Science.gov

Sample records for induced transparency schemes

  1. Role of electromagnetically induced transparency in resonant four-wave-mixing schemes

    NASA Astrophysics Data System (ADS)

    Petch, J. C.; Keitel, C. H.; Knight, P. L.; Marangos, J. P.

    1996-01-01

    The effect of electromagnetically induced transparency in resonant four-wave-mixing schemes is investigated in an analysis that goes beyond perturbation theory in the coherent driving field. In addition we examine the case where the two-photon pump field is sufficiently strong to necessitate a nonperturbative treatment. This allows us to examine the cases where either one or both of the driving fields are strong. Phase matching is included in a plane-wave propagation treatment that matches the situation most likely to be encountered in actual experiments. The calculations are in part intended to model real experimental situations and thus incorporate driving and pump-field linewidths via the phase-diffusion model and Doppler broadening. With a strong pump-field laser, large enhancements in the efficiency of light generation occur at frequencies corresponding to the Autler-Townes satellites induced by the strong driving field. In this situation gain and high four-wave-mixing efficiency are simultaneously present, resulting in the production of a large intensity of coherent radiation.

  2. Suppression of stimulated Raman scattering by an electromagnetically-induced-transparency-like scheme and its application for super-resolution microscopy

    NASA Astrophysics Data System (ADS)

    Gong, Li; Wang, Haifeng

    2015-08-01

    We theoretically investigate a scheme in which stimulated Raman scattering (SRS) can be suppressed by coherently controlling the coupling between molecular states. In conventional SRS, two laser beams at different frequencies interact resonantly with molecular vibration to induce a gain and a loss for the two beams, respectively. In our scheme, a third beam is introduced to couple the vibrational state to another coupling state. As a result, SRS is suppressed in a way analogous to electromagnetically induced transparency. We calculated the SRS signal analytically by the density matrix approach, and investigated the feasibility of this scheme for real molecular imaging. In SRS microscopy, a donut-shaped coupling laser can be used to suppress the SRS signal from the rim part of the focal spot, leading to super-resolution. Based on our numerical studies, the lateral resolution starts to be enhanced when the coupling laser intensity exceeds 0.1 TW /c m2 at picosecond pulse duration.

  3. Simultaneous electromagnetically induced transparency for two circularly polarized lasers coupled to the same linearly polarized laser in a four-level atomic system in the W scheme

    SciTech Connect

    Bahrim, Cristian; Nelson, Chris

    2011-03-15

    Electromagnetic induced transparency (EIT) can be produced in a four-level atomic system in the W scheme using a linearly polarized optical field for simultaneously slowing down two {sigma}{sup +} and {sigma}{sup -} circularly polarized optical fields. This four-level atomic system can be set up with a |{sup 1}S{sub 0}> ground state and three Zeeman levels of the |{sup 1}P{sub 1}> excited state of any alkali-metal atom placed in a weak magnetic field. We apply our W scheme to ultracold magnesium atoms for neglecting the collisional dephasing. Atomic coherences are reported after solving a density matrix master equation including radiative relaxations from Zeeman states of the |{sup 1}P{sub 1}> multiplet to the |{sup 1}S{sub 0}> ground state. The EIT feature is analyzed using the transit time between the normal dispersive region and the EIT region. The evolution of the EIT feature with the variation of the coupling field is discussed using an intuitive dressed-state representation. We analyze the sensitivity of an EIT feature to pressure broadening of the excited Zeeman states.

  4. Coherent-state-induced transparency

    NASA Astrophysics Data System (ADS)

    Gogyan, A.; Malakyan, Yu.

    2016-04-01

    We examine electromagnetically induced transparency (EIT) in an ensemble of cold Λ -type atoms induced by a quantum control field in multimode coherent states and compare it with the transparency created by the classical light of the same intensity. We show that the perfect coincidence is achieved only in the case of a single-mode coherent state, whereas the transparency sharply decreases, when the number of the modes exceeds the mean number of control photons in the medium. The origin of the effect is the modification of photon statistics in the control field with increasing the number of the modes that weakens its interaction with atoms resulting in a strong probe absorption. For the same reason, the probe pulse transforms from EIT-based slow light into superluminal propagation caused by the absorption.

  5. Gyromagnetically induced transparency of metasurfaces.

    PubMed

    Mousavi, S Hossein; Khanikaev, Alexander B; Allen, Jeffery; Allen, Monica; Shvets, Gennady

    2014-03-21

    We demonstrate that the presence of a (gyro) magnetic substrate can produce an analog of electromagnetically induced transparency in Fano-resonant metamolecules. The simplest implementation of such gyromagnetically induced transparency (GIT) in a metasurface, comprised of an array of resonant antenna pairs placed on a gyromagnetic substrate and illuminated by a normally incident electromagnetic wave, is analyzed. Time reversal and spatial inversion symmetry breaking introduced by the dc magnetization makes metamolecules bianisotropic. This causes Fano interference between the otherwise uncoupled symmetric and antisymmetric resonances of the metamolecules giving rise to a sharp transmission peak through the otherwise reflective metasurface. We show that, for an oblique wave incidence, one-way GIT can be achieved by the combination of spatial dispersion and gyromagnetic effect. These theoretically predicted phenomena pave the way to nonreciprocal switches and isolators that can be dynamically controlled by electric currents. PMID:24702414

  6. Gyromagnetically Induced Transparency of Metasurfaces

    NASA Astrophysics Data System (ADS)

    Mousavi, S. Hossein; Khanikaev, Alexander B.; Allen, Jeffery; Allen, Monica; Shvets, Gennady

    2014-03-01

    We demonstrate that the presence of a (gyro) magnetic substrate can produce an analog of electromagnetically induced transparency in Fano-resonant metamolecules. The simplest implementation of such gyromagnetically induced transparency (GIT) in a metasurface, comprised of an array of resonant antenna pairs placed on a gyromagnetic substrate and illuminated by a normally incident electromagnetic wave, is analyzed. Time reversal and spatial inversion symmetry breaking introduced by the dc magnetization makes metamolecules bianisotropic. This causes Fano interference between the otherwise uncoupled symmetric and antisymmetric resonances of the metamolecules giving rise to a sharp transmission peak through the otherwise reflective metasurface. We show that, for an oblique wave incidence, one-way GIT can be achieved by the combination of spatial dispersion and gyromagnetic effect. These theoretically predicted phenomena pave the way to nonreciprocal switches and isolators that can be dynamically controlled by electric currents.

  7. Broadband cavity electromagnetically induced transparency

    SciTech Connect

    Wei Xiaogang; Wang Yanhua; Zhang Jiepeng; Zhu Yifu

    2011-10-15

    Cavity electromagnetically induced transparency (EIT) is created in a three-level atomic system confined in a cavity and coupled to a free-space control laser and is manifested as a narrow transmission peak of a probe laser coupled into the cavity mode and tuned to the two-photon Raman resonance with the control laser. Cavity EIT can be observed with a control laser detuned from the atomic transition frequency in a range limited by the vacuum Rabi splitting of two cavity-atom normal modes. This leads to the broadband cavity EIT obtained in the coupled-cavity-atom system with a free-space, broadband control laser. We report an experimental observation of broadband cavity EIT in cold Rb atoms with a frequency-modulated control laser and discuss its application in multichannel and multifrequency light memory.

  8. Induced Transparency and Absorption in Coupled Microresonators

    NASA Technical Reports Server (NTRS)

    Smith, David D.; Chang, Hongrok

    2004-01-01

    We review the conditions for the occurrence of coherence phenomena in passive coupled optical microresonators. We derive the effective steady-state response and determine conditions for induced transparency and absorption in these systems.

  9. Slow light with electromagnetically induced transparency in optical fibre

    NASA Astrophysics Data System (ADS)

    Muhamad Hatta, Agus; Kamli, Ali A.; Al-Hagan, Ola A.; Moiseev, Sergey A.

    2015-08-01

    Slow light with electromagnetically induced transparency (EIT) in the core of optical fibre containing three-level atoms is investigated. The guided modes are treated in the weakly guiding approximation which renders the analysis into a manageable form. The transparency window and permittivity profile of the core due to the strong pump field in the EIT scheme is calculated. For a specific permittivity profile of the core due to EIT, the propagation constant of the weak signal field and spatial shape of fundamental guided mode are calculated by solving the vector wave equation using the finite difference method. It is found that the transparency window and slow light field can be controlled via the optical fibre parameters. The reduced group velocity of slow light in this configuration is useful for many technological applications such as optical memories, effective control of single photon fields, optical buffers and delay lines.

  10. Electromagnetically induced transparency in hybrid plasmonic-dielectric system.

    PubMed

    Tang, Bin; Dai, Lei; Jiang, Chun

    2011-01-17

    We present theoretical and numerical analysis of a plasmonic-dielectric hybrid system for symmetric and asymmetric coupling between silver cut-wire pairs and silicon grating waveguide with periodic grooves. The results show that both couplings can induce electromagnetically-induced transparency (EIT) analogous to the quantum optical phenomenon. The transmission spectrum shows a single transparency window for the symmetric coupling. The strong normal phase dispersion in the vicinity of this transparent window results in the slow light effect. However, the transmission spectrum appears an additional transparency window for asymmetry coupling due to the double EIT effect, which stems from an asymmetrically coupled resonance (ACR) between the dark and bright modes. More importantly, the excitation of ACR is further associated with remarkable improvement of the group index from less than 40 to more than 2500 corresponding to a high transparent efficiency by comparing with the symmetry coupling. This scheme provides an alternative way to develop the building block of systems for plasmonic sensing, all optical switching and slow light applications. PMID:21263602

  11. Switching from "absorption within transparency" to "transparency within transparency" in an electromagnetically induced absorption dominated transition.

    PubMed

    Dahl, Katrin; Molella, Luca Spani; Rinkleff, Rolf-Hermann; Danzmann, Karsten

    2008-05-01

    The absorption of a resonant coupling laser driving a closed degenerate two-level system in an atomic cesium beam was investigated as a function of the detuning of a second laser probing the same transition. The measurements were performed for four different polarization combinations of the two laser beams. Except for the beams of counterrotating polarizations all coupling-laser absorption profiles showed "absorption within transparency," i.e., the absorption in the region around the two-photon resonance was smaller than the absorption corresponding to the one-photon transition induced by the coupling laser, and an extra absorption peak was observed on this curve at the two-photon resonance. With regard to the beams of counterrotating polarizations we observed a switch from absorption within transparency to "transparency within transparency" when the probe-laser power exceeded the constant coupling-laser power. In other words, the cesium ensemble became mostly transparent to the coupling-laser beam at the two-photon resonance. PMID:18451960

  12. Extremely short pulses via resonantly induced transparency

    NASA Astrophysics Data System (ADS)

    Radeonychev, Y. V.; Polovinkin, V. A.; Kocharovskaya, O.

    2011-07-01

    We study a novel method to produce extremely short pulses of radiation in a resonant medium via induced transparency by means of adiabatic periodic modulation of atomic transition frequencies by far-off-resonant laser field, which causes linear Stark splitting of atomic energy levels resulting in partial transparency of an optically deep medium and drastic spectral modification of an incident resonant radiation. We find the regimes where the output spectrum corresponds to extremely short pulses and discuss several possible experimental realizations of generation of attosecond pulses in Li2+ ions and femtosecond pulses in atomic hydrogen with commercially available facilities.

  13. Birefringence effects of short probe pulses of electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Parshkov, Oleg M.; Kochetkova, Anastasia E.; Budyak, Victoria V.

    2016-04-01

    The numerical simulation results of radiations evolution in the presence of electromagnetically induced transparency for J=0-->J=1-->J=2 scheme of degenerate quantum transitions are presented. The pulse regime of wave interaction with Doppler broadening spectral lines was investigated. It was indicated that when the control field is linear polarized, the input circular polarized probe pulse breaks up in the medium into pulses with mutually perpendicular linear polarizations. Polarization direction of one of these pulses coincides with the polarization direction of control fields. The distance, which probe pulse passes in the medium to its full separation, decreases, when input probe pulse duration or control field intensity decreases. The input probe pulse intensity variation almost does not influence separation distance and speed of the linear polarized probe pulses in the medium. The effects, described above, may be interpreted as the birefringence effects of electromagnetically induced transparency in the case of short probe pulse.

  14. Tunable electromagnetically induced transparency in a composite superconducting system

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Li, Hong-rong; Chen, Dong-xu; Liu, Wen-xiao; Li, Fu-li

    2016-05-01

    We theoretically propose an efficient method to realize electromagnetically induced transparency (EIT) in the microwave regime through a coupled system consisting of a flux qubit and a superconducting LC resonator. Driven by two appropriate microwave fields, the system will be trapped in the dark states. In our proposal, the control field of EIT is played by a second-order transfer rather than by a direct strong-pump field. In particular, we obtained conditions for electromagnetically induced transparency and Autler-Townes splitting in this composite system. Both theoretical and numerical results show that this EIT system benefits from the relatively long coherent time of the resonator. Since this whole system is artificial and tunable, our scheme may have potential applications in various domains.

  15. Waveguide and Plasmonic Absorption-Induced Transparency.

    PubMed

    Zhong, Xiaolan; Rodrigo, Sergio G; Zhang, Lei; Samorì, Paolo; Genet, Cyriaque; Martín-Moreno, Luis; Hutchison, James A; Ebbesen, Thomas W

    2016-04-26

    Absorption-induced transparency (AIT) is one of the family of induced transparencies that has emerged in recent decades in the fields of plasmonics and metamaterials. It is a seemingly paradoxical phenomenon in which transmission through nanoholes in gold and silver is dramatically enhanced at wavelengths where a physisorbed dye layer absorbs strongly. The origin of AIT remains controversial, with both experimental and theoretical work pointing to either surface (plasmonic) or in-hole (waveguide) mechanisms. Here, we resolve this controversy by carefully filling nanoholes in a silver film with dielectric material before depositing dye on the surface. Our experiments and modeling show that not only do plasmonic and waveguide contributions to AIT both exist, but they are spectrally identical, operating in concert when the dye is both in the holes and on the surface. PMID:27063480

  16. Parity-time-symmetry enhanced optomechanically-induced-transparency

    NASA Astrophysics Data System (ADS)

    Li, Wenlin; Jiang, Yunfeng; Li, Chong; Song, Heshan

    2016-08-01

    We propose and analyze a scheme to enhance optomechanically-induced-transparency (OMIT) based on parity-time-symmetric optomechanical system. Our results predict that an OMIT window which does not exist originally can appear in weak optomechanical coupling and driving system via coupling an auxiliary active cavity with optical gain. This phenomenon is quite different from these reported in previous works in which the gain is considered just to damage OMIT phenomenon even leads to electromagnetically induced absorption or inverted-OMIT. Such enhanced OMIT effects are ascribed to the additional gain which can increase photon number in cavity without reducing effective decay. We also discuss the scheme feasibility by analyzing recent experiment parameters. Our work provide a promising platform for the coherent manipulation and slow light operation, which has potential applications for quantum information processing and quantum optical device.

  17. Parity-time-symmetry enhanced optomechanically-induced-transparency

    PubMed Central

    Li, Wenlin; Jiang, Yunfeng; Li, Chong; Song, Heshan

    2016-01-01

    We propose and analyze a scheme to enhance optomechanically-induced-transparency (OMIT) based on parity-time-symmetric optomechanical system. Our results predict that an OMIT window which does not exist originally can appear in weak optomechanical coupling and driving system via coupling an auxiliary active cavity with optical gain. This phenomenon is quite different from these reported in previous works in which the gain is considered just to damage OMIT phenomenon even leads to electromagnetically induced absorption or inverted-OMIT. Such enhanced OMIT effects are ascribed to the additional gain which can increase photon number in cavity without reducing effective decay. We also discuss the scheme feasibility by analyzing recent experiment parameters. Our work provide a promising platform for the coherent manipulation and slow light operation, which has potential applications for quantum information processing and quantum optical device. PMID:27489193

  18. Parity-time-symmetry enhanced optomechanically-induced-transparency.

    PubMed

    Li, Wenlin; Jiang, Yunfeng; Li, Chong; Song, Heshan

    2016-01-01

    We propose and analyze a scheme to enhance optomechanically-induced-transparency (OMIT) based on parity-time-symmetric optomechanical system. Our results predict that an OMIT window which does not exist originally can appear in weak optomechanical coupling and driving system via coupling an auxiliary active cavity with optical gain. This phenomenon is quite different from these reported in previous works in which the gain is considered just to damage OMIT phenomenon even leads to electromagnetically induced absorption or inverted-OMIT. Such enhanced OMIT effects are ascribed to the additional gain which can increase photon number in cavity without reducing effective decay. We also discuss the scheme feasibility by analyzing recent experiment parameters. Our work provide a promising platform for the coherent manipulation and slow light operation, which has potential applications for quantum information processing and quantum optical device. PMID:27489193

  19. Enhanced tunability of plasmon induced transparency in graphene strips

    SciTech Connect

    Shi, Xi; Su, Xiaopeng; Yang, Yaping

    2015-04-14

    The approach of slow-light efficiency manipulation is theoretically investigated in graphene analogue of electromagnetically induced transparency (EIT) system, which cannot be realized in conventional quantum regime. In this system, two graphene strips with different Fermi energies placed side by side as radiative elements have been discussed, and the coupling strength between radiative elements and dark elements is tuned by these radiative elements. Our proposed scheme exploits the tuning of coupling strength between the radiative elements and dark elements in contrast with the existing approaches that rely on tuning the damping rates of radiative or dark elements. The transparent window and group delays can be tuned by different coupling strength without changing the geometry of structure. This manipulation can be explained using a temporal coupled-mode theory. Furthermore, the hybridized states in this EIT-like system can be manipulated by tuning the Fermi energy of radiative elements. This kind of controllable electromagnetically induced transparency has many significant potential applications in optoelectronic, photodetectors, tunable sensors, and storage of optical data regimes.

  20. Electromagnetically induced transparency with noisy lasers

    SciTech Connect

    Xiao Yanhong; Wang Tun; Baryakhtar, Maria; Jiang Liang; Lukin, Mikhail D.; Van Camp, Mackenzie; Crescimanno, Michael; Hohensee, Michael; Walsworth, Ronald L.; Phillips, David F.; Yelin, Susanne F.

    2009-10-15

    We demonstrate and characterize two coherent phenomena that can mitigate the effects of laser phase noise for electromagnetically induced transparency (EIT): a laser-power-broadening-resistant resonance in the transmitted intensity cross correlation between EIT optical fields, and a resonant suppression of the conversion of laser phase noise to intensity noise when one-photon noise dominates over two-photon-detuning noise. Our experimental observations are in good agreement with both an intuitive physical picture and numerical calculations. The results have wide-ranging applications to spectroscopy, atomic clocks, and magnetometers.

  1. Dimension-sensitive optical responses of electromagnetically induced transparency vapor in a waveguide

    SciTech Connect

    Jian Qishen; He Sailing

    2006-12-15

    A three-level EIT (electromagnetically induced transparency) vapor is used to manipulate the transparency and absorption properties of the probe light in a waveguide. The most remarkable feature of the present scheme is such that the optical responses resulting from both electromagnetically induced transparency and large spontaneous emission enhancement are very sensitive to the frequency detunings of the probe light as well as to the small changes of the waveguide dimension. The potential applications of the dimension- and dispersion-sensitive EIT responses are discussed, and the sensitivity limits of some waveguide-based sensors, including electric absorption modulator, optical switch, wavelength sensor, and sensitive magnetometer, are analyzed.

  2. Gyromagnetically-induced transparency for ferrites

    NASA Astrophysics Data System (ADS)

    Chang, Tsun-Hsu

    2016-04-01

    The magnetic permeability is generally a second-rank tensor for an anisotropic medium. By considering a dc bias magnetic field and an ac circularly polarized wave, a generalized permeability can be derived. The formula for the generalized permeability explains why most dielectrics, paramagnetic and diamagnetic materials, and even metals have a relative permeability close to unity. For ferromagnetic or ferrimagnetic materials, the permeability strongly depends on the applied magnetic field and the polarizations of the electromagnetic waves. This work discusses how a circularly polarized wave interacts with the magnetic dipole moment being induced by and precessing around the applied dc bias field. The gyromagnetic resonance between the wave and the induced dipole allows us to find a condition where the incident wave can propagate through the medium without reflection. This explains the mysterious effect of gyromagnetically induced transparency.

  3. Classical analogs of double electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Bai, Zhengyang; Hang, Chao; Huang, Guoxiang

    2013-03-01

    Double electromagnetically induced transparency (DEIT) in a four-level atomic system with tripod-type energy-level configuration is modeled by using two classical systems. The first is a set of three coupled harmonic oscillators subject to frictional forces and external drives and the second is a set of three coupled RLC circuits with electric resistors and alternating voltage sources. It is shown that both of the two classical systems have absorption spectra of DEIT similar to that of the four-level tripod-type atomic system. These classical analogies provide simple and intuitive physical description of quantum interference processes and can be used to illustrate experimental observations of the DEIT in quantum systems.

  4. Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials

    NASA Astrophysics Data System (ADS)

    Han, Song; Cong, Longqing; Lin, Hai; Xiao, Boxun; Yang, Helin; Singh, Ranjan

    2016-02-01

    Metamaterials have recently enabled coupling induced transparency due to interference effects in coupled subwavelength resonators. In this work, we present a three dimensional (3-D) metamaterial design with six-fold rotational symmetry that shows electromagnetically induced transparency with a strong polarization dependence to the incident electromagnetic wave due to the ultra-sharp resonance line width as a result of interaction between the constituent meta-atoms. However, when the six-fold rotationally symmetric unit cell design was re-arranged into a fourfold rotational symmetry, we observed the excitation of a polarization insensitive dual-band transparency. Thus, the 3-D split-ring resonators allow new schemes to observe single and multi-band classical analogues of electromagnetically induced transparencies that has huge potential applications in slowing down light, sensing modalities, and filtering functionalities either in the passive mode or the active mode where such effects could be tuned by integrating materials with dynamic properties.

  5. Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials.

    PubMed

    Han, Song; Cong, Longqing; Lin, Hai; Xiao, Boxun; Yang, Helin; Singh, Ranjan

    2016-01-01

    Metamaterials have recently enabled coupling induced transparency due to interference effects in coupled subwavelength resonators. In this work, we present a three dimensional (3-D) metamaterial design with six-fold rotational symmetry that shows electromagnetically induced transparency with a strong polarization dependence to the incident electromagnetic wave due to the ultra-sharp resonance line width as a result of interaction between the constituent meta-atoms. However, when the six-fold rotationally symmetric unit cell design was re-arranged into a fourfold rotational symmetry, we observed the excitation of a polarization insensitive dual-band transparency. Thus, the 3-D split-ring resonators allow new schemes to observe single and multi-band classical analogues of electromagnetically induced transparencies that has huge potential applications in slowing down light, sensing modalities, and filtering functionalities either in the passive mode or the active mode where such effects could be tuned by integrating materials with dynamic properties. PMID:26857034

  6. Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials

    PubMed Central

    Han, Song; Cong, Longqing; Lin, Hai; Xiao, Boxun; Yang, Helin; Singh, Ranjan

    2016-01-01

    Metamaterials have recently enabled coupling induced transparency due to interference effects in coupled subwavelength resonators. In this work, we present a three dimensional (3-D) metamaterial design with six-fold rotational symmetry that shows electromagnetically induced transparency with a strong polarization dependence to the incident electromagnetic wave due to the ultra-sharp resonance line width as a result of interaction between the constituent meta-atoms. However, when the six-fold rotationally symmetric unit cell design was re-arranged into a fourfold rotational symmetry, we observed the excitation of a polarization insensitive dual-band transparency. Thus, the 3-D split-ring resonators allow new schemes to observe single and multi-band classical analogues of electromagnetically induced transparencies that has huge potential applications in slowing down light, sensing modalities, and filtering functionalities either in the passive mode or the active mode where such effects could be tuned by integrating materials with dynamic properties. PMID:26857034

  7. Light scattering under conditions of nonstationary electromagnetically induced transparency

    SciTech Connect

    Larionov, N V; Sokolov, I M

    2007-12-31

    The propagation of probe radiation pulses in ultracold atomic ensembles is studied theoretically under conditions of electromagnetically induced transparency. The pulse 'stopping' process is considered which takes place upon nonadiabatic switching off and subsequent switching on the control field. We analysed the formation of an inverted recovered probe radiation pulse, i.e. the pulse propagating in the direction opposite to the propagation direction before the pulse stopping. Based on this analysis, a scheme is proposed for lidar probing atomic or molecular clouds in which the probe pulse penetrates into a cloud over the specified depth, while information on the cloud state is obtained from the parameters of the inverted pulse. Calculations are performed for an ensemble of {sup 87}Rb atoms. (fifth seminar in memory of d.n. klyshko)

  8. Robust quantum gates via a photon triggering electromagnetically induced transparency

    SciTech Connect

    Zhou, Y. L.; Li, C. Z.

    2011-10-15

    We propose a scheme to achieve a parallelized controlled-NOT (c-not) gate based on electromagnetically induced transparency (EIT) and cavity-assisted photon scattering. By using the flying photon as the control bit, we can implement a conditional transfer between two logical states of an atom trapped in the cavity with high fidelity and on a microsecond time scale. Thanks to the fact that the photon is well suited for scalable quantum computation, a quantum c-not gate between the single-photon pulses and the nonlocal gate on remote atoms are obtained by reflecting the photon pulse from an optical cavity with a single-trapped atom. Our protocol is robust for spontaneous emission and works quite well in the bad-cavity limit, which makes it more applicable in the laboratory with current experimental techniques.

  9. A Transparent Loss Recovery Scheme Using Packet Redirection for Wireless Video Transmissions

    NASA Astrophysics Data System (ADS)

    Shih, Chi-Huang; Shieh, Ce-Kuen; Hwang, Wen-Shyang

    2007-12-01

    With the wide deployment of wireless networks and the rapid integration of various emerging networking technologies nowadays, Internet video applications must be updated on a sufficiently timely basis to support high end-to-end quality of service (QoS) levels over heterogeneous infrastructures. However, updating the legacy applications to provide QoS support is both complex and expensive since the video applications must communicate with underlying architectures when carrying out QoS provisioning, and furthermore, should be both aware of and adaptive to variations in the network conditions. Accordingly, this paper presents a transparent loss recovery scheme to transparently support the robust video transmission on behalf of real-time streaming video applications. The proposed scheme includes the following two modules: (i) a transparent QoS mechanism which enables the QoS setup of video applications without the requirement for any modification of the existing legacy applications through its use of an efficient packet redirection scheme; and (ii) an instant frame-level FEC technique which performs online FEC bandwidth allocation within TCP-friendly rate constraints in a frame-by-frame basis to minimize the additional FEC processing delay. The experimental results show that the proposed scheme achieves nearly the same video quality that can be obtained by the optimal frame-level FEC under varying network conditions while maintaining low end-to-end delay.

  10. Dissipative solitons of self-induced transparency

    NASA Astrophysics Data System (ADS)

    Adamashvili, G. T.; Kaup, D. J.; Knorr, A.

    2014-11-01

    A theory of dispersive soliton of the self-induced transparency in a medium consisting of atoms or semiconductor quantum dots of two types is considered. A two-component medium is modeled by a set of two-level atoms of two types embedded into a conductive host material. These types of atoms correspond to passive atoms (attenuator atoms) and active atoms (amplifier atoms) with inverse population of the energetic levels. The complete solution is given of the Maxwell-Bloch equations for ensembles of two-type atoms with different parameters and different initial conditions by inverse scattering transform. The solutions of the Maxwell-Bloch equations for many-component atomic systems by inverse scattering transform are also discussed. The influence of the difference between dipole moments of atoms, the longitudinal and transverse relaxation times, pumping, and conductivity on the soliton is taken into account by means of perturbation theory. The memory effects are described in terms of generalized non-Markovian optical Bloch equations. The condition of a balance between the energy supplied and lost is obtained.

  11. Phase modulation induced by cooperative effects in electromagnetically induced transparency

    SciTech Connect

    Fleischhaker, Robert; Evers, Joerg; Dey, Tarak N.

    2010-07-15

    We analyze the influence of dipole-dipole interactions in an electromagnetically induced transparency set up for a density at the onset of cooperative effects. To this end, we include mean-field models for the influence of local-field corrections and radiation trapping into our calculation. We show both analytically and numerically that the polarization contribution to the local field strongly modulates the phase of a weak pulse. We give an intuitive explanation for this local-field-induced phase modulation and demonstrate that it distinctively differs from the nonlinear self-phase-modulation that a strong pulse experiences in a Kerr medium.

  12. Hybridization induced transparency in composites of metamaterials and atomic media.

    PubMed

    Weis, Peter; Garcia-Pomar, Juan Luis; Beigang, René; Rahm, Marco

    2011-11-01

    We report hybridization induced transparency (HIT) in a composite medium consisting of a metamaterial and a dielectric. We develop an analytic model that explains HIT by coherent coupling between the hybridized local fields of the metamaterial and the dielectric or an atomic system in general. In a proof-of-principle experiment, we evidence HIT in a split ring resonator metamaterial that is coupled to α-lactose monohydrate. Both, the analytic model and numerical calculations confirm and explain the experimental observations. HIT can be considered as a hybrid analogue to electromagnetically induced transparency (EIT) and plasmon-induced transparency (PIT). PMID:22109237

  13. Gyromagnetically induced transparency of metasurfaces (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Shvets, Gennady B.; Mousavi, Hossein; Khanikaev, Alexander; Allen, Jeffery W.; Allen, Monica

    2015-09-01

    The concept of symmetry pervades modern physics. Through the conservation laws derived from various symmetries, high-level restrictions and selection rules can be derived for a variety of physical systems without any need for detailed investigations of their specific properties. The spatial symmetries of electric charge distribution on the metamaterial's surface determine whether the EM resonance is "bright" (radiatively coupled to) or "dark" (radiatively de-coupled from) the EM continuum. As we demonstrate in this talk, other (non-spatial) symmetries and their breaking can also be crucial to determine the properties of EM resonances and enable their mutual coupling, which in turn can give rise to EM Fano interferences. I will consider a meta-surface formed by a two-dimensional array of double-antenna meta-molecules resting on a gyromagnetic ferrite substrate. In conclusion, I will use simple symmetry considerations to predict and numerically demonstrate two phenomena that occur in meta-surfaces when symmetry of the system is reduced by a gyromagnetic substrate: gyromagnetically induced transparency and nonreciprocal Fano interference. These phenomena hold significant promise for practical applications such as the dynamic control of resonant EM interactions using magnetic fields produced by the external currents, mitigation of co-site interference and improving isolation. Spectral positions, radiative lifetimes and quality factors of Fano resonances can be controlled by the magnitude of the external magnetic field. This class of effects may lead to a new generation of tunable and nonreciprocal Fano resonant systems for various applications where strong field enhancement, tunability and nonreciprocity are simultaneously required.

  14. Terahertz induced transparency in single-layer graphene

    SciTech Connect

    Paul, Michael J.; Lee, Byounghwak; Wardini, Jenna L.; Thompson, Zachary J.; Stickel, Andrew D.; Mousavian, Ali; Minot, Ethan D.; Lee, Yun-Shik; Choi, Hyunyong

    2014-12-01

    We show that the transmission of a terahertz (THz) pulse through single-layer graphene is strongly nonlinear. As the peak electric field of the THz pulse exceeds 50 kV/cm, the graphene becomes increasingly transparent to the THz radiation. When field strength reaches 800 kV/cm, the increased transparency corresponds to a two-fold decrease in the time-average sheet conductivity of the graphene (time averaged over the duration of the pulse). Time-resolved measurements reveal that the leading portion of the pulse creates transparency for the trailing portion, with a 10-fold suppression in sheet conductivity at the tail of the strongest THz pulse. Comparing the THz-induced transparency phenomena in different sample geometries shows that substrate-free graphene is the best geometry for maximizing the nonlinear transparency effect.

  15. Laser-induced swelling of transparent glasses

    NASA Astrophysics Data System (ADS)

    Logunov, S.; Dickinson, J.; Grzybowski, R.; Harvey, D.; Streltsov, A.

    2011-08-01

    We describe the process of forming bumps on the surface of transparent glasses such as display glasses with moderate thermal expansion ˜3.2 × 10 -6 K -1 and high coefficient of thermal expansion (CTE) glasses, e.g. soda-lime glasses with CTE ˜9 × 10 -6 K -1 using high-power ultra-violet (UV) lasers at a wavelength where glass is transparent. We characterize the effect with optical dynamic measurements. The process relies on increased glass absorption from color-center generation and leads to glass swelling with bumps formation. The bump height may constitute more than 10% of the thickness of the glass sample. The required exposure time is relatively short ˜1 s, and depends on the glass properties, laser power, its repetition rate, and focusing conditions. A brief review of the potential applications for these bumps is provided.

  16. Tunable multispectral plasmon induced transparency based on graphene metamaterials.

    PubMed

    Sun, Chen; Si, Jiangnan; Dong, Zhewei; Deng, Xiaoxu

    2016-05-30

    A dynamically wavelength tunable multispectral plasmon induced transparency (PIT) device based on graphene metamaterials, which is composed of periodically patterned graphene double layers separated by a dielectric layer, is proposed theoretically and numerically in the terahertz frequency range. Considering the near-field coupling of different graphene layers and the bright-dark mode coupling in the same graphene layer, the coupled Lorentz oscillator model is adapted to explain the physical mechanism of multispectral EIT-like responses. The simulated transmission based on the finite-difference time-domain (FDTD) solutions indicates that the shifting and depth of the EIT resonances in multiple PIT windows are controlled by different geometrical parameters and Fermi energies distributions. A design scheme with graphene integration is employed, which allows independent tuning of resonance frequencies by electrostatically changing the Fermi energies of graphene double layer. Active control of the multispectral EIT-like responses enables the proposed device to be widely applied in optical information processing as tunable sensors, switches, and filters. PMID:27410074

  17. Acoustically induced transparency using Fano resonant periodic arrays

    NASA Astrophysics Data System (ADS)

    Amin, M.; Elayouch, A.; Farhat, M.; Addouche, M.; Khelif, A.; Baǧcı, H.

    2015-10-01

    A three-dimensional acoustic device, which supports Fano resonance and induced transparency in its response to an incident sound wave, is designed and fabricated. These effects are generated from the destructive interference of closely coupled one broad- and one narrow-band acoustic modes. The proposed design ensures excitation and interference of two spectrally close modes by locating a small pipe inside a wider and longer one. Indeed, numerical simulations and experiments demonstrate that this simple-to-fabricate structure can be used to generate Fano resonance as well as acoustically induced transparency with promising applications in sensing, cloaking, and imaging.

  18. An Analog of electrically induced transparency via surface delocalized modes

    NASA Astrophysics Data System (ADS)

    Xiao, Xiao; Zhou, Bingpu; Wang, Xinke; He, Jingwen; Hou, Bo; Zhang, Yan; Wen, Weijia

    2015-07-01

    We demonstrate theoretically and experimentally an interesting opaque state, which is based on an analog of electromagnetically induced transparency (EIT) in mechanism, in a metal hole array of the dimer lattice. By introducing a small difference to the dimer holes of each unit cell, the surface delocalized modes launching out from the dimer holes can have destructive interferences. Consequently, a narrow opaque window in the transparent background can be observed in the transmission spectrum. This surface-mode-induced opacity (SMIO) state is very sensitive to the difference of the dimer holes, which will promise various applications.

  19. Transparency

    ERIC Educational Resources Information Center

    LaFee, Scott

    2009-01-01

    Citizens now expect access to information, particularly from public institutions like local school districts. They demand input and accountability. Cultural and technological changes, such as the Internet, make it possible for districts to comply. Yet transparency--the easily seen and understood actions of a school district and the thinking behind…

  20. Magnetically coupled electromagnetically induced transparency analogy of dielectric metamaterial

    SciTech Connect

    Zhang, Fuli He, Xuan; Zhao, Qian; Lan, Chuwen; Zhou, Ji; Zhang, Weihong Qiu, Kepeng

    2014-03-31

    In this manuscript, we experimentally demonstrate magnetically coupled electromagnetically induced transparency (EIT) analogy effect inside dielectric metamaterial. In contrast to previous studies employed different metallic topological microstructures to introduce dissipation loss change, barium strontium titanate, and calcium titanate (CaTiO{sub 3}) are chosen as the bright and dark EIT resonators, respectively, due to their different intrinsic dielectric loss. Under incident magnetic field excitation, dielectric metamaterial exhibits an EIT-type transparency window around 8.9 GHz, which is accompanied by abrupt change of transmission phase. Numerical calculations show good agreement with experiment spectra and reveal remarkably increased group index, indicating potential application in slow light.

  1. Anisotropy-Induced Transparency in Optically Dense Media

    NASA Astrophysics Data System (ADS)

    Tokman, M. D.; Erukhimova, M. A.

    2015-04-01

    The effect of anisotropy-induced transparency, which is analogous to electromagnetically induced transparency in the three-level medium located in a resonance field, is predicted and studied theoretically. This effect is connected with destructive interference between oscillations in different degrees of freedom of an anisotropic medium, which are connected with each other, as radiation propagates at an angle to one of the optical axes in a triaxial or uniaxial crystal. In this case, a hybrid-type polariton is formed in the "transparency window," which combines the quasi-longitudinal polarization with the "vacuum" refractive index. Such a wave is excited easily by radiation incident from the vacuum and should have enhanced impedance of coupling with active or nonlinear elements, which can be useful for the creation of small-size optical systems. Due to the interest in quantum-optical effects displayed recently, the regime of anisotropy-induced transparency is considered within the framework of the quantum theory of radiation in an optically dense medium.

  2. Graphene-based tunable terahertz plasmon-induced transparency metamaterial.

    PubMed

    Zhao, Xiaolei; Yuan, Cai; Zhu, Lin; Yao, Jianquan

    2016-08-18

    A novel terahertz plasmon induced transparency (PIT) metamaterial structure consisting of single-layered graphene microstructures was proposed and numerically studied in this study. A pronounced transparency peak was obtained in the transmission spectrum, which resulted from the destructive interference between the graphene dipole and monopole antennas. Further investigations have shown that the spectral location and lineshape of the transparency peak can be dynamically controlled by tuning the Fermi level in graphene. Since the monopole antennas in our designed structure exist in a continuous form, a more convenient method for tunablity is available by applying a gate voltage compared to those structures with discrete graphene patterns. This work may open up new avenues for designing tunable terahertz functional devices and slow light devices. PMID:27500393

  3. Self-induced transparency mode locking, and area theorem.

    PubMed

    Arkhipov, R M; Arkhipov, M V; Babushkin, I; Rosanov, N N

    2016-02-15

    Self-induced transparency mode locking (or coherent mode locking, CML), which is based on intracavity self-induced transparency soliton dynamics, potentially allows achievement of nearly single-cycle intracavity pulse durations, much below the phase relaxation time T2 in a laser which, despite having great promise, has not yet been realized experimentally. We develop a diagram technique which allows us to predict the main features of CML regimes in a generic two-section laser far from the single-cycle limit. We show that CML can arise directly at the first laser threshold if the phase relaxation time is large enough. Furthermore, we discuss the stability of the corresponding mapping. We also predict the existence of "super-CML regimes," with a pulse coupled to several Rabi oscillations in the nonlinear medium. PMID:26872176

  4. Intracavity self-induced transparency of a multilevel absorber

    NASA Astrophysics Data System (ADS)

    Müller, M.; Kalosha, V. P.; Herrmann, J.

    1998-08-01

    Intracavity self-induced transparency of a three-level absorber is studied in the scope of solid-state laser generation of an ultrabroadband electromagnetic pulse that drives the population of all absorber levels through complete Rabi flopping. We show that at sufficient pump rates a Ti:sapphire laser forces an intracavity GaAs single quantum-well absorber, which provides an inter-valence-band transition in the THz domain in addition to two direct optical interband transitions, into the self-induced transparency regime and acts as an all-solid-state ultrabroadband pulse emitter. In dependence on the resonator bandwidth, the intracavity pulse energy and the absorber dipole moments we obtain a multilevel self-induced transparency pulse spectrum which extends from the THz domain up to the ultraviolet. The steady-state sub-10-fs pulse consists of only a few optical cycles with the high-frequency components at its leading edge and a single to subcyclic THz component at its trailing edge.

  5. Amplified light storage with high fidelity based on electromagnetically induced transparency in rubidium atomic vapor

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; Wang, Gang; Tang, Guoyu; Xue, Yan

    2016-06-01

    By using slow and stored light based on electromagnetically induced transparency (EIT), we theoretically realize the storage of optical pulses with enhanced efficiency and high fidelity in ensembles of warm atoms in 85Rb vapor cells. The enhancement of storage efficiency is achieved by introducing a pump field beyond three-level configuration to form a N-type scheme, which simultaneously inhibits the undesirable four-wave mixing effect while preserves its fidelity. It is shown that the typical storage efficiency can be improved from 29% to 53% with the application of pump field. Furthermore, we demonstrate that this efficiency decreases with storage time and increases over unity with optical depth.

  6. Numerical simulation of adiabatons in electromagnetically induced transparency under quasi-resonance conditions

    SciTech Connect

    Parshkov, O M; Govorenko, E R

    2014-02-28

    The evolution of adiabatons in electromagnetically induced transparency in the Λ scheme of degenerate quantum transitions J = 0 → J = 1 → J = 2 with Doppler broadening of spectral lines has been numerically simulated taking into account the effect of resonance detunings. It is shown that, in the case of linearly polarised fields, an increase in the probe-field resonance detuning (under exact-resonance conditions for the control radiation) leads to a transformation of electromagnetically induced transparency into electromagnetically induced absorption at certain stages. When the control-field resonance detuning is varied, the transparency of the medium for the probe (exactly resonant) radiation monotonically decreases with increasing detuning because of the rising role of single-photon absorption. In the case of circularly polarised control radiation and linearly polarised input probe field, a probe pulse propagating in the medium splits into two pulses with oppositely directed circular polarisations. An increase in the probe pulse resonance detuning (under exact-resonance conditions for the control radiation) leads primarily to an increase in the absorption by the medium of the probe pulse, the direction of circular polarisation for which coincides with the circular-polarisation direction for the control radiation. (nonlinear optical phenomena)

  7. Optomechanically-induced transparency in parity-time-symmetric microresonators.

    PubMed

    Jing, H; Özdemir, Şahin K; Geng, Z; Zhang, Jing; Lü, Xin-You; Peng, Bo; Yang, Lan; Nori, Franco

    2015-01-01

    Optomechanically-induced transparency (OMIT) and the associated slowing of light provide the basis for storing photons in nanoscale devices. Here we study OMIT in parity-time (PT)-symmetric microresonators with a tunable gain-to-loss ratio. This system features a sideband-reversed, non-amplifying transparency, i.e., an inverted-OMIT. When the gain-to-loss ratio is varied, the system exhibits a transition from a PT-symmetric phase to a broken-PT-symmetric phase. This PT-phase transition results in the reversal of the pump and gain dependence of the transmission rates. Moreover, we show that by tuning the pump power at a fixed gain-to-loss ratio, or the gain-to-loss ratio at a fixed pump power, one can switch from slow to fast light and vice versa. These findings provide new tools for controlling light propagation using nanofabricated phononic devices. PMID:26169253

  8. Research on pattern-induced transparent conductive films

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaohong; Fang, Zongbao; Zhang, Heng; Chen, Linsen

    2012-11-01

    Indium tin Oxide (ITO) is widely used in touch panel as a conductive material. However, it is fragile and has low transparency in low resistance. In this paper, a ITO-free transparent conductive film (TCF) has been proposed. Micronano structured patterns are designed to induce the silver paste composed by nano silver particles and organic solvents, which form the circuit of touch panel sensor conveniently. Mesh patterns are fabricated by UV nanoimprinting technology to form microgrooves on flexible polymer films coated by UV adhesive such as PET (polyethylene terephthalate). And then nano silver ink is filled into the grooves which constitute the conductive area of the TCF. The optical performance including the transmittance and haze of the TCF is tested. Finally, the TCF with the transmittance 87% and the square resistance less than 50 Ω/sq will be obtained, which can satisfy the applications in touch panel devices.

  9. Manipulation of electromagnetically induced transparency by planar metamaterial

    NASA Astrophysics Data System (ADS)

    Yang, Helin; Hu, Sen; Liu, Dan; Lin, Hai; Xiao, Boxun; Chen, Jiao

    2016-02-01

    The transmission characteristics of a planar metamaterial, composed of a metal ring and a regular trigonometry-star-rod (TSR), have been numerically and experimentally investigated in this paper. By rotating the TSR with different angles, this structure will appear to be symmetric or asymmetric toward the incident waves and then finely controls the coupling between the ring and the TSR. Thus, the transmission spectrum of our proposed structure can exhibit an electromagnetically induced transparency (EIT)-like spectral response in microwave region. Owing to the C3 rotational symmetry of the structure, an on-to-off active modulation of the EIT-like transparency window can be realized, and it may serve as the base for a microwave optical switching. Equivalent electric dipole moments couplings are employed to explain the transmission properties. In all, our work provides a way to obtain EIT-like effect, and it may achieve potential applications in filters, sensing and some other microwave devices.

  10. Resonant Rydberg Dressing of Alkaline-Earth Atoms via Electromagnetically Induced Transparency.

    PubMed

    Gaul, C; DeSalvo, B J; Aman, J A; Dunning, F B; Killian, T C; Pohl, T

    2016-06-17

    We develop an approach to generate finite-range atomic interactions via optical Rydberg-state excitation and study the underlying excitation dynamics in theory and experiment. In contrast to previous work, the proposed scheme is based on resonant optical driving and the establishment of a dark state under conditions of electromagnetically induced transparency (EIT). Analyzing the driven dissipative dynamics of the atomic gas, we show that the interplay between coherent light coupling, radiative decay, and strong Rydberg-Rydberg atom interactions leads to the emergence of sizable effective interactions while providing remarkably long coherence times. The latter are studied experimentally in a cold gas of strontium atoms for which the proposed scheme is most efficient. Our measured atom loss is in agreement with the theoretical prediction based on binary effective interactions between the driven atoms. PMID:27367387

  11. Electromagnetically induced transparency using a superconducting artificial atom with optimized level anharmonicity

    NASA Astrophysics Data System (ADS)

    Shao, Zhu-Lei; Feng, Zhi-Bo

    2016-04-01

    We propose a theoretical scheme to implement electromagnetically induced transparency (EIT) using an artificial atom of superconducting circuit. Allowed by the selection rule, two kinds of interactions between the atom and driving fields can be obtained, in which we focus on the leakage effect. In terms of dark-state mechanism in generating EIT, the leakage could destroy the EIT considerably. By removing the leakage effect in an optimized three-level atom, we consider a realization of EIT through the technique of density matrix. Furthermore, another effective way to optimize the level anharmonicity is analyzed in a dressing-state method. The scheme could provide a promising approach for experimentally improving EIT with the artificial atoms.

  12. Resonant Rydberg Dressing of Alkaline-Earth Atoms via Electromagnetically Induced Transparency

    NASA Astrophysics Data System (ADS)

    Gaul, C.; DeSalvo, B. J.; Aman, J. A.; Dunning, F. B.; Killian, T. C.; Pohl, T.

    2016-06-01

    We develop an approach to generate finite-range atomic interactions via optical Rydberg-state excitation and study the underlying excitation dynamics in theory and experiment. In contrast to previous work, the proposed scheme is based on resonant optical driving and the establishment of a dark state under conditions of electromagnetically induced transparency (EIT). Analyzing the driven dissipative dynamics of the atomic gas, we show that the interplay between coherent light coupling, radiative decay, and strong Rydberg-Rydberg atom interactions leads to the emergence of sizable effective interactions while providing remarkably long coherence times. The latter are studied experimentally in a cold gas of strontium atoms for which the proposed scheme is most efficient. Our measured atom loss is in agreement with the theoretical prediction based on binary effective interactions between the driven atoms.

  13. Tunable plasmon-induced transparency with graphene-sheet structure

    NASA Astrophysics Data System (ADS)

    Wang, Yueke; Shen, Xinru; Chen, Quansheng

    2016-07-01

    We investigate theoretically and numerically the tunable plasmon-induced transparency (PIT) phenomenon in graphene-sheet system in infrared range. We show that when surface plasmon polaritons (SPPs) propagate along a monolayer graphene sheet with two detuned side-coupled resonators, the PIT-like transmission spectra of SPPs appear. Thanks to the tunable permittivity of graphene by bias voltages, the resonant wavelength of side-coupled resonators can be changed. So the transmission spectra can be tuned dynamically and the tunable PIT phenomenon is achieved. Numerical simulation by finite element method is conducted to verify our design.

  14. Pump/Probe Angular Dependence of Hanle Electromagnetically Induced Transparency

    NASA Astrophysics Data System (ADS)

    Jackson, Richard; Campbell, Kaleb; Crescimanno, Michael; Bali, Samir

    2015-05-01

    We investigate the dependence of Hanle Electromagnetically Induced Transparency (EIT) on angular separation between pump and probe field propagation directions in room-temperature Rb vapor. We observe the FWHM of the probe transmission spectrum and the amplitude of the EIT signal while varying the angular separation from 0 to 1 milliradian. Following the work of Ref., we examine potential applications in information storage and retrieval. We are grateful to Miami University for their generous financial support, and to the Miami University Instrumentation lab for their invaluable contributions.

  15. Magnetic plasmon induced transparency in three-dimensional metamolecules

    NASA Astrophysics Data System (ADS)

    Wu, Pin Chieh; Chen, Wei Ting; Yang, Kuang-Yu; Hsiao, Chih Ting; Sun, Greg; Liu, Ai Qun; Zheludev, Nikolay I.; Tsai, Din Ping

    2012-11-01

    In a laser-driven atomic quantum system, a continuous state couples to a discrete state resulting in quantum interference that provides a transmission peak within a broad absorption profile the so-called electromagnetically induced transparency (EIT). In the field of plasmonic metamaterials, the sub-wavelength metallic structures play a role similar to atoms in nature. The interference of their near-field coupling at plasmonic resonance leads to a plasmon induced transparency (PIT) that is analogous to the EIT of atomic systems. A sensitive control of the PIT is crucial to a range of potential applications such as slowing light and biosensor. So far, the PIT phenomena often arise from the electric resonance, such as an electric dipole state coupled to an electric quadrupole state. Here we report the first three-dimensional photonic metamaterial consisting of an array of erected U-shape plasmonic gold nanostructures that exhibits PIT phenomenon with magnetic dipolar interaction between magnetic metamolecules. We further demonstrate using a numerical simulation that the coupling between the different excited pathways at an intermediate resonant wavelength allows for a π phase shift resulting in a destructive interference. A classical RLC circuit was also proposed to explain the coupling effects between the bright and dark modes of EIT-like electromagnetic spectra. This work paves a promising approach to achieve magnetic plasmon devices.

  16. Triple optomechanical induced transparency in a two-cavity system

    NASA Astrophysics Data System (ADS)

    Shi-Chao, Wu; Li-Guo, Qin; Jun, Jing; Guo-Hong, Yang; Zhong-Yang, Wang

    2016-05-01

    We theoretically investigate the optomechanical induced transparency (OMIT) phenomenon in a two-cavity system which is composed of two optomechanical cavities. Both of the cavities consist of a fixed mirror and a high-Q mechanical resonator, and they couple to each other via a common waveguide. We show that in the presence of a strong pump field applied to one cavity and a weak probe field applied to the other, a triple-OMIT can be observed in the output field at the probe frequency. The two mechanical resonators in the two cavities are identical, but they lead to different quantum interference pathways. The transparency windows are induced by the coupling of the two cavities and the optical pressure radiated to the mechanical resonators, which can be controlled via the power of the pump field and the coupling strength of the two cavities. Project supported by the Strategic Priority Research Program, China (Grant No. XDB01010200), the Hundred Talents Program of the Chinese Academy of Sciences (Grant No. Y321311401), and the National Natural Sciences Foundation of China (Grant Nos. 11347147 and 1547035).

  17. Color transparency in π--induced dilepton production on nuclei

    NASA Astrophysics Data System (ADS)

    Larionov, A. B.; Strikman, M.; Bleicher, M.

    2016-03-01

    We argue that the observation of the color-transparency effect in the semiexclusive A (π-,l+l-) process is important for determining whether it is possible to extract the generalized parton distributions of the nucleon from the elementary reaction π-p →l+l-n at plab=15 -20 GeV/c at small |t | and large invariant mass of the dilepton pair l+l- . Assuming that the transverse size of the pionic q q ¯ pair in the hard interaction point is similar to the one in the reaction γ*p →π+n studied at JLab, we predict large color-transparency effects in the discussed kinematic range. We also suggest that the semiexclusive ρ0 production in π--induced reactions in the same beam momentum region may provide new information on the dynamics of the interaction in the nonvacuum channel, while the J /ψ production can be used to get information on J /ψ N total interaction cross section.

  18. Electromagnetically induced transparency in a Zeeman-sublevels Λ-system of cold 87Rb atoms in free space

    NASA Astrophysics Data System (ADS)

    Xiaojun, Jiang; Haichao, Zhang; Yuzhu, Wang

    2016-03-01

    We report the experimental investigation of electromagnetically induced transparency (EIT) in a Zeeman-sublevels Λ-type system of cold 87Rb atoms in free space. We use the Zeeman substates of the hyperfine energy states 52S1/2, F = 2 and 52P3/2, F‧ = 2 of 87Rb D2 line to form a Λ-type EIT scheme. The EIT signal is obtained by scanning the probe light over 1 MHz in 4 ms with an 80 MHz arbitrary waveform generator. More than 97% transparency and 100 kHz EIT window are observed. This EIT scheme is suited for an application of pulsed coherent storage atom clock (Yan B, et al. 2009 Phys. Rev. A 79 063820). Project supported by the National Basic Research Program of China (Grant No. 2011CB921504) and the National Natural Science Foundation of China (Grant No. 91536107).

  19. Tailoring electromagnetically induced transparency with different coupling mechanisms

    PubMed Central

    Li, Hai-ming; Liu, Shao-bin; Wang, Shen-yun; Liu, Si-yuan; Hu, Yan; Li, Hai-bin

    2016-01-01

    Tailoring electromagnetically induced transparency with two different coupling mechanisms has been numerically demonstrated. The results show that EIT based on simultaneous electric resonance and magnetic resonance has relatively larger coupling distance compared with that based on electric resonance near field coupling to magnetic resonance. The relatively large coupling distance is due to the relatively small susceptibility change. For EIT based on simultaneous electric resonance and magnetic resonance, not only incident electric field but also the incident magnetic field pays a role on the susceptibility of system. The influence of the incident magnetic field leads to relatively smaller susceptibility change compared with that based on electric resonance near field coupling to magnetic resonance. PMID:26900016

  20. Laser-induced modification of transparent crystals and glasses

    SciTech Connect

    Bulgakova, N M; Stoian, Razvan; Rosenfeld, A

    2010-12-29

    We analyse the processes taking place in transparent crystals and glasses irradiated by ultrashort laser pulses in the regimes typical of various applications in optoelectronics and photonics. We consider some phenomena, which have been previously described by the authors within the different model representations: charging of the dielectric surface due to electron photoemission resulting in a Coulomb explosion; crater shaping by using an adaptive control of the laser pulse shape; optimisation of the waveguide writing in materials strongly resistant to laser-induced compaction under ordinary irradiation conditions. The developed models and analysis of the processes relying on these models include the elements of the solid-state physics, plasma physics, thermodynamics, theory of elasticity and plasticity. Some important experimental observations which require explanations and adequate description are summarised. (photonics and nanotechnology)

  1. Electromagnetically induced transparency in paraffin-coated vapor cells

    SciTech Connect

    Klein, M.; Hohensee, M.; Walsworth, R. L.; Phillips, D. F.

    2011-01-15

    Antirelaxation coatings in atomic vapor cells allow ground-state coherent spin states to survive many collisions with the cell walls. This reduction in the ground-state decoherence rate gives rise to ultranarrow-bandwidth features in electromagnetically induced transparency (EIT) spectra, which can form the basis of, for example, long-time scale slow and stored light, sensitive magnetometers, and precise frequency standards. Here we study, both experimentally and theoretically, how Zeeman EIT contrast and width in paraffin-coated rubidium vapor cells are determined by cell and laser-beam geometry, laser intensity, and atomic density. Using a picture of Ramsey pulse sequences, where atoms alternately spend ''bright'' and ''dark'' time intervals inside and outside the laser beam, we explain the behavior of EIT features in coated cells, highlighting their unique characteristics and potential applications.

  2. Tailoring electromagnetically induced transparency with different coupling mechanisms.

    PubMed

    Li, Hai-ming; Liu, Shao-bin; Wang, Shen-yun; Liu, Si-yuan; Hu, Yan; Li, Hai-bin

    2016-01-01

    Tailoring electromagnetically induced transparency with two different coupling mechanisms has been numerically demonstrated. The results show that EIT based on simultaneous electric resonance and magnetic resonance has relatively larger coupling distance compared with that based on electric resonance near field coupling to magnetic resonance. The relatively large coupling distance is due to the relatively small susceptibility change. For EIT based on simultaneous electric resonance and magnetic resonance, not only incident electric field but also the incident magnetic field pays a role on the susceptibility of system. The influence of the incident magnetic field leads to relatively smaller susceptibility change compared with that based on electric resonance near field coupling to magnetic resonance. PMID:26900016

  3. Multiplexed image storage by electromagnetically induced transparency in a solid

    NASA Astrophysics Data System (ADS)

    Heinze, G.; Rentzsch, N.; Halfmann, T.

    2012-11-01

    We report on frequency- and angle-multiplexed image storage by electromagnetically induced transparency (EIT) in a Pr3+:Y2SiO5 crystal. Frequency multiplexing by EIT relies on simultaneous storage of light pulses in atomic coherences, driven in different frequency ensembles of the inhomogeneously broadened solid medium. Angular multiplexing by EIT relies on phase matching of the driving laser beams, which permits simultaneous storage of light pulses propagating under different angles into the crystal. We apply the multiplexing techniques to increase the storage capacity of the EIT-driven optical memory, in particular to implement multiplexed storage of larger two-dimensional amounts of data (images). We demonstrate selective storage and readout of images by frequency-multiplexed EIT and angular-multiplexed EIT, as well as the potential to combine both multiplexing approaches towards further enhanced storage capacities.

  4. Electromagnetically Induced Transparency in Potassium Vapors: Features and Restrictions

    NASA Astrophysics Data System (ADS)

    Sargsyan, A.; Petrov, P. A.; Vartanyan, T. A.; Sarkisyan, D.

    2016-03-01

    Features of electromagnetically induced transparency (EIT) in potassium vapors at the D1 line of the 39K isotope are studied. EIT resonances with a subnatural width of 3.5 MHz have been recorded upon excitation by two independent narrow-band diode lasers in a 1-cm-long cell filled with a natural mixture of potassium isotopes and buffer gas. The splitting of EIT resonances in potassium vapors in longitudinal and transverse magnetic fields has been studied for the first time. The splitted components also have a subnatural width. The smallness of the coupling factor of the hyperfine structure in 39K atoms leads to a transition to the Paschen—Back regime at relatively weaker magnetic fields than in the case of Cs, Rb, and Na atoms. Practical applications of the phenomena under study are noted. The theoretical model well explains the experiment.

  5. Lensing effect of electromagnetically induced transparency involving a Rydberg state

    NASA Astrophysics Data System (ADS)

    Han, Jingshan; Vogt, Thibault; Manjappa, Manukumara; Guo, Ruixiang; Kiffner, Martin; Li, Wenhui

    2015-12-01

    We study the lensing effect experienced by a weak probe field under conditions of electromagnetically induced transparency (EIT) involving a Rydberg state. A Gaussian coupling beam tightly focused on a laser-cooled atomic cloud produces an inhomogeneity in the coupling Rabi frequency along the transverse direction and makes the EIT area acting like a gradient-index medium. We image the probe beam at the position where it exits the atomic cloud and observe that a red-detuned probe light is strongly focused with a greatly enhanced intensity whereas a blue-detuned one is defocused with a reduced intensity. Our experimental results agree very well with the numerical solutions of Maxwell-Bloch equations.

  6. Electromagnetically induced transparency and slow light with optomechanics.

    PubMed

    Safavi-Naeini, A H; Mayer Alegre, T P; Chan, J; Eichenfield, M; Winger, M; Lin, Q; Hill, J T; Chang, D E; Painter, O

    2011-04-01

    Controlling the interaction between localized optical and mechanical excitations has recently become possible following advances in micro- and nanofabrication techniques. So far, most experimental studies of optomechanics have focused on measurement and control of the mechanical subsystem through its interaction with optics, and have led to the experimental demonstration of dynamical back-action cooling and optical rigidity of the mechanical system. Conversely, the optical response of these systems is also modified in the presence of mechanical interactions, leading to effects such as electromagnetically induced transparency (EIT) and parametric normal-mode splitting. In atomic systems, studies of slow and stopped light (applicable to modern optical networks and future quantum networks) have thrust EIT to the forefront of experimental study during the past two decades. Here we demonstrate EIT and tunable optical delays in a nanoscale optomechanical crystal, using the optomechanical nonlinearity to control the velocity of light by way of engineered photon-phonon interactions. Our device is fabricated by simply etching holes into a thin film of silicon. At low temperature (8.7 kelvin), we report an optically tunable delay of 50 nanoseconds with near-unity optical transparency, and superluminal light with a 1.4 microsecond signal advance. These results, while indicating significant progress towards an integrated quantum optomechanical memory, are also relevant to classical signal processing applications. Measurements at room temperature in the analogous regime of electromagnetically induced absorption show the utility of these chip-scale optomechanical systems for optical buffering, amplification, and filtering of microwave-over-optical signals. PMID:21412237

  7. Coupled-mode induced transparency in a bottle whispering-gallery-mode resonator.

    PubMed

    Wang, Yue; Zhang, Kun; Zhou, Song; Wu, Yi-Hui; Chi, Ming-Bo; Hao, Peng

    2016-04-15

    Whispering-gallery-mode (WGM) optical resonators are ideal systems for achieving electromagnetically induced transparency-like phenomenon. Here, we experimentally demonstrate that one or more transparent windows can be achieved with coupled-mode induced transparency (CMIT) in a single bottle WGM resonator due to the bottle's dense mode spectra and tunable resonant frequencies. This device offers an approach for multi-channel all-optical switching devices and sensitivity-enhanced WGM-based sensors. PMID:27082355

  8. What is and what is not electromagnetically induced transparency in whispering-gallery microcavities.

    PubMed

    Peng, Bo; Özdemir, Sahin Kaya; Chen, Weijian; Nori, Franco; Yang, Lan

    2014-01-01

    There has been an increasing interest in all-optical analogues of electromagnetically induced transparency and Autler-Townes splitting. Despite the differences in their underlying physics, both electromagnetically induced transparency and Autler-Townes splitting are quantified by a transparency window in the absorption or transmission spectrum, which often leads to a confusion about its origin. While the transparency window in electromagnetically induced transparency is a result of Fano interference among different transition pathways, in Autler-Townes splitting it is the result of strong field-driven interactions leading to the splitting of energy levels. Being able to tell objectively whether an observed transparency window is because of electromagnetically induced transparency or Autler-Townes splitting is crucial for applications and for clarifying the physics involved. Here we demonstrate the pathways leading to electromagnetically induced transparency, Fano resonances and Autler-Townes splitting in coupled whispering-gallery-mode resonators. Moreover, we report the application of the Akaike Information Criterion discerning between all-optical analogues of electromagnetically induced transparency and Autler-Townes splitting and clarifying the transition between them. PMID:25342088

  9. Tunable multiple phase-coupled plasmon-induced transparencies in graphene metamaterials.

    PubMed

    Zeng, Chao; Cui, Yudong; Liu, Xueming

    2015-01-12

    We demonstrate the existence of multiple electromagnetically induced transparencies (EIT)-like spectral responses in graphene metamaterials consisting of a series of self-assembled graphene Fabry-Pérot (FP) cavities. By exploiting the graphene plasmon resonances and phase-coupling effects, the transfer matrix model is established to theoretically predict the EIT-like responses, and the calculated results coincide well with numerical simulations. It is found that high-contrast (~90%) multiple EIT-like windows are observed over a broad range of mid-infrared. Additionally, these optical responses can be efficiently tuned by altering the Fermi level in graphene and the separations of FP cavities. The proposed scheme paves the way toward control of the multiple EIT-like responses, enabling exploration of the on-chip multifunctional electro-optic devices including multi-channel-selective filters, sensors, and modulators. PMID:25835700

  10. A finite volume scheme for radiative heat transfer in semi-transparent media

    SciTech Connect

    Murthy, J.Y.; Mathur, S.R.

    1999-07-01

    Radiation in semi-transparent media occurs in a variety of industrial applications. In the HVAC area, the selective transmission of thermal radiation through windows governs the heat load of rooms. In fiber drawing applications, the rate of quenching of the semi-transparent glass fiber is critically dependent on the radiant exchange with the hot furnace. In ceramics processing, the high index of refraction leads to strong internal reflection effects, and greatly influences the thermal field. It would be useful to develop numerical methods for computing this type of radiation heat transfer in the complex geometries encountered in most industrial applications. Here, a procedure for computing radiation in semi-transparent media is presented. A conservative cell-based finite volume method is developed for unstructured meshes composed of arbitrary polyhedra. The angular domain is discretized into a finite number of control angles over which radiant energy is conserved. At Fresnel interfaces, numerical procedures are developed to conservatively transfer radiant energy from one angular direction to another as a result of reflection and refraction, while accounting for control angle overhang. Similar procedures are also employed at specular surfaces and symmetry boundaries. The method is tested against analytical solutions and shown to perform satisfactorily.

  11. Tunable optomechanically induced transparency in double quadratically coupled optomechanical cavities within a common reservoir

    NASA Astrophysics Data System (ADS)

    Bai, C.; Hou, B. P.; Lai, D. G.; Wu, D.

    2016-04-01

    We consider the optomechanically induced transparency in the double quadratically coupled optomechanical cavities within a common reservoir, in which the two cavities are driven by the coupling fields. It is shown that the probe transparency is improved by increasing the coupling field (the left coupling field) applied on the probing cavity, but the transparency position (the probe frequency of the maximal transparency) is shifted to high frequency. The coupling field (the right coupling field) applied on the other quadratically coupled cavity can lead to a low-frequency shift for the transparency position, which can be used to fix the transparency position by adjusting the right coupling field. We get the quantitative findings that the transparency position is exactly determined by the intensity difference between the two coupling fields. On the other hand, it is found that when the two coupled optomechanical cavities interact with their common reservoir, the cross decay induced by the common reservoir can improve the probe transparency and widen the transparency window. Finally, the effects of the environment's temperature on the transparency are investigated. This will be useful in cooling the membrane, squeezing and entangling the output fields.

  12. Laser frequency locking based on Rydberg electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Yuechun, Jiao; Jingkui, Li; Limei, Wang; Hao, Zhang; Linjie, Zhang; Jianming, Zhao; Suotang, Jia

    2016-05-01

    We present a laser frequency locking to Rydberg transition with electromagnetically induced transparency (EIT) spectra in a room-temperature cesium vapor cell. Cesium levels 6S1/2, 6P3/2, and the nD5/2 state, compose a cascade three-level system, where a coupling laser drives Rydberg transition, and probe laser detects the EIT signal. The error signal, obtained by demodulating the EIT signal, is used to lock the coupling laser frequency to Rydberg transition. The laser frequency fluctuation, ∼0.7 MHz, is obtained after locking on, with the minimum Allan variance to be 8.9 × 10‑11. This kind of locking method can be used to stabilize the laser frequency to the excited transition. Project supported by the National Basic Research Program of China (Grant No. 2012CB921603), the National Natural Science Foundation of China (Grants Nos. 11274209, 61475090, 61378039, and 61378013), and the Research Project Supported by Shanxi Scholarship Council of China (Grant No. 2014-009).

  13. Handedness Dependent Electromagnetically Induced Transparency in Hybrid Chiral Metamaterials

    NASA Astrophysics Data System (ADS)

    Kang, Lei; Hao Jiang, Zhi; Yue, Taiwei; Werner, Douglas H.

    2015-07-01

    We provide the first experimental demonstration of the handedness dependent electromagnetically induced transparency (EIT) in chiral metamaterials during the interaction with circularly polarized waves. The observed chiral-sensitive EIT phenomena arise from the coherent excitation of a non-radiative mode in the component split ring resonators (SRRs) produced by the corresponding Born-Kuhn type (radiative) resonators that are responsible for the pronounced chirality. The coherent coupling, which is dominated by the bonding and antibonding resonances of the Born-Kuhn type resonators, leads to an extremely steep dispersion for a circularly polarized wave of predefined handedness. Accordingly, retrieved effective medium parameters from simulated results further reveal a difference of 80 in the group indices for left- and right-handed circularly polarized waves at frequencies within the EIT window, which can potentially result in handedness-sensitive pulse delays. These chiral metamaterials which enable a handedness dependent EIT effect may provide more degrees of freedom for designing circular polarization based communication devices.

  14. Handedness Dependent Electromagnetically Induced Transparency in Hybrid Chiral Metamaterials

    PubMed Central

    Kang, Lei; Hao Jiang, Zhi; Yue, Taiwei; Werner, Douglas H.

    2015-01-01

    We provide the first experimental demonstration of the handedness dependent electromagnetically induced transparency (EIT) in chiral metamaterials during the interaction with circularly polarized waves. The observed chiral-sensitive EIT phenomena arise from the coherent excitation of a non-radiative mode in the component split ring resonators (SRRs) produced by the corresponding Born−Kuhn type (radiative) resonators that are responsible for the pronounced chirality. The coherent coupling, which is dominated by the bonding and antibonding resonances of the Born−Kuhn type resonators, leads to an extremely steep dispersion for a circularly polarized wave of predefined handedness. Accordingly, retrieved effective medium parameters from simulated results further reveal a difference of 80 in the group indices for left- and right-handed circularly polarized waves at frequencies within the EIT window, which can potentially result in handedness-sensitive pulse delays. These chiral metamaterials which enable a handedness dependent EIT effect may provide more degrees of freedom for designing circular polarization based communication devices. PMID:26183735

  15. Polariton states in circuit QED for electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Gu, Xiu; Huai, Sai-Nan; Nori, Franco; Liu, Yu-xi

    2016-06-01

    Electromagnetically induced transparency (EIT) has been extensively studied in various systems. However, it is not easy to observe in superconducting quantum circuits (SQCs) because the Rabi frequency of the strong-controlling field corresponding to EIT is limited by the decay rates of the SQCs. Here, we show that EIT can be achieved by engineering decay rates in a superconducting circuit QED system through a classical driving field on the qubit. Without such a driving field, the dressed states of the system, describing a superconducting qubit coupled to a cavity field, are approximately product states of the cavity and qubit states in the large-detuning regime. However, the driving field can strongly mix these dressed states. These doubly dressed states, here called polariton states, are formed by the driving field and dressed states, and are a mixture of light and matter. The weights of the qubit and cavity field in the polariton states can now be tuned by the driving field, and thus the decay rates of the polariton states can be changed. We choose the three lowest-energy polariton states with a Λ -type transition in such a driven circuit QED system, and demonstrate how EIT and Autler-Townes splitting can be realized in this compound system. We believe that this study will be helpful for EIT experiments using SQCs.

  16. Light-induced hopping conductivity in a transparent oxide

    NASA Astrophysics Data System (ADS)

    Medvedeva, J. E.; Freeman, A. J.; Bertoni, M. I.; Mason, T. O.

    2004-03-01

    Recently, Hayashi et al (K. Hayashi et al), Nature 419, 462 (2002) found a way to convert a transparent oxide into a persistent conductor using UV light. The simplicity of the insulator-conductor conversion (hydrogen annealing followed by UV irradiation) and the resulting drastic change in conductivity (by 10 orders of magnitude) makes this material an extremely attractive starting point for optoelectronic applications. Despite careful experimental studies, no definitive understanding has been reached on the underlying mechanism responsible for this new dramatic effect. Here we demonstrate that ab-initio calculations provide a detailed explanation of the experimental findings and reveal the origin of the light-induced conductivity. We (i) show that the charge transport, associated with photo-excitation of an electron from hydrogen, occurs by electron hopping, (ii) determine the exact paths for the carrier migration and (iii) derive the temperature behavior of the hopping conductivity. We predict the strong dependence of the transport on the particular hopping centers and their spatial arrangement which is confirmed by our measurements, and investigate the possibility of varying the conductivity by proper doping.

  17. Electromagnetically induced transparency resonances inverted in magnetic field

    SciTech Connect

    Sargsyan, A.; Sarkisyan, D. E-mail: david@ipr.sci.am; Pashayan-Leroy, Y.; Leroy, C.; Cartaleva, S.; Wilson-Gordon, A. D.; Auzinsh, M.

    2015-12-15

    The phenomenon of electromagnetically induced transparency (EIT) is investigated in a Λ-system of the {sup 87}Rb D{sub 1} line in an external transverse magnetic field. Two spectroscopic cells having strongly different values of the relaxation rates γ{sub rel} are used: an Rb cell with antirelaxation coating (L ∼ 1 cm) and an Rb nanometric- thin cell (nanocell) with a thickness of the atomic vapor column L = 795 nm. For the EIT in the nanocell, we have the usual EIT resonances characterized by a reduction in the absorption (dark resonance (DR)), whereas for the EIT in the Rb cell with an antirelaxation coating, the resonances demonstrate an increase in the absorption (bright resonances (BR)). We suppose that such an unusual behavior of the EIT resonances (i.e., the reversal of the sign from DR to BR) is caused by the influence of an alignment process. The influence of alignment strongly depends on the configuration of the coupling and probe frequencies as well as on the configuration of the magnetic field.

  18. Handedness Dependent Electromagnetically Induced Transparency in Hybrid Chiral Metamaterials.

    PubMed

    Kang, Lei; Hao Jiang, Zhi; Yue, Taiwei; Werner, Douglas H

    2015-01-01

    We provide the first experimental demonstration of the handedness dependent electromagnetically induced transparency (EIT) in chiral metamaterials during the interaction with circularly polarized waves. The observed chiral-sensitive EIT phenomena arise from the coherent excitation of a non-radiative mode in the component split ring resonators (SRRs) produced by the corresponding Born-Kuhn type (radiative) resonators that are responsible for the pronounced chirality. The coherent coupling, which is dominated by the bonding and antibonding resonances of the Born-Kuhn type resonators, leads to an extremely steep dispersion for a circularly polarized wave of predefined handedness. Accordingly, retrieved effective medium parameters from simulated results further reveal a difference of 80 in the group indices for left- and right-handed circularly polarized waves at frequencies within the EIT window, which can potentially result in handedness-sensitive pulse delays. These chiral metamaterials which enable a handedness dependent EIT effect may provide more degrees of freedom for designing circular polarization based communication devices. PMID:26183735

  19. All-dielectric metasurface analogue of electromagnetically induced transparency.

    PubMed

    Yang, Yuanmu; Kravchenko, Ivan I; Briggs, Dayrl P; Valentine, Jason

    2014-01-01

    Metasurface analogues of electromagnetically induced transparency (EIT) have been a focus of the nanophotonics field in recent years, due to their ability to produce high-quality factor (Q-factor) resonances. Such resonances are expected to be useful for applications such as low-loss slow-light devices and highly sensitive optical sensors. However, ohmic losses limit the achievable Q-factors in conventional plasmonic EIT metasurfaces to values <~10, significantly hampering device performance. Here we experimentally demonstrate a classical analogue of EIT using all-dielectric silicon-based metasurfaces. Due to extremely low absorption loss and coherent interaction of neighbouring meta-atoms, a Q-factor of 483 is observed, leading to a refractive index sensor with a figure-of-merit of 103. Furthermore, we show that the dielectric metasurfaces can be engineered to confine the optical field in either the silicon resonator or the environment, allowing one to tailor light-matter interaction at the nanoscale. PMID:25511508

  20. Optimizing Electromagnetically Induced Transparency Signals with Laguerre-Gaussian Beams

    NASA Astrophysics Data System (ADS)

    Holtfrerich, Matthew; Akin, Tom; Krzyzewski, Sean; Marino, Alberto; Abraham, Eric

    2016-05-01

    We have performed electromagnetically induced transparency in ultracold Rubidium atoms using a Laguerre-Gaussian laser mode as the control beam. Laguerre-Gaussian modes are characterized by a ring type transverse intensity profile and carry intrinsic orbital angular momentum. This angular momentum carried by the control beam can be utilized in optical computing applications which is unavailable to the more common Gaussian laser field. Specifically, we use a Laguerre-Gaussian control beam with a Gaussian probe to show that the linewidth of the transmission spectrum can be narrowed when compared to a Gaussian control beam that has the same peak intensity. We present data extending this work to compare control fields in both the Gaussian and Laguerre-Gaussian modes with constant total power. We have made efforts to find the optical overlap that best minimizes the transmission linewidth while also maintaining signal contrast. This was done by changing the waist size of the control beam with respect to the probe. The best results were obtained when the waist of a Laguerre-Gaussian control beam is equal to the waist of the Gaussian probe resulting in narrow linewidth features.

  1. Experimental Studies of Laser-Induced Breakdown in Transparent Dielectrics

    SciTech Connect

    Carr, C W

    2003-09-23

    The mechanisms by which transparent dielectrics damage when exposed to high power laser radiation has been of scientific and technological interest since the invention of the laser. In this work, a set of three experiments are presented which provide insight into the damage initiation mechanisms and the processes involved in laser-induced damage. Using an OPO (optical parametric oscillator) laser, we have measured the damage thresholds of deuterated potassium dihydrogen phosphate (DKDP) from the near ultraviolet into the visible. Distinct steps, whose width is of order K{sub b}T, are observed in the damage threshold at photon energies associated with the number of photons (3{yields}2 or 4{yields}3) needed to promote a ground state electron across the energy gap. The wavelength dependence of the damage threshold suggests that a primary mechanism for damage initiation in DKDP is a multi-photon process in which the order is reduced through excited defect state absorption. In-situ fluorescence microscopy, in conjunction with theoretical calculations by Liu et al., has been used to establish that hydrogen displacement defects are potentially responsible for the reduction in the multi-photon cross-section. During the damage process, the material absorbs energy from the laser pulse and produces an ionized region that gives rise to broadband emission. By performing a time-resolved investigation of this emission, we demonstrate both that it is blackbody in nature, and we provide the first direct measurement of the localized temperature during and following laser damage initiation for various optical materials. For excitation using nanosecond laser pulses, the plasma, when confined in the bulk, is in thermal equilibrium with the lattice. These results allow for a detailed characterization of temperature, pressure, and electron densities occurring during laser-induced damage.

  2. Optomechanically induced transparency in the presence of an external time-harmonic-driving force

    PubMed Central

    Ma, Jinyong; You, Cai; Si, Liu-Gang; Xiong, Hao; Li, Jiahua; Yang, Xiaoxue; Wu, Ying

    2015-01-01

    We propose a potentially valuable scheme to measure the properties of an external time-harmonic-driving force with frequency ω via investigating its interaction with the combination of a pump field and a probe field in a generic optomechanical system. We show that the spectra of both the cavity field and output field in the configuration of optomechanically induced transparency are greatly modified by such an external force, leading to many interesting linear and non-linear effects, such as the asymmetric structure of absorption in the frequency domain and the antisymmetry breaking of dispersion near ω = ωm. Furthermore, we find that our scheme can be used to measure the initial phase of the external force. More importantly, this setup may eliminate the negative impact of thermal noise on the measurement of the weak external force in virtue of the process of interference between the probe field and the external force. Finally, we show that our configuration can be employed to improve the measurement resolution of the radiation force produced by a weak ultrasonic wave. PMID:26062029

  3. Implementation of Electromagnetically Induced Transparency in a Metamaterial Controlled with Auxiliary Waves

    NASA Astrophysics Data System (ADS)

    Nakanishi, Toshihiro; Kitano, Masao

    2015-08-01

    We propose a metamaterial to realize true electromagnetically induced transparency (EIT), where the incidence of an auxiliary electromagnetic wave called the control wave induces transparency for a probe wave. The analogy to the original EIT effect in an atomic medium is shown through analytical and numerical calculations derived from a circuit model for the metamaterial. We perform experiments to demonstrate the EIT effect of the metamaterial in the microwave region. The width and position of the transparent region can be controlled by the power and frequency of the control wave. We also observe asymmetric transmission spectra unique to the Fano resonance.

  4. Tailoring electromagnetically induced transparency for terahertz metamaterials: From diatomic to triatomic structural molecules

    NASA Astrophysics Data System (ADS)

    Yin, Xiaogang; Feng, Tianhua; Yip, SenPo; Liang, Zixian; Hui, Alvin; Ho, Johnny C.; Li, Jensen

    2013-07-01

    The coupling effects in electromagnetically induced transparency (EIT) for triatomic metamaterials are investigated at terahertz (THz) frequencies both experimentally and theoretically. We observed enhancement and cancellation of EIT with single transparency window, and also two additional ways to achieve double EIT transparency windows. One is from the hybridization between two dark atoms in a bright-dark-dark configuration. Another is from an averaged effect between absorption of the additional bright atom and the EIT from the original diatomic molecule in a bright-bright-dark configuration. It allows us to control EIT and the associated slow-light effect for THz metamaterials with high accuracy.

  5. Compensation of the Kerr effect for transient optomechanically induced transparency in a silica microsphere.

    PubMed

    Shen, Zhen; Dong, Chun-Hua; Chen, Yuan; Xiao, Yun-Feng; Sun, Fang-Wen; Guo, Guang-Can

    2016-03-15

    We have studied the Kerr effect in silica microspheres and demonstrated compensation of the Kerr effect for transient optomechanically induced transparency (OMIT). Due to the Kerr effect of the temporal strong driving pulse, an asymmetric transparency dip is observed during the transient OMIT experiment when the laser frequency is locked at one mechanical frequency, ω(m), below the whispering gallery mode resonance using a weak locking pulse. For compensation of the Kerr effect, we lock the laser at a lower frequency and show the symmetric transparency window. These results are important for studying photon-phonon interconversion, especially in systems with strong driving power. PMID:26977681

  6. Velocity-selective electromagnetically-induced-transparency measurements of potassium Rydberg states

    NASA Astrophysics Data System (ADS)

    Xu, Wenchao; DeMarco, Brian

    2016-01-01

    We demonstrate a velocity selection scheme that mitigates suppression of electromagnetically induced transparency (EIT) by Doppler shifts for coupling wavelengths larger than the probe wavelength. An optical pumping beam counterpropagating with the EIT probe beam transfers atoms between hyperfine states in a velocity-selective fashion. Measurement of the transmitted probe beam synchronous with chopping of the optical pumping beam enables a Doppler-free EIT signal to be detected. Transition frequencies between 5 P1 /2 and n S1 /2 states for n =26 , 27, and 28 in 39K are obtained via EIT spectroscopy in a heated vapor cell with a probe beam stabilized to the 4 S1 /2→5 P1 /2 transition. Using previous high-resolution measurements of the 4 S1 /2→n S1 /2 transitions, we make a determination of the absolute frequency of the 4 S1 /2→5 P1 /2 transition. Our measurement is shifted by 560 MHz from the currently accepted value with a twofold improvement in uncertainty. These measurements will enable novel experiments with Rydberg-dressed ultracold Fermi gases composed of 40K atoms.

  7. Disorder-induced transparency in a one-dimensional waveguide side coupled with optical cavities

    SciTech Connect

    Zhang, Yongyou Dong, Guangda; Zou, Bingsuo

    2014-05-07

    Disorder influence on photon transmission behavior is theoretically studied in a one-dimensional waveguide side coupled with a series of optical cavities. For this sake, we propose a concept of disorder-induced transparency appearing on the low-transmission spectral background. Two kinds of disorders, namely, disorders of optical cavity eigenfrequencies and relative phases in the waveguide side coupled with optical cavities are considered to show the disorder-induced transparency. They both can induce the optical transmission peaks on the low-transmission backgrounds. The statistical mean value of the transmission also increases with increasing the disorders of the cavity eigenfrequencies and relative phases.

  8. Cavity electromagnetically induced transparency of driven-three-level atoms: A transparent window narrowing below a natural width

    NASA Astrophysics Data System (ADS)

    Bentley, Cleo L.; Liu, Jiaren; Liao, Yan

    2000-02-01

    Steady-state dynamics of a Λ atom in a ring cavity driven by two coherent fields are studied for arbitrary detunings, arbitrary incoherent pumping, and coherent driving intensities. Effects of both cavity and effective atom number on electromagnetically induced transparency (EIT) are pointed out. New physical pictures for cavity EIT are given in terms of collective cooperative coefficients and dispersion experienced by the probe. In the regime of smaller collective cooperative coefficients, an absorption-gain profile is reduced to that of a general EIT estimated by the imaginary part of a corresponding dipole moment, and its transparency window is directly proportional to power broadening, if the total Rabi frequency is large enough. But in the region of larger collective cooperative coefficients which means a dense atomic medium, longer optical path, or high-Q cavity, EIT is determined not only by the imaginary part but also by the real part of the corresponding dipole moment, which results in the possibility of observing an EIT central peak with a subnatural width, while there may be nearly no power broadening.

  9. Radiation-induced deposition of transparent conductive tin oxide coatings

    NASA Astrophysics Data System (ADS)

    Umnov, S.; Asainov, O.; Temenkov, V.

    2016-04-01

    The study of tin oxide films is stimulated by the search for an alternative replacement of indium-tin oxide (ITO) films used as transparent conductors, oxidation catalysts, material gas sensors, etc. This work was aimed at studying the influence of argon ions irradiation on optical and electrical characteristics of tin oxide films. Thin films of tin oxide (without dopants) were deposited on glass substrates at room temperature using reactive magnetron sputtering. After deposition, the films were irradiated with an argon ion beam. The current density of the beam was (were) 2.5 mA/cm2, and the particles energy was 300-400 eV. The change of the optical and electrical properties of the films depending on the irradiation time was studied. Films optical properties were investigated by photometry in the range of 300-1100 nm. Films structural properties were studied using X-ray diffraction. The diffractometric research showed that the films, deposited on a substrate, had a crystal structure, and after argon ions irradiation they became quasi-crystalline (amorphous). It has been found that the transmission increases proportionally with the irradiation time, however the sheet resistance increases disproportionally. Tin oxide films (thickness ~30 nm) with ~100% transmittance and sheet resistance of ~100 kOhm/sq. were obtained. The study has proved to be prospective in the use of ion beams to improve the properties of transparent conducting oxides.

  10. Birefringence and polarization rotator induced by electromagnetically induced transparency in rare earth ion-doped crystals

    NASA Astrophysics Data System (ADS)

    Li, Zhixiang; Liu, Jianji; Yu, Ping; Zhang, Guoquan

    2016-05-01

    The birefringence induced by the electromagnetically induced transparency effect in a {Pr}^{3+}:{Y}_2 {SiO}_5 crystal was studied by using a balanced polarimeter technique. The results show that it is possible to control the polarization state of the output probe beam by adjusting the experimental conditions. Particularly, the coherently prepared {Pr}^{3+}:{Y}_2 {SiO}_5 crystal can serve as a polarization rotator for a linearly polarized input probe beam at the two-photon resonant condition. Such coherent control on the polarization of light should be useful for polarization-based classical and quantum information processing such as all-optical switching, polarization preserving light pulse memory and polarization qubits based on rare earth ion-doped solids.

  11. Tuning all-Optical Analog to Electromagnetically Induced Transparency in nanobeam cavities using nanoelectromechanical system

    PubMed Central

    Shi, Peng; Zhou, Guangya; deng, Jie; Tian, Feng; Chau, Fook Siong

    2015-01-01

    We report the observations of all-optical electromagnetically induced transparency in nanostructures using waveguide side-coupled with photonic crystal nanobeam cavities, which has measured linewidths much narrower than individual resonances. The quality factor of transparency resonance can be 30 times larger than those of measured individual resonances. When the gap between cavity and waveguide is reduced to 10 nm, the bandwidth of destructive interference region can reach 10 nm while the width of transparency resonance is 0.3 nm. Subsequently, a comb-drive actuator is introduced to tune the line shape of the transparency resonance. The width of the peak is reduced to 15 pm and the resulting quality factor exceeds 105. PMID:26415907

  12. Interference-induced angle-independent acoustical transparency

    SciTech Connect

    Qi, Lehua; Yu, Gaokun Wang, Ning; Wang, Xinlong; Wang, Guibo

    2014-12-21

    It is revealed that the Fano-like interference leads to the extraordinary acoustic transmission through a slab metamaterial of thickness much smaller than the wavelength, with each unit cell consisting of a Helmholtz resonator and a narrow subwavelength slit. More importantly, both the theoretical analysis and experimental measurement show that the angle-independent acoustical transparency can be realized by grafting a Helmholtz resonator and a quarter-wave resonator to the wall of a narrow subwavelength slit in each unit cell of a slit array. The observed phenomenon results from the interferences between the waves propagating in the slit, those re-radiated by the Helmholtz resonator, and those re-radiated by the quarter-wave resonator. The proposed design may find its applications in designing angle-independent acoustical filters and controlling the phase of the transmitted waves.

  13. Vector cavity optomechanics in the parameter configuration of optomechanically induced transparency

    NASA Astrophysics Data System (ADS)

    Xiong, Hao; Huang, Ya-Min; Wan, Liang-Liang; Wu, Ying

    2016-07-01

    We propose the concept of vector cavity optomechanics in which the polarization behavior of light fields is introduced to achieve optomechanical control. The steady states and optomechanically induced transparency are studied in the vector regime, and we show that the polarization of optical fields may be a powerful tool to identify the underlying physical process and control the signal of optomechanically induced transparency. In particular, the conditions for obtaining a linearly polarized output probe field is given, which reveal some nontrivial polarizing effects. Despite its conceptual simplicity, vector cavity optomechanics may entail a wide range of intriguing phenomena and uncover a novel understanding for optomechanical interaction.

  14. Plasmon-induced multilevel-transparency in two-dimensional hybrid coplanar waveguide

    NASA Astrophysics Data System (ADS)

    Shang, Xiong-Jun; Wang, Ling-Ling; Zhai, Xiang; Yue, Jing; Luo, Xin; Duan, Hui-Gao

    2016-09-01

    The optical transmission property of a hybrid coplanar waveguide consisting of three quarters of a nanoring (TQNR) and a slot cavity resonator is numerically investigated and theoretically analyzed. In this paper, the apparent multilevel plasmon-induced transparency (PIT) effect can be obtained due to the interaction between the resonance modes of the two elements. Combining the calculated magnetic field distribution with the theoretically fitted parameters, the transparency windows of all resonance modes can be clearly investigated. The results show that the second-order transparency window originates from the destructive interference between the bright and dark mode of the hybrid system, while the first- and third-order transparency windows originate from the suppression effect of the dark mode. As the assessment standard for application, the maximal values of \\text{FO}{{\\text{M}}\\ast} appear at the transmission dips and their highest reaches to near 18. While the \\text{FOM} reaches to an impressive value 270 at the third-order transparent window, and the sensitivity is as high as 2650 nm RIU‑1 at the first-order transparent window. This research provides a guide to the practical applications in the visible and near-infrared light region.

  15. Experimental distinction of Autler-Townes splitting from electromagnetically induced transparency using coupled mechanical oscillators system

    PubMed Central

    Liu, Jingliang; Yang, Hujiang; Wang, Chuan; Xu, Kun; Xiao, Jinghua

    2016-01-01

    Here we experimentally demonstrated the electromagnetically induced transparency (EIT) and Autler-Townes splitting (ATS) effects in mechanical coupled pendulums. The analogue of EIT and ATS has been studied in mechanical systems and the intrinsic physics between these two phenomena are also been discussed. Exploiting the Akaike Information Criterion, we discern the ATS effect from EIT effect in our experimental results. PMID:26751738

  16. Experimental distinction of Autler-Townes splitting from electromagnetically induced transparency using coupled mechanical oscillators system

    NASA Astrophysics Data System (ADS)

    Liu, Jingliang; Yang, Hujiang; Wang, Chuan; Xu, Kun; Xiao, Jinghua

    2016-01-01

    Here we experimentally demonstrated the electromagnetically induced transparency (EIT) and Autler-Townes splitting (ATS) effects in mechanical coupled pendulums. The analogue of EIT and ATS has been studied in mechanical systems and the intrinsic physics between these two phenomena are also been discussed. Exploiting the Akaike Information Criterion, we discern the ATS effect from EIT effect in our experimental results.

  17. Zeeman Electromagnetically Induced Transparency with crossed pump and probe beams: Small angle dependence

    NASA Astrophysics Data System (ADS)

    Campbell, Kaleb; Madkhaly, Samaya; de Medeiros, Dillon; Bali, Samir; Macklin Quantum Information Sciences Collaboration

    2016-05-01

    Progress toward undergraduate oriented experiments on image storage in room-temperature atomic vapor using Electromagnetically Induced Transparency is described. Using a scanning longitudinal magnetic field technique we diagnose and suppress stray magnetic fields and polarization impurity. We consider the pump-probe angular dependence of the EIT signal but at much smaller angles of less than a milliradian.

  18. Electromagnetically-induced-transparency intensity-correlation power broadening in a buffer gas

    NASA Astrophysics Data System (ADS)

    Zheng, Aojie; Green, Alaina; Crescimanno, Michael; O'Leary, Shannon

    2016-04-01

    Electromagnetically-induced-transparency (EIT) noise correlation spectroscopy holds promise as a simple, robust method for performing high-resolution spectroscopy used in optical magnetometry and clocks. Of relevance to these applications, we report on the role of buffer gas pressure and magnetic field gradients on power broadening of Zeeman-EIT noise correlation resonances.

  19. Weak-light rogue waves, breathers, and their active control in a cold atomic gas via electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Liu, Junyang; Hang, Chao; Huang, Guoxiang

    2016-06-01

    We propose a scheme to demonstrate the existence of optical Peregrine rogue waves and Akhmediev and Kuznetsov-Ma breathers and realize their active control via electromagnetically induced transparency (EIT). The system we suggest is a cold, Λ -type three-level atomic gas interacting with a probe and a control laser fields and working under EIT condition. We show that, based on EIT with an incoherent optical pumping, which can be used to cancel optical absorption, (1+1)-dimensional optical Peregrine rogue waves, Akhmediev breathers, and Kuznetsov-Ma breathers can be generated with very low light power. In addition, we demonstrate that the Akhmediev and Kuznetsov-Ma breathers in (2+1)-dimensions obtained can be actively manipulated by using an external magnetic field. As a result, these breathers can display trajectory deflections and bypass obstacles during propagation.

  20. Zero to π Continuously Controllable Cross Phase Modulation in Doppler Broadened N-Type Electromagnetically Induced Transparency Medium

    PubMed Central

    Li, R. B.; Zhu, C. J.; Deng, L.; Hagley, E. W.

    2016-01-01

    We demonstrate an observation of zero to π continuously controllable cross-phase-modulation based on N-type electromagnetically induced transparency scheme in a room-temperature 87Rb vapor. We theoretically and experimentally show that the signal field acquires a π phase shift compared with the reference light in the presence of the phase-control field. Using the method of the optical Mach-Zehnder interferometer, we demonstrate that a zero to π continuously controllable phase gate can be built by modulating the phase-control field. In addition, our theoretical calculation agrees well with the experimental observation, and the results presented in this work hold the potential applications for the orthogonal polarization/vector gate in the quantum information processing.

  1. Low-power and ultrafast all-optical tunable plasmon-induced transparency in plasmonic nanostructures

    NASA Astrophysics Data System (ADS)

    Chai, Zhen; Hu, Xiaoyong; Zhu, Yu; Zhang, Fan; Yang, Hong; Gong, Qihuang

    2013-05-01

    We report an ultrafast and low-power all-optical tunable plasmon-induced transparency in a plasmonic nanostructure consisting of a gold nanowire grating embedded in a polycrystalline lithium niobate layer, realized based on strong quantum confinement enhancing nonlinearity. The all-optical tunability is realized based on the third-order nonlinear Kerr effect. A shift of 30 nm in the central wavelength of the transparency window is achieved under excitation of a pump light with an intensity as low as 7 MW/cm2. An ultrafast response time of 69 ps is reached because of ultrafast relaxation dynamics of bound electrons in polycrystalline lithium niobate.

  2. Experimental Demonstration of the Effectiveness of Electromagnetically Induced Transparency for Enhancing Cross-Phase Modulation in the Short-Pulse Regime

    NASA Astrophysics Data System (ADS)

    Dmochowski, Greg; Feizpour, Amir; Hallaji, Matin; Zhuang, Chao; Hayat, Alex; Steinberg, Aephraim M.

    2016-04-01

    We present an experiment using a sample of laser-cooled Rb atoms to show that cross-phase modulation schemes continue to benefit from electromagnetically induced transparency (EIT) even as the transparency window is made narrower than the signal bandwidth (i.e., for signal pulses much shorter than the response time of the EIT system). Addressing concerns that narrow EIT windows might not prove useful for such applications, we show that while the peak phase shift saturates in this regime, it does not drop, and the time-integrated effect continues to scale inversely with EIT window width. This integrated phase shift is an important figure of merit for tasks such as the detection of single-photon-induced cross-phase shifts. Only when the window width approaches the system's dephasing rate γ does the peak phase shift begin to decrease, leading to an integrated phase shift that peaks when the window width is equal to 4 γ .

  3. Experimental Demonstration of the Effectiveness of Electromagnetically Induced Transparency for Enhancing Cross-Phase Modulation in the Short-Pulse Regime.

    PubMed

    Dmochowski, Greg; Feizpour, Amir; Hallaji, Matin; Zhuang, Chao; Hayat, Alex; Steinberg, Aephraim M

    2016-04-29

    We present an experiment using a sample of laser-cooled Rb atoms to show that cross-phase modulation schemes continue to benefit from electromagnetically induced transparency (EIT) even as the transparency window is made narrower than the signal bandwidth (i.e., for signal pulses much shorter than the response time of the EIT system). Addressing concerns that narrow EIT windows might not prove useful for such applications, we show that while the peak phase shift saturates in this regime, it does not drop, and the time-integrated effect continues to scale inversely with EIT window width. This integrated phase shift is an important figure of merit for tasks such as the detection of single-photon-induced cross-phase shifts. Only when the window width approaches the system's dephasing rate γ does the peak phase shift begin to decrease, leading to an integrated phase shift that peaks when the window width is equal to 4γ. PMID:27176519

  4. Flexible modulation of plasmon-induced transparency in a strongly coupled graphene grating-sheet system.

    PubMed

    Luo, Weiwei; Cai, Wei; Xiang, Yinxiao; Wang, Lei; Ren, Mengxin; Zhang, Xinzheng; Xu, Jingjun

    2016-03-21

    General actively tunable near-field plasmon-induced transparency (PIT) systems based on couplings between localized plasmon resonances of graphene nanostructures not only suffer from interantenna separations of smaller than 20 nm, but also lack switchable effect about the transparency window. Here, the performance of an active PIT system based on graphene grating-sheet with near-field coupling distance of more than 100 nm is investigated in mid-infrared. The transparency window in spectrum is analyzed objectively and proved to be more likely stemmed from Aulter-Townes splitting. The proposed system exhibits flexible tunability in slow-light and electro-optical switches, promising for practical active photonic devices. PMID:27136776

  5. Field-induced activation of metal oxide semiconductor for low temperature flexible transparent electronic device applications

    NASA Astrophysics Data System (ADS)

    Pudasaini, Pushpa Raj; Noh, Joo Hyon; Wong, Anthony; Haglund, Amada; Ward, Thomas Zac; Mandrus, David; Rack, Philip

    Amorphous metal-oxide semiconductors have been extensively studied as an active channel material in thin film transistors due to their high carrier mobility, and excellent large-area uniformity. Here, we report the athermal activation of amorphous indium gallium zinc oxide semiconductor channels by an electric field-induced oxygen migration via gating through an ionic liquid. Using field-induced activation, a transparent flexible thin film transistor is demonstrated on a polyamide substrate with transistor characteristics having a current ON-OFF ratio exceeding 108, and saturation field effect mobility of 8.32 cm2/(V.s) without a post-deposition thermal treatment. This study demonstrates the potential of field-induced activation as an athermal alternative to traditional post-deposition thermal annealing for metal oxide electronic devices suitable for transparent and flexible polymer substrates. Materials Science and Technology Division, ORBL, Oak Ridge, TN 37831, USA.

  6. Damp-Heat Induced Degradation of Transparent Conducting Oxides for Thin Film Solar Cells (Presentation)

    SciTech Connect

    Pern, J.; Noufi, R.; Li, X.; DeHart, C.; To, B.

    2008-05-01

    The objectives are: (1) To achieve a high long-term performance reliability for the thin-film CIGS PV modules with more stable materials, device structure designs, and moisture-resistant encapsulation materials and schemes; (2) to evaluate the DH stability of various transparent conducting oxides (TCOs); (3) to identify the degradation mechanisms and quantify degradation rates; (4) to seek chemical and/or physical mitigation methods, and explore new materials. It's important to note that direct exposure to DH represents an extreme condition that a well-encapsulated thin film PV module may never experience.

  7. Tailoring the multiple electrically resonant transparency through bi-layered metamaterial-induced coupling oscillators

    NASA Astrophysics Data System (ADS)

    Zhao, Jiaxin; Han, Song; Lin, Hai; Yang, Helin

    2015-11-01

    Metamaterials (MMs) can be tailored to support electromagnetic interference, which is the kernel for the material-based electromagnetically induced transparency (EIT) phenomena, alternatively transparency based on electric interference can be deemed as electrically resonant transparency (ERT). Here, we experimentally and theoretically demonstrate two kinds of bi-layered MMs. The C3-C6 hybrid MM exhibits triple-mode ERT with transmission peaks of 0.84 at 9.6 GHz, 0.92 at 10.4 GHz, and 0.93 at 11.5 GHz for the horizontally polarized wave, and dual-mode ERT with transmission peaks of 0.84 at 8.8 GHz and 0.91 at 10.2 GHz for the vertically polarized wave. However, the C4-C8 hybrid MM, with two stable transparent peaks of 0.92 and 0.88 at 10.46 GHz and 11.61 GHz, is proven to be polarization independent. The measured results show excellent agreement with numerical simulations. A coupled oscillator model is employed to theoretically study the near field interference between the induced dipoles on the transmission properties. The results presented here will find their application value for multi-mode slow light devices, filters and attenuators, and so on.

  8. Plasmon induced transparency in loop-stub resonator-coupled waveguide systems

    NASA Astrophysics Data System (ADS)

    Ye, Jiulin; Wang, Faqiang; Liang, Ruisheng; Wei, Zhongchao; Meng, Hongyun; Zhong, Jiewen; Jiang, Lihua

    2016-07-01

    We firstly investigate plasmon induced transparency (PIT) effect in a metal-dielectric-metal (MDM) waveguide coupled to a single loop stub resonator by finite difference time domain method (FDTD). Compared with previous PIT sup based on MDM waveguide, PIT phenomena can be realized in a single plasmonic composite nanocavity without employment of additional optical elements. Plasmon induced transparency windows can be controlled by adjusting the geometrical parameters of the vertical branches or the horizontal branch in the plasmonic structure. The red-shift of PIT peak is almost linearly proportional to the refractive index of the horizontal branch. This plasmonic system takes the advantages of easy fabrication and compactness. The results may pave a way for the dynamic control of light in highly integrated optical circuits, which can realize ultrafast switching, light storage and nanosensor devices.

  9. Low-loss metamaterial electromagnetically induced transparency based on electric toroidal dipolar response

    SciTech Connect

    Li, Hai-ming; Liu, Shao-bin Liu, Si-yuan; Ding, Guo-wen; Yang, Hua; Yu, Zhi-yang; Zhang, Hai-feng; Wang, Shen-yun

    2015-02-23

    In this paper, a low-loss and high transmission analogy of electromagnetically induced transparency based on electric toroidal dipolar response is numerically and experimentally demonstrated. It is obtained by the excitation of the low-loss electric toroidal dipolar response, which confines the magnetic field inside a dielectric substrate with toroidal geometry. The metamaterial electromagnetically induced transparency (EIT) structure is composed of the cut wire and asymmetric split-ring resonators. The transmission level is as high as 0.88, and the radiation loss is greatly suppressed, which can be proved by the surface currents distributions, the magnetic field distributions, and the imaginary parts of the effective permeability and permittivity. It offers an effective way to produce low-loss and high transmission metamaterial EIT.

  10. Coherent pulse propagation and self-induced transparency on degenerate transitions in atomic iodine

    NASA Astrophysics Data System (ADS)

    Xu, Gan; King, T. A.

    1984-07-01

    Coherent propagation of intense short laser pulses through degenerate absorbing media is investigated with the use of an atomic-iodine laser-absorber self-resonant combination. Four degenerate systems, the 2P12-2P32, F=3<-->F'=4, ΔMF=0,+/-1 and F=2<-->F'=2, ΔMF=0,+/-1 transitions, are studied under various conditions. Theoretical analysis based on the "pulse-area-pulse-energy" approach shows different pulse propagation behaviors for three typical types of degeneracy. Experimental results give good agreement with theoretical predictions. It is concluded that self-induced transparency exists in any degenerate two-level system, provided that suitable polarization of radiation is used. The usefulness of self-induced-transparency phenomena for measurements of transitional dipole moment and homogeneous relaxation time is also demonstrated.

  11. Independently tunable double electromagenetically induced transparency-like resonances in asymmetric plasmonic waveguide resonator system

    NASA Astrophysics Data System (ADS)

    Yu, Da-Ming; Wang, Ling-Ling; Lin, Qi; Zhai, Xiang; Li, Hong-Ju; Xia, Sheng-Xuan

    2016-05-01

    Double electromagnetically induced transparency (EIT)-like resonances are numerically achieved by detuning and bright-dark coupling in an asymmetric plasmonic waveguide resonator system. The transmission properties of the system are simulated by the finite-difference time-domain (FDTD) method. Just because double EIT-like resonances originate from different mechanisms, a single EIT-like resonance can be well tuned independently, namely, one induced transparency window can be tuned in the horizontal direction while the other one is nearly invariable. The present design idea will be applicable in highly integrated optical circuits. Moreover, the formation of double EIT-like resonances may play a guiding role when designing plasmonic devices.

  12. Electromagnetically Induced Transparency and Wideband Wavelength Conversion in Silicon Nitride Microdisk Optomechanical Resonators

    NASA Astrophysics Data System (ADS)

    Liu, Yuxiang; Davanço, Marcelo; Aksyuk, Vladimir; Srinivasan, Kartik

    2013-05-01

    We demonstrate optomechanically mediated electromagnetically induced transparency and wavelength conversion in silicon nitride (Si3N4) microdisk resonators. Fabricated devices support whispering gallery optical modes with a quality factor (Q) of 106, and radial breathing mechanical modes with a Q=104 and a resonance frequency of 625 MHz, so that the system is in the resolved sideband regime. Placing a strong optical control field on the red (blue) detuned sideband of the optical mode produces coherent interference with a resonant probe beam, inducing a transparency (absorption) window for the probe. This is observed for multiple optical modes of the device, all of which couple to the same mechanical mode, and which can be widely separated in wavelength due to the large band gap of Si3N4. These properties are exploited to demonstrate frequency up-conversion and down-conversion of optical signals between the 1300 and 980 nm bands with a frequency span of 69.4 THz.

  13. Giant Kerr nonlinearity and low-power gigahertz solitons via plasmon-induced transparency

    PubMed Central

    Bai, Zhengyang; Huang, Guoxiang; Liu, Lixiang; Zhang, Shuang

    2015-01-01

    We propose a method to enhance Kerr nonlinearity and realize low-power gigahertz solitons via plasmon-induced transparency (PIT) in a new type of metamaterial, which is constructed by an array of unit cell consisting of a cut-wire and a pair of varactor-loaded split-ring resonators. We show that the PIT in such metamaterial can not only mimic the electromagnetically induced transparency in coherent three-level atomic systems, but also exhibit a crossover from PIT to Autler-Townes splitting. We further show that the system suggested here also possess a giant third-order nonlinear susceptibility and may be used to create solitons with extremely low generation power. Our study raises the possibility for obtaining strong nonlinear effect of gigahertz radiation at very low intensity based on room-temperature metamaterials. PMID:26348579

  14. Brillouin-scattering-induced transparency and non-reciprocal light storage

    PubMed Central

    Dong, Chun-Hua; Shen, Zhen; Zou, Chang-Ling; Zhang, Yan-Lei; Fu, Wei; Guo, Guang-Can

    2015-01-01

    Stimulated Brillouin scattering is a fundamental interaction between light and travelling acoustic waves and arises primarily from electrostriction and photoelastic effects, with an interaction strength several orders of magnitude greater than that of other relevant non-linear optical processes. Here we report an experimental demonstration of Brillouin-scattering-induced transparency in a high-quality whispering-gallery-mode optical microresonantor. The triply resonant Stimulated Brillouin scattering process underlying the Brillouin-scattering-induced transparency greatly enhances the light–acoustic interaction, enabling the storage of light as a coherent, circulating acoustic wave with a lifetime up to 10 μs. Furthermore, because of the phase-matching requirement, a circulating acoustic wave can only couple to light with a given propagation direction, leading to non-reciprocal light storage and retrieval. These unique features establish a new avenue towards integrated all-optical switching with low-power consumption, optical isolators and circulators. PMID:25648234

  15. Self-induced transparency effect on the two-soliton interaction

    NASA Astrophysics Data System (ADS)

    da Silva, C. C. D.; Moreira, R. V.; Garcia, S. A.; Caetano, D. P.

    2015-12-01

    We report on the numerical investigation of the interaction between two solitons in a doped nonlinear dispersive medium. The dopant is modeled as a two-level atomic system coherently driven to support simultaneous nonlinear Schrödinger equation and self-induced transparency solitons. We investigate the influence of the self-Induced transparency in the case where the two-solitons are in phase. It is found that the periodical soliton collision effect disappears due to the presence of the atomic system. This new phenomenon is understood considering the detuning parameter on the atomic system description. This result can be exploited in multiple pulse propagation where the soliton interactions play an important role.

  16. Giant Kerr nonlinearity and low-power gigahertz solitons via plasmon-induced transparency.

    PubMed

    Bai, Zhengyang; Huang, Guoxiang; Liu, Lixiang; Zhang, Shuang

    2015-01-01

    We propose a method to enhance Kerr nonlinearity and realize low-power gigahertz solitons via plasmon-induced transparency (PIT) in a new type of metamaterial, which is constructed by an array of unit cell consisting of a cut-wire and a pair of varactor-loaded split-ring resonators. We show that the PIT in such metamaterial can not only mimic the electromagnetically induced transparency in coherent three-level atomic systems, but also exhibit a crossover from PIT to Autler-Townes splitting. We further show that the system suggested here also possess a giant third-order nonlinear susceptibility and may be used to create solitons with extremely low generation power. Our study raises the possibility for obtaining strong nonlinear effect of gigahertz radiation at very low intensity based on room-temperature metamaterials. PMID:26348579

  17. Tip-bias-induced domain evolution in PMN-PT transparent ceramics via piezoresponse force microscopy

    NASA Astrophysics Data System (ADS)

    Zhao, K. Y.; Zhao, W.; Zeng, H. R.; Yu, H. Z.; Ruan, W.; Xu, K. Q.; Li, G. R.

    2015-05-01

    Piezoresponse force microscopy (PFM) was employed to investigate ferroelectric domain structures and their dynamic behavior of lead magnesium niobate-lead titanate [Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT)] transparent ceramics under an tip-bias-induced electric field. A remarkable effect of fluctuation of PT content on the domain configurations and domain dynamic response in PMN-PT transparent ferroelectric ceramics were found by PFM. Comparing with PMN-10%PT and PMN-20%PT, the reversed polarization of macrodomain area in PMN-35%PT and PMN-25%PT exhibits a relatively higher response behavior and better polarization retention performance under the PFM tip-bias-induced electric field, which correspond to their unique macroscopic electro-optic properties.

  18. Controlling the spectrum of light pulses by dynamical electromagnetically induced transparency

    SciTech Connect

    Ignesti, Emilio; Sali, Emiliano; Tognetti, Marco V.; Buffa, Roberto; Fini, Lorenzo; Cavalieri, Stefano

    2011-05-15

    We present a theoretical and experimental study on the possibility of spectral manipulation of weak probe-laser pulses in the presence of dynamical electromagnetically induced transparency. We predict a spectral enlargement or narrowing process depending on whether the probe-laser pulse is overlapped by the rising or the falling edge of the coupling pulse, respectively. The results of an experiment in sodium atomic vapors confirm the theoretical predictions.

  19. Hanle electromagnetically induced transparency and absorption resonances with a Laguerre Gaussian beam

    SciTech Connect

    Anupriya, J.; Ram, Nibedita; Pattabiraman, M.

    2010-04-15

    We describe a computational and experimental study on Hanle electromagnetically induced transparency and absorption resonance line shapes with a Laguerre Gaussian (LG) beam. It is seen that the LG beam profile brings about a significant narrowing in the line shape of the Hanle resonance and ground-state Zeeman coherence in comparison to a Gaussian beam. This narrowing is attributed to the azimuthal mode index of the LG field.

  20. Four-wave mixing in a three-level bichromatic electromagnetically induced transparency system

    SciTech Connect

    Yang, G. Q.; Xu, P.; Wang, J.; Zhan, M. S.; Zhu Yifu

    2010-10-15

    We investigate the four-wave mixing (FWM) phenomenon in a three-level bichromatic electromagnetically induced transparency system. Theoretical results predict that the FWM will exhibit a multipeak structure under bichromatic coupling fields. The stronger the coupling fields are, the more FWM the peaks should exhibit. Results of an experiment carried out with cold {sup 87}Rb atoms in a magneto-optical trap agree with the theoretical prediction.

  1. Dynamics of slow light and light storage in a Doppler-broadened electromagnetically-induced-transparency medium: A numerical approach

    NASA Astrophysics Data System (ADS)

    Su, Shih-Wei; Chen, Yi-Hsin; Gou, Shih-Chuan; Horng, Tzyy-Leng; Yu, Ite A.

    2011-01-01

    We present a numerical scheme to study the dynamics of slow light and light storage in an electromagnetically-induced-transparency (EIT) medium at finite temperatures. Allowing for the motional coupling, we derive a set of coupled Schrödinger equations describing a boosted closed three-level EIT system according to the principle of Galilean relativity. The dynamics of a uniformly moving EIT medium can thus be determined by numerically integrating the coupled Schrödinger equations for atoms plus one ancillary Maxwell-Schrödinger equation for the probe pulse. The central idea of this work rests on the assumption that the loss of ground-state coherence at finite temperatures can be ascribed to the incoherent superposition of density matrices representing the EIT systems with various velocities. Close agreements are demonstrated in comparing the numerical results with the experimental data for both slow light and light storage. In particular, the distinct characters featuring the decay of ground-state coherence can be well verified for slow light and light storage. This warrants that the current scheme can be applied to determine the decaying profile of the ground-state coherence as well as the temperature of the EIT medium.

  2. A dispersion and norm preserving finite difference scheme with transparent boundary conditions for the Dirac equation in (1+1)D

    NASA Astrophysics Data System (ADS)

    Hammer, René; Pötz, Walter; Arnold, Anton

    2014-01-01

    A finite difference scheme is presented for the Dirac equation in (1+1)D. It can handle space- and time-dependent mass and potential terms and utilizes exact discrete transparent boundary conditions (DTBCs). Based on a space- and time-staggered leap-frog scheme it avoids fermion doubling and preserves the dispersion relation of the continuum problem for mass zero (Weyl equation) exactly. Considering boundary regions, each with a constant mass and potential term, the associated DTBCs are derived by first applying this finite difference scheme and then using the Z-transform in the discrete time variable. The resulting constant coefficient difference equation in space can be solved exactly on each of the two semi-infinite exterior domains. Admitting only solutions in l2 which vanish at infinity is equivalent to imposing outgoing boundary conditions. An inverse Z-transformation leads to exact DTBCs in form of a convolution in discrete time which suppress spurious reflections at the boundaries and enforce stability of the whole space-time scheme. An exactly preserved functional for the norm of the Dirac spinor on the staggered grid is presented. Simulations of Gaussian wave packets, leaving the computational domain without reflection, demonstrate the quality of the DTBCs numerically, as well as the importance of a faithful representation of the energy-momentum dispersion relation on a grid.

  3. Electromagnetically induced transparency in rubidium vapor prepared by a comb of short optical pulses

    SciTech Connect

    Sautenkov, Vladimir A.; Rostovtsev, Yuri V.; Ye, C.Y.; Welch, George R.; Kocharovskaya, Olga; Scully, Marlan O.

    2005-06-15

    It was shown by Kocharovskaya and Khanin [Sov. Phys. JETP 63, 945 (1986)] that a comb of optical pulses can induce a ground-state atomic coherence and change the optical response of an atomic medium. In our experiment, we studied the propagation of a comb of optical pulses produced by a mode-locked diode laser in rubidium atomic vapor. Electromagnetically induced transparency (EIT) was observed when the pulse repetition rate is a subharmonic of the hyperfine splitting of the ground state. The width of the EIT resonance is determined by the relaxation rate of the ground-state coherence. Possible applications to magnetometery, atomic clocks, and frequency chains are discussed.

  4. Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature

    NASA Astrophysics Data System (ADS)

    Karuza, M.; Biancofiore, C.; Bawaj, M.; Molinelli, C.; Galassi, M.; Natali, R.; Tombesi, P.; Di Giuseppe, G.; Vitali, D.

    2013-07-01

    We demonstrate the analog of electromagnetically induced transparency in a room temperature cavity optomechanics setup formed by a thin semitransparent membrane within a Fabry-Pérot cavity. Due to destructive interference, a weak probe field is completely reflected by the cavity when the pump beam is resonant with the motional red sideband of the cavity. Under this condition we infer a significant slowing down of light of hundreds of microseconds, which is easily tuned by shifting the membrane along the cavity axis. We also observe the associated phenomenon of electromagnetically induced amplification which occurs due to constructive interference when the pump is resonant with the blue sideband.

  5. Additional one-photon coherence-induced transparency in a Doppler-broadened V-type system

    NASA Astrophysics Data System (ADS)

    Anil Kumar, M.; Singh, Suneel

    2013-06-01

    We illustrate an alternate mechanism which causes probe transparency in a Doppler-broadened V-type system. Our numerical results obtained for very low control field amplitudes clearly indicate the feasibility of attaining nearly perfect probe transparency that originates from an additional one-photon coherence induced by the control field in a Doppler-broadened V-type system. In this regime of control field amplitudes, the criterion for electromagnetically induced transparency (EIT) is not fulfilled and hence the contribution of the usual EIT term is found to be negligible.

  6. Optically and thermally controlled terahertz metamaterial via transition between direct and indirect electromagnetically induced transparency

    SciTech Connect

    Sui, Jiawei Feng, Ls

    2014-12-15

    This passage presents a design of tunable terahertz metamaterials via transition between indirect and direct electromagnetically induced transparency (EIT) effects by changing semiconductor InSb’s properties to terahertz wave under optical and thermal stimuli. Mechanical model and its electrical circuit model are utilized in analytically calculating maximum transmission of transparency window. Simulated results show consistency with the analytical expressions. The results show that the metamaterials hold 98.4% modulation depth at 189 GHz between 300 K, σ{sub InSb} =256000 S/m, and 80 K, σ{sub InSb} =0.0162 S/m conditions , 1360 ps recovery time of the excited electrons in InSb under optical stimulus at 300 K mainly considering the direct EIT effect, and minimum bandwidth 1 GHz.

  7. Ultralow-power all-optical tunable double plasmon-induced transparencies in nonlinear metamaterials

    SciTech Connect

    Zhu, Yu; Yang, Hong; Hu, Xiaoyong E-mail: qhgong@pku.edu.cn; Gong, Qihuang E-mail: qhgong@pku.edu.cn

    2014-05-26

    An all-optical tunable double plasmon-induced transparency is realized in a photonic metamaterial coated on the surface of a nanocomposite layer made of polycrystalline indium-tin oxide doped with gold nanoparticles. The local-field effect, quantum confinement effect, and hot-electron injection ensure a large optical nonlinearity for the nanocomposite. A shift of 120 nm in the central wavelength of transparency windows is reached under excitation with a weak pump laser with an intensity of 21 kW/cm{sup 2}. Compared with previous reports, the threshold pump intensity is reduced by five orders of magnitude, while an ultrafast response time of 34.9 ps is maintained.

  8. Theoretical research on period microstructure induced by femtosecond laser in transparent dielectric

    NASA Astrophysics Data System (ADS)

    Fan, Shuwei; Zhang, Yan

    2014-11-01

    In this paper, we do some research on the interior period microstructure of transparent materials induced by a femtosecond laser of 800-nm wavelength. By adopting a nonlinear propagation physical model of femtosecond laser pulses and considering the spherical aberration effect(SA), we analyze the influence of nonlinear effects such an self-focusing, GDV, MPA, plasma defocusing and interface aberration on femtosecond laser propagation in transparent materials. Meantime, in the case with nonlinear effects and interface aberration, we research the influence of fs laser power, pulse width, numerical aperture and focusing depth on period microvoid. Simultaneously, compared with simulating results in different focusing lens numerical aperture, we find that big numerical aperature and deep focusing more easily produced period voids.

  9. Electromagnetically induced transparency in an inhomogeneously broadened {Lambda} transition with multiple excited levels

    SciTech Connect

    Mishina, O. S.; Scherman, M.; Lombardi, P.; Ortalo, J.; Bramati, A.; Laurat, J.; Giacobino, E.; Felinto, D.; Sheremet, A. S.; Kupriyanov, D. V.

    2011-05-15

    Electromagnetically induced transparency (EIT) has mainly been modeled for three-level systems. In particular, considerable interest has been dedicated to the {Lambda} configuration, with two ground states and one excited state. However, in the alkali-metal atoms, which are commonly used, the hyperfine interaction in the excited state introduces several levels which simultaneously participate in the scattering process. When the Doppler broadening is comparable with the hyperfine splitting in the upper state, the three-level {Lambda} model does not reproduce the experimental results. Here we theoretically investigate the EIT in a hot vapor of alkali-metal atoms and demonstrate that it can be strongly reduced by the presence of multiple excited levels. Given this model, we also show that well-designed optical pumping enables us to significantly recover the transparency.

  10. Tunable ultracompact chip-integrated multichannel filter based on plasmon-induced transparencies

    SciTech Connect

    Yang, Xiaoyu; Chai, Zhen; Lu, Cuicui; Yang, Hong; Hu, Xiaoyong E-mail: qhgong@pku.edu.cn; Gong, Qihuang E-mail: qhgong@pku.edu.cn

    2014-06-02

    Nanoscale multichannel filter is realized in plasmonic circuits directly, which consists of four plasmonic nanocavities coupled via a plasmonic waveguide etched in a gold film. The feature device size is only 1.35 μm, which is reduced by five orders of magnitude compared with previous reports. The optical channels are formed by transparency windows of plasmon-induced transparencies. A shift of 45 nm in the central wavelengths of optical channels is obtained when the plasmonic coupled-nanocavities are covered with a 100-nm-thick poly(methyl methacrylate) layer. This work opens up the possibility for the realization of solid quantum chips based on plasmonic circuits.

  11. Dual-band toroidal-dipole-induced transparency in optical regime

    NASA Astrophysics Data System (ADS)

    Li, Jie; Dong, Zheng-Gao; Zhu, Ming-Jie; Shao, Jian; Wang, Ying-Hua; Li, Jia-Qi

    2016-09-01

    The interference between toroidal and electric dipoles in the optical regime is investigated in a metallic composite metastructure composed of a 12-fold double-bar and an upright rod. It shows that toroidal and electric dipoles can be simultaneously excited, exhibiting a plasmon analog of electromagnetically induced transparency (EIT) and suppressing the far-field radiation. By shifting the upright rod transversally, another transparency window emerges due to the asymmetry of the geometry, resulting in dual-band EIT-like behavior. The result not only contributes to the understanding of optical toroidal dipoles, but also creates the possibility of designing optical devices based on the dual-band EIT-like effect.

  12. Improved Photo-Induced Stability in Amorphous Metal-Oxide Based TFTs for Transparent Displays.

    PubMed

    Koo, Sang-Mo; Ha, Tae-Jun

    2015-10-01

    In this paper, we investigate the origin of photo-induced instability in amorphous metal-oxide based thin-film transistors (oxide-TFTs) by exploring threshold voltage (Vth) shift in transfer characteristics. The combination of photo irradiation and prolonged gate bias stress enhanced the shift in Vth in amorphous hafnium-indium-zinc-oxide (a-HfIZO) TFTs. Such results stem from the extended trapped charges at the localized defect states related to oxygen vacancy which play a role in a screening effect on the electric field induced by gate voltage. We also demonstrate the chemically clean interface in oxide-TFTs by employing oxygen annealing which reduces the density of trap states, thereby resulting in improved photo-induced stability. We believe that this work stimulates the research society of transparent electronics by providing a promising approach to suppress photo-induced instability in metal-oxide TFTs. PMID:26726416

  13. Simulation of electromagnetically and magnetically induced transparency in a magnetized plasma

    NASA Astrophysics Data System (ADS)

    Hur, M. S.; Wurtele, J. S.; Shvets, G.

    2003-07-01

    Electromagnetically induced transparency (EIT), a phenomenon well known in atomic systems, has a natural analogy in a classical magnetized plasma. The magnetized plasma has a resonance for right-hand polarized electromagnetic waves at the electron cyclotron frequency Ω0, so that a probe wave with frequency ω1=Ω0 cannot propagate through the plasma. The plasma can be made transparent to such a probe by the presence of a pump wave. The pump may be an electromagnetic wave or magnetostatic wiggler. Simulations and theory show that the physical reason for the transparency is that the beating of the probe wave with the pump wave sets up a plasma oscillation, and the upper sideband of the pump wave cancels the resonant plasma current due to the probe. The theory of plasma EIT derived here extends that found in the earlier work to include the effects of the lower sideband of the pump and renormalization of the plasma frequency and an analysis of the transient response. A detailed comparison of theory to one-dimensional particle-in-cell simulations is presented and estimates for the performance ion accelerator using the EIT interaction are given. The dispersion relation and estimates for the phase velocity and amplitude of the plasma wave are in good agreement with particle-in-cell simulations.

  14. Control of microwave signals using bichromatic electromechanically induced transparency in multimode circuit electromechanical systems

    NASA Astrophysics Data System (ADS)

    Cheng, Jiang; Yuanshun, Cui; Xintian, Bian; Xiaowei, Li; Guibin, Chen

    2016-05-01

    We theoretically investigate the tunable delay and advancement of microwave signals based on bichromatic electromechanically induced transparency in a three-mode circuit electromechanical system, where two nanomechanical resonators with closely spaced frequencies are independently coupled to a common microwave cavity. In the presence of a strong microwave pump field, we obtain two transparency windows accompanied by steep phase dispersion in the transmitted microwave probe field. The width of the transparency window and the group delay of the probe field can be controlled effectively by the power of the pump field. It is shown that the maximum group delay of 0.12 ms and the advancement of 0.27 ms can be obtained in the current experiments. Project supported by the National Natural Science Foundation of China (Grant Nos. 11304110 and 11174101), the Jiangsu Natural Science Foundation, China (Grant Nos. BK20130413 and BK2011411), and the Natural Science Foundation of Jiangsu Higher Education Institutions of China (Grant Nos. 13KJB140002 and 15KJB460004).

  15. Time-resolved study of femtosecond laser induced micro-modifications inside transparent brittle materials

    NASA Astrophysics Data System (ADS)

    Hendricks, F.; Matylitsky, V. V.; Domke, M.; Huber, Heinz P.

    2016-03-01

    Laser processing of optically transparent or semi-transparent, brittle materials is finding wide use in various manufacturing sectors. For example, in consumer electronic devices such as smartphones or tablets, cover glass needs to be cut precisely in various shapes. The unique advantage of material processing with femtosecond lasers is efficient, fast and localized energy deposition in nearly all types of solid materials. When an ultra-short laser pulse is focused inside glass, only the localized region in the neighborhood of the focal volume absorbs laser energy by nonlinear optical absorption. Therefore, the processing volume is strongly defined, while the rest of the target stays unaffected. Thus ultra-short pulse lasers allow cutting of the chemically strengthened glasses such as Corning Gorilla glass without cracking. Non-ablative cutting of transparent, brittle materials, using the newly developed femtosecond process ClearShapeTM from Spectra-Physics, is based on producing a micron-sized material modification track with well-defined geometry inside. The key point for development of the process is to understand the induced modification by a single femtosecond laser shot. In this paper, pump-probe microscopy techniques have been applied to study the defect formation inside of transparent materials, namely soda-lime glass samples, on a time scale between one nanosecond to several tens of microseconds. The observed effects include acoustic wave propagation as well as mechanical stress formation in the bulk of the glass. Besides better understanding of underlying physical mechanisms, our experimental observations have enabled us to find optimal process parameters for the glass cutting application and lead to better quality and speed for the ClearShapeTM process.

  16. Tunable double transparency windows induced by single subradiant element in coupled graphene plasmonic nanostructure

    NASA Astrophysics Data System (ADS)

    Hu, Cheng; Wang, Lingling; Lin, Qi; Zhai, Xiang; Ma, Xiaoying; Han, Tao; Du, Jiang

    2016-05-01

    We present the coupling-induced transparency (CIT) effect by employing the localized surface plasmon mode supported by a periodic array of graphene nanoribbons destructively interfering with the quasiguided mode supported by a single-layer graphene sheet. It is found that the resonance strength and linewidth are strongly dependent on the coupling distance. It is also shown that the degeneracy between the symmetric and antisymmetric quasiguided modes is lifted owing to the oblique incidence, resulting in the double CIT effect with an ultrahigh figure of merit (FOM) (as high as 271), which may provide potential applications in dynamic optical switching and biochemical sensing.

  17. A stable frequency comb directly referenced to rubidium electromagnetically induced transparency and two-photon transitions

    SciTech Connect

    Hou, Dong; Wu, Jiutao; Zhang, Shuangyou; Ren, Quansheng; Zhang, Zhigang; Zhao, Jianye

    2014-03-17

    We demonstrate an approach to create a stable erbium-fiber-based frequency comb at communication band by directly locking the combs to two rubidium atomic transitions resonances (electromagnetically induced transparency absorption and two-photon absorption), respectively. This approach directly transfers the precision and stability of the atomic transitions to the comb. With its distinguishing feature of compactness by removing the conventional octave-spanning spectrum and f-to-2f beating facilities and the ability to directly control the comb's frequency at the atomic transition frequency, this stable optical comb can be widely used in optical communication, frequency standard, and optical spectroscopy and microscopy.

  18. Electromagnetically-induced transparency in Cs and Rb in the same vapor cell

    NASA Astrophysics Data System (ADS)

    Simons, Matt; Gordon, Joshua; Holloway, Christopher

    2016-05-01

    We demonstrate simultaneous electromagnetically-induced transparency (EIT) in both cesium and rubidium in the same vapor cell with coincident optical fields. Each atomic system can detect radio frequency (RF) field strengths through modification of the EIT signal. We show that these two systems can detect the same RF field strength simultaneously. This allows us to perform the same measurement in two effective ``laboratories,'' providing an immediate independent reference, which will lead to an SI-traceable RF E-field measurement. We examine the impact of coincident, simultaneous EIT on RF field metrology and the EIT signal.

  19. Correlation spectroscopy in cold atoms: Light sideband resonances in electromagnetically-induced-transparency condition

    NASA Astrophysics Data System (ADS)

    Florez, H. M.; Kumar, A.; Theophilo, K.; Nussenzveig, P.; Martinelli, M.

    2016-07-01

    The correlation spectroscopy has been successfully employed in the measurement of the intrinsic linewidth of electromagnetically induced transparency (EIT) in time and frequency domain. We study the role of the sidebands of the intense fields in the measured spectra, analyzing the information that can be recovered working with different analysis frequencies. In this case, the nonzero one-photon detuning appears as a necessary condition for spectrally resolving the sideband resonances in the correlation coefficient. Our experimental findings are supported by the perturbative model defined in the frequency domain.

  20. Discrimination of coherence effect in electromagnetically induced transparency in V-type systems of Rb atoms

    NASA Astrophysics Data System (ADS)

    Kang, Hyun-Jong; Yang, Seung Chul; Noh, Heung-Ryoul

    2016-05-01

    An experimental and theoretical study of electromagnetically induced transparency (EIT) in V-type systems of Rb atoms is presented. The frequency of the probe beam is locked to one of the resonance lines in the D1 line, whereas that of the coupling beam is scanned around the D2 line. We study the dependence of polarizations of the coupling and probe beams by varying the laser intensities. The experimental results are compared with the results calculated from the accurate density matrix equations. We also discriminate the portion of coherence effect in the calculated EIT spectra.

  1. Electromagnetically induced transparency in a five-level cascade system under Doppler broadening: an analytical approach

    NASA Astrophysics Data System (ADS)

    Khoa, Dinh Xuan; Van Trong, Pham; Van Doai, Le; Bang, Nguyen Huy

    2016-03-01

    We develop an analytical approach on electromagnetically induced transparency (EIT) in a Doppler broadened medium consisting of five-level cascade systems excited by a strong coupling and weak probe laser fields. In a weak field limit of the probe light, EIT spectrum is interpreted as functions of controllable parameters of the coupling light and temperature of the medium. The theoretical interpretation of EIT spectrum is applied to the case of 85Rb atoms and compared with available experimental observation. Such an analytical interpretation provides quantitative parameters to control properties of the Doppler broadened EIT medium, and it is useful to find related applications.

  2. Ladder-type electromagnetically induced transparency using nanofiber-guided light in a warm atomic vapor

    NASA Astrophysics Data System (ADS)

    Jones, D. E.; Franson, J. D.; Pittman, T. B.

    2015-10-01

    We demonstrate ladder-type electromagnetically induced transparency (EIT) using an optical nanofiber suspended in a warm rubidium vapor. The signal and control fields are both guided along the nanofiber, which enables strong nonlinear interactions with the surrounding atoms at relatively low powers. Transit-time broadening is found to be a significant EIT decoherence mechanism in this tightly confined waveguiding geometry. Nonetheless, we observe significant EIT and controlled polarization rotation using control-field powers of only a few microwatts in this relatively robust warm-atom nanofiber system.

  3. Transition linewidth of cross correlations in random intensity fluctuations in electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Feng, Lei; Li, Pengxiong; Zhang, Mengzhen; Wang, Tun; Xiao, Yanhong

    2014-01-01

    It is known that cross correlation between the random intensity fluctuations of two lasers forming electromagnetically induced transparency (EIT) exhibits a transition from correlation to anticorrelation. We study the linewidth behavior of this transition and have found the linewidth is below the (effective) coherence lifetime limit and is limited only by competing noises. We established a numerical model which reveals the linewidth dependence on laser linewidth and laser power. Our experiments using lasers with different linewidth showed results in qualitative agreement with the model. This result is useful for quantum optics using EIT and may also have applications in spectroscopy and precision measurements.

  4. Plasmon-induced near-infrared electrochromism based on transparent conducting nanoparticles: Approximate performance limits

    NASA Astrophysics Data System (ADS)

    Li, S.-Y.; Niklasson, G. A.; Granqvist, C. G.

    2012-08-01

    Electrochromism can be induced in electrochemically post-treated nanoparticles of wide band gap transparent conductors. We model this recently observed phenomenon by effective medium theory applied to nanoparticles of In2O3:Sn, which are represented as a free-electron plasma with tin ions screened according to the random phase approximation corrected for electron exchange. This semi-quantitative theory is used to derive approximate performance limits showing that high luminous transmittance (e.g., 60%) can be combined with efficient absorption of solar energy and concomitant low solar transmittance (˜34%), thereby documenting that plasmonic electrochromism is of interest for energy efficient fenestration.

  5. Birefringence lens effects of an atom ensemble enhanced by an electromagnetically induced transparency

    SciTech Connect

    Zhang, H. R.; Sun, C. P.; Zhou Lan

    2009-07-15

    We study the optical control for birefringence of a polarized light by an atomic ensemble with a tripod configuration, which is mediated by the electromagnetically induced transparency with a spatially inhomogeneous laser. The atomic ensemble splits the linearly polarized light ray into two orthogonally polarized components, whose polarizations depend on quantum superposition of the initial states of the atomic ensemble. Accompanied with this splitting, the atomic ensemble behaves as a birefringent lens, which allows one polarized light ray passing through straightly while focuses the other light of vertical polarization with finite aberration of focus.

  6. Scalable network of quadrangle entanglements via multiple phase-dependent electromagnetically induced transparency

    SciTech Connect

    Hu Xiangming; Sun Hong; Wang Fei

    2010-10-15

    One important class of multipartite continuous variable entanglement is described by a closed polygon, where every vertex represents one optical field and every side corresponds to the entanglement between the two connected vertices. Here we show that it is possible to obtain a scalable network of quadrangle entanglements by using multiple phase-dependent electromagnetically induced transparency. For 4,6,8,...,2n (n{>=}2) mode cases the network consists of 1,9,36,...,(1/4)n{sup 2} (n-1){sup 2} quadrangles, respectively. This suggests an efficient way of creating complex quantum networks and has great potentials for quantum information and computation.

  7. Atom-membrane cooling and entanglement using cavity electromagnetically induced transparency

    SciTech Connect

    Genes, Claudiu; Ritsch, Helmut; Drewsen, Michael; Dantan, Aurelien

    2011-11-15

    We investigate a hybrid optomechanical system composed of a micromechanical oscillator as a movable membrane and an atomic three-level ensemble within an optical cavity. We show that a suitably tailored cavity field response via electromagnetically induced transparency (EIT) in the atomic medium allows for strong coupling of the membrane's mechanical oscillations to the collective atomic ground-state spin. This facilitates ground-state cooling of the membrane motion, quantum state mapping, and robust atom-membrane entanglement even for cavity widths larger than the mechanical resonance frequency.

  8. Observation of Doppler-free electromagnetically induced transparency in atoms selected optically with specific velocity

    SciTech Connect

    Yu, Hoon; Kim, Kwan Su; Kim, Jung Dong; Lee, Hyun Kyung; Kim, Jung Bog

    2011-11-15

    We observed an electromagnetically induced transparency signal in a four-level system with optically selected rubidium atoms at specific velocities in a room-temperature vaporized cell. Since the atoms behave like cold atoms in the selected atomic view, the observed signals coincide with a trapped atomic system. According to this result, we can observe Doppler-free signals, which correspond from 1.2 to 1.0 K in a Doppler-broadened medium. And the selected atoms have velocity components of {+-}(131 {+-} 3) MHz per wave number. Our experimental results can provide insight for research in cold media.

  9. Observation of quantum interference between dressed states in an electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Li, Yong-Qing; Xiao, Min

    1995-06-01

    We report on an experimental observation of quantum interference between two dressed states created by a coherent pumping laser in an electromagnetically induced transparency. In a Λ-type three-level atomic system in rubidium vapor, we reduce the Rabi frequency of the pumping laser in one arm down below the spontaneous decay rate of the common excited state and still observe a narrow dip with subnatural linewidth in the absorption curve of a probe beam in another arm. This clearly demonstrates that the absorption reduction at the low pumping intensity is mainly due to the interference between the two dressed states, not due to the ac-Stark-shift effect.

  10. Indirect laser-induced breakdown of transparent thin gel layer for sensitive trace element detection

    NASA Astrophysics Data System (ADS)

    Xiu, Junshan; Bai, Xueshi; Negre, Erwan; Motto-Ros, Vincent; Yu, Jin

    2013-06-01

    Optical emissions from major and trace elements embodied in a transparent gel prepared from cooking oil were detected when the gel was spread in thin film on a metallic substrate and a plasma was induced on the substrate surface using nanosecond infrared pulsed laser. Such emissions are due to indirect breakdown of the coating layer. The generated plasma, a mixture of substances from the substrate, the layer, and the ambient gas, was characterized using emission spectroscopy. Temperature higher than 15 000 K determined in the plasma allows considering sensitive detection of trace elements in liquids, gels, biological samples, or thin films.

  11. Theoretical study on electromagnetically induced transparency in molecular aggregate models using quantum Liouville equation method

    SciTech Connect

    Minami, Takuya; Nakano, Masayoshi

    2015-01-22

    Electromagnetically induced transparency (EIT), which is known as an efficient control method of optical absorption property, is investigated using the polarizability spectra and population dynamics obtained by solving the quantum Liouville equation. In order to clarify the intermolecular interaction effect on EIT, we examine several molecular aggregate models composed of three-state monomers with the dipole-dipole coupling. On the basis of the present results, we discuss the applicability of EIT in molecular aggregate systems to a new type of optical switch.

  12. Electromagnetically induced transparency (EIT)-like transmission in side-coupled complementary split-ring resonators.

    PubMed

    Guo, Yinghui; Yan, Lianshan; Pan, Wei; Luo, Bin; Wen, Kunhua; Guo, Zhen; Luo, Xiangang

    2012-10-22

    We investigate a plasmonic waveguide system based on side-coupled complementary split-ring resonators (CSRR), which exhibits electromagnetically induced transparency (EIT)-like transmission. LC resonance model is utilized to explain the electromagnetic responses of CSRR, which is verified by simulation results of finite difference time domain method. The electromagnetic responses of CSRR can be flexible handled by changing the asymmetry degree of the structure and the width of the metallic baffles. Cascaded CSRRs also have been studied to obtain EIT-like transmission at visible and near-infrared region, simultaneously. PMID:23187197

  13. Fluctuating pulse propagation in resonant nonlinear media: self-induced transparency random phase soliton formation.

    PubMed

    Mokhtarpour, Laleh; Ponomarenko, Sergey A

    2015-11-16

    We numerically investigate partially coherent short pulse propagation in nonlinear media near optical resonance. We examine how the pulse state of coherence at the source affects the evolution of the ensemble averaged intensity, mutual coherence function, and temporal degree of coherence of the pulse ensemble. We report evidence of self-induced transparency random phase soliton formation for the relatively coherent incident pulses with sufficiently large average areas. We also show that random pulses lose their coherence on propagation in resonant media and we explain this phenomenon in qualitative terms. PMID:26698507

  14. Multilayer-WS{sub 2}:ferroelectric composite for ultrafast tunable metamaterial-induced transparency applications

    SciTech Connect

    Yang, Xiaoyu; Yang, Jinghuan; Zhu, Yu; Yang, Hong; Hu, Xiaoyong Gong, Qihuang

    2015-08-24

    An ultrafast and low-power all-optical tunable metamaterial-induced transparency is realized, using polycrystalline barium titanate doped gold nanoparticles and multilayer tungsten disulfide microsheets as nonlinear optical materials. Large nonlinearity enhancement is obtained associated with quantum confinement effect, local-field effect, and reinforced interaction between light and multilayer tungsten disulfide. Low threshold pump intensity of 20 MW/cm{sup 2} is achieved. An ultrafast response time of 85 ps is maintained because of fast carrier relaxation dynamics in nanoscale crystal grains of polycrystalline barium titanate. This may be useful for the study of integrated photonic devices based on two-dimensional materials.

  15. Dynamically tunable plasmonically induced transparency in sinusoidally curved and planar graphene layers.

    PubMed

    Xia, Sheng-Xuan; Zhai, Xiang; Wang, Ling-Ling; Sun, Bin; Liu, Jian-Qiang; Wen, Shuang-Chun

    2016-08-01

    To achieve plasmonically induced transparency (PIT), general near-field plasmonic systems based on couplings between localized plasmon resonances of nanostructures rely heavily on the well-designed interantenna separations. However, the implementation of such devices and techniques encounters great difficulties mainly to due to very small sized dimensions of the nanostructures and gaps between them. Here, we propose and numerically demonstrate that PIT can be achieved by using two graphene layers that are composed of a upper sinusoidally curved layer and a lower planar layer, avoiding any pattern of the graphene sheets. Both the analytical fitting and the Akaike Information Criterion (AIC) method are employed efficiently to distinguish the induced window, which is found to be more likely caused by Autler-Townes splitting (ATS) instead of electromagnetically induced transparency (EIT). Besides, our results show that the resonant modes cannot only be tuned dramatically by geometrically changing the grating amplitude and the interlayer spacing, but also by dynamically varying the Fermi energy of the graphene sheets. Potential applications of the proposed system could be expected on various photonic functional devices, including optical switches, plasmonic sensors. PMID:27505756

  16. Microwave tunneling in heterostructures with electromagnetically induced transparency-like metamaterials based on solid state plasma

    NASA Astrophysics Data System (ADS)

    Kong, Xiang-kun; Li, Hai-ming; Bian, Bo-rui; Xue, Feng; Ding, Guo-wen; Yu, Shao-jie; Liu, Si-yuan

    2016-06-01

    Interference induced electromagnetic induced transparency (EIT)-like effect has demonstrated the ability to realize narrow transmission resonances within the single-resonator stop band. Due to the limited plasma density in actual devices, only few reports discuss the plasma metamaterials and truncated photonic crystals which support electromagnetically induced transparency. However, solid state plasma realized by some semiconductors have the advantages of higher order plasma density and the characteristics of the reconfiguration and tunability. Here, we conduct a numerical study of the perfect microwave tunneling in heterostructures composed of solid state plasma metamaterials and truncated photonic crystal. There is particular emphasis on the tunability of tunneling frequency by changing plasma frequency in solid state plasma, as well as the electric energy density distributions in heterostructures. It was found that, compared to conventional metal photonic crystal, the reflectance of tunneling mode can be reduced from -25.8 dB to -41.7 dB with an optimized Q-factor. Further study on electric energy density distribution confirms that EM wave in-plane localization originated from the EIT-like solid state plasma, which gives rise to the three-dimensional enhancement of sub-wavelength EM wave localization, is stronger than EM wave confinement along the propagation direction. Owing to the tunability of plasma, the tunneling frequency channel can be adjusted or reconfigured in a certain range without adjusting the geometry of the heterostructure. It suggests the fabrication for highly sensitive dielectric sensing, optical switches, and so on.

  17. A scheme of simultaneous cationic–anionic substitution in CuCrO2 for transparent and superior p-type transport

    NASA Astrophysics Data System (ADS)

    Mandal, Prasanta; Mazumder, Nilesh; Saha, Subhajit; Ghorai, Uttam Kumar; Roy, Rajarshi; Das, Gopes Chandra; Chattopadhyay, Kalyan Kumar

    2016-07-01

    Considering CuCrO2 to be a promising p-type transparent conducting oxide, unprecedented simultaneous cationic–anionic doping is carried out to achieve superior hole transport while maintaining its transparency. Magnesium and sulphur are doped at Cr and O-sites respectively by solid-state approach (CuCr1‑x Mg x O1‑y S y , x, y ranging 0–5 atomic %) with significant doping confirmed by Rietveld refinement. UV–Vis spectroscopy is observed to imply promising optical properties of engineered materials. DC conductivity of co-doped CuCr0.95Mg0.05O1.9S0.1 is observed to be twice as large compared to CuCr0.95Mg0.05O2 at 300 K, which is consistent with the lower frequency shift of the negative differential susceptance (-Δ B ) and the admittance peak, indicating higher ‘metallicity’ upon co-doping. Hole mobility of 16.26 cm2 V‑1 s‑1 at 300 K is observed for the co-doped CuCrO2. This strategy combines an established doping scheme at the cationic site with our newly developed anionic chalcogen doping, aiming to overcome a long-standing transport bottleneck in the field of semiconductor oxides.

  18. Control of dispersion in fiber coupled resonator-induced transparency structure

    NASA Astrophysics Data System (ADS)

    He, Tian; Yun-Dong, Zhang; Da-Wei, Qi; Run-Zhou, Su; Yan, Bai; Qiang, Xu

    2016-06-01

    Induced transparency phenomena and strong dispersion can be produced in a coupled resonator induced transparency (CRIT) structure. In this paper, we investigate the influences of structure parameters, such as amplitude reflection coefficient and loss, on transmission spectrum and dispersion of CRIT structure, and further study the control of dispersion in the structure. The results show that in the CRIT structure, adjusting the loss of resonators is an effective method of controlling dispersion and producing simultaneous normal and abnormal dispersion. When we choose approximate amplitude reflection coefficients of the two couplers, the decrease of transmittance due to loss could be effectively made up. In the experiment, we achieve the control of dispersion and simultaneous strong normal and abnormal dispersion in the CRIT structure comprised of fiber. The results indicate the CRIT structure has potential applications in optical signal processing and optical communication. Project supported by the National Natural Science Foundation of China (Grant Nos. 61307076 and 61275066), the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2012BAF14B11), and the Postdoctoral Scientific Research Developmental Fund of Heilongjiang Province, China (Grant No. LBH-Q14042).

  19. Plasmon-Induced Transparency by Hybridizing Concentric-Twisted Double Split Ring Resonators

    NASA Astrophysics Data System (ADS)

    Parvinnezhad Hokmabadi, Mohammad; Philip, Elizabath; Rivera, Elmer; Kung, Patrick; Kim, Seongsin M.

    2015-10-01

    As a classical analogue of electromagnetically induced transparency, plasmon induced transparency (PIT) has attracted great attention by mitigating otherwise cumbersome experimental implementation constraints. Here, through theoretical design, simulation and experimental validation, we present a novel approach to achieve and control PIT by hybridizing two double split ring resonators (DSRRs) on flexible polyimide substrates. In the design, the large rings in the DSRRs are stationary and mirror images of each other, while the small SRRs rotate about their center axes. Counter-directional rotation (twisting) of the small SRRs is shown to lead to resonance shifts, while co-directional rotation results in splitting of the lower frequency resonance and emergence of a PIT window. We develop an equivalent circuit model and introduce a mutual inductance parameter M whose sign is shown to characterize the existence or absence of PIT response from the structure. This model attempts to provide a quantitative measure of the physical mechanisms underlying the observed PIT phenomenon. As such, our findings can support the design of several applications such as optical buffers, delay lines, and ultra-sensitive sensors.

  20. Plasmon-Induced Transparency by Hybridizing Concentric-Twisted Double Split Ring Resonators

    PubMed Central

    Parvinnezhad Hokmabadi, Mohammad; Philip, Elizabath; Rivera, Elmer; Kung, Patrick; Kim, Seongsin M.

    2015-01-01

    As a classical analogue of electromagnetically induced transparency, plasmon induced transparency (PIT) has attracted great attention by mitigating otherwise cumbersome experimental implementation constraints. Here, through theoretical design, simulation and experimental validation, we present a novel approach to achieve and control PIT by hybridizing two double split ring resonators (DSRRs) on flexible polyimide substrates. In the design, the large rings in the DSRRs are stationary and mirror images of each other, while the small SRRs rotate about their center axes. Counter-directional rotation (twisting) of the small SRRs is shown to lead to resonance shifts, while co-directional rotation results in splitting of the lower frequency resonance and emergence of a PIT window. We develop an equivalent circuit model and introduce a mutual inductance parameter M whose sign is shown to characterize the existence or absence of PIT response from the structure. This model attempts to provide a quantitative measure of the physical mechanisms underlying the observed PIT phenomenon. As such, our findings can support the design of several applications such as optical buffers, delay lines, and ultra-sensitive sensors. PMID:26507006

  1. Suppression of narrow-band transparency in a metasurface induced by a strongly enhanced electric field

    NASA Astrophysics Data System (ADS)

    Tamayama, Yasuhiro; Hamada, Keisuke; Yasui, Kanji

    2015-09-01

    We realize a suppression of an electromagnetically-induced-transparency-like (EIT-like) transmission in a metasurface induced by a local electric field that is strongly enhanced based on two approaches: squeezing of electromagnetic energy in resonant metasurfaces and enhancement of electromagnetic energy density associated with a low group velocity. The EIT-like metasurface consists of a pair of radiatively coupled cut-wire resonators, and it can effect both field-enhancement approaches simultaneously. The strongly enhanced local electric field generates an air discharge plasma at either of the gaps of the cut-wire resonators, which causes the EIT-like metasurface to change into two kinds of Lorentz-type metasurfaces.

  2. Electromagnetically induced transparency in a spherical quantum dot with hydrogenic impurity in the external magnetic field

    NASA Astrophysics Data System (ADS)

    Pavlović, Vladan; Stevanović, Ljiljana

    2016-04-01

    In this paper we analyzed the realization of the electromagnetically induced transparency (EIT) effect in the spherical quantum dot with on-center hydrogenic impurity under the influence of the external magnetic field. Three energy levels of hydrogen impurity 1s0, 2p-1, and 3d-2, together with the probe and control laser fields, which induce σ- transitions between the given states, form a ladder configuration. Optical Bloch equations for such a system are solved in a stationary regime. Dependence of the susceptibility for such a system on the Rabi frequency of the control field, intensity of the external magnetic field, detuning of the control field, and decay rates coefficients are then discussed in detail. Finally, the explanation in dressed state picture is given.

  3. Electromagnetically induced transparency with large delay-bandwidth product induced by magnetic resonance near field coupling to electric resonance

    SciTech Connect

    Li, Hai-ming; Liu, Shao-bin Liu, Si-yuan; Zhang, Hai-feng; Bian, Bo-rui; Kong, Xiang-kun; Wang, Shen-yun

    2015-03-16

    In this paper, we numerically and experimentally demonstrate electromagnetically induced transparency (EIT)-like spectral response with magnetic resonance near field coupling to electric resonance. Six split-ring resonators and a cut wire are chosen as the bright and dark resonator, respectively. An EIT-like transmission peak located between two dips can be observed with incident magnetic field excitation. A large delay bandwidth product (0.39) is obtained, which has potential application in quantum optics and communications. The experimental results are in good agreement with simulated results.

  4. All-optical tunable on-chip plasmon-induced transparency based on two surface-plasmon-polaritons absorption

    NASA Astrophysics Data System (ADS)

    Chai, Zhen; Hu, Xiaoyong; Yang, Hong; Gong, Qihuang

    2016-04-01

    All-optical tunable on-chip plasmon-induced transparency is realized in integrated plasmonic circuits based on two surface-plasmon-polaritons absorption induced polymerization of SU-8 photoresist. Owing to the enhanced interaction between surface plasmon polaritons and SU-8 guaranteed by the slow light effect around the transparency window and the strong light confinement effect of the plasmonic nanocavity modes, a continuous shift range of 24 nm in the central wavelength of the transparency window was obtained. The threshold power of the two surface-plasmon-polaritons absorption induced polymerization of SU-8 was as low as 100 μW, which is three orders of magnitude less than previous reports.

  5. Tunable electromagnetically induced transparency at terahertz frequencies in coupled graphene metamaterial

    NASA Astrophysics Data System (ADS)

    Ding, Guo-Wen; Liu, Shao-Bin; Zhang, Hai-Feng; Kong, Xiang-Kun; Li, Hai-Ming; Li, Bing-Xiang; Liu, Si-Yuan; Li, Hai

    2015-11-01

    A graphene-based metamaterial with tunable electromagnetically induced transparency (EIT)-like transmission is numerically studied in this paper. The proposed structure consists of a graphene layer composed of coupled cut-wire pairs printed on a substrate. The simulation confirms that an EIT-like transparency window can be observed due to indirect coupling in a terahertz frequency range. More importantly, the peak frequency of the transmission window can be dynamically controlled over a broad frequency range by varying the Fermi energy levels of the graphene layer through controlling the electrostatic gating. The proposed metamaterial structure offers an additional opportunity to design novel applications such as switches or modulators. Project supported by the National Natural Science Foundation of China (Grant No. 61307052), the Youth Funding for Science & Technology Innovation in Nanjing University of Aeronautics and Astronautics, China (Grant No. NS2014039), the Chinese Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20123218110017), the Innovation Program for Graduate Education of Jiangsu Province, China (Grant Nos. KYLX_0272, CXZZ13_0166, and CXLX13_155), the Open Research Program in National State Key Laboratory of Millimeter Waves of China (Grant No. K201609), and the Fundamental Research Funds for the Central Universities of China (Grant No. kfjj20150407).

  6. Polarized linewidth-controllable double-trapping electromagnetically induced transparency spectra in a resonant plasmon nanocavity

    PubMed Central

    Wang, Luojia; Gu, Ying; Chen, Hongyi; Zhang, Jia-Yu; Cui, Yiping; Gerardot, Brian D.; Gong, Qihuang

    2013-01-01

    Surface plasmons with ultrasmall optical mode volume and strong near field enhancement can be used to realize nanoscale light-matter interaction. Combining surface plasmons with the quantum system provides the possibility of nanoscale realization of important quantum optical phenomena, including the electromagnetically induced transparency (EIT), which has many applications in nonlinear quantum optics and quantum information processing. Here, using a custom-designed resonant plasmon nanocavity, we demonstrate polarized position-dependent linewidth-controllable EIT spectra at the nanoscale. We analytically obtain the double coherent population trapping conditions in a double-Λ quantum system with crossing damping, which give two transparent points in the EIT spectra. The linewidths of the three peaks are extremely sensitive to the level spacing of the excited states, the Rabi frequencies and detunings of pump fields, and the Purcell factors. In particular the linewidth of the central peak is exceptionally narrow. The hybrid system may have potential applications in ultra-compact plasmon-quantum devices. PMID:24096943

  7. A novel laser-induced fluorescence scheme for Ar-I in a plasma.

    PubMed

    Short, Zachary D; Siddiqui, M Umair; Henriquez, Miguel F; McKee, John S; Scime, Earl E

    2016-01-01

    Here we describe a novel infrared laser-induced fluorescence scheme for the 1s2 state of Ar-I using an 841.052 nm (vacuum) Sacher tunable diode laser oscillator and compare it to an established 667.913 nm (vacuum) 1s4-pumping Ar-I LIF scheme using a master oscillator power amplifier laser [A. M. Keesee et al. Rev. Sci. Instrum. 75, 4091 (2004)]. The novel scheme exhibits a significantly greater signal-to-noise ratio for a given injected laser power than the established scheme. We argue that this is caused by less intense spontaneous Ar-I radiation near the LIF emission wavelength for the 1s2 scheme as compared to the 1s4 scheme. In addition we present an updated iodine cell spectrum around the 1s4 LIF scheme pump wavelength. PMID:26827319

  8. Wideband slow light based on plasmon-induced transparency at telecom frequency

    NASA Astrophysics Data System (ADS)

    Li, Chunlei; Qi, Dawei; Wang, Yuxiao; Zhang, Xueru

    2015-09-01

    We propose and demonstrate a metal-insulator-metal (MIM) waveguide side coupled with a series of stubs to realize broadband slow surface plasmon polaritons (SPPs) around the telecom wavelength 193.5 THz. The obviously slow light effect results from the strong normal dispersion around the frequency of the plasmon-induced transparency. Theoretical calculations indicate that the plasmonic waveguide system of the length 11 μm works on a broad bandwidth of 20 THz. The group velocity of SPPs predicted by the improved transmission line theory is about 0.2c (c is light speed in vacuum), which is confirmed by the finite-difference time-domain (FDTD) numerical simulation. The waveguide system for slow light effect has important potential application in optical delay lines.

  9. Perturbative approach in the frequency domain for the intensity correlation spectrum in electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Florez, H. M.; González, C.; Martinelli, M.

    2016-07-01

    Correlation spectroscopy has been proposed as a spectroscopic technique for measuring the coherence between the ground states in electromagnetically induced transparency (EIT). While in the time domain the steep dispersion in the EIT condition accounts for the robustness of the correlation linewidth against power broadening, such physical insight was not directly established in the frequency domain. We propose a perturbative approach to describe the correlation spectroscopy of two noisy lasers coupled to a Λ transition in cold atoms, leading to EIT. Such approach leads to an analytical expression that maps the intensity correlation directly in terms of the absorption and dispersion of the light fields. Low and high perturbative regimes are investigated and demonstrate that, for coherent light sources, the first-order term in perturbation expansion represents a sufficient description for the correlation. Sideband resonances are also observed, showing the richness of the frequency domain approach.

  10. Electromagnetically induced transparency metamaterial based on spoof localized surface plasmons at terahertz frequencies

    NASA Astrophysics Data System (ADS)

    Liao, Zhen; Liu, Shuo; Ma, Hui Feng; Li, Chun; Jin, Biaobing; Cui, Tie Jun

    2016-06-01

    We numerically and experimentally demonstrate a plasmonic metamaterial whose unit cell is composed of an ultrathin metallic disk and four ultrathin metallic spiral arms at terahertz frequencies, which supports both spoof electric and magnetic localized surface plasmon (LSP) resonances. We show that the resonant wavelength is much larger than the size of the unit particle, and further find that the resonant wavelength is very sensitive to the particle’s geometrical dimensions and arrangements. It is clearly illustrated that the magnetic LSP resonance exhibits strong dependence to the incidence angle of terahertz wave, which enables the design of metamaterials to achieve an electromagnetically induced transparency effect in the terahertz frequencies. This work opens up the possibility to apply for the surface plasmons in functional devices in the terahertz band.

  11. Laser frequency stabilization to excited state transitions using electromagnetically induced transparency in a cascade system

    SciTech Connect

    Abel, R. P.; Mohapatra, A. K.; Bason, M. G.; Pritchard, J. D.; Weatherill, K. J.; Raitzsch, U.; Adams, C. S.

    2009-02-16

    We demonstrate laser frequency stabilization to excited state transitions using cascade electromagnetically induced transparency. Using a room temperature Rb vapor cell as a reference, we stabilize a first diode laser to the D{sub 2} transition and a second laser to a transition from the intermediate 5P{sub 3/2} state to a highly excited state with principal quantum number n=19-70. A combined laser linewidth of 280{+-}50 kHz over a 100 {mu}s time period is achieved. This method may be applied generally to any cascade system and allows laser stabilization to an atomic reference in the absence of a direct absorption signal.

  12. Electromagnetically induced transparency metamaterial based on spoof localized surface plasmons at terahertz frequencies.

    PubMed

    Liao, Zhen; Liu, Shuo; Ma, Hui Feng; Li, Chun; Jin, Biaobing; Cui, Tie Jun

    2016-01-01

    We numerically and experimentally demonstrate a plasmonic metamaterial whose unit cell is composed of an ultrathin metallic disk and four ultrathin metallic spiral arms at terahertz frequencies, which supports both spoof electric and magnetic localized surface plasmon (LSP) resonances. We show that the resonant wavelength is much larger than the size of the unit particle, and further find that the resonant wavelength is very sensitive to the particle's geometrical dimensions and arrangements. It is clearly illustrated that the magnetic LSP resonance exhibits strong dependence to the incidence angle of terahertz wave, which enables the design of metamaterials to achieve an electromagnetically induced transparency effect in the terahertz frequencies. This work opens up the possibility to apply for the surface plasmons in functional devices in the terahertz band. PMID:27277417

  13. Slow and stored light by photo-isomerization induced transparency in dye doped chiral nematics.

    PubMed

    Wei, D; Bortolozzo, U; Huignard, J P; Residori, S

    2013-08-26

    Decelerating and stopping light is fundamental for optical processing, high performance sensor technologies and digital signal treatment, many of these applications relying on the ability of controlling the amplitude and phase of coherent light pulses. In this context, slow-light has been achieved by various methods, as coupling light into resonant media, Brillouin scattering in optical fibers, beam coupling in photorefractive and liquid crystal media or engineered dispersion in photonic crystals. Here, we present a different mechanism for slowing and storing light, which is based on photo-isomerization induced transparency of azo-dye molecules hosted in a chiral liquid crystal structure. Sharp spectral features of the medium absorption/dispersion, and the long population lifetime of the dye metastable state, enable the storage of light pulses with a significant retrieval after times much longer than the medium response time. PMID:24105502

  14. Resolution of hyperfine transitions in metastable 83Kr using electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Kale, Y. B.; Mishra, S. R.; Tiwari, V. B.; Singh, S.; Rawat, H. S.

    2015-05-01

    Narrow linewidth signals of electromagnetically induced transparency (EIT) in the metastable 83Kr have been observed. Various hyperfine transitions in the 4 p55 s [3/2 ] 2 to 4 p55 p [5/2 ] 3 manifolds of 83Kr have been identified through the experimentally observed EIT signals. Some unresolved or poorly resolved hyperfine transitions in saturated absorption spectroscopy (SAS) are clearly resolved in the present work. Using the spectral separation of these EIT identified hyperfine transitions, the magnetic hyperfine constant (A ) and the electric quadrupole hyperfine constant (B ) are determined with improved accuracy for 4 p55 s [3/2 ] 2 and 4 p55 p [5/2 ] 3 manifolds.

  15. Manipulation of tunneling induced transparency windows and optical switching features in fivefold quantum dot molecules

    NASA Astrophysics Data System (ADS)

    Hamedi, H. R.; Reza Mehmannavaz, Mohammad

    2015-09-01

    Transient and steady-state behavior of the probe absorption in a multiple quantum dot (QD) molecule composed of five quantum dots molecules (with a center dot and four satellite dots) is explored with application in all-optical switching. We find that the absorption spectra of the light pulse can be efficiently modified via the effect of inter-dot tunnel couplings of QDs and incoherent pumping field. Results show that depending on the values of system parameters, at least one and at most four tunneling induced transparency (TIT) windows can be established in the multiple QD medium. We then investigate the dynamical behavior of the probe absorption-amplification as well as the optical switching in pulsed regime. By adjusting the incoherent pumping rate, the required switching time for changing the gain to the absorption or vice versa is then estimated approximately to be 20.7 nanosecond (ns), that is an appropriate time for such a QDM-based switch.

  16. Optical control of light propagation in photonic crystal based on electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Dan, Wang; Jin-Ze, Wu; Jun-Xiang, Zhang

    2016-06-01

    A kind of photonic crystal structure with modulation of the refractive index is investigated both experimentally and theoretically for exploiting electromagnetically induced transparency (EIT). The combination of EIT with periodically modulated refractive index medium gives rise to high efficiency reflection as well as forbidden transmission in a three-level atomic system coupled by standing wave. We show an accurate theoretical simulation via transfer-matrix theory, automatically accounting for multilayer reflections, thus fully demonstrate the existence of photonic crystal structure in atomic vapor. Project supported by the National Natural Science Foundation of China (Grant No. 11574188) and the Project for Excellent Research Team of the National Natural Science Foundation of China (Grant No. 61121064).

  17. Calculation of the microscopic parameters of a self-induced transparency modelocked quantum cascade laser

    NASA Astrophysics Data System (ADS)

    Anisuzzaman Talukder, Muhammad; Menyuk, Curtis R.

    2013-05-01

    A model to calculate the microscopic parameters of self-induced transparency (SIT) modelocked quantum cascade lasers (QCLs) is presented and the parameters are then calculated for a particular structure. These parameters are then used to calculate the gain to absorption ratio that is required to determine the required ratio of gain periods to absorbing periods that must be grown in order to obtain stable modelocked pulses. The modelocked pulse parameters, along with the stability limits are then calculated as the ratio of gain to absorption varies. For the SIT modelocked QCL design that we examined, we found that three to five gain periods must be grown for each absorbing period in order to ensure stable operation.

  18. Localization of atomic excitation beyond the diffraction limit using electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Miles, J. A.; Das, Diptaranjan; Simmons, Z. J.; Yavuz, D. D.

    2015-09-01

    We experimentally demonstrate the localization of excitation between hyperfine ground states of 87Rb atoms to as small as λ /13 -wide spatial regions. We use ultracold atoms trapped in a dipole trap and utilize electromagnetically induced transparency (EIT) for the atomic excitation. The localization is achieved by combining a spatially varying coupling laser (standing wave) with the intensity dependence of EIT. The excitation is fast (150 ns laser pulses) and the dark-state fidelity can be made higher than 94% throughout the standing wave. Because the width of the localized regions is much smaller than the wavelength of the driving light, traditional optical imaging techniques cannot resolve the localized features. Therefore, to measure the excitation profile, we use an autocorrelation-like method where we perform two EIT sequences separated by a time delay, during which we move the standing wave.

  19. Electromagnetically induced transparency metamaterial based on spoof localized surface plasmons at terahertz frequencies

    PubMed Central

    Liao, Zhen; Liu, Shuo; Ma, Hui Feng; Li, Chun; Jin, Biaobing; Cui, Tie Jun

    2016-01-01

    We numerically and experimentally demonstrate a plasmonic metamaterial whose unit cell is composed of an ultrathin metallic disk and four ultrathin metallic spiral arms at terahertz frequencies, which supports both spoof electric and magnetic localized surface plasmon (LSP) resonances. We show that the resonant wavelength is much larger than the size of the unit particle, and further find that the resonant wavelength is very sensitive to the particle’s geometrical dimensions and arrangements. It is clearly illustrated that the magnetic LSP resonance exhibits strong dependence to the incidence angle of terahertz wave, which enables the design of metamaterials to achieve an electromagnetically induced transparency effect in the terahertz frequencies. This work opens up the possibility to apply for the surface plasmons in functional devices in the terahertz band. PMID:27277417

  20. Electromagnetically-induced-transparency ground-state cooling of long ion strings

    NASA Astrophysics Data System (ADS)

    Lechner, Regina; Maier, Christine; Hempel, Cornelius; Jurcevic, Petar; Lanyon, Ben P.; Monz, Thomas; Brownnutt, Michael; Blatt, Rainer; Roos, Christian F.

    2016-05-01

    Electromagnetically-induced-transparency (EIT) cooling is a ground-state cooling technique for trapped particles. EIT offers a broader cooling range in frequency space compared to more established methods. In this work, we experimentally investigate EIT cooling in strings of trapped atomic ions. In strings of up to 18 ions, we demonstrate simultaneous ground-state cooling of all radial modes in under 1 ms. This is a particularly important capability in view of emerging quantum simulation experiments with large numbers of trapped ions. Our analysis of the EIT cooling dynamics is based on a technique enabling single-shot measurements of phonon numbers, by rapid adiabatic passage on a vibrational sideband of a narrow transition.

  1. Vector magnetometry based on electromagnetically induced transparency in linearly polarized light

    SciTech Connect

    Yudin, V. I.; Taichenachev, A. V.; Dudin, Y. O.; Velichansky, V. L.; Zibrov, A. S.; Zibrov, S. A.

    2010-09-15

    We develop a generalized principle of electromagnetically induced transparency (EIT) vector magnetometry based on high-contrast EIT resonances and the symmetry of atom-light interaction in the linearly polarized bichromatic fields. Operation of such vector magnetometer on the D{sub 1} line of {sup 87}Rb has been demonstrated. The proposed compass-magnetometer has an increased immunity to shifts produced by quadratic Zeeman and ac-Stark effects, as well as by atom-buffer gas and atom-atom collisions. In our proof-of-principle experiment the detected angular sensitivity to magnetic field orientation is 10{sup -3} deg/Hz{sup 1/2}, which is limited by laser intensity fluctuations, light polarization quality, and magnitude of the magnetic field.

  2. Temporal buildup of electromagnetically induced transparency and absorption resonances in degenerate two-level transitions

    NASA Astrophysics Data System (ADS)

    Valente, P.; Failache, H.; Lezama, A.

    2003-01-01

    The temporal evolution of electromagnetically induced transparency (EIT) and absorption (EIA) coherence resonances in pump-probe spectroscopy of degenerate two-level atomic transition is studied for light intensities below saturation. Analytical expressions for the transient absorption spectra are given for simple model systems and a model for the calculation of the time-dependent response of realistic atomic transitions, where the Zeeman degeneracy is fully accounted for, is presented. EIT and EIA resonances have a similar (opposite sign) time-dependent line shape, however, the EIA evolution is slower and thus narrower lines are observed for long interaction time. Qualitative agreement with the theoretical predictions is obtained for the transient probe absorption on the 85Rb D2 line in an atomic beam experiment.

  3. Electromagnetically induced transparency with Rydberg atoms inside a high-finesse optical cavity

    NASA Astrophysics Data System (ADS)

    Sheng, Jiteng; Kumar, Santosh; Sedlacek, Jonathon; Chao, Yuanxi; Fan, Haoquan; Shaffer, James

    2016-05-01

    We present experimental work on the observation of Rydberg electromagnetically induced transparency (EIT) inside a high-finesse optical cavity. We show that a cold atomic cloud with controllable number of atoms can be transported into the cavity by using a focus-tunable lens. Rydberg atoms are excited via a two-photon transition in a ladder-type EIT configuration. A three-peak structure in the cavity transmission can be observed when Rydberg EIT atoms are generated inside the cavity. The two side peaks are caused by ``bright state polaritons'', while the central peak corresponds to a ``dark-state polariton'' The cavity Rydberg EIT system can be useful for single photon generation using the Rydberg blockade effect, studying many-body physics, and generating novel quantum states amongst many other applications. This work is supported by AFOSR.

  4. Laser-Induced Fluorescence Photogrammetry for Dynamic Characterization of Transparent and Aluminized Membrane Structures

    NASA Technical Reports Server (NTRS)

    Dorrington, Adrian A.; Jones, Thomas W.; Danehy, Paul M.; Pappa, Richard S.

    2003-01-01

    Photogrammetry has proven to be a valuable tool for static and dynamic profiling of membrane based inflatable and ultra-lightweight space structures. However, the traditional photogrammetric targeting techniques used for solid structures, such as attached retro-reflective targets and white-light dot projection, have some disadvantages and are not ideally suited for measuring highly transparent or reflective membrane structures. In this paper, we describe a new laser-induced fluorescence based target generation technique that is more suitable for these types of structures. We also present several examples of non-contact non-invasive photogrammetric measurements of laser-dye doped polymers, including the dynamic measurement and modal analysis of a 1m-by-1m aluminized solar sail style membrane.

  5. All-optical electromagnetically induced transparency using one-dimensional coupled microcavities.

    PubMed

    Naweed, Ahmer; Goldberg, David; Menon, Vinod M

    2014-07-28

    We report the first experimental realization of all-optical electromagnetically induced transparency (EIT) via a pair of coherently interacting SiO2 microcavities in a one-dimensional SiO2/Si3N4 photonic crystal consisting of a distributed Bragg reflector (DBR). The electromagnetic interactions between the coupled microcavities (CMCs), which possess distinct Q-factors, are controlled by varying the number of embedded SiO2/Si3N4 bilayers in the coupling DBR. In case of weak microcavity interactions, the reflectivity spectrum reveals an all-optical EIT resonance which splits into an Autler-Townes-like resonance under condition of strong microcavity coupling. Our results open up the way for implementing optical analogs of quantum coherence in much simpler one-dimensional structures. We also discuss potential applications of CMCs. PMID:25089499

  6. Method for identifying electromagnetically induced transparency in a tunable circuit quantum electrodynamics system

    NASA Astrophysics Data System (ADS)

    Liu, Qi-Chun; Li, Tie-Fu; Luo, Xiao-Qing; Zhao, Hu; Xiong, Wei; Zhang, Ying-Shan; Chen, Zhen; Liu, J. S.; Chen, Wei; Nori, Franco; Tsai, J. S.; You, J. Q.

    2016-05-01

    Electromagnetically induced transparency (EIT) has been realized in atomic systems, but fulfilling the EIT conditions for artificial atoms made from superconducting circuits is a more difficult task. Here we report an experimental observation of the EIT in a tunable three-dimensional transmon by probing the cavity transmission. To fulfill the EIT conditions, we tune the transmon to adjust its damping rates by utilizing the effect of the cavity on the transmon states. From the experimental observations, we clearly identify the EIT and Autler-Townes splitting (ATS) regimes as well as the transition regime in between. Also, the experimental data demonstrate that the threshold ΩAIC determined by the Akaike information criterion can describe the EIT-ATS transition better than the threshold ΩEIT given by the EIT theory.

  7. Gain-assisted plasmon induced transparency in T-shaped metamaterials for slow light

    NASA Astrophysics Data System (ADS)

    He, Jinna; Wang, Junqiao; Ding, Pei; Fan, Chunzhen; Liang, Erjun

    2015-05-01

    We theoretically investigate the gain-assisted plasmonic analog of electromagnetically induced transparency (EIT) in a novel planar metamaterial, whose unit cell consists of two perpendicularly connected metallic bars, forming a ‘T’ configuration. An EIT-like resonance can be achieved by introducing symmetry breaking into its shape. The results show that the group index is greatly enhanced at the optimum value of the gain due to a dramatic amplification of the EIT-like resonance. Furthermore, a trade-off between the group index and the transmittance at the EIT-like resonance, which always exists in passive systems with no gains, can be removed at an approximate gain level. E-field enhancements are used to understand the underlying physics.

  8. Blockaded six- and eight-wave mixing processes tailored by electromagnetically induced transparency scissors

    NASA Astrophysics Data System (ADS)

    Zheng, H. B.; Yao, X.; Zhang, Z. Y.; Che, J. L.; Zhang, Y. Q.; Zhang, Y. P.; Xiao, M.

    2014-04-01

    We report the first experimental observations of the blockaded six- and eight-wave mixing processes in a collective multi-level Rydberg atomic ensemble tailored by multi-channel scissors and created by three coexisting electromagnetically induced transparency (EIT) windows. The interplay between the dressed-state effect and the Rydberg blockade caused by strong van der Waals interactions is investigated when several parameters in the excitation lasers are changed. Blockaded multi-wave mixing (MWM) signals are obtained when the coupling frequency detuning is changed, which is improved to give multiple channels when the probe detuning is scanned. Such MWM signals tailored by EIT scissors produce a much narrower linewidth and therefore are suitable for application in long-distance quantum communication. The advantages of having multi-channel blockaded MWM signals also makes potential applications in demonstrating multi-channel entanglement possible and improves the performance of quantum computation with Rydberg atoms.

  9. Relativistically induced transparency acceleration of light ions by an ultrashort laser pulse interacting with a heavy-ion-plasma density gradient.

    PubMed

    Sahai, Aakash A; Tsung, Frank S; Tableman, Adam R; Mori, Warren B; Katsouleas, Thomas C

    2013-10-01

    The relativistically induced transparency acceleration (RITA) scheme of proton and ion acceleration using laser-plasma interactions is introduced, modeled, and compared to the existing schemes. Protons are accelerated with femtosecond relativistic pulses to produce quasimonoenergetic bunches with controllable peak energy. The RITA scheme works by a relativistic laser inducing transparency [Akhiezer and Polovin, Zh. Eksp. Teor. Fiz 30, 915 (1956); Kaw and Dawson, Phys. Fluids 13, 472 (1970); Max and Perkins, Phys. Rev. Lett. 27, 1342 (1971)] to densities higher than the cold-electron critical density, while the background heavy ions are stationary. The rising laser pulse creates a traveling acceleration structure at the relativistic critical density by ponderomotively [Lindl and Kaw, Phys. Fluids 14, 371 (1971); Silva et al., Phys. Rev. E 59, 2273 (1999)] driving a local electron density inflation, creating an electron snowplow and a co-propagating electrostatic potential. The snowplow advances with a velocity determined by the rate of the rise of the laser's intensity envelope and the heavy-ion-plasma density gradient scale length. The rising laser is incrementally rendered transparent to higher densities such that the relativistic-electron plasma frequency is resonant with the laser frequency. In the snowplow frame, trace density protons reflect off the electrostatic potential and get snowplowed, while the heavier background ions are relatively unperturbed. Quasimonoenergetic bunches of velocity equal to twice the snowplow velocity can be obtained and tuned by controlling the snowplow velocity using laser-plasma parameters. An analytical model for the proton energy as a function of laser intensity, rise time, and plasma density gradient is developed and compared to 1D and 2D PIC OSIRIS [Fonseca et al., Lect. Note Comput. Sci. 2331, 342 (2002)] simulations. We model the acceleration of protons to GeV energies with tens-of-femtoseconds laser pulses of a few

  10. Relativistically induced transparency acceleration of light ions by an ultrashort laser pulse interacting with a heavy-ion-plasma density gradient

    NASA Astrophysics Data System (ADS)

    Sahai, Aakash A.; Tsung, Frank S.; Tableman, Adam R.; Mori, Warren B.; Katsouleas, Thomas C.

    2013-10-01

    The relativistically induced transparency acceleration (RITA) scheme of proton and ion acceleration using laser-plasma interactions is introduced, modeled, and compared to the existing schemes. Protons are accelerated with femtosecond relativistic pulses to produce quasimonoenergetic bunches with controllable peak energy. The RITA scheme works by a relativistic laser inducing transparency [Akhiezer and Polovin, Zh. Eksp. Teor. Fiz 30, 915 (1956); Kaw and Dawson, Phys. FluidsPFLDAS0031-917110.1063/1.1692942 13, 472 (1970); Max and Perkins, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.27.1342 27, 1342 (1971)] to densities higher than the cold-electron critical density, while the background heavy ions are stationary. The rising laser pulse creates a traveling acceleration structure at the relativistic critical density by ponderomotively [Lindl and Kaw, Phys. FluidsPFLDAS0031-917110.1063/1.1693437 14, 371 (1971); Silva , Phys. Rev. E1063-651X10.1103/PhysRevE.59.2273 59, 2273 (1999)] driving a local electron density inflation, creating an electron snowplow and a co-propagating electrostatic potential. The snowplow advances with a velocity determined by the rate of the rise of the laser's intensity envelope and the heavy-ion-plasma density gradient scale length. The rising laser is incrementally rendered transparent to higher densities such that the relativistic-electron plasma frequency is resonant with the laser frequency. In the snowplow frame, trace density protons reflect off the electrostatic potential and get snowplowed, while the heavier background ions are relatively unperturbed. Quasimonoenergetic bunches of velocity equal to twice the snowplow velocity can be obtained and tuned by controlling the snowplow velocity using laser-plasma parameters. An analytical model for the proton energy as a function of laser intensity, rise time, and plasma density gradient is developed and compared to 1D and 2D PIC OSIRIS [Fonseca , Lect. Note Comput. Sci.9783

  11. All-optical Mach-Zehnder interferometer switching based on the phase-shift multiplication effect of an analog on the electromagnetically induced transparency effect

    NASA Astrophysics Data System (ADS)

    Wang, Boyun; Xiong, Liangbin; Zeng, Qingdong; Chen, Zhihong; Lv, Hao; Ding, Yaoming; Du, Jun; Yu, Huaqing

    2016-06-01

    We theoretically and numerically investigate all-optical Mach-Zehnder interferometer switching based on the phase-shift multiplication effect of an all-optical analog on the electromagnetically induced transparency effect. The free-carrier plasma dispersion effect modulation method is applied to improve the tuning rate with a response time of picoseconds. All observed schemes are analyzed rigorously through finite-difference time-domain simulations and coupled-mode formalism. Compared with no phase-shift multiplication effect, the average pump power of all-optical switching required to yield the π-phase shift difference decreases by 55.1%, and the size of the modulation region is reduced by 50.1% when the average pump power reaches 60.8 mW. This work provides a new direction for low-power consumption and miniaturization of microstructure integration light-controlled switching devices in optical communication and quantum information processing.

  12. Phase shift multiplication effect of all-optical analog to electromagnetically induced transparency in two micro-cavities side coupled to a waveguide system

    SciTech Connect

    Wang, Boyun; Wang, Tao Tang, Jian; Li, Xiaoming; Dong, Chuanbo

    2014-01-14

    We propose phase shift multiplication effect of all-optical analog to electromagnetically induced transparency in two photonic crystal micro-cavities side coupled to a waveguide system through external optical pump beams. With dynamically tuning the propagation phase of the line waveguide, the phase shift of the transmission spectrum in two micro-cavities side coupled to a waveguide system is doubled along with the phase shift of the line waveguide. π-phase shift and 2π-phase shift of the transmission spectrum are obtained when the propagation phase of the line waveguide is tuned to 0.5π-phase shift and π-phase shift, respectively. All observed schemes are analyzed rigorously through finite-difference time-domain simulations and the coupled-mode formalism. These results show a new direction to the miniaturization and the low power consumption of microstructure integration photonic devices in optical communication and quantum information processing.

  13. Short-pulse cross-phase modulation in an electromagnetically-induced-transparency medium

    NASA Astrophysics Data System (ADS)

    Feizpour, Amir; Dmochowski, Greg; Steinberg, Aephraim M.

    2016-01-01

    Electromagnetically induced transparency (EIT) has been proposed as a way to greatly enhance cross-phase modulation, with the possibility of leading to few-photon-level optical nonlinearities [Schmidt and Imamoglu, Opt. Lett. 21, 1936 (1996), 10.1364/OL.21.001936]. This enhancement grows as the transparency window width, ΔEIT, is narrowed. Decreasing ΔEIT, however, has been shown to increase the response time of the nonlinear medium. This suggests that, for a given pulse duration, the nonlinearity would diminish once the window width became narrower than this pulse bandwidth. We show that this is not the case: the peak phase shift saturates but does not decrease. We show that in the regimes of most practical interest—narrow EIT windows perturbed by short signal pulses—the enhancement offered by EIT is not only in the magnitude of the nonlinear phase shift but also in its increased duration. That is, for the case of signal pulses much shorter (temporally) than the inverse EIT bandwidth, the narrow window serves to prolong the effect of the passing signal pulse, leading to an integrated phase shift that grows linearly with 1 /ΔEIT ; this continued growth of the integrated phase shift improves the detectability of the phase shift, in principle, without bound. For many purposes, it is this detectability which is of more interest than the absolute magnitude of the peak phase shift. We present analytical expressions based on a linear time-invariant model that accounts for the temporal behavior of the cross-phase modulation for several parameter ranges of interest. We conclude that in order to optimize the detectability of the EIT-based cross-phase shift, one should use the narrowest possible EIT window and a signal pulse that is as broadband as the excited-state linewidth and detuned by half a linewidth.

  14. Plasmon-induced transparency in metamaterials: Active near field coupling between bright superconducting and dark metallic mode resonators

    NASA Astrophysics Data System (ADS)

    Cao, Wei; Singh, Ranjan; Zhang, Caihong; Han, Jiaguang; Tonouchi, Masayoshi; Zhang, Weili

    2013-09-01

    Structured plasmonic metamaterial devices offer the design flexibility to be size scaled for operation across the electromagnetic spectrum and are extremely attractive for generating electromagnetically induced transparency and slow-light behaviors via coupling of bright and dark subwavelength resonators. Here, we experimentally demonstrate a thermally active superconductor-metal coupled resonator based hybrid terahertz metamaterial on a sapphire substrate that shows tunable transparency and slow light behavior as the metamaterial chip is cooled below the high-temperature superconducting phase transition temperature. This hybrid metamaterial opens up the avenues for designing micro-sized active circuitry with switching, modulation, and "slowing down terahertz light" capabilities.

  15. Electromagnetically induced transparency in an open V-type molecular system

    SciTech Connect

    Lazoudis, A.; Ahmed, E. H.; Qi, P.; Lyyra, A. M.; Kirova, T.; Huennekens, J.

    2011-06-15

    We report the experimental observation of electromagnetically induced transparency (EIT) in an inhomogeneously broadened V-type Na{sub 2} molecular system. The experiment is performed with both co- and counterpropagating arrangements for the propagation directions of the coupling and probe laser beams. In our theoretical model we employ the density matrix formalism, as well as perturbative methods for obtaining the probe field absorption profile for both open and closed systems. Simulations of the experimental data show excellent agreement with the predictions derived from the basic theory. Our fluorescent intensity measurements show that, in the copropagating configuration, the EIT plus saturation window depth is about 95%, while under similar conditions in the counterpropagating geometry we observed 40%-45% reduction in the fluorescence signal around the line center. To separate the two simultaneously occurring mechanisms in a V-type system (i.e., EIT and saturation) that are induced by the coupling field, we have carried out theoretical calculations which show that, in the copropagating case, a significant fraction of the depth of the dip is due to the coherent effect of EIT. When the coupling and probe beams are in the counterpropagating configuration, the dip is mostly due to saturation effects alone.

  16. Visible-light-induced instability in amorphous metal-oxide based TFTs for transparent electronics

    SciTech Connect

    Ha, Tae-Jun

    2014-10-15

    We investigate the origin of visible-light-induced instability in amorphous metal-oxide based thin film transistors (oxide-TFTs) for transparent electronics by exploring the shift in threshold voltage (V{sub th}). A large hysteresis window in amorphous indium-gallium-zinc-oxide (a-IGZO) TFTs possessing large optical band-gap (≈3 eV) was observed in a visible-light illuminated condition whereas no hysteresis window was shown in a dark measuring condition. We also report the instability caused by photo irradiation and prolonged gate bias stress in oxide-TFTs. Larger V{sub th} shift was observed after photo-induced stress combined with a negative gate bias than the sum of that after only illumination stress and only negative gate bias stress. Such results can be explained by trapped charges at the interface of semiconductor/dielectric and/or in the gate dielectric which play a role in a screen effect on the electric field applied by gate voltage, for which we propose that the localized-states-assisted transitions by visible-light absorption can be responsible.

  17. Effect of electron heating on self-induced transparency in relativistic-intensity laser-plasma interactions.

    PubMed

    Siminos, E; Grech, M; Skupin, S; Schlegel, T; Tikhonchuk, V T

    2012-11-01

    The effective increase of the critical density associated with the interaction of relativistically intense laser pulses with overcritical plasmas, known as self-induced transparency, is revisited for the case of circular polarization. A comparison of particle-in-cell simulations to the predictions of a relativistic cold-fluid model for the transparency threshold demonstrates that kinetic effects, such as electron heating, can lead to a substantial increase of the effective critical density compared to cold-fluid theory. These results are interpreted by a study of separatrices in the single-electron phase space corresponding to dynamics in the stationary fields predicted by the cold-fluid model. It is shown that perturbations due to electron heating exceeding a certain finite threshold can force electrons to escape into the vacuum, leading to laser pulse propagation. The modification of the transparency threshold is linked to the temporal pulse profile, through its effect on electron heating. PMID:23214893

  18. Plasmonic analogue of electromagnetically induced transparency in a T-shaped metallic nanohole array and its sensing performance

    NASA Astrophysics Data System (ADS)

    Wan, Ming Li; Sun, Xiao Jun; Song, Yue Li; Li, Yong; Zhou, Feng Qun

    2014-11-01

    In this paper, a plasmonic analogue of electromagnetically induced transparency (EIT) is demonstrated theoretically in a T-shaped silver nanohole array. A sharply narrow reflectance transparency window is clearly observed within the background spectrum of the broad dipole-like resonance at optical frequencies when structural asymmetry is introduced. Furthermore, the transparency peak exhibits highly sensitive response to the refractive index of surrounding medium and yield a sensitivity of 725 nm/refractive index unit (RIU), which ensures our proposed nanohole array as an excellent plasmonic sensor. In addition, the dependence of figure of merit (FOM) on structural asymmetry is investigated numerically to optimize the sensing performance of the EIT-based sensor.

  19. Dynamically tunable plasmon induced transparency in a graphene-based nanoribbon waveguide coupled with graphene rectangular resonators structure on sapphire substrate.

    PubMed

    Han, Xu; Wang, Tao; Li, Xiaoming; Xiao, Shuyuan; Zhu, Youjiang

    2015-12-14

    In this paper, we propose dynamically tunable plasmon induced transparency (PIT) in a graphene-based nanoribbon waveguide coupled with graphene rectangular resonators structure on sapphire substrate by shifting the Fermi energy level of the graphene. Two different methods are employed to obtain the PIT effect: one is based on the direct destructive interference between a radiative state and a dark state, the other is based on the indirect coupling through a graphene nanoribbon waveguide. Our numerical results reveal that high tunability in the PIT transparency window can be obtained by altering the Fermi energy levels of the graphene rectangular resonators. Moreover, double PITs are also numerically predicted in this ultracompact structure, comprising series of graphene rectangular resonators. Compared with previously proposed graphene-based PIT effects, our proposed scheme is much easier to design and fabricate. This work not only paves a new way towards the realization of graphene-based integrated nanophotonic devices, but also has important applications in multi-channel-selective filters, sensors, and slow light. PMID:26698986

  20. Distortion of self-induced-transparency solitons as a result of self-phase modulation in ion-doped fibers

    NASA Astrophysics Data System (ADS)

    Kozlov, Victor V.; Fradkin, Évald E.

    1995-11-01

    The temporal envelope profile and the phase of a steady-state pulse propagating through a resonant medium in the presence of nonresonant nonlinearity are derived. The formation of solitonlike pulses takes place as a result of the balance of the self-phase modulation generated by nonresonant nonlinearity and the nonlinear resonant group-velocity dispersion induced by the self-induced-transparency effect in a resonant medium. Self-phase-modulation action leads to distortion of the pulse when its power and inverse duration exceed the critical values Pcr and tau -1cr . We show the destructive role of self-phase modulation in the case of self-induced-transparency pulse generation in a laser with erbium-doped fiber as an intracavity coherent absorber.

  1. Shallow-trap-induced positive absorptive two-beam coupling 'gain' and light-induced transparency in nominally undoped barium titanate

    NASA Technical Reports Server (NTRS)

    Garrett, M. H.; Tayebati, P.; Chang, J. Y.; Jenssen, H. P.; Warde, C.

    1992-01-01

    The asymmetry of beam coupling with respect to the orientation of the polar axis in a nominally undoped barium titanate crystal is used to determine the electro-optic and absorptive 'gain' in the usual beam-coupling geometry. For small grating wave vectors, the electrooptic coupling vanishes but the absorptive coupling remains finite and positive. Positive absorptive coupling at small grating wave vectors is correlated with the light-induced transparency of the crystal described herein. The intensity and grating wave vector dependence of the electrooptic and absorptive coupling, and the light-induced transparency are consistent with a model incorporating deep and shallow levels.

  2. Investigation and optimization of intraband electromagnetically induced transparency in strained InAs quantum dot/wetting layer structures

    NASA Astrophysics Data System (ADS)

    Parvizi, R.; Rezaei, G.

    2016-01-01

    In this work, effects of the shape and size on the optical properties and optimization of the intersubband electromagnetically induced transparency in the Infra-red region of three-dimensional strained truncated pyramid-shaped InAs/GaAs quantum dot (QD) were investigated in detail. More precisely, within the density matrix approach, the probe absorption and group velocity along with the refractive index of the medium were studied with respect to their dependence on the dephasing rates and the Rabi frequencies of the probe and coupling fields for different QD heights and wetting layer (WL) thicknesses. It is found that the slow-down factors, group index, and absorption coefficient are inversely proportional to the width of the transparency window and proportional to the depth of the transparency window. The optimized transparency window can be achieved by varying the dot height and the WL thickness such that the tall dots with thin WL thickness induce significant enhancements at a fixed resonant peak position of Rabi frequency of the coupling field. The physical reasons behind these interesting phenomena were also explained based on the polarized features of intersubband transitions.

  3. Characterization of decoherence in electromagnetically induced transparency for applications in storage of light

    NASA Astrophysics Data System (ADS)

    Figueroa, Eden; Appel, Juergen; Vewinger, Frank; Lvovsky, Alexander

    2007-06-01

    Electromagnetically-induced transparency (EIT) has many applications in quantum information, particularly in quantum memory for light [1]. These applications require understanding of the phenomena responsible for decoherence in such processes. Insight into this question can be gained by measuring the width of the EIT resonance as a function of the pump field intensity. We report characterization of EIT resonances in the D1 line of Rb 87 under various experimental conditions. The dependence of the EIT linewidth on the power of the control field was investigated, at various temperatures, for lambda level configurations associated with different hyperfine levels of the atomic ground state as well as magnetic sublevels of the same hyperfine level. Strictly linear behavior was observed in all cases. Our results were inconsistent with a widely accepted theory where population exchange between the ground levels is assumed to be the main decoherence mechanism [2]. We therefore formulated a new theory assuming pure dephasing (decay of off-diagonal matrix elements) as the new mechanism. Our data shows this theory to be in good agreement with our experiments. 1. D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, Phys. Rev. Lett. 86, 783 (2001). 2. H. Lee, Y. Rostovtsev, C. J. Bednar, and A. Javan, Appl. Phys. B 76, 33 (2003).

  4. Controlled Electromagnetically Induced Transparency and Fano Resonances in Hybrid BEC-Optomechanics

    NASA Astrophysics Data System (ADS)

    Yasir, Kashif Ammar; Liu, Wu-Ming

    2016-03-01

    Cavity-optomechanics, a tool to manipulate mechanical effects of light to couple optical field with other physical objects, is the subject of increasing investigations, especially with regards to electromagnetically induced transparency (EIT). EIT, a result of Fano interference among different atomic transition levels, has acquired a significant importance in many areas of physics, such as atomic physics and quantum optics. However, controllability of such multi-dimensional systems has remained a crucial issue. In this report, we investigate the controllability of EIT and Fano resonances in hybrid optomechanical system composed of cigar-shaped Bose-Einstein condensate (BEC), trapped inside high-finesse Fabry-Pérot cavity with one vibrational mirror, driven by a single mode optical field and a transverse pump field. The transverse field is used to control the phenomenon of EIT. It is detected that the strength of transverse field is not only efficiently amplifying or attenuating out-going optical mode but also providing an opportunity to enhance the strength of Fano-interactions which leads to the amplification of EIT-window. To observe these phenomena in laboratory, we suggest a certain set of experimental parameters. The results provide a route for tunable manipulation of optical phenomena, like EIT, which could be a significant step in quantum engineering.

  5. Controlled Electromagnetically Induced Transparency and Fano Resonances in Hybrid BEC-Optomechanics

    PubMed Central

    Yasir, Kashif Ammar; Liu, Wu-Ming

    2016-01-01

    Cavity-optomechanics, a tool to manipulate mechanical effects of light to couple optical field with other physical objects, is the subject of increasing investigations, especially with regards to electromagnetically induced transparency (EIT). EIT, a result of Fano interference among different atomic transition levels, has acquired a significant importance in many areas of physics, such as atomic physics and quantum optics. However, controllability of such multi-dimensional systems has remained a crucial issue. In this report, we investigate the controllability of EIT and Fano resonances in hybrid optomechanical system composed of cigar-shaped Bose-Einstein condensate (BEC), trapped inside high-finesse Fabry-Pérot cavity with one vibrational mirror, driven by a single mode optical field and a transverse pump field. The transverse field is used to control the phenomenon of EIT. It is detected that the strength of transverse field is not only efficiently amplifying or attenuating out-going optical mode but also providing an opportunity to enhance the strength of Fano-interactions which leads to the amplification of EIT-window. To observe these phenomena in laboratory, we suggest a certain set of experimental parameters. The results provide a route for tunable manipulation of optical phenomena, like EIT, which could be a significant step in quantum engineering. PMID:26955789

  6. Controlled Electromagnetically Induced Transparency and Fano Resonances in Hybrid BEC-Optomechanics.

    PubMed

    Yasir, Kashif Ammar; Liu, Wu-Ming

    2016-01-01

    Cavity-optomechanics, a tool to manipulate mechanical effects of light to couple optical field with other physical objects, is the subject of increasing investigations, especially with regards to electromagnetically induced transparency (EIT). EIT, a result of Fano interference among different atomic transition levels, has acquired a significant importance in many areas of physics, such as atomic physics and quantum optics. However, controllability of such multi-dimensional systems has remained a crucial issue. In this report, we investigate the controllability of EIT and Fano resonances in hybrid optomechanical system composed of cigar-shaped Bose-Einstein condensate (BEC), trapped inside high-finesse Fabry-Pérot cavity with one vibrational mirror, driven by a single mode optical field and a transverse pump field. The transverse field is used to control the phenomenon of EIT. It is detected that the strength of transverse field is not only efficiently amplifying or attenuating out-going optical mode but also providing an opportunity to enhance the strength of Fano-interactions which leads to the amplification of EIT-window. To observe these phenomena in laboratory, we suggest a certain set of experimental parameters. The results provide a route for tunable manipulation of optical phenomena, like EIT, which could be a significant step in quantum engineering. PMID:26955789

  7. Local and nonlocal optically induced transparency effects in graphene-silicon hybrid nanophotonic integrated circuits.

    PubMed

    Yu, Longhai; Zheng, Jiajiu; Xu, Yang; Dai, Daoxin; He, Sailing

    2014-11-25

    Graphene is well-known as a two-dimensional sheet of carbon atoms arrayed in a honeycomb structure. It has some unique and fascinating properties, which are useful for realizing many optoelectronic devices and applications, including transistors, photodetectors, solar cells, and modulators. To enhance light-graphene interactions and take advantage of its properties, a promising approach is to combine a graphene sheet with optical waveguides, such as silicon nanophotonic wires considered in this paper. Here we report local and nonlocal optically induced transparency (OIT) effects in graphene-silicon hybrid nanophotonic integrated circuits. A low-power, continuous-wave laser is used as the pump light, and the power required for producing the OIT effect is as low as ∼0.1 mW. The corresponding power density is several orders lower than that needed for the previously reported saturated absorption effect in graphene, which implies a mechanism involving light absorption by the silicon and photocarrier transport through the silicon-graphene junction. The present OIT effect enables low power, all-optical, broadband control and sensing, modulation and switching locally and nonlocally. PMID:25372937

  8. Linear and nonlinear light propagations in a Doppler-broadened medium via electromagnetically induced transparency

    SciTech Connect

    Li Liang; Huang Guoxiang

    2010-08-15

    We present a systematic theoretical study to deal with linear and nonlinear light propagations in a Doppler-broadened three-level {Lambda} system via electromagnetically induced transparency (EIT), with incoherent population exchange between two lower energy levels taken into account. Through a careful analysis of base state and linear excitation, we show that the EIT condition of the system is given by |{Omega}{sub c}|{sup 2{gamma}}{sub 31}>>2{gamma}{sub 21{Delta}{omega}D}{sup 2}, where {Omega}{sub c} is half the Rabi frequency of the control field, {Delta}{omega}{sub D} is the Doppler width, and {gamma}{sub jl} is the decay rate of the coherence between states |j> and |l>. Under this condition, the effect of incoherent population exchange is insignificant, while dephasing dominates the decoherence of the system. This condition also ensures the validity of the weak nonlinear perturbation theory used in this work for solving the Maxwell-Bloch equations with inhomogeneous broadening. We then investigate the nonlinear propagation of the probe field and show that it is possible to form temporal optical solitons in the Doppler-broadened medium. Such solitons have ultraslow propagating velocity and can be generated in very low light power. The possibility of realizing (1+1)-dimensional and (2+1)-dimensional spatial optical solitons in the adiabatic regime of the system is also discussed.

  9. Electromagnetically induced transparency in a diamond spin ensemble enables all-optical electromagnetic field sensing.

    PubMed

    Acosta, V M; Jensen, K; Santori, C; Budker, D; Beausoleil, R G

    2013-05-24

    We use electromagnetically induced transparency (EIT) to probe the narrow electron-spin resonance of nitrogen-vacancy centers in diamond. Working with a multipass diamond chip at temperatures 6-30 K, the zero-phonon absorption line (637 nm) exhibits an optical depth of 6 and inhomogeneous linewidth of ~30 GHz FWHM. Simultaneous optical excitation at two frequencies separated by the ground-state zero-field splitting (2.88 GHz) reveals EIT resonances with a contrast exceeding 6% and FWHM down to 0.4 MHz. The resonances provide an all-optical probe of external electric and magnetic fields with a projected photon-shot-noise-limited sensitivity of 0.2 V/cm/√[Hz] and 0.1 nT/√[Hz], respectively. Operation of a prototype diamond-EIT magnetometer measures a noise floor of ~/<1 nT/√[Hz] for frequencies above 10 Hz and Allan deviation of 1.3±1.1 nT for 100 s intervals. The results demonstrate the potential of diamond-EIT devices for applications ranging from quantum-optical memory to precision measurement and tests of fundamental physics. PMID:23745875

  10. In Caenorhabditis elegans Nanoparticle-Bio-Interactions Become Transparent: Silica-Nanoparticles Induce Reproductive Senescence

    PubMed Central

    Bossinger, Olaf; von Mikecz, Anna

    2009-01-01

    While expectations and applications of nanotechnologies grow exponentially, little is known about interactions of engineered nanoparticles with multicellular organisms. Here we propose the transparent roundworm Caenorhabditis elegans as a simple but anatomically and biologically well defined animal model that allows for whole organism analyses of nanoparticle-bio-interactions. Microscopic techniques showed that fluorescently labelled nanoparticles are efficiently taken up by the worms during feeding, and translocate to primary organs such as epithelial cells of the intestine, as well as secondary organs belonging to the reproductive tract. The life span of nanoparticle-fed Caenorhabditis elegans remained unchanged, whereas a reduction of progeny production was observed in silica-nanoparticle exposed worms versus untreated controls. This reduction was accompanied by a significant increase of the ‘bag of worms’ phenotype that is characterized by failed egg-laying and usually occurs in aged wild type worms. Experimental exclusion of developmental defects suggests that silica-nanoparticles induce an age-related degeneration of reproductive organs, and thus set a research platform for both, detailed elucidation of molecular mechanisms and high throughput screening of different nanomaterials by analyses of progeny production. PMID:19672302

  11. Dynamically tunable slow light based on plasmon induced transparency in disk resonators coupled MDM waveguide system

    NASA Astrophysics Data System (ADS)

    Han, Xu; Wang, Tao; Li, Xiaoming; Liu, Bo; He, Yu; Tang, Jian

    2015-06-01

    Ultrafast and low-power dynamically tunable single channel and multichannel slow light based on plasmon induced transparencies (PITs) in disk resonators coupled to a metal-dielectric-metal (MDM) waveguide system with a nonlinear optical Kerr medium is investigated both numerically and analytically. A coupled-mode theory (CMT) is introduced to analyze this dynamically tunable single channel slow light structure. Multichannel slow light is realized in this plasmonic waveguide structure based on a bright-dark mode coupling mechanism. In order to reduce the pump intensity and obtain ultrafast response time, the traditional nonlinear Kerr material is replaced by monolayer graphene. It is found that the magnitude of the single PIT window can be controlled between 0.08 and 0.48, while the corresponding group index is controlled between 14.5 and 2.0 by dynamically decreasing pump intensity from 11.7 to 4.4 MW cm-2. Moreover, the phase shift multiplication effect is found in this structure. This work paves a new way towards the realization of highly integrated optical circuits and networks, especially for wavelength-selective, all-optical storage and nonlinear devices.

  12. Light storage based on four-wave mixing and electromagnetically induced transparency in cold atoms

    NASA Astrophysics Data System (ADS)

    Wu, Jinghui; Liu, Yang; Ding, Dong-Sheng; Zhou, Zhi-Yuan; Shi, Bao-Sen; Guo, Guang-Can

    2013-01-01

    We performed an experiment to observe the storage of an input probe field and an idler field generated through an off-axis four-wave mixing (FWM) process via a double-Λ configuration in a cold atomic ensemble. We analyzed the underlying physics in detail and found that the retrieved idler field came from two parts if there was no single-photon detuning for the pump pulse: Part 1 was from the collective atomic spin (the input probe field, the coupling field, and the pump field combined to generate the idler field through FWM; then the idler was stored through electromagnetically induced transparency). Part 2 was from the generated new FWM process during the retrieval process (the retrieved probe field, the coupling field, and the pump field combined to generate a new FWM signal). If there was single-photon detuning for the pump pulse, then the retrieved idler was mainly from part 2. The retrieved two fields exhibited damped oscillations with the same oscillatory period when a homogeneous external magnetic field was applied, which was caused by the Larmor spin precession. We also experimentally realized the storage and retrieval of an image of light using FWM, in which an image was added into the input signal. After the storage, the retrieved idler beams and input signal carried the same image. This image storage technique holds promise for applications in image processing, remote sensing, and quantum communication.

  13. Density matrix reconstruction of three-level atoms via Rydberg electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Gavryusev, V.; Signoles, A.; Ferreira-Cao, M.; Zürn, G.; Hofmann, C. S.; Günter, G.; Schempp, H.; Robert-de-Saint-Vincent, M.; Whitlock, S.; Weidemüller, M.

    2016-08-01

    We present combined measurements of the spatially resolved optical spectrum and the total excited-atom number in an ultracold gas of three-level atoms under electromagnetically induced transparency conditions involving high-lying Rydberg states. The observed optical transmission of a weak probe laser at the center of the coupling region exhibits a double peaked spectrum as a function of detuning, while the Rydberg atom number shows a comparatively narrow single resonance. By imaging the transmitted light onto a charge-coupled-device camera, we record hundreds of spectra in parallel, which are used to map out the spatial profile of Rabi frequencies of the coupling laser. Using all the information available we can reconstruct the full one-body density matrix of the three-level system, which provides the optical susceptibility and the Rydberg density as a function of spatial position. These results help elucidate the connection between three-level interference phenomena, including the interplay of matter and light degrees of freedom and will facilitate new studies of many-body effects in optically driven Rydberg gases.

  14. Orthogonality breaking induces extraordinary single-mode transparency in an elaborate waveguide with wall corrugations

    PubMed Central

    Tao, Zhi-Yong; Fan, Ya-Xian

    2014-01-01

    Orthogonality plays a fundamental role in various mathematical theorems and in physics. The orthogonal eigenfunctions that represent the intrinsic motions of various physical systems can also be regarded as transverse wave modes in a straight waveguide. Because of their orthogonality, these modes propagate independently, without mutual interference. When the wall separation fluctuates, the former mode orthogonality is destroyed because of the change in the Euclidean space of the system. Here, we experimentally demonstrate the extraordinary single-mode transparency that arises as a result of the intense mode interference induced by orthogonality breaking in a waveguide with a varying cross section. A mode diagram is also introduced to illuminate these mode interactions. In particular, measurements of the transverse field distributions indicate that a three-mode interaction leads to a single high-order mode that penetrates through the lower-mode bandgaps when the wall period is carefully selected. The observation of Bessel-like transverse distributions is promising for applications in wave-control engineering. PMID:25403089

  15. Engineered absorption enhancement and induced transparency in coupled molecular and plasmonic resonator systems.

    PubMed

    Adato, Ronen; Artar, Alp; Erramilli, Shyamsunder; Altug, Hatice

    2013-06-12

    Coupled plasmonic resonators have become the subject of significant research interest in recent years as they provide a route to dramatically enhanced light-matter interactions. Often, the design of these coupled mode systems draws intuition and inspiration from analogies to atomic and molecular physics systems. In particular, they have been shown to mimic quantum interference effects, such as electromagnetically induced transparency (EIT) and Fano resonances. This analogy also been used to describe the surface-enhanced absorption effect where a plasmonic resonance is coupled to a weak molecular resonance. These important phenomena are typically described using simple driven harmonic (or linear) oscillators (i.e., mass-on-a-spring) coupled to each other. In this work, we demonstrate the importance of an essential interdependence between the rate at which the system can be driven by an external field and its damping rate through radiative loss. This link is required in systems exhibiting time-reversal symmetry and energy conservation. Not only does it ensure an accurate and physically consistent description of resonant systems but leads directly to interesting new effects. Significantly, we demonstrate this dependence to predict a transition between EIT and electromagnetically induced absorption that is solely a function of the ratio of the radiative to intrinsic loss rates in coupled resonator systems. Leveraging the temporal coupled mode theory, we introduce a unique and intuitive picture that accurately describes these effects in coupled plasmonic/molecular and fully plasmonic systems. We demonstrate our approach's key features and advantages analytically as well as experimentally through surface-enhanced absorption spectroscopy and plasmonic metamaterial applications. PMID:23647070

  16. Quantitative and Direct Near-Field Analysis of Plasmonic-Induced Transparency and the Observation of a Plasmonic Breathing Mode.

    PubMed

    Khunsin, Worawut; Dorfmüller, Jens; Esslinger, Moritz; Vogelgesang, Ralf; Rockstuhl, Carsten; Etrich, Christoph; Kern, Klaus

    2016-02-23

    We investigated experimentally and numerically in the optical near-field a plasmonic model system similar to a dolmen-type structure for phenomena such as plasmon-induced transparency. Through engineering of coupling strength, structure orientation, and incident angle and phase of the excitation source it was possible to control near-field excitation of the dark modes. We showed that quantitative analysis of near-field amplitude and excitation strength provided essential information that allowed identifying the interaction between the bright and the dark mode and how it causes the formation of plasmon-induced transparency features and a Fano resonance. In addition, we introduced a mechanism to excite field distributions in plasmonic structures that cannot be accessed directly using far-field illumination and demonstrated the excitation of a dark mode akin to a symmetry-forbidden plasmonic breathing mode using a linearly polarized far-field source. PMID:26789080

  17. Self-Induced Transparency and Electromagnetic Pulse Compression in a Plasma or an Electron Beam under Cyclotron Resonance Conditions

    SciTech Connect

    Ginzburg, N. S.; Zotova, I. V.; Sergeev, A. S.

    2010-12-30

    Based on analogy to the well-known process of the self-induced transparency of an optical pulse propagating through a passive two-level medium we describe similar effects for a microwave pulse interacting with a cold plasma or rectilinear electron beam under cyclotron resonance condition. It is shown that with increasing amplitude and duration of an incident pulse the linear cyclotron absorption is replaced by the self-induced transparency when the pulse propagates without damping. In fact, the initial pulse decomposes to one or several solitons with amplitude and duration defined by its velocity. In a certain parameter range, the single soliton formation is accompanied by significant compression of the initial electromagnetic pulse. We suggest using the effect of self-compression for producing multigigawatt picosecond microwave pulses.

  18. Time-dependent phase shift of a retrieved pulse in off-resonant electromagnetically-induced-transparency-based light storage

    NASA Astrophysics Data System (ADS)

    Maynard, M.-A.; Bouchez, R.; Lugani, J.; Bretenaker, F.; Goldfarb, F.; Brion, E.

    2015-11-01

    We report measurements of the time-dependent phases of the leak and retrieved pulses obtained in electromagnetically-induced-transparency storage experiments with metastable helium vapor at room temperature. In particular, we investigate the influence of the optical detuning at two-photon resonance and provide numerical simulations of the full dynamical Maxwell-Bloch equations, which allow us to account for the experimental results.

  19. Coexistence of a self-induced transparency soliton and a Bragg soliton.

    PubMed

    Tseng, Hong-Yih; Chi, Sien

    2002-11-01

    We theoretically show that a self-induced transparency (SIT) soliton and a Bragg soliton can coexist in a nonlinear photonic band gap (PBG) medium doped uniformly with inhomogeneous-broadening two-level atoms. The Maxwell-Bloch equations for the pulse propagating through such a uniformly doped PBG structure are derived first and further reduced to an effective nonlinear Schrödinger equation. This model describes an equivalent physical mechanism for a Bragg-soliton propagation resulting from the effective quadratic dispersion balancing with the effective third-order nonlinearity. Because the resonant atoms are taken into account, the original band gap can be shifted both by the dopants and the instantaneous nonlinearity response originating from an intense optical pulse. As a result, even if a SIT soliton with its central frequency deep inside the original forbidden band, it still can propagate through the resonant PBG medium as long as this SIT soliton satisfies the effective Bragg-soliton propagation. An approximate soliton solution describing such coexistence is found. We also show that the pulse width and group velocity of this soliton solution can be uniquely determined for given material parameters, atomic transition frequency, and input central frequency of the soliton. The numerical examples of the SIT soliton in a one-dimensional As2S3-based PBG structure doped uniformly with Lorentzian line-shape resonant atoms are shown. It is found that a SIT soliton with approximately 100-ps width in such a resonant PBG structure can travel with the velocity being two orders of magnitude slower than the light speed in an unprocessed host medium. PMID:12513622

  20. Double transmission peaks electromagnetically induced transparency induced by simultaneously exciting the electric and magnetic resonance in one unit cell

    NASA Astrophysics Data System (ADS)

    Liu, Si-Yuan; Zheng, Bu-Sheng; Li, Hai-Ming; Liu, Xiao-Chun; Liu, Shao-Bin

    2015-08-01

    In this paper, we investigate a metamaterial formed by a planar array of a metallic L-shaped structure and a cut wire (CW), which behaves as an analogue of the electromagnetically induced transparency (EIT). The double transmission peaks are formed by the destructive interference of two bright-modes and a quasi-dark mode. The two bright-modes are respectively excited by the L-shaped structure and CW. The unit structure itself performs a quasi-dark mode. The group refractive indexes are over 20 in the first transmission peak, and 117 in the second transmission peak, thus offering potential applications in slow light devices. Finally, all the above characteristics are achieved in just one simple unit cell. Project supported by the Chinese Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20123218110017), the National Natural Science Foundation of China (Grant Nos. 61307052 and 61471368), the Foundation of Aeronautical Science, China (Grant No. 20121852030), and the Fundamental Research Funds for the Central Universities (Grant No. kfjj20150407).

  1. Double plasmon induced transparency in disk and nanobars coupled nanosystems and its application to plasmonic resonance sensing

    NASA Astrophysics Data System (ADS)

    Chen, Fang; Yao, Duanzheng

    2016-05-01

    We demonstrate the realization of plasmon induced transparency (PIT) in a nanostructure composed of silver nanobars and a silver nanodisk. The optical properties of the planar metamaterials have been investigated theoretically in the paper. The classical coupled harmonic oscillator model demonstrates the PIT phenomenon in a nanodisk-nanobar system. Additionally, double PIT response is observed when two nanobars are located in proximity to the silver nanodisk. The PIT window wavelength and bandwidths can be efficiently tuned by controlling the geometric parameters such as the lengths of nanobars and the coupling distances between the nanodisk and nanobars. Moreover, the transparency window shows highly sensitive response to the refractive index of the environmental medium. A high figure of merit up to 15.5 of the asymmetrical system for refractive index sensing is achieved. The tunability of the PIT may have potential application on slow light and highly integrated optical circuits.

  2. Effect of buffer gas on an electromagnetically induced transparency in a ladder system using thermal rubidium vapor

    SciTech Connect

    Sargsyan, Armen; Sarkisyan, David; Krohn, Ulrich; Keaveney, James; Adams, Charles

    2010-10-15

    We report on the observation of electromagnetically induced transparency in a ladder system in the presence of a buffer gas. In particular, we study the 5S{sub 1/2}-5P{sub 3/2}-5D{sub 5/2} transition in thermal rubidium vapor with a neon buffer gas at a pressure of 6 Torr. In contrast to the line-narrowing effect of buffer gas on {Lambda} systems, we show that the presence of the buffer gas leads to an additional broadening of (34{+-}5) MHz, which suggests a cross section for Rb(5D{sub 5/2})-Ne of {sigma}{sub k}{sup (D)}=(23{+-}4)x10{sup -19} m{sup 2}. However, in the limit where the coupling Rabi frequency is larger than the collisional dephasing, a strong transparency feature can still be observed.

  3. Self-induced transparency solitary waves in a doped nonlinear photonic band gap material

    NASA Astrophysics Data System (ADS)

    Aközbek, Neşet; John, Sajeev

    1998-09-01

    We derive the properties of self-induced transparency (SIT) solitary waves in a one-dimensional periodic structure doped uniformly with resonance two-level atoms. In our model, the electromagnetic field is treated classically and the dopant atoms are described quantum mechanically. The resulting solitary waves take the form of ultrashort (picosecond) laser pulses which propagate near the band edge of the nonlinear photonic band gap (PBG) material doped with rare-earth atoms such as erbium. Solitary wave formation involves the combined effects of group velocity dispersion (GVD), nonresonant Kerr nonlinearity, and resonant interaction with dopant atoms. We derive the general Maxwell-Bloch equations for a nonlinear PBG system and then demonstrate the existence of elementary solitary wave solutions for frequencies far outside the gap where GVD effects are negligible and for frequencies near the photonic band edge where GVD effects are crucial. We find two distinct new types of propagating SIT solitary wave pulses. Far from Bragg resonance, we recapture the usual McCall-Hahn soliton with hyperbolic secant profile when the nonlinear Kerr coefficient χ(3)=0. However, when the host nonresonant Kerr coefficient is nonzero, we obtain the first new type of soliton. In this case, the optical soliton envelope function deviates from the hyperbolic secant profile and pulse propagation requires nontrivial phase modulation (chirping). We derive the dependence of the solitary wave structure on the Kerr coefficient χ(3), the resonance impurity atom density, and the detuning of the average laser frequency from the atomic transition. When the laser frequency and the atomic transition frequencies are near the photonic band edge we obtain the second type of soliton. To illustrate the second type of soliton we consider two special cases. In the first case, GVD facilitates the propagation of an unchirped SIT-gap soliton moving at a velocity fixed by the material's parameters. The soliton

  4. Electromagnetically induced transparency in a two-dimensional quantum pseudo-dot system: Effects of geometrical size and external magnetic field

    NASA Astrophysics Data System (ADS)

    Jahromi, Alaeddin Sayahian; Rezaei, G.

    2015-01-01

    Electromagnetically induced transparency in a two-dimensional quantum pseudo-dot system, under the influence of a uniform magnetic field, is theoretically investigated. In this regard, the effects of external magnetic field and the geometrical size of the pseudo-dot system on the absorption as well as refractive index and the group velocity of the probe light pulse are investigated. The results show that the electromagnetically induced transparency occurs in the system and its frequency, transparency window and group velocity of the probe field are affected by the external magnetic field and the geometrical size of the pseudo-dot system. Also, electromagnetically induced transparency and the group velocity of light can be controlled via the external magnetic field and geometrical size.

  5. Study of laser induced underwater shock waves and cavitation for medical applications: Visualization in a transparent optical tube

    NASA Astrophysics Data System (ADS)

    Hosseini, S. H. R.; Takayama, K.

    2005-03-01

    For medical application of underwater shock waves (a less-invasive approach), a reliable micro shock wave source is required. The present paper reports progress on the production of underwater micro shock waves by direct irradiation using a laser beam through an optical fiber. The generation and propagation of underwater shock waves from the optical fiber were visualized by quantitative double exposure holographic interferometry and time-resolved high speed shadowgraph methods. For visualization of laser induced shock waves and cavities in a tubular confined space, a transparent tube of 5 mm inner diameter with an aspherically shaped outer wall was designed and constructed.

  6. Tunable edge-mode-based mid-infrared plasmonically induced transparency in the coupling system of coplanar graphene ribbons

    NASA Astrophysics Data System (ADS)

    Li, Hong-Ju; Wang, Ling-Ling; Zhang, Bing-Hua; Zhai, Xiang

    2016-01-01

    The graphene ribbon waveguide with two short parallel, coupled coplanar strips is investigated. Because of the extreme destructive interference of the short strip resonators, an outstanding plasmonically induced transparency (PIT) window with a group time delay up to 0.28 ps is achieved in the mid-infrared region, with an excellent ultraslow-light feature. The PIT window is controlled by varying the coupling distance between resonators and is tuned dynamically by a small change in the chemical potential. Numerical results are confirmed using the coupled-mode theory (CMT). The planar structure will benefit the fabrication of plasmonic circuits for slow light and optical switching.

  7. Optically transparent conductive network formation induced by solvent evaporation from tin-oxide-nanoparticle suspensions.

    PubMed

    Wakabayashi, Atsumi; Sasakawa, Yuki; Dobashi, Toshiaki; Yamamoto, Takao

    2007-07-17

    This investigation describes an optically transparent antistatic film composed of antimony-doped tin oxide (ATO) nanoparticles dispersed in a polymer matrix, with remarkably improved electrical and optical properties. The film is fabricated on the basis of a synergistic interaction between self-assembling nanoparticles and self-organizing matrix materials. The antistatic property of the film is obtained at ATO concentrations above a threshold value. A scaling analysis of the data yields an extremely low critical concentration (0.0020 volume fraction), which is considerably lower than the value predicted by percolation theory. Microscopic observations of the film have revealed a characteristic microstructure: "single-stranded" chainlike (linear form or fibrous) aggregates consisting of ATO nanoparticles and large ATO-depleted areas. The experiment results suggest that the high optical transparency and the low critical concentration are derived from the characteristic microstructures of the film. PMID:17579465

  8. Photoisomerization-induced morphology and transparency transition in an azobenzene based two-component organogel system.

    PubMed

    Cao, Xinhua; Liu, Xue; Chen, Liming; Mao, Yueyuan; Lan, Haichuang; Yi, Tao

    2015-11-15

    A two-component gel containing long chain alkylated gallic acid (GA) and photochromic phenazopyridine (PAP) was prepared. The gel was thoroughly characterized by UV-visible and IR spectra, SEM and POM images, XRD diffraction and dynamic oscillatory measurements. The structure and transparency of the two-component gel can be reversibly changed by alternative UV light irradiation and warming in the palm of the hand. This kind of soft material has potential application in upscale surface functional materials. PMID:26218198

  9. Low-power, ultrafast, and dynamic all-optical tunable plasmonic analog to electromagnetically induced transparency in two resonators side-coupled with a waveguide system

    SciTech Connect

    Wang, Boyun; Wang, Tao Li, Xiaoming; Han, Xu; Zhu, Youjiang

    2015-06-07

    We theoretically and numerically investigate a low-power, ultrafast, and dynamic all-optical tunable plasmonic analog to electromagnetically induced transparency (EIT) in two nanodisk resonators side-coupled to a metal-insulator-metal plasmonic waveguide system. The optical Kerr effect is enhanced by the slow light effect of the plasmonic EIT-like effect and the plasmonic waveguide based on graphene-Ag composite material structures with giant effective Kerr nonlinear coefficient. The optical Kerr effect modulation method is applied to improve tuning rate with response time of subpicoseconds or even femtoseconds. With dynamically tuning the propagation phase of the plasmonic waveguide, π-phase shift of the transmission spectrum in the plasmonic EIT-like system is achieved under excitation of a pump light with an intensity as low as 5.85 MW/cm{sup 2}. The group delay is controlled between 0.09 and 0.4 ps. All observed schemes are analyzed rigorously through finite-difference time-domain simulations and coupled-mode formalism. Results show a new direction toward the low power consumption and ultrafast responses of integration plasmonic photonic devices and all-optical dynamical storage of light devices in optical communication and quantum information processing.

  10. Polarization decay of pulses of electromagnetically induced transparency on J=0→J=1→J=2 degenerate quantum transitions

    NASA Astrophysics Data System (ADS)

    Parshkov, O. M.

    2016-02-01

    The evolution of radiation under conditions of electromagnetically induced transparency in the scheme of degenerate quantum transitions J = 0 → J = 1 → J = 2 in the pulsed interaction regime of the fields and with allowance for the Doppler broadening of spectral lines has been analyzed numerically. It has been shown that, if the input coupling radiation is linearly polarized, the circularly polarized input probe pulse splits in the medium into pulses with mutually perpendicular linear polarizations. The direction of polarization of one of these pulses coincides with the direction of polarization of the input coupling field. The distance that the probe pulse travels in the medium until it completely decays decreases with a decrease in both the duration of the input probe pulse and the intensity of the input coupling radiation. A change in the power of the input probe pulse hardly affects the distance required for the decay and the velocity of propagation of linearly polarized pulses in the medium. An increase in the Doppler broadening of spectral lines leads to a decrease in this distance and, simultaneously, to an increase in the energy losses of the probe radiation. Qualitative considerations that explain the physical reason for the investigated effects have been presented.

  11. Scheme for correcting coupling variation induced by insertion devices near linear difference resonance

    NASA Astrophysics Data System (ADS)

    Kaneyasu, T.; Takabayashi, Y.; Iwasaki, Y.; Koda, S.

    2011-06-01

    We have developed a scheme for correcting emittance coupling variations resulting from the operation of insertion devices (IDs) in a storage ring operated near a linear difference resonance. The present scheme corrects for weak skew quadrupole error fields and betatron tune shifts induced by the IDs since the sensitivity of the emittance coupling to the skew error field is enhanced near a difference resonance and betatron tune shifts also contribute to the coupling variation. We applied the coupling correction scheme to the operation of the APPLE-II type variable polarization undulator in the SAGA-LS storage ring. Changes in the gap and phase of the APPLE-II undulator significantly alter the emittance coupling, which modulates the photon beam intensities in the experimental stations. The coupling correction system employs a feedforward scheme by using two-dimensional look-up tables. Correction coil currents are determined by measuring the betatron tune and the vertical beam size. Beam test results suggest that the coupling variation can be well explained by the ID skew error field and the tune shift caused by the intrinsic focusing effect of the APPLE-II undulator. They also demonstrate that the correction system sufficiently suppresses the coupling variation.

  12. Enhanced efficiency of plasma acceleration in the laser-induced cavity pressure acceleration scheme

    NASA Astrophysics Data System (ADS)

    Badziak, J.; Rosiński, M.; Jabłoński, S.; Pisarczyk, T.; Chodukowski, T.; Parys, P.; Rączka, P.; Krousky, E.; Ullschmied, J.; Liska, R.; Kucharik, M.

    2015-01-01

    Among various methods for the acceleration of dense plasmas the mechanism called laser-induced cavity pressure acceleration (LICPA) is capable of achieving the highest energetic efficiency. In the LICPA scheme, a projectile placed in a cavity is accelerated along a guiding channel by the laser-induced thermal plasma pressure or by the radiation pressure of an intense laser radiation trapped in the cavity. This arrangement leads to a significant enhancement of the hydrodynamic or electromagnetic forces driving the projectile, relative to standard laser acceleration schemes. The aim of this paper is to review recent experimental and numerical works on LICPA with the emphasis on the acceleration of heavy plasma macroparticles and dense ion beams. The main experimental part concerns the research carried out at the kilojoule sub-nanosecond PALS laser facility in Prague. Our measurements performed at this facility, supported by advanced two-dimensional hydrodynamic simulations, have demonstrated that the LICPA accelerator working in the long-pulse hydrodynamic regime can be a highly efficient tool for the acceleration of heavy plasma macroparticles to hyper-velocities and the generation of ultra-high-pressure (>100 Mbar) shocks through the collision of the macroparticle with a solid target. The energetic efficiency of the macroparticle acceleration and the shock generation has been found to be significantly higher than that for other laser-based methods used so far. Using particle-in-cell simulations it is shown that the LICPA scheme is highly efficient also in the short-pulse high-intensity regime and, in particular, may be used for production of intense ion beams of multi-MeV to GeV ion energies with the energetic efficiency of tens of per cent, much higher than for conventional laser acceleration schemes.

  13. Three-dimensional atom localization via electromagnetically induced transparency in a three-level atomic system.

    PubMed

    Wang, Zhiping; Cao, Dewei; Yu, Benli

    2016-05-01

    We present a new scheme for three-dimensional (3D) atom localization in a three-level atomic system via measuring the absorption of a weak probe field. Owing to the space-dependent atom-field interaction, the position probability distribution of the atom can be directly determined by measuring the probe absorption. It is found that, by properly varying the parameters of the system, the probability of finding the atom in 3D space can be almost 100%. Our scheme opens a promising way to achieve high-precision and high-efficiency 3D atom localization, which provides some potential applications in laser cooling or atom nano-lithography via atom localization. PMID:27140374

  14. Sub-wavelength imaging and field mapping via electromagnetically induced transparency and Autler-Townes splitting in Rydberg atoms

    SciTech Connect

    Holloway, Christopher L. Gordon, Joshua A.; Schwarzkopf, Andrew; Anderson, David A.; Miller, Stephanie A.; Thaicharoen, Nithiwadee; Raithel, Georg

    2014-06-16

    We present a technique for measuring radio-frequency (RF) electric field strengths with sub-wavelength resolution. We use Rydberg states of rubidium atoms to probe the RF field. The RF field causes an energy splitting of the Rydberg states via the Autler-Townes effect, and we detect the splitting via electromagnetically induced transparency (EIT). We use this technique to measure the electric field distribution inside a glass cylinder with applied RF fields at 17.04 GHz and 104.77 GHz. We achieve a spatial resolution of ≈100 μm, limited by the widths of the laser beams utilized for the EIT spectroscopy. We numerically simulate the fields in the glass cylinder and find good agreement with the measured fields. Our results suggest that this technique could be applied to image fields on a small spatial scale over a large range of frequencies, up into the sub-terahertz regime.

  15. Direct measurement of excited-state dipole matrix elements using electromagnetically induced transparency in the hyperfine Paschen-Back regime

    NASA Astrophysics Data System (ADS)

    Whiting, Daniel J.; Keaveney, James; Adams, Charles S.; Hughes, Ifan G.

    2016-04-01

    Applying large magnetic fields to gain access to the hyperfine Paschen-Back regime can isolate three-level systems in a hot alkali metal vapors, thereby simplifying usually complex atom-light interactions. We use this method to make the first direct measurement of the |<5 P ||e r ||5 D >| matrix element in 87Rb. An analytic model with only three levels accurately models the experimental electromagnetically induced transparency spectra and extracted Rabi frequencies are used to determine the dipole matrix element. We measure |<5 P3 /2||e r ||5 D5 /2>| =(2.290 ±0 .002stat±0 .04syst) e a0 , which is in excellent agreement with the theoretical calculations of Safronova, Williams, and Clark [Phys. Rev. A 69, 022509 (2004), 10.1103/PhysRevA.69.022509].

  16. The respective effects of direct and indirect couplings on the plasmon-induced transparency in waveguide systems

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Li, Guanhai; Wang, Lin; Li, Hongjian; Chen, Xiaoshuang

    2016-04-01

    We investigate respectively the effects of direct and indirect couplings on electromagnetically induced transparency (EIT)-like in a Metal-Insulator-Metal (MIM) bus waveguide coupled to two aperture-resonators (ARS). Adjusting the intensity of direct and indirect couplings, we can intentionally realize, modulate and eliminate the EIT-like transmission in the proposed plasmonic structures. The consistency between theoretical results and finite-difference time-domain (FDTD) simulations indicates that the direct coupling can give rise to EIT-like phenomenon in symmetrical structure. Moreover, the EIT-like transmission dips can be shifted back to the original resonant frequency when the two couplings offset each other. These results may provide a helpful guideline for the control of light in highly integrated optical circuits.

  17. Efficient reflection via four-wave mixing in a Doppler-free electromagnetically-induced-transparency gas system

    SciTech Connect

    Zhou, Hai-Tao; Wang, Dan; Zhang, Jun-Xiang; Wang, Da-Wei; Zhu, Shi-Yao

    2011-11-15

    We experimentally demonstrate the high-efficiency reflection of a probe field in {Lambda}-type three-level atoms of cesium vapor driven by two counterpropagating coupling fields. More than 60% of reflection efficiency is observed at the phase-matching angle. The underlying mechanism theoretically is investigated as the four-wave mixing is enhanced by the electromagnetically-induced transparency. Both of the two Doppler-free two-photon resonances (one for the probe and co-propagating fields, the other for the reflected and the counterpropagation fields) play an important role in satisfying the phase matching in the reflection direction. The phase compensation due to the anomalous dispersion and the decrease of effective absorption length in the atomic system allow the efficient reflection to be observed in a wide range of incident angles of the probe field and detunings of the coupling field.

  18. Highly compliant transparent electrodes

    NASA Astrophysics Data System (ADS)

    Shian, Samuel; Diebold, Roger M.; McNamara, Alena; Clarke, David R.

    2012-08-01

    Adaptive optical devices based on electric field induced deformation of dielectric elastomers require transparent and highly compliant electrodes to conform to large shape changes. Electrical, optical, and actuation properties of acrylic elastomer electrodes fabricated with single-walled carbon nanotubes (SWCNTs) and silver nanowires (AgNWs) have been evaluated. Based on these properties, a figure of merit is introduced for evaluating the overall performance of deformable transparent electrodes. This clearly indicates that SWCNTs outperform AgNWs. Under optimal conditions, optical transparency as high as 91% at 190% maximum actuation strain is readily achievable using SWCNT electrodes.

  19. Exchange interaction and the tunneling induced transparency in coupled quantum dots

    NASA Astrophysics Data System (ADS)

    Borges, Halyne; Alcalde, Augusto; Ulloa, Sergio

    2014-03-01

    Stacked semiconductor quantum dots coupled by tunneling are unique ``quantum molecule'' where it is possible to create a multilevel structure of excitonic states. This structure allows the investigation of quantum interference processes and their control via electric external fields. In this work, we investigate the optical response of a quantum molecule coherently driven by a polarized laser, considering the splitting in excitonic levels caused by isotropic and anisotropic exchange interactions. In our model we consider interdot transitions mediated by the the hole tunneling between states with the same total spin and, between bright and dark exciton states. Using realistic experimental parameters, we demonstrate that the excitonic states coupled by tunneling exhibit an enriched and controllable optical response. Our results show that through the appropriate control of the external electric field and light polarization, the tunneling coupling establishes an efficient destructive quantum interference path that creates a transparency window in the absorption spectra, whenever states of appropriate symmetry are mixed by the hole tunneling. We explore the relevant parameters space that would allows with the experiments. CAPES, INCT-IQ and MWN/CIAM-NSF.

  20. Optomechanically induced transparency in multi-cavity optomechanical system with and without one two-level atom

    PubMed Central

    Sohail, Amjad; Zhang, Yang; Zhang, Jun; Yu, Chang-shui

    2016-01-01

    We analytically study the optomechanically induced transparency (OMIT) in the N-cavity system with the Nth cavity driven by pump, probing laser fields and the 1st cavity coupled to mechanical oscillator. We also consider that one atom could be trapped in the ith cavity. Instead of only illustrating the OMIT in such a system, we are interested in how the number of OMIT windows is influenced by the cavities and the atom and what roles the atom could play in different cavities. In the resolved sideband regime, we find that, the number of cavities precisely determines the maximal number of OMIT windows. It is interesting that, when the two-level atom is trapped in the even-labeled cavity, the central absorptive peak (odd N) or dip (even N) is split and forms an extra OMIT window, but if the atom is trapped in the odd-labeled cavity, the central absorptive peak (odd N) or dip (even N) is only broadened and thus changes the width of the OMIT windows rather than induces an extra window. PMID:27349325

  1. Generation of self-induced-transparency gap solitons by modulational instability in uniformly doped fiber Bragg gratings

    SciTech Connect

    Kalithasan, B.; Porsezian, K.; Senthilnathan, K.; Tchofo Dinda, P.

    2010-05-15

    We consider the continuous-wave (cw) propagation through a fiber Bragg grating that is uniformly doped with two-level resonant atoms. Wave propagation is governed by a system of nonlinear coupled-mode Maxwell-Bloch (NLCM-MB) equations. We identify modulational instability (MI) conditions required for the generation of ultrashort pulses in both anomalous and normal dispersion regimes. From a detailed linear stability analysis, we find that the atomic detuning frequency has a strong influence on the MI. That is, the atomic detuning frequency induces nonconventional MI sidebands at the photonic band gap (PBG) edges and near the PBG edges. Especially in the normal dispersion regime, MI occurs without any threshold condition, which is in contrast with that of conventional fiber Bragg gratings. We also perform a numerical analysis to solve the NLCM-MB equations. The numerical results of the prediction of both the optimum modulation wave number and the optimum gain agree well with that of the linear stability analysis. Another main result of the present work is the prediction of the existence of both bright and dark self-induced transparency gap solitons at the PBG edges.

  2. Optomechanically induced transparency in multi-cavity optomechanical system with and without one two-level atom

    NASA Astrophysics Data System (ADS)

    Sohail, Amjad; Zhang, Yang; Zhang, Jun; Yu, Chang-Shui

    2016-06-01

    We analytically study the optomechanically induced transparency (OMIT) in the N-cavity system with the Nth cavity driven by pump, probing laser fields and the 1st cavity coupled to mechanical oscillator. We also consider that one atom could be trapped in the ith cavity. Instead of only illustrating the OMIT in such a system, we are interested in how the number of OMIT windows is influenced by the cavities and the atom and what roles the atom could play in different cavities. In the resolved sideband regime, we find that, the number of cavities precisely determines the maximal number of OMIT windows. It is interesting that, when the two-level atom is trapped in the even-labeled cavity, the central absorptive peak (odd N) or dip (even N) is split and forms an extra OMIT window, but if the atom is trapped in the odd-labeled cavity, the central absorptive peak (odd N) or dip (even N) is only broadened and thus changes the width of the OMIT windows rather than induces an extra window.

  3. Study of shock-induced combustion using an implicit TVD scheme

    NASA Technical Reports Server (NTRS)

    Yungster, Shayne

    1992-01-01

    The supersonic combustion flowfields associated with various hypersonic propulsion systems, such as the ram accelerator, the oblique detonation wave engine, and the scramjet, are being investigated using a new computational fluid dynamics (CFD) code. The code solves the fully coupled Reynolds-averaged Navier-Stokes equations and species continuity equations in an efficient manner. It employs an iterative method and a second order differencing scheme to improve computational efficiency. The code is currently being applied to study shock wave/boundary layer interactions in premixed combustible gases, and to investigate the ram accelerator concept. Results obtained for a ram accelerator configuration indicate a new combustion mechanism in which a shock wave induces combustion in the boundary layer, which then propagates outward and downstream. The combustion process creates a high pressure region over the back of the projectile resulting in a net positive thrust forward.

  4. ANALYSIS OF SEEING-INDUCED POLARIZATION CROSS-TALK AND MODULATION SCHEME PERFORMANCE

    SciTech Connect

    Casini, R.; De Wijn, A. G.; Judge, P. G.

    2012-09-20

    We analyze the generation of polarization cross-talk in Stokes polarimeters by atmospheric seeing, and its effects on the noise statistics of spectropolarimetric measurements for both single-beam and dual-beam instruments. We investigate the time evolution of seeing-induced correlations between different states of one modulation cycle and compare the response to these correlations of two popular polarization modulation schemes in a dual-beam system. Extension of the formalism to encompass an arbitrary number of modulation cycles enables us to compare our results with earlier work. Even though we discuss examples pertinent to solar physics, the general treatment of the subject and its fundamental results might be useful to a wider community.

  5. Mask roughness induced LER control and mitigation: aberrations sensitivity study and alternate illumination scheme

    NASA Astrophysics Data System (ADS)

    McClinton, Brittany M.; Naulleau, Patrick P.

    2011-04-01

    Here we conduct a mask-roughness-induced line-edge-roughness (LER) aberrations sensitivity study both as a random distribution amongst the first 16 Fringe Zernikes (for overall aberration levels of 0.25, 0.50, and 0.75nm rms) as well as an individual aberrations sensitivity matrix over the first 37 Fringe Zernikes. Full 2D aerial image modeling for an imaging system with NA = 0.32 was done for both the 22-nm and 16-nm half-pitch nodes on a rough mask with a replicated surface roughness (RSR) of 100 pm and a correlation length of 32 nm at the nominal extreme-ultraviolet lithography (EUVL) wavelength of 13.5nm. As the ideal RSR value for commercialization of EUVL is 50 pm and under, and furthermore as has been shown elsewhere, a correlation length of 32 nm of roughness on the mask sits on the peak LER value for an NA = 0.32 imaging optic, these mask roughness values and consequently the aberration sensitivity study presented here, represent a worst-case scenario. The illumination conditions were chosen based on the possible candidates for the 22-nm and 16-nm half-pitch nodes, respectively. In the 22-nm case, a disk illumination setting of σ = 0.50 was used, and for the 16-nm case, crosspole illumination with σ = 0.10 at an optimum offset of dx = 0 and dy = .67 in sigma space. In examining how to mitigate mask roughness induced LER, we considered an alternate illumination scheme whereby a traditional dipole's angular spectrum is extended in the direction parallel to the line-and-space mask absorber pattern to represent a "strip". While this illumination surprisingly provides minimal improvement to the LER as compared to several alternate illumination schemes, the overall imaging quality in terms of image-log-slope (ILS) and contrast is improved.

  6. Mask roughness induced LER control and mitigation: aberrations sensitivity study and alternate illumination scheme

    SciTech Connect

    McClinton, Brittany M.; Naulleau, Patrick P.

    2011-03-11

    Here we conduct a mask-roughness-induced line-edge-roughness (LER) aberrations sensitivity study both as a random distribution amongst the first 16 Fringe Zernikes (for overall aberration levels of 0.25, 0.50, and 0.75nm rms) as well as an individual aberrations sensitivity matrix over the first 37 Fringe Zernikes. Full 2D aerial image modeling for an imaging system with NA = 0.32 was done for both the 22-nm and 16-nm half-pitch nodes on a rough mask with a replicated surface roughness (RSR) of 100 pm and a correlation length of 32 nm at the nominal extreme-ultraviolet lithography (EUVL) wavelength of 13.5nm. As the ideal RSR value for commercialization of EUVL is 50 pm and under, and furthermore as has been shown elsewhere, a correlation length of 32 nm of roughness on the mask sits on the peak LER value for an NA = 0.32 imaging optic, these mask roughness values and consequently the aberration sensitivity study presented here, represent a worst-case scenario. The illumination conditions were chosen based on the possible candidates for the 22-nm and 16-nm half-pitch nodes, respectively. In the 22-nm case, a disk illumination setting of {sigma} = 0.50 was used, and for the 16-nm case, crosspole illumination with {sigma} = 0.10 at an optimum offset of dx = 0 and dy = .67 in sigma space. In examining how to mitigate mask roughness induced LER, we considered an alternate illumination scheme whereby a traditional dipole's angular spectrum is extended in the direction parallel to the line-and-space mask absorber pattern to represent a 'strip'. While this illumination surprisingly provides minimal improvement to the LER as compared to several alternate illumination schemes, the overall imaging quality in terms of image-log-slope (ILS) and contrast is improved.

  7. Generation of laser-induced periodic surface structures on transparent material-fused silica

    NASA Astrophysics Data System (ADS)

    Schwarz, Simon; Rung, Stefan; Hellmann, Ralf

    2016-05-01

    We report on a comparison between simulated and experimental results for the generation of laser-induced periodic surface structures with low spatial frequency on dielectrics. Using the established efficacy factor theory extended by a Drude model, we determine the required carrier density for the generation of low spatial frequency LIPSS (LSFL) and forecast their periodicity and orientation. In a subsequent calculative step, we determine the fluence of ultrashort laser pulses necessary to excite this required carrier density in due consideration of the pulse number dependent ablation threshold. The later calculation is based on a rate equation including photo- and avalanche ionization and derives appropriate process parameters for a selective generation of LSFL. Exemplarily, we apply this approach to the generation of LSFL on fused silica using a 1030 nm femtosecond laser. The experimental results for the orientation and spatial periodicity of LSFL reveal excellent agreement with the simulation.

  8. Optical Control of Magnetic Feshbach Resonances by Closed-Channel Electromagnetically Induced Transparency

    NASA Astrophysics Data System (ADS)

    Jagannathan, A.; Arunkumar, N.; Joseph, J. A.; Thomas, J. E.

    2016-02-01

    We control magnetic Feshbach resonances in an optically trapped mixture of the two lowest hyperfine states of a 6Li Fermi gas, using two optical fields to create a dark state in the closed molecular channel. In the experiments, the narrow Feshbach resonance is tuned by up to 3 G. For the broad resonance, the spontaneous lifetime is increased to 0.4 s at the dark-state resonance, compared to 0.5 ms for single-field tuning. We present a new model of light-induced loss spectra, employing continuum-dressed basis states, which agrees in shape and magnitude with loss measurements for both broad and narrow resonances. Using this model, we predict the trade-off between tunability and loss for the broad resonance in 6Li, showing that our two-field method substantially reduces the two-body loss rate compared to single-field methods for the same tuning range.

  9. All-dielectric metasurface analogue of electromagnetically induced transparency [High Quality Factor Fano-Resonant All-Dielectric Metamaterials

    DOE PAGESBeta

    Yang, Yuanmu; Kravchenko, Ivan I.; Briggs, Dayrl P.; Valentine, Jason

    2014-12-16

    Fano-resonant plasmonic metamaterials and nanostructures have become a major focus of the nanophotonics fields over the past several years due their ability to produce high quality factor (Q-factor) resonances. The origin of such resonances is the interference between a broad and narrow resonance, ultimately allowing suppression of radiative damping. However, Fano-resonant plasmonic structures still suffer non-radiative damping due to Ohmic loss, ultimately limiting the achievable Q-factors to values less than ~10. Here, we report experimental demonstration of Fano-resonant silicon-based metamaterials that have a response that mimics the electromagnetically induced transparency (EIT) found in atomic systems. Due to extremely low absorptionmore » loss, a record-high quality factor (Q-factor) of 306 was experimentally observed. Furthermore, the unit cell of the metamaterial was designed with a feed-gap which results in strong local field enhancement in the surrounding medium resulting in strong light-matter interaction. This allows the metamaterial to serve as a refractive index sensor with a figure-of-merit (FOM) of 101, far exceeding the performance of previously demonstrated localized surface plasmon resonance sensors.« less

  10. All-dielectric metasurface analogue of electromagnetically induced transparency [High Quality Factor Fano-Resonant All-Dielectric Metamaterials

    SciTech Connect

    Yang, Yuanmu; Kravchenko, Ivan I.; Briggs, Dayrl P.; Valentine, Jason

    2014-12-16

    Fano-resonant plasmonic metamaterials and nanostructures have become a major focus of the nanophotonics fields over the past several years due their ability to produce high quality factor (Q-factor) resonances. The origin of such resonances is the interference between a broad and narrow resonance, ultimately allowing suppression of radiative damping. However, Fano-resonant plasmonic structures still suffer non-radiative damping due to Ohmic loss, ultimately limiting the achievable Q-factors to values less than ~10. Here, we report experimental demonstration of Fano-resonant silicon-based metamaterials that have a response that mimics the electromagnetically induced transparency (EIT) found in atomic systems. Due to extremely low absorption loss, a record-high quality factor (Q-factor) of 306 was experimentally observed. Furthermore, the unit cell of the metamaterial was designed with a feed-gap which results in strong local field enhancement in the surrounding medium resulting in strong light-matter interaction. This allows the metamaterial to serve as a refractive index sensor with a figure-of-merit (FOM) of 101, far exceeding the performance of previously demonstrated localized surface plasmon resonance sensors.