Science.gov

Sample records for induced insulin secretion

  1. Paliperidone Induced Hypoglycemia by Increasing Insulin Secretion.

    PubMed

    Omi, Tsubasa; Riku, Keisen; Fukumoto, Motoyuki; Kanai, Koji; Omura, Yumi; Takada, Hiromune; Matunaga, Hidenori

    2016-01-01

    We report the case of a 41-year-old woman with schizophrenia who developed persistent hypoglycemia following paliperidone administration. After discontinuing paliperidone, the hypoglycemia resolved, but symptoms of diabetes emerged. Therefore, it appears that the hypoglycemia induced by paliperidone may mask symptoms of diabetes. Paliperidone may induce hypoglycemia by increasing insulin secretion. This report could help elucidate the relationship between atypical antipsychotics and glucose metabolism. PMID:27478670

  2. Paliperidone Induced Hypoglycemia by Increasing Insulin Secretion

    PubMed Central

    Riku, Keisen; Fukumoto, Motoyuki; Kanai, Koji; Omura, Yumi; Matunaga, Hidenori

    2016-01-01

    We report the case of a 41-year-old woman with schizophrenia who developed persistent hypoglycemia following paliperidone administration. After discontinuing paliperidone, the hypoglycemia resolved, but symptoms of diabetes emerged. Therefore, it appears that the hypoglycemia induced by paliperidone may mask symptoms of diabetes. Paliperidone may induce hypoglycemia by increasing insulin secretion. This report could help elucidate the relationship between atypical antipsychotics and glucose metabolism. PMID:27478670

  3. Peroxiredoxin 4 improves insulin biosynthesis and glucose-induced insulin secretion in insulin-secreting INS-1E cells.

    PubMed

    Mehmeti, Ilir; Lortz, Stephan; Elsner, Matthias; Lenzen, Sigurd

    2014-09-26

    Oxidative folding of (pro)insulin is crucial for its assembly and biological function. This process takes place in the endoplasmic reticulum (ER) and is accomplished by protein disulfide isomerase and ER oxidoreductin 1β, generating stoichiometric amounts of hydrogen peroxide (H2O2) as byproduct. During insulin resistance in the prediabetic state, increased insulin biosynthesis can overwhelm the ER antioxidative and folding capacity, causing an imbalance in the ER redox homeostasis and oxidative stress. Peroxiredoxin 4 (Prdx4), an ER-specific antioxidative peroxidase can utilize luminal H2O2 as driving force for reoxidizing protein disulfide isomerase family members, thus efficiently contributing to disulfide bond formation. Here, we examined the functional significance of Prdx4 on β-cell function with emphasis on insulin content and secretion during stimulation with nutrient secretagogues. Overexpression of Prdx4 in glucose-responsive insulin-secreting INS-1E cells significantly metabolized luminal H2O2 and improved the glucose-induced insulin secretion, which was accompanied by the enhanced proinsulin mRNA transcription and insulin content. This β-cell beneficial effect was also observed upon stimulation with the nutrient insulin secretagogue combination of leucine plus glutamine, indicating that the effect is not restricted to glucose. However, knockdown of Prdx4 had no impact on H2O2 metabolism or β-cell function due to the fact that Prdx4 expression is negligibly low in pancreatic β-cells. Moreover, we provide evidence that the constitutively low expression of Prdx4 is highly susceptible to hyperoxidation in the presence of high glucose. Overall, these data suggest an important role of Prdx4 in maintaining insulin levels and improving the ER folding capacity also under conditions of a high insulin requirement. PMID:25122762

  4. Phosphate depletion impairs leucine-induced insulin secretion.

    PubMed

    Oh, H Y; Fadda, G Z; Smogorzewski, M; Liou, H H; Massry, S G

    1994-11-01

    Phosphate depletion (PD) in vivo causes a sundry of abnormalities in pancreatic islets including a rise in cytosolic calcium, low ATP content, reduced Ca2+ ATPase and Na(+)-K+ ATPase activity, and impaired insulin secretion in response to glucose or potassium. L-Leucine is a strong secretagogue that triggers insulin secretion by deamination to alpha-ketoisocaproic acid (KIC) and the subsequent metabolism of the latter to ATP and by the activation of glutamate dehydrogenase (GLDH), which acts on glutamate to generate alpha-ketoglutarate, the metabolism of which results in ATP production. The generation of ATP triggers events that lead to insulin secretion. It is not known whether PD impairs leucine-induced insulin secretion, and the cellular derangements that are involved in such an abnormality are not defined. These issues were studied in PD rats and in pair-weighed normal animals as controls. D-Leucine uptake by islets from PD rats is normal, but both leucine- and KIC-induced insulin secretions are impaired and the activity of branched-chain keto acid dehydrogenase, which facilitates the metabolism of KIC, is reduced. Both leucine and 2-aminobicyclo (2-2-1) haptene failed to stimulate GLDH and to augment the generation of alpha-ketoglutarate in the islets of PD rats. Also, the concentration of basal alpha-ketoglutarate was significantly higher in the islets of PD rats, suggesting that its metabolism is impaired. In addition, the activity of glutaminase is significantly reduced, an abnormality that would result in decreased production of glutamate, the substrate for GLDH. The data show that PD impairs leucine-induced insulin secretion.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7873737

  5. Macrophage-secreted factors induce adipocyte inflammation and insulin resistance

    SciTech Connect

    Permana, Paska A. . E-mail: Paska.Permana@med.va.gov; Menge, Christopher; Reaven, Peter D.

    2006-03-10

    Macrophage infiltration into adipose tissue increases with obesity, a condition associated with low-grade inflammation and insulin resistance. We investigated the direct effects of macrophage-secreted factors on adipocyte inflammation and insulin resistance. 3T3-L1 adipocytes incubated with media conditioned by RAW264.7 macrophages (RAW-CM) showed dramatically increased transcription of several inflammation-related genes, greater nuclear factor kappa B (NF-{kappa}B) activity, and enhanced binding of U937 monocytes. All of these effects were prevented by co-incubation with pyrrolidinedithiocarbamate, an NF-{kappa}B inhibitor. Adipocytes incubated with RAW-CM also released more non-esterified fatty acids and this increased lipolysis was not suppressed by insulin. In addition, RAW-CM treatment decreased insulin-stimulated glucose uptake in adipocytes. Taken together, these results indicate that macrophage-secreted factors induce inflammatory responses and reduce insulin responsiveness in adipocytes. These effects of macrophage-secreted factors on adipocytes may contribute significantly to the systemic inflammation and insulin resistance associated with obesity.

  6. Effect of Naloxon on Counter Insulin Hormone Secretion in Insulin-Induced Hypoglycemia

    PubMed Central

    Ju, Yeong Shil; Kim, Sung Woon; Yang, In Myung; Kim, Jin Woo; Kim, Young Seol; Choi, Young Kil

    1987-01-01

    To investigate the normal physiologic role of endogenous opiates in glucose homeostasis and as a preliminary study for clarifying the association of endogenous opites with pathophysilogy of NIDDM, we obseved the changes in the secretion of counter-insulin hormones in response to insulin-induced hypoglycemia with or without naloxone. The results were as follows: Blood glucose was decreased significantly more rapidly with naloxone infusion than after insulin alone, which seems to play a role in the early responses of ACTH and GH.Not only was the more rapid response of ACTH and GH, but also the prolonged secretion of ACTH and Cortisol were observed after administration of insulin and naloxone. We concluded that endogenous opiates may be involved in the feedback regulation of secretion of ACTH and GH during hypoglycemia either at hypophysis or hypothalamus, and involved in glucose homeostasis via a certain direct mechanism other than regulation of counter hormone secretion. PMID:2856480

  7. Ovarian tumors secreting insulin.

    PubMed

    Battocchio, Marialberta; Zatelli, Maria Chiara; Chiarelli, Silvia; Trento, Mariangela; Ambrosio, Maria Rosaria; Pasquali, Claudio; De Carlo, Eugenio; Dassie, Francesca; Mioni, Roberto; Rebellato, Andrea; Fallo, Francesco; Degli Uberti, Ettore; Martini, Chiara; Vettor, Roberto; Maffei, Pietro

    2015-08-01

    Combined ovarian germ cell and neuroendocrine tumors are rare. Only few cases of hyperinsulinism due to ovarian ectopic secretion have been hypothesized in the literature. An ovarian tumor was diagnosed in a 76-year-old woman, referred to our department for recurrent hypoglycemia with hyperinsulinism. In vivo tests, in particular fasting test, rapid calcium infusion test, and Octreotide test were performed. Ectopic hyperinsulinemic hypoglycemia was demonstrated in vivo and hypoglycemia disappeared after hysteroadnexectomy. Histological exam revealed an ovarian germ cell tumor with neuroendocrine and Yolk sac differentiation, while immunostaining showed insulin positivity in neuroendocrine cells. A cell culture was obtained by tumoral cells, testing Everolimus, and Pasireotide. Insulin was detected in cell culture medium and Everolimus and Pasireotide demonstrated their potentiality in reducing insulin secretion, more than controlling cell viability. Nine cases of hyperinsulinism due to ovarian ectopic secretion reported in literature have been reviewed. These data confirm the ovarian tissue potentiality to induce hyperinsulinemic hypoglycemic syndrome after neoplastic transformation. PMID:25896552

  8. Serpine1 Mediates Porphyromonas gingivalis Induced Insulin Secretion in the Pancreatic Beta Cell Line MIN6

    PubMed Central

    Bhat, Uppoor G.; Watanabe, Keiko

    2015-01-01

    Periodontitis is an inflammatory disease resulting in destruction of gingiva and alveolar bone caused by an exuberant host immunological response to periodontal pathogens. Results from a number of epidemiological studies indicate a close association between diabetes and periodontitis. Results from cross-sectional studies indicate that subjects with periodontitis have a higher odds ratio of developing insulin resistance (IR). However, the mechanisms by which periodontitis influences the development of diabetes are not known. Results from our previous studies using an animal model of periodontitis suggest that periodontitis accelerates the onset of hyperinsulinemia and IR. In addition, LPS from a periodontal pathogen, Porphyromonas gingivalis (Pg), stimulates Serpine1 expression in the pancreatic beta cell line MIN6. Based on these observations, we hypothesized that a periodontal pathogen induces hyperinsulinemia and Serpine1 may be involved in this process. To test this hypothesis, we co-incubated Pg with the pancreatic beta cell line MIN6 and measured the effect on insulin secretion by MIN6 cells. We further determined the involvement of Serpine1 in insulin secretion by downregulating Serpine1 expression. Our results indicated that Pg stimulated insulin secretion by approximately 3.0 fold under normoglycemic conditions. In a hyperglycemic state, Pg increased insulin secretion by 1.5 fold. Pg significantly upregulated expression of the Serpine1 gene and this was associated with increased secretion of insulin by MIN6 cells. However, cells with downregulated Serpine1 expression were resistant to Pg stimulated insulin secretion under normoglycemic conditions. We conclude that the periodontal pathogen, Pg, induced insulin secretion by MIN6 cells and this induction was, in part, Serpine1 dependent. Thus, Serpine1 may play a pivotal role in insulin secretion during the accelerated development of hyperinsulinemia and the resulting IR in the setting of periodontitis. PMID

  9. The effect of thyroidectomy and propylthiouracil-induced hypothyroidism on insulin secretion in male rats.

    PubMed

    Godini, A; Ghasemi, A; Karbalaei, N; Zahediasl, S

    2014-09-01

    Data available on thyroid dysfunction and insulin secretion are inconsistent. The aim of this study was to assess the effect of hypothyroidism on insulin secretion, in vivo and in vitro, in rats. Adult Wistar male rats were divided into 4 groups, the control, the propylthiouracyl (PTU)-treated hypothyroid, the surgically thyroidectomized, and the sham-operated thyroidectomized. After 5 weeks, intravenous glucose tolerance test (IVGTT) was performed and 3 weeks later pancreatic islets were isolated to assess glucose induced insulin secretion and insulin content. Fasting serum glucose and insulin levels did not differ between the groups, but serum glucose concentration during IVGTT in the PTU-induced hypothyroid group was significantly higher as compared to controls, throughout 5-60 min. The serum glucose concentration during IVGTT in the thyroidectomized rats was also significantly higher than in the sham-operated ones, except at 10 and 60 min. The area under the curve of the serum insulin was significantly lower during IVGTT in the PTU-treated (10,010 ± 1,380 pmol/l/60 min) and thyroidectomized (13,930 ± 2,786) groups vs. their comparable groups (19,150 ± 2,110), p<0.01 and (20,650 ± 1,601), p<0.05, respectively. In the PTU-treated, but not in thyroidectomized animals, insulin secretion in response to glucose 8.3 and 16.7 mM was significantly lower than their comparable group. The results show that PTU- and thyroidectomy-induced hypothyroidism leads to impaired glucose tolerance due to reduced glucose stimulated insulin secretion. Islets insulin secretion is positively correlated with serum T3 and T4 concentrations. PMID:24627102

  10. [Role of the NADH shuttle system in glucose-induced insulin secretion].

    PubMed

    Eto, K; Kadowaki, T

    1999-03-01

    To determine the role of the NADH shuttle system composed of the glycerol phosphate shuttle and malate-aspartate shuttle in glucose-induced insulin secretion from pancreatic beta cells, we have generated mice which lack mitochondrial glycerol-3 phosphate dehydrogenase (mGPDH), a rate-limiting enzyme of the glycerol phosphate shuttle. When both shuttles were halted in mGPDH-deficient islets treated with aminooxyacetate, an inhibitor of the malate-aspartate shuttle, glucose-induced insulin secretion was almost completely abrogated. Under these conditions, although the flux of glycolysis and supply of glucose-derived pyruvate into mitochondria were unaffected, glucose-induced increases in NAD(P)H autofluorescence, mitochondrial membrane potential, Ca2+ entry into mitochondria, and ATP content were severely attenuated. This study provides the first direct evidence that the NADH shuttle system is essential for coupling glycolysis with the activation of mitochondrial energy metabolism to trigger glucose-induced insulin secretion and thus revises the classical model for the metabolic signals of glucose-induced insulin secretion. PMID:10199125

  11. Nicotinamide induces differentiation of embryonic stem cells into insulin-secreting cells

    SciTech Connect

    Vaca, Pilar; Berna, Genoveva; Araujo, Raquel; Carneiro, Everardo M.; Bedoya, Francisco J.; Soria, Bernat; Martin, Franz

    2008-03-10

    The poly(ADP-ribose) polymerase (PARP) inhibitor, nicotinamide, induces differentiation and maturation of fetal pancreatic cells. In addition, we have previously reported evidence that nicotinamide increases the insulin content of cells differentiated from embryonic stem (ES) cells, but the possibility of nicotinamide acting as a differentiating agent on its own has never been completely explored. Islet cell differentiation was studied by: (i) X-gal staining after neomycin selection; (ii) BrdU studies; (iii) single and double immunohistochemistry for insulin, C-peptide and Glut-2; (iv) insulin and C-peptide content and secretion assays; and (v) transplantation of differentiated cells, under the kidney capsule, into streptozotocin (STZ)-diabetic mice. Here we show that undifferentiated mouse ES cells treated with nicotinamide: (i) showed an 80% decrease in cell proliferation; (ii) co-expressed insulin, C-peptide and Glut-2; (iii) had values of insulin and C-peptide corresponding to 10% of normal mouse islets; (iv) released insulin and C-peptide in response to stimulatory glucose concentrations; and (v) after transplantation into diabetic mice, normalized blood glucose levels over 7 weeks. Our data indicate that nicotinamide decreases ES cell proliferation and induces differentiation into insulin-secreting cells. Both aspects are very important when thinking about cell therapy for the treatment of diabetes based on ES cells.

  12. Angiotensin-converting enzyme inhibition increases glucose-induced insulin secretion in response to acute restraint.

    PubMed

    Schweizer, Júnia R O L; Miranda, Paulo A C; Fóscolo, Rodrigo B; Lemos, Joao P M; Paula, Luciano F; Silveira, Warley C; Santos, Robson A S; Pinheiro, Sérgio V B; Coimbra, Candido C; Ribeiro-Oliveira, Antônio

    2012-12-01

    There is increasing evidence suggesting involvement of the renin-angiotensin system (RAS) in carbohydrate metabolism and its response to stress. Thus, the aim of the present study was to evaluate the effects of chronic inhibition of the RAS on glucose and insulin levels during acute restraint stress. Male Holtzman rats were treated with 10 mg/kg per day enalapril solution or vehicle for 14 days. After 14 days, rats were divided into three experimental groups: enalapril + restraint (ER), vehicle + restraint (VR) and enalapril + saline (ES). Rats in the restraint groups were subjected to 30 min restraint stress, whereas rats in the ES groups were given saline infusion instead. Blood samples were collected at baseline and after 5, 10, 20 and 30 min restraint stress or saline infusion. After restraint, a hyperglycaemic response was observed in the ER and VR groups that peaked at 20 and 10 min, respectively (P < 0.05 compared with baseline). The area under the glucose curve was markedly increased in the ER and VR groups compared with that in the ES group (P < 0.05 for both). Importantly, restraint induced a marked increase in insulin secretion in the ER group compared with only a mild elevation in the VR group; insulin secretion in both groups peaked at 20 min (P < 0.05 compared with baseline). Analysis of the area under the insulin curve confirmed an increase in insulin secretion in the ER compared with the VR and ES groups (P < 0.05 for both). The results of the present study reinforce that the RAS is involved in modulating responses to stress and suggest that RAS inhibition with enalapril may increase glucose-induced insulin secretion in response to acute restraint. PMID:23734984

  13. Assessment of benzene induced oxidative impairment in rat isolated pancreatic islets and effect on insulin secretion.

    PubMed

    Bahadar, Haji; Maqbool, Faheem; Mostafalou, Sara; Baeeri, Maryam; Rahimifard, Mahban; Navaei-Nigjeh, Mona; Abdollahi, Mohammad

    2015-05-01

    Benzene (C6H6) is an organic compound used in petrochemicals and numerous other industries. It is abundantly released to our environment as a chemical pollutant causing widespread human exposure. This study mainly focused on benzene induced toxicity on rat pancreatic islets with respect to oxidative damage, insulin secretion and glucokinase (GK) activity. Benzene was dissolved in corn oil and administered orally at doses 200, 400 and 800mg/kg/day, for 4 weeks. In rats, benzene significantly raised the concentration of plasma insulin. Also the effect of benzene on the release of glucose-induced insulin was pronounced in isolated islets. Benzene caused oxidative DNA damage and lipid peroxidation, and also reduced the cell viability and total thiols groups, in the islets of exposed rats. In conclusion, the current study revealed that pancreatic glucose metabolism is susceptible to benzene toxicity and the resultant oxidative stress could lead to functional abnormalities in the pancreas. PMID:25935538

  14. Combined contributions of over-secreted glucagon-like peptide 1 and suppressed insulin secretion to hyperglycemia induced by gatifloxacin in rats

    SciTech Connect

    Yu, Yunli; Wang, Xinting; Liu, Can; Yao, Dan; Hu, Mengyue; Li, Jia; Hu, Nan; Liu, Li; Liu, Xiaodong

    2013-02-01

    Accumulating evidences have showed that gatifloxacin causes dysglycemia in both diabetic and non-diabetic patients. Our preliminary study demonstrated that gatifloxacin stimulated glucagon-like peptide 1 (GLP-1) secretion from intestinal cells. The aim of the study was to investigate the association between gatifloxacin-stimulated GLP-1 release and dysglycemia in both normal and streptozotocin-induced diabetic rats and explore the possible mechanisms. Oral administration of gatifloxacin (100 mg/kg/day and 200 mg/kg/day) for 3 and 12 days led to marked elevation of GLP-1 levels, accompanied by significant decrease in insulin levels and increase in plasma glucose. Similar results were found in normal rats treated with 3-day gatifloxacin. Gatifloxacin-stimulated GLP-1 release was further confirmed in NCI-H716 cells, which was abolished by diazoxide, a K{sub ATP} channel opener. QT-PCR analysis showed that gatifloxacin also upregulated expression of proglucagon and prohormone convertase 3 mRNA. To clarify the contradiction on elevated GLP-1 without insulinotropic effect, effects of GLP-1 and gatifloxacin on insulin release were investigated using INS-1 cells. We found that short exposure (2 h) to GLP-1 stimulated insulin secretion and biosynthesis, whereas long exposure (24 h and 48 h) to high level of GLP-1 inhibited insulin secretion and biosynthesis. Moreover, we also confirmed gatifloxacin acutely stimulated insulin secretion while chronically inhibited insulin biosynthesis. All the results gave an inference that gatifloxacin stimulated over-secretion of GLP-1, in turn, high levels of GLP-1 and gatifloxacin synergistically impaired insulin release, worsening hyperglycemia. -- Highlights: ► Gatifloxacin induced hyperglycemia both in diabetic rats and normal rats. ► Gatifloxacin enhanced GLP-1 secretion but inhibited insulin secretion in rats. ► Long-term exposure to high GLP-1 inhibited insulin secretion and biosynthesis. ► GLP-1 over-secretion may be

  15. [Differentiation of human amniotic mesenchymal stem cells into insulin-secreting cells induced by regenerating pancreatic extract].

    PubMed

    Zhang, Yanmei; Wang, Dianliang; Zeng, Hongyan; Wang, Lieming; Sun, Jinwei; Zhang, Zhen; Dong, Shasha

    2012-02-01

    In this study, the natural biological inducer, rat regenerating pancreatic extract (RPE), was used to induce human amniotic mesenchymal stem cells (hAMSCs) into insulin-secreting cells. We excised 60% of rat pancreas in order to stimulate pancreatic regeneration. RPE was extracted and used to induce hAMSCs at a final concentration of 20 microg/mL. The experiment methods used were as follows: morphological-identification, dithizone staining, immumofluorescence analysis, reverse transcription-PCR (RT-PCR) and insulin secretion stimulated by high glucose. The results show that the cell morphology of passge3 hAMSCs changed significantly after the induction of RPE, resulting in cluster shape after induction for 15 days. Dithizone staining showed that there were scarlet cell masses in RPE-treated culture. Immumofluorescence analysis indicated that induced cells were insulin-positive expression. RT-PCR showed the positive expression of human islet-related genes Pdx1 and insulin in the induced cells. The result of insulin secretion stimulated by high glucose indicated that insulin increasingly secreted and then kept stable with prolongation of high glucose stimulation. In conclusion, hAMSCs had the potential to differentiate into insulin-secreting cells induced by RPE in vitro. PMID:22667123

  16. Effects of sleep restriction on glucose control and insulin secretion during diet-induced weight loss

    PubMed Central

    Nedeltcheva, A. V.; Imperial, J. G.; Penev, P. D.

    2012-01-01

    Insufficient sleep is associated with changes in glucose tolerance, insulin secretion, and insulin action. Despite widespread use of weight-loss diets for metabolic risk reduction, the effects of insufficient sleep on glucose regulation in overweight dieters are not known. To examine the consequences of recurrent sleep restriction on 24-hour blood glucose control during diet-induced weight loss, 10 overweight and obese adults (3F/7M; mean [SD] age 41 [5] y; BMI 27.4 [2.0] kg/m2) completed two 14-day treatments with hypocaloric diet and 8.5 or 5.5-h nighttime sleep opportunity in random order 7 [3] months apart. Oral and intravenous glucose tolerance test (IVGTT) data, fasting lipids and free-fatty acids (FFA), and 24-hour blood glucose, insulin, C-peptide, and counter-regulatory hormone measurements were collected after each treatment. Participants had comparable weight loss (1.0 [0.3] BMI units) during each treatment. Bedtime restriction reduced sleep by 131 [30] min/day. Recurrent sleep curtailment decreased 24-hour serum insulin concentrations (i.e. enhanced 24-hour insulin economy) without changes in oral glucose tolerance and 24-hour glucose control. This was accompanied by a decline in fasting blood glucose, increased fasting FFA which suppressed normally following glucose ingestion, and lower total and LDL cholesterol concentrations. Sleep-loss-related changes in counter-regulatory hormone secretion during the IVGTT limited the utility of the test in this study. In conclusion, sleep restriction enhanced 24-hour insulin economy without compromising glucose homeostasis in overweight individuals placed on a balanced hypocaloric diet. The changes in fasting blood glucose, insulin, lipid and FFA concentrations in sleep-restricted dieters resembled the pattern of human metabolic adaptation to reduced carbohydrate availability. PMID:22513492

  17. Hormones and Obesity: Changes in Insulin and Growth Hormone Secretion Following Surgically Induced Weight Loss

    PubMed Central

    Crockford, P. M.; Salmon, P. A.

    1970-01-01

    Ten obese patients were subjected to insulin tolerance tests (0.2 unit per kg. regular insulin intravenously) and/or treadmill exercise tolerance testing (2.6 m.p.h. at 11° angulation) before and after surgically induced weight reduction. Immunoreactive growth hormone (IRGH) responses returned to normal with weight reduction in all but one—a grossly obese woman studied relatively early in the postoperative period when still far from the ideal body weight. Five of these patients and two additional subjects had intravenous glucose tolerance tests (0.5 g. per kg.) before and after weight reduction. In all, there was a significant diminution in immunoreactive insulin (IRI) values, accompained by little or no change in the glucose disappearance rate (KG) and a significant improvement in insulin effectiveness as indicated by the calculated “insulinogenic index”. It was concluded that the abnormalities in IRGH and IRI secretion, as well as the insulin resistance in obesity, are probably secondary and not of primary importance in the etiology of this disorder. PMID:5430052

  18. Manganese supplementation protects against diet-induced diabetes in wild type mice by enhancing insulin secretion.

    PubMed

    Lee, Soh-Hyun; Jouihan, Hani A; Cooksey, Robert C; Jones, Deborah; Kim, Hyung J; Winge, Dennis R; McClain, Donald A

    2013-03-01

    Mitochondrial dysfunction is both a contributing mechanism and complication of diabetes, and oxidative stress contributes to that dysfunction. Mitochondrial manganese-superoxide dismutase (MnSOD) is a metalloenzyme that provides antioxidant protection. We have previously shown in a mouse model of hereditary iron overload that cytosolic iron levels affected mitochondrial manganese availability, MnSOD activity, and insulin secretion. We therefore sought to determine the metallation status of MnSOD in wild-type mice and whether altering that status affected β-cell function. 129/SvEVTac mice given supplemental manganese exhibited a 73% increase in hepatic MnSOD activity and increased metallation of MnSOD. To determine whether manganese supplementation offered glucose homeostasis under a situation of β-cell stress, we challenged C57BL/6J mice, which are more susceptible to diet-induced diabetes, with a high-fat diet for 12 weeks. Manganese was supplemented or not for the final 8 weeks on that diet, after which we examined glucose tolerance and the function of isolated islets. Liver mitochondria from manganese-injected C57BL/6J mice had similar increases in MnSOD activity (81%) and metallation as were seen in 129/SvEVTac mice. The manganese-treated group fed high fat had improved glucose tolerance (24% decrease in fasting glucose and 41% decrease in area under the glucose curve), comparable with mice on normal chow and increased serum insulin levels. Isolated islets from the manganese-treated group exhibited improved insulin secretion, decreased lipid peroxidation, and improved mitochondrial function. In conclusion, MnSOD metallation and activity can be augmented with manganese supplementation in normal mice on normal chow, and manganese treatment can increase insulin secretion to improve glucose tolerance under conditions of dietary stress. PMID:23372018

  19. Protein Fractions from Korean Mistletoe (Viscum Album coloratum) Extract Induce Insulin Secretion from Pancreatic Beta Cells

    PubMed Central

    Kim, Jong-Bae

    2014-01-01

    Mistletoe (Viscum Album coloratum) has been known as a medicinal plant in European and Asian countries. Recent data show that biological activity of mistletoe alleviates hypertension, heart disease, renal failure, and cancer development. In this study, we report the antidiabetic effect of Korean mistletoe extract (KME). KME treatments enhanced the insulin secretion from the pancreatic β-cell without any effects of cytotoxicity. PDX-1 and beta2/neuroD known as transcription factors that regulate the expression of insulin gene were upregulated by treatment of the KME protein fractions isolated by ion-exchange chromatography after ammonium sulfate precipitation. Furthermore, these KME protein fractions significantly lowered the blood glucose level and the volume of drinking water in alloxan induced hyperglycemic mice. Taken together with the findings, it provides new insight that KME might be served as a useful source for the development of medicinal reagent to reduce blood glucose level of type I diabetic patients. PMID:24959189

  20. Rosuvastatin Treatment Affects Both Basal and Glucose-Induced Insulin Secretion in INS-1 832/13 Cells.

    PubMed

    Salunkhe, Vishal A; Elvstam, Olof; Eliasson, Lena; Wendt, Anna

    2016-01-01

    Rosuvastatin is a member of the statin family. Like the other statins it is prescribed to lower cholesterol levels and thereby reduce the risk of cardiovascular events. Rosuvastatin lowers the cholesterol levels by inhibiting the key enzyme 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-CoA reductase) in the cholesterol producing mevalonate pathway. It has been recognized that apart from their beneficial lipid lowering effects, statins also exhibit diabetogenic properties. The molecular mechanisms behind these remain unresolved. To investigate the effects of rosuvastatin on insulin secretion, we treated INS-1 832/13 cells with varying doses (20 nM to 20 μM) of rosuvastatin for 48 h. At concentrations of 2 μM and above basal insulin secretion was significantly increased. Using diazoxide we could determine that rosuvastatin did not increase basal insulin secretion by corrupting the KATP channels. Glucose-induced insulin secretion on the other hand seemed to be affected differently at different rosuvastatin concentrations. Rosuvastatin treatment (20 μM) for 24-48 h inhibited voltage-gated Ca(2+) channels, which lead to reduced depolarization-induced exocytosis of insulin-containing granules. At lower concentrations of rosuvastatin (≤ 2 μM) the stimulus-secretion coupling pathway was intact downstream of the KATP channels as assessed by the patch clamp technique. However, a reduction in glucose-induced insulin secretion could be observed with rosuvastatin concentrations as low as 200 nM. The inhibitory effects of rosuvastatin on glucose-induced insulin secretion could be reversed with mevalonate, but not squalene, indicating that rosuvastatin affects insulin secretion through its effects on the mevalonate pathway, but not through the reduction of cholesterol biosynthesis. Taken together, these data suggest that rosuvastatin has the potential to increase basal insulin secretion and reduce glucose-induced insulin secretion. The latter is possibly an unavoidable

  1. Rosuvastatin Treatment Affects Both Basal and Glucose-Induced Insulin Secretion in INS-1 832/13 Cells

    PubMed Central

    Salunkhe, Vishal A.; Elvstam, Olof; Eliasson, Lena; Wendt, Anna

    2016-01-01

    Rosuvastatin is a member of the statin family. Like the other statins it is prescribed to lower cholesterol levels and thereby reduce the risk of cardiovascular events. Rosuvastatin lowers the cholesterol levels by inhibiting the key enzyme 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-CoA reductase) in the cholesterol producing mevalonate pathway. It has been recognized that apart from their beneficial lipid lowering effects, statins also exhibit diabetogenic properties. The molecular mechanisms behind these remain unresolved. To investigate the effects of rosuvastatin on insulin secretion, we treated INS-1 832/13 cells with varying doses (20 nM to 20 μM) of rosuvastatin for 48 h. At concentrations of 2 μM and above basal insulin secretion was significantly increased. Using diazoxide we could determine that rosuvastatin did not increase basal insulin secretion by corrupting the KATP channels. Glucose-induced insulin secretion on the other hand seemed to be affected differently at different rosuvastatin concentrations. Rosuvastatin treatment (20 μM) for 24–48 h inhibited voltage-gated Ca2+ channels, which lead to reduced depolarization-induced exocytosis of insulin-containing granules. At lower concentrations of rosuvastatin (≤ 2 μM) the stimulus-secretion coupling pathway was intact downstream of the KATP channels as assessed by the patch clamp technique. However, a reduction in glucose-induced insulin secretion could be observed with rosuvastatin concentrations as low as 200 nM. The inhibitory effects of rosuvastatin on glucose-induced insulin secretion could be reversed with mevalonate, but not squalene, indicating that rosuvastatin affects insulin secretion through its effects on the mevalonate pathway, but not through the reduction of cholesterol biosynthesis. Taken together, these data suggest that rosuvastatin has the potential to increase basal insulin secretion and reduce glucose-induced insulin secretion. The latter is possibly an unavoidable

  2. A genetically engineered human pancreatic β cell line exhibiting glucose-inducible insulin secretion

    PubMed Central

    Ravassard, Philippe; Hazhouz, Yasmine; Pechberty, Séverine; Bricout-Neveu, Emilie; Armanet, Mathieu; Czernichow, Paul; Scharfmann, Raphael

    2011-01-01

    Despite intense efforts over the past 30 years, human pancreatic β cell lines have not been available. Here, we describe a robust technology for producing a functional human β cell line using targeted oncogenesis in human fetal tissue. Human fetal pancreatic buds were transduced with a lentiviral vector that expressed SV40LT under the control of the insulin promoter. The transduced buds were then grafted into SCID mice so that they could develop into mature pancreatic tissue. Upon differentiation, the newly formed SV40LT-expressing β cells proliferated and formed insulinomas. The resulting β cells were then transduced with human telomerase reverse transcriptase (hTERT), grafted into other SCID mice, and finally expanded in vitro to generate cell lines. One of these cell lines, EndoC-βH1, expressed many β cell–specific markers without any substantial expression of markers of other pancreatic cell types. The cells secreted insulin when stimulated by glucose or other insulin secretagogues, and cell transplantation reversed chemically induced diabetes in mice. These cells represent a unique tool for large-scale drug discovery and provide a preclinical model for cell replacement therapy in diabetes. This technology could be generalized to generate other human cell lines when the cell type–specific promoter is available. PMID:21865645

  3. Palmitate-induced impairment of glucose-stimulated insulin secretion precedes mitochondrial dysfunction in mouse pancreatic islets.

    PubMed

    Barlow, Jonathan; Jensen, Verena Hirschberg; Jastroch, Martin; Affourtit, Charles

    2016-02-15

    It has been well established that excessive levels of glucose and palmitate lower glucose-stimulated insulin secretion (GSIS) by pancreatic β-cells. This β-cell 'glucolipotoxicity' is possibly mediated by mitochondrial dysfunction, but involvement of bioenergetic failure in the pathological mechanism is the subject of ongoing debate. We show in the present study that increased palmitate levels impair GSIS before altering mitochondrial function. We demonstrate that GSIS defects arise from increased insulin release under basal conditions in addition to decreased insulin secretion under glucose-stimulatory conditions. Real-time respiratory analysis of intact mouse pancreatic islets reveals that mitochondrial ATP synthesis is not involved in the mechanism by which basal insulin is elevated. Equally, mitochondrial lipid oxidation and production of reactive oxygen species (ROS) do not contribute to increased basal insulin secretion. Palmitate does not affect KCl-induced insulin release at a basal or stimulatory glucose level, but elevated basal insulin release is attenuated by palmitoleate and associates with increased intracellular calcium. These findings deepen our understanding of β-cell glucolipotoxicity and reveal that palmitate-induced GSIS impairment is disconnected from mitochondrial dysfunction, a notion that is important when targeting β-cells for the treatment of diabetes and when assessing islet function in human transplants. PMID:26621874

  4. Vitamin D induces autophagy of pancreatic β-cells and enhances insulin secretion.

    PubMed

    Wang, Yubin; He, Dawei; Ni, Chengpei; Zhou, Huiying; Wu, Shuyan; Xue, Zhimou; Zhou, Zhengyu

    2016-09-01

    Epidemiological evidence indicates that vitamin D is involved in defense against diabetes; however, the precise underlying mechanism remains to be elucidated. In the present study, the effect of vitamin D on the pathogenesis of diabetes was investigated, with an emphasis on its direct effect on pancreatic β‑cells. A streptozotocin (STZ)‑induced type 1 diabetes mellitus (T1DM) mouse model and MIN6 mouse insulinoma β‑cells were subjected to vitamin D treatment. Histopathological analysis of pancreatic islets was performed to investigate insulitis, and reverse transcription-quantitative polymerase chain reaction and western blotting were used to determine the mRNA and protein expression levels of markers of autophagy [microtubule-associated protein 1A/1B‑light chain 3 (LC3) and Beclin 1] and regulation of apoptosis [B-cell lymphoma 2 (Bcl-2)]. Apoptosis of MIN6 cells was examined by flow cytometry following annexin V/propidium iodide labeling. The secretion of insulin was measured by ELISA. The results revealed that vitamin D reduced the incidence of T1DM, enhanced insulin secretion and relieved pancreatic inflammation in STZ‑treated mice. Furthermore, vitamin D increased the mRNA expression levels of LC3 and Beclin 1, and increased Bcl‑2 protein expression levels in STZ‑treated MIN6 cells, while decreasing the apoptosis rate. The results of the present study demonstrated, for the first time to the best of our knowledge, that vitamin D induces autophagy and suppresses apoptosis of pancreatic β‑cells, as well as preventing insulitis. These findings regarding vitamin D provide insights into its involvement in diabetes, and suggest a potential novel strategy for the treatment of diabetes via agents enhancing autophagy in pancreatic β-cells. PMID:27430408

  5. Insulin secretion enhancing activity of roselle calyx extract in normal and streptozotocin-induced diabetic rats

    PubMed Central

    Wisetmuen, Eamruthai; Pannangpetch, Patchareewan; Kongyingyoes, Bunkerd; Kukongviriyapan, Upa; Yutanawiboonchai, Wiboonchai; Itharat, Arunporn

    2013-01-01

    Background and Objective: Our recent study revealed the antihyperglycemic activity of an ethanolic extract of roselle calyxes (Hibiscus sabdariffa) in diabetic rats. The present study had, therefore, an objective to investigate the mechanism underlying this activity. Materials and Methods: Male Sprague Dawley rats were induced to be diabetes by intraperitoneal injection of 45 mg/kg streptozotocin (STZ). Normal rats as well as diabetic rats were administered with the ethanolic extract of H. sabdariffa calyxes (HS-EE) at 0.1 and 1.0 g/kg/day, respectively, for 6 weeks. Then, blood glucose and insulin levels, at basal and glucose-stimulated secretions, were measured. The pancreas was dissected to examine histologically. Results: HS-EE 1.0 g/kg/day significantly decreased the blood glucose level by 38 ± 12% in diabetic rats but not in normal rats. In normal rats, treatment with 1.0 g/kg HS-EE increased the basal insulin level significantly as compared with control normal rats (1.28 ± 0.25 and 0.55 ± 0.05 ng/ml, respectively). Interestingly, diabetic rats treated with 1.0 g/kg HS-EE also showed a significant increase in basal insulin level as compared with the control diabetic rats (0.30 ± 0.05 and 0.15 ± 0.01 ng/ml, respectively). Concerning microscopic histological examination, HS-EE 1.0 g/kg significantly increased the number of islets of Langerhans in both normal rats (1.2 ± 0.1 and 2.0 ± 0.1 islet number/10 low-power fields (LPF) for control and HS-EE treated group, respectively) and diabetic rats (1.0 ± 0.3 and 3.9 ± 0.6 islet number/10 LPF for control and HS-EE treated group, respectively). Conclusion: The antidiabetic activity of HS-EE may be partially mediated via the stimulating effect on insulin secretion. PMID:23798879

  6. Stimulation of insulin secretion by Viscum album (mistletoe) leaf extract in streptozotocin-induced diabetic rats.

    PubMed

    Eno, A E; Ofem, O E; Nku, C O; Ani, E J; Itam, E H

    2008-06-01

    Twenty male white rats (250-300 g) of Wistar strain were randomly divided into two batches, the normoglycaemic batch and the streptozotocin-induced diabetic batch often rats each. Animals in each batch were further divided into two groups of five rats per group. After an overnight fast (12 hrs), animals in each group received D-glucose load (2.0 g/kg.i.v) under pentobarbital anaesthesia, with or without the crude extract (100 mg/kg/iv). Blood samples were collected intravenously at 15 min intervals for 3 hrs. for analysis of glucose, insulin and glucagon levels. From the results, the extract (100 mg/kg) did not appear to have any significant effect on the blood glucose level of normal rats, but produced about 35.3% decrease in the diabetic rats. Despite the apparent lack of action on glucose level of normal rats, the extract stimulated insulin secretion by about 92.9% (% control) in this group, and about 81.5% in the diabetic group (% control). The glucagon level was not altered by the extract in the normal rats. In the diabetic group, there was mild but significant suppression ofglucagon level after the first 1 hr. which lasted for about 50 min. We suggest that this extract from V. album leaves may possess antihyperglycaemic, insulinotropic, and possibly, mild glucagonostatic agent(s) and may therefore be a candidate for the anti-diabetic drugs. PMID:18939397

  7. Relaxation response induces temporal transcriptome changes in energy metabolism, insulin secretion and inflammatory pathways.

    PubMed

    Bhasin, Manoj K; Dusek, Jeffery A; Chang, Bei-Hung; Joseph, Marie G; Denninger, John W; Fricchione, Gregory L; Benson, Herbert; Libermann, Towia A

    2013-01-01

    The relaxation response (RR) is the counterpart of the stress response. Millennia-old practices evoking the RR include meditation, yoga and repetitive prayer. Although RR elicitation is an effective therapeutic intervention that counteracts the adverse clinical effects of stress in disorders including hypertension, anxiety, insomnia and aging, the underlying molecular mechanisms that explain these clinical benefits remain undetermined. To assess rapid time-dependent (temporal) genomic changes during one session of RR practice among healthy practitioners with years of RR practice and also in novices before and after 8 weeks of RR training, we measured the transcriptome in peripheral blood prior to, immediately after, and 15 minutes after listening to an RR-eliciting or a health education CD. Both short-term and long-term practitioners evoked significant temporal gene expression changes with greater significance in the latter as compared to novices. RR practice enhanced expression of genes associated with energy metabolism, mitochondrial function, insulin secretion and telomere maintenance, and reduced expression of genes linked to inflammatory response and stress-related pathways. Interactive network analyses of RR-affected pathways identified mitochondrial ATP synthase and insulin (INS) as top upregulated critical molecules (focus hubs) and NF-κB pathway genes as top downregulated focus hubs. Our results for the first time indicate that RR elicitation, particularly after long-term practice, may evoke its downstream health benefits by improving mitochondrial energy production and utilization and thus promoting mitochondrial resiliency through upregulation of ATPase and insulin function. Mitochondrial resiliency might also be promoted by RR-induced downregulation of NF-κB-associated upstream and downstream targets that mitigates stress. PMID:23650531

  8. Cinnamon Administration Enhances Glucose-Induced Insulin Secretion in Diabetic Rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of these studies was to measure the effects of orally administered cinnamon on glucose tolerance and insulin secretion in vivo. Young male Wistar strain rats were rendered diabetic by intravenous administration of streptozotocin (40 mg/Kg body weight) to produce animals with Type 2 di...

  9. l-cysteine reversibly inhibits glucose-induced biphasic insulin secretion and ATP production by inactivating PKM2

    PubMed Central

    Nakatsu, Daiki; Horiuchi, Yuta; Kano, Fumi; Noguchi, Yoshiyuki; Sugawara, Taichi; Takamoto, Iseki; Kubota, Naoto; Kadowaki, Takashi; Murata, Masayuki

    2015-01-01

    Increase in the concentration of plasma l-cysteine is closely associated with defective insulin secretion from pancreatic β-cells, which results in type 2 diabetes (T2D). In this study, we investigated the effects of prolonged l-cysteine treatment on glucose-stimulated insulin secretion (GSIS) from mouse insulinoma 6 (MIN6) cells and from mouse pancreatic islets, and found that the treatment reversibly inhibited glucose-induced ATP production and resulting GSIS without affecting proinsulin and insulin synthesis. Comprehensive metabolic analyses using capillary electrophoresis time-of-flight mass spectrometry showed that prolonged l-cysteine treatment decreased the levels of pyruvate and its downstream metabolites. In addition, methyl pyruvate, a membrane-permeable form of pyruvate, rescued l-cysteine–induced inhibition of GSIS. Based on these results, we found that both in vitro and in MIN6 cells, l-cysteine specifically inhibited the activity of pyruvate kinase muscle isoform 2 (PKM2), an isoform of pyruvate kinases that catalyze the conversion of phosphoenolpyruvate to pyruvate. l-cysteine also induced PKM2 subunit dissociation (tetramers to dimers/monomers) in cells, which resulted in impaired glucose-induced ATP production for GSIS. DASA-10 (NCGC00181061, a substituted N,N′-diarylsulfonamide), a specific activator for PKM2, restored the tetramer formation and the activity of PKM2, glucose-induced ATP production, and biphasic insulin secretion in l-cysteine–treated cells. Collectively, our results demonstrate that impaired insulin secretion due to exposure to l-cysteine resulted from its direct binding and inactivation of PKM2 and suggest that PKM2 is a potential therapeutic target for T2D. PMID:25713368

  10. Potentiation of stimulus-induced insulin secretion in protein kinase C-deficient RINm5F cells.

    PubMed Central

    Li, G D; Regazzi, R; Ullrich, S; Pralong, W F; Wollheim, C B

    1990-01-01

    The role of protein kinase C (PKC) in stimulus recognition and insulin secretion was investigated after long-term (24 h) treatment of RINm5F cells with phorbol 12-myristate 13-acetate (PMA). Three methods revealed that PKC was no longer detectable, and PMA-induced insulin secretion was abolished. Such PKC-deficient cells displayed enhanced insulin secretion (2-6-fold) in response to vasopressin and carbachol (activating phospholipase C) as well as to D-glyceraldehyde and alanine (promoting membrane depolarization and voltage-gated Ca2+ influx). Insulin release stimulated by 1-oleoyl-2-acetylglycerol (OAG) was also greater in PKC-deficient cells. OAG caused membrane depolarization and raised the cytosolic Ca2+ concentration ([Ca2+]i), both of which were unaffected by PKC down-regulation. Except for that caused by vasopressin, the secretagogue-induced [Ca2+]i elevations were similar in control and PKC-depleted cells. The [Ca2+]i rise evoked by vasopressin was enhanced during the early phase (observed both in cell suspensions and at the single cell level) and the stimulation of diacylglycerol production was also augmented. These findings suggest more efficient activation of phospholipase C by vasopressin after PKC depletion. Electrically permeabilized cells were used to test whether the release process is facilitated after long-term PMA treatment. PKC deficiency was associated with only slightly increased responsiveness to half-maximally (2 microM) but not to maximally stimulatory Ca2+ concentrations. At 2 microM-Ca2+ vasopressin caused secretion, which was also augmented by PMA pretreatment. The difference between intact and permeabilized cells could indicate the loss in the latter of soluble factors which mediate the enhanced secretory responses. However, changes in cyclic AMP production could not explain the difference. These results demonstrate that PKC not only exerts inhibitory influences on the coupling of receptors to phospholipase C but also interferes with

  11. Thioredoxin-mimetic peptides (TXM) reverse auranofin induced apoptosis and restore insulin secretion in insulinoma cells.

    PubMed

    Cohen-Kutner, Moshe; Khomsky, Lena; Trus, Michael; Aisner, Yonatan; Niv, Masha Y; Benhar, Moran; Atlas, Daphne

    2013-04-01

    The thioredoxin reductase/thioredoxin system (TrxR/Trx1) plays a major role in protecting cells from oxidative stress. Disruption of the TrxR-Trx1 system keeps Trx1 in the oxidized state leading to cell death through activation of the ASK1-Trx1 apoptotic pathway. The potential mechanism and ability of tri- and tetra-oligopeptides derived from the canonical -CxxC- motif of the Trx1-active site to mimic and enhance Trx1 cellular activity was examined. The Trx mimetics peptides (TXM) protected insulinoma INS 832/13 cells from oxidative stress induced by selectively inhibiting TrxR with auranofin (AuF). TXM reversed the AuF-effects preventing apoptosis, and increasing cell-viability. The TXM peptides were effective in inhibiting AuF-induced MAPK, JNK and p38(MAPK) phosphorylation, in correlation with preventing caspase-3 cleavage and thereby PARP-1 dissociation. The ability to form a disulfide-bridge-like conformation was estimated from molecular dynamics simulations. The TXM peptides restored insulin secretion and displayed Trx1 denitrosylase activity. Their potency was 10-100-fold higher than redox reagents like NAC, AD4, or ascorbic acid. Unable to reverse ERK1/2 phosphorylation, TXM-CB3 (NAc-Cys-Pro-Cys amide) appeared to function in part, through inhibiting ASK1-Trx dissociation. These highly effective anti-apoptotic effects of Trx1 mimetic peptides exhibited in INS 832/13 cells could become valuable in treating adverse oxidative-stress related disorders such as diabetes. PMID:23327993

  12. Neurotransmitter-induced inhibition of exocytosis in insulin-secreting beta cells by activation of calcineurin.

    PubMed

    Renström, E; Ding, W G; Bokvist, K; Rorsman, P

    1996-09-01

    Neurotransmitters and hormones such as somatostatin, galanin, and adrenalin reduce insulin secretion. Their inhibitory action involves direct interference with the exocytotic machinery. We have examined the molecular processes underlying this effect using high resolution measurements of cell capacitance. Suppression of exocytosis was maximal at concentrations that did not cause complete inhibition of glucose-stimulated electrical activity. This action was dependent on activation of G proteins but was not associated with inhibition of the voltage-dependent Ca2+ currents or adenylate cyclase activity. The molecular processes initiated by the agonists culminate in the activation of the Ca(2+)-dependent protein phosphatase calcineurin, and suppression of the activity of this enzyme abolishes their action on exocytosis. We propose that mechanisms similar to those we report here may contribute to adrenergic and peptidergic inhibition of secretion in other neuroendocrine cells and in nerve terminals. PMID:8816714

  13. Molecular Mechanisms of Insulin Secretion and Insulin Action.

    ERIC Educational Resources Information Center

    Flatt, Peter R.; Bailey, Clifford J.

    1991-01-01

    Information and current ideas on the factors regulating insulin secretion, the mechanisms underlying the secretion and biological actions of insulin, and the main characteristics of diabetes mellitus are presented. (Author)

  14. GPR142 Controls Tryptophan-Induced Insulin and Incretin Hormone Secretion to Improve Glucose Metabolism

    PubMed Central

    Efanov, Alexander M.; Fang, Xiankang; Beavers, Lisa S.; Wang, Xuesong; Wang, Jingru; Gonzalez Valcarcel, Isabel C.; Ma, Tianwei

    2016-01-01

    GPR142, a putative amino acid receptor, is expressed in pancreatic islets and the gastrointestinal tract, but the ligand affinity and physiological role of this receptor remain obscure. In this study, we show that in addition to L-Tryptophan, GPR142 signaling is also activated by L-Phenylalanine but not by other naturally occurring amino acids. Furthermore, we show that Tryptophan and a synthetic GPR142 agonist increase insulin and incretin hormones and improve glucose disposal in mice in a GPR142-dependent manner. In contrast, Phenylalanine improves in vivo glucose disposal independently of GPR142. Noteworthy, refeeding-induced elevations in insulin and glucose-dependent insulinotropic polypeptide are blunted in Gpr142 null mice. In conclusion, these findings demonstrate GPR142 is a Tryptophan receptor critically required for insulin and incretin hormone regulation and suggest GPR142 agonists may be effective therapies that leverage amino acid sensing pathways for the treatment of type 2 diabetes. PMID:27322810

  15. Nε-(carboxymethyl) lysine-induced mitochondrial fission and mitophagy cause decreased insulin secretion from β-cells.

    PubMed

    Lo, Mei-Chen; Chen, Ming-Hong; Lee, Wen-Sen; Lu, Chin-I; Chang, Chuang-Rung; Kao, Shu-Huei; Lee, Horng-Mo

    2015-11-15

    Nε-(carboxymethyl) lysine-conjugated bovine serum albumin (CML-BSA) is a major component of advanced glycation end products (AGEs). We hypothesised that AGEs reduce insulin secretion from pancreatic β-cells by damaging mitochondrial functions and inducing mitophagy. Mitochondrial morphology and the occurrence of autophagy were examined in pancreatic islets of diabetic db/db mice and in the cultured CML-BSA-treated insulinoma cell line RIN-m5F. In addition, the effects of α-lipoic acid (ALA) on mitochondria in AGE-damaged tissues were evaluated. The diabetic db/db mouse exhibited an increase in the number of autophagosomes in damaged mitochondria and receptor for AGEs (RAGE). Treatment of db/db mice with ALA for 12 wk increased the number of mitochondria with well-organized cristae and fewer autophagosomes. Treatment of RIN-m5F cells with CML-BSA increased the level of RAGE protein and autophagosome formation, caused mitochondrial dysfunction, and decreased insulin secretion. CML-BSA also reduced mitochondrial membrane potential and ATP production, increased ROS and lipid peroxide production, and caused mitochondrial DNA deletions. Elevated fission protein dynamin-related protein 1 (Drp1) level and mitochondrial fragmentation demonstrated the unbalance of mitochondrial fusion and fission in CML-BSA-treated cells. Additionally, increased levels of Parkin and PTEN-induced putative kinase 1 protein suggest that fragmented mitochondria were associated with increased mitophagic activity, and ALA attenuated the CML-BSA-induced mitophage formation. Our study demonstrated that CML-BSA induced mitochondrial dysfunction and mitophagy in pancreatic β-cells. The findings from this study suggest that increased concentration of AGEs may damage β-cells and reduce insulin secretion. PMID:26394662

  16. [Endogenous hyperlactatemia and insulin secretion].

    PubMed

    Ribes, G; Valette, G; Lignon, F; Loubatières-Mariani, M M

    1978-01-01

    In the normal anesthetized dog, the endogenous hyperlactatemia induced either by intense muscular work or by a high dose of phenformin (20 mg/kg subtucaneously) is followed by an increase in the pancreaticoduodenal insulin output. A previous perfusion of sodium dichloroacetate (50 mg/kg. h) opposes the hyperlactatemia, and reduces or suppresses the increase in insulin output. PMID:150887

  17. Melatonin Mediates Monochromatic Light-induced Insulin-like Growth Factor 1 Secretion of Chick Liver: Involvement of Membrane Receptors.

    PubMed

    Li, Suqi; Cao, Jing; Wang, Zixu; Dong, Yulan; Wang, Wenli; Chen, Yaoxing

    2016-07-01

    Monochromatic lights influenced the proliferation and differentiation of skeletal satellite cells in broilers by the enhancement of insulin-like growth factor 1 (IGF-1) secretion. However, whether melatonin (MEL)-mediated monochromatic lights influenced the IGF-1 secretion remains unclear. Newly hatched broilers, including intact, sham operation and pinealectomy groups, were exposed to blue (BL), green (GL), red (RL) and white light (WL) from a light-emitting diode system for 14 days. The results showed that GL effectively promoted the secretion of MEL and IGF-1, the expression of proliferating cell nuclear antigen and MEL receptor subtypes Mel1a, Mel1b and Mel1c in the liver compared to BL and RL in vivo. Moreover, those was a positive correlation between MEL and IGF-1 (r = 0.834). After pinealectomy, however, these parameters declined, and there were no differences between GL and other monochromatic light treatments. In vitro, exogenous MEL increased hepatocyte proliferation and IGF-1 secretion. Meanwhile, the MEL enhancements were suppressed by prazosin (selective Mel1c antagonist), followed by luzindole (nonselective Mel1a/Mel1b antagonist), but not suppressed by 4-phenyl-2-propionamideotetralin (selective Mel1b antagonist). These findings demonstrated that MEL mediated the monochromatic light-induced secretion of IGF-1 in chicks' livers by Mel1c and that Mel1a may be involved in this process. PMID:27128575

  18. Ablation of Elovl6 protects pancreatic islets from high-fat diet-induced impairment of insulin secretion.

    PubMed

    Tang, Nie; Matsuzaka, Takashi; Suzuki, Marii; Nakano, Yuta; Zao, Hui; Yokoo, Tomotaka; Suzuki-Kemuriyama, Noriko; Kuba, Motoko; Okajima, Yuka; Takeuchi, Yoshinori; Kobayashi, Kazuto; Iwasaki, Hitoshi; Yatoh, Shigeru; Takahashi, Akimitsu; Suzuki, Hiroaki; Sone, Hirohito; Shimada, Masako; Nakagawa, Yoshimi; Yahagi, Naoya; Yamada, Nobuhiro; Shimano, Hitoshi

    2014-07-18

    ELOVL family member 6, elongation of very long-chain fatty acids (Elovl6) is a microsomal enzyme that regulates the elongation of C12-16 saturated and monounsaturated fatty acids and is related to the development of obesity-induced insulin resistance via the modification of the fatty acid composition. In this study, we investigated the role of systemic Elovl6 in the pancreatic islet and β-cell function. Elovl6 is expressed in both islets and β-cell lines. In mice fed with chow, islets of the Elovl6(-/-) mice displayed normal architecture and β-cell mass compared with those of the wild-type mice. However, when fed a high-fat, high-sucrose (HFHS) diet, the islet hypertrophy in response to insulin resistance observed in normal mice was attenuated and glucose-stimulated insulin secretion (GSIS) increased in the islets of Elovl6(-/-) mice compared with those of the wild-type mice. Enhanced GSIS in the HFHS Elovl6(-/-) islets was associated with an increased ATP/ADP ratio and the suppression of ATF-3 expression. Our findings suggest that Elovl6 could be involved in insulin secretory capacity per β-cell and diabetes. PMID:24938128

  19. Over-expression of miR375 reduces glucose-induced insulin secretion in Nit-1 cells.

    PubMed

    Xia, Hua-Qiang; Pan, Yi; Peng, Ju; Lu, Guang-Xiu

    2011-06-01

    MicroRNAs (miRNAs) are 19- to 25-nt fragments cleaved from 70- to 100-nt hairpin precursors. These molecules participate in essential biological processes. It was estimated that 30% of all protein-coding genes are miRNA targets. Thousands of miRNAs have already been identified in plants and animals, but little is known about their biological roles. MicroRNA375 (miR375) is highly expressed in pancreatic islets of humans and mice and regulates insulin secretion in isolated pancreatic cells. To improve our understanding of the biological roles of miR375, we constructed the plasmid pAAV-miR375 and transfected it into mouse Nit-1 cells. Real-time PCR and Northern blot analysis showed that the Nit-1 cells transfected with pAAV-miR375 over-expressed the mature miR375 compared with Nit-1 cells transfected with control plasmid or untransfected cells. The expression of myotrophin (Mtpn) decreased and insulin secretion was reduced in Nit-1 cells transfected with pAAV-miR375. In this study, we successfully established an over-expression system for miR375 and a technique to study the biological function of miRNAs by over-expression. We verified that miR375 reduced glucose-induced insulin secretion by down-regulating the expression of Mtpn in Nit-1 cells in vitro, suggesting that miR375 has potential therapeutic applications in type II diabetes. PMID:20221699

  20. Systemic organ wasting induced by localized expression of the secreted insulin/IGF antagonist ImpL2.

    PubMed

    Kwon, Young; Song, Wei; Droujinine, Ilia A; Hu, Yanhui; Asara, John M; Perrimon, Norbert

    2015-04-01

    Organ wasting, related to changes in nutrition and metabolic activity of cells and tissues, is observed under conditions of starvation and in the context of diseases, including cancers. We have developed a model for organ wasting in adult Drosophila, whereby overproliferation induced by activation of Yorkie, the Yap1 oncogene ortholog, in intestinal stem cells leads to wasting of the ovary, fat body, and muscle. These organ-wasting phenotypes are associated with a reduction in systemic insulin/IGF signaling due to increased expression of the secreted insulin/IGF antagonist ImpL2 from the overproliferating gut. Strikingly, expression of rate-limiting glycolytic enzymes and central components of the insulin/IGF pathway is upregulated with activation of Yorkie in the gut, which may provide a mechanism for this overproliferating tissue to evade the effect of ImpL2. Altogether, our study provides insights into the mechanisms underlying organ-wasting phenotypes in Drosophila and how overproliferating tissues adapt to global changes in metabolism. PMID:25850671

  1. Insulin-induced hypoglycemia stimulates corticotropin-releasing factor and arginine vasopressin secretion into hypophysial portal blood of conscious, unrestrained rams.

    PubMed Central

    Caraty, A; Grino, M; Locatelli, A; Guillaume, V; Boudouresque, F; Conte-Devolx, B; Oliver, C

    1990-01-01

    Insulin-induced hypoglycemia (IIH) is a strong stimulator of pituitary ACTH secretion. The mechanisms by which IIH activates the corticotrophs are still controversial. Indeed, in rats the variations of corticotropin-releasing factor (CRF) and arginine vasopressin (AVP) secretion in hypophysial portal blood (HPB) during IIH have been diversely appreciated. This may be due to the stressful conditions required for portal blood collection in rats. We studied the effects of IIH on the secretion of CRF and AVP in HPB and on the release of ACTH and cortisol in peripheral plasma in conscious, unrestrained, castrated rams. After the injection of a low (0.2 IU/kg) or high dose (2 IU/kg) of insulin, ACTH and cortisol levels in peripheral plasma increased in a dose-related manner. After injection of the low dose of insulin, CRF and AVP secretion in HPB were equally stimulated. After injection of the high dose of insulin, CRF secretion was further stimulated, while AVP release was dramatically increased. These results suggest that when the hypoglycemia is moderate, CRF is the main factor triggering ACTH release, and that the increased AVP secretion potentiates the stimulatory effect of CRF. When hypoglycemia is deeper, AVP secretion becomes predominant and may by itself stimulate ACTH release. Images PMID:2161426

  2. Microcystin-LR induces dysfunction of insulin secretion in rat insulinoma (INS-1) cells: Implications for diabetes mellitus.

    PubMed

    Zhao, Yanyan; Shi, Kun; Su, Xiaomei; Xie, Liqiang; Yan, Yunjun

    2016-08-15

    Microcystins (MCs) are the most frequent cyanobacterial toxins observed in freshwater systems. Accumulating evidence suggests that MCs pose a serious threat to public health. However, the contributions of the exposure of MCs to the occurrence of human diseases remain largely unknown. This study provides the evidence of the effects of MC-LR on pancreatic β-cell function through the exposure of rat insulinoma (INS-1) cells to 0, 10, 20, or 40μM MC-LR for 72h and explores the underlying molecular mechanisms. Our results demonstrate that exposure to MC-LR for 72h suppresses cell viability, disturbs glucose-stimulated insulin secretion (GSIS), and decreases the expression of insulin protein. Moreover, MC-LR disrupts the cell cycle distribution and increases cell apoptosis at 20 or 40μM for 72h, respectively, indicating that the β-cell mass would be decreased by MC-LR exposure. A transcriptomic analysis revealed several key genes (e.g., Pdx-1, Neurod1, and Abcc8) involved in insulin secretion are significantly differentially expressed in INS-1 cells in response to MC-LR exposure. In addition, several signal transduction pathways associated with diabetes (e.g., type 1 and 2 diabetes) were also identified compared with the control cells. We recommend that MC be considered as a new environmental factor that promotes diabetes development. The identified key genes or pathways may potentially contribute to the future therapies in the environmental contaminants induced β-cell damage. PMID:27107231

  3. Cdk5 inhibitory peptide (CIP) inhibits Cdk5/p25 activity induced by high glucose in pancreatic beta cells and recovers insulin secretion from p25 damage.

    PubMed

    Zheng, Ya-Li; Li, Congyu; Hu, Ya-Fang; Cao, Li; Wang, Hui; Li, Bo; Lu, Xiao-Hua; Bao, Li; Luo, Hong-Yan; Shukla, Varsha; Amin, Niranjana D; Pant, Harish C

    2013-01-01

    Cdk5/p25 hyperactivity has been demonstrated to lead to neuron apoptosis and degenerations. Chronic exposure to high glucose (HG) results in hyperactivity of Cdk5 and reduced insulin secretion. Here, we set out to determine whether abnormal upregulation of Cdk5/p25 activity may be induced in a pancreatic beta cell line, Min6 cells. We first confirmed that p25 were induced in overexpressed p35 cells treated with HG and increased time course dependence. Next, we showed that no p25 was detected under short time HG stimulation (4-12 hrs), however was detectable in the long exposure in HG cells (24 hrs and 48 hrs). Cdk5 activity in the above cells was much higher than low glucose treated cells and resulted in more than 50% inhibition of insulin secretion. We confirmed these results by overexpression of p25 in Min6 cells. As in cortical neurons, CIP, a small peptide, inhibited Cdk5/p25 activity and restored insulin secretion. The same results were detected in co-infection of dominant negative Cdk5 (DNCdk5) with p25. CIP also reduced beta cells apoptosis induced by Cdk5/p25. These studies indicate that Cdk5/p25 hyperactivation deregulates insulin secretion and induces cell death in pancreatic beta cells and suggests that CIP may serve as a therapeutic agent for type 2 diabetes. PMID:24039692

  4. Vesicular Nucleotide Transporter-Mediated ATP Release Regulates Insulin Secretion

    PubMed Central

    Geisler, Jessica C.; Corbin, Kathryn L.; Li, Qin; Feranchak, Andrew P.; Nunemaker, Craig S.

    2013-01-01

    Extracellular ATP plays a critical role in regulating insulin secretion in pancreatic β cells. The ATP released from insulin secretory vesicles has been proposed to be a major source of extracellular ATP. Currently, the mechanism by which ATP accumulates into insulin secretory granules remains elusive. In this study, the authors identified the expression of a vesicular nucleotide transporter (VNUT) in mouse pancreas, isolated mouse islets, and MIN6 cells, a mouse β cell line. Immunohistochemistry and immunofluorescence revealed that VNUT colocalized extensively with insulin secretory granules. Functional studies showed that suppressing endogenous VNUT expression in β cells by small hairpin RNA knockdown greatly reduced basal- and glucose-induced ATP release. Importantly, knocking down VNUT expression by VNUT small hairpin RNA in MIN6 cells and isolated mouse islets dramatically suppressed basal insulin release and glucose-stimulated insulin secretion (GSIS). Moreover, acute pharmacologic blockade of VNUT with Evans blue, a VNUT antagonist, greatly attenuated GSIS in a dose-dependent manner. Exogenous ATP treatment effectively reversed the insulin secretion defect induced by both VNUT knockdown and functional inhibition, indicating that VNUT-mediated ATP release is essential for maintaining normal insulin secretion. In contrast to VNUT knockdown, overexpression of VNUT in β cells resulted in excessive ATP release and enhanced basal insulin secretion and GSIS. Elevated insulin secretion induced by VNUT overexpression was reversed by pharmacologic inhibition of P2X but not P2Y purinergic receptors. This study reveals VNUT is expressed in pancreatic β cells and plays an essential and novel role in regulating insulin secretion through vesicular ATP release and extracellular purinergic signaling. PMID:23254199

  5. Insulin signaling pathways in lepidopteran ecdysone secretion

    PubMed Central

    Smith, Wendy A.; Lamattina, Anthony; Collins, McKensie

    2014-01-01

    Molting and metamorphosis are stimulated by the secretion of ecdysteroid hormones from the prothoracic glands. Insulin-like hormones have been found to enhance prothoracic gland activity, providing a mechanism to link molting to nutritional state. In silk moths (Bombyx mori), the prothoracic glands are directly stimulated by insulin and the insulin-like hormone bombyxin. Further, in Bombyx, the neuropeptide prothoracicotropic hormone (PTTH) appears to act at least in part through the insulin-signaling pathway. In the prothoracic glands of Manduca sexta, while insulin stimulates the phosphorylation of the insulin receptor and Akt, neither insulin nor bombyxin II stimulate ecdysone secretion. Involvement of the insulin-signaling pathway in Manduca prothoracic glands was explored using two inhibitors of phosphatidylinositol-3-kinase (PI3K), LY294002 and wortmannin. PI3K inhibitors block the phosphorylation of Akt and 4EBP but have no effect on ecdysone secretion, or on the phosphorylation of the MAPkinase, ERK. Inhibitors that block phosphorylation of ERK, including the MEK inhibitor U0126, and high doses of the RSK inhibitor SL0101, effectively inhibit ecdysone secretion. The results highlight differences between the two lepidopteran insects most commonly used to directly study ecdysteroid secretion. In Bombyx, the PTTH and insulin-signaling pathways intersect; both insulin and PTTH enhance the phosphorylation of Akt and stimulate ecdysteroid secretion, and inhibition of PI3K reduces ecdysteroid secretion. By contrast, in Manduca, the action of PTTH is distinct from insulin. The results highlight species differences in the roles of translational regulators such as 4EBP, and members of the MAPkinase pathway such as ERK and RSK, in the regulation of insect ecdysone secretion, and in the impact of nutritionally-sensitive hormones such as insulin in the control of ecdysone secretion and molting. PMID:24550835

  6. Suppression of Insulin Production and Secretion by a Decretin Hormone

    PubMed Central

    Alfa, Ronald W.; Park, Sangbin; Skelly, Kathleen-Rose; Poffenberger, Gregory; Jain, Nimit; Gu, Xueying; Kockel, Lutz; Wang, Jing; Liu, Yinghua; Powers, Alvin C.; Kim, Seung K.

    2015-01-01

    SUMMARY Decretins, hormones induced by fasting that suppress insulin production and secretion, have been postulated from classical human metabolic studies. From genetic screens, we identified Drosophila Limostatin (Lst), a peptide hormone that suppresses insulin secretion. Lst is induced by nutrient restriction in gut-associated endocrine cells. limostatin deficiency led to hyperinsulinemia, hypoglycemia and excess adiposity. A conserved 15-residue polypeptide encoded by limostatin suppressed secretion by insulin-producing cells. Targeted knockdown of CG9918, a Drosophila orthologue of Neuromedin U receptors (NMUR), in insulin-producing cells phenocopied limostatin deficiency, and attenuated insulin suppression by purified Lst, suggesting CG9918 encodes an Lst receptor. NMUR1 is expressed in islet β-cells, and purified NMU suppresses insulin secretion from human islets. A human mutant NMU variant that co-segregates with familial early-onset obesity and hyperinsulinemia fails to suppress insulin secretion. We propose Lst as an index member of an ancient hormone class called decretins, which suppress insulin output. PMID:25651184

  7. Effects of aldosterone on insulin sensitivity and secretion

    PubMed Central

    Luther, James M.

    2014-01-01

    Dr. Conn originally reported an increased risk of diabetes in patients with hyperaldosteronism in the 1950’s, although the mechanism remains unclear. Aldosterone-induced hypokalemia was initially described to impair glucose tolerance by impairing insulin secretion. Correction of hypokalemia by potassium supplementation only partially restored insulin secretion and glucose tolerance, however. Aldosterone also impairs glucose-stimulated insulin secretion in isolated pancreatic islets via reactive oxygen species in a mineralocorticoid receptor-independent manner. Aldosterone-induced mineralocorticoid receptor activation also impairs insulin sensitivity in adipocytes and skeletal muscle. Aldosterone may produce insulin resistance secondarily by altering potassium, increasing inflammatory cytokines, and reducing beneficial adipokines such as adiponectin. Renin-angiotensin system antagonists reduce circulating aldosterone concentrations and also the risk of type 2 diabetes in clinical trials. These data suggest that primary and secondary hyperaldosteronism may contribute to worsening glucose tolerance by impairing insulin sensitivity or insulin secretion in humans. Future studies should define the effects of MR antagonists and aldosterone on insulin secretion and sensitivity in humans. PMID:25194457

  8. Suppression of insulin production and secretion by a decretin hormone.

    PubMed

    Alfa, Ronald W; Park, Sangbin; Skelly, Kathleen-Rose; Poffenberger, Gregory; Jain, Nimit; Gu, Xueying; Kockel, Lutz; Wang, Jing; Liu, Yinghua; Powers, Alvin C; Kim, Seung K

    2015-02-01

    Decretins, hormones induced by fasting that suppress insulin production and secretion, have been postulated from classical human metabolic studies. From genetic screens, we identified Drosophila Limostatin (Lst), a peptide hormone that suppresses insulin secretion. Lst is induced by nutrient restriction in gut-associated endocrine cells. limostatin deficiency led to hyperinsulinemia, hypoglycemia, and excess adiposity. A conserved 15-residue polypeptide encoded by limostatin suppressed secretion by insulin-producing cells. Targeted knockdown of CG9918, a Drosophila ortholog of Neuromedin U receptors (NMURs), in insulin-producing cells phenocopied limostatin deficiency and attenuated insulin suppression by purified Lst, suggesting CG9918 encodes an Lst receptor. NMUR1 is expressed in islet β cells, and purified NMU suppresses insulin secretion from human islets. A human mutant NMU variant that co-segregates with familial early-onset obesity and hyperinsulinemia fails to suppress insulin secretion. We propose Lst as an index member of an ancient hormone class called decretins, which suppress insulin output. PMID:25651184

  9. Volatile anesthetics suppress glucose-stimulated insulin secretion in MIN6 cells by inhibiting glucose-induced activation of hypoxia-inducible factor 1

    PubMed Central

    Suzuki, Kengo; Sato, Yoshifumi; Kai, Shinichi; Nishi, Kenichiro; Adachi, Takehiko; Matsuo, Yoshiyuki

    2015-01-01

    Proper glycemic control is one of the most important goals in perioperative patient management. Insulin secretion from pancreatic β-cells in response to an increased blood glucose concentration plays the most critical role in glycemic control. Several animal and human studies have indicated that volatile anesthetics impair glucose-stimulated insulin secretion (GSIS). A convincing GSIS model has been established, in which the activity of ATP-dependent potassium channels (KATP) under the control of intracellular ATP plays a critical role. We previously reported that pimonidazole adduct formation and stabilization of hypoxia-inducible factor-1α (HIF-1α) were detected in response to glucose stimulation and that MIN6 cells overexpressing HIF-1α were resistant to glucose-induced hypoxia. Genetic ablation of HIF-1α or HIF-1β significantly inhibited GSIS in mice. Moreover, we previously reported that volatile anesthetics suppressed hypoxia-induced HIF activation in vitro and in vivo.To examine the direct effect of volatile anesthetics on GSIS, we used the MIN6 cell line, derived from mouse pancreatic β-cells. We performed a series of experiments to examine the effects of volatile anesthetics (sevoflurane and isoflurane) on GSIS and demonstrated that these compounds inhibited the glucose-induced ATP increase, which is dependent on intracellular hypoxia-induced HIF-1 activity, and suppressed GSIS at a clinically relevant dose in these cells. PMID:26713247

  10. Suspension Culture Alters Insulin Secretion in Induced Human Umbilical Cord Matrix-Derived Mesenchymal Cells

    PubMed Central

    Seyedi, Fatemeh; Farsinejad, Alireza; Nematollahi-Mahani, Seyed Amirmahdi; Eslaminejad, Touba; Nematollahi-Mahani, Seyed Noureddin

    2016-01-01

    Objective Worldwide, diabetes mellitus (DM) is an ever-increasing metabolic disorder. A promising approach to the treatment of DM is the implantation of insulin producing cells (IPC) that have been derived from various stem cells. Culture conditions play a pivotal role in the quality and quantity of the differentiated cells. In this experimental study, we have applied various culture conditions to differentiate human umbilical cord matrix-derived mesenchymal cells (hUCMs) into IPCs and measured insulin production. Materials and Methods In this experimental study, we exposed hUCMs cells to pancreatic medium and differentiated them into IPCs in monolayer and suspension cultures. Pancreatic medium consisted of serum-free Dulbecco’s modified eagle’s medium Nutrient mixture F12 (DMEM/F12) medium with 17.5 mM glucose supplemented by 10 mM nicotinamide, 10 nM exendin-4, 10 nM pentagastrin, 100 pM hepatocyte growth factor, and B-27 serum-free supplement. After differentiation, insulin content was analyzed by gene expression, immunocytochemistry (IHC) and the chemiluminesence immunoassay (CLIA). Results Reverse transcription-polymerase chain reaction (RT-PCR) showed efficient expressions of NKX2.2, PDX1 and INSULIN genes in both groups. IHC analysis showed higher expression of insulin protein in the hanging drop group, and CLIA revealed a significant higher insulin production in hanging drops compared with the monolayer group following the glucose challenge test. Conclusion We showed by this novel, simple technique that the suspension culture played an important role in differentiation of hUCMs into IPC. This culture was more efficient than the conventional culture method commonly used in IPC differentiation and cultivation. PMID:27054119

  11. Insulin and Glucagon Secretion In Vitro

    NASA Technical Reports Server (NTRS)

    Rajan, Arun S.

    1998-01-01

    Long-duration space flight is associated with many physiological abnormalities in astronauts. In particular, altered regulation of the hormones insulin and glucagon may contribute to metabolic disturbances such as increased blood sugar levels, which if persistently elevated result in toxic effects. These changes are also observed in the highly prevalent disease diabetes, which affects 16 million Americans and consumes over $100 billion in annual healthcare costs. By mimicking the microgravity environment of space in the research laboratory using a NASA-developed bioreactor, one can study the physiology of insulin and glucagon secretion and determine if there are alterations in these cellular processes. The original specific objectives of the project included: (1) growing ('cell culture') of pancreatic islet beta and alpha cells that secrete insulin and glucagon respectively, in the NASA bioreactor; (2) examination of the effects of microgravity on insulin and glucagon secretion; and (3) study of molecular mechanisms of insulin and glucagon secretion if altered by microgravity.

  12. Islet Insulin Secretion Measurements in the Mouse.

    PubMed

    Hugill, Alison; Shimomura, Kenju; Cox, Roger D

    2016-01-01

    This article describes detailed protocols for in vitro measurements of insulin function and secretion in isolated mouse islets for the analysis of glucose homeostasis. We specify a method of enzyme digestion and hand picking to isolate and release the greatest number of high quality islets from the pancreas of the mouse. We describe an effective method for generating dynamic measurements of insulin secretion using a perifusion assay including a detailed protocol for constructing a peristaltic pump and tubing assembly. In addition we describe an alternative and simple technique for measuring insulin secretion using static incubation of isolated islets. © 2016 by John Wiley & Sons, Inc. PMID:27584553

  13. Desensitization of sulphonylurea- and nutrient-induced insulin secretion following prolonged treatment with glibenclamide.

    PubMed

    Ball, A J; Flatt, P R; McClenaghan, N H

    2000-11-24

    Functional effects of prolonged exposure to the sulphonylurea glibenclamide were examined in a popular clonal pancreatic beta-cell line, denoted as BRIN-BD11. In acute 20-min incubations, 200 microM of tolbutamide or glibenclamide stimulated insulin release from non-depolarized and depolarized cells, which was dramatically reduced following 18-h culture with 100 microM glibenclamide. Sulphonylurea desensitization in non-depolarized cells was reversed following 6-36-h subsequent culture in the absence of glibenclamide. However, desensitization of insulinotropic effects of sulphonylureas in depolarized cells following glibenclamide culture and associated decline in cellular insulin content was not fully reversible. Culture with 100 microM glibenclamide also markedly reduced the acute insulinotropic actions of glucose, L-alanine, L-arginine, 2-ketoisocaproic acid (KIC) and KCl. These effects were almost completely reversed following 18-h culture in the absence of the sulphonylurea. PMID:11090651

  14. Simultaneous measurement of insulin sensitivity, insulin secretion and the disposition index in conscious unhandled mice

    PubMed Central

    Alonso, L. C.; Watanabe, Y.; Stefanovski, D.; Lee, E. J.; Singamsetty, S.; Romano, L. C.; Zou, B.; Garcia-Ocana, A.; Bergman, R. N.; O’Donnell, C. P.

    2012-01-01

    Of the parameters that determine glucose disposal and progression to diabetes in humans: first-phase insulin secretion, glucose effectiveness, insulin sensitivity, and the disposition index, only insulin sensitivity can be reliably measured in conscious mice. To determine the importance of the other parameters in murine glucose homeostasis in lean and obese states, we developed the frequently sampled intravenous glucose tolerance test (FSIVGTT) for use in unhandled mice. We validated the conscious FSIVGTT against the euglycemic clamp for measuring insulin sensitivity in lean and obese mice. Insulin resistant mice had increased first-phase insulin secretion, decreased glucose effectiveness and a reduced disposition index, qualitatively similar to humans. Intriguingly, while insulin secretion explained most of the variation in glucose disposal in lean mice, glucose effectiveness and the disposition index more strongly predicted glucose disposal in obese mice. Disposition index curves identified individual diet-induced obese mice as having compensated or decompensated insulin secretion. Conscious FSIVGTT opens the door to apply mouse genetics to the determinants of in vivo insulin secretion, glucose effectiveness and disposition index, and further validates the mouse as a model of metabolic disease. PMID:22331130

  15. Insulin secretion after injuries of differing severity in the rat.

    PubMed Central

    Frayn, K. N.

    1976-01-01

    The effects on insulin secretion of injuries of differing severity have been studied in the rat. The injuries used were dorsal scalds to 20% and 40% of the body surface area, and a 4-h period of bilateral hind-limb ischaemia. These injuries resulted in 48 h mortality rates of 0/10, 7/10 and 5/10 respectively. Rats were studied 1-5-2 h after scalding or removal of tourniquets. The blood glucose concentration was markedly raised after all these injuries, and the plasma insulin concentration was also raised, so that the insulin to glucose ratio in any group did not differ significantly from that in non-injured controls. Injection of glucose (0-5 g/kg i.v.) induced a rise in insulin concentration in all groups, although the insulin to glucose ratio after the lethal 40% scald was lower than in control rats. It was concluded that in the rat normal insulin secretion is maintained even after lethal injuries, although some suppression of the insulin response to exogenous glucose may occur. Insulin resistance is more important in the rat than impairment of insulin secretion even at an early stage after injury. PMID:782499

  16. Decrease in glucose-stimulated insulin secretion with aging is independent of insulin action.

    PubMed

    Muzumdar, Radhika; Ma, Xiaohui; Atzmon, Gil; Vuguin, Patricia; Yang, Xiaoman; Barzilai, Nir

    2004-02-01

    While the incidence of diabetes increases with age, a decrease in beta-cell function independent of age-related insulin resistance has not been conclusively determined. We studied insulin secretion (by hyperglycemic clamp) in 3-, 9-, and 20-month-old chronically catheterized, awake, Sprague Dawley (SD) rats (n = 78). Insulin action was modulated in a group of old rats by caloric restriction (CR) or by surgical removal of visceral fat (VF-). During the first 2 h of the clamp (11 mmol/l glucose), insulin secretion and insulin resistance (S(i hyper clamp)) demonstrated the characteristic hyperbolic relationship. However, after hyperglycemia for an additional 2 h, the ability to maintain insulin secretion, commensurate with the degree of insulin resistance, was decreased in all aging rats (P < 0.05). Increasing plasma glucose levels to 18 mmol/l glucose, after clamp at 11 mmol/l, increased insulin secretion by approximately threefold in young rats, but failed to induce similar magnitude of response in the aging rats ( approximately 50%). However, elevation of plasma free fatty acid (FFA) levels by twofold (by intralipid infusion during 11 mmol/l glucose clamp) resulted in a robust, approximate twofold response in both young and old rats. Thus, prolonged stimulation by hyperglycemia unveiled a functional defect in insulin secretion with aging. This age-related defect is independent of insulin action and is specific to glucose and not FFAs. We suggest that prolonged hyperglycemic stimulation can be a tool to identify functional defects in insulin secretion, particularly in the context of the hyperbolic relationship with insulin action, in elderly subjects or those at risk for type 2 diabetes. PMID:14747296

  17. Gliadin fragments and a specific gliadin 33-mer peptide close KATP channels and induce insulin secretion in INS-1E cells and rat islets of langerhans.

    PubMed

    Dall, Morten; Calloe, Kirstine; Haupt-Jorgensen, Martin; Larsen, Jesper; Schmitt, Nicole; Josefsen, Knud; Buschard, Karsten

    2013-01-01

    In non-obese diabetic (NOD) mice, diabetes incidence is reduced by a gluten-free diet. Gluten peptides, such as the compound gliadin, can cross the intestinal barrier and may directly affect pancreatic beta cells. We investigated the effects of enzymatically-digested gliadin in NOD mice, INS-1E cells and rat islets. Six injections of gliadin digest in 6-week-old NOD mice did not affect diabetes development, but increased weight gain (20% increase by day 100). In INS-1E cells, incubation with gliadin digest induced a dose-dependent increase in insulin secretion, up to 2.5-fold after 24 hours. A similar effect was observed in isolated rat islets (1.6-fold increase). In INS-1E cells, diazoxide reduced the stimulatory effect of gliadin digest. Additionally, gliadin digest was shown to decrease current through KATP-channels. A specific gliadin 33-mer had a similar effect, both on current and insulin secretion. Finally, INS-1E incubation with gliadin digest potentiated palmitate-induced insulin secretion by 13% compared to controls. Our data suggest that gliadin fragments may contribute to the beta-cell hyperactivity observed prior to the development of type 1 diabetes. PMID:23785500

  18. Redox Signal-mediated Enhancement of the Temperature Sensitivity of Transient Receptor Potential Melastatin 2 (TRPM2) Elevates Glucose-induced Insulin Secretion from Pancreatic Islets.

    PubMed

    Kashio, Makiko; Tominaga, Makoto

    2015-05-01

    Transient receptor potential melastatin 2 (TRPM2) is a thermosensitive Ca(2+)-permeable cation channel expressed by pancreatic β cells where channel function is constantly affected by body temperature. We focused on the physiological functions of redox signal-mediated TRPM2 activity at body temperature. H2O2, an important molecule in redox signaling, reduced the temperature threshold for TRPM2 activation in pancreatic β cells of WT mice but not in TRPM2KO cells. TRPM2-mediated [Ca(2+)]i increases were likely caused by Ca(2+) influx through the plasma membrane because the responses were abolished in the absence of extracellular Ca(2+). In addition, TRPM2 activation downstream from the redox signal plus glucose stimulation enhanced glucose-induced insulin secretion. H2O2 application at 37 °C induced [Ca(2+)]i increases not only in WT but also in TRPM2KO β cells. This was likely due to the effect of H2O2 on KATP channel activity. However, the N-acetylcysteine-sensitive fraction of insulin secretion by WT islets was increased by temperature elevation, and this temperature-dependent enhancement was diminished significantly in TRPM2KO islets. These data suggest that endogenous redox signals in pancreatic β cells elevate insulin secretion via TRPM2 sensitization and activity at body temperature. The results in this study could provide new therapeutic approaches for the regulation of diabetic conditions by focusing on the physiological function of TRPM2 and redox signals. PMID:25817999

  19. Redox Signal-mediated Enhancement of the Temperature Sensitivity of Transient Receptor Potential Melastatin 2 (TRPM2) Elevates Glucose-induced Insulin Secretion from Pancreatic Islets*

    PubMed Central

    Kashio, Makiko; Tominaga, Makoto

    2015-01-01

    Transient receptor potential melastatin 2 (TRPM2) is a thermosensitive Ca2+-permeable cation channel expressed by pancreatic β cells where channel function is constantly affected by body temperature. We focused on the physiological functions of redox signal-mediated TRPM2 activity at body temperature. H2O2, an important molecule in redox signaling, reduced the temperature threshold for TRPM2 activation in pancreatic β cells of WT mice but not in TRPM2KO cells. TRPM2-mediated [Ca2+]i increases were likely caused by Ca2+ influx through the plasma membrane because the responses were abolished in the absence of extracellular Ca2+. In addition, TRPM2 activation downstream from the redox signal plus glucose stimulation enhanced glucose-induced insulin secretion. H2O2 application at 37 °C induced [Ca2+]i increases not only in WT but also in TRPM2KO β cells. This was likely due to the effect of H2O2 on KATP channel activity. However, the N-acetylcysteine-sensitive fraction of insulin secretion by WT islets was increased by temperature elevation, and this temperature-dependent enhancement was diminished significantly in TRPM2KO islets. These data suggest that endogenous redox signals in pancreatic β cells elevate insulin secretion via TRPM2 sensitization and activity at body temperature. The results in this study could provide new therapeutic approaches for the regulation of diabetic conditions by focusing on the physiological function of TRPM2 and redox signals. PMID:25817999

  20. Deletion of GPR40 Impairs Glucose-Induced Insulin Secretion In Vivo in Mice Without Affecting Intracellular Fuel Metabolism in Islets

    SciTech Connect

    Alquier, Thierry; Peyot, Marie-Line; Latour, M. G.; Kebede, Melkam; Sorensen, Christina M.; Gesta, Stephane; Kahn, C. R.; Smith, Richard D.; Jetton, Thomas L.; Metz, Thomas O.; Prentki, Marc; Poitout, Vincent J.

    2009-11-01

    The G protein-coupled receptor GPR40 mediates fatty-acid potentiation of glucose-stimulated insulin secretion, but its contribution to insulin secretion in vivo and mechanisms of action remain uncertain. This study was aimed to ascertain whether GPR40 controls insulin secretion in vivo and modulates intracellular fuel metabolism in islets. We observed that glucose- and arginine-stimulated insulin secretion, assessed by hyperglycemic clamps, was decreased by approximately 60% in GPR40 knock-out (KO) fasted and fed mice, without changes in insulin sensitivity assessed by hyperinsulinemic-euglycemic clamps. Glucose and palmitate metabolism were not affected by GPR40 deletion. Lipid profiling revealed a similar increase in triglyceride and decrease in lysophosphatidylethanolamine species in WT and KO islets in response to palmitate. These results demonstrate that GPR40 regulates insulin secretion in vivo not only in response to fatty acids but also to glucose and arginine, without altering intracellular fuel metabolism.

  1. Insulin secretion and sensitivity in space flight: diabetogenic effects.

    PubMed

    Tobin, Brian W; Uchakin, Peter N; Leeper-Woodford, Sandra K

    2002-10-01

    Nearly three decades of space flight research have suggested that there are subclinical diabetogenic changes that occur in microgravity. Alterations in insulin secretion, insulin sensitivity, glucose tolerance, and metabolism of protein and amino acids support the hypothesis that insulin plays an essential role in the maintenance of muscle mass in extended-duration space flight. Experiments in flight and after flight and ground-based bedrest studies have associated microgravity and its experimental paradigms with manifestations similar to those of diabetes, physical inactivity, and aging. We propose that these manifestations are characterized best by an etiology that falls into the clinical category of "other" causes of diabetes, including, but not restricted to, genetic beta-cell defects, insulin action defects, diseases of the endocrine pancreas, endocrinopathies, drug or chemically induced diabetes, infections, immune-mediated metabolic alteration, and a host of genetic related diseases. We present data showing alterations in tumor necrosis factor-alpha production, insulin secretion, and amino acid metabolism in pancreatic islets of Langerhans cultured in a ground-based cell culture bioreactor that mimics some of the effects of microgravity. Taken together, space flight research, ground-based studies, and bioreactor studies of pancreatic islets of Langerhans support the hypothesis that the pancreas is unable to overcome peripheral insulin resistance and amino acid dysregulation during space flight. We propose that measures of insulin secretion and insulin action will be necessary to design effective countermeasures against muscle loss, and we advance the "disposition index" as an essential model to be used in the clinical management of space flight-induced muscle loss. PMID:12361776

  2. Insulin secretion and sensitivity in space flight: diabetogenic effects

    NASA Technical Reports Server (NTRS)

    Tobin, Brian W.; Uchakin, Peter N.; Leeper-Woodford, Sandra K.

    2002-01-01

    Nearly three decades of space flight research have suggested that there are subclinical diabetogenic changes that occur in microgravity. Alterations in insulin secretion, insulin sensitivity, glucose tolerance, and metabolism of protein and amino acids support the hypothesis that insulin plays an essential role in the maintenance of muscle mass in extended-duration space flight. Experiments in flight and after flight and ground-based bedrest studies have associated microgravity and its experimental paradigms with manifestations similar to those of diabetes, physical inactivity, and aging. We propose that these manifestations are characterized best by an etiology that falls into the clinical category of "other" causes of diabetes, including, but not restricted to, genetic beta-cell defects, insulin action defects, diseases of the endocrine pancreas, endocrinopathies, drug or chemically induced diabetes, infections, immune-mediated metabolic alteration, and a host of genetic related diseases. We present data showing alterations in tumor necrosis factor-alpha production, insulin secretion, and amino acid metabolism in pancreatic islets of Langerhans cultured in a ground-based cell culture bioreactor that mimics some of the effects of microgravity. Taken together, space flight research, ground-based studies, and bioreactor studies of pancreatic islets of Langerhans support the hypothesis that the pancreas is unable to overcome peripheral insulin resistance and amino acid dysregulation during space flight. We propose that measures of insulin secretion and insulin action will be necessary to design effective countermeasures against muscle loss, and we advance the "disposition index" as an essential model to be used in the clinical management of space flight-induced muscle loss.

  3. Sasa borealis leaves extract improves insulin resistance by modulating inflammatory cytokine secretion in high fat diet-induced obese C57/BL6J mice.

    PubMed

    Yang, Jung-Hwa; Lim, Hyeon-Sook; Heo, Young-Ran

    2010-04-01

    Obesity is considered a mild inflammatory state, and the secretion of inflammation-related cytokines rises as adipose tissue expands. Inflammatory cytokines, including tumor necrosis factor-alpha (TNF-alpha), interlukin 6 (IL-6) and monocyte-chemoattractant protein 1 (MCP-1), are modulated by adipose tissue and known to play an important role in insulin resistance which is the common characteristics of obesity related disorders. In this study we analyzed the effects of Sasa borealis leaves extract on inflammatory cytokines and insulin resistance in diet induced obese C57/BL6J mice. The obese state was induced by a high fat diet for 20 weeks and then the mice were divided into two groups; obese control group (OBC, n = 7) and experimental group (OB-SBE, n = 7). The OBC group was fed a high fat diet and the OB-SBE group was fed a high fat diet containing 5% Sasa borealis leaves extract (SBE) for 12 weeks. We also used mice fed a standard diet as a normal control (NC, n = 7). The body weight and adipose tissue weight in the OB group were significantly higher than those in the NC group. The effects of the high fat diet were reduced by SBE treatments, and the body weight and adipose tissue deposition in the OB-SBE group were significantly decreased compared to the OBC group. The OBC group showed higher serum glucose and insulin levels which resulted in a significant increase of incremental area under the curve (IAUC) and HOMA-IR than the NC group. Also, serum leptin, TNF-alpha, and IL-6 levels were significantly higher in the OBC group than in the NC group. In contrast, the OB-SBE group showed a reversal in the metabolic defects, including a decrease in glucose, insulin, IAUC, HOMA-IR, TNF-alpha, IL-6 and leptin levels. These results suggest that BSE can suppress increased weight gain and/or fat deposition induced by a high fat diet and theses effects are accompanied by modulation of the inflammatory cytokines, TNF-alpha and IL-6 secretion resulting in improved insulin

  4. Sasa borealis leaves extract improves insulin resistance by modulating inflammatory cytokine secretion in high fat diet-induced obese C57/BL6J mice

    PubMed Central

    Yang, Jung-Hwa; Lim, Hyeon-Sook

    2010-01-01

    Obesity is considered a mild inflammatory state, and the secretion of inflammation-related cytokines rises as adipose tissue expands. Inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interlukin 6 (IL-6) and monocyte-chemoattractant protein 1 (MCP-1), are modulated by adipose tissue and known to play an important role in insulin resistance which is the common characteristics of obesity related disorders. In this study we analyzed the effects of Sasa borealis leaves extract on inflammatory cytokines and insulin resistance in diet induced obese C57/BL6J mice. The obese state was induced by a high fat diet for 20 weeks and then the mice were divided into two groups; obese control group (OBC, n = 7) and experimental group (OB-SBE, n = 7). The OBC group was fed a high fat diet and the OB-SBE group was fed a high fat diet containing 5% Sasa borealis leaves extract (SBE) for 12 weeks. We also used mice fed a standard diet as a normal control (NC, n = 7). The body weight and adipose tissue weight in the OB group were significantly higher than those in the NC group. The effects of the high fat diet were reduced by SBE treatments, and the body weight and adipose tissue deposition in the OB-SBE group were significantly decreased compared to the OBC group. The OBC group showed higher serum glucose and insulin levels which resulted in a significant increase of incremental area under the curve (IAUC) and HOMA-IR than the NC group. Also, serum leptin, TNF-α, and IL-6 levels were significantly higher in the OBC group than in the NC group. In contrast, the OB-SBE group showed a reversal in the metabolic defects, including a decrease in glucose, insulin, IAUC, HOMA-IR, TNF-α, IL-6 and leptin levels. These results suggest that BSE can suppress increased weight gain and/or fat deposition induced by a high fat diet and theses effects are accompanied by modulation of the inflammatory cytokines, TNF-α and IL-6 secretion resulting in improved insulin resistance. PMID

  5. Combinatorial insulin secretion dynamics of recombinant hepatic and enteroendocrine cells.

    PubMed

    Durvasula, Kiranmai; Thulé, Peter M; Sambanis, Athanassios

    2012-04-01

    One of the most promising cell-based therapies for combating insulin-dependent diabetes entails the use of genetically engineered non-β cells that secrete insulin in response to physiologic stimuli. A normal pancreatic β cell secretes insulin in a biphasic manner in response to glucose. The first phase is characterized by a transient stimulation of insulin to rapidly lower the blood glucose levels, which is followed by a second phase of insulin secretion to sustain the lowered blood glucose levels over a longer period of time. Previous studies have demonstrated hepatic and enteroendocrine cells to be appropriate hosts for recombinant insulin expression. Due to different insulin secretion kinetics from these cells, we hypothesized that a combination of the two cell types would mimic the biphasic insulin secretion of normal β cells with higher fidelity than either cell type alone. In this study, insulin secretion experiments were conducted with two hepatic cell lines (HepG2 and H4IIE) transduced with 1 of 3 adenoviruses expressing the insulin transgene and with a stably transfected recombinant intestinal cell line (GLUTag-INS). Insulin secretion was stimulated by exposing the cells to glucose only (hepatic cells), meat hydrolysate only (GLUTag-INS), or to a cocktail of the two secretagogues. It was found experimentally that the recombinant hepatic cells secreted insulin in a more sustained manner, whereas the recombinant intestinal cell line exhibited rapid insulin secretion kinetics upon stimulation. The insulin secretion profiles were computationally combined at different cell ratios to arrive at the combinatorial kinetics. Results indicate that combinations of these two cell types allow for tuning the first and second phase of insulin secretion better than either cell type alone. This work provides the basic framework in understanding the secretion kinetics of the combined system and advances it towards preclinical studies. PMID:22094821

  6. Combinatorial Insulin Secretion Dynamics of Recombinant Hepatic and Enteroendocrine Cells

    PubMed Central

    Durvasula, Kiranmai; Thulé, Peter M.; Sambanis, Athanassios

    2012-01-01

    One of the more promising cell-based therapies for combating insulin-dependent diabetes entails the use of genetically engineered non-β cells that secrete insulin in response to physiologic stimuli. A normal pancreatic β cell secretes insulin in a biphasic manner in response to glucose. The first phase is characterized by a transient stimulation of insulin to rapidly lower the blood glucose levels, which is followed by a second phase of insulin secretion to sustain the lowered blood glucose levels over a longer period of time. Previous studies have demonstrated hepatic and enteroendocrine cells to be appropriate hosts for recombinant insulin expression. Due to different insulin secretion kinetics from these cells, we hypothesized that a combination of the two cell types would mimic the biphasic insulin secretion of normal β cells with higher fidelity than either cell type alone. In this study, insulin secretion experiments were conducted with two hepatic cell lines (HepG2 and H4IIE) transduced with one of three adenoviruses expressing the insulin transgene and with a stably transfected recombinant intestinal cell line (GLUTag-INS). Insulin secretion was stimulated by exposing the cells to glucose only (hepatic cells), meat hydrolysate only (GLUTag-INS), or to a cocktail of the two secretagogues. It was found experimentally that the recombinant hepatic cells secreted insulin in a more sustained manner, whereas the recombinant intestinal cell line exhibited rapid insulin secretion kinetics upon stimulation. The insulin secretion profiles were computationally combined at different cell ratios to arrive at the combinatorial kinetics. Results indicate that combinations of these two cell types allow for tuning the first and second phase of insulin secretion better than either cell type alone. This work provides the basic framework in understanding the secretion kinetics of the combined system and advances it towards pre-clinical studies. PMID:22094821

  7. Nilotinib exacerbates diabetes mellitus by decreasing secretion of endogenous insulin.

    PubMed

    Ito, Yoshikiyo; Miyamoto, Toshihiro; Chong, Yong; Maki, Toshinobu; Akashi, Koichi; Kamimura, Tomohiko

    2013-01-01

    We report a 74-year-old female with chronic myelogenous leukemia (CML) in accelerated phase with pre-existing severe type 2 diabetes (T2D) and hemorrhagic gastric ulcers who was successfully treated with nilotinib. We first considered second-generation tyrosine kinase inhibitors for the treatment of this patient, as they elicit a superior response compared with imatinib. We next selected nilotinib, rather than dasatinib, since the increased risk of bleeding associated with dasatinib represented a greater risk of fatality than aggravation of T2D with nilotinib. After improvement of hemorrhagic gastric ulcers and T2D with exogenous insulin therapy, we began nilotinib administration; insulin dose was increased to maintain her glucose levels whereas urine C-peptide level decreased. Conversely, when nilotinib was discontinued due to liver dysfunction, the dosage of injected insulin was decreased and urine C-peptide levels increased. After re-starting nilotinib, the required dose of insulin gradually increased again, and urine C-peptide level decreased, indicating that nilotinib may have impaired secretion of endogenous insulin. The patient obtained a complete cytogenetic response after 3 months of nilotinib treatment. Her T2D has since been well controlled by insulin therapy. To our knowledge, this is the first report that nilotinib treatment for patients with severe T2D may induce a reversible decrease in endogenous insulin secretion, although the precise underlying mechanisms remain unknown. We highly recommend sufficient screening and early intervention with exogenous insulin therapy for diabetic CML patients who receive nilotinib. PMID:23179903

  8. Asparagus officinalis extract controls blood glucose by improving insulin secretion and β-cell function in streptozotocin-induced type 2 diabetic rats.

    PubMed

    Hafizur, Rahman Md; Kabir, Nurul; Chishti, Sidra

    2012-11-14

    The aim of the present study was to evaluate the anti-diabetic mechanism of Asparagus officinalis, a dietary agent used for the management of diabetes. Streptozotocin (90 mg/kg) was injected in 2-d-old Wistar rat pups to induce non-obese type 2 diabetes. After confirmation of diabetes on the 13th week, diabetic rats were treated with a methanolic extract of A. officinalis seeds (250 and 500 mg/kg per d) or glibenclamide for 28 d. After the treatment, fasting blood glucose, serum insulin and total antioxidant status were measured. The pancreas was examined by haematoxylin-eosin staining and immunostained β- and α-cells were observed using a fluorescence microscope. Treatment of the diabetic rats with the A. officinalis extract at doses of 250 and 500 mg/kg suppressed the elevated blood glucose in a dose- and time-dependent manner. The 500 mg/kg, but not 250 mg/kg, dose significantly improved serum insulin levels in the diabetic rats. The insulin:glucose ratio was significantly increased at both doses in the A. officinalis-treated rats. Both qualitative and quantitative improvements in β-cell function were found in the islets of the A. officinalis-treated rats. The extract showed potent antioxidant activity in an in vitro assay and also improved the total antioxidant status in vivo. In most cases, the efficacy of A. officinalis (500 mg/kg) was very similar to a standard anti-diabetic drug, glibenclamide. Thus, the present study suggests that A. officinalis extract exerts anti-diabetic effects by improving insulin secretion and β-cell function, as well as the antioxidant status. PMID:22221560

  9. Pituitary adenylate cyclase-activating polypeptide (PACAP) is an islet substance serving as an intra-islet amplifier of glucose-induced insulin secretion in rats.

    PubMed Central

    Yada, T; Sakurada, M; Ishihara, H; Nakata, M; Shioda, S; Yaekura, K; Hamakawa, N; Yanagida, K; Kikuchi, M; Oka, Y

    1997-01-01

    1. We examined whether pituitary adenylate cyclase-activating polypeptide with 38 or 27 residues (PACAP-38 or PACAP-27) serves as an intra-islet regulator of glucose-induced insulin secretion in rats. PACAP antiserum specific for PACAP-38 and PACAP-27 was used to neutralize the effect of endogenous PACAP in islets. PACAP release from islets was bioassayed using the response of cytosolic Ca2+ concentration ([Ca2+]i) in single beta-cells, monitored by dual-wavelength fura-2 microfluorometry. Expression of PACAP mRNA was studied by reverse transcription-polymerase chain reaction (RT-PCR), while expression of PACAP was studied by metabolic labelling and immunoblotting. Localization of PACAP receptors was studied immunohistochemically. 2. High glucose-stimulated insulin release from isolated islets was attenuated by PACAP antiserum but not by non-immune sera. 3. The islet incubation medium with high glucose (Med) possessed a capacity, which was neutralized by PACAP antiserum, to increase [Ca2+]i in beta-cells. PACAP antiserum also neutralized the [Ca2+]i-increasing action of synthetic PACAP-38 and PACAP-27, but not that of vasoactive intestinal polypeptide (VIP) and glucagon. 4. Both Med and synthetic PACAP increased [Ca2+]i in beta-cells only in the presence of stimulatory, but not basal, glucose concentrations. In contrast, ATP, a substance that is known to be released from beta-cells, increased [Ca2+]i in beta-cells at both and stimulatory glucose concentrations. 5. Expression of PACAP mRNA and biosynthesis of PACAP-38 were detected in islets and a beta-cell line, MIN6. 6. Immunoreactivity for PACAP-selective type-I receptor was observed in islets. 7. [Ca2+]i measurements combined with immunocytochemistry with insulin antiserum revealed a substantial population of glucose-unresponsive beta-cells, many of which were recruited by PACAP-38 into [Ca2+]i responses. 8. These results indicate that PACAP-38 is a novel islet substance that is synthesized and released by islet

  10. A Unifying Organ Model of Pancreatic Insulin Secretion

    PubMed Central

    De Gaetano, Andrea; Gaz, Claudio; Palumbo, Pasquale; Panunzi, Simona

    2015-01-01

    The secretion of insulin by the pancreas has been the object of much attention over the past several decades. Insulin is known to be secreted by pancreatic β-cells in response to hyperglycemia: its blood concentrations however exhibit both high-frequency (period approx. 10 minutes) and low-frequency oscillations (period approx. 1.5 hours). Furthermore, characteristic insulin secretory response to challenge maneuvers have been described, such as frequency entrainment upon sinusoidal glycemic stimulation; substantial insulin peaks following minimal glucose administration; progressively strengthened insulin secretion response after repeated administration of the same amount of glucose; insulin and glucose characteristic curves after Intra-Venous administration of glucose boli in healthy and pre-diabetic subjects as well as in Type 2 Diabetes Mellitus. Previous modeling of β-cell physiology has been mainly directed to the intracellular chain of events giving rise to single-cell or cell-cluster hormone release oscillations, but the large size, long period and complex morphology of the diverse responses to whole-body glucose stimuli has not yet been coherently explained. Starting with the seminal work of Grodsky it was hypothesized that the population of pancreatic β-cells, possibly functionally aggregated in islets of Langerhans, could be viewed as a set of independent, similar, but not identical controllers (firing units) with distributed functional parameters. The present work shows how a single model based on a population of independent islet controllers can reproduce very closely a diverse array of actually observed experimental results, with the same set of working parameters. The model’s success in reproducing a diverse array of experiments implies that, in order to understand the macroscopic behaviour of the endocrine pancreas in regulating glycemia, there is no need to hypothesize intrapancreatic pacemakers, influences between different islets of Langerhans

  11. Optical Control of Insulin Secretion Using an Incretin Switch

    PubMed Central

    Broichhagen, Johannes; Podewin, Tom; Meyer‐Berg, Helena; von Ohlen, Yorrick; Johnston, Natalie R.; Jones, Ben J.; Bloom, Stephen R.; Rutter, Guy A.

    2015-01-01

    Abstract Incretin mimetics are set to become a mainstay of type 2 diabetes treatment. By acting on the pancreas and brain, they potentiate insulin secretion and induce weight loss to preserve normoglycemia. Despite this, incretin therapy has been associated with off‐target effects, including nausea and gastrointestinal disturbance. A novel photoswitchable incretin mimetic based upon the specific glucagon‐like peptide‐1 receptor (GLP‐1R) agonist liraglutide was designed, synthesized, and tested. This peptidic compound, termed LirAzo, possesses an azobenzene photoresponsive element, affording isomer‐biased GLP‐1R signaling as a result of differential activation of second messenger pathways in response to light. While the trans isomer primarily engages calcium influx, the cis isomer favors cAMP generation. LirAzo thus allows optical control of insulin secretion and cell survival. PMID:26585495

  12. Insulin stimulation of hepatic triacylglycerol secretion and the etiology of insulin resistance.

    PubMed

    Zammit, V A; Waterman, I J; Topping, D; McKay, G

    2001-08-01

    The recent observations that insulin can either stimulate or inhibit triacylglycerol secretion by the liver, depending on prior metabolic (possibly insulinemic) state, have rationalized the many apparently contradictory observations, obtained over the past three decades, on the effects of the hormone on this aspect of hepatic metabolism. Extrapolation to the situation in vivo suggests that frequent stimulation of insulin secretion may result in a chronic stimulation of VLDL secretion, and increased delivery of acyl moieties to muscle, where they induce insulin resistance if provided in excess of the oxidative needs (mostly due to exercise) of the tissue. High fructose/sucrose diets, which also stimulate hepatic VLDL secretion, will have the same effect, especially if consumed frequently during the diurnal cycle. Due to the quantitative importance of muscle as a site for insulin-sensitive glucose metabolism, these effects may initiate the metabolic vicious cycle that results in the development of the metabolic syndrome, well in advance of overt obesity or the diagnosis of type-2 diabetes. PMID:11481396

  13. Prostaglandin E2 receptor, EP3, is induced in diabetic islets and negatively regulates glucose- and hormone-stimulated insulin secretion.

    PubMed

    Kimple, Michelle E; Keller, Mark P; Rabaglia, Mary R; Pasker, Renee L; Neuman, Joshua C; Truchan, Nathan A; Brar, Harpreet K; Attie, Alan D

    2013-06-01

    BTBR mice develop severe diabetes in response to genetically induced obesity due to a failure of the β-cells to compensate for peripheral insulin resistance. In analyzing BTBR islet gene expression patterns, we observed that Pgter3, the gene for the prostaglandin E receptor 3 (EP3), was upregulated with diabetes. The EP3 receptor is stimulated by prostaglandin E2 (PGE2) and couples to G-proteins of the Gi subfamily to decrease intracellular cAMP, blunting glucose-stimulated insulin secretion (GSIS). Also upregulated were several genes involved in the synthesis of PGE2. We hypothesized that increased signaling through EP3 might be coincident with the development of diabetes and contribute to β-cell dysfunction. We confirmed that the PGE2-to-EP3 signaling pathway was active in islets from confirmed diabetic BTBR mice and human cadaveric donors, with increased EP3 expression, PGE2 production, and function of EP3 agonists and antagonists to modulate cAMP production and GSIS. We also analyzed the impact of EP3 receptor activation on signaling through the glucagon-like peptide (GLP)-1 receptor. We demonstrated that EP3 agonists antagonize GLP-1 signaling, decreasing the maximal effect that GLP-1 can elicit on cAMP production and GSIS. Taken together, our results identify EP3 as a new therapeutic target for β-cell dysfunction in T2D. PMID:23349487

  14. Prostaglandin E2 Receptor, EP3, Is Induced in Diabetic Islets and Negatively Regulates Glucose- and Hormone-Stimulated Insulin Secretion

    PubMed Central

    Kimple, Michelle E.; Keller, Mark P.; Rabaglia, Mary R.; Pasker, Renee L.; Neuman, Joshua C.; Truchan, Nathan A.; Brar, Harpreet K.; Attie, Alan D.

    2013-01-01

    BTBR mice develop severe diabetes in response to genetically induced obesity due to a failure of the β-cells to compensate for peripheral insulin resistance. In analyzing BTBR islet gene expression patterns, we observed that Pgter3, the gene for the prostaglandin E receptor 3 (EP3), was upregulated with diabetes. The EP3 receptor is stimulated by prostaglandin E2 (PGE2) and couples to G-proteins of the Gi subfamily to decrease intracellular cAMP, blunting glucose-stimulated insulin secretion (GSIS). Also upregulated were several genes involved in the synthesis of PGE2. We hypothesized that increased signaling through EP3 might be coincident with the development of diabetes and contribute to β-cell dysfunction. We confirmed that the PGE2-to-EP3 signaling pathway was active in islets from confirmed diabetic BTBR mice and human cadaveric donors, with increased EP3 expression, PGE2 production, and function of EP3 agonists and antagonists to modulate cAMP production and GSIS. We also analyzed the impact of EP3 receptor activation on signaling through the glucagon-like peptide (GLP)-1 receptor. We demonstrated that EP3 agonists antagonize GLP-1 signaling, decreasing the maximal effect that GLP-1 can elicit on cAMP production and GSIS. Taken together, our results identify EP3 as a new therapeutic target for β-cell dysfunction in T2D. PMID:23349487

  15. Aβ-Induced Insulin Resistance and the Effects of Insulin on the Cholesterol Synthesis Pathway and Aβ Secretion in Neural Cells.

    PubMed

    Najem, Dema; Bamji-Mirza, Michelle; Yang, Ze; Zhang, Wandong

    2016-06-01

    Alzheimer's disease (AD) is characterized by amyloid-β (Aβ) toxicity, tau pathology, insulin resistance, neuroinflammation, and dysregulation of cholesterol homeostasis, all of which play roles in neurodegeneration. Insulin has polytrophic effects on neurons and may be at the center of these pathophysiological changes. In this study, we investigated possible relationships among insulin signaling and cholesterol biosynthesis, along with the effects of Aβ42 on these pathways in vitro. We found that neuroblastoma 2a (N2a) cells transfected with the human gene encoding amyloid-β protein precursor (AβPP) (N2a-AβPP) produced Aβ and exhibited insulin resistance by reduced p-Akt and a suppressed cholesterol-synthesis pathway following insulin treatment, and by increased phosphorylation of insulin receptor subunit-1 at serine 612 (p-IRS-S612) as compared to parental N2a cells. Treatment of human neuroblastoma SH-SY5Y cells with Aβ42 also increased p-IRS-S612, suggesting that Aβ42 is responsible for insulin resistance. The insulin resistance was alleviated when N2a-AβPP cells were treated with higher insulin concentrations. Insulin increased Aβ release from N2a-AβPP cells, by which it may promote Aβ clearance. Insulin increased cholesterol-synthesis gene expression in SH-SY5Y and N2a cells, including 24-dehydrocholesterol reductase (DHCR24) and 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR) through sterol-regulatory element-binding protein-2 (SREBP2). While Aβ42-treated SH-SY5Y cells exhibited increased HMGCR expression and c-Jun phosphorylation as pro-inflammatory responses, they also showed down-regulation of neuro-protective/anti-inflammatory DHCR24. These results suggest that Aβ42 may cause insulin resistance, activate JNK for c-Jun phosphorylation, and lead to dysregulation of cholesterol homeostasis, and that enhancing insulin signaling may relieve the insulin-resistant phenotype and the dysregulated cholesterol-synthesis pathway to promote A

  16. The possible mechanisms by which maternal hypothyroidism impairs insulin secretion in adult male offspring in rats.

    PubMed

    Karbalaei, Narges; Ghasemi, Asghar; Hedayati, Mehdi; Godini, Aliashraf; Zahediasl, Saleh

    2014-04-01

    Previous studies have recently shown that maternal hypothyroidism leads to impaired glucose metabolism and reduced insulin secretion in adult offspring in rats. The aim of this study was to locate the defect in the insulin secretion pathway induced by maternal hypothyroidism. Pregnant Wistar rats were divided into two groups; the control group consumed water, while the hypothyroid (FH) group received water containing 0.025% 6-propyl-2-thiouracil during gestation. An intravenous glucose tolerance test was carried out on 5-month-old male offspring. In in vitro studies, the effects of various secretagogues and inhibitors acting at different levels of the insulin secretion cascade were investigated, and insulin content, insulin secretion and glucokinase activity of the islets were compared. Although insulin content of the FH islets did not differ from that of control islets, insulin secretion from FH islets was reduced when it was challenged by glucose or arginine. Compared with control islets, activities of both hexokinase and glucokinase were also significantly decreased in the FH islets. Although, in both groups, increasing glibenclamide and nifedipine concentrations in the presence of 16.7 mmol l(-1) glucose increased and decreased insulin secretion, respectively, the percentage of changes in secretion of FH islets was significantly lower compared with control islets. The response of FH islets to high extracellular potassium concentration and diazoxide was also significantly lower than that of the control islets. These findings demonstrate that impaired insulin secretion in the FH group is probably related to alterations in different steps of the insulin secretion pathway and not in the insulin pool of β-cells. PMID:24097159

  17. Vitamin D, Insulin Secretion, Sensitivity, and Lipids

    PubMed Central

    Grimnes, Guri; Figenschau, Yngve; Almås, Bjørg; Jorde, Rolf

    2011-01-01

    OBJECTIVE Vitamin D deficiency is associated with an unfavorable metabolic profile in observational studies. The intention was to compare insulin sensitivity (the primary end point) and secretion and lipids in subjects with low and high serum 25(OH)D (25-hydroxyvitamin D) levels and to assess the effect of vitamin D supplementation on the same outcomes among the participants with low serum 25(OH)D levels. RESEARCH DESIGN AND METHODS Participants were recruited from a population-based study (the Tromsø Study) based on their serum 25(OH)D measurements. A 3-h hyperglycemic clamp was performed, and the participants with low serum 25(OH)D levels were thereafter randomized to receive capsules of 20,000 IU vitamin D3 or identical-looking placebo twice weekly for 6 months. A final hyperglycemic clamp was then performed. RESULTS The 52 participants with high serum 25(OH)D levels (85.6 ± 13.5 nmol/L [mean ± SD]) had significantly higher insulin sensitivity index (ISI) and lower HbA1c and triglycerides (TGs) than the 108 participants with low serum 25(OH)D (40.3 ± 12.8 nmol/L), but the differences in ISI and TGs were not significant after adjustments. After supplementation, serum 25(OH)D was 142.7 ± 25.7 and 42.9 ± 17.3 nmol/L in 49 of 51 completing participants randomized to vitamin D and 45 of 53 randomized to placebo, respectively. At the end of the study, there were no statistically significant differences in the outcome variables between the two groups. CONCLUSIONS Vitamin D supplementation to apparently healthy subjects with insufficient serum 25(OH)D levels does not improve insulin sensitivity or secretion or serum lipid profile. PMID:21911741

  18. Secretagogin affects insulin secretion in pancreatic β-cells by regulating actin dynamics and focal adhesion.

    PubMed

    Yang, Seo-Yun; Lee, Jae-Jin; Lee, Jin-Hee; Lee, Kyungeun; Oh, Seung Hoon; Lim, Yu-Mi; Lee, Myung-Shik; Lee, Kong-Joo

    2016-06-15

    Secretagogin (SCGN), a Ca(2+)-binding protein having six EF-hands, is selectively expressed in pancreatic β-cells and neuroendocrine cells. Previous studies suggested that SCGN enhances insulin secretion by functioning as a Ca(2+)-sensor protein, but the underlying mechanism has not been elucidated. The present study explored the mechanism by which SCGN enhances glucose-induced insulin secretion in NIT-1 insulinoma cells. To determine whether SCGN influences the first or second phase of insulin secretion, we examined how SCGN affects the kinetics of insulin secretion in NIT-1 cells. We found that silencing SCGN suppressed the second phase of insulin secretion induced by glucose and H2O2, but not the first phase induced by KCl stimulation. Recruitment of insulin granules in the second phase of insulin secretion was significantly impaired by knocking down SCGN in NIT-1 cells. In addition, we found that SCGN interacts with the actin cytoskeleton in the plasma membrane and regulates actin remodelling in a glucose-dependent manner. Since actin dynamics are known to regulate focal adhesion, a critical step in the second phase of insulin secretion, we examined the effect of silencing SCGN on focal adhesion molecules, including FAK (focal adhesion kinase) and paxillin, and the cell survival molecules ERK1/2 (extracellular-signal-regulated kinase 1/2) and Akt. We found that glucose- and H2O2-induced activation of FAK, paxillin, ERK1/2 and Akt was significantly blocked by silencing SCGN. We conclude that SCGN controls glucose-stimulated insulin secretion and thus may be useful in the therapy of Type 2 diabetes. PMID:27095850

  19. Secretagogin affects insulin secretion in pancreatic β-cells by regulating actin dynamics and focal adhesion

    PubMed Central

    Yang, Seo-Yun; Lee, Jae-Jin; Lee, Jin-Hee; Lee, Kyungeun; Oh, Seung Hoon; Lim, Yu-Mi; Lee, Myung-Shik; Lee, Kong-Joo

    2016-01-01

    Secretagogin (SCGN), a Ca2+-binding protein having six EF-hands, is selectively expressed in pancreatic β-cells and neuroendocrine cells. Previous studies suggested that SCGN enhances insulin secretion by functioning as a Ca2+-sensor protein, but the underlying mechanism has not been elucidated. The present study explored the mechanism by which SCGN enhances glucose-induced insulin secretion in NIT-1 insulinoma cells. To determine whether SCGN influences the first or second phase of insulin secretion, we examined how SCGN affects the kinetics of insulin secretion in NIT-1 cells. We found that silencing SCGN suppressed the second phase of insulin secretion induced by glucose and H2O2, but not the first phase induced by KCl stimulation. Recruitment of insulin granules in the second phase of insulin secretion was significantly impaired by knocking down SCGN in NIT-1 cells. In addition, we found that SCGN interacts with the actin cytoskeleton in the plasma membrane and regulates actin remodelling in a glucose-dependent manner. Since actin dynamics are known to regulate focal adhesion, a critical step in the second phase of insulin secretion, we examined the effect of silencing SCGN on focal adhesion molecules, including FAK (focal adhesion kinase) and paxillin, and the cell survival molecules ERK1/2 (extracellular-signal-regulated kinase 1/2) and Akt. We found that glucose- and H2O2-induced activation of FAK, paxillin, ERK1/2 and Akt was significantly blocked by silencing SCGN. We conclude that SCGN controls glucose-stimulated insulin secretion and thus may be useful in the therapy of Type 2 diabetes. PMID:27095850

  20. Insight into mechanism of in vitro insulin secretion increase induced by antipsychotic clozapine: role of FOXA1 and mitochondrial citrate carrier.

    PubMed

    Menga, A; Infantino, V; Iacobazzi, F; Convertini, P; Palmieri, F; Iacobazzi, V

    2013-08-01

    The use of clozapine and other antipsychotic drugs is known to be associated with a number of adverse metabolic side effects, including diabetes mellitus. These side effects could be, at least in part, the result of impaired islet cell function and abnormal insulin secretion, although the underlying mechanisms are unknown. The aim of this study is the identification of targets for clozapine related to the abnormal insulin secretion. We identify a specific activation of the transcriptional factor FOXA1, but not FOXA2 and FOXA3, by clozapine in HepG2 cells. Clozapine enhances FOXA1 DNA-binding and its transcriptional activity, increasing mitochondrial citrate carrier gene expression, which contains a FOXA1 site in its promoter. Haloperidol, a conventional antipsychotic drug, does not determine any increase of FOXA1 gene expression. We also demonstrate that clozapine upregulates FOXA1 and CIC gene expression in INS-1 cells only at basal glucose concentration. In addition, we find that abnormal insulin secretion in basal glucose conditions could be completely abolished by FOXA1 silencing in INS-1 cells treated with clozapine. The identification of FOXA1 as a novel target for clozapine may shed more light to understand molecular mechanism of abnormal insulin secretion during clozapine treatment. PMID:22959654

  1. Endocrine Determinants of Changes in Insulin Sensitivity and Insulin Secretion during a Weight Cycle in Healthy Men

    PubMed Central

    Karschin, Judith; Lagerpusch, Merit; Enderle, Janna; Eggeling, Ben; Müller, Manfred J.; Bosy-Westphal, Anja

    2015-01-01

    Objective Changes in insulin sensitivity (IS) and insulin secretion occur with perturbations in energy balance and glycemic load (GL) of the diet that may precede the development of insulin resistance and hyperinsulinemia. Determinants of changes in IS and insulin secretion with weight cycling in non-obese healthy subjects remain unclear. Methods In a 6wk controlled 2-stage randomized dietary intervention 32 healthy men (26±4y, BMI: 24±2kg/m2) followed 1wk of overfeeding (OF), 3wks of caloric restriction (CR) containing either 50% or 65% carbohydrate (CHO) and 2wks of refeeding (RF) with the same amount of CHO but either low or high glycaemic index at ±50% energy requirement. Measures of IS (basal: HOMA-index, postprandial: Matsuda-ISI), insulin secretion (early: Stumvoll-index, total: tAUC-insulin/tAUC-glucose) and potential endocrine determinants (ghrelin, leptin, adiponectin, thyroid hormone levels, 24h-urinary catecholamine excretion) were assessed. Results IS improved and insulin secretion decreased due to CR and normalized upon RF. Weight loss-induced improvements in basal and postprandial IS were associated with decreases in leptin and increases in ghrelin levels, respectively (r = 0.36 and r = 0.62, p<0.05). Weight regain-induced decrease in postprandial IS correlated with increases in adiponectin, fT3, TSH, GL of the diet and a decrease in ghrelin levels (r-values between -0.40 and 0.83, p<0.05) whereas increases in early and total insulin secretion were associated with a decrease in leptin/adiponectin-ratio (r = -0.52 and r = -0.46, p<0.05) and a decrease in fT4 (r = -0.38, p<0.05 for total insulin secretion only). After controlling for GL associations between RF-induced decrease in postprandial IS and increases in fT3 and TSH levels were no longer significant. Conclusion Weight cycling induced changes in IS and insulin secretion were associated with changes in all measured hormones, except for catecholamine excretion. While leptin, adiponectin and

  2. Disrupted Leptin Signaling in the Lateral Hypothalamus and Ventral Premammillary Nucleus Alters Insulin and Glucagon Secretion and Protects Against Diet-Induced Obesity.

    PubMed

    Denroche, Heather C; Glavas, Maria M; Tudurí, Eva; Karunakaran, Subashini; Quong, Whitney L; Philippe, Marion; Britton, Heidi M; Clee, Susanne M; Kieffer, Timothy J

    2016-07-01

    Leptin signaling in the central nervous system, and particularly the arcuate hypothalamic nucleus, is important for regulating energy and glucose homeostasis. However, the roles of extra-arcuate leptin responsive neurons are less defined. In the current study, we generated mice with widespread inactivation of the long leptin receptor isoform in the central nervous system via Synapsin promoter-driven Cre (Lepr(flox/flox) Syn-cre mice). Within the hypothalamus, leptin signaling was disrupted in the lateral hypothalamic area (LHA) and ventral premammillary nucleus (PMV) but remained intact in the arcuate hypothalamic nucleus and ventromedial hypothalamic nucleus, dorsomedial hypothalamic nucleus, and nucleus of the tractus solitarius. To investigate the role of LHA/PMV neuronal leptin signaling, we examined glucose and energy homeostasis in Lepr(flox/flox) Syn-cre mice and Lepr(flox/flox) littermates under basal and diet-induced obese conditions and tested the role of LHA/PMV neurons in leptin-mediated glucose lowering in streptozotocin-induced diabetes. Lepr(flox/flox) Syn-cre mice did not have altered body weight or blood glucose levels but were hyperinsulinemic and had enhanced glucagon secretion in response to experimental hypoglycemia. Surprisingly, when placed on a high-fat diet, Lepr(flox/flox) Syn-cre mice were protected from weight gain, glucose intolerance, and diet-induced hyperinsulinemia. Peripheral leptin administration lowered blood glucose in streptozotocin-induced diabetic Lepr(flox/flox) Syn-cre mice as effectively as in Lepr(flox/flox) littermate controls. Collectively these findings suggest that leptin signaling in LHA/PMV neurons is not critical for regulating glucose levels but has an indispensable role in the regulation of insulin and glucagon levels and, may promote the development of diet-induced hyperinsulinemia and weight gain. PMID:27183315

  3. Glycemia Determines the Effect of Type 2 Diabetes Risk Genes on Insulin Secretion

    PubMed Central

    Heni, Martin; Ketterer, Caroline; Thamer, Claus; Herzberg-Schäfer, Silke A.; Guthoff, Martina; Stefan, Norbert; Machicao, Fausto; Staiger, Harald; Fritsche, Andreas; Häring, Hans-Ulrich

    2010-01-01

    OBJECTIVE Several single nucleotide polymorphisms (SNPs) in diabetes risk genes reduce glucose- and/or incretin-induced insulin secretion. Here, we investigated interactions between glycemia and such diabetes risk polymorphisms. RESEARCH DESIGN AND METHODS Insulin secretion was assessed by insulinogenic index and areas under the curve of C-peptide/glucose in 1,576 subjects using an oral glucose tolerance test (OGTT). Participants were genotyped for 10 diabetes risk SNPs associated with β-cell dysfunction: rs5215 (KCNJ11), rs13266634 (SLC30A8), rs7754840 (CDKAL1), rs10811661 (CDKN2A/2B), rs10830963 (MTNR1B), rs7903146 (TCF7L2), rs10010131 (WFS1), rs7923837 (HHEX), rs151290 (KCNQ1), and rs4402960 (IGF2BP2). Furthermore, the impact of the interaction between genetic variation in TCF7L2 and glycemia on changes in insulin secretion was tested in 315 individuals taking part in a lifestyle intervention study. RESULTS For the SNPs in TCF7L2 and WFS1, we found a significant interaction between glucose control and insulin secretion (all P ≤ 0.0018 for glucose × genotype). When plotting insulin secretion against glucose at 120 min OGTT, the compromising SNP effects on insulin secretion are most apparent under high glucose. In the longitudinal study, rs7903146 in TCF7L2 showed a significant interaction with baseline glucose tolerance upon change in insulin secretion (P = 0.0027). Increased glucose levels at baseline predicted an increase in insulin secretion upon improvement of glycemia by lifestyle intervention only in carriers of the risk alleles. CONCLUSIONS For the diabetes risk genes TCF7L2 and WFS1, which are associated with impaired incretin signaling, the level of glycemia determines SNP effects on insulin secretion. This indicates the increasing relevance of these SNPs during the progression of prediabetes stages toward clinically overt type 2 diabetes. PMID:20802253

  4. Important role of heparan sulfate in postnatal islet growth and insulin secretion

    SciTech Connect

    Takahashi, Iwao; Noguchi, Naoya; Nata, Koji; Yamada, Shuhei; Kaneiwa, Tomoyuki; Mizumoto, Shuji; Ikeda, Takayuki; Sugihara, Kazushi; Asano, Masahide; Yoshikawa, Takeo; Yamauchi, Akiyo; Shervani, Nausheen Jamal; Uruno, Akira; Kato, Ichiro; Unno, Michiaki; Sugahara, Kazuyuki; Takasawa, Shin; and others

    2009-05-22

    Heparan sulfate (HS) binds with several signaling molecules and regulates ligand-receptor interactions, playing an essential role in embryonic development. Here we showed that HS was intensively expressed in pancreatic islet {beta}-cells after 1 week of age in mice. The enzymatic removal of HS in isolated islets resulted in attenuated glucose-induced insulin secretion with a concomitant reduction in gene expression of several key components in the insulin secretion machinery. We further depleted islet HS by inactivating the exostosin tumor-like 3 gene specifically in {beta}-cells. These mice exhibited abnormal islet morphology with reduced {beta}-cell proliferation after 1 week of age and glucose intolerance due to defective insulin secretion. These results demonstrate that islet HS is involved in the regulation of postnatal islet maturation and required to ensure normal insulin secretion.

  5. Standardized extract of Ficus deltoidea stimulates insulin secretion and blocks hepatic glucose production by regulating the expression of glucose-metabolic genes in streptozitocin-induced diabetic rats

    PubMed Central

    2014-01-01

    Background Recently, there has been increasing interest in Ficus deltoidea Jack. (Moraceae) due to its chemical composition and the potential health benefits. The present study was undertaken to investigate the effect of extracts of F. deltoidea leaves on diabetes. Methods The petroleum ether, chloroform and methanol extracts of F. deltoidea were prepared and subjected to standardization using preliminary phytochemical and HPLC analysis. Dose selection was made on the basis of acute oral toxicity study (50–5000 mg/kg b. w.) as per OECD guidelines. Diabetes mellitus was induced with streptozotocin and rats found diabetic were orally administered with the extract (250, 500 and 1000 mg/kg) for 14 days. Levels of blood glucose and insulin were measured in control as well as diabetic rats on 0, 7 and 14th day. In addition, glucose metabolism regulating gene expression was assessed using RT-PCR. Results HPLC analysis revealed that the methanol extract is enriched with C-glycosylflavones particularly, vitexin and isovitexin. In oral glucose tolerance test, oral administration of the methanol extract increased the glucose tolerance. The methanol extract showed significant (P < 0.01) antidiabetic activity. The extract treatment caused significant reduction (p < 0.01) in elevated fasting blood glucose level in streptozotocin-induced diabetic rats. The streptozotocin-related weight loss in rats was noticeably reversed by the extract treatment. Finally, RT-PCR analysis revealed a novel mechanisms for the anti-diabetic action of methanol extract of F. deltoidea. The extract exerted its effect via an increase of insulin secretion which impeded the hepatic glucose production, via down-regulation of phosphoenolpyruvate carboxykinase and glucose-6-phosphatase genes expression on one hand, and up-regulation of hepatic GK and PPARγ genes expression on the other hand. The extract caused an increased expression of GLUT-4 gene expression in skeletal muscles which leads to

  6. Simvastatin Impairs Insulin Secretion by Multiple Mechanisms in MIN6 Cells

    PubMed Central

    López Rodríguez, Maykel; Stančáková, Alena; Kuusisto, Johanna; Kokkola, Tarja; Laakso, Markku

    2015-01-01

    Statins are widely used in the treatment of hypercholesterolemia and are efficient in the prevention of cardiovascular disease. Molecular mechanisms explaining statin-induced impairment in insulin secretion remain largely unknown. In the current study, we show that simvastatin decreased glucose-stimulated insulin secretion in mouse pancreatic MIN6 β-cells by 59% and 79% (p<0.01) at glucose concentration of 5.5 mmol/l and 16.7 mmol/l, respectively, compared to control, whereas pravastatin did not impair insulin secretion. Simvastatin induced decrease in insulin secretion occurred through multiple targets. In addition to its established effects on ATP-sensitive potassium channels (p = 0.004) and voltage-gated calcium channels (p = 0.004), simvastatin suppressed insulin secretion stimulated by muscarinic M3 or GPR40 receptor agonists (Tak875 by 33%, p = 0.002; GW9508 by 77%, p = 0.01) at glucose level of 5.5 mmol/l, and inhibited calcium release from the endoplasmic reticulum. Impaired insulin secretion caused by simvastatin treatment were efficiently restored by GPR119 or GLP-1 receptor stimulation and by direct activation of cAMP-dependent signaling pathways with forskolin. The effects of simvastatin treatment on insulin secretion were not affected by the presence of hyperglycemia. Our observation of the opposite effects of simvastatin and pravastatin on glucose-stimulated insulin secretion is in agreement with previous reports showing that simvastatin, but not pravastatin, was associated with increased risk of incident diabetes. PMID:26561346

  7. ENPP1 Affects Insulin Action and Secretion: Evidences from In Vitro Studies

    PubMed Central

    Di Paola, Rosa; Caporarello, Nunzia; Marucci, Antonella; Dimatteo, Claudia; Iadicicco, Claudia; Del Guerra, Silvia; Prudente, Sabrina; Sudano, Dora; Miele, Claudia; Parrino, Cristina; Piro, Salvatore; Beguinot, Francesco; Marchetti, Piero

    2011-01-01

    The aim of this study was to deeper investigate the mechanisms through which ENPP1, a negative modulator of insulin receptor (IR) activation, plays a role on insulin signaling, insulin secretion and eventually glucose metabolism. ENPP1 cDNA (carrying either K121 or Q121 variant) was transfected in HepG2 liver-, L6 skeletal muscle- and INS1E beta-cells. Insulin-induced IR-autophosphorylation (HepG2, L6, INS1E), Akt-Ser473, ERK1/2-Thr202/Tyr204 and GSK3-beta Ser9 phosphorylation (HepG2, L6), PEPCK mRNA levels (HepG2) and 2-deoxy-D-glucose uptake (L6) was studied. GLUT 4 mRNA (L6), insulin secretion and caspase-3 activation (INS1E) were also investigated. Insulin-induced IR-autophosphorylation was decreased in HepG2-K, L6-K, INS1E-K (20%, 52% and 11% reduction vs. untransfected cells) and twice as much in HepG2-Q, L6-Q, INS1E-Q (44%, 92% and 30%). Similar data were obtained with Akt-Ser473, ERK1/2-Thr202/Tyr204 and GSK3-beta Ser9 in HepG2 and L6. Insulin-induced reduction of PEPCK mRNA was progressively lower in untransfected, HepG2-K and HepG2-Q cells (65%, 54%, 23%). Insulin-induced glucose uptake in untransfected L6 (60% increase over basal), was totally abolished in L6-K and L6-Q cells. GLUT 4 mRNA was slightly reduced in L6-K and twice as much in L6-Q (13% and 25% reduction vs. untransfected cells). Glucose-induced insulin secretion was 60% reduced in INS1E-K and almost abolished in INS1E-Q. Serum deficiency activated caspase-3 by two, three and four folds in untransfected INS1E, INS1E-K and INS1E-Q. Glyburide-induced insulin secretion was reduced by 50% in isolated human islets from homozygous QQ donors as compared to those from KK and KQ individuals. Our data clearly indicate that ENPP1, especially when the Q121 variant is operating, affects insulin signaling and glucose metabolism in skeletal muscle- and liver-cells and both function and survival of insulin secreting beta-cells, thus representing a strong pathogenic factor predisposing to insulin resistance

  8. Human Insulinomas Show Distinct Patterns of Insulin Secretion In Vitro.

    PubMed

    Henquin, Jean-Claude; Nenquin, Myriam; Guiot, Yves; Rahier, Jacques; Sempoux, Christine

    2015-10-01

    Insulinomas are β-cell tumors that cause hypoglycemia through inappropriate secretion of insulin. Characterization of the in vitro dynamics of insulin secretion by perifused fragments of 10 human insulinomas permitted their subdivision into three functional groups with similar insulin content. Group A (four patients with fasting and/or postprandial hypoglycemic episodes) showed qualitatively normal responses to glucose, leucine, diazoxide, tolbutamide, and extracellular CaCl2 omission or excess. The effect of glucose was concentration dependent, but, compared with normal islets, insulin secretion was excessive in both low- and high-glucose conditions. Group B (three patients with fasting hypoglycemic episodes) was mainly characterized by large insulin responses to 1 mmol/L glucose, resulting in very high basal secretion rates that were inhibited by diazoxide and restored by tolbutamide but were not further augmented by other agents except for high levels of CaCl2. Group C (three patients with fasting hypoglycemic episodes) displayed very low rates of insulin secretion and virtually no response to stimuli (including high CaCl2 concentration) and inhibitors (CaCl2 omission being paradoxically stimulatory). In group B, the presence of low-Km hexokinase-I in insulinoma β-cells (not in adjacent islets) was revealed by immunohistochemistry. Human insulinomas thus show distinct, though not completely heterogeneous, defects in insulin secretion that are attributed to the undue expression of hexokinase-I in 3 of 10 patients. PMID:26116696

  9. Toxins that modulate ionic channels as tools for exploring insulin secretion.

    PubMed

    Diaz-Garcia, Carlos Manlio; Sanchez-Soto, Carmen; Hiriart, Marcia

    2010-11-01

    Glucose-induced insulin secretion is a cardinal process in glucose homeostasis and metabolic expenditure. Uncoupling of the insulin response to glucose variations may lead to type-2 diabetes mellitus. Thus the identification of more specific drugs to facilitate the study of insulin secretion mechanisms and to develop new pharmacological agents for therapeutics is fundamental. Venomous organisms possess a great diversity of toxic molecules and some of them are neurotoxins that affect membrane excitability. This article reviews properties of those toxins affecting ion channels pivotal for insulin secretion and the usefulness of such compounds in the study of pancreatic beta-cell physiology. Here we examine the major contributions of toxinology to the understanding of the ionic phase of insulin secretion, to the determination of ion channel composition in different insulin secreting cell-line models as well as from primary cultures of different mammal species. Finally, we present a summary of the many diverse toxins affecting insulin release and a brief discussion of the potential of novel toxins in therapeutics. PMID:21046453

  10. Cell death and impairment of glucose-stimulated insulin secretion induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in the {beta}-cell line INS-1E

    SciTech Connect

    Piaggi, Simona; Novelli, Michela; Martino, Luisa; Masini, Matilde; Raggi, Chiara; Orciuolo, Enrico; Masiello, Pellegrino; Casini, Alessandro; De Tata, Vincenzo . E-mail: v.detata@ipg.med.unipi.it

    2007-05-01

    The aim of this research was to characterize 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) toxicity on the insulin-secreting {beta}-cell line INS-1E. A sharp decline of cell survival (below 20%) was observed after 1 h exposure to TCDD concentrations between 12.5 and 25 nM. Ultrastructurally, {beta}-cell death was characterized by extensive degranulation, appearance of autophagic vacuoles, and peripheral nuclear condensation. Cytotoxic concentrations of TCDD rapidly induced a dose-dependent increase in intracellular calcium concentration. Blocking calcium entry by EGTA significantly decreased TCDD cytotoxicity. TCDD was also able to rapidly induce mitochondrial depolarization. Interestingly, 1 h exposition of INS-1E cells to very low TCDD concentrations (0.05-1 nM) dramatically impaired glucose-stimulated but not KCl-stimulated insulin secretion. In conclusion, our results clearly show that TCDD exerts a direct {beta}-cell cytotoxic effect at concentrations of 15-25 nM, but also markedly impairs glucose-stimulated insulin secretion at concentrations 20 times lower than these. On the basis of this latter observation we suggest that pancreatic {beta}-cells could be considered a specific and sensitive target for dioxin toxicity.

  11. LPS-Enhanced Glucose-Stimulated Insulin Secretion Is Normalized by Resveratrol

    PubMed Central

    Nøhr, Mark K.; Dudele, Anete; Poulsen, Morten M.; Ebbesen, Lene H.; Radko, Yulia; Christensen, Lars P.; Jessen, Niels; Richelsen, Bjørn; Lund, Sten; Pedersen, Steen B.

    2016-01-01

    Low-grade inflammation is seen with obesity and is suggested to be a mediator of insulin resistance. The eliciting factor of low-grade inflammation is unknown but increased permeability of gut bacteria-derived lipopolysaccharides (LPS) resulting in endotoxemia could be a candidate. Here we test the effect of LPS and the anti-inflammatory compound resveratrol on glucose homeostasis, insulin levels and inflammation. Mice were subcutaneously implanted with osmotic mini pumps infusing either low-dose LPS or saline for 28 days. Half of the mice were treated with resveratrol delivered through the diet. LPS caused increased inflammation of the liver and adipose tissue (epididymal and subcutaneous) together with enlarged spleens and increased number of leukocytes in the blood. Resveratrol specifically reduced the inflammatory status in epididymal fat (reduced expression of TNFa and Il1b, whereas the increased macrophage infiltration was unaltered) without affecting the other tissues investigated. By LC-MS, we were able to quantitate resveratrol metabolites in epididymal but not subcutaneous adipose tissue. LPS induced insulin resistance as the glucose-stimulated insulin secretion during an oral glucose tolerance test was increased despite similar plasma glucose level resulting in an increase in the insulinogenic index (IGI; delta0-15insulin / delta0-15glucose) from 13.73 to 22.40 pmol/mmol (P < 0.001). This aberration in insulin and glucose homeostasis was normalized by resveratrol. In conclusion: Low-dose LPS enhanced the glucose-stimulated insulin secretion without affecting the blood glucose suggesting increased insulin resistance. Resveratrol restored LPS-induced alteration of the insulin secretion and demonstrated anti-inflammatory effects specifically in epididymal adipose tissue possibly due to preferential accumulation of resveratrol metabolites pointing towards a possible important involvement of this tissue for the effects on insulin resistance and insulin

  12. Galphaz negatively regulates insulin secretion and glucose clearance.

    PubMed

    Kimple, Michelle E; Joseph, Jamie W; Bailey, Candice L; Fueger, Patrick T; Hendry, Ian A; Newgard, Christopher B; Casey, Patrick J

    2008-02-22

    Relatively little is known about the in vivo functions of the alpha subunit of the heterotrimeric G protein Gz (Galphaz). Clues to one potential function recently emerged with the finding that activation of Galphaz inhibits glucose-stimulated insulin secretion in an insulinoma cell line (Kimple, M. E., Nixon, A. B., Kelly, P., Bailey, C. L., Young, K. H., Fields, T. A., and Casey, P. J. (2005) J. Biol. Chem. 280, 31708-31713). To extend this study in vivo, a Galphaz knock-out mouse model was utilized to determine whether Galphaz function plays a role in the inhibition of insulin secretion. No differences were discovered in the gross morphology of the pancreatic islets or in the islet DNA, protein, or insulin content between Galphaz-null and wild-type mice. There was also no difference between the insulin sensitivity of Galphaz-null mice and wild-type controls, as measured by insulin tolerance tests. Galphaz-null mice did, however, display increased plasma insulin concentrations and a corresponding increase in glucose clearance following intraperitoneal and oral glucose challenge as compared with wild-type controls. The increased plasma insulin observed in Galphaz-null mice is most likely a direct result of enhanced insulin secretion, since pancreatic islets isolated from Galphaz-null mice exhibited significantly higher glucose-stimulated insulin secretion than those of wild-type mice. Finally, the increased insulin secretion observed in Galphaz-null islets appears to be due to the relief of a tonic inhibition of adenylyl cyclase, as cAMP production was significantly increased in Galphaz-null islets in the absence of exogenous stimulation. These findings indicate that Galphaz may be a potential new target for therapeutics aimed at ameliorating beta-cell dysfunction in Type 2 diabetes. PMID:18096703

  13. Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells

    PubMed Central

    Ellingsgaard, Helga; Hauselmann, Irina; Schuler, Beat; Habib, Abdella M; Baggio, Laurie L; Meier, Daniel T; Eppler, Elisabeth; Bouzakri, Karim; Wueest, Stephan; Muller, Yannick D; Hansen, Ann Maria Kruse; Reinecke, Manfred; Konrad, Daniel; Gassmann, Max; Reimann, Frank; Halban, Philippe A; Gromada, Jesper; Drucker, Daniel J; Gribble, Fiona M; Ehses, Jan A; Donath, Marc Y

    2014-01-01

    Exercise, obesity and type 2 diabetes are associated with elevated plasma concentrations of interleukin-6 (IL-6). Glucagon-like peptide-1 (GLP-1) is a hormone that induces insulin secretion. Here we show that administration of IL-6 or elevated IL-6 concentrations in response to exercise stimulate GLP-1 secretion from intestinal L cells and pancreatic alpha cells, improving insulin secretion and glycemia. IL-6 increased GLP-1 production from alpha cells through increased proglucagon (which is encoded by GCG) and prohormone convertase 1/3 expression. In models of type 2 diabetes, the beneficial effects of IL-6 were maintained, and IL-6 neutralization resulted in further elevation of glycemia and reduced pancreatic GLP-1. Hence, IL-6 mediates crosstalk between insulin-sensitive tissues, intestinal L cells and pancreatic islets to adapt to changes in insulin demand. This previously unidentified endocrine loop implicates IL-6 in the regulation of insulin secretion and suggests that drugs modulating this loop may be useful in type 2 diabetes. PMID:22037645

  14. Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells.

    PubMed

    Ellingsgaard, Helga; Hauselmann, Irina; Schuler, Beat; Habib, Abdella M; Baggio, Laurie L; Meier, Daniel T; Eppler, Elisabeth; Bouzakri, Karim; Wueest, Stephan; Muller, Yannick D; Hansen, Ann Maria Kruse; Reinecke, Manfred; Konrad, Daniel; Gassmann, Max; Reimann, Frank; Halban, Philippe A; Gromada, Jesper; Drucker, Daniel J; Gribble, Fiona M; Ehses, Jan A; Donath, Marc Y

    2011-01-01

    Exercise, obesity and type 2 diabetes are associated with elevated plasma concentrations of interleukin-6 (IL-6). Glucagon-like peptide-1 (GLP-1) is a hormone that induces insulin secretion. Here we show that administration of IL-6 or elevated IL-6 concentrations in response to exercise stimulate GLP-1 secretion from intestinal L cells and pancreatic alpha cells, improving insulin secretion and glycemia. IL-6 increased GLP-1 production from alpha cells through increased proglucagon (which is encoded by GCG) and prohormone convertase 1/3 expression. In models of type 2 diabetes, the beneficial effects of IL-6 were maintained, and IL-6 neutralization resulted in further elevation of glycemia and reduced pancreatic GLP-1. Hence, IL-6 mediates crosstalk between insulin-sensitive tissues, intestinal L cells and pancreatic islets to adapt to changes in insulin demand. This previously unidentified endocrine loop implicates IL-6 in the regulation of insulin secretion and suggests that drugs modulating this loop may be useful in type 2 diabetes. PMID:22037645

  15. Mathematical modeling of insulin secretion and the role of glucose-dependent mobilization, docking, priming and fusion of insulin granules.

    PubMed

    Stamper, I Johanna; Wang, Xujing

    2013-02-01

    In this paper we develop a new mathematical model of glucose-induced insulin secretion from pancreatic islet β-cells, and we use this model to investigate the rate limiting factors. We assume that insulin granules reside in different pools inside each β-cell, and that all β-cells respond homogeneously to glucose with the same recruitment thresholds. Consistent with recent experimental observations, our model also accounts for the fusion of newcomer granules that are not pre-docked at the plasma membrane. In response to a single step increase in glucose concentration, our model reproduces the characteristic biphasic insulin release observed in multiple experimental systems, including perfused pancreata and isolated islets of rodent or human origin. From our model analysis we note that first-phase insulin secretion depends on rapid depletion of the primed, release-ready granule pools, while the second phase relies on granule mobilization from the reserve. Moreover, newcomers have the potential to contribute significantly to the second phase. When the glucose protocol consists of multiple changes in sequence (a so-called glucose staircase), our model predicts insulin spikes of increasing height, as has been seen experimentally. This increase stems from the glucose-dependent increase in the fusion rate of insulin granules at the plasma membrane of single β-cells. In contrast, previous mathematical models reproduced the staircase experiment by assuming heterogeneous β-cell activation. In light of experimental data indicating limited heterogeneous activation for β-cells within intact islets, our findings suggest that a graded, dose-dependent cell response to glucose may contribute to insulin secretion patterns observed in multiple experiments, and thus regulate in vivo insulin release. In addition, the strength of insulin granule mobilization, priming and fusion are critical limiting factors in determining the total amount of insulin release. PMID:23154190

  16. Evidence for a role of exogenous or endogenous hyperlactatemia in insulin secretion in the dog.

    PubMed

    Ribes, G; Blayac, J P; Valette, G; Loubatières-Mariani, M M

    1979-01-01

    Various types of experimental hyperlactatemia were induced in the normal anesthetized dog, and the changes in insulin secretion were measured in the pancreatico-duodenal vein. Hyperlactatemia was induced in the absence or in the presence of an infusion of sodium dichloroacetate (DCA), which activates pyruvate dehydrogenase. 1. Exogenous hyperlactatemia: The infusion of sodium L(+)lactate resulted in a strong increase in blood lactate level which was accompanied by a significant increase in the insulin output from the pancreatico-duodenal vein. The administration of DCA did not counteract the increase in lactate level and did not modify insulin output either. 2. Endogenous hyperlactatemia: This was induced either by pharmacological means: the subcutaneous injection of an antidiabetic biguanide, phenformin (20 mg/kg), or by physiological means: intense muscular work. In both cases an increase in the lactate level and in insulin output was recorded. The administration of DCA suppressed the hyperlactatemia and counteracted the increase in insulin output. These results show that there is a relationship between lactate level and insulin secretion, and give evidence for a role of endogenous lactate in the regulation of insulin secretion. PMID:399784

  17. Glucagon-Like Peptide-1 Induced Signaling and Insulin Secretion Do Not Drive Fuel and Energy Metabolism in Primary Rodent Pancreatic β-Cells

    PubMed Central

    Peyot, Marie-Line; Gray, Joshua P.; Lamontagne, Julien; Smith, Peter J. S.; Holz, George G.; Madiraju, S. R. Murthy

    2009-01-01

    Background Glucagon like peptide-1 (GLP-1) and its analogue exendin-4 (Ex-4) enhance glucose stimulated insulin secretion (GSIS) and activate various signaling pathways in pancreatic β-cells, in particular cAMP, Ca2+ and protein kinase-B (PKB/Akt). In many cells these signals activate intermediary metabolism. However, it is not clear whether the acute amplification of GSIS by GLP-1 involves in part metabolic alterations and the production of metabolic coupling factors. Methodology/Prinicipal Findings GLP-1 or Ex-4 at high glucose caused release (∼20%) of the total rat islet insulin content over 1 h. While both GLP-1 and Ex-4 markedly potentiated GSIS in isolated rat and mouse islets, neither had an effect on β-cell fuel and energy metabolism over a 5 min to 3 h time period. GLP-1 activated PKB without changing glucose usage and oxidation, fatty acid oxidation, lipolysis or esterification into various lipids in rat islets. Ex-4 caused a rise in [Ca2+]i and cAMP but did not enhance energy utilization, as neither oxygen consumption nor mitochondrial ATP levels were altered. Conclusions/Significance The results indicate that GLP-1 barely affects β-cell intermediary metabolism and that metabolic signaling does not significantly contribute to GLP-1 potentiation of GSIS. The data also indicate that insulin secretion is a minor energy consuming process in the β-cell, and that the β-cell is different from most cell types in that its metabolic activation appears to be primarily governed by a “push” (fuel substrate driven) process, rather than a “pull” mechanism secondary to enhanced insulin release as well as to Ca2+, cAMP and PKB signaling. PMID:19593440

  18. Inhibition of insulin release by synthetic peptides shows that the H3 region at the C-terminal domain of syntaxin-1 is crucial for Ca(2+)- but not for guanosine 5'-[gamma-thio]triphosphate-induced secretion.

    PubMed Central

    Martin, F; Salinas, E; Vazquez, J; Soria, B; Reig, J A

    1996-01-01

    Recently, we have described the presence and possible role of syntaxin in pancreatic beta-cells by using monoclonal antibodies [F. Martin, F. Moya, L. M. Gutierrez, J.A. Reig, B. Soria (1995) Diabetologia 38, 860-863]. In order to characterize further the importance of specific domains of this protein, the functional role of a particular region of the syntaxin-1 molecule has now been investigated by using two synthetic peptides, SynA and SynB, corresponding to two portions of the H3 region at the C-terminal domain of the protein, residues 229-251 and 197-219 respectively. Functional experiments carried out in permeabilized pancreatic beta-cells demonstrate that these peptides inhibit Ca(2+)-dependent insulin release in a dose-dependent manner. This effect is specific because peptides of the same composition but random sequence do not show the same effect. In contrast with this inhibitory effect on Ca(2+)-induced secretion, both peptides increase basal release. However, under the same conditions, SynA and SynB do not affect guanosine 5'-[gamma-thio]triphosphate-induced insulin release. These results demonstrate that specific portions of the H3 region of syntaxin-1 are involved in critical protein-protein interactions specifically during Ca(2+)-induced insulin secretion. PMID:8947488

  19. mTOR Inhibition: Reduced Insulin Secretion and Sensitivity in a Rat Model of Metabolic Syndrome

    PubMed Central

    Rovira, Jordi; Ramírez-Bajo, María Jose; Banon-Maneus, Elisenda; Moya-Rull, Daniel; Ventura-Aguiar, Pedro; Hierro-Garcia, Natalia; Lazo-Rodriguez, Marta; Revuelta, Ignacio; Torres, Armando; Oppenheimer, Federico; Campistol, Josep M.; Diekmann, Fritz

    2016-01-01

    Background Sirolimus (SRL) has been associated with new-onset diabetes mellitus after transplantation. The aim was to determine the effect of SRL on development of insulin resistance and β-cell toxicity. Methods Lean Zucker rat (LZR) and obese Zucker rat (OZR) were distributed into groups: vehicle and SRL (0.25, 0.5, or 1.0 mg/kg) during 12 or 28 days. Intraperitoneal glucose tolerance test (IPGTT) was evaluated at days 0, 12, 28, and 45. Islet morphometry, β-cell proliferation, and apoptosis were analyzed at 12 days. Islets were isolated to analyze insulin content, insulin secretion, and gene expression. Results After 12 days, SRL treatment only impaired IPGTT in a dose-dependent manner in OZR. Treatment prolongation induced increase of area under the curve of IPGTT in LZR and OZR; however, in contrast to OZR, LZR normalized glucose levels after 2 hours. The SRL reduced pancreas weight and islet proliferation in LZR and OZR as well as insulin content. Insulin secretion was only affected in OZR. Islets from OZR + SRL rats presented a downregulation of Neurod1, Pax4, and Ins2 gene. Genes related with insulin secretion remained unchanged or upregulated. Conclusions In conditions that require adaptive β-cell proliferation, SRL might reveal harmful effects by blocking β-cell proliferation, insulin production and secretion. These effects disappeared when removing the therapy.

  20. Effects of prolonged fasting and sustained lipolysis on insulin secretion and insulin sensitivity in normal subjects.

    PubMed

    Salgin, B; Marcovecchio, M L; Humphreys, S M; Hill, N; Chassin, L J; Lunn, D J; Hovorka, R; Dunger, D B

    2009-03-01

    Normal beta-cells adjust their function to compensate for any decrease in insulin sensitivity. Our aim was to explore whether a prolonged fast would allow a study of the effects of changes in circulating free fatty acid (FFA) levels on insulin secretion and insulin sensitivity and whether any potential effects could be reversed by the antilipolytic agent acipimox. Fourteen (8 female, 6 male) healthy young adults (aged 22.8-26.9 yr) without a family history of diabetes and a body mass index of 22.6 +/- 3.2 kg/m(2) were studied on three occasions in random order. Growth hormone and FFA levels were regularly measured overnight (2200-0759), and subjects underwent an intravenous glucose tolerance test in the morning (0800-1100) on each visit. Treatment A was an overnight fast, treatment B was a 24-h fast with regular administrations of a placebo, and treatment C was a 24-h fast with regular ingestions of 250 mg of acipimox. The 24-h fast increased overnight FFA levels (as measured by the area under the curve) 2.8-fold [51.3 (45.6-56.9) vs. 18.4 (14.4-22.5) *10(4) micromol/l*min, P < 0.0001], and it led to decreases in insulin sensitivity [5.7 (3.6-8.9) vs. 2.6 (1.3-4.7) *10(-4) min(-1) per mU/l, P < 0.0001] and the acute insulin response [16.3 (10.9-21.6) vs. 12.7 (8.7-16.6) *10(2) pmol/l*min, P = 0.02], and therefore a reduction in the disposition index [93.1 (64.8-121.4) vs. 35.5 (21.6-49.4) *10(2) pmol/mU, P < 0.0001]. Administration of acipimox during the 24-h fast lowered FFA levels by an average of 20% (range: -62 to +49%; P = 0.03), resulting in a mean increase in the disposition index of 31% (P = 0.03). In conclusion, the 24-h fast was accompanied by substantial increases in fasting FFA levels and induced reductions in the acute glucose-simulated insulin response and insulin sensitivity. The use of acipimox during the prolonged fast increased the disposition index, suggesting a partial reversal of the effects of fasting on the acute insulin response and insulin

  1. Green tea polyphenols modulate insulin secretion by inhibiting glutamate dehydrogenase.

    PubMed

    Li, Changhong; Allen, Aron; Kwagh, Jae; Doliba, Nicolai M; Qin, Wei; Najafi, Habiba; Collins, Heather W; Matschinsky, Franz M; Stanley, Charles A; Smith, Thomas J

    2006-04-14

    Insulin secretion by pancreatic beta-cells is stimulated by glucose, amino acids, and other metabolic fuels. Glutamate dehydrogenase (GDH) has been shown to play a regulatory role in this process. The importance of GDH was underscored by features of hyperinsulinemia/hyperammonemia syndrome, where a dominant mutation causes the loss of inhibition by GTP and ATP. Here we report the effects of green tea polyphenols on GDH and insulin secretion. Of the four compounds tested, epigallocatechin gallate (EGCG) and epicatechin gallate were found to inhibit GDH with nanomolar ED(50) values and were therefore found to be as potent as the physiologically important inhibitor GTP. Furthermore, we have demonstrated that EGCG inhibits BCH-stimulated insulin secretion, a process that is mediated by GDH, under conditions where GDH is no longer inhibited by high energy metabolites. EGCG does not affect glucose-stimulated insulin secretion under high energy conditions where GDH is probably fully inhibited. We have further shown that these compounds act in an allosteric manner independent of their antioxidant activity and that the beta-cell stimulatory effects are directly correlated with glutamine oxidation. These results demonstrate that EGCG, much like the activator of GDH (BCH), can facilitate dissecting the complex regulation of insulin secretion by pharmacologically modulating the effects of GDH. PMID:16476731

  2. Cooperation between cAMP signalling and sulfonylurea in insulin secretion.

    PubMed

    Shibasaki, T; Takahashi, T; Takahashi, H; Seino, S

    2014-09-01

    Although glucose is physiologically the most important regulator of insulin secretion, glucose-induced insulin secretion is modulated by hormonal and neural inputs to pancreatic β-cells. Most of the hormones and neurotransmitters evoke intracellular signals such as cAMP, Ca²⁺ , and phospholipid-derived molecules by activating G protein-coupled receptors (GPCRs). In particular, cAMP is a key second messenger that amplifies insulin secretion in a glucose concentration-dependent manner. The action of cAMP on insulin secretion is mediated by both protein kinase A (PKA)-dependent and Epac2A-dependent mechanisms. Many of the proteins expressed in β-cells are phosphorylated by PKA in vitro, but only a few proteins in which PKA phosphorylation directly affects insulin secretion have been identified. On the other hand, Epac2A activates the Ras-like small G protein Rap in a cAMP-dependent manner. Epac2A is also directly activated by various sulfonylureas, except for gliclazide. 8-pCPT-2'-O-Me-cAMP, an Epac-selective cAMP analogue, and glibenclamide, a sulfonylurea, synergistically activate Epac2A and Rap1, whereas adrenaline, which suppresses cAMP production in pancreatic β-cells, blocks activation of Epac2A and Rap1 by glibenclamide. Thus, cAMP signalling and sulfonylurea cooperatively activate Epac2A and Rap1. This interaction could account, at least in part, for the synergistic effects of incretin-related drugs and sulfonylureas in insulin secretion. Accordingly, clarification of the mechanism of Epac2A activation may provide therapeutic strategies to improve insulin secretion in diabetes. PMID:25200305

  3. Thrombin stimulates insulin secretion via protease-activated receptor-3

    PubMed Central

    Hänzelmann, Sonja; Wang, Jinling; Güney, Emre; Tang, Yunzhao; Zhang, Enming; Axelsson, Annika S; Nenonen, Hannah; Salehi, Albert S; Wollheim, Claes B; Zetterberg, Eva; Berntorp, Erik; Costa, Ivan G; Castelo, Robert; Rosengren, Anders H

    2015-01-01

    The disease mechanisms underlying type 2 diabetes (T2D) remain poorly defined. Here we aimed to explore the pathophysiology of T2D by analyzing gene co-expression networks in human islets. Using partial correlation networks we identified a group of co-expressed genes (‘module’) including F2RL2 that was associated with glycated hemoglobin. F2Rl2 is a G-protein-coupled receptor (GPCR) that encodes protease-activated receptor-3 (PAR3). PAR3 is cleaved by thrombin, which exposes a 6-amino acid sequence that acts as a ‘tethered ligand’ to regulate cellular signaling. We have characterized the effect of PAR3 activation on insulin secretion by static insulin secretion measurements, capacitance measurements, studies of diabetic animal models and patient samples. We demonstrate that thrombin stimulates insulin secretion, an effect that was prevented by an antibody that blocks the thrombin cleavage site of PAR3. Treatment with a peptide corresponding to the PAR3 tethered ligand stimulated islet insulin secretion and single β-cell exocytosis by a mechanism that involves activation of phospholipase C and Ca2+ release from intracellular stores. Moreover, we observed that the expression of tissue factor, which regulates thrombin generation, was increased in human islets from T2D donors and associated with enhanced β-cell exocytosis. Finally, we demonstrate that thrombin generation potential in patients with T2D was associated with increased fasting insulin and insulinogenic index. The findings provide a previously unrecognized link between hypercoagulability and hyperinsulinemia and suggest that reducing thrombin activity or blocking PAR3 cleavage could potentially counteract the exaggerated insulin secretion that drives insulin resistance and β-cell exhaustion in T2D. PMID:26742564

  4. Decreased irisin secretion contributes to muscle insulin resistance in high-fat diet mice

    PubMed Central

    Yang, Zaigang; Chen, Xu; Chen, Yujuan; Zhao, Qian

    2015-01-01

    Aims: Recent studies have revealed the relationship between irisin and insulin signaling, while positive associations of muscle FNDC5 with insulin resistance is observed. However, the functional mechanism of irisin on muscle insulin resistance is still obscure. This study aims to investigate the effect of irisin on muscle insulin action. Methods: Diabetic mouse model was established by high fat diet (HFD) induced obesity in C57BL/6 mice. Body indexes and serum levels of triglyceride (TG), blood glucose and insulin were record. Oral glucose tolerance test (OGTT) was performed before being killed. Circulating irisin level was also detected, while FNDC5/irisin expression was determined by RT-PCR and western blot analysis in both muscle and adipose tissues. Insulin action was further evaluated by the phosphorylation of AKT and Erk, and palmitic acid treated muscle cells were introduced for mimicking diabetic status in vitro. Results: Obvious obese feathers associated with type 2 diabetes were observed in HFD feeding mice, with decreased circulating irisin level and FNDC5/irisin secretion in adipose tissues. Although FNDC5/irisin expression showed little change in skeletal muscle, the insulin action was inhibited significantly. Moreover, palmitic acid treated muscle cells showed similar inhibition of insulin action, and FNDC5/irisin expression change. Besides, insulin action could be reversed by irisin addition in muscle cells. Conclusion: HFD induced obese mice showed decreased irisin secretion from adipose tissues, which might contribute to muscle insulin resistance. Furthermore, irisin addition could recover insulin action in palmitic acid treated muscle cells, indicating the importance of irisin for preserving insulin signaling. PMID:26261526

  5. α/β-Hydrolase domain-6-accessible monoacylglycerol controls glucose-stimulated insulin secretion.

    PubMed

    Zhao, Shangang; Mugabo, Yves; Iglesias, Jose; Xie, Li; Delghingaro-Augusto, Viviane; Lussier, Roxane; Peyot, Marie-Line; Joly, Erik; Taïb, Bouchra; Davis, Matthew A; Brown, J Mark; Abousalham, Abdelkarim; Gaisano, Herbert; Madiraju, S R Murthy; Prentki, Marc

    2014-06-01

    Glucose metabolism in pancreatic β cells stimulates insulin granule exocytosis, and this process requires generation of a lipid signal. However, the signals involved in lipid amplification of glucose-stimulated insulin secretion (GSIS) are unknown. Here we show that in β cells, glucose stimulates production of lipolysis-derived long-chain saturated monoacylglycerols, which further increase upon inhibition of the membrane-bound monoacylglycerol lipase α/β-Hydrolase Domain-6 (ABHD6). ABHD6 expression in β cells is inversely proportional to GSIS. Exogenous monoacylglycerols stimulate β cell insulin secretion and restore GSIS suppressed by the pan-lipase inhibitor orlistat. Whole-body and β-cell-specific ABHD6-KO mice exhibit enhanced GSIS, and their islets show elevated monoacylglycerol production and insulin secretion in response to glucose. Inhibition of ABHD6 in diabetic mice restores GSIS and improves glucose tolerance. Monoacylglycerol binds and activates the vesicle priming protein Munc13-1, thereby inducing insulin exocytosis. We propose saturated monoacylglycerol as a signal for GSIS and ABHD6 as a negative modulator of insulin secretion. PMID:24814481

  6. Role of the Transcription Factor Sox4 in Insulin Secretion and Impaired Glucose Tolerance

    PubMed Central

    Goldsworthy, Michelle; Hugill, Alison; Freeman, Helen; Horner, Emma; Shimomura, Kenju; Bogani, Debora; Pieles, Guido; Mijat, Vesna; Arkell, Ruth; Bhattacharya, Shoumo; Ashcroft, Frances M.; Cox, Roger D.

    2008-01-01

    OBJECTIVES— To identify, map, clone, and functionally validate a novel mouse model for impaired glucose tolerance and insulin secretion. RESEARCH DESIGN AND METHODS— Haploinsufficiency of the insulin receptor and associated mild insulin resistance has been used to sensitize an N-ethyl-N-nitrosourea (ENU) screen to identify novel mutations resulting in impaired glucose tolerance and diabetes. The new impaired glucose tolerance 4 (IGT4) model was selected using an intraperitoneal glucose tolerance test and inheritance of the phenotype confirmed by generation of backcross progeny. Segregation of the phenotype was correlated with genotype information to map the location of the gene and candidates sequenced for mutations. The function of the SRY-related high mobility group (HMG)-box 4 (Sox4) gene in insulin secretion was tested using another ENU allele and by small interfering RNA silencing in insulinoma cells. RESULTS— We describe two allelic autosomal dominant mutations in the highly conserved HMG box of the transcription factor Sox4. Previously associated with pancreas development, Sox4 mutations in the adult mouse result in an insulin secretory defect, which exhibits impaired glucose tolerance in association with insulin receptor+/−–induced insulin resistance. Elimination of the Sox4 transcript in INS1 and Min6 cells resulted in the abolition of glucose-stimulated insulin release similar to that observed for silencing of the key metabolic enzyme glucokinase. Intracellular calcium measurements in treated cells indicate that this defect lies downstream of the ATP-sensitive K+ channel (KATP channel) and calcium influx. CONCLUSIONS— IGT4 represents a novel digenic model of insulin resistance coupled with an insulin secretory defect. The Sox4 gene has a role in insulin secretion in the adult β-cell downstream of the KATP channel. PMID:18477811

  7. Prkar1a in the regulation of insulin secretion.

    PubMed

    Hussain, M A; Stratakis, C; Kirschner, L

    2012-09-01

    The incidence of type 2 diabetes mellitus (T2DM) is rapidly increasing worldwide with significant consequences on individual quality of life as well as economic burden on states' healthcare costs. While origins of the pathogenesis of T2DM are poorly understood, an early defect in glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells is considered a hallmark of T2DM. Upon a glucose stimulus, insulin is secreted in a biphasic manner with an early first-phase burst of insulin, which is followed by a second, more sustained phase of insulin output. First phase insulin secretion is diminished early in T2DM as well is in subjects who are at risk of developing T2DM. An effective treatment of T2DM with incretin hormone glucagon-like peptide-1 (GLP-1) or its long acting peptide analogue exendin-4 (E4), restores first-phase and augments second-phase glucose stimulated insulin secretion. This effect of incretin action occurs within minutes of GLP-1/E4 infusion in T2DM humans. An additional important consideration is that incretin hormones augment GSIS only above a certain glucose threshold, which is slightly above the normal glucose range. This ensures that incretin hormones stimulate GSIS only when glucose levels are high, while they are ineffective when insulin levels are below a certain threshold. Activation of the GLP-1 receptor, which is highly expressed on pancreatic β-cells, stimulates 2 -distinct intracellular signaling pathways: a) the cAMP-protein kinase A branch and b) the cAMP-EPAC2 (EPAC=exchange protein activated by cAMP) branch. While the EPAC2 branch is considered to mediate GLP-1 effects on first-phase GSIS, the PKA branch is necessary for the former branch to be active. However, how these 2 branches interplay and converge and how their effects on insulin secretion and insulin vesicle exocytosis are coordinated is poorly understood.Thus, at the outset of our studies we have a poorly understood intracellular interplay of cAMP-dependent signaling

  8. MISC-1/OGC Links Mitochondrial Metabolism, Apoptosis and Insulin Secretion

    PubMed Central

    Gallo, Marco; Park, Donha; Luciani, Dan S.; Kida, Katarzyna; Palmieri, Ferdinando; Blacque, Oliver E.; Johnson, James D.; Riddle, Donald L.

    2011-01-01

    We identified MISC-1 (Mitochondrial Solute Carrier) as the C. elegans orthologue of mammalian OGC (2-oxoglutarate carrier). OGC was originally identified for its ability to transfer α-ketoglutarate across the inner mitochondrial membrane. However, we found that MISC-1 and OGC are not solely involved in metabolic control. Our data show that these orthologous proteins participate in phylogenetically conserved cellular processes, like control of mitochondrial morphology and induction of apoptosis. We show that MISC-1/OGC is required for proper mitochondrial fusion and fission events in both C. elegans and human cells. Transmission electron microscopy reveals that loss of MISC-1 results in a decreased number of mitochondrial cristae, which have a blebbed appearance. Furthermore, our pull-down experiments show that MISC-1 and OGC interact with the anti-apoptotic proteins CED-9 and Bcl-xL, respectively, and with the pro-apoptotic protein ANT. Knock-down of misc-1 in C. elegans and OGC in mouse cells induces apoptosis through the caspase cascade. Genetic analysis suggests that MISC-1 controls apoptosis through the physiological pathway mediated by the LIN-35/Rb-like protein. We provide genetic and molecular evidence that absence of MISC-1 increases insulin secretion and enhances germline stem cell proliferation in C. elegans. Our study suggests that the mitochondrial metabolic protein MISC-1/OGC integrates metabolic, apoptotic and insulin secretion functions. We propose a novel mechanism by which mitochondria integrate metabolic and cell survival signals. Our data suggest that MISC-1/OGC functions by sensing the metabolic status of mitochondria and directly activate the apoptotic program when required. Our results suggest that controlling MISC-1/OGC function allows regulation of mitochondrial morphology and cell survival decisions by the metabolic needs of the cell. PMID:21448454

  9. Insulin Stimulates S100B Secretion and These Proteins Antagonistically Modulate Brain Glucose Metabolism.

    PubMed

    Wartchow, Krista Minéia; Tramontina, Ana Carolina; de Souza, Daniela F; Biasibetti, Regina; Bobermin, Larissa D; Gonçalves, Carlos-Alberto

    2016-06-01

    Brain metabolism is highly dependent on glucose, which is derived from the blood circulation and metabolized by the astrocytes and other neural cells via several pathways. Glucose uptake in the brain does not involve insulin-dependent glucose transporters; however, this hormone affects the glucose influx to the brain. Changes in cerebrospinal fluid levels of S100B (an astrocyte-derived protein) have been associated with alterations in glucose metabolism; however, there is no evidence whether insulin modulates glucose metabolism and S100B secretion. Herein, we investigated the effect of S100B on glucose metabolism, measuring D-(3)H-glucose incorporation in two preparations, C6 glioma cells and acute hippocampal slices, and we also investigated the effect of insulin on S100B secretion. Our results showed that: (a) S100B at physiological levels decreases glucose uptake, through the multiligand receptor RAGE and mitogen-activated protein kinase/ERK signaling, and (b) insulin stimulated S100B secretion via PI3K signaling. Our findings indicate the existence of insulin-S100B modulation of glucose utilization in the brain tissue, and may improve our understanding of glucose metabolism in several conditions such as ketosis, streptozotocin-induced dementia and pharmacological exposure to antipsychotics, situations that lead to changes in insulin signaling and extracellular levels of S100B. PMID:26875731

  10. Microtubules Negatively Regulate Insulin Secretion in Pancreatic β Cells.

    PubMed

    Zhu, Xiaodong; Hu, Ruiying; Brissova, Marcela; Stein, Roland W; Powers, Alvin C; Gu, Guoqiang; Kaverina, Irina

    2015-09-28

    For glucose-stimulated insulin secretion (GSIS), insulin granules have to be localized close to the plasma membrane. The role of microtubule-dependent transport in granule positioning and GSIS has been debated. Here, we report that microtubules, counterintuitively, restrict granule availability for secretion. In β cells, microtubules originate at the Golgi and form a dense non-radial meshwork. Non-directional transport along these microtubules limits granule dwelling at the cell periphery, restricting granule availability for secretion. High glucose destabilizes microtubules, decreasing their density; such local microtubule depolymerization is necessary for GSIS, likely because granule withdrawal from the cell periphery becomes inefficient. Consistently, microtubule depolymerization by nocodazole blocks granule withdrawal, increases their concentration at exocytic sites, and dramatically enhances GSIS in vitro and in mice. Furthermore, glucose-driven MT destabilization is balanced by new microtubule formation, which likely prevents over-secretion. Importantly, microtubule density is greater in dysfunctional β cells of diabetic mice. PMID:26418295

  11. Optogenetic control of insulin secretion by pancreatic β-cells in vitro and in vivo.

    PubMed

    Kushibiki, T; Okawa, S; Hirasawa, T; Ishihara, M

    2015-07-01

    The present study assessed the ability of optogenetics techniques to provide a better understanding of the control of insulin secretion, particularly regarding pancreatic β-cell function in homeostasis and pathological conditions such as diabetes mellitus (DM). We used optogenetics to investigate whether insulin secretion and blood glucose homeostasis could be controlled by regulating intracellular calcium ion concentrations ([Ca(2+)]i) in a mouse pancreatic β-cell line (MIN6) transfected with the optogenetic protein channelrhodopsin-2 (ChR2). The ChR2-transfected MIN6 (ChR2-MIN6) cells secreted insulin following irradiation with a laser (470 nm). The increase in [Ca(2+)]i was accompanied by elevated levels of messenger RNAs that encode calcium/calmodulin-dependent protein kinase II delta and adenylate cyclase 1. ChR2-MIN6 cells suspended in matrigel were inoculated into streptozotocin-induced diabetic mice that were then subjected to a glucose tolerance test. Laser irradiation of these mice caused a significant decrease in blood glucose, and the irradiated implanted cells expressed insulin. These findings demonstrate the power of optogenetics to precisely and efficiently controlled insulin secretion by pancreatic β-cells 'on demand', in contrast to techniques using growth factors or chemical inducers. Optogenetic technology shows great promise for understanding the mechanisms of glucose homeostasis and for developing treatments for metabolic diseases such as DM. PMID:25809465

  12. Increased Expression of the Diabetes Gene SOX4 Reduces Insulin Secretion by Impaired Fusion Pore Expansion.

    PubMed

    Collins, Stephan C; Do, Hyun Woong; Hastoy, Benoit; Hugill, Alison; Adam, Julie; Chibalina, Margarita V; Galvanovskis, Juris; Godazgar, Mahdieh; Lee, Sheena; Goldsworthy, Michelle; Salehi, Albert; Tarasov, Andrei I; Rosengren, Anders H; Cox, Roger; Rorsman, Patrik

    2016-07-01

    The transcription factor Sox4 has been proposed to underlie the increased type 2 diabetes risk linked to an intronic single nucleotide polymorphism in CDKAL1 In a mouse model expressing a mutant form of Sox4, glucose-induced insulin secretion is reduced by 40% despite normal intracellular Ca(2+) signaling and depolarization-evoked exocytosis. This paradox is explained by a fourfold increase in kiss-and-run exocytosis (as determined by single-granule exocytosis measurements) in which the fusion pore connecting the granule lumen to the exterior expands to a diameter of only 2 nm, which does not allow the exit of insulin. Microarray analysis indicated that this correlated with an increased expression of the exocytosis-regulating protein Stxbp6. In a large collection of human islet preparations (n = 63), STXBP6 expression and glucose-induced insulin secretion correlated positively and negatively with SOX4 expression, respectively. Overexpression of SOX4 in the human insulin-secreting cell EndoC-βH2 interfered with granule emptying and inhibited hormone release, the latter effect reversed by silencing STXBP6 These data suggest that increased SOX4 expression inhibits insulin secretion and increased diabetes risk by the upregulation of STXBP6 and an increase in kiss-and-run exocytosis at the expense of full fusion. We propose that pharmacological interventions promoting fusion pore expansion may be effective in diabetes therapy. PMID:26993066

  13. Pre-germinated brown rice prevents high-fat diet induced hyperglycemia through elevated insulin secretion and glucose metabolism pathway in C57BL/6J strain mice

    PubMed Central

    Shen, Kuo-Ping; Hao, Chi-Long; Yen, Hsueh-Wei; Chen, Chun-Yen; Wu, Bin-Nan; Lin, Hui-Li

    2015-01-01

    This study investigated the effect and mechanism of pre-germinated brown rice (PGBR) prevented hyperglycemia in C57BL/6J mice fed high-fat-diet (HFD). Normal six-week-old mice were randomly divided into three groups. Group 1 was fed standard-regular-diet (SRD) and group 2 was fed HFD for 16 weeks. In group 3, the mice were fed a HFD with its carbohydrate replaced with PGBR for 16 weeks. Comparing the SRD and HFD groups, we found the HFD group had higher blood pressure, higher concentrations of blood glucose and HbA1c. The HFD group had less protein expression of insulin receptor (IR), insulin receptor substrate-1 (IRS-1), phosphatidylinositol-3-kinase (PI3K), glucose transporter-4 (GLUT-4) and glucokinase (GCK) and greater expression of glucogen synthase kinase (GSK) in skeletal muscle. The HFD group also had less expression of IR, serine/threonine kinase PI3K-linked protein kinase B (Akt/PKB), AMP-activated protein kinase (AMPK), GCK and peroxisome proliferator-activated receptor γ (PPARγ) in liver. In the HFD + PGBR group, the PGBR could reverse the disorders of blood pressure, blood glucose, HbA1c and increase insulin concentration. PGBR increased the IR, IRS-1, PI3K, Akt, GLUT-1 and GLUT-4 proteins, and ameliorated AMPK, GCK, GSK and PPARγ proteins. Together, PGBR prevented HFD-induced hyperglycemia through improving insulin levels, insulin receptor, glucose transporters and enhancing glucose metabolism. PMID:25834303

  14. Interaction of non-esterified fatty acid and insulin in control of triacylglycerol secretion by Hep G2 cells.

    PubMed Central

    Byrne, C D; Brindle, N P; Wang, T W; Hales, C N

    1991-01-01

    The role of insulin in the regulation of plasma triacylglycerol is poorly understood. Conflicting actions of insulin on rat liver cells have been reported, insulin inhibiting triacylglycerol secretion in short incubations (less than 24 h) and stimulating triacylglycerol secretion in longer incubations (48-72 h). The present study was undertaken to examine regulation of triacylglycerol secretion by insulin and investigate the interaction between insulin and non-esterified fatty acid over 72 h in human hepatoblastoma (Hep G2) cells. Insulin inhibited triacylglycerol secretion throughout the 72 h period. The inhibition increased from 66% in the first 24 h to 88% in the final 24 h. Increasing the initial concentration of oleic acid from 200 microM to 1000 microM resulted in a 358% increase in triacylglycerol secretion and a 712% increase in accumulation over 24 h. Oleic acid uptake by the cells was rapid, with only 2.4% of the initial concentration (500 microM) remaining after 24 h. Supplementation of the medium with oleic acid to maintain the concentration between 750 microM and 1000 microM throughout a 5 h period resulted in a 350% increase in triacylglycerol secretion. Supplementation also decreased the insulin-induced inhibition of triacylglycerol secretion (18.2 to 7.8%; P less than 0.001). These results demonstrate that there is not a biphasic action of insulin on triacylglycerol secretion by Hep G2 cells. Experiments of this nature have not previously taken into account the rapid uptake of non-esterified fatty acid by hepatocytes and have consequently underestimated the effect of a sustained concentration on triacylglycerol metabolism. Oleic acid is therefore an even more potent stimulus to triacylglycerol synthesis and secretion than has previously been recognized. In addition, in the presence of a sustained increase in oleic acid concentration, there is a decrease in the action of insulin to inhibit triacylglycerol secretion. PMID:1660268

  15. Antrodia camphorata Increases Insulin Secretion and Protects from Apoptosis in MIN6 Cells

    PubMed Central

    Vong, Chi Teng; Tseng, Hisa Hui Ling; Kwan, Yiu Wa; Lee, Simon Ming-Yuen; Hoi, Maggie Pui Man

    2016-01-01

    Antrodia camphorata is a Taiwanese-specific fungus which has been used clinically to treat hypertension, immune- and liver-related diseases and cancer; however, it has never been studied in type 2 diabetes mellitus (T2DM). Hyperglycemia in T2DM causes endoplasmic reticulum (ER) stress, leading to β-cell dysfunction. During chronic ER stress, misfolded proteins accumulate and initiate β-cell apoptosis. Moreover, β-cell dysfunction leads to defect in insulin secretion, which is the key process in the development and progression of T2DM. Therefore, the aim of the present study was to examine the effects of A. camphorata on insulin secretion and ER stress-induced apoptosis in a mouse β-cell line, MIN6, and their underlying mechanisms. We demonstrated that the ethanolic extract of A. camphorata increased glucose-induced insulin secretion dose-dependently through peroxisome proliferator-activated receptor-γ (PPAR-γ) pathway, and upregulated genes that were involved in insulin secretion, including PPAR-γ, glucose transporter-2 and glucokinase. Furthermore, A. camphorata slightly increased cell proliferation, as well as protected from ER stress-induced apoptosis in MIN6 cells. In conclusion, this study provided evidences that A. camphorata might have anti-diabetic effects and could be a novel drug for T2DM. PMID:27047382

  16. Comparison of effects of phorbol esters and glucose on protein kinase C activation and insulin secretion in pancreatic islets.

    PubMed Central

    Easom, R A; Hughes, J H; Landt, M; Wolf, B A; Turk, J; McDaniel, M L

    1989-01-01

    The tumour-promoting phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) induces insulin secretion from isolated pancreatic islets, and this suggests a potential role for protein kinase C in the regulation of stimulus-secretion coupling in islets. In the present study, the hypothesis that the insulinotropic effect of TPA is mediated by activation of protein kinase C in pancreatic islets has been examined. TPA induced a gradual translocation of protein kinase C from the cytosol to a membrane-associated state which correlated with the gradual onset of insulin secretion. The pharmacologically inactive phorbol ester 4 alpha-phorbol 12,13-didecanoate did not mimic this effect. TPA also induced a rapid time-dependent decline of total protein kinase C activity in islets and the appearance of a Ca2+- and phospholipid-independent protein kinase activity. Insulin secretion induced by TPA was completely suppressed (IC50 approximately 10 nM) by staurosporine, a potent protein kinase C inhibitor. Staurosporine also inhibited islet cytosolic protein kinase C activity at similar concentrations (IC50 approximately 2 nM). In addition, staurosporine partially (approximately 60%) inhibited glucose-induced insulin secretion at concentrations (IC50 approximately 10 nM) similar to those required to inhibit TPA-induced insulin secretion, suggesting that staurosporine may act at a step common to both mechanisms, possibly the activation of protein kinase C. However, stimulatory concentrations of glucose did not induce down-regulation of translocation of protein kinase C, and the inhibition of glucose-induced insulin release by staurosporine was incomplete. Significant questions therefore remain unresolved as to the possible involvement of protein kinase C in glucose-induced insulin secretion. PMID:2690823

  17. Defective insulin secretion by chronic glucagon receptor activation in glucose intolerant mice.

    PubMed

    Ahlkvist, Linda; Omar, Bilal; Valeur, Anders; Fosgerau, Keld; Ahrén, Bo

    2016-03-01

    Stimulation of insulin secretion by short-term glucagon receptor (GCGR) activation is well characterized; however, the effect of long-term GCGR activation on β-cell function is not known, but of interest, since hyperglucagonemia occurs early during development of type 2 diabetes. Therefore, we examined whether chronic GCGR activation affects insulin secretion in glucose intolerant mice. To induce chronic GCGR activation, high-fat diet fed mice were continuously (2 weeks) infused with the stable glucagon analog ZP-GA-1 and challenged with oral glucose and intravenous glucose±glucagon-like peptide 1 (GLP1). Islets were isolated to evaluate the insulin secretory response to glucose±GLP1 and their pancreas were collected for immunohistochemical analysis. Two weeks of ZP-GA-1 infusion reduced insulin secretion both after oral and intravenous glucose challenges in vivo and in isolated islets. These inhibitory effects were corrected for by GLP1. Also, we observed increased β-cell area and islet size. We conclude that induction of chronic ZP-GA-1 levels in glucose intolerant mice markedly reduces insulin secretion, and thus, we suggest that chronic activation of the GCGR may contribute to the failure of β-cell function during development of type 2 diabetes. PMID:26698567

  18. A Role for SPARC in the Moderation of Human Insulin Secretion

    PubMed Central

    Harries, Lorna W.; McCulloch, Laura J.; Holley, Janet E.; Rawling, Thomas J.; Welters, Hannah J.; Kos, Katarina

    2013-01-01

    Aims/Hypothesis We have previously shown the implication of the multifunctional protein SPARC (Secreted protein acidic and rich in cysteine)/osteonectin in insulin resistance but potential effects on beta-cell function have not been assessed. We therefore aimed to characterise the effect of SPARC on beta-cell function and features of diabetes. Methods We measured SPARC expression by qRT-PCR in human primary pancreatic islets, adipose tissue, liver and muscle. We then examined the relation of SPARC with glucose stimulated insulin secretion (GSIS) in primary human islets and the effect of SPARC overexpression on GSIS in beta cell lines. Results SPARC was expressed at measurable levels in human islets, adipose tissue, liver and skeletal muscle, and demonstrated reduced expression in primary islets from subjects with diabetes compared with controls (p< = 0.05). SPARC levels were positively correlated with GSIS in islets from control donors (p< = 0.01). Overexpression of SPARC in cultured beta-cells resulted in a 2.4-fold increase in insulin secretion in high glucose conditions (p< = 0.01). Conclusions Our data suggest that levels of SPARC are reduced in islets from donors with diabetes and that it has a role in insulin secretion, an effect which appears independent of SPARC’s modulation of obesity-induced insulin resistance in adipose tissue. PMID:23840838

  19. Dynamin 2 regulates biphasic insulin secretion and plasma glucose homeostasis

    PubMed Central

    Fan, Fan; Ji, Chen; Wu, Yumei; Ferguson, Shawn M.; Tamarina, Natalia; Philipson, Louis H.; Lou, Xuelin

    2015-01-01

    Alterations in insulin granule exocytosis and endocytosis are paramount to pancreatic β cell dysfunction in diabetes mellitus. Here, using temporally controlled gene ablation specifically in β cells in mice, we identified an essential role of dynamin 2 GTPase in preserving normal biphasic insulin secretion and blood glucose homeostasis. Dynamin 2 deletion in β cells caused glucose intolerance and substantial reduction of the second phase of glucose-stimulated insulin secretion (GSIS); however, mutant β cells still maintained abundant insulin granules, with no signs of cell surface expansion. Compared with control β cells, real-time capacitance measurements demonstrated that exocytosis-endocytosis coupling was less efficient but not abolished; clathrin-mediated endocytosis (CME) was severely impaired at the step of membrane fission, which resulted in accumulation of clathrin-coated endocytic intermediates on the plasma membrane. Moreover, dynamin 2 ablation in β cells led to striking reorganization and enhancement of actin filaments, and insulin granule recruitment and mobilization were impaired at the later stage of GSIS. Together, our results demonstrate that dynamin 2 regulates insulin secretory capacity and dynamics in vivo through a mechanism depending on CME and F-actin remodeling. Moreover, this study indicates a potential pathophysiological link between endocytosis and diabetes mellitus. PMID:26413867

  20. Synchronization of Ca(2+)-signals within insulin-secreting pseudoislets: effects of gap-junctional uncouplers.

    PubMed

    Squires, P E; Hauge-Evans, A C; Persaud, S J; Jones, P M

    2000-05-01

    The secretory response of the intact islet is greater than the response of individual beta-cells in isolation, and functional coupling between cells is critical in insulin release. The changes in intracellular Ca(2+)([Ca(2+)](i)) which initiate insulin secretory responses are synchronized between groups of cells within the islet, and gap-junctions are thought to play a central role in coordinating signalling events. We have used the MIN6 insulin-secreting cell line, to examine whether uncoupling gap-junctions alters the synchronicity of nutrient- and non-nutrient-evoked Ca(2+)oscillations, or affects insulin secretion. MIN6 cells express mRNA species that can be amplified using PCR primers for connexin 36. A commonly used gap-junctional inhibitor, heptanol, inhibited glucose- and tolbutamide-induced Ca(2+)-oscillations to basal levels in MIN6 cell clusters at concentrations of 0.5 mM and greater, and it had similar effects in pseudoislets when used at 2.5 mM. Lower heptanol concentrations altered the frequency of Ca(2+)transients without affecting their synchronicity, in both monolayers and pseudoislets. Heptanol also had effects on insulin secretion from MIN6 pseudoislets such that 1 mM enhanced secretion while 2.5 mM was inhibitory. These data suggest that heptanol has multiple effects in pancreatic beta-cells, none of which appears to be related to uncoupling of synchronicity of Ca(2+)signalling between cells. A second gap-junction uncoupler, 18 alpha-glycyrrhetinic acid, also failed to uncouple synchronized Ca(2+)-oscillations, and it had no effect on insulin secretion. These data provide evidence that Ca(2+)signalling events occur simultaneously across the bulk mass of the pseudoislet, and suggest that gap-junctions are not required to coordinate the synchronicity of these events, nor is communication via gap junctions essential for integrated insulin secretory responses. PMID:10859595

  1. Reevaluation of Fatty Acid Receptor 1 as a Drug Target for the Stimulation of Insulin Secretion in Humans

    PubMed Central

    Wagner, Robert; Kaiser, Gabriele; Gerst, Felicia; Christiansen, Elisabeth; Due-Hansen, Maria E.; Grundmann, Manuel; Machicao, Fausto; Peter, Andreas; Kostenis, Evi; Ulven, Trond; Fritsche, Andreas; Häring, Hans-Ulrich; Ullrich, Susanne

    2013-01-01

    The role of free fatty acid receptor 1 (FFAR1/GPR40) in glucose homeostasis is still incompletely understood. Small receptor agonists stimulating insulin secretion are undergoing investigation for the treatment of type 2 diabetes. Surprisingly, genome-wide association studies did not discover diabetes risk variants in FFAR1. We reevaluated the role of FFAR1 in insulin secretion using a specific agonist, FFAR1-knockout mice and human islets. Nondiabetic individuals were metabolically phenotyped and genotyped. In vitro experiments indicated that palmitate and a specific FFAR1 agonist, TUG-469, stimulate glucose-induced insulin secretion through FFAR1. The proapoptotic effect of chronic exposure of β-cells to palmitate was independent of FFAR1. TUG-469 was protective, whereas inhibition of FFAR1 promoted apoptosis. In accordance with the proapoptotic effect of palmitate, in vivo cross-sectional observations demonstrated a negative association between fasting free fatty acids (NEFAs) and insulin secretion. Because NEFAs stimulate secretion through FFAR1, we examined the interaction of genetic variation in FFAR1 with NEFA and insulin secretion. The inverse association of NEFA and secretion was modulated by rs1573611 and became steeper for carriers of the minor allele. In conclusion, FFAR1 agonists support β-cell function, but variation in FFAR1 influences NEFA effects on insulin secretion and therefore could affect therapeutic efficacy of FFAR1 agonists. PMID:23378609

  2. Reevaluation of fatty acid receptor 1 as a drug target for the stimulation of insulin secretion in humans.

    PubMed

    Wagner, Robert; Kaiser, Gabriele; Gerst, Felicia; Christiansen, Elisabeth; Due-Hansen, Maria E; Grundmann, Manuel; Machicao, Fausto; Peter, Andreas; Kostenis, Evi; Ulven, Trond; Fritsche, Andreas; Häring, Hans-Ulrich; Ullrich, Susanne

    2013-06-01

    The role of free fatty acid receptor 1 (FFAR1/GPR40) in glucose homeostasis is still incompletely understood. Small receptor agonists stimulating insulin secretion are undergoing investigation for the treatment of type 2 diabetes. Surprisingly, genome-wide association studies did not discover diabetes risk variants in FFAR1. We reevaluated the role of FFAR1 in insulin secretion using a specific agonist, FFAR1-knockout mice and human islets. Nondiabetic individuals were metabolically phenotyped and genotyped. In vitro experiments indicated that palmitate and a specific FFAR1 agonist, TUG-469, stimulate glucose-induced insulin secretion through FFAR1. The proapoptotic effect of chronic exposure of β-cells to palmitate was independent of FFAR1. TUG-469 was protective, whereas inhibition of FFAR1 promoted apoptosis. In accordance with the proapoptotic effect of palmitate, in vivo cross-sectional observations demonstrated a negative association between fasting free fatty acids (NEFAs) and insulin secretion. Because NEFAs stimulate secretion through FFAR1, we examined the interaction of genetic variation in FFAR1 with NEFA and insulin secretion. The inverse association of NEFA and secretion was modulated by rs1573611 and became steeper for carriers of the minor allele. In conclusion, FFAR1 agonists support β-cell function, but variation in FFAR1 influences NEFA effects on insulin secretion and therefore could affect therapeutic efficacy of FFAR1 agonists. PMID:23378609

  3. Methylated trivalent arsenicals are potent inhibitors of glucose stimulated insulin secretion by murine pancreatic islets

    SciTech Connect

    Douillet, Christelle; Currier, Jenna; Saunders, Jesse; Bodnar, Wanda M.; Matoušek, Tomáš; Stýblo, Miroslav

    2013-02-15

    Epidemiologic evidence has linked chronic exposure to inorganic arsenic (iAs) with an increased prevalence of diabetes mellitus. Laboratory studies have identified several mechanisms by which iAs can impair glucose homeostasis. We have previously shown that micromolar concentrations of arsenite (iAs{sup III}) or its methylated trivalent metabolites, methylarsonite (MAs{sup III}) and dimethylarsinite (DMAs{sup III}), inhibit the insulin-activated signal transduction pathway, resulting in insulin resistance in adipocytes. Our present study examined effects of the trivalent arsenicals on insulin secretion by intact pancreatic islets isolated from C57BL/6 mice. We found that 48-hour exposures to low subtoxic concentrations of iAs{sup III}, MAs{sup III} or DMAs{sup III} inhibited glucose-stimulated insulin secretion (GSIS), but not basal insulin secretion. MAs{sup III} and DMAs{sup III} were more potent than iAs{sup III} as GSIS inhibitors with estimated IC{sub 50} ≤ 0.1 μM. The exposures had little or no effects on insulin content of the islets or on insulin expression, suggesting that trivalent arsenicals interfere with mechanisms regulating packaging of the insulin transport vesicles or with translocation of these vesicles to the plasma membrane. Notably, the inhibition of GSIS by iAs{sup III}, MAs{sup III} or DMAs{sup III} could be reversed by a 24-hour incubation of the islets in arsenic-free medium. These results suggest that the insulin producing pancreatic β-cells are among the targets for iAs exposure and that the inhibition of GSIS by low concentrations of the methylated metabolites of iAs may be the key mechanism of iAs-induced diabetes. - Highlights: ► Trivalent arsenicals inhibit glucose stimulated insulin secretion by pancreatic islets. ► MAs{sup III} and DMAs{sup III} are more potent inhibitors than arsenite with IC{sub 50} ∼ 0.1 μM. ► The arsenicals have little or no effects on insulin expression in pancreatic islets. ► The inhibition of

  4. Toll-Like Receptor 3 Influences Glucose Homeostasis and β-Cell Insulin Secretion.

    PubMed

    Strodthoff, Daniela; Ma, Zuheng; Wirström, Tina; Strawbridge, Rona J; Ketelhuth, Daniel F J; Engel, David; Clarke, Robert; Falkmer, Sture; Hamsten, Anders; Hansson, Göran K; Björklund, Anneli; Lundberg, Anna M

    2015-10-01

    Toll-like receptors (TLRs) have been implicated in the pathogenesis of type 2 diabetes. We examined the function of TLR3 in glucose metabolism and type 2 diabetes-related phenotypes in animals and humans. TLR3 is highly expressed in the pancreas, suggesting that it can influence metabolism. Using a diet-induced obesity model, we show that TLR3-deficient mice had enhanced glycemic control, facilitated by elevated insulin secretion. Despite having high insulin levels, Tlr3(-/-) mice did not experience disturbances in whole-body insulin sensitivity, suggesting that they have a robust metabolic system that manages increased insulin secretion. Increase in insulin secretion was associated with upregulation of islet glucose phosphorylation as well as exocytotic protein VAMP-2 in Tlr3(-/-) islets. TLR3 deficiency also modified the plasma lipid profile, decreasing VLDL levels due to decreased triglyceride biosynthesis. Moreover, a meta-analysis of two healthy human populations showed that a missense single nucleotide polymorphism in TLR3 (encoding L412F) was linked to elevated insulin levels, consistent with our experimental findings. In conclusion, our results increase the understanding of the function of innate receptors in metabolic disorders and implicate TLR3 as a key control system in metabolic regulation. PMID:25918231

  5. Extracellular Nucleotides Inhibit Insulin Receptor Signaling, Stimulate Autophagy and Control Lipoprotein Secretion

    PubMed Central

    Chatterjee, Cynthia; Sparks, Daniel L.

    2012-01-01

    Hyperglycemia is associated with abnormal plasma lipoprotein metabolism and with an elevation in circulating nucleotide levels. We evaluated how extracellular nucleotides may act to perturb hepatic lipoprotein secretion. Adenosine diphosphate (ADP) (>10 µM) acts like a proteasomal inhibitor to stimulate apoB100 secretion and inhibit apoA-I secretion from human liver cells at 4 h and 24 h. ADP blocks apoA-I secretion by stimulating autophagy. The nucleotide increases cellular levels of the autophagosome marker, LC3-II, and increases co-localization of LC3 with apoA-I in punctate autophagosomes. ADP affects autophagy and apoA-I secretion through P2Y13. Overexpression of P2Y13 increases cellular LC3-II levels by ∼50% and blocks induction of apoA-I secretion. Conversely, a siRNA-induced reduction in P2Y13 protein expression of 50% causes a similar reduction in cellular LC3-II levels and a 3-fold stimulation in apoA-I secretion. P2Y13 gene silencing blocks the effects of ADP on autophagy and apoA-I secretion. A reduction in P2Y13 expression suppresses ERK1/2 phosphorylation, increases the phosphorylation of IR-β and protein kinase B (Akt) >3-fold, and blocks the inhibition of Akt phosphorylation by TNFα and ADP. Conversely, increasing P2Y13 expression significantly inhibits insulin-induced phosphorylation of insulin receptor (IR-β) and Akt, similar to that observed after treatment with ADP. Nucleotides therefore act through P2Y13, ERK1/2 and insulin receptor signaling to stimulate autophagy and affect hepatic lipoprotein secretion. PMID:22590634

  6. A Novel GLP1 Receptor Interacting Protein ATP6ap2 Regulates Insulin Secretion in Pancreatic Beta Cells.

    PubMed

    Dai, Feihan F; Bhattacharjee, Alpana; Liu, Ying; Batchuluun, Battsetseg; Zhang, Ming; Wang, Xinye Serena; Huang, Xinyi; Luu, Lemieux; Zhu, Dan; Gaisano, Herbert; Wheeler, Michael B

    2015-10-01

    GLP1 activates its receptor, GLP1R, to enhance insulin secretion. The activation and transduction of GLP1R requires complex interactions with a host of accessory proteins, most of which remain largely unknown. In this study, we used membrane-based split ubiquitin yeast two-hybrid assays to identify novel GLP1R interactors in both mouse and human islets. Among these, ATP6ap2 (ATPase H(+)-transporting lysosomal accessory protein 2) was identified in both mouse and human islet screens. ATP6ap2 was shown to be abundant in islets including both alpha and beta cells. When GLP1R and ATP6ap2 were co-expressed in beta cells, GLP1R was shown to directly interact with ATP6ap2, as assessed by co-immunoprecipitation. In INS-1 cells, overexpression of ATP6ap2 did not affect insulin secretion; however, siRNA knockdown decreased both glucose-stimulated and GLP1-induced insulin secretion. Decreases in GLP1-induced insulin secretion were accompanied by attenuated GLP1 stimulated cAMP accumulation. Because ATP6ap2 is a subunit required for V-ATPase assembly of insulin granules, it has been reported to be involved in granule acidification. In accordance with this, we observed impaired insulin granule acidification upon ATP6ap2 knockdown but paradoxically increased proinsulin secretion. Importantly, as a GLP1R interactor, ATP6ap2 was required for GLP1-induced Ca(2+) influx, in part explaining decreased insulin secretion in ATP6ap2 knockdown cells. Taken together, our findings identify a group of proteins that interact with the GLP1R. We further show that one interactor, ATP6ap2, plays a novel dual role in beta cells, modulating both GLP1R signaling and insulin processing to affect insulin secretion. PMID:26272612

  7. Altered insulin and glucagon secretion in treated genetic hyperlipemia: a mechanism of theraphy?

    PubMed

    Eaton, R P; Oase, R; Schade, D S

    1976-03-01

    The influence of Halofenate therapy on insulin and glucagon secretion was examined in the Zucker rat with genetic endogenous hyperlipemia. Coincident with the lipid lowering effects of Halofenate, the net change in the basal bihormonal axis favored glucagon, with the I/G molar ratio (Insulin/Glucagon) decreasing from 2.72 +/- 0.53 to 0.96 +/- 0.20 during treatment with this drug. Following arginine stimulation the I/G ratio remained reduced at 0.87 +/- 0.13 in Halofenate treated animals, contrasting with the statistically greater ratio of 2.5 +/- 0.55 in control animals. The Halofenate induced state of reduced insulin:glucagon was associated with hypolipemia, postarginine hyperglycemia, and hyperketonemia,-three metabolic parameters characteristic of glucagon excess relative to insulin. It is suggested that the lipid-lowering action of Halofenate in genetic hyperlipemia may reflect the altered bihormonal axis induced by the drug. PMID:1250161

  8. Effect of glibenclamide in insulin-treated diabetic patients with a residual insulin secretion.

    PubMed

    Mauerhoff, T; Ketelslegers, J M; Lambert, A E

    1986-02-01

    We have studied the effect of the combination of a sulfonylurea (Hb 420 or glibenclamide) with insulin in 22 type II diabetic patients, treated with insulin and with residual insulin secretion (fasting plasma C peptide level greater than 0.2 pmol/ml). After a 3 week run-in period, the patients received either glibenclamide (7 mg of Hb 420 before breakfast and 3.5 mg before supper) or placebo in double blind fashion. Clinical and biological parameters (body weight, number of hypoglycemic episodes, daily insulin dose, fasting and postprandial glucose and C peptide levels after a standard meal) were collected during the basal (run-in) period and after 8 and 16 weeks of treatment. In the glibenclamide group, a significant increase in the number of hypoglycemic episodes was observed in spite of a 8 to 10% reduction in insulin requirements. A 18% reduction of both fasting and postprandial plasma glucose levels was found after 8 and 16 weeks of glibenclamide therapy. Concomitantly, a 35% increase of fasting and postprandial plasma C peptide levels occurred. The data suggest that the use of combined sulfonylurea and insulin therapy may be beneficial to type II diabetic patients with residual insulin secretion and poor glycemic control under insulin therapy alone. PMID:3084315

  9. Evidence for two different types of P2 receptors stimulating insulin secretion from pancreatic B cell.

    PubMed

    Petit, P; Hillaire-Buys, D; Manteghetti, M; Debrus, S; Chapal, J; Loubatières-Mariani, M M

    1998-11-01

    Adenine nucleotides have been shown to stimulate insulin secretion by acting on P2 receptors of the P2Y type. Since there have been some discrepancies in the insulin response of different analogues of ATP and ADP, we investigated whether two different types of P2 receptors exist on pancreatic B cells. The effects of alpha,beta-methylene ATP, which is more specific for the P2X subtype, were studied in vitro in pancreatic islets and isolated perfused pancreas from rats, in comparison with the potent P2Y receptor agonist ADPbetaS. In isolated islets, incubated with a slightly stimulating glucose concentration (8.3 mM), alpha,beta-me ATP (200 microM) and ADPbetaS (50 microM) similarly stimulated insulin secretion; by contrast, under a non stimulating glucose concentration (3 mM), alpha,beta-me ATP was still effective whereas ADPbetaS was not. In the same way, in islets perifused with 3 mM glucose, alpha,beta-me ATP but not ADPbetaS induced a partial but significant reduction in the peak 86Rb efflux induced by the ATP-dependent potassium channel opener diazoxide. In the isolated pancreas, perfused with a non stimulating glucose concentration (4.2 mM), ADPbetaS and alpha,beta-me ATP (5-50 microM), administered for 10 min, induced an immediate, transient and concentration-dependent increase in the insulin secretion; their relative potency was not significantly different. In contrast, with a slightly stimulating glucose concentration (8.3 mM), ADPbetaS was previously shown to be 100 fold more potent than alpha,beta-me ATP. Furthermore, at 4.2 mM glucose a second administration of alpha,beta-me ATP was ineffective. In the same way, ADPbetaS was also able to desensitize its own insulin response. At 3 mM glucose, alpha,beta-me ATP as well as ADPbetaS (50 microM) induced a transient stimulation of insulin secretion and down regulated the action of each other. These results give evidence that pancreatic B cells, in addition to P2Y receptors, which potentiate glucose-induced

  10. Oral glucose is the prime elicitor of preabsorptive insulin secretion.

    PubMed

    Grill, H J; Berridge, K C; Ganster, D J

    1984-01-01

    Seven sugars, two sugar alcohols, and a nonnutritive sweetener were orally administered to naive rats with and without gastric drainage fistulas. Although all taste solutions were ingested, only glucose evoked a statistically significant elevation of insulin levels. This rise was independent of a rise in glycemia. The preeminence of oral glucose as an elicitor of preabsorptive insulin secretion is especially striking, considering that glucose is neither the most intense (as measured electrophysiologically) nor the most palatable (as measured by behavioral preference tests) taste stimulus tested. These results suggest the existence of a gustatory and/or gastrointestinal chemoreceptor that is most responsive to glucose. PMID:6364839

  11. Extracellular factors and immunosuppressive drugs influencing insulin secretion of murine islets

    PubMed Central

    Auer, V J; Janas, E; Ninichuk, V; Eppler, E; Weiss, T S; Kirchner, S; Otto, A M; Stangl, M J

    2012-01-01

    Approximately 60% of transplanted islets undergo apoptosis within the first week post-transplantation into the liver attributed to poor engraftment, immune rejection and toxicity of immunosuppressive drugs. Understanding how extracellular matrix (ECM) components, immunosuppressive drugs and proinflammatory cytokines affect insulin secretion will contribute to an improved clinical outcome of islet transplantations. In this study, functional activity of isolated murine islets was measured by glucose-stimulated insulin secretion (GSIS) and by electrophysiological measurements using patch-clamp. Cultivating islets with soluble fibronectin or laminin, as opposed to with coated laminin, markedly increased GSIS. Addition of cyclosporin A reduced GSIS and suppressed glucose-induced spike activity. Tacrolimus affected neither GSIS nor spike activity, indicating a different mechanism. To evaluate the influence of proinflammatory cytokines, islets were incubated with interleukin (IL)-1β, tumour necrosis factor (TNF)-α or with supernatants from cultured Kupffer cells, the main mediators of inflammation in the hepatic sinusoids. IL-1β exerted a bimodal effect on insulin secretion, stimulating below 2 ng/ml and suppressing above 10 ng/ml. Soluble laminin in combination with a stimulatory IL-1β concentration further increased insulin secretion by 20% compared to IL-1β alone, while with high IL-1β concentrations soluble laminin slightly attenuated GSIS inhibition. TNF-α alone did not affect GSIS, but with stimulatory IL-1β concentrations completely abolished it. Similarly, supernatants derived from Kupffer cells exerted a bimodal effect on GSIS. Our data suggest that improved insulin secretion of transplanted islets could be achieved by including soluble laminin and low IL-1β concentrations in the islet cultivation medium, and by a simultaneous inhibition of cytokine secretion from Kupffer cells. PMID:23039895

  12. Extracellular factors and immunosuppressive drugs influencing insulin secretion of murine islets.

    PubMed

    Auer, V J; Janas, E; Ninichuk, V; Eppler, E; Weiss, T S; Kirchner, S; Otto, A M; Stangl, M J

    2012-11-01

    Approximately 60% of transplanted islets undergo apoptosis within the first week post-transplantation into the liver attributed to poor engraftment, immune rejection and toxicity of immunosuppressive drugs. Understanding how extracellular matrix (ECM) components, immunosuppressive drugs and proinflammatory cytokines affect insulin secretion will contribute to an improved clinical outcome of islet transplantations. In this study, functional activity of isolated murine islets was measured by glucose-stimulated insulin secretion (GSIS) and by electrophysiological measurements using patch-clamp. Cultivating islets with soluble fibronectin or laminin, as opposed to with coated laminin, markedly increased GSIS. Addition of cyclosporin A reduced GSIS and suppressed glucose-induced spike activity. Tacrolimus affected neither GSIS nor spike activity, indicating a different mechanism. To evaluate the influence of proinflammatory cytokines, islets were incubated with interleukin (IL)-1β, tumour necrosis factor (TNF)-α or with supernatants from cultured Kupffer cells, the main mediators of inflammation in the hepatic sinusoids. IL-1β exerted a bimodal effect on insulin secretion, stimulating below 2 ng/ml and suppressing above 10 ng/ml. Soluble laminin in combination with a stimulatory IL-1β concentration further increased insulin secretion by 20% compared to IL-1β alone, while with high IL-1β concentrations soluble laminin slightly attenuated GSIS inhibition. TNF-α alone did not affect GSIS, but with stimulatory IL-1β concentrations completely abolished it. Similarly, supernatants derived from Kupffer cells exerted a bimodal effect on GSIS. Our data suggest that improved insulin secretion of transplanted islets could be achieved by including soluble laminin and low IL-1β concentrations in the islet cultivation medium, and by a simultaneous inhibition of cytokine secretion from Kupffer cells. PMID:23039895

  13. Ion channels and regulation of insulin secretion in human β-cells

    PubMed Central

    Fridlyand, Leonid E.; Jacobson, David A.; Philipson, L.H.

    2013-01-01

    In mammals an increase in glucose leads to block of ATP dependent potassium channels in pancreatic β cells leading to membrane depolarization. This leads to the repetitive firing of action potentials that increases calcium influx and triggers insulin granule exocytosis. Several important differences between species in this process suggest that a dedicated human-oriented approach is advantageous as extrapolating from rodent data may be misleading in several respects. We examined depolarization-induced spike activity in pancreatic human islet-attached β-cells employing whole-cell patch-clamp methods. We also reviewed the literature concerning regulation of insulin secretion by channel activity and constructed a data-based computer model of human β cell function. The model couples the Hodgkin-Huxley-type ionic equations to the equations describing intracellular Ca2+ homeostasis and insulin release. On the basis of this model we employed computational simulations to better understand the behavior of action potentials, calcium handling and insulin secretion in human β cells under a wide range of experimental conditions. This computational system approach provides a framework to analyze the mechanisms of human β cell insulin secretion. PMID:23624892

  14. Probing cell type–specific functions of Gi in vivo identifies GPCR regulators of insulin secretion

    PubMed Central

    Regard, Jean B.; Kataoka, Hiroshi; Cano, David A.; Camerer, Eric; Yin, Liya; Zheng, Yao-Wu; Scanlan, Thomas S.; Hebrok, Matthias; Coughlin, Shaun R.

    2007-01-01

    The in vivo roles of the hundreds of mammalian G protein–coupled receptors (GPCRs) are incompletely understood. To explore these roles, we generated mice expressing the S1 subunit of pertussis toxin, a known inhibitor of Gi/o signaling, under the control of the ROSA26 locus in a Cre recombinase–dependent manner (ROSA26PTX). Crossing ROSA26PTX mice to mice expressing Cre in pancreatic β cells produced offspring with constitutive hyperinsulinemia, increased insulin secretion in response to glucose, and resistance to diet-induced hyperglycemia. This phenotype underscored the known importance of Gi/o and hence of GPCRs for regulating insulin secretion. Accordingly, we quantified mRNA for each of the approximately 373 nonodorant GPCRs in mouse to identify receptors highly expressed in islets and examined the role of several. We report that 3-iodothyronamine, a thyroid hormone metabolite, could negatively and positively regulate insulin secretion via the Gi-coupled α2A-adrenergic receptor and the Gs-coupled receptor Taar1, respectively, and protease-activated receptor–2 could negatively regulate insulin secretion and may contribute to physiological regulation of glucose metabolism. The ROSA26PTX system used in this study represents a new genetic tool to achieve tissue-specific signaling pathway modulation in vivo that can be applied to investigate the role of Gi/o-coupled GPCRs in multiple cell types and processes. PMID:17992256

  15. Quantitative Phosphoproteomics Revealed Glucose-Stimulated Responses of Islet Associated with Insulin Secretion.

    PubMed

    Li, Jiaming; Li, Qingrun; Tang, Jiashu; Xia, Fangying; Wu, Jiarui; Zeng, Rong

    2015-11-01

    As central tissue of glucose homeostasis, islet has been an important focus of diabetes research. Phosphorylation plays pivotal roles in islet function, especially in islet glucose-stimulated insulin secretion. A systematic view on how phosphorylation networks were coordinately regulated in this process remains lacking, partially due to the limited amount of islets from an individual for a phosphoproteomic analysis. Here we optimized the in-tip and best-ratio phosphopeptide enrichment strategy and a SILAC-based workflow for processing rat islet samples. With limited islet lysates from each individual rat (20-47 μg), we identified 8539 phosphosites on 2487 proteins. Subsequent quantitative analyses uncovered that short-term (30 min) high glucose stimulation induced coordinate responses of islet phosphoproteome on multiple biological levels, including insulin secretion related pathways, cytoskeleton dynamics, protein processing in ER and Golgi, transcription and translation, and so on. Furthermore, three glucose-responsive phosphosites (Prkar1a pT75pS77 and Tagln2 pS163) from the data set were proved to be correlated with insulin secretion. Overall, we initially gave an in-depth map of islet phosphoproteome regulated by glucose on individual rat level. This was a significant addition to our knowledge about how phosphorylation networks responded in insulin secretion. Also, the list of changed phosphosites was a valuable resource for molecular researchers in diabetes field. PMID:26437020

  16. Differences in insulin biosynthesis pathway between small and large islets do not correspond to insulin secretion

    PubMed Central

    Huang, Han-Hung; Stehno-Bittel, Lisa

    2015-01-01

    In a variety of mammalian species, small islets secrete more insulin per volume than large islets. This difference may be due to diffusional limitations of large islets, or inherent differences in the insulin production pathways. The purpose of this study was to identify possible differences in the early phase of glucose-stimulated insulin biosynthesis between large and small islets. Isolated small and large rat islets were challenged with 30 minutes of high glucose. The expression of insulin gene transcription factors (MafA, NeuroD/ Beta2, and PDX-1), preproinsulin mRNA, proinsulin and insulin were compared between large and small islets. Under basal (low glucose) conditions, MafA and NeuroD had higher mRNA levels and greater protein amounts in large islets compared to small when normalized to GAPDH levels. 30 minutes of high glucose stimulation failed to alter the mRNA or subsequent protein levels of either gene. However, 30 minutes of high glucose suppressed activated PDX-1 protein levels in both small and large islets. High glucose stimulation did not statistically alter the preproinsulin mRNA (insulin 1 and insulin 2) levels. At the translational level, high glucose increased the proinsulin levels, and large islets showed a higher proinsulin content per cell than small islets. Insulin content per cell was not significantly different between small and large islets under basal or high glucose levels. The results fail to explain the higher level of insulin secretion noted in small versus large islets and may suggest that possible differences lie downstream in the secretory pathway rather than insulin biosynthesis. PMID:26752360

  17. Glucose transport and milk secretion during manipulated plasma insulin and glucose concentrations and during LPS-induced mastitis in dairy cows.

    PubMed

    Gross, J J; van Dorland, H A; Wellnitz, O; Bruckmaier, R M

    2015-08-01

    In dairy cows, glucose is essential as energy source and substrate for milk constituents. The objective of this study was to investigate effects of long-term manipulated glucose and insulin concentrations in combination with a LPS-induced mastitis on mRNA abundance of glucose transporters and factors involved in milk composition. Focusing on direct effects of insulin and glucose without influence of periparturient endocrine adaptations, 18 dairy cows (28 ± 6 weeks of lactation) were randomly assigned to one of three infusion treatments for 56 h (six animals each). Treatments included a hyperinsulinemic hypoglycaemic clamp (HypoG), a hyperinsulinemic euglycaemic clamp (EuG) and a control group (NaCl). After 48 h of infusions, an intramammary challenge with LPS from E. coli was performed and infusions continued for additional 8 h. Mammary gland biopsies were taken before, at 48 (before LPS challenge) and at 56 h (after LPS challenge) of infusion, and mRNA abundance of genes involved in mammary gland metabolism was measured by RT-qPCR. During the 48 h of infusions, mRNA abundance of glucose transporters GLUT1, 3, 4, 8, 12, SGLT1, 2) was not affected in HypoG, while they were downregulated in EuG. The mRNA abundance of alpha-lactalbumin, insulin-induced gene 1, κ-casein and acetyl-CoA carboxylase was downregulated in HypoG, but not affected in EuG. Contrary during the intramammary LPS challenge, most of the glucose transporters were downregulated in NaCl and HypoG, but not in EuG. The mRNA abundance of glucose transporters in the mammary gland seems not to be affected by a shortage of glucose, while enzymes and milk constituents directly depending on glucose as a substrate are immediately downregulated. During LPS-induced mastitis in combination with hypoglycaemia, mammary gland metabolism was more aligned to save glucose for the immune system compared to a situation without limited glucose availability during EuG. PMID:25319117

  18. Insight into Insulin Secretion from Transcriptome and Genetic Analysis of Insulin-Producing Cells of Drosophila

    PubMed Central

    Cao, Jian; Ni, Julie; Ma, Wenxiu; Shiu, Vanessa; Milla, Luis A.; Park, Sangbin; Spletter, Maria L.; Tang, Sheng; Zhang, Jun; Wei, Xing; Kim, Seung K.; Scott, Matthew P.

    2014-01-01

    Insulin-producing cells (IPCs) in the Drosophila brain produce and release insulin-like peptides (ILPs) to the hemolymph. ILPs are crucial for growth and regulation of metabolic activity in flies, functions analogous to those of mammalian insulin and insulin-like growth factors (IGFs). To identify components functioning in IPCs to control ILP production, we employed genomic and candidate gene approaches. We used laser microdissection and messenger RNA sequencing to characterize the transcriptome of larval IPCs. IPCs highly express many genes homologous to genes active in insulin-producing β-cells of the mammalian pancreas. The genes in common encode ILPs and proteins that control insulin metabolism, storage, secretion, β-cell proliferation, and some not previously linked to insulin production or β-cell function. Among these novelties is unc-104, a kinesin 3 family gene, which is more highly expressed in IPCs compared to most other neurons. Knockdown of unc-104 in IPCs impaired ILP secretion and reduced peripheral insulin signaling. Unc-104 appears to transport ILPs along axons. As a complementary approach, we tested dominant-negative Rab genes to find Rab proteins required in IPCs for ILP production or secretion. Rab1 was identified as crucial for ILP trafficking in IPCs. Inhibition of Rab1 in IPCs increased circulating sugar levels, delayed development, and lowered weight and body size. Immunofluorescence labeling of Rab1 showed its tight association with ILP2 in the Golgi of IPCs. Unc-104 and Rab1 join other proteins required for ILP transport in IPCs. PMID:24558258

  19. PDIA6 regulates insulin secretion by selectively inhibiting the RIDD activity of IRE1.

    PubMed

    Eletto, Daniela; Eletto, Davide; Boyle, Sarah; Argon, Yair

    2016-02-01

    Protein disulfide isomerase A6 (PDIA6) interacts with protein kinase RNA-like endoplasmic reticulum kinase (PERK) and inositol requiring enzyme (IRE)-1 and inhibits their unfolded protein response signaling. In this study, shRNA silencing of PDIA6 expression in insulin-producing mouse cells reduced insulin production (5-fold) and, consequently, glucose-stimulated insulin secretion (3-4-fold). This inhibition of insulin release was independent of the PDIA6-PERK interaction or PERK activity. Acute inhibition of PERK did not change the short-term response of β cells to glucose. Rather, PDIA6 affected insulin secretion by modulating one of the activities of IRE1. At 11 mM glucose and lower, the regulated IRE1-dependent decay (RIDD) of the mRNA activity of IRE1 was activated, but not its X-box binding protein (XBP)-1 splicing activity. In the absence of PDIA6, RIDD activity toward insulin transcripts was enhanced up to 4-fold, as shown by molecular assays in cultured cells and the use of a fluorescent reporter in intact islets. Such physiologic activation of IRE1 by glucose contrasted with IRE1 activation by chemical stress, when both IRE1 activities were induced. Thus, whereas the stimulus determines the quality of IRE1 signaling, PDIA6 attenuates multiple enzymatic activities of IRE1, maintaining its signaling within a physiologically tolerable range. PMID:26487694

  20. Activators of PKA and Epac distinctly influence insulin secretion and cytosolic Ca2+ in female mouse islets stimulated by glucose and tolbutamide.

    PubMed

    Henquin, Jean-Claude; Nenquin, Myriam

    2014-09-01

    Amplification of insulin secretion by cAMP is mediated by protein kinase A (PKA) and exchange protein directly activated by cAMP (Epac). Using selective activators, we determined how each effector influences the cytosolic free Ca(2+) concentration ([Ca(2+)]c) and insulin secretion in mouse islets. Alone PKA activator amplified glucose- and tolbutamide-induced insulin secretion, with a greater impact on second than first phase. Epac activator strongly amplified both phases in response to either secretagogue. Amplification was even greater when activators were combined. Although both activators similarly amplified glucose-induced insulin secretion, Epac activator was particularly efficient on tolbutamide-induced insulin secretion. That greater efficacy is attributed to higher [Ca(2+)]c rather than interaction of tolbutamide with Epac, because it was also observed during KCl stimulation. Moreover, in contrast to Epac activator, tolbutamide was inactive when insulin secretion was increased by gliclazide, and its effect on glucose-induced insulin secretion was unaffected by an inhibitor of Epac2. PKA activator increased [Ca(2+)]c during acute or steady-state glucose stimulation, whereas Epac activator had no effect alone or in combination. Neither activator affected [Ca(2+)]c response to tolbutamide or KCl. Metabolic (glucose-mediated) amplification of insulin secretion was unaffected by PKA activator. It was attenuated when insulin secretion was augmented by Epac activator but insensitive to Epac2 inhibitor, which suggests distinct although somewhat overlapping mechanisms. In conclusion, activators of PKA and Epac amplify insulin secretion by augmenting the action of Ca(2+) on exocytosis and, for PKA only, slightly increasing glucose-induced [Ca(2+)]c rise. The influence of Epac seems more important than that of PKA during first phase. PMID:24977470

  1. Usurping the mitochondrial supremacy: extramitochondrial sources of reactive oxygen intermediates and their role in beta cell metabolism and insulin secretion.

    PubMed

    Gray, Joshua P; Heart, Emma

    2010-05-01

    Insulin secretion from pancreatic beta cells is a process dependent on metabolism. While oxidative stress is a well-known inducer of beta cell toxicity and impairs insulin secretion, recent studies suggest that low levels of metabolically-derived reactive oxygen intermediates (ROI) also play a positive role in insulin secretion. Glucose metabolism is directly correlated with ROI production, particularly in beta cells in which glucose uptake is proportional to the extracellular concentration of glucose. Low levels of exogenously added ROI or quinones, which stimulate ROI production, positively affect insulin secretion, while antioxidants block insulin secretion, suggesting that ROI activate unidentified redox-sensitive signal transduction components within these cells. The mitochondria are one source of ROI: increased metabolic flux increases mitochondrial membrane potential resulting in electron leakage and adventitious ROI production. A second source of ROI are cytosolic and plasma membrane oxidoreductases which oxidize NAD(P)H and directly produce ROI through the reduction of molecular oxygen. The mechanism of ROI-mediated potentiation of insulin secretion remains an important topic for future study. PMID:20397883

  2. The Possible Mechanisms of the Impaired Insulin Secretion in Hypothyroid Rats

    PubMed Central

    Godini, Aliashraf; Ghasemi, Asghar

    2015-01-01

    Although the insulin secretion deficit in hypothyroid male rats has been documented, the underling mechanisms of the effect of hypothyroidism on insulin secretion are not clear. Isolated islets of the PTU-induced hypothyroid and control rats were exposed to glibenclamide, acetylcholine, and nifedipine in the presence of glucose concentrations of 2.8 or 8.3 and 16.7 mmol/L. Glucokinase and hexokinase specific activity, glucokinase content, and glucose transporter 2 protein expression were also determined in the isolated islets. Isolated islets from the hypothyroid rats showed a defect in insulin secretion in response to high glucose. In the presence of glibenclamide or acetylcholine, the isolated islets from the hypothyroid and control rats stimulated by glucose concentration of 16.7 mmol/L secreted similar amounts of insulin. In the presence of glucose concentrations of 8.3 mmol/L and 16.7 mmol/L, nifedipine was able to diminish insulin secretion from isolated islets of both groups, indicating that probably the defect may not arise from L type calcium channels or the steps beyond depolarization or the elements involved in the acetylcoline signaling pathway. Glucokinase content and hexokinase specific activity were also the same in the control and hypothyroid groups. On the other hand, glucokinase specific activity and glucose transporter 2 protein expression were significantly (p<0.001 and p<0.01 respectively) lower in the islets isolated from the hypothyroid rats (6.50 ± 0.46 mU/min/mg protein and 0.55 ± 0.09 arbitrary unit) compared to the controls (10.93 ± 0.83 mU/min/mg protein and 0.98 ± 0.07 arbitrary unit) respectively. In conclusion, the results of this study indicated that hypothyroidism reduced insulin secretion from isolated pancreatic islets, which confirms the finding of the previous studies; in addition, the insulin secretion deficit observed in hypothyroid rats may arise from the abnormalities in some parts of the glucose sensor apparatus of the

  3. Insulin stimulates endothelin-1 secretion from human endothelial cells and modulates its circulating levels in vivo.

    PubMed

    Ferri, C; Pittoni, V; Piccoli, A; Laurenti, O; Cassone, M R; Bellini, C; Properzi, G; Valesini, G; De Mattia, G; Santucci, A

    1995-03-01

    Endothelin-1 (ET-1) is a potent vasoactive and mitogenic peptide produced by the vascular endothelium. In this study, we evaluated whether insulin stimulates ET-1 secretion by human endothelial cells derived from umbilical cord veins and by human permanent endothelial hybrid cells Ea.hy 926. Moreover, to provide evidence that insulin may stimulate ET-1 secretion in vivo, plasma ET-1 levels were evaluated in 7 type II diabetic normotensive males (mean age, 54.3 +/- 4.0 yr) during 2-h hyperinsulinemic euglycemic clamps (287 pmol insulin/m2.min-1) as well as in 12 obese hypertensive males (mean age, 44.2 +/- 4.6 yr) before and after a 12-week period of caloric restriction. Our results showed that insulin stimulated ET-1 release from cultured endothelial cells in a dose-dependent fashion. ET-1 release persisted for 24 h and was also observed at physiological insulin concentrations (10(-9) mol/L). The insulin-induced ET-1 secretion was inhibited by genistein, a tyrosine kinase inhibitor, and by cycloheximide, a protein synthesis inhibitor, suggesting that it requires de novo protein synthesis rather than ET-1 release from intracellular stores. In the in vivo experiments, plasma ET-1 levels rapidly increased during euglycemic hyperinsulinemic clamps (from 0.76 +/- 0.18 pg/mL at time zero to 1.65 +/- 0.21 pg/mL at 60 min; P < 0.05) and persisted elevated until the end of insulin infusion (1.37 +/- 0.37 pg/mL at 120 min; P < 0.05 vs. time zero). In obese hypertensives, plasma ET-1 levels significantly decreased after 12 weeks of caloric restriction (from 0.85 +/- 0.51 to 0.48 +/- 0.28 pg/mL; P < 0.04). The decrease in body weight induced by caloric restriction was accompanied by a significant reduction in fasting insulin levels (from 167.2 +/- 94.0 to 98.9 +/- 44.9 pmol/L; P < 0.05) which correlated with the reduction in plasma ET-1 levels (r = 0.78; P < 0.003). In conclusion, our data show that insulin stimulates both in vitro and in vivo ET-1 secretion. Such interaction

  4. Dietary Sodium Restriction Decreases Insulin Secretion Without Affecting Insulin Sensitivity in Humans

    PubMed Central

    Byrne, Loretta M.; Yu, Chang; Wang, Thomas J.; Brown, Nancy J.

    2014-01-01

    Context: Interruption of the renin-angiotensin-aldosterone system prevents incident diabetes in high-risk individuals, although the mechanism remains unclear. Objective: To test the hypothesis that activation of the endogenous renin-angiotensin-aldosterone system or exogenous aldosterone impairs insulin secretion in humans. Design: We conducted a randomized, blinded crossover study of aldosterone vs vehicle and compared the effects of a low-sodium versus a high-sodium diet. Setting: Academic clinical research center. Participants: Healthy, nondiabetic, normotensive volunteers. Interventions: Infusion of exogenous aldosterone (0.7 μg/kg/h for 12.5 h) or vehicle during low or high sodium intake. Low sodium (20 mmol/d; n = 12) vs high sodium (160 mmol/d; n = 17) intake for 5–7 days. Main Outcome Measures: Change in acute insulin secretory response assessed during hyperglycemic clamps while in sodium balance during a low-sodium vs high-sodium diet during aldosterone vs vehicle. Results: A low-sodium diet increased endogenous aldosterone and plasma renin activity, and acute glucose-stimulated insulin (−16.0 ± 5.6%; P = .007) and C-peptide responses (−21.8 ± 8.4%; P = .014) were decreased, whereas the insulin sensitivity index was unchanged (−1.0 ± 10.7%; P = .98). Aldosterone infusion did not affect the acute insulin response (+1.8 ± 4.8%; P = .72) or insulin sensitivity index (+2.0 ± 8.8%; P = .78). Systolic blood pressure and serum potassium were similar during low and high sodium intake and during aldosterone infusion. Conclusions: Low dietary sodium intake reduces insulin secretion in humans, independent of insulin sensitivity. PMID:25029426

  5. Increased expression of the diabetes gene SOX4 reduces insulin secretion by impaired fusion pore expansion

    PubMed Central

    Collins, Stephan C.; Do, Hyun Woong; Hastoy, Benoit; Hugill, Alison; Adam, Julie; Chibalina, Margarita V.; Galvanovskis, Juris; Godazgar, Mahdieh; Lee, Sheena; Goldsworthy, Michelle; Salehi, Albert; Tarasov, Andrei I.; Rosengren, Anders H.; Cox, Roger; Rorsman, Patrik

    2016-01-01

    The transcription factor Sox4 has been proposed to underlie the increased type-2 diabetes risk linked to an intronic SNP in CDKAL1. In a mouse model expressing a mutant form of Sox4, glucose-induced insulin secretion is reduced by 40% despite normal intracellular Ca2+ signalling and depolarization-evoked exocytosis. This paradox is explained by a 4-fold increase in kiss-and-run exocytosis (as determined by single-granule exocytosis measurements), in which the fusion pore connecting the granule lumen to the exterior only expands to a diameter of 2 nm that does not allow the exit of insulin. Microarray analysis indicated that this correlated with an increased expression of the exocytosis-regulating protein Stxbp6. In a large collection of human islet preparations (n=63), STXBP6 expression and GIIS correlated positively and negatively with SOX4 expression, respectively. Overexpression of SOX4 in the human insulin-secreting cell EndoC-βH2 interfered with granule emptying and inhibited hormone release, the latter effect was reversed by silencing of STXBP6. These data suggest that increased SOX4 expression inhibits insulin secretion and increased diabetes risk by upregulation of STXBP6 and an increase in kiss-and-run exocytosis at the expense of full fusion. We propose that pharmacological interventions promoting fusion pore expansion may be effective in diabetes therapy. PMID:26993066

  6. Differentiation of pancreatic stem and progenitor β-cells into insulin secreting cells in mice with diabetes mellitus.

    PubMed

    Skurikhin, E G; Ermakova, N N; Khmelevskaya, E S; Pershina, O V; Krupin, V A; Ermolaeva, L A; Dygai, A M

    2014-04-01

    We studied in vitro differentiation of pancreatic stem and progenitor cells into insulin secreting cells in the model of streptozotocin-induced diabetes in C57Bl/6 mice. Streptozotocin was shown to increase the population of pancreatic oligopotent β-cell precursors (CD45(-), TER119(-), CD133(+), and CD49f(low)) and did not affect multipotent (stem) progenitor cells (CD45(-), TER119(-), CD17(-), CD309(-)). During long-term culturing, diabetic multipotent progenitor cells showed high capacity for self-renewal. A population of dithizone-positive (insulin secreting cells) mononuclear cells was obtained releasing insulin after prolonged culturing in suspension enriched with diabetic CD45(-), TER119(-), CD17(-), and CD309(-) cells. The rate of generation of "new" insulin-producing cells and insulin release in the samples of experimental group considerably exceeded activity of the corresponding processes in the control group. PMID:24824681

  7. Sox17 Regulates Insulin Secretion in the Normal and Pathologic Mouse β Cell

    PubMed Central

    Jonatan, Diva; Spence, Jason R.; Method, Anna M.; Kofron, Matthew; Sinagoga, Katie; Haataja, Leena; Arvan, Peter; Deutsch, Gail H.; Wells, James M.

    2014-01-01

    SOX17 is a key transcriptional regulator that can act by regulating other transcription factors including HNF1β and FOXA2, which are known to regulate postnatal β cell function. Given this, we investigated the role of SOX17 in the developing and postnatal pancreas and found a novel role for SOX17 in regulating insulin secretion. Deletion of the Sox17 gene in the pancreas (Sox17-paLOF) had no observable impact on pancreas development. However, Sox17-paLOF mice had higher islet proinsulin protein content, abnormal trafficking of proinsulin, and dilated secretory organelles suggesting that Sox17-paLOF adult mice are prediabetic. Consistant with this, Sox17-paLOF mice were more susceptible to aged-related and high fat diet-induced hyperglycemia and diabetes. Overexpression of Sox17 in mature β cells using Ins2-rtTA driver mice resulted in precocious secretion of proinsulin. Transcriptionally, SOX17 appears to broadly regulate secretory networks since a 24-hour pulse of SOX17 expression resulted in global transcriptional changes in factors that regulate hormone transport and secretion. Lastly, transient SOX17 overexpression was able to reverse the insulin secretory defects observed in MODY4 animals and restored euglycemia. Together, these data demonstrate a critical new role for SOX17 in regulating insulin trafficking and secretion and that modulation of Sox17-regulated pathways might be used therapeutically to improve cell function in the context of diabetes. PMID:25144761

  8. Insulin secretion as a determinant of pancreatic cancer risk.

    PubMed

    McCarty, M F

    2001-08-01

    New epidemiology confirms that glucose intolerance is a risk factor for pancreatic cancer, and that this association cannot be accounted for by an adverse impact of early pancreatic cancer on beta cell function. Previous reports indicate that risk for pancreatic cancer is increased in adult-onset diabetics. Since streptozotocin diabetes inhibits carcinogen-mediated induction of pancreatic cancer in hamsters, the most reasonable interpretation of these findings is that insulin (or some other beta cell product) acts as a promoter for pancreatic carcinogenesis. This view is consistent with a report that human pancreatic adenocarcinomas express insulin receptors that can stimulate mitosis; an additional possibility is that high insulin levels indirectly promote pancreatic carcinogenesis by boosting effective IGF-I activity via hepatic actions. In international ecologic epidemiology, pancreatic cancer rates correlate tightly with dietary intake of animal products; this may reflect the fact that vegan diets are associated with low diurnal insulin secretion. There is also suggestive evidence that macrobiotic vegan diets, which are low in glycemic index, may increase mean survival time in pancreatic cancer. However, other types of diets associated with decreased postprandial insulin response, such as high-protein diets or 'Mediterranean' diets high in oleic acid, may also have the potential for pancreatic cancer prevention. The huge increases of age-adjusted pancreatic cancer mortality in Japan and among African-Americans during the last century imply that pancreatic cancer is substantially preventable; a low-insulin-response diet coupled with exercise training, weight control, and smoking avoidance, commendable for a great many other reasons, may slash pancreatic cancer mortality dramatically. PMID:11461162

  9. Effect of fucoidan administration on insulin secretion and insulin resistance in overweight or obese adults.

    PubMed

    Hernández-Corona, Diana M; Martínez-Abundis, Esperanza; González-Ortiz, Manuel

    2014-07-01

    The aim of this article is to evaluate the effect of fucoidan administration on insulin secretion and insulin sensitivity in overweight or obese adults. A randomized, double-blind, placebo-controlled clinical trial was carried out in 25 obese or overweight volunteers. Thirteen patients received an oral dose of 500 mg of fucoidan once daily before breakfast and 12 patients received placebo for 3 months. Before and after the intervention, fasting glucose and 2-h postload, total cholesterol, high-density lipoprotein cholesterol, triglycerides, and insulin levels were measured. Low-density lipoprotein cholesterol (LDL-C) and homeostasis model analysis formulas (HOMA) for β-cell function and insulin resistance were calculated. The results showed a significant decrease in diastolic blood pressure (71.7 ± 12.2 vs. 67.8 ± 13.8 mmHg; P<.05) and LDL-C (3.1 ± 0.5 vs. 2.7 ± 0.6 mmol/l; P<.01) with increase in insulin levels (60.6 ± 24.0 vs. 78.6 ± 32.4 pmol/l; P<.05), HOMA β-cell (35.0 ± 20.8 vs. 50.6 ± 18.7; P<.05) and HOMA IR (1.9 ± 1.2 vs. 2.6 ± 1.8; P<.05) were observed after fucoidan administration. We conclude that fucoidan administration during a 3-month period in overweight or obese adults decreased diastolic blood pressure and LDL-C concentrations, increasing insulin secretion and insulin resistance. PMID:24611906

  10. Gene networks modified by sulphonylureas in beta cells: a pathway-based analysis of insulin secretion and cell death.

    PubMed

    Magnusson, Nils E; Dyrskjøt, Lars; Grimm, Daniela; Wehland, Markus; Pietsch, Jessica; Rungby, Jørgen

    2012-10-01

    Sulphonylureas (SUs) used in the treatment for type 2 diabetes have been shown to result in different clinical outcome. This study hypothesized that three widely used SUs, glibenclamide, glimepiride and gliclazide, may affect function and survival of insulin-producing cells differently. To evaluate differences between SUs, insulin secretion and cell death were measured, and genome-wide gene expression patterns were compared using a bioinformatics approach focusing on functional relationships between molecules. Insulin-producing INS-1E cells exposed to SUs for 6 and 24 hr were assayed using GeneChip. Cluster and pathway analyses were used to identify differentially expressed genes and patterns of potential biological functions associated with SU treatment. Cell death was measured using acridine orange/Hoechst 33342 staining. Short-term treatment (6 hr) yielded up-regulation of insulin secretion and genes associated with insulin secretion for all three SUs applied. While long-term treatment (24-72 hr) with gliclazide did not change gene expression or cell survival, treatment with glibenclamide or glimepiride up-regulated genes associated with oxidative stress and hypoxia, but did not induce cell death. Short-term treatment with SUs initiates gene regulation that can be attributed to insulin secretion with few differences between individual SUs. This regulation was temporal and returned to baseline after 24 hr. Individual differences observed after 24-72 hr indicate that glibenclamide and glimepiride induce potentially harmful cell signalling insufficient for triggering beta cell death. PMID:22642398

  11. Recent advances in obesity-induced inflammation and insulin resistance.

    PubMed

    Tateya, Sanshiro; Kim, Francis; Tamori, Yoshikazu

    2013-01-01

    It has been demonstrated in rodents and humans that chronic inflammation characterized by macrophage infiltration occurs mainly in adipose tissue or liver during obesity, in which activation of immune cells is closely associated with insulin sensitivity. Macrophages can be classified as classically activated (M1) macrophages that support microbicidal activity or alternatively activated (M2) macrophages that support allergic and antiparasitic responses. In the context of insulin action, M2 macrophages sustain insulin sensitivity by secreting IL-4 and IL-10, while M1 macrophages induce insulin resistance through the secretion of proinflammatory cytokines, such as TNFα. Polarization of M1/M2 is controlled by various dynamic functions of other immune cells. It has been demonstrated that, in a lean state, TH2 cells, Treg cells, natural killer T cells, or eosinophils contribute to the M2 activation of macrophages by secreting IL-4 or IL-10. In contrast, obesity causes alteration of the constituent immune cells, in which TH1 cells, B cells, neutrophils, or mast cells induce M1 activation of macrophages by the elevated secretion of TNFα and IFNγ. Increased secretion of TNFα and free fatty acids from hypertrophied adipocytes also contributes to the M1 activation of macrophages. Since obesity-induced insulin resistance is established by macrophage infiltration and the activation of immune cells inside tissues, identification of the factors that regulate accumulation and the intracellular signaling cascades that define polarization of M1/M2 would be indispensable. Regulation of these factors would lead to the pharmacological inhibition of obesity-induced insulin resistance. In this review, we introduce molecular mechanisms relevant to the pathophysiology and review the most recent studies of clinical applications targeting chronic inflammation. PMID:23964268

  12. Liver Enzymes Are Associated With Hepatic Insulin Resistance, Insulin Secretion, and Glucagon Concentration in Healthy Men and Women

    PubMed Central

    Bonnet, Fabrice; Ducluzeau, Pierre-Henri; Gastaldelli, Amalia; Laville, Martine; Anderwald, Christian H.; Konrad, Thomas; Mari, Andrea; Balkau, Beverley

    2011-01-01

    OBJECTIVE The pathophysiological mechanisms to explain the association between risk of type 2 diabetes and elevated concentrations of γ-glutamyltransferase (GGT) and alanineaminotransferase (ALT) remain poorly characterized. We explored the association of liver enzymes with peripheral and hepatic insulin resistance, insulin secretion, insulin clearance, and glucagon concentration. RESEARCH DESIGN AND METHODS We studied 1,309 nondiabetic individuals from the Relationship between Insulin Sensitivity and Cardiovascular disease (RISC) study; all had a euglycemic-hyperinsulinemic clamp and an oral glucose tolerance test (OGTT) with assessment of insulin secretion and hepatic insulin extraction. The hepatic insulin resistance index was calculated in 393 individuals. RESULTS In both men and women, plasma concentrations of GGT and ALT were inversely related with insulin sensitivity (M/I) (all P < 0.01). Likewise, the hepatic insulin resistance index was positively correlated with both GGT (r = 0.37, P < 0.0001, men; r = 0.36, P < 0.0001, women) and ALT (r = 0.25, P = 0.0005, men; r = 0.18, P = 0.01, women). These associations persisted in multivariable models. Increased GGT and ALT were significantly associated with higher insulin secretion rates and with both reduced endogenous clearance of insulin and hepatic insulin extraction during the OGTT (P = 0.0005 in men; P = 0.003 in women). Plasma fasting glucagon levels increased over ALT quartiles (men, quartile 4 vs. quartile 1 11.2 ± 5.1 vs. 9.3 ± 3.8 pmol/L, respectively, P = 0.0002; women, 9.0 ± 4.3 vs. 7.6 ± 3.1, P = 0.001). CONCLUSIONS In healthy individuals, increased GGT and ALT were biomarkers of both systemic and hepatic insulin resistance with concomitant increased insulin secretion and decreased hepatic insulin clearance. The novel finding of a positive correlation between ALT and fasting glucagon level concentrations warrants confirmation in type 2 diabetes. PMID:21521874

  13. Glucose-dependent insulinotropic polypeptide: effects on insulin and glucagon secretion in humans.

    PubMed

    Christensen, Mikkel Bring

    2016-04-01

    The hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are secreted by enteroendocrine cells in the intestinal mucosa in response to nutrient ingestion. They are called incretin hormones because of their ability to enhance insulin secretion. However, in recent years it has become clear that the incretin hormones also affect glucagon secretion. While GLP-1 decreases glucagon levels, the effect of GIP on glucagon levels has been unclear. The regulation of glucagon secretion is interesting, as the combination of inadequate insulin secretion and excessive glucagon secretion are essential contributors to the hyperglycaemia that characterise patients with type 2 diabetes. Moreover, the near absence of a well-timed glucagon response contributes to an increased risk of hypoglycaemia in patients with type 1 diabetes. The overall aim of this PhD thesis was to investigate how the blood glucose level affects the glucagon and insulin responses to GIP in healthy subjects (Study 1) and patients with Type 2 diabetes (Study 2), and more specifically to investigate the effects of GIP and GLP-1 at low blood glucose in patients with Type 1 diabetes without endogenous insulin secretion (Study 3). The investigations in the three mentioned study populations have been described in three original articles. The employed study designs were in randomised, placebo-controlled, crossover set-up, in which the same research subject is subjected to several study days thereby acting as his own control. Interventions were intravenous administration of hormones GIP, GLP-1 and placebo (saline) during different blood glucose levels maintained (clamped) at a certain level. The end-points were plasma concentrations of glucagon and insulin as well as the amount of glucose used to clamp the blood glucose levels. In Study 3, we also used stable glucose isotopes to estimate the endogenous glucose production and assessed symptoms and cognitive function during

  14. Modulation of glucose regulation and insulin secretion by circadian rhythmicity and sleep.

    PubMed Central

    Van Cauter, E; Blackman, J D; Roland, D; Spire, J P; Refetoff, S; Polonsky, K S

    1991-01-01

    To define the roles of circadian rhythmicity (intrinsic effects of time of day independent of the sleep or wake condition) and sleep (intrinsic effects of the sleep condition, irrespective of the time of day) on the 24-h variation in glucose tolerance, eight normal men were studied during constant glucose infusion for a total of 53 h. The period of study included 8 h of nocturnal sleep, 28 h of continuous wakefulness, and 8 h of daytime sleep. Blood samples for the measurement of glucose, insulin, C-peptide, cortisol, and growth hormone were collected at 20-min intervals throughout the entire study. Insulin secretion rates were derived from C-peptide levels by deconvolution. Sleep was polygraphically monitored. During nocturnal sleep, levels of glucose and insulin secretion increased by 31 +/- 5% and 60 +/- 11%, respectively, and returned to baseline in the morning. During sleep deprivation, glucose levels and insulin secretion rose again to reach a maximum at a time corresponding to the beginning of the habitual sleep period. The magnitude of the rise above morning levels averaged 17 +/- 5% for glucose and 49 +/- 8% for calculated insulin secretion. Serum insulin levels did not parallel the circadian variation in insulin secretion, indicating the existence of an approximate 40% increase in insulin clearance during the night. Daytime sleep was associated with a 16 +/- 3% rise in glucose levels, a 55 +/- 7% rise in insulin secretion, and a 39 +/- 5% rise in serum insulin. The diurnal variation in insulin secretion was inversely related to the cortisol rhythm, with a significant correlation of the magnitudes of their morning to evening excursions. Sleep-associated rises in glucose correlated with the amount of concomitant growth hormone secreted. These studies demonstrate previously underappreciated effects of circadian rhythmicity and sleep on glucose levels, insulin secretion, and insulin clearance, and suggest that these effects could be partially mediated by

  15. Thyrotropin inhibits while insulin, epidermal growth factor and tetradecanoyl phorbol acetate stimulate insulin-like growth factor binding protein secretion from sheep thyroid cells.

    PubMed

    Eggo, M C; Bachrach, L K; Brown, A L; Burrow, G N

    1991-01-01

    Six insulin-like growth factor binding proteins (IGFBP) have been identified in the conditioned medium from sheep thyroid cells cultured under serum-free conditions. IGFBPs of 32, 28, 23 and 19 kDa were secreted by cells cultured for 14 days in serum-free and hormone-free medium. The constitutive secretion of IGFBP was inhibited by thyrotropin (TSH, 0.3 mU per mL). The effect was most marked on the secretion of the 28 kDa BP. High insulin concentrations stimulated the secretion of this IGFBP. The stimulatory effects of insulin were inhibited by TSH. Growth hormone treatment decreased the secretion of the 28 kDa protein. Tetradecanoylphorbol-13 acetate (TPA) and epidermal growth factor (EGF) both of which stimulate thyroid cell growth but inhibit differentiated function, markedly stimulated IGFBP secretion and induced the appearance of a 46 and a 150 kDa IGFBP. The effects of EGF and TPA were not identical. A rat IGFBP-2 cDNA reacted with sheep thyroid RNA of approximate size 1.6 kb. TPA treatment increased IGFBP-2 mRNA. Other hormones used to enhance differentiation and growth in thyroid cells in culture i.e. transferrin, somatostatin, cortisol and glycyl-histidyl-lysine acetate had no marked effects on IGFBP secretion nor on TSH-dependent, insulin-mediated iodide uptake and organification and cell growth. We show a correlation between secretion of high molecular weight IGFBP with enhanced growth but decreased function. Conversely, we find a correlation between decreased secretion of the 28 kDa BP and increased growth and function. PMID:1722684

  16. Reactive oxygen species as a signal in glucose-stimulated insulin secretion.

    PubMed

    Pi, Jingbo; Bai, Yushi; Zhang, Qiang; Wong, Victoria; Floering, Lisa M; Daniel, Kiefer; Reece, Jeffrey M; Deeney, Jude T; Andersen, Melvin E; Corkey, Barbara E; Collins, Sheila

    2007-07-01

    One of the unique features of beta-cells is their relatively low expression of many antioxidant enzymes. This could render beta-cells susceptible to oxidative damage but may also provide a system that is sensitive to reactive oxygen species as signals. In isolated mouse islets and INS-1(832/13) cells, glucose increases intracellular accumulation of H2O2. In both models, insulin secretion could be stimulated by provision of either exogenous H2O2 or diethyl maleate, which raises intracellular H2O2 levels. Provision of exogenous H2O2 scavengers, including cell permeable catalase and N-acetyl-L-cysteine, inhibited glucose-stimulated H2O2 accumulation and insulin secretion (GSIS). In contrast, cell permeable superoxide dismutase, which metabolizes superoxide into H2O2, had no effect on GSIS. Because oxidative stress is an important risk factor for beta-cell dysfunction in diabetes, the relationship between glucose-induced H2O2 generation and GSIS was investigated under various oxidative stress conditions. Acute exposure of isolated mouse islets or INS-1(832/13) cells to oxidative stressors, including arsenite, 4-hydroxynonenal, and methylglyoxal, led to decreased GSIS. This impaired GSIS was associated with increases in a battery of endogenous antioxidant enzymes. Taken together, these findings suggest that H2O2 derived from glucose metabolism is one of the metabolic signals for insulin secretion, whereas oxidative stress may disturb its signaling function. PMID:17400930

  17. P2Y₁ receptor-dependent diacylglycerol signaling microdomains in β cells promote insulin secretion.

    PubMed

    Wuttke, Anne; Idevall-Hagren, Olof; Tengholm, Anders

    2013-04-01

    Diacylglycerol (DAG) controls numerous cell functions by regulating the localization of C1-domain-containing proteins, including protein kinase C (PKC), but little is known about the spatiotemporal dynamics of the lipid. Here, we explored plasma membrane DAG dynamics in pancreatic β cells and determined whether DAG signaling is involved in secretagogue-induced pulsatile release of insulin. Single MIN6 cells, primary mouse β cells, and human β cells within intact islets were transfected with translocation biosensors for DAG, PKC activity, or insulin secretion and imaged with total internal reflection fluorescence microscopy. Muscarinic receptor stimulation triggered stable, homogenous DAG elevations, whereas glucose induced short-lived (7.1 ± 0.4 s) but high-amplitude elevations (up to 109 ± 10% fluorescence increase) in spatially confined membrane regions. The spiking was mimicked by membrane depolarization and suppressed after inhibition of exocytosis or of purinergic P2Y₁, but not P2X receptors, reflecting involvement of autocrine purinoceptor activation after exocytotic release of ATP. Each DAG spike caused local PKC activation with resulting dissociation of its substrate protein MARCKS from the plasma membrane. Inhibition of spiking reduced glucose-induced pulsatile insulin secretion. Thus, stimulus-specific DAG signaling patterns appear in the plasma membrane, including distinct microdomains, which have implications for the kinetic control of exocytosis and other membrane-associated processes. PMID:23299857

  18. Delayed improvement of insulin secretion after autologous islet transplantation in partially pancreatectomized patients.

    PubMed

    Jung, Hye Seung; Choi, Seong-Ho; Kim, Sung-Joo; Choi, Dong-Wook; Heo, Jin-Seok; Lee, Kyu Taek; Lee, Jong Kyun; Jang, Kee-Taek; Lee, Byung-Wan; Jee, Jae-Hwan; Noh, Jung-Hyun; Jeong, In Kyung; Yang, Tae-Young; Oh, Seung-Hoon; Ahn, You-Ran; Kim, Young-Seok; No, Heesung; Lee, Moon-Kyu; Kim, Kwang-Won

    2009-11-01

    The purpose of this study was to evaluate the effects of autologous islet transplantation (ITx) on glucose homeostasis and insulin secretory function after partial pancreatectomy (Px). Fourteen nondiabetic patients who underwent distal Px and autologous ITx for benign pancreatic tumors were enrolled in the study (Px + ITx group). Fourteen normal glucose-tolerant controls and 6 Px without ITx controls were recruited, and all groups were followed over a 24-month period. They performed the 75-g oral glucose tolerance test and the 1-mg glucagon stimulation test. Hemoglobin A(1c) was measured, and indices of insulin secretion were calculated. In the Px + ITx group, insulin secretion increased after a nadir at 6 months. Glucose tolerance, which had been abruptly impaired immediately after Px, recovered until 6 months and stabilized thereafter. As a result, differences in glucose intolerance emerged between the subjects in the Px group and those in the Px + ITx group at 24 months after Px. Characteristic variables in the better insulin secretory subjects in the Px + ITx group included younger age, less extensive pancreas resection, and a greater number of total islets. In summary, delayed amelioration of glucose intolerance was induced by autologous ITx after partial Px, even with a small number of islets. PMID:19604519

  19. A novel Gymnema sylvestre extract stimulates insulin secretion from human islets in vivo and in vitro.

    PubMed

    Al-Romaiyan, A; Liu, B; Asare-Anane, H; Maity, C R; Chatterjee, S K; Koley, N; Biswas, T; Chatterji, A K; Huang, G-C; Amiel, S A; Persaud, S J; Jones, P M

    2010-09-01

    Many plant-based products have been suggested as potential antidiabetic agents, but few have been shown to be effective in treating the symptoms of Type 2 diabetes mellitus (T2DM) in human studies, and little is known of their mechanisms of action. Extracts of Gymnema sylvestre (GS) have been used for the treatment of T2DM in India for centuries. The effects of a novel high molecular weight GS extract, Om Santal Adivasi, (OSA(R)) on plasma insulin, C-peptide and glucose in a small cohort of patients with T2DM are reported here. Oral administration of OSA(R) (1 g/day, 60 days) induced significant increases in circulating insulin and C-peptide, which were associated with significant reductions in fasting and post-prandial blood glucose. In vitro measurements using isolated human islets of Langerhans demonstrated direct stimulatory effects of OSA(R) on insulin secretion from human ß-cells, consistent with an in vivo mode of action through enhancing insulin secretion. These in vivo and in vitro observations suggest that OSA(R) may provide a potential alternative therapy for the hyperglycemia associated with T2DM. PMID:20812281

  20. Development of a Streptozotocin-induced Diabetic Rat Model for Studies on the Effects of Cinnamon on Glucose Tolerance and Insulin Secretion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A streptozotocin (STZ) dose response protocol using graded doses of STZ was utilized to develop a diabetic rat model. In addition to the presence of severe basal hyperglycemia, insulin responses to oral glucose showed no change from basal in rats given more than 45 mg of STZ/kg body wt. Oral gluc...

  1. Role of cytosolic and calcium independent phospholipases A(2) in insulin secretion impairment of INS-1E cells infected by S. aureus.

    PubMed

    Caporarello, N; Salmeri, M; Scalia, M; Motta, C; Parrino, C; Frittitta, L; Olivieri, M; Toscano, M A; Anfuso, C D; Lupo, G

    2015-12-21

    Cytosolic PLA2 (cPLA2) and Ca(2+)-independent PLA2 (iPLA2) play a significant role in insulin β-cells secretion. Bacterial infections may be responsible of the onset of diabetes. The mechanism by which Staphylococcus aureus infection of INS-1 cells alters glucose-induced insulin secretion has been examined. After acute infection, insulin secretion and PLA2 activities significantly increased. Moreover, increased expressions of phospho-cPLA2, phospho-PKCα and phospho-ERK 1/2 were observed. Chronic infection causes a decrease in insulin release and a significant increase of iPLA2 and COX-2 protein expression. Moreover, insulin secretion in infected cells could be restored using specific siRNAs against iPLA2 isoform and specific COX-2 inhibitor. PMID:26632509

  2. Environmental factors and dam characteristics associated with insulin sensitivity and insulin secretion in newborn Holstein calves.

    PubMed

    Kamal, M M; Van Eetvelde, M; Bogaert, H; Hostens, M; Vandaele, L; Shamsuddin, M; Opsomer, G

    2015-09-01

    The objective of the present retrospective cohort study was to evaluate potential associations between environmental factors and dam characteristics, including level of milk production during gestation, and insulin traits in newborn Holstein calves. Birth weight and gestational age of the calves at delivery were determined. On the next day, heart girth, wither height and diagonal length of both the calves and their dams were measured. Parity, body condition score and age at calving were recorded for all dams. For the cows, days open before last gestation, lactation length (LL), length of dry period (DP) and calving interval were also calculated. The magnitude and shape of the lactation curve both quantified using the MilkBot model based on monthly milk weights, were used to calculate the amount of milk produced during gestation. Using the same procedure, cumulative milk production from conception to drying off (MGEST) was calculated. A blood sample was collected from all calves (n=481; 169 born to heifers and 312 born to cows) at least 5 h after a milk meal on day 3 of life to measure basal glucose and insulin levels. In addition, an intravenous glucose-stimulated insulin secretion test was performed in a subset of the calves (n=316). After descriptive analysis, generalized linear mixed models were used to identify factors that were significantly associated with the major insulin traits (Insb, basal insulin level; QUICKI, quantitative insulin sensitivity check index; AIR, acute insulin response; DI, disposition index) of the newborn calves. The overall average birth weight of the calves was 42.7 ± 5.92 kg. The insulin traits were significantly associated with gender and season of birth when data of all calves were analyzed. In addition, the insulin traits in calves born to cows were significantly associated with MGEST, DP and LL. The Insb was estimated to be higher in calves born to the cows having passed a higher MGEST (P=0.076) and longer DP (P=0.034). The

  3. Opiate-prostaglandin interactions in the regulation of insulin secretion from rat islets of Langerhans in vitro

    SciTech Connect

    Green, I.C.; Tadayyon, M.

    1988-01-01

    The inadequate insulin secretory response to glucose stimulation in non-insulin dependent diabetes has been attributed to many factors including high PGE/sub 2/ levels blunting the secretory response, and to the existence of inhibitory opiate activity in vivo. The purpose of the present work was to see if there was a connection between these two independent theories. Radioimmunoassayable PGE/sub 2/ in islets of Langerhans was found to be proportional to islet number and protein content and was typically 4 to 5pg/..mu..g islet protein. Indomethacin sodium salicylate and chlorpropamide all lowered islet PGE/sub 2/ levels and stimulated insulin release in vitro. Dynorphin stimulated insulin release at a concentration of 6 x 10/sup -9/M, while lowering islet PGE/sub 2/. Conversely, at a higher concentration, dynorphin had no stimulatory effect on insulin secretion and did not lower PGE/sub 2/ levels in islets or in the incubation media. The stimulatory effects of dynorphin and sodium salicylate on insulin secretion were blocked by exogenous PGE/sub 2/. PGE/sub 2/ at a lower concentration did not exert any inhibitory effect on dynorphin- or sodium salicylate-induced insulin release. This concentration of exogenous PGE/sub 2/ stimulated insulin release in the presence of 6mM glucose.

  4. Novel Zn2+ Modulated GPR39 Receptor Agonists Do Not Drive Acute Insulin Secretion in Rodents

    PubMed Central

    Yasuda, Shin-ichiro; Tsuchida, Takuma; Oguma, Takahiro; Marley, Anna; Wennberg-Huldt, Charlotte; Hovdal, Daniel; Fukuda, Hajime; Yoneyama, Yukimi; Sasaki, Kazuyo; Johansson, Anders; Lundqvist, Sara; Brengdahl, Johan; Isaacs, Richard J.; Brown, Daniel; Geschwindner, Stefan; Benthem, Lambertus; Priest, Claire; Turnbull, Andrew

    2015-01-01

    Type 2 diabetes (T2D) occurs when there is insufficient insulin release to control blood glucose, due to insulin resistance and impaired β-cell function. The GPR39 receptor is expressed in metabolic tissues including pancreatic β-cells and has been proposed as a T2D target. Specifically, GPR39 agonists might improve β-cell function leading to more adequate and sustained insulin release and glucose control. The present study aimed to test the hypothesis that GPR39 agonism would improve glucose stimulated insulin secretion in vivo. A high throughput screen, followed by a medicinal chemistry program, identified three novel potent Zn2+ modulated GPR39 agonists. These agonists were evaluated in acute rodent glucose tolerance tests. The results showed a lack of glucose lowering and insulinotropic effects not only in lean mice, but also in diet-induced obese (DIO) mice and Zucker fatty rats. It is concluded that Zn2+ modulated GPR39 agonists do not acutely stimulate insulin release in rodents. PMID:26720709

  5. The voltage-gated proton channel Hv1 is expressed in pancreatic islet β-cells and regulates insulin secretion.

    PubMed

    Zhao, Qing; Che, Yongzhe; Li, Qiang; Zhang, Shangrong; Gao, Ying-Tang; Wang, Yifan; Wang, Xudong; Xi, Wang; Zuo, Weiyan; Li, Shu Jie

    2015-12-25

    The voltage-gated proton channel Hv1 is a potent acid extruder that participates in the extrusion of the intracellular acid. Here, we showed for the first time, Hv1 is highly expressed in mouse and human pancreatic islet β-cells, as well as β-cell lines. Imaging studies demonstrated that Hv1 resides in insulin-containing granules in β-cells. Knockdown of Hv1 with RNA interference significantly reduces glucose- and K(+)-induced insulin secretion in isolated islets and INS-1 (832/13) β-cells and has an impairment on glucose- and K(+)-induced intracellular Ca(2+) homeostasis. Our data demonstrated that the expression of Hv1 in pancreatic islet β-cells regulates insulin secretion through regulating Ca(2+) homeostasis. PMID:26559003

  6. Role of Epac2A/Rap1 signaling in interplay between incretin and sulfonylurea in insulin secretion.

    PubMed

    Takahashi, Harumi; Shibasaki, Tadao; Park, Jae-Hyung; Hidaka, Shihomi; Takahashi, Toshimasa; Ono, Aika; Song, Dae-Kyu; Seino, Susumu

    2015-04-01

    Incretin-related drugs and sulfonylureas are currently used worldwide for the treatment of type 2 diabetes. We recently found that Epac2A, a cAMP binding protein having guanine nucleotide exchange activity toward Rap, is a target of both incretin and sulfonylurea. This suggests the possibility of interplay between incretin and sulfonylurea through Epac2A/Rap1 signaling in insulin secretion. In this study, we examined the combinatorial effects of incretin and various sulfonylureas on insulin secretion and activation of Epac2A/Rap1 signaling. A strong augmentation of insulin secretion by combination of GLP-1 and glibenclamide or glimepiride, which was found in Epac2A(+/+) mice, was markedly reduced in Epac2A(-/-) mice. In contrast, the combinatorial effect of GLP-1 and gliclazide was rather mild, and the effect was not altered by Epac2A ablation. Activation of Rap1 was enhanced by the combination of an Epac-selective cAMP analog with glibenclamide or glimepiride but not gliclazide. In diet-induced obese mice, ablation of Epac2A reduced the insulin secretory response to coadministration of the GLP-1 receptor agonist liraglutide and glimepiride. These findings clarify the critical role of Epac2A/Rap1 signaling in the augmenting effect of incretin and sulfonylurea on insulin secretion and provide the basis for the effects of combination therapies of incretin-related drugs and sulfonylureas. PMID:25315008

  7. VAMP7 Regulates Autophagy to Maintain Mitochondrial Homeostasis and to Control Insulin Secretion in Pancreatic β-Cells.

    PubMed

    Aoyagi, Kyota; Ohara-Imaizumi, Mica; Itakura, Makoto; Torii, Seiji; Akimoto, Yoshihiro; Nishiwaki, Chiyono; Nakamichi, Yoko; Kishimoto, Takuma; Kawakami, Hayato; Harada, Akihiro; Takahashi, Masami; Nagamatsu, Shinya

    2016-06-01

    VAMP7 is a SNARE protein that mediates specific membrane fusions in intracellular trafficking and was recently reported to regulate autophagosome formation. However, its function in pancreatic β-cells is largely unknown. To elucidate the physiological role of VAMP7 in β-cells, we generated pancreatic β-cell-specific VAMP7 knockout (Vamp7(flox/Y);Cre) mice. VAMP7 deletion impaired glucose-stimulated ATP production and insulin secretion, though VAMP7 was not localized to insulin granules. VAMP7-deficient β-cells showed defective autophagosome formation and reduced mitochondrial function. p62/SQSTM1, a marker protein for defective autophagy, was selectively accumulated on mitochondria in VAMP7-deficient β-cells. These findings suggest that accumulation of dysfunctional mitochondria that are degraded by autophagy caused impairment of glucose-stimulated ATP production and insulin secretion in Vamp7(flox/Y);Cre β-cells. Feeding a high-fat diet to Vamp7(flox/Y);Cre mice exacerbated mitochondrial dysfunction, further decreased ATP production and insulin secretion, and consequently induced glucose intolerance. Moreover, we found upregulated VAMP7 expression in wild-type mice fed a high-fat diet and in db/db mice, a model for diabetes. Thus our data indicate that VAMP7 regulates autophagy to maintain mitochondrial quality and insulin secretion in response to pathological stress in β-cells. PMID:26953164

  8. GPRC6A mediates the effects of L-arginine on insulin secretion in mouse pancreatic islets.

    PubMed

    Pi, Min; Wu, Yunpeng; Lenchik, Nataliya I; Gerling, Ivan; Quarles, L Darryl

    2012-10-01

    L-arginine (l-Arg) is an insulin secretagogue, but the molecular mechanism whereby it stimulates insulin secretion from β-cells is not known. The possibility that l-Arg regulates insulin secretion through a G protein-coupled receptor (GPCR)-mediated mechanism is suggested by the high expression of the nutrient receptor GPCR family C group 6 member A (GPRC6A) in the pancreas and TC-6 β-cells and the finding that Gprc6a(-/]minus]) mice have abnormalities in glucose homeostasis. To test the direct role of GPRC6A in regulating insulin secretion, we evaluated the response of pancreatic islets derived from Gprc6a(-/]minus]) mice to L-Arg. We found that the islet size and insulin content were decreased in pancreatic islets from Gprac6a(-/]minus]) mice. These alterations were selective for β-cells, because there were no abnormalities in serum glucagon levels or glucagon content of islets derived from Gprac6a(-/]minus]) mice. Significant reduction was observed in both the pancreatic ERK response to L-Arg administration to Gprc6a(-/]minus]) mice in vivo and L-Arg-induced insulin secretion and production ex vivo in islets isolated from Gprc6a(-/]minus]) mice. L-Arg stimulation of cAMP accumulation in isolated islets isolated from Gprc6a(-/]minus]) mice was also diminished. These findings suggest that l-Arg stimulation of insulin secretion in β-cells is mediated, at least in part, through GPRC6A activation of cAMP pathways. PMID:22872579

  9. GPRC6A Mediates the Effects of l-Arginine on Insulin Secretion in Mouse Pancreatic Islets

    PubMed Central

    Wu, Yunpeng; Lenchik, Nataliya I; Gerling, Ivan

    2012-01-01

    l-Arginine (l-Arg) is an insulin secretagogue, but the molecular mechanism whereby it stimulates insulin secretion from β-cells is not known. The possibility that l-Arg regulates insulin secretion through a G protein-coupled receptor (GPCR)-mediated mechanism is suggested by the high expression of the nutrient receptor GPCR family C group 6 member A (GPRC6A) in the pancreas and TC-6 β-cells and the finding that Gprc6a−/]minus] mice have abnormalities in glucose homeostasis. To test the direct role of GPRC6A in regulating insulin secretion, we evaluated the response of pancreatic islets derived from Gprc6a−/]minus] mice to l-Arg. We found that the islet size and insulin content were decreased in pancreatic islets from Gprac6a−/]minus] mice. These alterations were selective for β-cells, because there were no abnormalities in serum glucagon levels or glucagon content of islets derived from Gprac6a−/]minus] mice. Significant reduction was observed in both the pancreatic ERK response to l-Arg administration to Gprc6a−/]minus] mice in vivo and l-Arg-induced insulin secretion and production ex vivo in islets isolated from Gprc6a−/]minus] mice. l-Arg stimulation of cAMP accumulation in isolated islets isolated from Gprc6a−/]minus] mice was also diminished. These findings suggest that l-Arg stimulation of insulin secretion in β-cells is mediated, at least in part, through GPRC6A activation of cAMP pathways. PMID:22872579

  10. Enhanced insulin sensitivity mediated by adipose tissue browning perturbs islet morphology and hormone secretion in response to autonomic nervous activation in female mice.

    PubMed

    Omar, Bilal A; Kvist-Reimer, Martina; Enerbäck, Sven; Ahrén, Bo

    2016-01-01

    Insulin resistance results in a compensatory increase in insulin secretion to maintain normoglycemia. Conversely, high insulin sensitivity results in reduced insulin secretion to prevent hypoglycemia. The mechanisms for this inverse adaptation are not well understood. We utilized highly insulin-sensitive mice, due to adipocyte-specific overexpression of the FOXC2 transcription factor, to study mechanisms of the reversed islet adaptation to increased insulin sensitivity. We found that Foxc2TG mice responded to mild hyperglycemia with insulin secretion significantly lower than that of wild-type mice; however, when severe hyperglycemia was induced, Foxc2TG mice demonstrated insulin secretion equal to or greater than that of wild-type mice. In response to autonomic nervous activation by 2-deoxyglucose, the acute suppression of insulin seen in wild-type mice was absent in Foxc2TG mice, suggesting impaired sympathetic signaling to the islet. Basal glucagon was increased in Foxc2TG mice, but they displayed severely impaired glucagon responses to cholinergic and autonomic nervous stimuli. These data suggest that the autonomic nerves contribute to the islet adaptation to high insulin sensitivity, which is compatible with a neuro-adipo regulation of islet function being instrumental for maintaining glucose regulation. PMID:26530152

  11. Effects of Tocotrienols on Insulin Secretion-Associated Genes Expression of Rat Pancreatic Islets in a Dynamic Culture

    PubMed Central

    Chia, Ling L.; Jantan, Ibrahim; Chua, Kien H.; Lam, Kok W.; Rullah, Kamal; Aluwi, Mohd F. M.

    2016-01-01

    Tocotrienols (T3) are well-known for their antioxidant properties besides showing therapeutic potential in clinical complications such as hyperlipidemia induced by diabetes. The aim of this study was to determine the effects of δ-T3, γ-T3, and α-T3 on insulin secretion-associated genes expression of rat pancreatic islets in a dynamic culture. Pancreatic islets freshly isolated from male Wistar rats were treated with T3 for 1 h at 37°C in a microfluidic system with continuous operation. The cells were collected for total RNA extraction and reverse-transcribed, followed by measurement of insulin secretion-associated genes expression using quantitative real-time polymerase chain reaction. Molecular docking experiments were performed to gain insights on how the T3 bind to the receptors. Short-term exposure of δ- and γ-T3 to pancreatic β cells in a stimulant glucose condition (16.7 mM) significantly regulated preproinsulin mRNA levels and insulin gene transcription. In contrast, α-T3 possessed less ability in the activation of insulin synthesis level. Essentially, potassium chloride (KCl), a β cell membrane depolarising agent added into the treatment further enhanced the insulin production. δ- and γ-T3 revealed significantly higher quantitative expression in most of the insulin secretion-associated genes groups containing 16.7 mM glucose alone and 16.7 mM glucose with 30 mM KCl ranging from 600 to 1200 μM (p < 0.05). The findings suggest the potential of δ-T3 in regulating insulin synthesis and glucose-stimulated insulin secretion through triggering pathway especially in the presence of KCl. PMID:27625609

  12. Effects of Tocotrienols on Insulin Secretion-Associated Genes Expression of Rat Pancreatic Islets in a Dynamic Culture.

    PubMed

    Chia, Ling L; Jantan, Ibrahim; Chua, Kien H; Lam, Kok W; Rullah, Kamal; Aluwi, Mohd F M

    2016-01-01

    Tocotrienols (T3) are well-known for their antioxidant properties besides showing therapeutic potential in clinical complications such as hyperlipidemia induced by diabetes. The aim of this study was to determine the effects of δ-T3, γ-T3, and α-T3 on insulin secretion-associated genes expression of rat pancreatic islets in a dynamic culture. Pancreatic islets freshly isolated from male Wistar rats were treated with T3 for 1 h at 37°C in a microfluidic system with continuous operation. The cells were collected for total RNA extraction and reverse-transcribed, followed by measurement of insulin secretion-associated genes expression using quantitative real-time polymerase chain reaction. Molecular docking experiments were performed to gain insights on how the T3 bind to the receptors. Short-term exposure of δ- and γ-T3 to pancreatic β cells in a stimulant glucose condition (16.7 mM) significantly regulated preproinsulin mRNA levels and insulin gene transcription. In contrast, α-T3 possessed less ability in the activation of insulin synthesis level. Essentially, potassium chloride (KCl), a β cell membrane depolarising agent added into the treatment further enhanced the insulin production. δ- and γ-T3 revealed significantly higher quantitative expression in most of the insulin secretion-associated genes groups containing 16.7 mM glucose alone and 16.7 mM glucose with 30 mM KCl ranging from 600 to 1200 μM (p < 0.05). The findings suggest the potential of δ-T3 in regulating insulin synthesis and glucose-stimulated insulin secretion through triggering pathway especially in the presence of KCl. PMID:27625609

  13. Increasing insulin resistance is associated with a decrease in Leydig cell testosterone secretion in men.

    PubMed

    Pitteloud, Nelly; Hardin, Megan; Dwyer, Andrew A; Valassi, Elena; Yialamas, Maria; Elahi, Dariush; Hayes, Frances J

    2005-05-01

    Insulin resistance is associated with low testosterone (T) levels in men, the mechanism of which is unclear. Thus, the aim of this study was to evaluate the hypothalamic-pituitary-gonadal axis in men with a spectrum of insulin sensitivity. Twenty-one men (aged 25-65 yr) had a glucose tolerance test and assessment of insulin sensitivity using a hyperinsulinemic-euglycemic clamp. Insulin sensitivity, expressed as the M value (milligrams per kilograms(-1) per minute(-1)), was calculated from the glucose disposal rate during the final 30 min of the clamp. Eighteen subjects had blood sampling every 10 min for 12 h to assess LH pulsatility. Hypogonadism was then induced with a GnRH antagonist, followed by sequential stimulation testing with GnRH (750 ng/kg, iv) and human chorionic gonadotropin (hCG; 1000 IU, im) to assess pituitary and testicular responsiveness, respectively. Nine subjects had normal glucose tolerance, nine had impaired glucose tolerance, and three had diabetes mellitus. There was a positive relationship between M and T levels (r = 0.46; P < 0.05). No relationship was seen between M and parameters of LH secretion, including mean LH levels, LH pulse amplitude, LH pulse frequency, and LH response to exogenous GnRH administration. In contrast, a strong correlation was observed between M and the T response to hCG (r = 0.73; P < 0.005). Baseline T levels correlated with the increase in T after hCG administration (r = 0.47; P < 0.05). During the clamp, T levels increased from a baseline level of 367 +/- 30 to 419 +/- 38 ng/dl during the last 30 min (P < 0.05). From these data we conclude that insulin resistance is associated with a decrease in Leydig cell T secretion in men. Additional studies are required to determine the mechanism of this effect. PMID:15713702

  14. Mitochondrial dysfunction leads to impairment of insulin sensitivity and adiponectin secretion in adipocytes.

    PubMed

    Wang, Chih-Hao; Wang, Ching-Chu; Huang, Hsin-Chang; Wei, Yau-Huei

    2013-02-01

    Adipocytes play an integrative role in the regulation of energy metabolism and glucose homeostasis in the human body. Functional defects in adipocytes may cause systemic disturbance of glucose homeostasis. Recent studies revealed mitochondrial abnormalities in the adipose tissue of patients with type 2 diabetes. In addition, patients with mitochondrial diseases usually manifest systemic metabolic disorder. However, it is unclear how mitochondrial dysfunction in adipocytes affects the regulation of glucose homeostasis. In this study, we induced mitochondrial dysfunction and overproduction of reactive oxygen species (ROS) by addition of respiratory inhibitors oligomycin A and antimycin A and by knockdown of mitochondrial transcription factor A (mtTFA), respectively. We found an attenuation of the insulin response as indicated by lower glucose uptake and decreased phosphorylation of Akt upon insulin stimulation of adipocytes with mitochondrial dysfunction. Furthermore, the expression of glucose transporter 4 (Glut4) and secretion of adiponectin were decreased in adipocytes with increased ROS generated by defective mitochondria. Moreover, the severity of insulin insensitivity was correlated with the extent of mitochondrial dysfunction. These results suggest that higher intracellular ROS levels elicited by mitochondrial dysfunction resulted in impairment of the function of adipocytes in the maintenance of glucose homeostasis through attenuation of insulin signaling, downregulation of Glut4 expression, and decrease in adiponectin secretion. Our findings substantiate the important role of mitochondria in the regulation of glucose homeostasis in adipocytes and also provide a molecular basis for the explanation of the manifestation of diabetes mellitus or insulin insensitivity in a portion of patients with mitochondrial diseases such as MELAS or MERRF syndrome. PMID:23253816

  15. Increased androgen levels in rats impair glucose-stimulated insulin secretion through disruption of pancreatic beta cell mitochondrial function.

    PubMed

    Wang, Hongdong; Wang, Xiaping; Zhu, Yunxia; Chen, Fang; Sun, Yujie; Han, Xiao

    2015-11-01

    Although insulin resistance is recognized to contribute to the reproductive and metabolic phenotypes of polycystic ovary syndrome (PCOS), pancreatic beta cell dysfunction plays an essential role in the progression from PCOS to the development of type 2 diabetes. However, the role of insulin secretory abnormalities in PCOS has received little attention. In addition, the precise changes in beta cells and the underlying mechanisms remain unclear. In this study, we therefore attempted to elucidate potential mechanisms involved in beta cell alterations in a rat model of PCOS. Glucose-induced insulin secretion was measured in islets isolated from DHT-treated and control rats. Oxygen consumption rate (OCR), ATP production, and mitochondrial copy number were assayed to evaluate mitochondrial function. Glucose-stimulated insulin secretion is significantly decreased in islets from DHT-treated rats. On the other hand, significant reductions are observed in the expression levels of several key genes involved in mitochondrial biogenesis and in mitochondrial OCR and ATP production in DHT-treated rat islets. Meanwhile, we found that androgens can directly impair beta cell function by inducing mitochondrial dysfunction in vitro in an androgen receptor dependent manner. For the first time, our study demonstrates that increased androgens in female rats can impair glucose-stimulated insulin secretion partly through disruption of pancreatic beta cell mitochondrial function. This work has significance for hyperandrogenic women with PCOS: excess activation of the androgen receptor by androgens may provoke beta cell dysfunction via mitochondrial dysfunction. PMID:26348137

  16. Dopamine-mediated autocrine inhibitory circuit regulating human insulin secretion in vitro.

    PubMed

    Simpson, Norman; Maffei, Antonella; Freeby, Matthew; Burroughs, Steven; Freyberg, Zachary; Javitch, Jonathan; Leibel, Rudolph L; Harris, Paul E

    2012-10-01

    We describe a negative feedback autocrine regulatory circuit for glucose-stimulated insulin secretion in purified human islets in vitro. Using chronoamperometry and in vitro glucose-stimulated insulin secretion measurements, evidence is provided that dopamine (DA), which is loaded into insulin-containing secretory granules by vesicular monoamine transporter type 2 in human β-cells, is released in response to glucose stimulation. DA then acts as a negative regulator of insulin secretion via its action on D2R, which are also expressed on β-cells. We found that antagonism of receptors participating in islet DA signaling generally drive increased glucose-stimulated insulin secretion. These in vitro observations may represent correlates of the in vivo metabolic changes associated with the use of atypical antipsychotics, such as increased adiposity. PMID:22915827

  17. Dopamine-Mediated Autocrine Inhibitory Circuit Regulating Human Insulin Secretion in Vitro

    PubMed Central

    Simpson, Norman; Maffei, Antonella; Freeby, Matthew; Burroughs, Steven; Freyberg, Zachary; Javitch, Jonathan; Leibel, Rudolph L.

    2012-01-01

    We describe a negative feedback autocrine regulatory circuit for glucose-stimulated insulin secretion in purified human islets in vitro. Using chronoamperometry and in vitro glucose-stimulated insulin secretion measurements, evidence is provided that dopamine (DA), which is loaded into insulin-containing secretory granules by vesicular monoamine transporter type 2 in human β-cells, is released in response to glucose stimulation. DA then acts as a negative regulator of insulin secretion via its action on D2R, which are also expressed on β-cells. We found that antagonism of receptors participating in islet DA signaling generally drive increased glucose-stimulated insulin secretion. These in vitro observations may represent correlates of the in vivo metabolic changes associated with the use of atypical antipsychotics, such as increased adiposity. PMID:22915827

  18. Mitochondrial Function Is Required for Secretion of DAF-28/Insulin in C. elegans

    PubMed Central

    Billing, Ola; Kao, Gautam; Naredi, Peter

    2011-01-01

    While insulin signaling has been extensively studied in Caenorhabditis elegans in the context of ageing and stress response, less is known about the factors underlying the secretion of insulin ligands upstream of the insulin receptor. Activation of the receptor governs the decision whether to progress through the reproductive lifecycle or to arrest growth and enter hibernation. We find that animals with reduced levels of the mitochondrial outer membrane translocase homologue TOMM-40 arrest growth as larvae and have decreased insulin signaling strength. TOMM-40 acts as a mitochondrial translocase in C. elegans and in its absence animals fail to import a mitochondrial protein reporter across the mitochondrial membrane(s). Inactivation of TOMM-40 evokes the mitochondrial unfolded protein response and causes a collapse of the proton gradient across the inner mitochondrial membrane. Consequently these broadly dysfunctional mitochondria render an inability to couple food abundance to secretion of DAF-28/insulin. The secretion defect is not general in nature since two other neuropeptides, ANF::GFP and INS-22::VENUS, are secreted normally. RNAi against two other putative members of the TOMM complex give similar phenotypes, implying that DAF-28 secretion is sensitive to mitochondrial dysfunction in general. We conclude that mitochondrial function is required for C. elegans to secrete DAF-28/insulin when food is abundant. This modulation of secretion likely represents an additional level of control over DAF-28/insulin function. PMID:21264209

  19. Reduced insulin secretion and glucose intolerance are involved in the fasting susceptibility of common vampire bats.

    PubMed

    Freitas, Mariella B; Queiroz, Joicy F; Dias Gomes, Carolinne I; Collares-Buzato, Carla B; Barbosa, Helena C; Boschero, Antonio C; Gonçalves, Carlos A; Pinheiro, Eliana C

    2013-03-01

    Susceptibility during fasting has been reported for the common vampire bat (Desmodus rotundus), to the point of untimely deaths after only 2-3 nights of fasting. To investigate the underlying physiology of this critical metabolic condition, we analyzed serum insulin levels, pancreatic islets morphometry and immunocytochemistry (ICC), static insulin secretion in pancreas fragments, and insulin signaling mechanism in male vampire bats. A glucose tolerance test (ipGTT) was also performed. Serum insulin was found to be lower in fed vampires compared to other mammals, and was significantly reduced after 24h fasting. Morphometrical analyses revealed small irregular pancreatic islets with reduced percentage of β-cell mass compared to other bats. Static insulin secretion analysis showed that glucose-stimulated insulin secretion was impaired, as insulin levels did not reach significance under high glucose concentrations, whereas the response to the amino acid leucin was preserved. Results from ipGTT showed a failure on glucose clearance, indicating glucose intolerance due to diminished pancreatic insulin secretion and/or decreased β-cell response to glucose. In conclusion, data presented here indicate lower insulinemia and impaired insulin secretion in D. rotundus, which is consistent with the limited ability to store body energy reserves, previously reported in these animals. Whether these metabolic and hormonal features are associated with their blood diet remains to be determined. The peculiar food sharing through blood regurgitation, reported to this species, might be an adaptive mechanism overcoming this metabolic susceptibility. PMID:23262275

  20. Loss of FFA2 and FFA3 increases insulin secretion and improves glucose tolerance in type 2 diabetes.

    PubMed

    Tang, Cong; Ahmed, Kashan; Gille, Andreas; Lu, Shun; Gröne, Hermann-Josef; Tunaru, Sorin; Offermanns, Stefan

    2015-02-01

    Type 2 diabetes is a major health problem worldwide, and one of its key features is the inability of elevated glucose to stimulate the release of sufficient amounts of insulin from pancreatic beta cells to maintain normal blood glucose levels. New therapeutic strategies to improve beta cell function are therefore believed to be beneficial. Here we demonstrate that the short-chain fatty acid receptors FFA2 (encoded by FFAR2) and FFA3 (encoded by FFAR3) are expressed in mouse and human pancreatic beta cells and mediate an inhibition of insulin secretion by coupling to Gi-type G proteins. We also provide evidence that mice with dietary-induced obesity and type 2 diabetes, as compared to non-obese control mice, have increased local formation by pancreatic islets of acetate, an endogenous agonist of FFA2 and FFA3, as well as increased systemic levels. This elevation may contribute to the insufficient capacity of beta cells to respond to hyperglycemia in obese states. Indeed, we found that genetic deletion of both receptors, either on the whole-body level or specifically in pancreatic beta cells, leads to greater insulin secretion and a profound improvement of glucose tolerance when mice are on a high-fat diet compared to controls. On the other hand, deletion of Ffar2 and Ffar3 in intestinal cells did not alter glucose tolerance in diabetic animals, suggesting these receptors act in a cell-autonomous manner in beta cells to regulate insulin secretion. In summary, under diabetic conditions elevated acetate acts on FFA2 and FFA3 to inhibit proper glucose-stimulated insulin secretion, and we expect antagonists of FFA2 and FFA3 to improve insulin secretion in type 2 diabetes. PMID:25581519

  1. Enhanced insulin secretion responsiveness and islet adrenergic desensitization after chronic norepinephrine suppression is discontinued in fetal sheep.

    PubMed

    Chen, Xiaochuan; Green, Alice S; Macko, Antoni R; Yates, Dustin T; Kelly, Amy C; Limesand, Sean W

    2014-01-01

    Intrauterine growth-restricted (IUGR) fetuses experience prolonged hypoxemia, hypoglycemia, and elevated norepinephrine (NE) concentrations, resulting in hypoinsulinemia and β-cell dysfunction. Previously, we showed that acute adrenergic blockade revealed enhanced insulin secretion responsiveness in the IUGR fetus. To determine whether chronic exposure to NE alone enhances β-cell responsiveness afterward, we continuously infused NE into fetal sheep for 7 days and, after terminating the infusion, evaluated glucose-stimulated insulin secretion (GSIS) and glucose-potentiated arginine-induced insulin secretion (GPAIS). During treatment, NE-infused fetuses had greater (P < 0.05) plasma NE concentrations and exhibited hyperglycemia (P < 0.01) and hypoinsulinemia (P < 0.01) compared with controls. GSIS during the NE infusion was also reduced (P < 0.05) compared with pretreatment values. GSIS and GPAIS were approximately fourfold greater (P < 0.01) in NE fetuses 3 h after the 7 days that NE infusion was discontinued compared with age-matched controls or pretreatment GSIS and GPAIS values of NE fetuses. In isolated pancreatic islets from NE fetuses, mRNA concentrations of adrenergic receptor isoforms (α1D, α2A, α2C, and β1), G protein subunit-αi-2, and uncoupling protein 2 were lower (P < 0.05) compared with controls, but β-cell regulatory genes were not different. Our findings indicate that chronic exposure to elevated NE persistently suppresses insulin secretion. After removal, NE fetuses demonstrated a compensatory enhancement in insulin secretion that was associated with adrenergic desensitization and greater stimulus-secretion coupling in pancreatic islets. PMID:24253046

  2. Dietary composition and its associations with insulin sensitivity and insulin secretion in youth.

    PubMed

    Henderson, Mélanie; Benedetti, Andrea; Gray-Donald, Katherine

    2014-02-01

    The objectives of the present study were to examine the associations between macronutrient intake and insulin sensitivity (IS) and insulin secretion (ISct), taking into consideration moderate-to-vigorous physical activity (MVPA), fitness and sedentary behaviour. Caucasian youth (n 630) aged 8-10 years at recruitment, with at least one obese biological parent, were studied (QUebec Adipose and Lifestyle InvesTigation in Youth cohort). IS was measured using the homeostasis model assessment (HOMA) of insulin resistance and Matsuda IS index. ISct was measured using HOMA2%-β, the ratio of the AUC of insulin:glucose over the first 30 min (AUC I/G(t= 30 min)) of the oral glucose tolerance test and AUC I/G(t= 120 min) over 2 h. Fitness was measured using VO₂(peak), percentage of fat mass by dual-energy X-ray absorptiometry, and 7 d MVPA using accelerometry; screen time (ST) by average daily hours of self-reported television, video game or computer use. Dietary composition was measured using three non-consecutive dietary recalls. Non-parametric smoothing splines were used to model non-linear associations; all models were adjusted for age, sex, season, pubertal stage, MVPA, fitness, ST and adiposity. The percentage of total daily energy from dietary protein, fat, saturated fat and carbohydrate and the consumption of dietary vitamin D, sugar-sweetened beverages, fibre and portions of fruits and vegetables were taken into consideration. No dietary component was associated with any measure of IS after adjusting for MVPA, fitness, ST and adiposity. For every 1% increase in daily protein intake (%), AUC I/G(t= 30 min) decreased by 1·1% (P= 0·033). Otherwise, dietary composition was not associated with ISct. While long-term excess of energy intake has been shown to lead to overweight and obesity, dietary macronutrient composition is not independently correlated with IS or ISct in youth. PMID:24047611

  3. The role of thermosensitive TRP (transient receptor potential) channels in insulin secretion.

    PubMed

    Uchida, Kunitoshi; Tominaga, Makoto

    2011-01-01

    Insulin secretion from pancreatic β-cells is the only efficient means to decrease blood glucose concentrations. Glucose is the principal stimulator of insulin secretion with the ATP-sensitive K+ channel-voltage-gated Ca2+ channel-mediated pathway being the primary one involved in glucose-stimulated insulin secretion. Recently, several reports demonstrated that some transient receptor potential (TRP) channels are expressed in pancreatic β-cells and contribute to pancreatic β-cell functions. Interestingly, six of them (TRPM2, TRPM4, TRPM5, TRPV1, TRPV2 and TRPV4) are thermosensitive TRP channels. Thermosensitive TRP channels in pancreatic β-cells can function as multimodal receptors and cause Ca2+ influx and membrane depolarization at physiological body temperature. TRPM channels (TRPM2, TRPM4 and TRPM5) control insulin secretion levels by sensing intracellular Ca2+ increase, NAD metabolites, or hormone receptor activation. TRPV2 is involved not only in insulin secretion but also cell proliferation, and is regulated by the autocrine effects of insulin. TRPV1 expressed in sensory neurons is involved in β-cell stress and islet inflammation by controlling neuropeptide release levels. It is thus clear that thermosensitive TRP channels play important roles in pancreatic β-cell functions, and future analyses of TRP channel function will lead to better understanding of the complicated mechanisms involved in insulin secretion and diabetes pathogenesis. PMID:21785227

  4. Insulin Regulates Hepatic Triglyceride Secretion and Lipid Content via Signaling in the Brain.

    PubMed

    Scherer, Thomas; Lindtner, Claudia; O'Hare, James; Hackl, Martina; Zielinski, Elizabeth; Freudenthaler, Angelika; Baumgartner-Parzer, Sabina; Tödter, Klaus; Heeren, Joerg; Krššák, Martin; Scheja, Ludger; Fürnsinn, Clemens; Buettner, Christoph

    2016-06-01

    Hepatic steatosis is common in obesity and insulin resistance and results from a net retention of lipids in the liver. A key mechanism to prevent steatosis is to increase secretion of triglycerides (TG) packaged as VLDLs. Insulin controls nutrient partitioning via signaling through its cognate receptor in peripheral target organs such as liver, muscle, and adipose tissue and via signaling in the central nervous system (CNS) to orchestrate organ cross talk. While hepatic insulin signaling is known to suppress VLDL production from the liver, it is unknown whether brain insulin signaling independently regulates hepatic VLDL secretion. Here, we show that in conscious, unrestrained male Sprague Dawley rats the infusion of insulin into the third ventricle acutely increased hepatic TG secretion. Chronic infusion of insulin into the CNS via osmotic minipumps reduced the hepatic lipid content as assessed by noninvasive (1)H-MRS and lipid profiling independent of changes in hepatic de novo lipogenesis and food intake. In mice that lack the insulin receptor in the brain, hepatic TG secretion was reduced compared with wild-type littermate controls. These studies identify brain insulin as an important permissive factor in hepatic VLDL secretion that protects against hepatic steatosis. PMID:26861781

  5. Red Liriope platyphylla stimulated the insulin secretion through the regulation of calcium concentration in rat insulinoma cells and animal models.

    PubMed

    Lee, Hye-Ryun; Kim, Ji-Eun; Lee, Young-Ju; Kwak, Moon-Hwa; Im, Dong-Soon; Hwang, Dae-Youn

    2013-06-01

    The aim of this study was to investigate the effects of Red L. platyphylla (RLP) on calcium and glucose levels during insulin secretion. To achieve this, alteration of insulin and calcium concentrations was measured in rat insulinoma-1 (INS-1) cells and animal models in response to RLP treatment. In INS-1 cells, maximum secretion of insulin was detected upon treatment with 200 µg/mL of RLP for 20 min. Nifedipine, an L-type calcium channel blocker, effectively inhibited insulin secretion from INS-1 cells. Regarding calcium levels, the maximum concentration of intracellular calcium in INS-1 cells was obtained by treatment with 100 µg/mL of RLP, whereas this level was reduced under conditions of 200 µg/mL of RLP. Further, RLP-treated INS-1 cells showed a higher level of intracellular calcium than that of L. platyphylla (LP), Korea White Ginseng (KWG), or Korea Red Ginseng (KRG)-treated cells. This RLP-induced increase in intracellular calcium was abrogated but not completely abolished upon treatment with 40 µM nifedipine in a dose-dependent manner. Furthermore, the insulin level was dramatically elevated upon co-treatment with high concentrations of glucose and RLP, whereas it was maintained at a low level in response to glucose and RLP co-treatment at low concentrations. In an animal experiment, the serum concentration of calcium increased or decreased upon RLP treatment according to glucose level compared to vehicle treatment. Therefore, these results suggest that insulin secretion induced by RLP treatment may be tightly correlated with calcium regulation, which suggests RLP is an excellent candidate for diabetes treatment. PMID:23825481

  6. Red Liriope platyphylla stimulated the insulin secretion through the regulation of calcium concentration in rat insulinoma cells and animal models

    PubMed Central

    Lee, Hye-Ryun; Kim, Ji-Eun; Lee, Young-Ju; Kwak, Moon-Hwa; Im, Dong-Soon

    2013-01-01

    The aim of this study was to investigate the effects of Red L. platyphylla (RLP) on calcium and glucose levels during insulin secretion. To achieve this, alteration of insulin and calcium concentrations was measured in rat insulinoma-1 (INS-1) cells and animal models in response to RLP treatment. In INS-1 cells, maximum secretion of insulin was detected upon treatment with 200 µg/mL of RLP for 20 min. Nifedipine, an L-type calcium channel blocker, effectively inhibited insulin secretion from INS-1 cells. Regarding calcium levels, the maximum concentration of intracellular calcium in INS-1 cells was obtained by treatment with 100 µg/mL of RLP, whereas this level was reduced under conditions of 200 µg/mL of RLP. Further, RLP-treated INS-1 cells showed a higher level of intracellular calcium than that of L. platyphylla (LP), Korea White Ginseng (KWG), or Korea Red Ginseng (KRG)-treated cells. This RLP-induced increase in intracellular calcium was abrogated but not completely abolished upon treatment with 40 µM nifedipine in a dose-dependent manner. Furthermore, the insulin level was dramatically elevated upon co-treatment with high concentrations of glucose and RLP, whereas it was maintained at a low level in response to glucose and RLP co-treatment at low concentrations. In an animal experiment, the serum concentration of calcium increased or decreased upon RLP treatment according to glucose level compared to vehicle treatment. Therefore, these results suggest that insulin secretion induced by RLP treatment may be tightly correlated with calcium regulation, which suggests RLP is an excellent candidate for diabetes treatment. PMID:23825481

  7. Enterovirus infection of human islets of Langerhans affects β-cell function resulting in disintegrated islets, decreased glucose stimulated insulin secretion and loss of Golgi structure

    PubMed Central

    Hodik, M; Skog, O; Lukinius, A; Isaza-Correa, J M; Kuipers, J; Giepmans, B N G; Frisk, G

    2016-01-01

    Aims/hypothesis In type 1 diabetes (T1D), most insulin-producing β cells are destroyed, but the trigger is unknown. One of the possible triggers is a virus infection and the aim of this study was to test if enterovirus infection affects glucose stimulated insulin secretion and the effect of virus replication on cellular macromolecules and organelles involved in insulin secretion. Methods Isolated human islets were infected with different strains of coxsackievirus B (CVB) virus and the glucose-stimulated insulin release (GSIS) was measured in a dynamic perifusion system. Classical morphological electron microscopy, large-scale electron microscopy, so-called nanotomy, and immunohistochemistry were used to study to what extent virus-infected β cells contained insulin, and real-time PCR was used to analyze virus induced changes of islet specific genes. Results In islets infected with CVB, GSIS was reduced in correlation with the degree of virus-induced islet disintegration. The expression of the gene encoding insulin was decreased in infected islets, whereas the expression of glucagon was not affected. Also, in islets that were somewhat disintegrated, there were uninfected β cells. Ultrastructural analysis revealed that virus particles and virus replication complexes were only present in β cells. There was a significant number of insulin granules remaining in the virus-infected β cells, despite decreased expression of insulin mRNA. In addition, no typical Golgi apparatus was detected in these cells. Exposure of islets to synthetic dsRNA potentiated glucose-stimulated insulin secretion. Conclusions/interpretation Glucose-stimulated insulin secretion; organelles involved in insulin secretion and gene expression were all affected by CVB replication in β cells. PMID:27547409

  8. Free fatty acid receptor 1 (FFAR1/GPR40) signaling affects insulin secretion by enhancing mitochondrial respiration during palmitate exposure.

    PubMed

    Kristinsson, Hjalti; Bergsten, Peter; Sargsyan, Ernest

    2015-12-01

    Fatty acids affect insulin secretion via metabolism and FFAR1-mediated signaling. Recent reports indicate that these two pathways act synergistically. Still it remains unclear how they interrelate. Taking into account the key role of mitochondria in insulin secretion, we attempted to dissect the metabolic and FFAR1-mediated effects of fatty acids on mitochondrial function. One-hour culture of MIN6 cells with palmitate significantly enhanced mitochondrial respiration. Antagonism or silencing of FFAR1 prevented the palmitate-induced rise in respiration. On the other hand, in the absence of extracellular palmitate FFAR1 agonists caused a modest increase in respiration. Using an agonist of the M3 muscarinic acetylcholine receptor and PKC inhibitor we found that in the presence of the fatty acid mitochondrial respiration is regulated via Gαq protein-coupled receptor signaling. The increase in respiration in palmitate-treated cells was largely due to increased glucose utilization and oxidation. However, glucose utilization was not dependent on FFAR1 signaling. Collectively, these results indicate that mitochondrial respiration in palmitate-treated cells is enhanced via combined action of intracellular metabolism of the fatty acid and the Gαq-coupled FFAR1 signaling. Long-term palmitate exposure reduced ATP-coupling efficiency of mitochondria and deteriorated insulin secretion. The presence of the FFAR1 antagonist during culture did not improve ATP-coupling efficiency, however, it resulted in enhanced mitochondrial respiration and improved insulin secretion after culture. Taken together, our study demonstrates that during palmitate exposure, integrated actions of fatty acid metabolism and fatty acid-induced FFAR1 signaling on mitochondrial respiration underlie the synergistic action of the two pathways on insulin secretion. PMID:26408932

  9. Changing Clinical Characteristics according to Insulin Resistance and Insulin Secretion in Newly Diagnosed Type 2 Diabetic Patients in Korea

    PubMed Central

    Son, Jang Won; Park, Cheol-Young; Lee, Han-Kyu; Lee, Yil-Seob

    2015-01-01

    Background The role of increased insulin resistance in the pathogenesis of type 2 diabetes has been emphasized in Asian populations. Thus, we evaluated the proportion of insulin resistance and the insulin secretory capacity in patients with early phase type 2 diabetes in Korea. Methods We performed a cross-sectional analysis of 1,314 drug-naive patients with newly diagnosed diabetes from primary care clinics nationwide. The homeostasis model assessment of insulin resistance (HOMA-IR) was used as an index to measure insulin resistance, which was defined as a HOMA-IR ≥2.5. Insulin secretory defects were classified based on fasting plasma C-peptide levels: severe (<1.1 ng/mL), moderate (1.1 to 1.7 ng/mL) and mild to non-insulin secretory defect (≥1.7 ng/mL). Results The mean body mass index (BMI) was 25.2 kg/m2; 77% of patients had BMIs >23.0 kg/m2. Up to 50% of patients had central obesity based on their waist circumference (≥90 cm in men and 85 cm in women), and 70.6% had metabolic syndrome. Overall, 59.5% of subjects had insulin resistance, and 20.2% demonstrated a moderate to severe insulin secretory defect. Among those with insulin resistance, a high proportion of subjects (79.0%) had a mild or no insulin secretory defect. Only 2.6% of the men and 1.9% of the women had both insulin resistance and a moderate to severe insulin secretory defect. Conclusion In this study, patients with early phase type 2 diabetes demonstrated increased insulin resistance, but preserved insulin secretion, with a high prevalence of obesity and metabolic syndrome. PMID:26566496

  10. SORCS1 polymorphism and insulin secretion in obese women with polycystic ovary syndrome.

    PubMed

    Hrovat, Ana; Kravos, Nika Aleksandra; Goričar, Katja; Jensterle Sever, Mojca; Janež, Andrej; Dolžan, Vita

    2016-01-01

    We investigated the influence of SORCS1 polymorphisms on insulin secretion in obese women with PCOS. Metabolic status was recorded in 50 clinically well characterized PCOS patients. Oral glucose tolerance test was performed and laboratory parameters of insulin resistance measured. All patients were genotyped for SORCS1 rs1358030, rs1416406 and rs11192966 polymorphisms. Statistical analysis was performed using the Mann-Whitney test. SORCS1 rs1416406 significantly influenced stimulated glucose plasma levels (p = 0.006) and increased glucose stimulated insulin secretion (p = 0.034). None of the polymorphisms influenced insulin resistance as measured by homeostatic model assessment. We report for the first time the relevance of SORCS1 polymorphisms for glycemic control and glucose stimulated insulin secretion in obese women with PCOS. PMID:27052493

  11. The sympathetic tone mediates leptin's inhibition of insulin secretion by modulating osteocalcin bioactivity

    PubMed Central

    Hinoi, Eiichi; Gao, Nan; Jung, Dae Young; Yadav, Vijay; Yoshizawa, Tatsuya; Myers, Martin G.; Chua, Streamson C.; Kim, Jason K.; Kaestner, Klaus H.; Karsenty, Gerard

    2008-01-01

    The osteoblast-secreted molecule osteocalcin favors insulin secretion, but how this function is regulated in vivo by extracellular signals is for now unknown. In this study, we show that leptin, which instead inhibits insulin secretion, partly uses the sympathetic nervous system to fulfill this function. Remarkably, for our purpose, an osteoblast-specific ablation of sympathetic signaling results in a leptin-dependent hyperinsulinemia. In osteoblasts, sympathetic tone stimulates expression of Esp, a gene inhibiting the activity of osteocalcin, which is an insulin secretagogue. Accordingly, Esp inactivation doubles hyperinsulinemia and delays glucose intolerance in ob/ob mice, whereas Osteocalcin inactivation halves their hyperinsulinemia. By showing that leptin inhibits insulin secretion by decreasing osteocalcin bioactivity, this study illustrates the importance of the relationship existing between fat and skeleton for the regulation of glucose homeostasis. PMID:19103808

  12. Insulin-producing cells could not mimic the physiological regulation of insulin secretion performed by pancreatic beta cells

    PubMed Central

    2013-01-01

    Objective The aim of this study was to compare the difference between insulin-producing cells (IPCs) and normal human pancreatic beta cells both in physiological function and morphological features in cellular level. Methods The levels of insulin secretion were measured by enzyme-linked immunosorbent assay. The insulin gene expression was determined by real-time quantitative polymerase chain reaction. The morphological features were detected by atomic force microscopy (AFM) and laser confocal scanning microscopy. Results IPCs and normal human pancreatic beta cells were similar to each other under the observation in AFM with the porous structure features in the cytoplasm. Both number of membrane particle size and average roughness of normal human beta cells were higher than those of IPCs. Conclusions Our results firstly revealed that the cellular ultrastructure of IPCs was closer to that of normal human pancreatic beta cells, but they still could not mimic the physiological regulation of insulin secretion performed by pancreatic beta cells. PMID:23421382

  13. Insulin-secreting non-islet cells are resistant to autoimmune destruction.

    PubMed Central

    Lipes, M A; Cooper, E M; Skelly, R; Rhodes, C J; Boschetti, E; Weir, G C; Davalli, A M

    1996-01-01

    Transgenic nonobese diabetic mice were created in which insulin expression was targeted to proopiomelanocortin-expressing pituitary cells. Proopiomelanocortin-expressing intermediate lobe pituitary cells efficiently secrete fully processed, mature insulin via a regulated secretory pathway, similar to islet beta cells. However, in contrast to the insulin-producing islet beta cells, the insulin-producing intermediate lobe pituitaries are not targeted or destroyed by cells of the immune system. Transplantation of the transgenic intermediate lobe tissues into diabetic nonobese diabetic mice resulted in the restoration of near-normoglycemia and the reversal of diabetic symptoms. The absence of autoimmunity in intermediate lobe pituitary cells engineered to secrete bona fide insulin raises the potential of these cell types for beta-cell replacement therapy for the treatment of insulin-dependent diabetes mellitus. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8710916

  14. Physical exercise and pancreatic islets: acute and chronic actions on insulin secretion.

    PubMed

    Almeida, Felipe N; Proença, André R G; Chimin, Patrícia; Marçal, Anderson C; Bessa-Lima, Fábio; Carvalho, Carla R O

    2012-01-01

    Diabetes mellitus (DM) is a great public health problem, which attacks part of the world population, being characterized by an imbalance in body glucose homeostasis. Physical exercise is pointed as a protective agent and is also recommended to people with DM. As pancreatic islets present an important role in glucose homeostasis, we aim to study the role of physical exercise (chronic adaptations and acute responses) in pancreatic islets functionality in Wistar male rats. First, animals were divided into two groups: sedentary (S) and aerobic trained (T). At the end of 8 weeks, half of them (S and T) were submitted to an acute exercise session (exercise until exhaustion), being subdivided as acute sedentary (AS) and acute trained (AT). After the experimental period, periepididymal, retroperitoneal and subcutaneous fat pads, blood, soleus muscle and pancreatic islets were collected and prepared for further analysis. From the pancreatic islets, total insulin content, insulin secretion stimulated by glucose, leucine, arginine and carbachol were analyzed. Our results pointed that body adiposity and glucose homeostasis improved with chronic physical exercise. In addition, total insulin content was reduced in group AT, insulin secretion stimulated by glucose was reduced in trained groups (T and AT) and insulin secretion stimulated by carbachol was increased in group AT. There were no significant differences in insulin secretion stimulated by arginine and leucine. We identified a possible modulating action on insulin secretion, probably related to the association of chronic adaptation with an acute response on cholinergic activity in pancreatic islets. PMID:22868676

  15. Indices of insulin secretion during a liquid mixed-meal test in obese youth with diabetes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To compare indices of insulin secretion, insulin sensitivity (IS),and oral disposition index (oDI) during the liquid mixed-meal test in obese youth with clinically diagnosed type 2 diabetes mellitus (T2DM) and negative autoantibodies (Ab-) versus those with T2DM and positive autoantibodies (Ab+) to ...

  16. Intra- and Inter-Islet Synchronization of Metabolically Driven Insulin Secretion

    PubMed Central

    Pedersen, Morten Gram; Bertram, Richard; Sherman, Arthur

    2005-01-01

    Insulin secretion from pancreatic β-cells is pulsatile with a period of 5–10 min and is believed to be responsible for plasma insulin oscillations with similar frequency. To observe an overall oscillatory insulin profile it is necessary that the insulin secretion from individual β-cells is synchronized within islets, and that the population of islets is also synchronized. We have recently developed a model in which pulsatile insulin secretion is produced as a result of calcium-driven electrical oscillations in combination with oscillations in glycolysis. We use this model to investigate possible mechanisms for intra-islet and inter-islet synchronization. We show that electrical coupling is sufficient to synchronize both electrical bursting activity and metabolic oscillations. We also demonstrate that islets can synchronize by mutually entraining each other by their effects on a simple model “liver,” which responds to the level of insulin secretion by adjusting the blood glucose concentration in an appropriate way. Since all islets are exposed to the blood, the distributed islet-liver system can synchronize the individual islet insulin oscillations. Thus, we demonstrate how intra-islet and inter-islet synchronization of insulin oscillations may be achieved. PMID:15834002

  17. Activation of Distinct P2Y Receptor Subtypes Stimulates Insulin Secretion in MIN6 Mouse Pancreatic β Cells

    PubMed Central

    Balasubramanian, Ramachandran; de Azua, Inigo Ruiz; Wess, Jürgen; Jacobson, Kenneth A.

    2010-01-01

    Extracellular nucleotides and their receptor antagonists have therapeutic potential in disorders such as inflammation, brain disorders, and cardiovascular diseases. Pancreatic β cells express several purinergic receptors, and reported nucleotide effects on insulin secretion are contradictory. We studied the effect of P2Y receptors on insulin secretion and cell death in MIN6, mouse pancreatic β cells. Expression of P2Y1 and P2Y6 receptors was revealed by total mRNA analysis using RT-PCR. MIN6 cells were stimulated in the presence of 16.7 mM glucose with or without P2Y1 and P2Y6 agonists, 2-MeSADP and Up3U, respectively. Both the agonists increased insulin secretion with EC50 values of 44.6±7.0 nM and 30.7±12.7 nM respectively. The insulin secretion by P2Y1 and P2Y6 agonists was blocked by their selective antagonists MRS2179 and MRS2578, respectively. Binding of the selective P2Y1 receptor antagonist radioligand [125I]MRS2500 in MIN6 cell membranes was saturable (KD 4.74±0.47 nM), and known P2Y1 ligands competed with high affinities. Inflammation and glucose toxicity leads to pancreatic β cell death in diabetes. Flow cytometric analysis revealed that Up3U but not 2-MeSADP protected MIN6 cells against TNF-α induced apoptosis. Overall, the results demonstrate that selective stimulation of P2Y1 and P2Y6 receptors increases insulin secretion that accompanies intracellular calcium release, suggesting potential application of P2Y receptor ligands in the treatment of diabetes. PMID:20067775

  18. Effect of Artemisia dracunculus Administration on Glycemic Control, Insulin Sensitivity, and Insulin Secretion in Patients with Impaired Glucose Tolerance.

    PubMed

    Méndez-Del Villar, Miriam; Puebla-Pérez, Ana M; Sánchez-Peña, María J; González-Ortiz, Luis J; Martínez-Abundis, Esperanza; González-Ortiz, Manuel

    2016-05-01

    To evaluate the effect of Artemisia dracunculus on glycemic control, insulin sensitivity, and insulin secretion in patients with impaired glucose tolerance (IGT). A randomized, double blind, placebo-controlled clinical trial was performed in 24 patients with diagnosis of IGT. Before and after the intervention, glucose and insulin levels were measured every 30 min for 2 h after a 75-g dextrose load, along with glycated hemoglobin A1c (A1C) and lipid profile. Twelve patients received A. dracunculus (1000 mg) before breakfast and dinner for 90 days; the remaining 12 patients received placebo. Area under the curve (AUC) of glucose and insulin, total insulin secretion, first phase of insulin secretion, and insulin sensitivity were calculated. Wilcoxon signed-rank, Mann-Whitney U, and chi-square tests were used for statistical analyses. The institutional ethics committee approved the protocol. After A. dracunculus administration, there were significant decreases in systolic blood pressure (SBP; 120.0 ± 11.3 vs. 113.0 ± 11.2 mmHg, P < .05), A1C (5.8 ± 0.3 vs. 5.6% ± 0.4%, P < .05), AUC of insulin (56,136.0 ± 27,426.0 vs. 44,472.0 ± 23,370.0 pmol/L, P < .05), and total insulin secretion (0.45 ± 0.23 vs. 0.35 ± 0.18, P < .05), with a significant increase in high-density lipoprotein cholesterol (HDL-C) (1.3 ± 0.3 vs. 1.4 ± 0.3 mmol/L, P < .05). There were no significant differences after placebo administration. A. dracunculus administration for 90 days in patients with IGT significantly decreased SBP, A1C, AUC of insulin, and total insulin secretion with a significant increase in HDL-C levels. PMID:27097076

  19. Effect of pantoprazole on insulin secretion in drug-naïve patients with type 2 diabetes.

    PubMed

    González-Ortiz, Manuel; Martínez-Abundis, Esperanza; Mercado-Sesma, Arieh R; Álvarez-Carrillo, Rebeca

    2015-04-01

    To evaluate the effect of pantoprazole during 45 days on insulin secretion in drug-naïve patients with type 2 diabetes, a randomized, double blind, placebo control clinical trial was performed in 14 drug-naïve volunteers. Significant increases in late insulin phase and total insulin secretion, and decreases in HbA1c levels were found. PMID:25704601

  20. Stress-impaired transcription factor expression and insulin secretion in transplanted human islets

    PubMed Central

    Dai, Chunhua; Kayton, Nora S.; Shostak, Alena; Poffenberger, Greg; Cyphert, Holly A.; Aramandla, Radhika; Thompson, Courtney; Papagiannis, Ioannis G.; Shiota, Masakazu; Stafford, John M.; Greiner, Dale L.; Herrera, Pedro L.; Shultz, Leonard D.; Stein, Roland; Powers, Alvin C.

    2016-01-01

    Type 2 diabetes is characterized by insulin resistance, hyperglycemia, and progressive β cell dysfunction. Excess glucose and lipid impair β cell function in islet cell lines, cultured rodent and human islets, and in vivo rodent models. Here, we examined the mechanistic consequences of glucotoxic and lipotoxic conditions on human islets in vivo and developed and/or used 3 complementary models that allowed comparison of the effects of hyperglycemic and/or insulin-resistant metabolic stress conditions on human and mouse islets, which responded quite differently to these challenges. Hyperglycemia and/or insulin resistance impaired insulin secretion only from human islets in vivo. In human grafts, chronic insulin resistance decreased antioxidant enzyme expression and increased superoxide and amyloid formation. In human islet grafts, expression of transcription factors NKX6.1 and MAFB was decreased by chronic insulin resistance, but only MAFB decreased under chronic hyperglycemia. Knockdown of NKX6.1 or MAFB expression in a human β cell line recapitulated the insulin secretion defect seen in vivo. Contrary to rodent islet studies, neither insulin resistance nor hyperglycemia led to human β cell proliferation or apoptosis. These results demonstrate profound differences in how excess glucose or lipid influence mouse and human insulin secretion and β cell activity and show that reduced expression of key islet-enriched transcription factors is an important mediator of glucotoxicity and lipotoxicity. PMID:27064285

  1. Mafa expression enhances glucose-responsive insulin secretion in neonatal rat beta cells

    PubMed Central

    Aguayo-Mazzucato, C.; Koh, A.; El Khattabi, I.; Li, W.-C.; Toschi, E.; Jermendy, A.; Juhl, K.; Mao, K.; Weir, G. C.

    2011-01-01

    Aim/hypothesis Neonatal beta cells lack glucose-stimulated insulin secretion and are thus functionally immature. We hypothesised that this lack of glucose responsiveness results from a generalised low expression of genes characteristic of mature functional beta cells. Important glucose-responsive transcription factors, Mafa and Pdx1, regulate genes involved in insulin synthesis and secretion, and have been implicated in late beta cell development. The aim of this study was to assess whether Mafa and/or Pdx1 regulates the postnatal functional maturation of beta cells. Methods By quantitative PCR we evaluated expression of these and other beta cell genes over the first month compared with adult. After infection with adenovirus expressing MAFA, Pdx1 or green fluorescent protein (Gfp), P2 rat islets were evaluated by RT-PCR and insulin secretion with static incubation and reverse haemolytic plaque assay (RHPA). Results At P2 most beta cell genes were expressed at about 10% of adult, but by P7 Pdx1 and Neurod1 no longer differ from adult; by contrast, Mafa expression remained significantly lower than adult through P21. Overexpression of Pdx1 increased Mafa, Neurod1, glucokinase (Gck) mRNA and insulin content but failed to enhance glucose responsiveness. Similar overexpression of MAFA resulted in increased Neurod1, Nkx6-1, Gck and Glp1r mRNAs and no change in insulin content but, importantly, acquisition of glucose-responsive insulin secretion. Both the percentage of secreting beta cells and the amount of insulin secreted per beta cell increased, approaching that of adult beta cells. Conclusions/interpretation In the process of functional maturation acquiring glucose-responsive insulin secretion, neonatal beta cells undergo a coordinated gene expression programme in which Mafa plays a crucial role. PMID:21190012

  2. Effects of Steaming Time and Frequency for Manufactured Red Liriope platyphylla on the Insulin Secretion Ability and Insulin Receptor Signaling Pathway

    PubMed Central

    Choi, Sun Il; Lee, Hye Ryun; Goo, Jun Seo; Kim, Ji Eun; Nam, So Hee; Hwang, In Sik; Lee, Young Ju; Prak, So Hae; Lee, Hee Seob; Lee, Jong Sup; Jang, In Surk; Son, Hong Ju

    2011-01-01

    In oriental medicine, Liriope platyphylla (LP) has long been regarded as a curative herb useful for the treatment of diabetes, asthma, and neurodegenerative disorders. The principal objective of this study was to assess the effects of steaming time and frequency for manufactured Red LP (RLP) on insulin secretion ability and insulin receptor signaling pathway. To achieve our goal, several types of LPs manufactured under different conditions were applied to INS cells and streptozotocin (STZ)-induced diabetic ICR mice, after which alterations in insulin concentrations were detected in the culture supernatants and sera. The optimal concentration for the investigation of insulin secretion ability was found to be 50 ug/mL of LP. At this concentration, maximum insulin secretion was observed in the INS cells treated with LP extract steamed for 3 h (3-SLP) with two repeated steps (3 h steaming and 24 h air-dried) carried out 9 times (9-SALP); no significant changes in viability were detected in any of the treated cells. Additionally, the expression and phosphorylation levels of most components in the insulin receptor signaling pathway were increased significantly in the majority of cells treated with steaming-processed LP as compared to the cells treated with LP prepared without steaming. With regard to glucose transporter (GLUT) expression, alterations of steaming time induced similar responses on the expression levels of GLUT-2 and GLUT-3. However, differences in steaming frequency were also shown to induce dose-dependent responses in the expression level of GLUT-2 only; no significant differences in GLUT-3 expression were detected under these conditions. Furthermore, these responses observed in vitro were similarly detected in STZ-induced diabetic mice. 24-SLP and 9-SALP treatment applied for 14 days induced the down-regulation of glucose concentration and upregulation of insulin concentration. Therefore, these results indicated that the steaming processed LP may

  3. Measuring phospholipase D activity in insulin-secreting pancreatic beta-cells and insulin-responsive muscle cells and adipocytes.

    PubMed

    Cazzolli, Rosanna; Huang, Ping; Teng, Shuzhi; Hughes, William E

    2009-01-01

    Phospholipase D (PLD) is an enzyme producing phosphatidic acid and choline through hydrolysis of phosphatidylcholine. The enzyme has been identified as a member of a variety of signal transduction cascades and as a key regulator of numerous intracellular vesicle trafficking processes. A role for PLD in regulating glucose homeostasis is emerging as the enzyme has recently been identified in events regulating exocytosis of insulin from pancreatic beta-cells and also in insulin-stimulated glucose uptake through controlling GLUT4 vesicle exocytosis in muscle and adipose tissue. We present methodologies for assessing cellular PLD activity in secretagogue-stimulated insulin-secreting pancreatic beta-cells and also insulin-stimulated adipocyte and muscle cells, two of the principal insulin-responsive cell types controlling blood glucose levels. PMID:19160674

  4. Cytosolic free Ca2+ in insulin secreting cells and its regulation by isolated organelles.

    PubMed

    Prentki, M; Wollheim, C B

    1984-10-15

    The role of Ca2+ in secretagogue-induced insulin release is documented not only by the measurements of 45Ca fluxes in pancreatic islets, but also, by direct monitoring of cytosolic free Ca2+, [Ca2+]i. As demonstrated, using the fluorescent indicator quin 2, glyceraldehyde, carbamylcholine and alanine raise [Ca2+]i in the insulin secreting cell line RINm5F, whereas glucose has a similar effect in pancreatic islet cells. The regulation of cellular Ca2+ homeostasis by organelles from a rat insulinoma, was investigated with a Ca2+ selective electrode. The results suggest that both the endoplasmic reticulum and the mitochondria participate in this regulation, albeit at different Ca2+ concentrations. By contrast, the secretory granules do not appear to be involved in the short-term regulation of [Ca2+]i. Evidence is presented that inositol 1,4,5-trisphosphate, which is shown to mobilize Ca2+ from the endoplasmic reticulum, is acting as an intracellular mediator in the stimulation of insulin release. PMID:6436050

  5. Snapin mediates incretin action and augments glucose-dependent insulin secretion.

    PubMed

    Song, Woo-Jin; Seshadri, Madhav; Ashraf, Uzair; Mdluli, Thembi; Mondal, Prosenjit; Keil, Meg; Azevedo, Monalisa; Kirschner, Lawrence S; Stratakis, Constantine A; Hussain, Mehboob A

    2011-03-01

    Impaired insulin secretion contributes to the pathogenesis of type 2 diabetes mellitus (T2DM). Treatment with the incretin hormone glucagon-like peptide-1 (GLP-1) potentiates insulin secretion and improves metabolic control in humans with T2DM. GLP-1 receptor-mediated signaling leading to insulin secretion occurs via cyclic AMP stimulated protein kinase A (PKA)- as well as guanine nucleotide exchange factor-mediated pathways. However, how these two pathways integrate and coordinate insulin secretion remains poorly understood. Here we show that these incretin-stimulated pathways converge at the level of snapin, and that PKA-dependent phosphorylation of snapin increases interaction among insulin secretory vesicle-associated proteins, thereby potentiating glucose-stimulated insulin secretion (GSIS). In diabetic islets with impaired GSIS, snapin phosphorylation is reduced, and expression of a snapin mutant, which mimics site-specific phosphorylation, restores GSIS. Thus, snapin is a critical node in GSIS regulation and provides a potential therapeutic target to improve β cell function in T2DM. PMID:21356520

  6. Arsenite reduces insulin secretion in rat pancreatic {beta}-cells by decreasing the calcium-dependent calpain-10 proteolysis of SNAP-25

    SciTech Connect

    Diaz-Villasenor, Andrea; Burns, Anna L.; Salazar, Ana Maria; Sordo, Monserrat; Hiriart, Marcia; Cebrian, Mariano E.; Ostrosky-Wegman, Patricia

    2008-09-15

    An increase in the prevalence of type 2 diabetes has been consistently observed among residents of high arsenic exposure areas. We have previously shown that in rat pancreatic {beta}-cells, low arsenite doses impair the secretion of insulin without altering its synthesis. To further study the mechanism by which arsenite reduces insulin secretion, we evaluated the effects of arsenite on the calcium-calpain pathway that triggers insulin exocytosis in RINm5F cells. Cell cycle and proliferation analysis were also performed to complement the characterization. Free [Ca{sup 2+}]i oscillations needed for glucose-stimulated insulin secretion were abated in the presence of subchronic low arsenite doses (0.5-2 {mu}M). The global activity of calpains increased with 2 {mu}M arsenite. However, during the secretion of insulin stimulated with glucose (15.6 mM), 1 {mu}M arsenite decreased the activity of calpain-10, measured as SNAP-25 proteolysis. Both proteins are needed to fuse insulin granules with the membrane to produce insulin exocytosis. Arsenite also induced a slowdown in the {beta} cell line proliferation in a dose-dependent manner, reflected by a reduction of dividing cells and in their arrest in G2/M. Data obtained showed that one of the mechanisms by which arsenite impairs insulin secretion is by decreasing the oscillations of free [Ca{sup 2+}]i, thus reducing calcium-dependent calpain-10 partial proteolysis of SNAP-25. The effects in cell division and proliferation observed with arsenite exposure can be an indirect consequence of the decrease in insulin secretion.

  7. Biological effects of strong static magnetic fields on insulin-secreting cells

    NASA Astrophysics Data System (ADS)

    Sakurai, T.; Miyakoshi, J.

    2009-03-01

    The magnetic flux density of MRI for clinical diagnosis has been increasing. However, there remains very little biological data regarding the effect of strong static magnetic fields (SMFs) on human health. To evaluate the biological effects of strong SMFs, we cultured INS-1 cells under exposure to sham and SMF conditions for 1 or 2 h, and analyzed insulin secretion, mRNA expression, cell proliferation and cell number. Exposure to SMF with a high magnetic field gradient for 1 h significantly increased insulin secretion and insulin 1 mRNA expression. Exposure to SMF did not affect cell proliferation and cell number. Our results suggested that MRI systems with a higher magnetic flux density might not cause cell proliferative or functional damages on insulin-secreting cells.

  8. Functional Reconstitution of the Insulin-Secreting Porosome Complex in Live Cells.

    PubMed

    Naik, Akshata R; Kulkarni, Sanjana P; Lewis, Kenneth T; Taatjes, Douglas J; Jena, Bhanu P

    2016-01-01

    Supramolecular cup-shaped lipoprotein structures called porosomes embedded in the cell plasma membrane mediate fractional release of intravesicular contents from cells during secretion. The presence of porosomes, have been documented in many cell types including neurons, acinar cells of the exocrine pancreas, GH-secreting cells of the pituitary, and insulin-secreting pancreatic β-cells. Functional reconstitution of porosomes into artificial lipid membranes, have also been accomplished. Earlier studies on mouse insulin-secreting Min6 cells report 100-nm porosome complexes composed of nearly 30 proteins. In the current study, porosomes have been functionally reconstituted for the first time in live cells. Isolated Min6 porosomes reconstituted into live Min6 cells demonstrate augmented levels of porosome proteins and a consequent increase in the potency and efficacy of glucose-stimulated insulin release. Elevated glucose-stimulated insulin secretion 48 hours after reconstitution, reflects on the remarkable stability and viability of reconstituted porosomes, documenting the functional reconstitution of native porosomes in live cells. These results, establish a new paradigm in porosome-mediated insulin secretion in β-cells. PMID:26523491

  9. Sodium arsenite impairs insulin secretion and transcription in pancreatic {beta}-cells

    SciTech Connect

    Diaz-Villasenor, Andrea; Sanchez-Soto, M. Carmen; Cebrian, Mariano E.; Ostrosky-Wegman, Patricia; Hiriart, Marcia . E-mail: mhiriart@ifc.unam.mx

    2006-07-01

    Human studies have shown that chronic inorganic arsenic (iAs) exposure is associated with a high prevalence and incidence of type 2 diabetes. However, the mechanism(s) underlying this effect are not well understood, and practically, there is no information available on the effects of arsenic on pancreatic {beta}-cells functions. Thus, since insulin secreted by the pancreas plays a crucial role in maintaining glucose homeostasis, our aim was to determine if sodium arsenite impairs insulin secretion and mRNA expression in single adult rat pancreatic {beta}-cells. Cells were treated with 0.5, 1, 2, 5 and 10 {mu}M sodium arsenite and incubated for 72 and 144 h. The highest dose tested (10 {mu}M) decreased {beta}-cell viability, by 33% and 83%, respectively. Insulin secretion and mRNA expression were evaluated in the presence of 1 and 5 {mu}M sodium arsenite. Basal insulin secretion, in 5.6 mM glucose, was not significantly affected by 1 or 5 {mu}M treatment for 72 h, but basal secretion was reduced when cells were exposed to 5 {mu}M sodium arsenite for 144 h. On the other hand, insulin secretion in response to 15.6 mM glucose decreased with sodium arsenite in a dose-dependent manner in such a way that cells were no longer able to distinguish between different glucose concentrations. We also showed a significant decrease in insulin mRNA expression of cells exposed to 5 {mu}M sodium arsenite during 72 h. Our data suggest that arsenic may contribute to the development of diabetes mellitus by impairing pancreatic {beta}-cell functions, particularly insulin synthesis and secretion.

  10. A single-islet microplate assay to measure mouse and human islet insulin secretion.

    PubMed

    Truchan, Nathan A; Brar, Harpreet K; Gallagher, Shannon J; Neuman, Joshua C; Kimple, Michelle E

    2015-01-01

    One complication to comparing β-cell function among islet preparations, whether from genetically identical or diverse animals or human organ donors, is the number of islets required per assay. Islet numbers can be limiting, meaning that fewer conditions can be tested; other islet measurements must be excluded; or islets must be pooled from multiple animals/donors for each experiment. Furthermore, pooling islets negates the possibility of performing single-islet comparisons. Our aim was to validate a 96-well plate-based single islet insulin secretion assay that would be as robust as previously published methods to quantify glucose-stimulated insulin secretion from mouse and human islets. First, we tested our new assay using mouse islets, showing robust stimulation of insulin secretion 24 or 48 h after islet isolation. Next, we utilized the assay to quantify mouse islet function on an individual islet basis, measurements that would not be possible with the standard pooled islet assay methods. Next, we validated our new assay using human islets obtained from the Integrated Islet Distribution Program (IIDP). Human islets are known to have widely varying insulin secretion capacity, and using our new assay we reveal biologically relevant factors that are significantly correlated with human islet function, whether displayed as maximal insulin secretion response or fold-stimulation of insulin secretion. Overall, our results suggest this new microplate assay will be a useful tool for many laboratories, expert or not in islet techniques, to be able to precisely quantify islet insulin secretion from their models of interest. PMID:26452321

  11. One-year metreleptin improves insulin secretion in patients with diabetes linked to genetic lipodystrophic syndromes.

    PubMed

    Vatier, C; Fetita, S; Boudou, P; Tchankou, C; Deville, L; Riveline, Jp; Young, J; Mathivon, L; Travert, F; Morin, D; Cahen, J; Lascols, O; Andreelli, F; Reznik, Y; Mongeois, E; Madelaine, I; Vantyghem, Mc; Gautier, Jf; Vigouroux, C

    2016-07-01

    Recombinant methionyl human leptin (metreleptin) therapy was shown to improve hyperglycaemia, dyslipidaemia and insulin sensitivity in patients with lipodystrophic syndromes, but its effects on insulin secretion remain controversial. We used dynamic intravenous (i.v.) clamp procedures to measure insulin secretion, adjusted to insulin sensitivity, at baseline and after 1 year of metreleptin therapy, in 16 consecutive patients with lipodystrophy, diabetes and leptin deficiency. Patients, with a mean [± standard error of the mean (s.e.m.)] age of 39.2 (±4) years, presented with familial partial lipodystrophy (n = 11, 10 women) or congenital generalized lipodystrophy (n = 5, four women). Their mean (± s.e.m.) BMI (23.9 ± 0.7 kg/m(2) ), glycated haemoglobin levels (8.5 ± 0.4%) and serum triglycerides levels (4.6 ± 0.9 mmol/l) significantly decreased within 1 month of metreleptin therapy, then remained stable. Insulin sensitivity (from hyperglycaemic or euglycaemic-hyperinsulinaemic clamps, n = 4 and n = 12, respectively), insulin secretion during graded glucose infusion (n = 12), and acute insulin response to i.v. glucose adjusted to insulin sensitivity (disposition index, n = 12), significantly increased after 1 year of metreleptin therapy. The increase in disposition index was related to a decrease in percentage of total and trunk body fat. Metreleptin therapy improves not only insulin sensitivity, but also insulin secretion in patients with diabetes attributable to genetic lipodystrophies. PMID:26584826

  12. GLP-1 stimulates insulin secretion by PKC-dependent TRPM4 and TRPM5 activation

    PubMed Central

    Shigeto, Makoto; Ramracheya, Reshma; Tarasov, Andrei I.; Cha, Chae Young; Chibalina, Margarita V.; Hastoy, Benoit; Philippaert, Koenraad; Reinbothe, Thomas; Rorsman, Nils; Salehi, Albert; Sones, William R.; Vergari, Elisa; Weston, Cathryn; Gorelik, Julia; Katsura, Masashi; Nikolaev, Viacheslav O.; Vennekens, Rudi; Zaccolo, Manuela; Galione, Antony; Johnson, Paul R.V.; Kaku, Kohei; Ladds, Graham; Rorsman, Patrik

    2015-01-01

    Strategies aimed at mimicking or enhancing the action of the incretin hormone glucagon-like peptide 1 (GLP-1) therapeutically improve glucose-stimulated insulin secretion (GSIS); however, it is not clear whether GLP-1 directly drives insulin secretion in pancreatic islets. Here, we examined the mechanisms by which GLP-1 stimulates insulin secretion in mouse and human islets. We found that GLP-1 enhances GSIS at a half-maximal effective concentration of 0.4 pM. Moreover, we determined that GLP-1 activates PLC, which increases submembrane diacylglycerol and thereby activates PKC, resulting in membrane depolarization and increased action potential firing and subsequent stimulation of insulin secretion. The depolarizing effect of GLP-1 on electrical activity was mimicked by the PKC activator PMA, occurred without activation of PKA, and persisted in the presence of PKA inhibitors, the KATP channel blocker tolbutamide, and the L-type Ca2+ channel blocker isradipine; however, depolarization was abolished by lowering extracellular Na+. The PKC-dependent effect of GLP-1 on membrane potential and electrical activity was mediated by activation of Na+-permeable TRPM4 and TRPM5 channels by mobilization of intracellular Ca2+ from thapsigargin-sensitive Ca2+ stores. Concordantly, GLP-1 effects were negligible in Trpm4 or Trpm5 KO islets. These data provide important insight into the therapeutic action of GLP-1 and suggest that circulating levels of this hormone directly stimulate insulin secretion by β cells. PMID:26571400

  13. Integrated perfusion and separation systems for entrainment of insulin secretion from islets of Langerhans.

    PubMed

    Yi, Lian; Wang, Xue; Dhumpa, Raghuram; Schrell, Adrian M; Mukhitov, Nikita; Roper, Michael G

    2015-02-01

    A microfluidic system was developed to investigate the entrainment of insulin secretion from islets of Langerhans to oscillatory glucose levels. A gravity-driven perfusion system was integrated with a microfluidic system to deliver sinusoidal glucose waveforms to the islet chamber. Automated manipulation of the height of the perfusion syringes allowed precise control of the ratio of two perfusion solutions into a chamber containing 1-10 islets. Insulin levels in the perfusate were measured using an online competitive electrophoretic immunoassay with a sampling period of 10 s. The insulin immunoassay had a detection limit of 3 nM with RSDs of calibration points ranging from 2-8%. At 11 mM glucose, insulin secretion from single islets was oscillatory with a period ranging from 3-6 min. Application of a small amplitude sinusoidal wave of glucose with a period of 5 or 10 min, shifted the period of the insulin oscillations to this forcing period. Exposing groups of 6-10 islets to a sinusoidal glucose wave synchronized their behavior, producing a coherent pulsatile insulin response from the population. These results demonstrate the feasibility of the developed system for the study of oscillatory insulin secretion and can be easily modified for investigating the dynamic nature of other hormones released from different cell types. PMID:25474044

  14. Increase of Calcium Sensing Receptor Expression Is Related to Compensatory Insulin Secretion during Aging in Mice

    PubMed Central

    Oh, Yoon Sin; Seo, Eun-Hui; Lee, Young-Sun; Cho, Sung Chun; Jung, Hye Seung; Park, Sang Chul; Jun, Hee-Sook

    2016-01-01

    Type 2 diabetes is caused by both insulin resistance and relative insulin deficiency. To investigate age-related changes in glucose metabolism and development of type 2 diabetes, we compared glucose homeostasis in different groups of C57BL/6J mice ranging in age from 4 months to 20 months (4, 8, 12, 16 and 20 months). Interestingly, we observed that non-fasting glucose levels were not significantly changed, but glucose tolerance gradually increased by 20 months of age, whereas insulin sensitivity declined with age. We found that the size of islets and glucose-stimulated insulin secretion increased with aging. However, mRNA expression of pancreatic and duodenal homeobox 1 and granuphilin was decreased in islets of older mice compared with that of 4-month-old mice. Serum calcium (Ca2+) levels were significantly decreased at 12, 20 and 28 months of age compared with 4 months and calcium sensing receptor (CaSR) mRNA expression in the islets significantly increased with age. An extracellular calcium depletion agent upregulated CaSR mRNA expression and consequently enhanced insulin secretion in INS-1 cells and mouse islets. In conclusion, we suggest that decreased Ca2+ levels and increased CaSR expression might be involved in increased insulin secretion to compensate for insulin resistance in aged mice. PMID:27441644

  15. Isocitrate-to-SENP1 signaling amplifies insulin secretion and rescues dysfunctional β cells

    PubMed Central

    Ferdaoussi, Mourad; Dai, Xiaoqing; Jensen, Mette V.; Wang, Runsheng; Peterson, Brett S.; Huang, Chao; Ilkayeva, Olga; Smith, Nancy; Miller, Nathanael; Hajmrle, Catherine; Spigelman, Aliya F.; Wright, Robert C.; Plummer, Gregory; Suzuki, Kunimasa; Mackay, James P.; van de Bunt, Martijn; Gloyn, Anna L.; Ryan, Terence E.; Norquay, Lisa D.; Brosnan, M. Julia; Trimmer, Jeff K.; Rolph, Timothy P.; Kibbey, Richard G.; Manning Fox, Jocelyn E.; Colmers, William F.; Shirihai, Orian S.; Neufer, P. Darrell; Yeh, Edward T.H.; Newgard, Christopher B.; MacDonald, Patrick E.

    2015-01-01

    Insulin secretion from β cells of the pancreatic islets of Langerhans controls metabolic homeostasis and is impaired in individuals with type 2 diabetes (T2D). Increases in blood glucose trigger insulin release by closing ATP-sensitive K+ channels, depolarizing β cells, and opening voltage-dependent Ca2+ channels to elicit insulin exocytosis. However, one or more additional pathway(s) amplify the secretory response, likely at the distal exocytotic site. The mitochondrial export of isocitrate and engagement with cytosolic isocitrate dehydrogenase (ICDc) may be one key pathway, but the mechanism linking this to insulin secretion and its role in T2D have not been defined. Here, we show that the ICDc-dependent generation of NADPH and subsequent glutathione (GSH) reduction contribute to the amplification of insulin exocytosis via sentrin/SUMO-specific protease-1 (SENP1). In human T2D and an in vitro model of human islet dysfunction, the glucose-dependent amplification of exocytosis was impaired and could be rescued by introduction of signaling intermediates from this pathway. Moreover, islet-specific Senp1 deletion in mice caused impaired glucose tolerance by reducing the amplification of insulin exocytosis. Together, our results identify a pathway that links glucose metabolism to the amplification of insulin secretion and demonstrate that restoration of this axis rescues β cell function in T2D. PMID:26389676

  16. Glucose-Dependent Insulin Secretion in Pancreatic β-Cell Islets from Male Rats Requires Ca2+ Release via ROS-Stimulated Ryanodine Receptors

    PubMed Central

    Llanos, Paola; Contreras-Ferrat, Ariel; Barrientos, Genaro; Valencia, Marco; Mears, David; Hidalgo, Cecilia

    2015-01-01

    Glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells requires an increase in intracellular free Ca2+ concentration ([Ca2+]). Glucose uptake into β-cells promotes Ca2+ influx and reactive oxygen species (ROS) generation. In other cell types, Ca2+ and ROS jointly induce Ca2+ release mediated by ryanodine receptor (RyR) channels. Therefore, we explored here if RyR-mediated Ca2+ release contributes to GSIS in β-cell islets isolated from male rats. Stimulatory glucose increased islet insulin secretion, and promoted ROS generation in islets and dissociated β-cells. Conventional PCR assays and immunostaining confirmed that β-cells express RyR2, the cardiac RyR isoform. Extended incubation of β-cell islets with inhibitory ryanodine suppressed GSIS; so did the antioxidant N-acetyl cysteine (NAC), which also decreased insulin secretion induced by glucose plus caffeine. Inhibitory ryanodine or NAC did not affect insulin secretion induced by glucose plus carbachol, which engages inositol 1,4,5-trisphosphate receptors. Incubation of islets with H2O2 in basal glucose increased insulin secretion 2-fold. Inhibitory ryanodine significantly decreased H2O2-stimulated insulin secretion and prevented the 4.5-fold increase of cytoplasmic [Ca2+] produced by incubation of dissociated β-cells with H2O2. Addition of stimulatory glucose or H2O2 (in basal glucose) to β-cells disaggregated from islets increased RyR2 S-glutathionylation to similar levels, measured by a proximity ligation assay; in contrast, NAC significantly reduced the RyR2 S-glutathionylation increase produced by stimulatory glucose. We propose that RyR2-mediated Ca2+ release, induced by the concomitant increases in [Ca2+] and ROS produced by stimulatory glucose, is an essential step in GSIS. PMID:26046640

  17. Heterozygous SOD2 deletion impairs glucose-stimulated insulin secretion, but not insulin action, in high-fat-fed mice.

    PubMed

    Kang, Li; Dai, Chunhua; Lustig, Mary E; Bonner, Jeffrey S; Mayes, Wesley H; Mokshagundam, Shilpa; James, Freyja D; Thompson, Courtney S; Lin, Chien-Te; Perry, Christopher G R; Anderson, Ethan J; Neufer, P Darrell; Wasserman, David H; Powers, Alvin C

    2014-11-01

    Elevated reactive oxygen species (ROS) are linked to insulin resistance and islet dysfunction. Manganese superoxide dismutase (SOD2) is a primary defense against mitochondrial oxidative stress. To test the hypothesis that heterozygous SOD2 deletion impairs glucose-stimulated insulin secretion (GSIS) and insulin action, wild-type (sod2(+/+)) and heterozygous knockout mice (sod2(+/-)) were fed a chow or high-fat (HF) diet, which accelerates ROS production. Hyperglycemic (HG) and hyperinsulinemic-euglycemic (HI) clamps were performed to assess GSIS and insulin action in vivo. GSIS during HG clamps was equal in chow-fed sod2(+/-) and sod2(+/+) but was markedly decreased in HF-fed sod2(+/-). Remarkably, this impairment was not paralleled by reduced HG glucose infusion rate (GIR). Decreased GSIS in HF-fed sod2(+/-) was associated with increased ROS, such as superoxide ion. Surprisingly, insulin action determined by HI clamps did not differ between sod2(+/-) and sod2(+/+) of either diet. Since insulin action was unaffected, we hypothesized that the unchanged HG GIR in HF-fed sod2(+/-) was due to increased glucose effectiveness. Increased GLUT-1, hexokinase II, and phospho-AMPK protein in muscle of HF-fed sod2(+/-) support this hypothesis. We conclude that heterozygous SOD2 deletion in mice, a model that mimics SOD2 changes observed in diabetic humans, impairs GSIS in HF-fed mice without affecting insulin action. PMID:24947366

  18. Heterozygous SOD2 Deletion Impairs Glucose-Stimulated Insulin Secretion, but Not Insulin Action, in High-Fat–Fed Mice

    PubMed Central

    Dai, Chunhua; Lustig, Mary E.; Bonner, Jeffrey S.; Mayes, Wesley H.; Mokshagundam, Shilpa; James, Freyja D.; Thompson, Courtney S.; Lin, Chien-Te; Perry, Christopher G.R.; Anderson, Ethan J.; Neufer, P. Darrell; Wasserman, David H.; Powers, Alvin C.

    2014-01-01

    Elevated reactive oxygen species (ROS) are linked to insulin resistance and islet dysfunction. Manganese superoxide dismutase (SOD2) is a primary defense against mitochondrial oxidative stress. To test the hypothesis that heterozygous SOD2 deletion impairs glucose-stimulated insulin secretion (GSIS) and insulin action, wild-type (sod2+/+) and heterozygous knockout mice (sod2+/−) were fed a chow or high-fat (HF) diet, which accelerates ROS production. Hyperglycemic (HG) and hyperinsulinemic-euglycemic (HI) clamps were performed to assess GSIS and insulin action in vivo. GSIS during HG clamps was equal in chow-fed sod2+/− and sod2+/+ but was markedly decreased in HF-fed sod2+/−. Remarkably, this impairment was not paralleled by reduced HG glucose infusion rate (GIR). Decreased GSIS in HF-fed sod2+/− was associated with increased ROS, such as superoxide ion. Surprisingly, insulin action determined by HI clamps did not differ between sod2+/− and sod2+/+ of either diet. Since insulin action was unaffected, we hypothesized that the unchanged HG GIR in HF-fed sod2+/− was due to increased glucose effectiveness. Increased GLUT-1, hexokinase II, and phospho-AMPK protein in muscle of HF-fed sod2+/− support this hypothesis. We conclude that heterozygous SOD2 deletion in mice, a model that mimics SOD2 changes observed in diabetic humans, impairs GSIS in HF-fed mice without affecting insulin action. PMID:24947366

  19. Inhibition of Monoacylglycerol Lipase Activity Decreases Glucose-Stimulated Insulin Secretion in INS-1 (832/13) Cells and Rat Islets

    PubMed Central

    Burritt, Nathan E.; Corkey, Barbara E.; Deeney, Jude T.

    2016-01-01

    Lipid signals derived from lipolysis and membrane phospholipids play an important role in glucose-stimulated insulin secretion (GSIS), though the exact secondary signals remain unclear. Previous reports have documented a stimulatory role of exogenously added mono-acyl-glycerol (MAG) on insulin secretion from cultured β-cells and islets. In this report we have determined effects of increasing intracellular MAG in the β-cell by inhibiting mono-acyl-glycerol lipase (MGL) activity, which catalyzes the final step in triacylglycerol breakdown, namely the hydrolysis of MAG to glycerol and free fatty acid (FA). To determine the role of MGL in GSIS, we used three different pharmacological agents (JZL184, MJN110 and URB602). All three inhibited GSIS and depolarization-induced insulin secretion in INS-1 (832/13). JZL184 significantly inhibited both GSIS and depolarization-induced insulin secretion in rat islets. JZL184 significantly decreased lipolysis and increased both mono- and diacyglycerol species in INS-1 cells. Analysis of the kinetics of GSIS showed that inhibition was greater during the sustained phase of secretion. A similar pattern was observed in the response of Ca2+ to glucose and depolarization but to a lesser degree suggesting that altered Ca2+ handling alone could not explain the reduction in insulin secretion. In addition, a significant reduction in long chain-CoA (LC-CoA) was observed in INS-1 cells at both basal and stimulatory glucose following inhibition of MGL. Our data implicate an important role for MGL in insulin secretion. PMID:26867016

  20. Exercise Intensity Modulates Glucose-Stimulated Insulin Secretion when Adjusted for Adipose, Liver and Skeletal Muscle Insulin Resistance

    PubMed Central

    Malin, Steven K.; Rynders, Corey A.; Weltman, Judy Y.; Barrett, Eugene J.; Weltman, Arthur

    2016-01-01

    Little is known about the effects of exercise intensity on compensatory changes in glucose-stimulated insulin secretion (GSIS) when adjusted for adipose, liver and skeletal muscle insulin resistance (IR). Fifteen participants (8F, Age: 49.9±3.6yr; BMI: 31.0±1.5kg/m2; VO2peak: 23.2±1.2mg/kg/min) with prediabetes (ADA criteria, 75g OGTT and/or HbA1c) underwent a time-course matched Control, and isocaloric (200kcal) exercise at moderate (MIE; at lactate threshold (LT)), and high-intensity (HIE; 75% of difference between LT and VO2peak). A 75g OGTT was conducted 1 hour post-exercise/Control, and plasma glucose, insulin, C-peptide and free fatty acids were determined for calculations of skeletal muscle (1/Oral Minimal Model; SMIR), hepatic (HOMAIR), and adipose (ADIPOSEIR) IR. Insulin secretion rates were determined by deconvolution modeling for GSIS, and disposition index (DI; GSIS/IR; DISMIR, DIHOMAIR, DIADIPOSEIR) calculations. Compared to Control, exercise lowered SMIR independent of intensity (P<0.05), with HIE raising HOMAIR and ADIPOSEIR compared with Control (P<0.05). GSIS was not reduced following exercise, but DIHOMAIR and DIADIPOSEIR were lowered more following HIE compared with Control (P<0.05). However, DISMIR increased in an intensity based manner relative to Control (P<0.05), which corresponded with lower post-prandial blood glucose levels. Taken together, pancreatic insulin secretion adjusts in an exercise intensity dependent manner to match the level of insulin resistance in skeletal muscle, liver and adipose tissue. Further work is warranted to understand the mechanism by which exercise influences the cross-talk between tissues that regulate blood glucose in people with prediabetes. PMID:27111219

  1. p53- and ERK7-Dependent Ribosome Surveillance Response Regulates Drosophila Insulin-Like Peptide Secretion

    PubMed Central

    Hasygar, Kiran; Hietakangas, Ville

    2014-01-01

    Insulin-like signalling is a conserved mechanism that coordinates animal growth and metabolism with nutrient status. In Drosophila, insulin-producing median neurosecretory cells (IPCs) regulate larval growth by secreting insulin-like peptides (dILPs) in a diet-dependent manner. Previous studies have shown that nutrition affects dILP secretion through humoral signals derived from the fat body. Here we uncover a novel mechanism that operates cell autonomously in the IPCs to regulate dILP secretion. We observed that impairment of ribosome biogenesis specifically in the IPCs strongly inhibits dILP secretion, which consequently leads to reduced body size and a delay in larval development. This response is dependent on p53, a known surveillance factor for ribosome biogenesis. A downstream effector of this growth inhibitory response is an atypical MAP kinase ERK7 (ERK8/MAPK15), which is upregulated in the IPCs following impaired ribosome biogenesis as well as starvation. We show that ERK7 is sufficient and essential to inhibit dILP secretion upon impaired ribosome biogenesis, and it acts epistatically to p53. Moreover, we provide evidence that p53 and ERK7 contribute to the inhibition of dILP secretion upon starvation. Thus, we conclude that a cell autonomous ribosome surveillance response, which leads to upregulation of ERK7, inhibits dILP secretion to impede tissue growth under limiting dietary conditions. PMID:25393288

  2. Zip4 Mediated Zinc Influx Stimulates Insulin Secretion in Pancreatic Beta Cells

    PubMed Central

    Hardy, Alexandre B.; Prentice, Kacey J.; Froese, Sean; Liu, Ying; Andrews, Glen K.; Wheeler, Michael B.

    2015-01-01

    Zinc has an important role in normal pancreatic beta cell physiology as it regulates gene transcription, insulin crystallization and secretion, and cell survival. Nevertheless, little is known about how zinc is transported through the plasma membrane of beta cells and which of the class of zinc influx transporters (Zip) is involved. Zip4 was previously shown to be expressed in human and mouse beta cells; however, its function there is still unknown. Therefore, the aim of this study was to define the zinc transport role of Zip4 in beta cells. To investigate this, Zip4 was over-expressed in MIN6 beta cells using a pCMV6-Zip4GFP plasmid. Organelle staining combined with confocal microscopy showed that Zip4 exhibits a widespread localization in MIN6 cells. Time-lapse zinc imaging experiments showed that Zip4 increases cytoplasmic zinc levels. This resulted in increased granular zinc content and glucose-stimulated insulin secretion. Interestingly, it is unlikely that the increased glucose stimulated insulin secretion was triggered by a modulation of mitochondrial function, as mitochondrial membrane potential remained unchanged. To define the role of Zip4 in-vivo, we generated a beta cell-specific knockout mouse model (Zip4BKO). Deletion of the Zip4 gene was confirmed in Zip4BKO islets by PCR, RT-PCR, and immuno-histochemistry. Zip4BKO mice showed slightly improved glucose homeostasis but no change in insulin secretion during an oral glucose tolerance test. While Zip4 was not found to be essential for proper glucose homeostasis and insulin secretion in vivo in mice, this study also found that Zip4 mediates increases in cytoplasmic and granular zinc pools and stimulates glucose dependant insulin secretion in-vitro. PMID:25806541

  3. Regulation of the expression of components of the exocytotic machinery of insulin-secreting cells by microRNAs.

    PubMed

    Lovis, Pascal; Gattesco, Sonia; Regazzi, Romano

    2008-03-01

    Fine-tuning of insulin secretion from pancreatic beta-cells participates in blood glucose homeostasis. Defects in this process can lead to chronic hyperglycemia and diabetes mellitus. Several proteins controlling insulin exocytosis have been identified, but the mechanisms regulating their expression remain poorly understood. Here, we show that two non-coding microRNAs, miR124a and miR96, modulate the expression of proteins involved in insulin exocytosis and affect secretion of the beta-cell line MIN6B1. miR124a increases the levels of SNAP25, Rab3A and synapsin-1A and decreases those of Rab27A and Noc2. Inhibition of Rab27A expression is mediated by direct binding to the 3'-untranslated region of Rab27A mRNA. The effect on the other genes is indirect and linked to changes in mRNA levels. Over-expression of miR124a leads to exaggerated hormone release under basal conditions and a reduction in glucose-induced secretion. miR96 increases mRNA and protein levels of granuphilin, a negative modulator of insulin exocytosis, and decreases the expression of Noc2, resulting in lower capacity of MIN6B1 cells to respond to secretagogues. Our data identify miR124a and miR96 as novel regulators of the expression of proteins playing a critical role in insulin exocytosis and in the release of other hormones and neurotransmitters. PMID:18177263

  4. Drp1 guarding of the mitochondrial network is important for glucose-stimulated insulin secretion in pancreatic beta cells.

    PubMed

    Reinhardt, Florian; Schultz, Julia; Waterstradt, Rica; Baltrusch, Simone

    2016-06-10

    Mitochondria form a tubular network in mammalian cells, and the mitochondrial life cycle is determined by fission, fusion and autophagy. Dynamin-related protein 1 (Drp1) has a pivotal role in these processes because it alone is able to constrict mitochondria. However, the regulation and function of Drp1 have been shown to vary between cell types. Mitochondrial morphology affects mitochondrial metabolism and function. In pancreatic beta cells mitochondrial metabolism is a key component of the glucose-induced cascade of insulin secretion. The goal of the present study was to investigate the action of Drp1 in pancreatic beta cells. For this purpose Drp1 was down-regulated by means of shDrp1 in insulin-secreting INS1 cells and mouse pancreatic islets. In INS1 cells reduced Drp1 expression resulted in diminished expression of proteins regulating mitochondrial fusion, namely mitofusin 1 and 2, and optic atrophy protein 1. Diminished mitochondrial dynamics can therefore be assumed. After down-regulation of Drp1 in INS1 cells and spread mouse islets the initially homogenous mitochondrial network characterised by a moderate level of interconnections shifted towards high heterogeneity with elongated, clustered and looped mitochondria. These morphological changes were found to correlate directly with functional alterations. Mitochondrial membrane potential and ATP generation were significantly reduced in INS1 cells after Drp1down-regulation. Finally, a significant loss of glucose-stimulated insulin secretion was demonstrated in INS1 cells and mouse pancreatic islets. In conclusion, Drp1 expression is important in pancreatic beta cells to maintain the regulation of insulin secretion. PMID:27154223

  5. Kin of IRRE-like Protein 2 Is a Phosphorylated Glycoprotein That Regulates Basal Insulin Secretion.

    PubMed

    Yesildag, Burcak; Bock, Thomas; Herrmanns, Karolin; Wollscheid, Bernd; Stoffel, Markus

    2015-10-23

    Direct interactions among pancreatic β-cells via cell surface proteins inhibit basal and enhance stimulated insulin secretion. Here, we functionally and biochemically characterized Kirrel2, an immunoglobulin superfamily protein with β-cell-specific expression in the pancreas. Our results show that Kirrel2 is a phosphorylated glycoprotein that co-localizes and interacts with the adherens junction proteins E-cadherin and β-catenin in MIN6 cells. We further demonstrate that the phosphosites Tyr(595-596) are functionally relevant for the regulation of Kirrel2 stability and localization. Analysis of the extracellular and intracellular domains of Kirrel2 revealed that it is cleaved and shed from MIN6 cells and that the remaining membrane spanning cytoplasmic domain is processed by γ-secretase complex. Kirrel2 knockdown with RNA interference in MIN6 cells and ablation of Kirrel2 from mice with genetic deletion resulted in increased basal insulin secretion from β-cells, with no immediate influence on stimulated insulin secretion, total insulin content, or whole body glucose metabolism. Our results show that in pancreatic β-cells Kirrel2 localizes to adherens junctions, is regulated by multiple post-translational events, including glycosylation, extracellular cleavage, and phosphorylation, and engages in the regulation of basal insulin secretion. PMID:26324709

  6. Saponins from the traditional medicinal plant Momordica charantia stimulate insulin secretion in vitro

    PubMed Central

    Keller, Amy C.; Ma, Jun; Kavalier, Adam; He, Kan; Brillantes, Anne-Marie B.; Kennelly, Edward J.

    2012-01-01

    The antidiabetic activity of Momordica charantia (L.), Cucurbitaceae, a widely-used treatment for diabetes in a number of traditional medicine systems, was investigated in vitro. Antidiabetic activity has been reported for certain saponins isolated from M. charantia. In this study insulin secretion was measured in MIN6 β-cells incubated with an ethanol extract, saponin-rich fraction, and five purified saponins and cucurbitane triterpenoids from M. charantia, 3β,7β,25-trihydroxycucurbita-5,23(E)-dien-19-al (1), momordicine I (2), momordicine II (3), 3-hydroxycucurbita-5,24-dien-19-al-7,23-di-O-β-glucopyranoside (4), and kuguaglycoside G (5). Treatments were compared to incubation with high glucose (27 mM) and the insulin secretagogue, glipizide (50 μM). At 125 μg/ml, an LC-ToF-MS characterized saponin-rich fraction stimulated insulin secretion significantly more than the DMSO vehicle, p=0.02. At concentrations 10 and 25 μg/ml, compounds 3 and 5 also significantly stimulated insulin secretion as compared to the vehicle, p≤0.007, and p= 0.002, respectively. This is the first report of a saponin-rich fraction, and isolated compounds from M. charantia, stimulating insulin secretion in an in vitro, static incubation assay. PMID:22133295

  7. Pseudoislet formation enhances gene expression, insulin secretion and cytoprotective mechanisms of clonal human insulin-secreting 1.1B4 cells.

    PubMed

    Green, Alastair D; Vasu, Srividya; McClenaghan, Neville H; Flatt, Peter R

    2015-10-01

    We have studied the effects of cell communication on human beta cell function and resistance to cytotoxicity using the novel human insulin-secreting cell line 1.1B4 configured as monolayers and pseudoislets. Incubation with the incretin gut hormones GLP-1 and GIP caused dose-dependent stimulation of insulin secretion from 1.1B4 cell monolayers and pseudoislets. The secretory responses were 1.5-2.7-fold greater than monolayers. Cell viability (MTT), DNA damage (comet assay) and apoptosis (acridine orange/ethidium bromide staining) were investigated following 2-h exposure of 1.1B4 monolayers and pseudoislets to ninhydrin, H2O2, streptozotocin, glucose, palmitate or cocktails of proinflammatory cytokines. All agents tested decreased viability and increased DNA damage and apoptosis in both 1.1B4 monolayers and pseudoislets. However, pseudoislets exhibited significantly greater resistance to cytotoxicity (1.5-2.7-fold increases in LD50) and lower levels of DNA damage (1.3-3.4-fold differences in percentage tail DNA and olive tail moment) and apoptosis (1.3-1.5-fold difference) compared to monolayers. Measurement of gene expression by reverse-transcription, real-time PCR showed that genes involved with insulin secretion (INS, PDX1, PCSK1, PCSK2, GLP1R and GIPR), cell-cell communication (GJD2, GJA1 and CDH1) and antioxidant defence (SOD1, SOD2, GPX1 and CAT) were significantly upregulated in pseudoislets compared to monolayers, whilst the expression of proapoptotic genes (NOS2, MAPK8, MAPK10 and NFKB1) showed no significant differences. In summary, these data indicate cell-communication associated with three-dimensional islet architecture is important both for effective insulin secretion and for protection of human beta cells against cytotoxicity. PMID:25559846

  8. A New Method for Generating Insulin-Secreting Cells from Human Pancreatic Epithelial Cells After Islet Isolation Transformed by NeuroD1

    PubMed Central

    Shimoda, Masayuki; Chen, Shuyuan; Noguchi, Hirofumi; Takita, Morihito; Sugimoto, Koji; Itoh, Takeshi; Chujo, Daisuke; Iwahashi, Shuichi; Naziruddin, Bashoo; Levy, Marlon F.

    2014-01-01

    Abstract The generation of insulin-secreting cells from nonendocrine pancreatic epithelial cells (NEPEC) has been demonstrated for potential clinical use in the treatment of diabetes. However, previous methods either had limited efficacy or required viral vectors, which hinder clinical application. In this study, we aimed to establish an efficient method of insulin-secreting cell generation from NEPEC without viral vectors. We used nonislet fractions from both research-grade human pancreata from brain-dead donors and clinical pancreata after total pancreatectomy with autologous islet transplantation to treat chronic pancreatitis. It is of note that a few islets could be mingled in the nonislet fractions, but their influence could be limited. The NeuroD1 gene was induced into NEPEC using an effective triple lipofection method without viral vectors to generate insulin-secreting cells. The differentiation was promoted by adding a growth factor cocktail into the culture medium. Using the research-grade human pancreata, the effective method showed high efficacy in the differentiation of NEPEC into insulin-positive cells that secreted insulin in response to a glucose challenge and improved diabetes after being transplanted into diabetic athymic mice. Using the clinical pancreata, similar efficacy was obtained, even though those pancreata suffered chronic pancreatitis. In conclusion, our effective differentiation protocol with triple lipofection method enabled us to achieve very efficient insulin-secreting cell generation from human NEPEC without viral vectors. This method offers the potential for supplemental insulin-secreting cell transplantation for both allogeneic and autologous islet transplantation. PMID:24845703

  9. Inhibition of voltage-gated potassium channels mediates uncarboxylated osteocalcin-regulated insulin secretion in rat pancreatic β cells.

    PubMed

    Gao, Jingying; Zhong, Xiangqin; Ding, Yaqin; Bai, Tao; Wang, Hui; Wu, Hongbin; Liu, Yunfeng; Yang, Jing; Zhang, Yi

    2016-04-15

    Insulin secretion from pancreatic β cells is important to maintain glucose homeostasis and is regulated by electrical activities. Uncarboxylated osteocalcin, a bone-derived protein, has been reported to regulate glucose metabolism by increasing insulin secretion, stimulating β cell proliferation and improving insulin sensitivity. But the underlying mechanisms of uncarboxylated osteocalcin-modulated insulin secretion remain unclear. In the present study, we investigated the relationship of uncarboxylated osteocalcin-regulated insulin secretion and voltage-gated potassium (KV) channels, voltage-gated calcium channels in rat β cells. Insulin secretion was measured by radioimmunoassay. Channel currents and membrane action potentials were recorded using the conventional whole-cell patch-clamp technique. Calcium imaging system was used to analyze intracellular Ca(2+) concentration ([Ca(2+)]i). The data show that under 16.7mmol/l glucose conditions uncarboxylated osteocalcin alone increased insulin secretion and [Ca(2+)]i, but with no such effects on insulin secretion and [Ca(2+)]i in the presence of a KV channel blocker, tetraethylammonium chloride. In the patch-clamp experiments, uncarboxylated osteocalcin lengthened action potential duration and significantly inhibited KV currents, but had no influence on the characteristics of voltage-gated calcium channels. These results indicate that KV channels are involved in uncarboxylated osteocalcin-regulated insulin secretion in rat pancreatic β cells. By inhibiting KV channels, uncarboxylated osteocalcin prolongs action potential duration, increases intracellular Ca(2+) concentration and finally promotes insulin secretion. This finding provides new insight into the mechanisms of osteocalcin-modulated insulin secretion. PMID:26927753

  10. Does adrenergic activity suppress insulin secretion during surgery? A clinical experiment with halothane anesthesia.

    PubMed Central

    Aärimaa, M; Syvälahti, E; Ovaska, J

    1978-01-01

    Peroperative inhibition of insulin release is widely attributed to increased alpha-adrenergic activity. To test this hypothesis serum insulin and glucose concentrations were measured at short intervals in 11 patients who underwent major surgery. Five patients were anesthetized with halothane and six with general anesthesia without halothane. The results were similar in both patient groups; halothane had no effect on insulin. This suggests that suppression of insulin under operations is probably not due to activation of the alpha-adrenergic receptors of the pancreatic beta-cells. The authors propose that suppression of insulin secretion during surgery may be caused by adrenaline, which, in competing for the glucose receptors, insensitizes the pancreatic beta-cells. PMID:202205

  11. Loss of regular oscillatory insulin secretion in islet cell antibody positive non-diabetic subjects.

    PubMed

    Bingley, P J; Matthews, D R; Williams, A J; Bottazzo, G F; Gale, E A

    1992-01-01

    Basal insulin secretion was compared in nine islet-cell antibody positive, non-diabetic first-degree relatives of children with Type 1 (insulin-dependent) diabetes mellitus and nine normal control subjects matched for age, sex and weight. Acute insulin responses to a 25 g intravenous glucose tolerance test were similar in the two groups (243 (198-229) vs 329 (285-380) mU.l-1 x 10 min-1, mean (+/- SE), p = 0.25). Fasting plasma insulin was assayed in venous samples taken at one min intervals for 2 h. Time series analysis was used to demonstrate oscillatory patterns in plasma insulin. Autocorrelation showed that regular oscillatory activity was generally absent in the islet-cell antibody-positive group, whereas a regular 13 min cycle was shown in control subjects (p less than 0.0001). Fourier transformation did, however, show a 13 min spectral peak in the islet-cell antibody positive group, consistent with intermittent pulsatility. We conclude that overall oscillatory patterns of basal insulin secretion are altered in islet-cell antibody positive subjects even when the acute insulin response is within the normal range. PMID:1541379

  12. Relationships between insulin secretion, insulin action, and fasting plasma glucose concentration in nondiabetic and noninsulin-dependent diabetic subjects.

    PubMed Central

    Bogardus, C; Lillioja, S; Howard, B V; Reaven, G; Mott, D

    1984-01-01

    The relationships between insulin secretion, insulin action, and fasting plasma glucose concentration (FPG) were examined in 34 southwest American Indians (19 nondiabetics, 15 noninsulin-dependent diabetics) who had a broad range of FPG (88-310 mg/100 ml). Fasting, glucose-stimulated, and meal-stimulated plasma insulin concentrations were negatively correlated with FPG in diabetics but not in nondiabetics. In contrast, fasting and glucose-stimulated plasma C-peptide concentrations did not decrease with increasing FPG in either group and 24-h urinary C-peptide excretion during a diet of mixed composition was positively correlated with FPG for all subjects (r = 0.36, P less than 0.05). Fasting free fatty acid (FFA) was correlated with FPG in nondiabetics (r = 0.49, P less than 0.05) and diabetics (r = 0.77, P less than 0.001). Fasting FFA was also correlated with the isotopically determined endogenous glucose production rate in the diabetics (r = 0.54, P less than 0.05). Endogenous glucose production was strongly correlated with FPG in the diabetics (r = 0.90, P less than 0.0001), but not in the nondiabetics. Indirect calorimetry showed that FPG was also negatively correlated with basal glucose oxidation rates (r = -0.61, P less than 0.001), but positively with lipid oxidation (r = 0.74, P less than 0.001) in the diabetics. Insulin action was measured as total insulin-mediated glucose disposal, glucose oxidation, and storage rates, using the euglycemic clamp with simultaneous indirect calorimetry at plasma insulin concentrations of 135 +/- 5 and 1738 +/- 59 microU/ml. These parameters of insulin action were significantly, negatively correlated with FPG in the nondiabetics at both insulin concentrations, but not in the diabetics although all the diabetics had markedly decreased insulin action. We conclude that decreased insulin action is present in the noninsulin-dependent diabetics in this population and marked hyperglycemia occurs with the addition of decreased

  13. Human pituitary and placental hormones control human insulin-like growth factor II secretion in human granulosa cells

    SciTech Connect

    Ramasharma, K.; Li, C.H.

    1987-05-01

    Human granulosa cells cultured with calf serum actively proliferated for 18-20 generations and secreted progesterone into the medium; progesterone levels appeared to decline with increase in generation number. Cells cultured under serum-free conditions secreted significant amounts of progesterone and insulin-like growth factor II (IGF-II). The progesterone secretion was enhanced by the addition of human follitropin, lutropin, and chorionic gonadotropin but not by growth hormone. These cells, when challenged to varying concentrations of human growth hormone, human chorionic somatomammotropin, human prolactin, chorionic gonadotropin, follitropin, and lutropin, secreted IGF-II into the medium as measured by specific IGF-II RIA. Among these human hormones, chorionic gonadotropin, follitropin, and lutropin were most effective in inducing IGF-II secretion from these cells. When synthetic lutropin-releasing hormone and ..cap alpha..-inhibin-92 were tested, only lutropin-releasing hormone was effective in releasing IGF-II. The results described suggest that cultured human granulosa cells can proliferate and actively secrete progesterone and IGF-II into the medium. IGF-II production in human granulosa cells was influenced by a multi-hormonal complex including human growth hormone, human chorionic somatomammotropin, and prolactin.

  14. A peroxiredoxin, PRDX-2, is required for insulin secretion and insulin/IIS-dependent regulation of stress resistance and longevity.

    PubMed

    Oláhová, Monika; Veal, Elizabeth A

    2015-08-01

    Peroxiredoxins (Prx) are abundant thiol peroxidases with a conserved anti-ageing role. In contrast to most animals, the nematode worm, Caenorhabditis elegans, encodes a single cytosolic 2-Cys Prx, PRDX-2, rendering it an excellent model for examining how peroxiredoxins affect animal physiology and ageing. Our previous work revealed that, although PRDX-2 protects against the toxicity of peroxides, enigmatically, prdx-2-mutant animals are hyper-resistant to other forms of oxidative stress. Here, we have investigated the basis for this increased resistance. Mammalian FOXO and Nrf2 transcription factors directly promote the expression of a range of detoxification enzymes. We show that the FOXO orthologue, DAF-16, and the Nrf2 orthologue, SKN-1, are required for the increased stress resistance of prdx-2-mutant worms. Our data suggest that PRDX-2 is required for normal levels of insulin secretion and hence the inhibition of DAF-16 and SKN-1 by insulin/IGF-1-like signalling (IIS) under nutrient-rich conditions. Intriguingly, loss of PRDX-2 increases DAF-16 and SKN-1 activities sufficiently to increase arsenite resistance without initiating other IIS-inhibited processes. Together, these data suggest that loss of peroxiredoxin function may increase stress resistance by reducing insulin secretion, but that further changes in insulin signalling are required for the reprogramming of development and fat metabolism. In addition, we reveal that the temperature-dependent prolongevity function of PRDX-2 is required for the extended lifespan associated with several pathways, including further reductions in IIS. PMID:25808059

  15. Imaging dynamic insulin release using a fluorescent zinc indicator for monitoring induced exocytotic release (ZIMIR).

    PubMed

    Li, Daliang; Chen, Shiuhwei; Bellomo, Elisa A; Tarasov, Andrei I; Kaut, Callan; Rutter, Guy A; Li, Wen-hong

    2011-12-27

    Current methods of monitoring insulin secretion lack the required spatial and temporal resolution to adequately map the dynamics of exocytosis of native insulin granules in intact cell populations in three dimensions. Exploiting the fact that insulin granules contain a high level of Zn(2+), and that Zn(2+) is coreleased with insulin during secretion, we have developed a fluorescent, cell surface-targeted zinc indicator for monitoring induced exocytotic release (ZIMIR). ZIMIR displayed a robust fluorescence enhancement on Zn(2+) chelation and bound Zn(2+) with high selectivity against Ca(2+) and Mg(2+). When added to cultured β cells or intact pancreatic islets at low micromolar concentrations, ZIMIR labeled cells rapidly, noninvasively, and stably, and it reliably reported changes in Zn(2+) concentration near the sites of granule fusion with high sensitivity that correlated well with membrane capacitance measurement. Fluorescence imaging of ZIMIR-labeled β cells followed the dynamics of exocytotic activity at subcellular resolution, even when using simple epifluorescence microscopy, and located the chief sites of insulin release to intercellular junctions. Moreover, ZIMIR imaging of intact rat islets revealed that Zn(2+)/insulin release occurred largely in small groups of adjacent β cells, with each forming a "secretory unit." Concurrent imaging of ZIMIR and Fura-2 showed that the amplitude of cytosolic Ca(2+) elevation did not necessarily correlate with insulin secretion activity, suggesting that events downstream of Ca(2+) signaling underlie the cell-cell heterogeneity in insulin release. In addition to studying stimulation-secretion coupling in cells with Zn(2+)-containing granules, ZIMIR may find applications in β-cell engineering and screening for molecules regulating insulin secretion on high-throughput platforms. PMID:22160693

  16. Activation of transmembrane bile acid receptor TGR5 stimulates insulin secretion in pancreatic {beta} cells

    SciTech Connect

    Kumar, Divya P.; Rajagopal, Senthilkumar; Mahavadi, Sunila; Mirshahi, Faridoddin; Grider, John R.; Murthy, Karnam S.; Sanyal, Arun J.

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer G protein coupled receptor TGR5 is expressed in mouse and human islets. Black-Right-Pointing-Pointer TGR5 is coupled to activation of Gs and Ca{sup 2+} release via cAMP/Epac/PLC-{epsilon} pathway. Black-Right-Pointing-Pointer Activation of TGR5 by bile salts and selective ligands causes insulin secretion. Black-Right-Pointing-Pointer TGR5 could be a potential therapeutic target to treat diabetes. -- Abstract: Bile acids act as signaling molecules and stimulate the G protein coupled receptor, TGR5, in addition to nuclear farnesoid X receptor to regulate lipid, glucose and energy metabolism. Bile acid induced activation of TGR5 in the enteroendocrine cells promotes glucagon like peptide-1 (GLP-1) release, which has insulinotropic effect in the pancreatic {beta} cells. In the present study, we have identified the expression of TGR5 in pancreatic {beta} cell line MIN6 and also in mouse and human pancreatic islets. TGR5 selective ligands, oleanolic acid (OA) and INT-777 selectively activated G{alpha}{sub s} and caused an increase in intracellular cAMP and Ca{sup 2+}. OA and INT-777 also increased phosphoinositide (PI) hydrolysis and the increase was blocked by NF449 (a selective G{alpha}{sub s} inhibitor) or (U73122) (PI hydrolysis inhibitor). OA, INT-777 and lithocholic acid increased insulin release in MIN6 and human islets and the increase was inhibited by treatment with NF449, (U73122) or BAPTA-AM (chelator of calcium), but not with myristoylated PKI (PKA inhibitor), suggesting that the release is dependent on G{sub s}/cAMP/Ca{sup 2+} pathway. 8-pCPT-2 Prime -O-Me-cAMP, a cAMP analog, which activates Epac, but not PKA also stimulated PI hydrolysis. In conclusion, our study demonstrates that the TGR5 expressed in the pancreatic {beta} cells regulates insulin secretion and highlights the importance of ongoing therapeutic strategies targeting TGR5 in the control of glucose homeostasis.

  17. Central resistance to the inhibitory effects of leptin on stimulated insulin secretion with aging.

    PubMed

    Muzumdar, Radhika H; Ma, Xiaohui; Yang, Xiaoman; Atzmon, Gil; Barzilai, Nir

    2006-09-01

    Aging is associated with resistance to the effects of leptin on food intake and energy homeostasis. We examined if old rats were resistant to the effects of leptin on glucose stimulated insulin secretion. When leptin was infused intravenously (0.5 microg/kg/min) under hyperglycemic clamp conditions (11 mM) in young (n=5) and old rats (n=10, 5 ad libitum fed and five with surgical removal of visceral fat), glucose stimulated insulin secretion was significantly decreased by 44% in the young rats, but not in old rats (31.8+/-2.8 to 17.9+/-1.0 versus 33.7+/-1.4 versus 31.0+/-1.7 and 24.7+/-1.6 versus 21.0+/-2.8 in young versus old versus old VF- respectively, p<0.01). To identify if the resistance to leptin is secondary to impaired transport across the blood brain barrier (BBB), we infused leptin into the third ventricle (intra-cerebro ventricular, ICV). ICV infusion of leptin elicited a partial effect on glucose stimulated insulin secretion in the old (25.7+/-2.5 to 15.4+/-2.4 versus 24.4+/-2.4 to 19.0+/-2.0 in young versus old, respectively) suggesting that part of the leptin resistance was beyond the BBB. Resistance to the effects of leptin on insulin secretion in aging may protect against the onset of diabetes in old subjects. PMID:16122839

  18. Blockade of cannabinoid 1 receptor improves GLP-1R mediated insulin secretion in mice.

    PubMed

    González-Mariscal, Isabel; Krzysik-Walker, Susan M; Kim, Wook; Rouse, Michael; Egan, Josephine M

    2016-03-01

    The cannabinoid 1 receptor (CB1) is an important regulator of energy metabolism. Reports of in vivo and in vitro studies give conflicting results regarding its role in insulin secretion, possibly due to circulatory factors, such as incretins. We hypothesized that this receptor may be a regulator of the entero-insular axis. We found that despite lower food consumption and lower body weight postprandial GLP-1 plasma concentrations were increased in CB1(-/-) mice compared to CB1(+/+) mice administered a standard diet or high fat/sugar diet. Upon exogenous GLP-1 treatment, CB1(-/-) mice had increased glucose-stimulated insulin secretion. In mouse insulinoma cells, cannabinoids reduced GLP-1R-mediated intracellular cAMP accumulation and subsequent insulin secretion. Importantly, such effects were also evident in human islets, and were prevented by pharmacologic blockade of CB1. Collectively, these findings suggest a novel mechanism in which endocannabinoids are negative modulators of incretin-mediated insulin secretion. PMID:26724516

  19. Essential Role of Mitochondrial Ca2+ Uniporter in the Generation of Mitochondrial pH Gradient and Metabolism-Secretion Coupling in Insulin-releasing Cells*

    PubMed Central

    Quan, Xianglan; Nguyen, Tuyet Thi; Choi, Seong-Kyung; Xu, Shanhua; Das, Ranjan; Cha, Seung-Kuy; Kim, Nari; Han, Jin; Wiederkehr, Andreas; Wollheim, Claes B.; Park, Kyu-Sang

    2015-01-01

    In pancreatic β-cells, ATP acts as a signaling molecule initiating plasma membrane electrical activity linked to Ca2+ influx, which triggers insulin exocytosis. The mitochondrial Ca2+ uniporter (MCU) mediates Ca2+ uptake into the organelle, where energy metabolism is further stimulated for sustained second phase insulin secretion. Here, we have studied the contribution of the MCU to the regulation of oxidative phosphorylation and metabolism-secretion coupling in intact and permeabilized clonal β-cells as well as rat pancreatic islets. Knockdown of MCU with siRNA transfection blunted matrix Ca2+ rises, decreased nutrient-stimulated ATP production as well as insulin secretion. Furthermore, MCU knockdown lowered the expression of respiratory chain complexes, mitochondrial metabolic activity, and oxygen consumption. The pH gradient formed across the inner mitochondrial membrane following nutrient stimulation was markedly lowered in MCU-silenced cells. In contrast, nutrient-induced hyperpolarization of the electrical gradient was not altered. In permeabilized cells, knockdown of MCU ablated matrix acidification in response to extramitochondrial Ca2+. Suppression of the putative Ca2+/H+ antiporter leucine zipper-EF hand-containing transmembrane protein 1 (LETM1) also abolished Ca2+-induced matrix acidification. These results demonstrate that MCU-mediated Ca2+ uptake is essential to establish a nutrient-induced mitochondrial pH gradient which is critical for sustained ATP synthesis and metabolism-secretion coupling in insulin-releasing cells. PMID:25548283

  20. Essential role of mitochondrial Ca2+ uniporter in the generation of mitochondrial pH gradient and metabolism-secretion coupling in insulin-releasing cells.

    PubMed

    Quan, Xianglan; Nguyen, Tuyet Thi; Choi, Seong-Kyung; Xu, Shanhua; Das, Ranjan; Cha, Seung-Kuy; Kim, Nari; Han, Jin; Wiederkehr, Andreas; Wollheim, Claes B; Park, Kyu-Sang

    2015-02-13

    In pancreatic β-cells, ATP acts as a signaling molecule initiating plasma membrane electrical activity linked to Ca(2+) influx, which triggers insulin exocytosis. The mitochondrial Ca(2+) uniporter (MCU) mediates Ca(2+) uptake into the organelle, where energy metabolism is further stimulated for sustained second phase insulin secretion. Here, we have studied the contribution of the MCU to the regulation of oxidative phosphorylation and metabolism-secretion coupling in intact and permeabilized clonal β-cells as well as rat pancreatic islets. Knockdown of MCU with siRNA transfection blunted matrix Ca(2+) rises, decreased nutrient-stimulated ATP production as well as insulin secretion. Furthermore, MCU knockdown lowered the expression of respiratory chain complexes, mitochondrial metabolic activity, and oxygen consumption. The pH gradient formed across the inner mitochondrial membrane following nutrient stimulation was markedly lowered in MCU-silenced cells. In contrast, nutrient-induced hyperpolarization of the electrical gradient was not altered. In permeabilized cells, knockdown of MCU ablated matrix acidification in response to extramitochondrial Ca(2+). Suppression of the putative Ca(2+)/H(+) antiporter leucine zipper-EF hand-containing transmembrane protein 1 (LETM1) also abolished Ca(2+)-induced matrix acidification. These results demonstrate that MCU-mediated Ca(2+) uptake is essential to establish a nutrient-induced mitochondrial pH gradient which is critical for sustained ATP synthesis and metabolism-secretion coupling in insulin-releasing cells. PMID:25548283

  1. RFamide peptides 43RFa and 26RFa both promote survival of pancreatic β-cells and human pancreatic islets but exert opposite effects on insulin secretion.

    PubMed

    Granata, Riccarda; Settanni, Fabio; Trovato, Letizia; Gallo, Davide; Gesmundo, Iacopo; Nano, Rita; Gallo, Maria Pia; Bergandi, Loredana; Volante, Marco; Alloatti, Giuseppe; Piemonti, Lorenzo; Leprince, Jérôme; Papotti, Mauro; Vaudry, Hubert; Ong, Huy; Ghigo, Ezio

    2014-07-01

    RFamide peptides 43RFa and 26RFa have been shown to promote food intake and to exert different peripheral actions through G-protein-coupled receptor 103 (GPR103) binding. Moreover, 26RFa was found to inhibit pancreatic insulin secretion, whereas the role of 43RFa on β-cell function is unknown, as well as the effects of both peptides on β-cell survival. Herein, we investigated the effects of 43RFa and 26RFa on survival and apoptosis of pancreatic β-cells and human pancreatic islets. In addition, we explored the role of these peptides on insulin secretion and the underlying signaling mechanisms. Our results show that in INS-1E β-cells and human pancreatic islets both 43RFa and 26RFa prevented cell death and apoptosis induced by serum starvation, cytokine synergism, and glucolipotoxicity, through phosphatidylinositol 3-kinase/Akt- and extracellular signal-related kinase 1/2-mediated signaling. Moreover, 43RFa promoted, whereas 26RFa inhibited, glucose- and exendin-4-induced insulin secretion, through Gαs and Gαi/o proteins, respectively. Inhibition of GPR103 expression by small interfering RNA blocked 43RFa insulinotropic effect, but not the insulinostatic action of 26RFa. Finally, 43RFa, but not 26RFa, induced cAMP increase and glucose uptake. In conclusion, because of their survival effects along with the effects on insulin secretion, these findings suggest potential for 43RFa and 26RFa as therapeutic targets in the treatment of diabetes. PMID:24622796

  2. Adenovirus-mediated overexpression of liver carnitine palmitoyltransferase I in INS1E cells: effects on cell metabolism and insulin secretion.

    PubMed Central

    Rubí, Blanca; Antinozzi, Peter A; Herrero, Laura; Ishihara, Hisamitsu; Asins, Guillermina; Serra, Dolors; Wollheim, Claes B; Maechler, Pierre; Hegardt, Fausto G

    2002-01-01

    Lipid metabolism in the beta-cell is critical for the regulation of insulin secretion. Pancreatic beta-cells chronically exposed to fatty acids show higher carnitine palmitoyltransferase I (CPT I) protein levels, higher palmitate oxidation rates and an altered insulin response to glucose. We examined the effect of increasing CPT I levels on insulin secretion in cultured beta-cells. We prepared a recombinant adenovirus containing the cDNA for the rat liver isoform of CPT I. The overexpression of CPT I in INS1E cells caused a more than a 5-fold increase in the levels of CPT I protein (detected by Western blotting), a 6-fold increase in the CPT activity, and an increase in fatty acid oxidation at 2.5 mM glucose (1.7-fold) and 15 mM glucose (3.1-fold). Insulin secretion was stimulated in control cells by 15 mM glucose or 30 mM KCl. INS1E cells overexpressing CPT I showed lower insulin secretion on stimulation with 15 mM glucose (-40%; P<0.05). This decrease depended on CPT I activity, since the presence of etomoxir, a specific inhibitor of CPT I, in the preincubation medium normalized the CPT I activity, the fatty-acid oxidation rate and the insulin secretion in response to glucose. Exogenous palmitate (0.25 mM) rescued glucose-stimulated insulin secretion (GSIS) in CPT I-overexpressing cells, indicating that the mechanism of impaired GSIS was through the depletion of a critical lipid. Depolarizing the cells with KCl or intermediary glucose concentrations (7.5 mM) elicited similar insulin secretion in control cells and cells overexpressing CPT I. Glucose-induced ATP increase, glucose metabolism and the triacylglycerol content remained unchanged. These results provide further evidence that CPT I activity regulates insulin secretion in the beta-cell. They also indicate that up-regulation of CPT I contributes to the loss of response to high glucose in beta-cells exposed to fatty acids. PMID:11988095

  3. Ex vivo generation of glucose sensitive insulin secreting mesenchymal stem cells derived from human adipose tissue

    PubMed Central

    Dave, Shruti D.; Vanikar, Aruna V.; Trivedi, Hargovind L

    2012-01-01

    Background: Diabetics are incapable of producing insulin/have autoimmune mechanisms making it ineffective to control glucose secretion. We present a prospective study of glucose-sensitive insulin-secreting mesenchymal stem cells (IS-MSC) generated from human adipose tissue (h-AD) sans xenogenic material. Materials and Methods: Ten grams h-AD from donor anterior abdominal wall was collected in proliferation medium composed of α-Minimum Essential Media (α-MEM), albumin, fibroblast-growth factor and antibiotics, minced, incubated in collagenase-I at 37°C with shaker and centrifuged. Supernatant and pellets were separately cultured in proliferation medium on cell+ plates at 37°C with 5% CO2 for 10 days. Cells were harvested by trypsinization, checked for viability, sterility, counts, flow-cytometry (CD45-/90+/73+), and differentiated into insulin-expressing cells using medium composed of DMEM, gene expressing up-regulators and antibiotics for 3 days. They were studied for transcriptional factors Pax-6, Isl-1, pdx-1 (immunofluorescence). C-peptide and insulin were measured by chemiluminescence. In vitro glucose sensitivity assay was carried out by measuring levels of insulin and C-peptide secretion in absence of glucose followed by 2 hours incubation after glucose addition. Results: Mean IS-AD-MSC quantum was 3.21 ml, cell count, 1.5 ×103 cells/μl), CD45-/90+/73+ cells were 44.37% /25.52%. All of them showed presence of pax-6, pdx-1, and Isl-1. Mean C-Peptide and insulin levels were 0.36 ng/ml and 234 μU/ml, respectively, pre-glucose and 0.87 ng/ml and 618.3 μU/ml post-glucose additions. The mean rise in secretion levels was 2.42 and 2.65 fold, respectively. Conclusion: Insulin-secreting h-AD-MSC can be generated safely and effectively showing in vitro glucose responsive alteration in insulin and C-peptide secretion levels. PMID:22701849

  4. α/β-Hydrolase domain-6 and saturated long chain monoacylglycerol regulate insulin secretion promoted by both fuel and non-fuel stimuli

    PubMed Central

    Zhao, Shangang; Poursharifi, Pegah; Mugabo, Yves; Levens, Emily J.; Vivot, Kevin; Attane, Camille; Iglesias, Jose; Peyot, Marie-line; Joly, Erik; Madiraju, S.R. Murthy; Prentki, Marc

    2015-01-01

    Objective α/β-Hydrolase domain-6 (ABHD6) is a newly identified monoacylglycerol (MAG) lipase. We recently reported that it negatively regulates glucose stimulated insulin secretion (GSIS) in the β cells by hydrolyzing lipolysis-derived MAG that acts as a metabolic coupling factor and signaling molecule via exocytotic regulator Munc13-1. Whether ABHD6 and MAG play a role in response to all classes of insulin secretagogues, in particular various fuel and non-fuel stimuli, is unknown. Methods Insulin secretion in response to various classes of secretagogues, exogenous MAG and pharmacological agents was measured in islets of mice deficient in ABHD6 specifically in the β cell (BKO). Islet perifusion experiments and determinations of glucose and fatty acid metabolism, cytosolic Ca2+ and MAG species levels were carried out. Results Deletion of ABHD6 potentiated insulin secretion in response to the fuels glutamine plus leucine and α-ketoisocaproate and to the non-fuel stimuli glucagon-like peptide 1, carbamylcholine and elevated KCl. Fatty acids amplified GSIS in control and BKO mice to the same extent. Exogenous 1-MAG amplified insulin secretion in response to fuel and non-fuel stimuli. MAG hydrolysis activity was greatly reduced in BKO islets without changes in total diacylglycerol and triacylglycerol lipase activity. ABHD6 deletion induced insulin secretion independently from KATP channels and did not alter the glucose induced rise in intracellular Ca2+. Perifusion studies showed elevated insulin secretion during second phase of GSIS in BKO islets that was not due to altered cytosolic Ca2+ signaling or because of changes in glucose and fatty acid metabolism. Glucose increased islet saturated long chain 1-MAG species and ABHD6 deletion caused accumulation of these 1-MAG species at both low and elevated glucose. Conclusion ABHD6 regulates insulin secretion in response to fuel stimuli at large and some non-fuel stimuli by controlling long chain saturated 1-MAG levels

  5. Role of aryl hydrocarbon receptor nuclear translocator in K{sub ATP} channel-mediated insulin secretion in INS-1 insulinoma cells

    SciTech Connect

    Kim, Ji-Seon; Zheng Haifeng; Kim, Sung Joon; Ho, Won-Kyung; Chun, Yang-Sook

    2009-02-20

    Aryl hydrocarbon receptor nuclear translocator (ARNT) has been known to participate in cellular responses to xenobiotic and hypoxic stresses, as a common partner of aryl hydrocarbon receptor and hypoxia inducible factor-1/2{alpha}. Recently, it was reported that ARNT is essential for adequate insulin secretion in response to glucose input and that its expression is downregulated in the pancreatic islets of diabetic patients. In the present study, the authors addressed the mechanism by which ARNT regulates insulin secretion in the INS-1 insulinoma cell line. In ARNT knock-down cells, basal insulin release was elevated, but insulin secretion was not further stimulated by a high-glucose challenge. Electrophysiological analyses revealed that glucose-dependent membrane depolarization was impaired in these cells. Furthermore, K{sub ATP} channel activity and expression were reduced. Of two K{sub ATP} channel subunits, Kir6.2 was found to be positively regulated by ARNT at the mRNA and protein levels. Based on these results, the authors suggest that ARNT expresses K{sub ATP} channel and by so doing regulates glucose-dependent insulin secretion.

  6. Pigment epithelium-derived factor (PEDF) regulates metabolism and insulin secretion from a clonal rat pancreatic beta cell line BRIN-BD11 and mouse islets.

    PubMed

    Chen, Younan; Carlessi, Rodrigo; Walz, Nikita; Cruzat, Vinicius Fernandes; Keane, Kevin; John, Abraham N; Jiang, Fang-Xu; Carnagarin, Revathy; Dass, Crispin R; Newsholme, Philip

    2016-05-01

    Pigment epithelium-derived factor (PEDF) is a multifunctional glycoprotein, associated with lipid catabolism and insulin resistance. In the present study, PEDF increased chronic and acute insulin secretion in a clonal rat β-cell line BRIN-BD11, without alteration of glucose consumption. PEDF also stimulated insulin secretion from primary mouse islets. Seahorse flux analysis demonstrated that PEDF did not change mitochondrial respiration and glycolytic function. The cytosolic presence of the putative PEDF receptor - adipose triglyceride lipase (ATGL) - was identified, and ATGL associated stimulation of glycerol release was robustly enhanced by PEDF, while intracellular ATP levels increased. Addition of palmitate or ex vivo stimulation with inflammatory mediators induced β-cell dysfunction, effects not altered by the addition of PEDF. In conclusion, PEDF increased insulin secretion in BRIN-BD11 and islet cells, but had no impact on glucose metabolism. Thus elevated lipolysis and enhanced fatty acid availability may impact insulin secretion following PEDF receptor (ATGL) stimulation. PMID:26868448

  7. BAG3 regulates formation of the SNARE complex and insulin secretion.

    PubMed

    Iorio, V; Festa, M; Rosati, A; Hahne, M; Tiberti, C; Capunzo, M; De Laurenzi, V; Turco, M C

    2015-01-01

    Insulin release in response to glucose stimulation requires exocytosis of insulin-containing granules. Glucose stimulation of beta cells leads to focal adhesion kinase (FAK) phosphorylation, which acts on the Rho family proteins (Rho, Rac and Cdc42) that direct F-actin remodeling. This process requires docking and fusion of secretory vesicles to the release sites at the plasma membrane and is a complex mechanism that is mediated by SNAREs. This transiently disrupts the F-actin barrier and allows the redistribution of the insulin-containing granules to more peripheral regions of the β cell, hence facilitating insulin secretion. In this manuscript, we show for the first time that BAG3 plays an important role in this process. We show that BAG3 downregulation results in increased insulin secretion in response to glucose stimulation and in disruption of the F-actin network. Moreover, we show that BAG3 binds to SNAP-25 and syntaxin-1, two components of the t-SNARE complex preventing the interaction between SNAP-25 and syntaxin-1. Upon glucose stimulation BAG3 is phosphorylated by FAK and dissociates from SNAP-25 allowing the formation of the SNARE complex, destabilization of the F-actin network and insulin release. PMID:25766323

  8. Pancreatic PYY Is Critical in the Control of Insulin Secretion and Glucose Homeostasis in Female Mice.

    PubMed

    Shi, Yan-Chuan; Loh, Kim; Bensellam, Mohammed; Lee, Kailun; Zhai, Lei; Lau, Jackie; Cantley, James; Luzuriaga, Jude; Laybutt, D Ross; Herzog, Herbert

    2015-09-01

    Insulin secretion is tightly controlled through coordinated actions of a number of systemic and local factors. Peptide YY (PYY) is expressed in α-cells of the islet, but its role in control of islet function such as insulin release is not clear. In this study, we generated a transgenic mouse model (Pyy(tg/+)/Rip-Cre) overexpressing the Pyy gene under the control of the rat insulin 2 gene promoter and assessed the impact of islet-released PYY on β-cell function, insulin release, and glucose homeostasis in mice. Our results show that up-regulation of PYY in islet β-cells leads to an increase in serum insulin levels as well as improved glucose tolerance. Interestingly, PYY-overproducing mice show increased lean mass and reduced fat mass with no significant changes in food intake or body weight. Energy expenditure is also increased accompanied by increased respiratory exchange ratio. Mechanistically, the enhanced insulin levels and improved glucose tolerance are primarily due to increased β-cell mass and secretion. This is associated with alterations in the expression of genes important for β-cell proliferation and function as well as the maintenance of the β-cell phenotype. Taken together, these data demonstrate that pancreatic islet-derived PYY plays an important role in controlling glucose homeostasis through the modulation of β-cell mass and function. PMID:26125465

  9. BAG3 regulates formation of the SNARE complex and insulin secretion

    PubMed Central

    Iorio, V; Festa, M; Rosati, A; Hahne, M; Tiberti, C; Capunzo, M; De Laurenzi, V; Turco, M C

    2015-01-01

    Insulin release in response to glucose stimulation requires exocytosis of insulin-containing granules. Glucose stimulation of beta cells leads to focal adhesion kinase (FAK) phosphorylation, which acts on the Rho family proteins (Rho, Rac and Cdc42) that direct F-actin remodeling. This process requires docking and fusion of secretory vesicles to the release sites at the plasma membrane and is a complex mechanism that is mediated by SNAREs. This transiently disrupts the F-actin barrier and allows the redistribution of the insulin-containing granules to more peripheral regions of the β cell, hence facilitating insulin secretion. In this manuscript, we show for the first time that BAG3 plays an important role in this process. We show that BAG3 downregulation results in increased insulin secretion in response to glucose stimulation and in disruption of the F-actin network. Moreover, we show that BAG3 binds to SNAP-25 and syntaxin-1, two components of the t-SNARE complex preventing the interaction between SNAP-25 and syntaxin-1. Upon glucose stimulation BAG3 is phosphorylated by FAK and dissociates from SNAP-25 allowing the formation of the SNARE complex, destabilization of the F-actin network and insulin release. PMID:25766323

  10. Growth-Blocking Peptides As Nutrition-Sensitive Signals for Insulin Secretion and Body Size Regulation.

    PubMed

    Koyama, Takashi; Mirth, Christen K

    2016-02-01

    In Drosophila, the fat body, functionally equivalent to the mammalian liver and adipocytes, plays a central role in regulating systemic growth in response to nutrition. The fat body senses intracellular amino acids through Target of Rapamycin (TOR) signaling, and produces an unidentified humoral factor(s) to regulate insulin-like peptide (ILP) synthesis and/or secretion in the insulin-producing cells. Here, we find that two peptides, Growth-Blocking Peptide (GBP1) and CG11395 (GBP2), are produced in the fat body in response to amino acids and TOR signaling. Reducing the expression of GBP1 and GBP2 (GBPs) specifically in the fat body results in smaller body size due to reduced growth rate. In addition, we found that GBPs stimulate ILP secretion from the insulin-producing cells, either directly or indirectly, thereby increasing insulin and insulin-like growth factor signaling activity throughout the body. Our findings fill an important gap in our understanding of how the fat body transmits nutritional information to the insulin producing cells to control body size. PMID:26928023