (ADS)

    Thirolf, P. G.; Habs, D.; Gross, M.; Allinger, K.; Bin, J.; Henig, A.; Kiefer, D.; Ma, W.; Schreiber, J.

    2011-10-01

    We propose to produce neutron-rich nuclei in the range of the astrophysical r-process around the waiting point N = 126 by fissioning a dense laser-accelerated thorium ion bunch in a thorium target (covered by a CH2 layer), where the light fission fragments of the beam fuse with the light fission fragments of the target. Via the `hole-boring' mode of laser Radiation Pressure Acceleration using a high-intensity, short pulse laser, very efficiently bunches of 232Th with solid-state density can be generated from a Th target and a deuterated CD2 foil, both forming the production target assembly. Laser-accelerated Th ions with about 7 MeV/u will pass through a thin CH2 layer placed in front of a thicker second Th foil (both forming the reaction target) closely behind the production target and disintegrate into light and heavy fission fragments. In addition, light ions (d,C) from the CD2 layer of the production target will be accelerated as well, inducing the fission process of 232Th also in the second Th layer. The laser-accelerated ion bunches with solid-state density, which are about 1014 times more dense than classically accelerated ion bunches, allow for a high probability that generated fission products can fuse again. The high ion beam density may lead to a strong collective modification of the stopping power, leading to significant range and thus yield enhancement. Using a high-intensity laser as envisaged for the ELI-Nuclear Physics project in Bucharest (ELI-NP), order-of-magnitude estimates promise a fusion yield of about 103 ions per laser pulse in the mass range of A = 180-190, thus enabling to approach the r-process waiting point at N = 126.

  13. Event-by-Event Fission Modeling of Prompt Neutrons and Photons from Neutron-Induced and Spontaneous Fission with FREYA

    NASA Astrophysics Data System (ADS)

    Vogt, Ramona; Randrup, Jorgen

    2013-04-01

    The event-by-event fission Monte Carlo code FREYA (Fission Reaction Event Yield Algorithm) generates large samples of complete fission events. Using FREYA, it is possible to obtain the fission products as well as the prompt neutrons and photons emitted during the fission process, all with complete kinematic information. We can therefore extract any desired correlation observables. Concentrating on ^239Pu(n,f), ^240Pu(sf) and ^252Cf(sf), we compare our FREYA results with available data on prompt neutron and photon emission and present predictions for novel fission observables that could be measured with modern detectors.

  14. Fission fragment angular distribution for the 19F+197Au fusion-fission reaction at near-barrier energies

    NASA Astrophysics Data System (ADS)

    Tripathi, R.; Sudarshan, K.; Sodaye, S.; Reddy, A. V.; Mahata, K.; Goswami, A.

    2005-04-01

    Angular distribution of fission fragments have been measured for 19F+197Au reaction at bombarding energies from 91 to 110 MeV. Fission fragment angular distributions have been calculated by transition state model with the transmission coefficients obtained using the coupled-channels theory. The calculated angular anisotropies are in good agreement with the experimental anisotropies. The experimental fission cross sections have also been reproduced on the basis of the coupled-channels theory. The results of angular distribution measurement do not show any significant contribution from quasifission as was reported in the literature based on the measurement of evaporation residues and mass distribution.

  15. Fission Study of Actinide Nuclei Using Multi-nucleon Transfer Reactions

    NASA Astrophysics Data System (ADS)

    Nishio, Katsuhisa; Hirose, Kentaro; Léguillon, R.; Makii, Hiroyuki; Nishinaka, Ichiro; Orlandi, Riccardo; Smallcombe, James; Tsukada, Kazuaki; Chiba, Satoshi; Ohtsuki, Tsutomu; Tatsuzawa, Ryotaro; Takaki, Naoyuki

    We have developed a set up to measure fission properties of excited compound nuclei populated by multi-nucleon transfer reactions. This approach has an advantage that we can study fission of neutron-rich nuclei which cannot be accessed by particle or charged-particle capture reactions. Unique feature in our setup is that we can produce fission data for many nuclei depending on different transfer channels. Also wide excitation energy range can be covered in this set up, allowing us to measure the excitation energy dependence of the fission properties. Preliminary data obtained in the 18O + 238U reaction will be presented.

  16. Description of induced nuclear fission with Skyrme energy functionals. II. Finite temperature effects

    NASA Astrophysics Data System (ADS)

    Schunck, N.; Duke, D.; Carr, H.

    2015-03-01

    Understanding the mechanisms of induced nuclear fission for a broad range of neutron energies could help resolve fundamental science issues, such as the formation of elements in the universe, but could have also a large impact on societal applications in energy production or nuclear waste management. The goal of this paper is to set up the foundations of a microscopic theory to study the static aspects of induced fission as a function of the excitation energy of the incident neutron, from thermal to fast neutrons. To account for the high excitation energy of the compound nucleus, we employ a statistical approach based on finite temperature nuclear density functional theory with Skyrme energy densities, which we benchmark on the 239Pu(n ,f ) reaction. We compute the evolution of the least-energy fission pathway across multidimensional potential energy surfaces with up to five collective variables as a function of the nuclear temperature and predict the evolution of both the inner and the outer fission barriers as a function of the excitation energy of the compound nucleus. We show that the coupling to the continuum induced by the finite temperature is negligible in the range of neutron energies relevant for many applications of neutron-induced fission. We prove that the concept of quantum localization introduced recently can be extended to T >0 , and we apply the method to study the interaction energy and total kinetic energy of fission fragments as a function of the temperature for the most probable fission. While large uncertainties in theoretical modeling remain, we conclude that a finite temperature nuclear density functional may provide a useful framework to obtain accurate predictions of fission fragment properties.

  17. Prompt fission neutron spectra in fast-neutron-induced fission of 238U

    NASA Astrophysics Data System (ADS)

    Desai, V. V.; Nayak, B. K.; Saxena, A.; Suryanarayana, S. V.; Capote, R.

    2015-07-01

    Prompt fission neutron spectrum (PFNS) measurements for the neutron-induced fission of 238U are carried out at incident neutron energies of 2.0, 2.5, and 3.0 MeV, respectively. The time-of-flight technique is employed to determine the energy of fission neutrons. The prompt fission neutron energy spectra so obtained are analyzed using Watt parametrization to derive the neutron multiplicity and average prompt fission neutron energy. The present experimental PFNS data are compared with the evaluated spectra taken from the ENDF/B-VII.1 library and the predictive calculations carried out using the empire-3.2 (Malta) code with built-in Los Alamos (LA) and Kornilov PFNS models. The sensitivity of the empire-3.2 LA model-calculated PFNS to the nuclear level density parameter of the average fission fragment and to the total kinetic energy is investigated. empire-3.2 LA model PFNS calculations that use Madland 2006-recommended values [D. G. Madland, Nucl. Phys. A 772, 113 (2006), 10.1016/j.nuclphysa.2006.03.013] of the total kinetic energy and the level density parameter a =A /(10 ±0.5 ) compare very well to measured data at all incident neutron incident energies.

  18. Dependence of Delayed-Neutron Energy Spectra on the Energy of Neutrons which Induce Fission of Uranium -235

    NASA Astrophysics Data System (ADS)

    Sharfuddin, Quazi

    Delayed neutron energy spectra following both fast and thermal neutron induced fission of U-235 are measured by the time-of-flight technique using beta-neutron correlations. Fast neutrons are produced via the (p,n) reaction in Li-7 using the University of Lowell 5.5 MV Van de Graaff Accelerator, whereas thermal neutrons are produced by surrounding the fission chamber and target assembly with paraffin. Fission fragments stopped in the helium atmosphere of the fission chamber are transferred by a helium jet system to a low background counting room where the composite delayed neutron energy spectra are measured as a function of time after fission. The delayed neutron energy spectra following fast fission of U-235 are compared to those resulting from thermal fission of U-235. Two mathematical methods are developed to deduce the equilibrium delayed neutron spectrum from the composite delayed neutron spectra measured as a function of delay time after fission. These methods are then applied to obtain the equilibrium delayed neutron spectrum from thermal fission of U-235. Finally, the six-group delayed neutron spectra resulting from thermal fission of U-235 are deduced from the measured composite delayed neutron spectra as a function of delay time after fission using a matrix inversion method.

  19. Actinide neutron-induced fission cross section measurements at LANSCE

    SciTech Connect

    Tovesson, Fredrik K; Laptev, Alexander B; Hill, Tony S

    2010-01-01

    Fission cross sections of a range of actinides have been measured at the Los Alamos Neutron Science Center (LANSCE) in support of nuclear energy applications in a wide energy range from sub-thermal energies up to 200 MeV. A parallel-plate ionization chamber are used to measure fission cross sections ratios relative to the {sup 235}U standard while incident neutron energies are determined using the time-of-flight method. Recent measurements include the {sup 233,238}U, {sup 239-242}Pu and {sup 243}Am neutron-induced fission cross sections. Obtained data are presented in comparison with ex isting evaluations and previous data.

  20. Dynamics of neutron-induced fission of 235U using four-dimensional Langevin equations

    NASA Astrophysics Data System (ADS)

    Pahlavani, M. R.; Mirfathi, S. M.

    2015-08-01

    Background: Langevin equations have been suggested as a key approach to the dynamical analysis of energy dissipation in excited nuclei, formed during heavy-ion fusion-fission reactions. Recently, a few researchers theoretically reported investigations of fission for light nuclei in a low excitation energy using the Langevin approach, without considering the contribution of pre- and post-scission particles and γ -ray emission. Purpose: We study the dynamical evolution of mass distribution of fission fragments, and neutron and γ -ray multiplicity for 236U as compound nuclei that are constructed after fusion of a neutron and 235U. Method: Energy dissipation of the compound nucleus through fission is calculated using the Langevin dynamical approach combined with a Monte Carlo method. Also the shape of the fissioning nucleus is restricted to "funny hills" parametrization. Results: Fission fragment mass distribution, neutron and γ -ray multiplicity, and the average kinetic energy of emitted neutrons and γ rays at a low excitation energy are calculated using a dynamical model, based on the four-dimensional Langevin equations. Conclusions: The theoretical results show reasonable agreement with experimental data and the proposed dynamical model can well explain the energy dissipation in low energy induced fission.

  1. Nucleon-induced fission cross sections of heavy nuclei in the intermediate energy region

    NASA Astrophysics Data System (ADS)

    Prokofiev, Alexander V.

    Fission is the most important nuclear reaction for society at large today due to its use in energy production. However, this has raised the problem of how to treat the long-lived radioactive waste from nuclear reactors. A radical solution would be to change the composition of the waste into stable or short-lived nuclides, which could be done through nuclear transmutation. Such a concept requires accelerator-driven systems to be designed, where those for transmutation are reactor hybrids. This thesis is a contribution to the knowledge base for developing transmutation systems, specifically with respect to the computational modeling of the underlying nuclear reactions, induced by the incident and secondary particles. Intermediate energy fission cross sections are one important type of such data. Moreover, they are essential for understanding the fission process itself and related nuclear interactions. The experimental part of this work was performed at the neutron beam facility of The Svedberg Laboratory in Uppsala. Fission cross sections of 238U, 209Bi, natPb, 208Pb, 197Au, natW, and 181Ta were measured for neutrons in the range En = 30-160 MeV using thin-film breakdown counters for the fission fragment detection. A model was developed for the determination of the efficiency of such detectors. A compilation of existing data on proton-induced fission cross sections for nuclei from 165Ho to 239Pu was performed. The results, which constitute the main body of information in this field, were added to the worldwide EXFOR database. The dependences of the cross sections on incident energy and target nucleus were studied, which resulted in systematics that make it possible to give estimates for unmeasured nuclides. Nucleon-induced fission cross sections were calculated using an extended version of the cascade exciton model. A comparison with the systematics and the experimental data obtained in the present work revealed significant discrepancies. A modification of the model

  2. Recoil-α-fission and recoil-α-α-fission events observed in the reaction 48Ca + 243Am

    NASA Astrophysics Data System (ADS)

    Forsberg, U.; Rudolph, D.; Andersson, L.-L.; Di Nitto, A.; Düllmann, Ch. E.; Fahlander, C.; Gates, J. M.; Golubev, P.; Gregorich, K. E.; Gross, C. J.; Herzberg, R.-D.; Heßberger, F. P.; Khuyagbaatar, J.; Kratz, J. V.; Rykaczewski, K.; Sarmiento, L. G.; Schädel, M.; Yakushev, A.; Åberg, S.; Ackermann, D.; Block, M.; Brand, H.; Carlsson, B. G.; Cox, D.; Derkx, X.; Dobaczewski, J.; Eberhardt, K.; Even, J.; Gerl, J.; Jäger, E.; Kindler, B.; Krier, J.; Kojouharov, I.; Kurz, N.; Lommel, B.; Mistry, A.; Mokry, C.; Nazarewicz, W.; Nitsche, H.; Omtvedt, J. P.; Papadakis, P.; Ragnarsson, I.; Runke, J.; Schaffner, H.; Schausten, B.; Shi, Yue; Thörle-Pospiech, P.; Torres, T.; Traut, T.; Trautmann, N.; Türler, A.; Ward, A.; Ward, D. E.; Wiehl, N.

    2016-09-01

    Products of the fusion-evaporation reaction 48Ca + 243Am were studied with the TASISpec set-up at the gas-filled separator TASCA at the GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany. Amongst the detected thirty correlated α-decay chains associated with the production of element Z = 115, two recoil-α-fission and five recoil- α- α-fission events were observed. The latter five chains are similar to four such events reported from experiments performed at the Dubna gas-filled separator, and three such events reported from an experiment at the Berkeley gas-filled separator. The four chains observed at the Dubna gas-filled separator were assigned to start from the 2n-evaporation channel 289115 due to the fact that these recoil- α- α-fission events were observed only at low excitation energies. Contrary to this interpretation, we suggest that some of these recoil- α- α-fission decay chains, as well as some of the recoil- α- α-fission and recoil-α-fission decay chains reported from Berkeley and in this article, start from the 3n-evaporation channel 288115.

  3. Fission fragment mass distributions in reactions forming the {sup 213}Fr compound nucleus

    SciTech Connect

    Appannababu, S.; Mukherjee, S.; Deshmukh, N. N.; Rath, P. K.; Singh, N. L.; Nayak, B. K.; Thomas, R. G.; Choudhury, R. K.; Sugathan, P.; Jhingan, A.; Negi, D.; Prasad, E.

    2011-03-15

    The fission fragment mass angle correlations and mass ratio distributions have been investigated for the two systems {sup 16}O+{sup 197}Au and {sup 27}Al+{sup 186}W, leading to the same compound nucleus {sup 213}Fr around the Coulomb barrier energies. Systematic analysis of the variance of the mass distributions as a function of temperature and angular momentum suggests true compound nuclear fission for both the reactions, indicating the absence of nonequilibrium fission processes.

  4. Lanl Neutron-Induced Fission Cross Section Measurement Program

    NASA Astrophysics Data System (ADS)

    Laptev, A. B.; Tovesson, F.; Hill, T. S.

    2014-09-01

    A well established program of neutron-induced fission cross section measurement at Los Alamos Neutron Science Center (LANSCE) is supporting the Fuel Cycle Research program (FC R&D). Combining measurements at two LANSCE facilities, the Lujan Center and the Weapons Neutron Research facility (WNR), cover neutron energies over 10 orders of magnitude: from sub-thermal up to 200 MeV. A parallel-plate fission ionization chamber was used as a fission fragment detector. The 235U(n,f) standard was used as the reference. Fission cross sections have been measured for multiple actinides. The new data presented here completes the suite of long-lived Uranium isotopes that were investigated with this experimental approach. The cross section data are presented in comparison with existing evaluations and previous measurements.

  5. Developments for neutron-induced fission at IGISOL-4

    NASA Astrophysics Data System (ADS)

    Gorelov, D.; Penttilä, H.; Al-Adili, A.; Eronen, T.; Hakala, J.; Jokinen, A.; Kankainen, A.; Kolhinen, V. S.; Koponen, J.; Lantz, M.; Mattera, A.; Moore, I. D.; Pohjalainen, I.; Pomp, S.; Rakopoulos, V.; Reinikainen, J.; Rinta-Antila, S.; Simutkin, V.; Solders, A.; Voss, A.; Äystö, J.

    2016-06-01

    At the IGISOL-4 facility, neutron-rich, medium mass nuclei have usually been produced via charged particle-induced fission of natural uranium and thorium. Neutron-induced fission is expected to have a higher production cross section of the most neutron-rich species. Development of a neutron source along with a new ion guide continues to be one of the major goals since the commissioning of IGISOL-4. Neutron intensities at different angles from a beryllium neutron source have been measured in an on-line experiment with a 30 MeV proton beam. Recently, the new ion guide coupled to the neutron source has been tested as well. Details of the neutron source and ion guide design together with preliminary results from the first neutron-induced fission experiment at IGISOL-4 are presented in this report.

  6. Fission induced swelling of U-Mo/Al dispersion fuel

    NASA Astrophysics Data System (ADS)

    Kim, Yeon Soo; Jeong, G. Y.; Park, J. M.; Robinson, A. B.

    2015-10-01

    Fission-induced swelling of U-Mo/Al dispersion fuel meat was measured using microscopy images obtained from post-irradiation examination. The data of reduced-size plate-type test samples and rod-type test samples were employed for this work. A model to predict the meat swelling of U-Mo/Al dispersion fuel was developed. This model is composed of several submodels including a model for interaction layer (IL) growth between U-Mo and Al matrix, a model for IL thickness to IL volume conversion, a correlation for the fission-induced swelling of U-Mo alloy particles, a correlation for the fission-induced swelling of IL, and models of U-Mo and Al consumption by IL growth. The model was validated using full-size plate data that were not included in the model development.

  7. Prompt Gamma Emission in Resonance Neutron Induced Fission of 239Pu

    NASA Astrophysics Data System (ADS)

    Ruskov, I.; Kopatch, Yu. N.; Panteleev, Ts.; Skoy, V. R.; Shvetsov, V. N.; Dermendjiev, E.; Janeva, N.; Pikelner, L. B.; Grigoriev, Yu. V.; Mezentseva, Zh. V.; Ivanov, I.

    The scientific interest in the resonance neutron induced capture and fission reactions on 239Pu is continuously rising during the last decade. From a practical point of view, this is because more precise data on capture and fission cross sections, fission fragment mass and kinetic energy distributions, variation of prompt fission neutron and gamma yields in the resonance neutron region, are needed for the modelling of new generation nuclear power plants and for nuclear spent fuel and waste transmutation. From a heuristic and fundamental point of view, such a research improves our knowledge and understanding of the fission phenomena itself. To achieve these goals more powerful neutron sources and more precise fission product detectors have to be used. At the Joint Institute for Nuclear Research (JINR) Frank Laboratory of Neutron Physics (FLNP), where already half a century the thermal and resonance neutron induced nuclear reactions are studied, a new electron accelerator driven white spectrum pulsed neutron source IREN has been built and successfully tested. The improved characteristics of this facility, in comparison with those of the former pulse neutron fast reactor IBR-30, will allow measuring some of the neutron-nuclear reaction data with better precision and accuracy. A new experimental setup for detecting gamma rays (and neutrons) has been designed and is under construction. It will consist of 2 rings (arrays) of 12 NaI(Tl) detectors each (or 1 array of 24 detectors) with variable ring diameter and distance between both rings. Such a setup will make possible not only to measure the multiplicity, energy and angular anisotropy of prompt fission gammas, but also to separate the contribution of prompt fission neutrons by their longer time-of-flight from the fissile target to the detectors. The signals from all the 24 detectors will be recorded simultaneously in digitized form and will be stored on the hard disk of the personal computer for further off

  8. Two-photon-induced singlet fission in rubrene single crystal

    NASA Astrophysics Data System (ADS)

    Ma, Lin; Galstyan, Gegham; Zhang, Keke; Kloc, Christian; Sun, Handong; Soci, Cesare; Michel-Beyerle, Maria E.; Gurzadyan, Gagik G.

    2013-05-01

    The two-photon-induced singlet fission was observed in rubrene single crystal and studied by use of femtosecond pump-probe spectroscopy. The location of two-photon excited states was obtained from the nondegenerate two-photon absorption (TPA) spectrum. Time evolution of the two-photon-induced transient absorption spectra reveals the direct singlet fission from the two-photon excited states. The TPA absorption coefficient of rubrene single crystal is 52 cm/GW at 740 nm, as obtained from Z-scan measurements. Quantum chemical calculations based on time-dependent density functional theory support our experimental data.

  9. Event-by-Event Simulation of Induced Fission

    SciTech Connect

    Vogt, R; Randrup, J

    2007-12-13

    We are developing a novel code that treats induced fission by statistical (or Monte-Carlo) simulation of individual decay chains. After its initial excitation, the fissionable compound nucleus may either deexcite by evaporation or undergo binary fission into a large number of fission channels each with different energetics involving both energy dissipation and deformed scission prefragments. After separation and Coulomb acceleration, each fission fragment undergoes a succession of individual (neutron) evaporations, leading to two bound but still excited fission products (that may further decay electromagnetically and, ultimately, weakly), as well as typically several neutrons. (The inclusion of other possible ejectiles is planned.) This kind of approach makes it possible to study more detailed observables than could be addressed with previous treatments which have tended to focus on average quantities. In particular, any type of correlation observable can readily be extracted from a generated set of events. With a view towards making the code practically useful in a variety of applications, emphasis is being put on making it numerically efficient so that large event samples can be generated quickly. In its present form, the code can generate one million full events in about 12 seconds on a MacBook laptop computer. The development of this qualitatively new tool is still at an early stage and quantitative reproduction of existing data should not be expected until a number of detailed refinement have been implemented.

  10. Excitation of Energy Levels of Fissionable Nucleus Shape Isomers in the Doorway State in Reactions with Neutrons and Deuterons

    SciTech Connect

    Serov, V.I.; Andreev, M.F.; Zavgorodny, V.A.

    2005-05-24

    Measurements were conducted for the fission neutron yields with fission fragments in the (d,pf) reactions at some excitation energies, where threshold neutrons were discovered. These data on the neutron yields in 233U(d,pfn) and 239Pu(d,pfn) reactions have been compared with the dependence of the average of fission neutrons vp(En) in the 233U(n,f) reaction as well as fission probability in the 239Pu(d,pf) reaction on excitation energy, which provides a better understanding of the nuclear fission process in a (d,pf) reaction and the vp(En) dependence on neutron energy.

  11. On the role of energy separated in fission process, excitation energy and reaction channels effects in the isomeric ratios of fission product 135Xe in photofission of actinide elements

    NASA Astrophysics Data System (ADS)

    Thiep, Tran Duc; An, Truong Thi; Cuong, Phan Viet; Vinh, Nguyen The; Mishinski, G. V.; Zhemenik, V. I.

    2016-07-01

    In this work we present the isomeric ratio of fission product 135Xe in the photo-fission of actinide elements 232Th, 233U and 237Np induced by end-point bremsstrahlung energies of 13.5, 23.5 and 25.0 MeV which were determined by the method of inert gaseous flow. The data were analyzed, discussed and compared with the similar data from literature to examine the role of energy separated in fission process, excitation energy and reaction channels effects.

  12. Determination of Minor Actinides Fission Cross Sections by Means of Transfer Reactions

    NASA Astrophysics Data System (ADS)

    Aiche, M.; Barreau, G.; Boyer, S.; Czajkowski, S.; Dassié, D.; Grosjean, C.; Guiral, A.; Haas, B.; Jurado, B.; Osmanov, B.; Bauge, E.; Petit, M.; Berthoumieux, E.; Gunsing, F.; Perrot, L.; Theisen, C.; Michel-Sendis, F.; Billebaud, A.; Wilson, J. N.; Ahmad, I.; Greene, J. P.; Janssens, R. V. F.

    2006-04-01

    An inventive method that allows to determine neutron-induced cross sections of very short-lived minor actinides is presented. We have successfully applied this method, based on the use of transfer reactions, to 233Pa, a key nucleus in the 232Th-233U fuel cycle. A recent experiment using this technique has also been performed in order to obtain the neutron-induced fission cross sections of 242, 243, 244Cm and 241Am which are present in the nuclear waste of the current U-Pu fuel cycle. These cross sections are highly relevant for the design of reactors capable to incinerate minor actinides. Preliminary experimental results will be presented.

  13. Dissipative effects in fission investigated with proton-on-lead reactions

    NASA Astrophysics Data System (ADS)

    Rodríguez-Sánchez, J. L.; Benlliure, J.; Taïeb, J.; Álvarez-Pol, H.; Audouin, L.; Ayyad, Y.; Bélier, G.; Boutoux, G.; Casarejos, E.; Chatillon, A.; Cortina-Gil, D.; Gorbinet, T.; Heinz, A.; Kelić-Heil, A.; Laurent, B.; Martin, J.-F.; Paradela, C.; Pellereau, E.; Pietras, B.; Ramos, D.; Rodríguez-Tajes, C.; Rossi, D. M.; Simon, H.; Vargas, J.; Voss, B.

    2016-05-01

    The complete kinematic measurement of the two fission fragments permitted us to investigate dissipative effects at large deformations, between the saddle-point and the corresponding scission configurations. Up to now, this kind of study has only been performed with fusionfission reactions using a limited number of observables, such as the mass distribution of the fission fragments or the neutron multiplicities. However, the large angular momenta gained by the compound nucleus could affect the conclusions drawn from such experiments. In this work, the use of spallation reactions, where the fissioning systems are produced with low angular momentum, small deformations and high excitation energies, favors the study of dissipation, and allowed us to define new observables, such as postscission neutron multiplicities and the neutron excess of the final fission fragments as a function of the atomic number of the fissioning system. These new observables are used to investigate the dissipation at large deformations.

  14. Fission-fragment angular distributions for the 19F + 208Pb near- and sub-barrier fusion-fission reaction

    NASA Astrophysics Data System (ADS)

    Huanqiao, Zhang; Zuhua, Liu; Jincheng, Xu; Kan, Xu; Jun, Lu; Ming, Ruan

    1990-06-01

    Fission cross sections and angular distributions have been measured for the 19F + 208Pb reaction at bombarding energies from 83 to 105 MeV. The fission excitation function is well reproduced on the basis of the coupled-channels theory. The fission-fragment angular distributions are calculated in terms of the transition-state theory, with the transmission coefficients extracted from the excitation function calculation. It is found that a discrepancy between the observations and the predictions in angular anisotropy of fission fragments exists at near- and sub-barrier energies, except for lower and higher energy regions where the discrepancy tends to disappear. Moreover, the anisotropies as a function of the center-of-mass energy show a shoulder around 82 MeV. Our results clearly indicate the considerable effects of the coupling on the sub-barrier fusion cross section and on the near-barrier compound-nucleus spin distribution, and confirm the prediction of an approximately constant value for the mean square spin of a compound nucleus produced in a far sub-barrier fusion reaction.

  15. Neutron-Induced Fission Cross Sections Measurements at n_TOF

    SciTech Connect

    Audouin, L.; Tassan-Got, L.; Isaev, S.; Koehler, Paul Edward; Collaboration, n_TOF

    2008-01-01

    The neutron-induced fission cross sections of {sup 233}U, {sup 234}U, {sup 235}U, {sup 238}U, {sup 232}Th, {sup 237}Np, {sup 209}Bi, {sup nat}Pb have been measured at the n{_}TOF facility at CERN over 9 orders of magnitude in neutron energy using {sup 235}U as a reference. Parallel Plate Avalanche Counters were used to detect both fission fragments in coincidence, thus efficiently discriminating fissions from other reactions. Data benefit from the remarkable energy resolution of the n{_}TOF facility. They are found in overall good agreement with databases and previous measurements, but some clear discrepancies can be put in evidence. These data are the first full coverage of the high-energy region (up to 1 GeV).

  16. A New Facility for High-Energy Neutron-Induced Fission Studies

    SciTech Connect

    Prokofiev, A.; Carlsson, M.; Einarsson, L.; Haag, N.; Pomp, S.; Bergenwall, B.; Blomgren, J.; Hildebrand, A.; Johansson, C.; Mermod, P.; Oesterlund, M.; Tippawan, U.; Dangtip, S.

    2005-05-24

    A new facility is constructed for measurements of neutron-induced fission cross sections in the 20-180 MeV energy region versus the np scattering cross section, which is adopted as the primary neutron standard. The advantage of the experiment compared to earlier studies is that the fission-fragment detection and the neutron-flux measurement via np scattering are performed simultaneously and at the same position in the beam, and, therefore, many sources of systematic errors cancel out. Further reduction of systematic errors is achieved due to 'embedded' determination of effective solid angle of particle detectors using {alpha}-particles from the radioactive decay of the target nuclei. The performance of the facility is illustrated by first data obtained for angular distributions of fission fragments in the 238U(n,f) reaction.

  17. Quasifission and fusion-fission in reactions with massive nuclei: Comparison of reactions leading to the Z=120 element

    SciTech Connect

    Nasirov, A. K.; Giardina, G.; Mandaglio, G.; Manganaro, M.; Hanappe, F.; Heinz, S.; Hofmann, S.; Muminov, A. I.; Scheid, W.

    2009-02-15

    The yields of evaporation residues, fusion-fission, and quasifission fragments in the {sup 48}Ca+{sup 144,154}Sm and {sup 16}O+{sup 186}W reactions are analyzed in the framework of the combined theoretical method based on the dinuclear system concept and advanced statistical model. The measured yields of evaporation residues for the {sup 48}Ca+{sup 154}Sm reaction can be well reproduced. The measured yields of fission fragments are decomposed into contributions coming from fusion-fission, quasifission, and fast-fission. The decrease in the measured yield of quasifission fragments in {sup 48}Ca+{sup 154}Sm at the large collision energies and the lack of quasifission fragments in the {sup 48}Ca+{sup 144}Sm reaction are explained by the overlap in mass angle distributions of the quasifission and fusion-fission fragments. The investigation of the optimal conditions for the synthesis of the new element Z=120 (A=302) show that the {sup 54}Cr+{sup 248}Cm reaction is preferable in comparison with the {sup 58}Fe+{sup 244}Pu and {sup 64}Ni+{sup 238}U reactions because the excitation function of the evaporation residues of the former reaction is some orders of magnitude larger than that for the last two reactions.

  18. Laser induced nuclear reactions

    SciTech Connect

    Ledingham, Ken; McCanny, Tom; Graham, Paul; Fang Xiao; Singhal, Ravi; Magill, Joe; Creswell, Alan; Sanderson, David; Allott, Ric; Neely, David; Norreys, Peter; Santala, Marko; Zepf, Matthew; Watts, Ian; Clark, Eugene; Krushelnick, Karl; Tatarakis, Michael; Dangor, Bucker; Machecek, Antonin; Wark, Justin

    1998-12-16

    Dramatic improvements in laser technology since 1984 have revolutionised high power laser technology. Application of chirped-pulse amplification techniques has resulted in laser intensities in excess of 10{sup 19} W/cm{sup 2}. In the mid to late eighties, C. K. Rhodes and K. Boyer discussed the possibility of shining laser light of this intensity onto solid surfaces and to cause nuclear transitions. In particular, irradiation of a uranium target could induce electro- and photofission in the focal region of the laser. In this paper it is shown that {mu}Ci of {sup 62}Cu can be generated via the ({gamma},n) reaction by a laser with an intensity of about 10{sup 19} Wcm{sup -2}.

  19. Energy dependence of mass, charge, isotopic, and energy distributions in neutron-induced fission of 235U and 239Pu

    NASA Astrophysics Data System (ADS)

    Pasca, H.; Andreev, A. V.; Adamian, G. G.; Antonenko, N. V.; Kim, Y.

    2016-05-01

    The mass, charge, isotopic, and kinetic-energy distributions of fission fragments are studied within an improved scission-point statistical model in the reactions 235U+n and 239Pu+n at different energies of the incident neutron. The charge and mass distributions of the electromagnetic- and neutron-induced fission of 214,218Ra, 230,232,238U are also shown. The available experimental data are well reproduced and the energy-dependencies of the observable characteristics of fission are predicted for future experiments.

  20. Large optical nonlinearity induced by singlet fission in pentacene films.

    PubMed

    Liu, Yunlong; Zhang, Chunfeng; Wang, Rui; Zhang, Bo; Tan, Zhanao; Wang, Xiaoyong; Xiao, Min

    2015-05-18

    By creating two triplet excitons from one photo-excited singlet exciton, singlet fission in organic semiconductors has drawn tremendous attention for its potential applications in boosting the efficiency of solar conversion. Here, we show that this carrier-multiplication effect can also be used to dramatically improve the nonlinear optical response in organic materials. We have observed large optical nonlinearity with a magnitude of χ((3)) up to 10(-9) esu in pentacene films, which is further shown to be a result of singlet fission by monitoring the temporal dynamics. The potential application of such efficient nonlinear optical response has been demonstrated with a singlet-fission-induced polarization rotation. PMID:25845461

  1. Cyclin C mediates stress-induced mitochondrial fission and apoptosis

    PubMed Central

    Wang, Kun; Yan, Ruilan; Cooper, Katrina F.; Strich, Randy

    2015-01-01

    Mitochondria are dynamic organelles that undergo constant fission and fusion cycles. In response to cellular damage, this balance is shifted dramatically toward fission. Cyclin C–Cdk8 kinase regulates transcription of diverse gene sets. Using knockout mouse embryonic fibroblasts (MEFs), we demonstrate that cyclin C directs the extensive mitochondrial scission induced by the anticancer drug cisplatin or oxidative stress. This activity is independent of transcriptional regulation, as Cdk8 is not required for this activity. Furthermore, adding purified cyclin C to unstressed permeabilized MEF cultures induced complete mitochondrial fragmentation that was dependent on the fission factors Drp1 and Mff. To regulate fission, a portion of cyclin C translocates from the nucleus to the cytoplasm, where it associates with Drp1 and is required for its enhanced mitochondrial activity in oxidatively stressed cells. In addition, although HeLa cells regulate cyclin C in a manner similar to MEF cells, U2OS osteosarcoma cultures display constitutively cytoplasmic cyclin C and semifragmented mitochondria. Finally, cyclin C, but not Cdk8, is required for loss of mitochondrial outer membrane permeability and apoptosis in cells treated with cisplatin. In conclusion, this study suggests that cyclin C connects stress-induced mitochondrial hyperfission and programmed cell death in mammalian cells. PMID:25609094

  2. First simultaneous measurement of fission and gamma probabilities of 237U and 239Np via surrogate reactions

    NASA Astrophysics Data System (ADS)

    Marini, P.; Ducasse, Q.; Jurado, B.; Aiche, M.; Mathieu, L.; Barreau, G.; Czajkowski, S.; Tsekhanovich, I.; Moro, A.; Lei, J.; Giacoppo, F.; Gorgen, A.; Tornyi; Audouin, L.; Tassan-Got, L.; Wilson, J. N.; Gunsing, F.; Guttormsen, M.; Larsen, A. C.; Lebois, M.; Renstrom, T.; Rose, S.; Siem, S.; Tveten, G. M.; Wiedeking, M.; Serot, O.; Boutoux, G.; Méot, V.; Morillon, B.; Denis-Petit, D.; Roig, O.; Oberstedt, S.; Oberstedt, A.

    2016-06-01

    Fission and gamma decay probabilities of 237U and 239Np have been measured, for the first time simultaneously in dedicated experiments, via the surrogate reactions 238U(3He, 4He) and 238U(3He,d), respectively. While a good agreement between our data and neutron-induced data is found for fission probabilities, gamma decay probabilities are several times higher than the corresponding neutron-induced data for each studied nucleus. We study the role of the different spin distributions populated in the surrogate and neutron-induced reactions. The compound nucleus spin distribution populated in the surrogate reaction is extracted from the measured gamma-decay probabilities, and used as input parameter in the statistical model to predict fission probabilities to be compared to our data. A strong disagreement between our data and the prediction is obtained. Preliminary results from an additional dedicated experiment confirm the observed discrepancies, indicating the need of a better understanding of the formation and decay processes of the compound nucleus.

  3. Mass resolved angular distribution of fission fragments for near-barrier fusion-fission reactions

    SciTech Connect

    Vorkapic, D.

    1997-05-01

    It is shown that K-equilibration fission can explain the decrease of mass resolved fission fragment anisotropy at larger mass asymmetries. Two competing mechanisms contribute to the anisotropy. The effective moment of inertia and K{sub 0}{sup 2} decreases with the increase of mass asymmetry and contribute to the increase of anisotropy. On the other hand, for larger asymmetries, the barriers are higher and lifetimes are longer. Such systems are more K equilibrated and will have smaller anisotropy. {copyright} {ital 1997} {ital The American Physical Society}

  4. Tables of Neutron-Induced Fission Cross Section for Various Pu, U, and Th Isotopes, Deduced from Measured Fission Probabilites

    SciTech Connect

    Younes, W; Britt, H C

    2003-03-31

    Cross sections for neutron-induced fission of {sup 231,233}Th, {sup 234,235,236,237,239}U, and {sup 240,241,243}Pu are presented in tabular form for incident neutron energies of 0.1 {le} E{sub n}(MeV) {le} 2.5. The cross sections were obtained by converting measured fission probabilities from (t,pf) reactions on mass-A targets to (n,f) cross sections on mass-A + 1 neutron targets, by using modeling to compensate for the differences in the reaction mechanisms. Data from Britt et al. were used for the {sup 234}U(t,pf) reaction, from Cramer et al. for the {sup 230,232}Th(t,pf), {sup 236,238}U(t,pf), and {sup 240,242}Pu(t,pf) reactions, and from Britt et al. for the {sup 233,235}U(t,pf) and {sup 239}Pu(t,pf) reactions. The fission probabilities P{sub (t,pf)}(E{sub x}), measured as a function of excitation energy E{sub x} of the compound system formed by the (t,p) reaction, are listed in the tables with the corresponding deduced cross sections as a function of incident neutron energy E{sub n}, {sigma}{sub (n,f)}(E{sub n}). The excitation energy and incident neutron energy are related by E{sub x} = E{sub n} + B{sub n}, where B{sub n}, where B{sub n} is the neutron binding energy. Comparison with ENDF/B-VI evaluations of the well-measured {sup 234,235,236}U(n,f) and {sup 240,241}Pu(n,f) cross sections confirms the accuracy of the present results within a 10% standard deviation above E{sub n} = 1 MeV. Below E{sub n} = 1 MeV, localized deviations of at most {+-} 20% are observed.

  5. Towards high accurate neutron-induced fission cross sections of 240,242Pu: Spontaneous fission half-lives

    NASA Astrophysics Data System (ADS)

    Salvador-Castiñeira, P.; Bryś, T.; Eykens, R.; Hambsch, F.-J.; Moens, A.; Oberstedt, S.; Pretel, C.; Sibbens, G.; Vanleeuw, D.; Vidali, M.

    2013-12-01

    Fast spectrum neutron-induced fission cross sections of transuranic isotopes are being of special demand in order to provide accurate data for the new GEN-IV nuclear power plants. To minimize the uncertainties on these measurements accurate data on spontaneous fission half-lives and detector efficiencies are a key point. High α-active actinides need special attention since the misinterpretation of detector signals can lead to low efficiency values or underestimation in fission fragment detection. In that context, 240,242Pu isotopes have been studied by means of a Twin Frisch-Grid Ionization Chamber (TFGIC) for measurements of their neutron-induced fission cross section. Gases with different drift velocities have been used, namely P10 and CH4. The detector efficiencies for both samples have been determined and improved spontaneous fission half-life values were obtained.

  6. Measurement of fission yields from the 241Am(2nth,f) reaction at the Lohengrin Spectrometer

    NASA Astrophysics Data System (ADS)

    Amouroux, Ch.; Blanc, A.; Bidaud, A.; Capellan, N.; Chabod, S.; Chebboubi, A.; Faust, H.; Kessedjian, G.; Köster, U.; Lemaitre, J.-F.; Letourneau, A.; Martin, F.; Materna, T.; Panebianco, S.; Sage, Ch.; Serot, O.

    2013-12-01

    The study of fission yields has a major impact on the characterization and understanding of the fission process and is mandatory for reactor applications. While the yields are known for the major actinides (235U, 239Pu) in the thermal neutron-induced fission, only few measurements have been performed on 242Am. This paper presents the results of a measurement at the Lohengrin mass spectrometer (ILL, France) on the reaction 241Am(2nth,f): a total of 41 mass yields in the light and the heavy peaks have been measured and compared with the fission process simulation code GEF. Modus operandi and first results of a second experiment performed in May 2013 on the same reaction but with the goal of extracting the isotopic yields are presented as well: 8 mass yields were re-measured and 18 isotopic yields have been investigated and are being analyzed. Results concerning the kinetic energy and its comparison with the GEF Code are also presented in this paper.

  7. Time dependent measurements of induced fission for SNM interrogation

    NASA Astrophysics Data System (ADS)

    Beck, A.; Israelashvili, I.; Wengrowicz, U.; Caspi, E. N.; Yaar, I.; Osovizki, A.; Ocherashvili, A.; Rennhofer, H.; Pedersen, B.; Crochemore, J.-M.; Roesgen, E.

    2013-08-01

    Gammas from induced fissions were measured and separated into prompt and delayed particles. To this end, a dedicated detector was realized, based on a plastic scintillator, a wavelength shifter fiber and a silicon photomultiplier (SiPM). Results are presented from the interrogation of Special Nuclear Materials (SNM), employing a pulsed neutron generator in the PUNITA graphite moderator incorporating the above detector assembly. The detector response is presented, as well as the sensitivities for prompt and delayed processes within the same experimental setup.

  8. Transition from Asymmetric to Symmetric Fission in the 235U(n,f) Reaction

    SciTech Connect

    Younes, W; Becker, J A; Bernstein, L A; Garrett, P E; McGrath, C A; McNabb, D P; Nelson, R O; Johns, G D; Wilburn, W S; Drake, D M

    2001-07-19

    Prompt {gamma} rays from the neutron-induced fission of {sup 235}U have been studied using the GEANIE spectrometer situated at the LANSCE/WNR ''white'' neutron facility. Gamma-ray production cross sections for 29 ground-state-band transitions in 18 even-even fission fragments were obtained as a function of incident neutron energy, using the time-of-flight technique. Independent yields were deduced from these cross sections and fitted with standard formulations of the fragment charge and mass distributions to study the transition from asymmetric to symmetric fission. The results are interpreted in the context of the disappearance of shell structure at high excitation energies.

  9. Basic Physics Data: Measurement of Neutron Multiplicity from Induced Fission

    SciTech Connect

    Pozzi, Sara; Haight, Robert

    2015-05-04

    From October 1 to October 17 a team of researchers from UM visited the LANSCE facility for an experiment during beam-time allotted from October 4 to October 17. A total of 24 detectors were used at LANSCE including liquid organic scintillation detectors (EJ-309), NaI scintillation detectors, and Li-6 enriched glass detectors. It is a double time-offlight (TOF) measurement using spallation neutrons generated by a target bombarded with pulsed high-energy protons. The neutrons travel to an LLNL-manufactured parallel plate avalanche chamber (PPAC) loaded with thin U-235 foils in which fission events are induced. The generated fission neutrons and photons are then detected in a detector array designed and built at UM and shipped to LANSCE. Preparations were made at UM, where setup and proposed detectors were tested. The UM equipment was then shipped to LANSCE for use at the 15L beam of the weapons neutron research (WNR) facility.

  10. Fusion-Fission In The {sup 86}Kr+{sup 238}U Reaction

    SciTech Connect

    Lipoglavsek, M.; Hansen, E. Lindbo; Petrovic, T.; Vencelj, M.; Bark, R. A.; Gueorguieva, E. A.; Lawrie, J. J.; Lieder, E.; Lieder, R.; Mullins, S. M.; Ntshangase, S. S.; Papka, P.

    2008-05-12

    The {sup 86}Kr+{sup 238}U reaction has been studied at krypton beam energies about 30 MeV above the Coulomb barrier. Reaction products were detected by an array of 32 photovoltaic cells coupled to the AFRODITE {gamma}-ray detector array at iThemba LABS. A symmetric fission component has been observed at about 600 MeV total kinetic energy. This could possibly be due to fusion-fission with a cross section of 35{+-}20 mb.

  11. Interplay between compound and fragments aspects of nuclear fission and heavy-ion reaction

    SciTech Connect

    Moller, Peter; Iwamoto, A; Ichikawa, I

    2010-09-10

    The scission point in nuclear fission plays a special role where one-body system changes to two-body system. Inverse of this situation is realized in heavy-ion fusion reaction where two-body system changes to one body system. Among several peculiar phenomena expected to occur during this change, we focus our attention to the behavior of compound and fragments shell effects. Some aspects of the interplay between compound and fragments shell effect are discussed related to the topics of the fission valleys in the potential energy surface of actinide nuclei and the fusion-like trajectory found in the cold fusion reaction leading to superheavy nuclei.

  12. Modeling of Time-correlated Detection of Fast Neutrons Emitted in Induced SNM Fission

    NASA Astrophysics Data System (ADS)

    Guckes, Amber; Barzilov, Alexander; Richardson, Norman

    Neutron multiplicity methods are widely used in the assay of fissile materials. Fission reactions release multiple neutrons simultaneously. Time-correlated detection of neutrons provides a coincidence signature that is unique to fission,which enables distinguishing it from other events. In general, fission neutrons are fast. Thermal neutron sensors require the moderation of neutrons prior to a detection event; therefore, the neutron's energy and the event's timing information may be distorted, resulting in the wide time windows in the correlation analysis. Fastneutron sensing using scintillators allows shortening the time correlation window. In this study, four EJ-299-33A plastic scintillator detectors with neutron/photon pulse shape discrimination properties were modeled usingthe MCNP6 code. This sensor array was studied for time-correlated detection of fast neutrons emitted inthe induced fission of 239Pu and (α,n) neutron sources. This paper presents the results of computational modeling of arrays of these plastic scintillator sensors as well as3He detectors equipped with a moderator.

  13. An ionization chamber with Frisch grids for studies of high-energy neutron-induced fission

    NASA Astrophysics Data System (ADS)

    Tutin, G. A.; Ryzhov, I. V.; Eismont, V. P.; Kireev, A. V.; Condé, H.; Elmgren, K.; Olsson, N.; Renberg, P.-U.

    2001-01-01

    A gridded ionization chamber for fission fragment detection is described. The chamber has been specially designed for use at the quasi-monoenergetic 7Li(p, n) neutron source at the The Svedberg Laboratory, Uppsala, Sweden. The detector permits measurements of fission fragment energy and emission angle for two targets with diameter of up to 10 cm. The time response of the chamber (⩽5 ns FWHM) is adequate to apply time-of-flight discrimination against background events induced by non-peak neutrons. Results of angular anisotropy measurements for the 232Th (n, f) and 238U(n, f) reactions in the 20-160 MeV energy range are given.

  14. Dynamical simulation of neutron-induced fission of uranium isotopes using four-dimensional Langevin equations

    NASA Astrophysics Data System (ADS)

    Pahlavani, M. R.; Mirfathi, S. M.

    2016-04-01

    Four-dimensional Langevin equations have been suggested for the dynamical simulation of neutron-induced fission at low and medium excitation energies. The mass distribution of the fission fragments, the neutron multiplicity, and the fission cross section for the thermal and fast neutron-induced fission of 233U, 235U, and 238U is studied by considering energy dissipation of the compound nucleus through the fission using four-dimensional Langevin equations combined with a Monte Carlo simulation approach. The calculated results using this approach indicate reasonable agreement with available experimental data.

  15. The fusion fission and quasi-fission processes in the reaction 48Ca + 208Pb at energies near the Coulomb barrier

    NASA Astrophysics Data System (ADS)

    Prokhorova, E. V.; Bogachev, A. A.; Itkis, M. G.; Itkis, I. M.; Knyazheva, G. N.; Kondratiev, N. A.; Kozulin, E. M.; Krupa, L.; Oganessian, Yu. Ts.; Pokrovsky, I. V.; Pashkevich, V. V.; Rusanov, A. Ya.

    2008-04-01

    Mass-energy distributions (MEDs) and capture-fission cross sections have been measured in the reaction 48Ca + 208Pb → 256No at the energies E=206-242 MeV using a double-arm time-of-flight spectrometer CORSET. It has been observed that MED of the fragments consists of two parts, namely, the classical fusion-fission process corresponding to the symmetric fission of 256No and quasi-fission "shoulders" corresponding to the light fragment masses ˜60-90 u and complimentary heavy fragment masses. The quasi-fission "shoulders" have a higher total kinetic energy (TKE) as compared with that expected for the classical fission. A mathematical formalism was employed for the MEDs fragment decomposition into fusion-fission and quasi-fission components. In the fusion-fission process a high-energy Super-Short mode has been discovered for the masses M=130-135 u and the TKE of ≈233 MeV.

  16. Spin distribution in neutron induced preequilibrium reactions

    SciTech Connect

    Dashdorj, D; Kawano, T; Chadwick, M; Devlin, M; Fotiades, N; Nelson, R O; Mitchell, G E; Garrett, P E; Agvaanluvsan, U; Becker, J A; Bernstein, L A; Macri, R; Younes, W

    2005-10-04

    The preequilibrium reaction mechanism makes an important contribution to neutron-induced reactions above E{sub n} {approx} 10 MeV. The preequilibrium process has been studied exclusively via the characteristic high energy neutrons produced at bombarding energies greater than 10 MeV. They are expanding the study of the preequilibrium reaction mechanism through {gamma}-ray spectroscopy. Cross-section measurements were made of prompt {gamma}-ray production as a function of incident neutron energy (E{sub n} = 1 to 250 MeV) on a {sup 48}Ti sample. Energetic neutrons were delivered by the Los Alamos National Laboratory spallation neutron source located at the Los Alamos Neutron Science Center facility. The prompt-reaction {gamma} rays were detected with the large-scale Compton-suppressed Germanium Array for Neutron Induced Excitations (GEANIE). Neutron energies were determined by the time-of-flight technique. The {gamma}-ray excitation functions were converted to partial {gamma}-ray cross sections taking into account the dead-time correction, target thickness, detector efficiency and neutron flux (monitored with an in-line fission chamber). Residual state population was predicted using the GNASH reaction code, enhanced for preequilibrium. The preequilibrium reaction spin distribution was calculated using the quantum mechanical theory of Feshback, Kerman, and Koonin (FKK). The multistep direct part of the FKK theory was calculated for a one-step process. The FKK preequilibrium spin distribution was incorporated into the GNASH calculations and the {gamma}-ray production cross sections were calculated and compared with experimental data. The difference in the partial {gamma}-ray cross sections using spin distributions with and without preequilibrium effects is significant.

  17. Fission dynamics within time-dependent Hartree-Fock: Deformation-induced fission

    NASA Astrophysics Data System (ADS)

    Goddard, Philip; Stevenson, Paul; Rios, Arnau

    2015-11-01

    Background: Nuclear fission is a complex large-amplitude collective decay mode in heavy nuclei. Microscopic density functional studies of fission have previously concentrated on adiabatic approaches based on constrained static calculations ignoring dynamical excitations of the fissioning nucleus and the daughter products. Purpose: We explore the ability of dynamic mean-field methods to describe fast fission processes beyond the fission barrier, using the nuclide Pu240 as an example. Methods: Time-dependent Hartree-Fock calculations based on the Skyrme interaction are used to calculate nonadiabatic fission paths, beginning from static constrained Hartree-Fock calculations. The properties of the dynamic states are interpreted in terms of the nature of their collective motion. Fission product properties are compared to data. Results: Parent nuclei constrained to begin dynamic evolution with a deformation less than the fission barrier exhibit giant-resonance-type behavior. Those beginning just beyond the barrier explore large-amplitude motion but do not fission, whereas those beginning beyond the two-fragment pathway crossing fission to final states which differ according to the exact initial deformation. Conclusions: Time-dependent Hartree-Fock is able to give a good qualitative and quantitative description of fast fission, provided one begins from a sufficiently deformed state.

  18. The fusion-fission process in the reaction 34S +186W near the interaction barrier

    NASA Astrophysics Data System (ADS)

    Harca, I. M.; Dmitriev, S.; Itkis, J.; Kozulin, E. M.; Knyazheva, G.; Loktev, T.; Novikov, K.; Azaiez, F.; Gottardo, A.; Matea, I.; Verney, D.; Chubarian, G.; Hanappe, F.; Piot, J.; Schmitt, C.; Trzaska, W. H.; Vardaci, E.

    2015-02-01

    The reaction 34S +186W at Elab=160 MeV was investigated with the aim of diving into the features of the fusion-fission process. Gamma rays in coincidence with binary reaction fragments were measured using the high efficiency gamma-ray spectrometer ORGAM at the TANDEM Accelerator facility of I.P.N., Orsay, and the time-of-flight spectrometer for fission fragments (FF) registration CORSET of the Flerov Laboratory of Nuclear Reactions (FLNR), Dubna. The coupling of the ORGAM and CORSET setups offers the unique opportunity of extracting details for characterizing the fusion-fission process and gives information regarding production of neutron-rich heavy nuclei. The FF-γ coincidence method is of better use then the γ - γ coincidence method when dealing with low statistic measurements and also offers the opportunity to precisely correct the Dopler shift for in-flight emitted gamma rays. Evidence of symmetric and asymmetric fission modes were observed in the mass and TKE distributions, occurring due to shell effects in the fragments. Coincident measurements allow for discrimination between the gamma rays by accepting a specific range within the mass distribution of the reaction products. Details regarding the experimental setup, methods of processing the acquisitioned data and preliminary results are presented.

  19. Measurement of fission products yields in the quasi-mono-energetic neutron-induced fission of 232Th

    NASA Astrophysics Data System (ADS)

    Naik, H.; Mukherji, Sadhana; Suryanarayana, S. V.; Jagadeesan, K. C.; Thakare, S. V.; Sharma, S. C.

    2016-08-01

    The cumulative yields of various fission products in the 232Th(n, f) reaction at average neutron energies of 5.42, 7.75, 9.35 and 12.53 MeV have been determined by using an off-line γ-ray spectrometric technique. The neutron beam was produced from the 7Li(p, n) reaction by using the proton energies of 7.8, 12, 16 and 20 MeV. The mass chain yields were obtained from the cumulative fission yields by using the charge distribution correction of medium energy fission. The fine structure in the mass yield distribution was interpreted from the point of nuclear structure effect. On the other hand, the higher yield around mass number 133-134 and 143-144 as well as their complementary products were explained based on the standard I and standard II asymmetric mode of fission. From the mass yield data, the average value of light mass (), heavy mass (), the average number of neutrons (< ν >) and the peak-to-valley (P / V) ratios at different neutron energies of present work and literature data were obtained in the 232Th(n, f) reaction. The different parameters of the mass yield distribution in the 232Th(n, f) reaction were compared with the similar data in the 232Th(γ, f) reaction at comparable excitation energy and a surprising difference was observed.

  20. Hydrogen generation arising from the {sup 59}Ni(n,p) reaction and its impact on fission-fusion correlations

    SciTech Connect

    Greenwood, L.R.; Garner, A.F.

    1996-04-01

    Whilte the influence of transmutant helium on radiation-induced microstructural evolution has often been studied, there is a tendency to overlook the influence of concurrently-generated hydrogen. There have been some recent speculation and studies, however, that suggest that the influence of hydrogen may be enhanced in the presence of large amounts of helium, especially at lower irradiation temperatures typical of projected ITER operation. The impact of the (n,p) reaction on both hydrogen generation rates and displacement rates are evaluated in this paper for a variety of neutron spectra employed in fission-fusion correlation.

  1. Description of the Fusion-Fission Reactions in the Framework of Dinuclear System Conception

    NASA Astrophysics Data System (ADS)

    Kalandarov, Sh. A.; Adamian, G. G.; Antonenko, N. V.; Wieleczko, J. P.

    2016-05-01

    Within the dinuclear system model fusion-fission reactions 78Kr+40Ca and 86Kr+48Ca is investigated. The charge distributions of the decay products are predicted at bombarding energy 10 MeV/nucleon. The competition is treated between complete fusion followed by the decay of compound nucleus and quasifission channels. The possible explanation of the odd-even staggering in the yield of the final reaction products at high excitation energies is discussed.

  2. Fission barriers for Po nuclei produced in complete fusion reactions with heavy ions

    SciTech Connect

    Sagaidak, R. N.; Andreyev, A. N.

    2009-05-15

    Evaporation residues and fission excitation functions obtained in complete fusion reactions leading to Po compound nuclei have been analyzed in the framework of the standard statistical model. Macroscopic fission barriers deduced from the cross-section data analysis are compared with the predictions of various theoretical models and available data. A drop in the Po barriers with the decrease in a neutron number was found, which is stronger than predicted by any theory. The presence of entrance channel effects and collective excitations in the compound nucleus decay is considered as a possible reason for the barrier reduction.

  3. Trap-induced photoconductivity in singlet fission pentacene diodes

    SciTech Connect

    Qiao, Xianfeng Zhao, Chen; Chen, Bingbing; Luan, Lin

    2014-07-21

    This paper reports a trap-induced photoconductivity in ITO/pentacene/Al diodes by using current-voltage and magneto-conductance measurements. The comparison of photoconductivity between pentacene diodes with and without trap clearly shows that the traps play a critical role in generating photoconductivity. It shows that no observable photoconductivity is detected for trap-free pentacene diodes, while significant photoconductivity is observed in diodes with trap. This is because the initial photogenerated singlet excitons in pentacene can rapidly split into triplet excitons with higher binding energy prior to dissociating into free charge carriers. The generated triplet excitons react with trapped charges to release charge-carriers from traps, leading to a trap-induced photoconductivity in the single-layer pentacene diodes. Our studies elucidated the formation mechanisms of photoconductivity in pentacene diodes with extremely fast singlet fission rate.

  4. Trap-induced photoconductivity in singlet fission pentacene diodes

    NASA Astrophysics Data System (ADS)

    Qiao, Xianfeng; Zhao, Chen; Chen, Bingbing; Luan, Lin

    2014-07-01

    This paper reports a trap-induced photoconductivity in ITO/pentacene/Al diodes by using current-voltage and magneto-conductance measurements. The comparison of photoconductivity between pentacene diodes with and without trap clearly shows that the traps play a critical role in generating photoconductivity. It shows that no observable photoconductivity is detected for trap-free pentacene diodes, while significant photoconductivity is observed in diodes with trap. This is because the initial photogenerated singlet excitons in pentacene can rapidly split into triplet excitons with higher binding energy prior to dissociating into free charge carriers. The generated triplet excitons react with trapped charges to release charge-carriers from traps, leading to a trap-induced photoconductivity in the single-layer pentacene diodes. Our studies elucidated the formation mechanisms of photoconductivity in pentacene diodes with extremely fast singlet fission rate.

  5. Measurements of fission product yield in the neutron-induced fission of 238U with average energies of 9.35 MeV and 12.52 MeV

    NASA Astrophysics Data System (ADS)

    Mukerji, Sadhana; Krishnani, Pritam Das; Shivashankar, Byrapura Siddaramaiah; Mulik, Vikas Kaluram; Suryanarayana, Saraswatula Venkat; Naik, Haladhara; Goswami, Ashok

    2014-07-01

    The yields of various fission products in the neutron-induced fission of 238U with the flux-weightedaveraged neutron energies of 9.35 MeV and 12.52 MeV were determined by using an off-line gammaray spectroscopic technique. The neutrons were generated using the 7Li(p, n) reaction at Bhabha Atomic Research Centre-Tata Institute of Fundamental Research Pelletron facility, Mumbai. The gamma- ray activities of the fission products were counted in a highly-shielded HPGe detector over a period of several weeks to identify the decaying fission products. At both the neutron energies, the fission-yield values are reported for twelve fission product. The results obtained from the present work have been compared with the similar data for mono-energetic neutrons of comparable energy from the literature and are found to be in good agreement. The peak-to-valley (P/V) ratios were calculated from the fission-yield data and were found to decreases for neutron energy from 9.35 to 12.52 MeV, which indicates the role of excitation energy. The effect of the nuclear structure on the fission product-yield is discussed.

  6. Effects of nuclear orientation on fusion and fission process for reactions using actinide target nuclei

    SciTech Connect

    Nishio, K.; Ikezoe, H.; Mitsuoka, S.; Nishinaka, I.; Makii, H.; Nagame, Y.; Watanabe, Y.; Ohtsuki, T.; Hirose, K.; Hofmann, S.

    2010-04-30

    Fission fragment mass distributions in the reaction of {sup 30}Si+{sup 238}U were measured at the energies around the Coulomb barrier. At the above-barrier energies, the mass distribution showed Gaussian shape. At the sub-barrier energies, triple-humped distribution was observed, which consists of symmetric fission and asymmetric fission peaked at A{sub L}/A{sub H}approx =90/178. The asymmetric fission should be attributed to quasifission from the results of the measured evaporation residue (ER) cross-sections produced by {sup 30}Si+{sup 238}U. The cross-section for {sup 263}Sg at the above-barrier energy agree with the statistical model calculation which assumes that the measured fission cross-sections are equal to the fusion cross-sections, whereas the one for {sup 264}Sg measured at the sub-barrier energy is smaller than the calculation, indicating the presence for quasifission. We also report the results on the fragment mass distributions for {sup 36,34}S+{sup 238}U and {sup 40}Ar+{sup 238}U.

  7. Fission fragment mass distribution studies in 30Si +180Hf reaction

    NASA Astrophysics Data System (ADS)

    Shamlath, A.; Shareef, M.; Prasad, E.; Sugathan, P.; Thomas, R. G.; Jhingan, A.; Appannababu, S.; Nasirov, A. K.; Vinodkumar, A. M.; Varier, K. M.; Yadav, C.; Babu, B. R. S.; Nath, S.; Mohanto, G.; Mukul, Ish; Singh, D.; Kailas, S.

    2016-01-01

    Fission fragment mass-angle and mass ratio distributions have been measured for the 30Si + 180Hf reaction in the beam energy range 128-148 MeV. Quasifission signature is observed in this reaction, forming the compound system 210Rn. The results are compared with a very asymmetric reaction 16O + 194Pt, forming the same compound nucleus. Calculations assuming saddle point, scission point and DNS models have been performed to interpret the experimental results. The results strongly suggest the entrance channel dependence of quasifission in heavy ion collisions.

  8. Fission Fragment Charge and Mass Distributions from Intermediate-Energy Reactions of 238-U Projectiles

    NASA Astrophysics Data System (ADS)

    Souliotis, G. A.; Loveland, W.; Zyromski, K. E.; Wozniak, G. J.; Morrissey, D. J.; Aleklett, Kjell

    1999-10-01

    The charge, mass and velocity distributions of fission fragments from the interaction of 20 MeV/nucleon 238-U projectiles with 27-Al and 208-Pb have been measured using the MSU A1200 fragment separator. The observed distributions from the U+Al reaction are consistent with fission following fusion-like events giving rise to products that are very n-deficient relative to the line of beta-stability. However, the distributions from the U+Pb reaction are consistent with fission following quasielastic or deep-inelastic collisions, resulting in fragments that are neutron rich. Substantial yields of very n-rich nuclei are observed. Estimates of rates of important n-rich nuclides from a typical second generation projectile-fragmentation (PF) facility are given. Finally, the importance of the present cross section data for the planning of next generation intermediate-energy PF facilities able to produce short-lived neutron-rich radioactive beams by fission of heavy projectiles is discussed.

  9. T invariance and T-odd asymmetries for the cold-polarized-neutron-induced fission of nonoriented nuclei

    SciTech Connect

    Kadmensky, S. G.; Bunakov, V. E.; Titova, L. V.

    2014-12-15

    It is shown that the coefficients D{sup exp} for all T-odd asymmetries observed experimentally in the cross sections for the reactions of cold-polarized-neutron-induced fission of nonoriented target nuclei (which involves the emission of prescission and evaporated particles) comply in shape and scale with the coefficients D{sup theor} calculated for the analogous asymmetries on the basis of quantum-mechanical nuclear-fission theory for T-invariant Hamiltonians of fissile systems. It is also shown that the asymmetries in question arise upon taking into account the effect of (i) the interference between the fission amplitudes of s- and p-wave resonances of a polarized fissile compound nucleus formed in the aforementioned reactions; (ii) the collective rotation of the compound nucleus in question (this rotation entails a change in the angular distributions of fission fragments and third particles); and (iii) the wriggling vibrations of this compound nucleus in the vicinity of its scission point, which lead to the appearance of high aligned spins of fission fragments, with the result that the emission of neutrons and photons evaporated from these fragments becomes anisotropic. The possible contribution of T-noninvariant interactions to the formation of the T-odd asymmetries under analysis is estimated by using the results obtained in experimentally testing the detailed-balance principle, (P-A) theorem, and T invariance of cross sections for elastic proton-proton and proton-neutron scattering.

  10. Fission fragment mass distributions in 35Cl+Sm,154144 reactions

    NASA Astrophysics Data System (ADS)

    Tripathi, R.; Sodaye, S.; Sudarshan, K.; Nayak, B. K.; Jhingan, A.; Pujari, P. K.; Mahata, K.; Santra, S.; Saxena, A.; Mirgule, E. T.; Thomas, R. G.

    2015-08-01

    Background: A new type of asymmetric fission was observed in β -delayed fission of 180Tl [Phys. Rev. Lett. 105, 252502 (2010), 10.1103/PhysRevLett.105.252502] as symmetric mass distribution would be expected based on conventional shell effects leading to the formation of N =50 fragments. Following this observation, theoretical calculations were carried out which predict asymmetric mass distribution for several mercury isotopes around mass region of ˜180 at low and moderate excitation energies [Moller, Randrup, and Sierk, Phys. Rev. C 85, 024306 (2012), 10.1103/PhysRevC.85.024306; Andreev, Adamian, and Antonenko, Phys. Rev. C 86, 044315 (2012), 10.1103/PhysRevC.86.044315]. Studies on fission fragment mass distribution are required in this mass region to investigate this newly observed phenomenon. Purpose: The fission fragment mass distributions have been measured in 35Cl+Sm,154144 reactions at Elab=152.5 ,156.1 ,and 163.7 MeV populating compound nuclei in the mass region of ˜180 with variable excitation energy and neutron number to investigate the nature of mass distribution. Method: The fission fragment mass distribution has been obtained by measuring the "time of flight (TOF)" of fragments with respect to the beam pulse using two multiwire proportional counters placed at θlab=±65 .5∘ with respect to the beam direction. From the TOF of fragments, their velocities were determined, which were used to obtain mass distribution taking the compound nucleus as the fissioning system. Results: For both systems, mass distributions, although, appear to be symmetric, could not be fitted well by a single Gaussian. The deviation from a single Gaussian fit is more pronounced for the 35Cl+144Sm reaction. A clear flat top mass distribution has been observed for the 35Cl+144Sm reaction at the lowest beam energy. The mass distribution is very similar to that observed in the 40Ca+142Nd reaction, which populated a similar compound nucleus, but for the pronounced dip in the

  11. Most probable charge of fission products in 24 MeV proton induced fission of {sup 238}U

    SciTech Connect

    Kudo, H.; Maruyama, M.; Tanikawa, M.; Shinozuka, T.; Fujioka, M.

    1998-01-01

    The charge distributions of fission products in 24 MeV proton-induced fission of {sup 238}U were measured by the use of an ion-guide isotope separator on line. The most probable charge (Z{sub p}) of the charge distribution was discussed in view of the charge polarization in the fission process. It was found that Z{sub p} mainly lies on the proton-rich side in the light mass region and on the proton-deficient side in the heavy mass region compared with the postulate of the unchanged charge distribution. The charge polarization was examined with respect to production Q values. {copyright} {ital 1998} {ital The American Physical Society}

  12. Reducing Uncertainties in Neutron-Induced Fission Cross Sections Using a Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Manning, Brett; Niffte Collaboration

    2015-10-01

    Neutron-induced fission cross sections for actinides have long been of great interest for nuclear energy and stockpile stewardship. Traditionally, measurements were performed using fission chambers which provided limited information about the detected fission events. For the case of 239Pu(n,f), sensitivity studies have shown a need for more precise measurements. Recently the Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) has developed the fission Time Projection Chamber (fissionTPC) to measure fission cross sections to better than 1% uncertainty by providing 3D tracking of fission fragments. The fissionTPC collected data to calculate the 239Pu(n,f) cross section at the Weapons Neutron Research facility at the Los Alamos Neutron Science Center during the 2014 run cycle. Preliminary analysis has been focused on studying particle identification and target and beam non-uniformities to reduce the uncertainty on the cross section. Additionally, the collaboration is investigating other systematic errors that could not be well studied with a traditional fission chamber. LA-UR-15-24906.

  13. Neutron-induced fission measurements at the time-of-flight facility nELBE

    DOE PAGESBeta

    Kögler, T.; Beyer, R.; Junghans, A. R.; Massarczyk, R.; Schwengner, R.; Wagner, A.

    2015-05-18

    Neutron-induced fission of ²⁴²Pu is studied at the photoneutron source nELBE. The relative fast neutron fission cross section was determined using actinide fission chambers in a time-of-flight experiment. A good agreement of present nuclear data with evalua- tions has been achieved in the range of 100 keV to 10 MeV.

  14. Prospects for further studies of effects of T-odd asymmetry in the emission of light particles in the polarized-neutron-induced ternary fission of heavy nuclei

    NASA Astrophysics Data System (ADS)

    Petrov, G. A.; Gagarskii, A. M.; Guseva, I. S.; Kopatch, Yu. N.; Gönnenwein, F.; Mutterer, M.

    2008-07-01

    Prospects for further studies of TRI and ROT effects of T-odd asymmetry in the emission of light particles in the ternary and binary fission of heavy nuclei that is induced by slow polarized neutrons are considered with a view to studying the mechanism for the formation of these effects and using them to get new information about fission dynamics. It is planned to investigate the dependence of the corresponding T-odd-asymmetry coefficients on the main characteristics of the fission reaction.

  15. Fission Fragment Distributions and Delayed Neutron Yields from Photon-Induced-Fission

    SciTech Connect

    David, J.-C.; Dore, D.; Giacri-Mauborgne, M.-L.; Ridikas, D.; Lauwe, A. van

    2005-05-24

    Fission fragment distributions and delayed neutron yields for 235U and 238U are provided by a complete modelization of the photofission process below 25 MeV. The absorption cross-section parameterization and the fission fragment distributions are given and compared to experimental data. The delayed neutron yields and the half-lives in terms of six groups are presented and compared to data obtained with a bremsstrahlung spectrum of 15 MeV.

  16. Fission of nuclei with Z=102-112 produced in reactions with {sup 22}Ne and {sup 48}Ca ions

    SciTech Connect

    Itkis, M. G.; Oganessian, Yu. Ts.; Kozulin, E. M.; Kondratiev, N. A.; Krupa, L.; Pokrovsky, I. V.; Polyakov, A. N.; Ponomarenko, V. A.; Prokhorova, E. V.; Pustylnik, B. I.; Vakatov, V. I.; Rusanov, A. Ya.

    1998-12-21

    The talk presents new results obtained in the study of fission of superheavy nuclei {sup 256}No, {sup 270}Sg and {sup 286}112 formed in reactions with {sup 22}Ne and {sup 48}Ca ions at energies near or considerably lower than the Coulomb barrier. The experiments have been performed at the U-400 accelerator of the Flerov Laboratory of Nuclear Reactions (FLNR) with the use of the time-of-flight spectrometer of fission fragments CORSET.

  17. Low-energy fission investigated in reactions of 750 AMeV238U-ions with Pb and Be targets. I. Nuclear charge distributions

    NASA Astrophysics Data System (ADS)

    Armbruster, P.; Bernas, M.; Czajkowski, S.; Geissel, H.; Aumann, T.; Dessagne, Ph.; Donzaud, C.; Hanelt, E.; Heinz, A.; Hesse, M.; Kozhuharov, C.; Miehe, Ch.; Münzenberg, G.; Pfützner, M.; Schmidt, K.-H.; Schwab, W.; Stéphan, C.; Sümmerer, K.; Tassan-Got, L.; Voss, B.

    1996-12-01

    Charge distributions of fragments from low energy nuclear fission are investigated in reactions of highly fissile238U projectiles at relativistic energies (750 A·MeV) with a heavy (Pb) and a light (Be) target. The fully stripped fission fragments are separated by the Fragment Separator (FRS). Their high kinetic energies in the laboratory system allow the identification of all atomic numbers by using Multiple-Sampling Ionization Chambers (MUSIC). The elemental distributions of fragments observed at larger magnetic rigidities than the238U projectiles show asymmetric break-up and odd-even effects. They indicate a low energy fission process, induced mainly by dissociation in the electro-magnetic field for the U/Pb-system, or by peripheral nuclear interactions for the U/Be-system.

  18. Comparative measurement of prompt fission γ -ray emission from fast-neutron-induced fission of 235U and 238U

    NASA Astrophysics Data System (ADS)

    Lebois, M.; Wilson, J. N.; Halipré, P.; Oberstedt, A.; Oberstedt, S.; Marini, P.; Schmitt, C.; Rose, S. J.; Siem, S.; Fallot, M.; Porta, A.; Zakari, A.-A.

    2015-09-01

    Prompt fission γ -ray (PFG) spectra have been measured in a recent experiment with the novel directional fast-neutron source LICORNE at the ALTO facility of the IPN Orsay. These first results from the facility involve the comparative measurement of prompt γ emission in fast-neutron-induced fission of 235U and 238U . Characteristics such as γ multiplicity and total and average radiation energy are determined in terms of ratios between the two systems. Additionally, the average photon energies were determined and compared with recent data on thermal-neutron-induced fission of 235U . PFG spectra are shown to be similar within the precision of the present measurement, suggesting that the extra incident energy does not significantly impact the energy released by prompt γ rays. The origins of some small differences, depending on either the incident energy or the target mass, are discussed. This study demonstrates the potential of the present approach, combining an innovative neutron source and new-generation detectors, for fundamental and applied research on fission in the near future.

  19. Pion-Induced Fission of 209Bi and 119Sn:. Measurements, Calculations, Analyses and Comparison

    NASA Astrophysics Data System (ADS)

    Rana, Mukhtar Ahmed; Sher, Gul; Manzoor, Shahid; Shehzad, M. I.

    Cross-sections for the π--induced fission of 209Bi and 119Sn have been measured using the most sensitive CR-39 solid-state nuclear track detector. In experiments, target-detector stacks were exposed to negative pions of energy 500, 672, 1068, and 1665 MeV at the Brookhaven National Laboratory, USA. An important aspect of the present paper is the comparison of pion-induced fission fragment spectra of above mentioned nuclei with the spontaneous fission fragment spectra of 252Cf. This comparison is made in terms of fission fragment track lengths in the CR-39 detectors. Measurement results are compared with calculations of Monte Carlo and statistical weight functions methods using the computer code CEM95. Agreement between measurements and calculations is fairly good for 209Bi target nuclei whereas it is indigent for the case of 119Sn. The possibilities of the trustworthy calculations, using the computer code CEM95, comparable with measurements of pion-induced fission in intermediate and heavy nuclei are explored by employing various systematics available in the code. Energy dependence of pion-induced fission in 119Sn and 209Bi is analyzed employing a newly defined parameter geometric-size-normalized fission cross-section (χfg). It is found that the collective nuclear excitations, which may lead to fission, become more probable for both 209Bi and 119Sn nuclei with increasing energy of negative pions from 500 to 1665 MeV.

  20. Extended optical model for fission

    DOE PAGESBeta

    Sin, M.; Capote, R.; Herman, M. W.; Trkov, A.

    2016-03-07

    A comprehensive formalism to calculate fission cross sections based on the extension of the optical model for fission is presented. It can be used for description of nuclear reactions on actinides featuring multi-humped fission barriers with partial absorption in the wells and direct transmission through discrete and continuum fission channels. The formalism describes the gross fluctuations observed in the fission probability due to vibrational resonances, and can be easily implemented in existing statistical reaction model codes. The extended optical model for fission is applied for neutron induced fission cross-section calculations on 234,235,238U and 239Pu targets. A triple-humped fission barrier ismore » used for 234,235U(n,f), while a double-humped fission barrier is used for 238U(n,f) and 239Pu(n,f) reactions as predicted by theoretical barrier calculations. The impact of partial damping of class-II/III states, and of direct transmission through discrete and continuum fission channels, is shown to be critical for a proper description of the measured fission cross sections for 234,235,238U(n,f) reactions. The 239Pu(n,f) reaction can be calculated in the complete damping approximation. Calculated cross sections for 235,238U(n,f) and 239Pu(n,f) reactions agree within 3% with the corresponding cross sections derived within the Neutron Standards least-squares fit of available experimental data. Lastly, the extended optical model for fission can be used for both theoretical fission studies and nuclear data evaluation.« less

  1. Extended optical model for fission

    NASA Astrophysics Data System (ADS)

    Sin, M.; Capote, R.; Herman, M. W.; Trkov, A.

    2016-03-01

    A comprehensive formalism to calculate fission cross sections based on the extension of the optical model for fission is presented. It can be used for description of nuclear reactions on actinides featuring multi-humped fission barriers with partial absorption in the wells and direct transmission through discrete and continuum fission channels. The formalism describes the gross fluctuations observed in the fission probability due to vibrational resonances, and can be easily implemented in existing statistical reaction model codes. The extended optical model for fission is applied for neutron induced fission cross-section calculations on 234,235,238U and 239Pu targets. A triple-humped fission barrier is used for U,235234(n ,f ) , while a double-humped fission barrier is used for 238U(n ,f ) and 239Pu(n ,f ) reactions as predicted by theoretical barrier calculations. The impact of partial damping of class-II/III states, and of direct transmission through discrete and continuum fission channels, is shown to be critical for a proper description of the measured fission cross sections for 234,235,238U(n ,f ) reactions. The 239Pu(n ,f ) reaction can be calculated in the complete damping approximation. Calculated cross sections for U,238235(n ,f ) and 239Pu(n ,f ) reactions agree within 3% with the corresponding cross sections derived within the Neutron Standards least-squares fit of available experimental data. The extended optical model for fission can be used for both theoretical fission studies and nuclear data evaluation.

  2. Pairing-induced speedup of nuclear spontaneous fission

    DOE PAGESBeta

    Sadhukhan, Jhilam; Dobaczewski, J.; Nazarewicz, W.; Sheikh, J. A.; Baran, A.

    2014-12-22

    Collective inertia is strongly influenced at the level crossing at which the quantum system changes its microscopic configuration diabatically. Pairing correlations tend to make the large-amplitude nuclear collective motion more adiabatic by reducing the effect of these configuration changes. Competition between pairing and level crossing is thus expected to have a profound impact on spontaneous fission lifetimes. To elucidate the role of nucleonic pairing on spontaneous fission, we study the dynamic fission trajectories of 264Fm and 240Pu using the state-of-the-art self-consistent framework. We employ the superfluid nuclear density functional theory with the Skyrme energy density functional SkM* and a density-dependentmore » pairing interaction. Along with shape variables, proton and neutron pairing correlations are taken as collective coordinates. The collective inertia tensor is calculated within the nonperturbative cranking approximation. The fission paths are obtained by using the least action principle in a four-dimensional collective space of shape and pairing coordinates. Pairing correlations are enhanced along the minimum-action fission path. For the symmetric fission of 264Fm, where the effect of triaxiality on the fission barrier is large, the geometry of the fission pathway in the space of the shape degrees of freedom is weakly impacted by pairing. This is not the case for 240Pu, where pairing fluctuations restore the axial symmetry of the dynamic fission trajectory. The minimum-action fission path is strongly impacted by nucleonic pairing. In some cases, the dynamical coupling between shape and pairing degrees of freedom can lead to a dramatic departure from the static picture. As a result, in the dynamical description of nuclear fission, particle-particle correlations should be considered on the same footing as those associated with shape degrees of freedom.« less

  3. Pairing-induced speedup of nuclear spontaneous fission

    SciTech Connect

    Sadhukhan, Jhilam; Dobaczewski, J.; Nazarewicz, W.; Sheikh, J. A.; Baran, A.

    2014-12-22

    Collective inertia is strongly influenced at the level crossing at which the quantum system changes its microscopic configuration diabatically. Pairing correlations tend to make the large-amplitude nuclear collective motion more adiabatic by reducing the effect of these configuration changes. Competition between pairing and level crossing is thus expected to have a profound impact on spontaneous fission lifetimes. To elucidate the role of nucleonic pairing on spontaneous fission, we study the dynamic fission trajectories of 264Fm and 240Pu using the state-of-the-art self-consistent framework. We employ the superfluid nuclear density functional theory with the Skyrme energy density functional SkM* and a density-dependent pairing interaction. Along with shape variables, proton and neutron pairing correlations are taken as collective coordinates. The collective inertia tensor is calculated within the nonperturbative cranking approximation. The fission paths are obtained by using the least action principle in a four-dimensional collective space of shape and pairing coordinates. Pairing correlations are enhanced along the minimum-action fission path. For the symmetric fission of 264Fm, where the effect of triaxiality on the fission barrier is large, the geometry of the fission pathway in the space of the shape degrees of freedom is weakly impacted by pairing. This is not the case for 240Pu, where pairing fluctuations restore the axial symmetry of the dynamic fission trajectory. The minimum-action fission path is strongly impacted by nucleonic pairing. In some cases, the dynamical coupling between shape and pairing degrees of freedom can lead to a dramatic departure from the static picture. As a result, in the dynamical description of nuclear fission, particle-particle correlations should be considered on the same footing as those associated with shape degrees of freedom.

  4. Pairing-induced speedup of nuclear spontaneous fission

    NASA Astrophysics Data System (ADS)

    Sadhukhan, Jhilam; Dobaczewski, J.; Nazarewicz, W.; Sheikh, J. A.; Baran, A.

    2014-12-01

    Background: Collective inertia is strongly influenced at the level crossing at which the quantum system changes its microscopic configuration diabatically. Pairing correlations tend to make the large-amplitude nuclear collective motion more adiabatic by reducing the effect of these configuration changes. Competition between pairing and level crossing is thus expected to have a profound impact on spontaneous fission lifetimes. Purpose: To elucidate the role of nucleonic pairing on spontaneous fission, we study the dynamic fission trajectories of 264Fm and 240Pu using the state-of-the-art self-consistent framework. Methods: We employ the superfluid nuclear density functional theory with the Skyrme energy density functional SkM* and a density-dependent pairing interaction. Along with shape variables, proton and neutron pairing correlations are taken as collective coordinates. The collective inertia tensor is calculated within the nonperturbative cranking approximation. The fission paths are obtained by using the least action principle in a four-dimensional collective space of shape and pairing coordinates. Results: Pairing correlations are enhanced along the minimum-action fission path. For the symmetric fission of 264Fm, where the effect of triaxiality on the fission barrier is large, the geometry of the fission pathway in the space of the shape degrees of freedom is weakly impacted by pairing. This is not the case for 240Pu, where pairing fluctuations restore the axial symmetry of the dynamic fission trajectory. Conclusions: The minimum-action fission path is strongly impacted by nucleonic pairing. In some cases, the dynamical coupling between shape and pairing degrees of freedom can lead to a dramatic departure from the static picture. Consequently, in the dynamical description of nuclear fission, particle-particle correlations should be considered on the same footing as those associated with shape degrees of freedom.

  5. Clindamycin-induced hypersensitivity reaction.

    PubMed

    Bulloch, Marilyn N; Baccas, Jonathan T; Arnold, Scott

    2016-06-01

    Drug-induced anaphylaxis is an unpredictable adverse reaction. Although it may occur with any medication, antibiotics induce more cases of anaphylaxis than any other medication class with most cases being induced by β-lactam antibiotics. Clindamycin is an antibiotic with good gram-positive and anaerobe coverage which is often used in patients with β-lactam allergies. We report the case of a 46-year-old female who experienced anaphylaxis after a dose of intravenous (IV) clindamycin. Following treatment with methylprednisolone, epinephrine, diphenhydramine, and albuterol, the patient stabilized. The patient's score on the Naranjo's algorithm was 8 (probable); a score of 9 (definite) limited only by absence of drug re-challenge. To our knowledge, this is the first report of a clindamycin-induced anaphylaxis where the patient was not exposed to any other agent that may have triggered the response, the first case in the United States, and only the third documented case in the literature. Clinicians should be aware of the potential for drug-induced anaphylaxis in all medications. PMID:26216470

  6. Cross sections and barriers for nuclear fission induced by high-energy nucleons

    SciTech Connect

    Grudzevich, O. T.; Yavshits, S. G.

    2013-03-15

    The cross sections for the fission of {sup 232}Th, {sup 235,238}U, {sup 237}Np, and {sup 239}Pu target nuclei that was induced by 20- to 1000-MeV neutrons and protons were calculated. The respective calculations were based on the multiconfiguration-fission (MCFx) model, which was used to describe three basic stages of the interaction of high-energy nucleons with nuclei: direct processes (intranuclear cascade), equilibration of the emerging compound system, and the decay of the compound nucleus (statistical model). Fission barriers were calculated within the microscopic approach for isotopic chains formed by 15 to 20 nuclei of the required elements. The calculated fission cross sections were compared with available experimental data. It was shown that the input data set and the theoretical model used made it possible to predict satisfactorily cross section for nuclear fission induced by 20- to 1000-MeV nucleons.

  7. Fission-fragment angular distributions and excitation functions in fission following complete fusion and targetlike-fragment fission reactions of 19F+232Th at near- and sub-barrier energies

    NASA Astrophysics Data System (ADS)

    Majumdar, N.; Bhattacharya, P.; Biswas, D. C.; Choudhury, R. K.; Nadkarni, D. M.; Saxena, A.

    1995-06-01

    The fragment angular distributions and excitation functions of the fission following complete fusion (FFCF) have been measured after separating them from targetlike-fragment fission (TLFF) for the 19F+232Th system in the bombarding energy range of 84.5 to 106.5 MeV. The fraction of the targetlike-fragment fission was observed to increase with decreasing bombarding energy below the Coulomb barrier. The excitation function for fission following complete fusion reaction agrees well with coupled channel calculations. However, the values derived from the fragment anisotropy data of the FFCF events are found to be much larger than those calculated using the coupled channel transmission coefficient values. The discrepancy between the experimental and calculated values increases as the bombarding energy is decreased below the barrier.

  8. The Arabidopsis CDC25 induces a short cell length when overexpressed in fission yeast: evidence for cell cycle function.

    PubMed

    Sorrell, D A; Chrimes, D; Dickinson, J R; Rogers, H J; Francis, D

    2005-02-01

    The putative mitotic inducer gene, Arath;CDC25 cloned in Arabidopsis thaliana, was screened for cell cycle function by overexpressing it in Schizosaccharomyces pombe (fission yeast). The expression pattern of Arath;CDC25 was also examined in different tissues of A. thaliana. Fission yeast was transformed with plasmids pREP1 and pREP81 with the Arath;CDC25 gene under the control of the thiamine-repressible nmt promoter. Using reverse transcription-polymerase chain reaction (RT-PCR), the expression of Arath;CDC25 was examined in seedlings, flower buds, mature leaves and stems of A. thaliana; actin (ACT2) was used as a control. In three independent transformants of fission yeast, cultured in the absence of thiamine (T), pREP1::Arath;CDC25 induced a highly significant reduction in mitotic cell length compared with wild type, pREP::Arath;CDC25 +T, and empty vector (pREP1 +/- T). The extent of cell shortening was greater using the stronger pREP1 compared with the weaker pREP81. However, Arath;CDC25 was expressed at low levels in all tissues examined. The data indicate that Arath;CDC25 can function as a mitotic accelerator in fission yeast. However, unlike other plant cell cycle genes, expression of Arath;CDC25 was not enhanced in rapidly dividing compared with non-proliferative Arabidopsis tissues. PMID:15720653

  9. Study of near-stability nuclei populated as fission fragments in heavy-ion fusion reactions

    SciTech Connect

    Fotiadis, Nikolaos; Nelson, Ronald O; Devlin, Matthew; Cizewski, Jolie A; Krucken, Reiner; Clark, R M; Fallon, Paul; Lee, I Yang; Macchiavelli, Agusto O; Becker, John A; Younes, Walid

    2010-01-01

    Examples are presented to illustrate the power of prompt {gamma}-ray spectroscopy of fission fragments from compound nuclei with A {approx} 200 formed in fusion-evaporation reactions in experiments using the Gammasphere Ge-detector array. Complementary methods, such as Coulomb excitation and deep-inelastic processes, are also discussed. In other cases (n, xn{gamma}) reactions on stable isotopes have been used to establish neutron excitation functions for {gamma}-rays using a pulsed 'white'-neutron source, coupled to a high-energy-resolution germanium-detector array. The excitation functions can unambiguously assign {gamma}-rays to a specific reaction product. Results from all these methods bridge the gaps in the systematics of high-spin states between the neutron-deficient and neutron-rich nuclei. Results near shell closures should motivate new shell model calculations.

  10. Fusion and quasi-fission dynamics in nearly-symmetric reactions

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Zhao, Kai; Li, ZhuXia

    2015-11-01

    Some nearly-symmetric fusion reactions are systematically investigated with the improved quantum molecular dynamics (ImQMD) model. By introducing two-body inelastic scattering in the Fermi constraint procedure, the stability of an individual nucleus and the description of fusion cross sections at energies near the Coulomb barrier can be further improved. Simultaneously, the quasifission process in 154Sm+160Gd is also investigated with the microscopic dynamics model for the first time. We find that at energies above the Bass barrier, the fusion probability is smaller than 10-5 for this reaction, and the nuclear contact time is generally smaller than 1500 fm/ c. From the central collisions of Sm+Gd, the neutron-rich fragments such as 164,165Gd, 192W can be produced in the ImQMD simulations, which implies that the quasi-fission reaction could be an alternative way to synthesize new neutron-rich heavy nuclei.

  11. Transfer reactions in inverse kinematics: An experimental approach for fission investigations

    NASA Astrophysics Data System (ADS)

    Rodríguez-Tajes, C.; Farget, F.; Derkx, X.; Caamaño, M.; Delaune, O.; Schmidt, K.-H.; Clément, E.; Dijon, A.; Heinz, A.; Roger, T.; Audouin, L.; Benlliure, J.; Casarejos, E.; Cortina, D.; Doré, D.; Fernández-Domínguez, B.; Jacquot, B.; Jurado, B.; Navin, A.; Paradela, C.; Ramos, D.; Romain, P.; Salsac, M. D.; Schmitt, C.

    2014-02-01

    Inelastic and multinucleon transfer reactions between a 238U beam, accelerated at 6.14 MeV/u, and a 12C target were used for the production of neutron-rich, fissioning systems from U to Cm. A Si telescope, devoted to the detection of the targetlike nuclei, provided a characterization of the fissioning systems in atomic and mass numbers, as well as in excitation energy. Cross sections and angular and excitation-energy distributions were measured for the inelastic and transfer channels. Possible excitations of the targetlike nuclei were experimentally investigated for the first time, by means of γ-ray measurements. The decays from the first excited states of 12C, 11B, and 10Be were observed with probabilities of 0.12-0.14, while no evidence for the population of higher-lying states was found. Moreover, the fission probabilities of 238U, 239Np and 240,241,242Pu and 244Cm were determined as a function of the excitation energy.

  12. Spallation reaction study for fission products in nuclear waste: Cross section measurements for 137Cs and 90Sr on proton and deuteron

    NASA Astrophysics Data System (ADS)

    Wang, H.; Otsu, H.; Sakurai, H.; Ahn, D. S.; Aikawa, M.; Doornenbal, P.; Fukuda, N.; Isobe, T.; Kawakami, S.; Koyama, S.; Kubo, T.; Kubono, S.; Lorusso, G.; Maeda, Y.; Makinaga, A.; Momiyama, S.; Nakano, K.; Niikura, M.; Shiga, Y.; Söderström, P.-A.; Suzuki, H.; Takeda, H.; Takeuchi, S.; Taniuchi, R.; Watanabe, Ya.; Watanabe, Yu.; Yamasaki, H.; Yoshida, K.

    2016-03-01

    We have studied spallation reactions for the fission products 137Cs and 90Sr for the purpose of nuclear waste transmutation. The spallation cross sections on the proton and deuteron were obtained in inverse kinematics for the first time using secondary beams of 137Cs and 90Sr at 185 MeV/nucleon at the RIKEN Radioactive Isotope Beam Factory. The target dependence has been investigated systematically, and the cross-section differences between the proton and deuteron are found to be larger for lighter spallation products. The experimental data are compared with the PHITS calculation, which includes cascade and evaporation processes. Our results suggest that both proton- and deuteron-induced spallation reactions are promising mechanisms for the transmutation of radioactive fission products.

  13. Neutron-neutron angular correlations in spontaneous and neutron-induced fission

    NASA Astrophysics Data System (ADS)

    Vogt, Ramona; Randrup, Jorgen

    2015-04-01

    For many years, the state of the art for treating fission in radiation transport codes has involved sampling from average distributions. However, such average fission models have limited interaction-by-interaction capabilities. Energy is not explicitly conserved and no correlations are available because all particles are emitted isotropically and independently. However, in a true fission event, the energies, momenta and multiplicities of emitted particles are correlated. Such correlations are interesting for many modern applications, including detecting small amounts of material and detector development. Event-by-event generation of complete fission events are particularly useful because it is possible to obtain the fission products as well as the prompt neutrons and photons emitted during the fission process, all with complete kinematic information. It is therefore possible to extract any desired correlation observables. Such codes, when included in broader Monte Carlo transport codes, like MCNP, can be made broadly available. We compare results from our fast event-by-event fission code FREYA (Fission Reaction Event Yield Algorithm) with available neutron-neutron angular correlation data and study the sensitivities of these observables to the model inputs. This work was done under the auspices of the US DOE by (RV) LLNL, Contract DE-AC52-07NA27344, and by (JR) LBNL, Contract DE-AC02-05CH11231. We acknowledge support of the Office of Defense Nuclear Nonproliferation Research and Development in DOE/NNSA.

  14. Alpha Induced Reaction Cross Section Calculations of Tantalum Nucleus

    NASA Astrophysics Data System (ADS)

    Tel, E.; Ugur, F. A.; Gokce, A. A.

    2013-04-01

    The fusion energy is attractive as an energy source because the fusion will not produce CO2 or SO2 and so fusion will not contribute to environmental problems, such as particulate pollution and excessive CO2 in the atmosphere. The fusion reaction does not produce radioactive nuclides and it is not self-sustaining, as is a fission reaction when a critical mass of fissionable material is assembled. Since the fusion reaction is easily and quickly quenched the primary sources of heat to drive such an accident are heat from radioactive decay and heat from chemical reactions. Both the magnitude and time dependence of the generation of heat from radioactive decay can be controlled by proper selection and design of materials. Tantalum is one of the candidate materials for the first wall of fusion reactors and for component parts of irradiation chambers. Accurate experimental cross-section data of alpha induced reactions on Tantalum are also of great importance for thermonuclear reaction rate determinations since the models used in the study of stellar nucleosynthesis are strongly dependent on these rates (Santos et al. in J Phys G 26:301, 2000). In this study, neutron-production cross sections for target nuclei 181Ta have been investigated up to 100 MeV alpha energy. The excitation functions for (α, xn) reactions (x = 1, 2, 3) have been calculated by pre-equilibrium reaction mechanism. And also neutron emission spectra for 181Ta (α, xn) reactions at 26.8 and 45.2 MeV have been calculated. The mean free path multiplier parameters has been investigated. The pre-equilibrium results have been calculated by using the hybrid model, the geometry dependent hybrid (GDH) model. Calculation results have been also compared with the available measurements in literature.

  15. Fission yield measurements at IGISOL

    NASA Astrophysics Data System (ADS)

    Lantz, M.; Al-Adili, A.; Gorelov, D.; Jokinen, A.; Kolhinen, V. S.; Mattera, A.; Moore, I.; Penttilä, H.; Pomp, S.; Prokofiev, A. V.; Rakopoulos, V.; Rinta-Antila, S.; Simutkin, V.; Solders, A.

    2016-06-01

    The fission product yields are an important characteristic of the fission process. In fundamental physics, knowledge of the yield distributions is needed to better understand the fission process. For nuclear energy applications good knowledge of neutroninduced fission-product yields is important for the safe and efficient operation of nuclear power plants. With the Ion Guide Isotope Separator On-Line (IGISOL) technique, products of nuclear reactions are stopped in a buffer gas and then extracted and separated by mass. Thanks to the high resolving power of the JYFLTRAP Penning trap, at University of Jyväskylä, fission products can be isobarically separated, making it possible to measure relative independent fission yields. In some cases it is even possible to resolve isomeric states from the ground state, permitting measurements of isomeric yield ratios. So far the reactions U(p,f) and Th(p,f) have been studied using the IGISOL-JYFLTRAP facility. Recently, a neutron converter target has been developed utilizing the Be(p,xn) reaction. We here present the IGISOL-technique for fission yield measurements and some of the results from the measurements on proton induced fission. We also present the development of the neutron converter target, the characterization of the neutron field and the first tests with neutron-induced fission.

  16. (Reaction mechanism studies of heavy ion induced nuclear reactions)

    SciTech Connect

    Mignerey, A.C.

    1991-01-01

    This report discusses the following research projects; decay of excited nuclei formed in La-induced reactions at E/A = 45 MeV; mass and charge distributions in Cl-induced heavy ion reactions; and mass and charge distributions in {sup 56}Fe + {sup 165}Ho at E/A = 12 MeV.

  17. Angular distribution of products of ternary nuclear fission induced by cold polarized neutrons

    NASA Astrophysics Data System (ADS)

    Bunakov, V. E.; Kadmensky, S. G.; Kadmensky, S. S.

    2008-11-01

    Within quantum fission theory, angular distributions of products originating from the ternary fission of nuclei that is induced by polarized cold and thermal neutrons are investigated on the basis of a nonevaporative mechanism of third-particle emission and a consistent description of fission-channel coupling. It is shown that the inclusion of Coriolis interaction both in the region of the discrete and in the region of the continuous spectrum of states of the system undergoing fission leads to T-odd correlations in the aforementioned angular distributions. The properties of the TRI and ROT effects discovered recently, which are due to the interference between the fission amplitudes of neutron resonances, are explored. The results obtained here are compared with their counterparts from classic calculations based on the trajectory method.

  18. Angular distribution of products of ternary nuclear fission induced by cold polarized neutrons

    SciTech Connect

    Bunakov, V. E. Kadmensky, S. G. Kadmensky, S. S.

    2008-11-15

    Within quantum fission theory, angular distributions of products originating from the ternary fission of nuclei that is induced by polarized cold and thermal neutrons are investigated on the basis of a non-evaporative mechanism of third-particle emission and a consistent description of fission-channel coupling. It is shown that the inclusion of Coriolis interaction both in the region of the discrete and in the region of the continuous spectrum of states of the system undergoing fission leads to T-odd correlations in the aforementioned angular distributions. The properties of the TRI and ROT effects discovered recently, which are due to the interference between the fission amplitudes of neutron resonances, are explored. The results obtained here are compared with their counterparts from classic calculations based on the trajectory method.

  19. Measurement of Absolute Fission Yields in the Fast Neutron-Induced Fission of Actinides: {sup 238}U, {sup 237}Np, {sup 238}Pu, {sup 240}Pu, {sup 243}Am, and {sup 244}Cm by Track-Etch-cum-Gamma Spectrometry

    SciTech Connect

    Iyer, R.H.; Naik, H.; Pandey, A.K.; Kalsi, P.C.; Singh, R.J.; Ramaswami, A.; Nair, A.G.C.

    2000-07-15

    The absolute fission yields of 46 fission products in {sup 238}U (99.9997 at.%), 46 fission products in {sup 237}Np, 27 fission products in {sup 238}Pu (99.21 at.%), 30 fission products in {sup 240}Pu (99.48 at.%), 30 fission products in {sup 243}Am (99.998 at.%), and 32 fission products in {sup 244}Cm (99.43 at.%) induced by fast neutrons were determined using a fission track-etch-cum-gamma spectrometric technique. In the case of highly alpha-active and sparingly available actinides - e.g., {sup 238}Pu, {sup 240}Pu, {sup 243}Am, and {sup 244}Cm - a novel recoil catcher technique to collect the fission products on a Lexan polycarbonate foil followed by gamma-ray spectrometry was developed during the course of this work. This completely removed interferences from (a) gamma rays of daughter products in secular equilibrium with the target nuclide (e.g., {sup 243}Am-{sup 239}Np), (b) activation products of the catcher foil [e.g., {sup 24}Na from Al(n,{alpha})], and (c) activation products of the target [e.g., {sup 238}Np from {sup 237}Np(n,{gamma}) and {sup 239}Np from {sup 238}U(n,{gamma})] reactions, making the gamma spectrometric analysis very simple and accurate. The high-yield asymmetric fission products were analyzed by direct gamma spectrometry, whereas the low-yield symmetric products (e.g., Ag, Cd, and Sb) as well as some of the asymmetric fission products (e.g., Br) and rare earths (in the case of {sup 238}U and {sup 237}Np) were radiochemically separated and then analyzed by gamma-ray spectrometry. The neutron spectra in the irradiation positions of the reactors were measured and delineated in the thermal to 10-MeV region using threshold activation detectors. The present data were compared with the ENDF/VI and UKFY2 evaluated data files. From the measured cumulative yields, the mass-chain yields have been deduced using charge distribution systematics. The mass yields, along with similar data for other fast neutron-induced fissioning systems, show several

  20. Using Ultracold Neutrons to Characterize Fission Fragment Induced Sputtering

    NASA Astrophysics Data System (ADS)

    Broussard, Leah; Makela, Mark; Morris, Chris

    2015-10-01

    One of the modern challenges in nuclear science and technology is the understanding of the nature of fission fragment damage to material and the resulting ejection of matter as the fragments pass through the surface, with implications to stockpile stewardship and nuclear energy. We have demonstrated a new technique that can be used to characterize the sputtered material with knowledge of the location of the originating fission event. Due to their very high fission cross sections, ultracold neutrons (~100 neV energy) can be used to control the depth at which fission takes place using their energy or the material enrichment. This effort represents one of the first practical applications of ultracold neutrons, which to date have been primarily used to explore questions in fundamental particle physics. We will present results of demonstration measurements including first limits on the total and fission cross sections for 100 neV scale neutrons and the status of the development of this new capability. We gratefully acknowledge the support of the U.S. Department of Energy through the LANL/LDRD Program, the G. T. Seaborg Institute, and LANL Science Campaign C1 for this work.

  1. Angular correlations in emission of prescission neutrons from {sup 235}U fission induced by slow polarized neutrons

    SciTech Connect

    Danilyan, G. V.; Wilpert, T.; Granz, P.; Krakhotin, V. A.; Mezei, F.; Novitsky, V. V.; Pavlov, V. S.; Russina, M. V.; Shatalov, P. B.

    2008-12-15

    A new approach to searching for and studying scission neutrons, which is based on the analysis of specific angular correlations in nuclear fission induced by polarized neutrons, is described and used to evaluate the fraction of scission neutrons in the total number of prompt neutrons of {sup 235}U fission emitted perpendicularly to the fission axis.

  2. The CCONE Code System and its Application to Nuclear Data Evaluation for Fission and Other Reactions

    NASA Astrophysics Data System (ADS)

    Iwamoto, O.; Iwamoto, N.; Kunieda, S.; Minato, F.; Shibata, K.

    2016-01-01

    A computer code system, CCONE, was developed for nuclear data evaluation within the JENDL project. The CCONE code system integrates various nuclear reaction models needed to describe nucleon, light charged nuclei up to alpha-particle and photon induced reactions. The code is written in the C++ programming language using an object-oriented technology. At first, it was applied to neutron-induced reaction data on actinides, which were compiled into JENDL Actinide File 2008 and JENDL-4.0. It has been extensively used in various nuclear data evaluations for both actinide and non-actinide nuclei. The CCONE code has been upgraded to nuclear data evaluation at higher incident energies for neutron-, proton-, and photon-induced reactions. It was also used for estimating β-delayed neutron emission. This paper describes the CCONE code system indicating the concept and design of coding and inputs. Details of the formulation for modelings of the direct, pre-equilibrium and compound reactions are presented. Applications to the nuclear data evaluations such as neutron-induced reactions on actinides and medium-heavy nuclei, high-energy nucleon-induced reactions, photonuclear reaction and β-delayed neutron emission are mentioned.

  3. Competition between fusion-fission and quasifission processes in the {sup 32}S+{sup 184}W reaction

    SciTech Connect

    Zhang, H. Q.; Zhang, C. L.; Lin, C. J.; Liu, Z. H.; Yang, F.; Nasirov, A. K.; Mandaglio, G.; Manganaro, M.; Giardina, G.

    2010-03-15

    The angular distributions of fission fragments for the {sup 32}S+{sup 184}W reaction at center-of-mass energies of 118.8, 123.1, 127.3, 131.5, 135.8, 141.1, and 144.4 MeV are measured. The experimental fission excitation function is obtained. The anisotropy (A{sub exp}) is found by extrapolating each fission fragment angular distribution. The measured fission cross sections of the {sup 32}S+{sup 182,184}W reaction are decomposed into fusion-fission, quasifission, and fast-fission contributions by the dinuclear system model (DNS). The angular momentum distributions of the dinuclear system and compound nucleus calculated by the DNS model are used to reproduce the experimental capture and fusion excitation functions for both reactions and quantities K{sub 0}{sup 2}, , and A{sub exp}, which characterize angular distributions of the fission products at the considered range of beam energy. The total evaporation residue excitation function for the {sup 32}S+{sup 184}W reaction calculated in the framework of the advanced statistical model is close to the available experimental data only up to about E{sub c.m.}approx =160 MeV. The underestimation of the experimental data at high excitation energies E{sub c.m.}>160 MeV is explained by the fact that the statistical model cannot reproduce the cross section of evaporation residues formed by the nonequilibrium mechanism, that is, without formation of the compound nucleus in the statistical equilibrium state.

  4. Fragment-mass distributions in neutron-induced fission of Th232 and U238 at 33, 45, and 60 MeV

    NASA Astrophysics Data System (ADS)

    Ryzhov, I. V.; Yavshits, S. G.; Tutin, G. A.; Kovalev, N. V.; Saulski, A. V.; Kudryashev, N. A.; Onegin, M. S.; Vaishnene, L. A.; Gavrikov, Yu. A.; Grudzevich, O. T.; Simutkin, V. D.; Pomp, S.; Blomgren, J.; Österlund, M.; Andersson, P.; Bevilacqua, R.; Meulders, J. P.; Prieels, R.

    2011-05-01

    We have measured fission fragment-mass yields for neutron-induced fission of Th232 and U238 at energies 32.8, 45.3, and 59.9 MeV. The experiments were done at quasimonoenergetic neutron beams of the Cyclotron Research Center at Louvain-la-Neuve. To detect the fission fragments, a multisection Frisch-gridded ionization chamber was used. The measurement and data analysis techniques are discussed in detail. The obtained mass yields are compared to model calculations with the intermediate-energy nuclear reaction code MCFX. The MCFX code is used to calculate the fraction of fissioning nuclei after cascade, preequilibrium, and statistical reaction stages. The formation of mass distributions is considered as a result of oscillations of the mass-asymmetry degree of freedom in the potential well calculated with the temperature-dependent shell correction method. The experimental results as well as the results of the model calculations demonstrate that the probability of symmetric fission increases with incident neutron energy for both nuclei. The comparison also shows that the symmetric fission is more enhanced for thorium than for uranium with increasing neutron energy. We also compare U238 results with available experimental data; the Th232 data were measured for the first time.

  5. Study of heavy-ion induced fission for heavy-element synthesis

    NASA Astrophysics Data System (ADS)

    Nishio, K.; Ikezoe, H.; Hofmann, S.; Heßberger, F. P.; Ackermann, D.; Antalic, S.; Aritomo, Y.; Comas, V. F.; Düllman, Ch. E.; Gorshkov, A.; Graeger, R.; Heinz, S.; Heredia, J. A.; Hirose, K.; Khuyagbaatar, J.; Kindler, B.; Kojouharov, I.; Lommel, B.; Makii, H.; Mann, R.; Mitsuoka, S.; Nagame, Y.; Nishinaka, I.; Ohtsuki, T.; Popeko, A. G.; Saro, S.; Schädel, M.; Türler, A.; Wakabayashi, Y.; Watanabe, Y.; Yakushev, A.; Yeremin, A. V.

    2014-03-01

    Fission fragment mass distributions were measured in heavy-ion induced fissions using 238U target nucleus. The measured mass distributions changed drastically with incident energy. The results are explained by a change of the ratio between fusion and qasifission with nuclear orientation. A calculation based on a fluctuation dissipation model reproduced the mass distributions and their incident energy dependence. Fusion probability was determined in the analysis, and the values were consistent with those determined from the evaporation residue cross sections.

  6. Allowance for the tunnel effect in the entrance channel of fusion-fission reactions

    NASA Astrophysics Data System (ADS)

    Litnevsky, V. L.; Kosenko, G. I.; Ivanyuk, F. A.

    2016-05-01

    A two-stage model is developed in order to describe fusion-fission reactions. The process in the course of which colliding ions approach each other is simulated at the first stage, the deformations and relative orientations of the ions being taken into account. The first stage of the calculation is completed as soon as colliding nuclei touch each other. A continuous nuclear system (monosystem) is formed at this instant. The emerging distributions of the angular momenta of this system and of its potential and internal energies at the point of touching are used as input data that are necessary for triggering the second stage of the calculation. The evolution of collective coordinates that describe the shape of the monosystem is calculated at the second stage. The description of this evolution is terminated either at the instant of its fission or upon the release of a major part of its excess energy via particle and photon emission. In the latter case, the probability for the fission of the monosystem or a further decrease in its excitation energy becomes extremely small. The ion-collision process and the evolution of the monosystem formed after primary nuclei come into contact are simulated on the basis of stochastic Langevin equations. The quantities appearing in them (which include the potential energy and inertial and friction parameters) are determined with allowance for the shell structure of nuclei. The tunneling of colliding nuclei through the Coulomb barrier is taken into account, and the effect of this phenomenon on model predictions is studied.

  7. Scaling laws in {sup 3}He induced nuclear fission

    SciTech Connect

    Rubehn, T.; Jing, K.X.; Moretto, L.G.; Phair, L.; Tso, K.; Wozniak, G.J.

    1996-12-01

    Fission excitation functions of compound nuclei in a mass region where shell effects are expected to be very strong are shown to scale exactly according to the transition state prediction once these shell effects are accounted for. Furthermore, the method applied in this paper allows for the model-independent determination of the nuclear shell effects. {copyright} {ital 1996 The American Physical Society.}

  8. Altered brain energetics induces mitochondrial fission arrest in Alzheimer's Disease.

    PubMed

    Zhang, Liang; Trushin, Sergey; Christensen, Trace A; Bachmeier, Benjamin V; Gateno, Benjamin; Schroeder, Andreas; Yao, Jia; Itoh, Kie; Sesaki, Hiromi; Poon, Wayne W; Gylys, Karen H; Patterson, Emily R; Parisi, Joseph E; Diaz Brinton, Roberta; Salisbury, Jeffrey L; Trushina, Eugenia

    2016-01-01

    Altered brain metabolism is associated with progression of Alzheimer's Disease (AD). Mitochondria respond to bioenergetic changes by continuous fission and fusion. To account for three dimensional architecture of the brain tissue and organelles, we applied 3-dimensional electron microscopy (3D EM) reconstruction to visualize mitochondrial structure in the brain tissue from patients and mouse models of AD. We identified a previously unknown mitochondrial fission arrest phenotype that results in elongated interconnected organelles, "mitochondria-on-a-string" (MOAS). Our data suggest that MOAS formation may occur at the final stages of fission process and was not associated with altered translocation of activated dynamin related protein 1 (Drp1) to mitochondria but with reduced GTPase activity. Since MOAS formation was also observed in the brain tissue of wild-type mice in response to hypoxia or during chronological aging, fission arrest may represent fundamental compensatory adaptation to bioenergetic stress providing protection against mitophagy that may preserve residual mitochondrial function. The discovery of novel mitochondrial phenotype that occurs in the brain tissue in response to energetic stress accurately detected only using 3D EM reconstruction argues for a major role of mitochondrial dynamics in regulating neuronal survival. PMID:26729583

  9. Neutron-Induced Fission Cross Sections of Nuclei in the Vicinity of 208Pb at Incident Energies below 60 MeV

    NASA Astrophysics Data System (ADS)

    Ryzhov, Igor V.; Tutin, Gennady A.; Eismont, Vilen P.; Mitryukhin, Andrey G.; Oplavin, Valery S.; Soloviev, Sergey M.; Meulders, Jean-Pierre; El Masri, Youssef; Keutgen, Thomas; Prieels, René; Nolte, Ralf

    2005-05-01

    Neutron-induced fission cross sections of 205Tl, 204, 206, 207, 208Pb, and 209Bi have been measured at incident energies of 32.8, 45.3, and 59.9 MeV. The measurements were performed at the Louvain-la-Neuve neutron beam facility using the 7Li (p, n) reaction as neutron source. Fission fragments were detected with a multi-section Frisch-gridded ionization chamber (MFGIC). Neutron fluence measurements were based on the 238U(n, f) reaction. The neutron fluence monitoring procedure was asserted by crosscheck measurement, in which the 59.9-MeV neutron beam fluence was simultaneously determined with the MFGIC and with a fission chamber monitor calibrated relative to a proton-recoil telescope.

  10. Neutron-induced fission cross section of Np237 in the keV to MeV range at the CERN n_TOF facility

    DOE PAGESBeta

    Diakaki, M.; Karadimos, D.; Vlastou, R.; Kokkoris, M.; Demetriou, P.; Skordis, E.; Tsinganis, A.; Abbondanno, U.; Aerts, G.; Álvarez, H.; et al

    2016-03-17

    We experimentally determined the neutron-induced fission cross section of Np-237 at the high-resolution and high-intensity facility n_TOF, at CERN, in the energy range 100 keV to 9 MeV, using the U-235(n, f) and U-238(n, f) cross section standards below and above 2 MeV, respectively. Moreover, a fast ionization chamber was used in order to detect the fission fragments from the reactions and the targets were characterized as far as their mass and homogeneity are concerned by means of a spectroscopy and Rutherford backscattering spectroscopy respectively. Finally, theoretical calculations within the Hauser-Feshbach formalism have been performed, employing the EMPIRE code, andmore » the model parameters were tuned in order to successfully reproduce the experimental fission cross-sectional data and simultaneously all the competing reaction channels.« less

  11. Neutron-induced fission cross section of 237Np in the keV to MeV range at the CERN n_TOF facility

    NASA Astrophysics Data System (ADS)

    Diakaki, M.; Karadimos, D.; Vlastou, R.; Kokkoris, M.; Demetriou, P.; Skordis, E.; Tsinganis, A.; Abbondanno, U.; Aerts, G.; Álvarez, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; Baumann, P.; Bečvář, F.; Berthoumieux, E.; Calviani, M.; Calviño, F.; Cano-Ott, D.; Capote, R.; Carrillo de Albornoz, A.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; David, S.; Dolfini, R.; Domingo-Pardo, C.; Dorochenko, A.; Dridi, W.; Duran, I.; Eleftheriadis, Ch.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; Fitzpatrick, L.; Frais-Koelbl, H.; Fuji, K.; Furman, W.; Goncalves, I.; Gallino, R.; Gonzalez-Romero, E.; Goverdovski, A.; Gramegna, F.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Ioannidis, K.; Isaev, S.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karamanis, D.; Kerveno, M.; Ketlerov, V.; Koehler, P.; Kolokolov, D.; Konovalov, V.; Krtička, M.; Lamboudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marques, L.; Marrone, S.; Massimi, C.; Mastinu, P.; Mengoni, A.; Milazzo, P. M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; O'Brien, S.; Oshima, M.; Pancin, J.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rosetti, M.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Sarchiapone, L.; Savvidis, I.; Sedysheva, M.; Stamoulis, K.; Stephan, C.; Tagliente, G.; Tain, J. L.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M. C.; Vlachoudis, V.; Voss, F.; Wendler, H.; Wiescher, M.; Wisshak, K.; n TOF Collaboration

    2016-03-01

    The neutron-induced fission cross section of 237Np was experimentally determined at the high-resolution and high-intensity facility n_TOF, at CERN, in the energy range 100 keV to 9 MeV, using the 235U(n ,f ) and 238U(n ,f ) cross section standards below and above 2 MeV, respectively. A fast ionization chamber was used in order to detect the fission fragments from the reactions and the targets were characterized as far as their mass and homogeneity are concerned by means of α spectroscopy and Rutherford backscattering spectroscopy respectively. Theoretical calculations within the Hauser-Feshbach formalism have been performed, employing the empire code, and the model parameters were tuned in order to successfully reproduce the experimental fission cross-sectional data and simultaneously all the competing reaction channels.

  12. Fission measurements with PPAC detectors using a coincidence technique

    SciTech Connect

    Paradela, C.; Duran, I.; Tarrio, D.; Audouin, L.; Tassan-Got, L.; Stephan, C.

    2011-07-01

    A fission detection setup based on Parallel Plate Avalanche Counters (PPAC) has been constructed and used at the CERN n-TOF facility. The setup takes advantage of the coincidence detection of both fission fragments to discriminate the background reactions produced by high energy neutrons and it allows obtaining neutron-induced fission cross section up to 1 GeV. (authors)

  13. Characteristics of Symmetric and Asymmetric Fission Modes as a Function of the Compound Nucleus Excitation in the Proton-Induced Fission of 233Pa, 239Np and 243Am

    SciTech Connect

    Beresova, M.; Kliman, J.; Krupa, L.; Bogatchev, A. A.; Itkis, I. M.; Itkis, M. G.; Kniajeva, G. N.; Kondratiev, N. A.; Kozulin, E. M.; Pokrovsky, I. V.; Dorvaux, O.; Khlebnikov, S.; Lyapin, V.; Rubchenia, W.; Stuttge, L.; Trzaska, W.; Vakhtin, D.

    2007-05-22

    Average preequilibrium average statistical prescission and postscission neutron multiplicities as well as average {gamma}-ray multiplicity , average energy emitted by {gamma}-rays and average energy per one gamma quantum <{epsilon}{gamma}> as a function of mass and total kinetic energy (TKE) of fission fragments were measured in the proton-induced reactions p+232Th{yields}233Pa, p+238U{yields}239Np and p+242Pu{yields}243Am (at proton energy Ep=13, 20, 40 and 55 MeV). The fragment mass and energy distributions (MEDs) have been analyzed in terms of the multimodal fission. The decomposition of the experimental MEDs onto the MEDs of the distinct modes has been fulfilled in the framework of a method that is free from any parameterization of the distinct fission mode mass distribution shapes. The main characteristics for symmetric and asymmetric modes have been studied in their dependence on the compound nucleus composition and proton energy. The manifestation of multimodal fission in average {gamma}-ray multiplicities of fission fragments was also studied in this work.

  14. Excitation functions for the helium-ion-induced fission of holmium and erbium

    SciTech Connect

    Iyer, R.H.; Pandey, A.K.; Kalsi, P.C.; Sharma, R.C. )

    1991-12-01

    Excitation functions for the helium-ion-induced fission of holmium ({ital Z}=67) and erbium ({ital Z}=68) in the energy range 34--70 MeV were measured using lexan polycarbonate plastic as the fission fragment track detector. By analyzing the data in terms of the statistical model expression for {Gamma}{sub {ital f}}/{Gamma}{sub {ital n}}, the ratio of the fission width to neutron emission width, the fission barriers of the compound nuclei {sup 1}{sub 69}{sup 69}Tm and {sup 17}{sub 70}{sup 1.3}Yb were determined to be 29.8{plus minus}3 and 27.8{plus minus}3 MeV, respectively. The corresponding values for the fission level density parameter were found to be {ital a}{sub {ital f}}={ital A}/12 and {ital A}/13, respectively. The uncertainties shown in the fission barriers allow for inclusion of other values derived from reasonable upper and lower limits of {ital a}{sub {ital f}} values of {ital A}/8 to {ital A}/20. The measured fission barriers compare very well with the shell-corrected liquid-drop barriers of Myers and Swiatecki. The present measurements extend the range of low-{ital Z} elements which are away from the closed-shell region and which are studied at these medium energies. The results are compared with similar data available in the literature which bring out some interesting correlations and trends in the fission properties, viz., fission barriers and level density parameters of low-{ital Z} elements.

  15. Studies of Neutron-Induced Fission of 235U, 238U, and 239Pu

    NASA Astrophysics Data System (ADS)

    Duke, Dana; TKE Team

    2014-09-01

    A Frisch-gridded ionization chamber and the double energy (2E) analysis method were used to study mass yield distributions and average total kinetic energy (TKE) release from neutron-induced fission of 235U, 238U, and 239Pu. Despite decades of fission research, little or no TKE data exist for high incident neutron energies. Additional average TKE information at incident neutron energies relevant to defense- and energy-related applications will provide a valuable observable for benchmarking simulations. The data can also be used as inputs in theoretical fission models. The Los Alamos Neutron Science Center-Weapons Neutron Research (LANSCE - WNR) provides a neutron beam from thermal to hundreds of MeV, well-suited for filling in the gaps in existing data and exploring fission behavior in the fast neutron region. The results of the studies on 238U, 235U, and 239Pu will be presented. LA-UR-14-24921.

  16. Determination of the 243,246,248Cm thermal neutron induced fission cross sections

    NASA Astrophysics Data System (ADS)

    Serot, O.; Wagemans, C.; Vermote, S.; Heyse, J.; Soldner, T.; Geltenbort, P.

    2005-11-01

    The minor actinide waste produced in nuclear power plants contains various Cm-isotopes, and transmutation scenarios require improved fission cross section data. The available thermal neutron induced fission cross section data for 243Cm, 246Cm and 248Cm are not very accurate, so new cross section measurements have been performed at the high flux reactor of the ILL in Grenoble (France) under better experimental conditions (highly enriched samples, very intense and clean neutron beam). The measurements were performed at a neutron energy of 5.38 meV, yielding fission cross section values of (1240±28)b for 243Cm, (25±47)mb for 246Cm and (685±84)mb for 248Cm. From these results, thermal fission cross section values of (572±14)b; (12±25)mb and (316±43)mb have been deduced for 243Cm, 246Cm and 248Cm, respectively.

  17. Fission induced swelling and creep of U–Mo alloy fuel

    SciTech Connect

    Yeon Soo Kim; G. L. Hofman; J. S. Cheon; A. B. Robinson; D. M. Wachs

    2013-06-01

    Tapering of U–Mo alloy fuel at the end of plates is attributed to lateral mass transfer by fission induced creep, by which fuel mass is relocated away from the fuel end region where fission product induced fuel swelling is in fact the highest. This mechanism permits U–Mo fuel to achieve high burnup by effectively relieving stresses at the fuel end region, where peak stresses are otherwise expected because peak fission product induced fuel swelling occurs there. ABAQUS FEA was employed to examine whether the observed phenomenon can be simulated using physical–mechanical data available in the literature. The simulation results obtained for several plates with different fuel fabrication and loading scheme showed that the measured data were able to be simulated with a reasonable creep rate coefficient. The obtained creep rate constant lies between values for pure uranium and MOX, and is greater than all other ceramic uranium fuels.

  18. Large Optical Nonlinearity Induced by Singlet Fission in Pentacene Films

    NASA Astrophysics Data System (ADS)

    Liu, Yunlong; Zhang, Chunfeng; Xiao, Min

    2015-03-01

    By creating two triplet excitons from one photo-excited singlet exciton, singlet fission in organic semiconductors has drawn tremendous attention for its potential application in boosting the efficiency of solar conversion. Here, we show that this carrier-multiplication effect can be used to dramatically improve the nonlinear optical response in organic materials. With the technique of dual-wavelength optical Kerr effect (OKE), we have observed large optical nonlinearity with a magnitude of χ (3) up to 10-9 esu in pentacene films, which is further shown to be a result of singlet fission as demonstrated by the detailed temporal dynamics and wavelength dependence experiment. Through the use of optical heterodyne detected OKE experiment, we have determined both the sign and value of Reχ (3) of the pentacene film. Such efficient third order nonlinear optical response has been successfully applied to demonstrate the all-optical switching. The results observed in this work indicate that the singlet fission could be served as an effective strategy to promote the optical nonlinearity in organic molecule systems. This work is supported by the National Basic Research Program of China (2013CB932903 and 2012CB921801, MOST), the National Science Foundation of China (91233103, 61108001, 11227406 and 11321063).

  19. Isotopic yield measurement in the heavy mass region for 239Pu thermal neutron induced fission

    NASA Astrophysics Data System (ADS)

    Bail, A.; Serot, O.; Mathieu, L.; Litaize, O.; Materna, T.; Köster, U.; Faust, H.; Letourneau, A.; Panebianco, S.

    2011-09-01

    Despite the huge number of fission yield data available in the different evaluated nuclear data libraries, such as JEFF-3.1.1, ENDF/B-VII.0, and JENDL-4.0, more accurate data are still needed both for nuclear energy applications and for our understanding of the fission process itself. It is within the framework of this that measurements on the recoil mass spectrometer Lohengrin (at the Institut Laue-Langevin, Grenoble, France) was undertaken, to determine isotopic yields for the heavy fission products from the 239Pu(nth,f) reaction. In order to do this, a new experimental method based on γ-ray spectrometry was developed and validated by comparing our results with those performed in the light mass region with completely different setups. Hence, about 65 fission product yields were measured with an uncertainty that has been reduced on average by a factor of 2 compared to that previously available in the nuclear data libraries. In addition, for some fission products, a strongly deformed ionic charge distribution compared to a normal Gaussian shape was found, which was interpreted as being caused by the presence of a nanosecond isomeric state. Finally, a nuclear charge polarization has been observed in agreement, with the one described on other close fissioning systems.

  20. Particular features of ternary fission induced by polarized neutrons in the major actinides U,235233 and Pu,241239

    NASA Astrophysics Data System (ADS)

    Gagarski, A.; Gönnenwein, F.; Guseva, I.; Jesinger, P.; Kopatch, Yu.; Kuzmina, T.; Lelièvre-Berna, E.; Mutterer, M.; Nesvizhevsky, V.; Petrov, G.; Soldner, T.; Tiourine, G.; Trzaska, W. H.; Zavarukhina, T.

    2016-05-01

    Ternary fission in (n ,f ) reactions was studied with polarized neutrons for the isotopes U,235233 and Pu,241239. A cold longitudinally polarized neutron beam was available at the High Flux Reactor of the Institut Laue-Langevin in Grenoble, France. The beam was hitting the fissile targets mounted at the center of a reaction chamber. Detectors for fission fragments and ternary particles were installed in a plane perpendicular to the beam. In earlier work it was discovered that the angular correlations between neutron spin and the momenta of fragments and ternary particles were very different for 233U or 235U. These correlations could now be shown to be simultaneously present in all of the above major actinides though with different weights. For one of the correlations it was observed that up to scission the compound nucleus is rotating with the axis of rotation parallel to the neutron beam polarization. Entrained by the fragments also the trajectories of ternary particles are turned away albeit by a smaller angle. The difference in turning angles becomes observable upon reversing the sense of rotation by flipping neutron spin. All turning angles are smaller than 1∘. The phenomenon was called the ROT effect. As a distinct second phenomenon it was found that for fission induced by polarized neutrons an asymmetry in the emission probability of ternary particles relative to a plane formed by fragment momentum and neutron spin appears. The asymmetry is attributed to the Coriolis force present in the nucleus while it is rotating up to scission. The size of the asymmetry is typically 10-3. This asymmetry was termed the TRI effect. The interpretation of both effects is based on the transition state model. Both effects are shown to be steered by the properties of the collective (J ,K ) transition states which are specific for any of the reactions studied. The study of asymmetries of ternary particle emission in fission induced by slow polarized neutrons provides a new

  1. The fusion-fission process in the reaction {sup 34}S+{sup 186}W near the interaction barrier

    SciTech Connect

    Harca, I. M.; Dmitriev, S.; Itkis, J.; Kozulin, E. M.; Knyazheva, G.; Loktev, T.; Novikov, K.; Azaiez, F.; Gottardo, A.; Matea, I.; Verney, D.; Hanappe, F.; Piot, J.; Schmitt, C.; Vardaci, E.

    2015-02-24

    The reaction {sup 34}S+{sup 186}W at E{sub lab}=160 MeV was investigated with the aim of diving into the features of the fusion-fission process. Gamma rays in coincidence with binary reaction fragments were measured using the high efficiency gamma-ray spectrometer ORGAM at the TANDEM Accelerator facility of I.P.N., Orsay, and the time-of-flight spectrometer for fission fragments (FF) registration CORSET of the Flerov Laboratory of Nuclear Reactions (FLNR), Dubna. The coupling of the ORGAM and CORSET setups offers the unique opportunity of extracting details for characterizing the fusion-fission process and gives information regarding production of neutron-rich heavy nuclei. The FF–γ coincidence method is of better use then the γ – γ coincidence method when dealing with low statistic measurements and also offers the opportunity to precisely correct the Dopler shift for in-flight emitted gamma rays. Evidence of symmetric and asymmetric fission modes were observed in the mass and TKE distributions, occurring due to shell effects in the fragments. Coincident measurements allow for discrimination between the gamma rays by accepting a specific range within the mass distribution of the reaction products. Details regarding the experimental setup, methods of processing the acquisitioned data and preliminary results are presented.

  2. Effective radii of deuteron-induced reactions

    SciTech Connect

    Hashimoto, Shintaro; Chiba, Satoshi; Yahiro, Masanobu; Ogata, Kazuyuki; Minomo, Kosho

    2011-05-15

    The continuum-discretized coupled-channels method (CDCC) for exclusive reactions and the eikonal reaction theory (ERT) as an extension of CDCC to inclusive reactions are applied to deuteron-induced reactions. The CDCC result reproduces experimental data on the reaction cross section for d+{sup 58}Ni scattering at 200 MeV/nucleon, and ERT provides data on the neutron-stripping cross section for inclusive {sup 7}Li(d,n) reaction at 40 MeV. For deuteron-induced reactions at 200 MeV/nucleon, target-dependence of the reaction, elastic-breakup, nucleon-stripping, nucleon-removal, and complete- and incomplete-fusion cross sections is clearly explained by simple formulas. Accuracy of the Glauber model is also investigated.

  3. MODELING AND FISSION CROSS SECTIONS FOR AMERICIUM.

    SciTech Connect

    ROCHMAN, D.; HERMAN, M.; OBLOZINSKY, P.

    2005-05-01

    This is the final report of the work performed under the LANL contract on the modeling and fission cross section for americium isotopes (May 2004-June 2005). The purpose of the contract was to provide fission cross sections for americium isotopes with the nuclear reaction model code EMPIRE 2.19. The following work was performed: (1) Fission calculations capability suitable for americium was implemented to the EMPIRE-2.19 code. (2) Calculations of neutron-induced fission cross sections for {sup 239}Am to {sup 244g}Am were performed with EMPIRE-2.19 for energies up to 20 MeV. For the neutron-induced reaction of {sup 240}Am, fission cross sections were predicted and uncertainties were assessed. (3) Set of fission barrier heights for each americium isotopes was chosen so that the new calculations fit the experimental data and follow the systematics found in the literature.

  4. Active-Interrogation Measurements of Fast Neutrons from Induced Fission in Low-Enriched Uranium

    SciTech Connect

    J. L. Dolan; M. J. Marcath; M. Flaska; S. A. Pozzi; D. L. Chichester; A. Tomanin; P. Peerani

    2014-02-01

    A detection system was designed with MCNPX-PoliMi to measure induced-fission neutrons from U-235 and U-238 using active interrogation. Measurements were then performed with this system at the Joint Research Centre (JRC) in Ispra, Italy on low-enriched uranium samples. Liquid scintillators measured induced fission neutron to characterize the samples in terms of their uranium mass and enrichment. Results are presented to investigate and support the use of organic liquid scintillators with active interrogation techniques to characterize uranium containing materials.

  5. Investigation of GEV Proton-Induced Spallation Reactions

    NASA Astrophysics Data System (ADS)

    Hilscher, D.; Herbach, C.-M.; Jahnke, U.; Tishchenko, V. G.; Galin, J.; Lott, B.; Letourneau, A.; Peghaire, A.; Filges, D.; Goldenbaum, F.; Nünighoff, K.; Schaal, H.; Sterzenbach, G.; Wohlmuther, M.; Pienkowski, L.; Schröder, W. U.; Toke, J.

    2004-09-01

    A reliable modeling of GeV proton-induced spallation reactions is indispensable for the design of the spallation module and the target station of future accelerator driven hybrid reactors (ADS) or spallation neutron sources (ESS), in particular, to provide precise predictions for the neutron production, the radiation damage of materials (window), and the production of radioactivity (3H, 7Be etc.) in the target medium. Detailed experimental nuclear data are needed for sensitive validations and improvements of the models, whose predictive power is strongly dependent on the correct physical description of the three main stages of a spallation reaction: (i) the Intra-Nuclear-Cascade (INC) with the fast heating of the target nucleus, (ii) the de-excitation due to pre-equilibrium emission including the possibility of multi-fragmentation, and (iii) the statistical decay of thermally excited nuclei by evaporation of light particles and fission in the case of heavy nuclei. Key experimental data for this endeavor are absolute production cross sections and energy spectra for neutrons and light charged-particles (LCPs), emission of composite particles prior and post to the attainment of an equilibrated system, distribution of excitation energies deposited in the nuclei after the INC, and fission probabilities. Systematic measurements of such data are furthermore needed over large ranges of target nuclei and incident proton energies. Such data has been measured with the NESSI detector. An overview of new and previous results will be given.

  6. Isotopic dependence of the cross section for the induced fission of heavy nuclei

    SciTech Connect

    Bolgova, O. N.; Adamian, G. G.; Antonenko, N. V.; Zubov, A. S.; Ivanova, S. P.; Scheid, W.

    2009-06-15

    The cross sections for the induced fission of {sup 211-223}Ra, {sup 203-211}Rn, and {sup 221-231}Th nuclei undergoing peripheral collisions with {sup 208}Pb nuclei are calculated on the basis of the statistical model. The role of the N = 126 neutron shell is studied. The level density in excited nuclei is determined within the Fermi gas model and a model that takes into account the collective enhancement of the level density. The inclusion of a particle-hole excitation in addition to a collective Coulomb excitation makes it possible to obtain a satisfactory description of experimental cross sections for the fission of radium isotopes. The calculated ratios of the cross sections for the induced fission of {sup 236}U ({sup 237}U) and {sup 238}U ({sup 239}U) nuclei agree with experimental data.

  7. Bremsstrahlung-induced fission and spallation of the pre-actinide nucleus 181Ta

    NASA Astrophysics Data System (ADS)

    Deppman, A.; Karapetyan, G. S.; Guimarães, V.; Gonzales, C.; Balabekyan, A. R.; Demekhina, N. A.

    2015-02-01

    A study of photofission on 181Ta induced by bremsstrahlung with endpoint energies of 50 and 3500 MeV has been performed. The fission yields have been measured by using the induced-activity method in an off-line analysis. The total photofission yields for the tantalum target at 50 and 3500 MeV are found to be 5.4 ±1.1 μ b / equivalent quanta per second (eq.q) and 0.77 ±0.11 mb/eq.q, respectively, and the corresponding deduced fissilities are (0.23 ±0.05 )×10-3 and (2.9 ±0.5 )×10-3 . Mass- and charge-yield distributions were derived from the data. The results were compared with the simulated results from the crisp code for multimodal fission by the assuming symmetrical fission mode.

  8. Neutron-Induced Fission Measurements at the Dance and Lsds Facilities at Lanl

    NASA Astrophysics Data System (ADS)

    Jandel, M.; Bredeweg, T. A.; Bond, E. M.; Chadwick, M. B.; Couture, A.; O'Donnell, J. M.; Fowler, M. M.; Haight, R. C.; Hayes-Sterbenz, A. C.; Rundberg, R. S.; Rusev, G. Y.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wu, C. Y.; Becker, J. A.; Alexander, C. W.; Belier, G.

    2014-09-01

    New results from neutron-induced fission measurements performed at the Detector for Advanced Neutron Capture Experiments (DANCE) and Lead Slowing Down Spectrometer (LSDS) are presented. New correlated data on promptfission γ-ray (PFG) distributions were measured using the DANCE array for resonant neutron-induced fission of 233U, 235U and 239Pu. The deduced properties of PFG emission are presented using a simple parametrization. An accurate knowledge of fission γ-ray spectra enables us to analyze the isomeric states of 236U created after neutron capture on 235U. We briefly discuss these new results. Finally, we review details and preliminary results of the challenging 237U(n,f) cross section measurement at the LSDS facility.

  9. Selective population of states in fission fragments from the [sup 32]S+[sup 24]Mg reaction

    SciTech Connect

    Sanders, S.J.; Hasan, A.; Prosser, F.W. ); Back, B.B.; Betts, R.R.; Carpenter, M.P.; Henderson, D.J.; Janssens, R.V.F.; Khoo, T.L.; Moore, E.F.; Wilt, P.R.; Wolfs, F.L.H.; Wuosmaa, A.H. ); Beard, K.B. ); Benet, P. )

    1994-02-01

    The symmetric and near-symmetric mass fission yields from the [sup 32]S+[sup 24]Mg reaction have been studied in a particle-particle-[gamma] coincidence measurement. Evidence is presented for a selective population of states in [sup 28]Si fragments arising from the symmetric fission of the [sup 56]Ni compound nucleus. A statistical-model calculation of the expected strength to specific mutual excitations of the fission fragments is presented and compared to the experimental results. This calculation is found to describe the structures observed at high excitation energy in the fission [ital Q]-value spectra quite well. Analysis of the [gamma]-ray spectra indicates, however, that a specific set of states in [sup 28]Si, corresponding to a highly deformed prolate band, is populated more strongly than expected based on a purely spin-weighted, statistical decay of the compound nucleus. It is suggested that the population pattern of states in the fission fragments may reflect nuclear structure effects at the point of scission.

  10. Observation of magnetic field-induced contraction of fission yeast cells using optical projection microscopy

    NASA Astrophysics Data System (ADS)

    Yang, Xi; Beckwith, Andrew; Miller, John; Wood, Lowell

    2004-12-01

    The charges in live cells interact with or produce electric fields, which results in enormous dielectric responses, flexoelectricity, and related phenomena. Here we report on a contraction of Schizosaccharomyces pombe (fission yeast) cells induced by magnetic fields, as observed using a phase-sensitive projection imaging technique. Unlike electric fields, magnetic fields only act on moving charges. The observed behavior is therefore quite remarkable, and may result from a contractile Lorentz force acting on diamagnetic screening currents. This would indicate extremely high intracellular charge mobilities. Besides, we observed a large electro-optic response from fission yeast cells.

  11. Observation of magnetic field-induced contraction of fission yeast cells using optical projection microscopy

    NASA Astrophysics Data System (ADS)

    Yang, Xi; Beckwith, A. W.

    2005-03-01

    The charges in live cells interact with or produce electric fields, which results in enormous dielectric responses, flexoelectricity, and related phenomena. Here we report on a contraction of Schizosaccharomyces pombe (fission yeast) cells induced by magnetic fields, as observed using a phase-sensitive projection imaging technique. Unlike electric fields, magnetic fields only act on moving charges. The observed behavior is therefore quite remarkable, and may result from a contractile Lorentz force acting on diamagnetic screening currents. This would indicate extremely high intracellular charge mobilities. Besides, we observed a large electro-optic response from fission yeast cells.

  12. Probing energy dissipation, γ-ray and neutron multiplicity in the thermal neutron-induced fission of 239Pu

    NASA Astrophysics Data System (ADS)

    Pahlavani, M. R.; Mirfathi, S. M.

    2016-04-01

    The incorporation of the four-dimensional Langevin equations led to an integrative description of fission cross-section, fragment mass distribution and the multiplicity and energy distribution of prompt neutrons and γ-rays in the thermal neutron-induced fission of 239Pu. The dynamical approach presented in this paper thoroughly reproduces several experimental observables of the fission process at low excitation energy.

  13. Dissipation strength of the tilting degree of freedom in fusion-fission reactions

    NASA Astrophysics Data System (ADS)

    Nadtochy, P. N.; Vanin, D. V.; Cheredov, A. V.; Fedorov, S. V.; Ryabov, E. G.; Adeev, G. D.

    2016-05-01

    The four-dimensional Langevin model was applied to calculate a wide set of experimental observables for compound nuclei, formed in heavy-ion fusion-fission reactions. A modified one-body mechanism for nuclear dissipation with a reduction coefficient ks of the contribution from a "wall" formula was used for shapes parameters. Different possibilities of deformation-dependent dissipation coefficient for the K coordinate (γK) were investigated. Presented results demonstrate that the influence of the ks and γK parameters on the calculated quantities can be selectively probed. It was found that it is possible to describe experimental data with the deformation-dependent γK coefficient. One of the possibility is to use large values of γK ≃ 0.2 (MeV zs)-1/2 for compact shapes featuring no neck and small values of γK ≃ 0.0077 (MeV zs)-1/2 for elongated shapes.

  14. In-situ measurement of the rate of U-235 fission induced by lunar neutrons

    NASA Technical Reports Server (NTRS)

    Woolum, D. S.; Burnett, D. S.

    1974-01-01

    The depth profile of the neutron-induced fission rate of U-235 was directly measured to a depth of 350 g/sq cm by the Apollo 17 Lunar Neutron Probe Experiment. The fission rate rises sharply from the surface to a broad maximum from 110 to 160 g/sq cm and drops off at greater depths. The shape of the theoretical depth profile of Lingenfelter et al (1972) fits the measured capture rates well at all depths. The absolute magnitude of the experimental fission rates are (11 plus or minus 17)% lower than those calculated theoretically. The excellent agreement between theory and experiment implies that conclusions drawn previously by interpreting lunar sample data with the theoretical capture rates will not require revision. In particular, lunar surface processes, rather than uncertainties in the capture rates, are required to explain the relatively low neutron fluences observed for surface soil samples compared to the fluences expected for a uniformly mixed regolith.

  15. Neutron kinetics in moderators and SNM detection through epithermal-neutron-induced fissions

    NASA Astrophysics Data System (ADS)

    Gozani, Tsahi; King, Michael J.

    2016-01-01

    Extension of the well-established Differential Die Away Analysis (DDAA) into a faster time domain, where more penetrating epithermal neutrons induce fissions, is proposed and demonstrated via simulations and experiments. In the proposed method the fissions stimulated by thermal, epithermal and even higher-energy neutrons are measured after injection of a narrow pulse of high-energy 14 MeV (d,T) or 2.5 MeV (d,D) source neutrons, appropriately moderated. The ability to measure these fissions stems from the inherent correlation of neutron energy and time ("E-T" correlation) during the process of slowing down of high-energy source neutrons in common moderating materials such as hydrogenous compounds (e.g., polyethylene), heavy water, beryllium and graphite. The kinetic behavior following injection of a delta-function-shaped pulse (in time) of 14 MeV neutrons into such moderators is studied employing MCNPX simulations and, when applicable, some simple "one-group" models. These calculations served as a guide for the design of a source moderator which was used in experiments. Qualitative relationships between slowing-down time after the pulse and the prevailing neutron energy are discussed. A laboratory system consisting of a 14 MeV neutron generator, a polyethylene-reflected Be moderator, a liquid scintillator with pulse-shape discrimination (PSD) and a two-parameter E-T data acquisition system was set up to measure prompt neutron and delayed gamma-ray fission signatures in a 19.5% enriched LEU sample. The measured time behavior of thermal and epithermal neutron fission signals agreed well with the detailed simulations. The laboratory system can readily be redesigned and deployed as a mobile inspection system for SNM in, e.g., cars and vans. A strong pulsed neutron generator with narrow pulse (<75 ns) at a reasonably high pulse frequency could make the high-energy neutron induced fission modality a realizable SNM detection technique.

  16. Cluster aspects of binary fission

    NASA Astrophysics Data System (ADS)

    Andreev, A. V.; Adamian, G. G.; Antonenko, N. V.

    2013-04-01

    With the improved scission-point model the mass distributions are calculated for induced fission of different Hg isotopes with even mass numbers A =180, 184, 188, 192, 196, 198. The calculated mass distribution and mean total kinetic energy of fission fragments are in a good agreement with the existing experimental data. The change in the shape of the mass distribution from asymmetric to more symmetric is revealed with increasing A of the fissioning AHg nucleus, and the reactions are proposed to verify this prediction experimentally.

  17. [4-aminopyridine induced rage reaction in mice].

    PubMed

    Xu, J H; Liu, H C; Zhang, Y P

    1991-03-01

    Rage reaction was induced in mice by sc 4-aminopyridine (4-AP) 6 mg . kg-1. Mice appeared hyperreactive after 8-12 min and then squeaked and fought each other. These manifestations were most distinct in 10-30 min and subsided after 40-60 min. The occurrence of rage reaction on this dose level was around 90%. At higher doses 4-AP caused convulsions and death after evocation of rage reaction. The ED50 of 4-AP for eliciting rage reaction was 4.7 +/- 0.7 mg . kg-1 sc. No significant difference in induction of rage reaction was seen between male and female mice of different body weights. Both neuroleptic drugs (chlorpromazine, haloperidol, tarden and clozapine) and anxiolytic drugs (diazepam, chlordiazepoxide, and meprobamate) inhibited 4-AP-induced rage reaction in mice. Barbiturates, Chloral hydrate, methaqualone, morphine hydrochloride, aspirin, phenytoin sodium, diphenhydramine hydrochloride, atropine sulfate, and procaine hydrochloride did not affect rage reaction. The 4-AP-induced aggressive behavior, similar to that induced by electric footshock or isolation, has the merits of convenience to deal with and time saving. Hence we recommended it as a screening method for drugs with neuroleptic and anxiolytic activities. PMID:1685615

  18. Time features of delayed neutrons and partial emissive-fission cross sections for the neutron-induced fission of {sup 232}Th nuclei in the energy range 3.2-17.9 MeV

    SciTech Connect

    Roshchenko, V. A. Piksaikin, V. M. Korolev, G. G.; Egorov, A. S.

    2010-06-15

    The energy dependence of the relative abundances of delayed neutrons and the energy dependence of the half-lives of their precursors in the neutron-induced fission of {sup 232}Th nuclei in the energy range 3.2-17.9 MeV were measured for the first time. A systematics of the time features of delayed neutrons is developed. This systematics makes it possible to estimate the half-life of delayed-neutron precursors as a function of the nucleonic composition of fissile nuclei by using a single parameter set for all nuclides. The energy dependence of the partial cross sections for emissive fission in the reaction {sup 232}Th(n, f) was analyzed on the basis of data obtained for the relative abundances of delayed neutrons and the aforementioned half-lives and on the basis of the created systematics of the time features of delayed neutrons. It was shown experimentally for the first time that the decrease in the cross section after the reaction threshold in the fission of {sup 232}Th nuclei (it has a pronounced first-chance plateau) is not an exclusion among the already studied uranium, plutonium, and curium isotopes and complies with theoretical predictions obtained for the respective nuclei with allowance for shell, superfluid, and collective effects in the nuclear-level density and with allowance for preequilibrium neutron emission

  19. Effects of nuclear orientation on fusion and fission process for reactions using {sup 238}U target nucleus

    SciTech Connect

    Nishio, K.; Ikezoe, H.; Mitsuoka, S.; Nishinaka, I.; Makii, H.; Nagame, Y.; Watanabe, Y.; Ohtsuki, T.; Hirose, K.; Hofmann, S.

    2010-06-01

    Fission fragment mass distributions in the reaction of {sup 30}Si+{sup 238}U were measured at the energies around the Coulomb barrier. At the above-barrier energies, the mass distribution showed Gaussian shape. At the sub-barrier energies, asymmetric fission mode peaked at A{sub L}/A{sub H}approx =90/178 was observed. The asymmetric fission should be attributed to quasifission from the results of the measured evaporation residue (ER) cross-sections produced by {sup 30}Si+{sup 238}U. The cross-section for {sup 263}Sg at the above-barrier energy agree with the statistical model calculation which assumes that the measured fission cross-sections are equal to the fusion cross-sections, whereas the one for {sup 264}Sg measured at the sub-barrier energy is smaller than the calculation, indicating the presence for quasifission. The fragment mass distributions are compared to those for {sup 36}S+{sup 238}U and {sup 40}Ar+{sup 238}U.

  20. Fission fragment angular distributions in the reactions {sup 16}O+{sup 188}Os and {sup 28}Si+{sup 176}Yb

    SciTech Connect

    Tripathi, R.; Sudarshan, K.; Sharma, S. K.; Reddy, A. V. R.; Pujari, P. K.; Goswami, A.; Ramachandran, K.

    2009-06-15

    Fission fragment angular distributions have been measured in the reactions {sup 16}O+{sup 188}Os and {sup 28}Si+{sup 176}Yb to investigate the contribution from noncompound nucleus fission. Parameters for statistical model calculations were fixed using fission cross section data in the {sup 16}O+{sup 188}Os reaction. Experimental anisotropies were in reasonable agreement with those calculated using the statistical saddle point model for both reactions. The present results are also consistent with those of mass distribution studies in the fission of {sup 202}Po, formed in the reactions with varying entrance channel mass asymmetry. However, the present studies do not show a large fusion hindrance as reported in the pre-actinide region based on the measurement of evaporation residue cross section.

  1. Applications with Near-Barrier Photo-Fission Reactions in Uranium Isotopes

    NASA Astrophysics Data System (ADS)

    Johnson, M. S.; Hall, J. M.; McNabb, D. P.; Tuffley, M. J.; Ahmed, M. W.; Stave, S.; Weller, H. R.; Karwowski, H. J.; Tompkins, J. R.

    2010-11-01

    Homeland security programs are developing compact, linearly polarized, quasi-monoenergetic photon sources to probe containers for special nuclear material (SNM). These sources are important in national security applications within the commerce system because of the low dose compared to current bremsstrahlung-based sources used for radiography, and important safety concern. Basic radiography only offers density distributions in cargo containers and does not distinguish fissionable materials from non-fissionable, high-Z materials. One possible usage of quasi-monoenergetic sources is to look for photo-neutrons, which may be subject to lower backgrounds, especially near the barrier where photo-fission neutrons have a high energy tail relative to (g,n). For this presentation, we discuss the results of recent near-barrier photo-fission resonance measurements in uranium isotopes. We will present our study of the neutron data and discuss its viability as a signature for SNM detection applications.

  2. Precise ruthenium fission product isotopic analysis using dynamic reaction cell inductively coupled plasma mass spectrometry (DRC-ICP-MS)

    SciTech Connect

    Brown, Christopher F.; Dresel, P. Evan; Geiszler, Keith N.; Farmer, Orville T.

    2006-05-09

    99Tc is a subsurface contaminant of interest at numerous federal, industrial, and international facilities. However, as a mono-isotopic fission product, 99Tc lacks the ability to be used as a signature to differentiate between the different waste disposal pathways that could have contributed to subsurface contamination at these facilities. Ruthenium fission-product isotopes are attractive analogues for the characterization of 99Tc sources because of their direct similarity to technetium with regard to subsurface mobility, and their large fission yields and low natural background concentrations. We developed an inductively coupled plasma mass spectrometry (ICP-MS) method capable of measuring ruthenium isotopes in groundwater samples and extracts of vadose zone sediments. Samples were analyzed directly on a Perkin Elmer ELAN DRC II ICP-MS after a single pass through a 1-ml bed volume of Dowex AG 50W-X8 100-200 mesh cation exchange resin. Precise ruthenium isotopic ratio measurements were achieved using a low-flow Meinhard-type nebulizer and long sample acquisition times (150,000 ms). Relative standard deviations of triplicate replicates were maintained at less than 0.5% when the total ruthenium solution concentration was 0.1 ng/ml or higher. Further work was performed to minimize the impact caused by mass interferences using the dynamic reaction cell (DRC) with O2 as the reaction gas. The aqueous concentrations of 96Mo and 96Zr were reduced by more than 99.7% in the reaction cell prior to injection of the sample into the mass analyzer quadrupole. The DRC was used in combination with stable-mass correction to quantitatively analyze samples containing up to 2-orders of magnitude more zirconium and molybdenum than ruthenium. The analytical approach documented herein provides an efficient and cost-effective way to precisely measure ruthenium isotopes and quantitate total ruthenium (natural vs. fission-product) in aqueous matrixes.

  3. Fragment properties from fission of actinide nuclei induced by 6-10 MeV bremsstrahlungI

    NASA Astrophysics Data System (ADS)

    Gook, A.; Eckardt, C.; Enders, J.; Freudenberger, M.; von Neumann-Cosel, P.; Oberstedt, A.; Oberstedt, S.; Richter, A.

    Experiments to investigate the photon-induced fission of actinide nuclei at excitation energies in the vicinity of the fission barrier are carried out at the superconducting Darmstadt linear electron accelerator S-DALINAC. A twin-Frisch-grid ionization chamber is used to deduce mass, total kinetic energy, and angular distributions of the fission fragments. First experiments on 238U and 234U have shown that the experimental setup provides excellent conditions for investigating low-energy bremsstrahlung induced fission. Further experiments on 234U and 232Th are currently in progress. In this contribution results from the first experiment on fission fragment mass and total kinetic energy distributions from 234,238U are presented along with preliminary data from an on-going investigation of angular distributions from 234U(γ, f)

  4. a Study of Prompt Neutron Emission in Thermal Neutron-Induced Fission of URANIUM-235.

    NASA Astrophysics Data System (ADS)

    Franklyn, Christopher Barry

    An original experiment was performed to measure the angular correlation of fission neutrons from thermal -neutron-induced fission of ('235)U, with respect to the light fission fragment direction, as a function of fragment mass division and neutron energy. A Monte Carlo model, with a realistic description of the fission fragment de -excitation process, was developed to simulate the observed neutron-fragment angular correlation data. The model was capable of investigating various possible forms of neutron emission which were classified into emission before, during and after full fragment acceleration, and correspondingly named scission acceleration and prompt neutron emission. Simulated neutron-fragment angular correlations displaying similar distributions with respect to the light fragment direction for different forms of neutron emission are shown to exhibit differing distributions when examined as a function of fragment mass division or neutron energy, thus illustrating the sensitivity of the experiment to the forms of neutron emission occurring in fission. A primary conclusion of the investigation was that neutron emission solely from fully accelerated fragments, whether isotropically or anisotropically emitted in the fragment centre of mass system, was unable to adequately describe the observed neutron-fragment angular correlations. Simulation of the fission process with some neutron emission before or during fragment acceleration exhibited a closer correspondence with observed phenomena. Within the scope of this work the form of neutron emission that produced the closest overall correspondence with experimental data was a simulation in which 20% of the emitted neutrons were isotropically emitted scission neutrons with a Maxwellian energy distribution of temperature 1.0 MeV. The remaining neutrons were emitted from fully accelerated fragments, being isotropic in the fragment centre of mass frame, except for the n-th(n > 1) neutrons from the light fragment, which

  5. Measurement of delayed-neutron yield from 237Np fission induced by thermal neutrons

    NASA Astrophysics Data System (ADS)

    Gundorin, N. A.; Zhdanova, K. V.; Zhuchko, V. E.; Pikelner, L. B.; Rebrova, N. V.; Salamatin, I. M.; Smirnov, V. I.; Furman, V. I.

    2007-06-01

    The delayed-neutron yield from thermal-neutron-induced fission of the 237Np nucleus was measured using a sample periodically exposed to a pulsed neutron beam with subsequent detection of neutrons during the time intervals between pulses. The experiment was realized on an Isomer-M setup mounted in the IBR-2 pulsed reactor channel equipped with a mirror neutron guide. The setup and the experimental procedure are described, the background sources are thoroughly analyzed, and the experimental data are presented. The total delayed-neutron yield from 237Np fission induced by thermal neutrons is ν d = 0.0110 ± 0.0009. This study was performed at the Frank Laboratory of Neutron Physics (JINR, Dubna).

  6. Detection of uranium-based nuclear weapons using neutron-induced fission

    SciTech Connect

    Moss, C.E.; Byrd, R.C.; Feldman, W.C.; Auchampaugh, G.F.; Estes, G.P.; Ewing, R.I.; Marlow, K.W.

    1991-12-01

    Although plutonium-based nuclear weapons can usually be detected by their spontaneous emission of neutrons and gammas, the radiation emitted by weapons based entirely on highly-enriched uranium can often be easily shielded. Verification of a treaty that limits the number of such weapons may require an active technique, such as interrogating the suspect assembly with an external neutron source and measuring the number of fission neutrons produced. Difficulties include distinguishing between source and fission neutrons, the variations in yield for different materials and geometries, and the possibility of non-nuclear weapons that may contain significant amounts of fissionable depleted uranium. We describe simple measurements that test the induced-fission technique using an isotopic Am-Li source, an novel energy-sensitive neutron detector, and several small assemblies containing {sup 235}U, {sup 238}U, lead, and polyethylene. In all cases studied, the neutron yields above the source energy are larger for the {sup 235}U assemblies than for assemblies containing only lead or depleted uranium. For more complex geometries, corrections for source transmission may be necessary. The results are promising enough to recommend further experiments and calculations using examples of realistic nuclear and non-nuclear weapons. 5 refs., 11 figs.

  7. Development of prototype induced-fission-based Pu accountancy instrument for safeguards applications.

    PubMed

    Seo, Hee; Lee, Seung Kyu; An, Su Jung; Park, Se-Hwan; Ku, Jeong-Hoe; Menlove, Howard O; Rael, Carlos D; LaFleur, Adrienne M; Browne, Michael C

    2016-09-01

    Prototype safeguards instrument for nuclear material accountancy (NMA) of uranium/transuranic (U/TRU) products that could be produced in a future advanced PWR fuel processing facility has been developed and characterized. This is a new, hybrid neutron measurement system based on fast neutron energy multiplication (FNEM) and passive neutron albedo reactivity (PNAR) methods. The FNEM method is sensitive to the induced fission rate by fast neutrons, while the PNAR method is sensitive to the induced fission rate by thermal neutrons in the sample to be measured. The induced fission rate is proportional to the total amount of fissile material, especially plutonium (Pu), in the U/TRU product; hence, the Pu amount can be calibrated as a function of the induced fission rate, which can be measured using either the FNEM or PNAR method. In the present study, the prototype system was built using six (3)He tubes, and its performance was evaluated for various detector parameters including high-voltage (HV) plateau, efficiency profiles, dead time, and stability. The system's capability to measure the difference in the average neutron energy for the FNEM signature also was evaluated, using AmLi, PuBe, (252)Cf, as well as four Pu-oxide sources each with a different impurity (Al, F, Mg, and B) and producing (α,n) neutrons with different average energies. Future work will measure the hybrid signature (i.e., FNEM×PNAR) for a Pu source with an external interrogating neutron source after enlarging the cavity size of the prototype system to accommodate a large-size Pu source (~600g Pu). PMID:27337652

  8. Dynamical Dipole Mode in Heavy-Ion Fusion-Evaporation and Fission Reactions in the {sup 192}Pb Mass Region

    SciTech Connect

    Silvestri, R.; Inglima, G.; La Commara, M.; Martin, B.; Sandoli, M.; Pierroutsakou, D.; Parascandolo, C.; Boiano, A.; Romoli, M.; Agodi, C.; Alba, R.; Colonna, M.; Coniglione, R.; Del Zoppo, A.; Maiolino, C.; Santonocito, D.; Baran, V.; De Filippo, E.; Di Toro, M.; Rizzo, C.

    2011-10-28

    The prompt {gamma}-ray emission related with the dynamical dipole mode decay was investigated in the {sup 192}Pb mass region by means of the {sup 40}Ca+{sup 152}Sm and {sup 48}Ca+{sup 144}Sm fusion-evaporation and fission reactions at E{sub lab} = 11 and 10.1 MeV/nucleon, respectively. The two reactions populate, through entrance channel having different charge asymmetries, the {sup 192}Pb compound nucleus at an excitation energy of 236 MeV with identical spin distribution. Preliminary results of this experiment show that the dynamical dipole mode survives in collisions involving heavier mass reaction partners than those studied previously. As a fast cooling mechanism on the fusion path, the prompt dipole {gamma} radiation could be of interest for the synthesis of super-heavy elements through ''hot'' fusion reactions.

  9. Study of viscosity on the fission dynamics of the excited nuclei 228U produced in 19F + 209Bi reactions

    NASA Astrophysics Data System (ADS)

    Eslamizadeh, H.

    2015-06-01

    A two-dimensional (2D) dynamical model based on Langevin equations was applied to study the fission dynamics of the compound nuclei 228U produced in 19F + 209Bi reactions at intermediate excitation energies. The distance between the centers of masses of the future fission fragments was used as the first dimension and the projection of the total spin of the compound nucleus onto the symmetry axis, K, was considered as the second dimension in Langevin dynamical calculations. The magnitude of post-saddle friction strength was inferred by fitting measured data on the average pre-scission neutron multiplicity for 228U. It was shown that the results of calculations are in good agreement with the experimental data by using values of the post-saddle friction equal to 6-8 × 1021s-1.

  10. The DART dispersion analysis research tool: A mechanistic model for predicting fission-product-induced swelling of aluminum dispersion fuels. User`s guide for mainframe, workstation, and personal computer applications

    SciTech Connect

    Rest, J.

    1995-08-01

    This report describes the primary physical models that form the basis of the DART mechanistic computer model for calculating fission-product-induced swelling of aluminum dispersion fuels; the calculated results are compared with test data. In addition, DART calculates irradiation-induced changes in the thermal conductivity of the dispersion fuel, as well as fuel restructuring due to aluminum fuel reaction, amorphization, and recrystallization. Input instructions for execution on mainframe, workstation, and personal computers are provided, as is a description of DART output. The theory of fission gas behavior and its effect on fuel swelling is discussed. The behavior of these fission products in both crystalline and amorphous fuel and in the presence of irradiation-induced recrystallization and crystalline-to-amorphous-phase change phenomena is presented, as are models for these irradiation-induced processes.

  11. Permeability Changes in Reaction Induced Fracturing

    NASA Astrophysics Data System (ADS)

    Ulven, Ole Ivar; Malthe-Sørenssen, Anders; Kalia, Rajiv

    2013-04-01

    The process of fracture formation due to a volume increasing chemical reaction has been studied in a variety of different settings, e.g. weathering of dolerites by Røyne et al.[4], serpentinization and carbonation of peridotite by Rudge et al.[3] and replacement reactions in silica-poor igneous rocks by Jamtveit et al.[1]. It is generally assumed that fracture formation will increase the net permeability of the rock, and thus increase the reactant transport rate and subsequently the total reaction rate, as summarised by Kelemen et al.[2]. Røyne et al.[4] have shown that transport in fractures will have an effect on the fracture pattern formed. Understanding the feedback process between fracture formation and permeability changes is essential in assessing industrial scale CO2 sequestration in ultramafic rock, but little is seemingly known about how large the permeability change will be in reaction-induced fracturing under compression, and it remains an open question how sensitive a fracture pattern is to permeability changes. In this work, we study the permeability of fractures formed under compression, and we use a 2D discrete element model to study the fracture patterns and total reaction rates achieved with different permeabilities. We achieve an improved understanding of the feedback processes in reaction-driven fracturing, thus improving our ability to decide whether industrial scale CO2 sequestration in ultramafic rock is a viable option for long-term handling of CO2. References [1] Jamtveit, B, Putnis, C. V., and Malthe-Sørenssen, A., "Reaction induced fracturing during replacement processes," Contrib. Mineral Petrol. 157, 2009, pp. 127 - 133. [2] Kelemen, P., Matter, J., Streit, E. E., Rudge, J. F., Curry, W. B., and Blusztajn, J., "Rates and Mechanisms of Mineral Carbonation in Peridotite: Natural Processes and Recipes for Enhanced, in situ CO2 Capture and Storage," Annu. Rev. Earth Planet. Sci. 2011. 39:545-76. [3] Rudge, J. F., Kelemen, P. B., and

  12. Compact fission counter for DANCE

    SciTech Connect

    Wu, C Y; Chyzh, A; Kwan, E; Henderson, R; Gostic, J; Carter, D; Bredeweg, T; Couture, A; Jandel, M; Ullmann, J

    2010-11-06

    The Detector for Advanced Neutron Capture Experiments (DANCE) consists of 160 BF{sub 2} crystals with equal solid-angle coverage. DANCE is a 4{pi} {gamma}-ray calorimeter and designed to study the neutron-capture reactions on small quantities of radioactive and rare stable nuclei. These reactions are important for the radiochemistry applications and modeling the element production in stars. The recognition of capture event is made by the summed {gamma}-ray energy which is equivalent of the reaction Q-value and unique for a given capture reaction. For a selective group of actinides, where the neutron-induced fission reaction competes favorably with the neutron capture reaction, additional signature is needed to distinguish between fission and capture {gamma} rays for the DANCE measurement. This can be accomplished by introducing a detector system to tag fission fragments and thus establish a unique signature for the fission event. Once this system is implemented, one has the opportunity to study not only the capture but also fission reactions. A parallel-plate avalanche counter (PPAC) has many advantages for the detection of heavy charged particles such as fission fragments. These include fast timing, resistance to radiation damage, and tolerance of high counting rate. A PPAC also can be tuned to be insensitive to {alpha} particles, which is important for experiments with {alpha}-emitting actinides. Therefore, a PPAC is an ideal detector for experiments requiring a fast and clean trigger for fission. A PPAC with an ingenious design was fabricated in 2006 by integrating amplifiers into the target assembly. However, this counter was proved to be unsuitable for this application because of issues related to the stability of amplifiers and the ability to separate fission fragments from {alpha}'s. Therefore, a new design is needed. A LLNL proposal to develop a new PPAC for DANCE was funded by NA22 in FY09. The design goal is to minimize the mass for the proposed counter

  13. Measurement of the 240,242Pu Neutron-induced Fission Cross Sections

    NASA Astrophysics Data System (ADS)

    Salvador-Castiñeira, P.; Bevilacqua, R.; Bryś, T.; Hambsch, F.-J.; Oberstedt, S.; Pretel, C.; Vidali, M.

    The neutron-induced fission cross section of 240,242Pu has been measured at the Van de Graaff facility of the Institute for Reference Materials and Measurements (JRC-IRMM). A Twin-Frisch Grid Ionization Chamber (TFGIC) has been used in a back-to-back geometry with the secondary standards 237Np and 238U to normalize the cross section. The energy range measured is from 0.2 keV up to 3 MeV. Preliminary results show some discrepancies around 1 MeV for the 242Pu with the ENDF/B-VII.1 evaluation. The spontaneous fission half-life has been measured for both isotopes, too. Preliminary results show reasonable agreement with the recommended values.

  14. Neutron-induced Fission Cross Section of 240242Pu up to En = 3 MeV

    NASA Astrophysics Data System (ADS)

    Salvador-Castiñeira, P.; Bryś, T.; Hambsch, F.-J.; Oberstedt, S.; Pretel, C.; Vidali, M.

    2014-05-01

    The neutron-induced fission cross sections of 240,242Pu have been measured at JRC-IRMM with incident neutron energy from 0.2 MeV up to 3 MeV. A Twin-Frisch Grid Ionization Chamber (TFGIC) has been used in a back-to-back geometry. The measurements have been performed using the secondary standards 237Np and 238U as a reference. The purity of the plutonium samples was 99.89% for 240Pu and 99.97% for 242Pu. The results obtained follow the ENDF/B-VII.1 evaluation for 240Pu, but some discrepancies are visible around E/n = 1 MeV for 242Pu. In addition, the spontaneous fission half-life has been measured for both isotopes.

  15. Impact of Zr metal and coking reactions on the fission product aerosol release during MCCI (Molten Core Concrete Interactions)

    SciTech Connect

    Lee, M.; Davis, R.E.; Khatib-Rahbar, M.

    1987-01-01

    During a core meltdown accident in a light water reactor, molten core materials (corium) could leave the reactor vessel and interact with concrete. In this paper, the impact of the zirconium content of the corium pool and the coking reaction on the release of fission products during Molten Core Concrete Interactions (MCCI) are quantified using CORCON/MOD2 and VANESA computer codes. Detailed calculations show that the total aerosol generation is proportional to the zirconium content of the corium pool. Among the twelve fission product groups treated by the VANESA code, CsI, CsO/sub 2/ and Nb/sub 2/O/sub 5/ are completely released over the course of the core/concrete interaction, while an insignificant quantity of Mo, Ru and ZrO/sub 2/ are predicted to be released. The release of BaO, SrO and CeO/sub 2/ increase with increased Zr content, while the releases of Te and La/sub 2/O/sub 3/ are relatively unaffected by the Zr content of the corium pool. The impact of the coking reaction on the radiological releases is estimated to be significant; while the impact of the coking reaction on the aerosol production is insignificant.

  16. Dynamical Aspects of Nuclear Fission

    NASA Astrophysics Data System (ADS)

    Kliman, J.; Itkis, M. G.; Gmuca, Š.

    2008-11-01

    Fission dynamics. Dependence of scission-neutron yield on light-fragment mass for [symbol]=1/2 [et al.]. Dynamics of capture quasifission and fusion-fission competition / L. Stuttgé ... [et al.] -- Fission-fission. The processes of fusion-fission and quasi-fission of superheavy nuclei / M. G. Itkis ... [et al.]. Fission and quasifission in the reactions [symbol]Ca+[symbol]Pb and [symbol]Ni+[symbol]W / G. N. Knyazheva ... [et al.]. Mass-energy characteristics of reactions [symbol]Fe+[symbol][symbol][symbol]266Hs and [symbol]Mg+[symbol]Cm[symbol][symbol]Hs at Coulomb barrier / L. Krupa ... [et al.]. Fusion of heavy ions at extreme sub-barrier energies / Ş. Mişicu and H. Esbensen. Fusion and fission dynamics of heavy nuclear system / V. Zagrebaev and W. Greiner. Time-dependent potential energy for fusion and fission processes / A. V. Karpov ... [et al.] -- Superheavy elements. Advances in the understanding of structure and production mechanisms for superheavy elements / W. Greiner and V. Zagrebaev. Fission barriers of heaviest nuclei / A. Sobiczewski ... [et al.]. Possibility of synthesizing doubly magic superheavy nuclei / Y Aritomo ... [et al.]. Synthesis of superheavy nuclei in [symbol]Ca-induced reactions / V. K. Utyonkov ... [et al.] -- Fragmentation. Production of neutron-rich nuclei in the nucleus-nucleus collisions around the Fermi energy / M. Veselský. Signals of enlarged core in [symbol]Al / Y. G. Ma ... [et al.] -- Exotic modes. New insight into the fission process from experiments with relativistic heavy-ion beams / K.-H. Schmidt ... [et al.]. New results for the intensity of bimodal fission in binary and ternary spontaneous fission of [symbol]Cf / C. Goodin ... [et al.]. Rare fission modes: study of multi-cluster decays of actinide nuclei / D. V. Kamanin ... [et al.]. Energy distribution of ternary [symbol]-particles in [symbol]Cf(sf) / M. Mutterer ... [et al.]. Preliminary results of experiment aimed at searching for collinear cluster tripartition of

  17. Nuclear reactions induced by a pyroelectric accelerator.

    PubMed

    Geuther, Jeffrey; Danon, Yaron; Saglime, Frank

    2006-02-10

    This work demonstrates the use of pyroelectric crystals to induce nuclear reactions. A system based on a pair of pyroelectric crystals is used to ionize gas and accelerate the ions to energies of up to 200 keV. The system operates above room temperature by simply heating or cooling the pyroelectric crystals. A D-D fusion reaction was achieved with this technique, and 2.5 MeV neutrons were detected. The measured neutron yield is in good agreement with the calculated yield. This work also verifies the results published by Naranjo, Gimzewski, and Putterman [Nature (London) 434, 1115 (2005)]. PMID:16486940

  18. Cdk1, PKCδ and calcineurin-mediated Drp1 pathway contributes to mitochondrial fission-induced cardiomyocyte death

    SciTech Connect

    Zaja, Ivan; Bai, Xiaowen; Liu, Yanan; Kikuchi, Chika; Dosenovic, Svjetlana; Yan, Yasheng; Canfield, Scott G.; Bosnjak, Zeljko J.

    2014-10-31

    Highlights: • Drp1-mediated increased mitochondrial fission but not fusion is involved the cardiomyocyte death during anoxia-reoxygenation injury. • Reactive oxygen species are upstream initiators of mitochondrial fission. • Increased mitochondrial fission is resulted from Cdk1-, PKCδ-, and calcineurin-mediated Drp1 pathways. - Abstract: Myocardial ischemia–reperfusion (I/R) injury is one of the leading causes of death and disability worldwide. Mitochondrial fission has been shown to be involved in cardiomyocyte death. However, molecular machinery involved in mitochondrial fission during I/R injury has not yet been completely understood. In this study we aimed to investigate molecular mechanisms of controlling activation of dynamin-related protein 1 (Drp1, a key protein in mitochondrial fission) during anoxia-reoxygenation (A/R) injury of HL1 cardiomyocytes. A/R injury induced cardiomyocyte death accompanied by the increases of mitochondrial fission, reactive oxygen species (ROS) production and activated Drp1 (pSer616 Drp1), and decrease of inactivated Drp1 (pSer637 Drp1) while mitochondrial fusion protein levels were not significantly changed. Blocking Drp1 activity with mitochondrial division inhibitor mdivi1 attenuated cell death, mitochondrial fission, and Drp1 activation after A/R. Trolox, a ROS scavenger, decreased pSer616 Drp1 level and mitochondrial fission after A/R. Immunoprecipitation assay further indicates that cyclin dependent kinase 1 (Cdk1) and protein kinase C isoform delta (PKCδ) bind Drp1, thus increasing mitochondrial fission. Inhibiting Cdk1 and PKCδ attenuated the increases in pSer616 Drp1, mitochondrial fission, and cardiomyocyte death. FK506, a calcineurin inhibitor, blocked the decrease in expression of inactivated pSer637 Drp1 and mitochondrial fission. Our findings reveal the following novel molecular mechanisms controlling mitochondrial fission during A/R injury of cardiomyocytes: (1) ROS are upstream initiators of

  19. Predominant Time Scales in Fission Processes in Reactions of S, Ti and Ni with W: Zeptosecond versus Attosecond

    SciTech Connect

    Du Rietz, R.; Hinde, D. J.; Dasgupta, M.; Thomas, R. G.; Gasques, L. R.; Evers, M.; Lobanov, N.; Wakhle, A.

    2011-02-04

    The inhibition of fusion by quasifission is crucial in limiting the formation of superheavy elements in collisions of heavy nuclei. Time scales of {approx}10{sup -18} s inferred for fissionlike events from recent crystal blocking measurements were interpreted to show either that quasifission itself is slower than previously believed, or that the fraction of slow fusion-fission is higher than expected. New measurements of mass-angle distributions for {sup 48}Ti and {sup 64}Ni bombarding W targets show that in these reactions quasifission is the dominant process, typically occurring before the system formed after contact has made a single rotation, corresponding to time scales of {<=}10{sup -20} s.

  20. Prompt γ-rays from the Fast Neutron Induced Fission on 235,238U and 232Th

    NASA Astrophysics Data System (ADS)

    Lebois, M.; Wilson, J. N.; Halipré, P.; Leniau, B.; Matea, I.; Oberstedt, A.; Oberstedt, S.; Verney, D.

    Preliminary results from the first experiment using the LICORNE neutron source at the IPN Orsay are presented. Prompt fission gamma rays from fast-neutron induced fission of 238U, 232Th and 235U were detected. Thick samples of around 50 g of 238U and 232Th are used for the first part of the experiment. An ionisation chamber containing ∼ 10 mg samples of 238U and 235U to provide a fission trigger is used for the second part of the experiment. Gamma rays have been detected using 17 high efficiency BaF2 detectors and 6 LaBr3 scintillator detectors.

  1. Neutron-induced fission cross section of 233Pa between 1.0 and 3.0 MeV.

    PubMed

    Tovesson, F; Hambsch, F J; Oberstedt, A; Fogelberg, B; Ramström, E; Oberstedt, S

    2002-02-11

    The energy dependent neutron-induced fission cross section of 233Pa has for the first time been measured directly with monoenergetic neutrons. This nuclide is an important intermediary in a thorium based fuel cycle, and its fission cross section is a key parameter in the modeling of future advanced fuel and reactor concepts. A first experiment resulted in four cross section values between 1.0 and 3.0 MeV, establishing a fission threshold in excess of 1 MeV. Significant discrepancies were found with a previous indirect experimental determination and with model estimates. PMID:11863801

  2. A Monte Carlo simulation of the fission chambers neutron-induced pulse shape using the GARFIELD suite

    NASA Astrophysics Data System (ADS)

    Filliatre, P.; Jammes, C.; Geslot, B.; Veenhof, R.

    2012-06-01

    A computation route that simulates the neutron-induced charge spectrum and pulse shape of a fission chamber is presented. It is based on the GARFIELD suite, and makes use of the MAGBOLTZ and SRIM codes. It allows the simulation of the signal in the current and Campbelling modes. Computations made with several fission chambers exemplify the possibilities of the route. A good qualitative agreement is obtained when comparing the results with the scarce experimental data available to date. After a further experimental qualification, this route will improve the design of fission chambers by assessing its overall sensitivity.

  3. CW CO2 Laser Induced Chemical Reactions

    NASA Astrophysics Data System (ADS)

    Pola, Joseph

    1989-05-01

    CW CO2 laser driven reactions between sulfur hexafluoride and carbon oxide, carbon suboxide, carbonyl sulfide and carbon disulfide proceed at subatmospheric pressures and yield fluorinated carbon compounds and sulfur tetrafluoride. CW CO2 laser driven reactions of organic compounds in the presence of energy-conveying sulfur hexafluoride show reaction course different from that normally observed due to elimination of reactor hot surface effects. The examples concern the decomposition of polychlorohydrocarbons, 2-nitropropane, tert.-butylamine, allyl chloride, spirohexane, isobornyl acetate and the oxidation of haloolefins. CW CO2 laser induced fragmentation of 1-methyl-l-silacyclobutanes and 4-silaspiro(3.4)octane in the presence of sulfur hexafluoride is an effective way for preparation and deposition of stable organosilicon polymers.

  4. Helium-induced reactions in astrophysics

    SciTech Connect

    Hale, G.M.

    1997-11-01

    Helium-induced reactions play a crucial role in stellar nucleosynthesis. Carbon and oxygen are produced mainly during the helium-burning phase by the chain of reactions {sup 8}Be({alpha}, {gamma} + e{sup +}e{sup {minus}}){sup 12}C({alpha}, {gamma}){sup 16}O. The first step, often called triple-{alpha} capture, was proposed by Hoyle to bypass the mass stability gap at {sup 8}Be. The second step gives rise to the largest uncertainty in most of the calculated stellar abundances. Later {alpha}-captures on {sup 13}C are believed to be a major source of s-process neutrons. The status of each of these important reactions is reviewed here.

  5. Systemic immunotoxicity reactions induced by adjuvanted vaccines.

    PubMed

    Batista-Duharte, Alexander; Portuondo, Deivys; Pérez, O; Carlos, Iracilda Zeppone

    2014-05-01

    Vaccine safety is a topic of concern for the treated individual, the family, the health care personnel, and the others involved in vaccination programs as recipients or providers. Adjuvants are necessary components to warrant the efficacy of vaccines, however the overstimulation of the immune system is also associated with adverse effects. Local reactions are the most frequent manifestation of toxicity induced by adjuvanted vaccines and, with the exception of the acute phase response (APR), much less is known about the systemic reactions that follow vaccination. Their low frequency or subclinical expression meant that this matter has been neglected. In this review, various systemic reactions associated with immune stimulation will be addressed, including: APR, hypersensitivity, induction or worsening of autoimmune diseases, modification of hepatic metabolism and vascular leak syndrome (VLS), with an emphasis on the mechanism involved. Finally, the authors analyze the current focus of discussion about vaccine safety and opportunities to improve the design of new adjuvanted vaccines in the future. PMID:24607449

  6. Neutron capture and neutron-induced fission experiments on americium isotopes with DANCE

    SciTech Connect

    Jandel, M.; Bredeweg, T. A.; Fowler, M. M.; Bond, E. M.; Couture, A.; Haight, R. C.; Keksis, A. L.; O'Donnell, J. M.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Stoyer, M. A.; Wu, C. Y.; Becker, J. A.; Haslett, R. J.; Henderson, R. A.

    2009-01-28

    Neutron capture cross section data on Am isotopes were measured using the Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory. The neutron capture cross section was determined for {sup 241}Am for neutron energies between thermal and 320 keV. Preliminary results were also obtained for {sup 243}Am for neutron energies between 10 eV and 250 keV. The results on concurrent neutron-induced fission and neutron-capture measurements on {sup 242m}Am will be presented where the fission events were actively triggered during the experiments. In these experiments, a Parallel-Plate Avalanche Counter (PPAC) detector that surrounds the target located in the center of the DANCE array was used as a fission-tagging detector to separate (n,{gamma}) events from (n,f) events. The first direct observation of neutron capture on {sup 242m}Am in the resonance region in between 2 and 9 eV of the neutron energy was obtained.

  7. Neutron capture and neutron-induced fission experiments on americium isotopes with DANCE

    SciTech Connect

    Jandel, Marian

    2008-01-01

    Neutron capture cross section data on Am isotopes were measured using the Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory. The neutron capture cross section was determined for {sup 241}Am for neutron energies between thermal and 320 keV. Preliminary results were also obtained for {sup 243}Am for neutron energies between 35 eV and 200 keV. The results on concurrent neutron-induced fission and neutron-capture measurements on {sup 242m}Am will be presented, where the fission events were actively triggered during the experiments. In these experiments, the Parallel-Plate Avalanche Counter (PPAC) detector that surrounds the target located in the center of the DANCE array was used as a fission-tagging detector to separate (n,{gamma}) from (n,f) events. The first evidence of neutron capture on {sup 242m}Am in the resonance region in between 2 and 9 eV of the neutron energy was obtained.

  8. Fluid transport in reaction induced fractures

    NASA Astrophysics Data System (ADS)

    Ulven, Ole Ivar; Sun, WaiChing; Malthe-Sørenssen, Anders

    2015-04-01

    The process of fracture formation due to a volume increasing chemical reaction has been studied in a variety of different settings, e.g. weathering of dolerites by Røyne et al. te{royne}, serpentinization and carbonation of peridotite by Rudge et al. te{rudge} and replacement reactions in silica-poor igneous rocks by Jamtveit et al. te{jamtveit}. It is generally assumed that fracture formation will increase the net permeability of the rock, and thus increase the reactant transport rate and subsequently the total rate of material conversion, as summarised by Kelemen et al. te{kelemen}. Ulven et al. te{ulven_1} have shown that for fluid-mediated processes the ratio between chemical reaction rate and fluid transport rate in bulk rock controls the fracture pattern formed, and Ulven et al. te{ulven_2} have shown that instantaneous fluid transport in fractures lead to a significant increase in the total rate of the volume expanding process. However, instantaneous fluid transport in fractures is clearly an overestimate, and achievable fluid transport rates in fractures have apparently not been studied in any detail. Fractures cutting through an entire domain might experience relatively fast advective reactant transport, whereas dead-end fractures will be limited to diffusion of reactants in the fluid, internal fluid mixing in the fracture or capillary flow into newly formed fractures. Understanding the feedback process between fracture formation and permeability changes is essential in assessing industrial scale CO2 sequestration in ultramafic rock, but little is seemingly known about how large the permeability change will be in reaction-induced fracturing. In this work, we study the feedback between fracture formation during volume expansion and fluid transport in different fracture settings. We combine a discrete element model (DEM) describing a volume expanding process and the related fracture formation with different models that describe the fluid transport in the

  9. Short-lived fission product measurements from >0.1 MeV neutron-induced fission using boron carbide.

    SciTech Connect

    Finn, Erin C.; Metz, Lori A.; Greenwood, Lawrence R.; Pierson, Bruce D.; Friese, Judah I.; Kephart, Rosara F.; Kephart, Jeremy D.

    2012-02-01

    A boron carbide shield was designed, custom fabricated, and used to create a fast fission energy neutron spectrum. The fissionable isotopes 233, 235, 238U, 237Np, and 239Pu were separately placed inside of this shield and irradiated under pulsed conditions at the Washington State University 1 MW TRIGA reactor. A unique set of fission product gamma spectra were collected at short times (4 minutes to 1 week) post-fission. Gamma spectra were collected on single-crystal high purity germanium detectors and on Pacific Northwest National Laboratory's (PNNL's) Direct Simultaneous Measurement (DSM) system composed of HPGe detectors connected in coincidence. This work defines the experimental methods used to produce and collect the gamma data, and demonstrates the validity of the measurements. It is important to fully document this information so the data can be used with high confidence for the advancement of nuclear science and non-proliferation applications. The gamma spectra collected in these and other experiments will be made publicly available at https://spcollab.pnl.gov/sites/gammadata or via the link at http://rdnsgroup.pnl.gov. A revised version of this publication will be posted with the data to make the experimental details available to those using the data.

  10. Total fission cross section of {sup 181}Ta and {sup 208}Pb induced by protons at relativistic energies

    SciTech Connect

    Ayyad, Y.; Benlliure, J.; Casarejos, E.; Schmidt, K. H.; Jurado, B.; Pol, H. A.; Ricciardi, M. V.; Pleskac, R.; Enqvist, T.; Rejmund, F.; Giot, L.; Henzl, V.; Lukic, S.; Ngoc, S. N.; Boudard, A.; Leray, S.; Kurtukian, T.; Schmitt, C.; Henzlova, D.; Paradela, C.; Bacquias, A.; Loureiro, D. P.; Foehr, V.; Tarrio, D.; Kezzar, K.

    2011-07-01

    Total fission cross section induced by protons in {sup 181}Ta and {sup 208}Pb at energies in the range of 300 to 1000 A MeV have been measured at GSI (Germany) using the inverse kinematics technique. A dedicated setup with high efficiency made it possible to determine these cross sections with high accuracy. The new data seed light in the controversial results obtained so far and contribute to the understanding of the fission process at high excitation energies. (authors)

  11. Feasibility of Traveling Wave Direct Energy Conversion of Fission Reaction Fragments

    NASA Technical Reports Server (NTRS)

    Tarditi, A. G.; George, J. A.; Miley, G. H.; Scott, J. H.

    2013-01-01

    Fission fragment direct energy conversion has been considered in the past for the purpose of increasing nuclear power plant efficiency and for advanced space propulsion. Since the fragments carry electric charge (typically in the order of 20 e) and have 100 MeV-range kinetic energy, techniques utilizing very high-voltage DC electrodes have been considered. This study is focused on a different approach: the kinetic energy of the charged fission fragments is converted into alternating current by means of a traveling wave coupling scheme (Traveling Wave Direct Energy Converter, TWDEC), thereby not requiring the utilization of high voltage technology. A preliminary feasibility analysis of the concept is introduced based on a conceptual level study and on a particle simulation model of the beam dynamics.

  12. Golgi membrane fission requires the CtBP1-S/BARS-induced activation of lysophosphatidic acid acyltransferase δ

    PubMed Central

    Pagliuso, Alessandro; Valente, Carmen; Giordano, Lucia Laura; Filograna, Angela; Li, Guiling; Circolo, Diego; Turacchio, Gabriele; Marzullo, Vincenzo Manuel; Mandrich, Luigi; Zhukovsky, Mikhail A.; Formiggini, Fabio; Polishchuk, Roman S.; Corda, Daniela; Luini, Alberto

    2016-01-01

    Membrane fission is an essential cellular process by which continuous membranes split into separate parts. We have previously identified CtBP1-S/BARS (BARS) as a key component of a protein complex that is required for fission of several endomembranes, including basolateral post-Golgi transport carriers. Assembly of this complex occurs at the Golgi apparatus, where BARS binds to the phosphoinositide kinase PI4KIIIβ through a 14-3-3γ dimer, as well as to ARF and the PKD and PAK kinases. We now report that, when incorporated into this complex, BARS binds to and activates a trans-Golgi lysophosphatidic acid (LPA) acyltransferase type δ (LPAATδ) that converts LPA into phosphatidic acid (PA); and that this reaction is essential for fission of the carriers. LPA and PA have unique biophysical properties, and their interconversion might facilitate the fission process either directly or indirectly (via recruitment of proteins that bind to PA, including BARS itself). PMID:27401954

  13. Golgi membrane fission requires the CtBP1-S/BARS-induced activation of lysophosphatidic acid acyltransferase δ.

    PubMed

    Pagliuso, Alessandro; Valente, Carmen; Giordano, Lucia Laura; Filograna, Angela; Li, Guiling; Circolo, Diego; Turacchio, Gabriele; Marzullo, Vincenzo Manuel; Mandrich, Luigi; Zhukovsky, Mikhail A; Formiggini, Fabio; Polishchuk, Roman S; Corda, Daniela; Luini, Alberto

    2016-01-01

    Membrane fission is an essential cellular process by which continuous membranes split into separate parts. We have previously identified CtBP1-S/BARS (BARS) as a key component of a protein complex that is required for fission of several endomembranes, including basolateral post-Golgi transport carriers. Assembly of this complex occurs at the Golgi apparatus, where BARS binds to the phosphoinositide kinase PI4KIIIβ through a 14-3-3γ dimer, as well as to ARF and the PKD and PAK kinases. We now report that, when incorporated into this complex, BARS binds to and activates a trans-Golgi lysophosphatidic acid (LPA) acyltransferase type δ (LPAATδ) that converts LPA into phosphatidic acid (PA); and that this reaction is essential for fission of the carriers. LPA and PA have unique biophysical properties, and their interconversion might facilitate the fission process either directly or indirectly (via recruitment of proteins that bind to PA, including BARS itself). PMID:27401954

  14. A Multigroup Reaction Cross-Section Collapsing Code and Library of 154-Group Fission-Product Cross Sections.

    Energy Science and Technology Software Center (ESTSC)

    1983-03-23

    Version 01/02 The code reads multigroup cross sections from a compatible data file and collapses user-selected reaction cross sections to any few-group structure using one of a variety of user neutron flux spectrum options given below: Option Flux description 1 Built-in function including Maxwellian, fission, fusion and slowing-down regions and requiring user-specified parameters and energy-region boundaries. 2 Set of log-log flux-energy interpolation points read from input cross-section data file. 3 Set of log-log flux-energy interpolationmore » points read from user-supplied card input. 4 - 6 Histogram flux values read from user-supplied card input in arbitrary group structure in units of flux-per unit-energy, flux-per-unit lethargy, or integral group flux. LAFPX-E may be used to collapse any set of multigroup reaction cross sections furnished in the required format. However, the code was developed for, and is furnished with, a library of 154-group fission-product cross sections processed from ENDF/B-IV with a typical light water reactor (LWR) flux spectrum and temperature. Four-group radiative capture cross sections produced for LWR calculations are tabulated in the code documentation and are incorporated in the EPRI-CINDER data library, RSIC Code Package CCC-309.« less

  15. Synesthetes show normal sound-induced flash fission and fusion illusions.

    PubMed

    Whittingham, Karen M; McDonald, J Scott; Clifford, Colin W G

    2014-12-01

    Idiopathic synesthesia, a neurological condition in which a stimulus in one sense generates a concurrent experience in a different sense, is often considered an example of multisensory integration. Consequently it has been suggested that synesthetes should experience multisensory illusions more consistently and compellingly than typical participants. To test this we measured the sound induced flash fission and fusion illusions in 22 coloured hearing synesthetes and 31 control participants. Analysis of the data using signal detection analysis, however, indicated no difference between the groups, either in perception or response bias, but a secondary analysis of the data did show evidence of a decline in the illusions for synesthetes with increasing age. PMID:25173429

  16. Measurements of yields of fission products in the reaction of {sup 238}U with high-energy p, d and n beams

    SciTech Connect

    Nolen, J.A.; Ahmad, I.; Back, B.B.

    1995-08-01

    An experiment was performed at the Michigan State University cyclotron to determine the yields of neutron-rich fission products in the reaction of {sup 238}U with 100-MeV neutrons, 200-MeV deuterons and 200-MeV protons. Several 1-mm-thick {sup 238}U foils were irradiated for 100-second intervals sequentially for each configuration and the ten spectra were added for higher statistics. The three successive spectra, each for a 40 s period, were accumulated for each sample. Ten foils were irradiated. Successive spectra allowed us to determine approximate half-lives of the gamma peaks. Several arrangements, which were similar to the setup we plan to use in our radioactive beam proposal, were used for the production of fission products. For the high-energy neutron irradiation, U foils were placed after a 5-inch-long, 1-inch-diameter Be cylinder which stopped the 200-MeV deuteron beam generating 100-MeV neutrons. Arrangements for deuteron irradiation included direct irradiation of U foils, placing U foils after different lengths of (0.5 inch, 1.0 inch and 1.5 inch) 2-inch diameter U cylinder. Since the deuteron range in uranium is 17 mm, some of the irradiations were due to the secondary neutrons from the deuteron-induced fission of U. Similar arrangements were also used for the 200-MeV proton irradiation of the {sup 238}U foils. In all cases, several neutron-rich fission products were identified and their yields determined. In particular, we were able to observe Sn in all the runs and determine its yield. The data show that with our proposed radioactive device we will be able to produce more than 10{sup 12} {sup 132}Sn atoms per second in the target. Assuming an overall efficiency of 1 %, we will be able to deliver one particle nanoampere of {sup 132}Sn beam at a target location. Detailed analysis of the {gamma}-ray spectra is in progress.

  17. Dynamical simulation of energy dissipation in asymmetric heavy-ion induced fission of {sup 200}Pb, {sup 213}Fr, and {sup 251}Es

    SciTech Connect

    Mirfathi, S. M.; Pahlavani, M. R.

    2008-12-15

    The dynamical model based on the asymmetric mass division has been applied to calculate pre-scission neutron multiplicity from heavy-ion induced fusion-fission reactions. Links between the pre-scission neutron multiplicity, excitation energy, and asymmetric mass distribution are clarified based on the Monte Carlo simulation and Langevin dynamics. The pre-scission neutron multiplicity is calculated and compared with the respective experimental data over a wide range of excitation energy and nonconstant viscosity. The analysis indicates a different effect for the application of asymmetric mass division in different energy regions of such processes.

  18. Matching asteroid population characteristics with a model constructed from the YORP-induced rotational fission hypothesis

    NASA Astrophysics Data System (ADS)

    Jacobson, Seth A.; Marzari, Francesco; Rossi, Alessandro; Scheeres, Daniel J.

    2016-10-01

    From the results of a comprehensive asteroid population evolution model, we conclude that the YORP-induced rotational fission hypothesis is consistent with the observed population statistics of small asteroids in the main belt including binaries and contact binaries. These conclusions rest on the asteroid rotation model of Marzari et al. ([2011]Icarus, 214, 622-631), which incorporates both the YORP effect and collisional evolution. This work adds to that model the rotational fission hypothesis, described in detail within, and the binary evolution model of Jacobson et al. ([2011a] Icarus, 214, 161-178) and Jacobson et al. ([2011b] The Astrophysical Journal Letters, 736, L19). Our complete asteroid population evolution model is highly constrained by these and other previous works, and therefore it has only two significant free parameters: the ratio of low to high mass ratio binaries formed after rotational fission events and the mean strength of the binary YORP (BYORP) effect. We successfully reproduce characteristic statistics of the small asteroid population: the binary fraction, the fast binary fraction, steady-state mass ratio fraction and the contact binary fraction. We find that in order for the model to best match observations, rotational fission produces high mass ratio (> 0.2) binary components with four to eight times the frequency as low mass ratio (<0.2) components, where the mass ratio is the mass of the secondary component divided by the mass of the primary component. This is consistent with post-rotational fission binary system mass ratio being drawn from either a flat or a positive and shallow distribution, since the high mass ratio bin is four times the size of the low mass ratio bin; this is in contrast to the observed steady-state binary mass ratio, which has a negative and steep distribution. This can be understood in the context of the BYORP-tidal equilibrium hypothesis, which predicts that low mass ratio binaries survive for a significantly

  19. Alternate Alpha Induced Reactions for NIF Radiochemistry

    SciTech Connect

    Shaughnessy, D A; Moody, K J; Bernstein, L A

    2010-02-26

    Radiochemical analysis of NIF capsule residues has been identified as a potential diagnostic of NIF capsule performance. In particular, alpha-induced nuclear reactions that occur on tracer elements added to the NIF capsule have been shown through simulation to be a very sensitive diagnostic for mix. The short range of the alpha particles makes them representative of the hot spot where they are created through the fusion of deuterium and tritium. Reactions on elements doped into the innermost part of the capsule ablator would therefore be sensitive to material that had mixed into the hot spot. Radiochemical determinations of activated detector elements may perhaps be the only true measure of mix that occurs in a NIF capsule, particularly in cases when the capsule fails.

  20. Competing reaction channels in IR-laser-induced unimolecular reactions

    SciTech Connect

    Berman, M.R.

    1981-01-01

    The competing reaction channels in the unimolecular decomposition of two molecules, formaldehyde and tetralin were studied. A TEA CO/sub 2/ laser was used as the excitation source in all experiments. The dissociation of D/sub 2/CO was studied by infrared multiphoton dissociation (MPD) and the small-molecule nature of formaldehyde with regard to MPD was explored. The effect of collisions in MPD were probed by the pressure dependence of the MPD yield and ir fluorescence from multiphoton excited D/sub 2/CO. MPD yield shows a near cubic dependence in pure D/sub 2/CO which is reduced to a 1.7 power dependence when 15 torr of NO is added. The peak amplitude of 5 ..mu..m ir fluorescence from D/sub 2/CO is proportional to the square of the D/sub 2/CO pressure in pure D/sub 2/CO or in the presence of 50 torr of Ar. Results are explained in terms of bottlenecks to excitation at the v = 1 level which are overcome by a combination of vibrational energy transfer and rotational relaxation. The radical/molecule branching ratio in D/sub 2/CO MPD was 0.10 +- 0.02 at a fluence of 125 J/cm/sup 2/ at 946.0 cm/sup -1/. The barrier height to molecular dissociation was calculated to be 3.6 +- 2.0 kcal/mole below the radical threshold or 85.0 +- 3.0 kcal/mole above the ground state of D/sub 2/CO. In H/sub 2/CO, this corresponds to 2.5 +- 2.0 kcal/mole below the radical threshold or 83.8 +- 3.0 kcal/mole above the ground state. Comparison with uv data indicate that RRKM theory is an acceptable description of formaldehyde dissociation in the 5 to 10 torr pressure range. The unimolecular decomposition of tetralin was studied by MPD and SiF/sub 4/ - sensitized pyrolysis. Both techniques induce decomposition without the interference of catalytic surfaces. Ethylene loss is identified as the lowest energy reaction channel. Dehydrogenation is found to result from step-wise H atom loss. Isomerization via disproportionation is also identified as a primary reaction channel.

  1. Liquid metal reactions under postulated accident conditions for fission and fusion reactors

    SciTech Connect

    Muhlestein, L.D.

    1980-04-01

    Sodium and lithium reactions are considered in the context of a postulated breach of a coolant boundary. Specific topics addressed are coolant-atmosphere and coolant-material reactions which may contribute to the overall consequence of a postulated accident scenario, and coolant reaction extinguishment and effluent control which may be desirable for containment of the spilled coolant.

  2. Geochemical evidence for the formation of the Moon by impact induced fission of the proto-Earth

    NASA Technical Reports Server (NTRS)

    Waenke, H.; Dreibus, G.

    1984-01-01

    Geochemical evidence is discussed which advocates the theory that the Moon was formed by impact induced fission of the Earth. The Earth's mantle exhibits a number of geochemical peculiarities which make our planet a unique object in the solar system. Terrestrial basalts are compared with those from the Eucrite parent body and the Shergotty parent body. Also the Moon's composition is very close to the Earth's in all details except the lower FeO content which is explained. Evidence is discussed for the plausible physical process of formation of the Moon by impact induced fission. Also the theory that impact induced fission occurred at the moment at which accretion of the Earth was not totally complete is briefly discussed.

  3. Hot fusion-evaporation cross sections of 44Ca-induced reactions with lanthanide targets

    NASA Astrophysics Data System (ADS)

    Werke, T. A.; Mayorov, D. A.; Alfonso, M. C.; Tereshatov, E. E.; Folden, C. M.

    2015-11-01

    Background: Previously reported cross sections of 45Sc-induced reactions with lanthanide targets are much smaller than 48Ca-induced reactions on the same targets. 44Ca is one proton removed from 45Sc and could be used to produce nuclei with a relative neutron content between those produced in the 45Sc- and 48Ca-induced reactions. Purpose: As part of a systematic investigation of fusion-evaporation reactions, cross sections of 44Ca-induced reactions on lanthanide targets were measured. These results are compared to available data for 48Ca- and 45Sc-induced fusion-evaporation cross sections on the same lanthanide targets. Collectively, these data provide insight into the importance of the survival against fission of excited compound nuclei produced near spherical shell closures. Methods: A beam of 6+Ca at an energy of ≈5 MeV /u was delivered by the K500 superconducting cyclotron at the Cyclotron Institute at Texas A&M University. The desired evaporation residues were selected by the Momentum Achromat Recoil Spectrometer and identified via their characteristic α -decay energies. Excitation functions for the 44Ca+158Gd ,159Tb, and 162Dy reactions were measured at five or more energies each. A theoretical model was employed to study the fusion-evaporation process. Results: The 44Ca-induced reactions have x n cross sections that are two orders of magnitude larger than 45Sc-induced reactions but two orders of magnitude smaller than 48Ca-induced reactions on the same targets. Proton emission competes effectively with neutron emission for the 44Ca+159Tb and 162Dy reactions. The maximum 4 n cross sections in the 44Ca+158Gd ,159Tb, and 162Dy reactions were 2100 ± 230 ,230 ± 20 , and 130 ±20 μ b , respectively. The 44Ca+158Gd and 159Tb cross sections are in good agreement with the respective cross bombardments of 48Ca+154Gd and 45Sc+158Gd once differences in capture cross sections and compound nucleus formation probabilities are corrected for. Conclusions: Excitation

  4. Radioactive ion beams produced by neutron-induced fission at ISOLDE

    NASA Astrophysics Data System (ADS)

    Isolde Collaboration; Catherall, R.; Lettry, J.; Gilardoni, S.; Köster, U.

    2003-05-01

    The production rates of neutron-rich fission products for the next-generation radioactive beam facility EURISOL [EU-RTD Project EURISOL (HPRI-CT-1999-50001)] are mainly limited by the maximum amount of power deposited by protons in the target. An alternative approach is to use neutron beams to induce fission in actinide targets. This has the advantage of reducing: the energy deposited by the proton beam in the target; contamination from neutron-deficient isobars that would be produced by spallation; and mechanical stress on the target. At ISOLDE CERN [E. Kugler, Hyperfine Interact. 129 (2000) 23], tests have been made on standard ISOLDE actinide targets using fast-neutron bunches produced by bombarding thick, high-/Z metal converters with 1 and 1.4 GeV proton pulses. This paper reviews the first applications of converters used at ISOLDE. It highlights the different geometries and the techniques used to compare fission yields produced by the proton beam directly on the target with neutron-induced fission. Results from the six targets already tested, namely UC2/graphite and ThO2 targets with tungsten and tantalum converters, are presented. To gain further knowledge for the design of a dedicated target as required by the TARGISOL project [EU-RTD Project TARGISOL (HPRI-CT-2001-50033)], the results are compared to simulations, using the MARS [N.V. Mokhov, S.I. Striganov, A. Van Ginneken, S.G. Mashnik, A.J. Sierk, J. Ranft, MARS code developments, in: 4th Workshop on Simulating Accelerator Radiation Environments, SARE-4, Knoxville, USA, 14-15.9.1998, FERMILAB-PUB-98-379, nucl-th/9812038; N.V. Mokhov, The Mars Code System User's Guide, Fermilab-FN-628, 1995; N.V. Mokhov, MARS Code Developments, Benchmarking and Applications, Fermilab-Conf-00-066, 2000; O.E. Krivosheev, N.V. Mokhov, A New MARS and its Applications, Fermilab-Conf-98/43, 1998] code interfaced with MCNP [J.S. Hendrics, MCNP4C LANL Memo X-5; JSH-2000-3; J.F. Briemesteir (Ed.), MCNP - A General Montecarlo N

  5. Neutron-induced Fission Cross Section of 240,242Pu

    NASA Astrophysics Data System (ADS)

    Salvador-Castiñeira, P.; Bryś, T.; Eykens, R.; Hambsch, F.-J.; Göök, A.; Oberstedt, S.; Pretel, C.; Sibbens, G.; Vanleeuw, D.; Vidali, M.

    A sensitivity analysis for the new generation of fast reactors [Salvatores (2008)] has shown the importance of improved cross section data for several actinides. Among them, the 240,242Pu(n,f) cross sections require an accuracy improvement to 1-3% and 3-5%, respectively, from the current level of 6% and 20%. At the Van de Graaff facility of the Institute for Reference Materials and Measurements (JRC-IRMM) the fission cross section of the two isotopes was measured relative to two secondary standard reactions, 237Np(n,f) and 238U(n,f), using a twin Frisch-grid ionization chamber. The secondary standard reactions were benchmarked through measurements against the primary standard reaction 235U(n,f) in the same geometry. Sample masses were determined by means of low-geometry alpha counting or/and a 2π Frisch-grid ionization chamber, with an uncertainty lower than 2%. The neutron flux and the impact of scattering from material between source and target was examined, the largest effect having been found in cross section ratio measurements between a fissile and a fertile isotope. Our 240,242Pu(n,f) cross sections are in agreement with previous experimental results and slightly lower than present evaluations. In case of the 242Pu(n,f) reaction no evidence for a resonance at En=1.1 MeV was found.

  6. Systematics of Fission-Product Yields

    SciTech Connect

    A.C. Wahl

    2002-05-01

    Empirical equations representing systematics of fission-product yields have been derived from experimental data. The systematics give some insight into nuclear-structure effects on yields, and the equations allow estimation of yields from fission of any nuclide with atomic number Z{sub F} = 90 thru 98, mass number A{sub F} = 230 thru 252, and precursor excitation energy (projectile kinetic plus binding energies) PE = 0 thru {approx}200 MeV--the ranges of these quantities for the fissioning nuclei investigated. Calculations can be made with the computer program CYFP. Estimates of uncertainties in the yield estimates are given by equations, also in CYFP, and range from {approx} 15% for the highest yield values to several orders of magnitude for very small yield values. A summation method is used to calculate weighted average parameter values for fast-neutron ({approx} fission spectrum) induced fission reactions.

  7. Neutron induced fission of U isotopes up to 100 MeV

    SciTech Connect

    Lestone, J.P.; Gavron, A.

    1993-10-01

    We have developed a statistical model description of the neutron induced fission of U isotopes using densities of intrinsic states and spin cut off parameters obtained directly from appropriate Nilsson model single particle levels. The first chance fission cross sections are well reproduced when the rotational contributions to the nuclear level densities are taken into account. In order to fit the U(n,f) cross sections above the threshold of second chance fission, we need to: (1) assume that the triaxial level density enhancement is washed out at an excitation energy of {approximately}7 MeV above the triaxial barriers with a width of {approximately}1 MeV, implying a {gamma} deformation for the first barriers of 10{degree} < {gamma} < 20{degree}; and (2) include pre-equilibrium particle emission in the calculations. Above an incoming neutron kinetic energy of {approximately}17 MeV our statistical model U(n,f) cross sections increasingly overestimate the experimental data when so called ``good`` optical model potentials are used to calculate the compound nucleus formation cross sections. This is not surprising since at these high energies little data exists on the scattering of neutrons to help guide the choice of optical model parameters. A satisfactory reproduction of all the available U(n,f) cross sections above 17 MeV is obtained by a simple scaling of our calculated compound nucleus formation cross sections. This scaling factor falls from 1.0 at 17 MeV to 0.82 at 100 MeV.

  8. Predominant time scales in fission processes in reactions of S, Ti and Ni with W: zeptosecond versus attosecond.

    PubMed

    du Rietz, R; Hinde, D J; Dasgupta, M; Thomas, R G; Gasques, L R; Evers, M; Lobanov, N; Wakhle, A

    2011-02-01

    The inhibition of fusion by quasifission is crucial in limiting the formation of superheavy elements in collisions of heavy nuclei. Time scales of ∼10(-18)  s inferred for fissionlike events from recent crystal blocking measurements were interpreted to show either that quasifission itself is slower than previously believed, or that the fraction of slow fusion-fission is higher than expected. New measurements of mass-angle distributions for (48)Ti and (64)Ni bombarding W targets show that in these reactions quasifission is the dominant process, typically occurring before the system formed after contact has made a single rotation, corresponding to time scales of ≤10(-20)  s. PMID:21405390

  9. Prompt fission γ-rays from the reactions 252Cf(SF) and 235U(nth, f) - new data

    NASA Astrophysics Data System (ADS)

    Oberstedt, S.; Belgya, T.; Billnert, R.; Bryś, T.; Geerts, W.; Hambsch, F.-J.; Kis, Z.; Martinez, T.; Oberstedt, A.; Szentmiklosi, L.; Vidali, M.

    2013-12-01

    We present new spectral data of prompt γ-ray emission from the spontaneous fission of 252Cf. This work was performed in direct response to an OECD/NEA high priority data request. We discuss the impact of our new data on evaluated nuclear data tables not only for this nuclide, but also for 238U and 241Pu, which are always produced in a reactor. Furthermore, we will show results from our investigation of prompt γ-ray emission from the reaction 235 U(nth, f), measured in at the Centre for Energy Research of the Hungarian Academy of Sciences in Budapest, Hungary. Spectral data obtained with three different detectors are consistent and led to an uncertainty on total energy and multiplicity considerably smaller than requested by the OECD/NEA.

  10. Investigation of the {sup 208}Pb({sup 18}O, f) fission reaction: Mass-energy distributions of fission fragments and their correlation with the gamma-ray multiplicity

    SciTech Connect

    Rusanov, A. Ya.; Itkis, M. G.; Kondratiev, N. A.; Pashkevich, V. V.; Pokrovsky, I. V.; Salamatin, V. S.; Chubarian, G. G.

    2008-06-15

    The mass-energy distributions of fragments originating from the fission of the compound nucleus {sup 226}Th and their correlations with the multiplicity of gamma rays emitted from these fragments are measured and analyzed in {sup 18}O + {sup 208}Pb interaction induced by projectile oxygen ions of energy in the range E{sub lab} = 78-198.5 MeV. Manifestations of an asymmetric fission mode, which is damped exponentially with increasing E{sub lab}, are demonstrated. Theoretical calculations of fission valleys reveal that only two independent valleys, symmetric and asymmetric, exist in the vicinity of the scission point. The dependence of the multiplicity of gamma rays emitted from both fission fragments on their mass, M{sub {gamma}}(M), has a complicated structure and is highly sensitive to shell effects in both primary and final fragments. A two-component analysis of the dependence M{sub {gamma}}(M) shows that the asymmetric mode survives in fission only at low partial-wave orbital angular momenta of compound nuclei. It is found that, for all E{sub lab}, the gamma-ray multiplicity M{sub {gamma}}as a function of the total kinetic energy (TKE) of fragments, M{sub {gamma}}(TKE), decreases linearly with increasing TKE. An analysis of the energy balance in the fission process at the laboratory energy of E{sub lab} = 78 MeV revealed the region of cold fission of fragments whose total kinetic energy is TKE {approx}Q{sub max}.

  11. Study of fusion-fission dynamics in 19F+238U reaction

    NASA Astrophysics Data System (ADS)

    Dubey, R.; Sugathan, P.; Jhingan, A.; Kaur, Gurpreet; Mukul, Ish; Siwal, Davinder; Saneesh, N.; Banerjee, Tathagata; Yadav, Abhishek; Thakur, Meenu; Mahajan, Ruchi; Chaterjee, M. B.

    2016-05-01

    Mass angle distribution measurements for 19F+238U reaction were carried out around the sub barrier energies. Mass angle correlation has not been observed at above and below the fusion barrier in present reaction. This infer the minimal presence of non compound like events at these bombarding energies range.

  12. Free-carrier-induced soliton fission unveiled by in situ measurements in nanophotonic waveguides

    NASA Astrophysics Data System (ADS)

    Husko, Chad; Wulf, Matthias; Lefrancois, Simon; Combrié, Sylvain; Lehoucq, Gaëlle; de Rossi, Alfredo; Eggleton, Benjamin J.; Kuipers, L.

    2016-04-01

    Solitons are localized waves formed by a balance of focusing and defocusing effects. These nonlinear waves exist in diverse forms of matter yet exhibit similar properties including stability, periodic recurrence and particle-like trajectories. One important property is soliton fission, a process by which an energetic higher-order soliton breaks apart due to dispersive or nonlinear perturbations. Here we demonstrate through both experiment and theory that nonlinear photocarrier generation can induce soliton fission. Using near-field measurements, we directly observe the nonlinear spatial and temporal evolution of optical pulses in situ in a nanophotonic semiconductor waveguide. We develop an analytic formalism describing the free-carrier dispersion (FCD) perturbation and show the experiment exceeds the minimum threshold by an order of magnitude. We confirm these observations with a numerical nonlinear Schrödinger equation model. These results provide a fundamental explanation and physical scaling of optical pulse evolution in free-carrier media and could enable improved supercontinuum sources in gas based and integrated semiconductor waveguides.

  13. Free-carrier-induced soliton fission unveiled by in situ measurements in nanophotonic waveguides.

    PubMed

    Husko, Chad; Wulf, Matthias; Lefrancois, Simon; Combrié, Sylvain; Lehoucq, Gaëlle; De Rossi, Alfredo; Eggleton, Benjamin J; Kuipers, L

    2016-01-01

    Solitons are localized waves formed by a balance of focusing and defocusing effects. These nonlinear waves exist in diverse forms of matter yet exhibit similar properties including stability, periodic recurrence and particle-like trajectories. One important property is soliton fission, a process by which an energetic higher-order soliton breaks apart due to dispersive or nonlinear perturbations. Here we demonstrate through both experiment and theory that nonlinear photocarrier generation can induce soliton fission. Using near-field measurements, we directly observe the nonlinear spatial and temporal evolution of optical pulses in situ in a nanophotonic semiconductor waveguide. We develop an analytic formalism describing the free-carrier dispersion (FCD) perturbation and show the experiment exceeds the minimum threshold by an order of magnitude. We confirm these observations with a numerical nonlinear Schrödinger equation model. These results provide a fundamental explanation and physical scaling of optical pulse evolution in free-carrier media and could enable improved supercontinuum sources in gas based and integrated semiconductor waveguides. PMID:27079683

  14. Free-carrier-induced soliton fission unveiled by in situ measurements in nanophotonic waveguides

    DOE PAGESBeta

    Husko, Chad; Wulf, Matthias; Lefrancois, Simon; Combrié, Sylvain; Lehoucq, Gaëlle; De Rossi, Alfredo; Eggleton, Benjamin J.; Kuipers, L.

    2016-04-15

    Solitons are localized waves formed by a balance of focusing and defocusing effects. These nonlinear waves exist in diverse forms of matter yet exhibit similar properties including stability, periodic recurrence and particle-like trajectories. One important property is soliton fission, a process by which an energetic higher-order soliton breaks apart due to dispersive or nonlinear perturbations. Here we demonstrate through both experiment and theory that nonlinear photocarrier generation can induce soliton fission. Using near-field measurements, we directly observe the nonlinear spatial and temporal evolution of optical pulses in situ in a nanophotonic semiconductor waveguide. We develop an analytic formalism describing themore » free-carrier dispersion (FCD) perturbation and show the experiment exceeds the minimum threshold by an order of magnitude. We confirm these observations with a numerical nonlinear Schrodinger equation model. Finally, these results provide a fundamental explanation and physical scaling of optical pulse evolution in free-carrier media and could enable improved supercontinuum sources in gas based and integrated semiconductor waveguides.« less

  15. Free-carrier-induced soliton fission unveiled by in situ measurements in nanophotonic waveguides

    PubMed Central

    Husko, Chad; Wulf, Matthias; Lefrancois, Simon; Combrié, Sylvain; Lehoucq, Gaëlle; De Rossi, Alfredo; Eggleton, Benjamin J.; Kuipers, L.

    2016-01-01

    Solitons are localized waves formed by a balance of focusing and defocusing effects. These nonlinear waves exist in diverse forms of matter yet exhibit similar properties including stability, periodic recurrence and particle-like trajectories. One important property is soliton fission, a process by which an energetic higher-order soliton breaks apart due to dispersive or nonlinear perturbations. Here we demonstrate through both experiment and theory that nonlinear photocarrier generation can induce soliton fission. Using near-field measurements, we directly observe the nonlinear spatial and temporal evolution of optical pulses in situ in a nanophotonic semiconductor waveguide. We develop an analytic formalism describing the free-carrier dispersion (FCD) perturbation and show the experiment exceeds the minimum threshold by an order of magnitude. We confirm these observations with a numerical nonlinear Schrödinger equation model. These results provide a fundamental explanation and physical scaling of optical pulse evolution in free-carrier media and could enable improved supercontinuum sources in gas based and integrated semiconductor waveguides. PMID:27079683

  16. Experimental study of some important characteristics of the thermal neutron induced fission of 237Np

    NASA Astrophysics Data System (ADS)

    Wagemans, C.; Allaert, E.; Caïtucoli, F.; D'hondt, P.; Barreau, G.; Perrin, P.

    1981-10-01

    Fission fragment mass and kinetic energy distributions and their correlations have been studied for the thermal neutron induced fission of 237Np. The global mass distribution is rather smooth, apart from a weak shoulder at μH = 140-141. When low excitation events are selected, fine structures associated with the charge of the fragments are observed. Furthermore, there is a sudden increase in Ek for μH > 155, which is probably due to a spherical shell N = 50 in the light fragment and the corresponding deformed (but stable) heavy fragments with masses in the rare earth region. For the average (pre-neutron emission) total fragment kinetic energy, a value of 176.4 ± 0.6 MeV has been obtained, in agreement with the systematics. Also the prompt neutron emission curve v(m ∗) has been calculated, which shows the well-known saw-tooth shape. Finally, the energy distribution and the emission probability of the ternary α-particles have been determined.

  17. Trimetazidine prevents palmitate-induced mitochondrial fission and dysfunction in cultured cardiomyocytes.

    PubMed

    Kuzmicic, Jovan; Parra, Valentina; Verdejo, Hugo E; López-Crisosto, Camila; Chiong, Mario; García, Lorena; Jensen, Michael D; Bernlohr, David A; Castro, Pablo F; Lavandero, Sergio

    2014-10-01

    Metabolic and cardiovascular disease patients have increased plasma levels of lipids and, specifically, of palmitate, which can be toxic for several tissues. Trimetazidine (TMZ), a partial inhibitor of lipid oxidation, has been proposed as a metabolic modulator for several cardiovascular pathologies. However, its mechanism of action is controversial. Given the fact that TMZ is able to alter mitochondrial metabolism, we evaluated the protective role of TMZ on mitochondrial morphology and function in an in vitro model of lipotoxicity induced by palmitate. We treated cultured rat cardiomyocytes with BSA-conjugated palmitate (25 nM free), TMZ (0.1-100 μM), or a combination of both. We evaluated mitochondrial morphology and lipid accumulation by confocal fluorescence microscopy, parameters of mitochondrial metabolism (mitochondrial membrane potential, oxygen consumption rate [OCR], and ATP levels), and ceramide production by mass spectrometry and indirect immunofluorescence. Palmitate promoted mitochondrial fission evidenced by a decrease in mitochondrial volume (50%) and an increase in the number of mitochondria per cell (80%), whereas TMZ increased mitochondrial volume (39%), and decreased mitochondrial number (56%), suggesting mitochondrial fusion. Palmitate also decreased mitochondrial metabolism (ATP levels and OCR), while TMZ potentiated all the metabolic parameters assessed. Moreover, pretreatment with TMZ protected the cardiomyocytes from palmitate-induced mitochondrial fission and dysfunction. TMZ also increased lipid accumulation in cardiomyocytes, and prevented palmitate-induced ceramide production. Our data show that TMZ protects cardiomyocytes by changing intracellular lipid management. Thus, the beneficial effects of TMZ on patients with different cardiovascular pathologies can be related to modulation of the mitochondrial morphology and function. PMID:25091560

  18. Neutron induced fission of 238U at incident neutron energies from 1.2 to 5.8 MeV

    NASA Astrophysics Data System (ADS)

    Vivès, F.; Hambsch, F.-J.; Oberstedt, S.; Barreau, G.; Bax, H.

    1998-10-01

    The reaction 238U(n,f) has been studied at IRMM at different incident neutron energies ranging from En=1.2 to 5.8 MeV. The existence of vibrational resonances in the region of the threshold of the fission cross-section and the proton pairing effect should induce variations in the fission fragment properties. The fission fragment mass, mean total kinetic energy (TKE¯) and angular distributions have been investigated with a double Frisch-gridded ionization chamber. For each incident neutron energy, more than 105 events have been accumulated. The TKE¯ shows an increasing trend up to En=3.5 MeV with a sudden drop at roughly En=3.8 MeV which might be related to the onset of pair breaking. Above En=3.8 MeV TKE¯ is again continually increasing. The two-dimensional mass-TKE distributions have been compared by means of a fit with theoretical calculations performed recently in the frame of the multi-modal random neck-rupture model. Actually, two solutions are possible with assuming either two or three Gaussians for the asymmetric part of the mass distribution. However, both solutions lead to the same physical interpretation. The solution with three Gaussians is more in line with the theoretical predictions. In any case the super-long symmetric mode has to be included, in order to explain the dip in TKE¯ close to symmetry.

  19. Time dependence of delayed neutron emission for fissionable isotope identification

    SciTech Connect

    Kinlaw, M.T.; Hunt, A.W.

    2005-06-20

    The time dependence of delayed neutron emission was examined as a method of fissionable isotope identification. A pulsed bremsstrahlung photon beam was used to induce photofission reactions in {sup 238}U, {sup 232}Th, and {sup 239}Pu targets. The resulting delayed neutron emission was recorded between irradiating pulses and is a well-known technique for fissionable material detection. Monitoring the decay of delayed neutron emission between irradiating pulses demonstrates the ability to not only detect the presence of fissionable materials, but also to identify which fissionable isotope is present.

  20. Semiclassical description of TRI asymmetry in ternary fission induced by cold polarized neutrons

    SciTech Connect

    Bunakov, V. E.; Kadmensky, S. G.

    2011-11-15

    The possibility of semiclassically describing T-even TRI-type asymmetry in ternary fission induced by polarized neutrons is considered on the basis of employing Coriolis interaction that takes into account the coupling of a light charged particle to the collective rotation of a polarized fissile nucleus. It is shown that allowance for this interaction makes it possible to explain qualitatively the magnitudes of two asymmetry effects observed in light-charge-particle emission both within the semiclassical and within the quantum-mechanical approach. The difference in the relative magnitudes and signs of the effects between different target nuclei is associated with the interference contributions to the cross section from neighboring neutron resonances and therefore cannot be explained within the semiclassical approach.

  1. Measurements and models of synchronous growth of fission yeast induced by temperature oscillations. [Schizosaccharomyces pombe

    SciTech Connect

    Agar, D.W.; Bailey, J.E.

    1982-01-01

    Pulsing of temperature in a fermentor at intervals coincident with cell generation time was used to induce synchrony in a population of the fission yeast Schizosaccharomyces pombe. Measurements of culture protein, RNA, and DNA during synchronous growth confirm continuous synthesis of protein and RNA and discontinuous synthesis of DNA as previously reported. Flow microfluorometry of populations at different times during the synchrony cycle was used to monitor the changes in single-cell protein, RNA, and DNA frequency functions. These measurements illustrate very clearly the degree of synchrony and patterns of macromolecular synthesis and also confirm previous estimates of the cellular protein contents characteristic of dividing cells. Additional insights into single-cell kinetics and division controls are provided by two-parameter flow microfluorometry measurements and by mathematical modeling of population dynamics. Such data are necessary foundations for robust population balance models of microbial processes. (Refs. 31).

  2. Fission and cluster decay of the {sup 76}Sr nucleus in the ground state and formed in heavy-ion reactions

    SciTech Connect

    Gupta, Raj K.; Sharma, Manoj K.; Singh, Sarbjit; Nouicer, Rachid; Beck, Christian

    1997-12-01

    Calculations for fission and cluster decay of {sup 76}Sr are presented for this nucleus to be in its ground state or formed as an excited compound system in heavy-ion reactions. The predicted mass distribution, for the dynamical collective mass transfer process assumed for fission of {sup 76}Sr, is clearly asymmetric, favoring {alpha} nuclei. Cluster decay is studied within a preformed cluster model, both for ground-state to ground-state decays and from excited compound system to the ground state(s) or excited states(s) of the fragments. {copyright} {ital 1997} {ital The American Physical Society}

  3. Study of Neutron-Induced Fission Cross Sections of U, Am, and Cm at n{sub T}OF

    SciTech Connect

    Milazzo, P. M.; Abbondanno, U.; Belloni, F.; Fujii, K.; Aerts, G.; Andriamonje, S.; Berthoumieux, E.; Dridi, W.; Ferrant, L.; Gunsing, F.; Pancin, J.; Perrot, L.; Plukis, A.; Stephan, C.; Tassan-Got, L.; Alvarez-Velarde, F.; Cano-Ott, D.

    2010-08-04

    Neutron induced fission cross sections of several isotopes have been measured at the CERN n{sub T}OF spallation neutron facility. Between them some measurements involve isotopes ({sup 233}U, {sup 241}Am, {sup 243}Am, {sup 245}Cm) relevant for applications to nuclear technologies. The n{sub T}OF facility delivers neutrons with high instantaneous flux and in a wide energy range, from thermal up to 250 MeV. The experimental apparatus consists of an ionization chamber that discriminates fission fragments and {alpha} particles coming from natural radioactivity of the samples. All the measurements were performed referring to the standard cross section of {sup 235}U.

  4. Fission Systems for Mars Exploration

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Kim, T.; Dorney, D. J.; Swint, Marion Shayne

    2012-01-01

    Fission systems are used extensively on earth, and 34 such systems have flown in space. The energy density of fission is over 10 million times that of chemical reactions, giving fission the potential to eliminate energy density constraints for many space missions. Potential safety and operational concerns with fission systems are well understood, and strategies exist for affordably developing such systems. By enabling a power-rich environment and highly efficient propulsion, fission systems could enable affordable, sustainable exploration of Mars.

  5. Systematic Study of Technetium Production by Proton-Induced Reactions on Molybdenum

    NASA Astrophysics Data System (ADS)

    Lamere, Edward; Gilardy, Gwenaelle; Meisel, Zach; Moran, Michael; Skulski, Michael; Couder, Manoel

    2015-10-01

    Recent shortages in the world-wide supply of 99mTc have sparked interest in developing alternative production methods which do not rely on fission based 99Mo. The direct production of 99mTc from proton induced reactions on enriched 100Mo targets is one such approach. With this approach, 99mTc must be chemically extracted from the irradiated target and therefore radiopharmaceuticals will contain a mixture of all Tc-species produced from the proton bombardment. Commercial viability of cyclotron-produced 99mTc will depend on a number of factors including, production yield, radiochemical purity, and specific activity. Reactions on trace impurities in the targets has been shown to impact these factors dramatically. Precise cross-section measurements for not just the main reaction, 99mTc(p,2n), but for all Mo + p reactions that lead to Tc or Mo species are required for proper assessment of this 99mTc production technique. We will introduce a systematic study of proton-induced reactions on 92, 94-98, 100 Mo currently being performed at the University of Notre Dame. First results of 96Mo + p reactions will be presented. NRC-HQ-12-G-38-0073.

  6. Reactions induced by beams of neutron and proton halo nuclei

    NASA Astrophysics Data System (ADS)

    Penionzhkevich, Yu. E.

    1997-02-01

    Within the collaboration Dubna-GANIL (Caen, France) - IPN (Orsay, France) - NPI (Rez, Czech Republic) - IAP (Bucharest, Romania) at GANIL and the Dubna U400M accelerator, experiments have been carried out to study elastic scattering, fusion and fission using secondary ion beams of 6He, 11Li and 8B. The fission cross-section for the 6He isotopes has been found to be significantly higher than for the 4He nuclei. This enhancement depends mainly on the entrance channel and it is connected with the neutron skin of the 6He nuclei. Also, investigation of the elastic scattering of 11Li (neutron halo), 7Be and 8B (proton halo) has been performed. The microscopic analysis supports the existence of a neutron halo in 11Li and the proton skin in 8B and 7Be. Perspectives for investigations in this field at the Laboratory of Nuclear Reactions JINR are also discussed.

  7. Theoretical investigation of shape parametrization’s effects on characteristics of fission fragments in 18O-induced fission of 154Sm, 197Au, 238U and 246Cm

    NASA Astrophysics Data System (ADS)

    Pahlavani, M. R.; Mirfathi, S. M.

    2015-06-01

    The multi-dimensional Langevin equations are employed to investigate mass and energy distributions of fission fragments. The calculations have been performed with two different shape classes of parametrization, namely Funny Hills and Cassinian Ovaloids. It was shown that inclusion of the Funny Hills parameterizations in the dynamical model produced considerable increase in neutron multiplicity as compared with available experimental data for 18O-induced fission of 154Sm, 197Au, 238U and 246Cm. The proposed shape-dependent multi-dimensional dynamical model reproduces well experimental data for mass distribution, neutron multiplicity and average kinetic energy of fission fragments over a wide range of mass-energy regions.

  8. Effects of rotation of fissioning nuclei in the angular distributions of prompt neutrons and gamma rays originating from the polarized-neutron-induced fission of 233U and 235U nuclei

    NASA Astrophysics Data System (ADS)

    Danilyan, G. V.; Klenke, J.; Kopach, Yu. N.; Krakhotin, V. A.; Novitsky, V. V.; Pavlov, V. S.; Shatalov, P. B.

    2014-06-01

    The results of an experiment devoted to searches for effects of rotation of fissioning nuclei in the angular distributions of prompt neutrons and gamma rays originating from the polarized-neutron-induced fission of 233U nuclei are presented. The effects discovered in these angular distributions are opposite in sign to their counterparts in the polarized-neutron-induced fission of 235U nuclei. This is at odds with data on the relative signs of respective effects in the angular distribution of alpha particles from the ternary fission of the same nuclei and may be indicative of problems in the model currently used to describe the effect in question. The report on which this article is based was presented at the seminar held at the Institute of Theoretical and Experimental Physics and dedicated to the 90th anniversary of the birth of Yu.G. Abov, corresponding member of Russian Academy of Sciences, Editor in Chief of the journal Physics of Atomic Nuclei.

  9. New experimental approaches to investigate the fission dynamics

    NASA Astrophysics Data System (ADS)

    Benlliure, J.; Rodríguez-Sánchez, J. L.; Alvarez-Pol, H.; Audouin, L.; Ayyad, Y.; Bélier, G.; Boutoux, G.; Casarejos, E.; Chatillon, A.; Cortina-Gil, D.; Gorbinet, T.; Heinz, A.; Kelić-Heil, A.; Laurent, B.; Martin, J.-F.; Paradela, C.; Pellereau, E.; Pietras, B.; Ramos, D.; Rodríguez-Tajes, C.; Rossi, D. M.; Simon, H.; Taïeb, J.; Vargas, J.; Voss, B.

    2016-07-01

    The first ever achieved full identification of both fission fragments, in atomic and mass number, made it possible to define new observables sensitive to the fission dynamics along the fission path up to the scission point. Moreover, proton-induced fission of 208Pb at high energies offers optimal conditions for the investigation of dissipative, and transient effects, because of the high-excitation energy of the fissioning nuclei, its low angular momentum, and limited shape distortion by the reaction. In this work we show that the charge distribution of the final fission fragments can constrain the ground-to-saddle dynamics while the mass distribution is sensitive to the dynamics until the scission point.

  10. Fission Spectrum

    DOE R&D Accomplishments Database

    Bloch, F.; Staub, H.

    1943-08-18

    Measurements of the spectrum of the fission neutrons of 25 are described, in which the energy of the neutrons is determined from the ionization produced by individual hydrogen recoils. The slow neutrons producing fission are obtained by slowing down the fast neutrons from the Be-D reaction of the Stanford cyclotron. In order to distinguish between fission neutrons and the remaining fast cyclotron neutrons both the cyclotron current and the pusle amplifier are modulated. A hollow neutron container, in which slow neutrons have a lifetime of about 2 milliseconds, avoids the use of large distances. This method results in much higher intensities than the usual modulation arrangement. The results show a continuous distribution of neutrons with a rather wide maximum at about 0.8 MV falling off to half of its maximum value at 2.0 MV. The total number of netrons is determined by comparison with the number of fission fragments. The result seems to indicate that only about 30% of the neutrons have energies below .8 MV. Various tests are described which were performed in order to rule out modification of the spectrum by inelastic scattering. Decl. May 4, 1951